Sample records for wall type-ii membrane

  1. Simulation of one-sided heating of boiler unit membrane-type water walls

    NASA Astrophysics Data System (ADS)

    Kurepin, M. P.; Serbinovskiy, M. Yu.

    2017-03-01

    This study describes the results of simulation of the temperature field and the stress-strain state of membrane-type gastight water walls of boiler units using the finite element method. The methods of analytical and standard calculation of one-sided heating of fin-tube water walls by a radiative heat flux are analyzed. The methods and software for input data calculation in the finite-element simulation, including thermoelastic moments in welded panels that result from their one-sided heating, are proposed. The method and software modules are used for water wall simulation using ANSYS. The results of simulation of the temperature field, stress field, deformations and displacement of the membrane-type panel for the boiler furnace water wall using the finite-element method, as well as the results of calculation of the panel tube temperature, stresses and deformations using the known methods, are presented. The comparison of the known experimental results on heating and bending by given moments of membrane-type water walls and numerical simulations is performed. It is demonstrated that numerical results agree with high accuracy with the experimental data. The relative temperature difference does not exceed 1%. The relative difference of the experimental fin mutual turning angle caused by one-sided heating by radiative heat flux and the results obtained in the finite element simulation does not exceed 8.5% for nondisplaced fins and 7% for fins with displacement. The same difference for the theoretical results and the simulation using the finite-element method does not exceed 3% and 7.1%, respectively. The proposed method and software modules for simulation of the temperature field and stress-strain state of the water walls are verified and the feasibility of their application in practical design is proven.

  2. LipidII: Just Another Brick in the Wall?

    PubMed Central

    Scheffers, Dirk-Jan; Tol, Menno B.

    2015-01-01

    Nearly all bacteria contain a peptidoglycan cell wall. The peptidoglycan precursor molecule is LipidII, containing the basic peptidoglycan building block attached to a lipid. Although the suitability of LipidII as an antibacterial target has long been recognized, progress on elucidating the role(s) of LipidII in bacterial cell biology has been slow. The focus of this review is on exciting new developments, both with respect to antibacterials targeting LipidII as well as the emerging role of LipidII in organizing the membrane and cell wall synthesis. It appears that on both sides of the membrane, LipidII plays crucial roles in organizing cytoskeletal proteins and peptidoglycan synthesis machineries. Finally, the recent discovery of no less than three different categories of LipidII flippases will be discussed. PMID:26679002

  3. Role of 17 beta-estradiol on type IV collagen fibers volumetric density in the basement membrane of bladder wall.

    PubMed

    de Fraga, Rogerio; Dambros, Miriam; Miyaoka, Ricardo; Riccetto, Cássio Luís Zanettini; Palma, Paulo César Rodrigues

    2007-10-01

    The authors quantified the type IV collagen fibers volumetric density in the basement membrane of bladder wall of ovariectomized rats with and without estradiol replacement. This study was conducted on 40 Wistar rats (3 months old) randomly divided in 4 groups: group 1, remained intact (control); group 2, submitted to bilateral oophorectomy and daily replacement 4 weeks later of 17 beta-estradiol for 12 weeks; group 3, sham operated and daily replacement 4 weeks later of sesame oil for 12 weeks; and group 4, submitted to bilateral oophorectomy and killed after 12 weeks. It was used in immunohistochemistry evaluation using type IV collagen polyclonal antibody to stain the fibers on paraffin rat bladder sections. The M-42 stereological grid system was used to analyze the fibers. Ovariectomy had an increase effect on the volumetric density of the type IV collagen fibers in the basement membrane of rat bladder wall. Estradiol replacement in castrated animals demonstrated a significative difference in the stereological parameters when compared to the castrated group without hormonal replacement. Surgical castration performed on rats induced an increasing volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall and the estradiol treatment had a significant effect in keeping a low volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall.

  4. Deep lateral wall orbital decompression following strabismus surgery in patients with Type II ophthalmic Graves' disease.

    PubMed

    Ellis, Michael P; Broxterman, Emily C; Hromas, Alan R; Whittaker, Thomas J; Sokol, Jason A

    2018-01-10

    Surgical management of ophthalmic Graves' disease traditionally involves, in order, orbital decompression, followed by strabismus surgery and eyelid surgery. Nunery et al. previously described two distinct sub-types of patients with ophthalmic Graves' disease; Type I patients exhibit no restrictive myopathy (no diplopia) as opposed to Type II patients who do exhibit restrictive myopathy (diplopia) and are far more likely to develop new-onset worsening diplopia following medial wall and floor decompression. Strabismus surgery involving extra-ocular muscle recession has, in turn, been shown to potentially worsen proptosis. Our experience with Type II patients who have already undergone medial wall and floor decompression and strabismus surgery found, when additional decompression is necessary, deep lateral wall decompression (DLWD) appears to have a low rate of post-operative primary-gaze diplopia. A case series of four Type II ophthalmic Graves' disease patients, all of whom had already undergone decompression and strabismus surgery, and went on to develop worsening proptosis or optic nerve compression necessitating further decompression thereafter. In all cases, patients were treated with DLWD. Institutional Review Board approval was granted by the University of Kansas. None of the four patients treated with this approach developed recurrent primary-gaze diplopia or required strabismus surgery following DLWD. While we still prefer to perform medial wall and floor decompression as the initial treatment for ophthalmic Graves' disease, for proptosis following consecutive strabismus surgery, DLWD appears to be effective with a low rate of recurrent primary-gaze diplopia.

  5. A membrane-anchored E-type endo-1,4-beta-glucanase is localized on Golgi and plasma membranes of higher plants.

    PubMed

    Brummell, D A; Catala, C; Lashbrook, C C; Bennett, A B

    1997-04-29

    Endo-1,4-beta-D-glucanases (EGases, EC 3.2.1.4) are enzymes produced in bacteria, fungi, and plants that hydrolyze polysaccharides possessing a 1,4-beta-D-glucan backbone. All previously identified plant EGases are E-type endoglucanases that possess signal sequences for endoplasmic reticulum entry and are secreted to the cell wall. Here we report the characterization of a novel E-type plant EGase (tomato Cel3) with a hydrophobic transmembrane domain and structure typical of type II integral membrane proteins. The predicted protein is composed of 617 amino acids and possesses seven potential sites for N-glycosylation. Cel3 mRNA accumulates in young vegetative tissues with highest abundance during periods of rapid cell expansion, but is not hormonally regulated. Antibodies raised to a recombinant Cel3 protein specifically recognized three proteins, with apparent molecular masses of 93, 88, and 53 kDa, in tomato root microsomal membranes separated by sucrose density centrifugation. The 53-kDa protein comigrated in the gradient with plasma membrane markers, the 88-kDa protein with Golgi membrane markers, and the 93-kDa protein with markers for both Golgi and plasma membranes. EGase enzyme activity was also found in regions of the density gradient corresponding to both Golgi and plasma membranes, suggesting that Cel3 EGase resides in both membrane systems, the sites of cell wall polymer biosynthesis. The in vivo function of Cel3 is not known, but the only other known membrane-anchored EGase is present in Agrobacterium tumefaciens where it is required for cellulose biosynthesis.

  6. At the border: the plasma membrane-cell wall continuum.

    PubMed

    Liu, Zengyu; Persson, Staffan; Sánchez-Rodríguez, Clara

    2015-03-01

    Plant cells rely on their cell walls for directed growth and environmental adaptation. Synthesis and remodelling of the cell walls are membrane-related processes. During cell growth and exposure to external stimuli, there is a constant exchange of lipids, proteins, and other cell wall components between the cytosol and the plasma membrane/apoplast. This exchange of material and the localization of cell wall proteins at certain spots in the plasma membrane seem to rely on a particular membrane composition. In addition, sensors at the plasma membrane detect changes in the cell wall architecture, and activate cytoplasmic signalling schemes and ultimately cell wall remodelling. The apoplastic polysaccharide matrix is, on the other hand, crucial for preventing proteins diffusing uncontrollably in the membrane. Therefore, the cell wall-plasma membrane link is essential for plant development and responses to external stimuli. This review focuses on the relationship between the cell wall and plasma membrane, and its importance for plant tissue organization. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. S-layer and cytoplasmic membrane - exceptions from the typical archaeal cell wall with a focus on double membranes.

    PubMed

    Klingl, Andreas

    2014-01-01

    The common idea of typical cell wall architecture in archaea consists of a pseudo-crystalline proteinaceous surface layer (S-layer), situated upon the cytoplasmic membrane. This is true for the majority of described archaea, hitherto. Within the crenarchaea, the S-layer often represents the only cell wall component, but there are various exceptions from this wall architecture. Beside (glycosylated) S-layers in (hyper)thermophilic cren- and euryarchaea as well as halophilic archaea, one can find a great variety of other cell wall structures like proteoglycan-like S-layers (Halobacteria), glutaminylglycan (Natronococci), methanochondroitin (Methanosarcina) or double layered cell walls with pseudomurein (Methanothermus and Methanopyrus). The presence of an outermost cellular membrane in the crenarchaeal species Ignicoccus hospitalis already gave indications for an outer membrane similar to Gram-negative bacteria. Although there is just limited data concerning their biochemistry and ultrastructure, recent studies on the euryarchaeal methanogen Methanomassiliicoccus luminyensis, cells of the ARMAN group, and the SM1 euryarchaeon delivered further examples for this exceptional cell envelope type consisting of two membranes.

  8. Effect of polymer type on characterization and filtration performances of multi-walled carbon nanotubes (MWCNT)-COOH-based polymeric mixed matrix membranes.

    PubMed

    Sengur-Tasdemir, Reyhan; Mokkapati, Venkata R S S; Koseoglu-Imer, Derya Y; Koyuncu, Ismail

    2018-05-01

    Multi-walled carbon nanotubes (MWCNTs) can be used for the fabrication of mixed matrix polymeric membranes that can enhance filtration perfomances of the membranes by modifying membrane surface properties. In this study, detailed characterization and filtration performances of MWCNTs functionalized with COOH group, blended into polymeric flat-sheet membranes were investigated using different polymer types. Morphological characterization was carried out using atomic force microscopy, scanning electron microscopy and contact angle measurements. For filtration performance tests, protein, dextran, E. coli suspension, Xanthan Gum and real activated sludge solutions were used. Experimental data and analyses revealed that Polyethersulfone (PES) + MWCNT-COOH mixed matrix membranes have superior performance abilities compared to other tested membranes.

  9. Biophysical Insights into How Spike Threshold Depends on the Rate of Membrane Potential Depolarization in Type I and Type II Neurons

    PubMed Central

    Yi, Guo-Sheng; Wang, Jiang; Tsang, Kai-Ming; Wei, Xi-Le; Deng, Bin

    2015-01-01

    Dynamic spike threshold plays a critical role in neuronal input-output relations. In many neurons, the threshold potential depends on the rate of membrane potential depolarization (dV/dt) preceding a spike. There are two basic classes of neural excitability, i.e., Type I and Type II, according to input-output properties. Although the dynamical and biophysical basis of their spike initiation has been established, the spike threshold dynamic for each cell type has not been well described. Here, we use a biophysical model to investigate how spike threshold depends on dV/dt in two types of neuron. It is observed that Type II spike threshold is more depolarized and more sensitive to dV/dt than Type I. With phase plane analysis, we show that each threshold dynamic arises from the different separatrix and K+ current kinetics. By analyzing subthreshold properties of membrane currents, we find the activation of hyperpolarizing current prior to spike initiation is a major factor that regulates the threshold dynamics. The outward K+ current in Type I neuron does not activate at the perithresholds, which makes its spike threshold insensitive to dV/dt. The Type II K+ current activates prior to spike initiation and there is a large net hyperpolarizing current at the perithresholds, which results in a depolarized threshold as well as a pronounced threshold dynamic. These predictions are further attested in several other functionally equivalent cases of neural excitability. Our study provides a fundamental description about how intrinsic biophysical properties contribute to the threshold dynamics in Type I and Type II neurons, which could decipher their significant functions in neural coding. PMID:26083350

  10. On the numerical investigation of sound transmission through double-walled structures with membrane-type acoustic metamaterials.

    PubMed

    Marinova, Polina; Lippert, Stephan; von Estorff, Otto

    2017-10-01

    Acoustic metamaterials appear to be of great help in the design of reliable and effective noise reduction measures in the low frequency range. The current contribution is concerned with the modeling of a low-frequency noise shield, based on a double wall arrangement, which includes membrane-type acoustic metamaterials (MAMs), considered as the most promising approach when it comes especially to the tonal noise at frequencies below 300 Hz. MAMs consist of small-sized membranes loaded with a mass. Due to their robustness and relatively simple production, MAMs have been proven to decrease the sound transmission in frequency ranges, for which poro-elastic materials have a rather negligible effect. A simulation model of a double wall panel, whose acoustic cavity is furnished with layers of metamaterials, has been developed and the sound transmission loss (STL) through the structure was calculated, using the finite element method. In order to validate the modelling approach, the STL estimation from the finite element analysis was compared to experimental measurements. The achieved results indicate a noise-decreasing possibility in tunable narrow bands as well as a broadband noise reduction for frequencies less than 300 Hz without significantly adding to the panel mass.

  11. Erythrocyte membrane analysis for type II diabetes detection using Raman spectroscopy in high-wavenumber region

    NASA Astrophysics Data System (ADS)

    Lin, Jinyong; Zeng, Yongyi; Lin, Juqiang; Wang, Jing; Li, Ling; Huang, Zufang; Li, Buhong; Zeng, Haishan; Chen, Rong

    2014-03-01

    Raman spectroscopy was employed to detect lipid variation occurring in type II diabetic erythrocyte membrane (EM) without using exogenous reagents. In high-wavenumber (HW) region, significant Raman spectral differences between diabetic and normal EM are observed at 2850, 2873, 2885, 2935, and 2965 cm-1, which are mainly related to lipid in EM. Based on principal component analysis, the diagnostic accuracy of HW region for diabetes detection is 98.8%, which is much higher than that of low-wavenumber region (82.9%). The results suggest that EM HW Raman region has great promise for the reagent-free and non-invasive detection of type II diabetes.

  12. MYONEURAL JUNCTIONS OF TWO ULTRASTRUCTURALLY DISTINCT TYPES IN EARTHWORM BODY WALL MUSCLE

    PubMed Central

    Rosenbluth, Jack

    1972-01-01

    The longitudinal muscle of the earthworm body wall is innervated by nerve bundles containing axons of two types which form two corresponding types of myoneural junction with the muscle fibers Type I junctions resemble cholinergic neuromuscular junctions of vertebrate skeletal muscle and are characterized by three features: (a) The nerve terminals contain large numbers of spherical, clear, ∼500 A vesicles plus a small number of larger dense-cored vesicles (b) The junctional gap is relatively wide (∼900 A), and it contains a basement membrane-like material, (c) The postjunctional membrane, although not folded, displays prominent specializations on both its external and internal surfaces The cytoplasmic surface is covered by a dense matrix ∼200 A thick which appears to be the site of insertion of fine obliquely oriented cytoplasmic filaments The external surface exhibits rows of projections ∼200 A long whose bases consist of hexagonally arrayed granules seated in the outer dense layer of the plasma membrane The concentration of these hexagonally disposed elements corresponds to the estimated concentration of both receptor sites and acetylcholinesterase sites at cholinergic junctions elsewhere. Type II junctions resemble the adrenergic junctions in vertebrate smooth muscle and exhibit the following structural characteristics: (a) The nerve fibers contain predominantly dense-cored vesicles ∼1000 A in diameter (b) The junctional gap is relatively narrow (∼150 A) and contains no basement membrane-like material, (c) Postjunctional membrane specialization is minimal. It is proposed that the structural differences between the two types of myoneural junction reflect differences in the respective transmitters and corresponding differences in the mechanisms of transmitter action and/or inactivation. PMID:5044759

  13. Hydrostatic and Flow Measurements on Wrinkled Membrane Walls

    NASA Astrophysics Data System (ADS)

    Ozsun, Ozgur; Ekinci, Kamil

    2013-03-01

    In this study, we investigate structural properties of wrinkled silicon nitride (SiN) membranes, under both hydrostatic perturbations and flow conditions, through surface profile measurements. Rectangular SiN membranes with linear dimensions of 15 mm × 1 . 5 mm × 1 μ m are fabricated on a 500 - μ m-thick silicon substrate using standard lithography techniques. These thin, initially flat, tension-dominated membranes are wrinkled by bending the silicon substrate. The wrinkled membranes are subsequently incorporated as walls into rectangular micro-channels, which allow both hydrostatic and flow measurements. The structural response of the wrinkles to hydrostatic pressure provides a measure of the various energy scales in the problem. Flow experiments show that the elastic properties and the structural undulations on a compliant membrane completely dominate the flow, possibly providing drag reduction. These measurements pave the way for building and using compliant walls for drag reduction in micro-channels.

  14. Type 1 angiotensin II receptor-associated protein ARAP1 binds and recycles the receptor to the plasma membrane.

    PubMed

    Guo, Deng-Fu; Chenier, Isabelle; Tardif, Valerie; Orlov, Sergei N; Inagami, Tadashi

    2003-10-31

    The carboxyl terminus of the type 1 angiotensin II receptor (AT(1)) plays an important role in receptor phosphorylation, desensitization, and internalization. The yeast two-hybrid system was employed to isolate proteins associated with the carboxyl terminal region of the AT(1A) receptor. In the present study, we report the isolation of a novel protein, ARAP1, which promotes recycling of AT(1A) to the plasma membrane in HEK-293 cells. ARAP1 cDNA encodes a 493-amino-acid protein and its mRNA is ubiquitously expressed in rat tissues. A complex of ARAP1 and AT(1A) was observed by immunoprecipitation and Western blotting in HEK-293 cells. In the presence of ARAP1, recycled AT(1A) showed a significant Ca(2+) release response to a second stimulation by Ang II 30 min after the first treatment. Immunocytochemical analysis revealed co-localization of recycled AT(1A) and ARAP1 in the plasma membrane 45 min after the initial exposure to Ang II. Taken together, these results indicate a role for ARAP1 in the recycling of the AT(1) receptor to the plasma membrane with presumable concomitant recovery of receptor signal functions.

  15. Glycosylinositol phosphorylceramides from Rosa cell cultures are boron-bridged in the plasma membrane and form complexes with rhamnogalacturonan II.

    PubMed

    Voxeur, Aline; Fry, Stephen C

    2014-07-01

    Boron (B) is essential for plant cell-wall structure and membrane functions. Compared with its role in cross-linking the pectic domain rhamnogalacturonan II (RG-II), little information is known about the biological role of B in membranes. Here, we investigated the involvement of glycosylinositol phosphorylceramides (GIPCs), major components of lipid rafts, in the membrane requirement for B. Using thin-layer chromatography and mass spectrometry, we first characterized GIPCs from Rosa cell culture. The major GIPC has one hexose residue, one hexuronic acid residue, inositol phosphate, and a ceramide moiety with a C18 trihydroxylated mono-unsaturated long-chain base and a C24 monohydroxylated saturated fatty acid. Disrupting B bridging (by B starvation in vivo or by treatment with cold dilute HCl or with excess borate in vitro) enhanced the GIPCs' extractability. As RG-II is the main B-binding site in plants, we investigated whether it could form a B-centred complex with GIPCs. Using high-voltage paper electrophoresis, we showed that addition of GIPCs decreased the electrophoretic mobility of radiolabelled RG-II, suggesting formation of a GIPC-B-RG-II complex. Last, using polyacrylamide gel electrophoresis, we showed that added GIPCs facilitate RG-II dimerization in vitro. We conclude that B plays a structural role in the plasma membrane. The disruption of membrane components by high borate may account for the phytotoxicity of excess B. Moreover, the in-vitro formation of a GIPC-B-RG-II complex gives the first molecular explanation of the wall-membrane attachment sites observed in vivo. Finally, our results suggest a role for GIPCs in the RG-II dimerization process. © 2014 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  16. Effect of cholesterol depletion on exocytosis of alveolar type II cells.

    PubMed

    Chintagari, Narendranath Reddy; Jin, Nili; Wang, Pengcheng; Narasaraju, Telugu Akula; Chen, Jiwang; Liu, Lin

    2006-06-01

    Alveolar epithelial type II cells secrete lung surfactant via exocytosis. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) are implicated in this process. Lipid rafts, the cholesterol- and sphingolipid-rich microdomains, may offer a platform for protein organization on the cell membrane. We tested the hypothesis that lipid rafts organize exocytotic proteins in type II cells and are essential for the fusion of lamellar bodies, the secretory granules of type II cells, with the plasma membrane. The lipid rafts, isolated from type II cells using 1% Triton X-100 and a sucrose gradient centrifugation, contained the lipid raft markers, flotillin-1 and -2, whereas they excluded the nonraft marker, Na+-K+ ATPase. SNAP-23, syntaxin 2, and VAMP-2 were enriched in lipid rafts. When type II cells were depleted of cholesterol, the association of SNAREs with the lipid rafts was disrupted and the formation of fusion pore was inhibited. Furthermore, the cholesterol-depleted plasma membrane had less ability to fuse with lamellar bodies, a process mediated by annexin A2. The secretagogue-stimulated secretion of lung surfactant from type II cells was also reduced by methyl-beta-cyclodextrin. When the raft-associated cell surface protein, CD44, was cross-linked using anti-CD44 antibodies, the CD44 clusters were observed. Syntaxin 2, SNAP-23, and annexin A2 co-localized with the CD44 clusters, which were cholesterol dependent. Our results suggested that lipid rafts may form a functional platform for surfactant secretion in alveolar type II cells, and raft integrity was essential for the fusion between lamellar bodies with the plasma membrane.

  17. Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins

    PubMed Central

    Yamashita, Tetsuji; Hakizimana, Pierre; Wu, Siva; Hassan, Ahmed; Jacob, Stefan; Temirov, Jamshid; Fang, Jie; Mellado-Lagarde, Marcia; Gursky, Richard; Horner, Linda; Leibiger, Barbara; Leijon, Sara; Centonze, Victoria E.; Berggren, Per-Olof; Frase, Sharon; Auer, Manfred; Brownell, William E.; Fridberger, Anders; Zuo, Jian

    2015-01-01

    Nature’s fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5’s active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases. PMID:26352669

  18. The connection of cytoskeletal network with plasma membrane and the cell wall

    PubMed Central

    Liu, Zengyu; Persson, Staffan; Zhang, Yi

    2015-01-01

    The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosynthesis and modifications, and aim to provide a platform for further studies in this field. PMID:25693826

  19. Protein diffusion in plant cell plasma membranes: the cell-wall corral.

    PubMed

    Martinière, Alexandre; Runions, John

    2013-01-01

    Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment.

  20. Formation of wood secondary cell wall may involve two type cellulose synthase complexes in Populus.

    PubMed

    Xi, Wang; Song, Dongliang; Sun, Jiayan; Shen, Junhui; Li, Laigeng

    2017-03-01

    Cellulose biosynthesis is mediated by cellulose synthases (CesAs), which constitute into rosette-like cellulose synthase complexe (CSC) on the plasma membrane. Two types of CSCs in Arabidopsis are believed to be involved in cellulose synthesis in the primary cell wall and secondary cell walls, respectively. In this work, we found that the two type CSCs participated cellulose biosynthesis in differentiating xylem cells undergoing secondary cell wall thickening in Populus. During the cell wall thickening process, expression of one type CSC genes increased while expression of the other type CSC genes decreased. Suppression of different type CSC genes both affected the wall-thickening and disrupted the multilaminar structure of the secondary cell walls. When CesA7A was suppressed, crystalline cellulose content was reduced, which, however, showed an increase when CesA3D was suppressed. The CesA suppression also affected cellulose digestibility of the wood cell walls. The results suggest that two type CSCs are involved in coordinating the cellulose biosynthesis in formation of the multilaminar structure in Populus wood secondary cell walls.

  1. Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells

    PubMed Central

    Saung, Wint Thu; Foskett, J. Kevin

    2017-01-01

    Taste bud type II cells fire action potentials in response to tastants, triggering nonvesicular ATP release to gustatory neurons via voltage-gated CALHM1-associated ion channels. Whereas CALHM1 regulates mouse cortical neuron excitability, its roles in regulating type II cell excitability are unknown. In this study, we compared membrane conductances and action potentials in single identified TRPM5-GFP-expressing circumvallate papillae type II cells acutely isolated from wild-type (WT) and Calhm1 knockout (KO) mice. The activation kinetics of large voltage-gated outward currents were accelerated in cells from Calhm1 KO mice, and their associated nonselective tail currents, previously shown to be highly correlated with ATP release, were completely absent in Calhm1 KO cells, suggesting that CALHM1 contributes to all of these currents. Calhm1 deletion did not significantly alter resting membrane potential or input resistance, the amplitudes and kinetics of Na+ currents either estimated from action potentials or recorded from steady-state voltage pulses, or action potential threshold, overshoot peak, afterhyperpolarization, and firing frequency. However, Calhm1 deletion reduced the half-widths of action potentials and accelerated the deactivation kinetics of transient outward currents, suggesting that the CALHM1-associated conductance becomes activated during the repolarization phase of action potentials. NEW & NOTEWORTHY CALHM1 is an essential ion channel component of the ATP neurotransmitter release mechanism in type II taste bud cells. Its contribution to type II cell resting membrane properties and excitability is unknown. Nonselective voltage-gated currents, previously associated with ATP release, were absent in cells lacking CALHM1. Calhm1 deletion was without effects on resting membrane properties or voltage-gated Na+ and K+ channels but contributed modestly to the kinetics of action potentials. PMID:28202574

  2. Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells.

    PubMed

    Ma, Zhongming; Saung, Wint Thu; Foskett, J Kevin

    2017-05-01

    Taste bud type II cells fire action potentials in response to tastants, triggering nonvesicular ATP release to gustatory neurons via voltage-gated CALHM1-associated ion channels. Whereas CALHM1 regulates mouse cortical neuron excitability, its roles in regulating type II cell excitability are unknown. In this study, we compared membrane conductances and action potentials in single identified TRPM5-GFP-expressing circumvallate papillae type II cells acutely isolated from wild-type (WT) and Calhm1 knockout (KO) mice. The activation kinetics of large voltage-gated outward currents were accelerated in cells from Calhm1 KO mice, and their associated nonselective tail currents, previously shown to be highly correlated with ATP release, were completely absent in Calhm1 KO cells, suggesting that CALHM1 contributes to all of these currents. Calhm1 deletion did not significantly alter resting membrane potential or input resistance, the amplitudes and kinetics of Na + currents either estimated from action potentials or recorded from steady-state voltage pulses, or action potential threshold, overshoot peak, afterhyperpolarization, and firing frequency. However, Calhm1 deletion reduced the half-widths of action potentials and accelerated the deactivation kinetics of transient outward currents, suggesting that the CALHM1-associated conductance becomes activated during the repolarization phase of action potentials. NEW & NOTEWORTHY CALHM1 is an essential ion channel component of the ATP neurotransmitter release mechanism in type II taste bud cells. Its contribution to type II cell resting membrane properties and excitability is unknown. Nonselective voltage-gated currents, previously associated with ATP release, were absent in cells lacking CALHM1. Calhm1 deletion was without effects on resting membrane properties or voltage-gated Na + and K + channels but contributed modestly to the kinetics of action potentials. Copyright © 2017 the American Physiological Society.

  3. Dynamic adsorption of mixtures of Rhodamine B, Pb (II), Cu (II) and Zn(II) ions on composites chitosan-silica-polyethylene glycol membrane

    NASA Astrophysics Data System (ADS)

    Mahatmanti, F. W.; Rengga, W. D. P.; Kusumastuti, E.; Nuryono

    2018-04-01

    The adsorption of a solution mixture of Rhodamine B, Pb (II), Cu (II) and Zn(II) was studied using dynamic methods employing chitosan-silica-polyethylene glycol (Ch/Si/P) composite membrane as an adsorptive membrane. The composite Ch/Si/P membrane was prepared by mixing a chitosan-based membrane with silica isolated from rice husk ash (ASP) and polyethylene glycol (PEG) as a plasticizer. The resultant composite membrane was a stronger and more flexible membrane than the original chitosan-based membrane as indicated by the maximum percentage of elongation (20.5 %) and minimum Young’s Modulus (80.5 MPa). The composite membrane also showed increased mechanical and hydrophilic properties compared to the chitosan membranes. The membrane was used as adsorption membrane for Pb (II), Cu (II), Cd (II) ions and Rhodamine B dyes in a dynamic system where the permeation and selectivity were determined. The permeation of the components was observed to be in the following order: Rhodamine B > Cd (II) > Pb (II) > Cu (II) whereas the selectivity was shown to decrease the order of Cu (II) > Pb (II) > Cd (II) > Rhodamine B.

  4. Cell wall polysaccharides from fern leaves: evidence for a mannan-rich Type III cell wall in Adiantum raddianum.

    PubMed

    Silva, Giovanna B; Ionashiro, Mari; Carrara, Thalita B; Crivellari, Augusto C; Tiné, Marco A S; Prado, Jefferson; Carpita, Nicholas C; Buckeridge, Marcos S

    2011-12-01

    Primary cell walls from plants are composites of cellulose tethered by cross-linking glycans and embedded in a matrix of pectins. Cell wall composition varies between plant species, reflecting in some instances the evolutionary distance between them. In this work the monosaccharide compositions of isolated primary cell walls of nine fern species and one lycophyte were characterized and compared with those from Equisetum and an angiosperm dicot. The relatively high abundance of mannose in these plants suggests that mannans may constitute the major cross-linking glycan in the primary walls of pteridophytes and lycophytes. Pectin-related polysaccharides contained mostly rhamnose and uronic acids, indicating the presence of rhamnogalacturonan I highly substituted with galactose and arabinose. Structural and fine-structural analyses of the hemicellulose fraction of leaves of Adiantum raddianum confirmed this hypothesis. Linkage analysis showed that the mannan contains mostly 4-Man with very little 4,6-Man, indicating a low percentage of branching with galactose. Treatment of the mannan-rich fractions with endo-β-mannanase produced characteristic mannan oligosaccharides. Minor amounts of xyloglucan and xylans were also detected. These data and those of others suggest that all vascular plants contain xyloglucans, arabinoxylans, and (gluco)mannans, but in different proportions that define cell wall types. Whereas xyloglucan and pectin-rich walls define Type I walls of dicots and many monocots, arabinoxylans and lower proportion of pectin define the Type II walls of commelinoid monocots. The mannan-rich primary walls with low pectins of many ferns and a lycopod indicate a fundamentally different wall type among land plants, the Type III wall. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Predicting membrane protein types by the LLDA algorithm.

    PubMed

    Wang, Tong; Yang, Jie; Shen, Hong-Bin; Chou, Kuo-Chen

    2008-01-01

    Membrane proteins are generally classified into the following eight types: (1) type I transmembrane, (2) type II, (3) type III, (4) type IV, (5) multipass transmembrane, (6) lipid-chain-anchored membrane, (7) GPI-anchored membrane, and (8) peripheral membrane (K.C. Chou and H.B. Shen: BBRC, 2007, 360: 339-345). Knowing the type of an uncharacterized membrane protein often provides useful clues for finding its biological function and interaction process with other molecules in a biological system. With the explosion of protein sequences generated in the Post-Genomic Age, it is urgent to develop an automated method to deal with such a challenge. Recently, the PsePSSM (Pseudo Position-Specific Score Matrix) descriptor is proposed by Chou and Shen (Biochem. Biophys. Res. Comm. 2007, 360, 339-345) to represent a protein sample. The advantage of the PsePSSM descriptor is that it can combine the evolution information and sequence-correlated information. However, incorporating all these effects into a descriptor may cause the "high dimension disaster". To overcome such a problem, the fusion approach was adopted by Chou and Shen. Here, a completely different approach, the so-called LLDA (Local Linear Discriminant Analysis) is introduced to extract the key features from the high-dimensional PsePSSM space. The dimension-reduced descriptor vector thus obtained is a compact representation of the original high dimensional vector. Our jackknife and independent dataset test results indicate that it is very promising to use the LLDA approach to cope with complicated problems in biological systems, such as predicting the membrane protein type.

  6. Reverse-Bumpy-Ball-Type-Nanoreactor-Loaded Nylon Membranes as Peroxidase-Mimic Membrane Reactors for a Colorimetric Assay for H₂O₂.

    PubMed

    Tong, Ying; Jiao, Xiangyu; Yang, Hankun; Wen, Yongqiang; Su, Lei; Zhang, Xueji

    2016-04-01

    Herein we report for the first time fabrication of reverse bumpy ball (RBB)-type-nanoreactor-based flexible peroxidase-mimic membrane reactors (MRs). The RBB-type nanoreactors with gold nanoparticles embedded in the inner walls of carbon shells were loaded on nylon membranes through a facile filtration approach. The as-prepared flexible catalytic membrane was studied as a peroxidase-mimic MR. It was found that the obtained peroxidase-mimic MR could exhibit several advantages over natural enzymes, such as facile and good recyclability, long-term stability and easy storage. Moreover, the RBB NS-modified nylon MRs as a peroxidase mimic provide a useful colorimetric assay for H₂O₂.

  7. Calculation of reaction forces in the boiler supports using the method of equivalent stiffness of membrane wall.

    PubMed

    Sertić, Josip; Kozak, Dražan; Samardžić, Ivan

    2014-01-01

    The values of reaction forces in the boiler supports are the basis for the dimensioning of bearing steel structure of steam boiler. In this paper, the application of the method of equivalent stiffness of membrane wall is proposed for the calculation of reaction forces. The method of equalizing displacement, as the method of homogenization of membrane wall stiffness, was applied. On the example of "Milano" boiler, using the finite element method, the calculation of reactions in the supports for the real geometry discretized by the shell finite element was made. The second calculation was performed with the assumption of ideal stiffness of membrane walls and the third using the method of equivalent stiffness of membrane wall. In the third case, the membrane walls are approximated by the equivalent orthotropic plate. The approximation of membrane wall stiffness is achieved using the elasticity matrix of equivalent orthotropic plate at the level of finite element. The obtained results were compared, and the advantages of using the method of equivalent stiffness of membrane wall for the calculation of reactions in the boiler supports were emphasized.

  8. Lipid-linked cell wall precursors regulate membrane association of bacterial actin MreB

    PubMed Central

    Schirner, Kathrin; Eun, Ye-Jin; Dion, Mike; Luo, Yun; Helmann, John D.; Garner, Ethan C.; Walker, Suzanne

    2014-01-01

    Summary The bacterial actin homolog MreB, which is critical for rod shape determination, forms filaments that rotate around the cell width on the inner surface of the cytoplasmic membrane. What determines filament association with the membranes or with other cell wall elongation proteins is not known. Using specific chemical and genetic perturbations while following MreB filament motion, we find that MreB membrane association is an actively regulated process that depends on the presence of lipid-linked peptidoglycan precursors. When precursors are depleted, MreB filaments disassemble into the cytoplasm and peptidoglycan synthesis becomes disorganized. In cells that lack wall teichoic acids, but continue to make peptidoglycan, dynamic MreB filaments are observed, although their presence is not sufficient to establish a rod shape. We propose that the cell regulates MreB filament association with the membrane, allowing rapid and reversible inactivation of cell wall enzyme complexes in response to the inhibition of cell wall synthesis. PMID:25402772

  9. Lipid-linked cell wall precursors regulate membrane association of bacterial actin MreB.

    PubMed

    Schirner, Kathrin; Eun, Ye-Jin; Dion, Mike; Luo, Yun; Helmann, John D; Garner, Ethan C; Walker, Suzanne

    2015-01-01

    The bacterial actin homolog MreB, which is crucial for rod shape determination, forms filaments that rotate around the cell width on the inner surface of the cytoplasmic membrane. What determines filament association with the membranes or with other cell wall elongation proteins is not known. Using specific chemical and genetic perturbations while following MreB filament motion, we find that MreB membrane association is an actively regulated process that depends on the presence of lipid-linked peptidoglycan precursors. When precursors are depleted, MreB filaments disassemble into the cytoplasm, and peptidoglycan synthesis becomes disorganized. In cells that lack wall teichoic acids but continue to make peptidoglycan, dynamic MreB filaments are observed, although their presence is not sufficient to establish a rod shape. We propose that the cell regulates MreB filament association with the membrane, allowing rapid and reversible inactivation of cell wall enzyme complexes in response to the inhibition of cell wall synthesis.

  10. Type II first branchial cleft anomaly.

    PubMed

    Al-Mahdi, Akmam H; Al-Khurri, Luay E; Atto, Ghada Z; Dhaher, Ameer

    2013-01-01

    First branchial cleft anomaly is a rare disease of the head and neck. It accounts for less than 8% of all branchial abnormalities. It is classified into type I, which is thought to arise from the duplication of the membranous external ear canal and are composed of ectoderm only, and type II that have ectoderm and mesoderm. Because of its rarity, first branchial cleft anomaly is often misdiagnosed and results in inappropriate management. A 9-year-old girl presented to us with fistula in the submandibular region and discharge in the external ear. Under general anesthesia, complete surgical excision of the fistula tract was done through step-ladder approach, and the histopathologic examination confirmed the diagnosis of type II first branchial cleft anomaly.

  11. Calculation of Reaction Forces in the Boiler Supports Using the Method of Equivalent Stiffness of Membrane Wall

    PubMed Central

    Sertić, Josip; Kozak, Dražan; Samardžić, Ivan

    2014-01-01

    The values of reaction forces in the boiler supports are the basis for the dimensioning of bearing steel structure of steam boiler. In this paper, the application of the method of equivalent stiffness of membrane wall is proposed for the calculation of reaction forces. The method of equalizing displacement, as the method of homogenization of membrane wall stiffness, was applied. On the example of “Milano” boiler, using the finite element method, the calculation of reactions in the supports for the real geometry discretized by the shell finite element was made. The second calculation was performed with the assumption of ideal stiffness of membrane walls and the third using the method of equivalent stiffness of membrane wall. In the third case, the membrane walls are approximated by the equivalent orthotropic plate. The approximation of membrane wall stiffness is achieved using the elasticity matrix of equivalent orthotropic plate at the level of finite element. The obtained results were compared, and the advantages of using the method of equivalent stiffness of membrane wall for the calculation of reactions in the boiler supports were emphasized. PMID:24959612

  12. Two-component fluid membranes near repulsive walls: Linearized hydrodynamics of equilibrium and nonequilibrium states.

    PubMed

    Sankararaman, Sumithra; Menon, Gautam I; Sunil Kumar, P B

    2002-09-01

    We study the linearized hydrodynamics of a two-component fluid membrane near a repulsive wall, using a model that incorporates curvature-concentration coupling as well as hydrodynamic interactions. This model is a simplified version of a recently proposed one [J.-B. Manneville et al., Phys. Rev. E 64, 021908 (2001)] for nonequilibrium force centers embedded in fluid membranes, such as light-activated bacteriorhodopsin pumps incorporated in phospholipid egg phosphatidyl choline (EPC) bilayers. The pump-membrane system is modeled as an impermeable, two-component bilayer fluid membrane in the presence of an ambient solvent, in which one component, representing active pumps, is described in terms of force dipoles displaced with respect to the bilayer midpoint. We first discuss the case in which such pumps are rendered inactive, computing the mode structure in the bulk as well as the modification of hydrodynamic properties by the presence of a nearby wall. These results should apply, more generally, to equilibrium fluid membranes comprised of two components, in which the effects of curvature-concentration coupling are significant, above the threshold for phase separation. We then discuss the fluctuations and mode structure in the steady state of active two-component membranes near a repulsive wall. We find that proximity to the wall smoothens membrane height fluctuations in the stable regime, resulting in a logarithmic scaling of the roughness even for initially tensionless membranes. This explicitly nonequilibrium result is a consequence of the incorporation of curvature-concentration coupling in our hydrodynamic treatment. This result also indicates that earlier scaling arguments which obtained an increase in the roughness of active membranes near repulsive walls upon neglecting the role played by such couplings may need to be reevaluated.

  13. Glycosylinositol phosphorylceramides from Rosa cell cultures are boron-bridged in the plasma membrane and form complexes with rhamnogalacturonan II

    PubMed Central

    Voxeur, Aline; Fry, Stephen C

    2014-01-01

    Boron (B) is essential for plant cell-wall structure and membrane functions. Compared with its role in cross-linking the pectic domain rhamnogalacturonan II (RG-II), little information is known about the biological role of B in membranes. Here, we investigated the involvement of glycosylinositol phosphorylceramides (GIPCs), major components of lipid rafts, in the membrane requirement for B. Using thin-layer chromatography and mass spectrometry, we first characterized GIPCs from Rosa cell culture. The major GIPC has one hexose residue, one hexuronic acid residue, inositol phosphate, and a ceramide moiety with a C18 trihydroxylated mono-unsaturated long-chain base and a C24 monohydroxylated saturated fatty acid. Disrupting B bridging (by B starvation in vivo or by treatment with cold dilute HCl or with excess borate in vitro) enhanced the GIPCs’ extractability. As RG-II is the main B-binding site in plants, we investigated whether it could form a B-centred complex with GIPCs. Using high-voltage paper electrophoresis, we showed that addition of GIPCs decreased the electrophoretic mobility of radiolabelled RG-II, suggesting formation of a GIPC–B–RG-II complex. Last, using polyacrylamide gel electrophoresis, we showed that added GIPCs facilitate RG-II dimerization in vitro. We conclude that B plays a structural role in the plasma membrane. The disruption of membrane components by high borate may account for the phytotoxicity of excess B. Moreover, the in-vitro formation of a GIPC–B–RG-II complex gives the first molecular explanation of the wall–membrane attachment sites observed in vivo. Finally, our results suggest a role for GIPCs in the RG-II dimerization process. PMID:24804932

  14. ACh-induced hyperpolarization and decreased resistance in mammalian type II vestibular hair cells.

    PubMed

    Poppi, Lauren A; Tabatabaee, Hessam; Drury, Hannah R; Jobling, Phillip; Callister, Robert J; Migliaccio, Americo A; Jordan, Paivi M; Holt, Joseph C; Rabbitt, Richard D; Lim, Rebecca; Brichta, Alan M

    2018-01-01

    In the mammalian vestibular periphery, electrical activation of the efferent vestibular system (EVS) has two effects on afferent activity: 1) it increases background afferent discharge and 2) decreases afferent sensitivity to rotational stimuli. Although the cellular mechanisms underlying these two contrasting afferent responses remain obscure, we postulated that the reduction in afferent sensitivity was attributed, in part, to the activation of α9- containing nicotinic acetylcholine (ACh) receptors (α9*nAChRs) and small-conductance potassium channels (SK) in vestibular type II hair cells, as demonstrated in the peripheral vestibular system of other vertebrates. To test this hypothesis, we examined the effects of the predominant EVS neurotransmitter ACh on vestibular type II hair cells from wild-type (wt) and α9-subunit nAChR knockout (α9 -/- ) mice. Immunostaining for choline acetyltransferase revealed there were no obvious gross morphological differences in the peripheral EVS innervation among any of these strains. ACh application onto wt type II hair cells, at resting potentials, produced a fast inward current followed by a slower outward current, resulting in membrane hyperpolarization and decreased membrane resistance. Hyperpolarization and decreased resistance were due to gating of SK channels. Consistent with activation of α9*nAChRs and SK channels, these ACh-sensitive currents were antagonized by the α9*nAChR blocker strychnine and SK blockers apamin and tamapin. Type II hair cells from α9 -/- mice, however, failed to respond to ACh at all. These results confirm the critical importance of α9nAChRs in efferent modulation of mammalian type II vestibular hair cells. Application of exogenous ACh reduces electrical impedance, thereby decreasing type II hair cell sensitivity. NEW & NOTEWORTHY Expression of α9 nicotinic subunit was crucial for fast cholinergic modulation of mammalian vestibular type II hair cells. These findings show a multifaceted

  15. Binding of /sup 18/F by cell membranes and cell walls of Streptococcus mutans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yotis, W.W.; Zeb, M.; McNulty, J.

    1983-07-01

    The binding of /sup 18/F to isolated cell membranes and cell walls of Streptococcus mutans GS-5 or other bacteria was assayed. The attachment of /sup 18/F to these cell envelopes proceeded slowly and reached equilibrium within 60 min. /sup 18/F binding was stimulated by Ca/sup 2 +/ (1 mM). The binding of /sup 18/F to cellular components was dependent upon the pH, as well as the amount of /sup 18/F and dose of the binder employed. The binding of /sup 18/F by cell walls prepared from fluoride-sensitive and fluoride-resistant cells of S. salivarius and S. mutans did not differ significantly.more » The pretreatment of cell walls or cell membranes for 60 min at 30 degrees C with 1 mg of RNase, DNase, or trypsin per ml did not influence the binding of /sup 18/F by the walls and membranes of S. mutans GS-5. However, prior exposure of cell membranes to sodium dodecyl sulfate caused a significant reduction in the number of /sup 18/F atoms bound by the membranes. In saturated assay systems, cell membranes of S. mutans GS-5 bound 10(15) to 10(16) atoms of /sup 18/F per mg (dry weight), whereas cell walls from S. mutans GS-5, FA-1, and HS-6 or Actinomyces viscosus T14V and T14AV bound 10(12) to 10(13) atoms of /sup 18/F per mg (dry weight). /sup 18/F in this quantity (10(12) to 10(13) atoms) cannot be detected with the fluoride electrode. The data provide, for the first time, a demonstration of /sup 18/F binding by cell membranes and walls of oral flora.« less

  16. Development of biocompatible and safe polyethersulfone hemodialysis membrane incorporated with functionalized multi-walled carbon nanotubes.

    PubMed

    Abidin, Muhammad Nidzhom Zainol; Goh, Pei Sean; Ismail, Ahmad Fauzi; Othman, Mohd Hafiz Dzarfan; Hasbullah, Hasrinah; Said, Noresah; Kadir, Siti Hamimah Sheikh Abdul; Kamal, Fatmawati; Abdullah, Mohd Sohaimi; Ng, Be Cheer

    2017-08-01

    A novel approach in the design of a safe, high performance hemodialysis membrane is of great demand. Despite many advantages, the employment of prodigious nanomaterials in hemodialysis membrane is often restricted by their potential threat to health. Hence, this work focusses on designing a biocompatible polyethersulfone (PES) hemodialysis membrane embedded with poly (citric acid)-grafted-multi walled carbon nanotubes (PCA-g-MWCNTs). Two important elements which could assure the safety of the nanocomposite membrane, i.e. (i) dispersion stability and (ii) leaching of MWCNTs were observed. The results showed the improved dispersion stability of MWCNTs in water and organic solvent due to the enriched ratio of oxygen-rich groups which subsequently enhanced membrane separation features. It was revealed that only 0.17% of MWCNTs was leached out during the membrane fabrication process (phase inversion) while no leaching was detected during permeation. In terms of biocompatibility, PES/PCA-g-MWCNT nanocomposite membrane exhibited lesser C3 and C5 activation (189.13 and 5.29ng/mL) and proteins adsorption (bovine serum albumin=4.5μg/cm 2 , fibrinogen=15.95μg/cm 2 ) as compared to the neat PES membrane, while keeping a normal blood coagulation time. Hence, the PES/PCA-g-MWCNT nanocomposite membrane is proven to have the prospect of becoming a safe and high performance hemodialysis membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A Novel Plasma Membrane-Anchored Protein Regulates Xylem Cell-Wall Deposition through Microtubule-Dependent Lateral Inhibition of Rho GTPase Domains.

    PubMed

    Sugiyama, Yuki; Wakazaki, Mayumi; Toyooka, Kiminori; Fukuda, Hiroo; Oda, Yoshihisa

    2017-08-21

    Spatial control of cell-wall deposition is essential for determining plant cell shape [1]. Rho-type GTPases, together with the cortical cytoskeleton, play central roles in regulating cell-wall patterning [2]. In metaxylem vessel cells, which are the major components of xylem tissues, active ROP11 Rho GTPases form oval plasma membrane domains that locally disrupt cortical microtubules, thereby directing the formation of oval pits in secondary cell walls [3-5]. However, the regulatory mechanism that determines the planar shape of active Rho of Plants (ROP) domains is still unknown. Here we show that IQD13 associates with cortical microtubules and the plasma membrane to laterally restrict the localization of ROP GTPase domains, thereby directing the formation of oval secondary cell-wall pits. Loss and overexpression of IQD13 led to the formation of abnormally round and narrow secondary cell-wall pits, respectively. Ectopically expressed IQD13 increased the presence of parallel cortical microtubules by promoting microtubule rescue. A reconstructive approach revealed that IQD13 confines the area of active ROP domains within the lattice of the cortical microtubules, causing narrow ROP domains to form. This activity required the interaction of IQD13 with the plasma membrane. These findings suggest that IQD13 positively regulates microtubule dynamics as well as their linkage to the plasma membrane, which synergistically confines the area of active ROP domains, leading to the formation of oval secondary cell-wall pits. This finding sheds light on the role of microtubule-plasma membrane linkage as a lateral fence that determines the planar shape of Rho GTPase domains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A novel membrane anchor for FtsZ is linked to cell wall hydrolysis in Caulobacter crescentus.

    PubMed

    Meier, Elizabeth L; Razavi, Shiva; Inoue, Takanari; Goley, Erin D

    2016-07-01

    In most bacteria, the tubulin-like GTPase FtsZ forms an annulus at midcell (the Z-ring) which recruits the division machinery and regulates cell wall remodeling. Although both activities require membrane attachment of FtsZ, few membrane anchors have been characterized. FtsA is considered to be the primary membrane tether for FtsZ in bacteria, however in Caulobacter crescentus, FtsA arrives at midcell after stable Z-ring assembly and early FtsZ-directed cell wall synthesis. We hypothesized that additional proteins tether FtsZ to the membrane and demonstrate that in C. crescentus, FzlC is one such membrane anchor. FzlC associates with membranes directly in vivo and in vitro and recruits FtsZ to membranes in vitro. As for most known membrane anchors, the C-terminal peptide of FtsZ is required for its recruitment to membranes by FzlC in vitro and midcell recruitment of FzlC in cells. In vivo, overproduction of FzlC causes cytokinesis defects whereas deletion of fzlC causes synthetic defects with dipM, ftsE and amiC mutants, implicating FzlC in cell wall hydrolysis. Our characterization of FzlC as a novel membrane anchor for FtsZ expands our understanding of FtsZ regulators and establishes a role for membrane-anchored FtsZ in the regulation of cell wall hydrolysis. © 2016 John Wiley & Sons Ltd.

  19. Proteomics of plasma membranes from poplar trees reveals tissue distribution of transporters, receptors, and proteins in cell wall formation.

    PubMed

    Nilsson, Robert; Bernfur, Katja; Gustavsson, Niklas; Bygdell, Joakim; Wingsle, Gunnar; Larsson, Christer

    2010-02-01

    By exploiting the abundant tissues available from Populus trees, 3-4 m high, we have been able to isolate plasma membranes of high purity from leaves, xylem, and cambium/phloem at a time (4 weeks after bud break) when photosynthesis in the leaves and wood formation in the xylem should have reached a steady state. More than 40% of the 956 proteins identified were found in the plasma membranes of all three tissues and may be classified as "housekeeping" proteins, a typical example being P-type H(+)-ATPases. Among the 213 proteins predicted to be integral membrane proteins, transporters constitute the largest class (41%) followed by receptors (14%) and proteins involved in cell wall and carbohydrate metabolism (8%) and membrane trafficking (8%). ATP-binding cassette transporters (all members of subfamilies B, C, and G) and receptor-like kinases (four subfamilies) were two of the largest protein families found, and the members of these two families showed pronounced tissue distribution. Leaf plasma membranes were characterized by a very high proportion of transporters, constituting almost half of the integral proteins. Proteins involved in cell wall synthesis (such as cellulose and sucrose synthases) and membrane trafficking were most abundant in xylem plasma membranes in agreement with the role of the xylem in wood formation. Twenty-five integral proteins and 83 soluble proteins were exclusively found in xylem plasma membranes, which identifies new candidates associated with cell wall synthesis and wood formation. Among the proteins uniquely found in xylem plasma membranes were most of the enzymes involved in lignin biosynthesis, which suggests that they may exist as a complex linked to the plasma membrane.

  20. Low-frequency and multiple-bands sound insulation using hollow boxes with membrane-type faces

    NASA Astrophysics Data System (ADS)

    Yu, Wei-wei; Fan, Li; Ma, Ren-hao; Zhang, Hui; Zhang, Shu-yi

    2018-04-01

    Hollow boxes with their faces made up of elastic membranes are used to block acoustic waves. It is demonstrated that placing a cuboid membrane-type box inside a pipe can effectively insulate acoustic waves even if the box is smaller than the cross-section of the pipe. The sound insulation is achieved within multiple frequency-bands below 500 Hz based on different mechanisms, which originate from the coaction of the cavity, membrane-type faces, and the intervals between the box and pipe walls. Furthermore, by adjusting the structural parameters and establishing an array of boxes, we can achieve better sound insulation at more frequency-bands.

  1. Polarized light microscopy reveals physiological and drug-induced changes in surfactant membrane assembly in alveolar type II pneumocytes.

    PubMed

    Haller, Thomas; Cerrada, Alejandro; Pfaller, Kristian; Braubach, Peter; Felder, Edward

    2018-05-01

    In alveolar type II (AT II) cells, pulmonary surfactant (PS) is synthetized, stored and exocytosed from lamellar bodies (LBs), specialized large secretory organelles. By applying polarization microscopy (PM), we confirm a specific optical anisotropy of LBs, which indicates a liquid-crystalline mesophase of the stored surfactant phospholipids (PL) and an unusual case of a radiation-symmetric, spherocrystalline organelle. Evidence is shown that the degree of anisotropy is dependent on the amount of lipid layers and their degree of hydration, but unaffected by acutely modulating vital cell parameters like intravesicular pH or cellular energy supply. In contrast, physiological factors that perturb this structure include osmotic cell volume changes and LB exocytosis. In addition, we found two pharmaceuticals, Amiodarone and Ambroxol, both of which severely affect the liquid-crystalline order. Our study shows that PM is an easy, very sensitive, but foremost non-invasive and label-free method able to collect important structural information of PS assembly in live AT II cells which otherwise would be accessible by destructive or labor intense techniques only. This may open new approaches to dynamically investigate LB biosynthesis - the incorporation, folding and packing of lipid membranes - or the initiation of pathological states that manifest in altered LB structures. Due to the observed drug effects, we further suggest that PM provides an appropriate way to study unspecific drug interactions with alveolar cells and even drug-membrane interactions in general. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Plant glycosylphosphatidylinositol (GPI) anchored proteins at the plasma membrane-cell wall nexus.

    PubMed

    Yeats, Trevor H; Bacic, Antony; Johnson, Kim L

    2018-04-18

    Approximately 1% of plant proteins are predicted to be post-translationally modified with a glycosylphosphatidylinositol (GPI) anchor that tethers the polypeptide to the outer leaflet of the plasma membrane. While the synthesis and structure of GPI anchors is largely conserved across eukaryotes, the repertoire of functional domains present in the GPI-anchored proteome has diverged substantially. In plants, this includes a large fraction of the GPI-anchored proteome being further modified with plant-specific arabinogalactan (AG) O-glycans. The importance of the GPI-anchored proteome to plant development is underscored by the fact that GPI biosynthetic null mutants exhibit embryo lethality. Mutations in genes encoding specific GPI-anchored proteins (GAPs) further supports their contribution to diverse biological processes occurring at the interface of the plasma membrane and cell wall, including signaling, cell wall metabolism, cell wall polymer cross-linking, and plasmodesmatal transport. Here, we review the literature concerning plant GPI-anchored proteins in the context of their potential to act as molecular hubs that mediate interactions between the plasma membrane and the cell wall and their potential to transduce the signal into the protoplast and thereby activate signal transduction pathways. This article is protected by copyright. All rights reserved.

  3. Mechanics of membrane bulging during cell-wall disruption in Gram-negative bacteria

    NASA Astrophysics Data System (ADS)

    Daly, Kristopher E.; Huang, Kerwyn Casey; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2011-04-01

    The bacterial cell wall is a network of sugar strands crosslinked by peptides that serve as the primary structure for bearing osmotic stress. Despite its importance in cellular survival, the robustness of the cell wall to network defects has been relatively unexplored. Treatment of the Gram-negative bacterium Escherichia coli with the antibiotic vancomycin, which disrupts the crosslinking of new material during growth, leads to the development of pronounced bulges and eventually of cell lysis. Here, we model the mechanics of the bulging of the cytoplasmic membrane through pores in the cell wall. We find that the membrane undergoes a transition between a nearly flat state and a spherical bulge at a critical pore radius of ~20 nm. This critical pore size is large compared to the typical distance between neighboring peptides and glycan strands, and hence pore size acts as a constraint on network integrity. We also discuss the general implications of our model to membrane deformations in eukaryotic blebbing and vesiculation in red blood cells.

  4. Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa.

    PubMed

    de Chial, Magaly; Ghysels, Bart; Beatson, Scott A; Geoffroy, Valérie; Meyer, Jean Marie; Pattery, Theresa; Baysse, Christine; Chablain, Patrice; Parsons, Yasmin N; Winstanley, Craig; Cordwell, Stuart J; Cornelis, Pierre

    2003-04-01

    Pseudomonas aeruginosa produces, under conditions of iron limitation, a high-affinity siderophore, pyoverdine (PVD), which is recognized at the level of the outer membrane by a specific TonB-dependent receptor, FpvA. So far, for P. aeruginosa, three different PVDs, differing in their peptide chain, have been described (types I-III), but only the FpvA receptor for type I is known. Two PVD-producing P. aeruginosa strains, one type II and one type III, were mutagenized by a mini-TnphoA3 transposon. In each case, one mutant unable to grow in the presence of the strong iron chelator ethylenediaminedihydroxyphenylacetic acid (EDDHA) and the cognate PVD was selected. The first mutant, which had an insertion in the pvdE gene, upstream of fpvA, was unable to take up type II PVD and showed resistance to pyocin S3, which is known to use type II FpvA as receptor. The second mutant was unable to take up type III PVD and had the transposon insertion in fpvA. Cosmid libraries of the respective type II and type III PVD wild-type strains were constructed and screened for clones restoring the capacity to grow in the presence of PVD. From the respective complementing genomic fragments, type II and type III fpvA sequences were determined. When in trans, type II and type III fpvA restored PVD production, uptake, growth in the presence of EDDHA and, in the case of type II fpvA, pyocin S3 sensitivity. Complementation of fpvA mutants obtained by allelic exchange was achieved by the presence of cognate fpvA in trans. All three receptors posses an N-terminal extension of about 70 amino acids, similar to FecA of Escherichia coli, but only FpvAI has a TAT export sequence at its N-terminal end.

  5. Erythrocyte membrane antigen frequencies in patients with Type II congenital smell loss.

    PubMed

    Stateman, William A; Henkin, Robert I; Knöppel, Alexandra B; Flegel, Willy A

    2015-01-01

    The objective of this study was to determine whether there are genetic factors associated with Type II congenital smell loss. The expression frequencies of 16 erythrocyte antigens among patients with Type II congenital smell loss were determined and compared to those of a large control group. Blood samples were obtained from 99 patients with Type II congenital smell loss. Presence of the erythrocyte surface antigens A, B, M, N, S, s, Fy(a), Fy(b), D, C, c, E, e, K, Jk(a), and Jk(b) was analyzed by blood group serology. Comparisons of expression frequencies of these antigens were made between the patients and a large control group. Patients tested for the Duffy b antigen (Fy(b) haplotype) exhibited a statistically significant 11% decrease in expression frequency compared to the controls. There were no significant differences between patients and controls in the expression frequencies for all other erythrocyte antigens (A, B, M, N, S, s, Fy(a), D, C, c, E, e, K, Jk(a), or Jk(b)). These findings describe the presence of a previously unrevealed genetic tendency among patients with Type II congenital smell loss related to erythrocyte surface antigen expression. The deviation in expression rate of Duffy b suggests a target gene and chromosome region in which future research into this form of congenital smell loss may reveal a more specific genetic basis for Type II congenital smell loss. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. An unusual otoscopic finding associated with a type II first branchial cleft anomaly.

    PubMed

    Ebelhar, A J; Potts, K

    2012-03-01

    We report an interesting case involving a child with a branchial cleft anomaly with two fistulous tracts, one of which was associated with an unusual otoscopic finding. A seven-year-old girl presented with an apparent type II first branchial cleft cyst after an acute infection. Parotidectomy and excision of the tract were performed, with subsequent development of pre-auricular swelling three months later. Further surgery was performed to remove a second duplication anomaly of the external auditory canal. Otomicroscopy showed a fibrous band arising from the wall of the canal and attached to the tympanic membrane at the umbo. Otoscopic findings on physical examination can be important diagnostic clues in the early recognition of branchial cleft anomalies. The classification system proposed by Work may fail to describe some branchial cleft lesions.

  7. Molecular weight of different angiotensin II polymers directly determines: density of endothelial membrane AT1 receptors and coronary vasoconstriction.

    PubMed

    Torres-Tirado, David; Ramiro-Diaz, Juan; Knabb, Maureen T; Rubio, Rafael

    2013-01-01

    We have shown that angiotensin II (Ang II) does not diffuse across the vessel wall, remaining intravascularly confined and acting solely on the coronary endothelial luminal membrane (CELM) receptors. A sustained intracoronary infusion of Ang II causes transient coronary vasoconstriction (desensitization) due to membrane internalization of CELM Ang II type 1 receptors (CELM-AT1R). In contrast, sustained intracoronary infusion of a non-diffusible polymer of Ang II (Ang II-Pol, 15,000 kDa) causes a sustained vasoconstriction by preventing CELM-AT1R internalization. In addition, a sustained intracoronary infusion of Ang II leads to a depressed response following a secondary Ang II administration (tachyphylaxis) that is reversed by Ang II-Pol. These findings led us to hypothesize that the rate of desensitization, tachyphylaxis, and AT1R internalization were dependent on Ang II-Pol molecular weight. To test this hypothesis, we synthesized Ang II-Pols of the following molecular weights (in kDa): 1.3, 2.7, 11, 47, 527, 3270 and 15,000. Vasoconstriction was measured following intracoronary infusion of Ang II-Pols in Langendorff-perfused guinea pig hearts at constant flow. The CELM protein fraction was extracted using the silica pellicle technique at different time points in order to determine the rate of AT1R internalization following each Ang II-Pol infusion. CELM-AT1R density was quantified by Western blot. We found that the rate of desensitization and the tachyphylaxis effect varied inversely with the molecular weight of the Ang II-Pols. Inversely proportional to the molecular weight of Ang II-Pol the CELM-AT1R density decreases over time. These results indicate that the mechanism responsible for the decreased rate of desensitization and tachyphylaxis by higher molecular weight Ang II polymers is due to reduction in the rate of CELM-AT1R internalization. These Ang II polymers would be valuable tools for studying the relationship between AT1R internalization and

  8. [Protective effect of hydrogen against hyperoxia-induced type II alveolar epithelial cell injury].

    PubMed

    Yao, Lan; Xu, Feng; Luo, Chong; Yu, Pan; Dong, Xinxin; Sun, Xuejun; Liu, Chengjun

    2013-02-01

    To investigate the protective effect of hydrogen against hyperoxia-induced oxidative stress injury in premature rat type II alveolar epithelial cells (AECs). The type II AECs isolated from premature rats were randomly divided into air (21% oxygen) control group, hyperoxia (95% oxygen) control group, air + hydrogen group, and hyperoxia+ hydrogen group. The cells with hydrogen treatment were cultured in the presence of rich hydrogen. After the corresponding exposure for 24 h, the cell morphology was observed microscopically. MTT assay was used to evaluated the cell proliferation ability, and JC-1 fluorescence probe was used to detect the mitochondrial membrane potential (δφ) changes of the type II AECs. The concentration of maleic dialdehyde (MDA) and superoxide dismutase (SOD) activity in the cell supernatant were detected using colorimetric method. No significant differences were found in cell growth or measurements between air control and air + hydrogen groups. Compared with air control group, the cells exposed to hyperoxia showed significantly suppressed proliferation, reduced mitochondrial membrane potential, increased MDA content, and decreased SOD activity. Intervention with hydrogen resulted in significantly increased cell proliferation and SOD activity and lowered MDA content, and restored the mitochondrial membrane potential in the cells with hyperoxia exposure (P<0.05). Hydrogen can significantly reduce hyperoxia-induced oxidative stress injury in premature rat type II AECs, improve the cellular antioxidant capacity, stabilize the mitochondrial membrane potential, and reduce the inhibitory effect of hyperoxia on cell proliferation.

  9. Solution Structure of Homology Region (HR) Domain of Type II Secretion System*

    PubMed Central

    Gu, Shuang; Kelly, Geoff; Wang, Xiaohui; Frenkiel, Tom; Shevchik, Vladimir E.; Pickersgill, Richard W.

    2012-01-01

    The type II secretion system of Gram-negative bacteria is important for bacterial pathogenesis and survival; it is composed of 12 mostly multimeric core proteins, which build a sophisticated secretion machine spanning both bacterial membranes. OutC is the core component of the inner membrane subcomplex thought to be involved in both recognition of substrate and interaction with the outer membrane secretin OutD. Here, we report the solution structure of the HR domain of OutC and explore its interaction with the secretin. The HR domain adopts a β-sandwich-like fold consisting of two β-sheets each composed of three anti-parallel β-strands. This structure is strikingly similar to the periplasmic region of PilP, an inner membrane lipoprotein from the type IV pilus system highlighting the common evolutionary origin of these two systems and showing that all the core components of the type II secretion system have a structural or sequence ortholog within the type IV pili system. The HR domain is shown to interact with the N0 domain of the secretin. The importance of this interaction is explored in the context of the functional secretion system. PMID:22253442

  10. Immobilization of catalase on electrospun PVA/PA6-Cu(II) nanofibrous membrane for the development of efficient and reusable enzyme membrane reactor.

    PubMed

    Feng, Quan; Zhao, Yong; Wei, Anfang; Li, Changlong; Wei, Qufu; Fong, Hao

    2014-09-02

    In this study, a mat/membrane consisting of overlaid PVA/PA6-Cu(II) composite nanofibers was prepared via the electrospinning technique followed by coordination/chelation with Cu(II) ions; an enzyme of catalase (CAT) was then immobilized onto the PVA/PA6-Cu(II) nanofibrous membrane. The amount of immobilized catalase reached a high value of 64 ± 4.6 mg/g, while the kinetic parameters (Vmax and Km) of enzyme were 3774 μmol/mg·min and 41.13 mM, respectively. Furthermore, the thermal stability and storage stability of immobilized catalase were improved significantly. Thereafter, a plug-flow type of immobilized enzyme membrane reactor (IEMR) was assembled from the PVA/PA6-Cu(II)-CAT membrane. With the increase of operational pressure from 0.02 to 0.2 MPa, the flux value of IEMR increased from 0.20 ± 0.02 to 0.76 ± 0.04 L/m(2)·min, whereas the conversion ratio of H2O2 decreased slightly from 92 ± 2.5% to 87 ± 2.1%. After 5 repeating cycles, the production capacity of IEMR was merely decreased from 0.144 ± 0.006 to 0.102 ± 0.004 mol/m(2)·min. These results indicated that the assembled IEMR possessed high productivity and excellent reusability, suggesting that the IEMR based on electrospun PVA/PA6-Cu(II) nanofibrous membrane might have great potential for various applications, particularly those related to environmental protection.

  11. Ligand-induced type II interleukin-4 receptor dimers are sustained by rapid re-association within plasma membrane microcompartments

    NASA Astrophysics Data System (ADS)

    Richter, David; Moraga, Ignacio; Winkelmann, Hauke; Birkholz, Oliver; Wilmes, Stephan; Schulte, Markos; Kraich, Michael; Kenneweg, Hella; Beutel, Oliver; Selenschik, Philipp; Paterok, Dirk; Gavutis, Martynas; Schmidt, Thomas; Garcia, K. Christopher; Müller, Thomas D.; Piehler, Jacob

    2017-07-01

    The spatiotemporal organization of cytokine receptors in the plasma membrane is still debated with models ranging from ligand-independent receptor pre-dimerization to ligand-induced receptor dimerization occurring only after receptor uptake into endosomes. Here, we explore the molecular and cellular determinants governing the assembly of the type II interleukin-4 receptor, taking advantage of various agonists binding the receptor subunits with different affinities and rate constants. Quantitative kinetic studies using artificial membranes confirm that receptor dimerization is governed by the two-dimensional ligand-receptor interactions and identify a critical role of the transmembrane domain in receptor dimerization. Single molecule localization microscopy at physiological cell surface expression levels, however, reveals efficient ligand-induced receptor dimerization by all ligands, largely independent of receptor binding affinities, in line with the similar STAT6 activation potencies observed for all IL-4 variants. Detailed spatiotemporal analyses suggest that kinetic trapping of receptor dimers in actin-dependent microcompartments sustains robust receptor dimerization and signalling.

  12. Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane.

    PubMed

    Chichger, Havovi; Cleasby, Mark E; Srai, Surjit K; Unwin, Robert J; Debnam, Edward S; Marks, Joanne

    2016-06-01

    What is the central question of this study? Although SGLT2 inhibitors represent a promising treatment for patients suffering from diabetic nephropathy, the influence of metabolic disruption on the expression and function of glucose transporters is largely unknown. What is the main finding and its importance? In vivo models of metabolic disruption (Goto-Kakizaki type II diabetic rat and junk-food diet) demonstrate increased expression of SGLT1, SGLT2 and GLUT2 in the proximal tubule brush border. In the type II diabetic model, this is accompanied by increased SGLT- and GLUT-mediated glucose uptake. A fasted model of metabolic disruption (high-fat diet) demonstrated increased GLUT2 expression only. The differential alterations of glucose transporters in response to varying metabolic stress offer insight into the therapeutic value of inhibitors. SGLT2 inhibitors are now in clinical use to reduce hyperglycaemia in type II diabetes. However, renal glucose reabsorption across the brush border membrane (BBM) is not completely understood in diabetes. Increased consumption of a Western diet is strongly linked to type II diabetes. This study aimed to investigate the adaptations that occur in renal glucose transporters in response to experimental models of diet-induced insulin resistance. The study used Goto-Kakizaki type II diabetic rats and normal rats rendered insulin resistant using junk-food or high-fat diets. Levels of protein kinase C-βI (PKC-βI), GLUT2, SGLT1 and SGLT2 were determined by Western blotting of purified renal BBM. GLUT- and SGLT-mediated d-[(3) H]glucose uptake by BBM vesicles was measured in the presence and absence of the SGLT inhibitor phlorizin. GLUT- and SGLT-mediated glucose transport was elevated in type II diabetic rats, accompanied by increased expression of GLUT2, its upstream regulator PKC-βI and SGLT1 protein. Junk-food and high-fat diet feeding also caused higher membrane expression of GLUT2 and its upstream regulator PKC

  13. A Crystal Structure of a Dimer of the Antibiotic Ramoplanin Illustrates Membrane Positioning and a Potential Lipid II Docking Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamburger, J.; Hoertz, A; Lee, A

    2009-01-01

    The glycodepsipeptide antibiotic ramoplanin A2 is in late stage clinical development for the treatment of infections from Gram-positive pathogens, especially those that are resistant to first line antibiotics such as vancomycin. Ramoplanin A2 achieves its antibacterial effects by interfering with production of the bacterial cell wall; it indirectly inhibits the transglycosylases responsible for peptidoglycan biosynthesis by sequestering their Lipid II substrate. Lipid II recognition and sequestration occur at the interface between the extracellular environment and the bacterial membrane. Therefore, we determined the structure of ramoplanin A2 in an amphipathic environment, using detergents as membrane mimetics, to provide the most physiologicallymore » relevant structural context for mechanistic and pharmacological studies. We report here the X-ray crystal structure of ramoplanin A2 at a resolution of 1.4 {angstrom}. This structure reveals that ramoplanin A2 forms an intimate and highly amphipathic dimer and illustrates the potential means by which it interacts with bacterial target membranes. The structure also suggests a mechanism by which ramoplanin A2 recognizes its Lipid II ligand.« less

  14. Gene expression profile of collagen types, osteopontin in the tympanic membrane of patients with tympanosclerosis.

    PubMed

    Sakowicz-Burkiewicz, Monika; Kuczkowski, Jerzy; Przybyła, Tomasz; Grdeń, Marzena; Starzyńska, Anna; Pawełczyk, Tadeusz

    2017-09-01

    Tympanosclerosis is a pathological process involving the middle ear. The hallmark of this disease is the formation of calcium deposits. In the submucosal layer, as well as in the right layer of the tympanic membrane, the calcium deposits result in a significant increase in the activity of fibroblasts and deposition of collagen fibers. The aim of our study was to examine the expression level of genes encoding collagen type I, II, III and IV (COL1A1, COL2A1, COL3A1, COL4A1) and osteopontin (SPP1) in the tympanic membrane of patients with tympanosclerosis. The total RNA was isolated from middle ear tissues with tympanosclerosis, received from 25 patients and from 19 normal tympanic membranes. The gene expression level was determined by real-time RT-PCR. The gene expression levels were correlated with clinical Tos classification of tympanosclerosis. We observed that in the tympanic membrane of patients with tympanosclerosis, the expression of type I collagen is decreased, while the expression of type II and IV collagen and osteopontin is increased. Moreover, mRNA levels of the investigated genes strongly correlated with the clinical stages of tympanosclerosis. The strong correlations between the expression of type I, II, IV collagen and osteopontin and the clinical stage of tympanosclerosis indicate the involvement of these proteins in excessive fibrosis and pathological remodeling of the tympanic membrane. In the future, a treatment aiming to modulate these gene expressions and/or regulation of the degradation of their protein products could be used as a new medical approach for patients with tympanosclerosis.

  15. Effects of CNT size on the desalination performance of an outer-wall CNT slit membrane.

    PubMed

    Ang, Elisa Y M; Ng, Teng Yong; Yeo, Jingjie; Lin, Rongming; Liu, Zishun; Geethalakshmi, K R

    2018-05-23

    We investigate the effect of varying carbon nanotube (CNT) size on the desalination performance through slit confinements formed by horizontally aligned CNTs stacked on top of one another. By increasing the CNT size, the results obtained from this study indicate a corresponding increase in the water flow rate, accompanied by a slight reduction in salt rejection performance. However, due to the increase in the membrane area with CNT size, the permeability performance is observed to reduce as the CNT size increases. Nevertheless, a comparison with nanoporous 2D membranes shows that the permeability of an outer-wall CNT slit membrane remains significantly higher for all CNT sizes considered. This indicates that precise dimensions of the CNTs are not highly crucial for achieving ultra-high permeability performance in such membranes, as long as the critical slit size is maintained. In-depth analytical studies were further conducted to correlate the influence of curvature effects due to increasing CNT size on the flow characteristcis of the outer-wall CNT membrane. These include the analysis of the measured velocity profiles, oxygen density mapping, potential of mean force profile and friction profile. The present numerical results demonstrate the superb desalination performance of the outer-wall CNT slit membrane, regardless of the size of CNTs used. In addition, an extensive analysis conducted provides detailed characterization of how the curvature affects flow across outer-wall CNTs, and can be used to guide future design and fabrication for experimental testing.

  16. Solar Type II Radio Bursts and IP Type II Events

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Erickson, W. C.

    2005-01-01

    We have examined radio data from the WAVES experiment on the Wind spacecraft in conjunction with ground-based data in order to investigate the relationship between the shocks responsible for metric type II radio bursts and the shocks in front of coronal mass ejections (CMEs). The bow shocks of fast, large CMEs are strong interplanetary (IP) shocks, and the associated radio emissions often consist of single broad bands starting below approx. 4 MHz; such emissions were previously called IP type II events. In contrast, metric type II bursts are usually narrowbanded and display two harmonically related bands. In addition to displaying complete dynamic spectra for a number of events, we also analyze the 135 WAVES 1 - 14 MHz slow-drift time periods in 2001-2003. We find that most of the periods contain multiple phenomena, which we divide into three groups: metric type II extensions, IP type II events, and blobs and bands. About half of the WAVES listings include probable extensions of metric type II radio bursts, but in more than half of these events, there were also other slow-drift features. In the 3 yr study period, there were 31 IP type II events; these were associated with the very fastest CMEs. The most common form of activity in the WAVES events, blobs and bands in the frequency range between 1 and 8 MHz, fall below an envelope consistent with the early signatures of an IP type II event. However, most of this activity lasts only a few tens of minutes, whereas IP type II events last for many hours. In this study we find many examples in the radio data of two shock-like phenomena with different characteristics that occur simultaneously in the metric and decametric/hectometric bands, and no clear example of a metric type II burst that extends continuously down in frequency to become an IP type II event. The simplest interpretation is that metric type II bursts, unlike IP type II events, are not caused by shocks driven in front of CMEs.

  17. Mapping of the Localization of Type 1 Angiotensin Receptor in Membrane Microdomains Using Bioluminescence Resonance Energy Transfer-based Sensors*

    PubMed Central

    Balla, András; Tóth, Dániel J.; Soltész-Katona, Eszter; Szakadáti, Gyöngyi; Erdélyi, László Sándor; Várnai, Péter; Hunyady, László

    2012-01-01

    Initiation and termination of signaling of the type I angiotensin receptor (AT1-R) can lead to dynamic changes in its localization in plasma membrane microdomains. Several markers were recently developed to investigate membrane microdomains. Here, we used several YFP-labeled fusion constructs (i.e. raft or non-raft plasma membrane markers) to analyze the agonist-induced changes in compartmentalization of AT1-R, including internalization or lateral movement between plasma membrane compartments in response to stimulation using bioluminescence resonance energy transfer measurements. Our data demonstrate that angiotensin II (AngII) stimulus changes the microdomain localization of wild type or mutated (DRY → AAY or TSTS → AAAA) AT1-Rs co-expressed with the fluorescent probes in HEK293 cells. The comparison of the trafficking of AT1-R upon AngII stimulus with those of [Sar1,Ile8]AngII or [Sar1,Ile4,Ile8]AngII stimulus revealed different types of changes, depending on the nature of the ligand. The observed changes in receptor compartmentalization of the AT1-R are strikingly different from those of 5HT-2C and EGF receptors, which demonstrate the usefulness of the bioluminescence resonance energy transfer-based measurements in the investigation of receptor trafficking in the plasma membrane in living cell experiments. PMID:22291018

  18. Excess plasma membrane and effects of ionic amphipaths on mechanics of outer hair cell lateral wall.

    PubMed

    Morimoto, Noriko; Raphael, Robert M; Nygren, Anders; Brownell, William E

    2002-05-01

    The interaction between the outer hair cell (OHC) lateral wall plasma membrane and the underlying cortical lattice was examined by a morphometric analysis of cell images during cell deformation. Vesiculation of the plasma membrane was produced by micropipette aspiration in control cells and cells exposed to ionic amphipaths that alter membrane mechanics. An increase of total cell and vesicle surface area suggests that the plasma membrane possesses a membrane reservoir. Chlorpromazine (CPZ) decreased the pressure required for vesiculation, whereas salicylate (Sal) had no effect. The time required for vesiculation was decreased by CPZ, indicating that CPZ decreases the energy barrier required for vesiculation. An increase in total volume is observed during micropipette aspiration. A deformation-induced increase in hydraulic conductivity is also seen in response to micropipette-applied fluid jet deformation of the lateral wall. Application of CPZ and/or Sal decreased this strain-induced hydraulic conductivity. The impact of ionic amphipaths on OHC plasma membrane and lateral wall mechanics may contribute to their effects on OHC electromotility and hearing.

  19. Engineering membrane and cell-wall programs for tolerance to toxic chemicals: Beyond solo genes.

    PubMed

    Sandoval, Nicholas R; Papoutsakis, Eleftherios T

    2016-10-01

    Metabolite toxicity in microbes, particularly at the membrane, remains a bottleneck in the production of fuels and chemicals. Under chemical stress, native adaptation mechanisms combat hyper-fluidization by modifying the phospholipids in the membrane. Recent work in fluxomics reveals the mechanism of how membrane damage negatively affects energy metabolism while lipidomic and transcriptomic analyses show that strains evolved to be tolerant maintain membrane fluidity under stress through a variety of mechanisms such as incorporation of cyclopropanated fatty acids, trans-unsaturated fatty acids, and upregulation of cell wall biosynthesis genes. Engineered strains with modifications made in the biosynthesis of fatty acids, peptidoglycan, and lipopolysaccharide have shown increased tolerance to exogenous stress as well as increased production of desired metabolites of industrial importance. We review recent advances in elucidation of mechanisms or toxicity and tolerance as well as efforts to engineer the bacterial membrane and cell wall. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Oligomeric state regulated trafficking of human platelet-activating factor acetylhydrolase type-II.

    PubMed

    Monillas, Elizabeth S; Caplan, Jeffrey L; Thévenin, Anastasia F; Bahnson, Brian J

    2015-05-01

    The intracellular enzyme platelet-activating factor acetylhydrolase type-II (PAFAH-II) hydrolyzes platelet-activating factor and oxidatively fragmented phospholipids. PAFAH-II in its resting state is mainly cytoplasmic, and it responds to oxidative stress by becoming increasingly bound to endoplasmic reticulum and Golgi membranes. Numerous studies have indicated that this enzyme is essential for protecting cells from oxidative stress induced apoptosis. However, the regulatory mechanism of the oxidative stress response by PAFAH-II has not been fully resolved. Here, changes to the oligomeric state of human PAFAH-II were investigated as a potential regulatory mechanism toward enzyme trafficking. Native PAGE analysis in vitro and photon counting histogram within live cells showed that PAFAH-II is both monomeric and dimeric. A Gly-2-Ala site-directed mutation of PAFAH-II demonstrated that the N-terminal myristoyl group is required for homodimerization. Additionally, the distribution of oligomeric PAFAH-II is distinct within the cell; homodimers of PAFAH-II were localized to the cytoplasm while monomers were associated to the membranes of the endoplasmic reticulum and Golgi. We propose that the oligomeric state of PAFAH-II drives functional protein trafficking. PAFAH-II localization to the membrane is critical for substrate acquisition and effective oxidative stress protection. It is hypothesized that the balance between monomer and dimer serves as a regulatory mechanism of a PAFAH-II oxidative stress response. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Advanced Material-Ordered Nanotubular Ceramic Membranes Covalently Capped with Single-Wall Carbon Nanotubes.

    PubMed

    Al-Gharabli, Samer; Hamad, Eyad; Saket, Munib; Abu El-Rub, Ziad; Arafat, Hassan; Kujawski, Wojciech; Kujawa, Joanna

    2018-05-07

    Advanced ceramic materials with a well-defined nano-architecture of their surfaces were formed by applying a two-step procedure. Firstly, a primary amine was docked on the ordered nanotubular ceramic surface via a silanization process. Subsequently, single-wall carbon nanotubes (SWCNTs) were covalently grafted onto the surface via an amide building block. Physicochemical (e.g., hydrophobicity, and surface free energy (SFE)), mechanical, and tribological properties of the developed membranes were improved significantly. The design, preparation, and extended characterization of the developed membranes are presented. Tools such as high-resolution transmission electron microscopy (HR-TEM), single-area electron diffraction (SAED) analysis, microscopy, tribology, nano-indentation, and Raman spectroscopy, among other techniques, were utilized in the characterization of the developed membranes. As an effect of hydrophobization, the contact angles (CAs) changed from 38° to 110° and from 51° to 95° for the silanization of ceramic membranes 20 (CM20) and CM100, respectively. SWCNT functionalization reduced the CAs to 72° and 66° for ceramic membranes carbon nanotubes 20 (CM-CNT-20) and CM-CNT-100, respectively. The mechanical properties of the developed membranes improved significantly. From the nanotribological study, Young’s modulus increased from 3 to 39 GPa for CM-CNT-20 and from 43 to 48 GPa for pristine CM-CNT-100. Furthermore, the nanohardness increased by about 80% after the attachment of CNTs for both types of ceramics. The proposed protocol within this work for the development of functionalized ceramic membranes is both simple and efficient.

  2. Human beta-defensin 3 inhibits cell wall biosynthesis in Staphylococci.

    PubMed

    Sass, Vera; Schneider, Tanja; Wilmes, Miriam; Körner, Christian; Tossi, Alessandro; Novikova, Natalia; Shamova, Olga; Sahl, Hans-Georg

    2010-06-01

    Human beta-defensin 3 (hBD3) is a highly charged (+11) cationic host defense peptide, produced by epithelial cells and neutrophils. hBD3 retains antimicrobial activity against a broad range of pathogens, including multiresistant Staphylococcus aureus, even under high-salt conditions. Whereas antimicrobial host defense peptides are assumed to act by permeabilizing cell membranes, the transcriptional response pattern of hBD3-treated staphylococcal cells resembled that of vancomycin-treated cells (V. Sass, U. Pag, A. Tossi, G. Bierbaum, and H. G. Sahl, Int. J. Med. Microbiol. 298:619-633, 2008) and suggested that inhibition of cell wall biosynthesis is a major component of the killing process. hBD3-treated cells, inspected by transmission electron microscopy, showed localized protrusions of cytoplasmic contents, and analysis of the intracellular pool of nucleotide-activated cell wall precursors demonstrated accumulation of the final soluble precursor, UDP-MurNAc-pentapeptide. Accumulation is typically induced by antibiotics that inhibit membrane-bound steps of cell wall biosynthesis and also demonstrates that hBD3 does not impair the biosynthetic capacity of cells and does not cause gross leakage of small cytoplasmic compounds. In in vitro assays of individual membrane-associated cell wall biosynthesis reactions (MraY, MurG, FemX, and penicillin-binding protein 2 [PBP2]), hBD3 inhibited those enzymes which use the bactoprenol-bound cell wall building block lipid II as a substrate; quantitative analysis suggested that hBD3 may stoichiometrically bind to lipid II. We report that binding of hBD3 to defined, lipid II-rich sites of cell wall biosynthesis may lead to perturbation of the biosynthesis machinery, resulting in localized lesions in the cell wall as demonstrated by electron microscopy. The lesions may then allow for osmotic rupture of cells when defensins are tested under low-salt conditions.

  3. Human β-Defensin 3 Inhibits Cell Wall Biosynthesis in Staphylococci▿

    PubMed Central

    Sass, Vera; Schneider, Tanja; Wilmes, Miriam; Körner, Christian; Tossi, Alessandro; Novikova, Natalia; Shamova, Olga; Sahl, Hans-Georg

    2010-01-01

    Human β-defensin 3 (hBD3) is a highly charged (+11) cationic host defense peptide, produced by epithelial cells and neutrophils. hBD3 retains antimicrobial activity against a broad range of pathogens, including multiresistant Staphylococcus aureus, even under high-salt conditions. Whereas antimicrobial host defense peptides are assumed to act by permeabilizing cell membranes, the transcriptional response pattern of hBD3-treated staphylococcal cells resembled that of vancomycin-treated cells (V. Sass, U. Pag, A. Tossi, G. Bierbaum, and H. G. Sahl, Int. J. Med. Microbiol. 298:619-633, 2008) and suggested that inhibition of cell wall biosynthesis is a major component of the killing process. hBD3-treated cells, inspected by transmission electron microscopy, showed localized protrusions of cytoplasmic contents, and analysis of the intracellular pool of nucleotide-activated cell wall precursors demonstrated accumulation of the final soluble precursor, UDP-MurNAc-pentapeptide. Accumulation is typically induced by antibiotics that inhibit membrane-bound steps of cell wall biosynthesis and also demonstrates that hBD3 does not impair the biosynthetic capacity of cells and does not cause gross leakage of small cytoplasmic compounds. In in vitro assays of individual membrane-associated cell wall biosynthesis reactions (MraY, MurG, FemX, and penicillin-binding protein 2 [PBP2]), hBD3 inhibited those enzymes which use the bactoprenol-bound cell wall building block lipid II as a substrate; quantitative analysis suggested that hBD3 may stoichiometrically bind to lipid II. We report that binding of hBD3 to defined, lipid II-rich sites of cell wall biosynthesis may lead to perturbation of the biosynthesis machinery, resulting in localized lesions in the cell wall as demonstrated by electron microscopy. The lesions may then allow for osmotic rupture of cells when defensins are tested under low-salt conditions. PMID:20385753

  4. Transcriptomic insights into citrus segment membrane's cell wall components relating to fruit sensory texture.

    PubMed

    Wang, Xun; Lin, Lijin; Tang, Yi; Xia, Hui; Zhang, Xiancong; Yue, Maolan; Qiu, Xia; Xu, Ke; Wang, Zhihui

    2018-04-23

    During fresh fruit consumption, sensory texture is one factor that affects the organoleptic qualities. Chemical components of plant cell walls, including pectin, cellulose, hemicellulose and lignin, play central roles in determining the textural qualities. To explore the genes and regulatory pathways involved in fresh citrus' perceived sensory texture, we performed mRNA-seq analyses of the segment membranes of two citrus cultivars, Shiranui and Kiyomi, with different organoleptic textures. Segment membranes were sampled at two developmental stages of citrus fruit, the beginning and end of the expansion period. More than 3000 differentially expressed genes were identified. The gene ontology analysis revealed that more categories were significantly enriched in 'Shiranui' than in 'Kiyomi' at both developmental stages. In total, 108 significantly enriched pathways were obtained, with most belonging to metabolism. A detailed transcriptomic analysis revealed potential critical genes involved in the metabolism of cell wall structures, for example, GAUT4 in pectin synthesis, CESA1, 3 and 6, and SUS4 in cellulose synthesis, CSLC5, XXT1 and XXT2 in hemicellulose synthesis, and CSE in lignin synthesis. Low levels, or no expression, of genes involved in cellulose and hemicellulose, such as CESA4, CESA7, CESA8, IRX9 and IRX14, confirmed that secondary cell walls were negligible or absent in citrus segment membranes. A chemical component analysis of the segment membranes from mature fruit revealed that the pectin, cellulose and lignin contents, and the segment membrane's weight (% of segment) were greater in 'Kiyomi'. Organoleptic quality of citrus is easily overlooked. It is mainly determined by sensory texture perceived in citrus segment membrane properties. We performed mRNA-seq analyses of citrus segment membranes to explore the genes and regulatory pathways involved in fresh citrus' perceived sensory texture. Transcriptomic data showed high repeatability between two

  5. The Sur7 Protein Regulates Plasma Membrane Organization and Prevents Intracellular Cell Wall Growth in Candida albicans

    PubMed Central

    Alvarez, Francisco J.; Douglas, Lois M.; Rosebrock, Adam

    2008-01-01

    The Candida albicans plasma membrane plays important roles in cell growth and as a target for antifungal drugs. Analysis of Ca-Sur7 showed that this four transmembrane domain protein localized to stable punctate patches, similar to the plasma membrane subdomains known as eisosomes or MCC that were discovered in S. cerevisiae. The localization of Ca-Sur7 depended on sphingolipid synthesis. In contrast to S. cerevisiae, a C. albicans sur7Δ mutant displayed defects in endocytosis and morphogenesis. Septins and actin were mislocalized, and cell wall synthesis was very abnormal, including long projections of cell wall into the cytoplasm. Several phenotypes of the sur7Δ mutant are similar to the effects of inhibiting β-glucan synthase, suggesting that the abnormal cell wall synthesis is related to activation of chitin synthase activity seen under stress conditions. These results expand the roles of eisosomes by demonstrating that Sur7 is needed for proper plasma membrane organization and cell wall synthesis. A conserved Cys motif in the first extracellular loop of fungal Sur7 proteins is similar to a characteristic motif of the claudin proteins that form tight junctions in animal cells, suggesting a common role for these tetraspanning membrane proteins in forming specialized plasma membrane domains. PMID:18799621

  6. Formation of Rhamnogalacturonan II-Borate Dimer in Pectin Determines Cell Wall Thickness of Pumpkin Tissue1

    PubMed Central

    Ishii, Tadashi; Matsunaga, Toshiro; Hayashi, Noriko

    2001-01-01

    Boron (B) deficiency results in inhibition of pumpkin (Cucurbia moschata Duchesne) growth that is accompanied by swelling of the cell walls. Monomeric rhamnogalacturonan II (mRG-II) accounted for 80% to 90% of the total RG-II in B-deficient walls, whereas the borate ester cross-linked RG-II dimer (dRG-II-B) accounted for more than 80% of the RG-II in control plants. The results of glycosyl residue and glycosyl linkage composition analyses of the RG-II from control and B-deficient plants were similar. Thus, B deficiency does not alter the primary structure of RG-II. The addition of 10B-enriched boric acid to B-deficient plants resulted within 5 h in the conversion of mRG-II to dRG-II-10B. The wall thickness of the 10B-treated plants and control plants was similar. The formation and possible functions of a borate ester cross-linked RG-II in the cell walls are discussed. PMID:11500567

  7. Gravity resistance, another graviresponse in plants - role of microtubule-membrane-cell wall continuum

    NASA Astrophysics Data System (ADS)

    Hoson, T.; Saito, Y.; Usui, S.; Soga, K.; Wakabayashi, K.

    Resistance to the gravitational force has been a serious problem for plants to survive on land, after they first went ashore more than 400 million years ago. Thus, gravity resistance is the principal graviresponse in plants comparable to gravitropism. Nevertheless, only limited information has been obtained for this second gravity response. We have examined the mechanism of gravity resistance using hypergravity conditions produced by centrifugation. The results led a hypothesis on the mechanism of plant resistance to the gravitational force that the plant constructs a tough body by increasing the cell wall rigidity, which are brought about by modification of the cell wall metabolism and cell wall environment, especially pH. The hypothesis was further supported by space experiments during the Space Shuttle STS-95 mission. On the other hand, we have shown that gravity signal may be perceived by mechanoreceptors (mechanosensitive ion channels) on the plasma membrane and amyloplast sedimentation in statocytes is not involved in gravity resistance. Moreover, hypergravity treatment increased the expression levels of genes encoding alpha-tubulin, a component of microtubules and 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor of terpenoids such as membrane sterols. The expression of HMGR and alpha- and beta-tubulin genes increased within several hours after hypergravity treatment, depending on the magnitude of gravity. The determination of levels of gene products as well as the analysis with knockout mutants of these genes by T-DNA insertions in Arabidopsis supports the involvement of both membrane sterols and microtubules in gravity resistance. These results suggest that structural or physiological continuum of microtubule-cell membrane-cell wall is responsible for plant resistance to the gravitational force.

  8. Heat-induced reorganization of the structure of photosystem II membranes: role of oxygen evolving complex.

    PubMed

    Busheva, Mira; Tzonova, Iren; Stoitchkova, Katerina; Andreeva, Atanaska

    2012-12-05

    The sensitivity of the green plants' photosystem II (PSII) to high temperatures is investigated in PSII enriched membranes and in membranes, from which the oxygen evolving complex is removed. Using steady-state 77 K fluorescence and resonance Raman spectroscopy we analyze the interdependency between the temperature-driven changes in structure and energy distribution in the PSII supercomplex. The results show that the heat treatment induces different reduction of the 77 K fluorescence emission in both types of investigated membranes: (i) an additional considerable decrease of the overall fluorescence emission in Tris-washed membranes as compared to the native membranes; (ii) a transition point at 42°C(,) observed only in native membranes; (iii) a sharp reduction of the PSII core fluorescence in Tris-washed membranes at temperatures higher than 50°C; (iv) a 3 nm red-shift of F700 band's maximum in Tris-washed membranes already at 20°C and its further shift by 1 nm at temperature increase. Both treatments intensified their action by increasing the aggregation and dissociation of the peripheral light harvesting complexes. The oxygen-evolving complex, in addition to its main function to produce O(2), increases the thermal stability of PSII core by strengthening the connection between the core and the peripheral antenna proteins and by keeping their structural integrity. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Alveolar type II cell-fibroblast interactions, synthesis and secretion of surfactant and type I collagen.

    PubMed

    Griffin, M; Bhandari, R; Hamilton, G; Chan, Y C; Powell, J T

    1993-06-01

    During alveolar development and alveolar repair close contacts are established between fibroblasts and lung epithelial cells through gaps in the basement membrane. Using co-culture systems we have investigated whether these close contacts influence synthesis and secretion of the principal surfactant apoprotein (SP-A) by cultured rat lung alveolar type II cells and the synthesis and secretion of type I collagen by fibroblasts. The alveolar type II cells remained cuboidal and grew in colonies on fibroblast feeder layers and on Matrigel-coated cell culture inserts but were progressively more flattened on fixed fibroblast monolayers and plastic. Alveolar type II cells cultured on plastic released almost all their SP-A into the medium by 4 days. Alveolar type II cells cultured on viable fibroblasts or Matrigel-coated inserts above fibroblasts accumulated SP-A in the medium at a constant rate for the first 4 days, and probably recycle SP-A by endocytosis. The amount of mRNA for SP-A was very low after 4 days of culture of alveolar type II cells on plastic, Matrigel-coated inserts or fixed fibroblast monolayers: relatively, the amount of mRNA for SP-A was increased 4-fold after culture of alveolar type II cells on viable fibroblasts. Co-culture of alveolar type II cells with confluent human dermal fibroblasts stimulated by 2- to 3-fold the secretion of collagen type I into the culture medium, even after the fibroblasts' growth had been arrested with mitomycin C. Collagen secretion, by fibroblasts, also was stimulated 2-fold by conditioned medium from alveolar type II cells cultured on Matrigel. The amount of mRNA for type I collagen increased only modestly when fibroblasts were cultured in this conditioned medium. This stimulation of type I collagen secretion diminished as the conditioned medium was diluted out, but at high dilutions further stimulation occurred, indicating that a factor that inhibited collagen secretion also was being diluted out. The conditioned medium

  10. Immunological Functions of the Membrane Proximal Region of MHC Class II Molecules

    PubMed Central

    Harton, Jonathan; Jin, Lei; Hahn, Amy; Drake, Jim

    2016-01-01

    Major histocompatibility complex (MHC) class II molecules present exogenously derived antigen peptides to CD4 T cells, driving activation of naïve T cells and supporting CD4-driven immune functions. However, MHC class II molecules are not inert protein pedestals that simply bind and present peptides. These molecules also serve as multi-functional signaling molecules delivering activation, differentiation, or death signals (or a combination of these) to B cells, macrophages, as well as MHC class II-expressing T cells and tumor cells. Although multiple proteins are known to associate with MHC class II, interaction with STING (stimulator of interferon genes) and CD79 is essential for signaling. In addition, alternative transmembrane domain pairing between class II α and β chains influences association with membrane lipid sub-domains, impacting both signaling and antigen presentation. In contrast to the membrane-distal region of the class II molecule responsible for peptide binding and T-cell receptor engagement, the membrane-proximal region (composed of the connecting peptide, transmembrane domain, and cytoplasmic tail) mediates these “non-traditional” class II functions. Here, we review the literature on the function of the membrane-proximal region of the MHC class II molecule and discuss the impact of this aspect of class II immunobiology on immune regulation and human disease. PMID:27006762

  11. Vesicles between plasma membrane and cell wall prior to visible senescence of Iris and Dendrobium flowers.

    PubMed

    Kamdee, Channatika; Kirasak, Kanjana; Ketsa, Saichol; van Doorn, Wouter G

    2015-09-01

    Cut Iris flowers (Iris x hollandica, cv. Blue Magic) show visible senescence about two days after full opening. Epidermal cells of the outer tepals collapse due to programmed cell death (PCD). Transmission electron microscopy (TEM) showed irregular swelling of the cell walls, starting prior to cell collapse. Compared to cells in flowers that had just opened, wall thickness increased up to tenfold prior to cell death. Fibrils were visible in the swollen walls. After cell death very little of the cell wall remained. Prior to and during visible wall swelling, vesicles (paramural bodies) were observed between the plasma membrane and the cell walls. The vesicles were also found in groups and were accompanied by amorphous substance. They usually showed a single membrane, and had a variety of diameters and electron densities. Cut Dendrobium hybrid cv. Lucky Duan flowers exhibited visible senescence about 14 days after full flower opening. Paramural bodies were also found in Dendrobium tepal epidermis and mesophyll cells, related to wall swelling and degradation. Although alternative explanations are well possible, it is hypothesized that paramural bodies carry enzymes involved in cell wall breakdown. The literature has not yet reported such bodies in association with senescence/PCD. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Evaluation of the damage of cell wall and cell membrane for various extracellular polymeric substance extractions of activated sludge.

    PubMed

    Guo, Xuesong; Liu, Junxin; Xiao, Benyi

    2014-10-20

    Extracellular polymeric substances (EPS) are susceptible to contamination by intracellular substances released during the extraction of EPS owing to the damage caused to microbial cell structures. The damage to cell walls and cell membranes in nine EPS extraction processes of activated sludge was evaluated in this study. The extraction of EPS (including proteins, carbohydrates and DNA) was the highest using the NaOH extraction method and the lowest using formaldehyde extraction. All nine EPS extraction methods in this study resulted in cell wall and membrane damage. The damage to cell walls, evaluated by 2-keto-3-deoxyoctonate (KDO) and N-acetylglucosamine content changes in extracted EPS, was the most significant in the NaOH extraction process. Formaldehyde extraction showed a similar extent of damage to cell walls to those detected in the control method (centrifugation), while those in the formaldehyde-NaOH and cation exchange resin extractions were slightly higher than those detected in the control. N-acetylglucosamine was more suitable than KDO for the evaluation of cell wall damage in the EPS extraction of activated sludge. The damage to cell membranes was characterized by two fluorochromes (propidium iodide and FITC Annexin V) with flow cytometry (FCM) measurement. The highest proportion of membrane-damaged cells was detected in NaOH extraction (26.54% of total cells) while membrane-damaged cells comprised 8.19% of total cells in the control. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Germanium Does Not Substitute for Boron in Cross-Linking of Rhamnogalacturonan II in Pumpkin Cell Walls1

    PubMed Central

    Ishii, Tadashi; Matsunaga, Toshiro; Iwai, Hiroaki; Satoh, Shinobu; Taoshita, Junji

    2002-01-01

    Boron (B)-deficient pumpkin (Cucurbita moschata Duchesne) plants exhibit reduced growth, and their tissues are brittle. The leaf cell walls of these plants contain less than one-half the amount of borate cross-linked rhamnogalacturonan II (RG-II) dimer than normal plants. Supplying germanium (Ge), which has been reported to substitute for B, to B-deficient plants does not restore growth or reduce tissue brittleness. Nevertheless, the leaf cell walls of the Ge-treated plants accumulated considerable amounts of Ge. Dimeric RG-II (dRG-II) accounted for between 20% and 35% of the total RG-II in the cell walls of the second to fourth leaves from Ge-treated plants, but only 2% to 7% of the RG-II was cross-linked by germanate (dRG-II-Ge). The ability of RG-II to form a dimer is not reduced by Ge treatment because approximately 95% of the monomeric RG-II generated from the walls of Ge-treated plants is converted to dRG-II-Ge in vitro in the presence of germanium oxide and lead acetate. However, dRG-II-Ge is unstable and is converted to monomeric RG-II when the Ge is removed. Therefore, the content of dRG-II-Ge and dRG-II-B described above may not reflect the actual ratio of these in muro. 10B-Enriched boric acid and Ge are incorporated into the cell wall within 10 min after their foliar application to B-deficient plants. Foliar application of 10B but not Ge results in an increase in the proportion of dRG-II in the leaf cell wall. Taken together, our results suggest that Ge does not restore the growth of B-deficient plants. PMID:12481079

  14. Myxobacterium-Produced Antibiotic TA (Myxovirescin) Inhibits Type II Signal Peptidase

    PubMed Central

    Xiao, Yao; Gerth, Klaus; Müller, Rolf

    2012-01-01

    Antibiotic TA is a macrocyclic secondary metabolite produced by myxobacteria that has broad-spectrum bactericidal activity. The structure of TA is unique, and its molecular target is unknown. Here, we sought to elucidate TA's mode of action (MOA) through two parallel genetic approaches. First, chromosomal Escherichia coli TA-resistant mutants were isolated. One mutant that showed specific resistance toward TA was mapped and resulted from an IS4 insertion in the lpp gene, which encodes an abundant outer membrane (Braun's) lipoprotein. In a second approach, the comprehensive E. coli ASKA plasmid library was screened for overexpressing clones that conferred TAr. This effort resulted in the isolation of the lspA gene, which encodes the type II signal peptidase that cleaves signal sequences from prolipoproteins. In whole cells, TA was shown to inhibit Lpp prolipoprotein processing, similar to the known LspA inhibitor globomycin. Based on genetic evidence and prior globomycin studies, a block in Lpp expression or prevention of Lpp covalent cell wall attachment confers TAr by alleviating a toxic buildup of mislocalized pro-Lpp. Taken together, these data argue that LspA is the molecular target of TA. Strikingly, the giant ta biosynthetic gene cluster encodes two lspA paralogs that we hypothesize play a role in producer strain resistance. PMID:22232277

  15. Wall to membrane linkers, stretch activated channels, and the detection of tension, voltage, temperature, auxin, and pH

    NASA Technical Reports Server (NTRS)

    Pickard, B. G.

    1992-01-01

    Introduction. The higher plant is a heterogeneous, mechanically prestressed structure continually subject to shifting forces. When a cell grows in a plant at gravitropic equilibrium, it must create localized maxima of shear in walls of neighboring cells. Such mechanical stress and strain are likely detected in a variety of ways. However, tension-sensitive ion channels are of particular interest because it appears that they are elaborately evolved for sensory function. We hypothesize that 1) the patchy patterns of high shear are focused via wall-to-membrane linkers onto the plasma membrane, where 2) they are translated by mechanosensory cation channels into corresponding patterns of high cytosolic Ca2+, which 3) initiate local enhancement of wall expansion. Further, we hypothesize that the local promotion of enhancement is achieved at least in part by local intensification of auxin transport across the plasma membrane. By implication, when an organ is asymmetrically pressed, rubbed, or bent or when it is displaced in the gravitational field, the net asymmetry of shear stress occurring across the organ would lead to asymmetric redistribution of auxin and corrective asymmetric growth. We shall describe a representative mechanosensitive Ca(2+) -selective cation channel (MCaC) with susceptibilities to xenobiotics implicating it as a force transducer in thigmo- and gravitropism. Then, we shall consider whether a putative wall-to-membrane linker (WML) could be a key feature of the molecular architecture permitting the stress distributed in the wall system to be focused on the channels.

  16. A laser microsurgical method of cell wall removal allows detection of large-conductance ion channels in the guard cell plasma membrane

    NASA Technical Reports Server (NTRS)

    Miedema, H.; Henriksen, G. H.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Application of patch clamp techniques to higher-plant cells has been subject to the limitation that the requisite contact of the patch electrode with the cell membrane necessitates prior enzymatic removal of the plant cell wall. Because the wall is an integral component of plant cells, and because cell-wall-degrading enzymes can disrupt membrane properties, such enzymatic treatments may alter ion channel behavior. We compared ion channel activity in enzymatically isolated protoplasts of Vicia faba guard cells with that found in membranes exposed by a laser microsurgical technique in which only a tiny portion of the cell wall is removed while the rest of the cell remains intact within its tissue environment. "Laser-assisted" patch clamping reveals a new category of high-conductance (130 to 361 pS) ion channels not previously reported in patch clamp studies on plant plasma membranes. These data indicate that ion channels are present in plant membranes that are not detected by conventional patch clamp techniques involving the production of individual plant protoplasts isolated from their tissue environment by enzymatic digestion of the cell wall. Given the large conductances of the channels revealed by laser-assisted patch clamping, we hypothesize that these channels play a significant role in the regulation of ion content and electrical signalling in guard cells.

  17. Preparation of thermo-responsive membranes. II.

    PubMed

    Nozawa, I; Suzuki, Y; Sato, S; Sugibayashi, K; Morimoto, Y

    1991-05-01

    Two types of liquid crystal (LC)-immobilized membranes were prepared by a soaking method and sandwich method to control the permeation of indomethacin, as a model drug, in response to local and systemic fever. Monooxyethylene trimethylolpropane tristearate (MTTS) was used as a model LC because it has a gel-liquid crystal phase transition temperature near the body temperature, 39-40 degrees C in phosphate buffered saline (pH 7.4). Two porous polypropylene (PP) membranes were soaked into 20% MTTS chloroform solution in the soaking method, and two PP membranes were poured with the melted MTTS and pressed in the sandwich method. Thermo-response efficacy of the soaked membrane was dependent upon the content of MTTS in MTTS membrane, and the MTTS content above the void volume of PP membrane (38%) was needed for high efficacy. On the other hand, the sandwich membrane exhibited higher thermo-response efficacy than the soaked membrane, because more LC was embedded in the pores of sandwich membrane than that of the soaked membrane. The sandwich membrane permeation of indomethacin was sharply controlled by temperature changes between 32 and 38 degrees C.

  18. Nanoporous Membranes with Chemically-Tailored Pore Walls from Triblock Terpolymer Templates

    NASA Astrophysics Data System (ADS)

    Mulvenna, Ryan; Weidman, Jacob; Pople, John; Boudouris, Bryan; Phillip, William

    2014-03-01

    Membranes generated from self-assembled block polymers have shown promise as highly permeable and selective filters; however, current syntheses of such materials lack diverse pore wall chemical functionality. Here, we report the facile synthesis of polyisoprene- b-polystyrene- b-poly(N , N -dimethylacrylamide) (PI-PS-PDMA) using a controlled reversible addition-fragmentation chain transfer (RAFT) polymerization mechanism to yield a macromolecule with an easily-tunable molecular weight and a narrow molecular weight distribution. The PI-PS-PDMA is then cast into an anisotropic membrane using the self-assembly and non-solvent induced phase separation process (SNIPS) protocol. These membranes can be used in size-selective separations for particles as small as 8 nm in diameter. Furthermore, the PDMA block can be converted to poly(acrylic acid) (PAA) readily in the solid state, and this PI-PS-PAA terpolymer membrane can separate particles as low as 2 nm in diameter while still retaining a relatively high flux. This is the smallest reported separation for a block polymer-based membrane to date. Additionally, the PAA-lined pores serve as a conversion platform to be tuned to any other pore chemistry, which allows the membrane to be of great utility in optimizing chemistry-specific separations.

  19. Membrane Organization and Cell Fusion During Mating in Fission Yeast Requires Multipass Membrane Protein Prm1

    PubMed Central

    Curto, M.-Ángeles; Sharifmoghadam, Mohammad Reza; Calpena, Eduardo; De León, Nagore; Hoya, Marta; Doncel, Cristina; Leatherwood, Janet; Valdivieso, M.-Henar

    2014-01-01

    The involvement of Schizosaccharomyces pombe prm1+ in cell fusion during mating and its relationship with other genes required for this process have been addressed. S. pombe prm1Δ mutant exhibits an almost complete blockade in cell fusion and an abnormal distribution of the plasma membrane and cell wall in the area of cell–cell interaction. The distribution of cellular envelopes is similar to that described for mutants devoid of the Fig1-related claudin-like Dni proteins; however, prm1+ and the dni+ genes act in different subpathways. Time-lapse analyses show that in the wild-type S. pombe strain, the distribution of phosphatidylserine in the cytoplasmic leaflet of the plasma membrane undergoes some modification before an opening is observed in the cross wall at the cell–cell contact region. In the prm1Δ mutant, this membrane modification does not take place, and the cross wall between the mating partners is not extensively degraded; plasma membrane forms invaginations and fingers that sometimes collapse/retract and that are sometimes strengthened by the synthesis of cell-wall material. Neither prm1Δ nor prm1Δ dniΔ zygotes lyse after cell–cell contact in medium containing and lacking calcium. Response to drugs that inhibit lipid synthesis or interfere with lipids is different in wild-type, prm1Δ, and dni1Δ strains, suggesting that membrane structure/organization/dynamics is different in all these strains and that Prm1p and the Dni proteins exert some functions required to guarantee correct membrane organization that are critical for cell fusion. PMID:24514900

  20. Emergence of polysaccharide membrane walls through macro-space partitioning via interfacial instability.

    PubMed

    Okeyoshi, Kosuke; Okajima, Maiko K; Kaneko, Tatsuo

    2017-07-21

    Living organisms in drying environments build anisotropic structures and exhibit directionality through self-organization of biopolymers. However, the process of macro-scale assembly is still unknown. Here, we introduce a dissipative structure through a non-equilibrium process between hydration and deposition in the drying of a polysaccharide liquid crystalline solution. By controlling the geometries of the evaporation front in a limited space, multiple nuclei emerge to grow vertical membrane walls with macroscopic orientation. Notably, the membranes are formed through rational orientation of rod-like microassemblies along the dynamic three-phase contact line. Additionally, in the non-equilibrium state, a dissipative structure is ultimately immobilized as a macroscopically partitioned space by multiple vertical membranes. We foresee that such oriented membranes will be applicable to soft biomaterials with direction controllability, and the macroscopic space partitionings will aid in the understanding of the space recognition ability of natural products under drying environments.

  1. Removal of Cu(II) ions from contaminated waters using a conducting microfiltration membrane.

    PubMed

    Wang, Xueye; Wang, Zhiwei; Chen, Haiqin; Wu, Zhichao

    2017-10-05

    Efficient removal of toxic metals using low-pressure membrane processes from contaminated waters is an important but challenging task. In the present work, a conducting microfiltration membrane prepared by embedding a stainless steel mesh in the active layer of a polyvinylidene fluoride membrane is developed to remove Cu(II) ions from contaminated waters. Results showed that the conducting membrane had favorable electrochemical properties and stability as cathode. Batch tests showed that Cu(II) removal efficiency increased with the increase of voltages and leveled off with the further enhancement of electric field. The optimal voltages were determined to be 1.0V and 2.0V for the influent Cu(II) concentrations of 5mg/L and 30mg/L, respectively. X-ray photoelectron spectroscopy and X-ray diffraction results demonstrated the presence of Cu(0) and Cu(OH) 2 on the membrane surface. The removal mechanisms involved the intrinsic adsorption of membrane, electrosorption of membrane, adsorption of deposited layer, chemical precipitation of Cu(OH) 2 and deposition of Cu(0) which were aided by electrophoresis and electrochemical oxidation-reduction. Long-term tests showed that the major contributors for Cu(II) removal were the deposition of Cu(0) by electrochemical reduction-oxidation (47.3%±8.5%) and chemical precipitation (41.1%±0.2%), followed by electrosorption, adsorption by the fouling layer and membrane intrinsic sorption. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Double anisotropic electrically conductive flexible Janus-typed membranes.

    PubMed

    Li, Xiaobing; Ma, Qianli; Tian, Jiao; Xi, Xue; Li, Dan; Dong, Xiangting; Yu, Wensheng; Wang, Xinlu; Wang, Jinxian; Liu, Guixia

    2017-12-07

    Novel type III anisotropic conductive films (ACFs), namely flexible Janus-typed membranes, were proposed, designed and fabricated for the first time. Flexible Janus-typed membranes composed of ordered Janus nanobelts were constructed by electrospinning, which simultaneously possess fluorescence and double electrically conductive anisotropy. For the fabrication of the Janus-typed membrane, Janus nanobelts comprising a conductive side and an insulative-fluorescent side were primarily fabricated, and then the Janus nanobelts are arranged into parallel arrays using an aluminum rotary drum as the collector to obtain a single anisotropically conductive film. Subsequently, a secondary electrospinning process was applied to the as-prepared single anisotropically conductive films to acquire the final Janus-typed membrane. For this Janus-typed membrane, namely its left-to-right structure, anisotropic electrical conduction synchronously exists on both sides, and furthermore, the two electrically conductive directions are perpendicular. By modulating the amount of Eu(BA) 3 phen complex and conducting polyaniline (PANI), the characteristics and intensity of the fluorescence-electricity dual-function in the membrane can be tuned. The high integration of this peculiar Janus-typed membrane with simultaneous double electrically conductive anisotropy-fluorescent dual-functionality is successfully realized in this study. This design philosophy and preparative technique will provide support for the design and construction of new types of special nanostructures with multi-functionality.

  3. Excitation energy transfer between Light-harvesting complex II and Photosystem I in reconstituted membranes.

    PubMed

    Akhtar, Parveen; Lingvay, Mónika; Kiss, Teréz; Deák, Róbert; Bóta, Attila; Ughy, Bettina; Garab, Győző; Lambrev, Petar H

    2016-04-01

    Light-harvesting complex II (LHCII), the major peripheral antenna of Photosystem II in plants, participates in several concerted mechanisms for regulation of the excitation energy and electron fluxes in thylakoid membranes. In part, these include interaction of LHCII with Photosystem I (PSI) enhancing the latter's absorption cross-section - for example in the well-known state 1 - state 2 transitions or as a long-term acclimation to high light. In this work we examined the capability of LHCII to deliver excitations to PSI in reconstituted membranes in vitro. Proteoliposomes with native plant thylakoid membrane lipids and different stoichiometric ratios of LHCII:PSI were reconstituted and studied by steady-state and time-resolved fluorescence spectroscopy. Fluorescence emission from LHCII was strongly decreased in PSI-LHCII membranes due to trapping of excitations by PSI. Kinetic modelling of the time-resolved fluorescence data revealed the existence of separate pools of LHCII distinguished by the time scale of energy transfer. A strongly coupled pool, equivalent to one LHCII trimer per PSI, transferred excitations to PSI with near-unity efficiency on a time scale of less than 10ps but extra LHCIIs also contributed significantly to the effective antenna size of PSI, which could be increased by up to 47% in membranes containing 3 LHCII trimers per PSI. The results demonstrate a remarkable competence of LHCII to increase the absorption cross-section of PSI, given the opportunity that the two types of complexes interact in the membrane. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of wastewater.

    PubMed

    Rozendal, R A; Sleutels, T H J A; Hamelers, H V M; Buisman, C J N

    2008-01-01

    Previous studies have shown that the application of cation exchange membranes (CEMs) in bioelectrochemical systems running on wastewater can cause operational problems. In this paper the effect of alternative types of ion exchange membrane is studied in biocatalyzed electrolysis cells. Four types of ion exchange membranes are used: (i) a CEM, (ii) an anion exchange membrane (AEM), (iii) a bipolar membrane (BPM), and (iv) a charge mosaic membrane (CMM). With respect to the electrochemical performance of the four biocatalyzed electrolysis configurations, the ion exchange membranes are rated in the order AEM > CEM > CMM > BPM. However, with respect to the transport numbers for protons and/or hydroxyl ions (t(H/OH)) and the ability to prevent pH increase in the cathode chamber, the ion exchange membranes are rated in the order BPM > AEM > CMM > CEM.

  5. Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection.

    PubMed

    Palocci, Cleofe; Valletta, Alessio; Chronopoulou, Laura; Donati, Livia; Bramosanti, Marco; Brasili, Elisa; Baldan, Barbara; Pasqua, Gabriella

    2017-12-01

    PLGA NPs' cell uptake involves different endocytic pathways. Clathrin-independent endocytosis is the main internalization route. The cell wall plays a more prominent role than the plasma membrane in NPs' size selection. In the last years, many studies on absorption and cell uptake of nanoparticles by plants have been conducted, but the understanding of the internalization mechanisms is still largely unknown. In this study, polydispersed and monodispersed poly(lactic-co-glycolic) acid nanoparticles (PLGA NPs) were synthesized, and a strategy combining the use of transmission electron microscopy (TEM), confocal analysis, fluorescently labeled PLGA NPs, a probe for endocytic vesicles (FM4-64), and endocytosis inhibitors (i.e., wortmannin, ikarugamycin, and salicylic acid) was employed to shed light on PLGA NP cell uptake in grapevine cultured cells and to assess the role of the cell wall and plasma membrane in size selection of PLGA NPs. The ability of PLGA NPs to cross the cell wall and membrane was confirmed by TEM and fluorescence microscopy. A strong adhesion of PLGA NPs to the outer side of the cell wall was observed, presumably due to electrostatic interactions. Confocal microscopy and treatment with endocytosis inhibitors suggested the involvement of both clathrin-dependent and clathrin-independent endocytosis in cell uptake of PLGA NPs and the latter appeared to be the main internalization pathway. Experiments on grapevine protoplasts revealed that the cell wall plays a more prominent role than the plasma membrane in size selection of PLGA NPs. While the cell wall prevents the uptake of PLGA NPs with diameters over 50 nm, the plasma membrane can be crossed by PLGA NPs with a diameter of 500-600 nm.

  6. Inhibition of Cav3.2 T-type Calcium Channels by Its Intracellular I-II Loop*

    PubMed Central

    Monteil, Arnaud; Chausson, Patrick; Boutourlinsky, Katia; Mezghrani, Alexandre; Huc-Brandt, Sylvaine; Blesneac, Iulia; Bidaud, Isabelle; Lemmers, Céline; Leresche, Nathalie; Lambert, Régis C.; Lory, Philippe

    2015-01-01

    Voltage-dependent calcium channels (Cav) of the T-type family (Cav3.1, Cav3.2, and Cav3.3) are activated by low threshold membrane depolarization and contribute greatly to neuronal network excitability. Enhanced T-type channel activity, especially Cav3.2, contributes to disease states, including absence epilepsy. Interestingly, the intracellular loop connecting domains I and II (I-II loop) of Cav3.2 channels is implicated in the control of both surface expression and channel gating, indicating that this I-II loop plays an important regulatory role in T-type current. Here we describe that co-expression of this I-II loop or its proximal region (Δ1-Cav3.2; Ser423–Pro542) together with recombinant full-length Cav3.2 channel inhibited T-type current without affecting channel expression and membrane incorporation. Similar T-type current inhibition was obtained in NG 108-15 neuroblastoma cells that constitutively express Cav3.2 channels. Of interest, Δ1-Cav3.2 inhibited both Cav3.2 and Cav3.1 but not Cav3.3 currents. Efficacy of Δ1-Cav3.2 to inhibit native T-type channels was assessed in thalamic neurons using viral transduction. We describe that T-type current was significantly inhibited in the ventrobasal neurons that express Cav3.1, whereas in nucleus reticularis thalami neurons that express Cav3.2 and Cav3.3 channels, only the fast inactivating T-type current (Cav3.2 component) was significantly inhibited. Altogether, these data describe a new strategy to differentially inhibit Cav3 isoforms of the T-type calcium channels. PMID:25931121

  7. Wood cell-wall structure requires local 2D-microtubule disassembly by a novel plasma membrane-anchored protein.

    PubMed

    Oda, Yoshihisa; Iida, Yuki; Kondo, Yuki; Fukuda, Hiroo

    2010-07-13

    Plant cells have evolved cortical microtubules, in a two-dimensional space beneath the plasma membrane, that regulate patterning of cellulose deposition. Although recent studies have revealed that several microtubule-associated proteins facilitate self-organization of transverse cortical microtubules, it is still unknown how diverse patterns of cortical microtubules are organized in different xylem cells, which are the major components of wood. Using our newly established in vitro xylem cell differentiation system, we found that a novel microtubule end-tracking protein, microtubule depletion domain 1 (MIDD1), was anchored to distinct plasma membrane domains and promoted local microtubule disassembly, resulting in pits on xylem cell walls. The introduction of RNA interference for MIDD1 resulted in the failure of local microtubule depletion and the formation of secondary walls without pits. Conversely, the overexpression of MIDD1 reduced microtubule density. MIDD1 has two coiled-coil domains for the binding to microtubules and for the anchorage to plasma membrane domains, respectively. Combination of the two coils caused end tracking of microtubules during shrinkage and suppressed their rescue events. Our results indicate that MIDD1 integrates spatial information in the plasma membrane with cortical microtubule dynamics for determining xylem cell wall pattern. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Type II universal spacetimes

    NASA Astrophysics Data System (ADS)

    Hervik, S.; Málek, T.; Pravda, V.; Pravdová, A.

    2015-12-01

    We study type II universal metrics of the Lorentzian signature. These metrics simultaneously solve vacuum field equations of all theories of gravitation with the Lagrangian being a polynomial curvature invariant constructed from the metric, the Riemann tensor and its covariant derivatives of an arbitrary order. We provide examples of type II universal metrics for all composite number dimensions. On the other hand, we have no examples for prime number dimensions and we prove the non-existence of type II universal spacetimes in five dimensions. We also present type II vacuum solutions of selected classes of gravitational theories, such as Lovelock, quadratic and L({{Riemann}}) gravities.

  9. Construction of photo-driven bioanodes using thylakoid membranes and multi-walled carbon nanotubes.

    PubMed

    Takeuchi, Ryosuke; Suzuki, Arato; Sakai, Kento; Kitazumi, Yuki; Shirai, Osamu; Kano, Kenji

    2018-04-03

    A photo-driven bioanode was constructed using the thylakoid membrane from spinach, carbon nanotubes, and an artificial mediator. By considering a linear free-energy relationship in the electron transfer from the thylakoid membrane to the mediators, and the oxygen resistance of the reduced mediators, 1,2-naphthoquinone was selected as the most suitable mediator for the photo-driven bioanode. Water-dispersed multi-walled carbon nanotubes served as scaffolds to hold the thylakoid membrane on a porous electrode. The constructed photo-driven bioanode exhibited a photocurrent density of over 100μAcm -2 at a photon flux density of 1500μmolm -2 s -1 . Copyright © 2018. Published by Elsevier B.V.

  10. The human T-cell leukemia virus type 1 p13II protein: effects on mitochondrial function and cell growth

    PubMed Central

    D’Agostino, DM; Silic-Benussi, M; Hiraragi, H; Lairmore, MD; Ciminale, V

    2011-01-01

    p13II of human T-cell leukemia virus type 1 (HTLV-1) is an 87-amino-acid protein that is targeted to the inner mitochondrial membrane. p13II alters mitochondrial membrane permeability, producing a rapid, membrane potential-dependent influx of K+. These changes result in increased mitochondrial matrix volume and fragmentation and may lead to depolarization and alterations in mitochondrial Ca2+ uptake/retention capacity. At the cellular level, p13II has been found to interfere with cell proliferation and transformation and to promote apoptosis induced by ceramide and Fas ligand. Assays carried out in T cells (the major targets of HTLV-1 infection in vivo) demonstrate that p13II-mediated sensitization to Fas ligand-induced apoptosis can be blocked by an inhibitor of Ras farnesylation, thus implicating Ras signaling as a downstream target of p13II function. PMID:15761473

  11. Cell Wall and Membrane-Associated Exo-β-d-Glucanases from Developing Maize Seedlings1

    PubMed Central

    Kim, Jong-Bum; Olek, Anna T.; Carpita, Nicholas C.

    2000-01-01

    A β-d-glucan exohydrolase was purified from the cell walls of developing maize (Zea mays L.) shoots. The cell wall enzyme preferentially hydrolyzes the non-reducing terminal glucosyl residue from (1→3)-β-d-glucans, but also hydrolyzes (1→2)-, (1→6)-, and (1→4)-β-d-glucosyl units in decreasing order of activity. Polyclonal antisera raised against the purified exo-β-d-glucanase (ExGase) were used to select partial-length cDNA clones, and the complete sequence of 622 amino acid residues was deduced from the nucleotide sequences of the cDNA and a full-length genomic clone. Northern gel-blot analysis revealed what appeared to be a single transcript, but three distinct polypeptides were detected in immunogel-blot analyses of the ExGases extracted from growing coleoptiles. Two polypeptides appear in the cell wall, where one polypeptide is constitutive, and the second appears at the time of the maximum rate of elongation and reaches peak activity after elongation has ceased. The appearance of the second polypeptide coincides with the disappearance of the mixed-linkage (1→3),(1→4)-β-d-glucan, whose accumulation is associated with cell elongation in grasses. The third polypeptide of the ExGase is an extrinsic protein associated with the exterior surface of the plasma membrane. Although the activity of the membrane-associated ExGase is highest against (1→3)-β-d-glucans, the activity against (1→4)-β-d-glucan linkages is severely attenuated and, therefore, the enzyme is unlikely to be involved with turnover of the (1→3),(1→4)-β-d-glucan. We propose three potential functions for this novel ExGase at the membrane-wall interface. PMID:10859178

  12. Differential participation of angiotensin II type 1 and 2 receptors in the regulation of cardiac cell death triggered by angiotensin II.

    PubMed

    Aránguiz-Urroz, Pablo; Soto, Dagoberto; Contreras, Ariel; Troncoso, Rodrigo; Chiong, Mario; Montenegro, José; Venegas, Daniel; Smolic, Christian; Ayala, Pedro; Thomas, Walter G; Lavandero, Sergio; Díaz-Araya, Guillermo

    2009-05-01

    The Angiotensin II (Ang II) type 1 (AT(1)R) and type 2 (AT(2)R) receptors are increased in the heart following myocardial infarction and dilated cardiomyopathy, yet their contribution at a cellular level to compensation and/or failure remains controversial. We ectopically expressed AT(1)R and AT(2)R in cultured adult rat cardiomyocytes and cardiac fibroblasts to investigate Ang II-mediated cardiomyocyte hypertrophy and cardiac cell viability. In adult rat cardiomyocytes, Ang II did not induce hypertrophy via the AT(1)R, and no effect of Ang II on cell viability was observed following AT(1)R or AT(2)R expression. In adult rat cardiac fibroblasts, Ang II stimulated cell death by apoptosis via the AT(1)R (but not the AT(2)R), which required the presence of extracellular calcium, and induced a rapid dissipation of mitochondrial membrane potential, which was significant from 8 h. We conclude that Ang II/AT(1)R triggers apoptosis in adult rat cardiac fibroblasts, which is dependent on Ca2+ influx.

  13. Proposal for a histopathological consensus classification of the periprosthetic interface membrane.

    PubMed

    Morawietz, L; Classen, R-A; Schröder, J H; Dynybil, C; Perka, C; Skwara, A; Neidel, J; Gehrke, T; Frommelt, L; Hansen, T; Otto, M; Barden, B; Aigner, T; Stiehl, P; Schubert, T; Meyer-Scholten, C; König, A; Ströbel, P; Rader, C P; Kirschner, S; Lintner, F; Rüther, W; Bos, I; Hendrich, C; Kriegsmann, J; Krenn, V

    2006-06-01

    The introduction of clearly defined histopathological criteria for a standardised evaluation of the periprosthetic membrane, which can appear in cases of total joint arthroplasty revision surgery. Based on histomorphological criteria, four types of periprosthetic membrane were defined: wear particle induced type (detection of foreign body particles; macrophages and multinucleated giant cells occupy at least 20% of the area; type I); infectious type (granulation tissue with neutrophilic granulocytes, plasma cells and few, if any, wear particles; type II); combined type (aspects of type I and type II occur simultaneously; type III); and indeterminate type (neither criteria for type I nor type II are fulfilled; type IV). The periprosthetic membranes of 370 patients (217 women, 153 men; mean age 67.6 years, mean period until revision surgery 7.4 years) were analysed according to the defined criteria. Frequency of histopathological membrane types was: type I 54.3%, type II 19.7%, type III 5.4%, type IV 15.4%, and not assessable 5.1%. The mean period between primary arthroplasty and revision surgery was 10.1 years for type I, 3.2 years for type II, 4.5 years for type III and 5.4 years for type IV. The correlation between histopathological and microbiological diagnosis was high (89.7%), and the inter-observer reproducibility sufficient (85%). The classification proposed enables standardised typing of periprosthetic membranes and may serve as a tool for further research on the pathogenesis of the loosening of total joint replacement. The study highlights the importance of non-infectious, non-particle induced loosening of prosthetic devices in orthopaedic surgery (membrane type IV), which was observed in 15.4% of patients.

  14. Physiological and Transcriptional Responses of Saccharomyces cerevisiae to d-Limonene Show Changes to the Cell Wall but Not to the Plasma Membrane

    PubMed Central

    Brennan, Timothy C. R.; Nielsen, Lars K.

    2013-01-01

    Monoterpenes can, upon hydrogenation, be used as light-fraction components of sustainable aviation fuels. Fermentative production of monoterpenes in engineered microorganisms, such as Saccharomyces cerevisiae, has gained attention as a potential route to deliver these next-generation fuels from renewable biomass. However, end product toxicity presents a formidable problem for microbial synthesis. Due to their hydrophobicity, monoterpene inhibition has long been attributed to membrane interference, but the molecular mechanism remains largely unsolved. In order to gain a better understanding of the mode of action, we analyzed the composition and structural integrity of the cell envelope as well as the transcriptional response of yeast cells treated with an inhibitory amount of d-limonene (107 mg/liter). We found no alterations in membrane fluidity, structural membrane integrity, or fatty acid composition after the solvent challenge. A 4-fold increase in the mean fluorescence intensity per cell (using calcofluor white stain) and increased sensitivity to cell wall-degrading enzymes demonstrated that limonene disrupts cell wall properties. Global transcript measurements confirmed the membrane integrity observations by showing no upregulation of ergosterol or fatty acid biosynthesis pathways, which are commonly overexpressed in yeast to reinforce membrane rigidity during ethanol exposure. Limonene shock did cause a compensatory response to cell wall damage through overexpression of several genes (ROM1, RLM1, PIR3, CTT1, YGP1, MLP1, PST1, and CWP1) involved with the cell wall integrity signaling pathway. This is the first report demonstrating that cell wall, rather than plasma membrane, deterioration is the main source of monoterpene inhibition. We show that limonene can alter the structure and function of the cell wall, which has a clear effect on cytokinesis. PMID:23542628

  15. Flow and fouling in membrane filters: Effects of membrane morphology

    NASA Astrophysics Data System (ADS)

    Sanaei, Pejman; Cummings, Linda J.

    2015-11-01

    Membrane filters are widely-used in microfiltration applications. Many types of filter membranes are produced commercially, for different filtration applications, but broadly speaking the requirements are to achieve fine control of separation, with low power consumption. The answer to this problem might seem obvious: select the membrane with the largest pore size and void fraction consistent with the separation requirements. However, membrane fouling (an inevitable consequence of successful filtration) is a complicated process, which depends on many parameters other than membrane pore size and void fraction; and which itself greatly affects the filtration process and membrane functionality. In this work we formulate mathematical models that can (i) account for the membrane internal morphology (internal structure, pore size & shape, etc.); (ii) fouling of membranes with specific morphology; and (iii) make some predictions as to what type of membrane morphology might offer optimum filtration performance.

  16. Impaired Vascular Contractility and Aortic Wall Degeneration in Fibulin-4 Deficient Mice: Effect of Angiotensin II Type 1 (AT1) Receptor Blockade

    PubMed Central

    Moltzer, Els; te Riet, Luuk; Swagemakers, Sigrid M. A.; van Heijningen, Paula M.; Vermeij, Marcel; van Veghel, Richard; Bouhuizen, Angelique M.; van Esch, Joep H. M.; Lankhorst, Stephanie; Ramnath, Natasja W. M.; de Waard, Monique C.; Duncker, Dirk J.; van der Spek, Peter J.; Rouwet, Ellen V.; Danser, A. H. Jan; Essers, Jeroen

    2011-01-01

    Medial degeneration is a key feature of aneurysm disease and aortic dissection. In a murine aneurysm model we investigated the structural and functional characteristics of aortic wall degeneration in adult fibulin-4 deficient mice and the potential therapeutic role of the angiotensin (Ang) II type 1 (AT1) receptor antagonist losartan in preventing aortic media degeneration. Adult mice with 2-fold (heterozygous Fibulin-4+/R) and 4-fold (homozygous Fibulin-4R/R) reduced expression of fibulin-4 displayed the histological features of cystic media degeneration as found in patients with aneurysm or dissection, including elastin fiber fragmentation, loss of smooth muscle cells, and deposition of ground substance in the extracellular matrix of the aortic media. The aortic contractile capacity, determined by isometric force measurements, was diminished, and was associated with dysregulation of contractile genes as shown by aortic transcriptome analysis. These structural and functional alterations were accompanied by upregulation of TGF-β signaling in aortas from fibulin-4 deficient mice, as identified by genome-scaled network analysis as well as by immunohistochemical staining for phosphorylated Smad2, an intracellular mediator of TGF-β. Tissue levels of Ang II, a regulator of TGF-β signaling, were increased. Prenatal treatment with the AT1 receptor antagonist losartan, which blunts TGF-β signaling, prevented elastic fiber fragmentation in the aortic media of newborn Fibulin-4R/R mice. Postnatal losartan treatment reduced haemodynamic stress and improved lifespan of homozygous knockdown fibulin-4 animals, but did not affect aortic vessel wall structure. In conclusion, the AT1 receptor blocker losartan can prevent aortic media degeneration in a non-Marfan syndrome aneurysm mouse model. In established aortic aneurysms, losartan does not affect aortic architecture, but does improve survival. These findings may extend the potential therapeutic application of inhibitors of

  17. The relative absorption cross-sections of photosystem I and photosystem II in chloroplasts from three types of Nicotiana tabacum.

    PubMed

    Melis, A; Thielen, A P

    1980-02-08

    In the present study we used three types of Nicotiana tabacum, cv John William's Broad Leaf (the wild type and two mutants, the yellow-green Su/su and the yellow Su/su var. Aurea) in order to correlat functional properties of Photosystem II and Photosystem I with the structural organization of their chloroplasts. The effective absorption cross-section of Photosystem II and Photosystem I centers was measured by means of the rate constant of their photoconversion under light-limiting conditions. In agreement with earlier results (Okabe, K., Schmid, G.H. and Straub, J. (1977) Plant Physiol. 60, 150--156) the photosynthetic unit size for both System II and System I in the two mutants was considerably smaller as compared to the wild type. We observed biphasic kinetics in the photoconversion of System II in all three types of N. tabacum. However, the photoconversion of System I occurred with monophasic and exponential kinetics. Under our experimental conditions, the effective cross-section of Photosystem I was comparable to that of the fast System II component (alpha centers). The relative amplitude of the slow System II component (beta centers) varied between 30% in the wild type to 70% in the Su/su var. Aurea mutant. The increased fraction of beta centers is correlated with the decreased fraction of appressed photosynthetic membranes in the chloroplasts of the two mutants. As a working hypothesis, it is suggested that beta centers are located on photosynthetic membranes directly exposed to the stroma medium.

  18. Key steps in type III secretion system (T3SS) towards translocon assembly with potential sensor at plant plasma membrane.

    PubMed

    Ji, Hongtao; Dong, Hansong

    2015-09-01

    Many plant- and animal-pathogenic Gram-negative bacteria employ the type III secretion system (T3SS) to translocate effector proteins from bacterial cells into the cytosol of eukaryotic host cells. The effector translocation occurs through an integral component of T3SS, the channel-like translocon, assembled by hydrophilic and hydrophobic proteinaceous translocators in a two-step process. In the first, hydrophilic translocators localize to the tip of a proteinaceous needle in animal pathogens, or a proteinaceous pilus in plant pathogens, and associate with hydrophobic translocators, which insert into host plasma membranes in the second step. However, the pilus needs to penetrate plant cell walls in advance. All hydrophilic translocators so far identified in plant pathogens are characteristic of harpins: T3SS accessory proteins containing a unitary hydrophilic domain or an additional enzymatic domain. Two-domain harpins carrying a pectate lyase domain potentially target plant cell walls and facilitate the penetration of the pectin-rich middle lamella by the bacterial pilus. One-domain harpins target plant plasma membranes and may play a crucial role in translocon assembly, which may also involve contrapuntal associations of hydrophobic translocators. In all cases, sensory components in the target plasma membrane are indispensable for the membrane recognition of translocators and the functionality of the translocon. The conjectural sensors point to membrane lipids and proteins, and a phosphatidic acid and an aquaporin are able to interact with selected harpin-type translocators. Interactions between translocators and their sensors at the target plasma membrane are assumed to be critical for translocon assembly. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  19. EFFECT OF GROWTH FACTOR-FIBRONECTIN MATRIX INTERACTION ON RAT TYPE II CELL ADHESION AND DNA SYTHESIS

    EPA Science Inventory

    ABSTRACT

    Type II cells attach, migrate and proliferate on a provisional fibronectin-rich matrix during alveolar wall repair after lung injury. The combination of cell-substratum interactions via integrin receptors and exposure to local growth factors are likely to initiat...

  20. Proposal for a histopathological consensus classification of the periprosthetic interface membrane

    PubMed Central

    Morawietz, L; Classen, R‐A; Schröder, J H; Dynybil, C; Perka, C; Skwara, A; Neidel, J; Gehrke, T; Frommelt, L; Hansen, T; Otto, M; Barden, B; Aigner, T; Stiehl, P; Schubert, T; Meyer‐Scholten, C; König, A; Ströbel, P; Rader, C P; Kirschner, S; Lintner, F; Rüther, W; Bos, I; Hendrich, C; Kriegsmann, J; Krenn, V

    2006-01-01

    Aims The introduction of clearly defined histopathological criteria for a standardised evaluation of the periprosthetic membrane, which can appear in cases of total joint arthroplasty revision surgery. Methods Based on histomorphological criteria, four types of periprosthetic membrane were defined: wear particle induced type (detection of foreign body particles; macrophages and multinucleated giant cells occupy at least 20% of the area; type I); infectious type (granulation tissue with neutrophilic granulocytes, plasma cells and few, if any, wear particles; type II); combined type (aspects of type I and type II occur simultaneously; type III); and indeterminate type (neither criteria for type I nor type II are fulfilled; type IV). The periprosthetic membranes of 370 patients (217 women, 153 men; mean age 67.6 years, mean period until revision surgery 7.4 years) were analysed according to the defined criteria. Results Frequency of histopathological membrane types was: type I 54.3%, type II 19.7%, type III 5.4%, type IV 15.4%, and not assessable 5.1%. The mean period between primary arthroplasty and revision surgery was 10.1 years for type I, 3.2 years for type II, 4.5 years for type III and 5.4 years for type IV. The correlation between histopathological and microbiological diagnosis was high (89.7%), and the inter‐observer reproducibility sufficient (85%). Conclusion The classification proposed enables standardised typing of periprosthetic membranes and may serve as a tool for further research on the pathogenesis of the loosening of total joint replacement. The study highlights the importance of non‐infectious, non‐particle induced loosening of prosthetic devices in orthopaedic surgery (membrane type IV), which was observed in 15.4% of patients. PMID:16731601

  1. The lantibiotic mersacidin is a strong inducer of the cell wall stress response of Staphylococcus aureus

    PubMed Central

    Sass, Peter; Jansen, Andrea; Szekat, Christiane; Sass, Vera; Sahl, Hans-Georg; Bierbaum, Gabriele

    2008-01-01

    Background The lantibiotic mersacidin is an antimicrobial peptide of 20 amino acids that is ribosomally produced by Bacillus sp. strain HIL Y-85,54728. Mersacidin acts by complexing the sugar phosphate head group of the peptidoglycan precursor lipid II, thereby inhibiting the transglycosylation reaction of peptidoglycan biosynthesis. Results Here, we studied the growth of Staphylococcus aureus in the presence of subinhibitory concentrations of mersacidin. Transcriptional data revealed an extensive induction of the cell wall stress response, which is partly controlled by the two-component regulatory system VraSR. In contrast to other cell wall-active antibiotics such as vancomycin, very low concentrations of mersacidin (0.15 × MIC) were sufficient for induction. Interestingly, the cell wall stress response was equally induced in vancomycin intermediately resistant S. aureus (VISA) and in a highly susceptible strain. Since the transcription of the VraDE ABC transporter genes was induced up to 1700-fold in our experiments, we analyzed the role of VraDE in the response to mersacidin. However, the deletion of the vraE gene did not result in an increased susceptibility to mersacidin compared to the wild type strain. Moreover, the efficacy of mersacidin was not affected by an increased cell wall thickness, which is part of the VISA-type resistance mechanism and functions by trapping the vancomycin molecules in the cell wall before they reach lipid II. Therefore, the relatively higher concentration of mersacidin at the membrane might explain why mersacidin is such a strong inducer of VraSR compared to vancomycin. Conclusion In conclusion, mersacidin appears to be a strong inducer of the cell wall stress response of S. aureus at very low concentrations, which reflects its general mode of action as a cell wall-active peptide as well as its use of a unique target site on lipid II. Additionally, mersacidin does not seem to be a substrate for the resistance transporter Vra

  2. Carbon capture from natural gas using multi-walled CNTs based mixed matrix membranes.

    PubMed

    Hussain, Abid; Farrukh, Sarah; Hussain, Arshad; Ayoub, Muhammad

    2017-12-05

    Most of the polymers and their blends, utilized in carbon capture membranes, are costly, but cellulose acetate (CA) being inexpensive is a lucrative choice. In this research, pure and mixed matrix membranes (MMMs) have been fabricated to capture carbon from natural gas. Polyethylene glycol (PEG) has been utilized in the fabrication of membranes to modify the chain flexibility of polymers. Multi-walled carbon nanotubes (MWCNTs) provide mechanical strength, thermal stability, an extra free path for CO 2 molecules and augment CO 2 /CH 4 selectivity. Membranes of pure CA, CA/PEG blend of different PEG concentrations (5%, 10%, 15%) and CA/PEG/MWCNTs blend of 10% PEG with different MWCNTs concentrations (5%, 10%, 15%) were prepared in acetone using solution casting techniques. Fabricated membranes were characterized using SEM, TGA and tensile testing. Permeation results revealed remarkable improvement in CO 2 /CH 4 selectivity. In single gas experiments, CO 2 /CH 4 selectivity is enhanced 8 times for pure membranes containing 10% PEG and 14 times for MMMs containing 10% MWCNTs. In mix gas experiments, the CO 2 /CH 4 selectivity is increased 13 times for 10% PEG and 18 times for MMMs with 10% MWCNTs. Fabricated MMMs have a tensile strength of 13 MPa and are more thermally stable than CA membranes.

  3. Simple hollow fiber renewal liquid membrane extraction method for pre-concentration of Cd(II) in environmental samples and detection by flame atomic absorption spectrometry.

    PubMed

    Carletto, Jeferson Schneider; Luciano, Raquel Medeiros; Bedendo, Gizelle Cristina; Carasek, Eduardo

    2009-04-06

    A hollow fiber renewal liquid membrane (HFRLM) extraction method to determine cadmium (II) in water samples using Flame Atomic Absorption Spectrometry (FAAS) was developed. Ammonium O,O-diethyl dithiophosphate (DDTP) was used to complex cadmium (II) in an acid medium to obtain a neutral hydrophobic complex (ML(2)). The organic solvent introduced to the sample extracts this complex from the aqueous solution and carries it over the poly(dimethylsiloxane) (PDMS) membrane, that had their walls previously filled with the same organic solvent. The organic solvent is solubilized inside the PDMS membrane, leading to a homogeneous phase. The complex strips the lumen of the membrane where, at higher pH, the complex Cd-DDTP is broken down and cadmium (II) is released into the stripping phase. EDTA was used to complex the cadmium (II), helping to trap the analyte in the stripping phase. A multivariate procedure was used to optimize the studied variables. The optimized variables were: sample (donor phase) pH 3.25, DDTP concentration 0.05% (m/v), stripping (acceptor phase) pH 8.75, EDTA concentration 1.5x10(-2) mol L(-1), extraction temperature 40 degrees C, extraction time 40 min, a solvent mixture N-butyl acetate and hexane (60/40%, v/v) with a volume of 100 microL, and addition of ammonium sulfate to saturate the sample. The sample volume used was 20 mL and the stripping volume was 165 microL. The analyte enrichment factor was 120, limit of detection (LOD) 1.3 microg L(-1), relative standard deviation (RSD) 5.5% and the working linear range 2-30 microg L(-1).

  4. G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions.

    PubMed

    Casas, Jesús; Ibarguren, Maitane; Álvarez, Rafael; Terés, Silvia; Lladó, Victoria; Piotto, Stefano P; Concilio, Simona; Busquets, Xavier; López, David J; Escribá, Pablo V

    2017-09-01

    G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (H II ) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi 1 monomers had a higher affinity for lamellar phases, while Gβγ and Gαβγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi 1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Large basolateral processes on type II hair cells are novel processing units in mammalian vestibular organs.

    PubMed

    Pujol, Rémy; Pickett, Sarah B; Nguyen, Tot Bui; Stone, Jennifer S

    2014-10-01

    Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells vary in shape, size, and branching, with the longest processes extending three to four hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Furthermore, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network among type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3-6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells and suggest that type II hair cells may directly communicate with each other, which has not been described in vertebrates. © 2014 Wiley Periodicals, Inc.

  6. MHC Class II and CD9 in human eosinophils localize to detergent-resistant membrane microdomains.

    PubMed

    Akuthota, Praveen; Melo, Rossana C N; Spencer, Lisa A; Weller, Peter F

    2012-02-01

    Eosinophils function in murine allergic airways inflammation as professional antigen-presenting cells (APCs). In murine professional APC cell types, optimal functioning of MHC Class II depends on its lateral association in plasma membranes and colocalization with the tetraspanin CD9 into detergent-resistant membrane microdomains (DRMs). With human eosinophils, we evaluated the localization of MHC Class II (HLA-DR) to DRMs and the functional significance of such localization. In granulocyte-macrophage colony-stimulating factor-stimulated human eosinophils, antibody cross-linked HLA-DR colocalized by immunofluorescence microscopy focally on plasma membranes with CD9 and the DRM marker ganglioside GM1. In addition, HLA-DR coimmunoprecipitates with CD9 after chemical cross-linking of CD9. HLA-DR and CD9 were localized by Western blotting in eosinophil DRM subcellular fractions. DRM disruption with the cholesterol-depleting agent methyl-β-cyclodextrin decreased eosinophil surface expression of HLA-DR and CD9. We show that CD9 is abundant on the surface of eosinophils, presenting the first electron microscopy data of the ultrastructural immunolocalization of CD9 in human eosinophils. Disruption of HLA-DR-containing DRMs decreased the ability of superantigen-loaded human eosinophils to stimulate CD4(+) T-cell activation (CD69 expression), proliferation, and cytokine production. Our results, which demonstrate that eosinophil MHC Class II localizes to DRMs in association with CD9 in a functionally significant manner, represent a novel insight into the organization of the antigen presentation complex of human eosinophils.

  7. MHC Class II and CD9 in Human Eosinophils Localize to Detergent-Resistant Membrane Microdomains

    PubMed Central

    Akuthota, Praveen; Melo, Rossana C. N.; Spencer, Lisa A.

    2012-01-01

    Eosinophils function in murine allergic airways inflammation as professional antigen-presenting cells (APCs). In murine professional APC cell types, optimal functioning of MHC Class II depends on its lateral association in plasma membranes and colocalization with the tetraspanin CD9 into detergent-resistant membrane microdomains (DRMs). With human eosinophils, we evaluated the localization of MHC Class II (HLA-DR) to DRMs and the functional significance of such localization. In granulocyte-macrophage colony-stimulating factor–stimulated human eosinophils, antibody cross-linked HLA-DR colocalized by immunofluorescence microscopy focally on plasma membranes with CD9 and the DRM marker ganglioside GM1. In addition, HLA-DR coimmunoprecipitates with CD9 after chemical cross-linking of CD9. HLA-DR and CD9 were localized by Western blotting in eosinophil DRM subcellular fractions. DRM disruption with the cholesterol-depleting agent methyl-β-cyclodextrin decreased eosinophil surface expression of HLA-DR and CD9. We show that CD9 is abundant on the surface of eosinophils, presenting the first electron microscopy data of the ultrastructural immunolocalization of CD9 in human eosinophils. Disruption of HLA-DR–containing DRMs decreased the ability of superantigen-loaded human eosinophils to stimulate CD4+ T-cell activation (CD69 expression), proliferation, and cytokine production. Our results, which demonstrate that eosinophil MHC Class II localizes to DRMs in association with CD9 in a functionally significant manner, represent a novel insight into the organization of the antigen presentation complex of human eosinophils. PMID:21885678

  8. The cell wall pectic polymer rhamnogalacturonan-II is required for proper pollen tube elongation: implications of a putative sialyltransferase-like protein.

    PubMed

    Dumont, Marie; Lehner, Arnaud; Bouton, Sophie; Kiefer-Meyer, Marie Christine; Voxeur, Aline; Pelloux, Jérôme; Lerouge, Patrice; Mollet, Jean-Claude

    2014-10-01

    Rhamnogalacturonan-II (RG-II) is one of the pectin motifs found in the cell wall of all land plants. It contains sugars such as 2-keto-3-deoxy-d-lyxo-heptulosaric acid (Dha) and 2-keto-3-deoxy-d-manno-octulosonic acid (Kdo), and within the wall RG-II is mostly found as a dimer via a borate diester cross-link. To date, little is known regarding the biosynthesis of this motif. Here, after a brief review of our current knowledge on RG-II structure, biosynthesis and function in plants, this study explores the implications of the presence of a Golgi-localized sialyltransferase-like 2 (SIA2) protein that is possibly involved in the transfer of Dha or Kdo in the RG-II of Arabidopsis thaliana pollen tubes, a fast-growing cell type used as a model for the study of cell elongation. Two heterozygous mutant lines of arabidopsis (sia2-1+/- and qrt1 × sia2-2+/-) were investigated. sia2-2+/- was in a quartet1 background and the inserted T-DNA contained the reporter gene β-glucuronidase (GUS) under the pollen-specific promoter LAT52. Pollen germination and pollen tube phenotype and growth were analysed both in vitro and in vivo by microscopy. Self-pollination of heterozygous lines produced no homozygous plants in the progeny, which may suggest that the mutation could be lethal. Heterozygous mutants displayed a much lower germination rate overall and exhibited a substantial delay in germination (20 h of delay to reach 30 % of pollen grain germination compared with the wild type). In both lines, mutant pollen grains that were able to produce a tube had tubes that were either bursting, abnormal (swollen or dichotomous branching tip) or much shorter compared with wild-type pollen tubes. In vivo, mutant pollen tubes were restricted to the style, whereas the wild-type pollen tubes were detected at the base of the ovary. This study highlights that the mutation in arabidopsis SIA2 encoding a sialyltransferase-like protein that may transfer Dha or Kdo on the RG-II motif has a dramatic

  9. Behavior of human immunoglobulin G adsorption onto immobilized Cu(II) affinity hollow-fiber membranes.

    PubMed

    Borsoi-Ribeiro, Mariana; Bresolin, Igor Tadeu Lazzarotto; Vijayalakshmi, Mookambeswaran; Bueno, Sônia Maria Alves

    2013-10-01

    Iminodiacetic acid (IDA) and tris(2-aminoethyl)amine (TREN) chelating ligands were immobilized on poly(ethylene vinyl alcohol) (PEVA) hollow-fiber membranes after activation with epichlorohydrin or butanediol diglycidyl ether (bisoxirane). The affinity membranes complexed with Cu(II) were evaluated for adsorption of human immunoglobulin G (IgG). The effects of matrix activation and buffer system on adsorption of IgG were studied. Isotherms of batch IgG adsorption onto finely cut membranes showed that neither of the chelates, IDA-Cu(II) or TREN-Cu(II), had a Langmuirean behavior with negative cooperativity for IgG binding. A comparison of equilibrium and dynamic maximum capacities showed that the dynamic capacity for a mini-cartridge in a cross-flow filtration mode (52.5 and 298.4 mg g(-1) dry weight for PEVA-TREN-Cu(II) and PEVA-IDA-Cu(II), respectively) was somewhat higher than the equilibrium capacity (9.2 and 73.3 mg g(-1) dry weight for PEVA-TREN-Cu(II) and PEVA-IDA-Cu(II), respectively). When mini-cartridges were used, the dynamic adsorption capacity of IDA-Cu(II) was the same for both mini-cartridge and agarose gel. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Persistence of collagen type II-specific T-cell clones in the synovial membrane of a patient with rheumatoid arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Londei, M.; Savill, C.M.; Verhoef, A.

    Rheumatoid arthritis is an autoimmune disease characterized by T-cell infiltration of the synovium of joints. Analysis of the phenotype and antigen specificity of the infiltrating cells may thus provide insight into the pathogenesis of rheumatoid arthritis. T cells were cloned with interleukin 2, a procedure that selects for in vivo-activated cells. All clones had the CD4 CDW29 phenotype. Their antigen specificity was tested by using a panel of candidate joint autoantigens. Four of 17 reacted against autologous blood mononuclear cells. Two clones proliferated in response to collagen type II. After 21 months, another set of clones was derived from synovialmore » tissue of the same joint. One of eight clones tested showed a strong proliferative response against collagen type II. The uncloned synovial T cells of a third operation from another joint also responded to collagen type II. The persistence of collagen type II-specific T cells in active rheumatoid joints over a period of 3 years suggests that collagen type II could be one of the autoantigens involved in perpetuating the inflammatory process in rheumatoid arthritis.« less

  11. Identification and characterization of glycosyltransferases involved in the synthesis of the side chains of the cell wall pectic polysaccharide rhamnogalacturonan II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neill, Malcolm

    Our goal was to gain insight into the genes and proteins involved in the biosynthesis of rhamnogalacturonan II (RG-II), a borate cross-linked and structurally conserved pectic polysaccharide present in the primary cell walls of all vascular plants. The research conducted during the funding period established that (i) Avascular plants have the ability to synthesize UDP-apiose but lack the glycosyltransferase machinery required to synthesize RG-II or other apiose-containing cell wall glycans. (ii) RG-II structure is highly conserved in the Lemnaceae (duckweeds and relatives). However, the structures of other wall pectins and hemicellulose have changed substantial during the diversification of the Lemnaceae.more » This supports the notion that a precise structure of RG-II must be maintained to allow borate cross-linking to occur in a controlled manner. (iii) Enzymes involved in the conversion of UDP-GlcA to UDP-Api, UDP-Xyl, and UDP-Ara may have an important role in controlling the composition of duckweed cell walls. (iv) RG-II exists as the borate ester cross-linked dimer in the cell walls of soybean root hairs and roots. Thus, RG-II is present in the walls of plants cells that grow by tip or by expansive growth. (v) A reduction in RG-II cross-linking in the maize tls1 mutant, which lacks a borate channel protein, suggests that the growth defects observed in the mutant are, at least in part, due to defects in the cell wall.« less

  12. CFD simulation of copper(II) extraction with TFA in non-dispersive hollow fiber membrane contactors.

    PubMed

    Muhammad, Amir; Younas, Mohammad; Rezakazemi, Mashallah

    2018-04-01

    This study presents computational fluid dynamics (CFD) simulation of dispersion-free liquid-liquid extraction of copper(II) with trifluoroacetylacetone (TFA) in hollow fiber membrane contactor (HFMC). Mass and momentum balance Navier-Stokes equations were coupled to address the transport of copper(II) solute across membrane contactor. Model equations were simulated using COMSOL Multiphysics™. The simulation was run to study the detailed concentration distribution of copper(II) and to investigate the effects of various parameters like membrane characteristics, partition coefficient, and flow configuration on extraction efficiency. Once-through extraction was found to be increased from 10 to 100% when partition coefficient was raised from 1 to 10. Similarly, the extraction efficiency was almost doubled when porosity to tortuosity ratio of membrane was increased from 0.05 to 0.81. Furthermore, the study revealed that CFD can be used as an effective optimization tool for the development of economical membrane-based dispersion-free extraction processes.

  13. Type-II Weyl semimetals.

    PubMed

    Soluyanov, Alexey A; Gresch, Dominik; Wang, Zhijun; Wu, QuanSheng; Troyer, Matthias; Dai, Xi; Bernevig, B Andrei

    2015-11-26

    Fermions--elementary particles such as electrons--are classified as Dirac, Majorana or Weyl. Majorana and Weyl fermions had not been observed experimentally until the recent discovery of condensed matter systems such as topological superconductors and semimetals, in which they arise as low-energy excitations. Here we propose the existence of a previously overlooked type of Weyl fermion that emerges at the boundary between electron and hole pockets in a new phase of matter. This particle was missed by Weyl because it breaks the stringent Lorentz symmetry in high-energy physics. Lorentz invariance, however, is not present in condensed matter physics, and by generalizing the Dirac equation, we find the new type of Weyl fermion. In particular, whereas Weyl semimetals--materials hosting Weyl fermions--were previously thought to have standard Weyl points with a point-like Fermi surface (which we refer to as type-I), we discover a type-II Weyl point, which is still a protected crossing, but appears at the contact of electron and hole pockets in type-II Weyl semimetals. We predict that WTe2 is an example of a topological semimetal hosting the new particle as a low-energy excitation around such a type-II Weyl point. The existence of type-II Weyl points in WTe2 means that many of its physical properties are very different to those of standard Weyl semimetals with point-like Fermi surfaces.

  14. Large basolateral processes on type II hair cells comprise a novel processing unit in mammalian vestibular organs

    PubMed Central

    Pujol, Rémy; Pickett, Sarah B.; Nguyen, Tot Bui; Stone, Jennifer S.

    2014-01-01

    Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here, we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell’s base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells range in shape, size, and branching, with the longest processes extending 3–4 hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Further, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network amongst type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3–6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells, and they suggest type II hair cells may directly communicate with each other, which has not been described in vertebrates. PMID:24825750

  15. Controllable synthesis of single-walled carbon nanotube framework membranes and capsules.

    PubMed

    Song, Changsik; Kwon, Taeyun; Han, Jae-Hee; Shandell, Mia; Strano, Michael S

    2009-12-01

    Controlling the morphology of membrane components at the nanometer scale is central to many next-generation technologies in water purification, gas separation, fuel cell, and nanofiltration applications. Toward this end, we report the covalent assembly of single-walled carbon nanotubes (SWNTs) into three-dimensional framework materials with intertube pores controllable by adjusting the size of organic linker molecules. The frameworks are fashioned into multilayer membranes possessing linker spacings from 1.7 to 3.0 nm, and the resulting framework films were characterized, including transport properties. Nanoindentation measurements by atomic force microscopy show that the spring constant of the SWNT framework film (22.6 +/- 1.2 N/m) increased by a factor of 2 from the control value (10.4 +/- 0.1 N/m). The flux ratio comparison in a membrane-permeation experiment showed that larger spacer sizes resulted in larger pore structures. This synthetic method was equally efficient on silica microspheres, which could then be etched to create all-SWNT framework, hollow capsules approximately 5 mum in diameter. These hollow capsules are permeable to organic and inorganic reagents, allowing one to form inorganic nanoparticles, for example, that become entrapped within the capsule. The ability to encapsulate functional nanomaterials inside perm-selective SWNT cages and membranes may find applications in new adsorbents, novel catalysts, and drug delivery vehicles.

  16. Type-II Dirac photons

    NASA Astrophysics Data System (ADS)

    Wang, Hai-Xiao; Chen, Yige; Hang, Zhi Hong; Kee, Hae-Young; Jiang, Jian-Hua

    2017-09-01

    The Dirac equation for relativistic electron waves is the parent model for Weyl and Majorana fermions as well as topological insulators. Simulation of Dirac physics in three-dimensional photonic crystals, though fundamentally important for topological phenomena at optical frequencies, encounters the challenge of synthesis of both Kramers double degeneracy and parity inversion. Here we show how type-II Dirac points—exotic Dirac relativistic waves yet to be discovered—are robustly realized through the nonsymmorphic screw symmetry. The emergent type-II Dirac points carry nontrivial topology and are the mother states of type-II Weyl points. The proposed all-dielectric architecture enables robust cavity states at photonic-crystal—air interfaces and anomalous refraction, with very low energy dissipation.

  17. Passive approach for the improved dispersion of polyvinyl alcohol-based functionalized multi-walled carbon nanotubes/Nafion membranes for polymer electrolyte membrane fuel cells.

    PubMed

    Abu Sayeed, M D; Talukdar, Krishan; Kim, Hee Jin; Park, Younjin; Gopalan, A I; Kim, Young Ho; Lee, Kwang-Pill; Choi, Sang-June

    2014-12-01

    Multi-walled carbon nanotubes (MWCNTs) are regarded as ideal fillers for Nafion polymer electrolyte membranes (PEMs) for fuel cell applications. The highly aggregated properties of MWCNTs can be overcome by the successful cross-linking with polyvinyl alcohol (PVA) into the MWCNTs/Nafion membrane. In this study, a series of nanocomposite membranes were fabricated with the PVA-influenced functionalized MWCNTs reinforced into the Nafion polymer matrix by a solution casting method. Several different PVA contents were blended to f-MWCNTs/Nafion nanocomposite membranes followed by successful cross-linking by annealing. The surface morphologies and the inner structures of the resulting PVA-MWCNTs/Nafion nanocomposite membranes were then observed by optical microscopy and scanning electron microscopy (SEM) to investigate the dispersion of MWCNTs into the PVA/Nafion composite membranes. After that, the nanocomposite membranes were characterized by thermo-gravimetric analysis (TGA) to observe the thermal enhancement caused by effective cross-linking between the f-MWCNTs with the composite polymer matrixes. Improved water uptake with reduced methanol uptake revealed the successful fabrication of PVA-blended f-MWCNTs/Nafion membranes. In addition, the ion exchange capacity (IEC) was evaluated for PEM fuel cell (PEMFC) applications.

  18. Inositol 1,4,5-trisphosphate receptor type II (InsP3R-II) is reduced in obese mice, but metabolic homeostasis is preserved in mice lacking InsP3R-II

    PubMed Central

    Feriod, Colleen N.; Nguyen, Lily; Jurczak, Michael J.; Kruglov, Emma A.; Nathanson, Michael H.; Shulman, Gerald I.; Bennett, Anton M.

    2014-01-01

    Inositol 1,4,5-trisphosphate receptor type II (InsP3R-II) is the most prevalent isoform of the InsP3R in hepatocytes and is concentrated under the canalicular membrane, where it plays an important role in bile secretion. We hypothesized that altered calcium (Ca2+) signaling may be involved in metabolic dysfunction, as InsP3R-mediated Ca2+ signals have been implicated in the regulation of hepatic glucose homeostasis. Here, we find that InsP3R-II, but not InsP3R-I, is reduced in the livers of obese mice. In our investigation of the functional consequences of InsP3R-II deficiency, we found that organic anion secretion at the canalicular membrane and Ca2+ signals were impaired. However, mice lacking InsP3R-II showed no deficits in energy balance, glucose production, glucose tolerance, or susceptibility to hepatic steatosis. Thus, our results suggest that reduced InsP3R-II expression is not sufficient to account for any disruptions in metabolic homeostasis that are observed in mouse models of obesity. We conclude that metabolic homeostasis is maintained independently of InsP3R-II. Loss of InsP3R-II does impair secretion of bile components; therefore, we suggest that conditions of obesity would lead to a decrease in this Ca2+-sensitive process. PMID:25315698

  19. The Inhibitory Core of the Myostatin Prodomain: Its Interaction with Both Type I and II Membrane Receptors, and Potential to Treat Muscle Atrophy

    PubMed Central

    Ohsawa, Yutaka; Takayama, Kentaro; Nishimatsu, Shin-ichiro; Okada, Tadashi; Fujino, Masahiro; Fukai, Yuta; Murakami, Tatsufumi; Hagiwara, Hiroki; Itoh, Fumiko; Tsuchida, Kunihiro; Hayashi, Yoshio; Sunada, Yoshihide

    2015-01-01

    Myostatin, a muscle-specific transforming growth factor-β (TGF-β), negatively regulates skeletal muscle mass. The N-terminal prodomain of myostatin noncovalently binds to and suppresses the C-terminal mature domain (ligand) as an inactive circulating complex. However, which region of the myostatin prodomain is required to inhibit the biological activity of myostatin has remained unknown. We identified a 29-amino acid region that inhibited myostatin-induced transcriptional activity by 79% compared with the full-length prodomain. This inhibitory core resides near the N-terminus of the prodomain and includes an α-helix that is evolutionarily conserved among other TGF-β family members, but suppresses activation of myostatin and growth and differentiation factor 11 (GDF11) that share identical membrane receptors. Interestingly, the inhibitory core co-localized and co-immunoprecipitated with not only the ligand, but also its type I and type II membrane receptors. Deletion of the inhibitory core in the full-length prodomain removed all capacity for suppression of myostatin. A synthetic peptide corresponding to the inhibitory core (p29) ameliorates impaired myoblast differentiation induced by myostatin and GDF11, but not activin or TGF-β1. Moreover, intramuscular injection of p29 alleviated muscle atrophy and decreased the absolute force in caveolin 3-deficient limb-girdle muscular dystrophy 1C model mice. The injection suppressed activation of myostatin signaling and restored the decreased numbers of muscle precursor cells caused by caveolin 3 deficiency. Our findings indicate a novel concept for this newly identified inhibitory core of the prodomain of myostatin: that it not only suppresses the ligand, but also prevents two distinct membrane receptors from binding to the ligand. This study provides a strong rationale for the use of p29 in the amelioration of skeletal muscle atrophy in various clinical settings. PMID:26226340

  20. The Inhibitory Core of the Myostatin Prodomain: Its Interaction with Both Type I and II Membrane Receptors, and Potential to Treat Muscle Atrophy.

    PubMed

    Ohsawa, Yutaka; Takayama, Kentaro; Nishimatsu, Shin-ichiro; Okada, Tadashi; Fujino, Masahiro; Fukai, Yuta; Murakami, Tatsufumi; Hagiwara, Hiroki; Itoh, Fumiko; Tsuchida, Kunihiro; Hayashi, Yoshio; Sunada, Yoshihide

    2015-01-01

    Myostatin, a muscle-specific transforming growth factor-β (TGF-β), negatively regulates skeletal muscle mass. The N-terminal prodomain of myostatin noncovalently binds to and suppresses the C-terminal mature domain (ligand) as an inactive circulating complex. However, which region of the myostatin prodomain is required to inhibit the biological activity of myostatin has remained unknown. We identified a 29-amino acid region that inhibited myostatin-induced transcriptional activity by 79% compared with the full-length prodomain. This inhibitory core resides near the N-terminus of the prodomain and includes an α-helix that is evolutionarily conserved among other TGF-β family members, but suppresses activation of myostatin and growth and differentiation factor 11 (GDF11) that share identical membrane receptors. Interestingly, the inhibitory core co-localized and co-immunoprecipitated with not only the ligand, but also its type I and type II membrane receptors. Deletion of the inhibitory core in the full-length prodomain removed all capacity for suppression of myostatin. A synthetic peptide corresponding to the inhibitory core (p29) ameliorates impaired myoblast differentiation induced by myostatin and GDF11, but not activin or TGF-β1. Moreover, intramuscular injection of p29 alleviated muscle atrophy and decreased the absolute force in caveolin 3-deficient limb-girdle muscular dystrophy 1C model mice. The injection suppressed activation of myostatin signaling and restored the decreased numbers of muscle precursor cells caused by caveolin 3 deficiency. Our findings indicate a novel concept for this newly identified inhibitory core of the prodomain of myostatin: that it not only suppresses the ligand, but also prevents two distinct membrane receptors from binding to the ligand. This study provides a strong rationale for the use of p29 in the amelioration of skeletal muscle atrophy in various clinical settings.

  1. Identification of a melanosomal membrane protein encoded by the pink-eyed dilution (type II oculocutaneous albinism) gene.

    PubMed Central

    Rosemblat, S; Durham-Pierre, D; Gardner, J M; Nakatsu, Y; Brilliant, M H; Orlow, S J

    1994-01-01

    The pink-eyed dilution (p) locus in the mouse is critical to melanogenesis; mutations in the homologous locus in humans, P, are a cause of type II oculocutaneous albinism. Although a cDNA encoded by the p gene has recently been identified, nothing is known about the protein product of this gene. To characterize the protein encoded by the p gene, we performed immunoblot analysis of extracts of melanocytes cultured from wild-type mice with an antiserum from rabbits immunized with a peptide corresponding to amino acids 285-298 of the predicted protein product of the murine p gene. This antiserum recognized a 110-kDa protein. The protein was absent from extracts of melanocytes cultured from mice with two mutations (pcp and p) in which transcripts of the p gene are absent or greatly reduced. Introduction of the cDNA for the p gene into pcp melanocytes by electroporation resulted in expression of the 3.3-kb mRNA and the 110-kDa protein. Upon subcellular fractionation of cultured melanocytes, the 110-kDa protein was found to be present in melanosomes but absent from the vesicular fraction; phase separation performed with the nonionic detergent Triton X-114 confirmed the predicted hydrophobic nature of the protein. These results demonstrate that the p gene encodes a 110-kDa integral melanosomal membrane protein and establish a framework by which mutations at this locus, which diminish pigmentation, can be analyzed at the cellular and biochemical levels. Images PMID:7991586

  2. Detergent-dependent separation of postsynaptic density, membrane rafts and other subsynaptic structures from the synaptic plasma membrane of rat forebrain.

    PubMed

    Zhao, LiYing; Sakagami, Hiroyuki; Suzuki, Tatsuo

    2014-10-01

    We systematically investigated the purification process of post-synaptic density (PSD) and post-synaptic membrane rafts (PSRs) from the rat forebrain synaptic plasma membranes by examining the components and the structures of the materials obtained after the treatment of synaptic plasma membranes with TX-100, n-octyl β-d-glucoside (OG) or 3-([3-cholamidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfonate (CHAPSO). These three detergents exhibited distinct separation profiles for the synaptic subdomains. Type I and type II PSD proteins displayed mutually exclusive distribution. After TX-100 treatment, type I PSD was recovered in two fractions: a pellet and an insoluble fraction 8, which contained partially broken PSD-PSR complexes. Conventional PSD was suggested to be a mixture of these two PSD pools and did not contain type II PSD. An association of type I PSD with PSRs was identified in the TX-100 treatment, and those with type II PSD in the OG and CHAPSO treatments. An association of GABA receptors with gephyrin was easily dissociated. OG at a high concentration solubilized the type I PSD proteins. CHAPSO treatment resulted in a variety of distinct fractions, which contained certain novel structures. Two different pools of GluA, either PSD or possibly raft-associated, were identified in the OG and CHAPSO treatments. These results are useful in advancing our understanding of the structural organization of synapses at the molecular level. We systematically investigated the purification process of post-synaptic density (PSD) and synaptic membrane rafts by examining the structures obtained after treatment of the SPMs with TX-100, n-octyl β-d-glucoside or CHAPSO. Differential distribution of type I and type II PSD, synaptic membrane rafts, and other novel subdomains in the SPM give clues to understand the structural organization of synapses at the molecular level. © 2014 International Society for Neurochemistry.

  3. Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yuguang; Wen, Jihong; Zhao, Honggang; Yu, Dianlong; Cai, Li; Wen, Xisen

    2013-08-01

    We present the experimental realization and theoretical understanding of membrane-type acoustic metamaterials embedded with different masses at adjacent cells, capable of increasing the transmission loss at low frequency. Owing to the reverse vibration of adjacent cells, Transmission loss (TL) peaks appear, and the magnitudes of the TL peaks exceed the predicted results of the composite wall. Compared with commonly used configuration, i.e., all cells carrying with identical mass, the nonuniformity of attaching masses causes another much low TL peak. Finite element analysis was employed to validate and provide insights into the TL behavior of the structure.

  4. [Abdominal wall reconstruction with collagen membrane in an animal model of abdominal hernia. A preliminary report].

    PubMed

    Łukasiewicz, Aleksander; Drewa, Tomasz; Skopińska-Wiśniewska, Joanna; Molski, Stanisław

    2008-01-01

    Abdominal hernia repair is one of the most common surgical procedures. Current data indicate that the best treatment results are achieved with use of synthetic material to reinforce weakened abdominal wall. Prosthetic materials utilized for hernia repair induce adhesions with underlying viscera. They should be therefore separated from them by a layer of peritoneum otherwise adhesions may cause to serious complications such as bowel-skin fistulas. The aim of our work was to determine if implantation of our collagen membrane into abdominal wall defect induce adhesions in rat model of ventral hernia. The collagen film was obtained by acetic acid extraction of rat tail tendons and than casting the soluble fraction onto polyethylene shits. Abdominal wall defect was created in 10 Wistar male rats. Collagen membranes were implanted into the defect using interrupted polypropylene stitches. After 3 months of observation all animals were sacrificed. No adhesions between path structure and bowel developed. In one often rats (10%) adhesion between fixating stitch and omentum was observed. Complete mesothelium lining and vascular ingrowth were microscopically observed within implanted structure. Promising result requires further confirmation in a larger series of animals.

  5. STL-based Analysis of TRAIL-induced Apoptosis Challenges the Notion of Type I/Type II Cell Line Classification

    PubMed Central

    Bertaux, François; Maler, Oded; Batt, Gregory

    2013-01-01

    Extrinsic apoptosis is a programmed cell death triggered by external ligands, such as the TNF-related apoptosis inducing ligand (TRAIL). Depending on the cell line, the specific molecular mechanisms leading to cell death may significantly differ. Precise characterization of these differences is crucial for understanding and exploiting extrinsic apoptosis. Cells show distinct behaviors on several aspects of apoptosis, including (i) the relative order of caspases activation, (ii) the necessity of mitochondria outer membrane permeabilization (MOMP) for effector caspase activation, and (iii) the survival of cell lines overexpressing Bcl2. These differences are attributed to the activation of one of two pathways, leading to classification of cell lines into two groups: type I and type II. In this work we challenge this type I/type II cell line classification. We encode the three aforementioned distinguishing behaviors in a formal language, called signal temporal logic (STL), and use it to extensively test the validity of a previously-proposed model of TRAIL-induced apoptosis with respect to experimental observations made on different cell lines. After having solved a few inconsistencies using STL-guided parameter search, we show that these three criteria do not define consistent cell line classifications in type I or type II, and suggest mutants that are predicted to exhibit ambivalent behaviors. In particular, this finding sheds light on the role of a feedback loop between caspases, and reconciliates two apparently-conflicting views regarding the importance of either upstream or downstream processes for cell-type determination. More generally, our work suggests that these three distinguishing behaviors should be merely considered as type I/II features rather than cell-type defining criteria. On the methodological side, this work illustrates the biological relevance of STL-diagrams, STL population data, and STL-guided parameter search implemented in the tool Breach

  6. Three types of membrane excitations in the marine diatom Coscinodiscus wailesii.

    PubMed

    Gradmann, D; Boyd, C M

    2000-05-15

    Three types of electrical excitation have been investigated in the marine diatom Coscinodiscus wailesii. I: Depolarization-triggered, transient Cl(-) conductance, G(Cl)(t), followed by a transient, voltage-gated K(+) conductance, G(K), with an active state a and two inactive states i(1) and i(2) in series (a-i(1)-i(2)). II: Similar G(Cl)(t) as in Type-I but triggered by hyperpolarization; a subsequent increase of G(K) in this type is indicated but not analyzed in detail. III: Hyperpolarization-induced transient of a voltage-gated activity of an electrogenic pump (i(2)-a-i(2)), followed by G(Cl)(t) as in Type-II excitations. Type-III with pump gating is novel as such. G(Cl)(t) in all types seems to reflect the mechanism of InsP(-)(3) and Ca(2+)-mediated G(Cl)(t) in the action potential in Chara (Biskup et al., 1999). The nonlinear current-voltage-time relationships of Type-I and Type-III excitations have been recorded under voltage-clamp using single saw-tooth command voltages (voltage range: -200 to +50 mV, typical slope: +/-1 Vs(-1)). Fits of the corresponding models to the experimental data provided numerical values of the model parameters. The statistical significance of these solutions is investigated. We suggest that the original function of electrical excitability of biological membranes is related to osmoregulation which has persisted through evolution in plants, whereas the familiar and osmotically neutral action potentials in animals have evolved later towards the novel function of rapid transmission of information over long distances.

  7. Thermodynamic evidence of non-muscle myosin II-lipid-membrane interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schewkunow, Vitali; Sharma, Karan P.; Diez, Gerold

    2008-02-08

    A unique feature of protein networks in living cells is that they can generate their own force. Proteins such as non-muscle myosin II are an integral part of the cytoskeleton and have the capacity to convert the energy of ATP hydrolysis into directional movement. Non-muscle myosin II can move actin filaments against each other, and depending on the orientation of the filaments and the way in which they are linked together, it can produce contraction, bending, extension, and stiffening. Our measurements with differential scanning calorimetry showed that non-muscle myosin II inserts into negatively charged phospholipid membranes. Using lipid vesicles mademore » of DMPG/DMPC at a molar ratio of 1:1 at 10 mg/ml in the presence of different non-muscle myosin II concentrations showed a variation of the main phase transition of the lipid vesicle at around 23 deg. C. With increasing concentrations of non-muscle myosin II the thermotropic properties of the lipid vesicle changed, which is indicative of protein-lipid interaction/insertion. We hypothesize that myosin tail binds to acidic phospholipids through an electrostatic interaction using the basic side groups of positive residues; the flexible, amphipathic helix then may partially penetrate into the bilayer to form an anchor. Using the stopped-flow method, we determined the binding affinity of non-muscle myosin II when anchored to lipid vesicles with actin, which was similar to a pure actin-non-muscle myosin II system. Insertion of myosin tail into the hydrophobic region of lipid membranes, a model known as the lever arm mechanism, might explain how its interaction with actin generates cellular movement.« less

  8. A physical chemical approach to understanding cellular dysfunction in type II diabetes

    NASA Astrophysics Data System (ADS)

    Miranker, Andrew

    2013-03-01

    The conversion of soluble protein into b-sheet rich amyloid fibers is the hallmark of a number of serious diseases. Precursors for many of these systems (e.g. Ab from Alzheimer's disease) reside in close association with a biological membranes. Membrane bilayers are reported to accelerate the rate of amyloid assembly. Furthermore, membrane permeabilization by amyloidogenic peptides can lead to toxicity. Given the b-sheet rich nature of mature amyloid, it is seemingly paradoxical that many precursors are either intrinsically b-helical, or transiently adopt an a-helical state upon association with membrane. We have investigated these phenomena in islet amyloid polypeptide (IAPP). IAPP is a 37-residue peptide hormone which forms amyloid fibers in individuals with type II diabetes. We report here the discovery of an oligomeric species that arises through stochastic nucleation on membranes, and results in disruption of the lipid bilayer. These species are stable, result in all-or-none leakage, and represent a definable protein/lipid phase that equilibrates over time. To characterize the reaction pathway of assembly, we apply an experimental design that includes ensemble and single particle evaluations in vitro and correlate these with quantitative measures of cellular toxicity.

  9. Rational drug design and synthesis of molecules targeting the angiotensin II type 1 and type 2 receptors.

    PubMed

    Kellici, Tahsin F; Tzakos, Andreas G; Mavromoustakos, Thomas

    2015-03-02

    The angiotensin II (Ang II) type 1 and type 2 receptors (AT1R and AT2R) orchestrate an array of biological processes that regulate human health. Aberrant function of these receptors triggers pathophysiological responses that can ultimately lead to death. Therefore, it is important to design and synthesize compounds that affect beneficially these two receptors. Cardiovascular disease, which is attributed to the overactivation of the vasoactive peptide hormone Αng II, can now be treated with commercial AT1R antagonists. Herein, recent achievements in rational drug design and synthesis of molecules acting on the two AT receptors are reviewed. Quantitative structure activity relationships (QSAR) and molecular modeling on the two receptors aim to assist the search for new active compounds. As AT1R and AT2R are GPCRs and drug action is localized in the transmembrane region the role of membrane bilayers is exploited. The future perspectives in this field are outlined. Tremendous progress in the field is expected if the two receptors are crystallized, as this will assist the structure based screening of the chemical space and lead to new potent therapeutic agents in cardiovascular and other diseases.

  10. Multi-walled carbon nanotubes injure the plasma membrane of macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Seishiro; Kanno, Sanae; Furuyama, Akiko

    2008-10-15

    Carbon nanotubes (CNTs) are emerging nanotechnology materials which are likely to be mass-produced in the near future. However, prior to mass-production, certain health-related concerns should first be addressed. For example, when inhaled, the thin-fibrous shape and the biopersistent characteristics of CNTs may cause pulmonary diseases, in a manner similar to asbestos. In the present study, mouse macrophages (J774.1) were exposed to highly-purified multi-walled CNTs (MWCNTs, 67 nm) or to UICC crocidolite in order to evaluate the toxicity of these nano-size fibers. The cytotoxicity of MWCNTs was found to be higher than that of crocidolite. The toxic effect of MWCNTs wasmore » not affected by N-acetylcysteine, an antioxidant, or buthionine sulfoximine, a glutathione synthesis inhibitor. cDNA microarray analyses suggested that the cytotoxicity of MWCNTs could not be explained satisfactorily by either an increase or decrease of gene expression, although mRNA levels of some cytokines were slightly increased by MWCNTs. Moreover, MWCNTs did not significantly activate either MAP kinases such as ERK, JNK and p38, nor common apoptosis pathways such as caspase 3 and PARP. Electron microscopic studies indicated that MWCNTs associate with the plasma membrane of macrophages and disrupt the integrity of the membrane. Several proteins were found to adsorb onto MWCNTs when MWCNT-exposed macrophages were gently lysed. One of these proteins was macrophage receptor with collagenous structure (MARCO). MARCO-transfected CHO-K1 cells associated with MWCNTs more rapidly than mock-transfected cells. These results indicate that MWCNTs probably trigger cytotoxic effects in phagocytotic cells by reacting with MARCO on the plasma membrane and rupturing the plasma membrane.« less

  11. Dean vortices with wall flux in a curved channel membrane system. 2: The velocity field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, K.Y.; Brewster, M.E.; Belfort, G.

    1996-02-01

    The velocity and pressure fields and the effect of wall flux on these fields in a spiral channel are presented. As fluid flows inward through a spiral channel with constant gap and permeable walls, the streamwise flux decreases while the curvature increases. Thus, by balancing the stabilizing effect of wall suction with the destabilizing effect of increasing curvature, established vortices can be maintained along the spiral channel. This approach is used to prescribe spiral geometries with different wall fluxes. Using a weakly nonlinear stability analysis, the influence of wall flux on the characteristics of Dean vortices is obtained. The criticalmore » Dean number is reduced when suction is through the inner wall only, is slightly reduced when suction is equal through both walls, and is increased when suction is through the outer wall only. The magnitude of change is proportional to a ratio of small numbers that measures the importance of the effect of curvature. In membrane filtration applications the wall flux is typically 2 to 5 orders of magnitude less than the streamwise flow. If the radius of curvature of the channel is of the order of 100 times the channel gap, the effect on the critical Dean number is within 2% of the no-wall flux case. If the radius of curvature is sufficiently large, however, it is possible to observe effects on the critical Dean number that approach O(1) in magnitude for certain parameter ranges.« less

  12. Modulation of GABAergic receptor binding by activation of calcium and calmodulin-dependent kinase II membrane phosphorylation.

    PubMed

    Churn, S B; DeLorenzo, R J

    1998-10-26

    gamma-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system (CNS). Because of the important role that GABA plays in the CNS, alteration of GABAA receptor function would significantly affect neuronal excitability. Protein phosphorylation is a major mechanism for regulating receptor function in the brain and has been implicated in modulating GABAA receptor function. Therefore, this study was initiated to determine the role of calmodulin-dependent kinase II (CaM kinase II) membrane phosphorylation on GABAA receptor binding. Synaptosomal membrane fractions were tested for CaM kinase II activity towards endogenous substrates. In addition, muscimol binding was evaluated under equilibrium conditions in synaptosomal membrane fractions subjected to either basal (Mg2+ alone) or maximal CaM kinase II-dependent phosphorylation. Activation of endogenous CaM kinase II-dependent phosphorylation resulted in a significant enhancement of the apparent Bmax for muscimol binding without significantly altering the apparent binding affinity. The enhanced muscimol binding could be increased further by the addition of exogenous CaM kinase II to synaptosomal membrane fractions. Co-incubation with inhibitors of kinase activity during the phosphorylation reactions blocked the CaM kinase II-dependent increase in muscimol binding. The data support the hypothesis that activation of CaM kinase II-dependent phosphorylation caused an increased GABAA receptor binding and may play an important role in modulating the function of this inhibitory receptor/chloride ion channel complex. Copyright 1998 Elsevier Science B.V.

  13. Benchmark data for identifying multi-functional types of membrane proteins.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2016-09-01

    Identifying membrane proteins and their multi-functional types is an indispensable yet challenging topic in proteomics and bioinformatics. In this article, we provide data that are used for training and testing Mem-ADSVM (Wan et al., 2016. "Mem-ADSVM: a two-layer multi-label predictor for identifying multi-functional types of membrane proteins" [1]), a two-layer multi-label predictor for predicting multi-functional types of membrane proteins.

  14. Changes in the abundance of cell wall apiogalacturonan and xylogalacturonan and conservation of rhamnogalacturonan II structure during the diversification of the Lemnoideae.

    PubMed

    Avci, Utku; Peña, Maria J; O'Neill, Malcolm A

    2018-04-01

    The diversification of the Lemnoideae was accompanied by a reduction in the abundance of cell wall apiogalacturonan and an increase in xylogalacturonan whereas rhamnogalacturonan II structure and cross-linking are conserved. The subfamily Lemnoideae is comprised of five genera and 38 species of small, fast-growing aquatic monocots. Lemna minor and Spirodela polyrhiza belong to this subfamily and have primary cell walls that contain large amounts of apiogalacturonan and thus are distinct from the primary walls of most other flowering plants. However, the pectins in the cell walls of other members of the Lemnoideae have not been investigated. Here, we show that apiogalacturonan decreased substantially as the Lemnoideae diversified since Wolffiella and Wolffia walls contain between 63 and 88% less apiose than Spirodela, Landoltia, and Lemna walls. In Wolffia, the most derived genus, xylogalacturonan is far more abundant than apiogalacturonan, whereas in Wolffiella pectic polysaccharides have a high arabinose content, which may arise from arabinan sidechains of RG I. The apiose-containing pectin rhamnogalacturonan II (RG-II) exists in Lemnoideae walls as a borate cross-linked dimer and has a glycosyl sequence similar to RG-II from terrestrial plants. Nevertheless, species-dependent variations in the extent of methyl-etherification of RG-II sidechain A and arabinosylation of sidechain B are discernible. Immunocytochemical studies revealed that pectin methyl-esterification is higher in developing daughter frond walls than in mother frond walls, indicating that methyl-esterification is associated with expanding cells. Our data support the notion that a functional cell wall requires conservation of RG-II structure and cross-linking but can accommodate structural changes in other pectins. The Lemnoideae provide a model system to study the mechanisms by which wall structure and composition has changed in closely related plants with similar growth habits.

  15. Moving beyond Type I and Type II neuron types.

    PubMed

    Skinner, Frances K

    2013-01-01

    In 1948, Hodgkin delineated different classes of axonal firing.  This has been mathematically translated allowing insight and understanding to emerge.  As such, the terminology of 'Type I' and 'Type II' neurons is commonplace in the Neuroscience literature today.  Theoretical insights have helped us realize that, for example, network synchronization depends on whether neurons are Type I or Type II.  Mathematical models are precise with analyses (considering Type I/II aspects), but experimentally, the distinction can be less clear.  On the other hand, experiments are becoming more sophisticated in terms of distinguishing and manipulating particular cell types but are limited in terms of being able to consider network aspects simultaneously.   Although there is much work going on mathematically and experimentally, in my opinion it is becoming common that models are either superficially linked with experiment or not described in enough detail to appreciate the biological context.  Overall, we all suffer in terms of impeding our understanding of brain networks and applying our understanding to neurological disease.  I suggest that more modelers become familiar with experimental details and that more experimentalists appreciate modeling assumptions. In other words, we need to move beyond our comfort zones.

  16. EndophilinA2 protects against angiotensin II-induced cardiac hypertrophy by inhibiting angiotensin II type 1 receptor trafficking in neonatal rat cardiomyocytes.

    PubMed

    Liu, Yun; Shen, Huan-Jia; Wang, Xin-Qiu-Yue; Liu, Hai-Qi; Zheng, Ling-Yun; Luo, Jian-Dong

    2018-06-20

    Cardiac hypertrophy is one of the major risk factors for chronic heart failure. The role of endophilinA2 (EndoA2) in clathrin-mediated endocytosis and clathrin-independent endocytosis is well documented. In the present study, we tested the hypothesis that EndoA2 protects against angiotensin II (Ang II)-induced cardiac hypertrophy by mediating intracellular angiotensin II type 1 receptor (AT1-R) trafficking in neonatal rat cardiomyocytes (NRCMs). Cardiac hypertrophy was evaluated by using cell surface area and quantitative RT-PCR (qPCR) analyses. For the first time, we found that EndoA2 attenuated cardiac hypertrophy and fibrosis induced by Ang II. Moreover, EndoA2 inhibited apoptosis induced by excessive endoplasmic reticulum stress (ERS), which accounted for the beneficial effects of EndoA2 on cardiac hypertrophy. We further revealed that there was an interaction between EndoA2 and AT1-R.The expression levels of EndoA2, which inhibits AT1-R transport from the cytoplasm to the membrane, and the interaction between EndoA2 and AT1-R were obviously decreased after Ang II treatment. Furthermore, Ang II inhibited the co-localization of AT1-R with GRP-78, which was reversed by EndoA2 overexpression. In conclusion, our results suggested that EndoA2 plays a role in protecting against cardiac hypertrophy induced by Ang II, possibly by inhibiting AT1-R transport from the cytoplasm to the membrane to suppress signal transduction. © 2018 Wiley Periodicals, Inc.

  17. A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells.

    PubMed

    Park, Sungjin; Szumlanski, Amy L; Gu, Fangwei; Guo, Feng; Nielsen, Erik

    2011-07-17

    In plants, cell shape is defined by the cell wall, and changes in cell shape and size are dictated by modification of existing cell walls and deposition of newly synthesized cell-wall material. In root hairs, expansion occurs by a process called tip growth, which is shared by root hairs, pollen tubes and fungal hyphae. We show that cellulose-like polysaccharides are present in root-hair tips, and de novo synthesis of these polysaccharides is required for tip growth. We also find that eYFP-CSLD3 proteins, but not CESA cellulose synthases, localize to a polarized plasma-membrane domain in root hairs. Using biochemical methods and genetic complementation of a csld3 mutant with a chimaeric CSLD3 protein containing a CESA6 catalytic domain, we provide evidence that CSLD3 represents a distinct (1→4)-β-glucan synthase activity in apical plasma membranes during tip growth in root-hair cells.

  18. The plant cell wall integrity maintenance mechanism--a case study of a cell wall plasma membrane signaling network.

    PubMed

    Hamann, Thorsten

    2015-04-01

    Some of the most important functions of plant cell walls are protection against biotic/abiotic stress and structural support during growth and development. A prerequisite for plant cell walls to perform these functions is the ability to perceive different types of stimuli in both qualitative and quantitative manners and initiate appropriate responses. The responses in turn involve adaptive changes in cellular and cell wall metabolism leading to modifications in the structures originally required for perception. While our knowledge about the underlying plant mechanisms is limited, results from Saccharomyces cerevisiae suggest the cell wall integrity maintenance mechanism represents an excellent example to illustrate how the molecular mechanisms responsible for stimulus perception, signal transduction and integration can function. Here I will review the available knowledge about the yeast cell wall integrity maintenance system for illustration purposes, summarize the limited knowledge available about the corresponding plant mechanism and discuss the relevance of the plant cell wall integrity maintenance mechanism in biotic stress responses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Single-step electrochemical functionalization of double-walled carbon nanotube (DWCNT) membranes and the demonstration of ionic rectification

    PubMed Central

    2013-01-01

    Carbon nanotube (CNT) membranes allow the mimicking of natural ion channels for applications in drug delivery and chemical separation. Double-walled carbon nanotube membranes were simply functionalized with dye in a single step instead of the previous two-step functionalization. Non-faradic electrochemical impedance spectra indicated that the functionalized gatekeeper by single-step modification can be actuated to mimic the protein channel under bias. This functional chemistry was proven by a highly efficient ion rectification, wherein the highest experimental rectification factor of ferricyanide was up to 14.4. One-step functionalization by electrooxidation of amine provides a simple and promising functionalization chemistry for the application of CNT membranes. PMID:23758999

  20. Crystal structure of mitochondrial respiratory membrane protein complex II.

    PubMed

    Sun, Fei; Huo, Xia; Zhai, Yujia; Wang, Aojin; Xu, Jianxing; Su, Dan; Bartlam, Mark; Rao, Zihe

    2005-07-01

    The mitochondrial respiratory Complex II or succinate:ubiquinone oxidoreductase (SQR) is an integral membrane protein complex in both the tricarboxylic acid cycle and aerobic respiration. Here we report the first crystal structure of Complex II from porcine heart at 2.4 A resolution and its complex structure with inhibitors 3-nitropropionate and 2-thenoyltrifluoroacetone (TTFA) at 3.5 A resolution. Complex II is comprised of two hydrophilic proteins, flavoprotein (Fp) and iron-sulfur protein (Ip), and two transmembrane proteins (CybL and CybS), as well as prosthetic groups required for electron transfer from succinate to ubiquinone. The structure correlates the protein environments around prosthetic groups with their unique midpoint redox potentials. Two ubiquinone binding sites are discussed and elucidated by TTFA binding. The Complex II structure provides a bona fide model for study of the mitochondrial respiratory system and human mitochondrial diseases related to mutations in this complex.

  1. Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea.

    PubMed

    Daum, Bertram; Nicastro, Daniela; Austin, Jotham; McIntosh, J Richard; Kühlbrandt, Werner

    2010-04-01

    We used cryoelectron tomography to reveal the arrangements of photosystem II (PSII) and ATP synthase in vitreous sections of intact chloroplasts and plunge-frozen suspensions of isolated thylakoid membranes. We found that stroma and grana thylakoids are connected at the grana margins by staggered lamellar membrane protrusions. The stacking repeat of grana membranes in frozen-hydrated chloroplasts is 15.7 nm, with a 4.5-nm lumenal space and a 3.2-nm distance between the flat stromal surfaces. The chloroplast ATP synthase is confined to minimally curved regions at the grana end membranes and stroma lamellae, where it covers 20% of the surface area. In total, 85% of the ATP synthases are monomers and the remainder form random assemblies of two or more copies. Supercomplexes of PSII and light-harvesting complex II (LHCII) occasionally form ordered arrays in appressed grana thylakoids, whereas this order is lost in destacked membranes. In the ordered arrays, each membrane on either side of the stromal gap contains a two-dimensional crystal of supercomplexes, with the two lattices arranged such that PSII cores, LHCII trimers, and minor LHCs each face a complex of the same kind in the opposite membrane. Grana formation is likely to result from electrostatic interactions between these complexes across the stromal gap.

  2. Guideline treatment results in regression of atherosclerosis in type 2 diabetes mellitus.

    PubMed

    Strang, Aart C; van Wijk, Diederik F; Mutsaerts, Henri J M M; Stroes, Erik S G; Nederveen, Aart J; Rotmans, Joris I; Rabelink, Ton J; Box, Frieke M A

    2015-03-01

    Efficacy of guideline cardiovascular disease prevention regimens may differ between patients with or without type II diabetes mellitus. We therefore compared change in carotid artery wall dimensions in type II diabetes mellitus and non-type II diabetes mellitus patients with a history of a major cardiovascular disease event, using magnetic resonance imaging. Thirty type II diabetes mellitus patients and 29 age- and sex-matched non-diabetes mellitus patients with a history of stroke or myocardial infarction and a carotid artery stenosis (15%-70%) were included. In all patients, treatment was according to cardiovascular risk management guidelines. At baseline and follow-up, carotid artery vessel wall dimensions were measured using 1.5 T magnetic resonance imaging. After 2 years of follow-up, total wall volume of the carotid artery in type II diabetes mellitus patients decreased by 9.6% (p = 0.016). In contrast, stabilization rather than regression of carotid artery wall dimensions was observed in non-diabetes mellitus patients over a 2-year period. Body mass index was identified as a predictor of total wall volume decrease. Guideline treatment arrests atherogenesis in non-diabetes mellitus patients and even decreases vessel wall dimensions in type II diabetes mellitus patients. Baseline body mass index predicts cardiovascular disease prevention efficacy expressed as decrease in total wall volume. These data emphasize the importance of optimal cardiovascular-prevention, particularly in diabetes patients with a high body mass index. © The Author(s) 2015.

  3. Inhibition of iron uptake by ferristatin II is exerted through internalization of DMT1 at the plasma membrane.

    PubMed

    Yanatori, Izumi; Yasui, Yumiko; Noguchi, Yumiko; Kishi, Fumio

    2015-04-01

    Ferristatin II, discovered as an iron transport inhibitor, promotes the internalization and degradation of transferrin receptor 1 (TfR1). DMT1, which mediates iron transport across cell membranes, is located at the plasma membrane of enterocytes and imports dietary iron into the cytosol. TfR1 is not directly engaged in the intestinal absorption of free iron, and iron uptake by DMT1 is attenuated by ferristatin II treatment. In this study, we found another function for ferristatin II in iron uptake. Ferristatin II did not cause degradation of DMT1 but did induce DMT1 internalization from the plasma membrane. Dynasore, a small molecule inhibitor of dynamin, did not inhibit this internalization by ferristatin II, which might occur via a clathrin-independent pathway. © 2014 International Federation for Cell Biology.

  4. In vitro synthesis of cellulose II from a cytoplasmic membrane fraction of Acetobacter xylinum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bureau, T.E.; Brown, R.M. Jr.

    1987-10-01

    The cytoplasmic and outer membranes of Acetobacter xylinum were isolated by discontinuous sucrose density ultracentrifugation. Both lysozyme and trypsin were required for efficient crude membrane separation. Primary dehydrogenases and NADH oxidase were used as cytoplasmic membrane markers, and 2-keto-3-deoxyoctulosonic acid was used to identify the outer membranes. Cellulose synthetase activity was assayed as the conversion of radioactivity from UDP-(/sup 14/C)glucose into an alkali-insoluble ..beta..-1,4-D-(/sup 14/C)glucan. This activity was predominantly found in the cytoplasmic membrane. The cellulose nature of the product was demonstrated by (i) enzymatic hydrolysis followed by TLC, (ii) methylation analysis followed by TLC, and (iii) GC/MS. Further, themore » weight-average and number-average degree of polymerization of the in vitro product, determined by high-performance gel permeation chromatography, were 4820 and 5270, respectively. In addition, x-ray diffraction analysis indicated that the in vitro product is cellulose II, which is in contrast to the in vivo product--namely, cellulose I.« less

  5. Efficient removal of nickel(II) from high salinity wastewater by a novel PAA/ZIF-8/PVDF hybrid ultrafiltration membrane.

    PubMed

    Li, Ting; Zhang, Weiming; Zhai, Shu; Gao, Guandao; Ding, Jie; Zhang, Wenbin; Liu, Yang; Zhao, Xin; Pan, Bingcai; Lv, Lu

    2018-06-15

    The development of highly efficient membranes, especially those aimed at the removal of trace (ppm, 10 -6 ) heavy metals from high salinity wastewater, is one of the principal challenges in the wastewater treatment field. In this study, a new metal-organic frameworks-based hybrid ultrafiltration membrane (PAA/ZIF-8/PVDF membrane) was prepared, which outperformed some other adsorption materials and owned the first and highest reported nickel ion (Ni(II)) adsorption capacity (219.09 mg/g) in high salinity ([Na + ] = 15000 mg/L) wastewater. Novel and highly efficient hybrid ultrafiltration membrane was facilely fabricated by physically immobilizing zeolitic imidazolate framework-8 (ZIF-8) particles onto the surface of trimesoyl chloride (TMC)-modified polyvinylidene fluoride (PVDF) membrane under the protection of polyacrylic acid (PAA) layer, and possessed a relatively high water flux of ∼460 L m -2 h -1 . The XPS studies revealed that the Ni(II) uptake was mainly attributed to the specific hydrogen bonding interaction between Ni(II) and hydroxyl on ZIF-8 frameworks as well as the electrostatic adsorption by carboxyl groups in PAA layer. Especially, compared to PAA, ZIF-8 could selectively bind with Ni(II) effectively, which was almost not affected by concentrated sodium ion. The filtration study showed that the membrane with an area of 12.56 cm 2 could treat 5.76 L of Ni(II)-contained high salinity wastewater ([Ni(II) = 2 mg/L, [Na + ] = 15000 mg/L) to meet the maximum contaminant level of 0.1 mg/L Ni(II). Moreover, the hybrid membrane can be regenerated several times by HCl-NaCl solution (pH = 5.5) for repeated use under direct current electric field. Thus, the newly developed ZIF-8 hybrid ultrafiltration membrane showed a promising potential for heavy metals containing wastewater treatment. This work provides a worthy reference for designing highly efficient ultrafiltration membranes modified by metal-organic frameworks

  6. Experimental Verification of Same Simple Equilibrium Models of Masonry Shear Walls

    NASA Astrophysics Data System (ADS)

    Radosław, Jasiński

    2017-10-01

    This paper contains theoretical fundamentals of strut and tie models, used in unreinforced horizontal shear walls. Depending on support conditions and wall loading, we can distinguish models with discrete bars when point load is applied to the wall (type I model) or with continuous bars (type II model) when load is uniformly distributed at the wall boundary. The main part of this paper compares calculated results with the own tests on horizontal shear walls made of solid brick, silicate elements and autoclaved aerated concrete. The tests were performed in Poland. The model required some modifications due to specific load and static diagram.

  7. A Glycosylphosphatidylinositol Anchor Is Required for Membrane Localization but Dispensable for Cell Wall Association of Chitin Deacetylase 2 in Cryptococcus neoformans

    PubMed Central

    Gilbert, Nicole M.; Baker, Lorina G.; Specht, Charles A.; Lodge, Jennifer K.

    2012-01-01

    ABSTRACT Cell wall proteins (CWPs) mediate important cellular processes in fungi, including adhesion, invasion, biofilm formation, and flocculation. The current model of fungal cell wall organization includes a major class of CWPs covalently bound to β-1,6-glucan via a remnant of a glycosylphosphatidylinositol (GPI) anchor. This model was established by studies of ascomycetes more than a decade ago, and relatively little work has been done with other fungi, although the presumption has been that proteins identified in the cell wall which contain a predicted GPI anchor are covalently linked to cell wall glucans. The pathogenic basidiomycete Cryptococcus neoformans encodes >50 putatively GPI-anchored proteins, some of which have been identified in the cell wall. One of these proteins is chitin deacetylase 2 (Cda2), an enzyme responsible for converting chitin to chitosan, a cell wall polymer recently established as a virulence factor for C. neoformans infection of mammalian hosts. Using a combination of biochemistry, molecular biology, and genetics, we show that Cda2 is GPI anchored to membranes but noncovalently associated with the cell wall by means independent of both its GPI anchor and β-1,6-glucan. We also show that Cda2 produces chitosan when localized to the plasma membrane, but association with the cell wall is not essential for this process, thereby providing insight into the mechanism of chitosan biosynthesis. These results increase our understanding of the surface of C. neoformans and provide models of cell walls likely applicable to other undercharacterized basidiomycete pathogenic fungi. PMID:22354955

  8. 18. Detail view, greenhouse, north wall (Note the type of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Detail view, greenhouse, north wall (Note the type of stone used in the wall construction, the degradation of the interior stucco, and one of the pockets for a former floor joist). - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  9. Stabilization of glucose-C in microbial cell membranes (PLFA) and cell walls (amino sugars) evaluated by 13C-labelling in a field experiment

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Kuzyakov, Yakov; Glaser, Bruno

    2015-04-01

    Microorganisms control carbon (C) cycle and strongly contribute to formation of soil organic matter. Strong differences in the turnover of microbial groups and cellular compounds complicate the assessment of their contribution to microbial food webs and C sequestration in soil in situ. The uptake and incorporation of 13C labeled glucose by microbial groups were traced during 50 days after the labeling under field conditions. 13C was analysed: i) in the cytosolic pool by chloroform fumigation extraction, ii) in cell membranes by phospholipid fatty acids (PLFA), iii) in cell walls by amino sugars, and iv) remaining in bulk soil. This allowed tracing C in microbial groups as well as cellular compounds. Mean residence times (MRT) of C in PLFA and the cytosol were 47 and 150 days, respectively. Such long cytosol MRT depends on its heterogeneous composition, which includes high and low molecular weight organics. Amino sugars were mainly originated from microbial residues and thus, observation periods higher than 1 year are required for estimation of their MRT. Relative 13C incorporation (13C portion in total pool C) was the highest for PLFAs (~1.5% at day 3), whereas 13C content of the cytosol and amino sugars was one and two orders of magnitude less, respectively. Relative 13C incorporation into amino sugars of living microorganisms showed only 0.57% on day 3. Therefore, the turnover of cell membrane components is two times faster than that of cell walls, even in living microorganisms. Both PLFAs and amino sugars showed that glucose C was preferentially used by bacteria. 13C incorporation into bacterial cell walls and membranes decreased with time, but increased or remained constant for fungi, reflecting faster turnover of bacteria than fungi. Consequently, bacteria contribute more to the decomposition of low molecular weight organics, whereas fungi consume bacterial products or necromass and contribute more to long-term C stabilisation. Thus, tracing of 13C in cellular

  10. The phosphatidylinositol transfer protein RdgBβ binds 14-3-3 via its unstructured C-terminus, whereas its lipid-binding domain interacts with the integral membrane protein ATRAP (angiotensin II type I receptor-associated protein).

    PubMed

    Garner, Kathryn; Li, Michelle; Ugwuanya, Natalie; Cockcroft, Shamshad

    2011-10-01

    PITPs [PI (phosphatidylinositol) transfer proteins] bind and transfer PI between intracellular membranes and participate in many cellular processes including signalling, lipid metabolism and membrane traffic. The largely uncharacterized PITP RdgBβ (PITPNC1; retinal degeneration type B β), contains a long C-terminal disordered region following its defining N-terminal PITP domain. In the present study we report that the C-terminus contains two tandem phosphorylated binding sites (Ser(274) and Ser(299)) for 14-3-3. The C-terminus also contains PEST sequences which are shielded by 14-3-3 binding. Like many proteins containing PEST sequences, the levels of RdgBβ are regulated by proteolysis. RdgBβ is degraded with a half-life of 4 h following ubiquitination via the proteasome. A mutant RdgBβ which is unable to bind 14-3-3 is degraded even faster with a half-life of 2 h. In vitro, RdgBβ is 100-fold less active than PITPα for PI transfer, and RdgBβ proteins (wild-type and a mutant that cannot bind 14-3-3) expressed in COS-7 cells or endogenous proteins from heart cytosol do not exhibit transfer activity. When cells are treated with PMA, the PITP domain of RdgBβ interacts with the integral membrane protein ATRAP (angiotensin II type I receptor-associated protein; also known as AGTRAP) causing membrane recruitment. We suggest that RdgBβ executes its function following recruitment to membranes via its PITP domain and the C-terminal end of the protein could regulate entry to the hydrophobic cavity.

  11. Inverse measurement of wall pressure field in flexible-wall wind tunnels using global wall deformation data

    NASA Astrophysics Data System (ADS)

    Brown, Kenneth; Brown, Julian; Patil, Mayuresh; Devenport, William

    2018-02-01

    The Kevlar-wall anechoic wind tunnel offers great value to the aeroacoustics research community, affording the capability to make simultaneous aeroacoustic and aerodynamic measurements. While the aeroacoustic potential of the Kevlar-wall test section is already being leveraged, the aerodynamic capability of these test sections is still to be fully realized. The flexibility of the Kevlar walls suggests the possibility that the internal test section flow may be characterized by precisely measuring small deflections of the flexible walls. Treating the Kevlar fabric walls as tensioned membranes with known pre-tension and material properties, an inverse stress problem arises where the pressure distribution over the wall is sought as a function of the measured wall deflection. Experimental wall deformations produced by the wind loading of an airfoil model are measured using digital image correlation and subsequently projected onto polynomial basis functions which have been formulated to mitigate the impact of measurement noise based on a finite-element study. Inserting analytic derivatives of the basis functions into the equilibrium relations for a membrane, full-field pressure distributions across the Kevlar walls are computed. These inversely calculated pressures, after being validated against an independent measurement technique, can then be integrated along the length of the test section to give the sectional lift of the airfoil. Notably, these first-time results are achieved with a non-contact technique and in an anechoic environment.

  12. Is There Excitation Energy Transfer between Different Layers of Stacked Photosystem-II-Containing Thylakoid Membranes?

    PubMed

    Farooq, Shazia; Chmeliov, Jevgenij; Trinkunas, Gediminas; Valkunas, Leonas; van Amerongen, Herbert

    2016-04-07

    We have compared picosecond fluorescence decay kinetics for stacked and unstacked photosystem II membranes in order to evaluate the efficiency of excitation energy transfer between the neighboring layers. The measured kinetics were analyzed in terms of a recently developed fluctuating antenna model that provides information about the dimensionality of the studied system. Independently of the stacking state, all preparations exhibited virtually the same value of the apparent dimensionality, d = 1.6. Thus, we conclude that membrane stacking does not affect the efficiency of the delivery of excitation energy toward the reaction centers but ensures a more compact organization of the thylakoid membranes within the chloroplast and separation of photosystems I and II.

  13. Influence of the Cell Wall on Intracellular Delivery to Algal Cells by Electroporation and Sonication

    PubMed Central

    Azencott, Harold R.; Peter, Gary F.; Prausnitz, Mark R.

    2007-01-01

    To assess the cell wall’s role as a barrier to intracellular delivery, wild-type Chlamydomonas reinhardtii algal cells and mutant cells lacking a cell wall were exposed to electroporation or sonication. Flow cytometry determined intracellular uptake of calcein and bovine serum albumin (BSA) and loss of cell viability as functions of electroporation transmembrane potential and acoustic energy. Electroporation of wild-type cells increased calcein uptake with increasing transmembrane potential, but delivered much less BSA. Electroporation of wall-deficient cells had similar effects on calcein uptake, but increased BSA uptake as much as 7.5-fold relative to wild-type cells, which indicated that the cell wall was a significant barrier to BSA delivery during electroporation. Sonication of wild-type cells caused calcein and BSA uptake at similar levels. This suggests that the cell wall barrier to BSA delivery can be overcome by sonication. Increased electroporation transmembrane potential or acoustic energy also caused increased loss of cell viability, where wall-deficient cells were especially susceptible to lysis. Overall, we believe this is the first study to compare the effects of electroporation and sonication in a direct fashion in any cell type. Specifically, these findings suggest that electroporation primarily transports molecules across the plasma membrane, because its mechanism is specific to lipid bilayer disruption, whereas sonication transports molecules across both the plasma membrane and cell wall, because it non-specifically disrupts cell-surface barriers. PMID:17602827

  14. The gray area between synapse structure and function-Gray's synapse types I and II revisited.

    PubMed

    Klemann, Cornelius J H M; Roubos, Eric W

    2011-11-01

    On the basis of ultrastructural parameters, the concept was formulated that asymmetric Type I and symmetric Type II synapses are excitatory and inhibitory, respectively. This "functional Gray synapses concept" received strong support from the demonstration of the excitatory neurotransmitter glutamate in Type I synapses and of the inhibitory neurotransmitter γ-aminobutyric acid in Type II synapses, and is still frequently used in modern literature. However, morphological and functional evidence has accumulated that the concept is less tenable. Typical features of synapses like shape and size of presynaptic vesicles and synaptic cleft and presence of a postsynaptic density (PsD) do not always fit the postulated (excitatory/inhibitory) function of Gray's synapses. Furthermore, synapse function depends on postsynaptic receptors and associated signal transduction mechanisms rather than on presynaptic morphology and neurotransmitter type. Moreover, the notion that many synapses are difficult to classify as either asymmetric or symmetric has cast doubt on the assumption that the presence of a PsD is a sign of excitatory synaptic transmission. In view of the morphological similarities of the PsD in asymmetric synapses with membrane junctional structures such as the zonula adherens and the desmosome, asymmetric synapses may play a role as links between the postsynaptic and presynaptic membrane, thus ensuring long-term maintenance of interneuronal communication. Symmetric synapses, on the other hand, might be sites of transient communication as takes place during development, learning, memory formation, and pathogenesis of brain disorders. Confirmation of this idea might help to return the functional Gray synapse concept its central place in neuroscience. Copyright © 2011 Wiley-Liss, Inc.

  15. Modification of thin-film polyamide membrane with multi-walled carbon nanotubes by interfacial polymerization

    NASA Astrophysics Data System (ADS)

    Al-Hobaib, Abdullah S.; Al-Sheetan, Kh. M.; Shaik, Mohammed Rafi; Al-Suhybani, M. S.

    2017-12-01

    Polyamide thin-film composite (TFC) was fabricated on polysulfone (PS-20) base by interfacial polymerization of aqueous m-phenylenediamine (MPD) solution and 1,3,5-benzenetricarbonyl trichloride (TMC) in hexane organic solution. Multi-wall carbon nanotubes (MWCNT) were carboxylated by heating MWCNT powder in a mixture of HNO3 and H2SO4 (1:3 v/v) at 70 °C under constant sonication for different periods. Polyamide nanocomposites were prepared by incorporating MWCNT and the carboxylated MWCNT (MWCNT-COOH) at different concentrations (0.001-0.009 wt%). The developed composites were analyzed by Fourier transform infrared spectroscopy-attenuated total reflection, scanning electron microscopy, transmission electron microscopy, contact angle measurement, determination of salt rejection and water permeate flux capabilities. The surface morphological studies displayed that the amalgamation of MWCNT considerably changed the surface properties of modified membranes. The surface hydrophilicity was increased as observed in the enhancement in water flux and pure water permeance, due to the presence of hydrophilic nanotubes. Salt rejection was obtained between 94 and 99% and varied water flux values for TFC-reference membrane, pristine-MWCNT in MPD, pristine-MWCNT in TMC and MWCNT-COOH in MPD were 20.5, 38, 40 and 43 L/m2h. The water flux and salt rejection performances revealed that the MWCNT-COOH membrane was superior membrane as compared to the other prepared membranes.

  16. Type I and II Diabetic Adipose-Derived Stem Cells Respond In Vitro to Dehydrated Human Amnion/Chorion Membrane Allograft Treatment by Increasing Proliferation, Migration, and Altering Cytokine Secretion

    PubMed Central

    Massee, Michelle; Chinn, Kathryn; Lim, Jeremy J.; Godwin, Lisa; Young, Conan S.; Koob, Thomas J.

    2016-01-01

    Objective: Human amniotic membranes have been shown to be effective for healing diabetic foot ulcers clinically and to regulate stem cell activity in vitro and in vivo; however, diabetic stem cells may be impaired as a sequela of the disease. In this study, dehydrated human amnion/chorion membrane (dHACM) allografts (EpiFix®; MiMedx Group) were evaluated for their ability to regulate diabetic stem cells in vitro. Approach: Human adipose-derived stem cells (ADSCs) from normal, type I diabetic, and type II diabetic donors were treated with soluble extracts of dHACM and evaluated for proliferation after 3 days by DNA assay, chemotactic migration after 1 day by transwell assay, cytokine secretion after 3 days by multiplex ELISA, and gene expression after 5 days by reverse transcription–polymerase chain reaction. Results: Although diabetic ADSCs demonstrated decreased responses compared to normal ADSCs, dHACM treatment stimulated diabetic ADSCs to proliferate after 3 days and enhanced migration over 24 h, similar to normal ADSCs. dHACM-treated diabetic ADSCs modulated secretion of soluble signals, including regulators of inflammation, angiogenesis, and healing. All ADSCs evaluated also responded to dHACM treatment with altered expression of immunomodulatory genes, including interleukins (IL)-1α, IL-1β, and IL-1RA. Innovation: This is the first reported case demonstrating that diabetic ADSCs respond to novel amniotic membrane therapies, specifically treatment with dHACM. Conclusion: dHACM stimulated diabetic ADSCs to migrate, proliferate, and alter cytokine expression suggesting that, despite their diabetic origin, ADSCs may respond to dHACM to accelerate diabetic wound healing. PMID:26862462

  17. Type I and II Diabetic Adipose-Derived Stem Cells Respond In Vitro to Dehydrated Human Amnion/Chorion Membrane Allograft Treatment by Increasing Proliferation, Migration, and Altering Cytokine Secretion.

    PubMed

    Massee, Michelle; Chinn, Kathryn; Lim, Jeremy J; Godwin, Lisa; Young, Conan S; Koob, Thomas J

    2016-02-01

    Objective: Human amniotic membranes have been shown to be effective for healing diabetic foot ulcers clinically and to regulate stem cell activity in vitro and in vivo ; however, diabetic stem cells may be impaired as a sequela of the disease. In this study, dehydrated human amnion/chorion membrane (dHACM) allografts (EpiFix ® ; MiMedx Group) were evaluated for their ability to regulate diabetic stem cells in vitro . Approach: Human adipose-derived stem cells (ADSCs) from normal, type I diabetic, and type II diabetic donors were treated with soluble extracts of dHACM and evaluated for proliferation after 3 days by DNA assay, chemotactic migration after 1 day by transwell assay, cytokine secretion after 3 days by multiplex ELISA, and gene expression after 5 days by reverse transcription-polymerase chain reaction. Results: Although diabetic ADSCs demonstrated decreased responses compared to normal ADSCs, dHACM treatment stimulated diabetic ADSCs to proliferate after 3 days and enhanced migration over 24 h, similar to normal ADSCs. dHACM-treated diabetic ADSCs modulated secretion of soluble signals, including regulators of inflammation, angiogenesis, and healing. All ADSCs evaluated also responded to dHACM treatment with altered expression of immunomodulatory genes, including interleukins (IL)-1α, IL-1β, and IL-1RA. Innovation: This is the first reported case demonstrating that diabetic ADSCs respond to novel amniotic membrane therapies, specifically treatment with dHACM. Conclusion: dHACM stimulated diabetic ADSCs to migrate, proliferate, and alter cytokine expression suggesting that, despite their diabetic origin, ADSCs may respond to dHACM to accelerate diabetic wound healing.

  18. Roles of the TRAPP-II Complex and the Exocyst in Membrane Deposition during Fission Yeast Cytokinesis

    PubMed Central

    Wang, Ning; Lee, I-Ju; Rask, Galen; Wu, Jian-Qiu

    2016-01-01

    The cleavage-furrow tip adjacent to the actomyosin contractile ring is believed to be the predominant site for plasma-membrane insertion through exocyst-tethered vesicles during cytokinesis. Here we found that most secretory vesicles are delivered by myosin-V on linear actin cables in fission yeast cytokinesis. Surprisingly, by tracking individual exocytic and endocytic events, we found that vesicles with new membrane are deposited to the cleavage furrow relatively evenly during contractile-ring constriction, but the rim of the cleavage furrow is the main site for endocytosis. Fusion of vesicles with the plasma membrane requires vesicle tethers. Our data suggest that the transport particle protein II (TRAPP-II) complex and Rab11 GTPase Ypt3 help to tether secretory vesicles or tubulovesicular structures along the cleavage furrow while the exocyst tethers vesicles at the rim of the division plane. We conclude that the exocyst and TRAPP-II complex have distinct localizations at the division site, but both are important for membrane expansion and exocytosis during cytokinesis. PMID:27082518

  19. Proteomic analysis of corneal endothelial cell-descemet membrane tissues reveals influence of insulin dependence and disease severity in type 2 diabetes mellitus.

    PubMed

    Skeie, Jessica M; Aldrich, Benjamin T; Goldstein, Andrew S; Schmidt, Gregory A; Reed, Cynthia R; Greiner, Mark A

    2018-01-01

    The objective of this study was to characterize the proteome of the corneal endothelial cell layer and its basement membrane (Descemet membrane) in humans with various severities of type II diabetes mellitus compared to controls, and identify differentially expressed proteins across a range of diabetic disease severities that may influence corneal endothelial cell health. Endothelium-Descemet membrane complex tissues were peeled from transplant suitable donor corneas. Protein fractions were isolated from each sample and subjected to multidimensional liquid chromatography and tandem mass spectrometry. Peptide spectra were matched to the human proteome, assigned gene ontology, and grouped into protein signaling pathways unique to each of the disease states. We identified an average of 12,472 unique proteins in each of the endothelium-Descemet membrane complex tissue samples. There were 2,409 differentially expressed protein isoforms that included previously known risk factors for type II diabetes mellitus related to metabolic processes, oxidative stress, and inflammation. Gene ontology analysis demonstrated that diabetes progression has many protein footprints related to metabolic processes, binding, and catalysis. The most represented pathways involved in diabetes progression included mitochondrial dysfunction, cell-cell junction structure, and protein synthesis regulation. This proteomic dataset identifies novel corneal endothelial cell and Descemet membrane protein expression in various stages of diabetic disease. These findings give insight into the mechanisms involved in diabetes progression relevant to the corneal endothelium and its basement membrane, prioritize new pathways for therapeutic targeting, and provide insight into potential biomarkers for determining the health of this tissue.

  20. Glutamate-dependent ectodomain shedding of neuregulin-1 type II precursors in rat forebrain neurons.

    PubMed

    Iwakura, Yuriko; Wang, Ran; Inamura, Naoko; Araki, Kazuaki; Higashiyama, Shigeki; Takei, Nobuyuki; Nawa, Hiroyuki

    2017-01-01

    The neurotrophic factor neuregulin 1 (NRG1) regulates neuronal development, glial differentiation, and excitatory synapse maturation. NRG1 is synthesized as a membrane-anchored precursor and is then liberated by proteolytic processing or exocytosis. Mature NRG1 then binds to its receptors expressed by neighboring neurons or glial cells. However, the molecular mechanisms that govern this process in the nervous system are not defined in detail. Here we prepared neuron-enriched and glia-enriched cultures from embryonic rat neocortex to investigate the role of neurotransmitters that regulate the liberation/release of NRG1 from the membrane of neurons or glial cells. Using a two-site enzyme immunoassay to detect soluble NRG1, we show that, of various neurotransmitters, glutamate was the most potent inducer of NRG1 release in neuron-enriched cultures. NRG1 release in glia-enriched cultures was relatively limited. Furthermore, among glutamate receptor agonists, N-Methyl-D-Aspartate (NMDA) and kainate (KA), but not AMPA or tACPD, mimicked the effects of glutamate. Similar findings were acquired from analysis of the hippocampus of rats with KA-induced seizures. To evaluate the contribution of members of a disintegrin and metalloproteinase (ADAM) families to NRG1 release, we transfected primary cultures of neurons with cDNA vectors encoding NRG1 types I, II, or III precursors, each tagged with the alkaline phosphatase reporter. Analysis of alkaline phosphatase activity revealed that the NRG1 type II precursor was subjected to tumor necrosis factor-α-converting enzyme (TACE) / a Disintegrin And Metalloproteinase 17 (ADAM17) -dependent ectodomain shedding in a protein kinase C-dependent manner. These results suggest that glutamatergic neurotransmission positively regulates the ectodomain shedding of NRG1 type II precursors and liberates the active NRG1 domain in an activity-dependent manner.

  1. Serotonin regulates voltage-dependent currents in type Ie(A) and Ii interneurons of Hermissenda

    PubMed Central

    Jin, Nan Ge

    2011-01-01

    Serotonin (5-HT) has both direct and modulatory actions on central neurons contributing to behavioral arousal and cellular-synaptic plasticity in diverse species. In Hermissenda, 5-HT produces changes in intrinsic excitability of different types of identified interneurons in the circumesophageal nervous system. Using whole cell patch-clamp techniques we have examined membrane conductance changes produced by 5-HT that contribute to intrinsic excitability in two identified classes of interneurons, types Ii and IeA. Whole cell currents were examined before and after 5-HT application to the isolated nervous system. A 4-aminopyridine-sensitive transient outward K+ current [IK(A)], a tetraethylammonium-sensitive delayed rectifier K+ current [IK(V)], an inward rectifier K+ current [IK(IR)], and a hyperpolarization-activated current (Ih) were characterized. 5-HT decreased the amplitude of IK(A) and IK(V) in both type Ii and IeA interneurons. However, differences in 5-HT's effects on the activation-inactivation kinetics were observed in different types of interneurons. 5-HT produced a depolarizing shift in the activation curve of IK(V) and a hyperpolarizing shift in the inactivation curve of IK(A) in type Ii interneurons. In contrast, 5-HT produced a depolarizing shift in the activation curve and a hyperpolarizing shift in the inactivation curve of both IK(V) and IK(A) in type IeA interneurons. In addition, 5-HT decreased the amplitude of IK(IR) in type Ii interneurons and increased the amplitude of Ih in type IeA interneurons. These results indicate that 5-HT-dependent changes in IK(A), IK(V), IK(IR), and Ih contribute to multiple mechanisms that synergistically support modulation of increased intrinsic excitability associated with different functional classes of identified type I interneurons. PMID:21813747

  2. Intracellular localization of a group II chaperonin indicates a membrane-related function

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan D.; Kagawa, Hiromi K.; Paavola, Chad D.; McMillan, R. Andrew; Howard, Jeanie; Jahnke, Linda; Lavin, Colleen; Embaye, Tsegereda; Henze, Christopher E.

    2003-01-01

    Chaperonins are protein complexes that are believed to function as part of a protein folding system in the cytoplasm of the cell. We observed, however, that the group II chaperonins known as rosettasomes in the hyperthermophilic archaeon Sulfolobus shibatae, are not cytoplasmic but membrane associated. This association was observed in cultures grown at 60 degrees C and 76 degrees C or heat-shocked at 85 degrees C by using immunofluorescence microscopy and in thick sections of rapidly frozen cells grown at 76 degrees C by using immunogold electron microscopy. We observed that increased abundance of rosettasomes after heat shock correlated with decreased membrane permeability at lethal temperature (92 degrees C). This change in permeability was not seen in cells heat-shocked in the presence of the amino acid analogue azetidine 2-carboxylic acid, indicating functional protein synthesis influences permeability. Azetidine experiments also indicated that observed heat-induced changes in lipid composition in S. shibatae could not account for changes in membrane permeability. Rosettasomes purified from cultures grown at 60 degrees C and 76 degrees C or heat-shocked at 85 degrees C bind to liposomes made from either the bipolar tetraether lipids of Sulfolobus or a variety of artificial lipid mixtures. The presence of rosettasomes did not significantly change the transition temperature of liposomes, as indicated by differential scanning calorimetry, or the proton permeability of liposomes, as indicated by pyranine fluorescence. We propose that these group II chaperonins function as a structural element in the natural membrane based on their intracellular location, the correlation between their functional abundance and membrane permeability, and their potential distribution on the membrane surface.

  3. Angiotensin II-induced angiotensin II type I receptor lysosomal degradation studied by fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Li, Hewang; Yu, Peiying; Felder, Robin A.; Periasamy, Ammasi; Jose, Pedro A.

    2009-02-01

    Upon activation, the angiotensin (Ang) II type 1 receptor (AT1Rs) rapidly undergoes endocytosis. After a series of intracellular processes, the internalized AT1Rs recycle back to the plasma membrane or are trafficked to proteasomes or lysosomes for degradation. We recently reported that AT1Rs degrades in proteasomes upon stimulation of the D5 dopamine receptor (D5R) in human renal proximal tubule and HEK-293 cells. This is in contrast to the degradation of AT1R in lysosomes upon binding Ang II. However, the dynamic regulation of the AT1Rs in lysosomes is not well understood. Here we investigated the AT1Rs lysosomal degradation using FRET-FLIM in HEK 293 cells heterologously expressing the human AT1R tagged with EGFP as the donor fluorophore. Compared to its basal state, the lifetime of AT1Rs decreased after a 5-minute treatment with Ang II treatment and colocalized with Rab5 but not Rab7 and LAMP1. With longer Ang II treatment (30 min), the AT1Rs lifetime decreased and co-localized with Rab5, as well as Rab7 and LAMP1. The FLIM data are corroborated with morphological and biochemical co-immunoprecipitation studies. These data demonstrate that Ang II induces the internalization of AT1Rs into early sorting endosomes prior to trafficking to late endosomes and subsequent degradation in lysosomes.

  4. Simultaneous Stripping Detection of Pb(II), Cd(II) and Zn(II) Using a Bimetallic Hg-Bi/Single-Walled Carbon Nanotubes Composite Electrode

    PubMed Central

    Ouyang, Ruizhuo; Zhu, Zhenqian; Tatum, Clarissa E.; Chambers, James Q.; Xue, Zi-Ling

    2011-01-01

    A new, sensitive platform for the simultaneous electrochemical assay of Zn(II), Cd(II) and Pb(II) in aqueous solution has been developed. The platform is based on a new bimetallic Hg-Bi/single-walled carbon nanotubes (SWNTs) composite modified glassy carbon electrode (GCE), demonstrating remarkably improved performance for the anodic stripping assay of Zn(II), Cd(II) and Pb(II). The synergistic effect of Hg and Bi as well as the enlarged, activated surface and good electrical conductivity of SWNTs on GCE contribute to the enhanced activity of the proposed electrode. The analytical curves for Zn(II), Cd(II) an Pb(II) cover two linear ranges varying from 0.5 to 11 μg L-1 and 10 to 130 μg L-1 with correlation coefficients higher than 0.992. The limits of detection for Zn(II), Cd(II) are lower than 2 μg L-1 (S/N = 3). For Pb(II), moreover, there is another lower, linear range from 5 to 1100 ng L-1 with a coefficient of 0.987 and a detection limit of 0.12 ng L-1. By using the standard addition method, Zn(II), Cd(II) and Pb(II) ions in river samples were successfully determined. These results suggest that the proposed method can be applied as a simple, efficient alternative for the simultaneous monitoring of heavy metals in water samples. In addition, this method demonstrates the powerful application of carbon nanotubes in electrochemical analysis of heavy metals. PMID:21660117

  5. Cell wall accumulation of fluorescent proteins derived from a trans-Golgi cisternal membrane marker and paramural bodies in interdigitated Arabidopsis leaf epidermal cells.

    PubMed

    Akita, Kae; Kobayashi, Megumi; Sato, Mayuko; Kutsuna, Natsumaro; Ueda, Takashi; Toyooka, Kiminori; Nagata, Noriko; Hasezawa, Seiichiro; Higaki, Takumi

    2017-01-01

    In most dicotyledonous plants, leaf epidermal pavement cells develop jigsaw puzzle-like shapes during cell expansion. The rapid growth and complicated cell shape of pavement cells is suggested to be achieved by targeted exocytosis that is coordinated with cytoskeletal rearrangement to provide plasma membrane and/or cell wall materials for lobe development during their morphogenesis. Therefore, visualization of membrane trafficking in leaf pavement cells should contribute an understanding of the mechanism of plant cell morphogenesis. To reveal membrane trafficking in pavement cells, we observed monomeric red fluorescent protein-tagged rat sialyl transferases, which are markers of trans-Golgi cisternal membranes, in the leaf epidermis of Arabidopsis thaliana. Quantitative fluorescence imaging techniques and immunoelectron microscopic observations revealed that accumulation of the red fluorescent protein occurred mostly in the curved regions of pavement cell borders and guard cell ends during leaf expansion. Transmission electron microscopy observations revealed that apoplastic vesicular membrane structures called paramural bodies were more frequent beneath the curved cell wall regions of interdigitated pavement cells and guard cell ends in young leaf epidermis. In addition, pharmacological studies showed that perturbations in membrane trafficking resulted in simple cell shapes. These results suggested possible heterogeneity of the curved regions of plasma membranes, implying a relationship with pavement cell morphogenesis.

  6. Lipoteichoic acids are embedded in cell walls during logarithmic phase, but exposed on membrane vesicles in Lactobacillus gasseri JCM 1131T.

    PubMed

    Shiraishi, T; Yokota, S; Sato, Y; Ito, T; Fukiya, S; Yamamoto, S; Sato, T; Yokota, A

    2018-06-15

    Lipoteichoic acid (LTA) is a cell surface molecule specific to Gram-positive bacteria. How LTA localises on the cell surface is a fundamental issue in view of recognition and immunomodulation in hosts. In the present study, we examined LTA localisation using strain JCM 1131T of Lactobacillus gasseri, which is a human intestinal lactic acid bacterium, during various growth phases by immunoelectron microscopy. We first evaluated the specificity of anti-LTA monoclonal antibody clone 55 used as a probe. The glycerophosphate backbone comprising almost intact size (20 to 30 repeating units) of LTA was required for binding. The antibody did not bind to other cellular components, including wall-teichoic acid. Immunoelectron microscopy indicated that LTA was embedded in the cell wall during the logarithmic phase, and was therefore not exposed on the cell surface. Similar results were observed for Lactobacillus fermentum ATCC 9338 and Lactobacillus rhamnosus ATCC 7469T. By contrast, membrane vesicles were observed in the logarithmic phase of L. gasseri with LTA exposed on their surface. In the stationary and death phases, LTA was exposed on cell wall-free cell membrane generated by autolysis. The dramatic alternation of localisation in different growth phases and exposure on the surface of membrane vesicles should relate with complicated interaction between bacteria and host.

  7. Genetic heterogeneity of Usher syndrome type II.

    PubMed Central

    Pieke Dahl, S; Kimberling, W J; Gorin, M B; Weston, M D; Furman, J M; Pikus, A; Möller, C

    1993-01-01

    Usher syndrome is an autosomal recessive disorder characterised by retinitis pigmentosa and congenital sensorineural hearing loss. A gene for Usher syndrome type II (USH2) has been localised to chromosome 1q32-q41. DNA from a family with four of seven sibs affected with clinical characteristics of Usher syndrome type II was genotyped using markers spanning the 1q32-1q41 region. These included D1S70 and D1S81, which are believed to flank USH2. Genotypic results and subsequent linkage analysis indicated non-linkage of this family to these markers. The A test analysis for heterogeneity with this family and 32 other Usher type II families was statistically significant at p < 0.05. Further clinical evaluation of this family was done in light of the linkage results to determine if any phenotypic characteristics would allow for clinical identification of the unlinked type. No clear phenotypic differences were observed; however, this unlinked family may represent a previously unreported subtype of Usher type II characterised by a milder form of retinitis pigmentosa and mild vestibular abnormalities. Heterogeneity of Usher syndrome type II complicates efforts to isolate and clone Usher syndrome genes using linkage analysis and limits the use of DNA markers in early detection of Usher type II. Images PMID:7901420

  8. SC lipid model membranes designed for studying impact of ceramide species on drug diffusion and permeation--part II: diffusion and permeation of model drugs.

    PubMed

    Ochalek, M; Podhaisky, H; Ruettinger, H-H; Wohlrab, J; Neubert, R H H

    2012-10-01

    The barrier function of two quaternary stratum corneum (SC) lipid model membranes, which were previously characterized with regard to the lipid organization, was investigated based on diffusion studies of model drugs with varying lipophilicities. Diffusion experiments of a hydrophilic drug, urea, and more lipophilic drugs than urea (i.e. caffeine, diclofenac sodium) were conducted using Franz-type diffusion cells. The amount of permeated drug was analyzed using either HPLC or CE technique. The subjects of interest in the present study were the investigation of the influence of physicochemical properties of model drugs on their diffusion and permeation through SC lipid model membranes, as well as the study of the impact of the constituents of these artificial systems (particularly ceramide species) on their barrier properties. The diffusion through both SC lipid model membranes and the human SC of the most hydrophilic model drug, urea, was faster than the permeation of the more lipophilic drugs. The slowest rate of permeation through SC lipid systems occurred in the case of caffeine. The composition of SC lipid model membranes has a significant impact on their barrier function. Model drugs diffused and permeated faster through Membrane II (presence of Cer [EOS]). In terms of the barrier properties, Membrane II is much more similar to the human SC than Membrane I. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Long-term visual acuity, retention and complications observed with the type-I and type-II Boston keratoprostheses in an Irish population.

    PubMed

    Duignan, E S; Ní Dhubhghaill, S; Malone, C; Power, W

    2016-08-01

    To evaluate the outcomes of the type-I and type-II Boston keratoprostheses in a single Irish centre. A retrospective chart review of keratoprosthesis implantations carried out in our institution from November 2002 to March 2014 was performed. All procedures were performed by a single surgeon (WP). Thirty-four keratoprosthesis implantations were carried out in 31 patients with a mean follow-up of 42±31 months (range 2-110 months). Seventeen patients were female (54.8%) and 14 were male (45.2%). The majority of keratoprostheses implanted were type-I (31/34, 91.2%), and three were type-II (3/34, 8.8%). Twenty-nine patients (85.3%) had an improvement in distance best-corrected visual acuity (BCVA) from baseline. Fifty per cent (17/34) of patients had a best-ever BCVA of at least 6/12. Eighteen patients (64.3%) retained a BCVA of at least 6/60 at 1 year. Over the course of follow-up, six keratoprostheses were explanted from six eyes of five patients, one of which was a type-II keratoprosthesis. Twenty-six patients (76.5%) developed postoperative complications. Complications included retroprosthetic membrane (18 patients, 52.9%), an exacerbation or new diagnosis of glaucoma (6 patients, 17.6%), endophthalmitis (5 patients, 14.7%) and retinal detachment (2 patients, 5.9%). These data demonstrate excellent visual acuity and retention outcomes in a cohort with a long follow-up period in a single centre. Complications remain a considerable source of morbidity. These outcomes provide further evidence for the long-term stability of type-I and type-II Boston keratoprostheses in the management of patients in whom a traditional graft is likely to fail. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Analysis of type II diabetes mellitus adipose-derived stem cells for tissue engineering applications

    PubMed Central

    Minteer, Danielle Marie; Young, Matthew T; Lin, Yen-Chih; Over, Patrick J; Rubin, J Peter; Gerlach, Jorg C

    2015-01-01

    To address the functionality of diabetic adipose-derived stem cells in tissue engineering applications, adipose-derived stem cells isolated from patients with and without type II diabetes mellitus were cultured in bioreactor culture systems. The adipose-derived stem cells were differentiated into adipocytes and maintained as functional adipocytes. The bioreactor system utilizes a hollow fiber–based technology for three-dimensional perfusion of tissues in vitro, creating a model in which long-term culture of adipocytes is feasible, and providing a potential tool useful for drug discovery. Daily metabolic activity of the adipose-derived stem cells was analyzed within the medium recirculating throughout the bioreactor system. At experiment termination, tissues were extracted from bioreactors for immunohistological analyses in addition to gene and protein expression. Type II diabetic adipose-derived stem cells did not exhibit significantly different glucose consumption compared to adipose-derived stem cells from patients without type II diabetes (p > 0.05, N = 3). Expression of mature adipocyte genes was not significantly different between diabetic/non-diabetic groups (p > 0.05, N = 3). Protein expression of adipose tissue grown within all bioreactors was verified by Western blotting.The results from this small-scale study reveal adipose-derived stem cells from patients with type II diabetes when removed from diabetic environments behave metabolically similar to the same cells of non-diabetic patients when cultured in a three-dimensional perfusion bioreactor, suggesting that glucose transport across the adipocyte cell membrane, the hindrance of which being characteristic of type II diabetes, is dependent on environment. The presented observation describes a tissue-engineered tool for long-term cell culture and, following future adjustments to the culture environment and increased sample sizes, potentially for anti-diabetic drug testing. PMID:26090087

  11. Molecular architecture of plant thylakoids under physiological and light stress conditions: a study of lipid-light-harvesting complex II model membranes.

    PubMed

    Janik, Ewa; Bednarska, Joanna; Zubik, Monika; Puzio, Michal; Luchowski, Rafal; Grudzinski, Wojciech; Mazur, Radoslaw; Garstka, Maciej; Maksymiec, Waldemar; Kulik, Andrzej; Dietler, Giovanni; Gruszecki, Wieslaw I

    2013-06-01

    In this study, we analyzed multibilayer lipid-protein membranes composed of the photosynthetic light-harvesting complex II (LHCII; isolated from spinach [Spinacia oleracea]) and the plant lipids monogalcatosyldiacylglycerol and digalactosyldiacylglycerol. Two types of pigment-protein complexes were analyzed: those isolated from dark-adapted leaves (LHCII) and those from leaves preilluminated with high-intensity light (LHCII-HL). The LHCII-HL complexes were found to be partially phosphorylated and contained zeaxanthin. The results of the x-ray diffraction, infrared imaging microscopy, confocal laser scanning microscopy, and transmission electron microscopy revealed that lipid-LHCII membranes assemble into planar multibilayers, in contrast with the lipid-LHCII-HL membranes, which form less ordered structures. In both systems, the protein formed supramolecular structures. In the case of LHCII-HL, these structures spanned the multibilayer membranes and were perpendicular to the membrane plane, whereas in LHCII, the structures were lamellar and within the plane of the membranes. Lamellar aggregates of LHCII-HL have been shown, by fluorescence lifetime imaging microscopy, to be particularly active in excitation energy quenching. Both types of structures were stabilized by intermolecular hydrogen bonds. We conclude that the formation of trans-layer, rivet-like structures of LHCII is an important determinant underlying the spontaneous formation and stabilization of the thylakoid grana structures, since the lamellar aggregates are well suited to dissipate excess energy upon overexcitation.

  12. Application of Fe(II)/peroxymonosulfate for improving ultrafiltration membrane performance in surface water treatment: Comparison with coagulation and ozonation.

    PubMed

    Cheng, Xiaoxiang; Liang, Heng; Ding, An; Zhu, Xuewu; Tang, Xiaobin; Gan, Zhendong; Xing, Jiajian; Wu, Daoji; Li, Guibai

    2017-11-01

    Coagulation and ozonation have been widely used as pretreatments for ultrafiltration (UF) membrane in drinking water treatment. While beneficial, coagulation or ozonation alone is unable to both efficiently control membrane fouling and product water quality in many cases. Thus, in this study an emerging alternative of ferrous iron/peroxymonosulfate (Fe(II)/PMS), which can act as both an oxidant and a coagulant was employed prior to UF for treatment of natural surface water, and compared with conventional coagulation and ozonation. The results showed that the Fe(II)/PMS-UF system exhibited the best performance for dissolved organic carbon removal, likely due to the dual functions of coagulation and oxidation in the single process. The fluorescent and UV-absorbing organic components were more susceptible to ozonation than Fe(II)/PMS treatment. Fe(II)/PMS and ozonation pretreatments significantly increased the removal efficiency of atrazine, p-chloronitrobenzene and sulfamethazine by 12-76% and 50-94%, respectively, whereas coagulation exerted a minor influence. The Fe(II)/PMS pretreatment also showed the best performance for the reduction of both reversible and irreversible membrane fouling, and the performance was hardly affected by membrane pore size and surface hydrophobicity. In addition, the characterization of hydraulic irreversible organic foulants confirmed its effectiveness. These results demonstrate the potential advantages of applying Fe(II)/PMS as a pretreatment for UF to simultaneously control membrane fouling and improve the permeate quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Hollow Fiber Spacesuit Water Membrane Evaporator Development and Testing for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis; Tsioulos, Gus; Settles, Joseph; Colunga, Aaron; Vogel, Matthew; Vonau, Walt

    2010-01-01

    Grant Bue and Matthew Vogel presented the two types of Spacesuit Water Membrane Evaporators (SWME) that were developed based on hydrophobic microporous membranes. One type, the Sheet Membrane (SaM) SWME, is composed of six concentric Teflon sheet membranes fixed on cylindrical-supporting screens to form three concentric annular water channels. Those water channels are surrounded by vacuum passages to draw off the water vapor that passes through the membrane. The other type, the Hollow Fiber (HoFi) SWME, is composed of more than 14,000 tubes. Water flows through the tubes and water vapor passes through the tube wall to the shell side that vents to the vacuum of space. Both SWME types have undergone testing to baseline the performance at predicted operating temperatures and flow rates; the units also have been subjected to contamination testing and other conditions to test resiliency.

  14. Functional Implications of Photosystem II Crystal Formation in Photosynthetic Membranes*

    PubMed Central

    Tietz, Stefanie; Puthiyaveetil, Sujith; Enlow, Heather M.; Yarbrough, Robert; Wood, Magnus; Semchonok, Dmitry A.; Lowry, Troy; Li, Zhirong; Jahns, Peter; Boekema, Egbert J.; Lenhert, Steven; Niyogi, Krishna K.; Kirchhoff, Helmut

    2015-01-01

    The structural organization of proteins in biological membranes can affect their function. Photosynthetic thylakoid membranes in chloroplasts have the remarkable ability to change their supramolecular organization between disordered and semicrystalline states. Although the change to the semicrystalline state is known to be triggered by abiotic factors, the functional significance of this protein organization has not yet been understood. Taking advantage of an Arabidopsis thaliana fatty acid desaturase mutant (fad5) that constitutively forms semicrystalline arrays, we systematically test the functional implications of protein crystals in photosynthetic membranes. Here, we show that the change into an ordered state facilitates molecular diffusion of photosynthetic components in crowded thylakoid membranes. The increased mobility of small lipophilic molecules like plastoquinone and xanthophylls has implications for diffusion-dependent electron transport and photoprotective energy-dependent quenching. The mobility of the large photosystem II supercomplexes, however, is impaired, leading to retarded repair of damaged proteins. Our results demonstrate that supramolecular changes into more ordered states have differing impacts on photosynthesis that favor either diffusion-dependent electron transport and photoprotection or protein repair processes, thus fine-tuning the photosynthetic energy conversion. PMID:25897076

  15. Central sympathoexcitatory actions of angiotensin II: role of type 1 angiotensin II receptors.

    PubMed

    DiBona, G F

    1999-01-01

    The role of the renin-angiotensin system in the control of sympathetic nerve activity is reviewed. Two general mechanisms are considered, one that involves the effects of circulating angiotensin II (AngII) on the central nervous system and a second that involves the central nervous system effects of AngII that originates within the central nervous system. The role of type 1 AngII receptors in discrete brain sites that mediate the sympathoexcitatory actions of AngII of either circulating or central nervous system origin is examined. AngII of circulating origin has ready access to the subfornical organ and area postrema, where it can bind to type 1 AngII receptors on neurons whose connections to the nucleus tractus solitarius and rostral ventrolateral medulla result in sympathoexcitation. In the rostral ventrolateral medulla, angiotensin peptides of central nervous system origin, likely involving angiotensin species in addition to AngII and binding to receptors other than type 1 or 2 AngII receptors, tonically support sympathetic nerve activity.

  16. Nanomechanical membrane-type surface stress sensor.

    PubMed

    Yoshikawa, Genki; Akiyama, Terunobu; Gautsch, Sebastian; Vettiger, Peter; Rohrer, Heinrich

    2011-03-09

    Nanomechanical cantilever sensors have been emerging as a key device for real-time and label-free detection of various analytes ranging from gaseous to biological molecules. The major sensing principle is based on the analyte-induced surface stress, which makes a cantilever bend. In this letter, we present a membrane-type surface stress sensor (MSS), which is based on the piezoresistive read-out integrated in the sensor chip. The MSS is not a simple "cantilever," rather it consists of an "adsorbate membrane" suspended by four piezoresistive "sensing beams," composing a full Wheatstone bridge. The whole analyte-induced isotropic surface stress on the membrane is efficiently transduced to the piezoresistive beams as an amplified uniaxial stress. Evaluation of a prototype MSS used in the present experiments demonstrates a high sensitivity which is comparable with that of optical methods and a factor of more than 20 higher than that obtained with a standard piezoresistive cantilever. The finite element analyses indicate that changing dimensions of the membrane and beams can substantially increase the sensitivity further. Given the various conveniences and advantages of the integrated piezoresistive read-out, this platform is expected to open a new era of surface stress-based sensing.

  17. Development of type-I/type-II hybrid dye sensitizer with both pyridyl group and catechol unit as anchoring group for type-I/type-II dye-sensitized solar cell.

    PubMed

    Ooyama, Yousuke; Furue, Kensuke; Enoki, Toshiaki; Kanda, Masahiro; Adachi, Yohei; Ohshita, Joji

    2016-11-09

    A type-I/type-II hybrid dye sensitizer with a pyridyl group and a catechol unit as the anchoring group has been developed and its photovoltaic performance in dye-sensitized solar cells (DSSCs) is investigated. The sensitizer has the ability to adsorb on a TiO 2 electrode through both the coordination bond at Lewis acid sites and the bidentate binuclear bridging linkage at Brønsted acid sites on the TiO 2 surface, which makes it possible to inject an electron into the conduction band of the TiO 2 electrode by the intramolecular charge-transfer (ICT) excitation (type-I pathway) and by the photoexcitation of the dye-to-TiO 2 charge transfer (DTCT) band (type-II pathway). It was found that the type-I/type-II hybrid dye sensitizer adsorbed on TiO 2 film exhibits a broad photoabsorption band originating from ICT and DTCT characteristics. Here we reveal the photophysical and electrochemical properties of the type-I/type-II hybrid dye sensitizer bearing a pyridyl group and a catechol unit, along with its adsorption modes onto TiO 2 film, and its photovoltaic performance in type-I/type-II DSSC, based on optical (photoabsorption and fluorescence spectroscopy) and electrochemical measurements (cyclic voltammetry), density functional theory (DFT) calculation, FT-IR spectroscopy of the dyes adsorbed on TiO 2 film, photocurrent-voltage (I-V) curves, incident photon-to-current conversion efficiency (IPCE) spectra, and electrochemical impedance spectroscopy (EIS) for DSSC.

  18. Single Wall Nanotube Type-Specific Functionalization and Separation

    NASA Technical Reports Server (NTRS)

    Boul, Peter; Nikolaev, Pavel; Sosa, Edward; Arepalli, Sivaram; Yowell, Leonard

    2008-01-01

    Metallic single-wall carbon nanotubes were selectively solubilized in THF and separated from semiconducting nanotubes. Once separated, the functionalized metallic tubes were de-functionalized to restore their metallic band structure. Absorption and Raman spectroscopy of the enriched samples support conclusions of the enrichment of nanotube samples by metallic type. A scalable method for enriching nanotube conductive type has been developed. Raman and UV-Vis data indicate SWCNT reaction with dodecylbenzenediazonium results in metallic enrichment. It is expected that further refinement of this techniques will lead to more dramatic separations of types and diameters.

  19. Evidence for a Role for the Plasma Membrane in the Nanomechanical Properties of the Cell Wall as Revealed by an Atomic Force Microscopy Study of the Response of Saccharomyces cerevisiae to Ethanol Stress

    PubMed Central

    Schiavone, Marion; Formosa-Dague, Cécile; Elsztein, Carolina; Teste, Marie-Ange; Martin-Yken, Helene; De Morais, Marcos A.; Dague, Etienne

    2016-01-01

    ABSTRACT A wealth of biochemical and molecular data have been reported regarding ethanol toxicity in the yeast Saccharomyces cerevisiae. However, direct physical data on the effects of ethanol stress on yeast cells are almost nonexistent. This lack of information can now be addressed by using atomic force microscopy (AFM) technology. In this report, we show that the stiffness of glucose-grown yeast cells challenged with 9% (vol/vol) ethanol for 5 h was dramatically reduced, as shown by a 5-fold drop of Young's modulus. Quite unexpectedly, a mutant deficient in the Msn2/Msn4 transcription factor, which is known to mediate the ethanol stress response, exhibited a low level of stiffness similar to that of ethanol-treated wild-type cells. Reciprocally, the stiffness of yeast cells overexpressing MSN2 was about 35% higher than that of the wild type but was nevertheless reduced 3- to 4-fold upon exposure to ethanol. Based on these and other data presented herein, we postulated that the effect of ethanol on cell stiffness may not be mediated through Msn2/Msn4, even though this transcription factor appears to be a determinant in the nanomechanical properties of the cell wall. On the other hand, we found that as with ethanol, the treatment of yeast with the antifungal amphotericin B caused a significant reduction of cell wall stiffness. Since both this drug and ethanol are known to alter, albeit by different means, the fluidity and structure of the plasma membrane, these data led to the proposition that the cell membrane contributes to the biophysical properties of yeast cells. IMPORTANCE Ethanol is the main product of yeast fermentation but is also a toxic compound for this process. Understanding the mechanism of this toxicity is of great importance for industrial applications. While most research has focused on genomic studies of ethanol tolerance, we investigated the effects of ethanol at the biophysical level and found that ethanol causes a strong reduction of the cell

  20. Evidence for a Role for the Plasma Membrane in the Nanomechanical Properties of the Cell Wall as Revealed by an Atomic Force Microscopy Study of the Response of Saccharomyces cerevisiae to Ethanol Stress.

    PubMed

    Schiavone, Marion; Formosa-Dague, Cécile; Elsztein, Carolina; Teste, Marie-Ange; Martin-Yken, Helene; De Morais, Marcos A; Dague, Etienne; François, Jean M

    2016-08-01

    A wealth of biochemical and molecular data have been reported regarding ethanol toxicity in the yeast Saccharomyces cerevisiae However, direct physical data on the effects of ethanol stress on yeast cells are almost nonexistent. This lack of information can now be addressed by using atomic force microscopy (AFM) technology. In this report, we show that the stiffness of glucose-grown yeast cells challenged with 9% (vol/vol) ethanol for 5 h was dramatically reduced, as shown by a 5-fold drop of Young's modulus. Quite unexpectedly, a mutant deficient in the Msn2/Msn4 transcription factor, which is known to mediate the ethanol stress response, exhibited a low level of stiffness similar to that of ethanol-treated wild-type cells. Reciprocally, the stiffness of yeast cells overexpressing MSN2 was about 35% higher than that of the wild type but was nevertheless reduced 3- to 4-fold upon exposure to ethanol. Based on these and other data presented herein, we postulated that the effect of ethanol on cell stiffness may not be mediated through Msn2/Msn4, even though this transcription factor appears to be a determinant in the nanomechanical properties of the cell wall. On the other hand, we found that as with ethanol, the treatment of yeast with the antifungal amphotericin B caused a significant reduction of cell wall stiffness. Since both this drug and ethanol are known to alter, albeit by different means, the fluidity and structure of the plasma membrane, these data led to the proposition that the cell membrane contributes to the biophysical properties of yeast cells. Ethanol is the main product of yeast fermentation but is also a toxic compound for this process. Understanding the mechanism of this toxicity is of great importance for industrial applications. While most research has focused on genomic studies of ethanol tolerance, we investigated the effects of ethanol at the biophysical level and found that ethanol causes a strong reduction of the cell wall rigidity (or

  1. Case 22:Type II diabetes

    USDA-ARS?s Scientific Manuscript database

    Diabetes mellitus is characterized by elevated blood glucose levels. It is composed of two types depending on the pathogenesis. Type I diabetes is characterized by insulin deficiency and usually has its onset during childhood or teenage years. This is also called ketosis-prone diabetes. Type II diab...

  2. Adsorption of Cd(II) and Pb(II) by in situ oxidized Fe3O4 membrane grafted on 316L porous stainless steel filter tube and its potential application for drinking water treatment.

    PubMed

    Zhu, Mengfei; Zhu, Li; Wang, Jianlong; Yue, Tianli; Li, Ronghua; Li, Zhonghong

    2017-07-01

    Removing heavy metal ions from aqueous solutions is one of the most challenging separations. In situ oxidized Fe 3 O 4 membranes using 316L porous stainless steel filter tube have shown great potential for removing anion Cr(VI). Here we report the performances of the in situ oxidized Fe 3 O 4 membranes for removing two toxic cations Cd(II) and Pb(II) commonly existing in water and their potential applications for drinking water purification. The membranes exhibited high removal efficiency: 97% at pH 9.0 for Cd(II) of 1.0 mg/L initial concentration and 100% at pH 5.0-6.0 for Pb(II) of 5.0 mg/L initial concentration. The maximum adsorption capabilities were estimated at 0.800 mg/g and 2.251 mg/g respectively for Cd(II) and Pb(II) at 318 K by the Langmuir model. Results of batch tests revealed the existence of electrostatic attraction and chemisorption. XRD and FT-IR analyses indicated that the chemisorption might be the insertion of Cd(II) and Pb(II) into the Fe 3 O 4 crystal faces of 311 and 511 to form mononuclear or binuclear coordination with O atoms of Fe-O 6 groups. Competitive adsorption of Cd(II) and Pb(II) in binary solutions revealed a preferential adsorption for Pb(II). Na 2 EDTA solution was used to regenerate the membranes, and the maximum desorption ratio was 90.29% and 99.75% respectively for Cd(II) and Pb(II). The membranes were able to efficiently lower Cd(II) and Pb(II) concentrations to meet the drinking water standards recommended by the World Health Organization and are promising for engineering applications aimed at drinking water purification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Genetics Home Reference: distal hereditary motor neuropathy, type II

    MedlinePlus

    ... hereditary motor neuropathy, type II Distal hereditary motor neuropathy, type II Printable PDF Open All Close All ... the expand/collapse boxes. Description Distal hereditary motor neuropathy, type II is a progressive disorder that affects ...

  4. [Effect of Coriolus versicolor polysaccharide B on membrane glycosaminoglycans and cellular glutathione changes in RAW264.7 macrophages exposed to angiotensin II].

    PubMed

    Lou, Ning; Ma, Gang; Wang, Dao-feng; Zhu, Zhi-wei; Su, Quan-guan; Fang, Yi

    2007-12-01

    To investigate the effect of Coriolus versicolor polysaccharide B (CVP-B) on increased membrane glycosaminoglycans (GAG) expression and intracellular glutathione (GSH) of RAW264.7 macrophages exposed to angiotensin II (Ang II). The plasma membrane of RAW264.7 macrophages exposed to Ang II treatment was isolated by ultracentrifugation, and the membrane GAG expression was analyzed using 1, 9-dimethylmethylene blue (DMMB) spectrophotometric assay for sulfated GAG. The intracellular reduced GSH was determined using fluorophotometry. The GAG content in the macrophage membranes increased by up to 54% following cell exposure to 1.0 micromol/L Ang II, whereas in presence of 1.0 micromol;/L Ang II, CVP-B at 1, 10, and 50 microg/ml decreased the GAG content by 13%, 43% (P<0.01), and 52% (P<0.01), respectively. The macrophage GSH activity decreased by 69% following incubation with 1.0 micromol;/L Ang II for 24 h, and CVP-B treatment at 1, 10, and 50 microg/ml in presence of 1.0 micromol;/L Ang II resulted in significant increment of GSH activity by 31%(P<0.05), 104% (P<0.01), and 168% (P<0.01), respectively. These data provide the first evidence that CVP-B inhibits elevated GAG expression in RAW264.7 macrophage membrane induced by Ang II.

  5. Incomplete synthesis of N-glycans in congenital dyserythropoietic anemia type II caused by a defect in the gene encoding. alpha. -mannosidase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuda, M.N.; Masri, K.A.; Dell, A.

    1990-10-01

    Congenital dyserythropoietic anemia type II, or hereditary erythroblastic multinuclearity with a positive acidified-serum-lysis test (HEMPAS), is a genetic anemia in humans inherited by an autosomally recessive mode. The enzyme defect in most HEMPAS patients has previously been proposed as a lowered activity of N-acetylglucosaminyltransferase II, resulting in a lack of polylactosamine on proteins and leading to the accumulation of polylactosaminyl lipids. A recent HEMPAS case, G.C., has now been analyzed by cell-surface labeling, fast-atom-bombardment mass spectrometry of glycopeptides, and activity assay of glycosylation enzymes. Significantly decreased glycosylation of polylactosaminoglycan proteins and incompletely processed asparagine-linked oligosaccharides were detected in the erythrocytemore » membranes of G.C. These results suggest that G.C. cells contain a mutation in {alpha}-ManII-encoding gene that results in inefficient expression of {alpha}-ManII mRNA, either through reduced transcription or message instability. This report demonstrates that HEMPAS is caused by a defective gene encoding an enzyme necessary for the synthesis of asparagine-linked oligosaccharides.« less

  6. Enzyme structures of the bacterial peptidoglycan and wall teichoic acid biogenesis pathways.

    PubMed

    Caveney, Nathanael A; Li, Franco Kk; Strynadka, Natalie Cj

    2018-06-06

    The bacterial cell wall is a complex polymeric structure with essential roles in defence, survival and pathogenesis. Common to both Gram-positive and Gram-negative bacteria is the mesh-like peptidoglycan sacculus that surrounds the outer leaflet of the cytoplasmic membrane. Recent crystallographic studies of enzymes that comprise the peptidoglycan biosynthetic pathway have led to significant new understanding of all stages. These include initial multi-step cytosolic formation of sugar-pentapeptide precursors, transfer of the precursors to activated polyprenyl lipids at the membrane inner leaflet and flippase mediated relocalization of the resulting lipid II precursors to the outer leaflet where glycopolymerization and subsequent peptide crosslinking are finalized. Additional, species-specific enzymes allow customized peptidoglycan modifications and biosynthetic regulation that are important to bacterial virulence and survival. These studies have reinforced the unique and specific catalytic mechanisms at play in cell wall biogenesis and expanded the atomic foundation to develop novel, structure guided, antibacterial agents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Evaluation of the efficacy of 100% Type-I collagen membrane of bovine origin in the treatment of human gingival recession: A clinical study

    PubMed Central

    Soni, Nitin; Sikri, Poonam; Kapoor, Daljit; Soni, Bhavita Wadhwa; Jain, Rachna

    2014-01-01

    Background: Various treatment modalities have been devised for gingival recession, which is one of the most common signs of periodontal disease. The present study evaluates the efficacy of bioresorbable 100% type I collagen membrane of bovine origin in the treatment of human gingival recession. Materials and Methods: Twenty cases of Miller's class I or class II localized gingival recession defects on the facial surface were treated with 100% type I collagen membrane of bovine origin in conjunction with coronally positioned flap. Pre-operative and post-operative assessments were performed with respect to probing pocket depth, clinical attachment level and clinical recession at 12, 24 and 36 weeks. The data thus collected were analyzed statistically. Results: Statistically significant improvement based on Student's t test was found in all the three clinical parameters. Conclusion: Bioresorbable 100% type I collagen membrane of bovine origin has given inspiring results in the treatment of human gingival recession defects, thereby justifying the use of this material wherever indicated. PMID:25565742

  8. High cell surface death receptor expression determines type I versus type II signaling.

    PubMed

    Meng, Xue Wei; Peterson, Kevin L; Dai, Haiming; Schneider, Paula; Lee, Sun-Hee; Zhang, Jin-San; Koenig, Alexander; Bronk, Steve; Billadeau, Daniel D; Gores, Gregory J; Kaufmann, Scott H

    2011-10-14

    Previous studies have suggested that there are two signaling pathways leading from ligation of the Fas receptor to induction of apoptosis. Type I signaling involves Fas ligand-induced recruitment of large amounts of FADD (FAS-associated death domain protein) and procaspase 8, leading to direct activation of caspase 3, whereas type II signaling involves Bid-mediated mitochondrial perturbation to amplify a more modest death receptor-initiated signal. The biochemical basis for this dichotomy has previously been unclear. Here we show that type I cells have a longer half-life for Fas message and express higher amounts of cell surface Fas, explaining the increased recruitment of FADD and subsequent signaling. Moreover, we demonstrate that cells with type II Fas signaling (Jurkat or HCT-15) can signal through a type I pathway upon forced receptor overexpression and that shRNA-mediated Fas down-regulation converts cells with type I signaling (A498) to type II signaling. Importantly, the same cells can exhibit type I signaling for Fas and type II signaling for TRAIL (TNF-α-related apoptosis-inducing ligand), indicating that the choice of signaling pathway is related to the specific receptor, not some other cellular feature. Additional experiments revealed that up-regulation of cell surface death receptor 5 levels by treatment with 7-ethyl-10-hydroxy-camptothecin converted TRAIL signaling in HCT116 cells from type II to type I. Collectively, these results suggest that the type I/type II dichotomy reflects differences in cell surface death receptor expression.

  9. Novel Organic Membrane-based Thin-film Microsensors for the Determination of Heavy Metal Cations

    PubMed Central

    Arida, Hassan A.; Kloock, Joachim P.; Schöning, Michael J.

    2006-01-01

    A first step towards the fabrication and electrochemical evaluation of thin-film microsensors based on organic PVC membranes for the determination of Hg(II), Cd(II), Pb(II) and Cu(II) ions in solutions has been realised. The membrane-coating mixture used in the preparation of this new type of microsensors is incorporating PVC as supporting matrix, o-nitrophenyloctylether (o-NPOE) as solvent mediator and a recently synthesized Hg[dimethylglyoxime(phene)]2+ and Bis-(4-hydroxyacetophenone)-ethylenediamine as electroactive materials for Hg(II) and Cd(II), respectively. A set of three commercialised ionophores for Cd(II), Pb(II) and Cu(II) has been also used for comparison. Thin-film microsensors based on these membranes showed a Nernstian response of slope (26-30 mV/dec.) for the respective tested cations. The potentiometric response characteristics (linear range, pH range, detection limit and response time) are comparable with those obtained by conventional membranes as well as coated wire electrodes prepared from the same membrane. The realisation of the new organic membrane-based thin-film microsensors overcomes the problem of an insufficient selectivity of solid-state-based thin-film sensors.

  10. Assembly of the Type II Secretion System such as Found in Vibrio cholerae Depends on the Novel Pilotin AspS

    PubMed Central

    Dunstan, Rhys A.; Heinz, Eva; Wijeyewickrema, Lakshmi C.; Pike, Robert N.; Purcell, Anthony W.; Evans, Timothy J.; Praszkier, Judyta; Robins-Browne, Roy M.; Strugnell, Richard A.; Korotkov, Konstantin V.; Lithgow, Trevor

    2013-01-01

    The Type II Secretion System (T2SS) is a molecular machine that drives the secretion of fully-folded protein substrates across the bacterial outer membrane. A key element in the machinery is the secretin: an integral, multimeric outer membrane protein that forms the secretion pore. We show that three distinct forms of T2SSs can be distinguished based on the sequence characteristics of their secretin pores. Detailed comparative analysis of two of these, the Klebsiella-type and Vibrio-type, showed them to be further distinguished by the pilotin that mediates their transport and assembly into the outer membrane. We have determined the crystal structure of the novel pilotin AspS from Vibrio cholerae, demonstrating convergent evolution wherein AspS is functionally equivalent and yet structurally unrelated to the pilotins found in Klebsiella and other bacteria. AspS binds to a specific targeting sequence in the Vibrio-type secretins, enhances the kinetics of secretin assembly, and homologs of AspS are found in all species of Vibrio as well those few strains of Escherichia and Shigella that have acquired a Vibrio-type T2SS. PMID:23326233

  11. Actively tunable transverse waves in soft membrane-type acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Zhou, Weijian; Wu, Bin; Muhammad, Du, Qiujiao; Huang, Guoliang; Lü, Chaofeng; Chen, Weiqiu

    2018-04-01

    Membrane-type metamaterials have shown a fantastic capacity for manipulating acoustic waves in the low frequency range. They have the advantages of simple geometry, light weight, and active tunability. In general, these membrane-type metamaterials contain a rigid frame support, leading to a fixed configuration. However, in some instances, flexible and reconfigurable devices may be desirable. A soft membrane-type acoustic metamaterial that is highly flexible and controllable is designed here. Different from the previously designed membrane-type metamaterials, the stiff supporting frame is removed and the stiff mass at the center of each unit cell is replaced by the soft mass, realized by bonding fine metallic particles in the central region. In contrast to the previous studies, the propagation of elastic transverse waves in such a soft metamaterial is investigated by employing the plane wave expansion method. Both the Bragg scattering bandgaps and locally resonant bandgaps are found to coexist in the soft metamaterial. The influences of structural parameters and finite biaxial pre-stretch on the dynamic behavior of this soft metamaterial are carefully examined. It is shown that whether or not the wave propagation characteristics are sensitive to the finite deformation does not depend on the property and pre-stretch of the membrane. In addition, a broadband complete bandgap and a pseudo-gap formed by the combination of two extremely adjacent directional bandgaps are observed in the low-frequency range, and both can be controlled by the finite pre-stretch.

  12. G-rich, a Drosophila selenoprotein, is a Golgi-resident type III membrane protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chang Lan; Shim, Myoung Sup; Chung, Jiyeol

    2006-10-06

    G-rich is a Drosophila melanogaster selenoprotein, which is a homologue of human and mouse SelK. Subcellular localization analysis using GFP-tagged G-rich showed that G-rich was localized in the Golgi apparatus. The fusion protein was co-localized with the Golgi marker proteins but not with an endoplasmic reticulum (ER) marker protein in Drosophila SL2 cells. Bioinformatic analysis of G-rich suggests that this protein is either type II or type III transmembrane protein. To determine the type of transmembrane protein experimentally, GFP-G-rich in which GFP was tagged at the N-terminus of G-rich, or G-rich-GFP in which GFP was tagged at the C-terminus ofmore » G-rich, were expressed in SL2 cells. The tagged proteins were then digested with trypsin, and analyzed by Western blot analysis. The results showed that the C-terminus of the G-rich protein was exposed to the cytoplasm indicating it is a type III microsomal membrane protein. G-rich is First selenoprotein identified in the Golgi apparatus.« less

  13. Binding of Sudan II and IV to lecithin liposomes and E. coli membranes: insights into the toxicity of hydrophobic azo dyes

    PubMed Central

    Li, Lu; Gao, Hong-Wen; Ren, Jiao-Rong; Chen, Ling; Li, Yu-Cheng; Zhao, Jian-Fu; Zhao, He-Ping; Yuan, Yuan

    2007-01-01

    Background Sudan red compounds are hydrophobic azo dyes, still used as food additives in some countries. However, they have been shown to be unsafe, causing tumors in the liver and urinary bladder in rats. They have been classified as category 3 human carcinogens by the International Agency for Research on Cancer. A number of hypotheses that could explain the mechanism of carcinogenesis have been proposed for dyes similar to the Sudan red compounds. Traditionally, investigations of the membrane toxicity of organic substances have focused on hydrocarbons, e.g. polycyclic aromatic hydrocarbons (PAHs), and DDT. In contrast to hydrocarbons, Sudan red compounds contain azo and hydroxy groups, which can form hydrogen bonds with the polar head groups of membrane phospholipids. Thus, entry may be impeded. They could have different toxicities from other lipophilic hydrocarbons. The available data show that because these compounds are lipophilic, interactions with hydrophobic parts of the cell are important for their toxicity. Lipophilic compounds accumulate in the membrane, causing expansion of the membrane surface area, inhibition of primary ion pumps and increased proton permeability. Results This work investigated the interactions of the amphiphilic compounds Sudan II and IV with lecithin liposomes and live Escherichia coli (E. coli). Sudan II and IV binding to lecithin liposomes and live E. coli corresponds to the Langmuir adsorption isotherm. In the Sudan red compounds – lecithin liposome solutions, the binding ratio of Sudan II to lecithin is 1/31 and that of Sudan IV to 1/314. The binding constant of the Sudan II-lecithin complex is 1.75 × 104 and that of the Sudan IV-lecithin complex 2.92 × 105. Besides, the influences of pH, electrolyte and temperature were investigated and analyzed quantitatively. In the Sudan red compounds – E.coli mixture, the binding ratios of Sudan II and Sudan IV to E.coli membrane phospholipid are 1/29 and 1/114. The binding constants

  14. Height-related scaling of phloem anatomy and the evolution of sieve element end wall types in woody plants.

    PubMed

    Liesche, Johannes; Pace, Marcelo R; Xu, Qiyu; Li, Yongqing; Chen, Shaolin

    2017-04-01

    In the sieve elements (SEs) of the phloem, carbohydrates are transported throughout the whole plant from their site of production to sites of consumption or storage. SE structure, especially of the pore-rich end walls, has a direct effect on translocation efficiency. Differences in pore size and other features were interpreted as an evolutionary trend towards reduced hydraulic resistance. However, this has never been confirmed. Anatomical data of 447 species of woody angiosperms and gymnosperms were used for a phylogenetic analysis of end wall types, calculation of hydraulic resistance and correlation analysis with morphological and physiological variables. end wall types were defined according to pore arrangement: either grouped into a single area (simple) or into multiple areas along the end wall (compound). Convergent evolution of end wall types was demonstrated in woody angiosperms. In addition, an optimization of end wall resistance with plant height was discovered, but found to be independent of end wall type. While physiological factors also showed no correlation with end wall types, the number of sieve areas per end wall was found to scale with SE length. The results exclude the minimization of hydraulic resistance as evolutionary driver of different end wall types, contradicting this long-standing assumption. Instead, end wall type might depend on SE length. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  15. A glycosylphosphatidylinositol anchor is required for membrane localization but dispensable for cell wall association of chitin deacetylase 2 in Cryptococcus neoformans.

    PubMed

    Gilbert, Nicole M; Baker, Lorina G; Specht, Charles A; Lodge, Jennifer K

    2012-01-01

    Cell wall proteins (CWPs) mediate important cellular processes in fungi, including adhesion, invasion, biofilm formation, and flocculation. The current model of fungal cell wall organization includes a major class of CWPs covalently bound to β-1,6-glucan via a remnant of a glycosylphosphatidylinositol (GPI) anchor. This model was established by studies of ascomycetes more than a decade ago, and relatively little work has been done with other fungi, although the presumption has been that proteins identified in the cell wall which contain a predicted GPI anchor are covalently linked to cell wall glucans. The pathogenic basidiomycete Cryptococcus neoformans encodes >50 putatively GPI-anchored proteins, some of which have been identified in the cell wall. One of these proteins is chitin deacetylase 2 (Cda2), an enzyme responsible for converting chitin to chitosan, a cell wall polymer recently established as a virulence factor for C. neoformans infection of mammalian hosts. Using a combination of biochemistry, molecular biology, and genetics, we show that Cda2 is GPI anchored to membranes but noncovalently associated with the cell wall by means independent of both its GPI anchor and β-1,6-glucan. We also show that Cda2 produces chitosan when localized to the plasma membrane, but association with the cell wall is not essential for this process, thereby providing insight into the mechanism of chitosan biosynthesis. These results increase our understanding of the surface of C. neoformans and provide models of cell walls likely applicable to other undercharacterized basidiomycete pathogenic fungi. The surface of a pathogenic microbe is a major interface with its host. In fungi, the outer surface consists of a complex matrix known as the cell wall, which includes polysaccharides, proteins, and other molecules. The mammalian host recognizes many of these surface molecules and mounts appropriate responses to combat the microbial infection. Cryptococcus neoformans is a

  16. Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells.

    PubMed

    Girishkumar, G; Rettker, Matthew; Underhile, Robert; Binz, David; Vinodgopal, K; McGinn, Paul; Kamat, Prashant

    2005-08-30

    A membrane electrode assembly (MEA) for hydrogen fuel cells has been fabricated using single-walled carbon nanotubes (SWCNTs) support and platinum catalyst. Films of SWCNTs and commercial platinum (Pt) black were sequentially cast on a carbon fiber electrode (CFE) using a simple electrophoretic deposition procedure. Scanning electron microscopy and Raman spectroscopy showed that the nanotubes and the platinum retained their nanostructure morphology on the carbon fiber surface. Electrochemical impedance spectroscopy (EIS) revealed that the carbon nanotube-based electrodes exhibited an order of magnitude lower charge-transfer reaction resistance (R(ct)) for the hydrogen evolution reaction (HER) than did the commercial carbon black (CB)-based electrodes. The proton exchange membrane (PEM) assembly fabricated using the CFE/SWCNT/Pt electrodes was evaluated using a fuel cell testing unit operating with H(2) and O(2) as input fuels at 25 and 60 degrees C. The maximum power density obtained using CFE/SWCNT/Pt electrodes as both the anode and the cathode was approximately 20% better than that using the CFE/CB/Pt electrodes.

  17. MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis

    PubMed Central

    Szwedziak, Piotr; Wong, Felix; Schaefer, Kaitlin; Izoré, Thierry; Renner, Lars D; Holmes, Matthew J; Sun, Yingjie; Bisson-Filho, Alexandre W; Walker, Suzanne; Amir, Ariel; Löwe, Jan

    2018-01-01

    MreB is essential for rod shape in many bacteria. Membrane-associated MreB filaments move around the rod circumference, helping to insert cell wall in the radial direction to reinforce rod shape. To understand how oriented MreB motion arises, we altered the shape of Bacillus subtilis. MreB motion is isotropic in round cells, and orientation is restored when rod shape is externally imposed. Stationary filaments orient within protoplasts, and purified MreB tubulates liposomes in vitro, orienting within tubes. Together, this demonstrates MreB orients along the greatest principal membrane curvature, a conclusion supported with biophysical modeling. We observed that spherical cells regenerate into rods in a local, self-reinforcing manner: rapidly propagating rods emerge from small bulges, exhibiting oriented MreB motion. We propose that the coupling of MreB filament alignment to shape-reinforcing peptidoglycan synthesis creates a locally-acting, self-organizing mechanism allowing the rapid establishment and stable maintenance of emergent rod shape. PMID:29469806

  18. An immuno-wall microdevice exhibits rapid and sensitive detection of IDH1-R132H mutation specific to grade II and III gliomas

    NASA Astrophysics Data System (ADS)

    Yamamichi, Akane; Kasama, Toshihiro; Ohka, Fumiharu; Suzuki, Hiromichi; Kato, Akira; Motomura, Kazuya; Hirano, Masaki; Ranjit, Melissa; Chalise, Lushun; Kurimoto, Michihiro; Kondo, Goro; Aoki, Kosuke; Kaji, Noritada; Tokeshi, Manabu; Matsubara, Toshio; Senga, Takeshi; Kaneko, Mika K.; Suzuki, Hidenori; Hara, Masahito; Wakabayashi, Toshihiko; Baba, Yoshinobu; Kato, Yukinari; Natsume, Atsushi

    2016-01-01

    World Health Organization grade II and III gliomas most frequently occur in the central nervous system (CNS) in adults. Gliomas are not circumscribed; tumor edges are irregular and consist of tumor cells, normal brain tissue, and hyperplastic reactive glial cells. Therefore, the tumors are not fully resectable, resulting in recurrence, malignant progression, and eventual death. Approximately 69-80% of grade II and III gliomas harbor mutations in the isocitrate dehydrogenase 1 gene (IDH1), of which 83-90% are found to be the IDH1-R132H mutation. Detection of the IDH1-R132H mutation should help in the differential diagnosis of grade II and III gliomas from other types of CNS tumors and help determine the boundary between the tumor and normal brain tissue. In this study, we established a highly sensitive antibody-based device, referred to as the immuno-wall, to detect the IDH1-R132H mutation in gliomas. The immuno-wall causes an immunoreaction in microchannels fabricated using a photo-polymerizing polymer. This microdevice enables the analysis of the IDH1 status with a small sample within 15 min with substantially high sensitivity. Our results suggested that 10% content of the IDH1-R132H mutation in a sample of 0.33 μl volume, with 500 ng protein, or from 500 cells is theoretically sufficient for the analysis. The immuno-wall device will enable the rapid and highly sensitive detection of the IDH1-R132H mutation in routine clinical practice.

  19. An immuno-wall microdevice exhibits rapid and sensitive detection of IDH1-R132H mutation specific to grade II and III gliomas

    PubMed Central

    Yamamichi, Akane; Kasama, Toshihiro; Ohka, Fumiharu; Suzuki, Hiromichi; Kato, Akira; Motomura, Kazuya; Hirano, Masaki; Ranjit, Melissa; Chalise, Lushun; Kurimoto, Michihiro; Kondo, Goro; Aoki, Kosuke; Kaji, Noritada; Tokeshi, Manabu; Matsubara, Toshio; Senga, Takeshi; Kaneko, Mika K.; Suzuki, Hidenori; Hara, Masahito; Wakabayashi, Toshihiko; Baba, Yoshinobu; Kato, Yukinari; Natsume, Atsushi

    2016-01-01

    Abstract World Health Organization grade II and III gliomas most frequently occur in the central nervous system (CNS) in adults. Gliomas are not circumscribed; tumor edges are irregular and consist of tumor cells, normal brain tissue, and hyperplastic reactive glial cells. Therefore, the tumors are not fully resectable, resulting in recurrence, malignant progression, and eventual death. Approximately 69–80% of grade II and III gliomas harbor mutations in the isocitrate dehydrogenase 1 gene (IDH1), of which 83–90% are found to be the IDH1-R132H mutation. Detection of the IDH1-R132H mutation should help in the differential diagnosis of grade II and III gliomas from other types of CNS tumors and help determine the boundary between the tumor and normal brain tissue. In this study, we established a highly sensitive antibody-based device, referred to as the immuno-wall, to detect the IDH1-R132H mutation in gliomas. The immuno-wall causes an immunoreaction in microchannels fabricated using a photo-polymerizing polymer. This microdevice enables the analysis of the IDH1 status with a small sample within 15 min with substantially high sensitivity. Our results suggested that 10% content of the IDH1-R132H mutation in a sample of 0.33 μl volume, with 500 ng protein, or from 500 cells is theoretically sufficient for the analysis. The immuno-wall device will enable the rapid and highly sensitive detection of the IDH1-R132H mutation in routine clinical practice. PMID:27877908

  20. An immuno-wall microdevice exhibits rapid and sensitive detection of IDH1-R132H mutation specific to grade II and III gliomas.

    PubMed

    Yamamichi, Akane; Kasama, Toshihiro; Ohka, Fumiharu; Suzuki, Hiromichi; Kato, Akira; Motomura, Kazuya; Hirano, Masaki; Ranjit, Melissa; Chalise, Lushun; Kurimoto, Michihiro; Kondo, Goro; Aoki, Kosuke; Kaji, Noritada; Tokeshi, Manabu; Matsubara, Toshio; Senga, Takeshi; Kaneko, Mika K; Suzuki, Hidenori; Hara, Masahito; Wakabayashi, Toshihiko; Baba, Yoshinobu; Kato, Yukinari; Natsume, Atsushi

    2016-01-01

    World Health Organization grade II and III gliomas most frequently occur in the central nervous system (CNS) in adults. Gliomas are not circumscribed; tumor edges are irregular and consist of tumor cells, normal brain tissue, and hyperplastic reactive glial cells. Therefore, the tumors are not fully resectable, resulting in recurrence, malignant progression, and eventual death. Approximately 69-80% of grade II and III gliomas harbor mutations in the isocitrate dehydrogenase 1 gene ( IDH1 ), of which 83-90% are found to be the IDH1-R132H mutation. Detection of the IDH1-R132H mutation should help in the differential diagnosis of grade II and III gliomas from other types of CNS tumors and help determine the boundary between the tumor and normal brain tissue. In this study, we established a highly sensitive antibody-based device, referred to as the immuno-wall, to detect the IDH1-R132H mutation in gliomas. The immuno-wall causes an immunoreaction in microchannels fabricated using a photo-polymerizing polymer. This microdevice enables the analysis of the IDH1 status with a small sample within 15 min with substantially high sensitivity. Our results suggested that 10% content of the IDH1-R132H mutation in a sample of 0.33 μl volume, with 500 ng protein, or from 500 cells is theoretically sufficient for the analysis. The immuno-wall device will enable the rapid and highly sensitive detection of the IDH1-R132H mutation in routine clinical practice.

  1. [Thrombocytopenia induced by type II heparin and myocardial infarct: 2 case reports].

    PubMed

    Antonijević, Nabojsa; Stanojević, Milica; Perunicić, Jovan; Djokić, Milan; Miković, Danijla; Kovac, Mirjana; Miljić, Predrag; Milosević, Rajko; Terzić, Branka; Vasiljević, Zorana

    2004-01-01

    Heparin-induced thrombocytopenia (HIT) type II is an acquired thrombophylic state and life-threatening immune complication of a heparin treatment mainly clinically manifested by marked thrombocytopenia, frequently by arterial and venous thrombosis, and sometimes by skin changes. Functional assay as heparin aggregation test and 14C-serotonin release assays are used in diagnostics as well as antigen assays of which detection tests for heparin-platelet factor 4 antibodies are most frequently used. Considering the fact that there is no single reliable assays for HIT II detection available, sometimes it is necessary to combine both of the above-mentioned types of assays. We present the case of a 57-year-old patient with an acute anterior myocardial infarction with cardiac insufficiency of III and IV degree according to Killip, recurrent ventricular fibrillation and diabetes mellitus type II developing thrombocytopenia to 37 x 10(9)/l accompanied with typical skin changes. The diagnosis was confirmed by the heparin aggregation test. The second patient aged 70 undergoing the treatment for anteroseptal myocardial infarction and reinfarction of the inferior wall complicated by a cardiogenic shock and acute right bundle branch block developed thrombocytopenia 59 x 10(9)/l on the third day of the heparin therapy, with the remark that he had received a heparin therapy during the first infarction as well. Antibodies against heparin-platelet factor 4 were detected by particle gel ID-HPF4 immuno-assay. In both patients, the disease had a lethal outcome despite all then available therapeutic measures applied. Further on we discuss advantages of certain types of tests, a therapy doctrine, need for urgent therapeutic measures, inclusive of the administration of antithrombins, avoidance of harmful procedures like low-molecular-weight heparins administration and prophylactic platelet transfusion as well as preventive measures.

  2. The type II cGMP dependent protein kinase regulates GluA1 levels at the plasma membrane of developing cerebellar granule cells

    PubMed Central

    Incontro, Salvatore; Ciruela, Francisco; Ziff, Edward; Hofmann, Franz; Sánchez-Prieto, José; Torres, Magdalena

    2014-01-01

    Trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is regulated by specific interactions with other proteins and by post-translational mechanisms, such as phosphorylation. We have found that the type II cGMP-dependent protein kinase (cGKII) phosphorylates GluA1 (formerly GluR1) at S845, augmenting the surface expression of AMPARs at both synaptic and extrasynaptic sites. Activation of cGKII by 8-Br-cGMP enhances the surface expression of GluA1, whereas its inhibition or suppression effectively diminished the expression of this protein at the cell surface. In granule cells, NMDA receptor activation (NMDAR) stimulates nitric oxide and cGMP production, which in turn activates cGKII and induces the phosphorylation of GluA1, promoting its accumulation in the plasma membrane. GluA1 is mainly incorporated into calcium permeable AMPARs as exposure to 8-Br-cGMP or NMDA activation enhanced AMPA-elicited calcium responses that are sensitive to NASPM inhibition. We summarize evidence for an increase of calcium permeable AMPA receptors downstream of NMDA receptor activation that might be relevant for granule cell development and plasticity. PMID:23545413

  3. An updated Type II supernova Hubble diagram

    NASA Astrophysics Data System (ADS)

    Gall, E. E. E.; Kotak, R.; Leibundgut, B.; Taubenberger, S.; Hillebrandt, W.; Kromer, M.; Burgett, W. S.; Chambers, K.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Kudritzki, R. P.; Magnier, E. A.; Metcalfe, N.; Smith, K.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.

    2018-03-01

    We present photometry and spectroscopy of nine Type II-P/L supernovae (SNe) with redshifts in the 0.045 ≲ z ≲ 0.335 range, with a view to re-examining their utility as distance indicators. Specifically, we apply the expanding photosphere method (EPM) and the standardized candle method (SCM) to each target, and find that both methods yield distances that are in reasonable agreement with each other. The current record-holder for the highest-redshift spectroscopically confirmed supernova (SN) II-P is PS1-13bni (z = 0.335-0.012+0.009), and illustrates the promise of Type II SNe as cosmological tools. We updated existing EPM and SCM Hubble diagrams by adding our sample to those previously published. Within the context of Type II SN distance measuring techniques, we investigated two related questions. First, we explored the possibility of utilising spectral lines other than the traditionally used Fe IIλ5169 to infer the photospheric velocity of SN ejecta. Using local well-observed objects, we derive an epoch-dependent relation between the strong Balmer line and Fe IIλ5169 velocities that is applicable 30 to 40 days post-explosion. Motivated in part by the continuum of key observables such as rise time and decline rates exhibited from II-P to II-L SNe, we assessed the possibility of using Hubble-flow Type II-L SNe as distance indicators. These yield similar distances as the Type II-P SNe. Although these initial results are encouraging, a significantly larger sample of SNe II-L would be required to draw definitive conclusions. Tables A.1, A.3, A.5, A.7, A.9, A.11, A.13, A.15 and A.17 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A25

  4. Numerical analysis on centrifugal compressor with membrane type dryer

    NASA Astrophysics Data System (ADS)

    Razali, M. A.; Zulkafli, M. F.; Mat Isa, N.; Subari, Z.

    2017-09-01

    Moisture content is a common phenomenon in industrial processes especially in oil and gas industries. This contaminant has a lot of disadvantages which can lead to mechanical failure DEC (Deposition, Erosion & Corrosion) problems. To overcome DEC problem, this study proposed to design a centrifugal compressor with a membrane type dryer to reduce moisture content of a gas. The effectiveness of such design has been analyzed in this study using Computational Fluid Dynamics (CFD) approach. Numerical scheme based on multiphase flow technique is used in ANSYS Fluent software to evaluate the moisture content of the gas. Through this technique, two kind of centrifugal compressor, with and without membrane type dryer has been tested. The results show that the effects of pressure on dew point temperature of the gas change the composition of its moisture content, where high value lead more condensation to occur. However, with the injection of cool dry gas through membrane type dryer in the centrifugal compressor, the pressure and temperature of moisture content as well as mass fraction of H2O in centrifugal compressor show significant reduction.

  5. Molecular Architecture of Plant Thylakoids under Physiological and Light Stress Conditions: A Study of Lipid–Light-Harvesting Complex II Model Membranes[C][W

    PubMed Central

    Janik, Ewa; Bednarska, Joanna; Zubik, Monika; Puzio, Michal; Luchowski, Rafal; Grudzinski, Wojciech; Mazur, Radoslaw; Garstka, Maciej; Maksymiec, Waldemar; Kulik, Andrzej; Dietler, Giovanni; Gruszecki, Wieslaw I.

    2013-01-01

    In this study, we analyzed multibilayer lipid-protein membranes composed of the photosynthetic light-harvesting complex II (LHCII; isolated from spinach [Spinacia oleracea]) and the plant lipids monogalcatosyldiacylglycerol and digalactosyldiacylglycerol. Two types of pigment-protein complexes were analyzed: those isolated from dark-adapted leaves (LHCII) and those from leaves preilluminated with high-intensity light (LHCII-HL). The LHCII-HL complexes were found to be partially phosphorylated and contained zeaxanthin. The results of the x-ray diffraction, infrared imaging microscopy, confocal laser scanning microscopy, and transmission electron microscopy revealed that lipid-LHCII membranes assemble into planar multibilayers, in contrast with the lipid-LHCII-HL membranes, which form less ordered structures. In both systems, the protein formed supramolecular structures. In the case of LHCII-HL, these structures spanned the multibilayer membranes and were perpendicular to the membrane plane, whereas in LHCII, the structures were lamellar and within the plane of the membranes. Lamellar aggregates of LHCII-HL have been shown, by fluorescence lifetime imaging microscopy, to be particularly active in excitation energy quenching. Both types of structures were stabilized by intermolecular hydrogen bonds. We conclude that the formation of trans-layer, rivet-like structures of LHCII is an important determinant underlying the spontaneous formation and stabilization of the thylakoid grana structures, since the lamellar aggregates are well suited to dissipate excess energy upon overexcitation. PMID:23898030

  6. Angiotensin II type 1 and type 2 receptor-induced cell signaling.

    PubMed

    Akazawa, Hiroshi; Yano, Masamichi; Yabumoto, Chizuru; Kudo-Sakamoto, Yoko; Komuro, Issei

    2013-01-01

    The octapeptide angiotensin II (Ang II) plays a homeostatic role in the regulation of blood pressure and water and electrolyte balance, and also contributes to the progression of cardiovascular remodeling. Ang II activates Ang II type 1 (AT1) receptor and type 2 (AT2) receptor, both of which belong to the seven-transmembrane, G protein-coupled receptor family. Most of the actions of Ang II such as promotion of cellular prolifaration, hypertrophy, and fibrosis are mediated by AT1 receptor. However, in some pathological situations, AT2 receptor shows an increase in tissue expression and functions to antagonize the actions induced by AT1 receptor. Recent studies have advanced our understanding of the molecular mechanisms underlying receptor activation and signal transduction of AT1 and AT2 receptor in the cardiovascular system.

  7. Moderate KMnO4-Fe(II) pre-oxidation for alleviating ultrafiltration membrane fouling by algae during drinking water treatment.

    PubMed

    Ma, Baiwen; Qi, Jing; Wang, Xing; Ma, Min; Miao, Shiyu; Li, Wenjiang; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2018-05-21

    Although ultrafiltration (UF) membranes are highly beneficial for removing algae, the removal process causes serious UF membrane fouling. To avoid the unfavorable effects of algal cells that have been damaged by oxidants, our previous study reported a novel, moderate pre-oxidation method (KMnO 4 -Fe(II) process) that aimed to achieve a balance between the release of intracellular organic matter and enhanced algae removal. This study further investigated the performance of a UF membrane with KMnO 4 -Fe(II) pretreatment in the presence of algae-laden reservoir water after a long running time. We found that algae could be completely removed, membrane fouling was significantly alleviated, and the overall performance was much better than that of Fe(III) coagulation alone. The transmembrane pressure (TMP) during Fe(III) coagulation increased to 42.8 kPa, however, that of the KMnO 4 -Fe(II) process only increased to 25.1 kPa for after running for 90 d. The slower transmembrane pressure was attributed to the larger floc size, higher surface activity, and inactivation of algae. Although there was little effect on microorganism development, lower microorganism abundance (20.7%) was observed during the KMnO 4 -Fe(II) process than during coagulation alone (44.9%) due to the release of extracellular polymeric substances. We also found that the floc cake layer was easily removed by washing, and many of the original membrane pores were clearly observed. Further analysis demonstrated that the effluent quality was excellent, especially its turbidity, chromaticity, and Mn and Fe concentrations. Based on the outstanding UF membrane performance, it may be concluded that the KMnO 4 -Fe(II) process exhibits considerable potential for application in the treatment of algae-laden water. Copyright © 2018. Published by Elsevier Ltd.

  8. Laparoscopic excision of an epidermoid cyst arising from the deep abdominal wall.

    PubMed

    Ishikawa, Hajime; Nakai, Takuya; Ueda, Kazuki; Haji, Seiji; Takeyama, Yoshifumi; Ohyanagi, Harumasa

    2009-10-01

    Epidermoid cysts are the most common type of cutaneous cyst. However, their occurrence in the deep abdominal wall has not yet been reported. Here, we present the case of a 60-year-old woman who developed an epidermoid cyst in the deep abdominal wall, which was resected laparoscopically. The patient presented with right upper quadrant abdominal pain on admission to our hospital. Computed tomography revealed cholecystolithiasis and an incidentally identified well-defined hypoattenuating mass (62 x 47 x 65 mm) in the deep abdominal wall on the left side of the navel. We performed laparoscopic complete resection of the abdominal wall tumor followed by cholecystectomy. The excised specimen was a cyst covered with a smooth thin membrane and contained sludge. Histopathologic examination revealed an epidermoid cyst. This is a very rare case with no previous reports on a similar type of epidermoid cyst.

  9. Carbon nanotube embedded PVDF membranes: Effect of solvent composition on the structural morphology for membrane distillation

    NASA Astrophysics Data System (ADS)

    Mapunda, Edgar C.; Mamba, Bhekie B.; Msagati, Titus A. M.

    2017-08-01

    Rapid population increase, growth in industrial and agricultural sectors and global climate change have added significant pressure on conventional freshwater resources. Tapping freshwater from non-conventional water sources such as desalination and wastewater recycling is considered as sustainable alternative to the fundamental challenges of water scarcity. However, affordable and sustainable technologies need to be applied for the communities to benefit from the treatment of non-conventional water source. Membrane distillation is a potential desalination technology which can be used sustainably for this purpose. In this work multi-walled carbon nanotube embedded polyvinylidene fluoride membranes for application in membrane distillation desalination were prepared via non-solvent induced phase separation method. The casting solution was prepared using mixed solvents (N, N-dimethylacetamide and triethyl phosphate) at varying ratios to study the effect of solvent composition on membrane morphological structures. Membrane morphological features were studied using a number of techniques including scanning electron microscope, atomic force microscope, SAXSpace tensile strength analysis, membrane thickness, porosity and contact angle measurements. It was revealed that membrane hydrophobicity, thickness, tensile strength and surface roughness were increasing as the composition of N, N-dimethylacetamide in the solvent was increasing with maximum values obtained between 40 and 60% N, N-dimethylacetamide. Internal morphological structures were changing from cellular structures to short finger-like and sponge-like pores and finally to large macro void type of pores when the amount of N, N-dimethylacetamide in the solvent was changed from low to high respectively. Multi-walled carbon nanotube embedded polyvinylidene fluoride membranes of desired morphological structures and physical properties can be synthesized by regulating the composition of solvents used to prepare the

  10. Type II Secretion Substrates of Legionella pneumophila Translocate Out of the Pathogen-Occupied Vacuole via a Semipermeable Membrane.

    PubMed

    Truchan, Hilary K; Christman, Harry D; White, Richard C; Rutledge, Nakisha S; Cianciotto, Nicholas P

    2017-06-20

    Legionella pneumophila replicates in macrophages in a host-derived phagosome, termed the Legionella- containing vacuole (LCV). While the translocation of type IV secretion (T4S) effectors into the macrophage cytosol is well established, the location of type II secretion (T2S) substrates in the infected host cell is unknown. Here, we show that the T2S substrate ProA, a metalloprotease, translocates into the cytosol of human macrophages, where it associates with the LCV membrane (LCVM). Translocation is detected as early as 10 h postinoculation (p.i.), which is approximately the midpoint of the intracellular life cycle. However, it is detected as early as 6 h p.i. if ProA is hyperexpressed, indicating that translocation depends on the timing of ProA expression and that any other factors necessary for translocation are in place by that time point. Translocation occurs with all L. pneumophila strains tested and in amoebae, natural hosts for L. pneumophila It was absent in murine bone marrow-derived macrophages and murine macrophage cell lines. The ChiA chitinase also associated with the cytoplasmic face of the LCVM at 6 h p.i. and in a T2S-dependent manner. Galectin-3 and galectin-8, eukaryotic proteins whose localization is influenced by damage to host membranes, appeared within the LCV of infected human but not murine macrophages beginning at 6 h p.i. Thus, we hypothesize that ProA and ChiA are first secreted into the vacuolar lumen by the activity of the T2S and subsequently traffic into the macrophage cytosol via a novel mechanism that involves a semipermeable LCVM. IMPORTANCE Infection of macrophages and amoebae plays a central role in the pathogenesis of L. pneumophila , the agent of Legionnaires' disease. We have previously demonstrated that the T2S system of L. pneumophila greatly contributes to intracellular infection. However, the location of T2S substrates within the infected host cell is unknown. This report presents the first evidence of a L

  11. Comparing corn types for differences in cell wall characteristics and p-coumaroylation of lignin.

    PubMed

    Hatfield, Ronald D; Chaptman, Ann K

    2009-05-27

    This study was undertaken to compare cell wall characteristics including levels of p-coumarate (pCA) and lignin in corn (Zea mays L.) types. Five different types of corn, four commercial and Teosinte, were grown in the greenhouse in individual pots. For each corn type replicate stems were harvested at tassel emergence. Tissues for cell wall analysis were harvested from stems (separated into rind and pith tissues) and roots. Stem cell wall characteristics across the different corn types were similar for total neutral sugars, total uronosyls, lignin, and phenolic acids. However, the neutral sugar composition of root cell walls was markedly different, with high levels of galactose and arabinose. Levels of pCA in the different tissues ranged from 13.8 to 33.1 mg g(-1) of CW depending upon the type of tissue. There was no evidence that pCA was incorporated into cell walls attached to arabinoxylans. Lignin levels were similar within a given tissue, with pith ranging from 86.1 to 132.0 mg g(-1) of CW, rind from 178.4 to 236.6 mg g(-1) of CW, and roots from 216.5 to 242.6 mg g(-1) of CW. The higher values for lignins in root tissue may be due to suberin remaining in the acid-insoluble residue, forming Klason lignins. With the exception of root tissues, higher pCA levels accompanied higher lignin levels. This may indicate a potential role of pCA aiding lignin formation in corn cell walls during the lignification process.

  12. Analysis of type II and type III solar radio bursts

    NASA Astrophysics Data System (ADS)

    Wijesekera, J. V.; Jayaratne, K. P. S. C.; Adassuriya, J.

    2018-04-01

    Solar radio burst is an arrangement of a frequency space that variation with time. Most of radio burst can be identified in low frequency range such as below 200 MHz and depending on frequencies. Solar radio bursts were the first phenomenon identified in the field of radio astronomy field. Solar radio frequency range is from 70 MHz to 2.2 GHz. Most of the radio burst can be identified in a low frequency range such as below 200 MHz. Properties of low-frequency radio were analyzed this research. There are two types of solar radio bursts were analyzed, named as type II and type III radio bursts. Exponential decay type could be seen in type II, and a linear could be indicated in type III solar radio bursts. The results of the drift rate graphs show the values of each chosen solar radio burst. High drift rate values can be seen in type III solar flares whereas low to medium drift rate values can be seen in type II solar flares. In the second part of the research the Newkirk model electron density model was used to estimate the drift velocities of the solar radio bursts. Although the special origin of the solar radio burst is not known clearly we assumed. The chosen solar radio bursts were originated within the solar radius of 0.9 - 1.3 range from the photosphere. We used power low in the form of (x) = A × 10‑bx were that the electron density related to the height of the solar atmosphere. The calculation of the plasma velocity of each solar radio burst was done using the electron density model and drift rates. Therefore velocity of chosen type II solar radio bursts indicates low velocities. The values are 233.2499 Km s‑1, 815.9522 Km s‑1 and 369.5425 Km s‑1. Velocity of chosen type III solar radio bursts were 1443.058 Km s‑1and 1205.05Km s ‑1.

  13. Type II Cepheids and Related Variables

    NASA Astrophysics Data System (ADS)

    Schmidt, Edward G.

    2008-08-01

    While type II Cepheids have considerable potential to contribute to our knowledge of a number of areas of astrophysics, their usefulness is compromised by the relatively small number of such stars known. I have undertaken a project to identify more of them in two large area sky surveys, and to determine some of the basic properties of the stars which are confirmed as type II Cepheids. In the course of this project a significant number of small amplitude stars which appear to be closely related to the type II Cepheids have been identified. The nature of these objects is also being investigated. The photometry portion of the project is complete and spectra were obtained for about half of the stars with the GCAM spectrograph on the 2.1-m telescope. This proposal requests time to obtain spectra for about 2/3 of the remaining stars.

  14. Resonant modal group theory of membrane-type acoustical metamaterials for low-frequency sound attenuation

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng

    2015-09-01

    In order to overcome the influence of the structural resonance on the continuous structures and obtain a lightweight thin-layer structure which can effectively isolate the low-frequency noises, an elastic membrane structure was proposed. In the low-frequency range below 500 Hz, the sound transmission loss (STL) of this membrane type structure is greatly higher than that of the current sound insulation material EVA (ethylene-vinyl acetate copo) of vehicle, so it is possible to replace the EVA by the membrane-type metamaterial structure in practice engineering. Based on the band structure, modal shapes, as well as the sound transmission simulation, the sound insulation mechanism of the designed membrane-type acoustic metamaterials was analyzed from a new perspective, which had been validated experimentally. It is suggested that in the frequency range above 200 Hz for this membrane-mass type structure, the sound insulation effect was principally not due to the low-level locally resonant mode of the mass block, but the continuous vertical resonant modes of the localized membrane. So based on such a physical property, a resonant modal group theory is initially proposed in this paper. In addition, the sound insulation mechanism of the membrane-type structure and thin plate structure were combined by the membrane/plate resonant theory.

  15. Acoustic Type-II Weyl Nodes from Stacking Dimerized Chains

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Zhang, Baile

    2016-11-01

    Lorentz-violating type-II Weyl fermions, which were missed in Weyl's prediction of nowadays classified type-I Weyl fermions in quantum field theory, have recently been proposed in condensed matter systems. The semimetals hosting type-II Weyl fermions offer a rare platform for realizing many exotic physical phenomena that are different from type-I Weyl systems. Here we construct the acoustic version of a type-II Weyl Hamiltonian by stacking one-dimensional dimerized chains of acoustic resonators. This acoustic type-II Weyl system exhibits distinct features in a finite density of states and unique transport properties of Fermi-arc-like surface states. In a certain momentum space direction, the velocity of these surface states is determined by the tilting direction of the type-II Weyl nodes rather than the chirality dictated by the Chern number. Our study also provides an approach of constructing acoustic topological phases at different dimensions with the same building blocks.

  16. Headache and Decompression Sickness: Type I or Type II?

    DTIC Science & Technology

    2001-06-01

    criteria for Type I instead of Type II DCS. This includes no clear alternative diagnosis, a localized headache along the suture, and no nerologic findings...page survey. Here, demographic information, exposure data, predisposing factors, symptom onset, symptoms and signs, diagnosis, disease progression

  17. [Proposal for the classification of the periprosthetic membrane from loosened hip and knee endoprostheses].

    PubMed

    Morawietz, L; Gehrke, Th; Classen, R-A; Barden, B; Otto, M; Hansen, T; Aigner, Th; Stiehl, P; Neidel, J; Schröder, J H; Frommelt, L; Schubert, Th; Meyer-Scholten, C; König, A; Ströbel, Ph; Rader, Ch P; Kirschner, S; Lintner, F; Rüther, W; Skwara, A; Bos, I; Kriegsmann, J; Krenn, V

    2004-09-01

    After 10 years, loosening of total joint endoprostheses occurs in about 3 to 10 percent of all patients, requiring elaborate revision surgery. A periprosthetic membrane is routinely found between bone and loosened prosthesis. Further histomorphological examination allows determination of the etiology of the loosening process. Aim of this study is the introduction of clearly defined histopathological criteria for a standardized evaluation of the periprosthetic membrane. Based on histomorphological criteria and polarized light microscopy, four types of the periprosthetic membrane were defined: periprosthetic membrane of wear particle type (type I), periprosthetic membrane of infectious type (type II), periprosthetic membrane of combined type (type III), periprosthetic membrane of indifferent type (type IV). Periprosthetic membranes of 268 patients were analyzed according to the defined criteria. The correlation between histopathological and microbiological diagnosis was high (89%, p<0,001), the inter-observer reproducibility was sufficient (95%). This classification system enables a standardized diagnostic procedure and therefore is a basis for further studies concerning the etiology of and pathogenesis of prosthesis loosening.

  18. Lamb-type waves generated by a cylindrical bubble oscillating between two planar elastic walls

    PubMed Central

    Mekki-Berrada, F.; Thibault, P.; Marmottant, P.

    2016-01-01

    The volume oscillation of a cylindrical bubble in a microfluidic channel with planar elastic walls is studied. Analytical solutions are found for the bulk scattered wave propagating in the fluid gap and the surface waves of Lamb-type propagating at the fluid–solid interfaces. This type of surface wave has not yet been described theoretically. A dispersion equation for the Lamb-type waves is derived, which allows one to evaluate the wave speed for different values of the channel height h. It is shown that for h<λt, where λt is the wavelength of the transverse wave in the walls, the speed of the Lamb-type waves decreases with decreasing h, while for h on the order of or greater than λt, their speed tends to the Scholte wave speed. The solutions for the wave fields in the elastic walls and in the fluid are derived using the Hankel transforms. Numerical simulations are carried out to study the effect of the surface waves on the dynamics of a bubble confined between two elastic walls. It is shown that its resonance frequency can be up to 50% higher than the resonance frequency of a similar bubble confined between two rigid walls. PMID:27274695

  19. Enhanced Materials Based on Submonolayer Type-II Quantum Dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamargo, Maria C; Kuskovsky, Igor L.; Meriles, Carlos

    2017-04-15

    We have investigated a nanostructured material known as sub-monolayer type-II QDs, made from wide bandgap II-VI semiconductors. Our goal is to understand and exploit their tunable optical and electrical properties by taking advantage of the type-II band alignment and quantum confinement effects. Type-II ZnTe quantum dots (QDs) in a ZnSe host are particularly interesting because of their relatively large valence band and conduction band offsets. In the current award we have developed new materials based on sub-monolayer type-II QDs that may be advantageous for photovoltaic and spintronics applications. We have also expanded the structural characterization of these materials by refiningmore » the X-ray diffraction methodologies needed to investigate them. In particular, we have 1) demonstrated ZnCdTe/ZnCdSe type-II QDs materials that have ideal properties for the development of novel high efficiency “intermediate band solar cells”, 2) we developed a comprehensive approach to describe and model the growth of these ultra-small type-II QDs, 3) analysis of the evolution of the photoluminescence (PL) emission, combined with other characterization probes allowed us to predict the size and density of the QDs as a function of the growth conditions, 4) we developed and implemented novel sophisticated X-ray diffraction techniques from which accurate size and shape of the buried type-II QDs could be extracted, 5) a correlation of the shape anisotropy with polarization dependent PL was observed, confirming the QDs detailed shape and providing insight about the effects of this shape anisotropy on the physical properties of the type-II QD systems, and 6) a detailed “time-resolved Kerr rotation” investigation has led to the demonstration of enhanced electron spin lifetimes for the samples with large densities of type-II QDs and an understanding of the interplay between the QDs and Te-isoelectroic centers, a defect that forms in the spacer layers that separate the QDs.« less

  20. Contractility in type III cochlear fibrocytes is dependent on non-muscle myosin II and intercellular gap junctional coupling.

    PubMed

    Kelly, John J; Forge, Andrew; Jagger, Daniel J

    2012-08-01

    The cochlear spiral ligament is a connective tissue that plays diverse roles in normal hearing. Spiral ligament fibrocytes are classified into functional sub-types that are proposed to carry out specialized roles in fluid homeostasis, the mediation of inflammatory responses to trauma, and the fine tuning of cochlear mechanics. We derived a secondary sub-culture from guinea pig spiral ligament, in which the cells expressed protein markers of type III or "tension" fibrocytes, including non-muscle myosin II (nmII), α-smooth muscle actin (αsma), vimentin, connexin43 (cx43), and aquaporin-1. The cells formed extensive stress fibers containing αsma, which were also associated intimately with nmII expression, and the cells displayed the mechanically contractile phenotype predicted by earlier modeling studies. cx43 immunofluorescence was evident within intercellular plaques, and the cells were coupled via dye-permeable gap junctions. Coupling was blocked by meclofenamic acid (MFA), an inhibitor of cx43-containing channels. The contraction of collagen lattice gels mediated by the cells could be prevented reversibly by blebbistatin, an inhibitor of nmII function. MFA also reduced the gel contraction, suggesting that intercellular coupling modulates contractility. The results demonstrate that these cells can impart nmII-dependent contractile force on a collagenous substrate, and support the hypothesis that type III fibrocytes regulate tension in the spiral ligament-basilar membrane complex, thereby determining auditory sensitivity.

  1. On North wall in background lead type faces and storage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    On North wall in background lead type faces and storage containers, stashed fishing gear, always kept in readiness, shop also sold fishing tackle - H. Goaziou Printshop, 807 Fallowfield Avenue, Charleroi, Washington County, PA

  2. Modulation of type II TGF-β receptor degradation by integrin-linked kinase.

    PubMed

    Vi, Linda; Boo, Stellar; Sayedyahossein, Samar; Singh, Randeep K; McLean, Sarah; Di Guglielmo, Gianni M; Dagnino, Lina

    2015-03-01

    Cutaneous responses to injury, infection, and tumor formation involve the activation of resident dermal fibroblasts and subsequent transition to myofibroblasts. The key for induction of myofibroblast differentiation is the activation of transforming growth factor-β (TGF-β) receptors and stimulation of integrins and their associated proteins, including integrin-linked kinase (ILK). Cross-talk processes between TGF-β and ILK are crucial for myofibroblast formation, as ILK-deficient dermal fibroblasts exhibit impaired responses to TGF-β receptor stimulation. We now show that ILK associates with type II TGF-β receptors (TβRII) in ligand- and receptor kinase activity-independent manners. In cells with targeted Ilk gene inactivation, cellular levels of TβRII are decreased, through mechanisms that involve enhanced ubiquitination and proteasomal degradation. Partitioning of TGF-β receptors into membrane has been linked to proteasome-dependent receptor degradation. We found that interfering with membrane raft formation in ILK-deficient cells restored TβRII levels and signaling. These observations support a model whereby ILK functions in fibroblasts to direct TβRII away from degradative pathways during their differentiation into myofibroblasts.

  3. Accentuated hyperparathyroidism in type II Bartter syndrome.

    PubMed

    Landau, Daniel; Gurevich, Evgenia; Sinai-Treiman, Levana; Shalev, Hannah

    2016-07-01

    Bartter syndrome (BS) may be associated with different degrees of hypercalciuria, but marked parathyroid hormone (PTH) abnormalities have not been described. We compared clinical and laboratory data of patients with either ROMK-deficient type II BS (n = 14) or Barttin-deficient type IV BS (n = 20). Only BS-IV patients remained mildly hypokalemic in spite of a higher need for potassium supplementation. Estimated glomerular filtration rate (eGFR) was mildly decreased in only four BS-IV patients. Average PTH values were significantly higher in BS-II (160.6 ± 85.8 vs. 92.5 ± 48 pg/ml in BS-IV, p = 0.006). In both groups, there was a positive correlation between age and log(PTH). Levels of 25(OH) vitamin D were not different. Total serum calcium was lower (within normal limits) and age-related serum phosphate (Pi)-SDS was increased in BS-II (1.19 ± 0.71 vs. 0.01 ± 1.04 in BS-IV, p < 0.001). The GFR threshold for Pi reabsorption was higher in BS-II (5.63 ± 1.25 vs. 4.36 ± 0.98, p = 0.002). Spot urine calcium/creatinine ratio and nephrocalcinosis rate (100 vs. 16 %) were higher in the BS-II group. PTH, serum Pi levels, and urinary threshold for Pi reabsorption are significantly elevated in type II vs. type IV BS, suggesting a PTH resistance state. This may be a response to more severe long-standing hypercalciuria, leading to a higher rate of nephrocalcinosis in BS-II.

  4. Arabidopsis Type II Phosphatidylinositol 4-Kinase PI4Kγ5 Regulates Auxin Biosynthesis and Leaf Margin Development through Interacting with Membrane-Bound Transcription Factor ANAC078

    PubMed Central

    Tan, Shu-Tang; Xue, Hong-Wei

    2016-01-01

    Normal leaf margin development is important for leaf morphogenesis and contributes to diverse leaf shapes in higher plants. We here show the crucial roles of an atypical type II phosphatidylinositol 4-kinase, PI4Kγ5, in Arabidopsis leaf margin development. PI4Kγ5 presents a dynamics expression pattern along with leaf development and a T-DNA mutant lacking PI4Kγ5, pi4kγ5–1, presents serrated leaves, which is resulted from the accelerated cell division and increased auxin concentration at serration tips. Studies revealed that PI4Kγ5 interacts with and phosphorylates a membrane-bound NAC transcription factor, ANAC078. Previous studies demonstrated that membrane-bound transcription factors regulate gene transcription by undergoing proteolytic process to translocate into nucleus, and ANAC078 undergoes proteolysis by cleaving off the transmembrane region and carboxyl terminal. Western blot analysis indeed showed that ANAC078 deleting of carboxyl terminal is significantly reduced in pi4kγ5–1, indicating that PI4Kγ5 is important for the cleavage of ANAC078. This is consistent with the subcellular localization observation showing that fluorescence by GFP-ANAC078 is detected at plasma membrane but not nucleus in pi4kγ5–1 mutant and that expression of ANAC078 deleting of carboxyl terminal, driven by PI4Kγ5 promoter, could rescue the leaf serration defects of pi4kγ5–1. Further analysis showed that ANAC078 suppresses the auxin synthesis by directly binding and regulating the expression of auxin synthesis-related genes. These results indicate that PI4Kγ5 interacts with ANAC078 to negatively regulate auxin synthesis and hence influences cell proliferation and leaf development, providing informative clues for the regulation of in situ auxin synthesis and cell division, as well as the cleavage and functional mechanism of membrane-bound transcription factors. PMID:27529511

  5. Anomalous Nernst effect in type-II Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Saha, Subhodip; Tewari, Sumanta

    2018-01-01

    Topological Weyl semimetals (WSM), a new state of quantum matter with gapless nodal bulk spectrum and open Fermi arc surface states, have recently sparked enormous interest in condensed matter physics. Based on the symmetry and fermiology, it has been proposed that WSMs can be broadly classified into two types, type-I and type-II Weyl semimetals. While the undoped, conventional, type-I WSMs have point like Fermi surface and vanishing density of states (DOS) at the Fermi energy, the type-II Weyl semimetals break Lorentz symmetry explicitly and have tilted conical spectra with electron and hole pockets producing finite DOS at the Fermi level. The tilted conical spectrum and finite DOS at Fermi level in type-II WSMs have recently been shown to produce interesting effects such as a chiral anomaly induced longitudinal magnetoresistance that is strongly anisotropic in direction and a novel anomalous Hall effect. In this work, we consider the anomalous Nernst effect in type-II WSMs in the absence of an external magnetic field using the framework of semi-classical Boltzmann theory. Based on both a linearized model of time-reversal breaking WSM with a higher energy cut-off and a more realistic lattice model, we show that the anomalous Nernst response in these systems is strongly anisotropic in space, and can serve as a reliable signature of type-II Weyl semimetals in a host of magnetic systems with spontaneously broken time reversal symmetry.

  6. Angiotensin II and its different receptor subtypes in placenta and fetal membranes.

    PubMed

    Kalenga, M K; de Gasparo, M; Thomas, K; de Hertogh, R

    1996-01-01

    The recent discovery of a local renin-angiotensin system in trophoblastic tissues has raised many questions regarding its role in the physiology of normal gestation and its implications in the pathophysiology of hypertension during pregnancy. In this article, the authors first review the most interesting aspects of the chorioplacental renin-angiotensin system, dwelling on the tissue distribution of angiotensin II and its receptor subtypes in the placenta and fetal membranes of different species. The relationship between angiotensin II and other locally synthesized chorioplacental substances is also analysed and the therapeutic implications of phenomena observed in pregnancy-associated hypertension are discussed.

  7. Kidney diseases caused by glomerular basement membrane type IV collagen defects in dogs.

    PubMed

    Lees, George E

    2013-01-01

    To review the pathogenesis, as well as the clinical and pathologic features of canine glomerular diseases caused by genetic type IV collagen defects. Original studies and review articles from human and veterinary medical fields. Presence in glomerular basement membranes (GBM) of a network composed of α3.α4.α5 heterotrimers of type IV collagen is required to maintain structure and function of glomerular capillary walls. Hereditary nephropathy (HN) is the most commonly used name for kidney diseases that occur in dogs due to genetic type IV collagen abnormalities. To date, 4 different collagen IV gene mutations have been identified in dogs with HN; 2 are COL4A5 mutations that cause X-linked HN (XL-HN), and 2 are COL4A4 mutations that cause autosomal recessive HN (AR-HN). Affected males with XL-HN and affected males and females with AR-HN develop juvenile-onset kidney disease manifested by proteinuria typically starting at 3-6 months of age and followed by progressive kidney disease leading to terminal failure usually at 6-24 months of age. Carrier female dogs with XL-HN also develop proteinuria starting at 3-6 months of age, but progressive disease causing kidney failure is uncommon until they are >5 years old. The distinctive pathologic lesions of HN are extensive multilaminar splitting and thickening of the GBM, as demonstrated by electron microscopy, and abnormal type IV collagen α-chain content of basement membranes, as demonstrated by immunolabeling. Identification of the underlying gene mutations has permitted genetic testing and selective breeding practices that currently are minimizing HN in breeds known to be at risk. Canine HN is a rare disease that should be considered whenever a dog exhibits a juvenile-onset kidney disease characterized partly by proteinuria, but highly specialized methods are required to pursue a definitive diagnosis. © Veterinary Emergency and Critical Care Society 2013.

  8. The Dimer Interface of the Membrane Type 1 Matrix Metalloproteinase Hemopexin Domain

    PubMed Central

    Tochowicz, Anna; Goettig, Peter; Evans, Richard; Visse, Robert; Shitomi, Yasuyuki; Palmisano, Ralf; Ito, Noriko; Richter, Klaus; Maskos, Klaus; Franke, Daniel; Svergun, Dmitri; Nagase, Hideaki; Bode, Wolfram; Itoh, Yoshifumi

    2011-01-01

    Homodimerization is an essential step for membrane type 1 matrix metalloproteinase (MT1-MMP) to activate proMMP-2 and to degrade collagen on the cell surface. To uncover the molecular basis of the hemopexin (Hpx) domain-driven dimerization of MT1-MMP, a crystal structure of the Hpx domain was solved at 1.7 Å resolution. Two interactions were identified as potential biological dimer interfaces in the crystal structure, and mutagenesis studies revealed that the biological dimer possesses a symmetrical interaction where blades II and III of molecule A interact with blades III and II of molecule B. The mutations of amino acids involved in the interaction weakened the dimer interaction of Hpx domains in solution, and incorporation of these mutations into the full-length enzyme significantly inhibited dimer-dependent functions on the cell surface, including proMMP-2 activation, collagen degradation, and invasion into the three-dimensional collagen matrix, whereas dimer-independent functions, including gelatin film degradation and two-dimensional cell migration, were not affected. These results shed light on the structural basis of MT1-MMP dimerization that is crucial to promote cellular invasion. PMID:21193411

  9. A submerged membrane bioreactor with pendulum type oscillation (PTO) for oily wastewater treatment: membrane permeability and fouling control.

    PubMed

    Qin, Lei; Fan, Zheng; Xu, Lusheng; Zhang, Guoliang; Wang, Guanghui; Wu, Dexin; Long, Xuwei; Meng, Qin

    2015-05-01

    In this study, a novel submerged membrane bioreactor (SMBR) with pendulum type oscillation (PTO) hollow fiber membrane modules was developed to treat oily wastewater and control the problem of membrane fouling. To assess the potential of PTO membrane modules, the effect of oscillation orientation and frequency on membrane permeability was investigated in detail. The forces exerted on sludge flocs in the oscillating SMBR were analyzed to evaluate the impact of membrane oscillating on the cake layer resistance reduction. Results showed that the optimized PTO SMBR system exhibited 11 times higher membrane permeability and better fouling controllability than the conventional MBR system. By hydrodynamic analysis, it was found that the cooperative effect of bubble-induced turbulence and membrane oscillation in PTO SMBR system generated strong shear stress at liquid-membrane interface in vertical and horizontal direction and effectively hindered the particles from depositing on membrane surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Current Understanding of Usher Syndrome Type II

    PubMed Central

    Yang, Jun; Wang, Le; Song, Hongman; Sokolov, Maxim

    2012-01-01

    Usher syndrome is the most common deafness-blindness caused by genetic mutations. To date, three genes have been identified underlying the most prevalent form of Usher syndrome, the type II form (USH2). The proteins encoded by these genes are demonstrated to form a complex in vivo. This complex is localized mainly at the periciliary membrane complex in photoreceptors and the ankle-link of the stereocilia in hair cells. Many proteins have been found to interact with USH2 proteins in vitro, suggesting that they are potential additional components of this USH2 complex and that the genes encoding these proteins may be the candidate USH2 genes. However, further investigations are critical to establish their existence in the USH2 complex in vivo. Based on the predicted functional domains in USH2 proteins, their cellular localizations in photoreceptors and hair cells, the observed phenotypes in USH2 mutant mice, and the known knowledge about diseases similar to USH2, putative biological functions of the USH2 complex have been proposed. Finally, therapeutic approaches for this group of diseases are now being actively explored. PMID:22201796

  11. Physiological regulation of extracellular matrix collagen and elastin in the arterial wall of rats by noradrenergic tone and angiotensin II.

    PubMed

    Dab, Houcine; Kacem, Kamel; Hachani, Rafik; Dhaouadi, Nadra; Hodroj, Wassim; Sakly, Mohsen; Randon, Jacques; Bricca, Giampiero

    2012-03-01

    The interactions between the effects of the sympathetic nervous system (SNS) and angiotensin II (ANG II) on vascular extracellular matrix (ECM) synthesis were determined in rats. The mRNA and protein content of collagen I, collagen III and elastin in the abdominal aorta (AA) and femoral artery (FA) was investigated in Wistar-Kyoto rats treated for 5 weeks with guanethidine, a sympathoplegic, losartan, an ANG II AT1 receptor (AT1R) blocker, or both. The effects of noradrenaline (NE) and ANG II on collagen III and elastin mRNA, and the receptor involved, were tested in cultured vascular smooth muscle cells (VSMCs) in vitro. Guanethidine increased collagen types I and III and decreased elastin, while losartan had an opposite effect, although without effect on collagen III. The combination of treatments abrogated changes induced by simple treatment with collagen I and elastin, but increased collagen III mRNA in AA and not in FA. NE stimulated collagen III mRNA via β receptors and elastin via α1 and α2 receptors. ANG II stimulated collagen III but inhibited elastin mRNA via AT1R. Overall, SNS and ANG II exert opposite and antagonistic effects on major components of ECM in the vascular wall. This may be of relevance for the choice of a therapeutic strategy in vascular diseases.

  12. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    DOEpatents

    Grigorian, Leonid [Raymond, OH; Hornyak, Louis [Evergreen, CO; Dillon, Anne C [Boulder, CO; Heben, Michael J [Denver, CO

    2008-10-07

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  13. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    DOEpatents

    Grigorian, Leonid; Hornyak, Louis; Dillon, Anne C; Heben, Michael J

    2014-09-23

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  14. Effect of Angiotensin II Type I Receptor Blockade with Valsartan on Carotid Artery Atherosclerosis: A Double Blind Randomized Clinical Trial Comparing Valsartan and Placebo (EFFERVESCENT).

    PubMed

    Ramadan, Ronnie; Dhawan, Saurabh S; Binongo, José Nilo G; Alkhoder, Ayman; Jones, Dean P; Oshinski, John N; Quyyumi, Arshed A

    2016-04-01

    Progression of atherosclerosis is associated with a greater risk for adverse outcomes. Angiotensin II plays a key role in the pathogenesis and progression of atherosclerosis. We aimed to investigate the effects of angiotensin II type-1 receptor blockade with Valsartan on carotid wall atherosclerosis, with the hypothesis that Valsartan will reduce progression of atherosclerosis. Subjects (n = 120) with carotid intima-media thickness >0.65 mm by ultrasound were randomized (2:1) in a double-blind manner to receive either Valsartan or placebo for 2 years. Bilateral T2-weighted black-blood carotid magnetic resonance imaging was performed at baseline, 12 and 24 months. Changes in the carotid bulb vessel wall area and wall thickness were primary endpoints. Secondary endpoints included changes in carotid plaque thickness, plasma levels of aminothiols, C-reactive protein, fibrinogen, and endothelium-dependent and -independent vascular function. Over 2 years, the carotid bulb vessel wall area decreased with Valsartan (-6.7, 95% CI [-11.6, -1.9] mm(2)) but not with placebo (3.4, 95% CI [-2.8, 9.6] mm(2)), P = .01 between groups. Similarly, mean wall thickness decreased with Valsartan (-0.18, 95% CI [-0.30, -0.06] mm), but not with placebo (0.08, 95% CI [-0.07, 0.23] mm), P = .009 between groups. Furthermore, plaque thickness decreased with Valsartan (-0.35, 95% CI [-0.63, -0.08] mm) but was unchanged with placebo (+0.28, 95% CI [-0.11, 0.69] mm), P = .01 between groups. These findings were unaffected by statin therapy or changes in blood pressure. Notably, there were significant improvements in the aminothiol cysteineglutathione disulfide, and trends to improvements in fibrinogen levels and endothelium-independent vascular function. In subjects with carotid wall thickening, angiotensin II type-1 receptor blockade was associated with regression in carotid atherosclerosis. Whether these effects translate into improved outcomes in subjects with subclinical atherosclerosis

  15. Nonlinear convective pulsation models of type II Cepheids

    NASA Astrophysics Data System (ADS)

    Smolec, Radoslaw

    2015-08-01

    We present a grid of nonlinear convective pulsation models of type-II Cepheids: BL Her stars, W Vir stars and RV Tau stars. The models cover a wide range of masses, luminosities, effective temperatures and chemical compositions. The most interesting result is detection of deterministic chaos in the models. Different routes to chaos are detected (period doubling, intermittent route) as well as variety of phenomena intrinsic to chaotic dynamics (periodic islands within chaotic bands, crisis bifurcation, type-I and type-III intermittency). Some of the phenomena (period doubling in BL Her and in RV Tau stars, irregular pulsation of RV Tau stars) are well known in the pulsation of type-II Cepheids. Prospects of discovering the other are briefly discussed. Transition from BL Her type pulsation through W Vir type till RV Tau type is analysed. In the most luminous models a dynamical instability is detected, which indicates that pulsation driven mass loss is important process occurring in type-II Cepheids.

  16. Hypoglycemia in a dog with a leiomyoma of the gastric wall producing an insulin-like growth factor II-like peptide.

    PubMed

    Boari, A; Barreca, A; Bestetti, G E; Minuto, F; Venturoli, M

    1995-06-01

    A 12-year-old mixed-breed male dog was referred to the Clinica Medica Veterinaria of Bologna University for recurrent episodes of seizures due to hypoglycemia with abnormally low plasma insulin levels (18 pmol/l). Resection of a large leiomyoma (780 g) of the gastric wall resulted in a permanent resolution of the hypoglycemic episodes. Insulin-like growth factors I and II (IGF-I and -II) were measured by RIA in serum before and after surgery and in tumor tissue. Results were compared to the serum concentration of 54 normal and to the tissue concentration observed in eight non-hypoglycemic dog gastric wall extracts. Before surgery, circulating immunoreactive IGF-I was 0.92 nmol/l, which is significantly lower than the control values (16.92 +/- 8.44 nmol/l, range 3.53-35.03), while IGF-II was 152 nmol/l, which is significantly higher than the control values (42.21 +/- 3.75, range 31.99-50.74). After surgery, IGF-I increased to 6.80 nmol/l while IGF-II decreased to 45.52 nmol/l. Tumor tissue IGF-II concentration was higher than normal (5.66 nmol/kg tissue as compared to a range in normal gastric wall tissue of 1.14-3.72 nmol/kg), while IGF-I was 0.08 nmol/kg tissue, which is close to the lowest normal value (range in controls, 0.08-1.18 nmol/kg). Partial characterization of IGF-II immunoreactivity extracted from tissue evidenced a molecular weight similar to that of mature IGF-II, thus excluding that peptide released by the tumor is a precursor molecule.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Membrane projection lithography

    DOEpatents

    Burckel, David Bruce; Davids, Paul S; Resnick, Paul J; Draper, Bruce L

    2015-03-17

    The various technologies presented herein relate to a three dimensional manufacturing technique for application with semiconductor technologies. A membrane layer can be formed over a cavity. An opening can be formed in the membrane such that the membrane can act as a mask layer to the underlying wall surfaces and bottom surface of the cavity. A beam to facilitate an operation comprising any of implantation, etching or deposition can be directed through the opening onto the underlying surface, with the opening acting as a mask to control the area of the underlying surfaces on which any of implantation occurs, material is removed, and/or material is deposited. The membrane can be removed, a new membrane placed over the cavity and a new opening formed to facilitate another implantation, etching, or deposition operation. By changing the direction of the beam different wall/bottom surfaces can be utilized to form a plurality of structures.

  18. On High and Low Starting Frequencies of Type II Radio Bursts

    NASA Astrophysics Data System (ADS)

    Sharma, J.; Mittal, N.

    2017-06-01

    We have studied the characteristics of type II radio burst during the period May 1996 to March 2015, for the solar cycle 23 and 24, observed by WIND/WAVES radio instrument. A total of 642 events were recorded by the instrument during the study period. We have divided the events with two starting frequency range (high > 1 MHz; low ≤ 1MHz) as type II1 (i.e., 1-16 MHz) radio burst and type II2 (i.e., 20 KHz - 1020 KHz) radio burst which constitute the DH and km type II radio burst observed by WIND spacecraft, and determined their time and frequency characteristics. The mean drift rate of type II1 and type II2 radio bursts is 29.76 × 10-4 MHz/s and 0.17 × 10-4 MHz/s respectively, which shows that type II1 with high start frequency hase larger drift rate than the type II2 with low starting frequencies. We have also reported that the start frequency and the drift rate of type II1 are in good correlation, with a linear correlation coefficient of 0.58.

  19. Coupling fiber optics to a permeation liquid membrane for heavy metal sensor development.

    PubMed

    Ueberfeld, Jörn; Parthasarathy, Nalini; Zbinden, Hugo; Gisin, Nicolas; Buffle, Jacques

    2002-02-01

    We present the first sensing system for metal ions based on the combination of separation/preconcentration by a permeation liquid membrane (PLM) and fluorescence detection with an optical fiber. As a model, a system for the detection of Cu(II) ions was developed. The wall of a polypropylene hollow fiber serves as support for the permeable liquid membrane. The lumen of the fiber contains the strip solution in which Cu(II) is accumulated. Calcein, a fluorochromic dye, acts as stripping agent and at the same time as metal indicator. The quenching of the calcein fluorescence upon metal accumulation in the strip phase is detected with a multimode optical fiber, which is incorporated into the lumen. Fluorescence is excited with a blue LED and detected with a photon counter. Taking advantage of the high selectivity and sensitivity of PLM preconcentration, a detection limit for Cu(II) of approximately 50 nM was achieved. Among five tested heavy metal ions, Pb(II) was the only major interfering species. The incorporation of small silica optical fibers into the polypropylene capillary allows for real-time monitoring of the Cu(II) accumulation process.

  20. Mass spectrometric characterization of membrane integral low molecular weight proteins from photosystem II in barley etioplasts.

    PubMed

    Plöscher, Matthias; Granvogl, Bernhard; Zoryan, Mikael; Reisinger, Veronika; Eichacker, Lutz Andreas

    2009-02-01

    In Photosystem II (PSII), a high number of plastid encoded and membrane integral low molecular weight proteins smaller than 10 kDa, the proteins PsbE, F, H, I, J, K, L, M, N, Tc, Z and the nuclear encoded PsbW, X, Y1, Y2 proteins have been described. Here we show that all low molecular weight proteins of PSII already accumulate in the etioplast membrane fraction in darkness, whereas PsaI and PsaJ of photosystem I (PSI) represent the only low molecular weight proteins that do not accumulate in darkness. We found by BN-PAGE separation of membrane protein complexes and selective MS that the accumulation of one-helix proteins from PSII is light independent and occurs in etioplasts. In contrast, in chloroplasts isolated from light-grown plants, low molecular weight proteins were found to specifically accumulate in PSI and II complexes. Our results demonstrate how plants grown in darkness prepare for the induction of chlorophyll dependent photosystem assembly upon light perception. We anticipate that our investigation will provide the essential means for the analysis of protein assembly in any membrane utilizing low molecular weight protein subunits.

  1. Herringbone bursts associated with type II solar radio emission

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.; Robinson, R. D.

    1987-01-01

    Detailed observations of the herringbone (HB) fine structure on type II solar radio bursts are presented. Data from the Culgoora radiospectrograph, radiometer and radioheliograph are analyzed. The characteristic spectral profiles, frequency drift rates and exciter velocities, fluxes, source sizes, brightness temperatures, and polarizations of individual HB bursts are determined. Correlations between individual bursts within the characteristic groups of bursts and the properties of the associated type II bursts are examined. These data are compatible with HB bursts being radiation at multiples of the plasma frequency generated by electron streams accelerated by the type II shock. HB bursts are physically distinct phenomena from type II and type III bursts, differing significantly in emission processes and/or source conditions; this conclusion indicates that many of the presently available theoretical ideas for HB bursts are incorrect.

  2. Gliomatosis cerebri type II: two case reports

    PubMed Central

    D’Urso, Pietro Ivo; Marsigliante, Santo; Storelli, Carlo; Distante, Alessandro; Sanguedolce, Francesca; Cimmino, Antonia; Luzi, Giuseppe; Gianfreda, Cosimo Damiano; Montinaro, Antonio; Ciappetta, Pasqualino

    2009-01-01

    Introduction Two types of gliomatosis cerebri exist: Type I and Type II. We report the results of a histological and genetic study of two cases of gliomatosis cerebri Type II, correlating these results with therapy and prognosis. Case presentation Two patients, a 52-year-old man (Patient 1) and a 76-year-old man (Patient 2) with gliomatosis cerebri II were admitted to our institution; they underwent surgical treatment and received radiotherapy and chemotherapy. At the 24-month follow-up, Patient 1 was still alive, while Patient 2 had died. The poor prognosis of Patient 2 was underlined by molecular analysis which showed that the angiogenesis related genes VCAM1 and VEGF were overexpressed, reflecting the high degree of neovascularization. Conclusion Genes involved in drug resistance and metallothioneins were highly expressed in Patient 2 and this, associated with unmethylated O6-methylguanine methyltransferase, can explain the lack of response to chemotherapy. PMID:19830138

  3. A 20-residue peptide of the inner membrane protein OutC mediates interaction with two distinct sites of the outer membrane secretin OutD and is essential for the functional type II secretion system in Erwinia chrysanthemi.

    PubMed

    Login, Frédéric H; Fries, Markus; Wang, Xiaohui; Pickersgill, Richard W; Shevchik, Vladimir E

    2010-05-01

    The type II secretion system (T2SS) is widely exploited by proteobacteria to secrete enzymes and toxins involved in bacterial survival and pathogenesis. The outer membrane pore formed by the secretin OutD and the inner membrane protein OutC are two key components of the secretion complex, involved in secretion specificity. Here, we show that the periplasmic regions of OutC and OutD interact directly and map the interaction site of OutC to a 20-residue peptide named OutCsip (secretin interacting peptide, residues 139-158). This peptide interacts in vitro with two distinct sites of the periplasmic region of OutD, one located on the N0 subdomain and another overlapping the N2-N3' subdomains. The two interaction sites of OutD have different modes of binding to OutCsip. A single substitution, V143S, located within OutCsip prevents its interaction with one of the two binding sites of OutD and fully inactivates the T2SS. We show that the N0 subdomain of OutD interacts also with a second binding site within OutC located in the region proximal to the transmembrane segment. We suggest that successive interactions between these distinct regions of OutC and OutD may have functional importance in switching the secretion machine.

  4. Two homologous genes, DCW1 (YKL046c) and DFG5, are essential for cell growth and encode glycosylphosphatidylinositol (GPI)-anchored membrane proteins required for cell wall biogenesis in Saccharomyces cerevisiae.

    PubMed

    Kitagaki, Hiroshi; Wu, Hong; Shimoi, Hitoshi; Ito, Kiyoshi

    2002-11-01

    The cell wall of Saccharomyces cerevisiae consists of glucan, chitin and various kinds of mannoproteins. Major parts of mannoproteins are synthesized as glycosylphosphatidylinositol (GPI)-anchored proteins and are then transferred to cell wall beta-1,6-glucan. A glycosyltransferase has been hypothesized to catalyse this transfer reaction. A database search revealed that the products of YKL046c and DFG5 are homologous to bacterial mannosidase. These genes are homologous to each other and have primary structures characteristic of GPI-anchored proteins. Although single disruptants of ykl046c and dfg5 were viable, ykl046cDelta was hypersensitive to a cell wall-digesting enzyme (zymolyase), suggesting that this gene is involved in cell wall biosynthesis. We therefore designated this gene as DCW1 (defective cell wall). A double disruptant of dcw1 and dfg5 was synthetically lethal, indicating that the functions of these gene products are redundant, and at least one of them is required for cell growth. Cells deficient in both Dcw1p and Dfg5p were round and large, had cell walls that contained an increased amount of chitin and secreted a major cell wall protein, Cwp1p, into the medium. Biochemical analyses showed that epitope-tagged Dcw1p is an N-glycosylated, GPI-anchored membrane protein and is localized in the membrane fraction including the cell surface. These results suggest that both Dcw1p and Dfg5p are GPI-anchored membrane proteins and are required for normal biosynthesis of the cell wall.

  5. DDR-type zeolite membrane synthesis, modification and gas permeation studies

    DOE PAGES

    Yang, Shaowei; Cao, Zishu; Arvanitis, Antonios; ...

    2016-01-22

    DDR-type zeolite membrane was synthesized on porous α-alumina substrate by hydrothermal treatment of a ball-milled Sigmal-1 crystal seed layer in an aluminum-free precursor solution containing 1-Adamantylamine as the structure directing agent (SDA). The as-synthesized DDR zeolite membranes were defect-free but the supported zeolite layers were susceptible to crack development during the subsequent high-temperature SDA removal process. The cracks were effectively eliminated by the liquid phase chemical deposition method using tetramethoxysilane as the precursor for silica deposits. The modified membrane was extensively studied for H 2, He, O 2, N 2, CO 2, CH 4, and i-C 4H 10 pure gasmore » permeation and CO 2/CH 4 mixture separation. At 297 K and 2-bar feed gas pressure, the membrane achieved a CO 2/CH 4 separation factor of ~92 for a feed containing 90% CO 2, which decreased to 62 for a feed containing 10% CO 2 with the CO 2 permeance virtually unchanged at ~1.8×10 –7 mol/m• sup>2 s • Pa regardless of the feed composition. It also exhibited an O 2/N 2 permselectivity of 1.8 at 297 K. Furthermore, the gas permeation behaviors of the current aluminum-containing DDR type zeolite membrane are generally in good agreement with the findings in both experimental and theoretical studies on the pure-silica DDR membranes in recent literature.« less

  6. Crystal structure of the plasma membrane proton pump.

    PubMed

    Pedersen, Bjørn P; Buch-Pedersen, Morten J; Morth, J Preben; Palmgren, Michael G; Nissen, Poul

    2007-12-13

    A prerequisite for life is the ability to maintain electrochemical imbalances across biomembranes. In all eukaryotes the plasma membrane potential and secondary transport systems are energized by the activity of P-type ATPase membrane proteins: H+-ATPase (the proton pump) in plants and fungi, and Na+,K+-ATPase (the sodium-potassium pump) in animals. The name P-type derives from the fact that these proteins exploit a phosphorylated reaction cycle intermediate of ATP hydrolysis. The plasma membrane proton pumps belong to the type III P-type ATPase subfamily, whereas Na+,K+-ATPase and Ca2+-ATPase are type II. Electron microscopy has revealed the overall shape of proton pumps, however, an atomic structure has been lacking. Here we present the first structure of a P-type proton pump determined by X-ray crystallography. Ten transmembrane helices and three cytoplasmic domains define the functional unit of ATP-coupled proton transport across the plasma membrane, and the structure is locked in a functional state not previously observed in P-type ATPases. The transmembrane domain reveals a large cavity, which is likely to be filled with water, located near the middle of the membrane plane where it is lined by conserved hydrophilic and charged residues. Proton transport against a high membrane potential is readily explained by this structural arrangement.

  7. Energy consumption in terms of shear stress for two types of membrane bioreactors used for municipal wastewater treatment processes

    NASA Astrophysics Data System (ADS)

    Ratkovich, Nicolas; Bentzen, Thomas R.; Rasmussen, Michael R.

    2012-10-01

    Two types of submerged membrane bioreactors (MBR): hollow fiber (HF) and hollow sheet (HS), have been studied and compared in terms of energy consumption and average shear stress over the membrane wall. The analysis of energy consumption was made using the correlation to determine the blower power and the blower power demand per unit of permeate volume. Results showed that for the system geometries considered, in terms the of the blower power, the HF MBR requires less power compared to HS MBR. However, in terms of blower power per unit of permeate volume, the HS MBR requires less energy. The analysis of shear stress over the membrane surface was made using computational fluid dynamics (CFD) modelling. Experimental measurements for the HF MBR were compared with the CFD model and an error less that 8% was obtained. For the HS MBR, experimental measurements of velocity profiles were made and an error of 11% was found. This work uses an empirical relationship to determine the shear stress based on the ratio of aeration blower power to tank volume. This relationship is used in bubble column reactors and it is extrapolate to determine shear stress on MBR systems. This relationship proved to be overestimated by 28% compared to experimental measurements and CFD results. Therefore, a corrective factor is included in the relationship in order to account for the membrane placed inside the bioreactor.

  8. Type I and II Endometrial Cancers: Have They Different Risk Factors?

    PubMed Central

    Setiawan, Veronica Wendy; Yang, Hannah P.; Pike, Malcolm C.; McCann, Susan E.; Yu, Herbert; Xiang, Yong-Bing; Wolk, Alicja; Wentzensen, Nicolas; Weiss, Noel S.; Webb, Penelope M.; van den Brandt, Piet A.; van de Vijver, Koen; Thompson, Pamela J.; Strom, Brian L.; Spurdle, Amanda B.; Soslow, Robert A.; Shu, Xiao-ou; Schairer, Catherine; Sacerdote, Carlotta; Rohan, Thomas E.; Robien, Kim; Risch, Harvey A.; Ricceri, Fulvio; Rebbeck, Timothy R.; Rastogi, Radhai; Prescott, Jennifer; Polidoro, Silvia; Park, Yikyung; Olson, Sara H.; Moysich, Kirsten B.; Miller, Anthony B.; McCullough, Marjorie L.; Matsuno, Rayna K.; Magliocco, Anthony M.; Lurie, Galina; Lu, Lingeng; Lissowska, Jolanta; Liang, Xiaolin; Lacey, James V.; Kolonel, Laurence N.; Henderson, Brian E.; Hankinson, Susan E.; Håkansson, Niclas; Goodman, Marc T.; Gaudet, Mia M.; Garcia-Closas, Montserrat; Friedenreich, Christine M.; Freudenheim, Jo L.; Doherty, Jennifer; De Vivo, Immaculata; Courneya, Kerry S.; Cook, Linda S.; Chen, Chu; Cerhan, James R.; Cai, Hui; Brinton, Louise A.; Bernstein, Leslie; Anderson, Kristin E.; Anton-Culver, Hoda; Schouten, Leo J.; Horn-Ross, Pamela L.

    2013-01-01

    Purpose Endometrial cancers have long been divided into estrogen-dependent type I and the less common clinically aggressive estrogen-independent type II. Little is known about risk factors for type II tumors because most studies lack sufficient cases to study these much less common tumors separately. We examined whether so-called classical endometrial cancer risk factors also influence the risk of type II tumors. Patients and Methods Individual-level data from 10 cohort and 14 case-control studies from the Epidemiology of Endometrial Cancer Consortium were pooled. A total of 14,069 endometrial cancer cases and 35,312 controls were included. We classified endometrioid (n = 7,246), adenocarcinoma not otherwise specified (n = 4,830), and adenocarcinoma with squamous differentiation (n = 777) as type I tumors and serous (n = 508) and mixed cell (n = 346) as type II tumors. Results Parity, oral contraceptive use, cigarette smoking, age at menarche, and diabetes were associated with type I and type II tumors to similar extents. Body mass index, however, had a greater effect on type I tumors than on type II tumors: odds ratio (OR) per 2 kg/m2 increase was 1.20 (95% CI, 1.19 to 1.21) for type I and 1.12 (95% CI, 1.09 to 1.14) for type II tumors (Pheterogeneity < .0001). Risk factor patterns for high-grade endometrioid tumors and type II tumors were similar. Conclusion The results of this pooled analysis suggest that the two endometrial cancer types share many common etiologic factors. The etiology of type II tumors may, therefore, not be completely estrogen independent, as previously believed. PMID:23733771

  9. Wall shear stress distributions on stented patent ductus arteriosus

    NASA Astrophysics Data System (ADS)

    Kori, Mohamad Ikhwan; Jamalruhanordin, Fara Lyana; Taib, Ishkrizat; Mohammed, Akmal Nizam; Abdullah, Mohammad Kamil; Ariffin, Ahmad Mubarak Tajul; Osman, Kahar

    2017-04-01

    A formation of thrombosis due to hemodynamic conditions after the implantation of stent in patent ductus arteriosus (PDA) will derived the development of re-stenosis. The phenomenon of thrombosis formation is significantly related to the distribution of wall shear stress (WSS) on the arterial wall. Thus, the aims of this study is to investigate the distribution of WSS on the arterial wall after the insertion of stent. Three dimensional model of patent ductus arteriosus inserted with different types of commercial stent are modelled. Computational modelling is used to calculate the distributions of WSS on the arterial stented PDA. The hemodynamic parameters such as high WSS and WSSlow are considered in this study. The result shows that the stented PDA with Type III stent has better hemodynamic performance as compared to others stent. This model has the lowest distributions of WSSlow and also the WSS value more than 20 dyne/cm2. From the observed, the stented PDA with stent Type II showed the highest distributions area of WSS more than 20 dyne/cm2. This situation revealed that the high possibility of atherosclerosis to be developed. However, the highest distribution of WSSlow for stented PDA with stent Type II indicated that high possibility of thrombosis to be formed. In conclusion, the stented PDA model calculated with the lowest distributions of WSSlow and WSS value more than 20dyne/cm2 are considered to be performed well in stent hemodynamic performance as compared to other stents.

  10. Localization of Usher syndrome type II to chromosome 1q.

    PubMed

    Kimberling, W J; Weston, M D; Möller, C; Davenport, S L; Shugart, Y Y; Priluck, I A; Martini, A; Milani, M; Smith, R J

    1990-06-01

    Usher syndrome is characterized by congenital hearing loss, progressive visual impairment due to retinitis pigmentosa, and variable vestibular problems. The two subtypes of Usher syndrome, types I and II, can be distinguished by the degree of hearing loss and by the presence or absence of vestibular dysfunction. Type I is characterized by a profound hearing loss and totally absent vestibular responses, while type II has a milder hearing loss and normal vestibular function. Fifty-five members of eight type II Usher syndrome families were typed for three DNA markers in the distal region of chromosome 1q: D1S65 (pEKH7.4), REN (pHRnES1.9), and D1S81 (pTHH33). Statistically significant linkage was observed for Usher syndrome type II with a maximum multipoint lod score of 6.37 at the position of the marker THH33, thus localizing the Usher type II (USH2) gene to 1q. Nine families with type I Usher syndrome failed to show linkage to the same three markers. The statistical test for heterogeneity of linkage between Usher syndrome types I and II was highly significant, thus demonstrating that they are due to mutations at different genetic loci.

  11. Computational Study of the Blood Flow in Three Types of 3D Hollow Fiber Membrane Bundles

    PubMed Central

    Zhang, Jiafeng; Chen, Xiaobing; Ding, Jun; Fraser, Katharine H.; Ertan Taskin, M.; Griffith, Bartley P.; Wu, Zhongjun J.

    2013-01-01

    The goal of this study is to develop a computational fluid dynamics (CFD) modeling approach to better estimate the blood flow dynamics in the bundles of the hollow fiber membrane based medical devices (i.e., blood oxygenators, artificial lungs, and hemodialyzers). Three representative types of arrays, square, diagonal, and random with the porosity value of 0.55, were studied. In addition, a 3D array with the same porosity was studied. The flow fields between the individual fibers in these arrays at selected Reynolds numbers (Re) were simulated with CFD modeling. Hemolysis is not significant in the fiber bundles but the platelet activation may be essential. For each type of array, the average wall shear stress is linearly proportional to the Re. For the same Re but different arrays, the average wall shear stress also exhibits a linear dependency on the pressure difference across arrays, while Darcy′s law prescribes a power-law relationship, therefore, underestimating the shear stress level. For the same Re, the average wall shear stress of the diagonal array is approximately 3.1, 1.8, and 2.0 times larger than that of the square, random, and 3D arrays, respectively. A coefficient C is suggested to correlate the CFD predicted data with the analytical solution, and C is 1.16, 1.51, and 2.05 for the square, random, and diagonal arrays in this paper, respectively. It is worth noting that C is strongly dependent on the array geometrical properties, whereas it is weakly dependent on the flow field. Additionally, the 3D fiber bundle simulation results show that the three-dimensional effect is not negligible. Specifically, velocity and shear stress distribution can vary significantly along the fiber axial direction. PMID:24141394

  12. Accumulation of Multipotent Progenitor Cells on Polymethylpentene Membranes During Extracorporeal Membrane Oxygenation.

    PubMed

    Lehle, Karla; Friedl, Lucas; Wilm, Julius; Philipp, Alois; Müller, Thomas; Lubnow, Matthias; Schmid, Christof

    2016-06-01

    Multipotent progenitor cells were mobilized during pediatric extracorporeal membrane oxygenation (ECMO). We hypothesize that these cells also adhered onto polymethylpentene (PMP) fibers within the membrane oxygenator (MO) during adult ECMO support. Mononuclear cells were removed from the surface of explanted PMP-MOs (n = 16). Endothelial-like outgrowth and mesenchymal-like cells were characterized by flow cytometric analysis using different surface markers. Spindle-shaped attaching cells were identified early, but without proliferative activity. After long-term cultivation palisading type or cobblestone-type outgrowth cells with high proliferative activity appeared and were characterized as (i) leukocytoid CD45+/CD31+ (CD133+/VEGFR-II+/CD90+/CD14+/CD146dim/CD105dim); (ii) endothelial-like CD45-/CD31+ (VEGF-RII+/CD146+/CD105+/CD133-/CD14-/CD90-); and (iii) mesenchymal-like cells CD45-/CD31- (CD105+/CD90+/CD133dim/VEGFR-II-/CD146-/CD14-). The distribution of the cell populations depended on the MO and cultivation time. Endothelial-like cells formed capillary-like structures and did uptake Dil-acetylated low-density lipoprotein. Endothelial- and mesenchymal-like cells adhered on the surface of PMP-MOs. Further research is needed to identify the clinical relevance of these cells. Copyright © 2015 The Authors. Artificial Organs published by Wiley Periodicals, Inc. on behalf of International Center for Artificial Organs and Transplantation (ICAOT).

  13. Design and optimization of membrane-type acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Blevins, Matthew Grant

    One of the most common problems in noise control is the attenuation of low frequency noise. Typical solutions require barriers with high density and/or thickness. Membrane-type acoustic metamaterials are a novel type of engineered material capable of high low-frequency transmission loss despite their small thickness and light weight. These materials are ideally suited to applications with strict size and weight limitations such as aircraft, automobiles, and buildings. The transmission loss profile can be manipulated by changing the micro-level substructure, stacking multiple unit cells, or by creating multi-celled arrays. To date, analysis has focused primarily on experimental studies in plane-wave tubes and numerical modeling using finite element methods. These methods are inefficient when used for applications that require iterative changes to the structure of the material. To facilitate design and optimization of membrane-type acoustic metamaterials, computationally efficient dynamic models based on the impedance-mobility approach are proposed. Models of a single unit cell in a waveguide and in a baffle, a double layer of unit cells in a waveguide, and an array of unit cells in a baffle are studied. The accuracy of the models and the validity of assumptions used are verified using a finite element method. The remarkable computational efficiency of the impedance-mobility models compared to finite element methods enables implementation in design tools based on a graphical user interface and in optimization schemes. Genetic algorithms are used to optimize the unit cell design for a variety of noise reduction goals, including maximizing transmission loss for broadband, narrow-band, and tonal noise sources. The tools for design and optimization created in this work will enable rapid implementation of membrane-type acoustic metamaterials to solve real-world noise control problems.

  14. Micro-aerial vehicle type wall-climbing robot mechanism for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Shin, Jae-Uk; Kim, Donghoon; Kim, Jong-Heon; Myung, Hyun

    2013-04-01

    Currently, the maintenance or inspection of large structures is labor-intensive, so it has a problem of the large cost due to the staffing professionals and the risk for hard to reach areas. To solve the problem, the needs of wall-climbing robot are emerged. Infra-based wall-climbing robots to maintain an outer wall of building have high payload and safety. However, the infrastructure for the robot must be equipped on the target structure and the infrastructure isn't preferred by the architects since it can injure the exterior of the structure. These are the reasons of why the infra-based wall-climbing robot is avoided. In case of the non-infra-based wall-climbing robot, it is researched to overcome the aforementioned problems. However, most of the technologies are in the laboratory level since the payload, safety and maneuverability are not satisfactory. For this reason, aerial vehicle type wall-climbing robot is researched. It is a flying possible wallclimbing robot based on a quadrotor. It is a famous aerial vehicle robot using four rotors to make a thrust for flying. This wall-climbing robot can stick to a vertical wall using the thrust. After sticking to the wall, it can move with four wheels installed on the robot. As a result, it has high maneuverability and safety since it can restore the position to the wall even if it is detached from the wall by unexpected disturbance while climbing the wall. The feasibility of the main concept was verified through simulations and experiments using a prototype.

  15. Elastic membranes in confinement.

    PubMed

    Bostwick, J B; Miksis, M J; Davis, S H

    2016-07-01

    An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and coiled DNA, have fine internal structure in which a membrane (or elastic member) is geometrically 'confined' by another object. Here, the two-dimensional shape of an elastic membrane in a 'confining' box is studied by introducing a repulsive confinement pressure that prevents the membrane from intersecting the wall. The stage is set by contrasting confined and unconfined solutions. Continuation methods are then used to compute response diagrams, from which we identify the particular membrane mechanics that generate mitochondria-like shapes. Large confinement pressures yield complex response diagrams with secondary bifurcations and multiple turning points where modal identities may change. Regions in parameter space where such behaviour occurs are then mapped. © 2016 The Author(s).

  16. Coexistence of Anti-Glomerular Basement Membrane Glomerulonephritis and Membranous Nephropathy in a Female Patient with Preserved Renal Function.

    PubMed

    Ogawara, Aoi; Harada, Makoto; Ichikawa, Tohru; Fujii, Kazuaki; Ehara, Takashi; Kobayashi, Mamoru

    2017-12-01

    Renal prognosis for anti-glomerular basement membrane (GBM) glomerulonephritis is poor. The greater the amount of anti-GBM antibody binding the antigen (type IV collagen of the glomerular basement membrane), the greater the number of crescents that develop in glomeruli, resulting in progression of renal impairment. Immunofluorescence staining reveals linear IgG depositions on glomerular capillary walls. Membranous nephropathy (MN) is one of the most common causes of nephrotic syndrome in middle-aged to elderly patients. Immune complex is deposited in the sub-epithelial space of the glomerulus resulting in the development of a membranous lesion. Immunofluorescence staining reveals granular IgG depositions on glomerular capillary walls. Coexisting anti-GBM glomerulonephritis and MN are rare and, here we report a case of coexisting anti-GBM glomerulonephritis and MN with preserved renal function. There are some cases of coexisting anti-GBM glomerulonephritis and MN do not show severely decreased renal function. A 76-year-old Japanese woman presented with nephrotic syndrome, microscopic hematuria, and was positive for anti-GBM antibody. Kidney biopsy revealed linear and granular IgG depositions in glomerular capillary walls, crescent formations, and electron-dense deposits in the sub-epithelial space. She was diagnosed with anti-GBM glomerulonephritis and MN. Steroid and cyclosporine therapy achieved complete remission, and kidney function was preserved. In conclusion, coexisting anti-GBM glomerulonephritis and MN can have preserved renal function. IgG subclass of deposited anti-GBM antibody may be associated with the severity of anti-GBM glomerulonephritis. In addition, in the case of nephrotic syndrome with hematuria, we should consider the possibility of coexisting anti-GBM glomerulonephritis and MN.

  17. Nuclear Involvement in the Appearance of a Chloroplast-Encoded 32,000 Dalton Thylakoid Membrane Polypeptide Integral to the Photosystem II Complex 1

    PubMed Central

    Leto, Kenneth J.; Keresztes, Aron; Arntzen, Charles J.

    1982-01-01

    The genetic locus for the high chlorophyll fluorescent photosystem II-deficient maize mutant hcf*-3 has been definitively located to the nuclear genome. Fluorography of lamellar polypeptides labeled with [35S]methionine in vivo revealed the specific loss of a heavily labeled 32,000 dalton thylakoid membrane polypeptide as well as its chloroplast encoded precursor species at 34,000 daltons. Examination of freeze-fractured mesophyll and bundle sheath thylakoids from hcf*-3 revealed that both plastid types lacked the large EFs particles believed to consist of the photosystem II reaction center-core complex and associated light harvesting chlorophyll-proteins. The present evidence suggests that the synthesis or turnover/integration of the chloroplast-encoded 34,000 to 32,000 dalton polypeptide is under nuclear control, and that these polyipeptides are integral components of photosystem II which may be required for the assembly or structural stabilization of newly formed photosystem II reaction centers in both mesophyll and bundle sheath chloroplasts. Images PMID:16662421

  18. Wrinkles in reinforced membranes

    NASA Astrophysics Data System (ADS)

    Takei, Atsushi; Brau, Fabian; Roman, Benoît; Bico, José.

    2012-02-01

    We study, through model experiments, the buckling under tension of an elastic membrane reinforced with a more rigid strip or a fiber. In these systems, the compression of the rigid layer is induced through Poisson contraction as the membrane is stretched perpendicularly to the strip. Although strips always lead to out-of-plane wrinkles, we observe a transition from out-of-plane to in plane wrinkles beyond a critical strain in the case of fibers embedded into the elastic membranes. The same transition is also found when the membrane is reinforced with a wall of the same material depending on the aspect ratio of the wall. We describe through scaling laws the evolution of the morphology of the wrinkles and the different transitions as a function of material properties and stretching strain.

  19. Endothelial-monocyte activating polypeptide II disrupts alveolar epithelial type II to type I cell transdifferentiation

    PubMed Central

    2012-01-01

    Background Distal alveolar morphogenesis is marked by differentiation of alveolar type (AT)-II to AT-I cells that give rise to the primary site of gas exchange, the alveolar/vascular interface. Endothelial-Monocyte Activating Polypeptide (EMAP) II, an endogenous protein with anti-angiogenic properties, profoundly disrupts distal lung neovascularization and alveolar formation during lung morphogenesis, and is robustly expressed in the dysplastic alveolar regions of infants with Bronchopulmonary dysplasia. Determination as to whether EMAP II has a direct or indirect affect on ATII→ATI trans-differentiation has not been explored. Method In a controlled nonvascular environment, an in vitro model of ATII→ATI cell trans-differentiation was utilized to demonstrate the contribution that one vascular mediator has on distal epithelial cell differentiation. Results Here, we show that EMAP II significantly blocked ATII→ATI cell transdifferentiation by increasing cellular apoptosis and inhibiting expression of ATI markers. Moreover, EMAP II-treated ATII cells displayed myofibroblast characteristics, including elevated cellular proliferation, increased actin cytoskeleton stress fibers and Rho-GTPase activity, and increased nuclear:cytoplasmic volume. However, EMAP II-treated cells did not express the myofibroblast markers desmin or αSMA. Conclusion Our findings demonstrate that EMAP II interferes with ATII → ATI transdifferentiation resulting in a proliferating non-myofibroblast cell. These data identify the transdifferentiating alveolar cell as a possible target for EMAP II's induction of alveolar dysplasia. PMID:22214516

  20. Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition.

    PubMed

    Hayat, Maqsood; Khan, Asifullah

    2011-02-21

    Membrane proteins are vital type of proteins that serve as channels, receptors, and energy transducers in a cell. Prediction of membrane protein types is an important research area in bioinformatics. Knowledge of membrane protein types provides some valuable information for predicting novel example of the membrane protein types. However, classification of membrane protein types can be both time consuming and susceptible to errors due to the inherent similarity of membrane protein types. In this paper, neural networks based membrane protein type prediction system is proposed. Composite protein sequence representation (CPSR) is used to extract the features of a protein sequence, which includes seven feature sets; amino acid composition, sequence length, 2 gram exchange group frequency, hydrophobic group, electronic group, sum of hydrophobicity, and R-group. Principal component analysis is then employed to reduce the dimensionality of the feature vector. The probabilistic neural network (PNN), generalized regression neural network, and support vector machine (SVM) are used as classifiers. A high success rate of 86.01% is obtained using SVM for the jackknife test. In case of independent dataset test, PNN yields the highest accuracy of 95.73%. These classifiers exhibit improved performance using other performance measures such as sensitivity, specificity, Mathew's correlation coefficient, and F-measure. The experimental results show that the prediction performance of the proposed scheme for classifying membrane protein types is the best reported, so far. This performance improvement may largely be credited to the learning capabilities of neural networks and the composite feature extraction strategy, which exploits seven different properties of protein sequences. The proposed Mem-Predictor can be accessed at http://111.68.99.218/Mem-Predictor. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. A membrane-free baffled microbial fuel cell for cathodic reduction of Cu(II) with electricity generation.

    PubMed

    Tao, Hu-Chun; Li, Wei; Liang, Min; Xu, Nan; Ni, Jin-Ren; Wu, Wei-Min

    2011-04-01

    A membrane-free baffled microbial fuel cell (MFC) was developed to treat synthetic Cu(II) sulfate containing wastewater in cathode chamber and synthetic glucose-containing wastewater fed to anode chamber. Maximum power density of 314 mW/m(3) with columbic efficiency of 5.3% was obtained using initial Cu(2+) concentration of 6400 mg/L. Higher current density favored the cathodic reduction of Cu(2+), and removal of Cu(2+) by 70% was observed within 144 h using initial concentration of 500 mg/L. Powder X-ray diffraction (XRD) analysis indicated that the Cu(2+) was reduced to Cu(2)O or Cu(2)O plus Cu which deposited on the cathode, and the deficient cathodic reducibility resulted in the formation of Cu(4)(OH)(6)SO(4) at high initial Cu(2+) concentration (500-6400 mg/L). This study suggested a novel low-cost approach to remove and recover Cu(II) from Cu(2+)-containing wastewater using MFC-type reactor. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Effects of biases in domain wall network evolution. II. Quantitative analysis

    NASA Astrophysics Data System (ADS)

    Correia, J. R. C. C. C.; Leite, I. S. C. R.; Martins, C. J. A. P.

    2018-04-01

    Domain walls form at phase transitions which break discrete symmetries. In a cosmological context, they often overclose the Universe (contrary to observational evidence), although one may prevent this by introducing biases or forcing anisotropic evolution of the walls. In a previous work [Correia et al., Phys. Rev. D 90, 023521 (2014), 10.1103/PhysRevD.90.023521], we numerically studied the evolution of various types of biased domain wall networks in the early Universe, confirming that anisotropic networks ultimately reach scaling while those with a biased potential or biased initial conditions decay. We also found that the analytic decay law obtained by Hindmarsh was in good agreement with simulations of biased potentials, but not of biased initial conditions, and suggested that the difference was related to the Gaussian approximation underlying the analytic law. Here, we extend our previous work in several ways. For the cases of biased potential and biased initial conditions, we study in detail the field distributions in the simulations, confirming that the validity (or not) of the Gaussian approximation is the key difference between the two cases. For anisotropic walls, we carry out a more extensive set of numerical simulations and compare them to the canonical velocity-dependent one-scale model for domain walls, finding that the model accurately predicts the linear scaling regime after isotropization. Overall, our analysis provides a quantitative description of the cosmological evolution of these networks.

  3. Epiretinal membrane: a treatable cause of visual disability in myotonic dystrophy type 1.

    PubMed

    Kersten, Hannah M; Roxburgh, Richard H; Child, Nicholas; Polkinghorne, Philip J; Frampton, Chris; Danesh-Meyer, Helen V

    2014-01-01

    A wide range of ocular abnormalities have been documented to occur in patients with myotonic dystrophy type 1. The objectives of this study were to investigate the macular and optic nerve morphology using optical coherence tomography in patients with myotonic dystrophy type 1. A total of 30 myotonic dystrophy type 1 patients and 28 controls were recruited for participation. All participants underwent a thorough ophthalmologic examination, including spectral-domain optical coherence tomography of the macula and retinal nerve fibre layer. Images were reviewed by a retinal specialist ophthalmologist, masked to the diagnosis of the participants. Average macular thickness was significantly greater in the myotonic dystrophy group compared to controls [327.3 μm vs. 308.5 μm (p < 0.001)]. Macular thickness was significantly greater (p < 0.005) in five of the nine macular regions. The increase in macular thickness was due to the increased prevalence of epiretinal membranes in the myotonic dystrophy patient group (p = 0.0002): 48.2 % of myotonic dystrophy patient eyes had evidence of epiretinal membrane, compared with 12.5 % of control eyes. Examination revealed that 56.7 % of myotonic dystrophy patients had an epiretinal membrane in at least one eye. Visual acuity was reduced due to the presence of epiretinal membrane in six patient eyes and none of the control eyes. The presence of an epiretinal membrane was significantly correlated with increasing age in the patient group. We report an increased prevalence of epiretinal membrane in the myotonic dystrophy type 1 group. This may be a previously under-recognised form of visual impairment in this group. Epiretinal membranes can be treated surgically. We suggest that, in addition to a comprehensive clinical examination, optical coherence tomography examination is implemented as part of an ophthalmological assessment for the myotonic dystrophy type 1 patient with reduced visual acuity.

  4. The C-terminal hypervariable domain targets Aradopsis ROP9 to the invaginated pollen tube plasma membrane

    USDA-ARS?s Scientific Manuscript database

    Rop9 is a small GTPase of the Type II class, whereas the often studied type I Rops play roles during pollen tube growth. In pollen, Rop9 is located at the invaginated plasma membrane that surrounds the sperm cells, whereas type I Rops are located at the apical membrane of the pollen tube. The C-ter...

  5. Progenitors of low-luminosity Type II-Plateau supernovae

    NASA Astrophysics Data System (ADS)

    Lisakov, Sergey M.; Dessart, Luc; Hillier, D. John; Waldman, Roni; Livne, Eli

    2018-01-01

    The progenitors of low-luminosity Type II-Plateau supernovae (SNe II-P) are believed to be red supergiant (RSG) stars, but there is much disparity in the literature concerning their mass at core collapse and therefore on the main sequence. Here, we model the SN radiation arising from the low-energy explosion of RSG stars of 12, 25 and 27 M⊙ on the main sequence and formed through single star evolution. Despite the narrow range in ejecta kinetic energy (2.5-4.2 × 1050 erg) in our model set, the SN observables from our three models are significantly distinct, reflecting the differences in progenitor structure (e.g. surface radius, H-rich envelope mass and He-core mass). Our higher mass RSG stars give rise to Type II SNe that tend to have bluer colours at early times, a shorter photospheric phase, and a faster declining V-band light curve (LC) more typical of Type II-linear SNe, in conflict with the LC plateau observed for low-luminosity SNe II. The complete fallback of the CO core in the low-energy explosions of our high-mass RSG stars prevents the ejection of any 56Ni (nor any core O or Si), in contrast to low-luminosity SNe II-P, which eject at least 0.001 M⊙ of 56Ni. In contrast to observations, Type II SN models from higher mass RSGs tend to show an H α absorption that remains broad at late times (due to a larger velocity at the base of the H-rich envelope). In agreement with the analyses of pre-explosion photometry, we conclude that low-luminosity SNe II-P likely arise from low-mass rather than high-mass RSG stars.

  6. Hydrophobic asymmetric ultrafiltration PVDF membranes: an alternative separator for VFB with excellent stability.

    PubMed

    Wei, Wenping; Zhang, Huamin; Li, Xianfeng; Zhang, Hongzhang; Li, Yun; Vankelecom, Ivo

    2013-02-14

    Polyvinylidene fluoride (PVDF) ultrafiltration membranes were investigated for the first time in vanadium redox flow battery (VFB) applications. Surprisingly, PVDF ultrafiltration membranes with hydrophobic pore walls and relatively large pore sizes of several tens of nanometers proved able to separate vanadium ions and protons efficiently, thus being suitable as a VFB separator. The ion selectivity of this new type of VFB membrane could be tuned readily by controlling the membrane morphology via changes in the composition of the membrane casting solution, and the casting thickness. The results showed that the PVDF membranes offered good performances and excellent stability in VFB applications, where it could, performance-wise, truly substitute Nafion in VFB applications, but at a much lower cost.

  7. Wall characterization for through-the-wall radar applications

    NASA Astrophysics Data System (ADS)

    Greneker, Gene; Rausch, E. O.

    2008-04-01

    There has been continuing interest in the penetration of multilayer building materials, such as wood walls with air gaps and concrete hollow core block, using through-the-wall (TTW) radar systems. TTW operational techniques and signal propagation paths vary depending on how the TTW system is intended to be operated. For example, the operator of a TTW radar may be required to place the radar against the intervening wall of interest while collecting data. Other operational doctrines allow the radar to be operated in a stand-off mode from the wall. The stand-off distances can vary from feet to hundreds of feet, depending on the type of radar being used. When a signal is propagated through a multilayer wall with air gaps between the material and the wall construction uses materials of radically different dielectric constants, attenuation may not be the only effect that the probing signal experiences passing through the wall. This paper presents measurements of a hollow core concrete block wall and the measurement of a standard wall constructed of siding and wallboard. Both types of walls are typically found in most U.S. homes. These limited measurements demonstrate that the type of wall being penetrated by a wideband signal can modify the probing signal.

  8. Biomarkers of Type II Synthetic Pyrethroid Pesticides in Freshwater Fish

    PubMed Central

    2014-01-01

    Type II synthetic pyrethroids contain an alpha-cyano group which renders them more neurotoxic than their noncyano type I counterparts. A wide array of biomarkers have been employed to delineate the toxic responses of freshwater fish to various type II synthetic pyrethroids. These include hematological, enzymatic, cytological, genetic, omic and other types of biomarkers. This review puts together the applications of different biomarkers in freshwater fish species in response to the toxicity of the major type II pyrethroid pesticides and assesses their present status, while speculating on the possible future directions. PMID:24868555

  9. Biomarkers of type II synthetic pyrethroid pesticides in freshwater fish.

    PubMed

    Kaviraj, Anilava; Gupta, Abhik

    2014-01-01

    Type II synthetic pyrethroids contain an alpha-cyano group which renders them more neurotoxic than their noncyano type I counterparts. A wide array of biomarkers have been employed to delineate the toxic responses of freshwater fish to various type II synthetic pyrethroids. These include hematological, enzymatic, cytological, genetic, omic and other types of biomarkers. This review puts together the applications of different biomarkers in freshwater fish species in response to the toxicity of the major type II pyrethroid pesticides and assesses their present status, while speculating on the possible future directions.

  10. Development of an efficient Procedure for Resist Wall Space Experiment

    NASA Astrophysics Data System (ADS)

    Matsumoto, Shouhei; Kumasaki, Saori; Higuchi, Sayoko; Kirihata, Kuniaki; Inoue, Yasue; Fujie, Miho; Soga, Kouichi; Wakabayashi, Kazuyuki; Hoson, Takayuki

    The Resist Wall space experiment aims to examine the role of the cortical microtubule-plasma membrane-cell wall continuum in plant resistance to the gravitational force, thereby clarifying the mechanism of gravity resistance. For this purpose, we will cultivate Arabidopsis mutants defective in organization of cortical microtubules (tua6 ) or synthesis of membrane sterols (hmg1 ) as well as the wild type under microgravity and 1 g conditions in the European Modular Cultivation System on the International Space Station up to reproductive stage, and compare phenotypes on growth and development. We will also analyze cell wall properties and gene expression levels using collected materials. However, the amounts of materials collected will be severely limited, and we should develop an efficient procedure for this space experiment. In the present study, we examined the possibility of analyzing various parameters successively using the identical material. On orbit, plant materials will be fixed with RNAlater solution, kept at 4° C for several days and then frozen in a freezer at -20° C. We first examined whether the cell wall extensibility of inflorescence stems can be measured after RNAlater fixation. The gradient of the cell wall extensibility along inflorescence stems was detected in RNAlater-fixed materials as in methanol-killed ones. The sufficient amounts of RNA to analyze the gene expression were also obtained from the materials after measurement of the cell wall extensibility. Furthermore, the levels and composition of cell wall polysaccharides could be measured using the materials after extraction of RNA. These results show that we can analyze the physical and chemical properties of the cell wall as well as gene expression using the identical material obtained in the space experiments.

  11. The mechanism of catalysis by type-II NADH:quinone oxidoreductases

    PubMed Central

    Blaza, James N.; Bridges, Hannah R.; Aragão, David; Dunn, Elyse A.; Heikal, Adam; Cook, Gregory M.; Nakatani, Yoshio; Hirst, Judy

    2017-01-01

    Type II NADH:quinone oxidoreductase (NDH-2) is central to the respiratory chains of many organisms. It is not present in mammals so may be exploited as an antimicrobial drug target or used as a substitute for dysfunctional respiratory complex I in neuromuscular disorders. NDH-2 is a single-subunit monotopic membrane protein with just a flavin cofactor, yet no consensus exists on its mechanism. Here, we use steady-state and pre-steady-state kinetics combined with mutagenesis and structural studies to determine the mechanism of NDH-2 from Caldalkalibacillus thermarum. We show that the two substrate reactions occur independently, at different sites, and regardless of the occupancy of the partner site. We conclude that the reaction pathway is determined stochastically, by the substrate/product concentrations and dissociation constants, and can follow either a ping-pong or ternary mechanism. This mechanistic versatility provides a unified explanation for all extant data and a new foundation for the development of therapeutic strategies. PMID:28067272

  12. Methods and systems for Raman and optical cross-interrogation in flow-through silicon membranes

    DOEpatents

    Bond, Tiziana C.; Letant, Sonia E.

    2014-09-09

    Cross-interrogating photonic detection systems and methods are shown. A flow through photonic crystal membrane with a surface enhanced Raman scattering (SERS) substrate is provided with pores which are distributed along multiple regions. The pores of one region have walls to which a first type of target specific anchor can be attached, while pores of another region have walls to which a second type of target specific anchor can be attached. An optical arrangement out-of-plane to the SERS substrate is also provided for enhanced sensitivity and identification of target organisms.

  13. Intracrine action of angiotensin II in mesangial cells: subcellular distribution of angiotensin II receptor subtypes AT1 and AT2.

    PubMed

    da Silva Novaes, Antônio; Ribeiro, Rosemara Silva; Pereira, Luciana Guilhermino; Borges, Fernanda Teixeira; Boim, Mirian Aparecida

    2018-02-17

    Biological effects of angiotensin II (AngII) such as regulation of AngII target genes may be triggered by interaction of AngII with intracellular AngII receptor types 1 and 2 (AT 1 and AT 2 ), defined as intracrine response. The aim of this study was to examine the presence of AT 1 and AT 2 receptors in nuclear membrane of human mesangial cells (HMCs) and evaluate the possible biological effects mediated by intracellular AT 1 through an intracrine mechanism. Subcellular distribution of AT 1 and AT 2 was evaluated by immunofluorescence and by western blot in isolated nuclear extract. Endogenous intracellular synthesis of AngII was stimulated by high glucose (HG). Effects of HG were analyzed in the presence of candesartan, which prevents AngII internalization. Both receptors were found in nuclear membrane. Fluorescein isothiocyanate (FITC)-labeled AngII added to isolated nuclei produced a fluorescence that was reduced in the presence of losartan or PD-123319 and quenched in the presence of both inhibitors simultaneously. HG induced overexpression of fibronectin and increased cell proliferation in the presence of candesartan, indicating an intracrine action of AngII induced by HG. Results showed the presence of nuclear receptors in HMCs that can be activated by AngII through an intracrine response independent of cytoplasmic membrane AngII receptors.

  14. Polarization-induced local pore-wall functionalization for biosensing: from micropore to nanopore.

    PubMed

    Liu, Jie; Pham, Pascale; Haguet, Vincent; Sauter-Starace, Fabien; Leroy, Loïc; Roget, André; Descamps, Emeline; Bouchet, Aurélie; Buhot, Arnaud; Mailley, Pascal; Livache, Thierry

    2012-04-03

    The use of biological-probe-modified solid-state pores in biosensing is currently hindered by difficulties in pore-wall functionalization. The surface to be functionalized is small and difficult to target and is usually chemically similar to the bulk membrane. Herein, we demonstrate the contactless electrofunctionalization (CLEF) approach and its mechanism. This technique enables the one-step local functionalization of the single pore wall fabricated in a silica-covered silicon membrane. CLEF is induced by polarization of the pore membrane in an electric field and requires a sandwich-like composition and a conducting or semiconducting core for the pore membrane. The defects in the silica layer of the micropore wall enable the creation of an electric pathway through the silica layer, which allows electrochemical reactions to take place locally on the pore wall. The pore diameter is not a limiting factor for local wall modification using CLEF. Nanopores with a diameter of 200 nm fabricated in a silicon membrane and covered with native silica layer have been successfully functionalized with this method, and localized pore-wall modification was obtained. Furthermore, through proof-of-concept experiments using ODN-modified nanopores, we show that functionalized nanopores are suitable for translocation-based biosensing.

  15. Effects of ACE inhibition and ANG II stimulation on renal Na-Cl cotransporter distribution, phosphorylation, and membrane complex properties

    PubMed Central

    Lee, Donna H.; Maunsbach, Arvid B.; Riquier-Brison, Anne D.; Nguyen, Mien T. X.; Fenton, Robert A.; Bachmann, Sebastian; Yu, Alan S.

    2013-01-01

    The renal distal tubule Na-Cl cotransporter (NCC) reabsorbs <10% of the filtered Na+ but is a key control point for blood pressure regulation by angiotensin II (ANG II), angiotensin-converting enzyme inhibitors (ACEI), and thiazide diuretics. This study aimed to determine whether NCC phosphorylation (NCCp) was regulated by acute (20–30 min) treatment with the ACEI captopril (12 μg/min × 20 min) or by a sub-pressor dose of ANG II (20 ng·kg−1·min−1) in Inactin-anesthetized rats. By immuno-EM, NCCp was detected exclusively in or adjacent to apical plama membranes (APM) in controls and after ACEI or ANG II treatment, while NCC total was detected in both APM and subapical cytoplasmic vesicles (SCV) in all conditions. In renal homogenates, neither ACEI nor ANG II treatment altered NCCp abundance, assayed by immunoblot. However, by density gradient fractionation we identified a pool of low-density APM in which NCCp decreased 50% in response to captopril and was restored during ANG II infusion, and another pool of higher-density APM that responded reciprocally, indicative of regulated redistribution between two APM pools. In both pools, NCCp was preferentially localized to Triton-soluble membranes. Blue Native gel electrophoresis established that APM NCCp localized to ∼700 kDa complexes (containing γ-adducin) while unphosphorylated NCC in intracellular membranes primarily localized to ∼400 kDa complexes: there was no evidence for native monomeric or dimeric NCC or NCCp. In summary, this study demonstrates that phosphorylated NCC, localized to multimeric complexes in the APM, redistributes in a regulated manner within the APM in response to ACEI and ANG II. PMID:23114965

  16. Kinetic and isotherm modeling of Cd (II) adsorption by L-cysteine functionalized multi-walled carbon nanotubes as adsorbent.

    PubMed

    Taghavi, Mahmoud; Zazouli, Mohammad Ali; Yousefi, Zabihollah; Akbari-adergani, Behrouz

    2015-11-01

    In this study, multi-walled carbon nanotubes were functionalized by L-cysteine to show the kinetic and isotherm modeling of Cd (II) ions onto L-cysteine functionalized multi-walled carbon nanotubes. The adsorption behavior of Cd (II) ion was studied by varying parameters including dose of L-MWCNTs, contact time, and cadmium concentration. Equilibrium adsorption isotherms and kinetics were also investigated based on Cd (II) adsorption tests. The results showed that an increase in contact time and adsorbent dosage resulted in increase of the adsorption rate. The optimum condition of the Cd (II) removal process was found at pH=7.0, 15 mg/L L-MWCNTs dosage, 6 mg/L cadmium concentration, and contact time of 60 min. The removal percent was equal to 89.56 at optimum condition. Langmuir and Freundlich models were employed to analyze the experimental data. The data showed well fitting with the Langmuir model (R2=0.994) with q max of 43.47 mg/g. Analyzing the kinetic data by the pseudo-first-order and pseudo-second-order equations revealed that the adsorption of cadmium using L-MWSNTs following the pseudo-second-order kinetic model with correlation coefficients (R2) equals to 0.998, 0.992, and 0.998 for 3, 6, and 9 mg/L Cd (II) concentrations, respectively. The experimental data fitted very well with the pseudo-second-order. Overall, treatment of polluted solution to Cd (II) by adsorption process using L-MWCNT can be considered as an effective technology.

  17. Past and current perspective on new therapeutic targets for Type-II diabetes.

    PubMed

    Patil, Pradip D; Mahajan, Umesh B; Patil, Kalpesh R; Chaudhari, Sandip; Patil, Chandragouda R; Agrawal, Yogeeta O; Ojha, Shreesh; Goyal, Sameer N

    2017-01-01

    Loss of pancreatic β-cell function is a hallmark of Type-II diabetes mellitus (DM). It is a chronic metabolic disorder that results from defects in both insulin secretion and insulin action. Recently, United Kingdom Prospective Diabetes Study reported that Type-II DM is a progressive disorder. Although, DM can be treated initially by monotherapy with oral agent; eventually, it may require multiple drugs. Additionally, insulin therapy is needed in many patients to achieve glycemic control. Pharmacological approaches are unsatisfactory in improving the consequences of insulin resistance. Single therapeutic approach in the treatment of Type-II DM is unsuccessful and usually a combination therapy is adopted. Increased understanding of biochemical, cellular and pathological alterations in Type-II DM has provided new insight in the management of Type-II DM. Knowledge of underlying mechanisms of Type-II DM development is essential for the exploration of novel therapeutic targets. Present review provides an insight into therapeutic targets of Type-II DM and their role in the development of insulin resistance. An overview of important signaling pathways and mechanisms in Type-II DM is provided for the better understanding of disease pathology. This review includes case studies of drugs that are withdrawn from the market. The experience gathered from previous studies and knowledge of Type-II DM pathways can guide the anti-diabetic drug development toward the discovery of clinically viable drugs that are useful in Type-II DM.

  18. Interplanetary type II radio bursts and their association with CMEs and flares

    NASA Astrophysics Data System (ADS)

    Shanmugaraju, A.; Suresh, K.; Vasanth, V.; Selvarani, G.; Umapathy, S.

    2018-06-01

    We study the characteristics of the CMEs and their association with the end-frequency of interplanetary (IP)-type-II bursts by analyzing a set of 138 events (IP-type-II bursts-flares-CMEs) observed during the period 1997-2012. The present analysis consider only the type II bursts having starting frequency < 14 MHz to avoid the extension of coronal type IIs. The selected events are classified into three groups depending on the end-frequency of type IIs as follows, (A) Higher, (B) Intermediate and (C) Lower end-frequency. We compare characteristics of CMEs, flares and type II burst for the three selected groups of events and report some of the important differences. The observed height of CMEs is compared with the height of IP type IIs estimated using the electron density models. By applying a density multiplier (m) to this model, the density has been constrained both in the upper corona and in the interplanetary medium, respectively as m= 1 to 10 and m = 1 to 3. This study indicates that there is a correlation between the observed CME height and estimated type II height for groups B and C events whereas this correlation is absent in group A. In all the groups (A, B & C), the different heights of CMEs and type II reveal that the type IIs are not only observed at the nose but also at the flank of the CMEs.

  19. Nanofiber Ion-Exchange Membranes for the Rapid Uptake and Recovery of Heavy Metals from Water

    PubMed Central

    Chitpong, Nithinart; Husson, Scott M.

    2016-01-01

    An evaluation of the performance of polyelectrolyte-modified nanofiber membranes was undertaken to determine their efficacy in the rapid uptake and recovery of heavy metals from impaired waters. The membranes were prepared by grafting poly(acrylic acid) (PAA) and poly(itaconic acid) (PIA) to cellulose nanofiber mats. Performance measurements quantified the dynamic ion-exchange capacity for cadmium (Cd), productivity, and recovery of Cd(II) from the membranes by regeneration. The dynamic binding capacities of Cd(II) on both types of nanofiber membrane were independent of the linear flow velocity, with a residence time of as low as 2 s. Analysis of breakthrough curves indicated that the mass flow rate increased rapidly at constant applied pressure after membranes approached equilibrium load capacity for Cd(II), apparently due to a collapse of the polymer chains on the membrane surface, leading to an increased porosity. This mechanism is supported by hydrodynamic radius (Rh) measurements for PAA and PIA obtained from dynamic light scattering, which show that Rh values decrease upon Cd(II) binding. Volumetric productivity was high for the nanofiber membranes, and reached 0.55 mg Cd/g/min. The use of ethylenediaminetetraacetic acid as regeneration reagent was effective in fully recovering Cd(II) from the membranes. Ion-exchange capacities were constant over five cycles of binding-regeneration. PMID:27999394

  20. Nanofiber Ion-Exchange Membranes for the Rapid Uptake and Recovery of Heavy Metals from Water.

    PubMed

    Chitpong, Nithinart; Husson, Scott M

    2016-12-20

    An evaluation of the performance of polyelectrolyte-modified nanofiber membranes was undertaken to determine their efficacy in the rapid uptake and recovery of heavy metals from impaired waters. The membranes were prepared by grafting poly(acrylic acid) (PAA) and poly(itaconic acid) (PIA) to cellulose nanofiber mats. Performance measurements quantified the dynamic ion-exchange capacity for cadmium (Cd), productivity, and recovery of Cd(II) from the membranes by regeneration. The dynamic binding capacities of Cd(II) on both types of nanofiber membrane were independent of the linear flow velocity, with a residence time of as low as 2 s. Analysis of breakthrough curves indicated that the mass flow rate increased rapidly at constant applied pressure after membranes approached equilibrium load capacity for Cd(II), apparently due to a collapse of the polymer chains on the membrane surface, leading to an increased porosity. This mechanism is supported by hydrodynamic radius (R h ) measurements for PAA and PIA obtained from dynamic light scattering, which show that R h values decrease upon Cd(II) binding. Volumetric productivity was high for the nanofiber membranes, and reached 0.55 mg Cd/g/min. The use of ethylenediaminetetraacetic acid as regeneration reagent was effective in fully recovering Cd(II) from the membranes. Ion-exchange capacities were constant over five cycles of binding-regeneration.

  1. Specific Adhesion of Lipid Membranes Can Simultaneously Produce Two Types of Lipid and Protein Heterogeneities

    NASA Astrophysics Data System (ADS)

    Shindell, Orrin; Micah, Natalie; Ritzer, Max; Gordon, Vernita

    2015-03-01

    Living cells adhere to one another and their environment. Adhesion is associated with re-organization of the lipid and protein components of the cell membrane. The resulting heterogeneities are functional structures involved in biological processes. We use artificial lipid membranes that contain a single type of binding protein. Before adhesion, the lipid, protein, and dye components in the membrane are well-mixed and constitute a single disordered-liquid phase (Ld) . After adhesion, two distinct types of heterogeneities coexist in the adhesion zone: a central domain of ordered lipid phase that excludes both binding proteins and membrane dye, and a peripheral domain of disordered lipid phase that is densely packed with adhesion proteins and enriched in membrane dye relative to the non-adhered portion of the vesicle. Thus, we show that adhesion that is mediated by only one type of protein can organize the lipid and protein components of the membranes into heterogeneities that resemble those found in biology, for example the immune synapse.

  2. Autophagy protects type II alveolar epithelial cells from Mycobacterium tuberculosis infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xu-Guang; Department of Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou; Ji, Tian-Xing

    Highlights: ► We investigated the protective effect of autophagy pathway against MTB infection. ► MTB-infected A549 cells had higher LDH release. ► Inhibition of autophagy signaling significantly enhanced the MTB-induced necrosis. ► Autophagy prevents apoptosis and promotes cell survival in infected cells. -- Abstract: This study was designed to investigate the protective effect of the autophagy signaling pathway against Mycobacterium tuberculosis infection in type II alveolar epithelial cells. An in vitro M. tuberculosis system was established using human A549 cells. Infection-induced changes in the expression of the autophagic marker LC3 were assessed by reverse transcription-PCR and Western blotting. Morphological changesmore » in autophagosomes were detected by transmission electron microscopy (TEM). The function of the autophagy signaling pathway during infection was assessed by measuring the level of cell death and the amount of lactate dehydrogenase (LDH) released in the presence or absence of the inhibitor 3-methyladenine (3-MA). In addition, effects on LDH release were assessed after the siRNA-mediated knockdown of the essential autophagosomal structural membrane protein Atg5. LC3 mRNA expression was significantly reduced in M.tuberculosis-infected A549 cells (16888.76 ± 1576.34 vs. uninfected: 12744.29 ± 1089.37; P < 0.05). TEM revealed M.tuberculosis bacilli-containing compartments that were surrounded by double membranes characteristic of the autophagic process. M.tuberculosis-infected A549 cells released more LDH (1.45 ± 0.12 vs. uninfected: 0.45 ± 0.04; P < 0.05). The inhibition of autophagy signaling significantly enhanced M.tuberculosis-induced necrosis (3-MA: 75 ± 5% vs. untreated: 15 ± 1%; P < 0.05) and LDH release (3-MA: 2.50 ± 0.24 vs. untreated: 0.45 ± 0.04; Atg5 knockdown: 3.19 ± 0.29 vs. untreated: 1.28 ± 0.11; P < 0.05). Our results indicate that autophagy signaling pathway prevents apoptosis in type II alveolar

  3. Diversity in ABC transporters: Type I, II and III importers

    PubMed Central

    Rice, Austin J.; Park, Aekyung

    2014-01-01

    ATP-binding cassette transporters are multi-subunit membrane pumps that transport substrates across membranes. While significant in the transport process, transporter architecture exhibits a range of diversity that we are only beginning to recognize. This divergence may provide insight into the mechanisms of substrate transport and homeostasis. Until recently, ABC importers have been classified into two types, but with the emergence of energy-coupling factor (ECF) transporters there are potentially three types of ABC importers. In this review, we summarize an expansive body of research on the three types of importers with an emphasis on the basics that underlie ABC importers, such as structure, subunit composition and mechanism. PMID:25155087

  4. Biosynthesis of plant cell wall polysaccharides.

    PubMed

    Gibeaut, D M; Carpita, N C

    1994-09-01

    The cell wall is the principal structural element of plant form. Cellulose, long crystals of several dozen glucan chains, forms the microfibrillar foundation of plant cell walls and is synthesized at the plasma membrane. Except for callose, all other noncellulosic components are secreted to the cell surface and form a porous matrix assembled around the cellulose microfibrils. These diverse noncellulosic polysaccharides and proteins are made in the endomembrane system. Many questions about the biosynthesis and modification within the Golgi apparatus and integration of cell components at the cell surface remain unanswered. The lability of synthetic complexes upon isolation is one reason for slow progress. However, with new methods of membrane isolation and analysis of products in vitro, recent advances have been made in purifying active synthases from plasma membrane and Golgi apparatus. Likely synthase polypeptides have been identified by affinity-labeling techniques, but we are just beginning to understand the unique features of the coordinated assembly of complex polysaccharides. Nevertheless, such progress renews hope that the first gene of a synthase for a wall polysaccharide from higher plants is within our grasp.

  5. Hoxb2 and hoxb4 act together to specify ventral body wall formation.

    PubMed

    Manley, N R; Barrow, J R; Zhang, T; Capecchi, M R

    2001-09-01

    Three different alleles of the Hoxb4 locus were generated by gene targeting in mice. Two alleles contain insertions of a selectable marker in the first exon in either orientation, and, in the third, the selectable marker was removed, resulting in premature termination of the protein. Presence and orientation of the selectable marker correlated with the severity of the phenotype, indicating that the selectable marker induces cis effects on neighboring genes that influence the phenotype. Homozygous mutants of all alleles had cervical skeletal defects similar to those previously reported for Hoxb4 mutant mice. In the most severe allele, Hoxb4(PolII), homozygous mutants died either in utero at approximately E15.5 or immediately after birth, with a severe defect in ventral body wall formation. Analysis of embryos showed thinning of the primary ventral body wall in mutants relative to control animals at E11.5, before secondary body wall formation. Prior to this defect, both Alx3 and Alx4 were specifically down regulated in the most ventral part of the primary body wall in Hoxb4(PolII) mutants. Hoxb4(loxp) mutants in which the neo gene has been removed did not have body wall or sternum defects. In contrast, both the Hoxb4(PolII) and the previously described Hoxb2(PolII) alleles that have body wall defects have been shown to disrupt the expression of both Hoxb2 and Hoxb4 in cell types that contribute to body wall formation. Our results are consistent with a model in which defects in ventral body wall formation require the simultaneous loss of at least Hoxb2 and Hoxb4, and may involve Alx3 and Alx4. Copyright 2001 Academic Press.

  6. Type-II Superlattice for High Performance LWIR Detectors

    DTIC Science & Technology

    2008-05-15

    Superlattice for High Performance LWIR Detectors 5. FUNDING NUMBERS F49620-03-1-0436 6. AUTHOR(S) M. Razeghi 7. PERFORMING ORGANIZATION NAME(S...298 (Rcv.2-89) Prescribed by ANSI Std. 239-18 298-102 Final Technical Report Type-II Superlattice for High Performance LWIR Detectors Contract No...Short-period InAs/GaSb type-II superlattices for mid- infrared detectors . Physica E: Low- dimensional Systems and Nanostructures, 2006.

  7. Nocardia brasiliensis Cell Wall Lipids Modulate Macrophage and Dendritic Responses That Favor Development of Experimental Actinomycetoma in BALB/c Mice

    PubMed Central

    Trevino-Villarreal, J. Humberto; Vera-Cabrera, Lucio; Valero-Guillén, Pedro L.

    2012-01-01

    Nocardia brasiliensis is a Gram-positive facultative intracellular bacterium frequently isolated from human actinomycetoma. However, the pathogenesis of this infection remains unknown. Here, we used a model of bacterial delipidation with benzine to investigate the role of N. brasiliensis cell wall-associated lipids in experimental actinomycetoma. Delipidation of N. brasiliensis with benzine resulted in complete abolition of actinomycetoma without affecting bacterial viability. Chemical analyses revealed that trehalose dimycolate and an unidentified hydrophobic compound were the principal compounds extracted from N. brasiliensis with benzine. By electron microscopy, the extracted lipids were found to be located in the outermost membrane layer of the N. brasiliensis cell wall. They also appeared to confer acid-fastness. In vitro, the extractable lipids from the N. brasiliensis cell wall induced the production of the proinflammatory cytokines interleukin-1β (IL-1β), IL-6, and CCL-2 in macrophages. The N. brasiliensis cell wall extractable lipids inhibited important macrophage microbicidal effects, such as tumor necrosis factor alpha (TNF-α) and nitric oxide (NO) production, phagocytosis, bacterial killing, and major histocompatibility complex class II (MHC-II) expression in response to gamma interferon (IFN-γ). In dendritic cells (DCs), N. brasiliensis cell wall-associated extractable lipids suppressed MHC-II, CD80, and CD40 expression while inducing tumor growth factor β (TGF-β) production. Immunization with delipidated N. brasiliensis induced partial protection preventing actinomycetoma. These findings suggest that N. brasiliensis cell wall-associated lipids are important for actinomycetoma development by inducing inflammation and modulating the responses of macrophages and DCs to N. brasiliensis. PMID:22851755

  8. Structure and Function of p97 and Pex1/6 Type II AAA+ Complexes.

    PubMed

    Saffert, Paul; Enenkel, Cordula; Wendler, Petra

    2017-01-01

    Protein complexes of the Type II AAA+ (ATPases associated with diverse cellular activities) family are typically hexamers of 80-150 kDa protomers that harbor two AAA+ ATPase domains. They form double ring assemblies flanked by associated domains, which can be N-terminal, intercalated or C-terminal to the ATPase domains. Most prominent members of this family include NSF (N-ethyl-maleimide sensitive factor), p97/VCP (valosin-containing protein), the Pex1/Pex6 complex and Hsp104 in eukaryotes and ClpB in bacteria. Tremendous efforts have been undertaken to understand the conformational dynamics of protein remodeling type II AAA+ complexes. A uniform mode of action has not been derived from these works. This review focuses on p97/VCP and the Pex1/6 complex, which both structurally remodel ubiquitinated substrate proteins. P97/VCP plays a role in many processes, including ER- associated protein degradation, and the Pex1/Pex6 complex dislocates and recycles the transport receptor Pex5 from the peroxisomal membrane during peroxisomal protein import. We give an introduction into existing knowledge about the biochemical and cellular activities of the complexes before discussing structural information. We particularly emphasize recent electron microscopy structures of the two AAA+ complexes and summarize their structural differences.

  9. Protein secretion and membrane insertion systems in gram-negative bacteria.

    PubMed

    Saier, Milton H

    2006-01-01

    In contrast to other organisms, gram-negative bacteria have evolved numerous systems for protein export. Eight types are known that mediate export across or insertion into the cytoplasmic membrane, while eight specifically mediate export across or insertion into the outer membrane. Three of the former secretory pathway (SP) systems, type I SP (ISP, ABC), IIISP (Fla/Path) and IVSP (Conj/Vir), can export proteins across both membranes in a single energy-coupled step. A fourth generalized mechanism for exporting proteins across the two-membrane envelope in two distinct steps (which we here refer to as type II secretory pathways [IISP]) utilizes either the general secretory pathway (GSP or Sec) or the twin-arginine targeting translocase for translocation across the inner membrane, and either the main terminal branch or one of several protein-specific export systems for translocation across the outer membrane. We here survey the various well-characterized protein translocation systems found in living organisms and then focus on the systems present in gram-negative bacteria. Comparisons between these systems suggest specific biogenic, mechanistic and evolutionary similarities as well as major differences.

  10. Scratched: World War II Airborne Operations That Never Happened

    DTIC Science & Technology

    2014-05-22

    Approved for Public Release; Distribution is Unlimited SCRATCHED: WORLD WAR II AIRBORNE OPERATIONS THAT NEVER HAPPENED A Monograph by...2. REPORT TYPE Master’s Thesis 3. DATES COVERED (From - To) JUN 2013-MAY 2014 4. TITLE AND SUBTITLE Scratched: World War II Airborne...Maastricht gap, to get Allied troops through the West Wall. For numerous reasons, the overall Allied airborne effort of World War II provided mixed

  11. Chiral anomaly and longitudinal magnetotransport in type-II Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Sharma, Girish; Goswami, Pallab; Tewari, Sumanta

    2017-07-01

    In the presence of parallel electric and magnetic fields, the violation of a separate number conservation laws for the three-dimensional left- and right-handed Weyl fermions is known as the chiral anomaly. The recent discovery of Weyl and Dirac semimetals has paved the way for experimentally testing the effects of chiral anomaly via magnetotransport measurements, since chiral anomaly can lead to negative longitudinal magnetoresistance (LMR) while the transverse magnetoresistance remains positive. More recently, a type-II Weyl semimetal (WSM) phase has been proposed, where the nodal points possess a finite density of states due to the touching between electron and hole pockets. It has been suggested that the main difference between the two types of WSMs (type I and type II) is that in the latter, chiral-anomaly-induced negative LMR (positive longitudinal magnetoconductance) is strongly anisotropic, vanishing when the applied magnetic field is perpendicular to the direction of tilt of Weyl fermion cones in a type-II WSM. We analyze chiral anomaly in a type-II WSM in a quasiclassical Boltzmann framework, and find that the chiral-anomaly-induced positive longitudinal magnetoconductivity is present along any arbitrary direction. Thus, our results are pertinent for uncovering transport signatures of type-II WSMs in different candidate materials.

  12. SANASA Capivari II - the first full-scale municipal membrane bioreactor in Latin America.

    PubMed

    Pagotto, R; Rossetto, R; Gasperi, R L P; Andrade, J P; Trovati, J; Vallero, M V G; Okumura, A; Arntsen, B

    2014-01-01

    The macro region of Campinas (Brazil) is rapidly evolving with new housing developments and industries, creating the challenge of finding new ways to treat wastewater to a quality that can be reused in order to overcome water scarcity problems. To address this challenge, SANASA (a publicly owned water and wastewater concessionaire from Campinas) has recently constructed the 'EPAR (Water Reuse Production Plant) Capivari II' using the GE ZeeWeed 500D(®) ultrafiltration membrane system. This is the first large-scale membrane bioreactor (MBR) system in Latin America with biological tertiary treatment capability (nitrogen and phosphorus removal), being able to treat an average flow of 182 L/s in its first phase of construction. The filtration system is composed of three membrane trains with more than 36,000 m(2) of total membrane filtration area. The membrane bioreactor (MBR) plant was commissioned in April 2012 and the permeate quality has exceeded expectations. Chemical oxygen demand (COD) removal rates are around and above 97% on a consistent basis, with biochemical oxygen demand (BOD5) and NH3 (ammonia) concentrations at very low levels, and turbidity lower than 0.3 nephelometric turbidity unit (NTU). Treated effluent is sent to a water reuse accumulation tank (from where will be distributed as reuse water), and the excess is discharged into the Capivari River.

  13. The plant host pathogen interface: cell wall and membrane dynamics of pathogen-induced responses.

    PubMed

    Day, Brad; Graham, Terry

    2007-10-01

    Perception of pathogens by their hosts is the outcome of a highly coordinated and sophisticated surveillance network, tightly regulated by both host and pathogen elicitors, effectors, and signaling processes. In this article, we focus on two relatively well-studied host-pathogens systems, one involving a bacterial-plant interaction (Pseudomonas syringae-Arabidopsis) and the other involving an oomycete-plant interaction (Phytophthora sojae-soybean). We discuss the status of current research related to events occurring at the host-pathogen interface in these two systems, and how these events influence the organization and activation of resistance responses in the respective hosts. This recent research has revealed that in addition to the previously identified resistance machinery (R-proteins, molecular chaperones, etc.), the dynamics of the cell wall, membrane trafficking, and the actin cytoskeleton are intimately associated with the activation of resistance in plants. Specifically, in Arabidopsis, a possible connection between the actin machinery and R-protein- mediated induction of disease resistance is described. In the case of the P. sojae-soybean interaction, we describe the fact that a classical basal resistance elicitor, the cell wall glucan elicitor from the pathogen, can directly activate host hypersensitive cell death, which is apparently modulated in a race-specific manner by the presence of R genes in the host.

  14. Laser microsurgery of higher plant cell walls permits patch-clamp access

    NASA Technical Reports Server (NTRS)

    Henriksen, G. H.; Taylor, A. R.; Brownlee, C.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Plasma membranes of guard cells in epidermal peels of Vicia faba and Commelina communis can be made accessible to a patch-clamp pipet by removing a small portion (1-3 micrometers in diameter) of the guard cell wall using a microbeam of ultraviolet light generated by a nitrogen laser. Using this laser microsurgical technique, we have measured channel activity across plasma membranes of V. faba guard cells in both cell-attached and isolated patch configurations. Measurements made in the inside-out patch configuration revealed two distinct K(+)-selective channels. Major advantages of the laser microsurgical technique include the avoidance of enzymatic protoplast isolation, the ability to study cell types that have been difficult to isolate as protoplasts or for which enzymatic isolation protocols result in protoplasts not amenable to patch-clamp studies, the maintenance of positional information in single-channel measurements, reduced disruption of cell-wall-mediated signaling pathways, and the ability to investigate intercellular signaling through studies of cells remaining situated within tissue.

  15. Membranes with functionalized carbon nanotube pores for selective transport

    DOEpatents

    Bakajin, Olgica; Noy, Aleksandr; Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K; Kim, Sangil

    2015-01-27

    Provided herein composition and methods for nanoporous membranes comprising single walled, double walled, or multi-walled carbon nanotubes embedded in a matrix material. Average pore size of the carbon nanotube can be 6 nm or less. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  16. Membranes for nanometer-scale mass fast transport

    DOEpatents

    Bakajin, Olgica [San Leandro, CA; Holt, Jason [Berkeley, CA; Noy, Aleksandr [Belmont, CA; Park, Hyung Gyu [Oakland, CA

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  17. Primary defect of congenital dyserythropoietic anemia type II. Failure in glycosylation of erythrocyte lactosaminoglycan proteins caused by lowered N-acetylglucosaminyltransferase II.

    PubMed

    Fukuda, M N; Dell, A; Scartezzini, P

    1987-05-25

    Congenital dyserythropoietic anemia type II or hereditary erythroblastic multinuclearity with positive acidified serum test (HEMPAS) is a genetic disease caused by membrane abnormality. Previously we have found that Band 3 and Band 4.5 are not glycosylated by lactosaminoglycans in HEMPAS erythrocytes, whereas normally these proteins have lactosaminoglycans (Fukuda, M. N., Papayannopoulou, T., Gordon-Smith, E. C., Rochant, H., and Testa, U. (1984) Br. J. Haematol. 56, 55-68). In order to find out where glycosylation of lactosaminoglycans stops, we have analyzed the carbohydrate structures of HEMPAS Band 3. By fast atom bombardment-mass spectrometry, methylation analysis, and hydrazinolysis followed by exoglycosidase treatments, the following structure was elucidated: (formula; see text) N-Linked glycopeptides synthesized in vitro by reticulocyte microsomes from HEMPAS were shown to be predominantly the above short oligosaccharide, whereas those from normal reticulocytes contain large molecular weight carbohydrates. The N-acetylglucosaminyltransferase II, which transfers N-acetylglucosamine to the C-2 position of the Man alpha 1----6Man beta 1----arm of the biantennary core structure, was therefore examined by using Man alpha 1----6(GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAcol as an acceptor. N-Acetylglucosaminyltransferase II activity was demonstrated in the lymphocyte microsome fraction from normal individuals. However, this enzyme activity was found to be decreased in those from HEMPAS patients. These results suggest that the primary defect of HEMPAS lies in the lowered activity of N-acetylglucosaminyltransferase II.

  18. Optimising the synthesis, polymer membrane encapsulation and photoreduction performance of Ru(II)- and Ir(III)-bis(terpyridine) cytochrome c bioconjugates.

    PubMed

    Hvasanov, David; Mason, Alexander F; Goldstein, Daniel C; Bhadbhade, Mohan; Thordarson, Pall

    2013-07-28

    Ruthenium(II) and iridium(III) bis(terpyridine) complexes were prepared with maleimide functionalities in order to site-specifically modify yeast iso-1 cytochrome c possessing a single cysteine residue available for modification (CYS102). Single X-ray crystal structures were solved for aniline and maleimide Ru(II) 3 and Ru(II) 4, respectively, providing detailed structural detail of the complexes. Light-activated bioconjugates prepared from Ru(II) 4 in the presence of tris(2-carboxyethyl)-phosphine (TCEP) significantly improved yields from 6% to 27%. Photoinduced electron transfer studies of Ru(II)-cyt c in bulk solution and polymer membrane encapsulated specimens were performed using EDTA as a sacrificial electron donor. It was found that membrane encapsulation of Ru(II)-cyt c in PS140-b-PAA48 resulted in a quantum efficiency of 1.1 ± 0.3 × 10(-3), which was a two-fold increase relative to the bulk. Moreover, Ir(III)-cyt c bioconjugates showed a quantum efficiency of 3.8 ± 1.9 × 10(-1), equivalent to a ∼640-fold increase relative to bulk Ru(II)-cyt c.

  19. Heat transfer about a vertical permeable membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaviany, M.

    1988-05-01

    The natural convection heat transfer about both sides of vertical walls without any seepage has been studied and the effects of the wall thickness and thermal conductivity on the local and average heat transfer rates have been determined. Viskanta and Lankford have concluded that in predicting the heat transfer rate through the wall, for low-thermal-conductivity walls the a priori unknown wall surface temperatures can be walls the a priori unknown wall surface temperatures can be estimated as the arithmetic average of the reservoir temperatures without loss of accuracy (for most practical situations). Sparrow and Prakash treated the surface temperature asmore » variable but used the local temperature along with the available isothermal boundary-layer analysis for determination of the local heat transfer rate and found this to be reasonable at relatively low Grashof numbers. In this study the heat trasnfer rate between two reservoirs of different temperature connected in part through a permeable membrane is analyzed. Rather than solving the complete problem numerically for the three domains (fluid-wall-fluid), the available results on the effects of suction and blowing on the natural convection boundary layer are used in an analysis of the membranes with low thermal conductivity and small seepage velocities, which are characteristic of membranes considered. This will lead to rather simple expressions for the determination of the heat transfer rate.« less

  20. Autopsy case of microcephalic osteodysplastic primordial "dwarfism" type II.

    PubMed

    Fukuzawa, Ryuji; Sato, Seiji; Sullivan, Michael J; Nishimura, Gen; Hasegawa, Tomonobu; Matsuo, Nobutake

    2002-11-15

    Microcephalic osteodysplastic primordial "dwarfism" (MOPD) is a group of disorders similar to Seckel syndrome. Three subtypes (types I-III) have been reported. We report here the first autopsy case of MOPD type II. The patient was a Japanese girl with typical clinical and radiological manifestations of MOPD type II. The manifestations included severe intrauterine and postnatal growth failure, microcephaly, a distinctive facial appearance, micromelia, brachytelephalangy, coxa vara, and V-shaped metaphyses of the distal femora. Other than small cerebral hemispheres, no neuropathological abnormalities were found. Chondro-osseous histology showed thinning of the growth plate, ballooned chondrocytes, reduced cellularity, lack of zonal and columnar formations, and poor formation of primary trabeculae. These findings suggest that impairment of chondrocytic formation and differentiation is the major pathogenesis of MOPD type II. Copyright 2002 Wiley-Liss, Inc.

  1. Biosynthesis of the fungal cell wall polysaccharide galactomannan requires intraluminal GDP-mannose.

    PubMed

    Engel, Jakob; Schmalhorst, Philipp S; Routier, Françoise H

    2012-12-28

    Fungal cell walls frequently contain a polymer of mannose and galactose called galactomannan. In the pathogenic filamentous fungus Aspergillus fumigatus, this polysaccharide is made of a linear mannan backbone with side chains of galactofuran and is anchored to the plasma membrane via a glycosylphosphatidylinositol or is covalently linked to the cell wall. To date, the biosynthesis and significance of this polysaccharide are unknown. The present data demonstrate that deletion of the Golgi UDP-galactofuranose transporter GlfB or the GDP-mannose transporter GmtA leads to the absence of galactofuran or galactomannan, respectively. This indicates that the biosynthesis of galactomannan probably occurs in the lumen of the Golgi apparatus and thus contrasts with the biosynthesis of other fungal cell wall polysaccharides studied to date that takes place at the plasma membrane. Transglycosylation of galactomannan from the membrane to the cell wall is hypothesized because both the cell wall-bound and membrane-bound polysaccharide forms are affected in the generated mutants. Considering the severe growth defect of the A. fumigatus GmtA-deficient mutant, proving this paradigm might provide new targets for antifungal therapy.

  2. Management and classification of type II congenital portosystemic shunts.

    PubMed

    Lautz, Timothy B; Tantemsapya, Niramol; Rowell, Erin; Superina, Riccardo A

    2011-02-01

    Congenital portosystemic shunts (PSS) with preserved intrahepatic portal flow (type II) present with a range of clinical signs. The indications for and benefits of repair of PSS remain incompletely understood. A more comprehensive classification may also benefit comparative analyses from different institutions. All children treated at our institution for type II congenital PSS from 1999 through 2009 were reviewed for presentation, treatment, and outcome. Ten children (7 boys) with type II PSS were identified at a median age of 5.5 years. Hyperammonemia with varying degrees of neurocognitive dysfunction occurred in 80%. The shunt arose from a branch of the portal vein (type IIa; n = 2), from the main portal vein (type IIb; n = 7), or from a splenic or mesenteric vein (type IIc; n = 1). Management included operative ligation (n = 6), endovascular occlusion (n = 3), or a combined approach (n = 1). Shunt occlusion was successful in all cases. Serum ammonia decreased from 130 ± 115 μmol/L preoperatively to 31 ± 15 μmol/L postoperatively (P = .03). Additional benefits included resolution of neurocognitive dysfunction (n = 3), liver nodules (n = 1), and vaginal bleeding (n = 1). Correction of type II PSS relieves a wide array of symptoms. Surgery is indicated for patients with clinically significant shunting. A refined classification system will permit future comparison of patients with similar physiology. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Coronal magnetic fields from multiple type II bursts

    NASA Astrophysics Data System (ADS)

    Honnappa, Vijayakumar; Raveesha, K. H.; Subramanian, K. R.

    Coronal magnetic fields from multiple type II bursts Vijayakumar H Doddamani1*, Raveesha K H2 and Subramanian3 1Bangalore University, Bangalore, Karnataka state, India 2CMR Institute of Technology, Bangalore, Karnataka state, India 3 Retd, Indian Institute of Astrophysics, Bangalore, Karnataka state, India Abstract Magnetic fields play an important role in the astrophysical processes occurring in solar corona. In the solar atmosphere, magnetic field interacts with the plasma, producing abundant eruptive activities. They are considered to be the main factors for coronal heating, particle acceleration and the formation of structures like prominences, flares and Coronal Mass Ejections. The magnetic field in solar atmosphere in the range of 1.1-3 Rsun is especially important as an interface between the photospheric magnetic field and the solar wind. Its structure and time dependent change affects space weather by modifying solar wind conditions, Cho (2000). Type II doublet bursts can be used for the estimation of the strength of the magnetic field at two different heights. Two type II bursts occur sometimes in sequence. By relating the speed of the type II radio burst to Alfven Mach Number, the Alfven speed of the shock wave generating type II radio burst can be calculated. Using the relation between the Alfven speed and the mean frequency of emission, the magnetic field strength can be determined at a particular height. We have used the relative bandwidth and drift rate properties of multiple type II radio bursts to derive magnetic field strengths at two different heights and also the gradient of the magnetic field in the outer corona. The magnetic field strength has been derived for different density factors. It varied from 1.2 to 2.5 gauss at a solar height of 1.4 Rsun. The empirical relation of the variation of the magnetic field with height is found to be of the form B(R) = In the present case the power law index ‘γ’ varied from -3 to -2 for variation of

  4. Dynamic investigation of DNA bending and wrapping by type II topoisomerases

    NASA Astrophysics Data System (ADS)

    Shao, Qing; Finzi, Laura; Dunlap, David

    2009-11-01

    Type II topoisomerases catalyze DNA decatenation and unwinding which is crucial for cell division, and therefore type II topoisomerases are some of the main targets of anti-cancer drugs. A recent crystal structure shows that, during the catalytic cycle, a yeast type II topoimerase can bend a 10 base pair DNA segment by up to 150 degrees. Bacterial gyrase, another type II topoisomerase, can wrap DNA into a tight 180 degree turn. Bending a stiff polymer like DNA requires considerable energy and could represent the rate limiting step in the catalytic (topological) cycle. Using modified deoxyribonucleotides in PCR reactions, stiffer DNA fragments have been produced and used as substrates for topoisomerase II-mediated relaxation of plectonemes introduced in single molecules using magnetic tweezers. The wrapping ability of gyrase decreases for diamino-purine-substituted DNA in which every base pair has three hydrogen-bonds. The overall rate of relaxation of plectonemes by recombinant human topoisomerase II alpha also decreases. These results reveal the dynamic properties of DNA bending and wrapping by type II topisomerases and suggest that A:T base pair melting is a rate determining step for bending and wrapping.

  5. Hypoxia-inducible factor-1α in vascular smooth muscle regulates blood pressure homeostasis through a peroxisome proliferator-activated receptor-γ-angiotensin II receptor type 1 axis.

    PubMed

    Huang, Yan; Di Lorenzo, Annarita; Jiang, Weidong; Cantalupo, Anna; Sessa, William C; Giordano, Frank J

    2013-09-01

    Hypertension is a major worldwide health issue for which only a small proportion of cases have a known mechanistic pathogenesis. Of the defined causes, none have been directly linked to heightened vasoconstrictor responsiveness, despite the fact that vasomotor tone in resistance vessels is a fundamental determinant of blood pressure. Here, we reported a previously undescribed role for smooth muscle hypoxia-inducible factor-1α (HIF-1α) in controlling blood pressure homeostasis. The lack of HIF-1α in smooth muscle caused hypertension in vivo and hyperresponsiveness of resistance vessels to angiotensin II stimulation ex vivo. These data correlated with an increased expression of angiotensin II receptor type I in the vasculature. Specifically, we show that HIF-1α, through peroxisome proliferator-activated receptor-γ, reciprocally defined angiotensin II receptor type I levels in the vessel wall. Indeed, pharmacological blockade of angiotensin II receptor type I by telmisartan abolished the hypertensive phenotype in smooth muscle cell-HIF-1α-KO mice. These data revealed a determinant role of a smooth muscle HIF-1α/peroxisome proliferator-activated receptor-γ/angiotensin II receptor type I axis in controlling vasomotor responsiveness and highlighted an important pathway, the alterations of which may be critical in a variety of hypertensive-based clinical settings.

  6. Differential gene expression in Staphylococcus aureus exposed to Orange II and Sudan III azo dyes

    PubMed Central

    Pan, Hongmiao; Xu, Joshua; Kweon, Oh-Gew; Zou, Wen; Feng, Jinhui; He, Gui-Xin; Cerniglia, Carl E.

    2018-01-01

    We previously demonstrated the effects of azo dyes and their reduction metabolites on bacterial cell growth and cell viability. In this report, the effects of Orange II and Sudan III on gene expression profiling in Staphylococcus aureus ATCC BAA 1556 were analyzed using microarray and quantitative RT-PCR technology. Upon exposure to 6 μg/ml Orange II for 18 h, 21 genes were found to be differently expressed. Among them, 8 and 13 genes were up- and down-regulated, respectively. Most proteins encoded by these differentially expressed genes involve stress response caused by drug metabolism, oxidation, and alkaline shock indicating that S. aureus could adapt to Orange II exposure through a balance between up and down regulated gene expression. Whereas, after exposure to 6 μg/ml Sudan III for 18 h, 57 genes were differentially expressed. In which, 51 genes were up-regulated and 6 were down-regulated. Most proteins encoded by these differentially expressed genes involve in cell wall/membrane biogenesis and biosynthesis, nutrient uptake, transport and metabolite, and stress response, suggesting that Sudan III damages the bacterial cell wall or/and membrane due to binding of the dye. Further analysis indicated that all differentially expressed genes encoded membrane proteins were up-regulated and most of them serve as transporters. The result suggested that these genes might contribute to survival, persistence and growth in the presence of Sudan III. Only one gene msrA, which plays an important role in oxidative stress resistance, was found to be down-regulated after exposure to both Orange II and Sudan III. The present results suggested that both these two azo dyes can cause stress in S. aureus and the response of the bacterium to the stress is mainly related to characteristics of the azo dyes. PMID:25720844

  7. FORMATION OF INTRACYTOPLASMIC MEMBRANE SYSTEM OF MYCOBACTERIA RELATED TO CELL DIVISION

    PubMed Central

    Imaeda, Tamotsu; Ogura, Mituo

    1963-01-01

    Imaeda, Tamotsu (Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela) and Mitua Ogura. Formation of intracytoplasmic membrane system of mycobacteria related to cell division. J. Bacteriol. 85:150–163. 1963.—Mycobacterium leprae, M. lepraemurium, and a Mycobacterium sp. were observed with an electron microscope. In these bacilli, the three-dimensional structure of the intracytoplasmic membrane system consists of tubular infoldings of the invaginated plasma membrane. The moderately dense substance, presumably representing the cell-wall precursor, is found in the membranous system, especially in the rapid growth phase of mycobacteria. This system always shows an intimate relationship with cell division. A low-density zone, probably corresponding to the low-density substance which coats the cell wall, appears in the connecting regions of the system and in the longitudinal portion of the cell wall. These zones extend centripetally, and the separation of the cell wall occurs after the two zones meet. Based on these results, we hypothesize that the intracytoplasmic membrane system may produce cell-wall material during cell division of mycobacteria. Images PMID:13956365

  8. In Situ D-periodic Molecular Structure of Type II Collagen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipova, Olga; Orgel, Joseph P.R.O.

    Collagens are essential components of extracellular matrices in multicellular animals. Fibrillar type II collagen is the most prominent component of articular cartilage and other cartilage-like tissues such as notochord. Its in situ macromolecular and packing structures have not been fully characterized, but an understanding of these attributes may help reveal mechanisms of tissue assembly and degradation (as in osteo- and rheumatoid arthritis). In some tissues such as lamprey notochord, the collagen fibrillar organization is naturally crystalline and may be studied by x-ray diffraction. We used diffraction data from native and derivative notochord tissue samples to solve the axial, D-periodic structuremore » of type II collagen via multiple isomorphous replacement. The electron density maps and heavy atom data revealed the conformation of the nonhelical telopeptides and the overall D-periodic structure of collagen type II in native tissues, data that were further supported by structure prediction and transmission electron microscopy. These results help to explain the observed differences in collagen type I and type II fibrillar architecture and indicate the collagen type II cross-link organization, which is crucial for fibrillogenesis. Transmission electron microscopy data show the close relationship between lamprey and mammalian collagen fibrils, even though the respective larger scale tissue architecture differs.« less

  9. Floquet Weyl semimetals in light-irradiated type-II and hybrid line-node semimetals

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Zhou, Bin; Xu, Dong-Hui

    2018-04-01

    Type-II Weyl semimetals have recently attracted intensive research interest because they host Lorentz-violating Weyl fermions as quasiparticles. The discovery of type-II Weyl semimetals evokes the study of type-II line-node semimetals (LNSMs) whose linear dispersion is strongly tilted near the nodal ring. We present here a study on the circularly polarized light-induced Floquet states in type-II LNSMs, as well as those in hybrid LNSMs that have a partially overtilted linear dispersion in the vicinity of the nodal ring. We illustrate that two distinct types of Floquet Weyl semimetal (WSM) states can be induced in periodically driven type-II and hybrid LNSMs, and the type of Floquet WSMs can be tuned by the direction and intensity of the incident light. We construct phase diagrams of light-irradiated type-II and hybrid LNSMs which are quite distinct from those of light-irradiated type-I LNSMs. Moreover, we show that photoinduced Floquet type-I and type-II WSMs can be characterized by the emergence of different anomalous Hall conductivities.

  10. Signaling States of Rhodopsin in Rod Disk Membranes Lacking Transducin βγ-Complex

    PubMed Central

    Lomonosova, Elena; Kolesnikov, Alexander V.; Kefalov, Vladimir J.

    2012-01-01

    Purpose. To characterize the possible role of transducin Gtβγ-complex in modulating the signaling properties of photoactivated rhodopsin and its lifetime in rod disc membranes and intact rods. Methods. Rhodopsin photolysis was studied using UV-visible spectroscopy and rapid scanning spectroscopy in the presence of hydroxylamine in highly purified wild-type and Gtγ-deficient mouse rod disc membranes. Complex formation between photoactivated rhodopsin and transducin was measured by extra-metarhodopsin (meta) II assay. Recovery of dark current and flash sensitivity in individual intact wild-type and Gtγ-deficient mouse rods was measured by single-cell suction recordings. Results. Photoconversion of rhodopsin to meta I/meta II equilibrium proceeds normally after elimination of the Gtβγ-complex. The meta I/meta II ratio, the rate of meta II decay, the reactivity of meta II toward hydroxylamine, and the rate of meta III formation in Gtγ-deficient rod disc membranes were identical with those observed in wild-type samples. Under low-intensity illumination, the amount of extra–meta II in Gtγ-deficient discs was significantly reduced. The initial rate of dark current recovery after 12% rhodopsin bleach was three times faster in Gtγ-deficient rods, whereas the rate of the late current recovery was largely unchanged. Mutant rods also exhibited faster postbleach recovery of flash sensitivity. Conclusions. Photoactivation and thermal decay of rhodopsin proceed similarly in wild-type and Gtγ-deficient mouse rods, but the complex formation between photoactivated rhodopsin and transducin is severely compromised in the absence of Gtβγ. The resultant lower transduction activation contributes to faster photoresponse recovery after a moderate pigment bleach in Gtγ-deficient rods. PMID:22266510

  11. A Statistical Study of Interplanetary Type II Bursts: STEREO Observations

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Eastwood, J. P.; Magdalenic, J.; Gopalswamy, N.; Kruparova, O.; Szabo, A.

    2017-12-01

    Coronal mass ejections (CMEs) are the primary cause of the most severe and disruptive space weather events such as solar energetic particle (SEP) events and geomagnetic storms at Earth. Interplanetary type II bursts are generated via the plasma emission mechanism by energetic electrons accelerated at CME-driven shock waves and hence identify CMEs that potentially cause space weather impact. As CMEs propagate outward from the Sun, radio emissions are generated at progressively at lower frequencies corresponding to a decreasing ambient solar wind plasma density. We have performed a statistical study of 153 interplanetary type II bursts observed by the two STEREO spacecraft between March 2008 and August 2014. These events have been correlated with manually-identified CMEs contained in the Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) catalogue. Our results confirm that faster CMEs are more likely to produce interplanetary type II radio bursts. We have compared observed frequency drifts with white-light observations to estimate angular deviations of type II burst propagation directions from radial. We have found that interplanetary type II bursts preferably arise from CME flanks. Finally, we discuss a visibility of radio emissions in relation to the CME propagation direction.

  12. Complex Dynamic Development of Poliovirus Membranous Replication Complexes

    PubMed Central

    Nair, Vinod; Hansen, Bryan T.; Hoyt, Forrest H.; Fischer, Elizabeth R.; Ehrenfeld, Ellie

    2012-01-01

    Replication of all positive-strand RNA viruses is intimately associated with membranes. Here we utilize electron tomography and other methods to investigate the remodeling of membranes in poliovirus-infected cells. We found that the viral replication structures previously described as “vesicles” are in fact convoluted, branching chambers with complex and dynamic morphology. They are likely to originate from cis-Golgi membranes and are represented during the early stages of infection by single-walled connecting and branching tubular compartments. These early viral organelles gradually transform into double-membrane structures by extension of membranous walls and/or collapsing of the luminal cavity of the single-membrane structures. As the double-membrane regions develop, they enclose cytoplasmic material. At this stage, a continuous membranous structure may have double- and single-walled membrane morphology at adjacent cross-sections. In the late stages of the replication cycle, the structures are represented mostly by double-membrane vesicles. Viral replication proteins, double-stranded RNA species, and actively replicating RNA are associated with both double- and single-membrane structures. However, the exponential phase of viral RNA synthesis occurs when single-membrane formations are predominant in the cell. It has been shown previously that replication complexes of some other positive-strand RNA viruses form on membrane invaginations, which result from negative membrane curvature. Our data show that the remodeling of cellular membranes in poliovirus-infected cells produces structures with positive curvature of membranes. Thus, it is likely that there is a fundamental divergence in the requirements for the supporting cellular membrane-shaping machinery among different groups of positive-strand RNA viruses. PMID:22072780

  13. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes.

    PubMed

    Rozendal, René A; Hamelers, Hubertus V M; Molenkamp, Redmar J; Buisman, Cees J N

    2007-05-01

    In this paper hydrogen production through biocatalyzed electrolysis was studied for the first time in a single chamber configuration. Single chamber biocatalyzed electrolysis was tested in two configurations: (i) with a cation exchange membrane (CEM) and (ii) with an anion exchange membrane (AEM). Both configurations performed comparably and produced over 0.3 m3 H2/m3 reactor liquid volume/day at 1.0 V applied voltage (overall hydrogen efficiencies around 23%). Analysis of the water that permeated through the membrane revealed that a large part of potential losses in the system were associated with a pH gradient across the membrane (CEM DeltapH=6.4; AEM DeltapH=4.4). These pH gradient associated potential losses were lower in the AEM configuration (CEM 0.38 V; AEM 0.26 V) as a result of its alternative ion transport properties. This benefit of the AEM, however, was counteracted by the higher cathode overpotentials occurring in the AEM configuration (CEM 0.12 V at 2.39 A/m2; AEM 0.27 V at 2.15 A/m2) as a result of a less effective electroless plating method for the AEM membrane electrode assembly (MEA).

  14. Isolation and characterization of spinach photosystem II membrane-associated catalase and polyphenol oxidase.

    PubMed

    Sheptovitsky, Y G; Brudvig, G W

    1996-12-17

    Photosystem II (PSII) membranes exhibit catalase and polyphenol oxidase (PPO) activities. Mild heat treatment of PSII membranes for 90 min at 30 degrees C releases most of these enzyme activities into the supernatant, accompanied by a 7-fold activation of PPO. In contrast, mild heat treatment of thylakoid membranes does not release significant amounts of either activity, indicating that both enzymes are bound to the luminal surface of the thylakoid membrane. The heat-released PSII membrane-associated catalase and PPO have been purified and characterized. Catalase activity was correlated with a 63 kDa polypeptide which was purified by batch adsorption to anion-exchange beads followed by gel filtration. The PSII membrane-associated catalase is unstable in solution, probably due to irreversible aggregation. The enzyme was characterized in terms of molecular and subunit size, amino-acid composition, UV-visible absorption, heme content, pH optimum, inhibitor sensitivity, and K(m) value for H2O2. Its properties indicate that the PSII membrane-associated catalase is a luminal thylakoid membrane-bound heme enzyme that has not been identified previously. The residual catalase activity of PSII membranes after mild heat treatment is irreversibly inhibited with 3-amino-1,2,4-triazole, a specific inhibitor of heme catalases, without inhibition of O2-evolution activity. This result indicates that little, if any, of the catalase activity from PSII membranes in the dark is catalyzed by the O2-evolving center of PSII. PPO activity was correlated with a 48 kDa polypeptide. However, the 48 kDa polypeptide and another heat-released polypeptide of 72 kDa have the same N-terminal sequence, which is also identical to that of a known 64 kDa protein [Hind, G., Marshak, D. R., & Coughlan, S. J. (1995) Biochemistry 34, 8157-8164]. During heat treatment of PSII membranes and further manipulations it was found that the 72 kDa polypeptide was largely converted into the 48 kDa polypeptide. Thus

  15. Electrical filtering in gerbil isolated type I semicircular canal hair cells

    NASA Technical Reports Server (NTRS)

    Rennie, K. J.; Ricci, A. J.; Correia, M. J.

    1996-01-01

    1. Membrane potential responses of dissociated gerbil type I semicircular canal hair cells to current injections in whole cell current-clamp have been measured. The input resistance of type I cells was 21.4 +/- 14.3 (SD) M omega, (n = 25). Around the zero-current potential (Vz = -66.6 +/- 9.3 mV, n = 25), pulsed current injections (from approximately -200 to 750 pA) produced only small-amplitude, pulse-like changes in membrane potential. 2. Injecting constant current to hyperpolarize the membrane to around -100 mV resulted in a approximately 10-fold increase in membrane resistance. Current pulses superimposed on this constant hyperpolarization produced larger and more complex membrane potential changes. Depolarizing currents > or = 200 pA caused a rapid transient peak voltage before a plateau. 3. Membrane voltage was able to faithfully follow sine-wave current injections around Vz over the range 1-1,000 Hz with < 25% attenuation at 1 kHz. A previously described K conductance, IKI, which is active at Vz, produces the low input resistance and frequency response. This was confirmed by pharmacologically blocking IKI. This conductance, present in type I cells but not type II hair cells, would appear to confer on type I cells a lower gain, but a much broader bandwidth at Vz, than seen in type II cells.

  16. Single-Walled Carbon Nanotube Film Supported Nanofiltration Membrane with a Nearly 10 nm Thick Polyamide Selective Layer for High-Flux and High-Rejection Desalination.

    PubMed

    Zhu, Yuzhang; Xie, Wei; Gao, Shoujian; Zhang, Feng; Zhang, Wenbin; Liu, Zhaoyang; Jin, Jian

    2016-09-01

    Fabricating nanofiltration (NF) membranes with high permeating flux and simultaneous high rejection rate for desalination is rather significant and highly desired. A new avenue is reported in this work to design NF membrane by using polydopamine wrapped single-walled carbon nanotube (PD/SWCNTs) ultrathin film as support layer instead of the use of traditional polymer-based underlying layers. Thanks to the high porosity, smooth surface, and more importantly optimal hydrophilic surface of PD/SWCNTs film, a defect-free polyamide selective layer for NF membrane with thickness of as thin as 12 nm is achieved. The obtained NF membrane exhibits an extremely high performance with a permeating flux of 32 L m -2 h -1 bar -1 and a rejection rate of 95.9% to divalent ions. This value is two to five times higher than the traditional NF membranes with similar rejection rate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Endoplasmic reticulum stress in chondrodysplasias caused by mutations in collagen types II and X.

    PubMed

    Gawron, Katarzyna

    2016-11-01

    The endoplasmic reticulum is primarily recognized as the site of synthesis and folding of secreted, membrane-bound, and some organelle-targeted proteins. An imbalance between the load of unfolded proteins and the processing capacity in endoplasmic reticulum leads to the accumulation of unfolded or misfolded proteins and endoplasmic reticulum stress, which is a hallmark of a number of storage diseases, including neurodegenerative diseases, a number of metabolic diseases, and cancer. Moreover, its contribution as a novel mechanistic paradigm in genetic skeletal diseases associated with abnormalities of the growth plates and dwarfism is considered. In this review, I discuss the mechanistic significance of endoplasmic reticulum stress, abnormal folding, and intracellular retention of mutant collagen types II and X in certain variants of skeletal chondrodysplasia.

  18. Study on Shear Performance of Cold-formed Steel Composite Wall with New Type of stud

    NASA Astrophysics Data System (ADS)

    Wang, Chungang; Yue, Sizhe; Liu, Hong; Zhang, Zhuangnan

    2018-03-01

    The shear resistance of single oriented-strand board wall and single gypsum board wall can be improved in different degrees by increasing strength of steel. The experimental data of literatures were used, and the test specimens had been simulated and validated by ABAQUS finite element analysis. According to the research, it showed that the compressive bearing capacity of the new stud composite wall was much better than the common stud composite wall, so the establishment and research of all models had been based on the new section stud. The analysis results show that when using new type of stud the shear resistance of the single oriented-strand board wall can be improved efficiently by increasing strength of steel, but the shear resistance of the single gypsum wall can be increased little.

  19. A lightweight low-frequency sound insulation membrane-type acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Lu, Kuan; Wu, Jiu Hui; Guan, Dong; Gao, Nansha; Jing, Li

    2016-02-01

    A novel membrane-type acoustic metamaterial with a high sound transmission loss (STL) at low frequencies (⩽500Hz) was designed and the mechanisms were investigated by using negative mass density theory. This metamaterial's structure is like a sandwich with a thin (thickness=0.25mm) lightweight flexible rubber material within two layers of honeycomb cell plates. Negative mass density was demonstrated at frequencies below the first natural frequency, which results in the excellent low-frequency sound insulation. The effects of different structural parameters of the membrane on the sound-proofed performance at low frequencies were investigated by using finite element method (FEM). The numerical results show that, the STL can be modulated to higher value by changing the structural parameters, such as the membrane surface density, the unite cell film shape, and the membrane tension. The acoustic metamaterial proposed in this study could provide a potential application in the low-frequency noise insulation.

  20. Autosomal Dominant Growth Hormone Deficiency (Type II).

    PubMed

    Alatzoglou, Kyriaki S; Kular, Dalvir; Dattani, Mehul T

    2015-06-01

    Isolated growth hormone deficiency (IGHD) is the commonest pituitary hormone deficiency resulting from congenital or acquired causes, although for most patients its etiology remains unknown. Among the known factors, heterozygous mutations in the growth hormone gene (GH1) lead to the autosomal dominant form of GHD, also known as type II GHD. In many cohorts this is the commonest form of congenital isolated GHD and is mainly caused by mutations that affect the correct splicing of GH-1. These mutations cause skipping of the third exon and lead to the production of a 17.5-kDa GH isoform that exerts a dominant negative effect on the secretion of the wild type GH. The identification of these mutations has clinical implications for the management of patients, as there is a well-documented correlation between the severity of the phenotype and the increased expression of the 17.5-kDa isoform. Patients with type II GHD have a variable height deficit and severity of GHD and may develop additional pituitary hormone defiencies over time, including ACTH, TSH and gonadotropin deficiencies. Therefore, their lifelong follow-up is recommended. Detailed studies on the effect of heterozygous GH1 mutations on the trafficking, secretion and action of growth hormone can elucidate their mechanism on a cellular level and may influence future treatment options for GHD type II.

  1. Removal of Pb(II) from wastewater using Al2O3-NaA zeolite composite hollow fiber membranes synthesized from solid waste coal fly ash.

    PubMed

    Zhu, Li; Ji, Jiayou; Wang, Shulin; Xu, Chenxi; Yang, Kun; Xu, Man

    2018-09-01

    Al 2 O 3 -NaA zeolite composite hollow fiber membranes were successfully fabricated via hydrothermal synthesis by using industrial solid waste coal fly ash and porous Al 2 O 3 hollow fiber supports. The as-synthesized Al 2 O 3 -NaA zeolite composite hollow fiber membranes were then characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The hollow fiber membranes were used to remove lead ions (Pb(II), 50 mg L -1 ) from synthetic wastewater with a removal efficiency of 99.9% at 0.1 MPa after 12 h of filtration. This study showed that the Al 2 O 3 -NaA zeolite composite hollow fiber membranes (the pore size of the membrane was about 0.41 nm in diameter) synthesized from coal fly ash could be efficiently used for treating low concentration Pb(II) wastewater. It recycled solid waste coal fly ash not only to solve its environment problems, but also can produce high-value Al 2 O 3 -NaA zeolite composite hollow fiber membranes for separation application in treating wastewater containing Pb(II). Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Studies of the permeation properties of glomerular basement membrane: cross-linking renders glomerular basement membrane permeable to protein.

    PubMed

    Walton, H A; Byrne, J; Robinson, G B

    1992-03-20

    Cross-linking glomerular basement membrane (GBM) has been shown to render it more permeable to protein. Isolated pig GBM was cross-linked with dimethylmalonimidate which reacts selectively with lysine epsilon-NH2 groups or with glutaraldehyde, a less selective cross-linking agent. Studies of the ultrafiltration properties of these materials in vitro using cytochrome c, myoglobin, bovine serum albumin and immunoglobulin showed that cross-linking had markedly increased solvent and protein fluxes as compared with native membranes particularly at higher pressures. Filtration studies with serum demonstrated that the cross-linked membranes were more permeable to serum proteins. Thickness measurements under pressure indicated that cross-linked membrane was less compressed than native membrane as pressure was increased. Pore theory did not provide a suitable model for analysis of the results, but analysis of the results using the fibre-matrix hypothesis indicated that cross-linking had the effect of bundling together the fibres (type IV collagen) in the GBM matrix. The effect of cross-linking on filtration could be explained by a combination of contraction of the membrane, fibre bundling and increased rigidity compared with native membrane. Cross-linking of GBM might lead to long-term damage of the glomerular capillary wall in nephritis, so promoting proteinuria.

  3. SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells

    PubMed Central

    Mossel, Eric C.; Wang, Jieru; Jeffers, Scott; Edeen, Karen E.; Wang, Shuanglin; Cosgrove, Gregory P.; Funk, C. Joel; Manzer, Rizwan; Miura, Tanya A.; Pearson, Leonard D.; Holmes, Kathryn V.; Mason, Robert J.

    2008-01-01

    Severe acute respiratory syndrome (SARS) is a disease characterized by diffuse alveolar damage. We isolated alveolar type II cells and maintained them in a highly differentiated state. Type II cell cultures supported SARS-CoV replication as evidenced by RT-PCR detection of viral subgenomic RNA and an increase in virus titer. Virus titers were maximal by 24 hours and peaked at approximately 105 pfu/mL. Two cell types within the cultures were infected. One cell type was type II cells, which were positive for SP-A, SP-C, cytokeratin, a type II cell-specific monoclonal antibody, and Ep-CAM. The other cell type was composed of spindle-shaped cells that were positive for vimentin and collagen III and likely fibroblasts. Viral replication was not detected in type I-like cells or macrophages. Hence, differentiated adult human alveolar type II cells were infectible but alveolar type I-like cells and alveolar macrophages did not support productive infection. PMID:18022664

  4. ICC Type II large-format FPA detector assemblies

    NASA Astrophysics Data System (ADS)

    Clynne, Thomas H.; Powers, Thomas P.

    1997-08-01

    ICC presents a new addition to their integrated detector assembly product line with the announcement of their type II large format staring class FPA units. A result of internally funded research and development, the ICC type II detector assembly can accommodate all existing large format staring class PtSi, InSb and MCT focal planes, up to 640 by 480. Proprietary methodologies completely eliminate all FPA stresses to allow for maximum FPA survivability. Standard optical and cryocooler interfaces allow for the use of BEI, AEG, TI SADA Hughes/Magnavox and Joule Thompson coolers. This unit has been qualified to the current SADA II thermal environmental specifications and was tailored around ICC's worldwide industry standard type IV product. Assembled in a real world flexible manufacturing environment, this unit features a wide degree of adaptability and can be easily modified to a user's specifications via standard options and add-ons that include optical interfaces, electrical interfaces and window/filter material selections.

  5. On the source conditions for herringbone structure in type II solar radio bursts

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; White, S. M.

    1989-01-01

    An investigation is made of the correlation of the occurrence of the herringbone phenomenon in type II solar radio bursts with various flare properties. It is shown that herringbone is strongly correlated with the intensity of the type II burst: whereas about 21 percent of all type II bursts show herringbone, about 60 percent of the most intense bursts contain herringbone. This fact can explain most of the correlations between herringbone and other properties such as intense type III bursts, type IV emission, and high type II starting frequencies. It is also shown that when this is taken into account, there is no need to postulate two classes of type II burst in order to explain why there appears to be a difference in herringbone occurrence between the set of type II bursts associated with the leading edges of coronal mass ejections, and those not so associated. It is argued that the data are consistent with the idea that all coronal type II bursts are due to blast waves from flares.

  6. Type II NKT Cells in Inflammation, Autoimmunity, Microbial Immunity, and Cancer

    PubMed Central

    Marrero, Idania; Ware, Randle; Kumar, Vipin

    2015-01-01

    Natural killer T cells (NKT) recognize self and microbial lipid antigens presented by non-polymorphic CD1d molecules. Two major NKT cell subsets, type I and II, express different types of antigen receptors (TCR) with distinct mode of CD1d/lipid recognition. Though type II NKT cells are less frequent in mice and difficult to study, they are predominant in human. One of the major subsets of type II NKT cells reactive to the self-glycolipid sulfatide is the best characterized and has been shown to induce a dominant immune regulatory mechanism that controls inflammation in autoimmunity and in anti-cancer immunity. Recently, type II NKT cells reactive to other self-glycolipids and phospholipids have been identified suggesting both promiscuous and specific TCR recognition in microbial immunity as well. Since the CD1d pathway is highly conserved, a detailed understanding of the biology and function of type II NKT cells as well as their interplay with type I NKT cells or other innate and adaptive T cells will have major implications for potential novel interventions in inflammatory and autoimmune diseases, microbial immunity, and cancer. PMID:26136748

  7. Late-onset Bartter syndrome type II.

    PubMed

    Gollasch, Benjamin; Anistan, Yoland-Marie; Canaan-Kühl, Sima; Gollasch, Maik

    2017-10-01

    Mutations in the ROMK1 potassium channel gene ( KCNJ1 ) cause antenatal/neonatal Bartter syndrome type II (aBS II), a renal disorder that begins in utero , accounting for the polyhydramnios and premature delivery that is typical in affected infants, who develop massive renal salt wasting, hypokalaemic metabolic alkalosis, secondary hyperreninaemic hyperaldosteronism, hypercalciuria and nephrocalcinosis. This BS type is believed to represent a disorder of the infancy, but not in adulthood. We herein describe a female patient with a remarkably late-onset and mild clinical manifestation of BS II with compound heterozygous KCNJ1 missense mutations, consisting of a novel c.197T > A (p.I66N) and a previously reported c.875G > A (p.R292Q) KCNJ1 mutation. We implemented and evaluated the performance of two different bioinformatics-based approaches of targeted massively parallel sequencing [next generation sequencing (NGS)] in defining the molecular diagnosis. Our results demonstrate that aBS II may be suspected in patients with a late-onset phenotype. Our experimental approach of NGS-based mutation screening combined with Sanger sequencing proved to be a reliable molecular approach for defining the clinical diagnosis in our patient, and results in important differential diagnostic and therapeutic implications for patients with BS. Our results could have a significant impact on the diagnosis and methodological approaches of genetic testing in other patients with clinical unclassified phenotypes of nephrocalcinosis and congenital renal electrolyte abnormalities.

  8. High intensity focused ultrasound ablation for submucosal fibroids: A comparison between type I and type II.

    PubMed

    Xie, Bin; Zhang, Cai; Xiong, Chunyan; He, Jia; Huang, Guohua; Zhang, Lian

    2015-01-01

    The aim of this study was to compare high-intensity focused ultrasound (HIFU) treatment for type I and type II submucosal fibroids. From October 2011 to October 2013, 55 patients with submucosal fibroids were enrolled in this study. Based on submucosal fibroid classification, 27 patients were grouped as type I submucosal fibroids, and 28 patients were classified as type II submucosal fibroids. All patients received HIFU treatment and completed 1-, 6-, and 12-month follow-ups. Adverse effects were recorded. There were no significant differences in the baseline characteristics between the two groups (p > 0.05). Using similar sonication power, sonication time, and acoustic energy, the non-perfused volume (NPV) ratio was 83.0 ± 17.3% in the type I group, and 92.0 ± 9.5% in the type II group. All the patients tolerated the procedure well, and no serious adverse events occurred. During the follow-up intervals, the treated fibroids shrank and fibroid-related symptoms were relieved. No other reinterventional procedures were performed during the follow-up period. Based on our results with a small number of subjects, HIFU is suitable for both type I and type II submucosal fibroids. It seems that type II submucosal fibroids are more sensitive to HIFU ablation. Future studies with larger sample sizes and longer follow-up times to investigate the long-term results, including long-term symptom relief, pregnancy outcomes, and the recurrence rate as well as the reintervention rate are needed.

  9. Diffuse Interplanetary Radio Emission (DIRE) Accompanying Type II Radio Bursts

    NASA Astrophysics Data System (ADS)

    Teklu, T. B.; Gopalswamy, N.; Makela, P. A.; Yashiro, S.; Akiyama, S.; Xie, H.

    2015-12-01

    We report on an unusual drifting feature in the radio dynamic spectra at frequencies below 14 MHz observed by the Radio and Plasma Wave (WAVES) experiment on board the Wind spacecraft. We call this feature as "Diffuse Interplanetary Radio Emission (DIRE)". The DIRE events are generally associated with intense interplanetary type II radio bursts produced by shocks driven by coronal mass ejections (CMEs). DIREs drift like type II bursts in the dynamic spectra, but the drifting feature consist of a series of short-duration spikes (similar to a type I chain). DIREs occur at higher frequencies than the associated type II bursts, with no harmonic relationship with the type II burst. The onset of DIREs is delayed by several hours from the onset of the eruption. Comparing the radio dynamic spectra with white-light observations from the Solar and Heliospheric Observatory (SOHO) mission, we find that the CMEs are generally very energetic (fast and mostly halos). We suggest that the DIRE source is typically located at the flanks of the CME-driven shock that is still at lower heliocentric distances.

  10. Sugar-sweetened beverage intake and the risk of type I and type II endometrial cancer among postmenopausal women.

    PubMed

    Inoue-Choi, Maki; Robien, Kim; Mariani, Andrea; Cerhan, James R; Anderson, Kristin E

    2013-12-01

    Sugar-sweetened beverage (SSB) intake has been associated with an increased risk of obesity and type II diabetes. However, its association with endometrial cancer is unclear. We evaluated dietary intake of SSB, fruit juice, sugar-free beverages, sweets/baked goods, starch, and sugars among 23,039 postmenopausal women in the Iowa Women's Health Study. Incident estrogen-dependent type I and estrogen-independent type II endometrial cancers were identified via linkage with the Surveillance Epidemiology and End Results Registry. Risks of type I and type II endometrial cancers were separately compared by energy-adjusted dietary intake in Cox proportional hazards regression models. From 1986 to 2010, 506 type I and 89 type II incident endometrial cancers were identified. An increased risk of type I endometrial cancer was observed with increasing SSB intake after adjustment for body mass index (BMI) and other cofounders (Ptrend = 0.0005). Compared with nondrinkers of SSB, the risk was 78% higher [95% confidence intervals (CI), 1.32-2.40] among women in the highest quintile of SSB intake. The observed association was not modified by BMI, physical activity, history of diabetes, or cigarette smoking. Higher risk of type I endometrial cancer was also observed with higher intake of sugars. None of the dietary items included in the analysis was associated with type II endometrial cancer risk. Higher intake of SSB and sugars was associated with an increased risk of type I, but not type II, endometrial cancer. SSB intake may be a risk factor for type I endometrial cancer regardless of other lifestyle factors. ©2013 AACR.

  11. A LIBS method for simultaneous monitoring of the impurities and the hydrogenic composition present in the wall of the TJ-II stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Miranda, B., E-mail: belen.lopez@ciemat.es; Zurro, B.; Baciero, A.

    The study of plasma-wall interactions and impurity transport in the plasma fusion devices is critical for the development of future fusion reactors. An experiment to perform laser induced breakdown spectroscopy, using minor modifications of our existing laser blow-off impurity injection system, has been set up thus making both experiments compatible. The radiation produced by the laser pulse focused at the TJ-II wall evaporates a surface layer of deposited impurities and the subsequent radiation produced by the laser-produced plasma is collected by two separate lens and fiber combinations into two spectrometers. The first spectrometer, with low spectral resolution, records a spectrummore » from 200 to 900 nm to give a survey of impurities present in the wall. The second one, with high resolution, is tuned to the wavelengths of the Hα and Dα lines in order to resolve them and quantify the hydrogen isotopic ratio present on the surface of the wall. The alignment, calibration, and spectral analysis method will be described in detail. First experimental results obtained with this setup will be shown and its relevance for the TJ-II experimental program discussed.« less

  12. Effects of type II thyroplasty on adductor spasmodic dysphonia.

    PubMed

    Sanuki, Tetsuji; Yumoto, Eiji; Minoda, Ryosei; Kodama, Narihiro

    2010-04-01

    Type II thyroplasty, or laryngeal framework surgery, is based on the hypothesis that the effect of adductor spasmodic dysphonia (AdSD) on the voice is due to excessively tight closure of the glottis, hampering phonation. Most of the previous, partially effective treatments have aimed to relieve this tight closure, including recurrent laryngeal nerve section or avulsion, extirpation of the adductor muscle, and botulinum toxin injection, which is currently the most popular. The aim of this study was to assess the effects of type II thyroplasty on aerodynamic and acoustic findings in patients with AdSD. Case series. University hospital. Ten patients with AdSD underwent type II thyroplasty between August 2006 and December 2008. Aerodynamic and acoustic analyses were performed prior to and six months after surgery. Mean flow rates (MFRs) and voice efficiency were evaluated with a phonation analyzer. Jitter, shimmer, the harmonics-to-noise ratio (HNR), standard deviation of the fundamental frequency (SDF0), and degree of voice breaks (DVB) were measured from each subject's longest sustained phonation sample of the vowel /a/. Voice efficiency improved significantly after surgery. No significant difference was found in the MFRs between before and after surgery. Jitter, shimmer, HNR, SDF0, and DVB improved significantly after surgery. Treatment of AdSD with type II thyroplasty significantly improved aerodynamic and acoustic findings. The results of this study suggest that type II thyroplasty provides relief from voice strangulation in patients with AdSD. Copyright 2010 American Academy of Otolaryngology-Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.

  13. Functional conversion between A-type and delayed rectifier K+ channels by membrane lipids.

    PubMed

    Oliver, Dominik; Lien, Cheng-Chang; Soom, Malle; Baukrowitz, Thomas; Jonas, Peter; Fakler, Bernd

    2004-04-09

    Voltage-gated potassium (Kv) channels control action potential repolarization, interspike membrane potential, and action potential frequency in excitable cells. It is thought that the combinatorial association between distinct alpha and beta subunits determines whether Kv channels function as non-inactivating delayed rectifiers or as rapidly inactivating A-type channels. We show that membrane lipids can convert A-type channels into delayed rectifiers and vice versa. Phosphoinositides remove N-type inactivation from A-type channels by immobilizing the inactivation domains. Conversely, arachidonic acid and its amide anandamide endow delayed rectifiers with rapid voltage-dependent inactivation. The bidirectional control of Kv channel gating by lipids may provide a mechanism for the dynamic regulation of electrical signaling in the nervous system.

  14. Aspen Tension Wood Fibers Contain β-(1---> 4)-Galactans and Acidic Arabinogalactans Retained by Cellulose Microfibrils in Gelatinous Walls.

    PubMed

    Gorshkova, Tatyana; Mokshina, Natalia; Chernova, Tatyana; Ibragimova, Nadezhda; Salnikov, Vadim; Mikshina, Polina; Tryfona, Theodora; Banasiak, Alicja; Immerzeel, Peter; Dupree, Paul; Mellerowicz, Ewa J

    2015-11-01

    Contractile cell walls are found in various plant organs and tissues such as tendrils, contractile roots, and tension wood. The tension-generating mechanism is not known but is thought to involve special cell wall architecture. We previously postulated that tension could result from the entrapment of certain matrix polymers within cellulose microfibrils. As reported here, this hypothesis was corroborated by sequential extraction and analysis of cell wall polymers that are retained by cellulose microfibrils in tension wood and normal wood of hybrid aspen (Populus tremula × Populus tremuloides). β-(1→4)-Galactan and type II arabinogalactan were the main large matrix polymers retained by cellulose microfibrils that were specifically found in tension wood. Xyloglucan was detected mostly in oligomeric form in the alkali-labile fraction and was enriched in tension wood. β-(1→4)-Galactan and rhamnogalacturonan I backbone epitopes were localized in the gelatinous cell wall layer. Type II arabinogalactans retained by cellulose microfibrils had a higher content of (methyl)glucuronic acid and galactose in tension wood than in normal wood. Thus, β-(1→4)-galactan and a specialized form of type II arabinogalactan are trapped by cellulose microfibrils specifically in tension wood and, thus, are the main candidate polymers for the generation of tensional stresses by the entrapment mechanism. We also found high β-galactosidase activity accompanying tension wood differentiation and propose a testable hypothesis that such activity might regulate galactan entrapment and, thus, mechanical properties of cell walls in tension wood. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Hearing loss in Usher syndrome type II is nonprogressive.

    PubMed

    Reisser, Christoph F V; Kimberling, William J; Otterstedde, Christian R

    2002-12-01

    Usher syndrome is an autosomal recessive disorder characterized by sensorineural hearing loss and progressive visual loss secondary to retinitis pigmentosa. In the literature, a possible progression of the moderate to severe hearing loss in Usher syndrome type II (Usher II) is controversial. We studied the development of the hearing loss of 125 patients with a clinical diagnosis of Usher syndrome type II intraindividually and interindividually by repeatedly performing complete audiological and neuro-otologic examinations. Our data show a very characteristic slope of the hearing curve in all Usher II patients and no clinically relevant progression of the hearing loss over up to 17 years. The subjective impression of a deterioration of the communicative abilities of Usher II patients must therefore be attributed to the progressive visual loss. The patients should be reassured that changes in their hearing abilities are unlikely and should be provided with optimally fitted modern hearing aids.

  16. Geochemistry of the alginite and amorphous organic matter from type II-S kerogens

    USGS Publications Warehouse

    Stankiewicz, B.A.; Kruge, M.A.; Mastalerz, Maria; Salmon, G.L.

    1996-01-01

    Maceral fractions of the Type II-S kerogens from the Monterey Formation (Miocene. California. U.S.A.) and Duwi Formation (Campanian/Maastrichtian, Egypt) were separated by density gradient centrifugation. The Monterey Fm. kerogen sample was comprised chiefly of light red-fluorescing amorphous organic matter (AOM), the flash pyrolyzate of which was characterized by a predominance of alkylbenzenes, alkylthiophenes and alkylpyrroles. In contrast, the pyrolyzates of its alginite concentrate showed a highly aliphatic character, typical of this maceral, with the series of n-alkenes and n-alkanes (C6- C26) predominating. The pyrolyzate of the dominant light brown-fluorescing AOM of the Duwi Fm. kerogen had a relatively high concentration of alkylbenzenes and alkylthiophenes, while its elginite concentrate showed a more aliphatic character upon pyrolysis. There was a marked enrichment of thiophenic sulfur in the light-colored AOM of both samples (and also pyrrolic nitrogen in the case of the Monterey) relative to the alginite. The results support a bacterially-mediated, degradative origin for Type II-S amorphous organic matter, with algal remains as the primary source of the kerogen.

  17. Evolutionary origins of pectin methylesterase genes associated with novel aspects of angiosperm pollen tube walls.

    PubMed

    Wallace, Simon; Williams, Joseph H

    2017-06-03

    The early evolution of angiosperms was marked by a number of innovations of the reproductive cycle including an accelerated fertilization process involving faster transport of sperm to the egg via a pollen tube. Fast pollen tube growth rates in angiosperms are accompanied by a hard shank-soft tip pollen tube morphology. A critical actor in that morphology is the wall-embedded enzyme pectin methylesterase (PME), which in type II PMEs is accompanied by a co-transcribed inhibitor, PMEI. PMEs convert the esterified pectic tip wall to a stiffer state in the subapical flank by pectin de-esterification. It is hypothesized that rapid and precise targeting of PME activity was gained with the origin of type II genes, which are derived and have only expanded since the origin of vascular plants. Pollen-active PMEs have yet to be reported in early-divergent angiosperms or gymnosperms. Gene expression studies in Nymphaea odorata found transcripts from four type II VGD1-like and 16 type I AtPPME1-like homologs that were more abundant in pollen and pollen tubes than in vegetative tissues. The near full-length coding sequence of one type II PME (NoPMEII-1) included at least one PMEI domain. The identification of possible VGD1 homologs in an early-diverging angiosperm suggests that the refined control of PMEs that mediate de-esterification of pectins near pollen tube tips is a conserved feature across angiosperms. The recruitment of type II PMEs into a pollen tube elongation role in angiosperms may represent a key evolutionary step in the development of faster growing pollen tubes. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Type II diabetes mellitus and the incidence of epithelial ovarian cancer in the cancer prevention study-II nutrition cohort.

    PubMed

    Gapstur, Susan M; Patel, Alpa V; Diver, W Ryan; Hildebrand, Janet S; Gaudet, Mia M; Jacobs, Eric J; Campbell, Peter T

    2012-11-01

    Despite consistent associations of type II diabetes mellitus with hormonally related cancers such as breast and endometrium, the relation between type II diabetes mellitus and ovarian cancer risk is unclear. Associations of type II diabetes mellitus status, duration, and insulin use with epithelial ovarian cancer overall, and with serous and nonserous histologic subtypes were examined in the Cancer Prevention Study-II Nutrition Cohort, a prospective study of U.S. men and women predominantly aged 50 years and older. Between 1992 and 2007, 524 incident epithelial ovarian cancer cases were identified among 63,440 postmenopausal women. Multivariable-adjusted relative risks (RR) and 95% confidence intervals (CI) were computed using extended Cox regression to update diabetes status and bilateral oophorectomy status during follow-up. Type II diabetes mellitus status (RR = 1.05; 95% CI, 0.75-1.46) and duration were not associated with epithelial ovarian cancer risk. Although not statistically significantly different (P(difference) = 0.39), the RR was higher for type II diabetes mellitus with insulin use (RR = 1.28; 95% CI, 0.74-2.24) than for type II diabetes mellitus without insulin use (RR = 0.96; 95% CI, 0.64-1.43). Diabetes seemed to be more strongly associated with nonserous (RR = 1.41; 95% CI, 0.70-2.85) than serous (RR = 0.71; 95% CI, 0.41-1.23) histologic subtypes. Type II diabetes mellitus was not associated with risk of epithelial ovarian cancer, although higher risks with nonserous subtypes and among insulin users cannot be ruled out. Larger studies are needed to clarify associations of type II diabetes mellitus with or without insulin use with risk of ovarian cancer overall and by histologic subtypes. ©2012 AACR.

  19. Generalized type II hybrid ARQ scheme using punctured convolutional coding

    NASA Astrophysics Data System (ADS)

    Kallel, Samir; Haccoun, David

    1990-11-01

    A method is presented to construct rate-compatible convolutional (RCC) codes from known high-rate punctured convolutional codes, obtained from best-rate 1/2 codes. The construction method is rather simple and straightforward, and still yields good codes. Moreover, low-rate codes can be obtained without any limit on the lowest achievable code rate. Based on the RCC codes, a generalized type-II hybrid ARQ scheme, which combines the benefits of the modified type-II hybrid ARQ strategy of Hagenauer (1988) with the code-combining ARQ strategy of Chase (1985), is proposed and analyzed. With the proposed generalized type-II hybrid ARQ strategy, the throughput increases as the starting coding rate increases, and as the channel degrades, it tends to merge with the throughput of rate 1/2 type-II hybrid ARQ schemes with code combining, thus allowing the system to be flexible and adaptive to channel conditions, even under wide noise variations and severe degradations.

  20. [Metabolic surgery in treatment of diabetes mellitus of type II].

    PubMed

    Sedov, V M; Fishman, M B

    2013-01-01

    Nowadays, according to data of WHO, the diabetes mellitus was diagnosed in more than 280 million people. The diabetes mellitus type II had 90% patients. The applied methods of conservative therapy seldom lead to euglycemia condition of patients. Last years the treatment of diabetes mellitus was carried out by the method of different bariatic interventions. Good results was obtained, they should be analyzed and investigate. The results of treatment of 142 patients from 628 patients (with type II) were estimated. The patients were undergone by different bariatic interventions. Modern laparoscopic operations were performed on all the patients. Controlled bandage of stomach had 81 of patients. Gastric resection was performed in 28. Gastric bypass surgery was carried out in 22 of patients and biliopancreatic diversion - in 11. The improvement of control of leukemia level was obtained. Diabetes type II could be treated by surgical methods. The best results were obtained after combined operations, which potentially could present an alternative method of treatment of type II diabetes.

  1. Type II Radio Bursts as Indicators of Space Weather Drivers

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.

    2015-12-01

    Interplanetary type II radio bursts are important indicators of shock-driving coronal mass ejections (CMEs). CME-driven shocks are responsible for large solar energetic particle (SEP) events and sudden commencement/sudden impulse events recorded by ground magnetometers. The excellent overlap of the spatial domains probed by SOHO/STEREO coronagraphs with the spectral domains of Wind/WAVES and STEREO/WAVES has contributed enormously in understanding CMEs and shocks as space weather drivers. This paper is concerned with type II bursts of solar cycle 23 and 24 that had emission components down to kilometric wavelengths. CMEs associated with these bursts seem to be the best indicators of large SEP events, better than the halo CMEs. However, there are some differences between the type II bursts of the two cycles, which are explained based on the different states of the heliosphere in the two cycles. Finally, the type II burst characteristics of some recent extreme events are discussed.

  2. Type I and Type II error concerns in fMRI research: re-balancing the scale

    PubMed Central

    Cunningham, William A.

    2009-01-01

    Statistical thresholding (i.e. P-values) in fMRI research has become increasingly conservative over the past decade in an attempt to diminish Type I errors (i.e. false alarms) to a level traditionally allowed in behavioral science research. In this article, we examine the unintended negative consequences of this single-minded devotion to Type I errors: increased Type II errors (i.e. missing true effects), a bias toward studying large rather than small effects, a bias toward observing sensory and motor processes rather than complex cognitive and affective processes and deficient meta-analyses. Power analyses indicate that the reductions in acceptable P-values over time are producing dramatic increases in the Type II error rate. Moreover, the push for a mapwide false discovery rate (FDR) of 0.05 is based on the assumption that this is the FDR in most behavioral research; however, this is an inaccurate assessment of the conventions in actual behavioral research. We report simulations demonstrating that combined intensity and cluster size thresholds such as P < 0.005 with a 10 voxel extent produce a desirable balance between Types I and II error rates. This joint threshold produces high but acceptable Type II error rates and produces a FDR that is comparable to the effective FDR in typical behavioral science articles (while a 20 voxel extent threshold produces an actual FDR of 0.05 with relatively common imaging parameters). We recommend a greater focus on replication and meta-analysis rather than emphasizing single studies as the unit of analysis for establishing scientific truth. From this perspective, Type I errors are self-erasing because they will not replicate, thus allowing for more lenient thresholding to avoid Type II errors. PMID:20035017

  3. HVI Ballistic Performance Characterization of Non-Parallel Walls

    NASA Technical Reports Server (NTRS)

    Bohl, William; Miller, Joshua; Christiansen, Eric

    2012-01-01

    The Double-Wall, "Whipple" Shield [1] has been the subject of many hypervelocity impact studies and has proven to be an effective shield system for Micro-Meteoroid and Orbital Debris (MMOD) impacts for spacecraft. The US modules of the International Space Station (ISS), with their "bumper shields" offset from their pressure holding rear walls provide good examples of effective on-orbit use of the double wall shield. The concentric cylinder shield configuration with its large radius of curvature relative to separation distance is easily and effectively represented for testing and analysis as a system of two parallel plates. The parallel plate double wall configuration has been heavily tested and characterized for shield performance for normal and oblique impacts for the ISS and other programs. The double wall shield and principally similar Stuffed Whipple Shield are very common shield types for MMOD protection. However, in some locations with many spacecraft designs, the rear wall cannot be modeled as being parallel or concentric with the outer bumper wall. As represented in Figure 1, there is an included angle between the two walls. And, with a cylindrical outer wall, the effective included angle constantly changes. This complicates assessment of critical spacecraft components located within outer spacecraft walls when using software tools such as NASA's BumperII. In addition, the validity of the risk assessment comes into question when using the standard double wall shield equations, especially since verification testing of every set of double wall included angles is impossible.

  4. Jamming dynamics of stretch-induced surfactant release by alveolar type II cells

    PubMed Central

    Majumdar, Arnab; Arold, Stephen P.; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan

    2012-01-01

    Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes. PMID:22033531

  5. Association between angiotensin II type 1 receptor polymorphism and sudden cardiac death in myocardial infarction.

    PubMed

    Kruzliak, Peter; Kovacova, Gabriela; Pechanova, Olga; Balogh, Stefan

    2013-01-01

    The renin-angiotensin system is involved in the pathogenesis of coronary artery disease and myocardial infarction (MI). Angiotensin II (Ang II) has many adverse effects such as vasoconstriction and vascular remodeling, and these actions are mediated by the angiotensin II type 1 receptor (AT1R). A total of 1376 patients were recruited from January 2010 to April 2012. The study group consisted of 749 patients with ACS (317 females and 432 males) and of 627 healthy controls. The ACS patients demonstrated a lower proportion of AA genotypes and AC genotypes but higher proportions of CC genotypes than the control population. The AT1R CC genotype conferred a 2.76-fold higher risk of MI compared with the genotype AC and AA. In addition, the CC genotype was also associated with a 4.08 times higher risk of left anterior descending artery infarction and a 3.07 times higher risk of anterior wall infarction. We also found that the CC genotype was independently associated with sudden cardiac death. This study demonstrated that the AT1R CC genotype is an independent risk factor for ACS incidence, and this genotype is associated with a greater ACS severity and greater risk of sudden cardiac death.

  6. Critical cell wall hole size for lysis in Gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Mitchell, Gabriel; Wiesenfeld, Kurt; Nelson, Daniel; Weitz, Joshua

    2013-03-01

    Gram-positive bacteria transport molecules necessary for their survival through holes in their cell wall. The holes in cell walls need to be large enough to let critical nutrients pass through. However, the cell wall must also function to prevent the bacteria's membrane from protruding through a large hole into the environment and lysing the cell. As such, we hypothesize that there exists a range of cell wall hole sizes that allow for molecule transport but prevent membrane protrusion. Here we develop and analyze a biophysical theory of the response of a Gram-positive cell's membrane to the formation of a hole in the cell wall. We predict a critical hole size in the range 15-24nm beyond which lysis occurs. To test our theory, we measured hole sizes in Streptococcus pyogenes cells undergoing enzymatic lysis via transmission electron microscopy. The measured hole sizes are in strong agreement with our theoretical prediction. Together, the theory and experiments provide a means to quantify the mechanisms of death of Gram-positive cells via enzymatically mediated lysis and provides insight into the range of cell wall hole sizes compatible with bacterial homeostasis.

  7. Lipid Composition of Cell Membranes and Its Relevance in Type 2 Diabetes Mellitus

    PubMed Central

    Weijers, Rob N.M.

    2012-01-01

    Identifying the causative relationship between the fatty acid composition of cell membranes and type 2 diabetes mellitus fundamentally contributes to the understanding of the basic pathophysiological mechanisms of the disease. Important outcomes of the reviewed studies appear to support the hypotheses that the flexibility of a membrane determined by the ratio of (poly)unsaturated to saturated fatty acyl chains of its phospholipids influences the effectiveness of glucose transport by insulin-independent glucose transporters (GLUTs) and the insulin-dependent GLUT4, and from the prediabetic stage on a shift from unsaturated towards saturated fatty acyl chains of membrane phospholipids directly induces a decrease in glucose effectiveness and insulin sensitivity. In addition, it has become evident that a concomitant increase in stiffness of both plasma and erythrocyte membranes may decrease the microcirculatory flow, leading ultimately to tissue hypoxia, insufficient tissue nutrition, and diabetes-specific microvascular pathology. As to the etiology of type 2 diabetes mellitus, a revised hypothesis that attempts to accommodate the reviewed findings is presented. PMID:22698081

  8. Space Density Of Optically-Selected Type II Quasars From The SDSS

    NASA Astrophysics Data System (ADS)

    Reyes, Reinabelle; Zakamska, N. L.; Strauss, M. A.; Green, J.; Krolik, J. H.; Shen, Y.; Richards, G. T.

    2007-12-01

    Type II quasars are luminous Active Galactic Nuclei (AGN) whose central regions are obscured by large amounts of gas and dust. In this poster, we present a catalog of 887 type II quasars with redshifts z<0.83 from the Sloan Digital Sky Survey (SDSS), selected based on their emission lines, and derive the 1/Vmax [OIII] 5007 luminosity function from this sample. Since some objects may not be included in the sample because they lack strong emission lines, the derived luminosity function is only a lower limit. We also derive the [OIII] 5007 luminosity function for a sample of type I (broad-line) quasars in the same redshift range. Taking [OIII] 5007 luminosity as a tracer of intrinsic luminosity in both type I and type II quasars, we obtain lower limits to the type II quasar fraction as a function of [OIII] 5007 luminosity, from L[OIII] = 108.3 to 1010 Lsun, which roughly correspond to bolometric luminosities of 1044 to 1046 erg/s.

  9. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    PubMed

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  10. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    PubMed Central

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559

  11. Alterations in Peptidoglycan Cross-Linking Suppress the Secretin Assembly Defect Caused by Mutation of GspA in the Type II Secretion System.

    PubMed

    Vanderlinde, Elizabeth M; Strozen, Timothy G; Hernández, Sara B; Cava, Felipe; Howard, S Peter

    2017-04-15

    In Gram-negative bacteria, the peptidoglycan (PG) cell wall is a significant structural barrier for outer membrane protein assembly. In Aeromonas hydrophila , outer membrane multimerization of the type II secretion system (T2SS) secretin ExeD requires the function of the inner membrane assembly factor complex ExeAB. The putative mechanism of the complex involves the reorganization of PG and localization of ExeD, whereby ExeA functions by interacting with PG to form a site for secretin assembly and ExeB forms an interaction with ExeD. This mechanism led us to hypothesize that increasing the pore size of PG would circumvent the requirement for ExeA in the assembly of the ExeD secretin. Growth of A. hydrophila in 270 mM Gly reduced PG cross-links by approximately 30% and led to the suppression of secretin assembly defects in exeA strains and in those expressing ExeA mutants by enabling localization of the secretin in the outer membrane. We also established a heterologous ExeD assembly system in Escherichia coli and showed that ExeAB and ExeC are the only A. hydrophila proteins required for the assembly of the ExeD secretin in E. coli and that ExeAB-independent assembly of ExeD can occur upon overexpression of the d,d-carboxypeptidase PBP 5. These results support an assembly model in which, upon binding to PG, ExeA induces multimerization and pore formation in the sacculus, which enables ExeD monomers to interact with ExeB and assemble into a secretin that both is inserted in the outer membrane and crosses the PG layer to interact with the inner membrane platform of the T2SS. IMPORTANCE The PG layer imposes a strict structural impediment for the assembly of macromolecular structures that span the cell envelope and serve as virulence factors in Gram-negative species. This work revealed that by decreasing PG cross-linking by growth in Gly, the absolute requirement for the PG-binding activity of ExeA in the assembly of the ExeD secretin was alleviated in A. hydrophila In

  12. Redesigning the type II' β-turn in green fluorescent protein to type I': implications for folding kinetics and stability.

    PubMed

    Madan, Bharat; Sokalingam, Sriram; Raghunathan, Govindan; Lee, Sun-Gu

    2014-10-01

    Both Type I' and Type II' β-turns have the same sense of the β-turn twist that is compatible with the β-sheet twist. They occur predominantly in two residue β-hairpins, but the occurrence of Type I' β-turns is two times higher than Type II' β-turns. This suggests that Type I' β-turns may be more stable than Type II' β-turns, and Type I' β-turn sequence and structure can be more favorable for protein folding than Type II' β-turns. Here, we redesigned the native Type II' β-turn in GFP to Type I' β-turn, and investigated its effect on protein folding and stability. The Type I' β-turns were designed based on the statistical analysis of residues in natural Type I' β-turns. The substitution of the native "GD" sequence of i+1 and i+2 residues with Type I' preferred "(N/D)G" sequence motif increased the folding rate by 50% and slightly improved the thermodynamic stability. Despite the enhancement of in vitro refolding kinetics and stability of the redesigned mutants, they showed poor soluble expression level compared to wild type. To overcome this problem, i and i + 3 residues of the designed Type I' β-turn were further engineered. The mutation of Thr to Lys at i + 3 could restore the in vivo soluble expression of the Type I' mutant. This study indicates that Type II' β-turns in natural β-hairpins can be further optimized by converting the sequence to Type I'. © 2014 Wiley Periodicals, Inc.

  13. Type I and II β-turns prediction using NMR chemical shifts.

    PubMed

    Wang, Ching-Cheng; Lai, Wen-Chung; Chuang, Woei-Jer

    2014-07-01

    A method for predicting type I and II β-turns using nuclear magnetic resonance (NMR) chemical shifts is proposed. Isolated β-turn chemical-shift data were collected from 1,798 protein chains. One-dimensional statistical analyses on chemical-shift data of three classes β-turn (type I, II, and VIII) showed different distributions at four positions, (i) to (i + 3). Considering the central two residues of type I β-turns, the mean values of Cο, Cα, H(N), and N(H) chemical shifts were generally (i + 1) > (i + 2). The mean values of Cβ and Hα chemical shifts were (i + 1) < (i + 2). The distributions of the central two residues in type II and VIII β-turns were also distinguishable by trends of chemical shift values. Two-dimensional cluster analyses on chemical-shift data show positional distributions more clearly. Based on these propensities of chemical shift classified as a function of position, rules were derived using scoring matrices for four consecutive residues to predict type I and II β-turns. The proposed method achieves an overall prediction accuracy of 83.2 and 84.2% with the Matthews correlation coefficient values of 0.317 and 0.632 for type I and II β-turns, indicating that its higher accuracy for type II turn prediction. The results show that it is feasible to use NMR chemical shifts to predict the β-turn types in proteins. The proposed method can be incorporated into other chemical-shift based protein secondary structure prediction methods.

  14. Cellulose microfibril deposition: coordinated activity at the plant plasma membrane.

    PubMed

    Lindeboom, J; Mulder, B M; Vos, J W; Ketelaar, T; Emons, A M C

    2008-08-01

    Plant cell wall production is a membrane-bound process. Cell walls are composed of cellulose microfibrils, embedded inside a matrix of other polysaccharides and glycoproteins. The cell wall matrix is extruded into the existing cell wall by exocytosis. This same process also inserts the cellulose synthase complexes into the plasma membrane. These complexes, the nanomachines that produce the cellulose microfibrils, move inside the plasma membrane leaving the cellulose microfibrils in their wake. Cellulose microfibril angle is an important determinant of cell development and of tissue properties and as such relevant for the industrial use of plant material. Here, we provide an integrated view of the events taking place in the not more than 100 nm deep area in and around the plasma membrane, correlating recent results provided by the distinct field of plant cell biology. We discuss the coordinated activities of exocytosis, endocytosis, and movement of cellulose synthase complexes while producing cellulose microfibrils and the link of these processes to the cortical microtubules.

  15. Short-Term Boron Deprivation Inhibits Endocytosis of Cell Wall Pectins in Meristematic Cells of Maize and Wheat Root Apices1

    PubMed Central

    Yu, Qin; Hlavacka, Andrej; Matoh, Toru; Volkmann, Dieter; Menzel, Diedrik; Goldbach, Heiner E.; Baluška, František

    2002-01-01

    By using immunofluorescence microscopy, we observed rapidly altered distribution patterns of cell wall pectins in meristematic cells of maize (Zea mays) and wheat (Triticum aestivum) root apices. This response was shown for homogalacturonan pectins characterized by a low level (up to 40%) of methylesterification and for rhamnogalacturonan II pectins cross-linked by a borate diol diester. Under boron deprivation, abundance of these pectins rapidly increased in cell walls, whereas their internalization was inhibited, as evidenced by a reduced and even blocked accumulation of these cell wall pectins within brefeldin A-induced compartments. In contrast, root cells of species sensitive to the boron deprivation, like zucchini (Cucurbita pepo) and alfalfa (Medicago sativa), do not internalize cell wall pectins into brefeldin A compartments and do not show accumulation of pectins in their cell walls under boron deprivation. For maize and wheat root apices, we favor an apoplastic target for the primary action of boron deprivation, which signals deeper into the cell via endocytosis-mediated pectin signaling along putative cell wall-plasma membrane-cytoskeleton continuum. PMID:12226520

  16. Membranous glomerulopathy with spherules: an uncommon variant with obscure pathogenesis.

    PubMed

    Kowalewska, Jolanta; Smith, Kelly D; Hudkins, Kelly L; Chang, Anthony; Fogo, Agnes B; Houghton, Donald; Leslie, Deena; Aitchison, John; Nicosia, Roberto F; Alpers, Charles E

    2006-06-01

    Occasional case reports of membranous glomerulopathy described unique subepithelial accumulations of an unusual type of immune deposit composed of spherular structures. The identity of such structures as nuclear pores has been suggested, but not established. We identified a cohort of patients (n = 14, including 1 patient with disease recurrence in an allograft) who presented with nephrotic syndrome and had renal biopsy specimens with light and immunofluorescence microscopic findings characteristic of membranous glomerulopathy. These patients were distinguished by ultrastructural studies that showed glomerular capillary wall accumulations of subepithelial immune deposits composed of uniform spherular structures, while lacking the typical granular electron-dense deposits seen in membranous glomerulopathy. The molecular identity of these spherular structures as nuclear pores was tested by using immunofluorescence microscopy and immunohistochemistry with mouse monoclonal antinuclear pore antibodies (Covance, Princeton, NJ) and anti-Nuclear Pore-O-Linked Glycoprotein (Affinity BioReagents Inc, Golden, CO) antibodies. Measurement of spherular structures by using high-magnification electron microscopy showed an average diameter of 84.5 nm, which correlated well with accepted diameters of nuclear pores (80 to 120 nm). Immunofluorescence microscopy and immunoperoxidase staining with both antibodies showed characteristic beaded staining of nuclear membranes of multiple cell types within normal control kidney, but no staining of immune-type deposits within glomerular basement membranes. These cases form a rare, but distinctive, morphological subclass of membranous glomerulopathy. The antigenic specificity of immune deposits in these cases remains elusive.

  17. The innovative osmotic membrane bioreactor (OMBR) for reuse of wastewater.

    PubMed

    Cornelissen, E R; Harmsen, D; Beerendonk, E F; Qin, J J; Oo, H; de Korte, K F; Kappelhof, J W M N

    2011-01-01

    An innovative osmotic membrane bioreactor (OMBR) is currently under development for the reclamation of wastewater, which combines activated sludge treatment and forward osmosis (FO) membrane separation with a RO post-treatment. The research focus is FO membrane fouling and performance using different activated sludge investigated both at laboratory scale (membrane area of 112cm2) and at on-site bench scale (flat sheet membrane area of 0.1 m2). FO performance on laboratory-scale (i) increased with temperature due to a decrease in viscosity and (ii) was independent of the type of activated sludge. Draw solution leakage increased with temperature and varied for different activated sludge. FO performance on bench-scale (i) increased with osmotic driving force, (ii) depended on the membrane orientation due to internal concentration polarization and (iii) was invariant to feed flow decrease and air injection at the feed and draw side. Draw solution leakage could not be evaluated on bench-scale due to experimental limitation. Membrane fouling was not found on laboratory scale and bench-scale, however, partially reversible fouling was found on laboratory scale for FO membranes facing the draw solution. Economic assessment indicated a minimum flux of 15L.m-2 h-1 at 0.5M NaCl for OMBR-RO to be cost effective, depending on the FO membrane price.

  18. Type II solar radio bursts, interplanetary shocks, and energetic particle events

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Stone, R. G.

    1984-01-01

    Using the ISEE-3 radio astronomy experiment data 37 interplanetary (IP) type II bursts have been identified in the period September 1978 to December 1981. These events and the associated phenomena are listed. The events are preceded by intense, soft X ray events with long decay times (LDEs) and type II and/or type IV bursts at meter wavelengths. The meter wavelength type II bursts are usually intense and exhibit herringbone structure. The extension of the herringbone structure into the kilometer wavelength range results in the occurrence of a shock accelerated (SA) event. The majority of the interplanetary type II bursts are associated with energetic particle events. These results support other studies awhich indicate that energetic solar particles detected at 1 A.U. are generated by shock acceleration. From a preliminary analysis of the available data there appears to be a high correlation with white light coronal transients.

  19. Effect of Enhanced Thermal Stability of Alumina Support Layer on Growth of Vertically Aligned Single-Walled Carbon Nanotubes and Their Application in Nanofiltration Membranes

    NASA Astrophysics Data System (ADS)

    In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P.; Noy, Aleksandr; Fornasiero, Francesco

    2018-06-01

    We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.

  20. Usher syndrome clinical types I and II: could ocular symptoms and signs differentiate between the two types?

    PubMed

    Tsilou, Ekaterini T; Rubin, Benjamin I; Caruso, Rafael C; Reed, George F; Pikus, Anita; Hejtmancik, James F; Iwata, Fumino; Redman, Joy B; Kaiser-Kupfer, Muriel I

    2002-04-01

    Usher syndrome types I and II are clinical syndromes with substantial genetic and clinical heterogeneity. We undertook the current study in order to identify ocular symptoms and signs that could differentiate between the two types. Sixty-seven patients with Usher syndrome were evaluated. Based on audiologic and vestibular findings, patients were classified as either Usher type I or II. The severity of the ocular signs and symptoms present in each type were compared. Visual acuity, visual field area, electroretinographic amplitude, incidence of cataract and macular lesions were not significantly different between Usher types I and II. However, the ages when night blindness was perceived and retinitis pigmentosa was diagnosed differed significantly between the two types. There seems to be some overlap between types I and II of Usher syndrome in regard to the ophthalmologic findings. However, night blindness appears earlier in Usher type I (although the difference in age of appearance appears to be less dramatic than previously assumed). Molecular elucidation of Usher syndrome may serve as a key to understanding these differences and, perhaps, provide a better tool for use in clinical diagnosis, prognosis and genetic counseling.

  1. Conductive choline transport by alveolar epithelial plasma membrane vesicles.

    PubMed

    Oelberg, D G; Xu, F

    1998-11-01

    Choline is an important substrate in alveolar epithelia for both surfactant production and cellular maintenance. The underlying mechanisms of uptake and sites of membrane transport remain uncertain. To test the hypothesis that choline transport occurs at the basolateral side of alveolar epithelia by both Na+-independent and -dependent mechanisms, plasma membrane vesicles were prepared from the apical and basolateral membranes of mature porcine type II pneumocytes. Choline+ transport was assayed by uptake of [3H]choline+ by enriched apical or basolateral vesicles. In the presence of imposed, inside-negative charge gradients, basolateral vesicles exhibited early overshoot of [3H]choline+ uptake unaffected by the presence or absence of external Na+ (541 +/- 53 vs 564 +/- 79 pmol/mg protein (NS)). High sensitivity to hemicholinium-3 was observed in the presence or absence of Na+. In the absence of inside-negative charge gradients, uptake was reduced 12-fold in the presence or absence of Na+, and external choline+ induced internal alkalization of acidified basolateral vesicles. Accumulative [3H]choline+ uptakes by apical vesicles in the presence or absence of inside-negative charge gradients and Na+ were insignificant. We conclude that predominant choline+ uptake by type II pneumocytes occurs at the basolateral membrane by Na+-independent, electrogenic choline+ conductance. The presence of electroneutral choline+/H+ exchange is suggested. Copyright 1998 Academic Press.

  2. Documentation of angiotensin II receptors in glomerular epithelial cells

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)

    1998-01-01

    Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial

  3. In vitro microtensile bond strength of four adhesives tested at the gingival and pulpal walls of class II restorations

    PubMed Central

    Purk, John H.; Healy, Matthew; Dusevich, Vladimir; Glaros, Alan; Eick, J. David

    2007-01-01

    Background The authors compared the microtensile bond strength of teeth restored with four adhesives at the gingival and pulpal cavity walls of Class II resin-based composite restorations. Methods Five pairs of extracted third molars received two Class II preparations/restorations in each tooth. The authors randomly assigned each preparation to one of four adhesive groups: Adper Scotchbond Multipurpose Dental Adhesive (SBMP) (3M ESPE, St. Paul, Minn.), Clearfil SE Bond (CFSE) (Kuraray America, New York City), Prime & Bond NT (PBNT) (Dentsply Caulk, Milford, Del.) and PQ1 (Ultradent, South Jordan, Utah). They restored the teeth and obtained microtensile specimens from each cavity wall. Specimens were tested on a testing machine until they failed. Results The mean (± standard deviation) bond strengths (in megapascals) were as follows: SBMP (pulpal), 36.4 (17.2); SBMP (gingival), 29.7 (15.3); CFSE (pulpal), 50.8 (13.6); CFSE (gingival), 50.2 (14.0); PBNT (pulpal), 38.3 (19.2); PBNT (gingival), 38.9 (17.7); PQ1 (pulpal), 58.7 (8.7); and PQ1 (gingival), 54.5 (18.5). A two-way analysis of variance found an adhesive effect (P < .001) but no location effect (P > .05). Conclusions PQ1 and CFSE performed the best. The results showed no significant difference in microtensile bond strength at the gingival wall versus the pulpal wall. Clinical Implications Under in vitro conditions, a total-etch ethanol-based adhesive (PQ1) failed cohesively more often than did the other adhesives tested. PMID:17012721

  4. Intake of coffee, caffeine and other methylxanthines and risk of Type I vs Type II endometrial cancer.

    PubMed

    Uccella, S; Mariani, A; Wang, A H; Vierkant, R A; Cliby, W A; Robien, K; Anderson, K E; Cerhan, J R

    2013-10-01

    Coffee and other sources of methylxanthines and risk of Type I vs Type II endometrial cancer (EC) have not been evaluated previously. Prospective cohort of 23,356 postmenopausal women with 471 Type I and 71 Type II EC cases. Type I EC was statistically significantly associated with caffeinated (relative risk (RR)=0.65 for 4+ cups per day vs ≤1 cup per month: 95% confidence interval (CI): 0.47-0.89) but not decaffeinated (RR=0.76; 95% CI: 0.50-1.15) coffee intake; there were no associations with tea, cola or chocolate, or for Type II EC. The inverse association with caffeinated coffee intake was specific to women with a body mass index 30+ kg m(-2) (RR=0.56; 95% CI: 0.36-0.89). Coffee may protect against Type I EC in obese postmenopausal women.

  5. Propagating Cell-Membrane Waves Driven by Curved Activators of Actin Polymerization

    PubMed Central

    Peleg, Barak; Disanza, Andrea; Scita, Giorgio; Gov, Nir

    2011-01-01

    Cells exhibit propagating membrane waves which involve the actin cytoskeleton. One type of such membranal waves are Circular Dorsal Ruffles (CDR) which are related to endocytosis and receptor internalization. Experimentally, CDRs have been associated with membrane bound activators of actin polymerization of concave shape. We present experimental evidence for the localization of convex membrane proteins in these structures, and their insensitivity to inhibition of myosin II contractility in immortalized mouse embryo fibroblasts cell cultures. These observations lead us to propose a theoretical model which explains the formation of these waves due to the interplay between complexes that contain activators of actin polymerization and membrane-bound curved proteins of both types of curvature (concave and convex). Our model predicts that the activity of both types of curved proteins is essential for sustaining propagating waves, which are abolished when one type of curved activator is removed. Within this model waves are initiated when the level of actin polymerization induced by the curved activators is higher than some threshold value, which allows the cell to control CDR formation. We demonstrate that the model can explain many features of CDRs, and give several testable predictions. This work demonstrates the importance of curved membrane proteins in organizing the actin cytoskeleton and cell shape. PMID:21533032

  6. Adenosine-A1 Receptor Agonist Induced Hyperalgesic Priming Type II

    PubMed Central

    Araldi, Dioneia; Ferrari, Luiz F.; Levine, Jon D.

    2016-01-01

    We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin acetate salt) induces a model of the transition to chronic pain that we have termed Type II hyperalgesic priming. Similar to Type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, Type II hyperalgesic priming differs from Type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N6-Cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced Type II hyperalgesic priming. In this study we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced Type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the Type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor. PMID:26588695

  7. Myosin II-interacting guanine nucleotide exchange factor promotes bleb retraction via stimulating cortex reassembly at the bleb membrane.

    PubMed

    Jiao, Meng; Wu, Di; Wei, Qize

    2018-03-01

    Blebs are involved in various biological processes such as cell migration, cytokinesis, and apoptosis. While the expansion of blebs is largely an intracellular pressure-driven process, the retraction of blebs is believed to be driven by RhoA activation that leads to the reassembly of the actomyosin cortex at the bleb membrane. However, it is still poorly understood how RhoA is activated at the bleb membrane. Here, we provide evidence demonstrating that myosin II-interacting guanine nucleotide exchange factor (MYOGEF) is implicated in bleb retraction via stimulating RhoA activation and the reassembly of an actomyosin network at the bleb membrane during bleb retraction. Interaction of MYOGEF with ezrin, a well-known regulator of bleb retraction, is required for MYOGEF localization to retracting blebs. Notably, knockout of MYOGEF or ezrin not only disrupts RhoA activation at the bleb membrane, but also interferes with nonmuscle myosin II localization and activation, as well as actin polymerization in retracting blebs. Importantly, MYOGEF knockout slows down bleb retraction. We propose that ezrin interacts with MYOGEF and recruits it to retracting blebs, where MYOGEF activates RhoA and promotes the reassembly of the cortical actomyosin network at the bleb membrane, thus contributing to the regulation of bleb retraction. © 2018 Jiao et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Cell wall structure suitable for surface display of proteins in Saccharomyces cerevisiae.

    PubMed

    Matsuoka, Hiroyuki; Hashimoto, Kazuya; Saijo, Aki; Takada, Yuki; Kondo, Akihiko; Ueda, Mitsuyoshi; Ooshima, Hiroshi; Tachibana, Taro; Azuma, Masayuki

    2014-02-01

    A display system for adding new protein functions to the cell surfaces of microorganisms has been developed, and applications of the system to various fields have been proposed. With the aim of constructing a cell surface environment suitable for protein display in Saccharomyces cerevisiae, the cell surface structures of cell wall mutants were investigated. Four cell wall mutant strains were selected by analyses using a GFP display system via a GPI anchor. β-Glucosidase and endoglucanase II were displayed on the cell surface in the four mutants, and their activities were evaluated. mnn2 deletion strain exhibited the highest activity for both the enzymes. In particular, endoglucanase II activity using carboxymethylcellulose as a substrate in the mutant strain was 1.9-fold higher than that of the wild-type strain. In addition, the activity of endoglucanase II released from the mnn2 deletion strain by Zymolyase 20T treatment was higher than that from the wild-type strain. The results of green fluorescent protein (GFP) and endoglucanase displays suggest that the amounts of enzyme displayed on the cell surface were increased by the mnn2 deletion. The enzyme activity of the mnn2 deletion strain was compared with that of the wild-type strain. The relative value (mnn2 deletion mutant/wild-type strain) of endoglucanase II activity using carboxymethylcellulose as a substrate was higher than that of β-glucosidase activity using p-nitrophenyl-β-glucopyranoside as a substrate, suggesting that the cell surface environment of the mnn2 deletion strain facilitates the binding of high-molecular-weight substrates to the active sites of the displayed enzymes. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Evaluation of Type II Fast Packs for Electrostatic Discharge Properties.

    DTIC Science & Technology

    1983-08-01

    34 x 8" x 1 3/4") consisting of a reclosable cushioned carrier which mates into an outer fiberboard sleeve. A cushioning insert is used consisting of a... RECLOSABLE CUSHIONED CARRIER TEST LOAD FIGURE 1: Cancel Caddy Pack * CONVOLUTED 4* CUSHIONED I FIGURE 2: Type II Fast Pack (PPP-B-1672) TYPE II FAST PACK

  10. Crosslinked type II collagen matrices: preparation, characterization, and potential for cartilage engineering.

    PubMed

    Pieper, J S; van der Kraan, P M; Hafmans, T; Kamp, J; Buma, P; van Susante, J L C; van den Berg, W B; Veerkamp, J H; van Kuppevelt, T H

    2002-08-01

    The limited intrinsic repair capacity of articular cartilage has stimulated continuing efforts to develop tissue engineered analogues. Matrices composed of type II collagen and chondroitin sulfate (CS), the major constituents of hyaline cartilage, may create an appropriate environment for the generation of cartilage-like tissue. In this study, we prepared, characterized, and evaluated type 11 collagen matrices with and without CS. Type II collagen matrices were prepared using purified, pepsin-treated, type II collagen. Techniques applied to prepare type I collagen matrices were found unsuitable for type II collagen. Crosslinking of collagen and covalent attachment of CS was performed using 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide. Porous matrices were prepared by freezing and lyophilization, and their physico-chemical characteristics (degree of crosslinking, denaturing temperature, collagenase-resistance, amount of CS incorporated) established. Matrices were evaluated for their capacity to sustain chondrocyte proliferation and differentiation in vitro. After 7 d of culture, chondrocytes were mainly located at the periphery of the matrices. In contrast to type I collagen, type II collagen supported the distribution of cells throughout the matrix. After 14 d of culture, matrices were surfaced with a cartilagenous-like layer, and occasionally clusters of chondrocytes were present inside the matrix. Chondrocytes proliferated and differentiated as indicated by biochemical analyses, ultrastructural observations, and reverse transcriptase PCR for collagen types I, II and X. No major differences were observed with respect to the presence or absence of CS in the matrices.

  11. Inhibitors targeting on cell wall biosynthesis pathway of MRSA.

    PubMed

    Hao, Haihong; Cheng, Guyue; Dai, Menghong; Wu, Qinghua; Yuan, Zonghui

    2012-11-01

    Methicillin resistant Staphylococcus aureus (MRSA), widely known as a type of new superbug, has aroused world-wide concern. Cell wall biosynthesis pathway is an old but good target for the development of antibacterial agents. Peptidoglycan and wall teichoic acids (WTAs) biosynthesis are two main processes of the cell wall biosynthesis pathway (CWBP). Other than penicillin-binding proteins (PBPs), some key factors (Mur enzymes, lipid I or II precursor, etc.) in CWBP are becoming attractive molecule targets for the discovery of anti-MRSA compounds. A number of new compounds, with higher affinity for PBPs or with inhibitory activity on such molecule targets in CWBP of MRSA, have been in the pipeline recently. This review concludes recent research achievements and provides a complete picture of CWBP of MRSA, including the peptidoglycan and wall teichoic acids synthesis pathway. The potential inhibitors targeting on CWBP are subsequently presented to improve development of novel therapeutic strategies for MRSA.

  12. Concerted actions of distinct nonmuscle myosin II isoforms drive intracellular membrane remodeling in live animals

    PubMed Central

    Milberg, Oleg; Shitara, Akiko; Ebrahim, Seham; Tora, Muhibullah; Tran, Duy T.; Chen, Yun; Conti, Mary Anne; Ten Hagen, Kelly G.

    2017-01-01

    Membrane remodeling plays a fundamental role during a variety of biological events. However, the dynamics and the molecular mechanisms regulating this process within cells in mammalian tissues in situ remain largely unknown. In this study, we use intravital subcellular microscopy in live mice to study the role of the actomyosin cytoskeleton in driving the remodeling of membranes of large secretory granules, which are integrated into the plasma membrane during regulated exocytosis. We show that two isoforms of nonmuscle myosin II, NMIIA and NMIIB, control distinct steps of the integration process. Furthermore, we find that F-actin is not essential for the recruitment of NMII to the secretory granules but plays a key role in the assembly and activation of NMII into contractile filaments. Our data support a dual role for the actomyosin cytoskeleton in providing the mechanical forces required to remodel the lipid bilayer and serving as a scaffold to recruit key regulatory molecules. PMID:28600434

  13. Type II integral membrane protein, TM of J paramyxovirus promotes cell-to-cell fusion.

    PubMed

    Li, Zhuo; Hung, Cher; Paterson, Reay G; Michel, Frank; Fuentes, Sandra; Place, Ryan; Lin, Yuan; Hogan, Robert J; Lamb, Robert A; He, Biao

    2015-10-06

    Paramyxoviruses include many important animal and human pathogens. Most paramyxoviruses have two integral membrane proteins: fusion protein (F) and attachment proteins hemagglutinin, hemagglutinin-neuraminidase, or glycoprotein (G), which are critical for viral entry into cells. J paramyxovirus (JPV) encodes four integral membrane proteins: F, G, SH, and transmembrane (TM). The function of TM is not known. In this work, we have generated a viable JPV lacking TM (JPV∆TM). JPV∆TM formed opaque plaques compared with JPV. Quantitative syncytia assays showed that JPV∆TM was defective in promoting cell-to-cell fusion (i.e., syncytia formation) compared with JPV. Furthermore, cells separately expressing F, G, TM, or F plus G did not form syncytia whereas cells expressing F plus TM formed some syncytia. However, syncytia formation was much greater with coexpression of F, G, and TM. Biochemical analysis indicates that F, G, and TM interact with each other. A small hydrophobic region in the TM ectodomain from amino acid residues 118 to 132, the hydrophobic loop (HL), was important for syncytial promotion, suggesting that the TM HL region plays a critical role in cell-to-cell fusion.

  14. Recent Developments in Carbon Nanotube Membranes for Water Purification and Gas Separation

    PubMed Central

    Sears, Kallista; Dumée, Ludovic; Schütz, Jürg; She, Mary; Huynh, Chi; Hawkins, Stephen; Duke, Mikel; Gray, Stephen

    2010-01-01

    Carbon nanotubes (CNTs) are nanoscale cylinders of graphene with exceptional properties such as high mechanical strength, high aspect ratio and large specific surface area. To exploit these properties for membranes, macroscopic structures need to be designed with controlled porosity and pore size. This manuscript reviews recent progress on two such structures: (i) CNT Bucky-papers, a non-woven, paper like structure of randomly entangled CNTs, and (ii) isoporous CNT membranes, where the hollow CNT interior acts as a membrane pore. The construction of these two types of membranes will be discussed, characterization and permeance results compared, and some promising applications presented.

  15. Characterization of Type Three Secretion System Translocator Interactions with Phospholipid Membranes.

    PubMed

    Adam, Philip R; Barta, Michael L; Dickenson, Nicholas E

    2017-01-01

    In vitro characterization of type III secretion system (T3SS) translocator proteins has proven challenging due to complex purification schemes and their hydrophobic nature that often requires detergents to provide protein solubility and stability. Here, we provide experimental details for several techniques that overcome these hurdles, allowing for the direct characterization of the Shigella translocator protein IpaB with respect to phospholipid membrane interaction. The techniques specifically discussed in this chapter include membrane interaction/liposome flotation, liposome sensitive fluorescence quenching, and protein-mediated liposome disruption assays. These assays have provided valuable insight into the role of IpaB in T3SS-mediated phospholipid membrane interactions by Shigella and should readily extend to other members of this important class of proteins.

  16. Stomatal cell wall composition: distinctive structural patterns associated with different phylogenetic groups

    PubMed Central

    Shtein, Ilana; Shelef, Yaniv; Marom, Ziv; Zelinger, Einat; Schwartz, Amnon; Popper, Zoë A.; Bar-On, Benny

    2017-01-01

    Background and Aims Stomatal morphology and function have remained largely conserved throughout ∼400 million years of plant evolution. However, plant cell wall composition has evolved and changed. Here stomatal cell wall composition was investigated in different vascular plant groups in attempt to understand their possible effect on stomatal function. Methods A renewed look at stomatal cell walls was attempted utilizing digitalized polar microscopy, confocal microscopy, histology and a numerical finite-elements simulation. The six species of vascular plants chosen for this study cover a broad structural, ecophysiological and evolutionary spectrum: ferns (Asplenium nidus and Platycerium bifurcatum) and angiosperms (Arabidopsis thaliana and Commelina erecta) with kidney-shaped stomata, and grasses (angiosperms, family Poaceae) with dumbbell-shaped stomata (Sorghum bicolor and Triticum aestivum). Key Results Three distinct patterns of cellulose crystallinity in stomatal cell walls were observed: Type I (kidney-shaped stomata, ferns), Type II (kidney-shaped stomata, angiosperms) and Type III (dumbbell-shaped stomata, grasses). The different stomatal cell wall attributes investigated (cellulose crystallinity, pectins, lignin, phenolics) exhibited taxon-specific patterns, with reciprocal substitution of structural elements in the end-walls of kidney-shaped stomata. According to a numerical bio-mechanical model, the end walls of kidney-shaped stomata develop the highest stresses during opening. Conclusions The data presented demonstrate for the first time the existence of distinct spatial patterns of varying cellulose crystallinity in guard cell walls. It is also highly intriguing that in angiosperms crystalline cellulose appears to have replaced lignin that occurs in the stomatal end-walls of ferns serving a similar wall strengthening function. Such taxon-specific spatial patterns of cell wall components could imply different biomechanical functions, which in turn

  17. Stomatal cell wall composition: distinctive structural patterns associated with different phylogenetic groups.

    PubMed

    Shtein, Ilana; Shelef, Yaniv; Marom, Ziv; Zelinger, Einat; Schwartz, Amnon; Popper, Zoë A; Bar-On, Benny; Harpaz-Saad, Smadar

    2017-04-01

    Stomatal morphology and function have remained largely conserved throughout ∼400 million years of plant evolution. However, plant cell wall composition has evolved and changed. Here stomatal cell wall composition was investigated in different vascular plant groups in attempt to understand their possible effect on stomatal function. A renewed look at stomatal cell walls was attempted utilizing digitalized polar microscopy, confocal microscopy, histology and a numerical finite-elements simulation. The six species of vascular plants chosen for this study cover a broad structural, ecophysiological and evolutionary spectrum: ferns ( Asplenium nidus and Platycerium bifurcatum ) and angiosperms ( Arabidopsis thaliana and Commelina erecta ) with kidney-shaped stomata, and grasses (angiosperms, family Poaceae) with dumbbell-shaped stomata ( Sorghum bicolor and Triticum aestivum ). Three distinct patterns of cellulose crystallinity in stomatal cell walls were observed: Type I (kidney-shaped stomata, ferns), Type II (kidney-shaped stomata, angiosperms) and Type III (dumbbell-shaped stomata, grasses). The different stomatal cell wall attributes investigated (cellulose crystallinity, pectins, lignin, phenolics) exhibited taxon-specific patterns, with reciprocal substitution of structural elements in the end-walls of kidney-shaped stomata. According to a numerical bio-mechanical model, the end walls of kidney-shaped stomata develop the highest stresses during opening. The data presented demonstrate for the first time the existence of distinct spatial patterns of varying cellulose crystallinity in guard cell walls. It is also highly intriguing that in angiosperms crystalline cellulose appears to have replaced lignin that occurs in the stomatal end-walls of ferns serving a similar wall strengthening function. Such taxon-specific spatial patterns of cell wall components could imply different biomechanical functions, which in turn could be a consequence of differences in

  18. Alternatives to type II cement : final report.

    DOT National Transportation Integrated Search

    1978-01-01

    Concrete mixtures incorporating fly ash were investigated as possible alternatives to mixtures utilizing Type II cements. The mixture characteristics considered were strength, resistance to freezing and thawing and sulfates, heat of hydration, and vo...

  19. Management of Type II Odontoid Fracture for Osteoporotic Bone Structure: Preliminary Report.

    PubMed

    Cosar, Murat; Ozer, A Fahir; Alkan, Bahadır; Guven, Mustafa; Akman, Tarık; Aras, Adem Bozkurt; Ceylan, Davut; Tokmak, Mehmet

    2015-01-01

    Anterior transodontoid screw fixation technique is generally chosen for the management of type II odontoid fractures. The nonunion of type II odontoid fractures is still a major problem especially in elderly and osteoporotic patients. Eleven osteoporotic type II odontoid fracured patients were presented in this article. We have divided 11 patients in two groups as classical and Ozer's technique. We have also compared (radiologically and clinically) the classical anterior transodontoid screw fixation (group II: 6 cases) and Ozer's transodontoid screw fixation technique (group I: 5 cases) retrospectively. There was no difference regaring the clinical features of the groups. However, the radiological results showed 100% fusion for Ozer's screw fixation technique and 83% fusion for the classical screw fixation technique. In conclusion, we suggest that Ozer's technique may help to increase the fusion capacity for osteoporotic type II odontoid fractures.

  20. Relation Between Type II Bursts and CMEs Inferred from STEREO Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Thompson, W.; Davila, J.; Kaiser, M. L.; Yashiro, S.; Maekelae, P.; Michalek, G.; Bougeret, J.-L.; Hoawrd, R. A.

    2010-01-01

    The inner coronagraph (COR1) of the Solar Terrestrial Relations Observatory (STEREO) mission has made it possible to observe coronal mass ejections (CMEs) a in the spatial domain overlapping with that of the metric type II radio bursts. The type II bursts were associated with generally weak flares (mostly B and C class soft X-ray flares), but the CMEs were quite energetic. Using CME data for a set of type II bursts during the declining phase of solar cycle 23, we determine the CME height when the type II bursts start, thus giving an estimate of the heliocentric distance at which CME-driven shocks form. This distance has been determined to be approximately 1.5Rs (solar radii), which coincides with the distance at which the Alfv?n speed profile has a minimum value. We also use type II radio observations from STEREO/WAVES and Wind/WAVES observations to show that CMEs with moderate speed drive either weak shocks or no shock at all when they attain a height where the Alfv?n speed peaks (?3Rs ? 4Rs). Thus the shocks seem to be most efficient in accelerating electrons in the heliocentric distance range of 1.5Rs to 4Rs. By combining the radial variation of the CME speed in the inner corona (CME speed increase) and interplanetary medium (speed decrease) we were able to correctly account for the deviations from the universal drift-rate spectrum of type II bursts, thus confirming the close physical connection between type II bursts and CMEs. The average height (approximately 1.5 Rs) of STEREO CMEs at the time of type II bursts is smaller than that (2.2 Rs) obtained for SOHO (Solar and Heliospheric Observatory) CMEs. We suggest that this may indicate, at least partly, the density reduction in the corona between the maximum and declining phases, so a given plasma level occurs closer to the Sun in the latter phase. In two cases, there was a diffuse shock-like feature ahead of the main body of the CME, indicating a standoff distance of 1Rs - 2Rs by the time the CME left the LASCO

  1. Relation Between Type II Bursts and CMEs Inferred from STEREO Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Thompson, W.; Davila, J.; Kaiser, M.; Yashiro, S.; Maelekae, P.; Michalek, G.; Bougret, J.-L.; Howard, R. A.

    2009-01-01

    The inner coronagraph (COR1) of the Solar Terrestrial Relations Observatory (STEREO) mission has made it possible to observe CMEs in the spatial domain overlapping with that of the metric type II radio bursts. The type II bursts were associated with generally weak flares (mostly B and C class soft X-ray flares), but the CMEs were quite energetic. Using CME data for a set of type II bursts during the declining phase of solar cycle 23, we determine the CME height when the type II bursts start, thus giving an estimate of the heliocentric distance at which CME-driven shocks form. This distance has been determined to be approx. 1.5Rs (solar radii), which coincides with the distance at which the Alfven speed profile has a minimum value.We also use type II radio observations from STEREO/WAVES and Wind/WAVES observations to show that CMEs with moderate speed drive either weak shocks or no shock at all when they attain a height where the Alfven speed peaks (approx. 3Rs - 4Rs). Thus the shocks seem to be most efficient in accelerating electrons in the heliocentric distance range of 1.5Rs to 4Rs. By combining the radial variation of the CME speed in the inner corona (CME speed increase) and interplanetary medium (speed decrease) we were able to correctly account for the deviations from the universal drift-rate spectrum of type II bursts, thus confirming the close physical connection between type II bursts and CMEs. The average height (approx 1.5Rs) of STEREO CMEs at the time of type II bursts is smaller than that (2.2Rs) obtained for SOHO (Solar and Heliospheric Observatory) CMEs. We suggest that this may indicate, at least partly, the density reduction in the corona between the maximum and declining phases, so a given plasma level occurs closer to the Sun in the latter phase. In two cases, there was a diffuse shock-like feature ahead of the main body of the CME, indicating a standoff distance of 1Rs - 2Rs by the time the CME left the LASCO field of view.

  2. Subtypes of the Type II Pit Pattern Reflect Distinct Molecular Subclasses in the Serrated Neoplastic Pathway.

    PubMed

    Aoki, Hironori; Yamamoto, Eiichiro; Yamano, Hiro-O; Sugai, Tamotsu; Kimura, Tomoaki; Tanaka, Yoshihito; Matsushita, Hiro-O; Yoshikawa, Kenjiro; Takagi, Ryo; Harada, Eiji; Nakaoka, Michiko; Yoshida, Yuko; Harada, Taku; Sudo, Gota; Eizuka, Makoto; Yorozu, Akira; Kitajima, Hiroshi; Niinuma, Takeshi; Kai, Masahiro; Nojima, Masanori; Suzuki, Hiromu; Nakase, Hiroshi

    2018-03-15

    Colorectal serrated lesions (SLs) are important premalignant lesions whose clinical and biological features are not fully understood. We aimed to establish accurate colonoscopic diagnosis and treatment of SLs through evaluation of associations among the morphological, pathological, and molecular characteristics of SLs. A total of 388 premalignant and 18 malignant colorectal lesions were studied. Using magnifying colonoscopy, microsurface structures were assessed based on Kudo's pit pattern classification system, and the Type II pit pattern was subcategorized into classical Type II, Type II-Open (Type II-O) and Type II-Long (Type II-L). BRAF/KRAS mutations and DNA methylation of CpG island methylator phenotype (CIMP) markers (MINT1, - 2, - 12, - 31, p16, and MLH1) were analyzed through pyrosequencing. Type II-O was tightly associated with sessile serrated adenoma/polyps (SSA/Ps) with BRAF mutation and CIMP-high. Most lesions with simple Type II or Type II-L were hyperplastic polyps, while mixtures of Type II or Type II-L plus more advanced pit patterns (III/IV) were characteristic of traditional serrated adenomas (TSAs). Type II-positive TSAs frequently exhibited BRAF mutation and CIMP-low, while Type II-L-positive TSAs were tightly associated with KRAS mutation and CIMP-low. Analysis of lesions containing both premalignant and cancerous components suggested Type II-L-positive TSAs may develop into KRAS-mutated/CIMP-low/microsatellite stable cancers, while Type II-O-positive SSA/Ps develop into BRAF-mutated/CIMP-high/microsatellite unstable cancers. These results suggest that Type II subtypes reflect distinct molecular subclasses in the serrated neoplasia pathway and that they could be useful hallmarks for identifying SLs at high risk of developing into CRC.

  3. Audiological findings in Usher syndrome types IIa and II (non-IIa).

    PubMed

    Sadeghi, Mehdi; Cohn, Edward S; Kelly, William J; Kimberling, William J; Tranebjoerg, Lisbeth; Möller, Claes

    2004-03-01

    The aim was to define the natural history of hearing loss in Usher syndrome type IIa compared to non-IIa. People with Usher syndrome type II show moderate-to-severe hearing loss, normal balance and retinitis pigmentosa. Several genes cause Usher syndrome type II. Our subjects formed two genetic groups: (1) subjects with Usher syndrome type IIa with a mutation and/or linkage to the Usher IIa gene; (2) subjects with the Usher II phenotype with no mutation and/or linkage to the Usher IIa gene. Four hundred and two audiograms of 80 Usher IIa subjects were compared with 435 audiograms of 87 non-IIa subjects. Serial audiograms with intervals of > or = 5 years were examined for progression in 109 individuals Those with Usher syndrome type IIa had significantly worse hearing thresholds than those with non-IIa Usher syndrome after the second decade. The hearing loss in Usher syndrome type IIa was found to be more progressive, and the progression started earlier than in non-IIa Usher syndrome. This suggests an auditory phenotype for Usher syndrome type IIa that is different from that of other types of Usher syndrome II. Thus, this is to our knowledge one of the first studies showing a genotype-phenotype auditory correlation.

  4. The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase

    PubMed Central

    Rensing, Christopher; Mitra, Bharati; Rosen, Barry P.

    1997-01-01

    The first Zn(II)-translocating P-type ATPase has been identified as the product of o732, a potential gene identified in the sequencing of the Escherichia coli genome. This gene, termed zntA, was disrupted by insertion of a kanamycin gene through homologous recombination. The mutant strain exhibited hypersensitivity to zinc and cadmium salts but not salts of other metals, suggesting a role in zinc homeostasis in E. coli. Everted membrane vesicles from a wild-type strain accumulated 65Zn(II) and 109Cd(II) by using ATP as an energy source. Transport was sensitive to vanadate, an inhibitor of P-type ATPases. Membrane vesicles from the zntA∷kan strain did not accumulate those metal ions. Both the sensitive phenotype and transport defect of the mutant were complemented by expression of zntA on a plasmid. PMID:9405611

  5. Creation of a type IIS restriction endonuclease with a long recognition sequence

    PubMed Central

    Lippow, Shaun M.; Aha, Patti M.; Parker, Matthew H.; Blake, William J.; Baynes, Brian M.; Lipovšek, Daša

    2009-01-01

    Type IIS restriction endonucleases cleave DNA outside their recognition sequences, and are therefore particularly useful in the assembly of DNA from smaller fragments. A limitation of type IIS restriction endonucleases in assembly of long DNA sequences is the relative abundance of their target sites. To facilitate ligation-based assembly of extremely long pieces of DNA, we have engineered a new type IIS restriction endonuclease that combines the specificity of the homing endonuclease I-SceI with the type IIS cleavage pattern of FokI. We linked a non-cleaving mutant of I-SceI, which conveys to the chimeric enzyme its specificity for an 18-bp DNA sequence, to the catalytic domain of FokI, which cuts DNA at a defined site outside the target site. Whereas previously described chimeric endonucleases do not produce type IIS-like precise DNA overhangs suitable for ligation, our chimeric endonuclease cleaves double-stranded DNA exactly 2 and 6 nt from the target site to generate homogeneous, 5′, four-base overhangs, which can be ligated with 90% fidelity. We anticipate that these enzymes will be particularly useful in manipulation of DNA fragments larger than a thousand bases, which are very likely to contain target sites for all natural type IIS restriction endonucleases. PMID:19304757

  6. Type II Heat-labile Enterotoxins: Structure, Function, and Immunomofdulatory Properties

    PubMed Central

    Hajishengallis, George; Connell, Terry D.

    2012-01-01

    The heat-labile enterotoxins (HLTs) of Escherichia coli and Vibrio cholerae are classified into two major types on the basis of genetic, biochemical, and immunological properties. Type I and Type II HLT have been intensively studied for their exceptionally strong adjuvant activities. Despite general structural similarities, these molecules, in intact or derivative (non-toxic) forms, display notable differences in their mode of immunomodulatory action. The molecular basis of these differences has remained largely uncharacterized until recently. This review focuses on the Type II HLTs and their immunomodulatory properties which depend largely on interactions with unique gangliosides and Toll-like receptors that are not utilized by the Type I HLTs. PMID:23137790

  7. Effect of Enhanced Thermal Stability of Alumina Support Layer on Growth of Vertically Aligned Single-Walled Carbon Nanotubes and Their Application in Nanofiltration Membranes.

    PubMed

    In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P; Noy, Aleksandr; Fornasiero, Francesco

    2018-06-07

    We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.

  8. Bauhinia variegata (Caesalpiniaceae) leaf extract: An effective treatment option in type I and type II diabetes.

    PubMed

    Kulkarni, Yogesh A; Garud, Mayuresh S

    2016-10-01

    Among various metabolic disorders, diabetes mellitus is one of the most common disorder. Present study was designed to evaluate the effectiveness of aqueous extract of Bauhinia variegata leaves (AE) in animal models of type I and type II diabetes. Type I diabetes was induced by streptozotocin at the dose of 55mg/kg (i.p.) in male Sprague Dawley rats while type II diabetes was induced by high fat diet and streptozotocin at the dose of 35mg/kg (i.p.). Diabetic animals were treated with AE at the dose of 250, 500 and 1000mg/kg. Glipizide (5mg/kg) was used as standard treatment drug. Treatment was given for 28days. Parameters evaluated were body weight, plasma glucose, cholesterol, triglyceride, aspartate aminotransferase, alanine transaminase, alkaline phosphatase, total proteins, albumin, creatinine and bun urea nitrogen. In type II diabetes, high density lipoprotein levels in plasma and plasma insulin level were also evaluated. Histopathological study of pancreases were carried out in type I study. AE showed significant decrease in plasma glucose significantly. AE was also found to decrease cholesterol, triglyceride, creatinine and blood urea nitrogen level in both types of diabetes. AE did not show any significant effect on plasma levels of aspartate aminotransferase, alanine transaminase, alkaline phosphatase. AE was found to increase the albumin and total protein levels. Histopathological study showed that AE decreases the necrotic changes in the pancreatic tissue. Aqueous extract of B. variegata leaves was found effective in treatment of both type I and type II diabetes. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Border cell release: Cell separation without cell wall degradation?

    PubMed

    Mravec, Jozef

    2017-07-03

    Plant border cells are specialized cells derived from the root cap with roles in the biomechanics of root growth and in forming a barrier against pathogens. The mechanism of highly localized cell separation which is essential for their release to the environment is little understood. Here I present in situ analysis of Brachypodium distachyon, a model organism for grasses which possess type II primary cell walls poor in pectin content. Results suggest similarity in spatial dynamics of pectic homogalacturonan during dicot and monocot border cell release. Integration of observations from different species leads to the hypothesis that this process most likely does not involve degradation of cell wall material but rather uses unique cell wall structural and compositional means enabling both the rigidity of the root cap as well as detachability of given cells on its surface.

  10. Changes in cell wall polysaccharide composition, gene transcription and alternative splicing in germinating barley embryos.

    PubMed

    Zhang, Qisen; Zhang, Xiaoqi; Pettolino, Filomena; Zhou, Gaofeng; Li, Chengdao

    2016-02-01

    Barley (Hordeum vulgare L.) seed germination initiates many important biological processes such as DNA, membrane and mitochondrial repairs. However, little is known on cell wall modifications in germinating embryos. We have investigated cell wall polysaccharide composition change, gene transcription and alternative splicing events in four barley varieties at 24h and 48 h germination. Cell wall components in germinating barley embryos changed rapidly, with increases in cellulose and (1,3)(1,4)-β-D-glucan (20-100%) within 24h, but decreases in heteroxylan and arabinan (3-50%). There were also significant changes in the levels of type I arabinogalactans and heteromannans. Alternative splicing played very important roles in cell wall modifications. At least 22 cell wall transcripts were detected to undergo either alternative 3' splicing, alternative 5' splicing or intron retention type of alternative splicing. These genes coded enzymes catalyzing synthesis and degradation of cellulose, heteroxylan, (1,3)(1,4)-β-D-glucan and other cell wall polymers. Furthermore, transcriptional regulation also played very important roles in cell wall modifications. Transcript levels of primary wall cellulase synthase, heteroxylan synthesizing and nucleotide sugar inter-conversion genes were very high in germinating embryos. At least 50 cell wall genes changed transcript levels significantly. Expression patterns of many cell wall genes coincided with changes in polysaccharide composition. Our data showed that cell wall polysaccharide metabolism was very active in germinating barley embryos, which was regulated at both transcriptional and post-transcriptional levels. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Inner- and outer-wall sorting of double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott

    2017-12-01

    Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.

  12. Inner- and outer-wall sorting of double-walled carbon nanotubes.

    PubMed

    Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott

    2017-12-01

    Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.

  13. The P-type ATPase CtpG preferentially transports Cd2+ across the Mycobacterium tuberculosis plasma membrane.

    PubMed

    López, Marcela; Quitian, Laudy-Viviana; Calderón, Martha-Nancy; Soto, Carlos-Y

    2018-04-01

    P 1B -type ATPases are involved in heavy metal transport across the plasma membrane. Some Mycobacterium tuberculosis P-type ATPases are induced during infection, suggesting that this type of transporter could play a critical role in mycobacterial survival. To date, the ion specificity of M. tuberculosis heavy metal-transporting P 1B -ATPases is not well understood. In this work, we observed that, although divalent heavy metal cations such as Cu 2+ , Co 2+ , Ni 2+ , Zn 2+ Cd 2+ and Pb 2+ stimulate the ATPase activity of the putative P 1B -type ATPase CtpG in the plasma membrane, whole cells of M. smegmatis expressing CtpG only tolerate high levels of Cd 2+ and Cu 2+ . As indicator of the catalytic constant, Michaelis-Menten kinetics showed that CtpG embedded in the mycobacterial cell membrane has a V max /K m ratio 7.4-fold higher for Cd 2+ than for Cu 2+ ions. Thus, although CtpG can accept different substrates in vitro, this P-type ATPase transports Cd 2+ more efficiently than other heavy metal cations across the mycobacterial plasma membrane.

  14. Novel Interactome of Saccharomyces cerevisiae Myosin Type II Identified by a Modified Integrated Membrane Yeast Two-Hybrid (iMYTH) Screen.

    PubMed

    Santiago, Ednalise; Akamine, Pearl; Snider, Jamie; Wong, Victoria; Jessulat, Matthew; Deineko, Viktor; Gagarinova, Alla; Aoki, Hiroyuki; Minic, Zoran; Phanse, Sadhna; San Antonio, Andrea; Cubano, Luis A; Rymond, Brian C; Babu, Mohan; Stagljar, Igor; Rodriguez-Medina, Jose R

    2016-05-03

    Nonmuscle myosin type II (Myo1p) is required for cytokinesis in the budding yeast Saccharomyces cerevisiae Loss of Myo1p activity has been associated with growth abnormalities and enhanced sensitivity to osmotic stress, making it an appealing antifungal therapeutic target. The Myo1p tail-only domain was previously reported to have functional activity equivalent to the full-length Myo1p whereas the head-only domain did not. Since Myo1p tail-only constructs are biologically active, the tail domain must have additional functions beyond its previously described role in myosin dimerization or trimerization. The identification of new Myo1p-interacting proteins may shed light on the other functions of the Myo1p tail domain. To identify novel Myo1p-interacting proteins, and determine if Myo1p can serve as a scaffold to recruit proteins to the bud neck during cytokinesis, we used the integrated split-ubiquitin membrane yeast two-hybrid (iMYTH) system. Myo1p was iMYTH-tagged at its C-terminus, and screened against both cDNA and genomic prey libraries to identify interacting proteins. Control experiments showed that the Myo1p-bait construct was appropriately expressed, and that the protein colocalized to the yeast bud neck. Thirty novel Myo1p-interacting proteins were identified by iMYTH. Eight proteins were confirmed by coprecipitation (Ape2, Bzz1, Fba1, Pdi1, Rpl5, Tah11, and Trx2) or mass spectrometry (AP-MS) (Abp1). The novel Myo1p-interacting proteins identified come from a range of different processes, including cellular organization and protein synthesis. Actin assembly/disassembly factors such as the SH3 domain protein Bzz1 and the actin-binding protein Abp1 represent likely Myo1p interactions during cytokinesis. Copyright © 2016 Santiago et al.

  15. Skeletal effects in Angle Class II/1 patients treated with the functional regulator type II : Cephalometric and tensor analysis.

    PubMed

    Schulz, Simone; Koos, Bernd; Duske, Kathrin; Stahl, Franka

    2016-11-01

    The purpose of this work was to employ both cephalometric and tensor analysis in characterizing the skeletal changes experienced by patients with Angle Class II/1 malocclusion during functional orthodontic treatment with the functional regulator type II. A total of 23 patients with Class II/1 malocclusion based on lateral cephalograms obtained before and after treatment with the functional regulator type II were analyzed. Another 23 patients with Angle Class II/1 malocclusion who had not undergone treatment were included as controls. Our cephalometric data attest to significant therapeutic effects of the functional regulator type II on the skeletal mandibular system, including significant advancement of the mandible, increases in effective mandibular length with enhancement of the chin profile, and reduction of growth-related bite deepening. No treatment-related effects were observed at the cranial-base and midface levels. In addition, tensor analysis revealed significant stimulation of mandibular growth in sagittal directions, without indications of growth effects on the maxilla. Its growth-pattern findings differed from those of cephalometric analysis by indicating that the appliance did promote horizontal development, which supports the functional orthodontic treatment effect in Angle Class II/1 cases. Tensor analysis yielded additional insights into sagittal and vertical growth changes not identifiable by strictly cephalometric means. The functional regulator type II was an effective treatment modality for Angle Class II/1 malocclusion and influenced the skeletal development of these patients in favorable ways.

  16. The angiotensin II receptor type 1b is the primary sensor of intraluminal pressure in cerebral artery smooth muscle cells.

    PubMed

    Pires, Paulo W; Ko, Eun-A; Pritchard, Harry A T; Rudokas, Michael; Yamasaki, Evan; Earley, Scott

    2017-07-15

    The angiotensin II receptor type 1b (AT 1 R b ) is the primary sensor of intraluminal pressure in cerebral arteries. Pressure or membrane-stretch induced stimulation of AT 1 R b activates the TRPM4 channel and results in inward transient cation currents that depolarize smooth muscle cells, leading to vasoconstriction. Activation of either AT 1 R a or AT 1 R b with angiotensin II stimulates TRPM4 currents in cerebral artery myocytes and vasoconstriction of cerebral arteries. The expression of AT 1 R b mRNA is ∼30-fold higher than AT 1 R a in whole cerebral arteries and ∼45-fold higher in isolated cerebral artery smooth muscle cells. Higher levels of expression are likely to account for the obligatory role of AT 1 R b for pressure-induced vasoconstriction . ABSTRACT: Myogenic vasoconstriction, which reflects the intrinsic ability of smooth muscle cells to contract in response to increases in intraluminal pressure, is critically important for the autoregulation of blood flow. In smooth muscle cells from cerebral arteries, increasing intraluminal pressure engages a signalling cascade that stimulates cation influx through transient receptor potential (TRP) melastatin 4 (TRPM4) channels to cause membrane depolarization and vasoconstriction. Substantial evidence indicates that the angiotensin II receptor type 1 (AT 1 R) is inherently mechanosensitive and initiates this signalling pathway. Rodents express two types of AT 1 R - AT 1 R a and AT 1 R b - and conflicting studies provide support for either isoform as the primary sensor of intraluminal pressure in peripheral arteries. We hypothesized that mechanical activation of AT 1 R a increases TRPM4 currents to induce myogenic constriction of cerebral arteries. However, we found that development of myogenic tone was greater in arteries from AT 1 R a knockout animals compared with controls. In patch-clamp experiments using native cerebral arterial myocytes, membrane stretch-induced cation currents were blocked by the TRPM

  17. Structure of the cell wall of mango after application of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Silva, Josenilda M.; Villar, Heldio P.; Pimentel, Rejane M. M.

    2012-11-01

    Cells of the mesocarp of mango cultivar Tommy Atkins were analyzed by Transmission Electron Microscope—TEM to evaluate the effects of doses of 0.5 and 1.0 kGy applied immediately after the fruit and after storage for twenty days at a temperature of 12 °C followed by 5 days of simulated marketing at a temperature of 21 °C. No alteration was found in the structure of the cell wall, middle lamella, and plasma membrane of fruits when analyzed immediately after application of doses. The mesocarp cell structure of the cell wall, middle lamella, and the plasma membrane did however undergo changes after storage. Fruits that received a dose of 0.5 kGy displayed slight changes in cell wall structure and slight disintegration of the middle lamella. Fruits that received a dose of 1.0 kGy displayed more severe changes in the structure of the cell wall, greater middle lamella degradation, and displacement of the plasma membrane.

  18. Identification of the Interactome of a Palmitoylated Membrane Protein, Phosphatidylinositol 4-Kinase Type II Alpha.

    PubMed

    Gokhale, Avanti; Ryder, Pearl V; Zlatic, Stephanie A; Faundez, Victor

    2016-01-01

    Phosphatidylinositol 4-kinases (PI4K) are enzymes responsible for the production of phosphatidylinositol 4-phosphates, important intermediates in several cell signaling pathways. PI4KIIα is the most abundant membrane-associated kinase in mammalian cells and is involved in a variety of essential cellular functions. However, the precise role(s) of PI4KIIα in the cell is not yet completely deciphered. Here we present an experimental protocol that uses a chemical cross-linker, DSP, combined with immunoprecipitation and immunoaffinity purification to identify novel PI4KIIα interactors. As predicted, PI4KIIα participates in transient, low-affinity interactions that are stabilized by the use of DSP. Using this optimized protocol we have successfully identified actin cytoskeleton regulators-the WASH complex and RhoGEF1, as major novel interactors of PI4KIIα. While this chapter focuses on the PI4KIIα interactome, this protocol can and has been used to generate other membrane interactome networks.

  19. Aspen Tension Wood Fibers Contain β-(1→4)-Galactans and Acidic Arabinogalactans Retained by Cellulose Microfibrils in Gelatinous Walls1[OPEN

    PubMed Central

    Gorshkova, Tatyana; Mokshina, Natalia; Chernova, Tatyana; Ibragimova, Nadezhda; Salnikov, Vadim; Mikshina, Polina; Tryfona, Theodora; Banasiak, Alicja; Immerzeel, Peter; Dupree, Paul; Mellerowicz, Ewa J.

    2015-01-01

    Contractile cell walls are found in various plant organs and tissues such as tendrils, contractile roots, and tension wood. The tension-generating mechanism is not known but is thought to involve special cell wall architecture. We previously postulated that tension could result from the entrapment of certain matrix polymers within cellulose microfibrils. As reported here, this hypothesis was corroborated by sequential extraction and analysis of cell wall polymers that are retained by cellulose microfibrils in tension wood and normal wood of hybrid aspen (Populus tremula × Populus tremuloides). β-(1→4)-Galactan and type II arabinogalactan were the main large matrix polymers retained by cellulose microfibrils that were specifically found in tension wood. Xyloglucan was detected mostly in oligomeric form in the alkali-labile fraction and was enriched in tension wood. β-(1→4)-Galactan and rhamnogalacturonan I backbone epitopes were localized in the gelatinous cell wall layer. Type II arabinogalactans retained by cellulose microfibrils had a higher content of (methyl)glucuronic acid and galactose in tension wood than in normal wood. Thus, β-(1→4)-galactan and a specialized form of type II arabinogalactan are trapped by cellulose microfibrils specifically in tension wood and, thus, are the main candidate polymers for the generation of tensional stresses by the entrapment mechanism. We also found high β-galactosidase activity accompanying tension wood differentiation and propose a testable hypothesis that such activity might regulate galactan entrapment and, thus, mechanical properties of cell walls in tension wood. PMID:26378099

  20. Evidence for a separate mechanism of toxicity for the Type I and the Type II pyrethroid insecticides.

    PubMed

    Breckenridge, Charles B; Holden, Larry; Sturgess, Nicholas; Weiner, Myra; Sheets, Larry; Sargent, Dana; Soderlund, David M; Choi, Jin-Sung; Symington, Steve; Clark, J Marshall; Burr, Steve; Ray, David

    2009-11-01

    Neurotoxicity and mechanistic data were collected for six alpha-cyano pyrethroids (beta-cyfluthrin, cypermethrin, deltamethrin, esfenvalerate, fenpropathrin and lambda-cyhalothrin) and up to six non-cyano containing pyrethroids (bifenthrin, S-bioallethrin [or allethrin], permethrin, pyrethrins, resmethrin [or its cis-isomer, cismethrin] and tefluthrin under standard conditions. Factor analysis and multivariate dissimilarity analysis were employed to evaluate four independent data sets comprised of (1) fifty-six behavioral and physiological parameters from an acute neurotoxicity functional observatory battery (FOB), (2) eight electrophysiological parameters from voltage clamp experiments conducted on the Na(v)1.8 sodium channel expressed in Xenopus oocytes, (3) indices of efficacy, potency and binding calculated for calcium ion influx across neuronal membranes, membrane depolarization and glutamate released from rat brain synaptosomes and (4) changes in chloride channel open state probability using a patch voltage clamp technique for membranes isolated from mouse neuroblastoma cells. The pyrethroids segregated into Type I (T--syndrome-tremors) and Type II (CS syndrome--choreoathetosis with salivation) groups based on FOB data. Of the alpha-cyano pyrethroids, deltamethrin, lambda-cyhalothrin, cyfluthrin and cypermethrin arrayed themselves strongly in a dose-dependent manner along two factors that characterize the CS syndrome. Esfenvalerate and fenpropathrin displayed weaker response profiles compared to the non-cyano pyrethroids. Visual clustering on multidimensional scaling (MDS) maps based upon sodium ion channel and calcium influx and glutamate release dissimilarities gave similar groupings. The non-cyano containing pyrethroids were arrayed in a dose-dependent manner along two different factors that characterize the T-syndrome. Bifenthrin was an outlier when MDS maps of the non-cyano pyrethroids were based on sodium ion channel characteristics and permethrin was

  1. Type IV Collagens and Basement Membrane Diseases: Cell Biology and Pathogenic Mechanisms.

    PubMed

    Mao, Mao; Alavi, Marcel V; Labelle-Dumais, Cassandre; Gould, Douglas B

    2015-01-01

    Basement membranes are highly specialized extracellular matrices. Once considered inert scaffolds, basement membranes are now viewed as dynamic and versatile environments that modulate cellular behaviors to regulate tissue development, function, and repair. Increasing evidence suggests that, in addition to providing structural support to neighboring cells, basement membranes serve as reservoirs of growth factors that direct and fine-tune cellular functions. Type IV collagens are a major component of all basement membranes. They evolved along with the earliest multicellular organisms and have been integrated into diverse fundamental biological processes as time and evolution shaped the animal kingdom. The roles of basement membranes in humans are as complex and diverse as their distributions and molecular composition. As a result, basement membrane defects result in multisystem disorders with ambiguous and overlapping boundaries that likely reflect the simultaneous interplay and integration of multiple cellular pathways and processes. Consequently, there will be no single treatment for basement membrane disorders, and therapies are likely to be as varied as the phenotypes. Understanding tissue-specific pathology and the underlying molecular mechanism is the present challenge; personalized medicine will rely upon understanding how a given mutation impacts diverse cellular functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Synthesis and Functional Reconstitution of Light-Harvesting Complex II into Polymeric Membrane Architectures.

    PubMed

    Zapf, Thomas; Tan, Cherng-Wen Darren; Reinelt, Tobias; Huber, Christoph; Shaohua, Ding; Geifman-Shochat, Susana; Paulsen, Harald; Sinner, Eva-Kathrin

    2015-12-01

    One of most important processes in nature is the harvesting and dissipation of solar energy with the help of light-harvesting complex II (LHCII). This protein, along with its associated pigments, is the main solar-energy collector in higher plants. We aimed to generate stable, highly controllable, and sustainable polymer-based membrane systems containing LHCII-pigment complexes ready for light harvesting. LHCII was produced by cell-free protein synthesis based on wheat-germ extract, and the successful integration of LHCII and its pigments into different membrane architectures was monitored. The unidirectionality of LHCII insertion was investigated by protease digestion assays. Fluorescence measurements indicated chlorophyll integration in the presence of LHCII in spherical as well as planar bilayer architectures. Surface plasmon enhanced fluorescence spectroscopy (SPFS) was used to reveal energy transfer from chlorophyll b to chlorophyll a, which indicates native folding of the LHCII proteins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Two Complementary Mechanisms Underpin Cell Wall Patterning during Xylem Vessel Development[OPEN

    PubMed Central

    Tang, Lu; Barkwill, Sarah; Lathe, Rahul; McFarlane, Heather E.

    2017-01-01

    The evolution of the plant vasculature was essential for the emergence of terrestrial life. Xylem vessels are solute-transporting elements in the vasculature that possess secondary wall thickenings deposited in intricate patterns. Evenly dispersed microtubule (MT) bands support the formation of these wall thickenings, but how the MTs direct cell wall synthesis during this process remains largely unknown. Cellulose is the major secondary wall constituent and is synthesized by plasma membrane-localized cellulose synthases (CesAs) whose catalytic activity propels them through the membrane. We show that the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1)/POM2 is necessary to align the secondary wall CesAs and MTs during the initial phase of xylem vessel development in Arabidopsis thaliana and rice (Oryza sativa). Surprisingly, these MT-driven patterns successively become imprinted and sufficient to sustain the continued progression of wall thickening in the absence of MTs and CSI1/POM2 function. Hence, two complementary principles underpin wall patterning during xylem vessel development. PMID:28947492

  4. Neutrinoless double beta decay in type I+II seesaw models

    NASA Astrophysics Data System (ADS)

    Borah, Debasish; Dasgupta, Arnab

    2015-11-01

    We study neutrinoless double beta decay in left-right symmetric extension of the standard model with type I and type II seesaw origin of neutrino masses. Due to the enhanced gauge symmetry as well as extended scalar sector, there are several new physics sources of neutrinoless double beta decay in this model. Ignoring the left-right gauge boson mixing and heavy-light neutrino mixing, we first compute the contributions to neutrinoless double beta decay for type I and type II dominant seesaw separately and compare with the standard light neutrino contributions. We then repeat the exercise by considering the presence of both type I and type II seesaw, having non-negligible contributions to light neutrino masses and show the difference in results from individual seesaw cases. Assuming the new gauge bosons and scalars to be around a TeV, we constrain different parameters of the model including both heavy and light neutrino masses from the requirement of keeping the new physics contribution to neutrinoless double beta decay amplitude below the upper limit set by the GERDA experiment and also satisfying bounds from lepton flavor violation, cosmology and colliders.

  5. Efficacy and safety of glycosylated undenatured type-II collagen (UC-II) in therapy of arthritic dogs.

    PubMed

    Deparle, L A; Gupta, R C; Canerdy, T D; Goad, J T; D'Altilio, M; Bagchi, M; Bagchi, D

    2005-08-01

    DeParle L. A., Gupta R. C., Canerdy T. D., Goad J. T., D'Altilio M., Bagchi M., Bagchi D. Efficacy and safety of glycosylated undenatured type-II collagen (UC-II) in therapy of arthritic dogs. J. vet. Pharmacol. Therap.28, 385-390. In large breed dogs, arthritis is very common because of obesity, injury, aging, immune disorder, or genetic predispositions. This study was therefore undertaken to evaluate clinical efficacy and safety of undenatured type-II collagen (UC-II) in obese-arthritic dogs. Fifteen dogs in three groups received either no UC-II (Group I) or UC-II with 1 mg/day (Group II) or 10 mg/day (Group III) for 90 days. Lameness and pain were measured on a weekly basis for 120 days (90 days treatment plus 30 days post-treatment). Blood samples were assayed for creatinine and blood urea nitrogen (markers of renal injury); and alanine aminotransferase and aspartate aminotransferase (evidence of hepatic injury). Dogs receiving 1 mg or 10 mg UC-II/day for 90 days showed significant declines in overall pain and pain during limb manipulation and lameness after physical exertion, with 10 mg showed greater improvement. At either dose of UC-II, no adverse effects were noted and no significant changes were noted in serum chemistry, suggesting that UC-II was well tolerated. In addition, dogs receiving UC-II for 90 days showed increased physical activity level. Following UC-II withdrawal for a period of 30 days, all dogs experienced a relapse of overall pain, exercise-associated lameness, and pain upon limb manipulation. These results suggest that daily treatment of arthritic dogs with UC-II ameliorates signs and symptoms of arthritis, and UC-II is well tolerated as no adverse effects were noted.

  6. Neurologic aspects of microcephalic osteodysplastic primordial dwarfism type II.

    PubMed

    Galasso, Cinzia; Lo-Castro, Adriana; Lalli, Cristina; Cerminara, Caterina; Curatolo, Paolo

    2008-06-01

    Microcephalic osteodysplastic primordial dwarfism type II is a specific disorder characterized by severe intrauterine and postnatal growth retardation, acquired microcephaly, cerebrovascular abnormalities, progressive bone dysplasia, and a characteristic face. Whereas the diagnostic features of this syndrome are well-recognized, the neurologic aspects have not been clearly defined. We report on a detailed neurodevelopmental follow-up study of a new case of microcephalic osteodysplastic primordial dwarfism type II, followed from the first years of life to adolescence, and we discuss the neurocognitive features of our patient. We also review the neurologic aspects of this disorder compared with syndromes with overlapping phenotypes, such as microcephalic osteodysplastic primordial dwarfism types I and III and Seckel syndrome.

  7. A new method for correcting type I and type II constricted (cup and lop) ears.

    PubMed

    Xiaogeng, Hu; Hongxing, Zhuang; Qinghua, Yang; Haiyue, Jiang; Yanyong, Zhao

    2006-01-01

    Tanzer suggested the term "constricted ear," denoting a spectrum of deformities limited to the superior third of the ear. Tanzer classified the constricted ear into three types. Type I ears have involvement of the helix, which usually is flattened. Type II ears show involvement of both the helix and the scapha. With type III ears, the auricle is rolled into a nearly tubular form that some authors regard as a form of microtia. The authors' new method for correcting the constricted ear varies in accordance with the diverse degree of deformity. The new method was used to correct constricted ears through a one-stage operation in eight type I cases. For the remaining six type 2 cases, the methods were combined with composite grafting. Most of the patients were satisfied with the final results. Therefore, the authors conclude that their approach is suitable for the treatment of type I and type II constricted ears.

  8. Two Complementary Mechanisms Underpin Cell Wall Patterning during Xylem Vessel Development.

    PubMed

    Schneider, Rene; Tang, Lu; Lampugnani, Edwin R; Barkwill, Sarah; Lathe, Rahul; Zhang, Yi; McFarlane, Heather E; Pesquet, Edouard; Niittyla, Totte; Mansfield, Shawn D; Zhou, Yihua; Persson, Staffan

    2017-10-01

    The evolution of the plant vasculature was essential for the emergence of terrestrial life. Xylem vessels are solute-transporting elements in the vasculature that possess secondary wall thickenings deposited in intricate patterns. Evenly dispersed microtubule (MT) bands support the formation of these wall thickenings, but how the MTs direct cell wall synthesis during this process remains largely unknown. Cellulose is the major secondary wall constituent and is synthesized by plasma membrane-localized cellulose synthases (CesAs) whose catalytic activity propels them through the membrane. We show that the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1)/POM2 is necessary to align the secondary wall CesAs and MTs during the initial phase of xylem vessel development in Arabidopsis thaliana and rice ( Oryza sativa ). Surprisingly, these MT-driven patterns successively become imprinted and sufficient to sustain the continued progression of wall thickening in the absence of MTs and CSI1/POM2 function. Hence, two complementary principles underpin wall patterning during xylem vessel development. © 2017 American Society of Plant Biologists. All rights reserved.

  9. Properties of thin SiC membrane for x-ray mask

    NASA Astrophysics Data System (ADS)

    Shoki, Tsutomu; Nagasawa, Hiroyuki; Kosuga, Hiroyuki; Yamaguchi, Yoichi; Annaka, Noromichi; Amemiya, Isao; Nagarekawa, Osamu

    1993-06-01

    We have investigated the effects of film thickness, anti-reflective (AR) coating and surface roughness on the optical transparency of silicon carbide (SiC) membrane. Peak transmittances monotonously increased as the thickness decreased. The transmittance at 633 nm for 1.05 micrometers thick SiC membrane adjusted by reactive ion etching was 70%, and increased up to 80% by an AR coating. SiC membrane with extremely smooth surface of 0.12 nm (Ra) has been obtained by polishing, and had peak transmittances of 69% and 80% at 633 nm for 2.0 micrometers and 1.0 micrometers in thickness, respectively. Poly-crystalline (beta) -SiC membrane in the suitable tensile stress range of 0.3 to 2.0 X 108 Pa and with high Young's modulus of 4.5 X 1011 Pa has been prepared by a hot wall type low pressure chemical vapor deposition, and been found to need to have thickness over 0.7 micrometers to maintain sufficient mechanical strength in processing.

  10. CHARMM-GUI Membrane Builder toward realistic biological membrane simulations.

    PubMed

    Wu, Emilia L; Cheng, Xi; Jo, Sunhwan; Rui, Huan; Song, Kevin C; Dávila-Contreras, Eder M; Qi, Yifei; Lee, Jumin; Monje-Galvan, Viviana; Venable, Richard M; Klauda, Jeffery B; Im, Wonpil

    2014-10-15

    CHARMM-GUI Membrane Builder, http://www.charmm-gui.org/input/membrane, is a web-based user interface designed to interactively build all-atom protein/membrane or membrane-only systems for molecular dynamics simulations through an automated optimized process. In this work, we describe the new features and major improvements in Membrane Builder that allow users to robustly build realistic biological membrane systems, including (1) addition of new lipid types, such as phosphoinositides, cardiolipin (CL), sphingolipids, bacterial lipids, and ergosterol, yielding more than 180 lipid types, (2) enhanced building procedure for lipid packing around protein, (3) reliable algorithm to detect lipid tail penetration to ring structures and protein surface, (4) distance-based algorithm for faster initial ion displacement, (5) CHARMM inputs for P21 image transformation, and (6) NAMD equilibration and production inputs. The robustness of these new features is illustrated by building and simulating a membrane model of the polar and septal regions of E. coli membrane, which contains five lipid types: CL lipids with two types of acyl chains and phosphatidylethanolamine lipids with three types of acyl chains. It is our hope that CHARMM-GUI Membrane Builder becomes a useful tool for simulation studies to better understand the structure and dynamics of proteins and lipids in realistic biological membrane environments. Copyright © 2014 Wiley Periodicals, Inc.

  11. Structural changes of oviduct of freshwater shrimp, Macrobrachium nipponense (Decapoda, Palaemonidae), during spawning*

    PubMed Central

    Lu, Jian-ping; Zhang, Xiao-hui; Yu, Xiao-yun

    2006-01-01

    The structural change of the oviduct of freshwater shrimp (Macrobrachium nipponense) during spawning was examined by electron microscopy. The oviduct wall structural characteristics seem to be influenced significantly by the spawning process. Before the parturition and ovulation, two types of epithelial cells (types I and II) are found in the epithelium. The free surfaces of type I and type II cells have very dense long microvilli. Under the type I and type II cells, are a relatively thick layer of secreting material and a layer of mostly dead cells. After ovulation, two other types of epithelial cells (types III and IV) are found in the oviduct wall epithelium. The free surface of type III cells only has short microvilli scattered on the surface. The thick layer with secreting material and the dead cell layer disappeared at this stage. In some type III cells, the leaking out of cytoplasm from broken cell membrane led to the death of these type III cells. The transformation of all four types of epithelial cells was in the order: IV→I→II→III. PMID:16365928

  12. Changes in topography and function of thylakoid membranes following membrane protein phosphorylation.

    PubMed

    Black, M T; Lee, P; Horton, P

    1986-09-01

    Changes in topography and function of pea (Pisum sativum L.) thylakoid membrane fractions following membrane protein phosphorylation have been studied. After protein phosphorylation the stromal membrane fraction had a higher chlorophyll a/b ratio, an increased content of light-harvesting chlorophyll protein and a higher ratio of chlorophyll to cytochrome f. This indicates that a pool of light-harvesting chlorophyll protein migrates from the photosystem II-enriched grana regions to the photosystem I-enriched stroma lamellae, in agreement with Kyle et al. (1984, Biochim. Biophys. Acta 765, 89-96) and Larsson et al. (1983, Eur. J. Biochem. 136, 25-29). Phosphorylation caused a stimulation in the rate of light-limited photosystem-I electron transfer in the unappressed membrane fraction, indicating that the translocated LHC-II becomes functionally associated with photosystem I.

  13. Endomembrane Cation Transporters and Membrane Trafficking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sze, Heven

    Multicellular, as well as unicellular, organisms have evolved mechanisms to regulate ion and pH homeostasis in response to developmental cues and to a changing environment. The working hypothesis is that the balance of fluxes mediated by diverse transporters at the plasma membrane and in subcellular organelles determines ionic cellular distribution, which is critical for maintenance of membrane potential, pH control, osmolality, transport of nutrients, and protein activity. An emerging theme in plant cell biology is that cells respond and adapt to diverse cues through changes of the dynamic endomembrane system. Yet we know very little about the transporters that mightmore » influence the operation of the secretory system in plants. Here we focus on transporters that influence alkali cation and pH homeostasis, mainly in the endomembrane/ secretory system. The endomembrane system of eukaryote cells serves several major functions: i) sort cargo (e.g. enzymes, transporters or receptors) to specific destinations, ii) modulate the protein and lipid composition of membrane domains through remodeling, and iii) determine and alter the properties of the cell wall through synthesis and remodeling. We had uncovered a novel family of predicted cation/H + exchangers (CHX) and K + efflux antiporters (KEA) that are prevalent in higher plants, but rare in metazoans. We combined phylogenetic and transcriptomic analyses with molecular genetic, cell biological and biochemical studies, and have published the first reports on functions of plant CHXs and KEAs. CHX studied to date act at the endomembrane system where their actions are distinct from the better-studied NHX (Na/K-H + exchangers). Arabidopsis thaliana CHX20 in guard cells modulate stomatal opening, and thus is significant for vegetative survival. Other CHXs ensure reproductive success on dry land, as they participate in organizing pollen walls, targeting of pollen tubes to the ovule or promoting fertilization. Based on

  14. Type-I and type-II topological nodal superconductors with s -wave interaction

    NASA Astrophysics Data System (ADS)

    Huang, Beibing; Yang, Xiaosen; Xu, Ning; Gong, Ming

    2018-01-01

    Topological nodal superconductors with protected gapless points in momentum space are generally realized based on unconventional pairings. In this work we propose a minimal model to realize these topological nodal phases with only s -wave interaction. In our model the linear and quadratic spin-orbit couplings along the two orthogonal directions introduce anisotropic effective unconventional pairings in momentum space. This model may support different nodal superconducting phases characterized by either an integer winding number in BDI class or a Z2 index in D class at the particle-hole invariant axes. In the vicinity of the nodal points the effective Hamiltonian can be described by either type-I or type-II Dirac equations, and the Lifshitz transition from type-I nodal phases to type-II nodal phases can be driven by external in-plane magnetic fields. We show that these nodal phases are robust against weak impurities, which only slightly renormalizes the momentum-independent parameters in the impurity-averaged Hamiltonian, thus these phases are possible to be realized in experiments with real semi-Dirac materials. The smoking-gun evidences to verify these phases based on scanning tunneling spectroscopy method are also briefly discussed.

  15. Differential protection by cell wall components of Lactobacillus amylovorus DSM 16698Tagainst alterations of membrane barrier and NF-kB activation induced by enterotoxigenic F4+ Escherichia coli on intestinal cells.

    PubMed

    Roselli, Marianna; Finamore, Alberto; Hynönen, Ulla; Palva, Airi; Mengheri, Elena

    2016-09-29

    The role of Lactobacillus cell wall components in the protection against pathogen infection in the gut is still largely unexplored. We have previously shown that L. amylovorus DSM 16698 T is able to reduce the enterotoxigenic F4 + Escherichia coli (ETEC) adhesion and prevent the pathogen-induced membrane barrier disruption through the regulation of IL-10 and IL-8 expression in intestinal cells. We have also demonstrated that L. amylovorus DSM 16698 T protects host cells through the inhibition of NF-kB signaling. In the present study, we investigated the role of L. amylovorus DSM 16698 T cell wall components in the protection against F4 + ETEC infection using the intestinal Caco-2 cell line. Purified cell wall fragments (CWF) from L. amylovorus DSM 16698 T were used either as such (uncoated, U-CWF) or coated with S-layer proteins (S-CWF). Differentiated Caco-2/TC7 cells on Transwell filters were infected with F4 + ETEC, treated with S-CWF or U-CWF, co-treated with S-CWF or U-CWF and F4 + ETEC for 2.5 h, or pre-treated with S-CWF or U-CWF for 1 h before F4 + ETEC addition. Tight junction (TJ) and adherens junction (AJ) proteins were analyzed by immunofluorescence and Western blot. Membrane permeability was determined by phenol red passage. Phosphorylated p65-NF-kB was measured by Western blot. We showed that both the pre-treatment with S-CWF and the co- treatment of S-CWF with the pathogen protected the cells from F4 + ETEC induced TJ and AJ injury, increased membrane permeability and activation of NF-kB expression. Moreover, the U-CWF pre-treatment, but not the co-treatment with F4 + ETEC, inhibited membrane damage and prevented NF-kB activation. The results indicate that the various components of L. amylovorus DSM 16698 T cell wall may counteract the damage caused by F4 + ETEC through different mechanisms. S-layer proteins are essential for maintaining membrane barrier function and for mounting an anti-inflammatory response against F4 + ETEC infection. U-CWF are

  16. Osmotic and Chill Activation of Glycine Betaine Porter II in Listeria monocytogenes Membrane Vesicles

    PubMed Central

    Gerhardt, Paul N. M.; Tombras Smith, Linda; Smith, Gary M.

    2000-01-01

    Listeria monocytogenes is a foodborne pathogen known for its tolerance to conditions of osmotic and chill stress. Accumulation of glycine betaine has been found to be important in the organism's tolerance to both of these stresses. A procedure was developed for the purification of membranes from L. monocytogenes cells in which the putative ATP-driven glycine betaine permease glycine betaine porter II (Gbu) is functional. As is the case for the L. monocytogenes sodium-driven glycine betaine uptake system (glycine betaine porter I), uptake in this vesicle system was dependent on energization by ascorbate-phenazine methosulfate. Vesicles lacking the gbu gene product had no uptake activity. Transport by this porter did not require sodium ion and could be driven only weakly by artificial gradients. Uptake rates could be manipulated under conditions not affecting secondary transport but known to affect ATPase activity. The system was shown to be both osmotically activated and cryoactivated. Under conditions of osmotic activation, the system exhibited Arrhenius-type behavior although the uptake rates were profoundly affected by the physical state of the membrane, with breaks in Arrhenius curves at approximately 10 and 18°C. In the absence of osmotic activation, the permease could be activated by decreasing temperature within the range of 15 to 4°C. Kinetic analyses of the permease at 30°C revealed Km values for glycine betaine of 1.2 and 2.9 μM with Vmax values of 2,200 and 3,700 pmol/min · mg of protein under conditions of optimal osmotic activation as mediated by KCl and sucrose, respectively. PMID:10762257

  17. Endogenous and maximal sarcoplasmic reticulum calcium content and calsequestrin expression in type I and type II human skeletal muscle fibres.

    PubMed

    Lamboley, C R; Murphy, R M; McKenna, M J; Lamb, G D

    2013-12-01

    The relationship between sarcoplasmic reticulum (SR) Ca(2+) content and calsequestrin (CSQ) isoforms was investigated in human skeletal muscle. A fibre-lysing assay was used to quantify the endogenous Ca(2+) content and maximal Ca(2+) capacity of the SR in skinned segments of type I and type II fibres from vastus lateralis muscles of young healthy adults. Western blotting of individual fibres showed the great majority contained either all fast or all slow isoforms of myosin heavy chain (MHC), troponins C and I, tropomyosin and SERCA, and that the strontium sensitivity of the force response was closely indicative of the troponin C isoform present. The endogenous SR Ca(2+) content was slightly lower in type I compared to type II fibres (0.76 ± 0.03 and 0.85 ± 0.02 mmol Ca(2+) per litre of fibre, respectively), with virtually all of this Ca(2+) evidently being in the SR, as it could be rapidly released with a caffeine-low [Mg(2+)] solution (only 0.08 ± 0.01 and <0.07 mmol l(-1), respectively, remaining). The maximal Ca(2+) content that could be reached with SR Ca(2+) loading was 1.45 ± 0.04 and 1.79 ± 0.03 mmol l(-1) in type I and type II fibres, respectively (P < 0.05). In non-lysed skinned fibres, where the SR remained functional, repeated cycles of caffeine-induced Ca(2+) release and subsequent Ca(2+) reloading similarly indicated that (i) maximal SR Ca(2+) content was lower in type I fibres than in type II fibres (P < 0.05), and (ii) the endogenous Ca(2+) content represented a greater percentage of maximal content in type I fibres compared to type II fibres (∼59% and 41%, respectively, P < 0.05). Type II fibres were found on average to contain ∼3-fold more CSQ1 and ∼5-fold less CSQ2 than type I fibres (P < 0.001). The findings are consistent with the SR Ca(2+) content characteristics in human type II fibres being primarily determined by the CSQ1 abundance, and in type I fibres by the combined amounts of both CSQ1 and CSQ2.

  18. Endogenous and maximal sarcoplasmic reticulum calcium content and calsequestrin expression in type I and type II human skeletal muscle fibres

    PubMed Central

    Lamboley, C R; Murphy, R M; McKenna, M J; Lamb, G D

    2013-01-01

    The relationship between sarcoplasmic reticulum (SR) Ca2+ content and calsequestrin (CSQ) isoforms was investigated in human skeletal muscle. A fibre-lysing assay was used to quantify the endogenous Ca2+ content and maximal Ca2+ capacity of the SR in skinned segments of type I and type II fibres from vastus lateralis muscles of young healthy adults. Western blotting of individual fibres showed the great majority contained either all fast or all slow isoforms of myosin heavy chain (MHC), troponins C and I, tropomyosin and SERCA, and that the strontium sensitivity of the force response was closely indicative of the troponin C isoform present. The endogenous SR Ca2+ content was slightly lower in type I compared to type II fibres (0.76 ± 0.03 and 0.85 ± 0.02 mmol Ca2+ per litre of fibre, respectively), with virtually all of this Ca2+ evidently being in the SR, as it could be rapidly released with a caffeine-low [Mg2+] solution (only 0.08 ± 0.01 and <0.07 mmol l−1, respectively, remaining). The maximal Ca2+ content that could be reached with SR Ca2+ loading was 1.45 ± 0.04 and 1.79 ± 0.03 mmol l−1 in type I and type II fibres, respectively (P < 0.05). In non-lysed skinned fibres, where the SR remained functional, repeated cycles of caffeine-induced Ca2+ release and subsequent Ca2+ reloading similarly indicated that (i) maximal SR Ca2+ content was lower in type I fibres than in type II fibres (P < 0.05), and (ii) the endogenous Ca2+ content represented a greater percentage of maximal content in type I fibres compared to type II fibres (∼59% and 41%, respectively, P < 0.05). Type II fibres were found on average to contain ∼3–fold more CSQ1 and ∼5–fold less CSQ2 than type I fibres (P < 0.001). The findings are consistent with the SR Ca2+ content characteristics in human type II fibres being primarily determined by the CSQ1 abundance, and in type I fibres by the combined amounts of both CSQ1 and CSQ2. PMID:24127619

  19. [Mania associated with Usher syndrome type II].

    PubMed

    Praharaj, Samir Kumar; Acharya, Mahima; Sarvanan, Arul; Kongasseri, Sreejayan; Behere, Rishikesh V; Sharma, P S V N

    2012-01-01

    Usher syndrome (or Hallgren syndrome) is an autosomal recessive genetic disorder characterized by sensorineural deafness, retinitis pigmentosa, and variable vestibular deficit; Usher syndrome type II is the most common form. Various neuropsychiatric disorders have been reported to occur in those with Usher syndrome, including schizophrenia-like disorder, atypical psychosis, recurrent depressive illness, neurotic disorder, and mental retardation; however, bipolar disorder is not common in those with Usher syndrome. Herein we describe a 30-year-old male with Usher syndrome type II that developed features indicative of a probable manic episode. The patient had complete remission of symptoms in response to treatment with olanzapine 20 mg d-1. In persons with dual sensory impairment there are inherent problems with assessment and diagnosis is difficult due to their limited communication abilities. The diagnosis of Usher syndrome depends heavily on behavioral observation and disturbances in vegetative functions.

  20. Type II solar radio burst band-splitting: Measure of coronal magnetic field strength

    NASA Astrophysics Data System (ADS)

    Mahrous, Ayman; Alielden, Khaled; Vršnak, Bojan; Youssef, Mohamed

    2018-07-01

    Studies of the relationship between solar radio bursts and CMEs are essential for understanding of the nature of type II bursts. In this study, we examine the type II solar radio burst recorded on 16 March 2016 by the Learmonth radio spectrograph and compare its characteristics with the kinematics of the associated CMEs observed by STEREO and SOHO spacecraft. The burst showed a well-defined band-split, which was used to estimate the magnetic field strength in the solar corona. The magnetic field decreases from ≈ 4 G at R ≈ 2.6 R⊙ to 0.62 G at R ≈ 3.77 R⊙ depending on the coronal electron density model employed. We found that two CMEs occurred successively in a 4-h interval. During this interval, a type II radio burst occurred, lasting for about 10 min. Tracking of the shock that produced type II burst and comparison with the CMEs heights as observed by STEREO and SOHO spacecraft help us to deduce the driver of the shock. According to the analysis, the type II burst occurrence was associated with the interaction of the shock driven by the second CME with a streamer located south of the first CME, since that the type II band-split significantly increased during the shock-streamer interaction. Our results show that the analysis of the type II burst band-split supplemented by the coronagraphic observations of the corona is an important tool for the understanding of the coronal eruptive processes.

  1. Post-exercise protein synthesis rates are only marginally higher in type I compared with type II muscle fibres following resistance-type exercise.

    PubMed

    Koopman, René; Gleeson, Benjamin G; Gijsen, Annemie P; Groen, Bart; Senden, Joan M G; Rennie, Michael J; van Loon, Luc J C

    2011-08-01

    We examined the effect of an acute bout of resistance exercise on fractional muscle protein synthesis rates in human type I and type II muscle fibres. After a standardised breakfast (31 ± 1 kJ kg(-1) body weight, consisting of 52 Energy% (En%) carbohydrate, 34 En% protein and 14 En% fat), 9 untrained men completed a lower-limb resistance exercise bout (8 sets of 10 repetitions leg press and leg extension at 70% 1RM). A primed, continuous infusion of L: -[ring-(13)C(6)]phenylalanine was combined with muscle biopsies collected from both legs immediately after exercise and after 6 h of post-exercise recovery. Single muscle fibres were dissected from freeze-dried biopsies and stained for ATPase activity with pre-incubation at a pH of 4.3. Type I and II fibres were separated under a light microscope and analysed for protein-bound L: -[ring-(13)C(6)]phenylalanine labelling. Baseline (post-exercise) L: -[ring-(13)C(6)]phenylalanine muscle tissue labelling, expressed as (∂(13)C/(12)C), averaged -32.09 ± 0.28, -32.53 ± 0.10 and -32.02 ± 0.16 in the type I and II muscle fibres and mixed muscle, respectively (P = 0.14). During post-exercise recovery, muscle protein synthesis rates were marginally (8 ± 2%) higher in the type I than type II muscle fibres, at 0.100 ± 0.005 versus 0.094 ± 0.005%/h, respectively (P < 0.05), whereby rates of mixed muscle protein were 0.091 ± 0.005%/h. Muscle protein synthesis rates following resistance-type exercise are only marginally higher in type I compared with type II muscle fibres.

  2. Prediction of CMEs and Type II Bursts from Sun to Earth

    NASA Astrophysics Data System (ADS)

    Cairns, I. H.; Schmidt, J. M.; Gopalswamy, N.; van der Holst, B.

    2017-12-01

    Most major space weather events are due to fast CMEs and their shocks interacting with Earth's magnetosphere. SImilarly, type II solar radio bursts are well-known signatures of CMEs and their shocks moving through the corona and solar wind. The properties of the space weather events and the type II radio bursts depend sensitively on the CME velocity, shape, and evolution as functions of position and time, as well as on the magnetic field vector in the coronal and solar wind plasma, downstream of the CME shock, and inside the CME. We report simulations of CMEs and type II bursts from the Sun to Earth with the Space Weather Modelling Framework (2015 and 2016 versions), set up carefully using relevant data, and a kinetic radio emission theory. Excellent agreement between observations, simulations, and theory are found for the coronal (metric) type II burst of 7 September 2014 and associated CME, including the lack of radio emission in the solar wind beyond about 10 solar radii. Similarly, simulation of a CME and type II burst from the Sun to 1 AU over the period 29 November - 1 December 2013 yield excellent agreement for the radio burst from 10 MHz to 30 kHz for STEREO A and B and Wind, arrival of the CME at STEREO A within 1 hour reported time, deceleration of the CME in agreement with the Gopalswamy et al. [2011] observational analyses, and Bz rotations at STEREO A from upstream of the CME shock to within the CME. These results provide strong support for the type II theory and also that the Space WeatherModeling Framework can accurately predict the properties and evolution of CMEs and the interplanetary magnetic field and plasma from the Sun to 1 AU when sufficiently carefully initialized.

  3. 33 CFR 159.126a - Suspended solids test: Type II devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Suspended solids test: Type II... Suspended solids test: Type II devices. During the sewage processing test (§ 159.121) 40 effluent samples... suspended solids in accordance with 40 CFR part 136. The arithmetic mean of the total suspended solids in 38...

  4. Chromosomal localization and structure of the human type II IMP dehydrogenase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glesne, D.; Huberman, E.; Collart, F.

    1994-05-01

    We determined the chromosomal localization and structure of the gene encoding human type II inosine 5{prime}-monophosphate dehydrogenase (IMPDH, EC 1.1.1.205), an enzyme associated with cellular proliferation, malignant transformation, and differentiation. Using polymerase chain reaction (PCR) primers specific for type II IMPDH, we screened a panel of human-Chinese hamster cell somatic hybrids and a separate deletion panel of chromosome 3 hybrids and localized the gene to 3p21.1{yields}p24.2. Two overlapping yeast artificial chromosome clones containing the full gene for type II IMPDH were isolated and a physical map of 117 kb of human genomic DNA in this region of chromosome 3 wasmore » constructed. The gene for type II IMPDH was localized and oriented on this map and found to span no more than 12.5 kb.« less

  5. [Different patterns of 123I-BMIPP myocardial accumulation in patients with type I and II CD36 deficiency].

    PubMed

    Watanabe, K; Toba, K; Ogawa, Y; Aizawa, Y; Tanabe, N; Miyajima, S; Kusano, Y; Nagatomo, T; Hirokawa, Y

    1997-12-01

    The CD36 molecule is a multifunctional membrane type receptor glycoprotein that reacts with thrombospondin, collagen, oxidized LDL and long-chain fatty acids (LCFA). LCFA are one of the major cardiac energy substrates, hence LCFA metabolism may have an important role in cardiac diseases. In this study, we analyzed CD36 expression in 200 patients with heart diseases [44 patients with hypertrophic cardiomyopathy (HCM), 16 with dilated cardiomyopathy (DCM), 26 with old myocardial infarction (OMI), 55 with angina pectoris (AP) and 59 with other miscellaneous heart diseases] using a flow cytometer. 123I-beta-methyl-p-iodophenylpentadecanoic acid (BMIPP) myocardial accumulation was also examined in some patients. Eight patients (2 with HCM, 1 with DCM, 2 with OMI, and 3 with AP) were diagnosed as having type I CD36 deficiency (neither platelets nor monocytes expressed CD36). Sixteen patients (3 with HCM, 1 with DCM, 1 with OMI, 8 with AP, and 3 with other heart diseases) showed type II CD36 deficiency (monocytes expressed CD36 but platelets did not). In all 8 patients with type I CD36 deficiency, there was no BMIPP accumulation in the heart. However, in 13 patients with type II CD36 deficiency, focally reduced BMIPP accumulation was observed, but there were no patients without BMIPP accumulation. CD36 deficiency was observed in a higher proportion (12%) of patients with heart disease in this study than in a reported control study. Type I CD36 deficiency is associated with absence of BMIPP accumulation in the heart, hence it may have an important role in LCFA metabolic disorders and some types of cardiac hypertrophy as well as other heart diseases.

  6. Flow over a membrane-covered, fluid-filled cavity.

    PubMed

    Thomson, Scott L; Mongeau, Luc; Frankel, Steven H

    2007-01-01

    The flow-induced response of a membrane covering a fluid-filled cavity located in a section of a rigid-walled channel was explored using finite element analysis. The membrane was initially aligned with the channel wall and separated the channel fluid from the cavity fluid. As fluid flowed over the membrane-covered cavity, a streamwise-dependent transmural pressure gradient caused membrane deformation. This model has application to synthetic models of the vocal fold cover layer used in voice production research. In this paper, the model is introduced and responses of the channel flow, the membrane, and the cavity flow are summarized for a range of flow and membrane parameters. It is shown that for high values of cavity fluid viscosity, the intracavity pressure and the beam deflection both reached steady values. For combinations of low cavity viscosity and sufficiently large upstream pressures, large-amplitude membrane vibrations resulted. Asymmetric conditions were introduced by creating cavities on opposing sides of the channel and assigning different stiffness values to the two membranes. The asymmetry resulted in reduction in or cessation of vibration amplitude, depending on the degree of asymmetry, and in significant skewing of the downstream flow field.

  7. Transporters involved in pH and K + homeostasis affect pollen wall formation, male fertility, and embryo development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padmanaban, Senthilkumar; Czerny, Daniel D.; Levin, Kara A.

    Flowering plant genomes encode multiple cation/H + exchangers (CHXs) whose functions are largely unknown. AtCHX17, AtCHX18, and AtCHX19 are membrane transporters that modulate K+ and pH homeostasis and are localized in the dynamic endomembrane system. Loss of function reduced seed set, but the particular phase(s) of reproduction affected was not determined. Pollen tube growth and ovule targeting of chx17chx18chx19 mutant pollen appeared normal, but reciprocal cross experiments indicate a largely male defect. Although triple mutant pollen tubes reach ovules of a wild-type pistil and a synergid cell degenerated, half of those ovules were unfertilized or showed fertilization of the eggmore » or central cell, but not both female gametes. Fertility could be partially compromised by impaired pollen tube and/or sperm function as CHX19 and CHX18 are expressed in the pollen tube and sperm cell, respectively. When fertilization was successful in self-pollinated mutants, early embryo formation was retarded compared with embryos from wild-type ovules receiving mutant pollen. Thus CHX17 and CHX18 proteins may promote embryo development possibly through the endosperm where these genes are expressed. The reticulate pattern of the pollen wall was disorganized in triple mutants, indicating perturbation of wall formation during male gametophyte development. Lastly, as pH and cation homeostasis mediated by AtCHX17 affect membrane trafficking and cargo delivery, these results suggest that male fertility, sperm function, and embryo development are dependent on proper cargo sorting and secretion that remodel cell walls, plasma membranes, and extracellular factors.« less

  8. Transporters involved in pH and K + homeostasis affect pollen wall formation, male fertility, and embryo development

    DOE PAGES

    Padmanaban, Senthilkumar; Czerny, Daniel D.; Levin, Kara A.; ...

    2017-02-23

    Flowering plant genomes encode multiple cation/H + exchangers (CHXs) whose functions are largely unknown. AtCHX17, AtCHX18, and AtCHX19 are membrane transporters that modulate K+ and pH homeostasis and are localized in the dynamic endomembrane system. Loss of function reduced seed set, but the particular phase(s) of reproduction affected was not determined. Pollen tube growth and ovule targeting of chx17chx18chx19 mutant pollen appeared normal, but reciprocal cross experiments indicate a largely male defect. Although triple mutant pollen tubes reach ovules of a wild-type pistil and a synergid cell degenerated, half of those ovules were unfertilized or showed fertilization of the eggmore » or central cell, but not both female gametes. Fertility could be partially compromised by impaired pollen tube and/or sperm function as CHX19 and CHX18 are expressed in the pollen tube and sperm cell, respectively. When fertilization was successful in self-pollinated mutants, early embryo formation was retarded compared with embryos from wild-type ovules receiving mutant pollen. Thus CHX17 and CHX18 proteins may promote embryo development possibly through the endosperm where these genes are expressed. The reticulate pattern of the pollen wall was disorganized in triple mutants, indicating perturbation of wall formation during male gametophyte development. Lastly, as pH and cation homeostasis mediated by AtCHX17 affect membrane trafficking and cargo delivery, these results suggest that male fertility, sperm function, and embryo development are dependent on proper cargo sorting and secretion that remodel cell walls, plasma membranes, and extracellular factors.« less

  9. Evidence from mathematical modeling that carbonic anhydrase II and IV enhance CO2 fluxes across Xenopus oocyte plasma membranes

    PubMed Central

    Musa-Aziz, Raif; Boron, Walter F.

    2014-01-01

    Exposing an oocyte to CO2/HCO3− causes intracellular pH (pHi) to decline and extracellular-surface pH (pHS) to rise to a peak and decay. The two companion papers showed that oocytes injected with cytosolic carbonic anhydrase II (CA II) or expressing surface CA IV exhibit increased maximal rate of pHi change (dpHi/dt)max, increased maximal pHS changes (ΔpHS), and decreased time constants for pHi decline and pHS decay. Here we investigate these results using refinements of an earlier mathematical model of CO2 influx into a spherical cell. Refinements include 1) reduced cytosolic water content, 2) reduced cytosolic diffusion constants, 3) refined CA II activity, 4) layer of intracellular vesicles, 5) reduced membrane CO2 permeability, 6) microvilli, 7) refined CA IV activity, 8) a vitelline membrane, and 9) a new simulation protocol for delivering and removing the bulk extracellular CO2/HCO3− solution. We show how these features affect the simulated pHi and pHS transients and use the refined model with the experimental data for 1.5% CO2/10 mM HCO3− (pHo = 7.5) to find parameter values that approximate ΔpHS, the time to peak pHS, the time delay to the start of the pHi change, (dpHi/dt)max, and the change in steady-state pHi. We validate the revised model against data collected as we vary levels of CO2/HCO3− or of extracellular HEPES buffer. The model confirms the hypothesis that CA II and CA IV enhance transmembrane CO2 fluxes by maximizing CO2 gradients across the plasma membrane, and it predicts that the pH effects of simultaneously implementing intracellular and extracellular-surface CA are supra-additive. PMID:24965589

  10. Liver/kidney microsomal antibody type 1 targets CYP2D6 on hepatocyte plasma membrane.

    PubMed

    Muratori, L; Parola, M; Ripalti, A; Robino, G; Muratori, P; Bellomo, G; Carini, R; Lenzi, M; Landini, M P; Albano, E; Bianchi, F B

    2000-04-01

    Liver/kidney microsomal antibody type 1 (LKM1) is the marker of type 2 autoimmune hepatitis (AIH) and is detected in up to 6% of patients with hepatitis C virus (HCV) infection. It recognises linear and conformational epitopes of cytochrome P450IID6 (CYP2D6) and may have liver damaging activity, provided that CYP2D6 is accessible to effector mechanisms of autoimmune attack. The presence of LKM1 in the plasma membrane was investigated by indirect immunofluorescence and confocal laser microscopy of isolated rat hepatocytes probed with 10 LKM1 positive sera (five from patients with AIH and five from patients with chronic HCV infection) and a rabbit polyclonal anti-CYP2D6 serum. Serum from both types of patient stained the plasma membrane of non-permeabilised cells, where the fluorescent signal could be visualised as discrete clumps. Conversely, permeabilised hepatocytes showed diffuse submembranous/cytoplasmic staining. Adsorption with recombinant CYP2D6 substantially reduced plasma membrane staining and LKM1 immunoblot reactivity. Plasma membrane staining of LKM1 colocalised with that of anti-CYP2D6. Immunoprecipitation experiments showed that a single 50 kDa protein recognised by anti-CYP2D6 can be isolated from the plasma membrane of intact hepatocytes. AIH and HCV related LKM1 recognise CYP2D6 exposed on the plasma membrane of isolated hepatocytes. This observation supports the notion that anti-CYP2D6 autoreactivity may be involved in the pathogenesis of liver damage.

  11. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency

    PubMed Central

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels. PMID:28095507

  12. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency.

    PubMed

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels.

  13. The dimer interface of the membrane type 1 matrix metalloproteinase hemopexin domain: crystal structure and biological functions.

    PubMed

    Tochowicz, Anna; Goettig, Peter; Evans, Richard; Visse, Robert; Shitomi, Yasuyuki; Palmisano, Ralf; Ito, Noriko; Richter, Klaus; Maskos, Klaus; Franke, Daniel; Svergun, Dmitri; Nagase, Hideaki; Bode, Wolfram; Itoh, Yoshifumi

    2011-03-04

    Homodimerization is an essential step for membrane type 1 matrix metalloproteinase (MT1-MMP) to activate proMMP-2 and to degrade collagen on the cell surface. To uncover the molecular basis of the hemopexin (Hpx) domain-driven dimerization of MT1-MMP, a crystal structure of the Hpx domain was solved at 1.7 Å resolution. Two interactions were identified as potential biological dimer interfaces in the crystal structure, and mutagenesis studies revealed that the biological dimer possesses a symmetrical interaction where blades II and III of molecule A interact with blades III and II of molecule B. The mutations of amino acids involved in the interaction weakened the dimer interaction of Hpx domains in solution, and incorporation of these mutations into the full-length enzyme significantly inhibited dimer-dependent functions on the cell surface, including proMMP-2 activation, collagen degradation, and invasion into the three-dimensional collagen matrix, whereas dimer-independent functions, including gelatin film degradation and two-dimensional cell migration, were not affected. These results shed light on the structural basis of MT1-MMP dimerization that is crucial to promote cellular invasion.

  14. Bianchi type-I domain walls with negative constant deceleration parameter in Brans-Dicke theory

    NASA Astrophysics Data System (ADS)

    Katore, S. D.

    2011-04-01

    Bianchi type-I space-time is considered in the presence of a domain walls source in the scalar-tensor theory of gravitation proposed by Brans and Dicke (C.H. Brans and R.H. Dicke, Phys. Rev. 24, 925 (1961)). With the help of the special law of variation for Hubble's parameter proposed by Bermann (M.S. Berman, Nuovo Cimento B 74, 182 (1983)) a cosmological model with negative constant deceleration parameter is obtained in the presence of domain walls. Some physical properties of the model are also discussed.

  15. Acute hydrocephalus secondary to herpes simplex type II meningitis.

    PubMed

    Heppner, Peter A; Schweder, Patrick M; Monteith, Stephen J; Law, Andrew J J

    2008-10-01

    A 34-year-old woman presented with a rapid onset of meningitic symptoms. Cerebrospinal fluid (CSF) from a lumbar puncture revealed a leucocytosis with a preponderance of monocytes, elevated protein and reduced glucose. Herpes simplex virus (HSV) type II was subsequently confirmed by polymerase chain reaction (PCR) of CSF. The patient's level of consciousness deteriorated and a CT scan revealed hydrocephalus. The patient required placement of an external ventricular drain for 5 days; however, she made a full recovery without specific antiviral therapy. This is the first reported case of hydrocephalus secondary to isolated HSV type II meningitis.

  16. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2.

    PubMed

    Yan, Mingzhe; Huang, Huaqing; Zhang, Kenan; Wang, Eryin; Yao, Wei; Deng, Ke; Wan, Guoliang; Zhang, Hongyun; Arita, Masashi; Yang, Haitao; Sun, Zhe; Yao, Hong; Wu, Yang; Fan, Shoushan; Duan, Wenhui; Zhou, Shuyun

    2017-08-15

    Topological semimetals have recently attracted extensive research interests as host materials to condensed matter physics counterparts of Dirac and Weyl fermions originally proposed in high energy physics. Although Lorentz invariance is required in high energy physics, it is not necessarily obeyed in condensed matter physics, and thus Lorentz-violating type-II Weyl/Dirac fermions could be realized in topological semimetals. The recent realization of type-II Weyl fermions raises the question whether their spin-degenerate counterpart-type-II Dirac fermions-can be experimentally realized too. Here, we report the experimental evidence of type-II Dirac fermions in bulk stoichiometric PtTe 2 single crystal. Angle-resolved photoemission spectroscopy measurements and first-principles calculations reveal a pair of strongly tilted Dirac cones along the Γ-A direction, confirming PtTe 2 as a type-II Dirac semimetal. Our results provide opportunities for investigating novel quantum phenomena (e.g., anisotropic magneto-transport) and topological phase transition.Whether the spin-degenerate counterpart of Lorentz-violating Weyl fermions, the Dirac fermions, can be realized remains as an open question. Here, Yan et al. report experimental evidence of such type-II Dirac fermions in bulk PtTe 2 single crystal with a pair of strongly tilted Dirac cones.

  17. Different glycoforms of prostate-specific membrane antigen are intracellularly transported through their association with distinct detergent-resistant membranes.

    PubMed

    Castelletti, Deborah; Alfalah, Marwan; Heine, Martin; Hein, Zeynep; Schmitte, Ruth; Fracasso, Giulio; Colombatti, Marco; Naim, Hassan Y

    2008-01-01

    Hormone-refractory prostate carcinomas as well as the neovasculature of different tumours express high levels of PSMA (prostate-specific membrane antigen). PSMA is a type II-transmembrane glycoprotein and a potential tumour marker for both diagnosis and passive immunotherapy. Here, we report on the association of PSMA with DRMs (detergent-resistant membranes) at different stages of the protein maturation pathway in human prostate carcinoma LNCaP cells. At least three PSMA glycoforms were biochemically identified based on their extractability behaviour in different non-ionic detergents. In particular, one precursor glycoform of PSMA is associated with Tween 20-insoluble DRMs, whereas the complex glycosylated protein segregates into membrane structures that are insoluble in Lubrol WX and display a different lipid composition. Association of PSMA with these membranes occurs in the Golgi compartment together with the acquisition of a native conformation. PSMA homodimers reach the plasma membrane of LNCaP cells in Lubrol WX-insoluble lipid/protein complexes. At the steady state, the majority of PSMA remains within these membrane microdomains at the cell surface. We conclude that the intracellular transport of PSMA occurs through populations of DRMs distinct for each biosynthetic form and cellular compartment.

  18. Hunting for low abundant redox proteins in plant plasma membranes.

    PubMed

    Lüthje, Sabine; Hopff, David; Schmitt, Anna; Meisrimler, Claudia-Nicole; Menckhoff, Ljiljana

    2009-04-13

    Nowadays electron transport (redox) systems in plasma membranes appear well established. Members of the flavocytochrome b family have been identified by their nucleotide acid sequences and characterized on the transcriptional level. For their gene products functions have been demonstrated in iron uptake and oxidative stress including biotic interactions, abiotic stress factors and plant development. In addition, NAD(P)H-dependent oxidoreductases and b-type cytochromes have been purified and characterized from plasma membranes. Several of these proteins seem to belong to the group of hypothetical or unknown proteins. Low abundance and the lack of amino acid sequence data for these proteins still hamper their functional analysis. Consequently, little is known about the physiological function and regulation of these enzymes. In recent years evidence has been presented for the existence of microdomains (so-called lipid rafts) in plasma membranes and their interaction with specific membrane proteins. The identification of redox systems in detergent insoluble membranes supports the idea that redox systems may have important functions in signal transduction, stress responses, cell wall metabolism, and transport processes. This review summarizes our present knowledge on plasma membrane redox proteins and discusses alternative strategies to investigate the function and regulation of these enzymes.

  19. Golgi retention of a trans-Golgi membrane protein, galactosyltransferase, requires cysteine and histidine residues within the membrane-anchoring domain.

    PubMed

    Aoki, D; Lee, N; Yamaguchi, N; Dubois, C; Fukuda, M N

    1992-05-15

    Galactosyltransferase (GT; UDPgalactose:beta-D-N-acetylglucosaminide beta-1,4-galactosyltransferase, EC 2.4.1.22) is a type II membrane-anchored protein composed of a short N-terminal cytoplasmic tail, a signal/membrane-anchoring domain, and a stem region followed by a large catalytic domain including the C terminus. To identify the peptide segment and key amino acid residues that are critical for Golgi localization of GT, the expression vector pGT-hCG was designed to encode the entire GT molecule fused to the C-terminal region of human chorionic gonadotropin alpha subunit (hCG alpha) as a reporter. COS-1 cells transfected with pGT-hCG expressed the chimera in the Golgi region, as detected by immunofluorescence microscopy using anti-hCG antibodies. Two deletion mutants, delta tail and delta stem, which are lacking most of the N-terminal cytoplasmic tail or 10 amino acids immediately after the membrane-anchoring domain, were localized in the Golgi. Replacement mutations of the membrane-anchoring domain of GT showed that the second quarter of the transmembrane domain or Cys29-Ala30-Leu31-His32-Leu33 is necessary for GT to be retained in the Golgi. Furthermore, the point mutants Cys29----Ser29 and His32----Leu32 were partially transported to the plasma membrane, whereas an Ala30-Leu31----Phe30-Gly31 mutant was localized in the Golgi. Finally, a double mutant, Cys29/His32----Ser29/Leu32, was found to be transported efficiently to the plasma membrane. The signal-anchoring domain of the transferrin receptor, a type II plasma membrane protein, was then replaced by portions of the GT transmembrane domain. Although the Cys-Xaa-Xaa-His sequence by itself cannot retain the transferrin receptor in the Golgi, the cytoplasmic half of the transmembrane domain of GT was partially capable of retaining the transferrin receptor in the Golgi. These results suggest that the cytoplasmic (or N-terminal) half of the transmembrane domain of GT contributes to the Golgi retention signal and

  20. Golgi retention of a trans-Golgi membrane protein, galactosyltransferase, requires cysteine and histidine residues within the membrane-anchoring domain.

    PubMed Central

    Aoki, D; Lee, N; Yamaguchi, N; Dubois, C; Fukuda, M N

    1992-01-01

    Galactosyltransferase (GT; UDPgalactose:beta-D-N-acetylglucosaminide beta-1,4-galactosyltransferase, EC 2.4.1.22) is a type II membrane-anchored protein composed of a short N-terminal cytoplasmic tail, a signal/membrane-anchoring domain, and a stem region followed by a large catalytic domain including the C terminus. To identify the peptide segment and key amino acid residues that are critical for Golgi localization of GT, the expression vector pGT-hCG was designed to encode the entire GT molecule fused to the C-terminal region of human chorionic gonadotropin alpha subunit (hCG alpha) as a reporter. COS-1 cells transfected with pGT-hCG expressed the chimera in the Golgi region, as detected by immunofluorescence microscopy using anti-hCG antibodies. Two deletion mutants, delta tail and delta stem, which are lacking most of the N-terminal cytoplasmic tail or 10 amino acids immediately after the membrane-anchoring domain, were localized in the Golgi. Replacement mutations of the membrane-anchoring domain of GT showed that the second quarter of the transmembrane domain or Cys29-Ala30-Leu31-His32-Leu33 is necessary for GT to be retained in the Golgi. Furthermore, the point mutants Cys29----Ser29 and His32----Leu32 were partially transported to the plasma membrane, whereas an Ala30-Leu31----Phe30-Gly31 mutant was localized in the Golgi. Finally, a double mutant, Cys29/His32----Ser29/Leu32, was found to be transported efficiently to the plasma membrane. The signal-anchoring domain of the transferrin receptor, a type II plasma membrane protein, was then replaced by portions of the GT transmembrane domain. Although the Cys-Xaa-Xaa-His sequence by itself cannot retain the transferrin receptor in the Golgi, the cytoplasmic half of the transmembrane domain of GT was partially capable of retaining the transferrin receptor in the Golgi. These results suggest that the cytoplasmic (or N-terminal) half of the transmembrane domain of GT contributes to the Golgi retention signal and

  1. Small cationic antimicrobial peptides delocalize peripheral membrane proteins

    PubMed Central

    Wenzel, Michaela; Chiriac, Alina Iulia; Otto, Andreas; Zweytick, Dagmar; May, Caroline; Schumacher, Catherine; Gust, Ronald; Albada, H. Bauke; Penkova, Maya; Krämer, Ute; Erdmann, Ralf; Metzler-Nolte, Nils; Straus, Suzana K.; Bremer, Erhard; Becher, Dörte; Brötz-Oesterhelt, Heike; Sahl, Hans-Georg; Bandow, Julia Elisabeth

    2014-01-01

    Short antimicrobial peptides rich in arginine (R) and tryptophan (W) interact with membranes. To learn how this interaction leads to bacterial death, we characterized the effects of the minimal pharmacophore RWRWRW-NH2. A ruthenium-substituted derivative of this peptide localized to the membrane in vivo, and the peptide also integrated readily into mixed phospholipid bilayers that resemble Gram-positive membranes. Proteome and Western blot analyses showed that integration of the peptide caused delocalization of peripheral membrane proteins essential for respiration and cell-wall biosynthesis, limiting cellular energy and undermining cell-wall integrity. This delocalization phenomenon also was observed with the cyclic peptide gramicidin S, indicating the generality of the mechanism. Exogenous glutamate increases tolerance to the peptide, indicating that osmotic destabilization also contributes to antibacterial efficacy. Bacillus subtilis responds to peptide stress by releasing osmoprotective amino acids, in part via mechanosensitive channels. This response is triggered by membrane-targeting bacteriolytic peptides of different structural classes as well as by hypoosmotic conditions. PMID:24706874

  2. Myosin IIA interacts with the spectrin-actin membrane skeleton to control red blood cell membrane curvature and deformability.

    PubMed

    Smith, Alyson S; Nowak, Roberta B; Zhou, Sitong; Giannetto, Michael; Gokhin, David S; Papoin, Julien; Ghiran, Ionita C; Blanc, Lionel; Wan, Jiandi; Fowler, Velia M

    2018-05-08

    The biconcave disk shape and deformability of mammalian RBCs rely on the membrane skeleton, a viscoelastic network of short, membrane-associated actin filaments (F-actin) cross-linked by long, flexible spectrin tetramers. Nonmuscle myosin II (NMII) motors exert force on diverse F-actin networks to control cell shapes, but a function for NMII contractility in the 2D spectrin-F-actin network of RBCs has not been tested. Here, we show that RBCs contain membrane skeleton-associated NMIIA puncta, identified as bipolar filaments by superresolution fluorescence microscopy. MgATP disrupts NMIIA association with the membrane skeleton, consistent with NMIIA motor domains binding to membrane skeleton F-actin and contributing to membrane mechanical properties. In addition, the phosphorylation of the RBC NMIIA heavy and light chains in vivo indicates active regulation of NMIIA motor activity and filament assembly, while reduced heavy chain phosphorylation of membrane skeleton-associated NMIIA indicates assembly of stable filaments at the membrane. Treatment of RBCs with blebbistatin, an inhibitor of NMII motor activity, decreases the number of NMIIA filaments associated with the membrane and enhances local, nanoscale membrane oscillations, suggesting decreased membrane tension. Blebbistatin-treated RBCs also exhibit elongated shapes, loss of membrane curvature, and enhanced deformability, indicating a role for NMIIA contractility in promoting membrane stiffness and maintaining RBC biconcave disk cell shape. As structures similar to the RBC membrane skeleton exist in many metazoan cell types, these data demonstrate a general function for NMII in controlling specialized membrane morphology and mechanical properties through contractile interactions with short F-actin in spectrin-F-actin networks.

  3. Investigation of the functional role of CSLD proteins in plant cell wall deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Erik Etlar

    The overall goal of this research proposal was to characterize the molecular machinery responsible for polarized secretion of cell wall components in Arabidopsis thaliana. We have used the polarized expansion that occurs during root hair cell growth to identify membrane trafficking pathways involved in polarized secretion of cell wall components to the expanding tips of these cells, and we have recently shown that CSLD3 is preferentially targeted to the apical plasma membranes in root hair cells, where it plays essential roles during cell wall deposition in these cells. The specific aims of the project are designed to answer the followingmore » objective: Identification of the cell wall polysaccharide class that CSLD proteins synthesize.« less

  4. The Cell Wall of the Human Fungal Pathogen Aspergillus fumigatus: Biosynthesis, Organization, Immune Response, and Virulence.

    PubMed

    Latgé, Jean-Paul; Beauvais, Anne; Chamilos, Georgios

    2017-09-08

    More than 90% of the cell wall of the filamentous fungus Aspergillus fumigatus comprises polysaccharides. Biosynthesis of the cell wall polysaccharides is under the control of three types of enzymes: transmembrane synthases, which are anchored to the plasma membrane and use nucleotide sugars as substrates, and cell wall-associated transglycosidases and glycosyl hydrolases, which are responsible for remodeling the de novo synthesized polysaccharides and establishing the three-dimensional structure of the cell wall. For years, the cell wall was considered an inert exoskeleton of the fungal cell. The cell wall is now recognized as a living organelle, since the composition and cellular localization of the different constitutive cell wall components (especially of the outer layers) vary when the fungus senses changes in the external environment. The cell wall plays a major role during infection. The recognition of the fungal cell wall by the host is essential in the initiation of the immune response. The interactions between the different pattern-recognition receptors (PRRs) and cell wall pathogen-associated molecular patterns (PAMPs) orientate the host response toward either fungal death or growth, which would then lead to disease development. Understanding the molecular determinants of the interplay between the cell wall and host immunity is fundamental to combatting Aspergillus diseases.

  5. Lifshitz Transitions, Type-II Dirac and Weyl Fermions, Event Horizon and All That

    NASA Astrophysics Data System (ADS)

    Volovik, G. E.; Zhang, K.

    2017-12-01

    The type-II Weyl and type-II Dirac points emerge in semimetals and also in relativistic systems. In particular, the type-II Weyl fermions may emerge behind the event horizon of black holes. In this case the horizon with Painlevé-Gullstrand metric serves as the surface of the Lifshitz transition. This relativistic analogy allows us to simulate the black hole horizon and Hawking radiation using the fermionic superfluid with supercritical velocity, and the Dirac and Weyl semimetals with the interface separating the type-I and type-II states. The difference between such type of the artificial event horizon and that which arises in acoustic metric is discussed. At the Lifshitz transition between type-I and type-II fermions the Dirac lines may also emerge, which are supported by the combined action of topology and symmetry. The type-II Weyl and Dirac points also emerge as the intermediate states of the topological Lifshitz transitions. Different configurations of the Fermi surfaces, involved in such Lifshitz transition, are discussed. In one case the type-II Weyl point connects the Fermi pockets and the Lifshitz transition corresponds to the transfer of the Berry flux between the Fermi pockets. In the other case the type-II Weyl point connects the outer and inner Fermi surfaces. At the Lifshitz transition the Weyl point is released from both Fermi surfaces. They loose their Berry flux, which guarantees the global stability, and without the topological support the inner surface disappears after shrinking to a point at the second Lifshitz transition. These examples reveal the complexity and universality of topological Lifshitz transitions, which originate from the ubiquitous interplay of a variety of topological characters of the momentum-space manifolds. For the interacting electrons, the Lifshitz transitions may lead to the formation of the dispersionless (flat) band with zero energy and singular density of states, which opens the route to room

  6. Manipulating type-I and type-II Dirac polaritons in cavity-embedded honeycomb metasurfaces.

    PubMed

    Mann, Charlie-Ray; Sturges, Thomas J; Weick, Guillaume; Barnes, William L; Mariani, Eros

    2018-06-06

    Pseudorelativistic Dirac quasiparticles have emerged in a plethora of artificial graphene systems that mimic the underlying honeycomb symmetry of graphene. However, it is notoriously difficult to manipulate their properties without modifying the lattice structure. Here we theoretically investigate polaritons supported by honeycomb metasurfaces and, despite the trivial nature of the resonant elements, we unveil rich Dirac physics stemming from a non-trivial winding in the light-matter interaction. The metasurfaces simultaneously exhibit two distinct species of massless Dirac polaritons, namely type-I and type-II. By modifying only the photonic environment via an enclosing cavity, one can manipulate the location of the type-II Dirac points, leading to qualitatively different polariton phases. This enables one to alter the fundamental properties of the emergent Dirac polaritons while preserving the lattice structure-a unique scenario which has no analog in real or artificial graphene systems. Exploiting the photonic environment will thus give rise to unexplored Dirac physics at the subwavelength scale.

  7. Molecular determinants on the insect sodium channel for the specific action of type II pyrethroid insecticides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du Yuzhe; Nomura, Yoshiko; Luo Ningguang

    2009-01-15

    Pyrethroid insecticides are classified as type I or type II based on their distinct symptomology and effects on sodium channel gating. Structurally, type II pyrethroids possess an {alpha}-cyano group at the phenylbenzyl alcohol position, which is lacking in type I pyrethroids. Both type I and type II pyrethroids inhibit deactivation consequently prolonging the opening of sodium channels. However, type II pyrethroids inhibit the deactivation of sodium channels to a greater extent than type I pyrethroids inducing much slower decaying of tail currents upon repolarization. The molecular basis of a type II-specific action, however, is not known. Here we report themore » identification of a residue G{sup 1111} and two positively charged lysines immediately downstream of G{sup 1111} in the intracellular linker connecting domains II and III of the cockroach sodium channel that are specifically involved in the action of type II pyrethroids, but not in the action of type I pyrethroids. Deletion of G{sup 1111}, a consequence of alternative splicing, reduced the sodium channel sensitivity to type II pyrethroids, but had no effect on channel sensitivity to type I pyrethroids. Interestingly, charge neutralization or charge reversal of two positively charged lysines (Ks) downstream of G{sup 1111} had a similar effect. These results provide the molecular insight into the type II-specific interaction of pyrethroids with the sodium channel at the molecular level.« less

  8. Hollow porous-wall glass microspheres for hydrogen storage

    DOEpatents

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  9. Hypersonic Wind Tunnel Test of a Flare-type Membrane Aeroshell for Atmospheric Entry Capsules

    NASA Astrophysics Data System (ADS)

    Yamada, Kazuhiko; Koyama, Masashi; Kimura, Yusuke; Suzuki, Kojiro; Abe, Takashi; Koichi Hayashi, A.

    A flexible aeroshell for atmospheric entry vehicles has attracted attention as an innovative space transportation system. In this study, hypersonic wind tunnel tests were carried out to investigate the behavior, aerodynamic characteristics and aerodynamic heating environment in hypersonic flow for a previously developed capsule-type vehicle with a flare-type membrane aeroshell made of ZYLON textile sustained by a rigid torus frame. Two different models with different flare angles (45º and 60º) were tested to experimentally clarify the effect of flare angle. Results indicate that flare angle of aeroshell has significant and complicate effect on flow field and aerodynamic heating in hypersonic flow at Mach 9.45 and the flare angle is very important parameter for vehicle design with the flare-type membrane aeroshell.

  10. Super-luminous Type II supernovae powered by magnetars

    NASA Astrophysics Data System (ADS)

    Dessart, Luc; Audit, Edouard

    2018-05-01

    Magnetar power is believed to be at the origin of numerous super-luminous supernovae (SNe) of Type Ic, arising from compact, hydrogen-deficient, Wolf-Rayet type stars. Here, we investigate the properties that magnetar power would have on standard-energy SNe associated with 15-20 M⊙ supergiant stars, either red (RSG; extended) or blue (BSG; more compact). We have used a combination of Eulerian gray radiation-hydrodynamics and non-LTE steady-state radiative transfer to study their dynamical, photometric, and spectroscopic properties. Adopting magnetar fields of 1, 3.5, 7 × 1014 G and rotational energies of 0.4, 1, and 3 × 1051 erg, we produce bolometric light curves with a broad maximum covering 50-150 d and a magnitude of 1043-1044 erg s-1. The spectra at maximum light are analogous to those of standard SNe II-P but bluer. Although the magnetar energy is channelled in equal proportion between SN kinetic energy and SN luminosity, the latter may be boosted by a factor of 10-100 compared to a standard SN II. This influence breaks the observed relation between brightness and ejecta expansion rate of standard Type II SNe. Magnetar energy injection also delays recombination and may even cause re-ionization, with a reversal in photospheric temperature and velocity. Depositing the magnetar energy in a narrow mass shell at the ejecta base leads to the formation of a dense shell at a few 1000 km s-1, which causes a light-curve bump at the end of the photospheric phase. Depositing this energy over a broad range of mass in the inner ejecta, to mimic the effect of multi-dimensional fluid instabilities, prevents the formation of a dense shell and produces an earlier-rising and smoother light curve. The magnetar influence on the SN radiation is generally not visible prior to 20-30 d, during which one may discern a BSG from a RSG progenitor. We propose a magnetar model for the super-luminous Type II SN OGLE-SN14-073.

  11. Examination of water phase transitions in Loblolly pine and cell wall components by differential scanning calorimetry

    Treesearch

    Samuel L. Zelinka; Michael J. Lambrecht; Samuel V. Glass; Alex C. Wiedenhoeft; Daniel J. Yelle

    2012-01-01

    This paper examines phase transformations of water in wood and isolated wood cell wall components using differential scanning calorimetry with the purpose of better understanding "Type II water" or "freezable bound water" that has been reported for cellulose and other hydrophilic polymers. Solid loblolly pine (Pinus taeda...

  12. Ruptured Aortic Aneurysm From Late Type II Endoleak Treated by Transarterial Embolization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunasekaran, Senthil, E-mail: sgunasekaran@lumc.edu; Funaki, Brian, E-mail: bfunaki@radiology.bsd.uchicago.edu; Lorenz, Jonathan, E-mail: jlorenz@radiology.bsd.uchicago.edu

    2013-02-15

    Endoleak is the most common complication after endovascular aneurysm repair. The most common type of endoleak, a type II endoleak, typically follows a benign course and is only treated when associated with increasing aneurysm size. In this case report, we describe a ruptured abdominal aortic aneurysm due to a late, type II endoleak occurring 10 years after endovascular aneurysm repair that was successfully treated by transarterial embolization.

  13. Synthesis of ZnTe dendrites on multi-walled carbon nanotubes/polyimide nanocomposite membrane by electrochemical atomic layer deposition and photoelectrical property research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yimin; Kou, Huanhuan; Li, Jiajia

    2012-10-15

    We report on the electrochemical atomic layer deposition (EC-ALD) of ZnTe dendrites on the carboxyl-functionalized multi-walled carbon nanotubes/polyimide (COOH-MWCNTs/PI) membrane. Electrochemical characteristics were studied by cyclic voltammetry (CV) and the deposition of ZnTe dendrites was completed using amperometric method (I-t). The prepared ZnTe dendrites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The growth mechanism of ZnTe dendrites was elucidated to give a deep understanding of crystal growth. The concentration of reagents and deposition cycle had a significant effect on the morphology and structure of deposits. UV-vis transmission study indicated a direct bandmore » gap of 2.26 eV. Photoelectrical measurement confirmed the p-type conductivity of ZnTe dendrites, which indicated that the dendritic ZnTe crystals may have potential practical application in optoelectronic devices. - Graphical abstract: Representative SEM images of ZnTe dendrites. (a) Panorama of ZnTe dendrites; (b) a single dendrite. The regular branches appeared like leaves and showed a parallel arrangement layer upon layer between each other. Highlights: Black-Right-Pointing-Pointer ZnTe dendrites were successfully synthesized on CNTs/PI membrane by electrodeposition. Black-Right-Pointing-Pointer The growth mechanism of ZnTe dendritic structures was investigated in detail. Black-Right-Pointing-Pointer The concentration and deposition cycle greatly affected the morphology of ZnTe. Black-Right-Pointing-Pointer OCP and I-t studies showed that ZnTe can be beneficial to photoelectric applications.« less

  14. Revised Model of Calcium and Magnesium Binding to the Bacterial Cell Wall

    PubMed Central

    Thomas, Kieth J.; Rice, Charles V.

    2014-01-01

    Metals bind to the bacterial cell wall yet the binding mechanisms and affinity constants are not fully understood. The cell wall of gram positive bacteria is characterized by a thick layer of peptidoglycan and anionic teichoic acids anchored in the cytoplasmic membrane (lipoteichoic acid) or covalently bound to the cell wall (wall teichoic acid). The polyphosphate groups of teichoic acid provide one-half of the metal binding sites for calcium and magnesium, contradicting previous reports that calcium binding is 100% dependent on teichoic acid. The remaining binding sites are formed with the carboxyl units of peptidoglycan. In this work we report equilibrium association constants and total metal binding capacities for the interaction of calcium and magnesium ions with the bacterial cell wall. Metal binding is much stronger and previously reported. Curvature of Scatchard plots from the binding data and the resulting two regions of binding affinity suggest the presence of negative cooperative binding, meaning that the binding affinity decreases as more ions become bound to the sample. For Ca2+, Region I has a KA = (1.0 ± 0.2) × 106 M−1 and Region II has a KA = (0.075 ± 0.058) × 106 M−1. For Mg2+, KA1 = (1.5 ± 0.1) × 106 and KA2 = (0.17 ± 0.10) × 106. A binding capacity (η) is reported for both regions. However, since binding is still occurring in Region II, the total binding capacity is denoted by η2, which are 0.70 ± 0.04 µmol/mg and 0.67 ± 0.03 µmol/mg for Ca2+ and Mg2+ respectively. These data contradict the current paradigm of there being a single metal affinity value that is constant over a range of concentrations. We also find that measurement of equilibrium binding constants is highly sample dependent, suggesting a role for diffusion of metals through heterogeneous cell wall fragments. As a result, we are able to reconcile many contradictory theories that describe binding affinity and the binding mode of divalent metal cations. PMID:25315444

  15. A Study of the Type II-Plateau Supernova SN 2014cx

    NASA Astrophysics Data System (ADS)

    Flatland, Kelsi; Leonard, Douglas Christopher; Williams, George Grant; Smith, Paul S.; Bilinski, Christopher; Dessart, Luc; Gonzalez, Luis; Hoffman, Jennifer L.; Huk, Leah; Milne, Peter; Smith, Nathan

    2015-08-01

    The type II-plateau (II-P) class of supernova is the most commonly observed type of core-collapse event, and yet the basic characteristics of this class are still being defined (e.g. Pejcha & Prieto 2015). Here we add to the growing sample of type II-P events with well-sampled data from observations of SN 2014cx. SN 2014cx was independently discovered on September 2, 2014 UT by Nakano et al. (2014; CBET 3963) and Holoien et al. (2014; ATEL 6436) in the nearby (d ~ 20.7 Mpc, Tully 1988) SBd galaxy NGC 337. It was classified as a young Type II supernova through spectra taken within a day of discovery at both optical (Nakano et al. 2014) and near-infrared (Morrell et al. 2014; ATEL 6442) wavelengths. Later (Andrews et al. 2015; ATEL 7084), it was photometrically determined to be specifically a type II-P supernova, indicating the core-collapse event of a progenitor that had a large hydrogen envelope (Pejcha & Prieto 2015). We initiated a photometric and spectropolarimetric campaign to follow SN 2014cx; over a five month period following the supernova's discovery, we obtained optical images using the 1-meter telescope at Mount Laguna Observatory as part of the MOunt LAguna SUpernova Survey (MOLASUS), and spectra as part of the SuperNova SpectroPOLarimetry project (SNSPOL). Here we present the initial analysis of the photometry and spectroscopy obtained as part of this campaign. We acknowledge support from NSF grants AST-1009571 and AST-1210311, under which part of this research was carried out.

  16. A Study of the Type II-Plateau Supernova SN 2014cx

    NASA Astrophysics Data System (ADS)

    Flatland, Kelsi; Leonard, Douglas C.; Williams, Grant; Smith, Paul S.; Bilinski, Christopher; Gonzalez, Luis; Hoffman, Jennifer L.; Huk, Leah N.; Milne, Peter; Smith, Nathan; Supernova Spectropolarimetry Project

    2016-06-01

    The type II-plateau (II-P) class of supernova is the most commonly observed type of core-collapse event, and yet the basic characteristics of this class are still being defined (e.g. Pejcha & Prieto 2015). Here we add to the growing sample of type II-P events with well-sampled data from observations of SN 2014cx. SN 2014cx was independently discovered on September 2, 2014 UT by Nakano et al. (2014; CBET 3963) and Holoien et al. (2014; ATEL 6436) in the nearby (d ~ 20.7 Mpc, Tully 1988) SBd galaxy NGC 337. It was classified as a young Type II supernova through spectra taken within a day of discovery at both optical (Nakano et al. 2014) and near-infrared (Morrell et al. 2014; ATEL 6442) wavelengths. Later (Andrews et al. 2015; ATEL 7084), it was photometrically determined to be specifically a type II-P supernova, indicating the core-collapse event of a progenitor that had a large hydrogen envelope (Pejcha & Prieto 2015). We initiated a photometric and spectropolarimetric campaign to follow SN 2014cx; over a five month period following the supernova's discovery, we obtained optical images using the 1-meter telescope at Mount Laguna Observatory as part of the MOunt LAguna SUpernova Survey (MOLASUS), and spectra as part of the SuperNova SpectroPOLarimetry project (SNSPOL). Here we present the analysis of the photometry and spectroscopy obtained as part of this campaign. We acknowledge support from NSF grants AST-1009571 and AST-1210311, under which part of this research was carried out.

  17. Hepatitis C: a possible etiology for cryoglobulinaemia type II.

    PubMed Central

    Pechère-Bertschi, A; Perrin, L; de Saussure, P; Widmann, J J; Giostra, E; Schifferli, J A

    1992-01-01

    Out of 15 successive patients with mixed essential cryoglobulinaemia type II (monoclonal IgM kappa/IgG), 13 had serological evidence for hepatitis C infection as shown by specific enzyme immunoassays and immunoblot. RNA was purified from the serum of seven patients and hepatitis C sequences were identified in five following reverse transcription and DNA amplification. The liver histology showed chronic active hepatitis with or without cirrhosis in the 12 patients with hepatitis C who had a liver biopsy. The two patients without serological evidence of hepatitis C suffered from haematological malignancies. Hepatitis C may be a major etiological agent of cryoglobulinaemia type II. PMID:1381302

  18. Type II supernovae in low luminosity host galaxies

    NASA Astrophysics Data System (ADS)

    Gutiérrez, C. P.; Anderson, J. P.; Sullivan, M.; Dessart, L.; González-Gaitan, S.; Galbany, L.; Dimitriadis, G.; Arcavi, I.; Bufano, F.; Chen, T.-W.; Dennefeld, M.; Gromadzki, M.; Haislip, J. B.; Hosseinzadeh, G.; Howell, D. A.; Inserra, C.; Kankare, E.; Leloudas, G.; Maguire, K.; McCully, C.; Morrell, N.; E, F. Olivares; Pignata, G.; Reichart, D. E.; Reynolds, T.; Smartt, S. J.; Sollerman, J.; Taddia, F.; Takáts, K.; Terreran, G.; Valenti, S.; Young, D. R.

    2018-06-01

    We present an analysis of a new sample of type II core-collapse supernovae (SNe II) occurring within low-luminosity galaxies, comparing these with a sample of events in brighter hosts. Our analysis is performed comparing SN II spectral and photometric parameters and estimating the influence of metallicity (inferred from host luminosity differences) on SN II transient properties. We measure the SN absolute magnitude at maximum, the light-curve plateau duration, the optically thick duration, and the plateau decline rate in the V -band, together with expansion velocities and pseudo-equivalent-widths (pEWs) of several absorption lines in the SN spectra. For the SN host galaxies, we estimate the absolute magnitude and the stellar mass, a proxy for the metallicity of the host galaxy. SNe II exploding in low luminosity galaxies display weaker pEWs of Fe II λ5018, confirming the theoretical prediction that metal lines in SN II spectra should correlate with metallicity. We also find that SNe II in low-luminosity hosts have generally slower declining light curves and display weaker absorption lines. We find no relationship between the plateau duration or the expansion velocities with SN environment, suggesting that the hydrogen envelope mass and the explosion energy are not correlated with the metallicity of the host galaxy. This result supports recent predictions that mass-loss for red supergiants is independent of metallicity.

  19. Adsorption of Cu(II) on Oxidized Multi-Walled Carbon Nanotubes in the Presence of Hydroxylated and Carboxylated Fullerenes

    PubMed Central

    Wang, Jing; Li, Zhan; Li, Shicheng; Qi, Wei; Liu, Peng; Liu, Fuqiang; Ye, Yuanlv; Wu, Liansheng; Wang, Lei; Wu, Wangsuo

    2013-01-01

    The adsorption of Cu(II) on oxidized multi-walled carbon nanotubes (oMWCNTs) as a function of contact time, pH, ionic strength, temperature, and hydroxylated fullerene (C60(OH)n) and carboxylated fullerene (C60(C(COOH)2)n) were studied under ambient conditions using batch techniques. The results showed that the adsorption of Cu(II) had rapidly reached equilibrium and the kinetic process was well described by a pseudo-second-order rate model. Cu(II) adsorption on oMWCNTs was dependent on pH but independent of ionic strength. Compared with the Freundlich model, the Langmuir model was more suitable for analyzing the adsorption isotherms. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Cu(II) adsorption on oMWCNTs was spontaneous and endothermic. The effect of C60(OH)n on Cu(II) adsorption of oMWCNTs was not significant at low C60(OH)n concentration, whereas a negative effect was observed at higher concentration. The adsorption of Cu(II) on oMWCNTs was enhanced with increasing pH values at pH < 5, but decreased at pH ≥ 5. The presence of C60(C(COOH)2)n inhibited the adsorption of Cu(II) onto oMWCNTs at pH 4–6. The double sorption site model was applied to simulate the adsorption isotherms of Cu(II) in the presence of C60(OH)n and fitted the experimental data well. PMID:24009683

  20. Type II restriction endonucleases—a historical perspective and more

    PubMed Central

    Pingoud, Alfred; Wilson, Geoffrey G.; Wende, Wolfgang

    2014-01-01

    This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss ‘Type II’ REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures. PMID:24878924

  1. Type II toxin: antitoxin systems. More than small selfish entities?

    PubMed

    Rocker, Andrea; Meinhart, Anton

    2016-05-01

    Toxin-antitoxin (TA) modules regulate metabolism and viability of bacteria and archaea. In type II TA systems these functions are generally thought to be performed by two small proteins. However, evidence is increasing that the toxins are much more diverse and can form multi-domain proteins. Recently, we published a novel type II TA system in which toxin and antitoxin are covalently linked into a single polypeptide chain. In this review we summarize the current knowledge on these elongated toxin homologs and provide perspectives for future study.

  2. A Copernicus survey of Mg II emission in late-type stars

    NASA Technical Reports Server (NTRS)

    Weiler, E. J.; Oegerle, W. R.

    1979-01-01

    The behavior of Mg II emission in late-type stars is examined using scan data obtained with the Copernicus satellite. The luminosity in the Mg II k emission line was found to be closely related to stellar absolute magnitude, leading to the suggestion that such correlation may be very useful for future UV observations. The stellar surface flux in the k line was observed to be roughly constant or to decrease slowly with later spectral type, a finding which is then used to show that the pressure at the top of the chromosphere decreases with later spectral type, in agreement with the conclusions by McClintock et al. (1975). An asymmetry in the Mg II k line was noticed to be present in the available data for the stars later than K2-K5.

  3. Cell envelope stress response in cell wall-deficient L-forms of Bacillus subtilis.

    PubMed

    Wolf, Diana; Domínguez-Cuevas, Patricia; Daniel, Richard A; Mascher, Thorsten

    2012-11-01

    L-forms are cell wall-deficient bacteria that can grow and proliferate in osmotically stabilizing media. Recently, a strain of the Gram-positive model bacterium Bacillus subtilis was constructed that allowed controlled switching between rod-shaped wild-type cells and corresponding L-forms. Both states can be stably maintained under suitable culture conditions. Because of the absence of a cell wall, L-forms are known to be insensitive to β-lactam antibiotics, but reports on the susceptibility of L-forms to other antibiotics that interfere with membrane-anchored steps of cell wall biosynthesis are sparse, conflicting, and strongly influenced by strain background and method of L-form generation. Here we investigated the response of B. subtilis to the presence of cell envelope antibiotics, with regard to both antibiotic resistance and the induction of the known LiaRS- and BceRS-dependent cell envelope stress biosensors. Our results show that B. subtilis L-forms are resistant to antibiotics that interfere with the bactoprenol cycle, such as bacitracin, vancomycin, and mersacidin, but are hypersensitive to nisin and daptomycin, which both affect membrane integrity. Moreover, we established a lacZ-based reporter gene assay for L-forms and provide evidence that LiaRS senses its inducers indirectly (damage sensing), while the Bce module detects its inducers directly (drug sensing).

  4. Cell Envelope Stress Response in Cell Wall-Deficient L-Forms of Bacillus subtilis

    PubMed Central

    Wolf, Diana; Domínguez-Cuevas, Patricia; Daniel, Richard A.

    2012-01-01

    L-forms are cell wall-deficient bacteria that can grow and proliferate in osmotically stabilizing media. Recently, a strain of the Gram-positive model bacterium Bacillus subtilis was constructed that allowed controlled switching between rod-shaped wild-type cells and corresponding L-forms. Both states can be stably maintained under suitable culture conditions. Because of the absence of a cell wall, L-forms are known to be insensitive to β-lactam antibiotics, but reports on the susceptibility of L-forms to other antibiotics that interfere with membrane-anchored steps of cell wall biosynthesis are sparse, conflicting, and strongly influenced by strain background and method of L-form generation. Here we investigated the response of B. subtilis to the presence of cell envelope antibiotics, with regard to both antibiotic resistance and the induction of the known LiaRS- and BceRS-dependent cell envelope stress biosensors. Our results show that B. subtilis L-forms are resistant to antibiotics that interfere with the bactoprenol cycle, such as bacitracin, vancomycin, and mersacidin, but are hypersensitive to nisin and daptomycin, which both affect membrane integrity. Moreover, we established a lacZ-based reporter gene assay for L-forms and provide evidence that LiaRS senses its inducers indirectly (damage sensing), while the Bce module detects its inducers directly (drug sensing). PMID:22964256

  5. Single-particle studies of band alignment effects on electron transfer dynamics from semiconductor hetero-nanostructures to single-walled carbon nanotubes.

    PubMed

    Yuan, Chi-Tsu; Wang, Yong-Gang; Huang, Kuo-Yen; Chen, Ting-Yu; Yu, Pyng; Tang, Jau; Sitt, Amit; Banin, Uri; Millo, Oded

    2012-01-24

    We utilize single-molecule spectroscopy combined with time-correlated single-photon counting to probe the electron transfer (ET) rates from various types of semiconductor hetero-nanocrystals, having either type-I or type-II band alignment, to single-walled carbon nanotubes. A significantly larger ET rate was observed for type-II ZnSe/CdS dot-in-rod nanostructures as compared to type-I spherical CdSe/ZnS core/shell quantum dots and to CdSe/CdS dot-in-rod structures. Furthermore, such rapid ET dynamics can compete with both Auger and radiative recombination processes, with significance for effective photovoltaic operation. © 2011 American Chemical Society

  6. Chitinase-like (CTL) and cellulose synthase (CESA) gene expression in gelatinous-type cellulosic walls of flax (Linum usitatissimum L.) bast fibers.

    PubMed

    Mokshina, Natalia; Gorshkova, Tatyana; Deyholos, Michael K

    2014-01-01

    Plant chitinases (EC 3.2.1.14) and chitinase-like (CTL) proteins have diverse functions including cell wall biosynthesis and disease resistance. We analyzed the expression of 34 chitinase and chitinase-like genes of flax (collectively referred to as LusCTLs), belonging to glycoside hydrolase family 19 (GH19). Analysis of the transcript expression patterns of LusCTLs in the stem and other tissues identified three transcripts (LusCTL19, LusCTL20, LusCTL21) that were highly enriched in developing bast fibers, which form cellulose-rich gelatinous-type cell walls. The same three genes had low relative expression in tissues with primary cell walls and in xylem, which forms a xylan type of secondary cell wall. Phylogenetic analysis of the LusCTLs identified a flax-specific sub-group that was not represented in any of other genomes queried. To provide further context for the gene expression analysis, we also conducted phylogenetic and expression analysis of the cellulose synthase (CESA) family genes of flax, and found that expression of secondary wall-type LusCESAs (LusCESA4, LusCESA7 and LusCESA8) was correlated with the expression of two LusCTLs (LusCTL1, LusCTL2) that were the most highly enriched in xylem. The expression of LusCTL19, LusCTL20, and LusCTL21 was not correlated with that of any CESA subgroup. These results defined a distinct type of CTLs that may have novel functions specific to the development of the gelatinous (G-type) cellulosic walls.

  7. Type I and type II residual stress in iron meteorites determined by neutron diffraction measurements

    NASA Astrophysics Data System (ADS)

    Caporali, Stefano; Pratesi, Giovanni; Kabra, Saurabh; Grazzi, Francesco

    2018-04-01

    In this work we present a preliminary investigation by means of neutron diffraction experiment to determine the residual stress state in three different iron meteorites (Chinga, Sikhote Alin and Nantan). Because of the very peculiar microstructural characteristic of this class of samples, all the systematic effects related to the measuring procedure - such as crystallite size and composition - were taken into account and a clear differentiation in the statistical distribution of residual stress in coarse and fine grained meteorites were highlighted. Moreover, the residual stress state was statistically analysed in three orthogonal directions finding evidence of the existence of both type I and type II residual stress components. Finally, the application of von Mises approach allowed to determine the distribution of type II stress.

  8. Treatment of type II and type III open tibia fractures in children.

    PubMed

    Bartlett, C S; Weiner, L S; Yang, E C

    1997-07-01

    To determine whether severe open tibial fractures in children behave like similar fractures in adults. A combined retrospective and prospective review evaluated treatment protocol for type II and type III open tibial fractures in children over a ten-year period from 1984 to 1993. Twenty-three fractures were studied in children aged 3.5 to 14.5 (18 boys and 5 girls). There were six type II, eight type IIIA, and nine type IIIB fractures. Type I fractures were not included. Seven fractures were comminuted with significant butterfly fragments or segmental patterns. Treatment consisted of adequate debridement of soft tissues, closure of dead space, and stabilization with external fixation. Bone debridement only included contaminated devitalized bone or devitalized bone without soft tissue coverage. Bone that could be covered despite periosteal stripping was preserved. Clinical and roentgenographic examinations were used to determine time to union. All fractures in this series healed between eight and twenty-six weeks. Wound coverage included two flaps, three skin grafts, and two delayed primary closures. No bone grafts were required. There were no deep infections, growth arrests, or malunions. Follow-up has ranged from six months to four years. Open tibia fractures in children differ from similar fractures in adults in the following ways: soft tissues have excellent healing capacity, devitalized bone that is not contaminated or exposed can be saved and will become incorporated, and external fixation can be maintained until the fracture has healed. Periosteum in young children can form bone even in the face of bone loss.

  9. Evaluating adhesion reduction efficacy of type I/III collagen membrane and collagen-GAG resorbable matrix in primary flexor tendon repair in a chicken model.

    PubMed

    Turner, John B; Corazzini, Rubina L; Butler, Timothy J; Garlick, David S; Rinker, Brian D

    2015-09-01

    Reduction of peritendinous adhesions after injury and repair has been the subject of extensive prior investigation. The application of a circumferential barrier at the repair site may limit the quantity of peritendinous adhesions while preserving the tendon's innate ability to heal. The authors compare the effectiveness of a type I/III collagen membrane and a collagen-glycosaminoglycan (GAG) resorbable matrix in reducing tendon adhesions in an experimental chicken model of a "zone II" tendon laceration and repair. In Leghorn chickens, flexor tendons were sharply divided using a scalpel and underwent repair in a standard fashion (54 total repairs). The sites were treated with a type I/III collagen membrane, collagen-GAG resorbable matrix, or saline in a randomized fashion. After 3 weeks, qualitative and semiquantitative histological analysis was performed to evaluate the "extent of peritendinous adhesions" and "nature of tendon healing." The data was evaluated with chi-square analysis and unpaired Student's t test. For both collagen materials, there was a statistically significant improvement in the degree of both extent of peritendinous adhesions and nature of tendon healing relative to the control group. There was no significant difference seen between the two materials. There was one tendon rupture observed in each treatment group. Surgical handling characteristics were subjectively favored for type I/III collagen membrane over the collagen-GAG resorbable matrix. The ideal method of reducing clinically significant tendon adhesions after injury remains elusive. Both materials in this study demonstrate promise in reducing tendon adhesions after flexor tendon repair without impeding tendon healing in this model.

  10. Liver/kidney microsomal antibody type 1 targets CYP2D6 on hepatocyte plasma membrane

    PubMed Central

    Muratori, L; Parola, M; Ripalti, A; Robino, G; Muratori, P; Bellomo, G; Carini, R; Lenzi, M; Landini, M; Albano, E; Bianchi, F

    2000-01-01

    BACKGROUND—Liver/kidney microsomal antibody type 1 (LKM1) is the marker of type 2 autoimmune hepatitis (AIH) and is detected in up to 6% of patients with hepatitis C virus (HCV) infection. It recognises linear and conformational epitopes of cytochrome P450IID6 (CYP2D6) and may have liver damaging activity, provided that CYP2D6 is accessible to effector mechanisms of autoimmune attack.
METHODS—The presence of LKM1 in the plasma membrane was investigated by indirect immunofluorescence and confocal laser microscopy of isolated rat hepatocytes probed with 10 LKM1 positive sera (five from patients with AIH and five from patients with chronic HCV infection) and a rabbit polyclonal anti-CYP2D6 serum.
RESULTS—Serum from both types of patient stained the plasma membrane of non-permeabilised cells, where the fluorescent signal could be visualised as discrete clumps. Conversely, permeabilised hepatocytes showed diffuse submembranous/cytoplasmic staining. Adsorption with recombinant CYP2D6 substantially reduced plasma membrane staining and LKM1 immunoblot reactivity. Plasma membrane staining of LKM1 colocalised with that of anti-CYP2D6. Immunoprecipitation experiments showed that a single 50 kDa protein recognised by anti-CYP2D6 can be isolated from the plasma membrane of intact hepatocytes.
CONCLUSIONS—AIH and HCV related LKM1 recognise CYP2D6 exposed on the plasma membrane of isolated hepatocytes. This observation supports the notion that anti-CYP2D6 autoreactivity may be involved in the pathogenesis of liver damage.


Keywords: liver/kidney microsomal antibody type 1; autoimmunity; autoimmune hepatitis; hepatitis C virus infection; confocal microscopy PMID:10716687

  11. Inspiratory flow rate, not type of incentive spirometry device, influences chest wall motion in healthy individuals.

    PubMed

    Chang, Angela T; Palmer, Kerry R; McNaught, Jessie; Thomas, Peter J

    2010-08-01

    This study investigated the effect of flow rates and spirometer type on chest wall motion in healthy individuals. Twenty-one healthy volunteers completed breathing trials to either two times tidal volume (2xV(T)) or inspiratory capacity (IC) at high, low, or natural flow rates, using a volume- or flow-oriented spirometer. The proportions of rib cage movement to tidal volume (%RC/V(T)), chest wall diameters, and perceived level of exertion (RPE) were compared. Low and natural flow rates resulted in significantly lower %RC/V(T) compared to high flow rate trials (p=0.001) at 2xV(T). Low flow trials also resulted in significantly less chest wall motion in the upper anteroposterior direction than high and natural flow rates (p<0.001). At IC, significantly greater movement occurred in the abdominal lateral direction during low flow compared to high and natural flow trials (both p<0.003). RPE was lower for the low flow trials compared to high flow trials at IC and 2xV(T) (p<0.01). In healthy individuals, inspiratory flow (not device type) during incentive spirometry determines the resultant breathing pattern. High flow rates result in greater chest wall motion than low flow rates.

  12. Signature of type-II Weyl semimetal phase in MoTe 2

    DOE PAGES

    Jiang, J.; Liu, Z. K.; Sun, Y.; ...

    2017-01-13

    Topological Weyl semimetal (TWS), a new state of quantum matter, has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. TWSs can be classified into type-I that respect Lorentz symmetry and type-II that do not. Here, we directly visualize the electronic structure of MoTe 2, a recently proposed type-II TWS. Using angle-resolved photoemission spectroscopy (ARPES), we unravel the unique surface Fermi arcs, in good agreement with our ab initio calculations that have nontrivial topological nature. Our work not only leadsmore » to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity (MoTe 2 was discovered to be superconducting recently) and their topological order.« less

  13. Signature of type-II Weyl semimetal phase in MoTe2

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Liu, Z. K.; Sun, Y.; Yang, H. F.; Rajamathi, C. R.; Qi, Y. P.; Yang, L. X.; Chen, C.; Peng, H.; Hwang, C.-C.; Sun, S. Z.; Mo, S.-K.; Vobornik, I.; Fujii, J.; Parkin, S. S. P.; Felser, C.; Yan, B. H.; Chen, Y. L.

    2017-01-01

    Topological Weyl semimetal (TWS), a new state of quantum matter, has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. TWSs can be classified into type-I that respect Lorentz symmetry and type-II that do not. Here, we directly visualize the electronic structure of MoTe2, a recently proposed type-II TWS. Using angle-resolved photoemission spectroscopy (ARPES), we unravel the unique surface Fermi arcs, in good agreement with our ab initio calculations that have nontrivial topological nature. Our work not only leads to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity (MoTe2 was discovered to be superconducting recently) and their topological order.

  14. Visualizing Type-II Weyl Points in Tungsten Ditelluride by Quasiparticle Interference.

    PubMed

    Lin, Chun-Liang; Arafune, Ryuichi; Liu, Ro-Ya; Yoshimura, Masato; Feng, Baojie; Kawahara, Kazuaki; Ni, Zeyuan; Minamitani, Emi; Watanabe, Satoshi; Shi, Youguo; Kawai, Maki; Chiang, Tai-Chang; Matsuda, Iwao; Takagi, Noriaki

    2017-11-28

    Weyl semimetals (WSMs) are classified into two types, type I and II, according to the topology of the Weyl point, where the electron and hole pockets touch each other. Tungsten ditelluride (WTe 2 ) has garnered a great deal of attention as a strong candidate to be a type-II WSM. However, the Weyl points for WTe 2 are located above the Fermi level, which has prevented us from identifying the locations and the connection to the Fermi arc surface states by using angle-resolved photoemission spectroscopy. Here, we present experimental proof that WTe 2 is a type-II WSM. We measured energy-dependent quasiparticle interference patterns with a cryogenic scanning tunneling microscope, revealing the position of the Weyl point and its connection with the Fermi arc surface states, in agreement with prior theoretical predictions. Our results provide an answer to this crucial question and stimulate further exploration of the characteristics of WSMs.

  15. Cosmic bubble and domain wall instabilities II: fracturing of colliding walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braden, Jonathan; Bond, J. Richard; Mersini-Houghton, Laura, E-mail: j.braden@ucl.ac.uk, E-mail: bond@cita.utoronto.ca, E-mail: mersini@physics.unc.edu

    2015-08-01

    We study collisions between nearly planar domain walls including the effects of small initial nonplanar fluctuations. These perturbations represent the small fluctuations that must exist in a quantum treatment of the problem. In a previous paper, we demonstrated that at the linear level a subset of these fluctuations experience parametric amplification as a result of their coupling to the planar symmetric background. Here we study the full three-dimensional nonlinear dynamics using lattice simulations, including both the early time regime when the fluctuations are well described by linear perturbation theory as well as the subsequent stage of fully nonlinear evolution. Wemore » find that the nonplanar fluctuations have a dramatic effect on the overall evolution of the system. Specifically, once these fluctuations begin to interact nonlinearly the split into a planar symmetric part of the field and the nonplanar fluctuations loses its utility. At this point the colliding domain walls dissolve, with the endpoint of this being the creation of a population of oscillons in the collision region. The original (nearly) planar symmetry has been completely destroyed at this point and an accurate study of the system requires the full three-dimensional simulation.« less

  16. Cosmic bubble and domain wall instabilities II: fracturing of colliding walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braden, Jonathan; Department of Physics, University of Toronto,60 St. George Street, Toronto, ON, M5S 3H8; Department of Physics and Astronomy, University College London,Gower Street, London, WC1E 6BT

    2015-08-26

    We study collisions between nearly planar domain walls including the effects of small initial nonplanar fluctuations. These perturbations represent the small fluctuations that must exist in a quantum treatment of the problem. In a previous paper, we demonstrated that at the linear level a subset of these fluctuations experience parametric amplification as a result of their coupling to the planar symmetric background. Here we study the full three-dimensional nonlinear dynamics using lattice simulations, including both the early time regime when the fluctuations are well described by linear perturbation theory as well as the subsequent stage of fully nonlinear evolution. Wemore » find that the nonplanar fluctuations have a dramatic effect on the overall evolution of the system. Specifically, once these fluctuations begin to interact nonlinearly the split into a planar symmetric part of the field and the nonplanar fluctuations loses its utility. At this point the colliding domain walls dissolve, with the endpoint of this being the creation of a population of oscillons in the collision region. The original (nearly) planar symmetry has been completely destroyed at this point and an accurate study of the system requires the full three-dimensional simulation.« less

  17. Physiological improvement with moderate exercise in type II diabetic neuropathy.

    PubMed

    Fisher, M A; Langbein, W E; Collins, E G; Williams, K; Corzine, L

    2007-01-01

    The objective of this study was to demonstrate improvement in nerve function with moderate exercise in patients with type II diabetic neuropathies. Fives subjects with type II diabetes mellitus and distal, predominantly sensory polyneuropathies were studied. The subjects completed an 8-week program of a supervised moderate exercise program (40-75% of maximal 02 uptake reserve) with a subsequent 16-week program of monitored similar exercise. The same experienced electrophysiologist performed the electrodiagnostic studies both before and after the 24-week exercise period. These studies monitored physiological changes (conduction velocities, response amplitudes) in motor and sensory fibers as well as F-wave latencies. The exercise program produced a documented increase in aerobic exercise capacity. Despite the small number of subjects studied and the relatively short exercise period, there was a statistically significant improvement in nearly all electrophysiological parameters evaluated post exercise including motor conduction velocities and amplitudes, sensory conduction velocities, and F-wave latencies. This improvement included a statistically significant improvement in absolute median motor evoked response amplitudes as well as the recording of sensory nerve action potentials not present prior to exercise. There were no adverse effects from the exercise. This study supports the hypothesis that exercise can be performed safely in patients with type II diabetic neuropathies and can produce improvement in their nerve function. This study also supports the hypothesis that ischemia may have a meaningful role in the pathogenesis of neuropathies in patients with type II diabetes mellitus.

  18. Heterotrimeric G proteins directly regulate MMP14/membrane type-1 matrix metalloprotease: a novel mechanism for GPCR-EGFR transactivation.

    PubMed

    Overland, Aaron C; Insel, Paul A

    2015-04-17

    Agonist stimulation of G protein-coupled receptors (GPCRs) can transactivate epidermal growth factor receptors (EGFRs), but the precise mechanisms for this transactivation have not been defined. Key to this process is the protease-mediated "shedding" of membrane-tethered ligands, which then activate EGFRs. The specific proteases and the events involved in GPCR-EGFR transactivation are not fully understood. We have tested the hypothesis that transactivation can occur by a membrane-delimited process: direct increase in the activity of membrane type-1 matrix metalloprotease (MMP14, MT1-MMP) by heterotrimeric G proteins, and in turn, the generation of heparin-binding epidermal growth factor (HB-EGF) and activation of EGFR. Using membranes prepared from adult rat cardiac myocytes and fibroblasts, we found that MMP14 activity is increased by angiotensin II, phenylephrine, GTP, and guanosine 5'-O-[γ-thio]triphosphate (GTPγS). MMP14 activation by GTPγS occurs in a concentration- and time-dependent manner, does not occur in response to GMP or adenosine 5'-[γ-thio]triphosphate (ATPγS), and is not blunted by inhibitors of Src, PKC, phospholipase C (PLC), PI3K, or soluble MMPs. This activation is specific to MMP14 as it is inhibited by a specific MMP14 peptide inhibitor and siRNA knockdown. MMP14 activation by GTPγS is pertussis toxin-sensitive. A role for heterotrimeric G protein βγ subunits was shown by using the Gβγ inhibitor gallein and the direct activation of recombinant MMP14 by purified βγ subunits. GTPγS-stimulated activation of MMP14 also results in membrane release of HB-EGF and the activation of EGFR. These results define a previously unrecognized, membrane-delimited mechanism for EGFR transactivation via direct G protein activation of MMP14 and identify MMP14 as a heterotrimeric G protein-regulated effector. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Mixed-Matrix Membranes Containing Carbon Nanotubes Composite with Hydrogel for Efficient CO2 Separation.

    PubMed

    Zhang, Haiyang; Guo, Ruili; Hou, Jinpeng; Wei, Zhong; Li, Xueqin

    2016-10-26

    In this study, a carbon nanotubes composite coated with N-isopropylacrylamide hydrogel (NIPAM-CNTs) was synthesized. Mixed-matrix membranes (MMMs) were fabricated by incorporating NIPAM-CNTs composite filler into poly(ether-block-amide) (Pebax MH 1657) matrix for efficient CO 2 separation. The as-prepared NIPAM-CNTs composite filler mainly plays two roles: (i) The extraordinary smooth one-dimensional nanochannels of CNTs act as the highways to accelerate CO 2 transport through membranes, increasing CO 2 permeability; (ii) The NIPAM hydrogel layer coated on the outer walls of CNTs acts as the super water absorbent to increase water content of membranes, appealing both CO 2 permeability and CO 2 /gas selectivity. MMM containing 5 wt % NIPAM-CNTs exhibited the highest CO 2 permeability of 567 barrer, CO 2 /CH 4 selectivity of 35, and CO 2 /N 2 selectivity of 70, transcending 2008 Robeson upper bound line. The improved CO 2 separation performance of MMMs is mainly attributed to the construction of the efficient CO 2 transport pathways by NIPAM-CNTs. Thus, MMMs incorporated with NIPAM-CNTs composite filler can be used as an excellent membrane material for efficient CO 2 separation.

  20. Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes.

    PubMed

    Kheriji, Jamel; Tabassi, Dorra; Hamrouni, Béchir

    2015-01-01

    Industrial effluents loaded with cadmium have contributed to the pollution of the environment and health troubles for humans. Therefore, these effluents need treatment to reduce cadmium concentration before releasing them to public sewage. The purpose of the research is to study the major role of reverse osmosis (RO) and nanofiltration (NF) processes, which can contribute to the removal of cadmium ions from model water and wastewater from the battery industry. For this reason, two RO and two nanofiltration membranes have been used. The effects of feed pressure, concentration, ionic strength, nature of anion associated with cadmium and pH on the retention of Cd(II) were studied with model solutions. Thereafter, NF and RO membranes were used to reduce cadmium ions and total salinity of battery industry effluent. Among these membranes, there are only three which eliminate more than 95% of cadmium. This was found to depend on operating conditions. It is worth noting that the Spiegler-Kedem model was applied to fit the experimental results.

  1. Characteristics of interplanetary type II radio emission and the relationship to shock and plasma properties

    NASA Technical Reports Server (NTRS)

    Lengyel-Frey, D.; Stone, R. G.

    1989-01-01

    A large sample of type II events is the basis of the present study of the properties of interplanetary type II bursts' radio-emission properties. Type II spectra seem to be composed of fundamental and harmonic components of plasma emission, where the intensity of the fundamental component increases relative to the harmonic as the burst evolves with heliocentric distance; burst average flux density increases as a power of the associated shock's average velocity. Solar wind density structures may have a significant influence on type II bandwidths.

  2. Periodontal regenerative effect of a bovine hydroxyapatite/collagen block in one-wall intrabony defects in dogs: a histometric analysis

    PubMed Central

    Jung, Ui-Won; Lee, Jung-Seok; Park, Weon-Yeong; Cha, Jae-Kook; Hwang, Ji-Wan; Park, Jung-Chul; Kim, Chang-Sung; Cho, Kyoo-Sung; Chai, Jung-Kiu

    2011-01-01

    Purpose The aim of this study was to elucidate the effect of a bovine hydroxyapatite/collagen (BHC) block in one-wall intrabony periodontal defects in dogs. Methods A one-wall intrabony periodontal defect (4 mm wide and 5 mm deep) was prepared bilaterally at the mesial side of the mandibular fourth premolar in five beagle dogs. After thorough root planing, block-type BHC (4×5×5 mm) was placed on one side. The contralateral defect area did not receive any material as a sham-surgery control. Histological analysis of the sites was performed after an 8-week healing period. Results Two of five samples in the experimental group healed well without dissipation of the graft materials, and histological analysis revealed excellent regeneration of the periodontal tissues. However, most of the grafted materials had been displaced in the other three samples, leaving only a small portion of the graft. The measured parameters exhibited large standard deviations, and the mean values did not differ significantly between the experimental and sham-surgery control sides. Conclusions The application of BHC alone-without a barrier membrane-to wide, one-wall intrabony periodontal defects yielded inconsistent results regarding both periodontal regeneration and substantivity of the graft materials. Thus, the use of a barrier membrane for noncontained-type defects is recommended to improve the stability of the grafted material, and to condense it. PMID:22324006

  3. Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Almlie, Jay C.

    2010-01-01

    A water membrane evaporator (WME) has been conceived and tested as an alternative to the contamination-sensitive and corrosion-prone evaporators currently used for dissipating heat from space vehicles. The WME consists mainly of the following components: An outer stainless-steel screen that provides structural support for the components mentioned next; Inside and in contact with the stainless-steel screen, a hydrophobic membrane that is permeable to water vapor; Inside and in contact with the hydrophobic membrane, a hydrophilic membrane that transports the liquid feedwater to the inner surface of the hydrophobic membrane; Inside and in contact with the hydrophilic membrane, an annular array of tubes through which flows the spacecraft coolant carrying the heat to be dissipated; and An inner exclusion tube that limits the volume of feedwater in the WME. In operation, a pressurized feedwater reservoir is connected to the volume between the exclusion tube and the coolant tubes. Feedwater fills the volume, saturates the hydrophilic membrane, and is retained by the hydrophobic membrane. The outside of the WME is exposed to space vacuum. Heat from the spacecraft coolant is conducted through the tube walls and the water-saturated hydrophilic membrane to the liquid/vapor interface at the hydrophobic membrane, causing water to evaporate to space. Makeup water flows into the hydrophilic membrane through gaps between the coolant tubes.

  4. Alveolar type II cell transplantation restores pulmonary surfactant protein levels in lung fibrosis.

    PubMed

    Guillamat-Prats, Raquel; Gay-Jordi, Gemma; Xaubet, Antoni; Peinado, Victor I; Serrano-Mollar, Anna

    2014-07-01

    Alveolar Type II cell transplantation has been proposed as a cell therapy for the treatment of idiopathic pulmonary fibrosis. Its long-term benefits include repair of lung fibrosis, but its success partly depends on the restoration of lung homeostasis. Our aim was to evaluate surfactant protein restoration after alveolar Type II cell transplantation in an experimental model of bleomycin-induced lung fibrosis in rats. Lung fibrosis was induced by intratracheal instillation of bleomycin. Alveolar Type II cells were obtained from healthy animals and transplanted 14 days after bleomycin was administered. Furthermore, one group transplanted with alveolar macrophages and another group treated with surfactant were established to evaluate the specificity of the alveolar Type II cell transplantation. The animals were euthanized at 21 days after bleomycin instillation. Lung fibrosis was confirmed by a histologic study and an evaluation of the hydroxyproline content. Changes in surfactant proteins were evaluated by mRNA expression, Western blot and immunofluorescence studies. The group with alveolar Type II cell transplantation was the only one to show a reduction in the degree of lung fibrosis and a complete recovery to normal levels of surfactant proteins. One of the mechanisms involved in the beneficial effect of alveolar Type II cell transplantation is restoration of lung surfactant protein levels, which is required for proper respiratory function. Copyright © 2014 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  5. Lactobacillus plantarum 299v surface-bound GAPDH: a new insight into enzyme cell walls location.

    PubMed

    Saad, N; Urdaci, M; Vignoles, C; Chaignepain, S; Tallon, R; Schmitter, J M; Bressollier, P

    2009-12-01

    The aim of this study was to provide new insight into the mechanism whereby the housekeeping enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) locates to cell walls of Lactobacillus plantarum 299v. After purification, cytosolic and cell wall GAPDH (cw-GAPDH) forms were characterized and shown to be identical homotetrameric active enzymes. GAPDH concentration on cell walls was growth-time dependent. Free GAPDH was not observed on the culture supernatant at any time during growth, and provoked cell lysis was not concomitant with any reassociation of GAPDH onto the cell surface. Hence, with the possibility of cw-GAPDH resulting from autolysis being unlikely, entrapment of intracellular GAPDH on the cell wall after a passive efflux through altered plasma membrane was investigated. Flow cytometry was used to assess L. plantarum 299v membrane permeabilization after labeling with propidium iodide (PI). By combining PI uptake and cw-GAPDH activity measurements, we demonstrate here that the increase in cw-GAPDH concentration from the early exponential phase to the late stationary phase is closely related to an increase in plasma membrane permeability during growth. Moreover, we observed that increases in both plasma membrane permeability and cw-GAPDH activity were delayed when glucose was added during L. plantarum 299v growth. Using a double labeling of L. plantarum 299v cells with anti-GAPDH antibodies and propidium iodide, we established unambiguously that cells with impaired membrane manifest five times more cw-GAPDH than unaltered cells. Our results show that plasma membrane permeability appears to be closely related to the efflux of GAPDH on the bacterial cell surface, offering new insight into the understanding of the cell wall location of this enzyme.

  6. Nonmuscle myosin II powered transport of newly formed collagen fibrils at the plasma membrane

    PubMed Central

    Kalson, Nicholas S.; Starborg, Tobias; Lu, Yinhui; Mironov, Aleksandr; Humphries, Sally M.; Holmes, David F.; Kadler, Karl E.

    2013-01-01

    Collagen fibrils can exceed thousands of microns in length and are therefore the longest, largest, and most size-pleomorphic protein polymers in vertebrates; thus, knowing how cells transport collagen fibrils is essential for a more complete understanding of protein transport and its role in tissue morphogenesis. Here, we identified newly formed collagen fibrils being transported at the surface of embryonic tendon cells in vivo by using serial block face-scanning electron microscopy of the cell-matrix interface. Newly formed fibrils ranged in length from ∼1 to ∼30 µm. The shortest (1–10 µm) occurred in intracellular fibricarriers; the longest (∼30 µm) occurred in plasma membrane fibripositors. Fibrils and fibripositors were reduced in numbers when collagen secretion was blocked. ImmunoEM showed the absence of lysosomal-associated membrane protein 2 on fibricarriers and fibripositors and there was no effect of leupeptin on fibricarrier or fibripositor number and size, suggesting that fibricarriers and fibripositors are not part of a fibril degradation pathway. Blebbistatin decreased fibricarrier number and increased fibripositor length; thus, nonmuscle myosin II (NMII) powers the transport of these compartments. Inhibition of dynamin-dependent endocytosis with dynasore blocked fibricarrier formation and caused accumulation of fibrils in fibripositors. Data from fluid-phase HRP electron tomography showed that fibricarriers could originate at the plasma membrane. We propose that NMII-powered transport of newly formed collagen fibrils at the plasma membrane is fundamental to the development of collagen fibril-rich tissues. A NMII-dependent cell-force model is presented as the basis for the creation and dynamics of fibripositor structures. PMID:24248360

  7. Crystallization of Mitochondrial Respiratory Complex II from Chicken Heart: a Membrane Protein Complex Diffracting to 2.0 Å.

    PubMed Central

    Huang, Li-shar; Borders, Toni M.; Shen, John T.; Wang, Chung-Jen; Berry, Edward

    2006-01-01

    Synopsis A multi-subunit mitochondrial membrane protein complex involved in the Krebs Cycle and respiratory chain has been crystallized in a form suitable for near-atomic resolution structure determination. A procedure is presented for preparation of diffraction-quality crystals of a vertebrate mitochondrial respiratory Complex II. The crystals have the potential to diffract to at least 2.0 Å with optimization of post-crystal-growth treatment and cryoprotection. This should allow determination of the structure of this important and medically relevant membrane protein complex at near-atomic resolution and provide great detail of the mode of binding of substrates and inhibitors at the two substrate-binding sites. PMID:15805592

  8. Phosphatidylinositol-4-kinase type II alpha contains an AP-3-sorting motif and a kinase domain that are both required for endosome traffic.

    PubMed

    Craige, Branch; Salazar, Gloria; Faundez, Victor

    2008-04-01

    The adaptor complex 3 (AP-3) targets membrane proteins from endosomes to lysosomes, lysosome-related organelles and synaptic vesicles. Phosphatidylinositol-4-kinase type II alpha (PI4KIIalpha) is one of several proteins possessing catalytic domains that regulate AP-3-dependent sorting. Here we present evidence that PI4KIIalpha uniquely behaves both as a membrane protein cargo as well as an enzymatic regulator of adaptor function. In fact, AP-3 and PI4KIIalpha form a complex that requires a dileucine-sorting motif present in PI4KIIalpha. Mutagenesis of either the PI4KIIalpha-sorting motif or its kinase-active site indicates that both are necessary to interact with AP-3 and properly localize PI4KIIalpha to LAMP-1-positive endosomes. Similarly, both the kinase activity and the sorting signal present in PI4KIIalpha are necessary to rescue endosomal PI4KIIalpha siRNA-induced mutant phenotypes. We propose a mechanism whereby adaptors use canonical sorting motifs to selectively recruit a regulatory enzymatic activity to restricted membrane domains.

  9. Synthesis and Characterization of Organic-Inorganic Nanocomposite Poly-o-anisidine Sn(IV) Arsenophosphate: Its Analytical Applications as Pb(II) Ion-Selective Membrane Electrode

    PubMed Central

    Khan, Asif Ali; Habiba, Umme; Khan, Anish

    2009-01-01

    Poly-o-anisidine Sn(IV) arsenophosphate is a newly synthesized nanocomposite material and has been characterized on the basis of its chemical composition, ion exchange capacity, TGA-DTA, FTIR, X-RAY, SEM, and TEM studies. On the basis of distribution studies, the exchanger was found to be highly selective for lead that is an environmental pollutant. For the detection of lead in water a heterogeneous precipitate based ion-selective membrane electrode was developed by means of this composite cation exchanger as electroactive material. The membrane electrode is mechanically stable, with a quick response time, and can be operated over a wide pH range. The selectivity coefficients were determined by mixed solution method and revealed that the electrode is sensitive for Pb(II) in presence of interfering cations. The practical utility of this membrane electrode has been established by employing it as an indicator electrode in the potentiometric titration of Pb(II). PMID:20140082

  10. Disrupting Flavone Synthase II Alters Lignin and Improves Biomass Digestibility1[OPEN

    PubMed Central

    Takeda, Yuri; Yamamura, Masaomi

    2017-01-01

    Lignin, a ubiquitous phenylpropanoid polymer in vascular plant cell walls, is derived primarily from oxidative couplings of monolignols (p-hydroxycinnamyl alcohols). It was discovered recently that a wide range of grasses, including cereals, utilize a member of the flavonoids, tricin (3′,5′-dimethoxyflavone), as a natural comonomer with monolignols for cell wall lignification. Previously, we established that cytochrome P450 93G1 is a flavone synthase II (OsFNSII) indispensable for the biosynthesis of soluble tricin-derived metabolites in rice (Oryza sativa). Here, our tricin-deficient fnsII mutant was analyzed further with an emphasis on its cell wall structure and properties. The mutant is similar in growth to wild-type control plants with normal vascular morphology. Chemical and nuclear magnetic resonance structural analyses demonstrated that the mutant lignin is completely devoid of tricin, indicating that FNSII activity is essential for the deposition of tricin-bound lignin in rice cell walls. The mutant also showed substantially reduced lignin content with decreased syringyl/guaiacyl lignin unit composition. Interestingly, the loss of tricin in the mutant lignin appears to be partially compensated by incorporating naringenin, which is a preferred substrate of OsFNSII. The fnsII mutant was further revealed to have enhanced enzymatic saccharification efficiency, suggesting that the cell wall recalcitrance of grass biomass may be reduced through the manipulation of the flavonoid monomer supply for lignification. PMID:28385728

  11. Metallicity Variations in the Type II Globular Cluster NGC 6934

    NASA Astrophysics Data System (ADS)

    Marino, A. F.; Yong, D.; Milone, A. P.; Piotto, G.; Lundquist, M.; Bedin, L. R.; Chené, A.-N.; Da Costa, G.; Asplund, M.; Jerjen, H.

    2018-06-01

    The Hubble Space Telescope photometric survey of Galactic globular clusters (GCs) has revealed a peculiar “chromosome map” for NGC 6934. In addition to a typical sequence, similar to that observed in Type I GCs, NGC 6934 displays additional stars on the red side, analogous to the anomalous Type II GCs, as defined in our previous work. We present a chemical abundance analysis of four red giants in this GC. Two stars are located on the chromosome map sequence common to all GCs, and another two lie on the additional sequence. We find (i) star-to-star Fe variations, with the two anomalous stars being enriched by ∼0.2 dex. Because of our small-size sample, this difference is at the ∼2.5σ level. (ii) There is no evidence for variations in the slow neutron-capture abundances over Fe, at odds with what is often observed in anomalous Type II GCs, e.g., M 22 and ω Centauri (iii) no large variations in light elements C, O, and Na, compatible with locations of the targets on the lower part of the chromosome map where such variations are not expected. Since the analyzed stars are homogeneous in light elements, the only way to reproduce the photometric splits on the sub-giant (SGB) and the red giant (RGB) branches is to assume that red RGB/faint SGB stars are enhanced in [Fe/H] by ∼0.2. This fact corroborates the spectroscopic evidence of a metallicity variation in NGC 6934. The observed chemical pattern resembles only partially the other Type II GCs, suggesting that NGC 6934 might belong either to a third class of GCs, or be a link between normal Type I and anomalous Type II GCs. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and Gemini Telescope at Canada–France–Hawaii Telescope.

  12. Polypyrrole/multi-walled carbon nanotube composite for the solid phase extraction of lead(II) in water samples.

    PubMed

    Sahmetlioglu, Ertugrul; Yilmaz, Erkan; Aktas, Ece; Soylak, Mustafa

    2014-02-01

    A multi-walled carbon nanotubes-polypyrrole conducting polymer nanocomposite has been synthesized, characterized and used for the separation and preconcentration of lead at trace levels in water samples prior to its flame atomic absorption spectrometric detection. The analytical parameters like pH, sample volume, eluent, sample flow rate that were affected the retentions of lead(II) on the new nanocomposite were optimized. Matrix effects were also investigated. Limit of detection and preconcentration factors were 1.1 µg L(-1) and 200, respectively. The adsorption capacity of the nanocomposite was 25.0mg lead(II) per gram composite. The validation of the method was checked by using SPS-WW2 Waste water Level 2 certified reference material. The method was applied to the determination of lead in water samples with satisfactory results. © 2013 Elsevier B.V. All rights reserved.

  13. Nephrocalcinosis as adult presentation of Bartter syndrome type II.

    PubMed

    Huang, L; Luiken, G P M; van Riemsdijk, I C; Petrij, F; Zandbergen, A A M; Dees, A

    2014-02-01

    Bartter syndrome consists a group of rare autosomal-recessive renal tubulopathies characterised by renal salt wasting, hypokalaemic metabolic alkalosis, hypercalciuria and hyperreninaemic hyperaldosteronism. It is classified into five types. Mutations in the KCNJ1 gene (classified as type II) usually cause the neonatal form of Bartter syndrome. We describe an adult patient with a homozygous KCNJ1 mutation resulting in a remarkably mild phenotype of neonatal type Bartter syndrome.

  14. Membrane-type matrix metalloproteinases mediate curcumin-induced cell migration in non-tumorigenic colon epithelial cells differing in Apc genotype.

    PubMed

    Fenton, Jenifer I; Wolff, Margaret S; Orth, Michael W; Hord, Norman G

    2002-06-01

    Colonic epithelial cell migration is required for normal differentiated cell function. This migratory phenotype is dependent upon wild-type adenomatous polyposis coli (Apc) expression. Non-tumorigenic murine colon epithelial cell lines with distinct Apc genotypes, i.e. young adult mouse colon (YAMC; Apc(+/+)) and immortomouse/Min colon epithelial (IMCE; Apc(Min/+) cells) were used to assess the association between the Apc genotype, cell motility and matrix metalloproteinase (MMP) activity. Cells were treated with epidermal growth factor (EGF; 1, 10 and 25 ng/ml), hepatocyte growth factor (HGF; 1, 10 and 25 ng/ml) and/or curcumin (0.1-100 microM). EGF (25 ng/ml) and HGF (25 ng/ml) induced a greater migratory response in YAMC compared with IMCE cells after 24 h (P < 0.05). Treatment with curcumin induced a greater or equivalent migratory response in IMCE than YAMC cells. When migrating cells were treated with Ilomastat (MMP inhibitor), migration was inhibited in both cell types. High concentrations of Ilomastat (25 and 50 microM) inhibited migration in both cell types, while low concentrations (10 microM) inhibited HGF-induced IMCE migration. Curcumin-induced migration was inhibited in both cell types at the highest concentration of Ilomastat (50 microM). Immuno-localization analysis of membrane type-1 (MT1)-MMP indicated that migration is associated with the redistribution of this protein from the endoplasmic reticulum to the plasma membrane. Addition of neutralizing polyclonal antibodies against MT1-MMP or a mixture of MT1, 2- and 3-MMPs demonstrated partial or complete inhibition of cell migration in both cell types, respectively. The data provide the first evidence that migration in non-tumorigenic murine colon epithelial cells is: (i) inducible by EGF and HGF in an Apc genotype-dependent manner, (ii) dependent on MT-MMP activity and (iii) inducible by curcumin in an Apc genotype-independent manner. The data suggest a potential mechanism by which curcumin may

  15. Anisotropic Bianchi Type-I and Type-II Bulk Viscous String Cosmological Models Coupled with Zero Mass Scalar Field

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, R.; Sreenivas, K.

    2014-06-01

    The LRS Bianchi type-I and type-II string cosmological models are studied when the source for the energy momentum tensor is a bulk viscous stiff fluid containing one dimensional strings together with zero-mass scalar field. We have obtained the solutions of the field equations assuming a functional relationship between metric coefficients when the metric is Bianchi type-I and constant deceleration parameter in case of Bianchi type-II metric. The physical and kinematical properties of the models are discussed in each case. The effects of Viscosity on the physical and kinematical properties are also studied.

  16. An investigation into the effect of type I and type II diabetes duration on employment and wages.

    PubMed

    Minor, Travis

    2013-12-01

    Using data from the National Longitudinal Survey of Youth 1979, the current study examines the effect of type I and type II diabetes on employment status and wages. The results suggest that both the probability of employment and wages are negatively related to the number of years since the initial diagnosis of diabetes. Moreover, the effect of diabetes duration on the probability of employment appears to be nonlinear, peaking around 16 years for females and 10 years for males. A similar negative effect on wages is found only in male diabetics. Finally, the results suggest that failure to distinguish between type I and type II diabetics may lead to some counterintuitive results. Published by Elsevier B.V.

  17. The plant secretory pathway seen through the lens of the cell wall.

    PubMed

    van de Meene, A M L; Doblin, M S; Bacic, Antony

    2017-01-01

    Secretion in plant cells is often studied by looking at well-characterised, evolutionarily conserved membrane proteins associated with particular endomembrane compartments. Studies using live cell microscopy and fluorescent proteins have illuminated the highly dynamic nature of trafficking, and electron microscopy studies have resolved the ultrastructure of many compartments. Biochemical and molecular analyses have further informed about the function of particular proteins and endomembrane compartments. In plants, there are over 40 cell types, each with highly specialised functions, and hence potential variations in cell biological processes and cell wall structure. As the primary function of secretion in plant cells is for the biosynthesis of cell wall polysaccharides and apoplastic transport complexes, it follows that utilising our knowledge of cell wall glycosyltransferases (GTs) and their polysaccharide products will inform us about secretion. Indeed, this knowledge has led to novel insights into the secretory pathway, including previously unseen post-TGN secretory compartments. Conversely, our knowledge of trafficking routes of secretion will inform us about polarised and localised deposition of cell walls and their constituent polysaccharides/glycoproteins. In this review, we look at what is known about cell wall biosynthesis and the secretory pathway and how the different approaches can be used in a complementary manner to study secretion and provide novel insights into these processes.

  18. Systematic Conversion of Single Walled Carbon Nanotubes into n-type Thermoelectric Materials by Molecular Dopants

    PubMed Central

    Nonoguchi, Yoshiyuki; Ohashi, Kenji; Kanazawa, Rui; Ashiba, Koji; Hata, Kenji; Nakagawa, Tetsuya; Adachi, Chihaya; Tanase, Tomoaki; Kawai, Tsuyoshi

    2013-01-01

    Thermoelectrics is a challenging issue for modern and future energy conversion and recovery technology. Carbon nanotubes are promising active thermoelectic materials owing to their narrow bandgap energy and high charge carrier mobility, and they can be integrated into flexible thermoelectrics that can recover any waste heat. We here report air-stable n-type single walled carbon nanotubes with a variety of weak electron donors in the range of HOMO level between ca. −4.4 eV and ca. −5.6 eV, in which partial uphill electron injection from the dopant to the conduction band of single walled carbon nanotubes is dominant. We display flexible films of the doped single walled carbon nanotubes possessing significantly large thermoelectric effect, which is applicable to flexible ambient thermoelectric modules. PMID:24276090

  19. Type Ia supernova rate studies from the SDSS-II Supernova Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dilday, Benjamin

    2008-08-01

    The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SNmore » Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.« less

  20. Discriminatory Role of Detergent-Resistant Membranes in the Dimerization and Endocytosis of Prostate-Specific Membrane Antigen.

    PubMed

    Schmidt, Sonja; Gericke, Birthe; Fracasso, Giulio; Ramarli, Dunia; Colombatti, Marco; Naim, Hassan Y

    2013-01-01

    Prostate-specific membrane antigen (PSMA) is a type-II membrane glycoprotein that was initially identified in LNCaP cells. It is expressed at elevated levels in prostate cancer. In view of the correlation between the expression levels of PSMA and disease grade and stage, PSMA is considered to be one of the most promising biomarkers in the diagnosis and treatment of prostate cancer. In LNCaP cells PSMA undergoes internalization via clathrin-coated pits followed by accumulation in the endosomes. PSMA associates with different types of detergent-resistant membranes (DRMs) along the secretory pathway. Its mature form is mainly insoluble in Lubrol WX, but does not associate with Triton X-100-DRMs. To understand the mechanism of PSMA internalization we investigated its association during internalization with DRMs. For this purpose, internalization was induced by antibody cross-linking. We demonstrate at the biochemical and cell biological levels that: [i] exclusively homodimers of PSMA are associated with Lubrol WX-DRMs, [ii] antibody-induced cross-linking of PSMA molecules results in a time-dependent partitioning into another DRMs type, namely Triton X-100-DRMs, and [iii] concomitant with its association with Triton-X-100-DRMs internalization of PSMA occurs along tubulin filaments. In a previous work (Colombatti et al. (2009) PLoS One 4: e4608) we demonstrated that the small GTPases RAS and RAC1 and the MAPKs p38 and ERK1/2 are activated during antibody cross-linking. As downstream effects of this activation we observed a strong induction of NF-kB associated with an increased expression of IL-6 and CCL5 genes and that IL-6 and CCL5 enhanced the proliferative potential of LNCaP cells synergistically. These observations together with findings reported here hypothesize a fundamental role of DRMs during activation of PSMA as platforms for trafficking, endocytosis and signalling. Understanding these mechanisms constitutes an essential prerequisite for utilization of PSMA as