Sample records for wall yield coefficient

  1. Physical basis for altered stem elongation rates in internode length mutants of Pisum

    NASA Technical Reports Server (NTRS)

    Behringer, F. J.; Cosgrove, D. J.; Reid, J. B.; Davies, P. J.

    1990-01-01

    Biophysical parameters related to gibberellin (GA)-dependent stem elongation were examined in dark-grown stem-length genotypes of Pisum sativum L. The rate of internode expansion in these genotypes is altered due to recessive mutations which affect either the endogenous levels of, or response to, GA. The GA deficient dwarf L181 (ls), two GA insensitive semierectoides dwarfs NGB5865 and NGB5862 (lka and lkb, respectively) and the slender' line L197 (la crys), which is tall regardless of GA content, were compared to the wild-type tall cultivar, Torsdag. Osmotic pressure, estimated by vapor pressure osmometry, and turgor pressure, measured directly with a pressure probe, did not correlate with the differences in growth rate among the genotypes. Mechanical wall properties of frozen-thawed tissue were measured using a constant force assay. GA deficiency resulted in increased wall stiffness judged both on the basis of plastic compliance and plastic extensibility normalized for equal stem circumference. Plastic compliance was not reduced in the GA insensitive dwarfs, though lka reduced circumference-normalized plasticity. In contrast, in vivo wall relaxation, determined by the pressure-block technique, differed among genotypes in a manner which did correlate with extension rates. The wall yield threshold was 1 bar or less in the tall lines, but ranged from 3 to 6 bars in the dwarf genotypes. The results with the ls mutant indicate that GA enhances stem elongation by both decreasing the wall yield threshold and increasing the wall yield coefficient. In the GA-insensitive mutants, lka and lkb, the wall yield threshold is substantially elevated. Plants possessing lka may also possess a reduced wall yield coefficient.

  2. Vapor Wall Deposition in Chambers: Theoretical Considerations

    NASA Astrophysics Data System (ADS)

    McVay, R.; Cappa, C. D.; Seinfeld, J.

    2014-12-01

    In order to constrain the effects of vapor wall deposition on measured secondary organic aerosol (SOA) yields in laboratory chambers, Zhang et al. (2014) varied the seed aerosol surface area in toluene oxidation and observed a clear increase in the SOA yield with increasing seed surface area. Using a coupled vapor-particle dynamics model, we examine the extent to which this increase is the result of vapor wall deposition versus kinetic limitations arising from imperfect accommodation of organic species into the particle phase. We show that a seed surface area dependence of the SOA yield is present only when condensation of vapors onto particles is kinetically limited. The existence of kinetic limitation can be predicted by comparing the characteristic timescales of gas-phase reaction, vapor wall deposition, and gas-particle equilibration. The gas-particle equilibration timescale depends on the gas-particle accommodation coefficient αp. Regardless of the extent of kinetic limitation, vapor wall deposition depresses the SOA yield from that in its absence since vapor molecules that might otherwise condense on particles deposit on the walls. To accurately extrapolate chamber-derived yields to atmospheric conditions, both vapor wall deposition and kinetic limitations must be taken into account.

  3. Computation of wind tunnel wall effects for complex models using a low-order panel method

    NASA Technical Reports Server (NTRS)

    Ashby, Dale L.; Harris, Scott H.

    1994-01-01

    A technique for determining wind tunnel wall effects for complex models using the low-order, three dimensional panel method PMARC (Panel Method Ames Research Center) has been developed. Initial validation of the technique was performed using lift-coefficient data in the linear lift range from tests of a large-scale STOVL fighter model in the National Full-Scale Aerodynamics Complex (NFAC) facility. The data from these tests served as an ideal database for validating the technique because the same model was tested in two wind tunnel test sections with widely different dimensions. The lift-coefficient data obtained for the same model configuration in the two test sections were different, indicating a significant influence of the presence of the tunnel walls and mounting hardware on the lift coefficient in at least one of the two test sections. The wind tunnel wall effects were computed using PMARC and then subtracted from the measured data to yield corrected lift-coefficient versus angle-of-attack curves. The corrected lift-coefficient curves from the two wind tunnel test sections matched very well. Detailed pressure distributions computed by PMARC on the wing lower surface helped identify the source of large strut interference effects in one of the wind tunnel test sections. Extension of the technique to analysis of wind tunnel wall effects on the lift coefficient in the nonlinear lift range and on drag coefficient will require the addition of boundary-layer and separated-flow models to PMARC.

  4. Mechanism of rapid suppression of cell expansion in cucumber hypocotyls after blue-light irradiation

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1988-01-01

    Rapid suppression of hypocotyl elongation by blue light in cucumber (Cucumis sativus L.) was studied to examine possible hydraulic and wall changes responsible for diminished growth. Cell-sap osmotic pressure, measured by vapor-pressure osmometry, was not decreased by blue light; turgor pressure, measured by the pressure-probe technique, remained constant during the growth inhibition; and stem hydraulic conductance, measured by dynamic and static methods, was likewise unaffected by blue light. Wall yielding properties were assessed by the pressure-block technique for in-vivo stress relaxation. Blue light reduced the initial rate of relaxation by 77%, but had little effect on the final amount of relaxation. The results demonstrate that blue irradiation acts to decrease the wall yielding coefficient, but not the yield threshold. Stress-strain (Instron) analysis showed that irradiation of the seedlings had little effect on the mechanical extensibilities of the isolated wall. The results indicate that blue light can reduce cell-wall loosening without affecting bulk viscoelastic properties, and indicate a chemorheological mechanism of cell-wall expansion.

  5. Sound diffraction at wall impedance discontinuities in a circular cylinder, investigated using Wiener-Hopf technique

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.

    1983-01-01

    Rigorous solutions are presented for sound diffraction in a circular cylinder with axial discontinuities of the wall admittance (or impedance). Analytical expressions are derived for the reflection and the transmission coefficients for duct modes. The results are discussed quantitatively in the limits of small admittance shifts (delta) and of low frequencies (ka). One of the results is the low frequency behavior of the reflection coefficient R(o) sub 00 of the fundamental mode. For the mode of a hardwall duct reflected from the junction with a softwall duct, (R(o) sub oo yields - (1-square root of (ka) square root of (2/i delta)); this result is in contrast to the frequency dependence of the reflection from the open end of a hardwall duct, for which R(o) sub oo yields - 1-(ka) squared/2 .

  6. Seismic analysis for translational failure of landfills with retaining walls.

    PubMed

    Feng, Shi-Jin; Gao, Li-Ya

    2010-11-01

    In the seismic impact zone, seismic force can be a major triggering mechanism for translational failures of landfills. The scope of this paper is to develop a three-part wedge method for seismic analysis of translational failures of landfills with retaining walls. The approximate solution of the factor of safety can be calculated. Unlike previous conventional limit equilibrium methods, the new method is capable of revealing the effects of both the solid waste shear strength and the retaining wall on the translational failures of landfills during earthquake. Parameter studies of the developed method show that the factor of safety decreases with the increase of the seismic coefficient, while it increases quickly with the increase of the minimum friction angle beneath waste mass for various horizontal seismic coefficients. Increasing the minimum friction angle beneath the waste mass appears to be more effective than any other parameters for increasing the factor of safety under the considered condition. Thus, selecting liner materials with higher friction angle will considerably reduce the potential for translational failures of landfills during earthquake. The factor of safety gradually increases with the increase of the height of retaining wall for various horizontal seismic coefficients. A higher retaining wall is beneficial to the seismic stability of the landfill. Simply ignoring the retaining wall will lead to serious underestimation of the factor of safety. Besides, the approximate solution of the yield acceleration coefficient of the landfill is also presented based on the calculated method. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Photoinhibition of stem elongation by blue and red light: effects on hydraulic and cell wall properties

    NASA Technical Reports Server (NTRS)

    Kigel, J.; Cosgrove, D. J.

    1991-01-01

    The underlying mechanism of photoinhibition of stem elongation by blue (BL) and red light (RL) was studied in etiolated seedlings of pea (Pisum sativum L. cv Alaska). Brief BL irradiations resulted in fast transient inhibition of elongation, while a delayed (lag approximately 60 minutes) but prolonged inhibition was observed after brief RL. Possible changes in the hydraulic and wall properties of the growing cells during photoinhibition were examined. Cell sap osmotic pressure was unaffected by BL and RL, but both irradiations increased turgor pressure by approximately 0.05 megapascal (pressure-probe technique). Cell wall yielding was analyzed by in vivo stress relaxation (pressure-block technique). BL and RL reduced the initial rate of relaxation by 38 and 54%, while the final amount of relaxation was decreased by 48 and 10%, respectively. These results indicate that RL inhibits elongation mainly by lowering the wall yield coefficient, while most of the inhibitory effect of BL was due to an increase of the yield threshold. Mechanical extensibility of cell walls (Instron technique) was decreased by BL and RL, mainly due to a reduction in the plastic component of extensibility. Thus, photoinhibitions of elongation by both BL and RL are achieved through changes in cell wall properties, and are not due to effects on the hydraulic properties of the cell.

  8. Mechanism of gibberellin-dependent stem elongation in peas

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.; Sovonick-Dunford, S. A.

    1989-01-01

    Stem elongation in peas (Pisum sativum L.) is under partial control by gibberellins, yet the mechanism of such control is uncertain. In this study, we examined the cellular and physical properties that govern stem elongation, to determine how gibberellins influence pea stem growth. Stem elongation of etiolated seedlings was retarded with uniconozol, a gibberellin synthesis inhibitor, and the growth retardation was reversed by exogenous gibberellin. Using the pressure probe and vapor pressure osmometry, we found little effect of uniconozol and gibberellin on cell turgor pressure or osmotic pressure. In contrast, these treatments had major effects on in vivo stress relaxation, measured by turgor relaxation and pressure-block techniques. Uniconozol-treated plants exhibited reduced wall relaxation (both initial rate and total amount). The results show that growth retardation is effected via a reduction in the wall yield coefficient and an increase in the yield threshold. These effects were largely reversed by exogenous gibberellin. When we measured the mechanical characteristics of the wall by stress/strain (Instron) analysis, we found only minor effects of uniconozol and gibberellin on the plastic compliance. This observation indicates that these agents did not alter wall expansion through effects on the mechanical (viscoelastic) properties of the wall. Our results suggest that wall expansion in peas is better viewed as a chemorheological, rather than a viscoelastic, process.

  9. The heterogeneous integration of single-walled carbon nanotubes onto complementary metal oxide semiconductor circuitry for sensing applications.

    PubMed

    Chen, Chia-Ling; Agarwal, Vinay; Sonkusale, Sameer; Dokmeci, Mehmet R

    2009-06-03

    A simple methodology for integrating single-walled carbon nanotubes (SWNTs) onto complementary metal oxide semiconductor (CMOS) circuitry is presented. The SWNTs were incorporated onto the CMOS chip as the feedback resistor of a two-stage Miller compensated operational amplifier utilizing dielectrophoretic assembly. The measured electrical properties from the integrated SWNTs yield ohmic behavior with a two-terminal resistance of approximately 37.5 kOmega and the measured small signal ac gain (-2) from the inverting amplifier confirmed successful integration of carbon nanotubes onto the CMOS circuitry. Furthermore, the temperature response of the SWNTs integrated onto CMOS circuitry has been measured and had a thermal coefficient of resistance (TCR) of -0.4% degrees C(-1). This methodology, demonstrated for the integration of SWNTs onto CMOS technology, is versatile, high yield and paves the way for the realization of novel miniature carbon-nanotube-based sensor systems.

  10. A comparison of time domain boundary conditions for acoustic waves in wave guides

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Propst, G.; Silcox, R. J.

    1991-01-01

    Researchers consider several types of boundary conditions in the context of time domain models for acoustic waves. Experiments with four different duct terminations (hard wall, free radiation, foam, and wedge) were carried out in a wave duct from which reflection coefficients over a wide frequency range were measured. These reflection coefficients were used to estimate parameters in the time domain boundary conditions. A comparison of the relative merits of the models in describing the data is presented. Boundary conditions which yield a good fit of the model to the experimental data were found for all duct terminations except the wedge.

  11. Experimental research on friction coefficient between grain bulk and bamboo clappers

    NASA Astrophysics Data System (ADS)

    Tang, Gan; Sun, Ping; Zhao, Yanqi; Yin, Lingfeng; Zhuang, Hong

    2017-12-01

    A silo is an important piece of storage equipment, especially in the grain industry. The internal friction angle and the friction coefficient between the grain and the silo wall are the main parameters needed for calculating the lateral pressure of the silo wall. Bamboo is used in silo walls, but there are no provisions about the friction coefficient between bulk grain and bamboo clappers in existing codes. In this paper, the material of the silo wall is bamboo. The internal friction of five types of grain and the friction coefficient between the grain and the bamboo clappers were measured with an equal-strain direct shear apparatus. By comparing the experimental result values with the code values, the friction coefficient between the grain bulk and bamboo clappers is lower than that between grain and steel wall and that between grain and concrete wall. The differences in value are 0.21 and 0.09, respectively.

  12. The experimental verification of wall movement influence coefficients for an adaptive walled test section

    NASA Technical Reports Server (NTRS)

    Neal, G.

    1988-01-01

    Flexible walled wind tunnels have for some time been used to reduce wall interference effects at the model. A necessary part of the 3-D wall adjustment strategy being developed for the Transonic Self-Streamlining Wind Tunnel (TSWT) of Southampton University is the use of influence coefficients. The influence of a wall bump on the centerline flow in TSWT has been calculated theoretically using a streamline curvature program. This report details the experimental verification of these influence coefficients and concludes that it is valid to use the theoretically determined values in 3-D model testing.

  13. The behavior of the skin-friction coefficient of a turbulent boundary layer flow over a flat plate with differently configured transverse square grooves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahidi, R.; Chakroun, W.; Al-Fahed, S.

    2005-11-01

    Skin-friction coefficient of turbulent boundary layer flow over a smooth-wall with transverse square grooves was investigated. Four grooved-wall cases were investigated. The four grooved-wall configurations are single 5mm square grooved-wall, and 5mm square grooves spaced 10, 20 and 40 element widths apart in the streamwise direction. Laser-Doppler Anemometer (LDA) was used for the mean velocity and turbulence intensity measurements. The skin-friction coefficient determined from the velocity profile increases sharply just downstream of the groove. This overshoot is followed by an undershoot and then relaxation back to the smooth-wall value. This behavior is observed in most grooved-wall cases. Integrating the skin-frictionmore » coefficient in the streamwise direction indicates that there is an increase in the overall drag in all the grooved-wall cases.« less

  14. Predicting equilibrium states with Reynolds stress closures in channel flow and homogeneous shear flow

    NASA Technical Reports Server (NTRS)

    Abid, R.; Speziale, C. G.

    1993-01-01

    Turbulent channel flow and homogeneous shear flow have served as basic building block flows for the testing and calibration of Reynolds stress models. A direct theoretical connection is made between homogeneous shear flow in equilibrium and the log-layer of fully-developed turbulent channel flow. It is shown that if a second-order closure model is calibrated to yield good equilibrium values for homogeneous shear flow it will also yield good results for the log-layer of channel flow provided that the Rotta coefficient is not too far removed from one. Most of the commonly used second-order closure models introduce an ad hoc wall reflection term in order to mask deficient predictions for the log-layer of channel flow that arise either from an inaccurate calibration of homogeneous shear flow or from the use of a Rotta coefficient that is too large. Illustrative model calculations are presented to demonstrate this point which has important implications for turbulence modeling.

  15. Predicting equilibrium states with Reynolds stress closures in channel flow and homogeneous shear flow

    NASA Technical Reports Server (NTRS)

    Abid, R.; Speziale, C. G.

    1992-01-01

    Turbulent channel flow and homogeneous shear flow have served as basic building block flows for the testing and calibration of Reynolds stress models. A direct theoretical connection is made between homogeneous shear flow in equilibrium and the log-layer of fully-developed turbulent channel flow. It is shown that if a second-order closure model is calibrated to yield good equilibrium values for homogeneous shear flow it will also yield good results for the log-layer of channel flow provided that the Rotta coefficient is not too far removed from one. Most of the commonly used second-order closure models introduce an ad hoc wall reflection term in order to mask deficient predictions for the log-layer of channel flow that arise either from an inaccurate calibration of homogeneous shear flow or from the use of a Rotta coefficient that is too large. Illustrative model calculations are presented to demonstrate this point which has important implications for turbulence modeling.

  16. Shear-strain gradient induced polarization reversal in ferroelectric BaTiO3 thin films: A first-principles total-energy study

    NASA Astrophysics Data System (ADS)

    Li, Guannan; Huang, Xiaokun; Hu, Jingsan; Zhang, Weiyi

    2017-04-01

    Based on the first-principles total-energy calculation, we have studied the shear-strain gradient effect on the polarization reversal of ferroelectric BaTiO3 thin films. By calculating the energies of double-domain supercells for different electric polarization, shear-strain gradients, and domain-wall displacement, we extracted, in addition to the domain-wall energy, the polarization energy, elastic energy, and flexoelectric coefficient of a single domain. The constructed Landau-Devonshire phenomenological theory yields a critical shear-strain gradient of 9.091 ×107/m (or a curvature radius (R ) of 110 Å) for reversing the 180∘ domain at room temperature, which is on the same order of the experimentally estimated value of 3.333 ×107/m (R =300 Å ). In contrast to the commonly used linear response theory, the flexoelectric coefficient derived from fitting the total energy to a Landau-Devonshire energy functional does not depend on the specific pseudopotential. Thus, our method offers an alternative numerical approach to study the flexoelectric effect.

  17. A holistic high-throughput screening framework for biofuel feedstock assessment that characterises variations in soluble sugars and cell wall composition in Sorghum bicolor

    PubMed Central

    2013-01-01

    Background A major hindrance to the development of high yielding biofuel feedstocks is the ability to rapidly assess large populations for fermentable sugar yields. Whilst recent advances have outlined methods for the rapid assessment of biomass saccharification efficiency, none take into account the total biomass, or the soluble sugar fraction of the plant. Here we present a holistic high-throughput methodology for assessing sweet Sorghum bicolor feedstocks at 10 days post-anthesis for total fermentable sugar yields including stalk biomass, soluble sugar concentrations, and cell wall saccharification efficiency. Results A mathematical method for assessing whole S. bicolor stalks using the fourth internode from the base of the plant proved to be an effective high-throughput strategy for assessing stalk biomass, soluble sugar concentrations, and cell wall composition and allowed calculation of total stalk fermentable sugars. A high-throughput method for measuring soluble sucrose, glucose, and fructose using partial least squares (PLS) modelling of juice Fourier transform infrared (FTIR) spectra was developed. The PLS prediction was shown to be highly accurate with each sugar attaining a coefficient of determination (R 2 ) of 0.99 with a root mean squared error of prediction (RMSEP) of 11.93, 5.52, and 3.23 mM for sucrose, glucose, and fructose, respectively, which constitutes an error of <4% in each case. The sugar PLS model correlated well with gas chromatography–mass spectrometry (GC-MS) and brix measures. Similarly, a high-throughput method for predicting enzymatic cell wall digestibility using PLS modelling of FTIR spectra obtained from S. bicolor bagasse was developed. The PLS prediction was shown to be accurate with an R 2 of 0.94 and RMSEP of 0.64 μg.mgDW-1.h-1. Conclusions This methodology has been demonstrated as an efficient and effective way to screen large biofuel feedstock populations for biomass, soluble sugar concentrations, and cell wall digestibility simultaneously allowing a total fermentable yield calculation. It unifies and simplifies previous screening methodologies to produce a holistic assessment of biofuel feedstock potential. PMID:24365407

  18. Traction reveals mechanisms of wall effects for microswimmers near boundaries

    NASA Astrophysics Data System (ADS)

    Shen, Xinhui; Marcos, Fu, Henry C.

    2017-03-01

    The influence of a plane boundary on low-Reynolds-number swimmers has frequently been studied using image systems for flow singularities. However, the boundary effect can also be expressed using a boundary integral representation over the traction on the boundary. We show that examining the traction pattern on the boundary caused by a swimmer can yield physical insights into determining when far-field multipole models are accurate. We investigate the swimming velocities and the traction of a three-sphere swimmer initially placed parallel to an infinite planar wall. In the far field, the instantaneous effect of the wall on the swimmer is well approximated by that of a multipole expansion consisting of a force dipole and a force quadrupole. On the other hand, the swimmer close to the wall must be described by a system of singularities reflecting its internal structure. We show that these limits and the transition between them can be independently identified by examining the traction pattern on the wall, either using a quantitative correlation coefficient or by visual inspection. Last, we find that for nonconstant propulsion, correlations between swimming stroke motions and internal positions are important and not captured by time-averaged traction on the wall, indicating that care must be taken when applying multipole expansions to study boundary effects in cases of nonconstant propulsion.

  19. Traction reveals mechanisms of wall effects for microswimmers near boundaries.

    PubMed

    Shen, Xinhui; Marcos; Fu, Henry C

    2017-03-01

    The influence of a plane boundary on low-Reynolds-number swimmers has frequently been studied using image systems for flow singularities. However, the boundary effect can also be expressed using a boundary integral representation over the traction on the boundary. We show that examining the traction pattern on the boundary caused by a swimmer can yield physical insights into determining when far-field multipole models are accurate. We investigate the swimming velocities and the traction of a three-sphere swimmer initially placed parallel to an infinite planar wall. In the far field, the instantaneous effect of the wall on the swimmer is well approximated by that of a multipole expansion consisting of a force dipole and a force quadrupole. On the other hand, the swimmer close to the wall must be described by a system of singularities reflecting its internal structure. We show that these limits and the transition between them can be independently identified by examining the traction pattern on the wall, either using a quantitative correlation coefficient or by visual inspection. Last, we find that for nonconstant propulsion, correlations between swimming stroke motions and internal positions are important and not captured by time-averaged traction on the wall, indicating that care must be taken when applying multipole expansions to study boundary effects in cases of nonconstant propulsion.

  20. Gas-surface interactions using accommodation coefficients for a dilute and a dense gas in a micro- or nanochannel: heat flux predictions using combined molecular dynamics and Monte Carlo techniques.

    PubMed

    Nedea, S V; van Steenhoven, A A; Markvoort, A J; Spijker, P; Giordano, D

    2014-05-01

    The influence of gas-surface interactions of a dilute gas confined between two parallel walls on the heat flux predictions is investigated using a combined Monte Carlo (MC) and molecular dynamics (MD) approach. The accommodation coefficients are computed from the temperature of incident and reflected molecules in molecular dynamics and used as effective coefficients in Maxwell-like boundary conditions in Monte Carlo simulations. Hydrophobic and hydrophilic wall interactions are studied, and the effect of the gas-surface interaction potential on the heat flux and other characteristic parameters like density and temperature is shown. The heat flux dependence on the accommodation coefficient is shown for different fluid-wall mass ratios. We find that the accommodation coefficient is increasing considerably when the mass ratio is decreased. An effective map of the heat flux depending on the accommodation coefficient is given and we show that MC heat flux predictions using Maxwell boundary conditions based on the accommodation coefficient give good results when compared to pure molecular dynamics heat predictions. The accommodation coefficients computed for a dilute gas for different gas-wall interaction parameters and mass ratios are transferred to compute the heat flux predictions for a dense gas. Comparison of the heat fluxes derived using explicit MD, MC with Maxwell-like boundary conditions based on the accommodation coefficients, and pure Maxwell boundary conditions are discussed. A map of the heat flux dependence on the accommodation coefficients for a dense gas, and the effective accommodation coefficients for different gas-wall interactions are given. In the end, this approach is applied to study the gas-surface interactions of argon and xenon molecules on a platinum surface. The derived accommodation coefficients are compared with values of experimental results.

  1. A dynamic subgrid-scale parameterization of the effective wall stress in atmospheric boundary layer flows over multiscale, fractal-like surfaces

    NASA Astrophysics Data System (ADS)

    Anderson, William; Meneveau, Charles

    2010-05-01

    A dynamic subgrid-scale (SGS) parameterization for hydrodynamic surface roughness is developed for large-eddy simulation (LES) of atmospheric boundary layer (ABL) flow over multiscale, fractal-like surfaces. The model consists of two parts. First, a baseline model represents surface roughness at horizontal length-scales that can be resolved in the LES. This model takes the form of a force using a prescribed drag coefficient. This approach is tested in LES of flow over cubes, wavy surfaces, and ellipsoidal roughness elements for which there are detailed experimental data available. Secondly, a dynamic roughness model is built, accounting for SGS surface details of finer resolution than the LES grid width. The SGS boundary condition is based on the logarithmic law of the wall, where the unresolved roughness of the surface is modeled as the product of local root-mean-square (RMS) of the unresolved surface height and an unknown dimensionless model coefficient. This coefficient is evaluated dynamically by comparing the plane-average hydrodynamic drag at two resolutions (grid- and test-filter scale, Germano et al., 1991). The new model is tested on surfaces generated through superposition of random-phase Fourier modes with prescribed, power-law surface-height spectra. The results show that the method yields convergent results and correct trends. Limitations and further challenges are highlighted. Supported by the US National Science Foundation (EAR-0609690).

  2. An investigation on near wall transport characteristics in an adiabatic upward gas-liquid two-phase slug flow

    NASA Astrophysics Data System (ADS)

    Zheng, Donghong; Che, Defu

    2007-08-01

    The near-wall transport characteristics, inclusive of mass transfer coefficient and wall shear stress, which have a great effect on gas-liquid two-phase flow induced internal corrosion of low alloy pipelines in vertical upward oil and gas mixing transport, have been both mechanistically and experimentally investigated in this paper. Based on the analyses on the hydrodynamic characteristics of an upward slug unit, the mass transfer in the near wall can be divided into four zones, Taylor bubble nose zone, falling liquid film zone, Taylor bubble wake zone and the remaining liquid slug zone; the wall shear stress can be divided into two zones, the positive wall shear stress zone associated with the falling liquid film and the negative wall shear stress zone associated with the liquid slug. Based on the conventional mass transfer and wall shear stress characteristics formulas of single phase liquid full-pipe turbulent flow, corrected normalized mass transfer coefficient formula and wall shear stress formula are proposed. The calculated results are in good agreement with the experimental data. The shear stress and the mass transfer coefficient in the near wall zone are increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity. The mass transfer coefficients in the falling liquid film zone and the wake zone of leading Taylor bubble are lager than those in the Taylor bubble nose zone and the remaining liquid slug zone, and the wall shear stress associated falling liquid film is larger than that associated the liquid slug. The mass transfer coefficient is within 10-3 m/s, and the wall shear stress below 103 Pa. It can be concluded that the alternate wall shear stress due to upward gas-liquid slug flow is considered to be the major cause of the corrosion production film fatigue cracking.

  3. Joint segmentation of lumen and outer wall from femoral artery MR images: Towards 3D imaging measurements of peripheral arterial disease.

    PubMed

    Ukwatta, Eranga; Yuan, Jing; Qiu, Wu; Rajchl, Martin; Chiu, Bernard; Fenster, Aaron

    2015-12-01

    Three-dimensional (3D) measurements of peripheral arterial disease (PAD) plaque burden extracted from fast black-blood magnetic resonance (MR) images have shown to be more predictive of clinical outcomes than PAD stenosis measurements. To this end, accurate segmentation of the femoral artery lumen and outer wall is required for generating volumetric measurements of PAD plaque burden. Here, we propose a semi-automated algorithm to jointly segment the femoral artery lumen and outer wall surfaces from 3D black-blood MR images, which are reoriented and reconstructed along the medial axis of the femoral artery to obtain improved spatial coherence between slices of the long, thin femoral artery and to reduce computation time. The developed segmentation algorithm enforces two priors in a global optimization manner: the spatial consistency between the adjacent 2D slices and the anatomical region order between the femoral artery lumen and outer wall surfaces. The formulated combinatorial optimization problem for segmentation is solved globally and exactly by means of convex relaxation using a coupled continuous max-flow (CCMF) model, which is a dual formulation to the convex relaxed optimization problem. In addition, the CCMF model directly derives an efficient duality-based algorithm based on the modern multiplier augmented optimization scheme, which has been implemented on a GPU for fast computation. The computed segmentations from the developed algorithm were compared to manual delineations from experts using 20 black-blood MR images. The developed algorithm yielded both high accuracy (Dice similarity coefficients ≥ 87% for both the lumen and outer wall surfaces) and high reproducibility (intra-class correlation coefficient of 0.95 for generating vessel wall area), while outperforming the state-of-the-art method in terms of computational time by a factor of ≈ 20. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Forced convective heat transfer in curved diffusers

    NASA Technical Reports Server (NTRS)

    Rojas, J.; Whitelaw, J. H.; Yianneskis, M.

    1987-01-01

    Measurements of the velocity characteristics of the flows in two curved diffusers of rectangular cross section with C and S-shaped centerlines are presented and related to measurements of wall heat transfer coefficients along the heated flat walls of the ducts. The velocity results were obtained by laser-Doppler anemometry in a water tunnel and the heat transfer results by liquid crystal thermography in a wind tunnel. The thermographic technique allowed the rapid and inexpensive measurement of wall heat transfer coefficients along flat walls of arbitrary boundary shapes with an accuracy of about 5 percent. The results show that an increase in secondary flow velocities near the heated wall causes an increase in the local wall heat transfer coefficient, and quantify the variation for maximum secondary-flow velocities in a range from 1.5 to 17 percent of the bulk flow velocity.

  5. Wall-based identification of coherent structures in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Sanmiguel Vila, C.; Flores, O.

    2018-04-01

    During the last decades, a number of reduced order models based on coherent structures have been proposed to describe wall-bounded turbulence. Many of these models emphasize the importance of coherent wall-normal velocity eddies (ν-eddies), which drive the generation of the very long streamwise velocity structures observed in the logarithmic and outer region. In order to use these models to improve our ability to control wall-bounded turbulence in realistic applications, these ν-eddies need to be identified from the wall in a non-intrusive way. In this paper, the possibility of using the pressure signal at the wall to identify these ν-eddies is explored, analyzing the cross-correlation between the wall-normal velocity component and the pressure fluctuations at the wall in a DNS of a turbulent channel flow at Reτ = 939. The results show that the cross-correlation has a region of negative correlation upstream, and a region of positive correlation backwards. In the spanwise direction the correlation decays monotonously, except very close to the wall where a change of sign of the correlation coefficient is observed. Moreover, filtering the pressure fluctuations at the wall in space results in an increase of the region where the cross-correlation is strong, both for the positively and the negatively correlated regions. The use of a time filter for the pressure fluctuations at the wall yields different results, displacing the regions of strong correlation without changing much their sizes. The results suggest that space-filtering the pressure at the wall is a feasible way to identify ν-eddies of different sizes, which could be used to trigger turbulent control strategies.

  6. Effect of aperture geometry on heat transfer in tilted partially open cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsayed, M.M.; Chakroun, W.

    1999-11-01

    Heat transfer in cavities is receiving increasing attention because of the various applications in engineering; e.g., passive solar heating, energy conservation in buildings, solar concentrating receivers, and electronic equipment. Here, convection from a square, tilted partially open cavity was investigated experimentally. The experiment was carried out to study the effect of the aperture geometry on the heat transfer between the cavity and the surrounding air. Four different geometrical arrangements for the opening were investigated: (1) high wall slit, (2) low wall slit, (3) centered wall slit, and (4) uniform wall slots. Each opening arrangement was studied at opening ratios (i.e.,more » ratio of opening height to cavity height) of 0.25, 0.5, and 0.75. The average heat transfer coefficient between the cavity and the surrounding air was estimated for each geometrical arrangement for tilt angles ranging from {minus}90 deg to +90 deg with increments of 15 deg and at a constant heat flux Grashof number of 5.5 x 10{sup 8}. The results showed that for tilt angles between 90 and 75 deg, the heat transfer coefficient has a small value that is independent of the geometrical arrangement of the opening. The value of the heat transfer coefficient increases sharply with decreasing tilt angle until an angle value of zero degrees is reached. The increase in the heat transfer coefficient continues in the negative range of tilt angle but not in the same rate as in the positive range of the tilt angle. The uniform slot arrangement gave in general higher heat transfer coefficient than the other three arrangements of the opening. Large differences in the heat transfer coefficient were observed between the high and the low wall slits where the high wall slit is found to transfer more heat to the surroundings than the low wall slit. Correlations were developed to predict the average Nusselt number of the cavity in terms of the opening ratio and the cavity tilt angle for cavities with high wall slit, low wall slit, centered wall slit, and the uniform wall slots.« less

  7. Secondary electron emission from lithium and lithium compounds

    DOE PAGES

    Capece, A. M.; Patino, M. I.; Raitses, Y.; ...

    2016-07-06

    In this work, measurements of electron-induced secondary electron emission ( SEE) yields of lithium as a function of composition are presented. The results are particularly relevant for magnetic fusion devices such as tokamaks, field-reversed configurations, and stellarators that consider Li as a plasma-facing material for improved plasma confinement. SEE can reduce the sheath potential at the wall and cool electrons at the plasma edge, resulting in large power losses. These effects become significant as the SEE coefficient, γ e, approaches one, making it imperative to maintain a low yield surface. This work demonstrates that the yield from Li strongly dependsmore » on chemical composition and substantially increases after exposure to oxygen and water vapor. The total yield was measured using a retarding field analyzer in ultrahigh vacuum for primary electron energies of 20-600 eV. The effect of Li composition was determined by introducing controlled amounts of O 2 and H 2O vapor while monitoring film composition with Auger electron spectroscopy and temperature programmed desorption. The results show that the energy at which γ e = 1 decreases with oxygen content and is 145 eV for a Li film that is 17% oxidized and drops to less than 25 eV for a fully oxidized film. This work has important implications for laboratory plasmas operating under realistic vacuum conditions in which oxidation significantly alters the electron emission properties of Li walls. Published by AIP Publishing.« less

  8. Secondary electron emission from lithium and lithium compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capece, A. M., E-mail: capecea@tcnj.edu; Department of Physics, The College of New Jersey, Ewing, New Jersey 08628; Patino, M. I.

    2016-07-04

    In this work, measurements of electron-induced secondary electron emission (SEE) yields of lithium as a function of composition are presented. The results are particularly relevant for magnetic fusion devices such as tokamaks, field-reversed configurations, and stellarators that consider Li as a plasma-facing material for improved plasma confinement. SEE can reduce the sheath potential at the wall and cool electrons at the plasma edge, resulting in large power losses. These effects become significant as the SEE coefficient, γ{sub e}, approaches one, making it imperative to maintain a low yield surface. This work demonstrates that the yield from Li strongly depends onmore » chemical composition and substantially increases after exposure to oxygen and water vapor. The total yield was measured using a retarding field analyzer in ultrahigh vacuum for primary electron energies of 20–600 eV. The effect of Li composition was determined by introducing controlled amounts of O{sub 2} and H{sub 2}O vapor while monitoring film composition with Auger electron spectroscopy and temperature programmed desorption. The results show that the energy at which γ{sub e} = 1 decreases with oxygen content and is 145 eV for a Li film that is 17% oxidized and drops to less than 25 eV for a fully oxidized film. This work has important implications for laboratory plasmas operating under realistic vacuum conditions in which oxidation significantly alters the electron emission properties of Li walls.« less

  9. Transport Behavior of Functionalized Multi-Wall Carbon Nanotubes in Water-Saturated Quartz Sand as a Function of Tube Length

    PubMed Central

    Wang, Yonggang; Kim, Jae-Hong; Baek, Jong-Beom; Miller, Gary W.; Pennell, Kurt D.

    2012-01-01

    A series of one-dimensional column experiments was conducted to examine the effects of tube length on the transport and deposition of 4-ethoxybenzoic acid functionalized multi-wall carbon nanotubes (MWCNTs) in water-saturated porous media. Aqueous MWCNTs suspensions were prepared to yield three distributions of tube lengths; 0.02–1.3 μm (short), 0.2–7.5 μm (medium), and 0.2–21.4 μm (long). Results of the column studies showed that MWCNT retention increased with increasing tube length. Nevertheless, more than 76% of the MWCNT mass delivered to the columns was detected in effluent samples under all experimental conditions, indicating that the functionalized MWCNTs were readily transported through 40–50 mesh Ottawa sand. Examination of MWCNT length distributions in the effluent samples revealed that nanotubes with lengths greater than 8 μm were preferentially deposited. In addition, measured retention profiles exhibited the greatest MWCNT deposition near the column inlet, which was most pronounced for the long MWCNTs, and decreased sharply with travel distance. Scanning electron microscope (SEM) images showed that MWCNTs were deposited on sand surfaces over the entire column length, while larger MWCNT bundles were retained at grain intersections and near the column inlet. A mathematical model based on clean bed filtration theory (CBFT) was unable to accurately simulate the measured retention profile data, even after varying the weighting function and incorporating a nonuniform attachment rate coefficient expression. Modification of the mathematical model to account for physical straining greatly improved predictions of MWCNT retention, yielding straining rate coefficients that were four orders-of-magnitude greater than corresponding attachment rate coefficients. Taken in concert, these experimental and modeling results demonstrate the potential importance of, and need to consider, particle straining and tube length distribution when describing MWCNT transport in water-saturated porous media. PMID:22704927

  10. Transport behavior of functionalized multi-wall carbon nanotubes in water-saturated quartz sand as a function of tube length.

    PubMed

    Wang, Yonggang; Kim, Jae-Hong; Baek, Jong-Beom; Miller, Gary W; Pennell, Kurt D

    2012-09-15

    A series of one-dimensional column experiments was conducted to examine the effects of tube length on the transport and deposition of 4-ethoxybenzoic acid functionalized multi-wall carbon nanotubes (MWCNTs) in water-saturated porous media. Aqueous MWCNTs suspensions were prepared to yield three distributions of tube lengths; 0.02-1.3 μm (short), 0.2-7.5 μm (medium), and 0.2-21.4 μm (long). Results of the column studies showed that MWCNT retention increased with increasing tube length. Nevertheless, more than 76% of the MWCNT mass delivered to the columns was detected in effluent samples under all experimental conditions, indicating that the functionalized MWCNTs were readily transported through 40-50 mesh Ottawa sand. Examination of MWCNT length distributions in the effluent samples revealed that nanotubes with lengths greater than 8 μm were preferentially deposited. In addition, measured retention profiles exhibited the greatest MWCNT deposition near the column inlet, which was most pronounced for the long MWCNTs, and decreased sharply with travel distance. Scanning electron microscope (SEM) images showed that MWCNTs were deposited on sand surfaces over the entire column length, while larger MWCNT bundles were retained at grain intersections and near the column inlet. A mathematical model based on clean bed filtration theory (CBFT) was unable to accurately simulate the measured retention profile data, even after varying the weighting function and incorporating a nonuniform attachment rate coefficient expression. Modification of the mathematical model to account for physical straining greatly improved predictions of MWCNT retention, yielding straining rate coefficients that were four orders-of-magnitude greater than corresponding attachment rate coefficients. Taken in concert, these experimental and modeling results demonstrate the potential importance of, and need to consider, particle straining and tube length distribution when describing MWCNT transport in water-saturated porous media. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. An improved method based on wavelet coefficient correlation to filter noise in Doppler ultrasound blood flow signals

    NASA Astrophysics Data System (ADS)

    Wan, Renzhi; Zu, Yunxiao; Shao, Lin

    2018-04-01

    The blood echo signal maintained through Medical ultrasound Doppler devices would always include vascular wall pulsation signal .The traditional method to de-noise wall signal is using high-pass filter, which will also remove the lowfrequency part of the blood flow signal. Some scholars put forward a method based on region selective reduction, which at first estimates of the wall pulsation signals and then removes the wall signal from the mixed signal. Apparently, this method uses the correlation between wavelet coefficients to distinguish blood signal from wall signal, but in fact it is a kind of wavelet threshold de-noising method, whose effect is not so much ideal. In order to maintain a better effect, this paper proposes an improved method based on wavelet coefficient correlation to separate blood signal and wall signal, and simulates the algorithm by computer to verify its validity.

  12. Direct Validation of the Wall Interference Correction System of the Ames 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert; Boone, Alan R.

    2003-01-01

    Data from the test of a large semispan model was used to perform a direct validation of a wall interference correction system for a transonic slotted wall wind tunnel. At first, different sets of uncorrected aerodynamic coefficients were generated by physically changing the boundary condition of the test section walls. Then, wall interference corrections were computed and applied to all data points. Finally, an interpolation of the corrected aerodynamic coefficients was performed. This interpolation made sure that the corrected Mach number of a given run would be constant. Overall, the agreement between corresponding interpolated lift, drag, and pitching moment coefficient sets was very good. Buoyancy corrections were also investigated. These studies showed that the accuracy goal of one drag count may only be achieved if reliable estimates of the wall interference induced buoyancy correction are available during a test.

  13. Non-parametric wall model and methods of identifying boundary conditions for moments in gas flow equations

    NASA Astrophysics Data System (ADS)

    Liao, Meng; To, Quy-Dong; Léonard, Céline; Monchiet, Vincent

    2018-03-01

    In this paper, we use the molecular dynamics simulation method to study gas-wall boundary conditions. Discrete scattering information of gas molecules at the wall surface is obtained from collision simulations. The collision data can be used to identify the accommodation coefficients for parametric wall models such as Maxwell and Cercignani-Lampis scattering kernels. Since these scattering kernels are based on a limited number of accommodation coefficients, we adopt non-parametric statistical methods to construct the kernel to overcome these issues. Different from parametric kernels, the non-parametric kernels require no parameter (i.e. accommodation coefficients) and no predefined distribution. We also propose approaches to derive directly the Navier friction and Kapitza thermal resistance coefficients as well as other interface coefficients associated with moment equations from the non-parametric kernels. The methods are applied successfully to systems composed of CH4 or CO2 and graphite, which are of interest to the petroleum industry.

  14. Numerical study for melting heat transfer and homogeneous-heterogeneous reactions in flow involving carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Muhammad, Khursheed; Alsaedi, Ahmed; Asghar, Saleem

    2018-03-01

    Present work concentrates on melting heat transfer in three-dimensional flow of nanofluid over an impermeable stretchable surface. Analysis is made in presence of porous medium and homogeneous-heterogeneous reactions. Single and multi-wall CNTs (carbon nanotubes) are considered. Water is chosen as basefluid. Adequate transformations yield the non-linear ordinary differential systems. Solution of emerging problems is obtained using shooting method. Impacts of influential variables on velocity and temperature are discussed graphically. Skin friction coefficient and Nusselt number are numerically discussed. The results for MWCNTs and SWCNTs are compared and examined.

  15. Determination of true optical absorption and scattering coefficient of wooden cell wall substance by time-of-flight near infrared spectroscopy.

    PubMed

    Kitamura, Ryunosuke; Inagaki, Tetsuya; Tsuchikawa, Satoru

    2016-02-22

    The true absorption coefficient (μa) and reduced scattering coefficient (μ´s) of the cell wall substance in Douglas fir were determined using time-of-flight near infrared spectroscopy. Samples were saturated with hexane, toluene or quinolone to minimize the multiple reflections of light on the boundary between pore-cell wall substance in wood. μ´s exhibited its minimum value when the wood was saturated with toluene because the refractive index of toluene is close to that of the wood cell wall substance. The optical parameters of the wood cell wall substance calculated were μa = 0.030 mm(-1) and μ´s= 18.4 mm(-1). Monte Carlo simulations using these values were in good agreement with the measured time-resolved transmittance profiles.

  16. Analytical modeling of drug dynamics induced by eluting stents in the coronary multi-layered curved domain.

    PubMed

    d'Errico, Michele; Sammarco, Paolo; Vairo, Giuseppe

    2015-09-01

    Pharmacokinetics induced by drug eluting stents (DES) in coronary walls is modeled by means of a one-dimensional multi-layered model, accounting for vessel curvature and non-homogeneous properties of the arterial tissues. The model includes diffusion mechanisms, advection effects related to plasma filtration through the walls, and bio-chemical drug reactions. A non-classical Sturm-Liouville problem with discontinuous coefficients is derived, whose closed-form analytical solution is obtained via an eigenfunction expansion. Soundness and consistency of the proposed approach are shown by numerical computations based on possible clinical treatments involving both hydrophilic and hydrophobic drugs. The influence of the main model parameters on drug delivery mechanisms is analyzed, highlighting the effects induced by vessel curvature and yielding comparative indications and useful insights into the concurring mechanisms governing the pharmacokinetics. Copyright © 2015. Published by Elsevier Inc.

  17. The influence of a wall function on turbine blade heat transfer prediction

    NASA Technical Reports Server (NTRS)

    Whitaker, Kevin W.

    1989-01-01

    The second phase of a continuing investigation to improve the prediction of turbine blade heat transfer coefficients was completed. The present study specifically investigated how a numeric wall function in the turbulence model of a two-dimensional boundary layer code, STAN5, affected heat transfer prediction capabilities. Several sources of inaccuracy in the wall function were identified and then corrected or improved. Heat transfer coefficient predictions were then obtained using each one of the modifications to determine its effect. Results indicated that the modifications made to the wall function can significantly affect the prediction of heat transfer coefficients on turbine blades. The improvement in accuracy due the modifications is still inconclusive and is still being investigated.

  18. Distributed modeling of diffusive solute transport in peritoneal dialysis.

    PubMed

    Waniewski, Jacek

    2002-01-01

    The diffusive transport between blood and an ex-tissue medium (dialysis fluid) is evaluated using a mathematical model that takes into account the (quasicontinuous) distribution of capillaries within the tissue at various distances from the tissue surface, and includes diffusive-convective transport through the capillary wall and lymphatic absorption from the tissue. General formulas for solute penetration depth, lambda, and for the diffusive mass transport coefficient for the transport between blood and dialysis fluid, K(BD), are provided in terms of local transport coefficients for capillary wall, tissue, and lymphatic absorption. For pure diffusive transport between blood and dialysis fluid and thick tissue layers (i.e., if the solute penetration depth is much lower than the tissue thickness) these formulas yield previously known expressions. It is shown that apparent tissue layers, with widths lambdaTBL and lambdaT, respectively, may be defined according to the values of local transport parameters in such a way that K(BD) is equal to the solute clearance K(TBL) from the tissue by blood and lymph for a layer with width lambdaTBL or to the solute clearance K(T) from blood to dialysate by diffusion through the tissue layer with width lambdaT. For tissue layers with width much higher than the penetration depth: lambdaT approximately = lambdaTBL approximately = lambda. These characteristic width lengths depend on the transport parameters (and thus on the size) of solutes. Effective blood flow, which may be related to the exchange of the solute between blood and dialysate, is defined using an analogy to the extraction/absorption coefficients for blood-tissue exchange. Various approximations for the distributed model formula for diffusive mass transport coefficient (K(BD)) are possible. The appropriate range for their application is obtained from the general formula.

  19. Derivation of jack movement influence coefficients as a basis for selecting wall contours giving reduced levels of interference in flexible walled test sections

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1985-01-01

    This report covers work done in a transonic wind tunnel towards providing data on the influence of the movement of wall-control jacks on the Mach number perturbations along the test section. The data is derived using an existing streamline-curvature program, and in application is reduced to matrices of influence coefficients.

  20. On measuring the scattering coefficient in a nondiffuse sound field

    NASA Astrophysics Data System (ADS)

    Kanev, N. G.

    2017-11-01

    The laws of sound decay in a cubic room, one wall of which is absorbing and the other scattering, are obtained. It is shown that under certain conditions, sound decay in a room occurs nonexponentially and the shape of the decay curve depends on the scattering coefficient of the walls. This makes it possible to suggest a method for measuring the scattering coefficient by the analysis the decay curve when the walls have sound-scattering materials and structures. Expressions are obtained for approximating the measured decay curve, and the boundaries of the method's applicability are determined.

  1. Control of growth of juvenile leaves of Eucalyptus globulus: effects of leaf age.

    PubMed

    Metcalfe, J C; Davies, W J; Pereira, J S

    1991-12-01

    Biophysical variables influencing the expansion of plant cells (yield threshold, cell wall extensibility and turgor) were measured in individual Eucalyptus globulus leaves from the time of emergence until cessation of growth. Leaf water relations variables and growth rates were determined as relative humidity was changed on an hourly basis. Yield threshold and cell wall extensibility were estimated from plots of leaf growth rate versus turgor. Cell wall extensibility was also measured by the Instron technique, and yield threshold was determined experimentally both by stress relaxation in a psychrometer chamber and by incubation in a range of polyethylene glycol solutions. Once emerging leaves reached approximately 5 cm(2) in size, increases in leaf area were rapid throughout the expansive phase and varied little between light and dark periods. Both leaf growth rate and turgor were sensitive to changes in humidity, and in the longer term, both yield threshold and cell wall extensibility changed as the leaf aged. Rapidly expanding leaves had a very low yield threshold and high cell wall extensibility, whereas mature leaves had low cell wall extensibility. Yield threshold increased with leaf age.

  2. Wall relaxation and the driving forces for cell expansive growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  3. Relating Nanoscale Accessibility within Plant Cell Walls to Improved Enzyme Hydrolysis Yields in Corn Stover Subjected to Diverse Pretreatments.

    PubMed

    Crowe, Jacob D; Zarger, Rachael A; Hodge, David B

    2017-10-04

    Simultaneous chemical modification and physical reorganization of plant cell walls via alkaline hydrogen peroxide or liquid hot water pretreatment can alter cell wall structural properties impacting nanoscale porosity. Nanoscale porosity was characterized using solute exclusion to assess accessible pore volumes, water retention value as a proxy for accessible water-cell walls surface area, and solute-induced cell wall swelling to measure cell wall rigidity. Key findings concluded that delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity and that the subsequent cell wall swelling resulted increased nanoscale porosity and improved enzyme binding and hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 Å dextran probe within the cell wall was found to be correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields.

  4. Tensile Yielding of Multi-Wall Carbon Nanotube

    NASA Technical Reports Server (NTRS)

    Wei, Chenyu; Cho, Kyeongjae; Srivastava, Deepak; Parks, John W. (Technical Monitor)

    2002-01-01

    The tensile yielding of multiwall carbon nanotubes (MWCNTs) has been studied using Molecular Dynamics simulations and a Transition State Theory based model. We find a strong dependence of the yielding on the strain rate. A critical strain rate has been predicted above/below which yielding strain of a MWCNT is larger/smaller than that of the corresponding single-wall carbon nanotubes. At experimentally feasible strain rate of 1% /hour and T = 300K, the yield strain of a MWCNT is estimated to be about 3-4 % higher than that of an equivalent SWCNT (Single Wall Carbon Nanotube), in good agreement with recent experimental observations.

  5. A One-Dimensional Global-Scaling Erosive Burning Model Informed by Blowing Wall Turbulence

    NASA Technical Reports Server (NTRS)

    Kibbey, Timothy P.

    2014-01-01

    A derivation of turbulent flow parameters, combined with data from erosive burning test motors and blowing wall tests results in erosive burning model candidates useful in one-dimensional internal ballistics analysis capable of scaling across wide ranges of motor size. The real-time burn rate data comes from three test campaigns of subscale segmented solid rocket motors tested at two facilities. The flow theory admits the important effect of the blowing wall on the turbulent friction coefficient by using blowing wall data to determine the blowing wall friction coefficient. The erosive burning behavior of full-scale motors is now predicted more closely than with other recent models.

  6. Sound decay in a rectangular room with impedance walls

    NASA Astrophysics Data System (ADS)

    Kanev, N. G.

    2012-09-01

    The problem of sound decay in a rectangular room is considered for the case of a room with walls the acoustic properties of which are described by the impedance, which implies a dependence of the absorption coefficient on the angle of incidence of sound waves. The ray approximation is used to determine the sound decay laws for different distributions of wall absorption. It is shown that, in a room with impedance walls, the sound decay is slower than in the conventional reverberation model, in which the wall absorption coefficient is independent of the angle of incidence. The problem is also solved in the wave approximation to determine the decay law for a preset frequency band.

  7. Hydrodynamic dispersion in a combined magnetohydrodynamic- electroosmotic-driven flow through a microchannel with slowly varying wall zeta potentials

    NASA Astrophysics Data System (ADS)

    Vargas, C.; Arcos, J.; Bautista, O.; Méndez, F.

    2017-09-01

    The effective dispersion coefficient of a neutral solute in the combined electroosmotic (EO) and magnetohydrodynamic (MHD)-driven flow of a Newtonian fluid through a parallel flat plate microchannel is studied. The walls of the microchannel are assumed to have modulated and low zeta potentials that vary slowly in the axial direction in a sinusoidal manner. The flow field required to obtain the dispersion coefficient is solved using the lubrication approximation theory. The solution of the electrical potential is based on the Debye-Hückel approximation for a symmetric (Z :Z ) electrolyte solution. The EO and MHD effects, together with the variations in the zeta potentials of the walls, are observed to notably modify the axial distribution of the effective dispersion coefficient. The problem is formulated for two cases of the zeta potential function. Note that the dispersion coefficient primarily depends on the Hartmann number, on the ratio of the half height of the microchannel to the Debye length, and on the assumed variation in the zeta potentials of the walls.

  8. Dependence of equivalent thermal conductivity coefficients of single-wall carbon nanotubes on their chirality

    NASA Astrophysics Data System (ADS)

    Zarubin, V. S.; Sergeeva, E. S.

    2018-04-01

    Composite materials (composites) composed of a matrix and reinforcing components are currently widely used as structural materials for various engineering devices designed to operate under extreme thermal and mechanical loads. By modifying a composite with structure-sensitive inclusions such as single-wall carbon nanotubes, one can significantly improve the thermomechanical properties of the resulting material. The paper presents relationships obtained for the equivalent thermal conductivity coefficients of single-wall carbon nanotubes versus their chirality using a simulation model developed to simulate the heat transfer process through thermal conductivity in a transversely isotropic environment. With these coefficients, one can conventionally substitute a single-wall carbon nanotube with a continuous anisotropic fiber, thus allowing one to estimate the thermal properties of composites reinforced with objects of this sort by using the well-known models developed for fibered composites. The results presented here can be used to estimate the thermal properties of carbon nanotube-reinforced composites.

  9. Is the wall of a cellulose fiber saturated with liquid whether or not permeable with CO2 dissolved molecules? Application to bubble nucleation in champagne wines.

    PubMed

    Liger-Belair, Gérard; Topgaard, Daniel; Voisin, Cédric; Jeandet, Philippe

    2004-05-11

    In this paper, the transversal diffusion coefficient D perpendicular of CO2 dissolved molecules through the wall of a hydrated cellulose fiber was approached, from the liquid bulk diffusion coefficient of CO2 dissolved molecules modified by an obstruction factor. The porous network between the cellulose microfibrils of the fiber wall was assumed being saturated with liquid. We retrieved information from previous NMR experiments on the self-diffusion of water in cellulose fibers to reach an order of magnitude for the transversal diffusion coefficient of CO2 molecules through the fiber wall. A value of about D perpendicular approximately 0.2D0 was proposed, D0 being the diffusion coefficient of CO2 molecules in the liquid bulk. Because most of bubble nucleation sites in a glass poured with carbonated beverage are cellulose fibers cast off from paper or cloth which floated from the surrounding air, or remaining from the wiping process, this result directly applies to the kinetics of carbon dioxide bubble formation from champagne and sparkling wines. If the cellulose fiber wall was impermeable with regard to CO2 dissolved molecules, it was suggested that the kinetics of bubbling would be about three times less than it is.

  10. How thermal stress alters the confinement of polymers vitrificated in nanopores

    NASA Astrophysics Data System (ADS)

    Teng, Chao; Li, Linling; Wang, Yong; Wang, Rong; Chen, Wei; Wang, Xiaoliang; Xue, Gi

    2017-05-01

    Understanding and controlling the glass transition temperature (Tg) and dynamics of polymers in confined geometries are of significance in both academia and industry. Here, we investigate how the thermal stress induced by a mismatch in the coefficient of thermal expansion affects the Tg behavior of polystyrene (PS) nanorods located inside cylindrical alumina nanopores. The size effects and molecular weight dependence of the Tg are also studied. A multi-step relaxation process was employed to study the relationship between thermal stress and cooling rate. At fast cooling rates, the imparted thermal stress would overcome the yield stress of PS and peel chains off the pore walls, while at slow cooling rates, chains are kept in contact with the pore walls due to timely dissipation of the produced thermal stress during vitrification. In smaller nanopores, more PS chains closely contact with pore walls, then stronger internal thermal stress would be generated between core and shell of PS nanorod, which results in a larger deviation between two Tgs. The core part of PS shows lower Tg than bulk value, which can induce faster dynamics in the center region. A complex and important role stress plays is supposed in complex confinement condition, e.g., in nanopores, during vitrification.

  11. Boundary conditions for gas flow problems from anisotropic scattering kernels

    NASA Astrophysics Data System (ADS)

    To, Quy-Dong; Vu, Van-Huyen; Lauriat, Guy; Léonard, Céline

    2015-10-01

    The paper presents an interface model for gas flowing through a channel constituted of anisotropic wall surfaces. Using anisotropic scattering kernels and Chapman Enskog phase density, the boundary conditions (BCs) for velocity, temperature, and discontinuities including velocity slip and temperature jump at the wall are obtained. Two scattering kernels, Dadzie and Méolans (DM) kernel, and generalized anisotropic Cercignani-Lampis (ACL) are examined in the present paper, yielding simple BCs at the wall fluid interface. With these two kernels, we rigorously recover the analytical expression for orientation dependent slip shown in our previous works [Pham et al., Phys. Rev. E 86, 051201 (2012) and To et al., J. Heat Transfer 137, 091002 (2015)] which is in good agreement with molecular dynamics simulation results. More important, our models include both thermal transpiration effect and new equations for the temperature jump. While the same expression depending on the two tangential accommodation coefficients is obtained for slip velocity, the DM and ACL temperature equations are significantly different. The derived BC equations associated with these two kernels are of interest for the gas simulations since they are able to capture the direction dependent slip behavior of anisotropic interfaces.

  12. Taming axial dispersion in hydrodynamic chromatography columns through wall patterning

    NASA Astrophysics Data System (ADS)

    Adrover, Alessandra; Cerbelli, Stefano; Giona, Massimiliano

    2018-04-01

    A well-known limitation of hydrodynamic chromatography arises from the synergistic interaction between transverse diffusion and streamwise convection, which enhances axial dispersion through the Taylor-Aris mechanism. We show that a periodic sequence of slip/no-slip conditions at the channel walls (e.g., representing wall indentations hosting stable air pockets) can significantly reduce axial dispersion, thus enhancing separation performance. The theoretical/numerical analysis is based on a generalization of Brenner's macrotransport approach to solute transport, here modified to account for the finite-size of the suspended particles. The most effective dispersion-taming outcome is observed when the alternating sequence of slip/no-slip conditions yields non-vanishing cross-sectional flow components. The combination of these components with the hindering interaction between the channel boundaries and the finite-sized particles gives rise to a non-trivial solution of Brenner's problem on the unit periodic cell, where the cross-sectional particle number density departs from the spatially homogeneous condition. In turn, this effect impacts upon the solution of the so-called b-field defining the large-scale dispersion tensor, with an overall decremental effect on the axial dispersion coefficient and on the Height Equivalent of a Theoretical Plate.

  13. Ethanol yields and cell wall properties in divergently bred switchgrass genotypes

    USDA-ARS?s Scientific Manuscript database

    Genetic modification of herbaceous plant cell walls to increase biofuels yields from harvested biomass is a primary bioenergy research goal. The focus of much of this research has been on cell wall lignin concentration. Using switchgrass genotypes developed by divergent breeding for ruminant diges...

  14. Simulation of diatomic gas-wall interaction and accommodation coefficients for negative ion sources and accelerators.

    PubMed

    Sartori, E; Brescaccin, L; Serianni, G

    2016-02-01

    Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production-detrimental for high current negative ion systems such as beam sources for fusion-are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient and energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.

  15. Simulation of diatomic gas-wall interaction and accommodation coefficients for negative ion sources and accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Serianni, G.; Brescaccin, L.

    2016-02-15

    Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production—detrimental for high current negative ion systems such as beam sources for fusion—are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient andmore » energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.« less

  16. Calculation of skin-friction coefficients for low Reynolds number turbulent boundary layer flows. M.S. Thesis - California Univ. at Davis

    NASA Technical Reports Server (NTRS)

    Barr, P. K.

    1980-01-01

    An analysis is presented of the reliability of various generally accepted empirical expressions for the prediction of the skin-friction coefficient C/sub f/ of turbulent boundary layers at low Reynolds numbers in zero-pressure-gradient flows on a smooth flat plate. The skin-friction coefficients predicted from these expressions were compared to the skin-friction coefficients of experimental profiles that were determined from a graphical method formulated from the law of the wall. These expressions are found to predict values that are consistently different than those obtained from the graphical method over the range 600 Re/sub theta 2000. A curve-fitted empirical relationship was developed from the present data and yields a better estimated value of C/sub f/ in this range. The data, covering the range 200 Re/sub theta 7000, provide insight into the nature of transitional flows. They show that fully developed turbulent boundary layers occur at Reynolds numbers Re/sub theta/ down to 425. Below this level there appears to be a well-ordered evolutionary process from the laminar to the turbulent profiles. These profiles clearly display the development of the turbulent core region and the shrinking of the laminar sublayer with increasing values of Re/sub theta/.

  17. Evaluation of Fourier transform coefficients for the diagnosis of rheumatoid arthritis from diffuse optical tomography images

    NASA Astrophysics Data System (ADS)

    Montejo, Ludguier D.; Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.

    2013-03-01

    We apply the Fourier Transform to absorption and scattering coefficient images of proximal interphalangeal (PIP) joints and evaluate the performance of these coefficients as classifiers using receiver operator characteristic (ROC) curve analysis. We find 25 features that yield a Youden index over 0.7, 3 features that yield a Youden index over 0.8, and 1 feature that yields a Youden index over 0.9 (90.0% sensitivity and 100% specificity). In general, scattering coefficient images yield better one-dimensional classifiers compared to absorption coefficient images. Using features derived from scattering coefficient images we obtain an average Youden index of 0.58 +/- 0.16, and an average Youden index of 0.45 +/- 0.15 when using features from absorption coefficient images.

  18. Direct Measurements of Gas/Particle Partitioning and Mass Accommodation Coefficients in Environmental Chambers.

    PubMed

    Krechmer, Jordan E; Day, Douglas A; Ziemann, Paul J; Jimenez, Jose L

    2017-10-17

    Secondary organic aerosols (SOA) are a major contributor to fine particulate mass and wield substantial influences on the Earth's climate and human health. Despite extensive research in recent years, many of the fundamental processes of SOA formation and evolution remain poorly understood. Most atmospheric aerosol models use gas/particle equilibrium partitioning theory as a default treatment of gas-aerosol transfer, despite questions about potentially large kinetic effects. We have conducted fundamental SOA formation experiments in a Teflon environmental chamber using a novel method. A simple chemical system produces a very fast burst of low-volatility gas-phase products, which are competitively taken up by liquid organic seed particles and Teflon chamber walls. Clear changes in the species time evolution with differing amounts of seed allow us to quantify the particle uptake processes. We reproduce gas- and aerosol-phase observations using a kinetic box model, from which we quantify the aerosol mass accommodation coefficient (α) as 0.7 on average, with values near unity especially for low volatility species. α appears to decrease as volatility increases. α has historically been a very difficult parameter to measure with reported values varying over 3 orders of magnitude. We use the experimentally constrained model to evaluate the correction factor (Φ) needed for chamber SOA mass yields due to losses of vapors to walls as a function of species volatility and particle condensational sink. Φ ranges from 1-4.

  19. Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows

    NASA Technical Reports Server (NTRS)

    Schaefer, John; West, Thomas; Hosder, Serhat; Rumsey, Christopher; Carlson, Jan-Renee; Kleb, William

    2015-01-01

    The goal of this work was to quantify the uncertainty and sensitivity of commonly used turbulence models in Reynolds-Averaged Navier-Stokes codes due to uncertainty in the values of closure coefficients for transonic, wall-bounded flows and to rank the contribution of each coefficient to uncertainty in various output flow quantities of interest. Specifically, uncertainty quantification of turbulence model closure coefficients was performed for transonic flow over an axisymmetric bump at zero degrees angle of attack and the RAE 2822 transonic airfoil at a lift coefficient of 0.744. Three turbulence models were considered: the Spalart-Allmaras Model, Wilcox (2006) k-w Model, and the Menter Shear-Stress Trans- port Model. The FUN3D code developed by NASA Langley Research Center was used as the flow solver. The uncertainty quantification analysis employed stochastic expansions based on non-intrusive polynomial chaos as an efficient means of uncertainty propagation. Several integrated and point-quantities are considered as uncertain outputs for both CFD problems. All closure coefficients were treated as epistemic uncertain variables represented with intervals. Sobol indices were used to rank the relative contributions of each closure coefficient to the total uncertainty in the output quantities of interest. This study identified a number of closure coefficients for each turbulence model for which more information will reduce the amount of uncertainty in the output significantly for transonic, wall-bounded flows.

  20. An experimental study of an adaptive-wall wind tunnel

    NASA Technical Reports Server (NTRS)

    Celik, Zeki; Roberts, Leonard

    1988-01-01

    A series of adaptive wall ventilated wind tunnel experiments was carried out to demonstrate the feasibility of using the side wall pressure distribution as the flow variable for the assessment of compatibility with free air conditions. Iterative and one step convergence methods were applied using the streamwise velocity component, the side wall pressure distribution and the normal velocity component in order to investigate their relative merits. The advantage of using the side wall pressure as the flow variable is to reduce the data taking time which is one the major contributors to the total testing time. In ventilated adaptive wall wind tunnel testing, side wall pressure measurements require simple instrumentation as opposed to the Laser Doppler Velocimetry used to measure the velocity components. In ventilated adaptive wall tunnel testing, influence coefficients are required to determine the pressure corrections in the plenum compartment. Experiments were carried out to evaluate the influence coefficients from side wall pressure distributions, and from streamwise and normal velocity distributions at two control levels. Velocity measurements were made using a two component Laser Doppler Velocimeter system.

  1. Application of dynamic slip wall modeling to a turbine nozzle guide vane

    NASA Astrophysics Data System (ADS)

    Bose, Sanjeeb; Talnikar, Chaitanya; Blonigan, Patrick; Wang, Qiqi

    2015-11-01

    Resolution of near-wall turbulent structures is computational prohibitive necessitating the need for wall-modeled large-eddy simulation approaches. Standard wall models are often based on assumptions of equilibrium boundary layers, which do not necessarily account for the dissimilarity of the momentum and thermal boundary layers. We investigate the use of the dynamic slip wall boundary condition (Bose and Moin, 2014) for the prediction of surface heat transfer on a turbine nozzle guide vane (Arts and de Rouvroit, 1992). The heat transfer coefficient is well predicted by the slip wall model, including capturing the transition to turbulence. The sensitivity of the heat transfer coefficient to the incident turbulence intensity will additionally be discussed. Lastly, the behavior of the thermal and momentum slip lengths will be contrasted between regions where the strong Reynolds analogy is invalid (near transition on the suction side) and an isothermal, zero pressure gradient flat plate boundary layer (Wu and Moin, 2010).

  2. Nonperturbative renormalization of quark bilinear operators and B{sub K} using domain wall fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Y.; Dawson, C.; Brookhaven National Laboratory, Upton, New York 11973

    2008-09-01

    We present a calculation of the renormalization coefficients of the quark bilinear operators and the K-K mixing parameter B{sub K}. The coefficients relating the bare lattice operators to those in the RI/MOM scheme are computed nonperturbatively and then matched perturbatively to the MS scheme. The coefficients are calculated on the RBC/UKQCD 2+1 flavor dynamical lattice configurations. Specifically we use a 16{sup 3}x32 lattice volume, the Iwasaki gauge action at {beta}=2.13 and domain wall fermions with L{sub s}=16.

  3. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines

    PubMed Central

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.; Williams, Daniel L.; Magee, Timothy D.; Kaeppler, Shawn M.; de Leon, Natalia; Hodge, David B.

    2015-01-01

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. This indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment. PMID:25871649

  4. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize.

    PubMed

    Li, Bei; Liu, Hua; Zhang, Yue; Kang, Tao; Zhang, Li; Tong, Jianhua; Xiao, Langtao; Zhang, Hongxia

    2013-12-01

    Grain size, number and starch content are important determinants of grain yield and quality. One of the most important biological processes that determine these components is the carbon partitioning during the early grain filling, which requires the function of cell wall invertase. Here, we showed the constitutive expression of cell wall invertase-encoding gene from Arabidopsis, rice (Oryza sativa) or maize (Zea mays), driven by the cauliflower mosaic virus (CaMV) 35S promoter, all increased cell wall invertase activities in different tissues and organs, including leaves and developing seeds, and substantially improved grain yield up to 145.3% in transgenic maize plants as compared to the wild-type plants, an effect that was reproduced in our 2-year field trials at different locations. The dramatically increased grain yield is due to the enlarged ears with both enhanced grain size and grain number. Constitutive expression of the invertase-encoding gene also increased total starch content up to 20% in the transgenic kernels. Our results suggest that cell wall invertase gene can be genetically engineered to improve both grain yield and grain quality in crop plants. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Effects of Wall-Normal and Angular Momentum Injections in Airfoil Separation Control

    NASA Astrophysics Data System (ADS)

    Munday, Phillip M.; Taira, Kunihiko

    2018-05-01

    The objective of this computational study is to quantify the influence of wall-normal and angular momentum injections in suppressing laminar flow separation over a canonical airfoil. Open-loop control of fully separated, incompressible flow over a NACA 0012 airfoil at $\\alpha = 9^\\circ$ and $Re = 23,000$ is examined with large-eddy simulations. This study independently introduces wall-normal momentum and angular momentum into the separated flow using swirling jets through model boundary conditions. The response of the flow field and the surface vorticity fluxes to various combinations of actuation inputs are examined in detail. It is observed that the addition of angular momentum input to wall-normal momentum injection enhances the suppression of flow separation. Lift enhancement and suppression of separation with the wall-normal and angular momentum inputs are characterized by modifying the standard definition of the coefficient of momentum. The effect of angular momentum is incorporated into the modified coefficient of momentum by introducing a characteristic swirling jet velocity based on the non-dimensional swirl number. With this single modified coefficient of momentum, we are able to categorize each controlled flow into separated, transitional, and attached flows.

  6. Hybrid Exhaust Component

    NASA Technical Reports Server (NTRS)

    Pelletier, Gerard D. (Inventor); Logan, Charles P. (Inventor); McEnerney, Bryan William (Inventor); Haynes, Jeffrey D. (Inventor)

    2015-01-01

    An exhaust includes a wall that has a first composite material having a first coefficient of thermal expansion and a second composite material having a second coefficient of the thermal expansion that is less than the first coefficient of thermal expansion.

  7. Evolution of dispersion coefficient in the single rough-walled fracture before and after circulated flow near the wall

    NASA Astrophysics Data System (ADS)

    Lee, S.; Yeo, I.; Lee, K.

    2012-12-01

    Understanding detailed solute transport mechanism in a single fracture is required to expand it to the complex fractured medium. Dispersion in the variable-aperture fractures occurs by combined effects of molecular diffusion, macro dispersion and Taylor dispersion. It has been reported that Taylor dispersion which is proportional to the square of the velocity dominates for the high velocity, while macro dispersion is proportional to the velocity. Contributions of each scheme are different as the velocity changes. To investigate relationship between Reynolds number and dispersion coefficient, single acrylic rough-walled fracture which has 20 cm length and 1.03 mm average aperture was designed. In this experiment, dispersion coefficient was calculated at the middle of the fracture and at the edge of the fracture via moment analysis using breakthrough curve (BTC) of fluorescent solute under the Reynolds number 0.08, 0.28, 2.78, 8.2 and 16.4. In the results, distinct dispersion regime was observed at the highly rough-walled fracture, which is inconsistent with the model that was suggested by previous research. In the range of Re < 2.78, the dispersion coefficient was proportional to the power of n (1 2.78. The reason of this transition zone was related to the generation of circulated flow near the wall. It can flush the trapped contaminant out to the main flow channel, which makes tailing effect diminished. Also, these circulation zones were visualized using microscope, CCD camera and fluorescent particles.

  8. Experimental plasma studies

    NASA Technical Reports Server (NTRS)

    Dunn, M. G.

    1972-01-01

    The rate coefficients for the reactions C(+) + e(-) + e(-) yields C + e(-) and CO(+) + e(-) yields C + O were measured over the electron temperature range of approximately 1500 deg K to 7000 deg K. The measurements were performed in CO that had expanded from equilibrium reservoir conditions of 7060 deg K at 17.3 atm pressure and from 6260 deg K at 10.0 atm pressure. Two RAM flight probes were used to measure electron density and electron temperature in the expanding flow of a shock tunnel. Experiments were performed in the inviscid flow with both probes and in the nozzle-wall boundary layer with the constant bias-voltage probe. The distributions of electron density and electron temperature were independently measured using voltage-swept thin-wire probes. Thin-wire Langmuir probes were also used to measure the electron-density and electron-temperature distributions in the boundary layer of a sharp flat plate located on the nozzle centerline. Admittance measurements were performed with the RAM C and RAM C-C S-band antennas in the presence of an ionized boundary layer.

  9. Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana

    PubMed Central

    2013-01-01

    Background Second-generation biofuels are generally produced from the polysaccharides in the lignocellulosic plant biomass, mainly cellulose. However, because cellulose is embedded in a matrix of other polysaccharides and lignin, its hydrolysis into the fermentable glucose is hampered. The senesced inflorescence stems of a set of 20 Arabidopsis thaliana mutants in 10 different genes of the lignin biosynthetic pathway were analyzed for cell wall composition and saccharification yield. Saccharification models were built to elucidate which cell wall parameters played a role in cell wall recalcitrance. Results Although lignin is a key polymer providing the strength necessary for the plant’s ability to grow upward, a reduction in lignin content down to 64% of the wild-type level in Arabidopsis was tolerated without any obvious growth penalty. In contrast to common perception, we found that a reduction in lignin was not compensated for by an increase in cellulose, but rather by an increase in matrix polysaccharides. In most lignin mutants, the saccharification yield was improved by up to 88% cellulose conversion for the cinnamoyl-coenzyme A reductase1 mutants under pretreatment conditions, whereas the wild-type cellulose conversion only reached 18%. The saccharification models and Pearson correlation matrix revealed that the lignin content was the main factor determining the saccharification yield. However, also lignin composition, matrix polysaccharide content and composition, and, especially, the xylose, galactose, and arabinose contents influenced the saccharification yield. Strikingly, cellulose content did not significantly affect saccharification yield. Conclusions Although the lignin content had the main effect on saccharification, also other cell wall factors could be engineered to potentially increase the cell wall processability, such as the galactose content. Our results contribute to a better understanding of the effect of lignin perturbations on plant cell wall composition and its influence on saccharification yield, and provide new potential targets for genetic improvement. PMID:23622268

  10. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines.

    PubMed

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D; Williams, Daniel L; Magee, Timothy D; Kaeppler, Shawn M; de Leon, Natalia; Hodge, David B

    2015-07-01

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. This indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize ( Zea mays L.) lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA)more » content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Also, another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. In conclusion, this indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment« less

  12. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize ( Zea mays L.) lines

    DOE PAGES

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.; ...

    2015-02-20

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA)more » content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Also, another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. In conclusion, this indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment« less

  13. The Relationship Between Surface Curvature and Abdominal Aortic Aneurysm Wall Stress.

    PubMed

    de Galarreta, Sergio Ruiz; Cazón, Aitor; Antón, Raúl; Finol, Ender A

    2017-08-01

    The maximum diameter (MD) criterion is the most important factor when predicting risk of rupture of abdominal aortic aneurysms (AAAs). An elevated wall stress has also been linked to a high risk of aneurysm rupture, yet is an uncommon clinical practice to compute AAA wall stress. The purpose of this study is to assess whether other characteristics of the AAA geometry are statistically correlated with wall stress. Using in-house segmentation and meshing algorithms, 30 patient-specific AAA models were generated for finite element analysis (FEA). These models were subsequently used to estimate wall stress and maximum diameter and to evaluate the spatial distributions of wall thickness, cross-sectional diameter, mean curvature, and Gaussian curvature. Data analysis consisted of statistical correlations of the aforementioned geometry metrics with wall stress for the 30 AAA inner and outer wall surfaces. In addition, a linear regression analysis was performed with all the AAA wall surfaces to quantify the relationship of the geometric indices with wall stress. These analyses indicated that while all the geometry metrics have statistically significant correlations with wall stress, the local mean curvature (LMC) exhibits the highest average Pearson's correlation coefficient for both inner and outer wall surfaces. The linear regression analysis revealed coefficients of determination for the outer and inner wall surfaces of 0.712 and 0.516, respectively, with LMC having the largest effect on the linear regression equation with wall stress. This work underscores the importance of evaluating AAA mean wall curvature as a potential surrogate for wall stress.

  14. Effect of surface deposits on electromagnetic waves propagating in uniform ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1990-01-01

    A finite-element Galerkin formulation was used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.

  15. Analysis Of Direct Numerical Simulation Results Of Adverse Pressure Gradient Boundary Layer Through Anisotropy Invariant Mapping And Comparison With The Rans Simulations

    NASA Astrophysics Data System (ADS)

    Gungor, Ayse Gul; Nural, Ozan Ekin; Ertunc, Ozgur

    2017-11-01

    Purpose of this study is to analyze the direct numerical simulation data of a turbulent boundary layer subjected to strong adverse pressure gradient through anisotropy invariant mapping. RANS simulation using the ``Elliptic Blending Model'' of Manceau and Hanjolic (2002) is also conducted for the same flow case with commercial software Star-CCM+ and comparison of the results with DNS data is done. RANS simulation captures the general trends in the velocity field but, significant deviations are found when skin friction coefficients are compared. Anisotropy invariant map of Lumley and Newman (1977) and barycentric map of Banerjee et al. (2007) are used for the analysis. Invariant mapping of the DNS data has yielded that at locations away from the wall, flow is close to one component turbulence state. In the vicinity of the wall, turbulence is at two component limit which is one border of the barycentric map and as the flow evolves along the streamwise direction, it approaches to two component turbulence state. Additionally, at the locations away from the wall, turbulence approaches to two component limit. Furthermore, analysis of the invariants of the RANS simulations shows dissimilar results. In RANS simulations invariants do not approach to any of the limit states unlike the DNS.

  16. Limitation of Cell Elongation in Barley (Hordeum vulgare L.) Leaves Through Mechanical and Tissue-Hydraulic Properties.

    PubMed

    Touati, Mostefa; Knipfer, Thorsten; Visnovitz, Tamás; Kameli, Abdelkrim; Fricke, Wieland

    2015-07-01

    The aim of the present study was to assess the mechanical and hydraulic limitation of growth in leaf epidermal cells of barley (Hordeum vulgare L.) in response to agents which affect cellular water (mercuric chloride, HgCl(2)) and potassium (cesium chloride, CsCl; tetraethylammonium, TEA) transport, pump activity of plasma membrane H(+)-ATPase and wall acidification (fusicoccin, FC). Cell turgor (P) was measured with the cell pressure probe, and cell osmotic pressure (π) was analyzed through picoliter osmometry of single-cell extracts. A wall extensibility coefficient (M) and tissue hydraulic conductance coefficient (L) were derived using the Lockhart equation. There was a significant positive linear relationship between relative elemental growth rate and P, which fit all treatments, with an overall apparent yield threshold of 0.368 MPa. Differences in growth between treatments could be explained through differences in P. A comparison of L and M showed that growth in all except the FC treatment was co-limited through hydraulic and mechanical properties, though to various extents. This was accompanied by significant (0.17-0.24 MPa) differences in water potential (ΔΨ) between xylem and epidermal cells in the leaf elongation zone. In contrast, FC-treated leaves showed ΔΨ close to zero and a 10-fold increase in L. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Attrition-free pyrolysis to produce bio-oil and char.

    PubMed

    Mauviel, Guillain; Guillain, Mauviel; Kies, Fairouz; Fairouz, Kies; René, Mar Sans; Mar, Sans Rene; Ferrer, Monique; Monique, Ferrer; Lédé, Jacques; Jacques, Lédé

    2009-12-01

    Experiments are performed on a laboratory scale setup where beech wood chips are heated by gas convection and walls radiation. This study shows that it is possible to obtain high bio-oil and char yields with relatively low external heat transfer coefficients. The main advantage of this convection/radiation heat transfer mode compared to solid-solid collisions, applied in fluidized bed or twin screw reactors, is the reduction of solid attrition (char and sand). Thus tricky gas-solid separation through hot cyclones and/or hot filters could be avoided or reduced. It should be possible to recover directly bio-oil with less char particles and char free of sand dust. These qualities would allow easier use of these bio-products in different applications.

  18. Marine Surface Condenser Design Using Vertical Tubes Which Are Enhanced.

    DTIC Science & Technology

    1981-06-01

    hydraulic diameter. 2. Tube Wall. Heat transfer resistance through the tube wall is dependent upon tube material , wall thickness, and a scaling...B. Heat Transfer Coefficient for a Tube Wall For materials such as pure copper which have extremely high values for thermal conductivity, the...mandate the use of materials with relatively low thermal con- ductivities. The thermal resistance of the tube wall is the reciprocal of the heat

  19. MEASURING AND MODELING DISINFECTION WALL DEMAND IN METALLIC PIPES

    EPA Science Inventory

    A field test procedure was developed and implemented in Detroit to estimate chlorine loss due to wall demand in older 6" (152 mm) and 8" (203 mm) diameter, unlined cast iron pipes. The test results produced extremely high wall reaction rate coefficients that increased significan...

  20. Reflection of a shock wave from a thermally accommodating wall - Molecular simulation.

    NASA Technical Reports Server (NTRS)

    Deiwert, G. S.

    1973-01-01

    Reflection of a plane shock wave from a wall has been simulated on a microscopic scale using a direct simulation Monte Carlo technique of the type developed by Bird. A monatomic gas model representing argon was used to describe the fluid medium and a simple one-parameter accommodation coefficient model was used to describe the gas-surface interaction. The influence of surface accommodation was studied parametrically by varying the accommodation coefficient from zero to one. Results are presented showing the temporal variations of flow field density, and mass, momentum, and energy fluxes to the wall during the shock wave reflection process. The energy flux was used to determine the wall temperature history. Comparisons with experiment are found to be satisfactory where data are available.

  1. Effect of surface deposits on electromagnetic propagation in uniform ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1991-01-01

    A finite-element Galerkin formulation has been used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple dielectric surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.

  2. Investigation of K(o) Testing in Cohesionless Soils

    DTIC Science & Technology

    1975-12-01

    ADVERTISING, PUBLICATION, OR PROMOTIONAL PURPOSES. CITATION OF TRADE NAMES DOES NOT CONSTITUTE Ail OFFICIAL EN - PORSEMENT OR APPROVAL OF THE...COEFFICIENTS Ka = ACTIVE Kp = PASSIVE K„ - AT REST OUTER MOVEMENT OF WALL 0 IN WARD MOVEM EN T OF WALL Figure 1. Earth pressure coefficient...however, has been criti- cized by Andrawes and El -Sohby ^ as it takes a long time to conduct the test on cohesive soil In which no appreciable

  3. Comparison of the acetyl bromide spectrophotometric method with other analytical lignin methods for determining lignin concentration in forage samples.

    PubMed

    Fukushima, Romualdo S; Hatfield, Ronald D

    2004-06-16

    Present analytical methods to quantify lignin in herbaceous plants are not totally satisfactory. A spectrophotometric method, acetyl bromide soluble lignin (ABSL), has been employed to determine lignin concentration in a range of plant materials. In this work, lignin extracted with acidic dioxane was used to develop standard curves and to calculate the derived linear regression equation (slope equals absorptivity value or extinction coefficient) for determining the lignin concentration of respective cell wall samples. This procedure yielded lignin values that were different from those obtained with Klason lignin, acid detergent acid insoluble lignin, or permanganate lignin procedures. Correlations with in vitro dry matter or cell wall digestibility of samples were highest with data from the spectrophotometric technique. The ABSL method employing as standard lignin extracted with acidic dioxane has the potential to be employed as an analytical method to determine lignin concentration in a range of forage materials. It may be useful in developing a quick and easy method to predict in vitro digestibility on the basis of the total lignin content of a sample.

  4. The yield and decay coefficients of exoelectrogenic bacteria in bioelectrochemical systems.

    PubMed

    Wilson, Erica L; Kim, Younggy

    2016-05-01

    In conventional wastewater treatment, waste sludge management and disposal contribute the major cost for wastewater treatment. Bioelectrochemical systems, as a potential alternative for future wastewater treatment and resources recovery, are expected to produce small amounts of waste sludge because exoelectrogenic bacteria grow on anaerobic respiration and form highly populated biofilms on bioanode surfaces. While waste sludge production is governed by the yield and decay coefficient, none of previous studies have quantified these kinetic constants for exoelectrogenic bacteria. For yield coefficient estimation, we modified McCarty's free energy-based model by using the bioanode potential for the free energy of the electron acceptor reaction. The estimated true yield coefficient ranged 0.1 to 0.3 g-VSS (volatile suspended solids) g-COD(-1) (chemical oxygen demand), which is similar to that of most anaerobic microorganisms. The yield coefficient was sensitively affected by the bioanode potential and pH while the substrate and bicarbonate concentrations had relatively minor effects on the yield coefficient. In lab-scale experiments using microbial electrolysis cells, the observed yield coefficient (including the effect of cell decay) was found to be 0.020 ± 0.008 g-VSS g-COD(-1), which is an order of magnitude smaller than the theoretical estimation. Based on the difference between the theoretical and experimental results, the decay coefficient was approximated to be 0.013 ± 0.002 d(-1). These findings indicate that bioelectrochemical systems have potential for future wastewater treatment with reduced waste sludge as well as for resources recovery. Also, the found kinetic information will allow accurate estimation of wastewater treatment performance in bioelectrochemical systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Influence of slosh baffles on thermodynamic performance in liquid hydrogen tank.

    PubMed

    Liu, Zhan; Li, Cui

    2018-03-15

    A calibrated CFD model is built to investigate the influence of slosh baffles on the pressurization performance in liquid hydrogen (LH 2 ) tank. The calibrated CFD model is proven to have great predictive ability by compared against the flight experimental results. The pressure increase, thermal stratification and wall heat transfer coefficient of LH 2 tank have been detailedly studied. The results indicate that slosh baffles have a great influence on tank pressure increase, fluid temperature distribution and wall heat transfer. Owning to the existence of baffles, the stratification thickness increases gradually with the distance from tank axis to tank wall. While for the tank without baffles, the stratification thickness decreases firstly and then increases with the increase of the distance from the axis. The "M" type stratified thickness distribution presents in tank without baffles. One modified heat transfer coefficient correlation has been proposed with the change of fluid temperature considered by multiplying a temperature correction factor. It has been proven that the average relative prediction errors of heat transfer coefficient reduced from 19.08% to 4.98% for the wet tank wall of the tank, from 8.93% to 4.27% for the dry tank wall, respectively, calculated by the modified correlation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Computation of thermodynamic and transport properties to predict thermophoretic effects in an argon-krypton mixture

    NASA Astrophysics Data System (ADS)

    Miller, Nicholas A. T.; Daivis, Peter J.; Snook, Ian K.; Todd, B. D.

    2013-10-01

    Thermophoresis is the movement of molecules caused by a temperature gradient. Here we report the results of a study of thermophoresis using non-equilibrium molecular dynamics simulations of a confined argon-krypton fluid subject to two different temperatures at thermostated walls. The resulting temperature profile between the walls is used along with the Soret coefficient to predict the concentration profile that develops across the channel. We obtain the Soret coefficient by calculating the mutual diffusion and thermal diffusion coefficients. We report an appropriate method for calculating the transport coefficients for binary systems, using the Green-Kubo integrals and radial distribution functions obtained from equilibrium molecular dynamics simulations of the bulk fluid. Our method has the unique advantage of separating the mutual diffusion and thermal diffusion coefficients, and calculating the sign and magnitude of their individual contributions to thermophoresis in binary mixtures.

  7. Experimental study on the heat transfer characteristics of a nuclear reactor containment wall cooled by gravitationally falling water

    NASA Astrophysics Data System (ADS)

    Pasek, Ari D.; Umar, Efrison; Suwono, Aryadi; Manalu, Reinhard E. E.

    2012-06-01

    Gravitationally falling water cooling is one of mechanism utilized by a modern nuclear Pressurized Water Reactor (PWR) for its Passive Containment Cooling System (PCCS). Since the cooling is closely related to the safety, water film cooling characteristics of the PCCS should be studied. This paper deals with the experimental study of laminar water film cooling on the containment model wall. The influences of water mass flow rate and wall heat rate on the heat transfer characteristic were studied. This research was started with design and assembly of a containment model equipped with the water cooling system, and calibration of all measurement devices. The containment model is a scaled down model of AP 1000 reactor. Below the containment steam is generated using electrical heaters. The steam heated the containment wall, and then the temperatures of the wall in several positions were measure transiently using thermocouples and data acquisition. The containment was then cooled by falling water sprayed from the top of the containment. The experiments were done for various wall heat rate and cooling water flow rate. The objective of the research is to find the temperature profile along the wall before and after the water cooling applied, prediction of the water film characteristic such as means velocity, thickness and their influence to the heat transfer coefficient. The result of the experiments shows that the wall temperatures significantly drop after being sprayed with water. The thickness of water film increases with increasing water flow rate and remained constant with increasing wall heat rate. The heat transfer coefficient decreases as film mass flow rate increase due to the increases of the film thickness which causes the increasing of the thermal resistance. The heat transfer coefficient increases slightly as the wall heat rate increases. The experimental results were then compared with previous theoretical studied.

  8. Radial mixing in turbomachines

    NASA Astrophysics Data System (ADS)

    Segaert, P.; Hirsch, Ch.; Deruyck, J.

    1991-03-01

    A method for computing the effects of radial mixing in a turbomachinery blade row has been developed. The method fits in the framework of a quasi-3D flow computation and hence is applied in a corrective fashion to through flow distributions. The method takes into account both secondary flows and turbulent diffusion as possible sources of mixing. Secondary flow velocities determine the magnitude of the convection terms in the energy redistribution equation while a turbulent diffusion coefficient determines the magnitude of the diffusion terms. Secondary flows are computed by solving a Poisson equation for a secondary streamfunction on a transversal S3-plane, whereby the right-hand side axial vorticity is composed of different contributions, each associated to a particular flow region: inviscid core flow, end-wall boundary layers, profile boundary layers and wakes. The turbulent mixing coefficient is estimated by a semi-empirical correlation. Secondary flow theory is applied to the VUB cascade testcase and comparisons are made between the computational results and the extensive experimental data available for this testcase. This comparison shows that the secondary flow computations yield reliable predictions of the secondary flow pattern, both qualitatively and quantitatively, taking into account the limitations of the model. However, the computations show that use of a uniform mixing coefficient has to be replaced by a more sophisticated approach.

  9. Pore-size dependence and characteristics of water diffusion in slitlike micropores

    DOE PAGES

    Diallo, S. O.

    2015-07-16

    The temperature dependence of the dynamics of water inside microporous activated carbon fibers (ACF) is investigated by means of incoherent elastic and quasielastic neutron-scattering techniques. The aim is to evaluate the effect of increasing pore size on the water dynamics in these primarily hydrophobic slit-shaped channels. Using two different micropore sizes (similar to 12 and 18 angstrom, denoted, respectively, ACF-10 and ACF-20), a clear suppression of the mobility of the water molecules is observed as the pore gap or temperature decreases. Suppression, we found, is accompanied by a systematic dependence of the average translational diffusion coefficient D-r and relaxation timemore » [tau(0)] of the restricted water on pore size and temperature. We observed D-r values and tested against a proposed scaling law, in which the translational diffusion coefficient D-r of water within a porous matrix was found to depend solely on two single parameters, a temperature-independent translational diffusion coefficient D-c associated with the water bound to the pore walls and the ratio theta of this strictly confined water to the total water inside the pore, yielding unique characteristic parameters for water transport in these carbon channels across the investigated temperature range.« less

  10. Secondary electron emission yield from high aspect ratio carbon velvet surfaces

    DOE PAGES

    Jin, Chenggang; Ottaviano, Angelica; Raitses, Yevgeny

    2017-11-01

    The plasma electrons bombarding a plasma-facing wall surface can induce secondary electron emission (SEE) from the wall. A strong SEE can enhance the power losses by reducing the wall sheath potential and thereby increasing the electron flux from the plasma to the wall. The use of the materials with surface roughness and the engineered materials with surface architecture is known to reduce the effective SEE by trapping the secondary electrons. In this work, we demonstrate a 65% reduction of SEE yield using a velvet material consisting of high aspect ratio carbon fibers. The measurements of SEE yield for different velvetmore » samples using the electron beam in vacuum demonstrate the dependence of the SEE yield on the fiber length and the packing density, which is strongly affected by the alignment of long velvet fibers with respect to the electron beam impinging on the velvet sample. Furthermore, the results of SEE measurements support the previous observations of the reduced SEE measured in Hall thrusters.« less

  11. Secondary electron emission yield from high aspect ratio carbon velvet surfaces

    NASA Astrophysics Data System (ADS)

    Jin, Chenggang; Ottaviano, Angelica; Raitses, Yevgeny

    2017-11-01

    The plasma electrons bombarding a plasma-facing wall surface can induce secondary electron emission (SEE) from the wall. A strong SEE can enhance the power losses by reducing the wall sheath potential and thereby increasing the electron flux from the plasma to the wall. The use of the materials with surface roughness and the engineered materials with surface architecture is known to reduce the effective SEE by trapping the secondary electrons. In this work, we demonstrate a 65% reduction of SEE yield using a velvet material consisting of high aspect ratio carbon fibers. The measurements of SEE yield for different velvet samples using the electron beam in vacuum demonstrate the dependence of the SEE yield on the fiber length and the packing density, which is strongly affected by the alignment of long velvet fibers with respect to the electron beam impinging on the velvet sample. The results of SEE measurements support the previous observations of the reduced SEE measured in Hall thrusters.

  12. Quantifying wall turbulence via a symmetry approach: A Lie group theory

    NASA Astrophysics Data System (ADS)

    She, Zhen-Su; Chen, Xi; Hussain, Fazle

    2017-11-01

    We present a symmetry-based approach which yields analytic expressions for the mean velocity and kinetic energy profiles from a Lie-group analysis. After verifying the dilation-group invariance of the Reynolds averaged Navier-Stokes equation in the presence of a wall, we select a stress and energy length function as similarity variables which are assumed to have a simple dilation-invariant form. Three kinds of (local) invariant forms of the length functions are postulated, a combination of which yields a multi-layer formula giving its distribution in the entire flow region normal to the wall. The mean velocity profile is then predicted using the mean momentum equation, which yields, in particular, analytic expressions for the (universal) wall function and separate wake functions for pipe and channel - which are validated by data from direct numerical simulations (DNS). Future applications to a variety of wall flows such as flows around flat plate or airfoil, in a Rayleigh-Benard cell or Taylor-Couette system, etc., are discussed, for which the dilation group invariance is valid in the wall-normal direction.

  13. Identification and genetic characterization of maize cell wall variation for improved biorefinery feedstock characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauly, Markus; Hake, Sarah

    2013-10-31

    The objectives of this program are to 1) characterize novel maize mutants with altered cell walls for enhanced biorefinery characteristics and 2) find quantitative trait loci (QTLs) related to biorefinery characteristics by taking advantage of the genetic diversity of maize. As a result a novel non-transgenic maize plant (cal1) has been identified, whose stover (leaves and stalk) contain more glucan in their walls leading to a higher saccharification yield, when subjected to a standard enzymatic digestion cocktail. Stacking this trait with altered lignin mutants yielded evene higher saccharification yields. Cal-1 mutants do not show a loss of kernel and ormore » biomass yield when grown in the field . Hence, cal1 biomass provides an excellent feedstock for the biofuel industry.« less

  14. An experimental investigation of the effects of spiral angle on the evaporation heat transfer coefficients in microfin tubes with visualization technique

    NASA Astrophysics Data System (ADS)

    Oh, Se-Yoon

    A smooth tube and five microfin tubes were tested, and evaporation heat transfer coefficients were measured and compared for mass fluxes, 50, 100 and 200 kg/m2 s, and heat fluxes, 5, 10 and 20 kW/m 2, with Refrigerant 134a as a working fluid. The evaporation heat transfer coefficients at quality 0.5 were compared among the smooth and five microfin tubes with spiral angles 6, 12, 18, 25 and 44 degrees. The effect of the spiral angle on the heat transfer coefficients was examined. It was found that the optimal spiral angle where the maximum heat transfer coefficient occurs, mainly depends on mass flux. The optimal spiral angle was 18 degrees for G=50 kg/m2 s, and 6 degrees for G=100 and 200 kg/m 2 s. A borescope was used to visualize the flow on the inside wall of test tubes. The purpose was to find out the effect of the grooves on the liquid flow in microfin tubes and to explain the mechanism of heat transfer enhancement. Temperatures on the tube wall were measured at the same axial location as the imaging sensor of the borescope, and were related to the behavior of the liquid flow on the inside wall of the tubes. The liquid flow in the grooves on the wall was found to be the most important factor in enhancing heat transfer coefficients. The liquid flowed upward along the grooves and covered the upper inside wall of the microfin tubes at G=50 kg/m2 s. When heat flux increases, the liquid flow was found at a higher position. Both liquid viscosity and surface tension decrease, when temperature increases. Thus, the lower viscosity at higher heat flux facilitated the upward motion of the liquid flow in the grooves, so that the momentum force as well as the capillary effect was found to push the liquid along the grooves.* *A CD is included with dissertation containing video clips in avi format which can be viewed with media player.

  15. Comparison of two procedures for predicting rocket engine nozzle performance

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth J.

    1987-01-01

    Two nozzle performance prediction procedures which are based on the standardized JANNAF methodology are presented and compared for four rocket engine nozzles. The first procedure required operator intercedence to transfer data between the individual performance programs. The second procedure is more automated in that all necessary programs are collected into a single computer code, thereby eliminating the need for data reformatting. Results from both procedures show similar trends but quantitative differences. Agreement was best in the predictions of specific impulse and local skin friction coefficient. Other compared quantities include characteristic velocity, thrust coefficient, thrust decrement, boundary layer displacement thickness, momentum thickness, and heat loss rate to the wall. Effects of wall temperature profile used as an input to the programs was investigated by running three wall temperature profiles. It was found that this change greatly affected the boundary layer displacement thickness and heat loss to the wall. The other quantities, however, were not drastically affected by the wall temperature profile change.

  16. On modelling the pressure-strain correlations in wall bounded flows

    NASA Technical Reports Server (NTRS)

    Peltier, L. J.; Biringen, S.

    1990-01-01

    Turbulence models for the pressure-strain term of the Reynolds-stress equations in the vicinity of a moving wall are evaluated for a high Reynolds number flow using decaying grid turbulence as a model problem. The data of Thomas and Hancock are used as a base for evaluating the different turbulence models. In particular, the Rotta model for return-to-isotropy is evaluated both in its inclusion into the Reynolds-stress equation model and in comparison to a nonlinear model advanced by Sarkar and Speziale. Further, models for the wall correction to the transfer term advanced by Launder et al., Shir, and Shih and Lumley are compared. Initial data using the decaying grid turbulence experiment as a base suggests that the coefficients proposed for these models are high perhaps by as much as an order of magnitude. The Shih and Lumley model which satisfies realizability constraints, in particular, seems to hold promise in adequately modeling the Reynolds stress components of this flow. Extensions of this work are to include testing the homogeneous transfer model by Shih and Lumley and the testing of the wall transfer models using their proposed coefficients and the coefficients chosen from this work in a flow with mean shear component.

  17. Unsteady Analysis of Blade and Tip Heat Transfer as Influenced by the Upstream Momentum and Thermal Wakes

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.; Rigby, David L.; Steinthorsson, Erlendur; Heidmann, James D.; Fabian, John C.

    2008-01-01

    The effect of the upstream wake on the blade heat transfer has been numerically examined. The geometry and the flow conditions of the first stage turbine blade of GE s E3 engine with a tip clearance equal to 2 percent of the span was utilized. Based on numerical calculations of the vane, a set of wake boundary conditions were approximated, which were subsequently imposed upon the downstream blade. This set consisted of the momentum and thermal wakes as well as the variation in modeled turbulence quantities of turbulence intensity and the length scale. Using a one-blade periodic domain, the distributions of unsteady heat transfer rate on the turbine blade and its tip, as affected by the wake, were determined. Such heat transfer coefficient distribution was computed using the wall heat flux and the adiabatic wall temperature to desensitize the heat transfer coefficient to the wall temperature. For the determination of the wall heat flux and the adiabatic wall temperatures, two sets of computations were required. The results were used in a phase-locked manner to compute the unsteady or steady heat transfer coefficients. It has been found that the unsteady wake has some effect on the distribution of the time averaged heat transfer coefficient on the blade and that this distribution is different from the distribution that is obtainable from a steady computation. This difference was found to be as large as 20 percent of the average heat transfer on the blade surface. On the tip surface, this difference is comparatively smaller and can be as large as four percent of the average.

  18. Forced convection and flow boiling with and without enhancement devices for top-side-heated horizontal channels

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D., Sr.; Turknett, Jerry C.

    1989-01-01

    The effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly was studied. Studies are completed of the variations in the local (axial and circumferential) and mean heat transfer coefficients in horizontal, top-heated coolant channels with smooth walls and internal heat transfer enhancement devices. The working fluid is freon-11. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls; (2) examine the effect of channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel; and (3) develop and improved data reduction analysis. The case of the top-heated, horizontal flow channel with smooth wall (1.37 cm inside diameter, and 122 cm heated length) was completed. The data were reduced using a preliminary analysis based on the heated hydraulic diameter. Preliminary examination of the local heat transfer coefficient variations indicated that there are significant axial and circumferential variations. However, it appears that the circumferential variation is more significant than the axial ones. In some cases, the circumferential variations were as much as a factor of ten. The axial variations rarely exceeded a factor of three.

  19. The coefficient of restitution of pressurized balls: a mechanistic model

    NASA Astrophysics Data System (ADS)

    Georgallas, Alex; Landry, Gaëtan

    2016-01-01

    Pressurized, inflated balls used in professional sports are regulated so that their behaviour upon impact can be anticipated and allow the game to have its distinctive character. However, the dynamics governing the impacts of such balls, even on stationary hard surfaces, can be extremely complex. The energy transformations, which arise from the compression of the gas within the ball and from the shear forces associated with the deformation of the wall, are examined in this paper. We develop a simple mechanistic model of the dependence of the coefficient of restitution, e, upon both the gauge pressure, P_G, of the gas and the shear modulus, G, of the wall. The model is validated using the results from a simple series of experiments using three different sports balls. The fits to the data are extremely good for P_G > 25 kPa and consistent values are obtained for the value of G for the wall material. As far as the authors can tell, this simple, mechanistic model of the pressure dependence of the coefficient of restitution is the first in the literature. *%K Coefficient of Restitution, Dynamics, Inflated Balls, Pressure, Impact Model

  20. The yield and post-yield behavior of high-density polyethylene

    NASA Technical Reports Server (NTRS)

    Semeliss, M. A.; Wong, R.; Tuttle, M. E.

    1990-01-01

    An experimental and analytical evaluation was made of the yield and post-yield behavior of high-density polyethylene, a semi-crystalline thermoplastic. Polyethylene was selected for study because it is very inexpensive and readily available in the form of thin-walled tubes. Thin-walled tubular specimens were subjected to axial loads and internal pressures, such that the specimens were subjected to a known biaxial loading. A constant octahederal shear stress rate was imposed during all tests. The measured yield and post-yield behavior was compared with predictions based on both isotropic and anisotropic models. Of particular interest was whether inelastic behavior was sensitive to the hydrostatic stress level. The major achievements and conclusions reached are discussed.

  1. Thermal analysis of insulated north-wall greenhouse with solar collector under passive mode

    NASA Astrophysics Data System (ADS)

    Chauhan, Prashant Singh; Kumar, Anil

    2018-04-01

    An insulated north wall greenhouse dryer has been fabricated and tested for no-load condition under passive mode. Testing has been conducted in two different cases. Case-I is considered for solar collector kept inside the dryer and Case-II is dryer without solar collector. Convective heat transfer coefficient and various heat transfer dimensionless numbers with have been calculated for thermal analysis. The maximum convective heat transfer coefficient is found 52.18 W/m2°C at 14 h during the first day for Case-I. The difference of the highest convective heat transfer coefficient of both cases was 8.34 W/m2°C. Net heat gain inside room curves are uniform and smooth for Case-I, which shows the steady heat generation process due to presence of solar collector inside the dryer. Above results depicts the effectiveness of solar collector and insulated north wall. The selection of suitable crop for drying can be done by analysing article's result.

  2. Use of the Ames Check Standard Model for the Validation of Wall Interference Corrections

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Amaya, M.; Flach, R.

    2018-01-01

    The new check standard model of the NASA Ames 11-ft Transonic Wind Tunnel was chosen for a future validation of the facility's wall interference correction system. The chosen validation approach takes advantage of the fact that test conditions experienced by a large model in the slotted part of the tunnel's test section will change significantly if a subset of the slots is temporarily sealed. Therefore, the model's aerodynamic coefficients have to be recorded, corrected, and compared for two different test section configurations in order to perform the validation. Test section configurations with highly accurate Mach number and dynamic pressure calibrations were selected for the validation. First, the model is tested with all test section slots in open configuration while keeping the model's center of rotation on the tunnel centerline. In the next step, slots on the test section floor are sealed and the model is moved to a new center of rotation that is 33 inches below the tunnel centerline. Then, the original angle of attack sweeps are repeated. Afterwards, wall interference corrections are applied to both test data sets and response surface models of the resulting aerodynamic coefficients in interference-free flow are generated. Finally, the response surface models are used to predict the aerodynamic coefficients for a family of angles of attack while keeping dynamic pressure, Mach number, and Reynolds number constant. The validation is considered successful if the corrected aerodynamic coefficients obtained from the related response surface model pair show good agreement. Residual differences between the corrected coefficient sets will be analyzed as well because they are an indicator of the overall accuracy of the facility's wall interference correction process.

  3. Shear localization and effective wall friction in a wall bounded granular flow

    NASA Astrophysics Data System (ADS)

    Artoni, Riccardo; Richard, Patrick

    2017-06-01

    In this work, granular flow rheology is investigated by means of discrete numerical simulations of a torsional, cylindrical shear cell. Firstly, we focus on azimuthal velocity profiles and study the effect of (i) the confining pressure, (ii) the particle-wall friction coefficient, (iii) the rotating velocity of the bottom wall and (iv) the cell diameter. For small cell diameters, azimuthal velocity profiles are nearly auto-similar, i.e. they are almost linear with the radial coordinate. Different strain localization regimes are observed : shear can be localized at the bottom, at the top of the shear cell, or it can be even quite distributed. This behavior originates from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. Then we study the effective friction at the cylindrical wall, and point out the strong link between wall friction, slip and fluctuations of forces and velocities. Even if the system is globally below the sliding threshold, force fluctuations trigger slip events, leading to a nonzero wall slip velocity and an effective wall friction coefficient different from the particle-wall one. A scaling law was found linking slip velocity, granular temperature in the main flow direction and effective friction. Our results suggest that fluctuations are an important ingredient for theories aiming to capture the interface rheology of granular materials.

  4. Determination of the coefficient of reflection of metastable argon atoms from the discharge tube wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigorian, G. M.; Dyatko, N. A.; Kochetov, I. V., E-mail: kochet@triniti.ru

    Radial profiles of the density of metastable atoms Ar({sup 3}P{sub 2}) in the positive column of a dc glow discharge in argon were measured. Gas-discharge glass tubes with clean inner surfaces and surfaces covered with a carbonitride or carbon film were utilized. The parameters of the discharge plasma under experimental conditions were calculated in the framework of a one-dimensional (along the tube radius) discharge model. The coefficient K of reflection of Ar({sup 3}P{sub 2}) atoms from the tube wall was estimated by comparing the measured and calculated density profiles. It is found that, for a clean tube wall, the coefficientmore » of reflection is K = 0.4 ± 0.2, whereas for a wall covered with a carbonitride or carbon film, it is K < 0.2.« less

  5. Getting Clever with the Sliding Ladder

    ERIC Educational Resources Information Center

    De, Subhranil

    2014-01-01

    The familiar system involving a uniform ladder sliding against a vertical wall and a horizontal floor is considered again. The floor is taken to be smooth and the wall to be possibly rough--a situation where no matter how large the static friction coefficient between the ladder and the wall, the ladder cannot lean at rest and must slide down.…

  6. Heat Transfer at a Long Electrically-Simulated Water Wall in a Circulating Fluidised Bed

    NASA Astrophysics Data System (ADS)

    Sundaresan, R.; Kolar, Ajit Kumar

    In the present work, heat transfer measurements are reported in a 100mm square, 5.5 m tall, cold CFB. The test section is a 19 mm OD electrically heated heat transfer tube, 4.64 m tall (covering more than 80% of the CFB height), sandwiched between two equally tall dummy tubes of 19mm OD, thus simulating a water wall geometry, forming one wall of the CFB. Narrow cut sand particles of mean diameters 156, 256, and 362 micrometers, and a wide cut sample of mean diameter 265 micrometer were used as the bed material. The superficial gas velocity ranged from 4.2 to 8.2 m/s, and the solids recycle flux varied from 17 to 110 kg/m2s. Local heat transfer coefficient at the simulated water wall varies, as expected from a low value at the top of the riser to a high value at the bottom, with an interesting increasing and decreasing trend in between. The average heat transfer coefficients were compared with those available in open literature. Correlations for average heat transfer coefficient are presented, both in terms of an average suspension density and also in terms of important nondimensional numbers, namely, Froude number, relative solids flux and velocity ratio. Comparisons are also made with predictions of relevant heat transfer models. Based on the present fifty-five experimental data points, the following correlation was presented with a correlation coefficient of 0.862 and maximum error is ± 15 %.

  7. CFD Based Prediction of Discharge Coefficient of Sonic Nozzle with Surface Roughness

    NASA Astrophysics Data System (ADS)

    Bagaskara, Agastya; Agoes Moelyadi, Mochammad

    2018-04-01

    Due to its simplicity and accuracy, sonic nozzle is widely used in gas flow measurement, gas flow meter calibration standard, and flow control. The nozzle obtains mass flow rate by measuring temperature and pressure in the inlet during choked flow condition and calculate the flow rate using the one-dimensional isentropic flow equation multiplied by a discharge coefficient, which takes into account multiple non-isentropic effects, which causes the reduction in mass flow. Proper determination of discharge coefficient is crucial to ensure the accuracy of mass flow measurement by the nozzle. Available analytical solution for the prediction of discharge coefficient assumes that the nozzle wall is hydraulically smooth which causes disagreement with experimental results. In this paper, the discharge coefficient of sonic nozzle is determined using computational fluid dynamics method by taking into account the roughness of the wall. It is found that the result shows better agreement with the experiment data compared to the analytical result.

  8. Fluid self-diffusion in Scots pine sapwood tracheid cells.

    PubMed

    Johannessen, Espen H; Hansen, Eddy W; Rosenholm, Jarl B

    2006-02-09

    The self-diffusion coefficients of water and toluene in Scots pine sapwood was measured using low field pulsed field gradient nuclear magnetic resonance (PFG-NMR). Wood chips of 8 mm diameter were saturated with the respective liquids, and liquid self-diffusion was then traced in one dimension orthogonal to the tracheid cell walls in the wood's radial direction. The experimental echo attenuation curves were exponential, and characteristic self-diffusion coefficients were produced for diffusion times spanning from very short times to times on the order of magnitude of seconds. Observed self-diffusion coefficients were decaying asymptotically as a function of diffusion time, an effect which was ascribed to the cell walls' restriction on confined liquid diffusion. The observed self-diffusion behavior in Scots pine sapwood was compared to self-diffusion coefficients obtained from simulations of diffusion in a square. Principles of molecular displacements in confined geometries were used for elucidating the wood's cellular structure from the observed diffusion coefficients. The results were compared with a mathematical model for diffusion between parallel planes.

  9. Influence of Dissipative Particle Dynamics parameters and wall models on planar micro-channel flows

    NASA Astrophysics Data System (ADS)

    Wang, Yuyi; She, Jiangwei; Zhou, Zhe-Wei; microflow Group Team

    2017-11-01

    Dissipative Particle Dynamics (DPD) is a very effective approach in simulating mesoscale hydrodynamics. The influence of solid boundaries and DPD parameters are typically very strong in DPD simulations. The present work studies a micro-channel Poisseuille flow. Taking the neutron scattering experiment and molecular dynamics simulation result as bench mark, the DPD results of density distribution and velocity profile are systematically studied. The influence of different levels of coarse-graining, the number densities of wall and fluid, conservative force coefficients, random and dissipative force coefficients, different wall model and reflective boundary conditions are discussed. Some mechanisms behind such influences are discussed and the artifacts in the simulation are identified with the bench mark. Chinese natural science foundation (A020405).

  10. Rapid wall relaxation in elongating tissues.

    PubMed

    Matyssek, R; Maruyama, S; Boyer, J S

    1988-04-01

    Reported differences in the relaxation of cell walls in enlarging stem tissues of soybean (Glycine max [L.] Merr.) and pea (Pisum sativum L.) cause measurements of the yield threshold turgor, an important growth parameter, to be in doubt. Using the pressure probe and guillotine psychrometer, we investigated wall relaxation in these species by excising the elongating tissue in air to remove the water supply. We found that the rapid kinetics usually exhibited by soybean could be delayed and made similar to the slow kinetics previously reported for pea if slowly growing or mature tissue was left attached to the rapidly growing tissue when relaxation was initiated. The greater the amount of attached tissue, the slower the relaxation, suggesting that slowly growing tissue acted as a water source. Consistent with this concept was a lower water potential in the rapidly elongating tissue than in the slowly growing tissue. Previous reports of wall relaxation in pea included slowly growing tissue. If this tissue was removed from pea, relaxation became as rapid as usually exhibited by soybean. It is concluded that the true relaxation of cell walls to the yield threshold requires only a few minutes and that the yield threshold should be constant during so short a time, thus reflecting the yield threshold in the intact plant before excision. Under these conditions, the yield threshold was close to the turgor in the intact plant regardless of the species. The presence of slowly growing or mature tissue delays wall relaxation and should be avoided during such measurements. However, this delay can be used to advantage when turgor of intact growing tissues is being measured using excised tissues because turgor does not change for a considerable time after excision.

  11. Rapid Wall Relaxation in Elongating Tissues 1

    PubMed Central

    Matyssek, Rainer; Maruyama, Sachio; Boyer, John S.

    1988-01-01

    Reported differences in the relaxation of cell walls in enlarging stem tissues of soybean (Glycine max [L.] Merr.) and pea (Pisum sativum L.) cause measurements of the yield threshold turgor, an important growth parameter, to be in doubt. Using the pressure probe and guillotine psychrometer, we investigated wall relaxation in these species by excising the elongating tissue in air to remove the water supply. We found that the rapid kinetics usually exhibited by soybean could be delayed and made similar to the slow kinetics previously reported for pea if slowly growing or mature tissue was left attached to the rapidly growing tissue when relaxation was initiated. The greater the amount of attached tissue, the slower the relaxation, suggesting that slowly growing tissue acted as a water source. Consistent with this concept was a lower water potential in the rapidly elongating tissue than in the slowly growing tissue. Previous reports of wall relaxation in pea included slowly growing tissue. If this tissue was removed from pea, relaxation became as rapid as usually exhibited by soybean. It is concluded that the true relaxation of cell walls to the yield threshold requires only a few minutes and that the yield threshold should be constant during so short a time, thus reflecting the yield threshold in the intact plant before excision. Under these conditions, the yield threshold was close to the turgor in the intact plant regardless of the species. The presence of slowly growing or mature tissue delays wall relaxation and should be avoided during such measurements. However, this delay can be used to advantage when turgor of intact growing tissues is being measured using excised tissues because turgor does not change for a considerable time after excision. PMID:16666048

  12. Non-equilibrium phase behavior and friction of confined molecular films under shear: A non-equilibrium molecular dynamics study.

    PubMed

    Maćkowiak, Sz; Heyes, D M; Dini, D; Brańka, A C

    2016-10-28

    The phase behavior of a confined liquid at high pressure and shear rate, such as is found in elastohydrodynamic lubrication, can influence the traction characteristics in machine operation. Generic aspects of this behavior are investigated here using Non-equilibrium Molecular Dynamics (NEMD) simulations of confined Lennard-Jones (LJ) films under load with a recently proposed wall-driven shearing method without wall atom tethering [C. Gattinoni et al., Phys. Rev. E 90, 043302 (2014)]. The focus is on thick films in which the nonequilibrium phases formed in the confined region impact on the traction properties. The nonequilibrium phase and tribological diagrams are mapped out in detail as a function of load, wall sliding speed, and atomic scale surface roughness, which is shown can have a significant effect. The transition between these phases is typically not sharp as the external conditions are varied. The magnitude of the friction coefficient depends strongly on the nonequilibrium phase adopted by the confined region of molecules, and in general does not follow the classical friction relations between macroscopic bodies, e.g., the frictional force can decrease with increasing load in the Plug-Slip (PS) region of the phase diagram owing to structural changes induced in the confined film. The friction coefficient can be extremely low (∼0.01) in the PS region as a result of incommensurate alignment between a (100) face-centered cubic wall plane and reconstructed (111) layers of the confined region near the wall. It is possible to exploit hysteresis to retain low friction PS states well into the central localization high wall speed region of the phase diagram. Stick-slip behavior due to periodic in-plane melting of layers in the confined region and subsequent annealing is observed at low wall speeds and moderate external loads. At intermediate wall speeds and pressure values (at least) the friction coefficient decreases with increasing well depth of the LJ potential between the wall atoms, but increases when the attractive part of the potential between wall atoms and confined molecules is made larger.

  13. Optical and Acoustic Device Applications of Ferroelastic Crystals

    NASA Astrophysics Data System (ADS)

    Meeks, Steven Wayne

    This dissertation presents the discovery of a means of creating uniformly periodic domain gratings in a ferroelastic crystal of neodymium pentaphosphate (NPP). The uniform and non-uniform domain structures which can be created in NPP have the potential applications as tunable active gratings for lasers, tunable diffraction gratings, tunable Bragg reflection gratings, tunable acoustic filters, optical modulators, and optical domain wall memories. The interaction of optical and acoustic waves with ferroelastic domain walls in NPP is presented in detail. Acoustic amplitude reflection coefficients from a single domain wall in NPP are much larger than other ferroelastic-ferroelectrics such as gadolinium molybdate (GMO). Domain walls of NPP are used to make two demonstration acoustic devices: a tunable comb filter and a tunable delay line. The tuning process is accomplished by moving the position of the reflecting surface (the domain wall). A theory of the reflection of optical waves from NPP domain walls is discussed. The optical reflection is due to a change in the polarization of the wave, and not a change in the index, as the wave crosses the domain wall. Theoretical optical power reflection coefficients show good agreement with the experimentally measured values. The largest optical reflection coefficient of a single domain wall is at a critical angle and is 2.2% per domain wall. Techniques of injecting periodic and aperiodic domain walls into NPP are presented. The nucleation process of the uniformly periodic domain gratings in NPP is described in terms of a newly-discovered domain structure, namely the ferroelastic bubble. A ferroelastic bubble is the elastic analogue to the well-known magnetic bubble. The period of the uniformly periodic domain grating is tunable from 100 to 0.5 microns and the grating period may be tuned relatively rapidly. The Bragg efficiency of these tunable gratings is 77% for an uncoated crystal. Several demonstration devices which use these periodic structures are discussed. These devices are a tunable active grating laser (TAG laser), a tunable active grating (TAG), and a tunable acoustic bulk wave filter.

  14. The Real-Time Wall Interference Correction System of the NASA Ames 12-Foot Pressure Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert

    1998-01-01

    An improved version of the Wall Signature Method was developed to compute wall interference effects in three-dimensional subsonic wind tunnel testing of aircraft models in real-time. The method may be applied to a full-span or a semispan model. A simplified singularity representation of the aircraft model is used. Fuselage, support system, propulsion simulator, and separation wake volume blockage effects are represented by point sources and sinks. Lifting effects are represented by semi-infinite line doublets. The singularity representation of the test article is combined with the measurement of wind tunnel test reference conditions, wall pressure, lift force, thrust force, pitching moment, rolling moment, and pre-computed solutions of the subsonic potential equation to determine first order wall interference corrections. Second order wall interference corrections for pitching and rolling moment coefficient are also determined. A new procedure is presented that estimates a rolling moment coefficient correction for wings with non-symmetric lift distribution. Experimental data obtained during the calibration of the Ames Bipod model support system and during tests of two semispan models mounted on an image plane in the NASA Ames 12 ft. Pressure Wind Tunnel are used to demonstrate the application of the wall interference correction method.

  15. Investigation of transonic flow over segmented slotted wind tunnel wall with mass transfer

    NASA Technical Reports Server (NTRS)

    Bhat, M. K.; Vakili, A. D.; Wu, J. M.

    1990-01-01

    The flowfield on a segmented multi-slotted wind tunnel wall was studied at transonic speeds by measurements in and near the wall layer using five port cone probes. The slotted wall flowfield was observed to be three-dimensional in nature for a relatively significant distance above the slot. The boundary layer characteristics measured on the single slotted wall were found to be very sensitive to the applied suction through the slot. The perturbation in the velocity components generated due to the flow through the slot decay rapidly in the transverse direction. A vortex-like flow existed on the single slotted wall for natural ventilation but diminished with increased suction flow rate. For flow on a segmented multi-slotted wall, the normal velocity component changes were found to be maximum for measurement points located between the segmented slots atop the active chamber. The lateral influence due to applied suction and blowing, through a compartment, exceeded only slightly that in the downstream direction. Limited upstream influence was observed. Influence coefficients were determined from the data in the least-square sense for blowing and suction applied through one and two compartments. This was found to be an adequate determination of the influence coefficients for the range of mass flows considered.

  16. Effect of using guide walls and piers with different geometries on the flow at entrance of a spillway

    NASA Astrophysics Data System (ADS)

    Jahani, Matin; Sarkardeh, Hamed; Jabbari, Ebrahim

    2018-03-01

    In the present paper, the effect of guide wall and pier geometry on the flow pattern of a dam spillway was studied. Different scenarios were numerically simulated to optimize the geometry of the guide walls and piers of the spillway in different hydraulic conditions. The RNG and VOF models were used for turbulence and free surface simulations, respectively. Numerical results were validated with experimental data and good agreement was found with an average relative deviation of less than 10%. Results showed that the vertical inclination of the guide wall and pier was the main affecting factor in the approach flow condition through the spillway. A 44% increase in the vertical inclination of the guide wall resulted in a 43% reduction of the turbulence factor and in a 13% increment of the discharge coefficient of the spillway. By increasing the vertical inclination of the piers of the spillway by 28%, the flow behaviour becomes more uniform and the discharge coefficient increases by as much as 11%. Moreover, the results indicate that increasing the straight length of the guide wall leads to a reduction of the depth-averaged velocity and of the turbulence energy in the approach channel.

  17. On the influence of curvature and torsion on turbulence in helically coiled pipes

    NASA Astrophysics Data System (ADS)

    Ciofalo, M.; Di Liberto, M.; Marotta, G.

    2014-04-01

    Turbulent flow and heat transfer in helically coiled pipes at Reτ=400 was investigated by DNS using finite volume grids with up to 2.36×107 nodes. Two curvatures (0.1 and 0.3) and two torsions (0 and 0.3) were considered. The flow was fully developed hydrodynamically and thermally. The central discretization scheme was adopted for diffusion and advection terms, and the second order backward Euler scheme for time advancement. The grid spacing in wall units was ~3 radially, 7.5 circumferentially and 20 axially. The time step was equal to one viscous wall unit and simulations were typically protracted for 8000 time steps, the last 4000 of which were used to compute statistics. The results showed that curvature affects the flow significantly. As it increases from 0.1 to 0.3 the friction coefficient and the Nusselt number increase and the secondary flow becomes stronger; axial velocity fluctuations decrease, but the main Reynolds shear stress increases. Torsion, at least at the moderate level tested (0.3), has only a minor effect on mean and turbulence quantities, yielding only a slight reduction of peak turbulence levels while leaving pressure drop and heat transfer almost unaffected.

  18. Some correlations between sugar maple tree characteristics and sap and sugar yields

    Treesearch

    Barton M. Blum

    1971-01-01

    Simple correlation coefficients between various characteristics of sugar maple trees and sap sugar concentration, sap volume yield, and total sugar production are given for the 1968 sap season. Correlation coefficients in general indicated that individual tree characteristics that express tree and crown size are significantly related to sap volume yield and total sugar...

  19. Computational Fluid Dynamics Based Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from: inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. The work presented under this task uses the first-principles based Computational Fluid Dynamics (CFD) technique to compute heat transfer from tank wall to the cryogenic fluids, and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between tank wall and cryogenic propellant, and that between tank wall and ullage gas were then simulated. The results showed that commonly used heat transfer correlations for either vertical or horizontal plate over predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  20. CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  1. Poiseuille, thermal transpiration and Couette flows of a rarefied gas between plane parallel walls with nonuniform surface properties in the transverse direction and their reciprocity relations

    NASA Astrophysics Data System (ADS)

    Doi, Toshiyuki

    2018-04-01

    Slow flows of a rarefied gas between two plane parallel walls with nonuniform surface properties are studied based on kinetic theory. It is assumed that one wall is a diffuse reflection boundary and the other wall is a Maxwell-type boundary whose accommodation coefficient varies periodically in the direction perpendicular to the flow. The time-independent Poiseuille, thermal transpiration and Couette flows are considered. The flow behavior is numerically studied based on the linearized Bhatnagar-Gross-Krook-Welander model of the Boltzmann equation. The flow field, the mass and heat flow rates in the gas, and the tangential force acting on the wall surface are studied over a wide range of the gas rarefaction degree and the parameters characterizing the distribution of the accommodation coefficient. The locally convex velocity distribution is observed in Couette flow of a highly rarefied gas, similarly to Poiseuille flow and thermal transpiration. The reciprocity relations are numerically confirmed over a wide range of the flow parameters.

  2. Control of interior surface materials for speech privacy in high-speed train cabins.

    PubMed

    Jang, H S; Lim, H; Jeon, J Y

    2017-05-01

    The effect of interior materials with various absorption coefficients on speech privacy was investigated in a 1:10 scale model of one high-speed train cabin geometry. The speech transmission index (STI) and privacy distance (r P ) were measured in the train cabin to quantify speech privacy. Measurement cases were selected for the ceiling, sidewall, and front and back walls and were classified as high-, medium- and low-absorption coefficient cases. Interior materials with high absorption coefficients yielded a low r P , and the ceiling had the largest impact on both the STI and r P among the interior elements. Combinations of the three cases were measured, and the maximum reduction in r P by the absorptive surfaces was 2.4 m, which exceeds the space between two rows of chairs in the high-speed train. Additionally, the contribution of the interior elements to speech privacy was analyzed using recorded impulse responses and a multiple regression model for r P using the equivalent absorption area. The analysis confirmed that the ceiling was the most important interior element for improving speech privacy. These results can be used to find the relative decrease in r P in the acoustic design of interior materials to improve speech privacy in train cabins. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Seismic performance of RC shear wall structure with novel shape memory alloy dampers in coupling beams

    NASA Astrophysics Data System (ADS)

    Mao, Chenxi; Dong, Jinzhi; Li, Hui; Ou, Jinping

    2012-04-01

    Shear wall system is widely adopted in high rise buildings because of its high lateral stiffness in resisting earthquakes. According to the concept of ductility seismic design, coupling beams in shear wall structure are required to yield prior to the damage of wall limb. However, damage in coupling beams results in repair cost post earthquake and even in some cases it is difficult to repair the coupling beams if the damage is severe. In order to solve this problem, a novel passive SMA damper was proposed in this study. The coupling beams connecting wall limbs are split in the middle, and the dampers are installed between the ends of the two cantilevers. Then the relative flexural deformation of the wall limbs is transferred to the ends of coupling beams and then to the SMA dampers. After earthquakes the deformation of the dampers can recover automatically because of the pseudoelasticity of austenite SMA material. In order to verify the validity of the proposed dampers, seismic responses of a 12-story coupled shear wall with such passive SMA dampers in coupling beams was investigated. The additional stiffness and yielding deformation of the dampers and their ratios to the lateral stiffness and yielding displacements of the wall limbs are key design parameters and were addressed. Analytical results indicate that the displacement responses of the shear wall structure with such dampers are reduced remarkably. The deformation of the structure is concentrated in the dampers and the damage of coupling beams is reduced.

  4. An adapted yield criterion for the evolution of subsequent yield surfaces

    NASA Astrophysics Data System (ADS)

    Küsters, N.; Brosius, A.

    2017-09-01

    In numerical analysis of sheet metal forming processes, the anisotropic material behaviour is often modelled with isotropic work hardening and an average Lankford coefficient. In contrast, experimental observations show an evolution of the Lankford coefficients, which can be associated with a yield surface change due to kinematic and distortional hardening. Commonly, extensive efforts are carried out to describe these phenomena. In this paper an isotropic material model based on the Yld2000-2d criterion is adapted with an evolving yield exponent in order to change the yield surface shape. The yield exponent is linked to the accumulative plastic strain. This change has the effect of a rotating yield surface normal. As the normal is directly related to the Lankford coefficient, the change can be used to model the evolution of the Lankford coefficient during yielding. The paper will focus on the numerical implementation of the adapted material model for the FE-code LS-Dyna, mpi-version R7.1.2-d. A recently introduced identification scheme [1] is used to obtain the parameters for the evolving yield surface and will be briefly described for the proposed model. The suitability for numerical analysis will be discussed for deep drawing processes in general. Efforts for material characterization and modelling will be compared to other common yield surface descriptions. Besides experimental efforts and achieved accuracy, the potential of flexibility in material models and the risk of ambiguity during identification are of major interest in this paper.

  5. An experimental and numerical study of endwall heat transfer in a turbine blade cascade including tangential heat conduction analysis

    NASA Astrophysics Data System (ADS)

    Ratto, Luca; Satta, Francesca; Tanda, Giovanni

    2018-06-01

    This paper presents an experimental and numerical investigation of heat transfer in the endwall region of a large scale turbine cascade. The steady-state liquid crystal technique has been used to obtain the map of the heat transfer coefficient for a constant heat flux boundary condition. In the presence of two- and three-dimensional flows with significant spatial variations of the heat transfer coefficient, tangential heat conduction could lead to error in the heat transfer coefficient determination, since local heat fluxes at the wall-to-fluid interface tend to differ from point to point and surface temperatures to be smoothed out, thus making the uniform-heat-flux boundary condition difficult to be perfectly achieved. For this reason, numerical simulations of flow and heat transfer in the cascade including the effect of tangential heat conduction inside the endwall have been performed. The major objective of numerical simulations was to investigate the influence of wall heat conduction on the convective heat transfer coefficient determined during a nominal iso-flux heat transfer experiment and to interpret possible differences between numerical and experimental heat transfer results. Results were presented and discussed in terms of local Nusselt number and a convenient wall heat flux function for two values of the Reynolds number (270,000 and 960,000).

  6. Alkyl nitrate formation from the reactions of C8-C14 n-alkanes with OH radicals in the presence of NO(x): measured yields with essential corrections for gas-wall partitioning.

    PubMed

    Yeh, Geoffrey K; Ziemann, Paul J

    2014-09-18

    In this study, C8-C14 n-alkanes were reacted with OH radicals in the presence of NO(x) in a Teflon film environmental chamber and isomer-specific yields of alkyl nitrates were determined using gas chromatography. Because results indicated significant losses of alkyl nitrates to chamber walls, gas-wall partitioning was investigated by monitoring the concentrations of a suite of synthesized alkyl nitrates added to the chamber. Gas-to-wall partitioning increased with increasing carbon number and with proximity of the nitrooxy group to the terminal carbon, with losses as high as 86%. The results were used to develop a structure-activity model to predict the effects of carbon number and isomer structure on gas-wall partitioning, which was used to correct the measured yields of alkyl nitrate isomers formed in chamber reactions. The resulting branching ratios for formation of secondary alkyl nitrates were similar for all isomers of a particular carbon number, and average values, which were almost identical to alkyl nitrate yields, were 0.219, 0.206, 0.254, 0.291, and 0.315 for reactions of n-octane, n-decane, n-dodecane, n-tridecane, and n-tetradecane, respectively. The increase in average branching ratios and alkyl nitrate yields with increasing carbon number to a plateau value of ∼0.30 at about C13-C14 is consistent with predictions of a previously developed model, indicating that the model is valid for alkane carbon numbers ≥C3.

  7. Development of 1D Particle-in-Cell Code and Simulation of Plasma-Wall Interactions

    NASA Astrophysics Data System (ADS)

    Rose, Laura P.

    This thesis discusses the development of a 1D particle-in-cell (PIC) code and the analysis of plasma-wall interactions. The 1D code (Plasma and Wall Simulation -- PAWS) is a kinetic simulation of plasma done by treating both electrons and ions as particles. The goal of this thesis is to study near wall plasma interaction to better understand the mechanism that occurs in this region. The main focus of this investigation is the effects that secondary electrons have on the sheath profile. The 1D code is modeled using the PIC method. Treating both the electrons and ions as macroparticles the field is solved on each node and weighted to each macro particle. A pre-ionized plasma was loaded into the domain and the velocities of particles were sampled from the Maxwellian distribution. An important part of this code is the boundary conditions at the wall. If a particle hits the wall a secondary electron may be produced based on the incident energy. To study the sheath profile the simulations were run for various cases. Varying background neutral gas densities were run with the 2D code and compared to experimental values. Different wall materials were simulated to show their effects of SEE. In addition different SEE yields were run, including one study with very high SEE yields to show the presence of a space charge limited sheath. Wall roughness was also studied with the 1D code using random angles of incidence. In addition to the 1D code, an external 2D code was also used to investigate wall roughness without secondary electrons. The roughness profiles where created upon investigation of wall roughness inside Hall Thrusters based off of studies done on lifetime erosion of the inner and outer walls of these devices. The 2D code, Starfish[33], is a general 2D axisymmetric/Cartesian code for modeling a wide a range of plasma and rarefied gas problems. These results show that higher SEE yield produces a smaller sheath profile and that wall roughness produces a lower SEE yield. Modeling near wall interactions is not a simple or perfected task. Due to the lack of a second dimension and a sputtering model it is not possible with this study to show the positive effects wall roughness could have on Hall thruster performance since roughness occurs from the negative affect of sputtering.

  8. Failure Investigation & Design Optimization of a Photo-Multiplier Tube Assembly Under Thermal Loading

    NASA Technical Reports Server (NTRS)

    Dahya, Kevin

    2004-01-01

    Analysis of GLAST ACD Photo-Multiplier Tube (PMT) assembly under thermal loading demonstrates that the glass tube experiences high stresses due to Coefficient of Thermal Expansion mismatch, as well as increased stress due to high stiffness and incompressibility of potting compound. Further investigation shows adverse loading effects due to the magnetic shield, a thin piece of steel wrapped around the PMT. This steel, Mu Metal, contained an overlap region that directly attributed to crack propagation in the outside surface of the tube. Sensitivities to different configurations were studied to reduce the stress and provide a more uniform loading throughout the PMT to ensure mission success. Studies indicate substituting a softer and more compressible potting compound and moving the Mu metal from the glass tube to the outside wall of the aluminum housing yields lower stress.

  9. Normal reference values for bladder wall thickness on CT in a healthy population.

    PubMed

    Fananapazir, Ghaneh; Kitich, Aleksandar; Lamba, Ramit; Stewart, Susan L; Corwin, Michael T

    2018-02-01

    To determine normal bladder wall thickness on CT in patients without bladder disease. Four hundred and nineteen patients presenting for trauma with normal CTs of the abdomen and pelvis were included in our retrospective study. Bladder wall thickness was assessed, and bladder volume was measured using both the ellipsoid formula and an automated technique. Patient age, gender, and body mass index were recorded. Linear regression models were created to account for bladder volume, age, gender, and body mass index, and the multiple correlation coefficient with bladder wall thickness was computed. Bladder volume and bladder wall thickness were log-transformed to achieve approximate normality and homogeneity of variance. Variables that did not contribute substantively to the model were excluded, and a parsimonious model was created and the multiple correlation coefficient was calculated. Expected bladder wall thickness was estimated for different bladder volumes, and 1.96 standard deviation above expected provided the upper limit of normal on the log scale. Age, gender, and bladder volume were associated with bladder wall thickness (p = 0.049, 0.024, and < 0.001, respectively). The linear regression model had an R 2 of 0.52. Age and gender were negligible in contribution to the model, and a parsimonious model using only volume was created for both the ellipsoid and automated volumes (R 2  = 0.52 and 0.51, respectively). Bladder wall thickness correlates with bladder wall volume. The study provides reference bladder wall thicknesses on CT utilizing both the ellipsoid formula and automated bladder volumes.

  10. Direct Simulation Monte Carlo Investigation of Noncontinuum Couette Flow

    NASA Astrophysics Data System (ADS)

    Torczynski, J. R.; Gallis, M. A.

    2009-11-01

    The Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics is used to study noncontinuum effects in Couette flow. The walls have equal temperatures and equal accommodation coefficients but unequal tangential velocities. Simulations are performed for near-free-molecular to near-continuum gas pressures with accommodation coefficients of 0.25, 0.5, and 1. Ten gases are examined: argon, helium, nitrogen, sea-level air, and six Inverse-Power-Law (IPL) gases with viscosity temperature exponents of 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0, as represented by the Variable Soft Sphere (VSS) interaction. In all cases, the wall shear stress is proportional to the slip velocity. The momentum transfer coefficient relating these two quantities can be accurately correlated in terms of the Knudsen number based on the wall separation. The two dimensionless parameters in the correlation are similar for all gases examined. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. A model of cell wall expansion based on thermodynamics of polymer networks

    NASA Technical Reports Server (NTRS)

    Veytsman, B. A.; Cosgrove, D. J.

    1998-01-01

    A theory of cell wall extension is proposed. It is shown that macroscopic properties of cell walls can be explained through the microscopic properties of interpenetrating networks of cellulose and hemicellulose. The qualitative conclusions of the theory agree with the existing experimental data. The dependence of the cell wall yield threshold on the secretion of the wall components is discussed.

  12. Periodic Heat Transfer at Small Pressure Fluctuations

    NASA Technical Reports Server (NTRS)

    Pfriem, H.

    1943-01-01

    The effect of cyclic gas pressure variations on the periodic heat transfer at a flat wall is theoretically analyzed and the differential equation describing the process and its solution for relatively. Small pressure fluctuations developed, thus explaining the periodic heat cycle between gas and wall surface. The processes for pure harmonic pressure and temperature oscillations, respectively, in the gas space are described by means of a constant heat transfer coefficient and the equally constant phase angle between the appearance of the maximum values of the pressure and heat flow most conveniently expressed mathematically in the form of a complex heat transfer coefficient. Any cyclic pressure oscillations, can be reduced by Fourier analysis to harmonic oscillations, which result in specific, mutual relationships of heat-transfer coefficients and phase angles for the different harmonics.

  13. Role of flexoelectric coupling in polarization rotations at the a-c domain walls in ferroelectric perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Ye; Chen, Long-Qing; Kalinin, Sergei V.

    Ferroelectric and ferroelastic domain walls play important roles in ferroelectric properties. However, their couplings with flexoelectricity have been less understood. Here, we applied phase-field simulation to investigate the flexoelectric coupling with ferroelectric a/c twin structures in lead ziconate titanate thin films. Local stress gradients were found to exist near twin walls that created both lateral and vertical electric fields through the flexoelectric effect, resulting in polarization inclinations from either horizontal or normal orientation, polarization rotation angles deviated from 90°, and consequently highly asymmetric a/c twin walls. Furthermore, by tuning the flexoelectric strengths in a reasonable range from first-principles calculations, wemore » found that the transverse flexoelectric coefficient has a larger influence on the polarization rotation than longitudinal and shear coefficients. And as polar rotations that commonly occur at compositional morphotropic phase boundaries contribute to the piezoelectric enhancement, this work calls for further exploration of alternative strain-engineered polar rotations via flexoelectricity in ferroelectric thin films.« less

  14. Role of flexoelectric coupling in polarization rotations at the a-c domain walls in ferroelectric perovskites

    DOE PAGES

    Cao, Ye; Chen, Long-Qing; Kalinin, Sergei V.

    2017-05-16

    Ferroelectric and ferroelastic domain walls play important roles in ferroelectric properties. However, their couplings with flexoelectricity have been less understood. Here, we applied phase-field simulation to investigate the flexoelectric coupling with ferroelectric a/c twin structures in lead ziconate titanate thin films. Local stress gradients were found to exist near twin walls that created both lateral and vertical electric fields through the flexoelectric effect, resulting in polarization inclinations from either horizontal or normal orientation, polarization rotation angles deviated from 90°, and consequently highly asymmetric a/c twin walls. Furthermore, by tuning the flexoelectric strengths in a reasonable range from first-principles calculations, wemore » found that the transverse flexoelectric coefficient has a larger influence on the polarization rotation than longitudinal and shear coefficients. And as polar rotations that commonly occur at compositional morphotropic phase boundaries contribute to the piezoelectric enhancement, this work calls for further exploration of alternative strain-engineered polar rotations via flexoelectricity in ferroelectric thin films.« less

  15. Calibration of discrete element model parameters: soybeans

    NASA Astrophysics Data System (ADS)

    Ghodki, Bhupendra M.; Patel, Manish; Namdeo, Rohit; Carpenter, Gopal

    2018-05-01

    Discrete element method (DEM) simulations are broadly used to get an insight of flow characteristics of granular materials in complex particulate systems. DEM input parameters for a model are the critical prerequisite for an efficient simulation. Thus, the present investigation aims to determine DEM input parameters for Hertz-Mindlin model using soybeans as a granular material. To achieve this aim, widely acceptable calibration approach was used having standard box-type apparatus. Further, qualitative and quantitative findings such as particle profile, height of kernels retaining the acrylic wall, and angle of repose of experiments and numerical simulations were compared to get the parameters. The calibrated set of DEM input parameters includes the following (a) material properties: particle geometric mean diameter (6.24 mm); spherical shape; particle density (1220 kg m^{-3} ), and (b) interaction parameters such as particle-particle: coefficient of restitution (0.17); coefficient of static friction (0.26); coefficient of rolling friction (0.08), and particle-wall: coefficient of restitution (0.35); coefficient of static friction (0.30); coefficient of rolling friction (0.08). The results may adequately be used to simulate particle scale mechanics (grain commingling, flow/motion, forces, etc) of soybeans in post-harvest machinery and devices.

  16. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops.

    PubMed

    Wang, Yanting; Fan, Chunfen; Hu, Huizhen; Li, Ying; Sun, Dan; Wang, Youmei; Peng, Liangcai

    2016-01-01

    Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. An experimental study of several wind tunnel wall configurations using two V/STOL model configurations. [low speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Binion, T. W., Jr.

    1975-01-01

    Experiments were conducted in the low speed wind tunnel using two V/STOL models, a jet-flap and a jet-in-fuselage configuration, to search for a wind tunnel wall configuration to minimize wall interference on V/STOL models. Data were also obtained on the jet-flap model with a uniform slotted wall configuration to provide comparisons between theoretical and experimental wall interference. A test section configuration was found which provided some data in reasonable agreement with interference-free results over a wide range of momentum coefficients.

  18. Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis.

    PubMed

    Ometto, Francesco; Quiroga, Gerardo; Pšenička, Pavel; Whitton, Rachel; Jefferson, Bruce; Villa, Raffaella

    2014-11-15

    Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This work investigated the effect of four pre-treatments on three microalgae species, and their impact on the quantity of soluble biomass released in the media and thus on the digestion process yields. The analysis of the composition of the soluble COD released and of the TEM images of the cells showed two main degradation actions associated with the processes: (1) cell wall damage with the release of intracellular AOM (thermal, thermal hydrolysis and ultrasound) and (2) degradation of the cell wall constituents with the release of intracellular AOM and the solubilisation of the cell wall biopolymers (enzymatic hydrolysis). As a result of this, enzymatic hydrolysis showed the greatest biogas yield increments (>270%) followed by thermal hydrolysis (60-100%) and ultrasounds (30-60%). Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Effects of wall friction on flow in a quasi-2D hopper

    NASA Astrophysics Data System (ADS)

    Shah, Neil; Birwa, Sumit; Carballo-Ramirez, Brenda; Pleau, Mollie; Easwar, Nalini; Tewari, Shubha

    Our experiments on the gravity-driven flow of spherical particles in a vertical hopper examine how the flow rate varies with opening size and wall friction. We report here on a model simulation using LAMMPS of the experimental geometry, a quasi-2D hopper. Keeping inter-particle friction fixed, the coefficient of friction at the walls is varied from 0.0 to 0.9 for a range of opening sizes. Our simulations find a steady rate of flow at each wall friction and outlet size. The Janssen effect attributes the constant rate of flow of a granular column to the column height independence of the pressure at the base, since the weight of the grains is borne in part by friction at the walls. However, we observe a constant flow regime even in the absence of wall friction, suggesting that wall friction may not be a necessary condition for pressure saturation. The observed velocities of particles near the opening are used to extrapolate their starting positions had they been in free fall. In contrast to scaling predictions, our data suggest that the height of this free-fall arch does not vary with opening size for higher frictional coefficients. We analyze the velocity traces of particles to see the range over which contact interactions remain collisional as they approach the hopper outlet.

  20. Quantification of atherosclerosis with MRI and image processing in spontaneously hyperlipidemic rabbits.

    PubMed

    Hänni, Mari; Edvardsson, H; Wågberg, M; Pettersson, K; Smedby, O

    2004-01-01

    The need for a quantitative method to assess atherosclerosis in vivo is well known. This study tested, in a familiar animal model of atherosclerosis, a combination of magnetic resonance imaging (MRI) and image processing. Six spontaneously hyperlipidemic (Watanabe) rabbits were examined with a knee coil in a 1.5-T clinical MRI scanner. Inflow angio (2DI) and proton density weighted (PDW) images were acquired to examine 10 cm of the aorta immediately cranial to the aortic bifurcation. Examination of the thoracic aorta was added in four animals. To identify the inner and outer boundary of the arterial wall, a dynamic contour algorithm (Gradient Vector Flow snakes) was applied to the 2DI and PDW images, respectively, after which the vessel wall area was calculated. The results were compared with histopathological measurements of intima and intima-media cross-sectional area. The correlation coefficient between wall area measurements with MRI snakes and intima-media area was 0.879 when computed individual-wise for abdominal aortas, 0.958 for thoracic aortas, and 0.834 when computed segment-wise. When the algorithm was applied to the PDW images only, somewhat lower correlations were obtained. The MRI yielded significantly higher values than histopathology, which excludes the adventitia. Magnetic resonance imaging, in combination with dynamic contours, may be a suitable technique for quantitative assessment of atherosclerosis in vivo. Using two sequences for the measurement seems to be superior to using a single sequence.

  1. Stress relaxation of cell walls and the yield threshold for growth: demonstration and measurement by micro-pressure probe and psychrometer techniques.

    PubMed

    Cosgrove, D J; Van Volkenburgh, E; Cleland, R E

    1984-01-01

    Theory predicts that, for growing plant cells isolated from a supply of water, stress relaxation of the cell wall should decrease cell turgor pressure (P) until the yield threshold for cell explanation is reached. This prediction was tested by direct P measurements of pea (Pisum sativum L.) stem cortical cells before and after excision of the growing region and isolation of the growing tissue from an external water supply. Cell P was measured with the micro-pressure probe under conditions which eliminated transpiration. Psychrometric measurements of water potential confirmed the pressure-probe measurements. Following excision, P of the growing cells decreased in 1 h by an average of 1.8 bar to a mean plateau value of 2.8 bar, and remained constant thereafter. Treatment with 10(-5) M indole-3-acetic acid or 10(-5) M fusicoccin (known growth stimulants) accelerated the rate of P relaxation, whereas various treatments which inhibit growth slowed down or completely stopped P relaxation in apical segments. In contrast, P of basal (nongrowing) segments gradually increased because of absorption of solutes from the cell-wall free space of the tissue. Such solute absorption also occurred in apical segments, but wall relaxation held P at the yield threshold in those segments which were isolated from an external water supply. These results provide a new and rapid method for measuring the yield threshold and they show that P in intact growing pea stems exceeds the yield threshold by about 2 bar. Wall relaxation is shown here to affect the water potential and turgor pressure of excised growing segments. In addition, solute release and absorption upon excision may influence the water potential and turgor pressure of nongrowing excised plant tissues.

  2. Freeze-Drying Process Development and Scale-Up: Scale-Up of Edge Vial Versus Center Vial Heat Transfer Coefficients, Kv.

    PubMed

    Pikal, Michael J; Bogner, Robin; Mudhivarthi, Vamsi; Sharma, Puneet; Sane, Pooja

    2016-11-01

    This report presents calculations of the difference between the vial heat transfer coefficient of the "edge vial" and the "center vial" at all scales. The only scale-up adjustment for center vials is for the contribution of radiation from the shelf upon which the vial sits by replacing the emissivity of the laboratory dryer shelf with the emissivity of the production dryer shelf. With edge vials, scales-up adjustments are more complex. While convection is not important, heat transfer from the wall to the bands (surrounding the vial array) by radiation and directly from the band to the vials by both radiation and conduction is important; this radiation heat transfer depends on the emissivity of the vial and the bands and is nearly independent of the emissivity of the dryer walls. Differences in wall temperatures do impact the edge vial effect and scale-up, and estimates for wall temperatures are needed for both laboratory and manufacturing dryers. Auto-loading systems (no bands) may give different edge vial heat transfer coefficients than when operating with bands. Satisfactory agreement between theoretical predictions and experimental values of the edge vial effect indicate that results calculated from the theory are of useful accuracy. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. 10 CFR 434.201 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... capacity” and “wall heat capacity”) Thermal mass wall insulation position: (1) Exterior insulation position... thermal energy of the vent gases into mechanical energy. Boiler capacity: the rated heat output of the... furnished by the utility. Coefficient of performance (COP)—Cooling: the ratio of the rate of heat removal to...

  4. 10 CFR 434.201 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... conditions fluctuate. (See also “heat capacity” and “wall heat capacity”) Thermal mass wall insulation... thermal energy of the vent gases into mechanical energy. Boiler capacity: the rated heat output of the... furnished by the utility. Coefficient of performance (COP)—Cooling: the ratio of the rate of heat removal to...

  5. 10 CFR 434.201 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... capacity” and “wall heat capacity”) Thermal mass wall insulation position: (1) Exterior insulation position... thermal energy of the vent gases into mechanical energy. Boiler capacity: the rated heat output of the... furnished by the utility. Coefficient of performance (COP)—Cooling: the ratio of the rate of heat removal to...

  6. 10 CFR 434.201 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... conditions fluctuate. (See also “heat capacity” and “wall heat capacity”) Thermal mass wall insulation... thermal energy of the vent gases into mechanical energy. Boiler capacity: the rated heat output of the... furnished by the utility. Coefficient of performance (COP)—Cooling: the ratio of the rate of heat removal to...

  7. Local heat/mass transfer and pressure drop in a two-pass rib-roughened channel for turbine airfoil cooling

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Chandra, P. R.

    1987-01-01

    The heat transfer characteristics of turbulent air flow in a multipass channel were studied via the naphthalene sublimation technique. The naphthalene-coated test section, consisting of two straight, square channels joined by a 180 deg turn, resembled the internal cooling passages of gas turbine airfoils. The top and bottom surfaces of the test channel were roughened by rib turbulators. The rib height-to-hydraulic diameter ratio (e/D) were 0.063 and 0.094, and the rib pitch-to-height ratio (P/e) were 10 and 20. The local heat/mass transfer coefficients on the roughened top wall and on the smooth divider and side walls of the test channel were determined for three Reynolds numbers of 15, 30, and 60, thousand, and for three angles of attack (alpha) of 90, 60, and 45 deg. Results showed that the local Sherwood numbers on the ribbed walls were 1.5 to 6.5 times those for a fully developed flow in a smooth square duct. The average ribbed-wall Sherwood numbers were 2.5 to 3.5 times higher than the fully developed values, depending on the rib angle of attack and the Reynolds number. The results also indicated that, before the turn, the heat/mass transfer coefficients in the cases of alpha = 60 and 45 deg were higher than those in the case of alpha=90 deg. However, after the turn, the heat/mass transfer coefficients in the oblique-rib cases were lower than those in the transverse rib case. Correlations for the average Sherwood number ratios for individual channel surfaces and for the overall Sherwood number ratios are reported. Correlations for the fully developed friction factors and for the loss coefficients are also provided.

  8. Is it better to include necrosis in apparent diffusion coefficient (ADC) measurements? The necrosis/wall ADC ratio to differentiate malignant and benign necrotic lung lesions: Preliminary results.

    PubMed

    Karaman, Adem; Durur-Subasi, Irmak; Alper, Fatih; Durur-Karakaya, Afak; Subasi, Mahmut; Akgun, Metin

    2017-10-01

    To determine whether the use of necrosis/wall apparent diffusion coefficient (ADC) ratios in the differentiation of necrotic lung lesions is more reliable than measuring the wall alone. In this retrospective study, a total of 76 patients (54 males and 22 females, 71% vs. 29%, with a mean age of 53 ± 18 years, range, 18-84) were enrolled, 33 of whom had lung carcinoma and 43 had a benign necrotic lung lesion. A 3T scanner was used. The calculation of the necrosis/wall ADC ratio was based on ADC values measured from necrosis and the wall of the lesions by diffusion-weighted imaging (DWI). Statistical analyses were performed with the independent samples t-test and receiver operating characteristic analysis. Intraobserver and interobserver reliability were calculated for ADC values of wall and necrosis. The mean necrosis/wall ADC ratio was 1.67 ± 0.23 for malignant lesions and 0.75 ± 0.19 for benign lung lesions (P < 0.001). To estimate malignancy the area under the curve (AUC) values for necrosis ADC, wall ADC, and the necrosis/wall ADC ratio were 0.720, 0.073, and 0.997, respectively. A wall/necrosis ADC ratio cutoff value of 1.12 demonstrated a 100% sensitivity and 98% specificity in the estimation of malignancy. Positive predictive value was 100%, and negative predictive value 98% and diagnostic accuracy 99%. There was a good intraobserver and interobserver reliability for wall and necrosis. The necrosis/wall ADC ratio appears to be a reliable and promising tool for discriminating lung carcinoma from benign necrotic lung lesions than measuring the wall alone. 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1001-1006. © 2017 International Society for Magnetic Resonance in Medicine.

  9. Incorporating swirl effects into the coefficient of momentum for separation control

    NASA Astrophysics Data System (ADS)

    Taira, Kunihiko; Munday, Phillip

    2017-11-01

    Addition of swirl in flow control has been known to enhance suppression of separation over airfoils at high angles of attack. Utilizing large eddy simulations, the present open-loop control study examines the influence of wall-normal and angular momentum injections in mitigating separation over a NACA0012 airfoil at α =9° and Re = 23 , 000 . We introduce these swirling jets near the separation point with wall-normal momentum and swirl independently prescribed through velocity boundary conditions. The changes to the flow from control are examined and the corresponding lift enhancement and drag reduction are assessed as a function of the two velocity components. Since the standard coefficient of momentum does not consider swirling effects, we extend its definition to incorporate both the wall-normal momentum and swirl to quantify the overall flow control effectiveness. We are able to observe a trend in lift force enhancement over this single modified coefficient of momentum (that is dependent on the non-dimensional jet velocity ratio and swirl number). Moreover, we are able to identify a critical value for the modified momentum coefficient and categorize controlled flows into separated, transitional, and attached flows. This work was supported by the Air Force Office of Scientific Research (Award Number FA9550-13-1-0183) and the Office of Naval Research (Award Number N00014-16-1-2443).

  10. Numerical computations on one-dimensional inverse scattering problems

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Hariharan, S. I.

    1983-01-01

    An approximate method to determine the index of refraction of a dielectric obstacle is presented. For simplicity one dimensional models of electromagnetic scattering are treated. The governing equations yield a second order boundary value problem, in which the index of refraction appears as a functional parameter. The availability of reflection coefficients yield two additional boundary conditions. The index of refraction by a k-th order spline which can be written as a linear combination of B-splines is approximated. For N distinct reflection coefficients, the resulting N boundary value problems yield a system of N nonlinear equations in N unknowns which are the coefficients of the B-splines.

  11. Pilot study on objective measurement of abdominal wall strength in patients with ventral incisional hernia.

    PubMed

    Parker, Michael; Goldberg, Ross F; Dinkins, Maryane M; Asbun, Horacio J; Daniel Smith, C; Preissler, Susanne; Bowers, Steven P

    2011-11-01

    Outcomes after ventral incisional hernia (VIH) repair are measured by recurrence rate and subjective measures. No objective metrics evaluate functional outcomes after abdominal wall reconstruction. This study aimed to develop testing of abdominal wall strength (AWS) that could be validated as a useful metric. Data were prospectively collected during 9 months from 35 patients. A total of 10 patients were evaluated before and after VIH repair, for a total of 45 encounters. The patients were tested simultaneously or in succession by two of three examiners. Data were collected for three tests: double leg lowering (DLL), trunk raising (TR), and supine reaching (SR). Raw data were compared and tested for validity, and continuous data were transformed to categorical data. Agreement was measured using the intraclass correlation coefficient (ICC) for DLL and using kappa for the ordinal measures. Simultaneous testing yielded the following interobserver reliability: DLL (0.96 and 0.87), TR (1.00 and 0.95), and SR (0.76). Reproducibility was assessed by consecutive tests, with correlation as follows: DLL (0.81), TR (0.81), and RCH (0.21). Due to poor interobserver reliability for the SR test compared with the DLL and TR tests, the SR test was excluded from calculation of an overall score. Based on raw data distribution from the DLL and TR tests, the DLL data were categorized into 10º increments, allowing construction of a 10-point score. The median AWS score was 5 (interquartile range [IQR], 4-7), and there was agreement within 1 point for 42 of the 45 encounters (93%). The findings from this study demonstrate that the 10-point AWS score may measure AWS in an accurate and reproducible fashion, with potential for objective description of abdominal wall function of VIH patients. This score may help to identify patients suited for abdominal wall reconstruction while measuring progress after VIH repair. Further longitudinal outcomes studies are needed.

  12. Airborne and ground-based remote sensing for the estimation of evapotranspiration and yield of bean, potato, and sugar beet crops

    NASA Astrophysics Data System (ADS)

    Jayanthi, Harikishan

    The focus of this research was two-fold: (1) extend the reflectance-based crop coefficient approach to non-grain (potato and sugar beet), and vegetable crops (bean), and (2) develop vegetation index (VI)-yield statistical models for potato and sugar beet crops using high-resolution aerial multispectral imagery. Extensive crop biophysical sampling (leaf area index and aboveground dry biomass sampling) and canopy reflectance measurements formed the backbone of developing of canopy reflectance-based crop coefficients for bean, potato, and sugar beet crops in this study. Reflectance-based crop coefficient equations were developed for the study crops cultivated in Kimberly, Idaho, and subsequently used in water availability simulations in the plant root zone during 1998 and 1999 seasons. The simulated soil water profiles were compared with independent measurements of actual soil water profiles in the crop root zone in selected fields. It is concluded that the canopy reflectance-based crop coefficient technique can be successfully extended to non-grain crops as well. While the traditional basal crop coefficients generally expect uniform growth in a region the reflectance-based crop coefficients represent the actual crop growth pattern (in less than ideal water availability conditions) in individual fields. Literature on crop canopy interactions with sunlight states that there is a definite correspondence between leaf area index progression in the season and the final yield. In case of crops like potato and sugar beet, the yield is influenced not only on how early and how quickly the crop establishes its canopy but also on how long the plant stands on the ground in a healthy state. The integrated area under the crop growth curve has shown excellent correlations with hand-dug samples of potato and sugar beet crops in this research. Soil adjusted vegetation index-yield models were developed, and validated using multispectral aerial imagery. Estimated yield images were compared with the actual yields extracted from the ground. The remote sensing-derived yields compared well with the actual yields sampled on the ground. This research has highlighted the importance of the date of spectral emergence, the need to know the duration for which the crops stand on the ground, and the need to identify critical periods of time when multispectral coverages are essential for reliable tuber yield estimation.

  13. Impact of Phosphate, Potassium, Yeast Extract, and Trace Metals on Chitosan and Metabolite Production by Mucor indicus.

    PubMed

    Safaei, Zahra; Karimi, Keikhosro; Zamani, Akram

    2016-08-30

    In this study the effects of phosphate, potassium, yeast extract, and trace metals on the growth of Mucor indicus and chitosan, chitin, and metabolite production by the fungus were investigated. Maximum yield of chitosan (0.32 g/g cell wall) was obtained in a phosphate-free medium. Reversely, cell growth and ethanol formation by the fungus were positively affected in the presence of phosphate. In a phosphate-free medium, the highest chitosan content (0.42 g/g cell wall) and cell growth (0.66 g/g sugar) were obtained at 2.5 g/L of KOH. Potassium concentration had no significant effect on ethanol and glycerol yields. The presence of trace metals significantly increased the chitosan yield at an optimal phosphate and potassium concentration (0.50 g/g cell wall). By contrast, production of ethanol by the fungus was negatively affected (0.33 g/g sugars). A remarkable increase in chitin and decrease in chitosan were observed in the absence of yeast extract and concentrations lower than 2 g/L. The maximum chitosan yield of 51% cell wall was obtained at 5 g/L of yeast extract when the medium contained no phosphate, 2.5 g/L KOH, and 1 mL/L trace metal solution.

  14. Rapid wall relaxation in elongating tissues. [Glycine max (L. ); Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyssek, R.; Maruyama, S.; Boyer, J.S.

    1988-01-01

    Reported differences in the relaxation of cell walls in enlarging stem tissues of soybean (Glycine max (L.) Merr.) and pea (Pisum sativum L.) cause measurements of the yield threshold turgor, an important growth parameter, to be in doubt. Using the pressure probe and guillotine psychrometer, the authors investigated wall relaxation in these species by excising the elongating tissue in air to remove the water supply. The authors found that the rapid kinetics usually exhibited by soybean could be delayed and made similar to the slow kinetics previously reported for pea if slowly growing or mature tissue was left attached tomore » the rapidly growing tissue when relaxation was initiated. The greater the amount of attached tissue, the slower the relaxation, suggesting that slowly growing tissue acted as a water source. Consistent with this concept was a lower water potential in the rapidly elongating tissue than in the slowly growing tissue. If this tissue was removed from pea, relaxation became as rapid as usually exhibited by soybean. It is concluded that the true relaxation of cell walls to the yield threshold requires only a few minutes and that the yield threshold in the intact plant before excision. Under these conditions, the yield threshold was close to the turgor in the intact plant regardless of the species.« less

  15. Domain walls of linear polarization in isotropic Kerr media

    NASA Astrophysics Data System (ADS)

    Louis, Y.; Sheppard, A. P.; Haelterman, M.

    1997-09-01

    We present a new type of domain-wall vector solitary waves in isotropic self-defocusing Kerr media. These domain walls consist of localized structures separating uniform field domains of orthogonal linear polarizations. They result from the interplay between diffraction, self-phase modulation and cross-phase modulation in cases where the nonlinear birefringence coefficient B = {χxyyx(3)}/{χxxxx(3)} is negative. Numerical simulations show that these new vector solitary waves are stable.

  16. Model wall and recovery temperature effects on experimental heat transfer data analysis

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.; Stone, D. R.

    1974-01-01

    Basic analytical procedures are used to illustrate, both qualitatively and quantitatively, the relative impact upon heat transfer data analysis of certain factors which may affect the accuracy of experimental heat transfer data. Inaccurate knowledge of adiabatic wall conditions results in a corresponding inaccuracy in the measured heat transfer coefficient. The magnitude of the resulting error is extreme for data obtained at wall temperatures approaching the adiabatic condition. High model wall temperatures and wall temperature gradients affect the level and distribution of heat transfer to an experimental model. The significance of each of these factors is examined and its impact upon heat transfer data analysis is assessed.

  17. Method for measuring radial impurity emission profiles using correlations of line integrated signals

    NASA Astrophysics Data System (ADS)

    Kuldkepp, M.; Brunsell, P. R.; Drake, J.; Menmuir, S.; Rachlew, E.

    2006-04-01

    A method of determining radial impurity emission profiles is outlined. The method uses correlations between line integrated signals and is based on the assumption of cylindrically symmetric fluctuations. Measurements at the reversed field pinch EXTRAP T2R show that emission from impurities expected to be close to the edge is clearly different in raw as well as analyzed data to impurities expected to be more central. Best fitting of experimental data to simulated correlation coefficients yields emission profiles that are remarkably close to emission profiles determined using more conventional techniques. The radial extension of the fluctuations is small enough for the method to be used and bandpass filtered signals indicate that fluctuations below 10kHz are cylindrically symmetric. The novel method is not sensitive to vessel window attenuation or wall reflections and can therefore complement the standard methods in the impurity emission reconstruction procedure.

  18. Similarity transformation for equilibrium boundary layers, including effects of blowing and suction

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Hussain, Fazle

    2017-03-01

    We present a similarity transformation for the mean velocity profiles in sink flow turbulent boundary layers, including effects of blowing and suction. It is based on symmetry analysis which transforms the governing partial differential equations (for mean mass and momentum) into an ordinary differential equation and yields a new result including an exact, linear relation between the mean normal (V ) and streamwise (U ) velocities. A characteristic length function is further introduced which, under a first order expansion (whose coefficient is η ) in wall blowing and suction velocity, leads to the similarity transformation for U with the value of η ≈-1 /9 . This transformation is shown to be a group invariant and maps different U profiles under different blowing and suction conditions into a (universal) profile for no blowing or suction. Its inverse transformation enables predictions of all mean quantities in the mean mass and momentum equations, in good agreement with DNS data.

  19. ABSORBANCE, ABSORPTION COEFFICIENT, AND APPARENT QUANTUM YIELD: A COMMENT ON AMBIGUITY IN THE USE OF THESE OPTICAL CONCEPTS

    EPA Science Inventory

    Several important optical terms such as "absorbance" and "absorption coefficient" are frequently used ambiguously in the current peer-reviewed literature. Since they are important terms that are required to derive other quantities such as the "apparent quantum yield" of photoprod...

  20. On the inverse Magnus effect for flow past a rotating cylinder

    NASA Astrophysics Data System (ADS)

    John, Benzi; Gu, Xiao-Jun; Barber, Robert W.; Emerson, David R.

    2016-11-01

    Flow past a rotating cylinder has been investigated using the direct simulation Monte Carlo method. The study focuses on the occurrence of the inverse Magnus effect under subsonic flow conditions. In particular, the variations in the coefficients of lift and drag have been investigated as a function of the Knudsen and Reynolds numbers. Additionally, a temperature sensitivity study has been carried out to assess the influence of the wall temperature on the computed aerodynamic coefficients. It has been found that both the Reynolds number and the cylinder wall temperature significantly affect the drag as well as the onset of lift inversion in the transition flow regime.

  1. Streaming potential of superhydrophobic microchannels.

    PubMed

    Park, Hung Mok; Kim, Damoa; Kim, Se Young

    2017-03-01

    For the purpose of gaining larger streaming potential, it has been suggested to employ superhydrophobic microchannels with a large velocity slip. There are two kinds of superhydrophobic surfaces, one having a smooth wall with a large Navier slip coefficient caused by the hydrophobicity of the wall material, and the other having a periodic array of no- shear slots of air pockets embedded in a nonslip wall. The electrokinetic flows over these two superhydrophobic surfaces are modelled using the Navier-Stokes equation and convection-diffusion equations of the ionic species. The Navier slip coefficient of the first kind surfaces and the no-shear slot ratio of the second kind surfaces are similar in the sense that the volumetric flow rate increases as these parameter values increase. However, although the streaming potential increases monotonically with respect to the Navier slip coefficient, it reaches a maximum and afterward decreases as the no-shear ratio increases. The results of the present investigation imply that the characterization of superhydrophobic surfaces employing only the measurement of volumetric flow rate against pressure drop is not appropriate and the fine structure of the superhydrophobic surfaces must be verified before predicting the streaming potential and electrokinetic flows accurately. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Development of estimation method for crop yield using MODIS satellite imagery data and process-based model for corn and soybean in US Corn-Belt region

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kang, S.; Jang, K.; Ko, J.; Hong, S.

    2012-12-01

    Crop productivity is associated with the food security and hence, several models have been developed to estimate crop yield by combining remote sensing data with carbon cycle processes. In present study, we attempted to estimate crop GPP and NPP using algorithm based on the LUE model and a simplified respiration model. The state of Iowa and Illinois was chosen as the study site for estimating the crop yield for a period covering the 5 years (2006-2010), as it is the main Corn-Belt area in US. Present study focuses on developing crop-specific parameters for corn and soybean to estimate crop productivity and yield mapping using satellite remote sensing data. We utilized a 10 km spatial resolution daily meteorological data from WRF to provide cloudy-day meteorological variables but in clear-say days, MODIS-based meteorological data were utilized to estimate daily GPP, NPP, and biomass. County-level statistics on yield, area harvested, and productions were used to test model predicted crop yield. The estimated input meteorological variables from MODIS and WRF showed with good agreements with the ground observations from 6 Ameriflux tower sites in 2006. For examples, correlation coefficients ranged from 0.93 to 0.98 for Tmin and Tavg ; from 0.68 to 0.85 for daytime mean VPD; from 0.85 to 0.96 for daily shortwave radiation, respectively. We developed county-specific crop conversion coefficient, i.e. ratio of yield to biomass on 260 DOY and then, validated the estimated county-level crop yield with the statistical yield data. The estimated corn and soybean yields at the county level ranged from 671 gm-2 y-1 to 1393 gm-2 y-1 and from 213 gm-2 y-1 to 421 gm-2 y-1, respectively. The county-specific yield estimation mostly showed errors less than 10%. Furthermore, we estimated crop yields at the state level which were validated against the statistics data and showed errors less than 1%. Further analysis for crop conversion coefficient was conducted for 200 DOY and 280 DOY. For the case of 280 DOY, Crop yield estimation showed better accuracy for soybean at county level. Though the case of 200 DOY resulted in less accuracy (i.e. 20% mean bias), it provides a useful tool for early forecasting of crop yield. We improved the spatial accuracy of estimated crop yield at county level by developing county-specific crop conversion coefficient. Our results indicate that the aboveground crop biomass can be estimated successfully with the simple LUE and respiration models combined with MODIS data and then, county-specific conversion coefficient can be different with each other across different counties. Hence, applying region-specific conversion coefficient is necessary to estimate crop yield with better accuracy.

  3. Coupling between Current and Dynamic Magnetization : from Domain Walls to Spin Waves

    NASA Astrophysics Data System (ADS)

    Lucassen, M. E.

    2012-05-01

    So far, we have derived some general expressions for domain-wall motion and the spin motive force. We have seen that the β parameter plays a large role in both subjects. In all chapters of this thesis, there is an emphasis on the determination of this parameter. We also know how to incorporate thermal fluctuations for rigid domain walls, as shown above. In Chapter 2, we study a different kind of fluctuations: shot noise. This noise is caused by the fact that an electric current consists of electrons, and therefore has fluctuations. In the process, we also compute transmission and reflection coefficients for a rigid domain wall, and from them the linear momentum transfer. More work on fluctuations is done in Chapter 3. Here, we consider a (extrinsically pinned) rigid domain wall under the influence of thermal fluctuations that induces a current via spin motive force. We compute how the resulting noise in the current is related to the β parameter. In Chapter 4 we look into in more detail into the spin motive forces from field driven domain walls. Using micro magnetic simulations, we compute the spin motive force due to vortex domain walls explicitly. As mentioned before, this gives qualitatively different results than for a rigid domain wall. The final subject in Chapter 5 is the application of the general expression for spin motive forces to magnons. Although this might seem to be unrelated to domain-wall motion, this calculation allows us to relate the β parameter to macroscopic transport coefficients. This work was supported by Stichting voor Fundamenteel Onderzoek der Materie (FOM), the Netherlands Organization for Scientific Research (NWO), and by the European Research Council (ERC) under the Seventh Framework Program (FP7).

  4. Wall-associated kinase-like polypeptide mediates nutritional status perception and response

    DOEpatents

    Yang, Zhenbiao; Karr, Stephen

    2014-02-11

    The disclosure relates to methods for modulating plant growth and organogenesis using dominant-negative receptor-like kinases. The disclosure further provides a method for increasing plant yield relative to corresponding wild type plants comprising modulating the expression in a plant of a nucleic acid encoding a Wall-Associated Kinase-like 14 polypeptide or a homolog thereof, and selecting for plants having increased yield or growth on a nutrient deficient substrate.

  5. Synthesis of Large Quantities of Single-Walled Aluminogermanante Nanotube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levard,C.; Rose, J.; Mision, A.

    2008-01-01

    A simple aqueous synthesis yielded about 100 times more structurally well-organized single-walled aluminogermanate nanotubes than previously reported 'standard' procedures. The structure analyses using XRD, IRTF, TEM, and XAS were greatly facilitated by the high concentrations available, and they ascertained the imogolite-like structure of the nanotubes. Simplicity and yield of the synthesis protocol are likely to favor commercial applications of theses materials as well as simplified syntheses of other nanophases.

  6. Assessment of posterior vaginal wall prolapse: comparison of physical findings to cystodefecoperitoneography.

    PubMed

    Altman, Daniel; López, Annika; Kierkegaard, Jonas; Zetterström, Jan; Falconer, Christian; Pollack, Johan; Mellgren, Anders

    2005-01-01

    The aim of the present study was to compare clinical and radiological findings when assessing posterior vaginal wall prolapse. Defecography can be used to complement the clinical evaluation in patients with posterior vaginal wall prolapse. Further development of the defecography technique, using contrast medium in the urinary bladder and intraperitoneally, have resulted in cystodefecoperitoneography (CDP). Thirty-eight women underwent clinical examination using the pelvic organ prolapse quantification system (POP-Q) followed by CDP. All patients answered a standardized bowel function questionnaire. Statistical analysis measuring correlation between POP-Q and CDP using Pearson's correlation coefficient (r) and Spearman's rank order correlation coefficient (rs) demonstrated a poor to moderate correlation, r=0.49 and rs=0.55. Although there was a strong association between large rectoceles (>3 cm) at CDP and symptoms of rectal emptying difficulties (p<0.001), severity and prevalence of bowel dysfunction showed poor coherence with clinical prolapse staging and findings at radiological imaging. Vaginal topography and POP-Q staging predict neither radiological size nor visceral involvement in posterior vaginal wall prolapse. Radiological evaluation may therefore be a useful complement in selected patients.

  7. I Vivo Quantitative Ultrasound Imaging and Scatter Assessments.

    NASA Astrophysics Data System (ADS)

    Lu, Zheng Feng

    There is evidence that "instrument independent" measurements of ultrasonic scattering properties would provide useful diagnostic information that is not available with conventional ultrasound imaging. This dissertation is a continuing effort to test the above hypothesis and to incorporate quantitative ultrasound methods into clinical examinations for early detection of diffuse liver disease. A well-established reference phantom method was employed to construct quantitative ultrasound images of tissue in vivo. The method was verified by extensive phantom tests. A new method was developed to measure the effective attenuation coefficient of the body wall. The method relates the slope of the difference between the echo signal power spectrum from a uniform region distal to the body wall and the echo signal power spectrum from a reference phantom to the body wall attenuation. The accuracy obtained from phantom tests suggests further studies with animal experiments. Clinically, thirty-five healthy subjects and sixteen patients with diffuse liver disease were studied by these quantitative ultrasound methods. The average attenuation coefficient in normals agreed with previous investigators' results; in vivo backscatter coefficients agreed with the results from normals measured by O'Donnell. Strong discriminating power (p < 0.001) was found for both attenuation and backscatter coefficients between fatty livers and normals; a significant difference (p < 0.01) was observed in the backscatter coefficient but not in the attenuation coefficient between cirrhotic livers and normals. An in vivo animal model of steroid hepatopathy was used to investigate the system sensitivity in detecting early changes in canine liver resulting from corticosteroid administration. The average attenuation coefficient slope increased from 0.7 dB/cm/MHz in controls to 0.82 dB/cm/MHz (at 6 MHz) in treated animals on day 14 into the treatment, and the backscatter coefficient was 26times 10^{ -4}cm^{-1}sr^{-1} in controls compared with 74times 10^{-4}cm^{-1}sr^ {-1} (at 6 MHz) in treated animals. A simplified quantitative approach using video image signals was developed. Results derived both from the r.f. signal analysis and from the video signal analysis are sensitive to the changes in the liver in this animal model.

  8. Cell wall metabolism and hexose allocation contribute to biomass accumulation in high yielding extreme segregants of a Saccharum interspecific F2 population.

    PubMed

    Wai, Ching Man; Zhang, Jisen; Jones, Tyler C; Nagai, Chifumi; Ming, Ray

    2017-10-11

    Sugarcane is an emerging dual-purpose biofuel crop for energy and sugar production, owing to its rapid growth rate, high sucrose storage in the stems, and high lignocellulosic yield. It has the highest biomass production reaching 1.9 billion tonnes in 2014 worldwide. To improve sugarcane biomass accumulation, we developed an interspecific cross between Saccharum officinarum 'LA Purple' and Saccharum robustum 'MOL5829'. Selected F1 individuals were self-pollinated to generate a transgressive F2 population with a wide range of biomass yield. Leaf and stem internodes of fourteen high biomass and eight low biomass F2 extreme segregants were used for RNA-seq to decipher the molecular mechanism of rapid plant growth and dry weight accumulation. Gene Ontology terms involved in cell wall metabolism and carbohydrate catabolism were enriched among 3274 differentially expressed genes between high and low biomass groups. Up-regulation of cellulose metabolism, pectin degradation and lignin biosynthesis genes were observed in the high biomass group, in conjunction with higher transcript levels of callose metabolic genes and the cell wall loosening enzyme expansin. Furthermore, UDP-glucose biosynthesis and sucrose conversion genes were differentially expressed between the two groups. A positive correlation between stem glucose, but not sucrose, levels and dry weight was detected. We thus postulated that the high biomass sugarcane plants rapidly convert sucrose to UDP-glucose, which is the building block of cell wall polymers and callose, in order to maintain the rapid plant growth. The gene interaction of cell wall metabolism, hexose allocation and cell division contributes to biomass yield.

  9. Higher-order Peregrine combs and Peregrine walls for the variable-coefficient Lenells-Fokas equation

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Qi; Wang, Xin; Wang, Lei; Sun, Wen-Rong; Qi, Feng-Hua

    2017-02-01

    In this paper, we study the variable-coefficient Lenells-Fokas (LF) model. Under large periodic modulations in the variable coefficients of the LF model, the generalized Akhmediev breathers develop into the breather multiple births (BMBs) from which we obtain the Peregrine combs (PCs). The PCs can be considered as the limiting case of the BMBs and be transformed into the Peregrine walls (PWs) with a specific amplitude of periodic modulation. We further investigate the spatiotemporal characteristics of the PCs and PWs analytically. Based on the second-order breather and rogue-wave solutions, we derive the corresponding higher-order structures (higher-order PCs and PWs) under proper periodic modulations. What is particularly noteworthy is that the second-order PC can be converted into the Peregrine pyramid which exhibits the higher amplitude and thickness. Our results could be helpful for the design of experiments in the optical fiber communications.

  10. Effect of Particle Size Distribution on Wall Heat Flux in Pulverized-Coal Furnaces and Boilers

    NASA Astrophysics Data System (ADS)

    Lu, Jun

    A mathematical model of combustion and heat transfer within a cylindrical enclosure firing pulverized coal has been developed and tested against two sets of measured data (one is 1993 WSU/DECO Pilot test data, the other one is the International Flame Research Foundation 1964 Test (Beer, 1964)) and one independent code FURN3D from the Argonne National Laboratory (Ahluwalia and IM, 1992). The model called PILC assumes that the system is a sequence of many well-stirred reactors. A char burnout model combining diffusion to the particle surface, pore diffusion, and surface reaction is employed for predicting the char reaction, heat release, and evolution of char. The ash formation model included relates the ash particle size distribution to the particle size distribution of pulverized coal. The optical constants of char and ash particles are calculated from dispersion relations derived from reflectivity, transmissivity and extinction measurements. The Mie theory is applied to determine the extinction and scattering coefficients. The radiation heat transfer is modeled using the virtual zone method, which leads to a set of simultaneous nonlinear algebraic equations for the temperature field within the furnace and on its walls. This enables the heat fluxes to be evaluated. In comparisons with the experimental data and one independent code, the model is successful in predicting gas temperature, wall temperature, and wall radiative flux. When the coal with greater fineness is burnt, the particle size of pulverized coal has a consistent influence on combustion performance: the temperature peak was higher and nearer to burner, the radiation flux to combustor wall increased, and also the absorption and scattering coefficients of the combustion products increased. The effect of coal particle size distribution on absorption and scattering coefficients and wall heat flux is significant. But there is only a small effect on gas temperature and fuel fraction burned; it is speculated that this may be a characteristic special to the test combustor used.

  11. Genotypic character relationship and phenotypic path coefficient analysis in chili pepper genotypes grown under tropical condition.

    PubMed

    Usman, Magaji G; Rafii, Mohd Y; Martini, Mohammad Y; Oladosu, Yusuff; Kashiani, Pedram

    2017-03-01

    Studies on genotypic and phenotypic correlations among characters of crop plants are useful in planning, evaluating and setting selection criteria for the desired characters in a breeding program. The present study aimed to estimate the phenotypic correlation coefficients among yield and yield attributed characters and to work out the direct and indirect effects of yield-related characters on yield per plant using path coefficient analysis. Twenty-six genotypes of chili pepper were laid out in a randomized complete block design with three replications. Yield per plant showed positive and highly significant (P ≤ 0.01) correlations with most of the characters studied at both the phenotypic and genotypic levels. By contrast, disease incidence and days to flowering showed a significant negative association with yield. Fruit weight and number of fruits exerted positive direct effect on yield and also had a positive and significant (P ≤ 0.01) correlation with yield per plant. However, fruit length showed a low negative direct effect with a strong and positive indirect effect through fruit weight on yield and had a positive and significant association with yield. Longer fruits, heavy fruits and a high number of fruits are variables that are related to higher yields of chili pepper under tropical conditions and hence could be used as a reliable indicator in indirect selection for yield. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Genetic Engineering of Maize (Zea mays L.) with Improved Grain Nutrients.

    PubMed

    Guo, Xiaotong; Duan, Xiaoguang; Wu, Yongzhen; Cheng, Jieshan; Zhang, Juan; Zhang, Hongxia; Li, Bei

    2018-02-21

    Cell-wall invertase plays important roles in the grain filling of crop plants. However, its functions in the improvement of grain nutrients have not been investigated. In this work, the stable expression of cell-wall-invertase-encoding genes from different plant species and the contents of total starch, protein, amino acid, nitrogen, lipid, and phosphorus were examined in transgenic maize plants. High expressions of the cell-wall-invertase gene conferred enhanced invertase activity and sugar content in transgenic plants, leading to increased grain yield and improved grain nutrients. Transgenic plants with high expressions of the transgene produced more total starch, protein, nitrogen, and essential amino acids in the seeds. Overall, the results indicate that the cell-wall-invertase gene can be used as a potential candidate for the genetic breeding of grain crops with both improved grain yield and quality.

  13. An Exploratory Analysis of Factors Affecting Participation in Air Force Knowledge Now Communities of Practice

    DTIC Science & Technology

    2004-03-01

    reliability coefficients are presented in chapter four in the factor analysis section. Along with Crobach’s Alpha coefficients, the Kaiser - Meyer - Olkin ...the pattern of correlation coefficients > 0.300 in the correlation matrix • Kaiser - Meyer - Olkin Measure of Sampling Adequacy (MSA) > 0.700 • Bartlett’s...exploratory factor analysis. The Kaiser - Meyer - Olkin measure of sampling adequacy yielded a value of .790, and Bartlett’s test of sphericity yielded a

  14. Double walled POE/PLGA microspheres: encapsulation of water-soluble and water-insoluble proteins and their release properties.

    PubMed

    Shi, Meng; Yang, Yi-Yan; Chaw, Cheng-Shu; Goh, Suat-Hong; Moochhala, Shabbir M; Ng, Steve; Heller, Jorge

    2003-04-29

    The poly(orthoester) (POE)-poly(D,L-lactide-co-glycolide) (50:50) (PLGA) double-walled microspheres with 50% POE in weight were loaded with hydrophilic bovine serum albumin (BSA) and hydrophobic cyclosporin A (CyA). Most of the BSA and CyA was entrapped within the shell and core, respectively, because of the difference in their hydrophilicity. The morphologies and release mechanisms of proteins-loaded double-walled POE/PLGA microspheres were investigated. Scanning electron microscope studies revealed that the CyA-BSA-loaded double-walled POE/PLGA microspheres yielded a more porous surface and PLGA shell than those without BSA. The neat POE and PLGA yielded slow and incomplete CyA and BSA release. In contrast, nearly complete BSA and more than 95% CyA were released in a sustained manner from the double-walled POE/PLGA microspheres. Both the BSA- and CyA-BSA-loaded POE/PLGA microspheres yielded a sustained BSA release over 5 days. The CyA release pattern of the CyA-loaded double-walled POE/PLGA microspheres was biphasic, characterized by a slow release over 15 days followed by a sustained release over 27 days. However, the CyA-BSA-loaded double-walled POE/PLGA microspheres provided a more constant and faster CyA release due to their more porous shell. In the CyA-BSA-loaded double-walled POE/PLGA microspheres system, the PLGA layer acted as a carrier for BSA and mild reservoir for CyA. During the first 5 days, most BSA was released from the shell but only 14% CyA was left from the microspheres. Subsequently, more than 80% CyA were released in the next 25 days. The distinct structure of double-walled POE/PLGA microspheres would make an interesting device for controlled delivery of therapeutic agents.

  15. Wave interactions with multiple semi-immersed Jarlan-type perforated breakwaters

    NASA Astrophysics Data System (ADS)

    Elbisy, Moussa S.

    2017-06-01

    This study examines wave interactions with multiple semi-immersed Jarlan-type perforated breakwaters. A numerical model based on linear wave theory and an eigenfunction expansion method has been developed to study the hydrodynamic characteristics of breakwaters. The numerical results show a good agreement with previous analytical results and experimental data for limiting cases of double partially immersed impermeable walls and double and triple Jarlan-type breakwaters. The wave transmission coefficient C T; reflection coefficient C R, and energy dissipation coefficient C E coefficients and the horizontal wave force exerted on the front and rear walls are examined. The results show that C R reaches the maximum value when B/L = 0.46 n while it is smallest when B/L=0.46 n+0.24 ( n=0, 1, 2,...). An economical triple semi-immersed Jarlan-type perforated breakwater can be designed with B/L = 0.25 and C R and C T ranging from 0.25 to 0.32 by choosing a relative draft d/h of 0.35 and a permeability parameter of the perforated front walls being 0.5 for an incident wave number kh nearly equal to 2.0. The triple semi-immersed Jarlan-type perforated breakwaters with significantly reduced C R, will enhance the structure's wave absorption ability, and lead to smaller wave forces compared with the double one. The proposed model may be used to predict the response of a structure in the preliminary design stage for practical engineering.

  16. An experimental investigation of boundary layer and crossflow characteristics of the Ames 2 by 2 foot and 11 by 11 foot transonic wind-tunnel walls

    NASA Technical Reports Server (NTRS)

    Matyk, G.; Kobayashi, Y.

    1977-01-01

    The boundary layer and crossflow characteristics of 2- by 2-foot and 11- by 11-foot transonic wind-tunnel wall configurations have been studied for Mach numbers ranging from 0.5 to 1.2 and for various crossflow to free stream unit mass flow ratios. For the 2- by 2-ft and 11- by 11-ft wall configurations, these ratios ranged from 0 to 0.12 and from 0 to 0.07, respectively. Most notably, for both wall configurations, the pressure-drop coefficient across the wall was nonlinear with mass flow and invariant with Mach number.

  17. Exact solutions of laminar-boundary-layer equations with constant property values for porous wall with variable temperature

    NASA Technical Reports Server (NTRS)

    Donoughe, Patrick L; Livingood, John N B

    1955-01-01

    Exact solution of the laminar-boundary-layer equations for wedge-type flow with constant property values are presented for transpiration-cooled surfaces with variable wall temperatures. The difference between wall and stream temperature is assumed proportional to a power of the distance from the leading edge. Solutions are given for a Prandtl number of 0.7 and ranges of pressure-gradient, cooling-air-flow, and wall-temperature-gradient parameters. Boundary-layer profiles, dimensionless boundary-layer thicknesses, and convective heat-transfer coefficients are given in both tabular and graphical form. Corresponding results for constant wall temperature and for impermeable surfaces are included for comparison purposes.

  18. Influence of the internal wall thickness of electrical capacitance tomography sensors on image quality

    NASA Astrophysics Data System (ADS)

    Liang, Shiguo; Ye, Jiamin; Wang, Haigang; Wu, Meng; Yang, Wuqiang

    2018-03-01

    In the design of electrical capacitance tomography (ECT) sensors, the internal wall thickness can vary with specific applications, and it is a key factor that influences the sensitivity distribution and image quality. This paper will discuss the effect of the wall thickness of ECT sensors on image quality. Three flow patterns are simulated for wall thicknesses of 2.5 mm to 15 mm on eight-electrode ECT sensors. The sensitivity distributions and potential distributions are compared for different wall thicknesses. Linear back-projection and Landweber iteration algorithms are used for image reconstruction. Relative image error and correlation coefficients are used for image evaluation using both simulation and experimental data.

  19. Temperature effects on diffusion coefficient for 6-gingerol and 6-shogaol in subcritical water extraction

    NASA Astrophysics Data System (ADS)

    Ilia Anisa, Nor; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio

    2014-04-01

    6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10-11 m2/s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10-11 m2/s.

  20. Photosensitized electron transport across lipid vesicle walls: quantum yield dependence on sensitizer concentration.

    PubMed Central

    Ford, W E; Otvos, J W; Calvin, M

    1979-01-01

    An amphiphilic tris(2,2'-bipyridine)ruthenium(2+) derivative that is incorporated into the walls of phosphatidylcholine vesicles photosensitizes the irreversible oxidation of ethylenediaminetetraacetate(3-) dissolved in the inner aqueous compartments of the vesicle suspension and the one-electron reduction of heptylviologen(2+) dissolved in the continuous aqueous phase. The quantum yield of viologen radical production depends on the phospholipid-to-ruthenium complex mole ratios. A kinetic model is used to derive an order-of-magnitude estimate for the rate constant of electron transport across the vesicle walls. The results are inconsistent with a diffusional mechanism for electron transport and are interpreted in terms of electron exchange. PMID:291027

  1. Ultrasonic Estimation of Mechanical Properties of Pulmonary Arterial Wall Under Normoxic and Hypoxic Conditions

    NASA Astrophysics Data System (ADS)

    Waters, Kendall R.; Mukdadi, Osama M.

    2005-04-01

    Secondary pediatric pulmonary hypertension is a disease that could benefit from improved ultrasonic diagnostic techniques. We perform high-frequency in vitro ultrasound measurements (25 MHz to 100 MHz) on fresh and fixed pulmonary arterial walls excised from normoxic and hypoxic Long-Evans rat models. Estimates of the elastic stiffness coefficients are determined from measurements of the speed of sound. Preliminary results indicate that hypoxia leads to up to increase of 20 % in stiffening of the pulmonary arterial wall.

  2. Investigating Mass Transport Limitations on Xylan Hydrolysis During Dilute Acid Pretreatment of Poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Ashutosh; Pilath, Heid M.; Parent, Yves

    2014-04-28

    Mass transport limitations could be an impediment to achieving high sugar yields during biomass pretreatment and thus be a critical factor in the economics of biofuels production. The objective of this work was to study the mass transfer restrictions imposed by the structure of biomass on the hydrolysis of xylan during dilute acid pretreatment of biomass. Mass transfer effects were studied by pretreating poplar wood at particle sizes ranging from 10 micrometers to 10 mm. This work showed a significant reduction in the rate of xylan hydrolysis in poplar when compared to the intrinsic rate of hydrolysis for isolated xylanmore » that is possible in the absence of mass transfer. In poplar samples we observed no significant difference in the rates of xylan hydrolysis over more than two orders of magnitude in particle size. It appears that no additional mass transport restrictions are introduced by increasing particle size from 10 micrometers to 10 mm. This work suggests that the rates of xylan hydrolysis in biomass particles are limited primarily by the diffusion of hydrolysis products out of plant cell walls. A mathematical description is presented to describe the kinetics of xylan hydrolysis that includes transport of the hydrolysis products through biomass into the bulk solution. The modeling results show that the effective diffusion coefficient of the hydrolysis products in the cell wall is several orders of magnitude smaller than typical values in other applications signifying the role of plant cell walls in offering resistance to diffusion of the hydrolysis products.« less

  3. Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.).

    PubMed

    Chen, Yongsheng; Zein, Imad; Brenner, Everton Alen; Andersen, Jeppe Reitan; Landbeck, Mathias; Ouzunova, Milena; Lübberstedt, Thomas

    2010-01-15

    Reduced lignin content leads to higher cell wall digestibility and, therefore, better forage quality and increased conversion of lignocellulosic biomass into ethanol. However, reduced lignin content might lead to weaker stalks, lodging, and reduced biomass yield. Genes encoding enzymes involved in cell wall lignification have been shown to influence both cell wall digestibility and yield traits. In this study, associations between monolignol biosynthetic genes and plant height (PHT), days to silking (DTS), dry matter content (DMC), and dry matter yield (DMY) were identified by using a panel of 39 European elite maize lines. In total, 10 associations were detected between polymorphisms or tight linkage disequilibrium (LD) groups within the COMT, CCoAOMT2, 4CL1, 4CL2, F5H, and PAL genomic fragments, respectively, and the above mentioned traits. The phenotypic variation explained by these polymorphisms or tight LD groups ranged from 6% to 25.8% in our line collection. Only 4CL1 and F5H were found to have polymorphisms associated with both yield and forage quality related characters. However, no pleiotropic polymorphisms affecting both digestibility of neutral detergent fiber (DNDF), and PHT or DMY were discovered, even under less stringent statistical conditions. Due to absence of pleiotropic polymorphisms affecting both forage yield and quality traits, identification of optimal monolignol biosynthetic gene haplotype(s) combining beneficial quantitative trait polymorphism (QTP) alleles for both quality and yield traits appears possible within monolignol biosynthetic genes. This is beneficial to maximize forage and bioethanol yield per unit land area.

  4. Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.)

    PubMed Central

    2010-01-01

    Background Reduced lignin content leads to higher cell wall digestibility and, therefore, better forage quality and increased conversion of lignocellulosic biomass into ethanol. However, reduced lignin content might lead to weaker stalks, lodging, and reduced biomass yield. Genes encoding enzymes involved in cell wall lignification have been shown to influence both cell wall digestibility and yield traits. Results In this study, associations between monolignol biosynthetic genes and plant height (PHT), days to silking (DTS), dry matter content (DMC), and dry matter yield (DMY) were identified by using a panel of 39 European elite maize lines. In total, 10 associations were detected between polymorphisms or tight linkage disequilibrium (LD) groups within the COMT, CCoAOMT2, 4CL1, 4CL2, F5H, and PAL genomic fragments, respectively, and the above mentioned traits. The phenotypic variation explained by these polymorphisms or tight LD groups ranged from 6% to 25.8% in our line collection. Only 4CL1 and F5H were found to have polymorphisms associated with both yield and forage quality related characters. However, no pleiotropic polymorphisms affecting both digestibility of neutral detergent fiber (DNDF), and PHT or DMY were discovered, even under less stringent statistical conditions. Conclusion Due to absence of pleiotropic polymorphisms affecting both forage yield and quality traits, identification of optimal monolignol biosynthetic gene haplotype(s) combining beneficial quantitative trait polymorphism (QTP) alleles for both quality and yield traits appears possible within monolignol biosynthetic genes. This is beneficial to maximize forage and bioethanol yield per unit land area. PMID:20078869

  5. Quantum processes in resonators with moving walls

    NASA Technical Reports Server (NTRS)

    Klimov, A. B.; Dodonov, V. V.

    1993-01-01

    The behavior of an electromagnetic field in an ideal cavity with an oscillating boundary is considered in the resonance long-time limit. The rates of photon creation from the vacuum and thermal states are evaluated. The squeezing coefficients for the field modes are found, as well as the backward reaction of the field on the vibrating wall.

  6. Dissociative Recombination of FeO(+) with Electrons: Implications for Plasma Layers in the Ionosphere.

    PubMed

    Bones, D L; Plane, J M C; Feng, W

    2016-03-10

    The dissociative recombination (DR) of FeO(+) ions with electrons has been studied in a flowing afterglow reactor. FeO(+) was generated by the pulsed laser ablation of a solid Fe target, and then entrained in an Ar(+) ion/electron plasma where the absolute electron density was measured using a Langmuir probe. A kinetic model describing gas-phase chemistry and diffusion to the reactor walls was fitted to the experimental data, yielding a DR rate coefficient at 298 K of k(FeO(+) + e(-)) = (5.5 ± 1.0) × 10(-7) cm(3) molecule(-1) s(-1), where the quoted uncertainty is at the 2σ level. Fe(+) ions in the lower thermosphere are oxidized by O3 to FeO(+), and this DR reaction is shown to provide a more important route for neutralizing Fe(+) below 110 km than the radiative/dielectronic recombination of Fe(+) with electrons. The experimental system was first validated by measuring two other DR reaction rate coefficients: k(O2(+) + e(-)) = (2.0 ± 0.4) × 10(-7) and k(N2O(+) + e(-)) = (3.3 ± 0.8) × 10(-7) cm(3) molecule(-1) s(-1), which are in good agreement with the recent literature.

  7. Calculation of wall effects of flow on a perforated wall with a code of surface singularities

    NASA Astrophysics Data System (ADS)

    Piat, J. F.

    1994-07-01

    Simplifying assumptions are inherent in the analytic method previously used for the determination of wall interferences on a model in a wind tunnel. To eliminate these assumptions, a new code based on the vortex lattice method was developed. It is suitable for processing any shape of test sections with limited areas of porous wall, the characteristic of which can be nonlinear. Calculation of wall effects in S3MA wind tunnel, whose test section is rectangular 0.78 m x 0.56 m, and fitted with two or four perforated walls, have been performed. Wall porosity factors have been adjusted to obtain the best fit between measured and computed pressure distributions on the test section walls. The code was checked by measuring nearly equal drag coefficients for a model tested in S3MA wind tunnel (after wall corrections) and in S2MA wind tunnel whose test section is seven times larger (negligible wall corrections).

  8. Nanotechnology with Carbon Nanotubes: Mechanics, Chemistry, and Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak

    2003-01-01

    This viewgraph presentation reviews the Nanotechnology of carbon nanotubes. The contents include: 1) Nanomechanics examples; 2) Experimental validation of nanotubes in composites; 3) Anisotropic plastic collapse; 4) Spatio-temporal scales, yielding single-wall nanotubes; 5) Side-wall functionalization of nanotubes; 6) multi-wall Y junction carbon nanotubes; 7) Molecular electronics with Nanotube junctions; 8) Single-wall carbon nanotube junctions; welding; 9) biomimetic dendritic neurons: Carbon nanotube, nanotube electronics (basics), and nanotube junctions for Devices,

  9. A Study of Wall Jets and Tangentially Blown Wings

    DTIC Science & Technology

    1981-07-01

    Blowing coefficient C Chapman’constant CFF Far field constant CL Lift coefficient SCp Pressure coefficient D Reduced exit height E Normalized stagnation...that the wave interactiop zone there is (6(4/ 3 ). 74 C3471A/jos Oil % Rockwell International Science Cenier SC5055.21FR TABLE 4 - PARAMETRIC SUIMMY OF...34Analysis of Embedded Shock Waves Calculated by Relaxation Methods," Proc. Computational Fluid Dynamics Conference, Palm Springs, Calif., July 19-20, 1973, pp

  10. Performance evaluation of Maxwell and Cercignani-Lampis gas-wall interaction models in the modeling of thermally driven rarefied gas transport.

    PubMed

    Liang, Tengfei; Li, Qi; Ye, Wenjing

    2013-07-01

    A systematic study on the performance of two empirical gas-wall interaction models, the Maxwell model and the Cercignani-Lampis (CL) model, in the entire Knudsen range is conducted. The models are evaluated by examining the accuracy of key macroscopic quantities such as temperature, density, and pressure, in three benchmark thermal problems, namely the Fourier thermal problem, the Knudsen force problem, and the thermal transpiration problem. The reference solutions are obtained from a validated hybrid DSMC-MD algorithm developed in-house. It has been found that while both models predict temperature and density reasonably well in the Fourier thermal problem, the pressure profile obtained from Maxwell model exhibits a trend that opposes that from the reference solution. As a consequence, the Maxwell model is unable to predict the orientation change of the Knudsen force acting on a cold cylinder embedded in a hot cylindrical enclosure at a certain Knudsen number. In the simulation of the thermal transpiration coefficient, although all three models overestimate the coefficient, the coefficient obtained from CL model is the closest to the reference solution. The Maxwell model performs the worst. The cause of the overestimated coefficient is investigated and its link to the overly constrained correlation between the tangential momentum accommodation coefficient and the tangential energy accommodation coefficient inherent in the models is pointed out. Directions for further improvement of models are suggested.

  11. [Electrophoretic patterns of cell wall protein as a criterion for the identification and classification of Corynebacteria].

    PubMed

    Mykhal's'kyĭ, L O; Furtat, I M; Dem'ianenko, F P; Kostiuchyk, A A

    2001-01-01

    Electrophoretic patterns of cell wall protein of three industrial strains, that were used for production of lysin, and eight collection strains from the genus Corynevacterium were studied to analyze their similarity as well as to estimate an opportunity of using this parameter as an additional criterion for identification and classification of corynebacteria. Similarity coefficient of cell wall overall and main protein electrophoretic patterns were determined by a specially created computer program. Electrophoretic analysis showed that every specie had an individual protein profile. There were determined biopolymers common for the specie, genus and individual among the overall majors and minors. The obtained results showed, that the patterns of main proteins were more conservative and informative in comparison with those ones of overall proteins. The definition of similarity coefficient by the main protein patterns has correlated with the protein profile characteristics of every analyzed strain, and it managed to distribute them into the separate groups. The similarity coefficient of preparations by the main protein patterns allows to separate one specie or a strain from another, and that gives us a chance to claim that this parameter could be used as an additional criterion for differentiation and referring the corynebacteria to a certain taxonomic group.

  12. Predicting the size-dependent tissue accumulation of agents released from vascular targeted nanoconstructs

    NASA Astrophysics Data System (ADS)

    de Tullio, Marco D.; Singh, Jaykrishna; Pascazio, Giuseppe; Decuzzi, Paolo

    2014-03-01

    Vascular targeted nanoparticles have been developed for the delivery of therapeutic and imaging agents in cancer and cardiovascular diseases. However, at authors' knowledge, a comprehensive systematic analysis on their delivery efficiency is still missing. Here, a computational model is developed to predict the vessel wall accumulation of agents released from vascular targeted nanoconstructs. The transport problem for the released agent is solved using a finite volume scheme in terms of three governing parameters: the local wall shear rate , ranging from to ; the wall filtration velocity , varying from to ; and the agent diffusion coefficient , ranging from to . It is shown that the percentage of released agent adsorbing on the vessel walls in the vicinity of the vascular targeted nanoconstructs reduces with an increase in shear rate , and with a decrease in filtration velocity and agent diffusivity . In particular, in tumor microvessels, characterized by lower shear rates () and higher filtration velocities (), an agent with a diffusivity (i.e. a 50 nm particle) is predicted to deposit on the vessel wall up to of the total released dose. Differently, drug molecules, exhibiting a smaller size and much higher diffusion coefficient (), are predicted to accumulate up to . In healthy vessels, characterized by higher and lower , the largest majority of the released agent is redistributed directly in the circulation. These data suggest that drug molecules and small nanoparticles only can be efficiently released from vascular targeted nanoconstructs towards the diseased vessel walls and tissue.

  13. Invariance of Hypersonic Normal Force Coefficients with Reynolds Number and Determination of Inviscid Wave Drag from Laminar Experimental Results

    NASA Technical Reports Server (NTRS)

    Hawkins, Richard; Penland, Jim A.

    1997-01-01

    Observations have been made and reported that the experimental normal force coefficients at a constant angle of attack were constant with a variation of more than 2 orders of magnitude of Reynolds number at a free-stream Mach number M(sub infinity) of 8.00 and more than 1 order of magnitude variation at M(sub infinity) = 6.00 on the same body-wing hypersonic cruise configuration. These data were recorded under laminar, transitional, and turbulent boundary layer conditions with both hot-wall and cold-wall models. This report presents experimental data on 25 configurations of 17 models of both simple and complex geometry taken at M(sub infinity) = 6.00, 6.86, and 8.00 in 4 different hypersonic facilities. Aerodynamic calculations were made by computational fluid dynamics (CID) and engineering methods to analyze these data. The conclusions were that the normal force coefficients at a given altitude are constant with Reynolds numbers at hypersonic speeds and that the axial force coefficients recorded under laminar boundary-layer conditions at several Reynolds numbers may be plotted against the laminar parameter (the reciprocal of the Reynolds number to the one-half power) and extrapolated to the ordinate axis to determine the inviscid-wave-drag coefficient at the intercept.

  14. A Near-Wall Reynolds-Stress Closure without Wall Normals

    NASA Technical Reports Server (NTRS)

    Yuan, S. P.; So, R. M. C.

    1997-01-01

    With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on the SSG high-Reynolds-stress model with wall-independent near-wall corrections. Only one damping function is used for flows with a wide range of Reynolds numbers to ensure that the near-wall modifications diminish away from the walls. The model is able to reproduce complicated flow phenomena induced by complex geometry, such as flow recirculation, reattachment and boundary-layer redevelopment in backward-facing step flow and secondary flow in three-dimensional square duct flow. In simple flows, including fully developed channel/pipe flow, Couette flow and boundary-layer flow, the wall effects are dominant, and the NNWRS model predicts less degree of turbulent anisotropy in the near-wall region compared with a wall-dependent near-wall Reynolds Stress model (NWRS) developed by So and colleagues. The comparison of the predictions given by the two models rectifies the misconception that the overshooting of skin friction coefficient in backward-facing step flow prevalent in those near-wall, models with wall normal is caused by he use of wall normal.

  15. Method for preparing thin-walled ceramic articles of configuration

    DOEpatents

    Holcombe, C.E.; Powell, G.L.

    1975-11-01

    A method for preparing a hollow thin-walled ceramic product is described. Ceramic powder is plasma-sprayed onto a concave surface of a substrate having a coefficient of thermal expansion less than that of the ceramic. The coated substrate is heated to sinter the ceramic and then cooled to effect a separation of the ceramic product from the substrate. (auth)

  16. Photosensitized electron transport across lipid vesicle walls: Enhancement of quantum yield by ionophores and transmembrane potentials

    PubMed Central

    Laane, Colja; Ford, William E.; Otvos, John W.; Calvin, Melvin

    1981-01-01

    The photosensitized reduction of heptylviologen in the bulk aqueous phase of phosphatidylcholine vesicles containing EDTA inside and a membrane-bound tris(2,2′-bipyridine)ruthenium(2+) derivative is enhanced by a factor of 6.5 by the addition of valinomycin in the presence of K+. A 3-fold stimulation by gramicidin and carbonyl cyanide m-chlorophenylhydrazone is observed. The results suggest that, under these conditions, the rate of photoinduced electron transfer across vesicle walls in the absence of ion carriers is limited by cotransport of cations. The rate of electron transfer across vesicle walls could be influenced further by generating transmembrane potentials with K+ gradients in the presence of valinomycin. When vesicles are made with transmembrane potentials, interior more negative, the quantum yield of heptylviologen reduction is doubled, and, conversely, when vesicles are made with transmembrane potentials, interior more positive, the quantum yield is decreased and approaches the value found in the absence of valinomycin. PMID:16593002

  17. Impact of heterozygosity and heterogeneity on cotton lint yield stability: II. Lint yield components

    USDA-ARS?s Scientific Manuscript database

    In order to determine which yield components may contribute to yield stability, an 18-environment field study was undertaken to observe the mean, standard deviation (SD), and coefficient of variation (CV) for cotton lint yield components in population types that differed for lint yield stability. Th...

  18. Wall functions for the kappa-epsilon turbulence model in generalized nonorthogonal curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Sondak, D. L.; Pletcher, R. H.; Vandalsem, W. R.

    1992-01-01

    A k-epsilon turbulence model suitable for compressible flow, including the new wall function formulation, has been incorporated into an existing compressible Reynolds-averaged Navier-Stokes code, F3D. The low Reynolds number k-epsilon model of Chien (1982) was added for comparison with the present method. A number of features were added to the F3D code including improved far-field boundary conditions and viscous terms in the streamwise direction. A series of computations of increasing complexity was run to test the effectiveness of the new formulation. Flow over a flat plate was computed by using both orthogonal and nonorthogonal grids, and the friction coefficients and velocity profiles compared with a semi-empirical equation. Flow over a body of revolution at zero angle of attack was then computed to test the method's ability to handle flow over a curved surface. Friction coefficients and velocity profiles were compared to test data. All models gave good results on a relatively fine grid, but only the wall function formulation was effective with coarser grids. Finally, in order to demonstrate the method's ability to handle complex flow fields, separated flow over a prolate spheroid at angle of attack was computed, and results were compared to test data. The results were also compared to a k-epsilon model by Kim and Patel (1991), in which one equation model patched in at the wall was employed. Both models gave reasonable solutions, but improvement is required for accurate prediction of friction coefficients in the separated regions.

  19. Analysis of buoyancy effect on fully developed laminar heat transfer in a rotating tube

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1985-01-01

    Laminar heat transfer is analyzed in a tube rotating about an axis perpendicular to the tube axis. The solution applies for flow that is either radially outward from the axis of rotation, or radially inward toward the axis of rotation. The conditions are fully developed, and there is uniform heat addition at the tube wall. The analysis is performed by expanding velocities and temperature in power series using the Taylor number as a perturbation parameter. Coriolis and buoyancy forces caused by tube rotation are included, and the solution is calculated through second-order terms. The secondary flow induced by the Coriolis terms always tends to increase the heat transfer coefficient; this effect can dominate for small wall heating. For radial inflow, buoyancy also tends to improve heat transfer. For radial outflow, however, buoyancy tends to reduce heat transfer; for large wall heating this effect can dominate, and there is a net reduction in heat transfer coefficient.

  20. Spatial variations in shear stress in a 3-D bifurcation model at low Reynolds numbers.

    PubMed

    Rouhanizadeh, Mahsa; Lin, Tiantian C; Arcas, Diego; Hwang, Juliana; Hsiai, Tzung K

    2005-10-01

    Real-time wall shear stress is difficult to monitor precisely because it varies in space and time. Microelectromechanical systems sensor provides high spatial resolution to resolve variations in shear stress in a 3-D bifurcation model for small-scaled hemodynamics. At low Reynolds numbers from 1.34 to 6.7 skin friction coefficients (C(f)) varied circumferentially by a factor of two or more within the bifurcation. At a Reynolds number of 6.7, the C(f) value at the lateral wall of the bifurcation along the 270 degree plane was 7.1, corresponding to a shear stress value of 0.0061 dyn/cm(2). Along the 180 degree plane, C(f) was 13 or 0.0079 dyn/cm(2), and at the medial wall along the 90 degree plane, C(f) was 10.3 or 0.0091 dyn/cm(2). The experimental skin friction coefficients correlated with values derived from the Navier-Stokes solutions.

  1. Numerical model of thermo-mechanical coupling for the tensile failure process of brittle materials

    NASA Astrophysics Data System (ADS)

    Fu, Yu; Wang, Zhe; Ren, Fengyu; Wang, Daguo

    2017-10-01

    A numerical model of thermal cracking with a thermo-mechanical coupling effect was established. The theory of tensile failure and heat conduction is used to study the tensile failure process of brittle materials, such as rock and concrete under high temperature environment. The validity of the model is verified by thick-wall cylinders with analytical solutions. The failure modes of brittle materials under thermal stresses caused by temperature gradient and different thermal expansion coefficient were studied by using a thick-wall cylinder model and an embedded particle model, respectively. In the thick-wall cylinder model, different forms of cracks induced by temperature gradient were obtained under different temperature boundary conditions. In the embedded particle model, radial cracks were produced in the medium part with lower tensile strength when temperature increased because of the different thermal expansion coefficient. Model results are in good agreement with the experimental results, thereby providing a new finite element method for analyzing the thermal damage process and mechanism of brittle materials.

  2. Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances (Invited)

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2015-01-01

    Boundary-layer receptivity to two-dimensional acoustic and vortical disturbances for hypersonic flows over two-dimensional and axi-symmetric geometries were numerically investigated. The role of bluntness, wall cooling, and pressure gradients on the receptivity and stability were analyzed and compared with the sharp nose cases. It was found that for flows over sharp nose geometries in adiabatic wall conditions the instability waves are generated in the leading-edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. The computations confirmed the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary layer transition. The receptivity coefficients in flows over blunt bodies are orders of magnitude smaller than that for the sharp cone cases. Wall cooling stabilizes the first mode strongly and destabilizes the second mode. However, the receptivity coefficients are also much smaller compared to the adiabatic case. The adverse pressure gradients increased the unstable second mode regions.

  3. Maxwell boundary condition and velocity dependent accommodation coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Struchtrup, Henning, E-mail: struchtr@uvic.ca

    2013-11-15

    A modification of Maxwell's boundary condition for the Boltzmann equation is developed that allows to incorporate velocity dependent accommodation coefficients into the microscopic description. As a first example, it is suggested to consider the wall-particle interaction as a thermally activated process with three parameters. A simplified averaging procedure leads to jump and slip boundary conditions for hydrodynamics. Coefficients for velocity slip, temperature jump, and thermal transpiration flow are identified and compared with those resulting from the original Maxwell model and the Cercignani-Lampis model. An extension of the model leads to temperature dependent slip and jump coefficients.

  4. Specific features of low-frequency vibrational dynamics and low-temperature heat capacity of double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Avramenko, M. V.; Roshal, S. B.

    2016-05-01

    A continuous model has been constructed for low-frequency dynamics of a double-walled carbon nanotube. The formation of the low-frequency part of the phonon spectrum of a double-walled nanotube from phonon spectra of its constituent single-walled nanotubes has been considered in the framework of the proposed approach. The influence of the environment on the phonon spectrum of a single double-walled carbon nanotube has been analyzed. A combined method has been proposed for estimating the coefficients of the van der Waals interaction between the walls of the nanotube from the spectroscopic data and the known values of the elastic moduli of graphite. The low-temperature specific heat has been calculated for doublewalled carbon nanotubes, which in the field of applicability of the model ( T < 35 K) is substantially less than the sum of specific heats of two individual single-walled nanotubes forming it.

  5. Mercado/Robb/Buchdahl coefficients: an update of 243 common glasses

    NASA Astrophysics Data System (ADS)

    Bolser, Michael

    2002-12-01

    The 1983 Mercado/Robb listing of Buchdahl chromatic coordinate coefficients is supplemented with glasses from the Schott and O'Hara catalogues. The coefficients were calculated by using Buchdahl's cubic model. Appropriately selected materials yield a superachromat.

  6. A two-dimensional adaptive-wall test section with ventilated walls in the Ames 2- by 2-foot transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T.; Lee, George; Mcdevitt, T. Kevin

    1989-01-01

    The first tests conducted in the adaptive-wall test section of the Ames Research Center's 2- by 2-Foot Transonic Wind Tunnel are described. A procedure was demonstrated for reducing wall interference in transonic flow past a two-dimensional airfoil by actively controlling flow through the slotted walls of the test section. Flow through the walls was controlled by adjusting pressures in compartments of plenums above and below the test section. Wall interference was assessed by measuring (with a laser velocimeter) velocity distributions along a contour surrounding the model, and then checking those measurements for their compatibility with free-air far-field boundary conditions. Plenum pressures for minimum wall interference were determined from empirical influence coefficients. An NACA 0012 airfoil was tested at angles of attach of 0 and 2, and at Mach numbers between 0.70 and 0.85. In all cases the wall-setting procedure greatly reduced wall interference. Wall interference, however, was never completely eliminated, primarily because the effect of plenum pressure changes on the velocities along the contour could not be accurately predicted.

  7. Prediction of random-regression coefficient for daily milk yield after 305 days in milk by using the regression-coefficient estimates from the first 305 days.

    PubMed

    Yamazaki, Takeshi; Takeda, Hisato; Hagiya, Koichi; Yamaguchi, Satoshi; Sasaki, Osamu

    2018-03-13

    Because lactation periods in dairy cows lengthen with increasing total milk production, it is important to predict individual productivities after 305 days in milk (DIM) to determine the optimal lactation period. We therefore examined whether the random regression (RR) coefficient from 306 to 450 DIM (M2) can be predicted from those during the first 305 DIM (M1) by using a random regression model. We analyzed test-day milk records from 85690 Holstein cows in their first lactations and 131727 cows in their later (second to fifth) lactations. Data in M1 and M2 were analyzed separately by using different single-trait RR animal models. We then performed a multiple regression analysis of the RR coefficients of M2 on those of M1 during the first and later lactations. The first-order Legendre polynomials were practical covariates of random regression for the milk yields of M2. All RR coefficients for the additive genetic (AG) effect and the intercept for the permanent environmental (PE) effect of M2 had moderate to strong correlations with the intercept for the AG effect of M1. The coefficients of determination for multiple regression of the combined intercepts for the AG and PE effects of M2 on the coefficients for the AG effect of M1 were moderate to high. The daily milk yields of M2 predicted by using the RR coefficients for the AG effect of M1 were highly correlated with those obtained by using the coefficients of M2. Milk production after 305 DIM can be predicted by using the RR coefficient estimates of the AG effect during the first 305 DIM.

  8. Enhancement of First Wall Damage in Iter Type Tokamak due to Lenr Effects

    NASA Astrophysics Data System (ADS)

    Lipson, Andrei G.; Miley, George H.; Momota, Hiromu

    In recent experiments with pulsed periodic high current (J ~ 300-500 mA/cm2) D2-glow discharge at deuteron energies as low as 0.8-2.45 keV a large DD-reaction yield has been obtained. Thick target yield measurement show unusually high DD-reaction enhancement (at Ed = 1 keV the yield is about nine orders of magnitude larger than that deduced from standard Bosch and Halle extrapolation of DD-reaction cross-section to lower energies) The results obtained in these LENR experiments with glow discharge suggest nonnegligible edge plasma effects in the ITER TOKAMAK that were previously ignored. In the case of the ITER DT plasma core, we here estimate the DT reaction yield at the metal edge due to plasma ion bombardment of the first wall and/or divertor materials.

  9. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes.

    PubMed

    Lin, Liangxu; Zhang, Shaowei

    2012-10-21

    We have developed an effective method to exfoliate and disintegrate multi-walled carbon nanotubes and graphite flakes. With this technique, high yield production of luminescent graphene quantum dots with high quantum yield and low oxidization can be achieved.

  10. Investigating the Effect of Carbon Nanotube Diameter and Wall Number in Carbon Nanotube/Silicon Heterojunction Solar Cells

    PubMed Central

    Grace, Tom; Yu, LePing; Gibson, Christopher; Tune, Daniel; Alturaif, Huda; Al Othman, Zeid; Shapter, Joseph

    2016-01-01

    Suspensions of single-walled, double-walled and multi-walled carbon nanotubes (CNTs) were generated in the same solvent at similar concentrations. Films were fabricated from these suspensions and used in carbon nanotube/silicon heterojunction solar cells and their properties were compared with reference to the number of walls in the nanotube samples. It was found that single-walled nanotubes generally produced more favorable results; however, the double and multi-walled nanotube films used in this study yielded cells with higher open circuit voltages. It was also determined that post fabrication treatments applied to the nanotube films have a lesser effect on multi-walled nanotubes than on the other two types. PMID:28344309

  11. Elliptic Relaxation of a Tensor Representation for the Redistribution Terms in a Reynolds Stress Turbulence Model

    NASA Technical Reports Server (NTRS)

    Carlson, J. R.; Gatski, T. B.

    2002-01-01

    A formulation to include the effects of wall proximity in a second-moment closure model that utilizes a tensor representation for the redistribution terms in the Reynolds stress equations is presented. The wall-proximity effects are modeled through an elliptic relaxation process of the tensor expansion coefficients that properly accounts for both correlation length and time scales as the wall is approached. Direct numerical simulation data and Reynolds stress solutions using a full differential approach are compared for the case of fully developed channel flow.

  12. Elliptic Relaxation of a Tensor Representation of the Pressure-Strain and Dissipation Rate

    NASA Technical Reports Server (NTRS)

    Carlson, John R.; Gatski, Thomas B.

    2002-01-01

    A formulation to include the effects of wall-proximity in a second moment closure model is presented that utilizes a tensor representation for the redistribution term in the Reynolds stress equations. The wall-proximity effects are modeled through an elliptic relaxation process of the tensor expansion coefficients that properly accounts for both correlation length and time scales as the wall is approached. DNS data and Reynolds stress solutions using a full differential approach at channel Reynolds number of 590 are compared to the new model.

  13. Estimation of Heat Transfer Coefficient in Squeeze Casting of Magnesium Alloy AM60 by Experimental Polynomial Extrapolation Method

    NASA Astrophysics Data System (ADS)

    Sun, Zhizhong; Niu, Xiaoping; Hu, Henry

    In this work, a different wall-thickness 5-step (with thicknesses as 3, 5, 8, 12, 20 mm) casting mold was designed, and squeeze casting of magnesium alloy AM60 was performed in a hydraulic press. The casting-die interfacial heat transfer coefficients (IHTC) in 5-step casting were determined based on experimental thermal histories data throughout the die and inside the casting which were recorded by fine type-K thermocouples. With measured temperatures, heat flux and IHTC were evaluated using the polynomial curve fitting method. The results show that the wall thickness affects IHTC peak values significantly. The IHTC value for the thick step is higher than that for the thin steps.

  14. Turbine heat transfer

    NASA Technical Reports Server (NTRS)

    Rohde, J. E.

    1982-01-01

    Objectives and approaches to research in turbine heat transfer are discussed. Generally, improvements in the method of determining the hot gas flow through the turbine passage is one area of concern, as is the cooling air flow inside the airfoil, and the methods of predicting the heat transfer rates on the hot gas side and on the coolant side of the airfoil. More specific areas of research are: (1) local hot gas recovery temperatures along the airfoil surfaces; (2) local airfoil wall temperature; (3) local hot gas side heat transfer coefficients on the airfoil surfaces; (4) local coolant side heat transfer coefficients inside the airfoils; (5) local hot gas flow velocities and secondary flows at real engine conditions; and (6) local delta strain range of the airfoil walls.

  15. Role of friction in vertically oscillated granular materials

    NASA Astrophysics Data System (ADS)

    Moon, Sung Joon; Swift, J. B.; Swinney, Harry L.

    2002-11-01

    We use a previously validated molecular dynamics simulation of vertically oscillated granular layers to study how the contact friction affects standing wave patterns. Our collision model follows Walton(O. R. Walton, in Particulate Two-Phase Flow), edited by M. C. Roco (Butterworth-Heinemann, Boston, 1993), p. 884.: Dissipation in the normal component of colliding velocity is characterized by the normal coefficient of restitution e (0<= e < 1), and interaction in the tangential component by the tangential coefficient of restitution β = β(μ,e,Φ), where -1<= β <= β_0, μ is the static coefficient of friction on the surface of grains, Φ is the collision angle, and β0 corresponds to the crossover between static and sliding friction. We varied the above parameters independently for the grain-grain collisions and for the grain-wall collisions. The grain-grain friction changes the phase diagram of patterns significantly, and the patterns become fuzzy as the friction is decreased. The grain-wall friction is necessary to stabilize the patterns.

  16. Characteristic eddy decomposition of turbulence in a channel

    NASA Technical Reports Server (NTRS)

    Moin, Parviz; Moser, Robert D.

    1991-01-01

    The proper orthogonal decomposition technique (Lumley's decomposition) is applied to the turbulent flow in a channel to extract coherent structures by decomposing the velocity field into characteristic eddies with random coefficients. In the homogeneous spatial directions, a generaliztion of the shot-noise expansion is used to determine the characteristic eddies. In this expansion, the Fourier coefficients of the characteristic eddy cannot be obtained from the second-order statistics. Three different techniques are used to determine the phases of these coefficients. They are based on: (1) the bispectrum, (2) a spatial compactness requirement, and (3) a functional continuity argument. Results from these three techniques are found to be similar in most respects. The implications of these techniques and the shot-noise expansion are discussed. The dominant eddy is found to contribute as much as 76 percent to the turbulent kinetic energy. In both 2D and 3D, the characteristic eddies consist of an ejection region straddled by streamwise vortices that leave the wall in the very short streamwise distance of about 100 wall units.

  17. ELECTRON IMPACT DISSOCIATION X {sup 1}{Sigma}{sup +} {sub g} {yields} b {sup 3}{Sigma} {sub u} {sup +} AND EXCITATIONS X {sup 1}{Sigma}{sup +} {sub g} {yields} a {sup 3}{Sigma} {sub g} {sup +} AND X {sup 1}{Sigma}{sup +} {sub g} {yields} B {sup 1}{Sigma} {sub u} {sup +} OF MOLECULAR HYDROGEN IN NONTHERMAL ASTROPHYSICAL PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ki, Dae-Han; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr

    We investigate the electronic transitions X {sup 1}{Sigma}{sup +} {sub g} {yields} b {sup 3}{Sigma} {sub u} {sup +}, X {sup 1}{Sigma}{sup +} {sub g} {yields} a {sup 3}{Sigma} {sub g} {sup +}, and X {sup 1}{Sigma}{sup +} {sub g} {yields} B {sup 1}{Sigma} {sub u} {sup +} of molecular hydrogen by studying electron impacts in astrophysical Lorentzian plasmas. Useful fitting formulae for the X {sup 1}{Sigma}{sup +} {sub g} {yields} b {sup 3}{Sigma} {sub u} {sup +}, X {sup 1}{Sigma}{sup +} {sub g} {yields} a {sup 3}{Sigma} {sub g} {sup +}, and X {sup 1}{Sigma}{sup +} {sub g} {yields}more » B {sup 1}{Sigma} {sub u} {sup +} excitation cross sections are employed in order to obtain the electronic excitation rate coefficients of H{sub 2} as functions of the spectral index and temperature. In low-temperature regions, it is found that the excitation rate coefficients R{sub b{sup 3}{Sigma}{sub u{sup {sub +}}}}, R{sub a{sup 3}{Sigma}{sub g{sup {sub +}}}}, and R{sub B{sub {sup 1}{Sigma}{sub u{sup {sub +}}}}} of H{sub 2} in non-Maxwellian plasmas are smaller than those in Maxwellian plasmas. However, in high-temperature regions, the excitation rate coefficients of H{sub 2} in non-Maxwellian plasmas are greater than those in Maxwellian plasmas. It is also shown that the X {sup 1}{Sigma}{sup +} {sub g} {yields} b {sup 3}{Sigma} {sub u} {sup +} excitation rate coefficient is the main contributor in low-temperature regions. In contrast, it is found that the X {sup 1}{Sigma}{sup +} {sub g} {yields} B {sup 1}{Sigma} {sub u} {sup +} electronic excitation is dominant in high-temperature regions.« less

  18. In-flight Compressible Turbulent Boundary Layer Measurements on a Hollow Cylinder at a Mach Number of 3.0

    NASA Technical Reports Server (NTRS)

    Quinn, R. D.; Gong, L.

    1978-01-01

    Skin temperatures, shearing forces, surface static pressures, and boundary layer pitot pressures and total temperatures were measured on a hollow cylinder 3.04 meters long and 0.437 meter in diameter mounted beneath the fuselage of the YF-12A airplane. The data were obtained at a nominal free stream Mach number of 3.0 and at wall-to-recovery temperature ratios of 0.66 to 0.91. The free stream Reynolds number had a minimal value of 4.2 million per meter. Heat transfer coefficients and skin friction coefficients were derived from skin temperature time histories and shear force measurements, respectively. Boundary layer velocity profiles were derived from pitot pressure measurements, and a Reynolds analogy factor of 1.11 was obtained from the measured heat transfer and skin friction data. The skin friction coefficients predicted by the theory of van Driest were in excellent agreement with the measurements. Theoretical heat transfer coefficients, in the form of Stanton numbers calculated by using a modified Reynolds analogy between skin friction and heat transfer, were compared with measured values. The measured velocity profiles were compared to Coles' incompressible law-of-the-wall profile.

  19. Comparison of four glycosyl residue composition methods for effectiveness in detecting sugars from cell walls of dicot and grass tissues.

    PubMed

    Biswal, Ajaya K; Tan, Li; Atmodjo, Melani A; DeMartini, Jaclyn; Gelineo-Albersheim, Ivana; Hunt, Kimberly; Black, Ian M; Mohanty, Sushree S; Ryno, David; Wyman, Charles E; Mohnen, Debra

    2017-01-01

    The effective use of plant biomass for biofuel and bioproduct production requires a comprehensive glycosyl residue composition analysis to understand the different cell wall polysaccharides present in the different biomass sources. Here we compared four methods side-by-side for their ability to measure the neutral and acidic sugar composition of cell walls from herbaceous, grass, and woody model plants and bioenergy feedstocks. Arabidopsis, Populus , rice, and switchgrass leaf cell walls, as well as cell walls from Populus wood, rice stems, and switchgrass tillers, were analyzed by (1) gas chromatography-mass spectrometry (GC-MS) of alditol acetates combined with a total uronic acid assay; (2) carbodiimide reduction of uronic acids followed by GC-MS of alditol acetates; (3) GC-MS of trimethylsilyl (TMS) derivatives; and (4) high-pressure, anion-exchange chromatography (HPAEC). All four methods gave comparable abundance ranking of the seven neutral sugars, and three of the methods were able to quantify unique acidic sugars. The TMS, HPAEC, and carbodiimide methods provided comparable quantitative results for the specific neutral and acidic sugar content of the biomass, with the TMS method providing slightly greater yield of specific acidic sugars and high total sugar yields. The alditol acetate method, while providing comparable information on the major neutral sugars, did not provide the requisite quantitative information on the specific acidic sugars in plant biomass. Thus, the alditol acetate method is the least informative of the four methods. This work provides a side-by-side comparison of the efficacy of four different established glycosyl residue composition analysis methods in the analysis of the glycosyl residue composition of cell walls from both dicot (Arabidopsis and Populus ) and grass (rice and switchgrass) species. Both primary wall-enriched leaf tissues and secondary wall-enriched wood/stem tissues were analyzed for mol% and mass yield of the non-cellulosic sugars. The TMS, HPAEC, and carbodiimide methods were shown to provide comparable quantitative data on the nine neutral and acidic sugars present in all plant cell walls.

  20. Interrelationship and path coefficient analysis of yield components in F4 progenies of tef (Eragrostis tef).

    PubMed

    Debebe, Abel; Singh, Harijat; Tefera, Hailu

    2014-01-01

    This experiment was conducted at Debre Zeit and Akaki during 2004-2005 cropping season on F2-derived F4 bulk families of three crosses, viz, DZ-01-974 x DZ-01-2786, DZ-01-974 x DZ-Cr-37 and Alba x Kaye Murri. To estimate the correlations and path coefficients between yield and yield components, 63 F4 families were taken randomly from each of the three crosses. The 189 F4 families, five parents and two checks were space planted following in 14 x 14 simple lattice design. Study of associations among traits indicated that yield was positively associated with shoot biomass, harvest index, lodging index and panicle kernel weight at phenotypic level at Debre Zeit. At Akaki, yield had significant positive correlation with shoot biomass, harvest index, plant height, panicle length and panicle weight. At genotypic level, grain yield per plot exhibited positive association with harvest index, shoot biomass, lodging index and panicle kernel weight at Debre Zeit. By contrast, days to heading, days to maturity, plant height and panicle length showed negative association with yield. At Akaki, kernel yield per plot was positively correlated at genotypic level with all the traits considered where lodging index had the highest correlation followed by shoot biomass, panicle kernel weight and harvest index. Path coefficient analysis at both phenotypic and genotypic levels for both the locations suggested those shoot biomass and harvest indexes are the two important yield determining traits. These two traits might be useful in indirect selection for yield improvement in the material generated from the three crosses under consideration.

  1. Domain wall in a quantum anomalous Hall insulator as a magnetoelectric piston

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Pramey; Tserkovnyak, Yaroslav

    2016-07-01

    We theoretically study the magnetoelectric coupling in a quantum anomalous Hall insulator state induced by interfacing a dynamic magnetization texture to a topological insulator. In particular, we propose that the quantum anomalous Hall insulator with a magnetic configuration of a domain wall, when contacted by electrical reservoirs, acts as a magnetoelectric piston. A moving domain wall pumps charge current between electrical leads in a closed circuit, while applying an electrical bias induces reciprocal domain-wall motion. This pistonlike action is enabled by a finite reflection of charge carriers via chiral modes imprinted by the domain wall. Moreover, we find that, when compared with the recently discovered spin-orbit torque-induced domain-wall motion in heavy metals, the reflection coefficient plays the role of an effective spin-Hall angle governing the efficiency of the proposed electrical control of domain walls. Quantitatively, this effective spin-Hall angle is found to approach a universal value of 2, providing an efficient scheme to reconfigure the domain-wall chiral interconnects for possible memory and logic applications.

  2. In situ diffusion experiment in granite: Phase I

    NASA Astrophysics Data System (ADS)

    Vilks, P.; Cramer, J. J.; Jensen, M.; Miller, N. H.; Miller, H. G.; Stanchell, F. W.

    2003-03-01

    A program of in situ experiments, supported by laboratory studies, was initiated to study diffusion in sparsely fractured rock (SFR), with a goal of developing an understanding of diffusion processes within intact crystalline rock. Phase I of the in situ diffusion experiment was started in 1996, with the purpose of developing a methodology for estimating diffusion parameter values. Four in situ diffusion experiments, using a conservative iodide tracer, were performed in highly stressed SFR at a depth of 450 m in the Underground Research Laboratory (URL). The experiments, performed over a 2 year period, yielded rock permeability estimates of 2×10 -21 m 2 and effective diffusion coefficients varying from 2.1×10 -14 to 1.9×10 -13 m 2/s, which were estimated using the MOTIF code. The in situ diffusion profiles reveal a characteristic "dog leg" pattern, with iodide concentrations decreasing rapidly within a centimeter of the open borehole wall. It is hypothesized that this is an artifact of local stress redistribution and creation of a zone of increased constrictivity close to the borehole wall. A comparison of estimated in situ and laboratory diffusivities and permeabilities provides evidence that the physical properties of rock samples removed from high-stress regimes change. As a result of the lessons learnt during Phase I, a Phase II in situ program has been initiated to improve our general understanding of diffusion in SFR.

  3. A multilevel simulation approach to derive the slip boundary condition of the solid phase in two-fluid models

    NASA Astrophysics Data System (ADS)

    Feng, Zhi-Gang; Michaelides, Efstathios; Mao, Shaolin

    2011-11-01

    The simulation of particulate flows for industrial applications often requires the use of a two-fluid model (TFM), where the solid particles are considered as a separate continuous phase. One of the underlining uncertainties in the use of aTFM in multiphase computations comes from the boundary condition of the solid phase. The no-slip condition at a solid boundary is not a valid assumption for the solid phase. Instead, several researchers advocate a slip condition as a more appropriate boundary condition. However, the question on the selection of an exact slip length or a slip velocity coefficient is still unanswered. In the present work we propose a multilevel simulation approach to compute the slip length that is applicable to a TFM. We investigate the motion of a number of particles near a vertical solid wall, while the particles are in fluidization using a direct numerical simulation (DNS); the positions and velocities of the particles are being tracked and analyzed at each time step. It is found that the time- and vertical-space averaged values of the particle velocities converge, yielding velocity profiles that can be used to deduce the particle slip length close to a solid wall. This work was supported by a grant from the DOE-NETL (DE-NT0008064) and by a grant from NSF (HRD-0932339).

  4. Nonlinearity and Scaling Behavior in Lead Zirconate Titanate Piezoceramic

    NASA Astrophysics Data System (ADS)

    Mueller, V.

    1998-03-01

    The results of a comprehensive study of the nonlinear dielectric and electromechanical response of lead zirconate titanate (PZT) piezoceramics are presented. The piezoelectric strain of a series of donor doped (soft PZT) and acceptor doped (hard PZT) polycrystalline systems was measured under quasistatic (nonresonant) conditions. The measuring field was applied both parallel and perpendicular to the poling direction of the ceramic in order to investigate the influence of different symmetry conditions. Dielectric properties were studied in addition to the electromechanical measurements which enables us to compare piezoelectric and dielectric nonlinearities. Due to the different level and type of dopants, the piezoceramics examined differ significantly with regard to its Curie temperature (190^o CE_c2 the nonlinearity can be described in the same way as in soft PZT. The results indicate that irreversible motion of (ferroelastic) non-180^o walls causes the nonlinearity of PZT and that the contribution of (non-ferroelastic) 180^o walls to the linear and nonlinear coefficients is negligibly small. The experimentally observed non-analytic scaling behavior is qualitatively inconsistent with the assumption that the nonlinearity is related to the anharmonicity of the domain wall potential. We suggest that the dynamics of the domain wall in a randomly pinned medium dominates the piezoelectric and dielectric nonlinearity at field strengths well below the limiting field necessary to depole the piezoceramic. The analysis of results obtained at different ceramic systems indicates that linear and nonlinear coefficients are not independent from each other. The observed relationship between linear and nonlinear properties leads us to the suggestion that another extrinsic contribution to the permittivity exists in PZT which may not be attributed to domain wall motion but related to the dielectric dispersion at microwave frequencies.

  5. Yield Hardening of Electrorheological Fluids in Channel Flow

    NASA Astrophysics Data System (ADS)

    Helal, Ahmed; Qian, Bian; McKinley, Gareth H.; Hosoi, A. E.

    2016-06-01

    Electrorheological fluids offer potential for developing rapidly actuated hydraulic devices where shear forces or pressure-driven flow are present. In this study, the Bingham yield stress of electrorheological fluids with different particle volume fractions is investigated experimentally in wall-driven and pressure-driven flow modes using measurements in a parallel-plate rheometer and a microfluidic channel, respectively. A modified Krieger-Dougherty model can be used to describe the effects of the particle volume fraction on the yield stress and is in good agreement with the viscometric data. However, significant yield hardening in pressure-driven channel flow is observed and attributed to an increase and eventual saturation of the particle volume fraction in the channel. A phenomenological physical model linking the densification and consequent microstructure to the ratio of the particle aggregation time scale compared to the convective time scale is presented and used to predict the enhancement in yield stress in channel flow, enabling us to reconcile discrepancies in the literature between wall-driven and pressure-driven flows.

  6. Fluid friction and wall viscosity of the 1D blood flow model.

    PubMed

    Wang, Xiao-Fei; Nishi, Shohei; Matsukawa, Mami; Ghigo, Arthur; Lagrée, Pierre-Yves; Fullana, Jose-Maria

    2016-02-29

    We study the behavior of the pulse waves of water into a flexible tube for application to blood flow simulations. In pulse waves both fluid friction and wall viscosity are damping factors, and difficult to evaluate separately. In this paper, the coefficients of fluid friction and wall viscosity are estimated by fitting a nonlinear 1D flow model to experimental data. In the experimental setup, a distensible tube is connected to a piston pump at one end and closed at another end. The pressure and wall displacements are measured simultaneously. A good agreement between model predictions and experiments was achieved. For amplitude decrease, the effect of wall viscosity on the pulse wave has been shown as important as that of fluid viscosity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Quantification of esophageal wall thickness in CT using atlas-based segmentation technique

    NASA Astrophysics Data System (ADS)

    Wang, Jiahui; Kang, Min Kyu; Kligerman, Seth; Lu, Wei

    2015-03-01

    Esophageal wall thickness is an important predictor of esophageal cancer response to therapy. In this study, we developed a computerized pipeline for quantification of esophageal wall thickness using computerized tomography (CT). We first segmented the esophagus using a multi-atlas-based segmentation scheme. The esophagus in each atlas CT was manually segmented to create a label map. Using image registration, all of the atlases were aligned to the imaging space of the target CT. The deformation field from the registration was applied to the label maps to warp them to the target space. A weighted majority-voting label fusion was employed to create the segmentation of esophagus. Finally, we excluded the lumen from the esophagus using a threshold of -600 HU and measured the esophageal wall thickness. The developed method was tested on a dataset of 30 CT scans, including 15 esophageal cancer patients and 15 normal controls. The mean Dice similarity coefficient (DSC) and mean absolute distance (MAD) between the segmented esophagus and the reference standard were employed to evaluate the segmentation results. Our method achieved a mean Dice coefficient of 65.55 ± 10.48% and mean MAD of 1.40 ± 1.31 mm for all the cases. The mean esophageal wall thickness of cancer patients and normal controls was 6.35 ± 1.19 mm and 6.03 ± 0.51 mm, respectively. We conclude that the proposed method can perform quantitative analysis of esophageal wall thickness and would be useful for tumor detection and tumor response evaluation of esophageal cancer.

  8. A novel rheometer design for yield stress fluids

    Treesearch

    Joseph R. Samaniuk; Timothy W. Shay; Thatcher W. Root; Daniel J. Klingenberg; C. Tim Scott

    2014-01-01

    An inexpensive, rapid method for measuring the rheological properties of yield stress fluids is described and tested. The method uses an auger that does not rotate during measurements, and avoids material and instrument-related difficulties, for example, wall slip and the presence of large particles, associated with yield stress fluids. The method can be used...

  9. Novel Multisensor Probe for Monitoring Bladder Temperature During Locoregional Chemohyperthermia for Nonmuscle-Invasive Bladder Cancer: Technical Feasibility Study

    PubMed Central

    Geijsen, Debby E.; Zum Vörde Sive Vörding, Paul J.; Schooneveldt, Gerben; Sijbrands, Jan; Hulshof, Maarten C.; de la Rosette, Jean; de Reijke, Theo M.; Crezee, Hans

    2013-01-01

    Abstract Background and Purpose: The effectiveness of locoregional hyperthermia combined with intravesical instillation of mitomycin C to reduce the risk of recurrence and progression of intermediate- and high-risk nonmuscle-invasive bladder cancer is currently investigated in clinical trials. Clinically effective locoregional hyperthermia delivery necessitates adequate thermal dosimetry; thus, optimal thermometry methods are needed to monitor accurately the temperature distribution throughout the bladder wall. The aim of the study was to evaluate the technical feasibility of a novel intravesical device (multi-sensor probe) developed to monitor the local bladder wall temperatures during loco-regional C-HT. Materials and Methods: A multisensor thermocouple probe was designed for deployment in the human bladder, using special sensors to cover the bladder wall in different directions. The deployment of the thermocouples against the bladder wall was evaluated with visual, endoscopic, and CT imaging in bladder phantoms, porcine models, and human bladders obtained from obduction for bladder volumes and different deployment sizes of the probe. Finally, porcine bladders were embedded in a phantom and subjected to locoregional heating to compare probe temperatures with additional thermometry inside and outside the bladder wall. Results: The 7.5 cm thermocouple probe yielded optimal bladder wall contact, adapting to different bladder volumes. Temperature monitoring was shown to be accurate and representative for the actual bladder wall temperature. Conclusions: Use of this novel multisensor probe could yield a more accurate monitoring of the bladder wall temperature during locoregional chemohyperthermia. PMID:24112045

  10. Sugar Release and Growth of Biofuel Crops are Improved by Downregulation of Pectin Biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donohoe, Bryon S; Sykes, Robert W; Gjersing, Erica L

    Cell walls in crops and trees have been engineered for production of biofuels and commodity chemicals, but engineered varieties often fail multi-year field trials and are not commercialized. We engineered reduced expression of a pectin biosynthesis gene (Galacturonosyltransferase 4, GAUT4) in switchgrass and poplar, and find that this improves biomass yields and sugar release from biomass processing. Both traits were maintained in a 3-year field trial of GAUT4-knockdown switchgrass, with up to sevenfold increased saccharification and ethanol production and sixfold increased biomass yield compared with control plants. We show that GAUT4 is an a-1,4-galacturonosyltransferase that synthesizes homogalacturonan (HG). Downregulation ofmore » GAUT4 reduces HG and rhamnogalacturonan II (RGII), reduces wall calcium and boron, and increases extractability of cell wall sugars. Decreased recalcitrance in biomass processing and increased growth are likely due to reduced HG and RGII cross-linking in the cell wall.« less

  11. A numerical model for boiling heat transfer coefficient of zeotropic mixtures

    NASA Astrophysics Data System (ADS)

    Barraza Vicencio, Rodrigo; Caviedes Aedo, Eduardo

    2017-12-01

    Zeotropic mixtures never have the same liquid and vapor composition in the liquid-vapor equilibrium. Also, the bubble and the dew point are separated; this gap is called glide temperature (Tglide). Those characteristics have made these mixtures suitable for cryogenics Joule-Thomson (JT) refrigeration cycles. Zeotropic mixtures as working fluid in JT cycles improve their performance in an order of magnitude. Optimization of JT cycles have earned substantial importance for cryogenics applications (e.g, gas liquefaction, cryosurgery probes, cooling of infrared sensors, cryopreservation, and biomedical samples). Heat exchangers design on those cycles is a critical point; consequently, heat transfer coefficient and pressure drop of two-phase zeotropic mixtures are relevant. In this work, it will be applied a methodology in order to calculate the local convective heat transfer coefficients based on the law of the wall approach for turbulent flows. The flow and heat transfer characteristics of zeotropic mixtures in a heated horizontal tube are investigated numerically. The temperature profile and heat transfer coefficient for zeotropic mixtures of different bulk compositions are analysed. The numerical model has been developed and locally applied in a fully developed, constant temperature wall, and two-phase annular flow in a duct. Numerical results have been obtained using this model taking into account continuity, momentum, and energy equations. Local heat transfer coefficient results are compared with available experimental data published by Barraza et al. (2016), and they have shown good agreement.

  12. Flow behavior in the Wright Brothers Facility

    NASA Technical Reports Server (NTRS)

    Genn, S.

    1984-01-01

    It has become increasingly apparent that a reexamination of the flow characteristics in the low speed Wright Brothers Facility (WBF) is of some importance in view of recent improvements in the precision of the data acquisition system. In particular, the existence of local regions of separation, if any, in back portions of the circuit, and possible related unsteadiness, are of interest. Observations from that initial experiment did indicate some unsteady air flow problems in the cross leg, and thereafter the test region (Section A) was calibrated quantitatively. The intent was to learn something about the effect of upstream intermittent behavior flow on the test section flow, as well as to provide an extensive calibration as a standard for the effects induced by future alteration of the tunnel. Distributions of total pressure coefficients were measured first at one cross-section plane of the test section, namely the model station. Data were obtained for several tunnel speeds. The reduced data yielded an unexpected distribution involving larger pressures along the inside wall.

  13. A study of the dissociative recombination of CaO+ with electrons: Implications for Ca chemistry in the upper atmosphere.

    PubMed

    Bones, D L; Gerding, M; Höffner, J; Martín, Juan Carlos Gómez; Plane, J M C

    2016-12-28

    The dissociative recombination of CaO + ions with electrons has been studied in a flowing afterglow reactor. CaO + was generated by the pulsed laser ablation of a Ca target, followed by entrainment in an Ar + ion/electron plasma. A kinetic model describing the gas-phase chemistry and diffusion to the reactor walls was fitted to the experimental data, yielding a rate coefficient of (3.0 ± 1.0) × 10 -7  cm 3  molecule -1  s -1 at 295 K. This result has two atmospheric implications. First, the surprising observation that the Ca + /Fe + ratio is ~8 times larger than Ca/Fe between 90 and 100 km in the atmosphere can now be explained quantitatively by the known ion-molecule chemistry of these two metals. Second, the rate of neutralization of Ca + ions in a descending sporadic E layer is fast enough to explain the often explosive growth of sporadic neutral Ca layers.

  14. Analysis of secondary motions in square duct flow

    NASA Astrophysics Data System (ADS)

    Modesti, Davide; Pirozzoli, Sergio; Orlandi, Paolo; Grasso, Francesco

    2018-04-01

    We carry out direct numerical simulations (DNS) of square duct flow spanning the friction Reynolds number range {Re}τ * =150-1055, to study the nature and the role of secondary motions. We preliminarily find that secondary motions are not the mere result of the time averaging procedure, but rather they are present in the instantaneous flow realizations, corresponding to large eddies persistent in both space and time. Numerical experiments have also been carried out whereby the secondary motions are suppressed, hence allowing to quantifying their effect on the mean flow field. At sufficiently high Reynolds number, secondary motions are found to increase the friction coefficient by about 3%, hence proportionally to their relative strength with respect to the bulk flow. Simulations without secondary motions are found to yield larger deviations on the mean velocity profiles from the standard law-of-the-wall, revealing that secondary motions act as a self-regulating mechanism of turbulence whereby the effect of the corners is mitigated.

  15. Conceptual design of fast-ignition laser fusion reactor FALCON-D

    NASA Astrophysics Data System (ADS)

    Goto, T.; Someya, Y.; Ogawa, Y.; Hiwatari, R.; Asaoka, Y.; Okano, K.; Sunahara, A.; Johzaki, T.

    2009-07-01

    A new conceptual design of the laser fusion power plant FALCON-D (Fast-ignition Advanced Laser fusion reactor CONcept with a Dry wall chamber) has been proposed. The fast-ignition method can achieve sufficient fusion gain for a commercial operation (~100) with about 10 times smaller fusion yield than the conventional central ignition method. FALCON-D makes full use of this property and aims at designing with a compact dry wall chamber (5-6 m radius). 1D/2D simulations by hydrodynamic codes showed a possibility of achieving sufficient gain with a laser energy of 400 kJ, i.e. a 40 MJ target yield. The design feasibility of the compact dry wall chamber and the solid breeder blanket system was shown through thermomechanical analysis of the dry wall and neutronics analysis of the blanket system. Moderate electric output (~400 MWe) can be achieved with a high repetition (30 Hz) laser. This dry wall reactor concept not only reduces several difficulties associated with a liquid wall system but also enables a simple cask maintenance method for the replacement of the blanket system, which can shorten the maintenance period. The basic idea of the maintenance method for the final optics system has also been proposed. Some critical R&D issues required for this design are also discussed.

  16. Post-storage cell wall metabolism in two sweet cherry (Prunus avium L.) cultivars displaying different postharvest performance.

    PubMed

    Belge, Burcu; Comabella, Eva; Graell, Jordi; Lara, Isabel

    2015-09-01

    The biochemical processes underlying firmness loss of sweet cherry (Prunus avium L.) fruit are poorly understood. Studies on cell wall metabolism of sweet cherry have been generally undertaken during on-tree development or at harvest maturity, while published reports on postharvest changes are scarce and fragmentary. In this work, cell wall modifications after storage at 0 ℃ were studied in two cherry cultivars ('Celeste' and 'Somerset') displaying different postharvest potential. Firmness was largely determined by the yields of the Na2CO3- and KOH-soluble fractions, enriched in covalently-bound pectins and in matrix glycans, respectively, and correlated well with ascorbic acid contents. The yields of these two cell wall fractions were correlated inversely with pectinmethylesterase and endo-1,4-β-d-glucanase activities, indicating a relevant role of these two enzymes in postharvest firmness changes in sweet cherry. The amount of solubilised cell wall materials was closely associated to the contents of dehydroascorbic acid, suggesting the possible involvement of oxidative mechanisms in cell wall disassembly. These data may help understanding the evolution of fruit quality during the marketing period, and give hints for the design of suitable management strategies to preserve key attributes. © The Author(s) 2014.

  17. Skin-friction measurements in high-enthalpy hypersonic boundary layers

    NASA Astrophysics Data System (ADS)

    Goyne, C. P.; Stalker, R. J.; Paull, A.

    2003-06-01

    Skin-friction measurements are reported for high-enthalpy and high-Mach-number laminar, transitional and turbulent boundary layers. The measurements were performed in a free-piston shock tunnel with air-flow Mach number, stagnation enthalpy and Reynolds numbers in the ranges of 4.4 6.7, 3 13 MJ kg(-1) and 0.16× 10(6) 21× 10(6) , respectively. Wall temperatures were near 300 K and this resulted in ratios of wall enthalpy to flow-stagnation enthalpy in the range of 0.1 0.02. The experiments were performed using rectangular ducts. The measurements were accomplished using a new skin-friction gauge that was developed for impulse facility testing. The gauge was an acceleration compensated piezoelectric transducer and had a lowest natural frequency near 40 kHz. Turbulent skin-friction levels were measured to within a typical uncertainty of ± 7%. The systematic uncertainty in measured skin-friction coefficient was high for the tested laminar conditions; however, to within experimental uncertainty, the skin-friction and heat-transfer measurements were in agreement with the laminar theory of van Driest (1952). For predicting turbulent skin-friction coefficient, it was established that, for the range of Mach numbers and Reynolds numbers of the experiments, with cold walls and boundary layers approaching the turbulent equilibrium state, the Spalding & Chi (1964) method was the most suitable of the theories tested. It was also established that if the heat transfer rate to the wall is to be predicted, then the Spalding & Chi (1964) method should be used in conjunction with a Reynolds analogy factor near unity. If more accurate results are required, then an experimentally observed relationship between the Reynolds analogy factor and the skin-friction coefficient may be applied.

  18. Mechanics of Carbon Nanotubes and their Polymer Composites

    NASA Technical Reports Server (NTRS)

    Wei, Chenyu; Cho, K. J.; Srivastava, Deepak; Tang, Harry (Technical Monitor)

    2002-01-01

    Contents include the folloving: carbon nanotube (CNT): structures, application of carbon nanotubes, simulation method, Elastic properties of carbon nanotubes, yield strain of CNT, yielding under tensile stress, yielding: strain-rate and temperature dependence, yield strain under tension, yielding at realistic conditions, nano fibers, polymer CNT composite, force field, density dependency on temperature, diffusion coefficients, young modulus, and conclusions.

  19. Numerical Determination of Natural Frequencies and Modes of the Vibrations of a Thick-Walled Cylindrical Shell

    NASA Astrophysics Data System (ADS)

    Grigorenko, A. Ya.; Borisenko, M. Yu.; Boichuk, E. V.; Prigoda, A. P.

    2018-01-01

    The dynamic characteristics of a thick-walled cylindrical shell are determined numerically using the finite-element method implemented with licensed FEMAR software. The natural frequencies and modes are compared with those obtained earlier experimentally by the method of stroboscopic holographic interferometry. Frequency coefficients demonstrating how the natural frequency depends on the physical and mechanical parameters of the material are determined.

  20. [Utilize the simplified POP-Q system in the clinical practice of staging for pelvic organ prolapse: comparative analysis with standard POP-Q system].

    PubMed

    Zhang, H; Zhu, L; Xu, T; Lang, J H

    2016-07-25

    To determine the association between simplified pelvic organ prolapse quantification system(S-POP-Q)and the standard pelvic organ prolapse quantification system(POP-Q)in describing pelvic organ prolapse. This was an observational study. From Jan. 2010 to Jan. 2014, 256 subjects with pelvic floor disorder symptoms underwent two exams: a POP-Q exam and a S-POP-Q exam. For the S-POP-Q system, vaginal segments of the exam were defined using points Ba, Bp, C, and D. For the POP-Q system vaginal segments of the exam were defined using points Aa, Ba, Ap, Bp, C, and D. The inter-system consistency between the overall ordinal stages, the anterior vaginal wall stages, the posterior vaginal wall stages, the cervix stages, the posterior fornix or vaginal cuff stages from each two kind of exam were compared. The Kendall tau-b correlation coefficient for overall stage was 0.81, the Kendall tau-b correlation coefficients were 0.81, 0.81, 0.85, 0.88 for the anterior vaginal wall, for the posterior vaginal wall, for the cervix, for the posterior fornix or vaginal cuff, respectively. There is almost perfect association between S-POP-Q and POP-Q in describing pelvic organ prolapse.

  1. Peristaltic flow of Powell-Eyring fluid in curved channel with heat transfer: A useful application in biomedicine.

    PubMed

    Hina, S; Mustafa, M; Hayat, T; Alsaedi, A

    2016-10-01

    In this work, we explore the heat transfer characteristics in the peristaltic transport of Powell-Eyring fluid inside a curved channel with complaint walls. The study has motivation toward the understanding of blood flow in microcirculatory system. Formulation is developed in the existence of velocity slip and temperature jump conditions. Perturbation approach has been utilized to present series expressions of axial velocity and temperature distributions. Streamlines are prepared to analyze the interesting phenomenon of trapping. Moreover, the plots of heat transfer coefficient for a broad range of embedded parameters are presented and discussed. The results indicate that slip effects substantially influence the velocity and temperature distributions. Axial flow accelerates when slip parameter is incremented. Temperature rises and wall heat flux grows when viscous dissipation effect is strengthened. In contrast to the planar channels, here velocity and temperature functions do not exhibit symmetry with respect to the central line. In addition, bolus size and its shape are different in upper and lower portions of the channel. Heat transfer coefficient enlarges when the curvature effects are reduced. The behaviors of wall tension and wall mass parameters on the profiles are qualitatively similar. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Spread prediction model of continuous steel tube based on BP neural network

    NASA Astrophysics Data System (ADS)

    Zhai, Jian-wei; Yu, Hui; Zou, Hai-bei; Wang, San-zhong; Liu, Li-gang

    2017-07-01

    According to the geometric pass of roll and technological parameters of three-roller continuous mandrel rolling mill in a factory, a finite element model is established to simulate the continuous rolling process of seamless steel tube, and the reliability of finite element model is verified by comparing with the simulation results and actual results of rolling force, wall thickness and outer diameter of the tube. The effect of roller reduction, roller rotation speed and blooming temperature on the spread rule is studied. Based on BP(Back Propagation) neural network technology, a spread prediction model of continuous rolling tube is established for training wall thickness coefficient and spread coefficient of the continuous rolling tube, and the rapid and accurate prediction of continuous rolling tube size is realized.

  3. Effect of damage on elastically tailored composite laminates

    NASA Technical Reports Server (NTRS)

    Armanios, Erian; Badir, Ashraf; Berdichevsky, Victor

    1991-01-01

    A variationally consistent theory is derived in order to predict the response of anisotropic thin-walled closed sections subjected to axial load, torsion and bending. The theory is valid for arbitrary cross-sections made of laminated composite materials with variable thickness and stiffness. Closed form expressions for the stiffness coefficients are provided as integrals in terms of lay-ups parameters and cross-sectional geometry. A comparison of stiffness coefficients and response with finite element predictions and a closed form solution is performed. The theory is applied to the investigation of the effect of damage on the extension-twist coupling in a thin-walled closed section beam. The damage is simulated as a progressive ply-by-ply failure. Results show that damage can have a significant effect on the extension-twist coupling.

  4. An ex vivo investigation into the transurothelial permeability and bladder wall distribution of the nonsteroidal anti-inflammatory ketorolac.

    PubMed

    Williams, Nicholas A; Bowen, Jenna L; Al-Jayyoussi, Ghaith; Gumbleton, Mark; Allender, Chris J; Li, Jamie; Harrah, Tim; Raja, Aditya; Joshi, Hrishi B

    2014-03-03

    Transurothelial drug delivery continues to be an attractive treatment option for a range of urological conditions; however, dosing regimens remain largely empirical. Recently, intravesical delivery of the nonsteroidal anti-inflammatory ketorolac has been shown to significantly reduce ureteral stent-related pain. While this latest development provides an opportunity for advancing the management of stent-related pain, clinical translation will undoubtedly require an understanding of the rate and extent of delivery of ketorolac into the bladder wall. Using an ex vivo porcine model, we evaluate the urothelial permeability and bladder wall distribution of ketorolac. The subsequent application of a pharmacokinetic (PK) model enables prediction of concentrations achieved in vivo. Ketorolac was applied to the urothelium and a transurothelial permeability coefficient (Kp) calculated. Relative drug distribution into the bladder wall after 90 min was determined. Ketorolac was able to permeate the urothelium (Kp = 2.63 × 10(-6) cm s(-1)), and after 90 min average concentrations of 400, 141 and 21 μg g(-1) were achieved in the urothelium, lamina propria and detrusor respectively. An average concentration of 87 μg g(-1) was achieved across the whole bladder wall. PK simulations (STELLA) were then carried out, using ex vivo values for Kp and muscle/saline partition coefficient (providing an estimation of vascular clearance), to predict 90 min in vivo ketorolac tissue concentrations. When dilution of the drug solution with urine and vascular clearance were taken into account, a reduced ketorolac concentration of 37 μg g(-1) across the whole bladder wall was predicted. These studies reveal crucial information about the urothelium's permeability to agents such as ketorolac and the concentrations achievable in the bladder wall. It would appear that levels of ketorolac delivered to the bladder wall intravesically would be sufficient to provide an anti-inflammatory effect. The combination of such ex vivo data and PK modeling provides an insight into the likelihood of achieving clinically relevant concentrations of drug following intravesical administration.

  5. Single-Wall Carbon Nanotube Production by the Arc Process: A Parametric Study

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Gorelik, Olga; Proft, William J.

    2000-01-01

    Single wall carbon nanotubes are produced using the arc discharge process. Graphite anodes are filled with a mixture of nickel and yttrium metallic powders, then vaporized by creating a high current arc. By varying the current, gap distance, and ambient pressure it is shown that the best yield of single wall carbon nanotubes is obtained within a narrow range of conditions. The relative yield and purity of the product are indicated semi-quantitatively from scanning electric microscopy (SEM) and thermogravimetric analysis (TGA). Two types of anodes have been investigated. The first is hollow and filled with a powder mixture of graphite, nickel and yttrium. The second is filled with a paste made of a mixture of metal nitrates, graphite powder and carbon adhesive, then reduced in an argon atmosphere at high temperature. Product purity and yield will be compared for the two types of anodes. The graphite in the anodes may have hydrogen attached in the pores. To remove this impurity anodes have been baked up to 1400 - 1500 C. The effect of baking the anodes on impurities in the product will be given.

  6. Sound propagation in a duct of periodic wall structure. [numerical analysis

    NASA Technical Reports Server (NTRS)

    Kurze, U.

    1978-01-01

    A boundary condition, which accounts for the coupling in the sections behind the duct boundary, is given for the sound-absorbing duct with a periodic structure of the wall lining and using regular partition walls. The soundfield in the duct is suitably described by the method of differences. For locally active walls this renders an explicit approximate solution for the propagation constant. Coupling may be accounted for by the method of differences in a clear manner. Numerical results agree with measurements and yield information which has technical applications.

  7. Wall-modeled large eddy simulation of high-lift devices from low to post-stall angle of attacks

    NASA Astrophysics Data System (ADS)

    Bodart, Julien; Larsson, Johan; Moin, Parviz

    2013-11-01

    The flow around a McDonnell-Douglas 30P/30N multi-element airfoil at the flight Reynolds number of 9 million (based on chord) is computed using LES with an equilibrium wall-model with special treatment for transitional flows. Several different angles of attack are considered, up to and including stall, challenging the wall-model in several flow regimes. The maximum lift coefficient, which is generally difficult to predict with RANS approaches, is accurately predicted, as compared to experiments performed in the NASA LPT wind-tunnel. NASA grant: NNX11AI60A.

  8. Thermochemical Kinetics of H2O and HNO3 on crystalline Nitric Acid Hydrates (alpha-, beta-NAT, NAD) in the range 175-200 K

    NASA Astrophysics Data System (ADS)

    Rossi, Michel J.; Iannarelli, Riccardo

    2015-04-01

    The growth of NAT (Nitric Acid Trihydrate, HNO3x3H2O) and NAD (Nitric Acid Dihydrate, HNO3x2H2O) on an ice substrate, the evaporative lifetime of NAT and NAD as well as the interconversion of alpha- and beta-NAT competing with evaporation and growth under UT/LS conditions depends on the interfacial kinetics of H2O and HNO3 vapor on the condensed phase. Despite the existence of some literature results we have embarked on a systematic investigation of the kinetics using a multidiagnostic experimental approach enabled by the simultaneous observation of both the gas (residual gas mass spectrometry) as well as the condensed phase (FTIR absorption in transmission). We report on thermochemically consistent mass accommodation coefficients alpha and absolute evaporation rates Rev/molecule s-1cm-3 as a function of temperature which yields the corresponding vapor pressures of both H2O and HNO3 in equilibrium with the crystalline phases, hence the term thermochemical kinetics. These results have been obtained using a stirred flow reactor (SFR) using a macroscopic pure ice film of 1 micron or so thickness as a starting substrate mimicking atmospheric ice particles and are reported in a phase diagram specifically addressing UT (Upper Troposphere)/LS (Lower Stratosphere) conditions as far as temperature and partial pressures are concerned. The experiments have been performed either at steady-state flow conditions or in transient supersaturation using a pulsed solenoid valve in order to generate gas pulses whose decay were subsequently monitored in real time. Special attention has been given to the effect of the stainless-steel vessel walls in that Langmuir adsorption isotherms for H2O and HNO3 have been used to correct for wall-adsorption of both probe gases. Typically, the accommodation coefficients of H2O and HNO3 are similar throughout the temperature range whereas the rates of evaporation Rev of H2O are significantly larger than for HNO3 thus leading to the difference in vapor pressure revealed in the phase diagram. A noteworthy effect seems to be that the accommodation coefficients obtained in pulsed gas admission experiments (transient supersaturation) lead to significantly lower values owing to surface saturation, especially in the case of the thermodynamically stable beta-NAT substrate.

  9. Azimuthally anisotropic emission of low-momentum direct photons in Au + Au collisions at √{sN N}=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Alexander, J.; Alfred, M.; Al-Ta'Ani, H.; Angerami, A.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bickley, A. A.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Castera, P.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Constantin, P.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Danley, T. W.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Dutta, D.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Hamilton, H. F.; Han, R.; Han, S. Y.; Hanks, J.; Hartouni, E. P.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kanda, S.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, G. W.; Kim, H. J.; Kim, K.-B.; Kim, M.; Kim, S. H.; Kim, Y.-J.; Kim, Y. K.; Kimelman, B.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Komatsu, Y.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Krizek, F.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Leitner, E.; Lenzi, B.; Lewis, B.; Li, X.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; Masumoto, S.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Milov, A.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Miyachi, Y.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, H. J.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Motschwiller, S.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Nederlof, A.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, J.; Park, J. S.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peresedov, V.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rowan, Z.; Rubin, J. G.; Rukoyatkin, P.; Ružička, P.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakashita, K.; Sako, H.; Samsonov, V.; Sano, M.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, A. Yu.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Snowball, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Sparks, N. A.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Tennant, E.; Themann, H.; Thomas, T. L.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Tsuji, T.; Vale, C.; Valle, H.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; White, A. S.; White, S. N.; Winter, D.; Wolin, S.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhang, C.; Zhou, S.; Zolin, L.; Zou, L.; Phenix Collaboration

    2016-12-01

    The PHENIX experiment at the BNL Relativistic Heavy Ion Collider has measured second- and third-order Fourier coefficients of the azimuthal distributions of direct photons emitted at midrapidity in Au +Au collisions at √{sNN}=200 GeV for various collision centralities. Combining two different analysis techniques, results were obtained in the transverse momentum range of 0.4

  10. Numerical investigation of the aerodynamic loads and hinge moments of the flap with boundary layer control

    NASA Astrophysics Data System (ADS)

    Pavlenko, Olga V.; Pigusov, Evgeny A.

    2018-05-01

    The paper discusses the approach of numerical simulation of the boundary layer control (BLC) on deflected flap for suppression of flow separation. Computational investigations were carried out using a program based on numerically solving the Reynolds averaged Navier-Stokes equations. The aim of this work is numerical investigation of the aerodynamic loads and hinge moments of the flap with BLC with influence of the walls of the wind tunnel. We have made a calculation of the airfoil section with flap deflected by 20° and 60° with variation of blowing momentum coefficient of Cμ=0÷0.1. The comparison of the calculation results with the experimental values of lift coefficient, pitching moment and pressure coefficient is presented. The pressure distribution on all surface of the wing and the threedimensional flow pattern of the wing with BLC, influence of the walls of the wind tunnel and the aerodynamic loads and hinge moments of the BLC flap are given. It is shown that the 20° flap increases the jet momentum coefficient from Cμ=0 to Cμ=0.1, leads to an increase of the hinge moment coefficient almost in 2 times, and the 60° flap increases the jet momentum coefficient from Cμ=0 to Cμ=0.113, leads to an increase of the hinge moment coefficient almost 3.5 times. The magnitude of the hinge moment on the flap with BLC rises due to the increase of the total aerodynamic force acting on the flap. As a result, the jet blowing on the plain flap leads to the significant increase of the hinge moment that must be considered when designing the high-lift devices with BLC.

  11. Water imbibition by mica pores: what happens when capillary flow is suppressed?

    NASA Astrophysics Data System (ADS)

    Fang, Chao; Qiao, Rui

    2017-11-01

    The imbibition of liquids into porous media plays a critical role in numerous applications. Most prior studies focused on imbibition driven by capillary flows. In this work, we study the imbibition of water into slit-shaped mica pores filled with pressurized methane using molecular simulations. Despite that capillary flow is suppressed by the high gas pressure, water is imbibed into the pore as monolayer liquid films. Since the classical hydrodynamic flow is not readily applicable for the monolayer water film propagating on the mica wall and the imbibition is driven by the strong affinity of water molecules to the mica walls, the observed imbibition is best taken as surface hydration. We show that the dynamics of water's imbibition front follows a simple diffusive scaling law. The effective diffusion coefficient of the imbibition front, however, is more than ten times larger than the diffusion coefficient of the water molecules in the water film adsorbed on the mica walls. Using a molecular theory originally developed for the spreading of monolayer films on solid substrates, we clarify the mechanism underlying the rapid water imbibition observed here.

  12. Carbon nanotubes significance in Darcy-Forchheimer flow

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Rafique, Kiran; Muhammad, Taseer; Alsaedi, Ahmed; Ayub, Muhammad

    2018-03-01

    The present article examines Darcy-Forchheimer flow of water-based carbon nanotubes. Flow is induced due to a curved stretchable surface. Heat transfer mechanism is analyzed in presence of convective heating process. Xue model of nanofluid is employed to study the characteristics of both single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). Results for both single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are achieved and compared. Appropriate transformations correspond to strong nonlinear ordinary differential system. Optimal homotopy analysis method (OHAM) is used for the solution development of the resulting system. The contributions of different sundry variables on the velocity and temperature are studied. Further the skin friction coefficient and local Nusselt number are analyzed graphically for both SWCNTs and MWCNTs cases.

  13. Relative fission product yield determination in the USGS TRIGA Mark I reactor

    NASA Astrophysics Data System (ADS)

    Koehl, Michael A.

    Fission product yield data sets are one of the most important and fundamental compilations of basic information in the nuclear industry. This data has a wide range of applications which include nuclear fuel burnup and nonproliferation safeguards. Relative fission yields constitute a major fraction of the reported yield data and reduce the number of required absolute measurements. Radiochemical separations of fission products reduce interferences, facilitate the measurement of low level radionuclides, and are instrumental in the analysis of low-yielding symmetrical fission products. It is especially useful in the measurement of the valley nuclides and those on the extreme wings of the mass yield curve, including lanthanides, where absolute yields have high errors. This overall project was conducted in three stages: characterization of the neutron flux in irradiation positions within the U.S. Geological Survey TRIGA Mark I Reactor (GSTR), determining the mass attenuation coefficients of precipitates used in radiochemical separations, and measuring the relative fission products in the GSTR. Using the Westcott convention, the Westcott flux, modified spectral index, neutron temperature, and gold-based cadmium ratios were determined for various sampling positions in the USGS TRIGA Mark I reactor. The differential neutron energy spectrum measurement was obtained using the computer iterative code SAND-II-SNL. The mass attenuation coefficients for molecular precipitates were determined through experiment and compared to results using the EGS5 Monte Carlo computer code. Difficulties associated with sufficient production of fission product isotopes in research reactors limits the ability to complete a direct, experimental assessment of mass attenuation coefficients for these isotopes. Experimental attenuation coefficients of radioisotopes produced through neutron activation agree well with the EGS5 calculated results. This suggests mass attenuation coefficients of molecular precipitates can be approximated using EGS5, especially in the instance of radioisotopes produced predominantly through uranium fission. Relative fission product yields were determined for three sampling positions in the USGS TRIGA Mark I reactor through radiochemical analysis. The relative mass yield distribution for valley nuclides decreases with epithermal neutrons compared to thermal neutrons. Additionally, a proportionality constant which related the measured beta activity of a fission product to the number of fissions that occur in a sample of irradiated uranium was determined for the detector used in this study and used to determine the thermal and epithermal flux. These values agree well with a previous study which used activation foils to determine the flux. The results of this project clearly demonstrate that R-values can be measured in the GSTR.

  14. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: Explicit modeling of SOA formation from alkane and alkene oxidation

    DOE PAGES

    La, Y. S.; Camredon, M.; Ziemann, P. J.; ...

    2016-02-08

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool, which explicitly represents SOA formation and gas–wall partitioning. The model was compared with 41 smog chambermore » experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C 12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NO x conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas–wall mass transfer, the vapor pressure of the species and the duration of the experiments. Furthermore, this work suggests that SOA yields inferred from chamber experiments could be underestimated up a factor of 2 due to the loss of organic vapors to chamber walls.« less

  15. Including scattering within the room acoustics diffusion model: An analytical approach.

    PubMed

    Foy, Cédric; Picaut, Judicaël; Valeau, Vincent

    2016-10-01

    Over the last 20 years, a statistical acoustic model has been developed to predict the reverberant sound field in buildings. This model is based on the assumption that the propagation of the reverberant sound field follows a transport process and, as an approximation, a diffusion process that can be easily solved numerically. This model, initially designed and validated for rooms with purely diffuse reflections, is extended in the present study to mixed reflections, with a proportion of specular and diffuse reflections defined by a scattering coefficient. The proposed mathematical developments lead to an analytical expression of the diffusion constant that is a function of the scattering coefficient, but also on the absorption coefficient of the walls. The results obtained with this extended diffusion model are then compared with the classical diffusion model, as well as with a sound particles tracing approach considering mixed wall reflections. The comparison shows a good agreement for long rooms with uniform low absorption (α = 0.01) and uniform scattering. For a larger absorption (α = 0.1), the agreement is moderate, due to the fact that the proposed expression of the diffusion coefficient does not vary spatially. In addition, the proposed model is for now limited to uniform diffusion and should be extended in the future to more general cases.

  16. Effect of Reynolds number variation on aerodynamics of a hydrogen-fueled transport concept at Mach 6

    NASA Technical Reports Server (NTRS)

    Penland, Jim A.; Marcum, Don C., Jr.

    1987-01-01

    Two separate tests have been made on the same blended wing-body hydrogen-fueled transport model at a Mach number of about 6 and a range of Reynolds number (based on theoretical body length) of 1.577 to 55.36 X 10 to the 6th power. The results of these tests, made in a conventional hypersonic blowdown tunnel and a hypersonic shock tunnel, are presented through a range of angle of attack from -1 to 8 deg, with an extended study at a constant angle of attack of 3 deg. The model boundary layer flow appeared to be predominately turbulent except for the low Reynolds number shock tunnel tests. Model wall temperatures varied considerably; the blowdown tunnel varied from about 255 F to 340 F, whereas the shock tunnel had a constant 70 F model wall temperature. The experimental normal-force coefficients were essentially independent of Reynolds number. A current theoretical computer program was used to study the effect of Reynolds number. Theoretical predictions of normal-force coefficients were good, particularly at anticipated cruise angles of attack, that is 2 to 5 deg. Axial-force coefficients were generally underestimated for the turbulent skin friction conditions, and pitching-moment coefficients could not be predicted reliably.

  17. Application of Pressure-Based Wall Correction Methods to Two NASA Langley Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Iyer, V.; Everhart, J. L.

    2001-01-01

    This paper is a description and status report on the implementation and application of the WICS wall interference method to the National Transonic Facility (NTF) and the 14 x 22-ft subsonic wind tunnel at the NASA Langley Research Center. The method calculates free-air corrections to the measured parameters and aerodynamic coefficients for full span and semispan models when the tunnels are in the solid-wall configuration. From a data quality point of view, these corrections remove predictable bias errors in the measurement due to the presence of the tunnel walls. At the NTF, the method is operational in the off-line and on-line modes, with three tests already computed for wall corrections. At the 14 x 22-ft tunnel, initial implementation has been done based on a test on a full span wing. This facility is currently scheduled for an upgrade to its wall pressure measurement system. With the addition of new wall orifices and other instrumentation upgrades, a significant improvement in the wall correction accuracy is expected.

  18. On the receptivity problem for Goertler vortices: Vortex motions induced by wall roughness

    NASA Technical Reports Server (NTRS)

    Denier, James P.; Hall, Philip; Seddougui, Sharon

    1990-01-01

    The receptivity problem for Goertler vortices induced by wall roughness is investigated. The roughness is modelled by small amplitude perturbations to the curved wall over which the flow takes place. The amplitude of these perturbations is taken to be sufficiently small for the induced Goertler vortices to be described by linear theory. The roughness is assumed to vary in the spanwise direction on the boundary layer lengthscale, while in the flow direction the corresponding variation is on the lengthscale over which the wall curvature varies. In fact the latter condition can be relaxed to allow for a faster streamwise roughness variation so long as the variation does not become as fast as that in the spanwise direction. The function which describes the roughness is assumed to be such that its spanwise and streamwise dependences can be separated; this enables progress by taking Fourier or Laplace transforms where appropriate. The cases of isolated and distributed roughness elements are investigated and the coupling coefficient which relates the amplitude of the forcing and the induced vortex amplitude is found asymptotically in the small wavelength limit. It is shown that this coefficient is exponentially small in the latter limit so that it is unlikely that this mode can be stimulated directly by wall roughness. The situation at 0(1) wavelengths is quite different and this is investigated numerically for different forcing functions. It is found that an isolated roughness element induces a vortex field which grows within a wedge at a finite distance downstream of the element. However, immediately downstream of the obstacle the disturbed flow produced by the element decays in amplitude. The receptivity problem at larger Goertler numbers appropriate to relatively large wall curvature is discussed in detail.

  19. Photoactive roadways: Determination of CO, NO and VOC uptake coefficients and photolabile side product yields on TiO2 treated asphalt and concrete

    NASA Astrophysics Data System (ADS)

    Toro, C.; Jobson, B. T.; Haselbach, L.; Shen, S.; Chung, S. H.

    2016-08-01

    This work reports uptake coefficients and by-product yields of ozone precursors onto two photocatalytic paving materials (asphalt and concrete) treated with a commercial TiO2 surface application product. The experimental approach used a continuously stirred tank reactor (CSTR) and allowed for testing large samples with the same surface morphology encountered with real urban surfaces. The measured uptake coefficient (γgeo) and surface resistances are useful for parametrizing dry deposition velocities in air quality model evaluation of the impact of photoactive surfaces on urban air chemistry. At 46% relative humidity, the surface resistance to NO uptake was ∼1 s cm-1 for concrete and ∼2 s cm-1 for a freshly coated older roadway asphalt sample. HONO and NO2 were detected as side products from NO uptake to asphalt, with NO2 molar yields on the order of 20% and HONO molar yields ranging between 14 and 33%. For concrete samples, the NO2 molar yields increased with the increase of water vapor, ranging from 1% to 35% and HONO was not detected as a by-product. Uptake of monoaromatic VOCs to the asphalt sample set displayed a dependence on the compound vapor pressure, and was influenced by competitive adsorption from less volatile VOCs. Formaldehyde and acetaldehyde were detected as byproducts, with molar yields ranging from 5 to 32%.

  20. Effects of concomitant use of fibroblast growth factor (FGF)-2 with beta-tricalcium phosphate ({beta}-TCP) on the beagle dog 1-wall periodontal defect model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anzai, Jun, E-mail: anzai_jun@kaken.co.jp; Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871; Kitamura, Masahiro, E-mail: kitamura@dent.osaka-u.ac.jp

    Research highlights: {yields} Concomitant use of FGF-2 and {beta}-TCP (an osteo-conductive scaffold) significantly promotes periodontal regeneration in the severe periodontitis model (1-wall defect model) of beagle dog. {yields} FGF-2 enhanced new bone formation via {beta}-TCP at the defects. {yields} In particular, FGF-2 dramatically regenerated new periodontal ligament and cementum formations at the defects, that is one of the most important healing outcomes during the process of periodontal regeneration. {yields} Epithelial downgrowth (undesirable wound healing) was decreased by administration of FGF-2. {yields} This manuscript indicates for the first time that concomitant use of FGF-2 and {beta}-TCP is efficacious in regenerating periodontalmore » tissue following severe destruction of the tissue by progression of periodontitis. -- Abstract: The effects of concomitant use of fibroblast growth factor-2 (FGF-2) and beta-tricalcium phosphate ({beta}-TCP) on periodontal regeneration were investigated in the beagle dog 1-wall periodontal defect model. One-wall periodontal defects were created in the mesial portion of both sides of the mandibular first molars, and 0.3% FGF-2 plus {beta}-TCP or {beta}-TCP alone was administered. Radiographic evaluation was performed at 0, 3, and 6 weeks. At 6 weeks, the periodontium with the defect site was removed and histologically analyzed. Radiographic findings showed that co-administration of FGF-2 significantly increased bone mineral contents of the defect sites compared with {beta}-TCP alone. Histologic analysis revealed that the length of the regenerated periodontal ligament, the cementum, distance to the junctional epithelium, new bone height, and area of newly formed bone were significantly increased in the FGF-2 group. No abnormal inflammatory response or ankylosis was observed in either group. These findings indicate the efficacy of concomitant use of FGF-2 and {beta}-TCP as an osteoconductive material for periodontal regeneration following severe destruction by progressive periodontitis.« less

  1. Correlation of porous and functional properties of food materials by NMR relaxometry and multivariate analysis.

    PubMed

    Haiduc, Adrian Marius; van Duynhoven, John

    2005-02-01

    The porous properties of food materials are known to determine important macroscopic parameters such as water-holding capacity and texture. In conventional approaches, understanding is built from a long process of establishing macrostructure-property relations in a rational manner. Only recently, multivariate approaches were introduced for the same purpose. The model systems used here are oil-in-water emulsions, stabilised by protein, and form complex structures, consisting of fat droplets dispersed in a porous protein phase. NMR time-domain decay curves were recorded for emulsions with varied levels of fat, protein and water. Hardness, dry matter content and water drainage were determined by classical means and analysed for correlation with the NMR data with multivariate techniques. Partial least squares can calibrate and predict these properties directly from the continuous NMR exponential decays and yields regression coefficients higher than 82%. However, the calibration coefficients themselves belong to the continuous exponential domain and do little to explain the connection between NMR data and emulsion properties. Transformation of the NMR decays into a discreet domain with non-negative least squares permits the use of multilinear regression (MLR) on the resulting amplitudes as predictors and hardness or water drainage as responses. The MLR coefficients show that hardness is highly correlated with the components that have T2 distributions of about 20 and 200 ms whereas water drainage is correlated with components that have T2 distributions around 400 and 1800 ms. These T2 distributions very likely correlate with water populations present in pores with different sizes and/or wall mobility. The results for the emulsions studied demonstrate that NMR time-domain decays can be employed to predict properties and to provide insight in the underlying microstructural features.

  2. Quantitative Contrast-Enhanced Ultrasound Parameters in Crohn Disease: Their Role in Disease Activity Determination With Ultrasound.

    PubMed

    Medellin-Kowalewski, Alexandra; Wilkens, Rune; Wilson, Alexandra; Ruan, Ji; Wilson, Stephanie R

    2016-01-01

    The primary objective of our study was to examine the association between contrast-enhanced ultrasound (CEUS) parameters and established gray-scale ultrasound with color Doppler imaging (CDI) for the determination of disease activity in patients with Crohn disease. Our secondary objective was to develop quantitative time-signal intensity curve thresholds for disease activity. One hundred twenty-seven patients with Crohn disease underwent ultrasound with CDI and CEUS. Reviewers graded wall thickness, inflammatory fat, and mural blood flow as showing remission or inflammation (mild, moderate, or severe). If both gray-scale ultrasound and CDI predicted equal levels of disease activity, the studies were considered concordant. If ultrasound images suggested active disease not supported by CDI findings, the ultrasound results for disease activity were indeterminate. Time-signal intensity curves from CEUS were acquired with calculation of peak enhancement (PE), and AUCs. Interobserver variation and associations between PE and ultrasound parameters were examined. Multiclass ROC analysis was used to develop CEUS thresholds for activity. Ninety-six (76%) studies were concordant, 19 of which showed severe disease, and 31 (24%) studies were indeterminate. Kappa analyses revealed good interobserver agreement on grades for CDI (κ = 0.76) and ultrasound (κ = 0.80) assessments. PE values on CEUS and wall thickness showed good association with the Spearman rank correlation coefficient for the entire population (ρ = 0.62, p < 0.01) and for the concordant group (ρ = 0.70, p < 0.01). Multiclass ROC analyses of the concordant group using wall thickness alone as the reference standard showed cutoff points of 18.2 dB for differentiating mild versus moderate activity (sensitivity, 89.0% and specificity, 87.0%) and 23.0 dB for differentiating moderate versus severe (sensitivity, 90% and specificity, 86.8%). Almost identical cutoff points were observed when using ultrasound global assessment as the reference standard: using 18.2 dB to differentiate mild versus moderate activity yielded sensitivity of 89.2% and specificity of 90.9% and using 22.9 dB to differentiate moderate versus severe activity yielded sensitivity of 89.5% and specificity of 83.1%. Quantitative CEUS parameters integrated into inflammatory assessments with ultrasound reduce indeterminate results and improve disease activity level determinations.

  3. A Prospective Randomized Study Comparing Manual and Wall Suction in the Performance of Bronchoalveolar Lavage.

    PubMed

    Seijo, Luis M; Flandes, Javier; Somiedo, Maria V; Naya, Alba; Manjón, Josefina; Álvarez, Susana; Fernández-Navamuel, Iker

    2016-01-01

    Bronchoalveolar lavage (BAL) may be performed using a hand-held syringe or wall suction. The aim was to study BAL volume and diagnostic yields based on BAL technique. A total of 220 consecutive patients undergoing BAL at our center were included. Manual aspiration was performed in 115 patients (group 1), and wall suction (<50 mm Hg of negative pressure) was used in 105 patients (group 2). All bronchoscopies were performed under conscious sedation applying topical anesthesia with lidocaine. Three 50-ml sterile saline aliquots were instilled in all patients. The mean total amount of fluid recovered was 67 ± 20 ml in group 1 and 55 ± 22 ml in group 2 (p < 0.001). More patients in the manual aspiration group met American Thoracic Society criteria (recovery of ≥30% of instilled fluid) for an optimal BAL (81 vs. 59%; p < 0.001). The quantity of recovered fluid was also related to BAL location (p < 0.001) and radiologic findings (p = 0.002). Forty-eight (22%) BALs were diagnostic (23 in group 1 and 25 in group 2), including 37 positive bacterial cultures, 6 positive stains for Pneumocystis, and 5 cases of malignancy. No statistically significant difference in diagnostic yield was observed between the two groups. A BAL diagnosis was more likely in patients with certain radiologic (p = 0.033) and endoscopic findings (p = 0.001). When taking into account all bronchoscopic techniques performed during the procedure (e.g. biopsies, brushing, etc.), bronchoscopy was diagnostic in 37% of patients. Manual aspiration is superior to wall suction during BAL yielding a larger quantity of aspirate. Diagnostic yields are similar for both techniques. © 2016 S. Karger AG, Basel.

  4. Observation of chemical erosion of carbon based wall materials in the TEXTOR tokamak

    NASA Astrophysics Data System (ADS)

    Philipps, V.; Pospieszczyk, A.; Erdweg, M.; Schweer, B.; Vietzke, E.; Winter, J.

    1996-01-01

    Mass spectroscopy and optical spectroscopy have been used to measure the formation of methane, higher hydrocarbons and of CO during the interaction of limiters with the boundary plasma and of special carbon targets with the scrape-off-layer plasma (SOL) of TEXTOR. Mass spectroscopic data are obtained by the Sniffer probe in the SOL under carbon, boronized and siliconized wall conditions. At target temperatures <=100 °C, methane yields range typically between 0.7 and 1.2%. They vary only little with changing plasma conditions. C2-hydrocarbon formation dominates the overall carbon erosion under many conditions. Their yields increase with decreasing plasma temperature. Siliconization of the walls reduces the methane formation only little but suppresses the formation of higher hydrocarbons significantly. CO formation is dominated by the actual oxygen impurity fluxes and ranges between 0.2% up to 1.5% depending on the wall conditioning. Supporting data on hydrocarbon and CO formation are obtained from the outgassing after the discharge. Optical spectroscopy has been used to determine methane formation yields from CH band emission in front of graphite test limiters positioned at the last closed flux surface. The yields are typically in the range between 1.5 and 5% and are generally a factor 2-3 higher compared to those from mass spectroscopy. The CH4 formation is nearly constant between 200 °C up to 700 °C and decreases beyond 800-1000 °C. It decreases with increasing flux density. C2 hydrocarbon emission from the limiters has not been observed by molecular band emission within the range of normal plasma conditions. They show up only for detached plasma conditions.

  5. Two endogenous proteins that induce cell wall extension in plants

    NASA Technical Reports Server (NTRS)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  6. Effect of the plate surface characteristics and gap height on yield stresses of a magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Jonkkari, I.; Kostamo, E.; Kostamo, J.; Syrjala, S.; Pietola, M.

    2012-07-01

    Effects of the plate material, surface roughness and measuring gap height on static and dynamic yield stresses of a magnetorheological (MR) fluid were investigated with a commercial plate-plate magnetorheometer. Magnetic and non-magnetic plates with smooth (Ra ˜ 0.3 μm) and rough (Ra ˜ 10 μm) surface finishes were used. It was shown by Hall probe measurements and finite element simulations that the use of magnetic plates or higher gap heights increases the level of magnetic flux density and changes the shape of the radial flux density profile. The yield stress increase caused by these factors was determined and subtracted from the measured values in order to examine only the effect of the wall characteristics or the gap height. Roughening of the surfaces offered a significant increase in the yield stresses for non-magnetic plates. With magnetic plates the yield stresses were higher to start with, but roughening did not increase them further. A significant part of the difference in measured stresses between rough non-magnetic and magnetic plates was caused by changes in magnetic flux density rather than by better contact of the particles to the plate surfaces. In a similar manner, an increase in gap height from 0.25 to 1.00 mm can lead to over 20% increase in measured stresses due to changes in the flux density profile. When these changes were compensated the dynamic yield stresses generally remained independent of the gap height, even in the cases where it was obvious that the wall slip was present. This suggests that with MR fluids the wall slip cannot be reliably detected by comparison of flow curves measured at different gap heights.

  7. Assessment of the Maximal Split-Half Coefficient to Estimate Reliability

    ERIC Educational Resources Information Center

    Thompson, Barry L.; Green, Samuel B.; Yang, Yanyun

    2010-01-01

    The maximal split-half coefficient is computed by calculating all possible split-half reliability estimates for a scale and then choosing the maximal value as the reliability estimate. Osburn compared the maximal split-half coefficient with 10 other internal consistency estimates of reliability and concluded that it yielded the most consistently…

  8. Quantum walled Brauer algebra: commuting families, Baxterization, and representations

    NASA Astrophysics Data System (ADS)

    Semikhatov, A. M.; Tipunin, I. Yu

    2017-02-01

    For the quantum walled Brauer algebra, we construct its Specht modules and (for generic parameters of the algebra) seminormal modules. The latter construction yields the spectrum of a commuting family of Jucys-Murphy elements. We also propose a Baxterization prescription; it involves representing the quantum walled Brauer algebra in terms of morphisms in a braided monoidal category and introducing parameters into these morphisms, which allows constructing a ‘universal transfer matrix’ that generates commuting elements of the algebra.

  9. Effect of electrical and mechanical poling history on domain orientation and piezoelectric properties of soft and hard PZT ceramics

    NASA Astrophysics Data System (ADS)

    Marsilius, Mie; Granzow, Torsten; Jones, Jacob L.

    2011-02-01

    The superior piezoelectric properties of all polycrystalline ferroelectrics are based on the extent of non-180° domain wall motion under electrical and mechanical poling loads. To distinguish between 180° and non-180° domain wall motion in a soft-doped and a hard-doped lead zirconate titanate (PZT) ceramic, domain texture measurements were performed using x-ray and neutron diffraction after different loading procedures. Comparing the results to measurements of the remanent strain and piezoelectric coefficient allowed the differentiation between different microstructural contributions to the macroscopic parameters. Both types of ceramic showed similar behavior under electric field, but the hard-doped material was more susceptible to mechanical load. A considerable fraction of the piezoelectric coefficient originated from poling by the preferred orientation of 180° domains.

  10. Modeling the Rapid Boil-Off of a Cryogenic Liquid When Injected into a Low Pressure Cavity

    NASA Technical Reports Server (NTRS)

    Lira, Eric

    2016-01-01

    Many launch vehicle cryogenic applications require the modeling of injecting a cryogenic liquid into a low pressure cavity. The difficulty of such analyses lies in accurately predicting the heat transfer coefficient between the cold liquid and a warm wall in a low pressure environment. The heat transfer coefficient and the behavior of the liquid is highly dependent on the mass flow rate into the cavity, the cavity wall temperature and the cavity volume. Testing was performed to correlate the modeling performed using Thermal Desktop and Sinda Fluint Thermal and Fluids Analysis Software. This presentation shall describe a methodology to model the cryogenic process using Sinda Fluint, a description of the cryogenic test set up, a description of the test procedure and how the model was correlated to match the test results.

  11. Photo-induced thermoelectric response in suspended single-walled carbon nanotube films

    NASA Astrophysics Data System (ADS)

    St-Antoine, Benoit; Menard, David; Martel, Richard

    2010-03-01

    A study was carried out on the position dependent photovoltage of suspended single-walled carbon nanotube films in vacuum. The photoresponse of such films was found to be driven by a thermal mechanism, rather than by direct photoexcitation of carriers. [1] A model was developed which establishes a relation between the photoresponse profile and the local Seebeck coefficient of the film, thus opening up new perspectives for material characterization. The technique was demonstrated by monitoring the doping changes in the nanotube films obtained by successive current conditioning steps. Since the Seebeck coefficient of carbon nanotubes spans a considerable range depending on their doping state, the photovoltage amplitude can be tuned and large responses have been measured (up to 0.75mV for 1.2mW). [4pt] [1] B. St-Antoine et al. Nano Lett. 9, 3503 (2009)

  12. Inverse modeling of the overpressure distribution in an extension fracture with an arbitrary aperture variation: application to non-feeder dikes in the Miyake-jima Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Kusumoto, Shigekazu; Geshi, Nobuo; Gudmundsson, Agust

    2010-05-01

    We derived a solution for the overpressure distribution acting on the walls (surfaces) of an extension fracture (a hydrofracture) with an arbitrary opening-displacement (or aperture) variation. In the proposed model, we assume that the overpressure distribution can be described by Fourier cosine series. We at first present a solution for the forward model giving the fracture aperture when it is opened by an irregular overpressure variation obtained using the Fourier cosine series. Next, by changing the form of the solution for the forward model, we obtain a matrix equation that can be used to estimate the Fourier coefficients to obtain the overpressure distribution from the fracture aperture variation. As simple examples of this inverse analysis, we estimate the overpressure conditions from crack apertures given analytically for two cases, namely, 1) the overpressure in the crack is constant, and 2) the overpressure variation in the crack varies linearly from its center. The estimated overpressure distributions were found to be correct, although a small 'noise' was present. Since the method presented here gives the overpressure distribution as a Fourier series by the aperture data measured at a finite number of points, the overpressure conditions for forming the fracture can be determined for each wavelength. The Fourier coefficient of n = 0 is an important coefficient that gives the average value of the overpressure acting inside the crack. With the exception of n = 0, the Fourier coefficient of n = 1 expresses the longest wavelength component of the irregular overpressure. Thus, because this coefficient including the coefficient of n = 0 gives the longest wavelength component in the irregular overpressure, the component may be an important indicator of the overpressure condition that decides the basic form of the crack. We applied the solution for the inverse analysis to the thickness data of 19 non-feeder dikes exposed in the caldera wall of the Miyake-jima Volcano, Japan. In the analysis, the host-rock Young's modulus and Poisson's ratio were taken as 1 GPa and 0.25. The results show that most of the estimated overpressures increase toward the tips of the dikes and reach about 5 to 15 MPa (average was 8 MPa). In addition, results indicate host-rock fracture toughnesses between 60 MPa m1-2 and 170 MPa m1-2 (average 100 MPa m1-2). For comparison, we also estimated the magma overpressure by the least square method, assuming constant overpressure. This method gives overpressure between 1.5 MPa and 4 MPa (average 2.8 MPa). Similarly, the fracture toughnesses estimated in this way range between 30 MPa m1-2 and 120 MPa m1-2 (average 55 MPa m1-2). These methods and assumptions thus yield somewhat different results, as expected, but indicate the likely ranges of the magma overpressures and host-rock fracture toughnesses both of which are very reasonable and agree with earlier results obtained by different methods.

  13. Following the compositional changes of fresh grape skin cell walls during the fermentation process in the presence and absence of maceration enzymes.

    PubMed

    Zietsman, Anscha J J; Moore, John P; Fangel, Jonatan U; Willats, William G T; Trygg, Johan; Vivier, Melané A

    2015-03-18

    Cell wall profiling technologies were used to follow compositional changes that occurred in the skins of grape berries (from two different ripeness levels) during fermentation and enzyme maceration. Multivariate data analysis showed that the fermentation process yielded cell walls enriched in hemicellulose components because pectin was solubilized (and removed) with a reduction as well as exposure of cell wall proteins usually embedded within the cell wall structure. The addition of enzymes caused even more depectination, and the enzymes unravelled the cell walls enabling better access to, and extraction of, all cell wall polymers. Overripe grapes had cell walls that were extensively hydrolyzed and depolymerized, probably by natural grape-tissue-ripening enzymes, and this enhanced the impact that the maceration enzymes had on the cell wall monosaccharide profile. The combination of the techniques that were used is an effective direct measurement of the hydrolysis actions of maceration enzymes on the cell walls of grape berry skin.

  14. Viscosity induced non-uniform flow in laminar flow heat exchangers

    NASA Astrophysics Data System (ADS)

    Putnam, G. R.; Rohsenow, W. M.

    1985-05-01

    Laminar flow heat exchangers which cool oil in noninterconnected parallel passages can experience nonuniform flows and a reduction in the effective heat exchanger coefficient in a range of Reynolds number which varies with tube length and diameter, tube wall temperature and fluid inlet temperature. The method of predicting the reduction in effective heat transfer coefficient and the range of Reynolds number over which these instabilities exist is presented for a particular oil, Mobil aviation oil 120. Included, also, is the prediction of the effect of radial viscosity variation on the constant property magnitudes of friction and heat transfer coefficient.

  15. Turbulence model sensitivity and scour gap effect of unsteady flow around pipe: a CFD study.

    PubMed

    Ali, Abbod; Sharma, R K; Ganesan, P; Akib, Shatirah

    2014-01-01

    A numerical investigation of incompressible and transient flow around circular pipe has been carried out at different five gap phases. Flow equations such as Navier-Stokes and continuity equations have been solved using finite volume method. Unsteady horizontal velocity and kinetic energy square root profiles are plotted using different turbulence models and their sensitivity is checked against published experimental results. Flow parameters such as horizontal velocity under pipe, pressure coefficient, wall shear stress, drag coefficient, and lift coefficient are studied and presented graphically to investigate the flow behavior around an immovable pipe and scoured bed.

  16. Calculations on the rate of the ion-molecule reaction between NH3(+) and H2

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; Defrees, D. J.; Talbi, D.; Pauzat, F.; Koch, W.

    1991-01-01

    The rate coefficient for the ion-molecule reaction NH3(+) + H2 yields NH4(+) + H has been calculated as a function of temperature with the use of the statistical phase space approach. The potential surface and reaction complex and transition state parameters used in the calculation have been taken from ab initio quantum chemical calculations. The calculated rate coefficient has been found to mimic the unusual temperature dependence measured in the laboratory, in which the rate coefficient decreases with decreasing temperature until 50-100 K and then increases at still lower temperatures. Quantitative agreement between experimental and theoretical rate coefficients is satisfactory given the uncertainties in the ab initio results and in the dynamics calculations. The rate coefficient for the unusual three-body process NH3(+) + H2 + He yields NH4(+) + H + He has also been calculated as a function of temperature and the result found to agree well with a previous laboratory determination.

  17. Aspen pectate lyase PtxtPL1-27 mobilizes matrix polysaccharides from woody tissues and improves saccharification yield

    PubMed Central

    2014-01-01

    Background Wood cell walls are rich in cellulose, hemicellulose and lignin. Hence, they are important sources of renewable biomass for producing energy and green chemicals. However, extracting desired constituents from wood efficiently poses significant challenges because these polymers are highly cross-linked in cell walls and are not easily accessible to enzymes and chemicals. Results We show that aspen pectate lyase PL1-27, which degrades homogalacturonan and is expressed at the onset of secondary wall formation, can increase the solubility of wood matrix polysaccharides. Overexpression of this enzyme in aspen increased solubility of not only pectins but also xylans and other hemicelluloses, indicating that homogalacturonan limits the solubility of major wood cell wall components. Enzymatic saccharification of wood obtained from PL1-27-overexpressing trees gave higher yields of pentoses and hexoses than similar treatment of wood from wild-type trees, even after acid pretreatment. Conclusions Thus, the modification of pectins may constitute an important biotechnological target for improved wood processing despite their low abundance in woody biomass. PMID:24450583

  18. A Community-acquired Lung Abscess Attributable to Streptococcus pneumoniae which Extended Directly into the Chest Wall

    PubMed Central

    Ko, Yuki; Tobino, Kazunori; Yasuda, Yuichiro; Sueyasu, Takuto; Nishizawa, Saori; Yoshimine, Kouhei; Munechika, Miyuki; Asaji, Mina; Yamaji, Yoshikazu; Tsuruno, Kosuke; Miyajima, Hiroyuki; Mukasa, Yosuke; Ebi, Noriyuki

    2017-01-01

    We herein report the case of 75-year-old Japanese female with a community-acquired lung abscess attributable to Streptococcus pneumoniae (S. penumoniae) which extended into the chest wall. The patient was admitted to our hospital with a painful mass on the left anterior chest wall. A contrast-enhanced chest computed tomography scan showed a lung abscess in the left upper lobe which extended into the chest wall. Surgical debridement of the chest wall abscess and percutaneous transthoracic tube drainage of the lung abscess were performed. A culture of the drainage specimen yielded S. pneumoniae. The patient showed a remarkable improvement after the initiation of intravenous antibiotic therapy. PMID:28049987

  19. A Community-acquired Lung Abscess Attributable to Streptococcus pneumoniae which Extended Directly into the Chest Wall.

    PubMed

    Ko, Yuki; Tobino, Kazunori; Yasuda, Yuichiro; Sueyasu, Takuto; Nishizawa, Saori; Yoshimine, Kouhei; Munechika, Miyuki; Asaji, Mina; Yamaji, Yoshikazu; Tsuruno, Kosuke; Miyajima, Hiroyuki; Mukasa, Yosuke; Ebi, Noriyuki

    We herein report the case of 75-year-old Japanese female with a community-acquired lung abscess attributable to Streptococcus pneumoniae (S. penumoniae) which extended into the chest wall. The patient was admitted to our hospital with a painful mass on the left anterior chest wall. A contrast-enhanced chest computed tomography scan showed a lung abscess in the left upper lobe which extended into the chest wall. Surgical debridement of the chest wall abscess and percutaneous transthoracic tube drainage of the lung abscess were performed. A culture of the drainage specimen yielded S. pneumoniae. The patient showed a remarkable improvement after the initiation of intravenous antibiotic therapy.

  20. Deformation and failure mechanism of secondary cell wall in Spruce late wood

    NASA Astrophysics Data System (ADS)

    Adusumalli, Ramesh-Babu; Raghavan, Rejin; Ghisleni, Rudy; Zimmermann, Tanja; Michler, Johann

    2010-08-01

    The deformation and failure of the secondary cell wall of Spruce wood was studied by in-situ SEM compression of micropillars machined by the focused ion beam technique. The cell wall exhibited yield strength values of approximately 160 MPa and large scale plasticity. High resolution SEM imaging post compression revealed bulging of the pillars followed by shear failure. With additional aid of cross-sectional analysis of the micropillars post compression, a model for deformation and failure mechanism of the cell wall has been proposed. The cell wall consists of oriented cellulose microfibrils with high aspect ratio embedded in a hemicellulose-lignin matrix. The deformation of the secondary wall occurs by asymmetric out of plane bulging because of buckling of the microfibrils. Failure of the cell wall following the deformation occurs by the formation of a shear or kink band.

  1. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D., Sr.

    1989-01-01

    A research program to study the effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly, is discussed. Freon 11 is the working fluid involved. The specific objectives are: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls, (2) examine the effect channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel, and (3) develop an improved data reduction analysis.

  2. Application of the Shiono and Knight Method in asymmetric compound channels with different side slopes of the internal wall

    NASA Astrophysics Data System (ADS)

    Alawadi, Wisam; Al-Rekabi, Wisam S.; Al-Aboodi, Ali H.

    2018-03-01

    The Shiono and Knight Method (SKM) is widely used to predict the lateral distribution of depth-averaged velocity and boundary shear stress for flows in compound channels. Three calibrating coefficients need to be estimated for applying the SKM, namely eddy viscosity coefficient ( λ), friction factor ( f) and secondary flow coefficient ( k). There are several tested methods which can satisfactorily be used to estimate λ, f. However, the calibration of secondary flow coefficients k to account for secondary flow effects correctly is still problematic. In this paper, the calibration of secondary flow coefficients is established by employing two approaches to estimate correct values of k for simulating asymmetric compound channel with different side slopes of the internal wall. The first approach is based on Abril and Knight (2004) who suggest fixed values for main channel and floodplain regions. In the second approach, the equations developed by Devi and Khatua (2017) that relate the variation of the secondary flow coefficients with the relative depth ( β) and width ratio ( α) are used. The results indicate that the calibration method developed by Devi and Khatua (2017) is a better choice for calibrating the secondary flow coefficients than using the first approach which assumes a fixed value of k for different flow depths. The results also indicate that the boundary condition based on the shear force continuity can successfully be used for simulating rectangular compound channels, while the continuity of depth-averaged velocity and its gradient is accepted boundary condition in simulations of trapezoidal compound channels. However, the SKM performance for predicting the boundary shear stress over the shear layer region may not be improved by only imposing the suitable calibrated values of secondary flow coefficients. This is because difficulties of modelling the complex interaction that develops between the flows in the main channel and on the floodplain in this region.

  3. Assembly and enlargement of the primary cell wall in plants

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1997-01-01

    Growing plant cells are shaped by an extensible wall that is a complex amalgam of cellulose microfibrils bonded noncovalently to a matrix of hemicelluloses, pectins, and structural proteins. Cellulose is synthesized by complexes in the plasma membrane and is extruded as a self-assembling microfibril, whereas the matrix polymers are secreted by the Golgi apparatus and become integrated into the wall network by poorly understood mechanisms. The growing wall is under high tensile stress from cell turgor and is able to enlarge by a combination of stress relaxation and polymer creep. A pH-dependent mechanism of wall loosening, known as acid growth, is characteristic of growing walls and is mediated by a group of unusual wall proteins called expansins. Expansins appear to disrupt the noncovalent bonding of matrix hemicelluloses to the microfibril, thereby allowing the wall to yield to the mechanical forces generated by cell turgor. Other wall enzymes, such as (1-->4) beta-glucanases and pectinases, may make the wall more responsive to expansin-mediated wall creep whereas pectin methylesterases and peroxidases may alter the wall so as to make it resistant to expansin-mediated creep.

  4. Assembly and enlargement of the primary cell wall in plants.

    PubMed

    Cosgrove, D J

    1997-01-01

    Growing plant cells are shaped by an extensible wall that is a complex amalgam of cellulose microfibrils bonded noncovalently to a matrix of hemicelluloses, pectins, and structural proteins. Cellulose is synthesized by complexes in the plasma membrane and is extruded as a self-assembling microfibril, whereas the matrix polymers are secreted by the Golgi apparatus and become integrated into the wall network by poorly understood mechanisms. The growing wall is under high tensile stress from cell turgor and is able to enlarge by a combination of stress relaxation and polymer creep. A pH-dependent mechanism of wall loosening, known as acid growth, is characteristic of growing walls and is mediated by a group of unusual wall proteins called expansins. Expansins appear to disrupt the noncovalent bonding of matrix hemicelluloses to the microfibril, thereby allowing the wall to yield to the mechanical forces generated by cell turgor. Other wall enzymes, such as (1-->4) beta-glucanases and pectinases, may make the wall more responsive to expansin-mediated wall creep whereas pectin methylesterases and peroxidases may alter the wall so as to make it resistant to expansin-mediated creep.

  5. Linear unmixing of multidate hyperspectral imagery for crop yield estimation

    USDA-ARS?s Scientific Manuscript database

    In this paper, we have evaluated an unsupervised unmixing approach, vertex component analysis (VCA), for the application of crop yield estimation. The results show that abundance maps of the vegetation extracted by the approach are strongly correlated to the yield data (the correlation coefficients ...

  6. In-vitro detection of artificial caries on vertical dental cavity walls using infrared photothermal radiometry and modulated luminescence

    NASA Astrophysics Data System (ADS)

    Kim, Jungho; Mandelis, Andreas; Abrams, Stephen H.; Vu, Jaclyn T.; Amaechi, Bennett T.

    2012-12-01

    The main objective of the study was to investigate the ability of frequency-domain photothermal radiometry (PTR) and modulated luminescence (LUM) to detect secondary caries lesions on the walls of restorations (wall lesions). Changes in experimental PTR-LUM signals due to sequential demineralization on entire vertical walls of sectioned tooth samples were investigated. In addition, transverse micro-radiography (TMR) analysis (used as a gold standard) was conducted to measure the degree of demineralization that occurred in each sample. Statistical correlation between TMR results and PTR-LUM signals was determined using Pearson's correlation coefficient. LUM signals were found to be dominated by the scattered component of the incident laser beam. The more clinically relevant cases of localized demineralization and remineralization on vertical walls were also investigated to examine whether PTR-LUM signals are sensitive to demineralization and remineralization of much smaller areas. The overall results demonstrated that PTR-LUM is sensitive to progressive demineralization and remineralization on vertical walls of sectioned tooth samples.

  7. Measuring impact rebound with photography.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumali, Hartono

    2010-05-01

    To study the rebound of a sphere colliding against a flat wall, a test setup was developed where the sphere is suspended with strings as a pendulum, elevated, and gravity-released to impact the wall. The motion of the sphere was recorded with a highspeed camera and traced with an image-processing program. From the speed of the sphere before and after each collision, the coefficient of restitution was computed, and shown to be a function of impact speed as predicted analytically.

  8. Method for controlling coolant flow in airfoil, flow control structure and airfoil incorporating the same

    DOEpatents

    Itzel, Gary Michael; Devine, II, Robert Henry; Chopra, Sanjay; Toornman, Thomas Nelson

    2003-07-08

    A coolant flow control structure is provided to channel cooling media flow to the fillet region defined at the transition between the wall of a nozzle vane and a wall of a nozzle segment, for cooling the fillet region. In an exemplary embodiment, the flow control structure defines a gap with the fillet region to achieve the required heat transfer coefficients in this region to meet part life requirements.

  9. Coolant-side heat-transfer rates for a hydrogen-oxygen rocket and a new technique for data correlation

    NASA Technical Reports Server (NTRS)

    Schacht, R. L.; Quentmeyer, R. J.

    1973-01-01

    An experimental investigation was conducted to determine the coolant-side, heat transfer coefficients for a liquid cooled, hydrogen-oxygen rocket thrust chamber. Heat transfer rates were determined from measurements of local hot gas wall temperature, local coolant temperature, and local coolant pressure. A correlation incorporating an integration technique for the transport properties needed near the pseudocritical temperature of liquid hydrogen gives a satisfactory prediction of hot gas wall temperatures.

  10. Determination of heat losses and their influence on the performance characteristics of high-enthalpy hot-shot tubes

    NASA Astrophysics Data System (ADS)

    Ganimedov, V. L.; Shumsky, V. V.; Yaroslavtsev, M. I.

    2009-06-01

    An analysis of the losses of heat into the walls of settling chamber in a hypersonic hot-shot tube has been performed. Tests without diaphragm rupture showed that the fall of settling-chamber pressure during the operating flow regime in the tube was the consequence of the transfer of heat from working body to wall; this has allowed us to evaluate the heat-transfer coefficient α and the inner-surface temperature of the wall T w. An empirical formula relating the coefficient α with the pressure and working-body temperature in the settling chamber in the range of pressures and temperatures 160 to 540 bar and 700 to 3400 K was obtained. Using the gained dependences of α and T w on pressure and temperature, we have developed a physical model for calculating the working-body characteristics in the tube with allowance for enthalpy losses. We found that by the hundredth millisecond of the operating regime the disregard, in such calculations, of the wall heat flux in the first settling chamber resulted in overestimation of the stagnation temperature in the test section in comparison with similar calculations made without allowance for the heat losses by 6-18 % in terms of the full-scale temperature for aircraft flight in Mach number range 5 to 8. The developed calculation procedure has been tested in experiments without diaphragm rupture.

  11. Yield Potential of Sugar Beet – Have We Hit the Ceiling?

    PubMed Central

    Hoffmann, Christa M.; Kenter, Christine

    2018-01-01

    The yield of sugar beet has continuously increased in the past decades. The question arises, whether this progress will continue in the future. A key factor for increasing yield potential of the crop is breeding progress. It was related to a shift in assimilate partitioning in the plant toward more storage carbohydrates (sucrose), whereas structural carbohydrates (leaves, cell wall compounds) unintendedly declined. The yield potential of sugar beet was estimated at 24 t sugar ha-1. For maximum yield, sufficient growth factors have to be available and the crop has to be able to fully utilize them. In sugar beet, limitations result from the lacking coincidence of maximum irradiation rates and full canopy cover, sink strength for carbon assimilation and high water demand, which cannot be met by rainfall alone. After harvest, sugar losses during storage occur. The paper discusses options for a further increase in yield potential, like autumn sowing of sugar beet, increasing sink strength and related constraints. It is prospected that yield increase by further widening the ratio of storage and structural carbohydrates will come to its natural limit as a certain cell wall stability is necessary. New challenges caused by climate change and by prolonged processing campaigns will occur. Thus breeding for improved pathogen resistance and storage properties will be even more important for successful sugar beet production than a further increase in yield potential itself. PMID:29599787

  12. Hybridization of downregulated-COMT transgenic switchgrass lines with field-selected switchgrass for improved biomass traits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Holly L.; Alexander, Lisa W.; Mazarei, Mitra

    Transgenic switchgrass (Panicum virgatum L.) has been produced for improved cell walls for biofuels. For instance, downregulated caffeic acid 3-O-methyltransferase (COMT) switchgrass produced significantly more biomass and biofuel than the non-transgenic progenitor line. In this present study we sought to further improve biomass characteristics by crossing the downregulated COMT T 1 lines with high-yielding switchgrass accessions in two genetic backgrounds ('Alamo' and 'Kanlow'). Crosses and T 2 progeny analyses were made under greenhouse conditions to assess maternal effects, plant morphology and yield, and cell wall traits. Female parent type influenced morphology, but had no effect on cell wall traits. Tmore » 2 hybrids produced with T 1 COMT-downregulated switchgrass as the female parent were taller, produced more tillers, and produced 63% more biomass compared with those produced using the field selected accession as the female parent. Transgene status (presence or absence of transgene) influenced both growth and cell wall traits. T 2 transgenic hybrids were 7% shorter 80 days after sowing and produced 43% less biomass than non-transgenic null-segregant hybrids. Cell wall-related differences included lower lignin content, reduced syringyl-to-guaiacyl (S/G) lignin monomer ratio, and a 12% increase in total sugar release in the T 2 transgenic hybrids compared to non-transgenic null segregants. This is the first study to evaluate the feasibility of transferring the low-recalcitrance traits associated with a transgenic switchgrass line into high-yielding field varieties in an attempt to improve growth-related traits. Lastly, our results provide insights into the possible improvement of switchgrass productivity via biotechnology paired with plant breeding.« less

  13. Hybridization of downregulated-COMT transgenic switchgrass lines with field-selected switchgrass for improved biomass traits

    DOE PAGES

    Baxter, Holly L.; Alexander, Lisa W.; Mazarei, Mitra; ...

    2016-01-21

    Transgenic switchgrass (Panicum virgatum L.) has been produced for improved cell walls for biofuels. For instance, downregulated caffeic acid 3-O-methyltransferase (COMT) switchgrass produced significantly more biomass and biofuel than the non-transgenic progenitor line. In this present study we sought to further improve biomass characteristics by crossing the downregulated COMT T 1 lines with high-yielding switchgrass accessions in two genetic backgrounds ('Alamo' and 'Kanlow'). Crosses and T 2 progeny analyses were made under greenhouse conditions to assess maternal effects, plant morphology and yield, and cell wall traits. Female parent type influenced morphology, but had no effect on cell wall traits. Tmore » 2 hybrids produced with T 1 COMT-downregulated switchgrass as the female parent were taller, produced more tillers, and produced 63% more biomass compared with those produced using the field selected accession as the female parent. Transgene status (presence or absence of transgene) influenced both growth and cell wall traits. T 2 transgenic hybrids were 7% shorter 80 days after sowing and produced 43% less biomass than non-transgenic null-segregant hybrids. Cell wall-related differences included lower lignin content, reduced syringyl-to-guaiacyl (S/G) lignin monomer ratio, and a 12% increase in total sugar release in the T 2 transgenic hybrids compared to non-transgenic null segregants. This is the first study to evaluate the feasibility of transferring the low-recalcitrance traits associated with a transgenic switchgrass line into high-yielding field varieties in an attempt to improve growth-related traits. Lastly, our results provide insights into the possible improvement of switchgrass productivity via biotechnology paired with plant breeding.« less

  14. Viscous Three-Dimensional Simulation of Flow in an Axial Low Pressure Compressor at Engine Icing Operating Points

    NASA Technical Reports Server (NTRS)

    Rigby, David L.; Ameri, Ali A.; Veres, Joe; Jorgenson, Philip C. E.

    2017-01-01

    Viscous three-dimensional simulations of the Honeywell ALF502R-5 low pressure compressor (sometimes called a booster) using the NASA Glenn code GlennHT have been carried out. A total of ten simulations were produced. Five operating points are investigated, with each point run with two different wall thermal conditions. These operating points are at, or near, points where engine icing has been determined to be likely. In the future, the results of this study will be used for further analysis such as predicting collection efficiency of ice particles and ice growth rates at various locations in the compressor. A mixing plane boundary condition is used between each blade row, resulting in convergence to steady state within each blade row. The k-omega turbulence model of Wilcox, combined with viscous grid spacing near the wall on the order of one, is used to resolve the turbulent boundary layers. For each of the operating points, heat transfer coefficients are generated on the blades and walls. The heat transfer coefficients are produced by running the operating point with two different wall thermal conditions and then solving simultaneously for the heat transfer coefficient and adiabatic wall temperature at each point. Average Nusselt numbers are calculated for the most relevant surfaces. The values are seen to scale with Reynolds number to approximately a power of 0.7. Additionally, images of surface distribution of Nusselt number are presented. Qualitative comparison between the five operating points show that there is relatively little change in the character of the distribution. The dominant observed effect is that of an overall scaling, which is expected due to Reynolds number differences. One interesting aspect about the Nusselt number distribution is observed on the casing (outer diameter) downstream of the exit guide vanes (EGVs). The Nusselt number is relatively high between the pairs of EGVs, with two lower troughs downstream of each EGV trailing edge. This is of particular interest since rather complex ice shapes have been observed in that region.

  15. Numerical investigation of influence on heat transfer characteristics to pneumatically conveyed dense phase flow by selecting models and boundary conditions

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Liu, Q.; Li, Y.

    2012-03-01

    Solids moving with a gas stream in a pipeline can be found in many industrial processes, such as power generation, chemical, pharmaceutical, food and commodity transfer processes. A mass flow rate of the solids is important characteristic that is often required to be measured (and controlled) to achieve efficient utilization of energy and raw materials in pneumatic conveying systems. The methods of measuring the mass flow rate of solids in a pneumatic pipeline can be divided into direct and indirect (inferential) measurements. A thermal solids' mass flow-meter, in principle, should ideally provide a direct measurement of solids flow rate, regardless of inhomogeneities in solids' distribution and environmental impacts. One key issue in developing a thermal solids' mass flow-meter is to characterize the heat transfer between the hot pipe wall and the gas-solids dense phase flow. The Eulerian continuum modeling with gas-solid two phases is the most common method for pneumatic transport. To model a gas-solid dense phase flow passing through a heated region, the gas phase is described as a continuous phase and the particles as the second phase. This study aims to describe the heat transfer characteristics between the hot wall and the gas-solids dense phase flow in pneumatic pipelines by modeling a turbulence gas-solid plug passing through the heated region which involves several actual and crucial issues: selections of interphase exchange coefficient, near-wall region functions and different wall surface temperatures. A sensitivity analysis was discussed to identify the influence on the heat transfer characteristics by selecting different interphase exchange coefficient models and different boundary conditions. Simulation results suggest that sensitivity analysis in the choice of models is very significant. The simulation results appear to show that a combination of choosing the Syamlal-O'Brien interphase exchange coefficient model and the standard k-ɛ model along with the standard wall function model might be the best approach, by which, the simulation data seems to be closest to the experimental results.

  16. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.

    PubMed

    Ejofodomi, O'tega A; Zderic, Vesna; Zara, Jason M

    2010-04-01

    Acoustic radiation force-optical coherence elastography (ARF-OCE) systems are novel imaging systems that have the potential to simultaneously quantify and characterize the optical and mechanical properties of in vivo tissues. This article presents the construction of bladder wall phantoms for use in ARF-OCE systems. Mechanical, acoustic, and optical properties are reported and compared to published values for the urinary bladder. The phantom consisted of 0.2000 +/- 0.0089 and 6.0000 +/- 0.2830 microm polystyrene microspheres (Polysciences Inc., Warrington, PA, Catalog Nos. 07304 and 07312), 7.5 +/- 1.5 microm copolymer microspheres composed of acrylonitrile and vinylidene chloride, (Expancel, Duluth, GA, Catalog No. 461 DU 20), and bovine serum albumin within a gelatin matrix. Young's modulus was measured by successive compression of the phantom and obtaining the slope of the resulting force-displacement data. Acoustic measurements were performed using the transmission method. The phantoms were submerged in a water bath and placed between transmitting and receiving 13 mm diameter unfocused transducers operating at a frequency of 3.5 MHz. A MATLAB algorithm to extract the optical scattering coefficient from optical coherence tomography (OCT) images of the phantom was used. The phantoms possess a Young's modulus of 17.12 +/- 2.72 kPa, a mass density of 1.05 +/- 0.02 g/cm3, an acoustic attenuation coefficient of 0.66 +/- 0.08 dB/cm/MHz, a speed of sound of 1591 +/- 8.76 m/s, and an optical scattering coefficient of 1.80 +/- 0.23 mm(-1). Ultrasound and OCT images of the bladder wall phantom are presented. A material that mimics the mechanical, optical, and acoustic properties of healthy bladder wall has been developed. This tissue-mimicking bladder wall phantom was developed as a control tool to investigate the feasibility of using ARF-OCE to detect the mechanical and optical changes that may be indicative of the onset or development of cancer in the urinary bladder. By following the methods used in this article, phantoms matching the optical, acoustic, and mechanical properties of other biological tissues can also be constructed.

  17. Local distribution of wall static pressure and heat transfer on a rough flat plate impinged by a slot air jet

    NASA Astrophysics Data System (ADS)

    Meda, Adimurthy; Katti, Vadiraj V.

    2017-08-01

    The present work experimentally investigates the local distribution of wall static pressure and the heat transfer coefficient on a rough flat plate impinged by a slot air jet. The experimental parameters include, nozzle-to-plate spacing (Z /D h = 0.5-10.0), axial distance from stagnation point ( x/D h ), size of detached rib ( b = 4-12 mm) and Reynolds number ( Re = 2500-20,000). The wall static pressure on the surface is recorded using a Pitot tube and a differential pressure transmitter. Infrared thermal imaging technique is used to capture the temperature distribution on the target surface. It is observed that, the maximum wall static pressure occurs at the stagnation point ( x/D h = 0) for all nozzle-to-plate spacing ( Z/D h ) and rib dimensions studied. Coefficient of wall static pressure ( C p ) decreases monotonically with x/D h . Sub atmospheric pressure is evident in the detached rib configurations for jet to plate spacing up to 6.0 for all ribs studied. Sub atmospheric region is stronger at Z/D h = 0.5 due to the fluid accelerating under the rib. As nozzle to plate spacing ( Z/D h ) increases, the sub-atmospheric region becomes weak and vanishes gradually. Reasonable enhancement in both C p as well as Nu is observed for the detached rib configuration. Enhancement is found to decrease with the increase in the rib width. The results of the study can be used in optimizing the cooling system design.

  18. Nonmassive acute pulmonary embolism: evaluation of the impact of pulmonary arterial wall distensibility on the assessment of the CT obstruction score.

    PubMed

    Bigot, Julien; Rémy-Jardin, Martine; Duhamel, Alain; Gorgos, Andréi-Bogdan; Faivre, Jean-Baptiste; Rémy, Jacques

    2010-02-01

    To evaluate the impact of pulmonary arterial wall distensibility on the assessment of a computed tomography (CT) score in patients with nonmassive pulmonary embolism (PE) (ie, Mastora score). The arterial wall distensibility of five central pulmonary arteries (pulmonary artery trunk, right and left main pulmonary arteries, right and left interlobar pulmonary arteries) was studied on ECG-gated CT angiographic studies of the chest in 15 patients with no pulmonary arterial hypertension (group 1; mean pulmonary artery pressure: 17.2 mm Hg) and 9 patients with nonmassive PE (group 2), using 2D reconstructions at every 10% of the R-R interval. The systolic and diastolic reconstruction time windows of the examined arteries were identical in the 2 groups, obtained at 20% and 80% of the R-R interval, respectively. No statistically significant difference was observed between the mean values of the pulmonary arterial wall distensibility between the 2 groups, varying between 20.5% and 24% in group 1 and between 23.3% and 25.9% in group 2. The coefficients of variation of the average arterial surfaces were found to vary between 4.30% and 6.50% in group 1 and 4.2% and 8.4% in group 2. Except the pulmonary artery trunk in group 2, all the intraclass correlation coefficients were around 0.8 or greater than 0.8, that is the cutoff for good homogeneity of measurements. The pulmonary arterial wall systolic-diastolic distensibility does not interfere with the assessment of a CT obstruction score in the setting of nonmassive PE.

  19. Improvement in transmission loss of aircraft double wall with resonators

    NASA Astrophysics Data System (ADS)

    Sun, Jincai; Shi, Liming; Ye, Xining

    1991-08-01

    A little volume low frequency resonator applicable to double-wall configuration of propeller-driven aircraft was designed on the basis of the principle of Helmholtz resonator. The normal incidence absorption coefficient of the various single resonator has been measured. The agreement between theoretical and experimental results is encouraging. An array of resonators whose resonant frequency at 85 Hz and 160 Hz, respectively, are installed between aircraft double-panel, and it has been shown that transmission loss of the double wall structure with resonators improve 4 dB and 6.5 dB in 1/3rd octave bandwidth at 80 Hz and 160 Hz center frequency, respectively, and 5 dB and 7 dB at resonant frequencies, compared with that of the double wall configuration without resonators.

  20. Propagation and radiation of sound from flanged circular ducts with circumferentially varying wall admittances. I Semi-infinite ducts. II - Finite ducts with sources

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1984-01-01

    Sound propagation in infinite, semiinfinite, and finite circular ducts with circumferentially varying wall admittances is investigated analytically. The infinite case is considered, and an example demonstrates the effects of wall-admittance distribution on dispersion characteristics and mode shapes. An exact solution is obtained for the semiinfinite case, a circular duct with a flanged opening: sidelobe suppression and circumferential-mode energy scattering leading to radiated-field asymmetry are found. A finite duct system with specified hard-walled pressure sources is examined in detail, evaluating reflection coefficients, transmission losses, and radiated-field directivity. Graphs and diagrams are provided, and the implications of the results obtained for the design of aircraft-turbofan inlet liners are discussed.

  1. On Sound Reflection in Superfluid

    NASA Astrophysics Data System (ADS)

    Melnikovsky, L. A.

    2008-02-01

    We consider reflection of first and second sound waves by a rigid flat wall in superfluid. A nontrivial dependence of the reflection coefficients on the angle of incidence is obtained. Sound conversion is predicted at slanted incidence.

  2. Core-log integration for rock mechanics using borehole breakouts and rock strength experiments: Recent results from plate subduction margins

    NASA Astrophysics Data System (ADS)

    Saito, S.; Lin, W.

    2014-12-01

    Core-log integration has been applied for rock mechanics studies in scientific ocean drilling since 2007 in plate subduction margins such as Nankai Trough, Costa Rica margin, and Japan Trench. State of stress in subduction wedge is essential for controlling dynamics of plate boundary fault. One of the common methods to estimate stress state is analysis of borehole breakouts (drilling induced borehole wall compressive failures) recorded in borehole image logs to determine the maximum horizontal principal stress orientation. Borehole breakouts can also yield possible range of stress magnitude based on a rock compressive strength criterion. In this study, we constrained the stress magnitudes based on two different rock failure criteria, the Mohr-Coulomb (MC) criteria and the modified Wiebols-Cook (mWC) criteria. As the MC criterion is the same as that under unconfined compression state, only one rock parameter, unconfined compressive strength (UCS) is needed to constrain stress magnitudes. The mWC criterion needs the UCS, Poisson's ratio and internal frictional coefficient determined by triaxial compression experiments to take the intermediate principal stress effects on rock strength into consideration. We conducted various strength experiments on samples taken during IODP Expeditions 334/344 (Costa Rica Seismogenesis Project) to evaluate reliable method to estimate stress magnitudes. Our results show that the effects of the intermediate principal stress on the rock compressive failure occurred on a borehole wall is not negligible.

  3. Relationship between soybean yield/quality and soil quality in a major soybean-producing area based on a 2D-QSAR model

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Li, Shiwei

    2017-05-01

    Based on experimental data of the soybean yield and quality from 30 sampling points, a quantitative structure-activity relationship model (2D-QSAR) was established using the soil quality (elements, pH, organic matter content and cation exchange capacity) as independent variables and soybean yield or quality as the dependent variable, with SPSS software. During the modeling, the full data set (30 and 14 compounds) was divided into a training set (24 and 11 compounds) for model generation and a test set (6 and 3 compounds) for model validation. The R2 values of the resulting models and data were 0.826 and 0.808 for soybean yield and quality, respectively, and all regression coefficients were significant (P < 0.05). The correlation coefficient R2pred of observed values and predicted values of the soybean yield and soybean quality in the test set were 0.961 and 0.956, respectively, indicating that the models had a good predictive ability. Moreover, the Mo, Se, K, N and organic matter contents and the cation exchange capacity of soil had a positive effect on soybean production, and the B, Mo, Se, K and N contents and cation exchange coefficient had a positive effect on soybean quality. The results are instructive for enhancing soils to improve the yield and quality of soybean, and this method can also be used to study other crops or regions, providing a theoretical basis to improving the yield and quality of crops.

  4. Evolution of light domain walls interacting with dark matter, part 1

    NASA Technical Reports Server (NTRS)

    Massarotti, Alessandro

    1990-01-01

    The evolution of domain walls generated in the early Universe is discussed considering an interaction between the walls and a major gaseous component of the dark matter. The walls are supposed able to reflect the particles elastically and with a reflection coefficient of unity. A toy Lagrangian that could give rise to such a phenomenon is discussed. In the simple model studied, highly non-relativistic and slowly varying speeds are obtained for the domain walls (approximately 10 (exp -2)(1+z)(exp -1)) and negligible distortions of the microwave background. In addition, these topological defects may provide a mechanism of forming the large scale structure of the Universe, by creating fluctuations in the dark matter (delta rho/rho approximately O(1)) on a scale comparable with the distance the walls move from the formation (in the model d less than 20 h(exp -1) Mpc). The characteristic scale of the wall separation can be easily chosen to be of the order of 100 Mpc instead of being restricted to the horizon scale, as usually obtained.

  5. Wall interference tests of a CAST 10-2/DOA 2 airfoil in an adaptive-wall test section

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.

    1987-01-01

    A wind-tunnel investigation of a CAST 10-2/DOA 2 airfoil model has been conducted in the adaptive-wall test section of the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT) and in the National Aeronautical Establishment High Reynolds Number Two-Dimensional Test Facility. The primary goal of the tests was to assess two different wall-interference correction techniques: adaptive test-section walls and classical analytical corrections. Tests were conducted over a Mach number range from 0.3 to 0.8 and over a chord Reynolds number range from 6 million to 70 million. The airfoil aerodynamic characteristics from the tests in the 0.3-m TCT have been corrected for wall interference by the movement of the adaptive walls. No additional corrections for any residual interference have been applied to the data, to allow comparison with the classically corrected data from the same model in the conventional National Aeronautical Establishment facility. The data are presented graphically in this report as integrated force-and-moment coefficients and chordwise pressure distributions.

  6. Electrical resisitivity of mechancially stablized earth wall backfill

    NASA Astrophysics Data System (ADS)

    Snapp, Michael; Tucker-Kulesza, Stacey; Koehn, Weston

    2017-06-01

    Mechanically stabilized earth (MSE) retaining walls utilized in transportation projects are typically backfilled with coarse aggregate. One of the current testing procedures to select backfill material for construction of MSE walls is the American Association of State Highway and Transportation Officials standard T 288: ;Standard Method of Test for Determining Minimum Laboratory Soil Resistivity.; T 288 is designed to test a soil sample's electrical resistivity which correlates to its corrosive potential. The test is run on soil material passing the No. 10 sieve and believed to be inappropriate for coarse aggregate. Therefore, researchers have proposed new methods to measure the electrical resistivity of coarse aggregate samples in the laboratory. There is a need to verify that the proposed methods yield results representative of the in situ conditions; however, no in situ measurement of the electrical resistivity of MSE wall backfill is established. Electrical resistivity tomography (ERT) provides a two-dimensional (2D) profile of the bulk resistivity of backfill material in situ. The objective of this study was to characterize bulk resistivity of in-place MSE wall backfill aggregate using ERT. Five MSE walls were tested via ERT to determine the bulk resistivity of the backfill. Three of the walls were reinforced with polymeric geogrid, one wall was reinforced with metallic strips, and one wall was a gravity retaining wall with no reinforcement. Variability of the measured resistivity distribution within the backfill may be a result of non-uniform particle sizes, thoroughness of compaction, and the presence of water. A quantitative post processing algorithm was developed to calculate mean bulk resistivity of in-situ backfill. Recommendations of the study were that the ERT data be used to verify proposed testing methods for coarse aggregate that are designed to yield data representative of in situ conditions. A preliminary analysis suggests that ERT may be utilized as construction quality assurance for thoroughness of compaction in MSE construction; however more data are needed at this time.

  7. Modelling cell wall growth using a fibre-reinforced hyperelastic-viscoplastic constitutive law

    NASA Astrophysics Data System (ADS)

    Huang, R.; Becker, A. A.; Jones, I. A.

    2012-04-01

    A fibre-reinforced hyperelastic-viscoplastic model using a finite strain Finite Element (FE) analysis is presented to study the expansive growth of cell walls. Based on the connections between biological concepts and plasticity theory, e.g. wall-loosening and plastic yield, wall-stiffening and plastic hardening, the modelling of cell wall growth is established within a framework of anisotropic viscoplasticity aiming to represent the corresponding biology-controlled behaviour of a cell wall. In order to model in vivo growth, special attention is paid to the differences between a living cell and an isolated wall. The proposed hyperelastic-viscoplastic theory provides a unique framework to clarify the interplay between cellulose microfibrils and cell wall matrix and how this interplay regulates sustainable growth in a particular direction while maintaining the mechanical strength of the cell walls by new material deposition. Moreover, the effect of temperature is taken into account. A numerical scheme is suggested and FE case studies are presented and compared with experimental data.

  8. RBE of quasi-monoenergetic 60 MeV neutron radiation for induction of dicentric chromosomes in human lymphocytes.

    PubMed

    Nolte, R; Mühlbradt, K-H; Meulders, J P; Stephan, G; Haney, M; Schmid, E

    2005-12-01

    The production of dicentric chromosomes in human lymphocytes by high-energy neutron radiation was studied using a quasi-monoenergetic 60 MeV neutron beam. The average yield coefficient [see text] of the linear dose-response relationship for dicentric chromosomes was measured to be (0.146+/-0.016) Gy-1. This confirms our earlier observations that above 400 keV, the yield of dicentric chromosomes decreases with increasing neutron energy. Using the linear-quadratic dose-response relationship for dicentric chromosomes established in blood of the same donor for 60Co gamma-rays as a reference radiation, an average maximum low-dose RBE (RBEM) of 14+/-4 for 60 MeV quasi-monoenergetic neutrons with a dose-weighted average energy [see text] of 41.0 MeV is obtained. A correction procedure was applied, to account for the low-energy continuum of the quasi-monoenergetic spectral neutron distribution, and the yield coefficient alpha for 60 MeV neutrons was determined from the measured average yield coefficient [see text]. For alpha, a value of (0.115+/-0.026) Gy-1 was obtained corresponding to an RBEM of 11+/-4. The present experiments extend earlier investigations with monoenergetic neutrons to higher energies.

  9. Correlation and path coefficient analysis of quantitative characters in spine gourd (Momordica dioica Roxb.).

    PubMed

    Aliya, F; Begum, H; Reddy, M T; Sivaraj, N; Pandravada, S R; Narshimulu, G

    2014-05-01

    Fifty genotypes of spine gourd (Momordica dioica Roxb.) were evaluated in a randomized block design with two replications at the Vegetable Research Station, Rajendranagar, Hyderabad, Andhra Pradesh, India during kharif, 2012. Correlation and path coefficient analysis were carried out to study the character association and contribution, respectively for twelve quantitative characters namely vine length (m), number of stems per plant, days to first female flower appearance, first female flowering node, days to first fruit harvest, days to last fruit harvest, fruiting period (days), fruit length (cm), fruit width (cm), fruit weight (g), number of fruits per plant and fruit yield per plant (kg) for identification of the potential selection indices. Correlation and path coefficient analyses revealed that fruiting period and number of fruits per plant not only had positively significant correlation with fruit yield but also had positively high direct effect on it and are regarded as the main determinants of fruit yield. Days to first fruit harvest had positively moderate direct effect on fruit yield and its association was negatively significant, days to last fruit harvest had negatively high direct effect on fruit yield and its association was significant positively, hence restricted simultaneous selection can be made for days to first fruit harvest and days to last fruit harvest. The improvement in fruit yield can be effective if selection is based on days to first fruit harvest, days to last fruit harvest, fruiting period and number of fruits per plant.

  10. Azimuthally anisotropic emission of low-momentum direct photons in Au + Au collisions at s N N = 200 GeV

    DOE PAGES

    Adare, A.; Afanasiev, S.; Aidala, C.; ...

    2016-12-06

    Inmore » this paper, the PHENIX experiment at the BNL Relativistic Heavy Ion Collider has measured second- and third-order Fourier coefficients of the azimuthal distributions of direct photons emitted at midrapidity in Au + Au collisions at s N N = 200 GeV for various collision centralities. Combining two different analysis techniques, results were obtained in the transverse momentum range of 0.4 < p T < 4.0 GeV/c. At low p T the second-order coefficients, v 2, are similar to the ones observed in hadrons. Third-order coefficients, v 3, are nonzero and almost independent of centrality. These new results on v 2 and v 3, combined with previously published results on yields, are compared to model calculations that provide yields and asymmetries in the same framework. Finally, those models are challenged to explain simultaneously the observed large yield and large azimuthal anisotropies.« less

  11. Quantification and significance of diffuse myocardial fibrosis and diastolic dysfunction in childhood hypertrophic cardiomyopathy.

    PubMed

    Hussain, Tarique; Dragulescu, Andreea; Benson, Lee; Yoo, Shi-Joon; Meng, Howard; Windram, Jonathan; Wong, Derek; Greiser, Andreas; Friedberg, Mark; Mertens, Luc; Seed, Michael; Redington, Andrew; Grosse-Wortmann, Lars

    2015-06-01

    The purpose of this study was to evaluate the presence of diffuse myocardial fibrosis in children and adolescents with hypertrophic cardiomyopathy (HCM) and to assess associations with echocardiographic and clinical parameters of disease. While a common end point in adults with HCM, it is unclear whether diffuse myocardial fibrosis occurs early in the disease. Cardiac magnetic resonance (CMR) estimation of myocardial post-contrast longitudinal relaxation time (T1) is an increasingly used method to estimate diffuse fibrosis. T1 measurements were taken using standard multi-breath-hold spoiled gradient echo phase-sensitive inversion-recovery CMR before and 15 min after the injection of gadolinium. The tissue-blood partition coefficient was calculated as a function of the ratio of T1 change of myocardium compared with blood. An echocardiogram and blood brain natriuretic peptide (BNP) levels were obtained on the day of the CMR. Twelve controls (mean age 12.8 years; 7 male) and 28 patients with HCM (mean age 12.8 years; 21 male) participated. The partition coefficient for both septal (0.27 ± 0.17 vs. 0.13 ± 0.09; p = 0.03) and lateral walls (0.22 ± 0.09 vs. 0.07 ± 0.10; p < 0.001) was increased in patients compared with controls. Eight patients had overt areas of late gadolinium enhancement (LGE). These patients did not show increased partition coefficient compared with those without LGE (0.27 ± 0.15 vs. 0.27 ± 0.19 and 0.22 ± 0.09 vs. 0.22 ± 0.09; p = 0.95 and 0.98, respectively). However, patients who were symptomatic (dyspnea, arrhythmia and/or chest pain) had higher lateral wall partition coefficient than asymptomatic HCM patients (0.27 ± 0.08 vs. 0.17 ± 0.08; p = 0.006). Similarly, patients with raised BNP (>100 pg/ml) had raised lateral wall coefficients (0.27 ± 0.07 vs. 0.20 ± 0.07; p = 0.03), as did those with traditional risk factors for sudden death (0.27 ± 0.06 vs. 0.18 ± 0.08; p = 0.007). Diffuse fibrosis, measured by the partition coefficient technique, is demonstrable in children and adolescents with HCM. Markers of fibrosis show an association with symptoms and raised serum BNP. Further study of the prognostic implication of this technique in young patients with HCM is warranted.

  12. Inner- and outer-wall sorting of double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott

    2017-12-01

    Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.

  13. Inner- and outer-wall sorting of double-walled carbon nanotubes.

    PubMed

    Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott

    2017-12-01

    Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.

  14. Analysis of pulsed injection for microgravity receiver tank chilldown

    NASA Astrophysics Data System (ADS)

    Honkonen, Scott C.; Pietrzyk, Joe R.; Schuster, John R.

    The dominant heat transfer mechanism during the hold phase of a tank chilldown cycle in a low-gravity environment is due to fluid motion persistence following the charge. As compared to the single-charge per vent cycle case, pulsed injection maintains fluid motion and the associated high wall heat transfer coefficients during the hold phase. As a result, the pulsed injection procedure appears to be an attractive method for reducing the time and liquid mass required to chill a tank. However, for the representative conditions considered, no significant benefit can be realized by using pulsed injection as compared to the single-charge case. A numerical model of the charge/hold/vent process was used to evaluate the pulsed injection procedure for tank chilldown in microgravity. Pulsed injection results in higher average wall heat transfer coefficients during the hold, as compared to the single-charge case. However, these high levels were not coincident with the maximum wall-to-fluid temperature differences, as in the single-charge case. For representative conditions investigated, the charge/hold/vent process is very efficient. A slightly shorter chilldown time was realized by increasing the number of pulses.

  15. Modeling Issues and Results for Hydrogen Isotopes in NIF Materials

    NASA Astrophysics Data System (ADS)

    Grossman, Arthur A.; Doerner, R. P.; Luckhardt, S. C.; Seraydarian, R.; Sze, D.; Burnham, A.

    1998-11-01

    The TMAP4 (G. Longhurst, et al. INEL 1992) model of hydrogen isotope transport in solid materials includes a particle diffusion calculation with Fick's Law modified for Soret Effect (Thermal Diffusion or Thermomigration), coupled to heat transport calculations which are needed because of the strong temperature dependence of diffusivity. These TMAP4 calculations applied to NIF show that high temperatures approaching the melting point and strong thermal gradients of 10^6 K/cm are reached in the first micron of wall material during the SXR pulse. These strong thermal gradients can drive hydrogen isotope migration up or down the thermal gradient depending on the sign of the heat of transport (Soret coefficient) which depends on whether the material dissolves hydrogen endothermically or exothermically. Two candidates for NIF wall material-boron carbide and stainless steel are compared. Boron carbide dissolves hydrogen exothermically so it may drive Soret migration down the thermal gradient deeper into the material, although the thermal gradient is not as large and hydrogen is not as mobile as in stainless steel. Stainless steel dissolves hydrogen endothermically, with a negative Soret coefficient which can drive hydrogen up the thermal gradient and out of the wall.

  16. Knudsen paradox in granular gases and the roles of thermal and athermal walls

    NASA Astrophysics Data System (ADS)

    Gupta, Ronak; Alam, Meheboob

    2017-11-01

    The well-known `Knudsen-paradox' (which refers to the decrease of the mass-flow rate of a gas with increasing Knudsen number Kn , reaching a minimum at Kn O(1) and increasing logarithmically with Kn as Kn -> ∞) is revisited using direct simulation Monte Carlo (DSMC) method. It is shown that the `Knudsen-paradox' survives in the acceleration-driven Poiseuille flow of a granular gas in contact with thermal-walls. This result is in contradiction with recent molecular dynamics simulations (Alam et al., J. Fluid Mech., vol. 782, 2015, pp. 99-126) that revealed the absence of the Knudsen-minimum in granular Poiseuille flow. The above conundrum is resolved by distinguishing between `thermal' and `athermal' walls, and it is shown that, for both molecular and granular gases, the momentum-transfer to athermal-walls is much lower than that to thermal-walls which is directly responsible for the ``anomalous'' flow-rate-variation with Kn . In the continuum limit of Kn -> 0 , the athermal walls are found to be closely related to `non-flux/adiabatic' walls. The underlying mechanistic arguments lead to Maxwell's slip-boundary condition and a possible characterization of athermal walls in terms of an effective specularity coefficient is discussed.

  17. Dimensionless number is central to stress relaxation and expansive growth of the cell wall.

    PubMed

    Ortega, Joseph K E

    2017-06-07

    Experiments demonstrate that both plastic and elastic deformation of the cell wall are necessary for wall stress relaxation and expansive growth of walled cells. A biophysical equation (Augmented Growth Equation) was previously shown to accurately model the experimentally observed wall stress relaxation and expansive growth rate. Here, dimensional analysis is used to obtain a dimensionless Augmented Growth Equation with dimensionless coefficients (groups of variables, or Π parameters). It is shown that a single Π parameter controls the wall stress relaxation rate. The Π parameter represents the ratio of plastic and elastic deformation rates, and provides an explicit relationship between expansive growth rate and the wall's mechanical properties. Values for Π are calculated for plant, algal, and fungal cells from previously reported experimental results. It is found that the Π values for each cell species are large and very different from each other. Expansive growth rates are calculated using the calculated Π values and are compared to those measured for plant and fungal cells during different growth conditions, after treatment with IAA, and in different developmental stages. The comparison shows good agreement and supports the claim that the Π parameter is central to expansive growth rate of walled cells.

  18. Konstantinov effect in helium II

    NASA Astrophysics Data System (ADS)

    Melnikovsky, L. A.

    2008-04-01

    The reflection of first and second sound waves by a rigid flat wall in helium II is considered. A nontrivial dependence of the reflection coefficients on the angle of incidence is obtained. Sound conversion is predicted at oblique incidence.

  19. A numerical analysis for non-linear radiation in MHD flow around a cylindrical surface with chemically reactive species

    NASA Astrophysics Data System (ADS)

    Khan, Junaid Ahmad; Mustafa, M.

    2018-03-01

    Boundary layer flow around a stretchable rough cylinder is modeled by taking into account boundary slip and transverse magnetic field effects. The main concern is to resolve heat/mass transfer problem considering non-linear radiative heat transfer and temperature/concentration jump aspects. Using conventional similarity approach, the equations of motion and heat transfer are converted into a boundary value problem whose solution is computed by shooting method for broad range of slip coefficients. The proposed numerical scheme appears to improve as the strengths of magnetic field and slip coefficients are enhanced. Axial velocity and temperature are considerably influenced by a parameter M which is inversely proportional to the radius of cylinder. A significant change in temperature profile is depicted for growing wall to ambient temperature ratio. Relevant physical quantities such as wall shear stress, local Nusselt number and local Sherwood number are elucidated in detail.

  20. Stochastic Resonance and Safe Basin of Single-Walled Carbon Nanotubes with Strongly Nonlinear Stiffness under Random Magnetic Field.

    PubMed

    Xu, Jia; Li, Chao; Li, Yiran; Lim, Chee Wah; Zhu, Zhiwen

    2018-05-04

    In this paper, a kind of single-walled carbon nanotube nonlinear model is developed and the strongly nonlinear dynamic characteristics of such carbon nanotubes subjected to random magnetic field are studied. The nonlocal effect of the microstructure is considered based on Eringen’s differential constitutive model. The natural frequency of the strongly nonlinear dynamic system is obtained by the energy function method, the drift coefficient and the diffusion coefficient are verified. The stationary probability density function of the system dynamic response is given and the fractal boundary of the safe basin is provided. Theoretical analysis and numerical simulation show that stochastic resonance occurs when varying the random magnetic field intensity. The boundary of safe basin has fractal characteristics and the area of safe basin decreases when the intensity of the magnetic field permeability increases.

  1. Morphohistology of the Digestive Tract of the Damsel Fish Stegastes fuscus (Osteichthyes: Pomacentridae)

    PubMed Central

    Canan, Bhaskara; do Nascimento, Wallace Silva; da Silva, Naisandra Bezerra; Chellappa, Sathyabama

    2012-01-01

    This study investigated the morphohistology of the digestive tract and the mean intestinal coefficient of the damsel fish Stegastes fuscus captured from the tidal pools of Northeastern Brazil. The wall of the digestive tract of S. fuscus is composed of the tunica mucosa, tunica muscularis, and tunica serosa. The esophagus is short with sphincter and thick distensible wall with longitudinally folded mucosa. Mucous glands are predominant, and the muscular layer of the esophagus presented striated fibers all along its extension. The transition region close to the stomach shows plain and striated muscular fibers. Between the stomach and intestine, there are three pyloric caeca. The intestine is long and thin with four folds around the stomach. The anterior intestine presents folds similar to those of pyloric caeca. The estimated mean intestinal coefficient and characteristics of the digestive system of S. fuscus present morphological adequacy for both herbivorous and omnivorous feeding habits. PMID:22547996

  2. Airflow in Gravity Sewers - Determination of Wastewater Drag Coefficient.

    PubMed

    Bentzen, Thomas Ruby; Østertoft, Kristian Kilsgaard; Vollertsen, Jes; Fuglsang, Emil Dietz; Nielsen, Asbjørn Haaning

    2016-03-01

    Several experiments have been conducted in order to improve the understanding of the wastewater drag and the wall frictional force acting on the headspace air in gravity sewers. The aim of the study is to improve the data basis for a numerical model of natural sewer ventilation. The results of the study shows that by integrating the top/side wall shear stresses the log-law models for the air velocity distribution along the unwetted perimeter resulted in a good agreement with the friction forces calculated by use of the Colebrook-White formula for hydraulic smooth pipes. Secondly, the water surface drags were found by log-law models of the velocity distribution in turbulent flows to fit velocity profiles measured from the water surface and by integrating the water surface drags along the wetted perimeter, mean water surface drags were found and a measure of the water surface drag coefficient was found.

  3. Improved Conjugate Gradient Bundle Adjustment of Dunhuang Wall Painting Images

    NASA Astrophysics Data System (ADS)

    Hu, K.; Huang, X.; You, H.

    2017-09-01

    Bundle adjustment with additional parameters is identified as a critical step for precise orthoimage generation and 3D reconstruction of Dunhuang wall paintings. Due to the introduction of self-calibration parameters and quasi-planar constraints, the structure of coefficient matrix of the reduced normal equation is banded-bordered, making the solving process of bundle adjustment complex. In this paper, Conjugate Gradient Bundle Adjustment (CGBA) method is deduced by calculus of variations. A preconditioning method based on improved incomplete Cholesky factorization is adopt to reduce the condition number of coefficient matrix, as well as to accelerate the iteration rate of CGBA. Both theoretical analysis and experimental results comparison with conventional method indicate that, the proposed method can effectively conquer the ill-conditioned problem of normal equation and improve the calculation efficiency of bundle adjustment with additional parameters considerably, while maintaining the actual accuracy.

  4. Dynamics of Peregrine combs and Peregrine walls in an inhomogeneous Hirota and Maxwell-Bloch system

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Wang, Zi-Qi; Sun, Wen-Rong; Shi, Yu-Ying; Li, Min; Xu, Min

    2017-06-01

    Under investigation in this paper is an inhomogeneous Hirota-Maxwell-Bloch (IHMB) system which can describe the propagation of optical solitons in an erbium-doped optical fiber. The breather multiple births (BMBs) are derived with periodically varying group velocity dispersion (GVD) coefficients. Under large periodic modulations in the GVD coefficient of IHMB system, the Peregrine comb (PC) solution is produced, which can be viewed as the limiting case of the BMBs. When the amplitude of the modulation satisfies a special condition, the Peregrine wall (PW) that can be regarded as an intermediate state between rogue wave and PC is obtained. The effects of the third-order dispersion on the spatiotemporal characteristics of PCs and PWs are studied. Our results may be useful for the experimental control and manipulation of the formation of generalized Peregrine rogue waves in inhomogeneous erbium-doped optical fiber.

  5. LES of Supersonic Turbulent Channel Flow at Mach Numbers 1.5 and 3

    NASA Astrophysics Data System (ADS)

    Raghunath, Sriram; Brereton, Giles

    2009-11-01

    LES of compressible, turbulent, body-force driven, isothermal-wall channel flows at Reτ of 190 and 395 at moderate supersonic speeds (Mach 1.5 and 3) are presented. Simulations are fully resolved in the wall-normal direction without the need for wall-layer models. SGS models for incompressible flows, with appropriate extensions for compressibility, are tested a priori/ with DNS results and used in LES. Convergence of the simulations is found to be sensitive to the initial conditions and to the choice of model (wall-normal damping) in the laminar sublayer. The Nicoud--Ducros wall adapting SGS model, coupled with a standard SGS heat flux model, is found to yield results in good agreement with DNS.

  6. A study of the flow boiling heat transfer in a minichannel for a heated wall with surface texture produced by vibration-assisted laser machining

    NASA Astrophysics Data System (ADS)

    Piasecka, Magdalena; Strąk, Kinga; Maciejewska, Beata; Grabas, Bogusław

    2016-09-01

    The paper presents results concerning flow boiling heat transfer in a vertical minichannel with a depth of 1.7 mm and a width of 16 mm. The element responsible for heating FC-72, which flowed laminarly in the minichannel, was a plate with an enhanced surface. Two types of surface textures were considered. Both were produced by vibration-assisted laser machining. Infrared thermography was used to record changes in the temperature on the outer smooth side of the plate. Two-phase flow patterns were observed through a glass pane. The main aim of the study was to analyze how the two types of surface textures affect the heat transfer coefficient. A two-dimensional heat transfer approach was proposed to determine the local values of the heat transfer coefficient. The inverse problem for the heated wall was solved using a semi-analytical method based on the Trefftz functions. The results are presented as relationships between the heat transfer coefficient and the distance along the minichannel length and as boiling curves. The experimental data obtained for the two types of enhanced heated surfaces was compared with the results recorded for the smooth heated surface. The highest local values of the heat transfer coefficient were reported in the saturated boiling region for the plate with the type 1 texture produced by vibration-assisted laser machining.

  7. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D., Sr.; Smith, Alvin

    1990-01-01

    The use of flow boiling for thermal energy transport is intended to provide an alternative for accommodating higher heat fluxes in commercial space systems. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls, spiral fins, or both spiral fins and a twisted tape; (2) examine the effects of channel diameter and subcooling; and (3) develop an improved reduction analysis and/or suggest possible heat transfer correlation of the present data. Freon-11 is the working fluid. Two-dimensional (circumferential and axial) wall temperature distributions were measured for coolant channels with the above noted internal geometries. The flow regimes which are being studied are: (1) single phase; (2) subcooled flow boiling; and (3) stratified flow boiling. The inside diameter of all test sections is near 1.0 cm. Cicumferentially averaged heat transfer coefficients at several axial locations were obtained for selected coolant channels for a mass velocity of 210 kg/sq m s, an exit pressure of 0.19 MPa (absolute), and an inlet subcooling of 20.8 C. Overall (averaged over the entire channel) heat transfer coefficients were compared for the above channel geometries. This comparison showed that the channel with large pitch spiral fins had higher heat transfer coefficients at all power levels.

  8. Slotted-wall research with disk and parachute models in a low-speed wind tunnel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macha, J.M.; Buffington, R.J.; Henfling, J.L.

    1990-01-01

    An experimental investigation of slotted-wall blockage interference has been conducted using disk and parachute models in a low speed wind tunnel. Test section open area ratio, model geometric blockage ratio, and model location along the length of the test section were systematically varied. Resulting drag coefficients were compared to each other and to interference-free measurements obtained in a much larger wind tunnel where the geometric blockage ratio was less than 0.0025. 9 refs., 10 figs.

  9. Performance and Thrust-to-Weight Optimization of the Dual-Expander Aerospike Nozzle Upper Stage Rocket Engine

    DTIC Science & Technology

    2012-06-01

    calculates a constant convection heat transfer coefficient on the hot and cold side of the cooling jacket wall. The calculated maximum wall temperature for...regeneratively cools the combustion chamber and nozzle. The heat transferred to the fuel from cooling provides enough power to the turbine to power both... heat transfer at the throat compared to a bell nozzle. This increase in heat transfer surface area means more power to the turbine, increased chamber

  10. Iodine Beam Dump Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Bradley, D. E.

    2017-01-01

    During the testing of electric thrusters, high-energy ions impacting the walls of a vacuum chamber can cause corrosion and/or sputtering of the wall materials, which can damage the chamber walls. The sputtering can also introduce the constituent materials of the chamber walls into an experiment, with those materials potentially migrating back to the test article and coating it with contaminants over time. The typical method employed in this situation is to install a beam dump fabricated from materials that have a lower sputter yield, thus reducing the amount of foreign material that could migrate towards the test article or deposit on anything else present in the vacuum facility.

  11. Behavior of turbulent boundary layers on curved convex walls

    NASA Technical Reports Server (NTRS)

    Schmidbauer, Hans

    1936-01-01

    The system of linear differential equations which indicated the approach of separation and the so-called "boundary-layer thickness" by Gruschwitz is extended in this report to include the case where the friction layer is subject to centrifugal forces. Evaluation of the data yields a strong functional dependence of the momentum change and wall drag on the boundary-layer thickness radius of curvature ratio for the wall. It is further shown that the transition from laminar to turbulent flow occurs at somewhat higher Reynolds Numbers at the convex wall than at the flat plate, due to the stabilizing effect of the centrifugal forces.

  12. Abdominal wall phlebitis due to Prevotella bivia following renal transplantation in a patient with an occluded inferior vena cava.

    PubMed

    Janssen, S; van Donselaar-van der Pant, K A M I; van der Weerd, N C; Develter, W; Bemelman, F J; Grobusch, M P; Idu, M M; Ten Berge, I J M

    2013-02-01

    Pre-existing occlusion of the inferior vena cava may complicate renal transplantation. Suppurative abdominal wall phlebitis following renal transplantation was diagnosed in a patient with pre-existing thrombosis of the inferior vena cava of unknown cause. The phlebitis developed in the subcutaneous collateral veins of the abdominal wall contra-laterally to the renal transplant. Cultures from abdominal wall micro-abscesses yielded Prevotella bivia as the causative agent. This complication has not been described before in the context of renal transplantation. The pathogenesis and management of this serious complication are discussed in this paper.

  13. Wall relaxation in growing stems: comparison of four species and assessment of measurement techniques

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1987-01-01

    This study was carried out to develop improved methods for measuring in-vivo stress relaxation of growing tissues and to compare relaxation in the stems of four different species. When water uptake by growing tissue is prevented, in-vivo stress relaxation occurs because continued wall loosening reduces wall stress and cell turgor pressure. With this procedure one may measure the yield threshold for growth (Y), the turgor pressure in excess of the yield threshold (P-Y), and the physiological wall extensibility (phi). Three relaxation techniques proved useful: "turgor-relaxation", "balance-pressure" and "pressure-block". In the turgor-relaxation method, water is withheld from growing tissue and the reduction in turgor is measured directly with the pressure probe. This technique gives absolute values for P and Y, but requires tissue excision. In the balance-pressure technique, the excised growing region is sealed in a pressure chamber, and the subsequent reduction in water potential is measured as the applied pressure needed to return xylem sap to the cut surface. This method is simple, but only measures (P-Y), not the individual values of P and Y. In the pressure-block technique, the growing tissue is sealed into a pressure chamber, growth is monitored continuously, and just sufficient pressure is applied to the chamber to block growth. The method gives high-resolution kinetics of relaxation and does not require tissue excision, but only measures (P-Y). The three methods gave similar results when applied to the growing stems of pea (Pisum sativum L.), cucumber (Cucumis sativus L.), soybean (Glycine max (L.) Merr.) and zucchini (Curcubita pepo L.) seedlings. Values for (P-Y) averaged between 1.4 and 2.7 bar, depending on species. Yield thresholds averaged between 1.3 and 3.0 bar. Compared with the other methods, relaxation by pressure-block was faster and exhibited dynamic changes in wall-yielding properties. The two pressure-chamber methods were also used to measure the internal water-potential gradient (between the xylem and the epidermis) which drives water uptake for growth. For the four species it was small, between 0.3 and 0.6 bar, and so did not limit growth substantially.

  14. Detection of Cell Wall Chemical Variation in Zea Mays Mutants Using Near-Infrared Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buyck, N.; Thomas, S.

    Corn stover is regarded as the prime candidate feedstock material for commercial biomass conversion in the United States. Variations in chemical composition of Zea mays cell walls can affect biomass conversion process yields and economics. Mutant lines were constructed by activating a Mu transposon system. The cell wall chemical composition of 48 mutant families was characterized using near-infrared (NIR) spectroscopy. NIR data were analyzed using a multivariate statistical analysis technique called Principal Component Analysis (PCA). PCA of the NIR data from 349 maize leaf samples reveals 57 individuals as outliers on one or more of six Principal Components (PCs) atmore » the 95% confidence interval. Of these, 19 individuals from 16 families are outliers on either PC3 (9% of the variation) or PC6 (1% of the variation), the two PCs that contain information about cell wall polymers. Those individuals for which altered cell wall chemistry is confirmed with wet chemical analysis will then be subjected to fermentation analysis to determine whether or not biomass conversion process kinetics, yields and/or economics are significantly affected. Those mutants that provide indications for a decrease in process cost will be pursued further to identify the gene(s) responsible for the observed changes in cell wall composition and associated changes in process economics. These genes will eventually be incorporated into maize breeding programs directed at the development of a truly dual use crop.« less

  15. Accurate potentiometric determination of lipid membrane-water partition coefficients and apparent dissociation constants of ionizable drugs: electrostatic corrections.

    PubMed

    Elsayed, Mustafa M A; Vierl, Ulrich; Cevc, Gregor

    2009-06-01

    Potentiometric lipid membrane-water partition coefficient studies neglect electrostatic interactions to date; this leads to incorrect results. We herein show how to account properly for such interactions in potentiometric data analysis. We conducted potentiometric titration experiments to determine lipid membrane-water partition coefficients of four illustrative drugs, bupivacaine, diclofenac, ketoprofen and terbinafine. We then analyzed the results conventionally and with an improved analytical approach that considers Coulombic electrostatic interactions. The new analytical approach delivers robust partition coefficient values. In contrast, the conventional data analysis yields apparent partition coefficients of the ionized drug forms that depend on experimental conditions (mainly the lipid-drug ratio and the bulk ionic strength). This is due to changing electrostatic effects originating either from bound drug and/or lipid charges. A membrane comprising 10 mol-% mono-charged molecules in a 150 mM (monovalent) electrolyte solution yields results that differ by a factor of 4 from uncharged membranes results. Allowance for the Coulombic electrostatic interactions is a prerequisite for accurate and reliable determination of lipid membrane-water partition coefficients of ionizable drugs from potentiometric titration data. The same conclusion applies to all analytical methods involving drug binding to a surface.

  16. Estimation of diffusion coefficients from voltammetric signals by support vector and gaussian process regression

    PubMed Central

    2014-01-01

    Background Support vector regression (SVR) and Gaussian process regression (GPR) were used for the analysis of electroanalytical experimental data to estimate diffusion coefficients. Results For simulated cyclic voltammograms based on the EC, Eqr, and EqrC mechanisms these regression algorithms in combination with nonlinear kernel/covariance functions yielded diffusion coefficients with higher accuracy as compared to the standard approach of calculating diffusion coefficients relying on the Nicholson-Shain equation. The level of accuracy achieved by SVR and GPR is virtually independent of the rate constants governing the respective reaction steps. Further, the reduction of high-dimensional voltammetric signals by manual selection of typical voltammetric peak features decreased the performance of both regression algorithms compared to a reduction by downsampling or principal component analysis. After training on simulated data sets, diffusion coefficients were estimated by the regression algorithms for experimental data comprising voltammetric signals for three organometallic complexes. Conclusions Estimated diffusion coefficients closely matched the values determined by the parameter fitting method, but reduced the required computational time considerably for one of the reaction mechanisms. The automated processing of voltammograms according to the regression algorithms yields better results than the conventional analysis of peak-related data. PMID:24987463

  17. Pulse wave imaging in normal, hypertensive and aneurysmal human aortas in vivo: a feasibility study

    NASA Astrophysics Data System (ADS)

    Li, Ronny X.; Luo, Jianwen; Balaram, Sandhya K.; Chaudhry, Farooq A.; Shahmirzadi, Danial; Konofagou, Elisa E.

    2013-07-01

    Arterial stiffness is a well-established biomarker for cardiovascular risk, especially in the case of hypertension. The progressive stages of an abdominal aortic aneurysm (AAA) have also been associated with varying arterial stiffness. Pulse wave imaging (PWI) is a noninvasive, ultrasound imaging-based technique that uses the pulse wave-induced arterial wall motion to map the propagation of the pulse wave and measure the regional pulse wave velocity (PWV) as an index of arterial stiffness. In this study, the clinical feasibility of PWI was evaluated in normal, hypertensive, and aneurysmal human aortas. Radiofrequency-based speckle tracking was used to estimate the pulse wave-induced displacements in the abdominal aortic walls of normal (N = 15, mean age 32.5 ± 10.2 years), hypertensive (N = 13, mean age 60.8 ± 15.8 years), and aneurysmal (N = 5, mean age 71.6 ± 11.8 years) human subjects. Linear regression of the spatio-temporal variation of the displacement waveform in the anterior aortic wall over a single cardiac cycle yielded the slope as the PWV and the coefficient of determination r2 as an approximate measure of the pulse wave propagation uniformity. The aortic PWV measurements in all normal, hypertensive, and AAA subjects were 6.03 ± 1.68, 6.69 ± 2.80, and 10.54 ± 6.52 m s-1, respectively. There was no significant difference (p = 0.15) between the PWVs of the normal and hypertensive subjects while the PWVs of the AAA subjects were significantly higher (p < 0.001) compared to those of the other two groups. Also, the average r2 in the AAA subjects was significantly lower (p < 0.001) than that in the normal and hypertensive subjects. These preliminary results suggest that the regional PWV and the pulse wave propagation uniformity (r2) obtained using PWI, in addition to the PWI images and spatio-temporal maps that provide qualitative visualization of the pulse wave, may potentially provide valuable information for the clinical characterization of aneurysms and other vascular pathologies that regionally alter the arterial wall mechanics.

  18. Turbulence Model Sensitivity and Scour Gap Effect of Unsteady Flow around Pipe: A CFD Study

    PubMed Central

    Ali, Abbod; Sharma, R. K.; Ganesan, P.

    2014-01-01

    A numerical investigation of incompressible and transient flow around circular pipe has been carried out at different five gap phases. Flow equations such as Navier-Stokes and continuity equations have been solved using finite volume method. Unsteady horizontal velocity and kinetic energy square root profiles are plotted using different turbulence models and their sensitivity is checked against published experimental results. Flow parameters such as horizontal velocity under pipe, pressure coefficient, wall shear stress, drag coefficient, and lift coefficient are studied and presented graphically to investigate the flow behavior around an immovable pipe and scoured bed. PMID:25136666

  19. Displacement coefficients along the inner boundaries of radially cracked ring segments subject to forces and couples

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1978-01-01

    Displacement results of plane boundary collocation analysis are given for various locations on the inner boundaries of radially cracked ring segments (C-shaped specimens) subject to two complementary types of loading. Results are presented for ratios of outer to inner radius in the range of 1.1 to 2.5 and ratios a/W in the range 0.1 to 0.8, where a is the crack length for a specimen of wall thickness W. By combination of these results the resultant displacement coefficient or the corresponding influence coefficient can be obtained for any practical load line location of a pin-loaded specimen.

  20. Unifying diffusion and seepage for nonlinear gas transport in multiscale porous media

    NASA Astrophysics Data System (ADS)

    Song, Hongqing; Wang, Yuhe; Wang, Jiulong; Li, Zhengyi

    2016-09-01

    We unify the diffusion and seepage process for nonlinear gas transport in multiscale porous media via a proposed new general transport equation. A coherent theoretical derivation indicates the wall-molecule and molecule-molecule collisions drive the Knudsen and collective diffusive fluxes, and constitute the system pressure across the porous media. A new terminology, nominal diffusion coefficient can summarize Knudsen and collective diffusion coefficients. Physical and numerical experiments show the support of the new formulation and provide approaches to obtain the diffusion coefficient and permeability simultaneously. This work has important implication for natural gas extraction and greenhouse gases sequestration in geological formations.

  1. Beyond the standard two-film theory: Computational fluid dynamics simulations for carbon dioxide capture in a wetted wall column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; Xu, Zhijie; Lai, Canhai

    The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO 2) capture to predict the CO 2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive andmore » reactive mass transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.« less

  2. Beyond the standard two-film theory: Computational fluid dynamics simulations for carbon dioxide capture in a wetted wall column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; Xu, Zhijie; Lai, Canhai

    The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO2) capture to predict the CO2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive and reactive massmore » transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.« less

  3. Beyond the standard two-film theory: Computational fluid dynamics simulations for carbon dioxide capture in a wetted wall column

    DOE PAGES

    Wang, Chao; Xu, Zhijie; Lai, Canhai; ...

    2018-03-27

    The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO 2) capture to predict the CO 2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive andmore » reactive mass transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.« less

  4. Angular circulation speed of tablets in a vibratory tablet coating pan.

    PubMed

    Kumar, Rahul; Wassgren, Carl

    2013-03-01

    In this work, a single tablet model and a discrete element method (DEM) computer simulation are developed to obtain the angular circulation speed of tablets in a vibratory tablet coating pan for range of vibration frequencies and amplitudes. The models identify three important dimensionless parameters that influence the speed of the tablets: the dimensionless amplitude ratio (a/R), the Froude number (aω2/g), and the tablet-wall friction coefficient, where a is the peak vibration amplitude at the drum center, ω is the vibration angular frequency, R is the drum radius, and g is the acceleration due to gravity. The models predict that the angular circulation speed of tablets increases with an increase in each of these parameters. The rate of increase in the angular circulation speed is observed to decrease for larger values of a/R. The angular circulation speed reaches an asymptote beyond a tablet-wall friction coefficient value of about 0.4. Furthermore, it is found that the Froude number should be greater than one for the tablets to start circulating. The angular circulation speed increases as Froude number increases but then does not change significantly at larger values of the Froude number. Period doubling, where the motion of the bed is repeated every two cycles, occurs at a Froude number larger than five. The single tablet model, although much simpler than the DEM model, is able to predict the maximum circulation speed (the limiting case for a large value of tablet-wall friction coefficient) as well as the transition to period doubling.

  5. Splay fault slip in a subduction margin, a new model of evolution

    NASA Astrophysics Data System (ADS)

    Conin, Marianne; Henry, Pierre; Godard, Vincent; Bourlange, Sylvain

    2012-08-01

    In subduction zones, major thrusts called splay faults are thought to slip coseismically during large earthquakes affecting the main plate interface. We propose an analytical condition for the activation of a splay fault based on force balance calculations and suggest thrusting along the splay fault is generally conditioned by the growth of the accretionary wedge, or by the erosion of the hanging wall. In theory, normal slip on the splay fault may occur when the décollement has a very low friction coefficient seaward. Such a low friction also implies an unstable extensional state within the outer wedge. Finite element elasto-plastic calculations with a geometry based on the Nankai Kumano section were performed and confirm that this analytical condition is a valid approximation. Furthermore, localized extension at a shallow level in the splay hanging wall is observed in models for a wide range of friction coefficients (from ∼0 to the value of internal friction coefficient of the rock, here equals to 0.4). The timing of slip established for the splay fault branch drilled on Nankai Kumano transect suggests a phase of concurrent splay and accretionary wedge growth ≈2 Ma to ≈1.5 Ma, followed by a locking of the splay ≈1.3 Ma. Active extension is observed in the hanging wall. This evolution can be explained by the activation of a deeper and weaker décollement, followed by an interruption of accretion. Activation of a splay as a normal fault, as hypothesized in the case of the Tohoku 2011 earthquake, can be achieved only if the friction coefficient on the décollement drops to near zero. We conclude that the tectonic stress state largely determines long-term variations of tightly related splay fault and outer décollement activity and thus influences where and how coseismic rupture ends, but that occurrence of normal slip on a splay fault requires coseismic friction reduction.

  6. Mechanosensation Dynamically Coordinates Polar Growth and Cell Wall Assembly to Promote Cell Survival.

    PubMed

    Davì, Valeria; Tanimoto, Hirokazu; Ershov, Dmitry; Haupt, Armin; De Belly, Henry; Le Borgne, Rémi; Couturier, Etienne; Boudaoud, Arezki; Minc, Nicolas

    2018-04-23

    How growing cells cope with size expansion while ensuring mechanical integrity is not known. In walled cells, such as those of microbes and plants, growth and viability are both supported by a thin and rigid encasing cell wall (CW). We deciphered the dynamic mechanisms controlling wall surface assembly during cell growth, using a sub-resolution microscopy approach to monitor CW thickness in live rod-shaped fission yeast cells. We found that polar cell growth yielded wall thinning and that thickness negatively influenced growth. Thickness at growing tips exhibited a fluctuating behavior with thickening phases followed by thinning phases, indicative of a delayed feedback promoting thickness homeostasis. This feedback was mediated by mechanosensing through the CW integrity pathway, which probes strain in the wall to adjust synthase localization and activity to surface growth. Mutants defective in thickness homeostasis lysed by rupturing the wall, demonstrating its pivotal role for walled cell survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Lameness detection based on multivariate continuous sensing of milk yield, rumination, and neck activity.

    PubMed

    Van Hertem, T; Maltz, E; Antler, A; Romanini, C E B; Viazzi, S; Bahr, C; Schlageter-Tello, A; Lokhorst, C; Berckmans, D; Halachmi, I

    2013-07-01

    The objective of this study was to develop and validate a mathematical model to detect clinical lameness based on existing sensor data that relate to the behavior and performance of cows in a commercial dairy farm. Identification of lame (44) and not lame (74) cows in the database was done based on the farm's daily herd health reports. All cows were equipped with a behavior sensor that measured neck activity and ruminating time. The cow's performance was measured with a milk yield meter in the milking parlor. In total, 38 model input variables were constructed from the sensor data comprising absolute values, relative values, daily standard deviations, slope coefficients, daytime and nighttime periods, variables related to individual temperament, and milk session-related variables. A lame group, cows recognized and treated for lameness, to not lame group comparison of daily data was done. Correlations between the dichotomous output variable (lame or not lame) and the model input variables were made. The highest correlation coefficient was obtained for the milk yield variable (rMY=0.45). In addition, a logistic regression model was developed based on the 7 highest correlated model input variables (the daily milk yield 4d before diagnosis; the slope coefficient of the daily milk yield 4d before diagnosis; the nighttime to daytime neck activity ratio 6d before diagnosis; the milk yield week difference ratio 4d before diagnosis; the milk yield week difference 4d before diagnosis; the neck activity level during the daytime 7d before diagnosis; the ruminating time during nighttime 6d before diagnosis). After a 10-fold cross-validation, the model obtained a sensitivity of 0.89 and a specificity of 0.85, with a correct classification rate of 0.86 when based on the averaged 10-fold model coefficients. This study demonstrates that existing farm data initially used for other purposes, such as heat detection, can be exploited for the automated detection of clinically lame animals on a daily basis as well. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. A study of sound absorption by street canyon boundaries and asphalt rubber concrete pavement

    NASA Astrophysics Data System (ADS)

    Drysdale, Graeme Robert

    A sound field model, based on a classical diffusion equation, is extended to account for sound absorption in a diffusion parameter used to model sound energy in a narrow street canyon. The model accounts for a single sound absorption coefficient, separate accommodation coefficients and a combination of separate absorption and accommodation coefficients from parallel canyon walls. The new expressions are compared to the original formula through numerical simulations to reveal the effect of absorption on sound diffusion. The newly established analytical formulae demonstrate satisfactory agreement with their predecessor under perfect reflection. As well, the influence of the extended diffusion parameter on normalized sound pressure levels in a narrow street canyon is in agreement with experimental data. The diffusion parameters are used to model sound energy density in a street canyon as a function of the sound absorption coefficient of the street canyon walls. The acoustic and material properties of conventional and asphalt rubber concrete (ARC) pavement are also studied to assess how the crumb rubber content influences sound absorption in street canyons. The porosity and absolute permeability of compacted specimens of asphalt rubber concrete are measured and compared to their normal and random incidence sound absorption coefficients as a function of crumb rubber content in the modified binder. Nonlinear trends are found between the sound absorption coefficients, porosity and absolute permeability of the compacted specimens and the percentage of crumb rubber in the modified binders. The cross-sectional areas of the air voids on the surfaces of the compacted specimens are measured using digital image processing techniques and a linear relationship is obtained between the average void area and crumb rubber content. The measured material properties are used to construct an empirical formula relating the average porosity, normal incidence noise reduction coefficients and percentage of crumb rubber in the modified binder of the compacted specimens.

  9. Fibers comprised of epitaxially grown single-wall carbon nanotubes, and a method for added catalyst and continuous growth at the tip

    DOEpatents

    Kittrell, W. Carter; Wang, Yuhuang; Kim, Myung Jong; Hauge, Robert H.; Smalley, Richard E.; Marek leg, Irene Morin

    2010-06-01

    The present invention is directed to fibers of epitaxially grown single-wall carbon nanotubes (SWNTs) and methods of making same. Such methods generally comprise the steps of: (a) providing a spun SWNT fiber; (b) cutting the fiber substantially perpendicular to the fiber axis to yield a cut fiber; (c) etching the cut fiber at its end with a plasma to yield an etched cut fiber; (d) depositing metal catalyst on the etched cut fiber end to form a continuous SWNT fiber precursor; and (e) introducing feedstock gases under SWNT growth conditions to grow the continuous SWNT fiber precursor into a continuous SWNT fiber.

  10. Turbulent boundary layers over nonstationary plane boundaries

    NASA Technical Reports Server (NTRS)

    Roper, A. T.; Gentry, G. L., Jr.

    1978-01-01

    Methods of predicting integral parameters and skin friction coefficients of turbulent boundary layers developing over moving ground planes were evaluated. The three methods evaluated were: relative integral parameter method; relative power law method; and modified law of the wall method.

  11. Using FTIR spectroscopy to model alkaline pretreatment and enzymatic saccharification of six lignocellulosic biomasses.

    PubMed

    Sills, Deborah L; Gossett, James M

    2012-04-01

    Fourier transform infrared, attenuated total reflectance (FTIR-ATR) spectroscopy, combined with partial least squares (PLS) regression, accurately predicted solubilization of plant cell wall constituents and NaOH consumption through pretreatment, and overall sugar productions from combined pretreatment and enzymatic hydrolysis. PLS regression models were constructed by correlating FTIR spectra of six raw biomasses (two switchgrass cultivars, big bluestem grass, a low-impact, high-diversity mixture of prairie biomasses, mixed hardwood, and corn stover), plus alkali loading in pretreatment, to nine dependent variables: glucose, xylose, lignin, and total solids solubilized in pretreatment; NaOH consumed in pretreatment; and overall glucose and xylose conversions and yields from combined pretreatment and enzymatic hydrolysis. PLS models predicted the dependent variables with the following values of coefficient of determination for cross-validation (Q²): 0.86 for glucose, 0.90 for xylose, 0.79 for lignin, and 0.85 for total solids solubilized in pretreatment; 0.83 for alkali consumption; 0.93 for glucose conversion, 0.94 for xylose conversion, and 0.88 for glucose and xylose yields. The sugar yield models are noteworthy for their ability to predict overall saccharification through combined pretreatment and enzymatic hydrolysis per mass dry untreated solids without a priori knowledge of the composition of solids. All wavenumbers with significant variable-important-for-projection (VIP) scores have been attributed to chemical features of lignocellulose, demonstrating the models were based on real chemical information. These models suggest that PLS regression can be applied to FTIR-ATR spectra of raw biomasses to rapidly predict effects of pretreatment on solids and on subsequent enzymatic hydrolysis. Copyright © 2011 Wiley Periodicals, Inc.

  12. Climate Change Impact on Rainfall: How will Threaten Wheat Yield?

    NASA Astrophysics Data System (ADS)

    Tafoughalti, K.; El Faleh, E. M.; Moujahid, Y.; Ouargaga, F.

    2018-05-01

    Climate change has a significant impact on the environmental condition of the agricultural region. Meknes has an agrarian economy and wheat production is of paramount importance. As most arable area are under rainfed system, Meknes is one of the sensitive regions to rainfall variability and consequently to climate change. Therefore, the use of changes in rainfall is vital for detecting the influence of climate system on agricultural productivity. This article identifies rainfall temporal variability and its impact on wheat yields. We used monthly rainfall records for three decades and wheat yields records of fifteen years. Rainfall variability is assessed utilizing the precipitation concentration index and the variation coefficient. The association between wheat yields and cumulative rainfall amounts of different scales was calculated based on a regression model. The analysis shown moderate seasonal and irregular annual rainfall distribution. Yields fluctuated from 210 to 4500 Kg/ha with 52% of coefficient of variation. The correlation results shows that wheat yields are strongly correlated with rainfall of the period January to March. This investigation concluded that climate change is altering wheat yield and it is crucial to adept the necessary adaptation to challenge the risk.

  13. 49 CFR 178.65 - Specification 39 non-reusable (non-refillable) cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... Maximum water capacity may not exceed: (i) 55 pounds (1,526 cubic inches) for a service pressure of 500 p... minimum wall thickness must be such that the wall stress at test pressure does not exceed the yield...: (1) Calculation of the stress for cylinders must be made by the following formula: S = [P(1.3D2 + 0...

  14. Short-term high temperature growth conditions during vegetative-to-reproductive phase transition irreversibly compromise cell wall invertase-mediated sucrose catalysis and microspore meiosis in grain sorghum

    USDA-ARS?s Scientific Manuscript database

    Grain sorghum (Sorghum bicolor L. Moench) crop yield is significantly compromised by high temperature stress-induced male sterility, and is attributed to reduced cell wall invertase (CWI)-mediated sucrose hydrolysis in microspores and anthers leading to altered carbohydrate metabolism and starch def...

  15. Unified Bohm criterion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kos, L.; Tskhakaya, D. D.; Jelić, N.

    2015-09-15

    Recent decades have seen research into the conditions necessary for the formation of the monotonic potential shape in the sheath, appearing at the plasma boundaries like walls, in fluid, and kinetic approximations separately. Although either of these approaches yields a formulation commonly known as the much-acclaimed Bohm criterion (BC), the respective results involve essentially different physical quantities that describe the ion gas behavior. In the fluid approach, such a quantity is clearly identified as the ion directional velocity. In the kinetic approach, the ion behavior is formulated via a quantity (the squared inverse velocity averaged by the ion distribution function)more » without any clear physical significance, which is, moreover, impractical. In the present paper, we try to explain this difference by deriving a condition called here the Unified Bohm Criterion, which combines an advanced fluid model with an upgraded explicit kinetic formula in a new form of the BC. By introducing a generalized polytropic coefficient function, the unified BC can be interpreted in a form that holds, irrespective of whether the ions are described kinetically or in the fluid approximation.« less

  16. Thermal model for optimization of vascular laser tissue soldering.

    PubMed

    Bogni, Serge; Stumpp, Oliver; Reinert, Michael; Frenz, Martin

    2010-06-01

    Laser tissue soldering (LTS) is a promising technique for tissue fusion based on a heat-denaturation process of proteins. Thermal damage of the fused tissue during the laser procedure has always been an important and challenging problem. Particularly in LTS of arterial blood vessels strong heating of the endothelium should be avoided to minimize the risk of thrombosis. A precise knowledge of the temperature distribution within the vessel wall during laser irradiation is inevitable. The authors developed a finite element model (FEM) to simulate the temperature distribution within blood vessels during LTS. Temperature measurements were used to verify and calibrate the model. Different parameters such as laser power, solder absorption coefficient, thickness of the solder layer, cooling of the vessel and continuous vs. pulsed energy deposition were tested to elucidate their impact on the temperature distribution within the soldering joint in order to reduce the amount of further animal experiments. A pulsed irradiation with high laser power and high absorbing solder yields the best results. (c) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Extension of the Helmholtz-Smoluchowski velocity to the hydrophobic microchannels with velocity slip.

    PubMed

    Park, H M; Kim, T W

    2009-01-21

    Electrokinetic flows through hydrophobic microchannels experience velocity slip at the microchannel wall, which affects volumetric flow rate and solute retention time. The usual method of predicting the volumetric flow rate and velocity profile for hydrophobic microchannels is to solve the Navier-Stokes equation and the Poisson-Boltzmann equation for the electric potential with the boundary condition of velocity slip expressed by the Navier slip coefficient, which is computationally demanding and defies analytic solutions. In the present investigation, we have devised a simple method of predicting the velocity profiles and volumetric flow rates of electrokinetic flows by extending the concept of the Helmholtz-Smoluchowski velocity to microchannels with Navier slip. The extended Helmholtz-Smoluchowski velocity is simple to use and yields accurate results as compared to the exact solutions. Employing the extended Helmholtz-Smoluchowski velocity, the analytical expressions for volumetric flow rate and velocity profile for electrokinetic flows through rectangular microchannels with Navier slip have been obtained at high values of zeta potential. The range of validity of the extended Helmholtz-Smoluchowski velocity is also investigated.

  18. Heat Transfer Through Turbulent Friction Layers

    NASA Technical Reports Server (NTRS)

    Reichardt, H.

    1943-01-01

    The "general Prandtl number" Pr(exp 1) - A(sub q)/A Pr, aside from the Reynolds number determines the ratio of turbulent to molecular heat transfer, and the temperature distribution in turbulent friction layers. A(sub q) = exchange coefficient for heat; A = exchange coefficient for momentum transfer. A formula is derived from the equation defining the general Prandtl number which describes the temperature as a function of the velocity. For fully developed thermal boundary layers all questions relating to heat transfer to and from incompressible fluids can be treated in a simple manner if the ratio of the turbulent shear stress to the total stress T(sub t)/T in the layers near the wall is known, and if the A(sub q)/A can be regarded as independent of the distance from the wall. The velocity distribution across a flat smooth channel and deep into the laminar sublayer was measured for isothermal flow to establish the shear stress ratio T(sub t)/T and to extend the universal wall friction law. The values of T(sub t)/T which resulted from these measurements can be approximately represented by a linear function of the velocity in the laminar-turbulent transition zone. The effect of the temperature relationship of the material values on the flow near the wall is briefly analyzed. It was found that the velocity at the laminar boundary (in contrast to the thickness of the laminar layer) is approximately independent of the temperature distribution. The temperature gradient at the wall and the distribution of temperature and heat flow in the turbulent friction layers were calculated on the basis of the data under two equations. The derived formulas and the figures reveal the effects of the Prandtl number, the Reynolds number, the exchange quantities and the temperature relationship of the material values.

  19. [Efficacy and problems of bladder volume measurement using portable three dimensional ultrasound scanning device--in particular, on measuring bladder volume lower than 100ml].

    PubMed

    Oh-Oka, Hitoshi; Nose, Ryuichiro

    2005-09-01

    Using a portable three dimensional ultrasound scanning device (The Bladder Scan BVI6100, Diagnostic Ultrasound Corporation), we examined measured values of bladder volume, especially focusing on volume lower than 100 ml. A total of 100 patients (male: 66, female: 34) were enrolled in the study. We made a comparison study between the measured value (the average of three measurements of bladder urine volume after a trial in male and female modes) using BVI6100, and the actual measured value of the sample obtained by urethral catheterization in each patient. We examined the factors which could increase the error rate. We also introduced the effective techniques to reduce measurement errors. The actual measured values in all patients correlated well with the average value of three measurements after a trial in a male mode of the BVI6100. The correlation coefficient was 0.887, the error rate was--4.6 +/- 24.5%, and the average coefficient of variation was 15.2. It was observed that the measurement result using the BVI6100 is influenced by patient side factors (extracted edges between bladder wall and urine, thickened bladder wall, irregular bladder wall, flattened rate of bladder, mistaking prostate for bladder in male, mistaking bladder for uterus in a female mode, etc.) or examiner side factors (angle between BVI and abdominal wall, compatibility between abdominal wall and ultrasound probe, controlling deflection while using probe, etc). When appropriate patients are chosen and proper measurement is performed, BVI6100 provides significantly higher accuracy in determining bladder volume, compared with existing abdominal ultrasound methods. BVI6100 is a convenient and extremely effective device also for the measurement of bladder urine over 100 ml.

  20. Vibrational behavior of adaptive aircraft wing structures modelled as composite thin-walled beams

    NASA Technical Reports Server (NTRS)

    Song, O.; Librescu, L.; Rogers, C. A.

    1992-01-01

    The vibrational behavior of cantilevered aircraft wings modeled as thin-walled beams and incorporating piezoelectric effects is studied. Based on the converse piezoelectric effect, the system of piezoelectric actuators conveniently located on the wing yield the control of its associated vertical and lateral bending eigenfrequencies. The possibility revealed by this study enabling one to increase adaptively the eigenfrequencies of thin-walled cantilevered beams could play a significant role in the control of the dynamic response and flutter of wing and rotor blade structures.

  1. Study of the Accelerating Channel Wall Property Influence on the Hall Thruster Discharge Characteristics

    DTIC Science & Technology

    2004-11-01

    Hall thruster characteristics there was prepared Hall thruster model of the SPT-100 type for these experiments and there were manufactured the required discharge chamber parts (rings) made of the Russian BN-SiO2 (borosil) ceramics and of the Russian AIN-BN (ABN) and Western ABN ceramics having secondary electron emission yield (SEEY) different from that one for borosil. These parts were replaceable during experiments. Thruster model was equipped by set of the near wall probes mounted at external discharge chamber wall. There was made characterization

  2. Hydroxyl Tagging Velocimetry in a Mach 2 Flow With a Wall Cavity (Postprint)

    DTIC Science & Technology

    2005-01-01

    tagging velocimetry (HTV) measurements of velocity were made in a Mach 2 flow with a wall cavity. In the HTV method, ArF excimer laser (193 nm) beams...is tracked by planar laser -induced fluorescence. The grid motion over a fixed time delay yields about 50 velocity vectors of the two-dimensional flow...Mach 2 flow with a wall cavity. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas and dissociate H2O into H + OH to form

  3. Thinner regions of intracranial aneurysm wall correlate with regions of higher wall shear stress: a 7.0 tesla MRI

    PubMed Central

    Blankena, Roos; Kleinloog, Rachel; Verweij, Bon H.; van Ooij, Pim; ten Haken, Bennie; Luijten, Peter R.; Rinkel, Gabriel J.E.; Zwanenburg, Jaco J.M.

    2016-01-01

    Purpose To develop a method for semi-quantitative wall thickness assessment on in vivo 7.0 tesla (7T) MRI images of intracranial aneurysms for studying the relation between apparent aneurysm wall thickness and wall shear stress. Materials and Methods Wall thickness was analyzed in 11 unruptured aneurysms in 9 patients, who underwent 7T MRI with a TSE based vessel wall sequence (0.8 mm isotropic resolution). A custom analysis program determined the in vivo aneurysm wall intensities, which were normalized to signal of nearby brain tissue and were used as measure for apparent wall thickness (AWT). Spatial wall thickness variation was determined as the interquartile range in AWT (the middle 50% of the AWT range). Wall shear stress was determined using phase contrast MRI (0.5 mm isotropic resolution). We performed visual and statistical comparisons (Pearson’s correlation) to study the relation between wall thickness and wall shear stress. Results 3D colored AWT maps of the aneurysms showed spatial AWT variation, which ranged from 0.07 to 0.53, with a mean variation of 0.22 (a variation of 1.0 roughly means a wall thickness variation of one voxel (0.8mm)). In all aneurysms, AWT was inversely related to WSS (mean correlation coefficient −0.35, P<0.05). Conclusions A method was developed to measure the wall thickness semi-quantitatively, using 7T MRI. An inverse correlation between wall shear stress and AWT was determined. In future studies, this non-invasive method can be used to assess spatial wall thickness variation in relation to pathophysiologic processes such as aneurysm growth and –rupture. PMID:26892986

  4. Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a slot air jet

    NASA Astrophysics Data System (ADS)

    M, Adimurthy; Katti, Vadiraj V.

    2017-02-01

    Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a normal slot air jet is experimental investigated. Present study focuses on the influence of jet-to-plate spacing ( Z/D h ) (0.5-10) and Reynolds number (2500-20,000) on the fluid flow and heat transfer distribution. A single slot jet with an aspect ratio ( l/b) of about 22 is chosen for the current study. Infrared Thermal Imaging technique is used to capture the temperature data on the target surface. Local heat transfer coefficients are estimated from the thermal images using `SMART VIEW' software. Wall static pressure measurement is carried out for the specified range of Re and Z/D h . Wall static pressure coefficients are seen to be independent of Re in the range between 5000 and 15,000 for a given Z/D h . Nu values are higher at the stagnation point for all Z/D h and Re investigated. For lower Z/D h and higher Re, secondary peaks are observed in the heat transfer distributions. This may be attributed to fluid translating from laminar to turbulent flow on the target plate. Heat transfer characteristics are explained based on the simplified flow assumptions and the pressure data obtained using Differential pressure transducer and static pressure probe. Semi-empirical correlation for the Nusselt number in the stagnation region is proposed.

  5. Translational Genomics for the Improvement of Switchgrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpita, Nicholas; McCann, Maureen

    2014-05-07

    Our objectives were to apply bioinformatics and high throughput sequencing technologies to identify and classify the genes involved in cell wall formation in maize and switchgrass. Targets for genetic modification were to be identified and cell wall materials isolated and assayed for enhanced performance in bioprocessing. We annotated and assembled over 750 maize genes into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice, and Arabidopsis sequences revealed differences in gene family structure. In addition, differences in expression between gene family members of Arabidopsis, maize and rice underscored the need for a grass-specific genetic modelmore » for functional analyses. A forward screen of mature leaves of field-grown maize lines by near-infrared spectroscopy yielded several dozen lines with heritable spectroscopic phenotypes, several of which near-infrared (nir) mutants had altered carbohydrate-lignin compositions. Our contributions to the maize genome sequencing effort built on knowledge of copy number variation showing that uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state. For example, although about 25% of all duplicated genes remain genome-wide, all of the cellulose synthase (CesA) homologs were retained. We showed that guaiacyl and syringyl lignin in lignocellulosic cell-wall materials from stems demonstrate a two-fold natural variation in content across a population of maize Intermated B73 x Mo7 (IBM) recombinant inbred lines, a maize Association Panel of 282 inbreds and landraces, and three populations of the maize Nested Association Mapping (NAM) recombinant inbred lines grown in three years. We then defined quantitative trait loci (QTL) for stem lignin content measured using pyrolysis molecular-beam mass spectrometry, and glucose and xylose yield measured using an enzymatic hydrolysis assay. Among five multi-year QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yield was shared. A genome-wide association study (GWAS) for lignin abundance and sugar yield of the 282-member maize Association Panel provided candidate genes in the eleven QTL and showed that many other alleles impacting these traits exist in the broader pool of maize genetic diversity. The maize B73 and Mo17 genotypes exhibited surprisingly large differences in gene expression in developing stem tissues, suggesting certain regulatory elements can significantly enhance activity of biomass synthesis pathways. Candidate genes, identified by GWAS or by differential expression, include genes of cell-wall metabolism, transcription factors associated with vascularization and fiber formation, and components of cellular signaling pathways. Our work provides new insights and strategies beyond modification of lignin to enhance yields of biofuels from genetically tailored biomass.« less

  6. The thick left ventricular wall of the giraffe heart normalises wall tension, but limits stroke volume and cardiac output.

    PubMed

    Smerup, Morten; Damkjær, Mads; Brøndum, Emil; Baandrup, Ulrik T; Kristiansen, Steen Buus; Nygaard, Hans; Funder, Jonas; Aalkjær, Christian; Sauer, Cathrine; Buchanan, Rasmus; Bertelsen, Mads Frost; Østergaard, Kristine; Grøndahl, Carsten; Candy, Geoffrey; Hasenkam, J Michael; Secher, Niels H; Bie, Peter; Wang, Tobias

    2016-02-01

    Giraffes--the tallest extant animals on Earth--are renowned for their high central arterial blood pressure, which is necessary to secure brain perfusion. Arterial pressure may exceed 300 mmHg and has historically been attributed to an exceptionally large heart. Recently, this has been refuted by several studies demonstrating that the mass of giraffe heart is similar to that of other mammals when expressed relative to body mass. It thus remains unexplained how the normal-sized giraffe heart generates such massive arterial pressures. We hypothesized that giraffe hearts have a small intraventricular cavity and a relatively thick ventricular wall, allowing for generation of high arterial pressures at normal left ventricular wall tension. In nine anaesthetized giraffes (495±38 kg), we determined in vivo ventricular dimensions using echocardiography along with intraventricular and aortic pressures to calculate left ventricular wall stress. Cardiac output was also determined by inert gas rebreathing to provide an additional and independent estimate of stroke volume. Echocardiography and inert gas-rebreathing yielded similar cardiac outputs of 16.1±2.5 and 16.4±1.4 l min(-1), respectively. End-diastolic and end-systolic volumes were 521±61 ml and 228±42 ml, respectively, yielding an ejection fraction of 56±4% and a stroke volume of 0.59 ml kg(-1). Left ventricular circumferential wall stress was 7.83±1.76 kPa. We conclude that, relative to body mass, a small left ventricular cavity and a low stroke volume characterizes the giraffe heart. The adaptations result in typical mammalian left ventricular wall tensions, but produce a lowered cardiac output. © 2016. Published by The Company of Biologists Ltd.

  7. Preparation and thermal insulation performance of cast-in-situ phosphogypsum wall.

    PubMed

    Li, Yubo; Dai, Shaobin; Zhang, Yichao; Huang, Jun; Su, Ying; Ma, Baoguo

    2018-01-01

    The mass accumulation of phosphogypsum has caused serious environmental pollution, which has become a worldwide problem. Gypsum is a kind of green building material, which is lighter, has better heat and sound insulation performance, and is easier to recycle compared to cement. The application of cast-in-situ phosphogypsum wall could consume a large amount of pollutant, and improve the efficiency of building construction. The preparation and thermal insulation performance of cast-in-situ phosphogypsum wall were investigated. The property of phosphogypsum-fly ash-lime (PFL) triad cementing materials, the adaptability of retarders and superplasticizers, and the influences of vitrified microsphere as aggregates were explored. Thus, the optimum mix was proposed. Thermal insulation performance tests and ANSYS simulation of this material was carried out. Optimal structures based on heat channels and the method of calculation determining related parameters were proposed, which achieved a 12.3% reduction in the heat transfer coefficient of the wall. With good performance, phosphogypsum could be used in cast-in-situ walls. This paper provides the theoretical basis for the preparation and energy-saving application of phosphogypsum in the walls of buildings.

  8. Numerical Simulation of Flow Features and Energy Exchange Physics in Near-Wall Region with Fluid-Structure Interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Lixiang; Wang, Wenquan; Guo, Yakun

    Large eddy simulation is used to explore flow features and energy exchange physics between turbulent flow and structure vibration in the near-wall region with fluid-structure interaction (FSI). The statistical turbulence characteristics in the near-wall region of a vibrating wall, such as the skin frictional coefficient, velocity, pressure, vortices, and the coherent structures have been studied for an aerofoil blade passage of a true three-dimensional hydroturbine. The results show that (i) FSI greatly strengthens the turbulence in the inner region of y+ < 25; and (ii) the energy exchange mechanism between the flow and the vibration depends strongly on the vibration-induced vorticity in the inner region. The structural vibration provokes a frequent action between the low- and high-speed streaks to balance the energy deficit caused by the vibration. The velocity profile in the inner layer near the vibrating wall has a significant distinctness, and the viscosity effect of the fluid in the inner region decreases due to the vibration. The flow features in the inner layer are altered by a suitable wall vibration.

  9. Selection of Drought Tolerant Maize Hybrids Using Path Coefficient Analysis and Selection Index.

    PubMed

    Dao, Abdalla; Sanou, Jacob; V S Traore, Edgar; Gracen, Vernon; Danquah, Eric Y

    2017-01-01

    In drought-prone environments, direct selection for yield is not adequate because of the variable environment and genotype x environment interaction. Therefore, the use of secondary traits in addition to yield has been suggested. The relative usefulness of secondary traits as indirect selection criteria for maize grain yield is determined by the magnitudes of their genetic variance, heritability and genetic correlation with the grain yield. Forty eight testcross hybrids derived from lines with different genetic background and geographical origins plus 7 checks were evaluated in both well-watered and water-stressed conditions over two years for grain yield and secondary traits to determine the most appropriate secondary traits and select drought tolerant hybrids. Study found that broad-sense heritability of grain yield and Ear Per Plant (EPP) increased under drought stress. Ear aspect (EASP) and ear height (EHT) had larger correlation coefficients and direct effect on grain yield but in opposite direction, negative and positive respectively. Traits like, EPP, Tassel Size (TS) and Plant Recovery (PR) contributed to increase yield via EASP by a large negative indirect effect. Under drought stress, EHT had positive and high direct effect and negative indirect effect via plant height on grain yield indicating that the ratio between ear and plant heights (R-EPH) was associated to grain yield. Path coefficient analysis showed that traits EPP, TS, PR, EASP, R-EPH were important secondary traits in the present experiment. These traits were used in a selection index to classify hybrids according to their performance under drought. The selection procedure included also a Relative Decrease in Yield (RDY) index. Some secondary traits reported as significant selection criteria for selection under drought stress were not finally established in the present study. This is because the relationship between grain and secondary traits can be affected by various factors including germplasm, environment and applied statistical analysis. Therefore, different traits and selection procedure should be applied in the selection process of drought tolerant genotypes for diverse genetic materials and growing conditions.

  10. Intrinsic light yield and light loss coefficient of Bi4Ge3O12 single crystals

    NASA Astrophysics Data System (ADS)

    Yawai, Nattasuda; Chewpraditkul, Weerapong; Wanarak, Chalerm; Nikl, Martin; Ratanatongchai, Wichian

    2014-10-01

    In this paper we present the scintillation properties of polished Bi4Ge3O12 (BGO) crystals grown by the Bridgman method. The light yield (LY) and energy resolution were measured using XP5200B photomultiplier. At 662 keV γ-rays, high LY of 9680 photons/MeV and good energy resolution of 8.6% were obtained for a 5 × 5 × 1 mm3 BGO sample. The intrinsic LY and light loss coefficient were evaluated. The photofraction in pulse height spectrum of 662 keV γ-rays and the mass attenuation coefficient at 59.5 and 662 keV γ-rays were also determined and compared with the theoretical ones calculated using the WinXCom program.

  11. Diffusion capacity and CT measures of emphysema and airway wall thickness - relation to arterial oxygen tension in COPD patients.

    PubMed

    Saure, Eirunn Waatevik; Bakke, Per Sigvald; Lind Eagan, Tomas Mikal; Aanerud, Marianne; Jensen, Robert Leroy; Grydeland, Thomas Blix; Johannessen, Ane; Nilsen, Roy Miodini; Thorsen, Einar; Hardie, Jon Andrew

    2016-01-01

    Decreased diffusing capacity of the lung for carbon monoxide (DLCO) is associated with emphysema. DLCO is also related to decreased arterial oxygen tension (PaO2), but there are limited data on associations between PaO2 and computed tomography (CT) derived measures of emphysema and airway wall thickness. To examine whether CT measures of emphysema and airway wall thickness are associated with level of arterial oxygen tension beyond that provided by measurements of diffusion capacity and spirometry. The study sample consisted of 271 smoking or ex-smoking COPD patients from the Bergen COPD Cohort Study examined in 2007-2008. Emphysema was assessed as percent of low-attenuation areas<-950 Hounsfield units (%LAA), and airway wall thickness as standardised measure at an internal perimeter of 10 mm (AWT-Pi10). Multiple linear regression models were fitted with PaO2 as the outcome variable, and %LAA, AWT-Pi10, DLCO and carbon monoxide transfer coefficient (KCO) as main explanatory variables. The models were adjusted for sex, age, smoking status, and haemoglobin concentration, as well as forced expiratory volume in one second (FEV1). Sixty two per cent of the subjects were men, mean (SD) age was 64 (7) years, mean (SD) FEV1 in percent predicted was 50 (15)%, and mean PaO2 (SD) was 9.3 (1.1) kPa. The adjusted regression coefficient (CI) for PaO2 was -0.32 (-0.04-(-0.019)) per 10% increase in %LAA (p<0.01). When diffusion capacity and FEV1 were added to the model, respectively, the association lost its statistical significance. No relationship between airway wall thickness and PaO2 was found. CT assessment of airway wall thickness is not associated with arterial oxygen tension in COPD patients. Emphysema score measured by chest CT, is related to decreased PaO2, but cannot replace measurements of diffusion capacity in the clinical evaluation of hypoxaemia.

  12. Temperature differential detection device

    DOEpatents

    Girling, P.M.

    1986-04-22

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions. 2 figs.

  13. Temperature differential detection device

    DOEpatents

    Girling, Peter M.

    1986-01-01

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions.

  14. Development of a Computationally Efficient, High Fidelity, Finite Element Based Hall Thruster Model

    NASA Technical Reports Server (NTRS)

    Jacobson, David (Technical Monitor); Roy, Subrata

    2004-01-01

    This report documents the development of a two dimensional finite element based numerical model for efficient characterization of the Hall thruster plasma dynamics in the framework of multi-fluid model. Effect of the ionization and the recombination has been included in the present model. Based on the experimental data, a third order polynomial in electron temperature is used to calculate the ionization rate. The neutral dynamics is included only through the neutral continuity equation in the presence of a uniform neutral flow. The electrons are modeled as magnetized and hot, whereas ions are assumed magnetized and cold. The dynamics of Hall thruster is also investigated in the presence of plasma-wall interaction. The plasma-wall interaction is a function of wall potential, which in turn is determined by the secondary electron emission and sputtering yield. The effect of secondary electron emission and sputter yield has been considered simultaneously, Simulation results are interpreted in the light of experimental observations and available numerical solutions in the literature.

  15. Apportioning riverine DIN load to export coefficients of land uses in an urbanized watershed.

    PubMed

    Shih, Yu-Ting; Lee, Tsung-Yu; Huang, Jr-Chuan; Kao, Shuh-Ji; Chang

    2016-08-01

    The apportionment of riverine dissolved inorganic nitrogen (DIN) load to individual land use on a watershed scale demands the support of accurate DIN load estimation and differentiation of point and non-point sources, but both of them are rarely quantitatively determined in small montane watersheds. We introduced the Danshui River watershed of Taiwan, a mountainous urbanized watershed, to determine the export coefficients via a reverse Monte Carlo approach from riverine DIN load. The results showed that the dynamics of N fluctuation determines the load estimation method and sampling frequency. On a monthly sampling frequency basis, the average load estimation of the methods (GM, FW, and LI) outperformed that of individual method. Export coefficient analysis showed that the forest DIN yield of 521.5kg-Nkm(-2)yr(-1) was ~2.7-fold higher than the global riverine DIN yield (mainly from temperate large rivers with various land use compositions). Such a high yield was attributable to high rainfall and atmospheric N deposition. The export coefficient of agriculture was disproportionately larger than forest suggesting that a small replacement of forest to agriculture could lead to considerable change of DIN load. The analysis of differentiation between point and non-point sources showed that the untreated wastewater (non-point source), accounting for ~93% of the total human-associated wastewater, resulted in a high export coefficient of urban. The inclusion of the treated and untreated wastewater completes the N budget of wastewater. The export coefficient approach serves well to assess the riverine DIN load and to improve the understanding of N cascade. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A Growth and Yield Model for Thinned Stands of Yellow-Poplar

    Treesearch

    Bruce R. Knoebel; Harold E. Burkhart; Donald E. Beck

    1986-01-01

    Simultaneous growth and yield equations were developed for predicting basal area growth and cubic-foot volume growth and yield in thinned stands of yellow-poplar. A joint loss function involving both volume and basal area was used to estimate the coefficients in the system of equations. The estimates obtained were analytically compatible, invariant for projection...

  17. Investigation of the effect of wall friction on the flow rate in 2D and 3D Granular Flow

    NASA Astrophysics Data System (ADS)

    Carballo-Ramirez, Brenda; Pleau, Mollie; Easwar, Nalini; Birwa, Sumit; Shah, Neil; Tewari, Shubha

    We have measured the mass flow rate of spherical steel spheres under gravity in vertical, straight-walled 2 and 3-dimensional hoppers, where the flow velocity is controlled by the opening size. Our measurements focus on the role of friction and its placement along the walls of the hopper. In the 2D case, an increase in the coefficient of static friction from μ = 0.2 to 0.6 is seen to decrease the flow rate significantly. We have changed the placement of frictional boundaries/regions from the front and back walls of the 2D hopper to the side walls and floor to investigate the relative importance of the different regions in determining the flow rate. Fits to the Beverloo equation show significant departure from the expected exponent of 1.5 in the case of 2D flow. In contrast, 3D flow rates do not show much dependence on wall friction and its placement. We compare the experimental data to numerical simulations of gravity driven hopper granular flow with varying frictional walls constructed using LAMMPS*. *http://lammps.sandia.gov Supported by NSF MRSEC DMR 0820506.

  18. Super Yang-Mills theory with impurity walls and instanton moduli spaces

    NASA Astrophysics Data System (ADS)

    Cherkis, Sergey A.; O'Hara, Clare; Sämann, Christian

    2011-06-01

    We explore maximally supersymmetric Yang-Mills theory with walls of impurities respecting half of the supersymmetries. The walls carry fundamental or bifundamental matter multiplets. We employ three-dimensional N=2 superspace language to identify the Higgs branch of this theory. We find that the vacuum conditions determining the Higgs branch are exactly the bow equations yielding Yang-Mills instantons on a multi-Taub-NUT space. Under electric-magnetic duality, the super Yang-Mills theory describing the bulk is mapped to itself, while the fundamental- and bifundamental-carrying impurity walls are interchanged. We perform a one-loop computation on the Coulomb branch of the dual theory to find the asymptotic metric on the original Higgs branch.

  19. Finite element analysis of the design and manufacture of thin-walled pressure vessels used as aerosol cans

    NASA Astrophysics Data System (ADS)

    Abdussalam, Ragba Mohamed

    Thin-walled cylinders are used extensively in the food packaging and cosmetics industries. The cost of material is a major contributor to the overall cost and so improvements in design and manufacturing processes are always being sought. Shape optimisation provides one method for such improvements. Aluminium aerosol cans are a particular form of thin-walled cylinder with a complex shape consisting of truncated cone top, parallel cylindrical section and inverted dome base. They are manufactured in one piece by a reverse-extrusion process, which produces a vessel with a variable thickness from 0.31 mm in the cylinder up to 1.31 mm in the base for a 53 mm diameter can. During manufacture, packaging and charging, they are subjected to pressure, axial and radial loads and design calculations are generally outside the British and American pressure vessel codes. 'Design-by-test' appears to be the favoured approach. However, a more rigorous approach is needed in order to optimise the designs. Finite element analysis (FEA) is a powerful tool for predicting stress, strain and displacement behaviour of components and structures. FEA is also used extensively to model manufacturing processes. In this study, elastic and elastic-plastic FEA has been used to develop a thorough understanding of the mechanisms of yielding, 'dome reversal' (an inherent safety feature, where the base suffers elastic-plastic buckling at a pressure below the burst pressure) and collapse due to internal pressure loading and how these are affected by geometry. It has also been used to study the buckling behaviour under compressive axial loading. Furthermore, numerical simulations of the extrusion process (in order to investigate the effects of tool geometry, friction coefficient and boundary conditions) have been undertaken. Experimental verification of the buckling and collapse behaviours has also been carried out and there is reasonable agreement between the experimental data and the numerical predictions.

  20. Evaluation of bolted connections in wood-plastic composites

    NASA Astrophysics Data System (ADS)

    Arnandha, Yudhi; Satyarno, Iman; Awaludin, Ali; Irawati, Inggar Septia; Ihsan, Muhamad; Wijanarko, Felyx Biondy; William, Mahdinur, Fardhani, Arfiati

    2017-03-01

    Wood-plastic composite (WPC) is a relatively new material that consists of sawdust and plastic polymer using the extrusion process. Due to its attributes such as low water content, low maintenance, UV durability and being fungi and termite resistant. Nowadays, WPC has already been produced in Indonesia using sawdust from local wood such as Albizia (Paraserianthes falcataria) and Teak (Tectona grandis). Moreover preliminary studies about the physical and mechanical WPC board from Albizia sawdust and HDPE plastic have been carried out. Based on these studies, WPC has a high shear strength around 25-30 MPa higher than its original wood shear strength. This paper was a part of the research in evaluating WPC as potential sheathing in a shear wall system. Since still little is known about connection behavior in WPC using Indonesian local wood, this study evaluated the connection for both of these two types of wood-plastic composite. WPC board from Albizia sawdust will be projected as shear wall sheathing and WPC stud from Teak sawdust projected to be shear wall frame. For this study, the embedding strength for both WPC was determined according to ASTM D 5764 standard, using two types of bolts (stainless bolt and standard bolt) with several diameters as variation (6 mm, 8 mm, 10 and 12 mm). Hence, dowel-bearing test under fastened condition conducted accordance to ASTM D5652, hereby the yield strength then compared with the prediction yield strength from European Yield Model (EYM). According to both single and double shear connection, it can be concluded that yield strength from the EYM method tended to under-predict the 5% diameter offset yield than the actual yield strength from the test. The yield strength itself increase with the increase of bolt diameter. For single shear connection, the highest yield strength was 12 mm standard bolt around 9732 N, slightly higher than stainless bolt around 9393 N. Whereby for double shear connection, the highest yield strength was 12 mm standard bolt around 12009 N, slightly higher than stainless bolt around 12009 N. Using statistical approach ANOVA, the different type of bolt between stainless bolt and standard bolt gave an insignificant result. Both type of bolt can be used as structural connection, moreover it was recommended using a stainless bolt for outdoor purpose to reduce corrosion.

  1. The improvement of a simple theoretical model for the prediction of the sound insulation of double leaf walls.

    PubMed

    Davy, John L

    2010-02-01

    This paper presents a revised theory for predicting the sound insulation of double leaf cavity walls that removes an approximation, which is usually made when deriving the sound insulation of a double leaf cavity wall above the critical frequencies of the wall leaves due to the airborne transmission across the wall cavity. This revised theory is also used as a correction below the critical frequencies of the wall leaves instead of a correction due to Sewell [(1970). J. Sound Vib. 12, 21-32]. It is found necessary to include the "stud" borne transmission of the window frames when modeling wide air gap double glazed windows. A minimum value of stud transmission is introduced for use with resilient connections such as steel studs. Empirical equations are derived for predicting the effective sound absorption coefficient of wall cavities without sound absorbing material. The theory is compared with experimental results for double glazed windows and gypsum plasterboard cavity walls with and without sound absorbing material in their cavities. The overall mean, standard deviation, maximum, and minimum of the differences between experiment and theory are -0.6 dB, 3.1 dB, 10.9 dB at 1250 Hz, and -14.9 dB at 160 Hz, respectively.

  2. Effects of wall temperature on skin-friction measurements by oil-film interferometry

    NASA Astrophysics Data System (ADS)

    Bottini, H.; Kurita, M.; Iijima, H.; Fukagata, K.

    2015-10-01

    Wind-tunnel skin-friction measurements with thin-oil-film interferometry have been taken on an aluminum sample to investigate the effects of wall temperature on the accuracy of the technique. The sample has been flush-mounted onto a flat plate with an electric heater at its bottom and mirror-smooth temperature-sensitive paint sprayed on its top. The heater has varied the sample temperature from ambient to 328 K, and the paint has permitted wall temperature measurements on the same area of the skin-friction measurements and during the same test. The measured wall temperatures have been used to calculate the correct oil viscosities, and these viscosities and the constant nominal viscosity at 298 K have been used to calculate two different sets of skin-friction coefficients. These sets have been compared to each other and with theoretical values. This comparison shows that the effects of wall temperature on the accuracy of skin-friction measurements are sensible, and more so as wall temperature differs from 298 K. Nonetheless, they are effectively neutralized by the use of wall temperature measurements in combination with the correct oil viscosity-temperature law. In this regard, the special temperature-sensitive paint developed for this study shows advantages with respect to more traditional wall temperature measurement techniques.

  3. Nationwide disturbance attribution on NASA’s earth exchange: experiences in a high-end computing environment

    Treesearch

    J. Chris Toney; Karen G. Schleeweis; Jennifer Dungan; Andrew Michaelis; Todd Schroeder; Gretchen G. Moisen

    2015-01-01

    The North American Forest Dynamics (NAFD) project’s Attribution Team is completing nationwide processing of historic Landsat data to provide a comprehensive annual, wall-to-wall analysis of US disturbance history, with attribution, over the last 25+ years. Per-pixel time series analysis based on a new nonparametric curve fitting algorithm yields several metrics useful...

  4. Estimates of genetics and phenotypics parameters for the yield and quality of soybean seeds.

    PubMed

    Zambiazzi, E V; Bruzi, A T; Guilherme, S R; Pereira, D R; Lima, J G; Zuffo, A M; Ribeiro, F O; Mendes, A E S; Godinho, S H M; Carvalho, M L M

    2017-09-27

    Estimating genotype x environment (GxE) parameters for quality and yield in soybean seed grown in different environments in Minas Gerais State was the goal of this study, as well as to evaluate interaction effects of GxE for soybean seeds yield and quality. Seeds were produced in three locations in Minas Gerais State (Lavras, Inconfidentes, and Patos de Minas) in 2013/14 and 2014/15 seasons. Field experiments were conducted in randomized blocks in a factorial 17 x 6 (GxE), and three replications. Seed yield and quality were evaluated for germination in substrates paper and sand, seedling emergence, speed emergency index, mechanical damage by sodium hypochlorite, electrical conductivity, speed aging, vigor and viability of seeds by tetrazolium test in laboratory using completely randomized design. Quadratic component genotypic, GXE variance component, genotype determination coefficient, genetic variation coefficient and environmental variation coefficient were estimated using the Genes software. Percentage analysis of genotypes contribution, environments and genotype x environment interaction were conducted by sites combination two by two and three sites combination, using the R software. Considering genotypes selection of broad adaptation, TMG 1179 RR, CD 2737 RR, and CD 237 RR associated better yield performance at high physical and physiological potential of seed. Environmental effect was more expressive for most of the characters related to soybean seed quality. GxE interaction effects were expressive though genotypes did not present coincidental behavior in different environments.

  5. Prevalence of Regional Myocardial Thinning and Relationship With Myocardial Scarring in Patients With Coronary Artery Disease

    PubMed Central

    Shah, Dipan J.; Kim, Han W.; James, Olga; Parker, Michele; Wu, Edwin; Bonow, Robert O.; Judd, Robert M.; Kim, Raymond J.

    2014-01-01

    Importance Regional left ventricular (LV) wall thinning is believed to represent chronic transmural myocardial infarction and scar tissue. However, recent case reports using delayed-enhancement cardiovascular magnetic resonance (CMR) imaging raise the possibility that thinning may occur with little or no scarring. Objective To evaluate patients with regional myocardial wall thinning and to determine scar burden and potential for functional improvement. Design, Setting, and Patients Investigator-initiated, prospective, 3-center study conducted from August 2000 through January 2008 in 3 parts to determine (1) in patients with known coronary artery disease (CAD) undergoing CMR viability assessment, the prevalence of regional wall thinning (end-diastolic wall thickness ≤5.5 mm), (2) in patients with thinning, the presence and extent of scar burden, and (3) in patients with thinning undergoing coronary revascularization, any changes in myocardial morphology and contractility. Main Outcomes and Measures Scar burden in thinned regions assessed using delayed-enhancement CMR and changes in myocardial morphology and function assessed using cine-CMR after revascularization. Results Of 1055 consecutive patients with CAD screened, 201 (19% [95% CI, 17% to 21%]) had regional wall thinning. Wall thinning spanned a mean of 34% (95% CI, 32% to 37% [SD, 15%]) of LV surface area. Within these regions, the extent of scarring was 72% (95% CI, 69% to 76% [SD, 25%]); however, 18% (95% CI, 13% to 24%) of thinned regions had limited scar burden (≤50% of total extent). Among patients with thinning undergoing revascularization and follow-up cine-CMR (n=42), scar extent within the thinned region was inversely related to regional (r=−0.72, P<.001) and global (r=−0.53, P<.001) contractile improvement. End-diastolic wall thickness in thinned regions with limited scar burden increased from 4.4 mm (95% CI, 4.1 to 4.7) to 7.5 mm (95% CI, 6.9 to 8.1) after revascularization (P<.001), resulting in resolution of wall thinning. On multivariable analysis, scar extent had the strongest association with contractile improvement (slope coefficient, −0.03 [95% CI, −0.04 to −0.02]; P<.001) and reversal of thinning (slope coefficient, −0.05 [95% CI, −0.06 to −0.04]; P<.001). Conclusions and Relevance Among patients with CAD referred for CMR and found to have regional wall thinning, limited scar burden was present in 18% and was associated with improved contractility and resolution of wall thinning after revascularization. These findings, which are not consistent with common assumptions, warrant further investigation. PMID:23462787

  6. Effect of volumetric radiation on natural convection in a cavity with a horizontal fin using the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Tighchi, Hashem Ahmadi; Sobhani, Masoud; Esfahani, Javad Abolfazli

    2018-01-01

    The lattice Boltzmann method (LBM) is presented for the effects of volumetric radiation on laminar natural convection in a square cavity with a horizontal fin on the hot wall containing an absorbing, emitting and scattering medium. Accordingly, the flow, energy and radiative equations are solved by separate distribution functions in the LBM. A parametric study is performed: the effects of Rayleigh number and radiative parameters, such as extinction coefficient and scattering albedo on the flow and temperature fields are investigated. It is found that the isotherms become dense near the cold wall, due to highly participating properties and Rayleigh number. Also, the Nusselt number ratio (NNR) on the clod wall is examined for values of fin length and height. The maximum NNR is found at the longest fin length and near top wall for a given Rayleigh number.

  7. Substrate clamping effects on irreversible domain wall dynamics in lead zirconate titanate thin films.

    PubMed

    Griggio, F; Jesse, S; Kumar, A; Ovchinnikov, O; Kim, H; Jackson, T N; Damjanovic, D; Kalinin, S V; Trolier-McKinstry, S

    2012-04-13

    The role of long-range strain interactions on domain wall dynamics is explored through macroscopic and local measurements of nonlinear behavior in mechanically clamped and released polycrystalline lead zirconate-titanate (PZT) films. Released films show a dramatic change in the global dielectric nonlinearity and its frequency dependence as a function of mechanical clamping. Furthermore, we observe a transition from strong clustering of the nonlinear response for the clamped case to almost uniform nonlinearity for the released film. This behavior is ascribed to increased mobility of domain walls. These results suggest the dominant role of collective strain interactions mediated by the local and global mechanical boundary conditions on the domain wall dynamics. The work presented in this Letter demonstrates that measurements on clamped films may considerably underestimate the piezoelectric coefficients and coupling constants of released structures used in microelectromechanical systems, energy harvesting systems, and microrobots.

  8. Synergistic Impacts of Electrolyte Adsorption on the Thermoelectric Properties of Single-Walled Carbon Nanotubes.

    PubMed

    Nakano, Motohiro; Nakashima, Takuya; Kawai, Tsuyoshi; Nonoguchi, Yoshiyuki

    2017-08-01

    Single-walled carbon nanotubes are promising candidates for light-weight and flexible energy materials. Recently, the thermoelectric properties of single-walled carbon nanotubes have been dramatically improved by ionic liquid addition; however, controlling factors remain unsolved. Here the thermoelectric properties of single-walled carbon nanotubes enhanced by electrolytes are investigated. Complementary characterization with absorption, Raman, and X-ray photoelectron spectroscopy reveals that shallow hole doping plays a partial role in the enhanced electrical conductivity. The molecular factors controlling the thermoelectric properties of carbon nanotubes are systematically investigated in terms of the ionic functionalities of ionic liquids. It is revealed that appropriate ionic liquids show a synergistic enhancement in conductivity and the Seebeck coefficient. The discovery of significantly precise doping enables the generation of thermoelectric power factor exceeding 460 µW m - 1 K -2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Mechanism of cassava tuber cell wall weakening by dilute sodium hydroxide steeping.

    PubMed

    Odoch, Martin; Buys, Elna M; Taylor, John R N

    2017-08-01

    Steeping of cassava root pieces in 0.75% NaOH in combination with wet milling was investigated to determine whether and how dilute NaOH modifies cassava cell walls. Gas chromatography data of cell wall constituent sugar composition and Fourier transform infrared (FTIR) data showed that NaOH steeping reduced the level of pectin in cassava cell walls. FTIR and wide-angle X-ray scattering spectroscopy also indicated that NaOH steeping combined with fine milling slightly reduced cellulose crystallinity. Scanning electron microscopy showed that NaOH steeping produced micropores in the cell walls and light microscopy revealed that NaOH steeping increased disaggregation of parenchyma cells. Steeping of ground cassava in NaOH resulted in a 12% decrease in large residue particles and approx. 4% greater starch yield with wet milling. Therefore dilute NaOH steeping can improve the effectiveness of wet milling in disintegrating cell walls through solubilisation of pectin, thereby reduced cell wall strength. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Néel walls between tailored parallel-stripe domains in IrMn/CoFe exchange bias layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueltzhöffer, Timo, E-mail: timo.ueltzhoeffer@physik.uni-kassel.de; Schmidt, Christoph; Ehresmann, Arno

    Tailored parallel-stripe magnetic domains with antiparallel magnetizations in adjacent domains along the long stripe axis have been fabricated in an IrMn/CoFe Exchange Bias thin film system by 10 keV He{sup +}-ion bombardment induced magnetic patterning. Domain walls between these domains are of Néel type and asymmetric as they separate domains of different anisotropies. X-ray magnetic circular dichroism asymmetry images were obtained by x-ray photoelectron emission microscopy at the Co/Fe L{sub 3} edges at the synchrotron radiation source BESSY II. They revealed Néel-wall tail widths of 1 μm in agreement with the results of a model that was modified in order to describemore » such walls. Similarly obtained domain core widths show a discrepancy to values estimated from the model, but could be explained by experimental broadening. The rotation senses in adjacent walls were determined, yielding unwinding domain walls with non-interacting walls in this layer system.« less

  11. Displacement coefficients along the inner boundaries of radially cracked ring segments subject to forces and couples

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1977-01-01

    Displacement results of plane boundary collocation analysis are given for various locations on the inner boundaries of radially cracked ring segments (C-shaped specimens) subject to two complementary types of loading. Results are presented for ratios of outer to inner radius R sub o/R sub i in the range of 1.1 to 2.5, and ratios a/W in the range 0.1 to 0.8 where a is the crack length for a specimen of wall thickness W. By combination of these results the resultant displacement coefficient delta or the corresponding influence coefficient, can be obtained for any practical load line location of a pin loaded specimen.

  12. Numerical prediction of wall temperatures for near-critical para-hydrogen in turbulent upflow inside vertical tubes

    NASA Technical Reports Server (NTRS)

    Bellmore, C. P.; Reid, R. L.

    1980-01-01

    Presented herein is a method of including density fluctuations in the equations of turbulent transport. Results of a numerical analysis indicate that the method may be used to predict heat transfer for the case of near-critical para-hydrogen in turbulent upflow inside vertical tubes. Wall temperatures, heat transfer coefficients, and velocities obtained by coupling the equations of turbulent momentum and heat transfer with a perturbed equation of state show good agreement with experiment for inlet reduced pressures of 1.28-5.83.

  13. Analysis of advanced solid rocket motor ignition phenomena

    NASA Technical Reports Server (NTRS)

    Foster, Winfred A., Jr.; Jenkins, Rhonald M.

    1995-01-01

    This report presents the results obtained from an experimental analysis of the flow field in the slots of the star grain section in the head-end of the advanced solid rocket motor during the ignition transient. This work represents an extension of the previous tests and analysis to include the effects of using a center port in conjunction with multiple canted igniter ports. The flow field measurements include oil smear data on the star slot walls, pressure and heat transfer coefficient measurements on the star slot walls and velocity measurements in the star slot.

  14. Multi-walled carbon nanotubes applied through seed-priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.).

    PubMed

    Joshi, Anjali; Kaur, Simranjeet; Dharamvir, Keya; Nayyar, Harsh; Verma, Gaurav

    2018-06-01

    Reports of multi-walled carbon nanotubes (MWCNTs) incorporated into plants have indicated better yield and productivity, yet the phenomena need in-depth understanding especially when agricultural crops are tested. We primed wheat seeds with MWCNTs to understand the effects on germination, growth, anatomy, physiology and yield. This study, carried out in field conditions, is a step forward over the previous reports. Early germination, excessive root hair, denser stomata and larger root length result in faster growth and higher yield of wheat plants. Denser root hair facilitated the uptake of both water and essential minerals such as phosphorus (P) and potassium (K), which boosted the crop yield by significantly improving grain yield per plant from 1.53 to 2.5 g, a 63% increase. Increase in cell elongation by 80% was recorded, while xylem and phloem sizes dilated to almost 83% and 85% of control, thus enhancing their capacity to conduct water and nutrients. Augmented growth of MWCNT-primed wheat, enhancement in grain number, biomass, stomatal density, xylem-phloem size, epidermal cells, and water uptake is observed while finding no DNA damage. This opens up an entirely new aspect to using cost-effective nanomaterials (the MWCNTs were produced in-house) for enhancing the performance of crop plants. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Determination of the Navier slip coefficient of microchannels exploiting the streaming potential.

    PubMed

    Park, Hung Mok

    2012-03-01

    For most microchannels made of hydrophobic materials such as polymers, velocity slip occurs at the wall, affecting volumetric flow rate of electroosmotic flow Q(eof) and streaming potential (∂ϕ(str)/∂z). Since most techniques exploit Q(eof) or (∂ϕ(str)/∂z) to determine the zeta potential, ζ, it is very difficult to measure ζ of hydrophobic walls, if the slip coefficient b is not found a priori. Until now, Q(eof) and (∂ϕ(str)/∂z) are known to depend on ζ and b in a same functional form, which makes it impossible to estimate ζ or b separately using measurements of Q(eof) and (∂ϕ(str)/∂z). However, exploiting the analytic formula for Q(eof) and (∂ϕ(str)/∂z) derived in the present work, it is found that the effect of ζ and that of b on Q(eof) and (∂ϕ(str)/∂z) can be separated from each other by varying the bulk ionic concentration. Thus, the slip coefficient as well as the zeta potential of hydrophobic microchannels can be found with reasonable accuracy by means of a nonlinear curve fitting method using measured data of Q(eof) and (∂ϕ(str)/∂z) at various bulk ionic concentrations. The present method allows an accurate estimation of slip coefficient of hydrophobic microchannels, which is quite simple and cheap compared with methods employing microparticle velocimetry. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Herbicide and antibiotic removal by woodchip denitrification filters: Sorption processes

    USDA-ARS?s Scientific Manuscript database

    Batch sorption and desorption experiments to evaluate the retention of the agrichemicals onto wood chips from an in situ wood chip denitrification wall were conducted for atrazine, enrofloxacin, monensin and sulfamethazine. Estimated Freundlich distribution coefficients (Kf) showed that the order of...

  17. Herbicide and antibiotic removal by woodchip denitrification filters: Sorption processes

    USDA-ARS?s Scientific Manuscript database

    Batch sorption and desorption experiments to evaluate the retention of the agrichemicals onto wood chips from an in situ wood chip denitrification wall were conducted for atrazine, enrofloxacin, monensin, and sulfamethazine. Estimated Freundlich distribution coefficients (Kf) showed that the order o...

  18. Remodeling characteristics and collagen distribution in synthetic mesh materials explanted from human subjects after abdominal wall reconstruction: an analysis of remodeling characteristics by patient risk factors and surgical site classifications

    PubMed Central

    Cavallo, Jaime A.; Roma, Andres A.; Jasielec, Mateusz S.; Ousley, Jenny; Creamer, Jennifer; Pichert, Matthew D.; Baalman, Sara; Frisella, Margaret M.; Matthews, Brent D.

    2014-01-01

    Background The purpose of this study was to evaluate the associations between patient characteristics or surgical site classifications and the histologic remodeling scores of synthetic meshes biopsied from their abdominal wall repair sites in the first attempt to generate a multivariable risk prediction model of non-constructive remodeling. Methods Biopsies of the synthetic meshes were obtained from the abdominal wall repair sites of 51 patients during a subsequent abdominal re-exploration. Biopsies were stained with hematoxylin and eosin, and evaluated according to a semi-quantitative scoring system for remodeling characteristics (cell infiltration, cell types, extracellular matrix deposition, inflammation, fibrous encapsulation, and neovascularization) and a mean composite score (CR). Biopsies were also stained with Sirius Red and Fast Green, and analyzed to determine the collagen I:III ratio. Based on univariate analyses between subject clinical characteristics or surgical site classification and the histologic remodeling scores, cohort variables were selected for multivariable regression models using a threshold p value of ≤0.200. Results The model selection process for the extracellular matrix score yielded two variables: subject age at time of mesh implantation, and mesh classification (c-statistic = 0.842). For CR score, the model selection process yielded two variables: subject age at time of mesh implantation and mesh classification (r2 = 0.464). The model selection process for the collagen III area yielded a model with two variables: subject body mass index at time of mesh explantation and pack-year history (r2 = 0.244). Conclusion Host characteristics and surgical site assessments may predict degree of remodeling for synthetic meshes used to reinforce abdominal wall repair sites. These preliminary results constitute the first steps in generating a risk prediction model that predicts the patients and clinical circumstances for which non-constructive remodeling of an abdominal wall repair site with synthetic mesh reinforcement is most likely to occur. PMID:24442681

  19. Lateral Torsional Buckling of Anisotropic Laminated Composite Beams Subjected to Various Loading and Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Ahmadi, Habiburrahman

    Thin-walled structures are major components in many engineering applications. When a thin-walled slender beam is subjected to lateral loads, causing moments, the beam may buckle by a combined lateral bending and twisting of cross-section, which is called lateral-torsional buckling. A generalized analytical approach for lateral-torsional buckling of anisotropic laminated, thin-walled, rectangular cross-section composite beams under various loading conditions (namely, pure bending and concentrated load) and boundary conditions (namely, simply supported and cantilever) was developed using the classical laminated plate theory (CLPT), with all considered assumptions, as a basis for the constitutive equations. Buckling of such type of members has not been addressed in the literature. Closed form buckling expressions were derived in terms of the lateral, torsional and coupling stiffness coefficients of the overall composite. These coefficients were obtained through dimensional reduction by static condensation of the 6x6 constitutive matrix mapped into an effective 2x2 coupled weak axis bending-twisting relationship. The stability of the beam under different geometric and material parameters, like length/height ratio, ply thickness, and ply orientation, was investigated. The analytical formulas were verified against finite element buckling solutions using ABAQUS for different lamination orientations showing excellent accuracy.

  20. Expression of S-adenosylmethionine Hydrolase in Tissues Synthesizing Secondary Cell Walls Alters Specific Methylated Cell Wall Fractions and Improves Biomass Digestibility

    DOE PAGES

    Eudes, Aymerick; Zhao, Nanxia; Sathitsuksanoh, Noppadon; ...

    2016-07-19

    Plant biomass is a large source of fermentable sugars for the synthesis of bioproducts using engineered microbes. These sugars are stored as cell wall polymers, mainly cellulose and hemicellulose, and are embedded with lignin, which makes their enzymatic hydrolysis challenging. One of the strategies to reduce cell wall recalcitrance is the modification of lignin content and composition. Lignin is a phenolic polymer of methylated aromatic alcohols and its synthesis in tissues developing secondary cell walls is a significant sink for the consumption of the methyl donor S-adenosylmethionine (AdoMet). In this study, we demonstrate in Arabidopsis stems that targeted expression ofmore » AdoMet hydrolase (AdoMetase, E.C. 3.3.1.2) in secondary cell wall synthesizing tissues reduces the AdoMet pool and impacts lignin content and composition. In particular, both NMR analysis and pyrolysis gas chromatography mass spectrometry of lignin in engineered biomass showed relative enrichment of non-methylated p-hydroxycinnamyl (H) units and a reduction of dimethylated syringyl (S) units. This indicates a lower degree of methylation compared to that in wild-type lignin. Quantification of cell wall-bound hydroxycinnamates revealed a reduction of ferulate in AdoMetase transgenic lines. Biomass from transgenic lines, in contrast to that in control plants, exhibits an enrichment of glucose content and a reduction in the degree of hemicellulose glucuronoxylan methylation. We also show that these modifications resulted in a reduction of cell wall recalcitrance, because sugar yield generated by enzymatic biomass saccharification was greater than that of wild-type plants. Considering that transgenic plants show no important diminution of biomass yields, and that heterologous expression of AdoMetase protein can be spatiotemporally optimized, this novel approach provides a valuable option for the improvement of lignocellulosic biomass feedstock.« less

  1. Expression of S-adenosylmethionine Hydrolase in Tissues Synthesizing Secondary Cell Walls Alters Specific Methylated Cell Wall Fractions and Improves Biomass Digestibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudes, Aymerick; Zhao, Nanxia; Sathitsuksanoh, Noppadon

    Plant biomass is a large source of fermentable sugars for the synthesis of bioproducts using engineered microbes. These sugars are stored as cell wall polymers, mainly cellulose and hemicellulose, and are embedded with lignin, which makes their enzymatic hydrolysis challenging. One of the strategies to reduce cell wall recalcitrance is the modification of lignin content and composition. Lignin is a phenolic polymer of methylated aromatic alcohols and its synthesis in tissues developing secondary cell walls is a significant sink for the consumption of the methyl donor S-adenosylmethionine (AdoMet). In this study, we demonstrate in Arabidopsis stems that targeted expression ofmore » AdoMet hydrolase (AdoMetase, E.C. 3.3.1.2) in secondary cell wall synthesizing tissues reduces the AdoMet pool and impacts lignin content and composition. In particular, both NMR analysis and pyrolysis gas chromatography mass spectrometry of lignin in engineered biomass showed relative enrichment of non-methylated p-hydroxycinnamyl (H) units and a reduction of dimethylated syringyl (S) units. This indicates a lower degree of methylation compared to that in wild-type lignin. Quantification of cell wall-bound hydroxycinnamates revealed a reduction of ferulate in AdoMetase transgenic lines. Biomass from transgenic lines, in contrast to that in control plants, exhibits an enrichment of glucose content and a reduction in the degree of hemicellulose glucuronoxylan methylation. We also show that these modifications resulted in a reduction of cell wall recalcitrance, because sugar yield generated by enzymatic biomass saccharification was greater than that of wild-type plants. Considering that transgenic plants show no important diminution of biomass yields, and that heterologous expression of AdoMetase protein can be spatiotemporally optimized, this novel approach provides a valuable option for the improvement of lignocellulosic biomass feedstock.« less

  2. Shading Contributes to the Reduction of Stem Mechanical Strength by Decreasing Cell Wall Synthesis in Japonica Rice (Oryza sativa L.).

    PubMed

    Wu, Longmei; Zhang, Wujun; Ding, Yanfeng; Zhang, Jianwei; Cambula, Elidio D; Weng, Fei; Liu, Zhenghui; Ding, Chengqiang; Tang, She; Chen, Lin; Wang, Shaohua; Li, Ganghua

    2017-01-01

    Low solar radiation caused by industrial development and solar dimming has become a limitation in crop production in China. It is widely accepted that low solar radiation influences many aspects of plant development, including slender, weak stems and susceptibility to lodging. However, the underlying mechanisms are not well understood. To clarify how low solar radiation affects stem mechanical strength formation and lodging resistance, the japonica rice cultivars Wuyunjing23 (lodging-resistant) and W3668 (lodging-susceptible) were grown under field conditions with normal light (Control) and shading (the incident light was reduced by 60%) with a black nylon net. The yield and yield components, plant morphological characteristics, the stem mechanical strength, cell wall components, culm microstructure, gene expression correlated with cellulose and lignin biosynthesis were measured. The results showed that shading significantly reduced grain yield attributed to reduction of spikelets per panicles and grain weight. The stem-breaking strength decreased significantly under shading treatment; consequently, resulting in higher lodging index in rice plant in both varieties, as revealed by decreased by culm diameter, culm wall thickness and increased plant height, gravity center height. Compared with control, cell wall components including non-structural carbohydrate, sucrose, cellulose, and lignin reduced quite higher. With histochemical straining, shading largely reduced lignin deposition in the sclerenchyma cells and vascular bundle cells compared with control, and decreased cellulose deposition in the parenchyma cells of culm tissue in both Wuyunjing23 and W3668. And under shading condition, gene expression involved in secondary cell wall synthesis, OsPAL, OsCOMT, OsCCoAOMT, OsCCR , and OsCAD2 , and primary cell wall synthesis, OsCesA1, OsCesA3 , and OsCesA8 were decreased significantly. These results suggest that gene expression involved in the reduction of lignin and cellulose in both sclerenchyma and parenchyma cells, which attribute to lignin and cellulose in culm tissue and weak mechanical tissue, consequently, result in poor stem strength and higher lodging risks. Highlights : (1) Shading decreases the stem mechanical strength of japonica rice by decreasing non-structural carbohydrate, sucrose, lignin, and cellulose accumulation in culms. (2) The decrease of carbon source under shading condition is the cause for the lower lignin and cellulose accumulation in culm. (3) The expression of genes involved in lignin and primarily cell wall cellulose biosynthesis ( OsCesA1, OsCesA3 , and OsCesA8 ) at the stem formation stage are down-regulated under shading condition, inducing defective cell wall development and poor lodging resistance.

  3. Design and characterisation of a wall motion phantom.

    PubMed

    Dineley, J; Meagher, S; Poepping, T L; McDicken, W N; Hoskins, P R

    2006-09-01

    Arterial wall motion is an essential feature of a healthy cardiovascular system and it is known that wall motion is affected by age and disease. In recent years, methods have been developed for measurement of wall motion with the intention of providing diagnostically useful information. An issue with all of these techniques is the accuracy and variability of both wall motion and derived quantities such as elasticity, which requires the development of suitable test tools. In this paper, a vessel wall phantom is described for use in ultrasound studies of wall motion. The vessel was made from polyvinyl alcohol (PVA) subjected to a freeze-thaw process to form a cryogel (PVA-C). The elastic modulus, acoustic velocity and attenuation coefficient varied from 57 kPa, 1543 m s(-1) and 0.18 dB cm(-1) MHz(-1) for one freeze-thaw cycle to 330 kPa, 1583 m s(-1) and 0.42 dB cm(-1) MHz(-1) for 10 freeze-thaw cycles. Wall motion was effected by the use of pulsatile flow produced from a gear pump. The use of a downstream flow resistor removed gross distortions in the wall motion waveform, possibly by removal of reflected pressure waves. However, a low amplitude 20 Hz oscillation remained, which is unphysiologic and thought to be caused by the vibration of the distended PVA-C vessel.

  4. Segmentation of the common carotid artery with active shape models from 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Jin, Jiaoying; He, Wanji; Yuchi, Ming; Ding, Mingyue

    2012-03-01

    Carotid atherosclerosis is a major cause of stroke, a leading cause of death and disability. In this paper, we develop and evaluate a new segmentation method for outlining both lumen and adventitia (inner and outer walls) of common carotid artery (CCA) from three-dimensional ultrasound (3D US) images for carotid atherosclerosis diagnosis and evaluation. The data set consists of sixty-eight, 17× 2× 2, 3D US volume data acquired from the left and right carotid arteries of seventeen patients (eight treated with 80mg atorvastain and nine with placebo), who had carotid stenosis of 60% or more, at baseline and after three months of treatment. We investigate the use of Active Shape Models (ASMs) to segment CCA inner and outer walls after statin therapy. The proposed method was evaluated with respect to expert manually outlined boundaries as a surrogate for ground truth. For the lumen and adventitia segmentations, respectively, the algorithm yielded Dice Similarity Coefficient (DSC) of 93.6%+/- 2.6%, 91.8%+/- 3.5%, mean absolute distances (MAD) of 0.28+/- 0.17mm and 0.34 +/- 0.19mm, maximum absolute distances (MAXD) of 0.87 +/- 0.37mm and 0.74 +/- 0.49mm. The proposed algorithm took 4.4 +/- 0.6min to segment a single 3D US images, compared to 11.7+/-1.2min for manual segmentation. Therefore, the method would promote the translation of carotid 3D US to clinical care for the fast, safety and economical monitoring of the atherosclerotic disease progression and regression during therapy.

  5. Comparison of Experimental Methods for Estimating Matrix Diffusion Coefficients for Contaminant Transport Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Telfeyan, Katherine Christina; Ware, Stuart Douglas; Reimus, Paul William

    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%,more » and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.« less

  6. Comparison of experimental methods for estimating matrix diffusion coefficients for contaminant transport modeling

    NASA Astrophysics Data System (ADS)

    Telfeyan, Katherine; Ware, S. Doug; Reimus, Paul W.; Birdsell, Kay H.

    2018-02-01

    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.

  7. A critical evaluation of two-equation models for near wall turbulence

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Anderson, E. Clay; Abid, Ridha

    1990-01-01

    A basic theoretical and computational study of two-equation models for near-wall turbulent flows was conducted. Two major problems established for the K-epsilon model are discussed, the lack of natural boundary conditions for the dissipation rate and the appearance of higher-order correlations in the balance of terms for the dissipation rate at the wall. The K-omega equation is shown to have two problems also: an exact viscous term is missing, and the destruction of the dissipation term is not properly damped near the wall. A new K-tau model (where tau = 1/omega is the turbulent time scale) was developed by inclusion of the exact viscous term, and by introduction of new wall damping functions with improved asymptotic behavior. A preliminary test of the new model yields improved predictions for the flat-plate turbulent boundary layer.

  8. Calculation of conversion coefficients for clinical photon spectra using the MCNP code.

    PubMed

    Lima, M A F; Silva, A X; Crispim, V R

    2004-01-01

    In this work, the MCNP4B code has been employed to calculate conversion coefficients from air kerma to the ambient dose equivalent, H*(10)/Ka, for monoenergetic photon energies from 10 keV to 50 MeV, assuming the kerma approximation. Also estimated are the H*(10)/Ka for photon beams produced by linear accelerators, such as Clinac-4 and Clinac-2500, after transmission through primary barriers of radiotherapy treatment rooms. The results for the conversion coefficients for monoenergetic photon energies, with statistical uncertainty <2%, are compared with those in ICRP publication 74 and good agreements were obtained. The conversion coefficients calculated for real clinic spectra transmitted through walls of concrete of 1, 1.5 and 2 m thick, are in the range of 1.06-1.12 Sv Gy(-1).

  9. Visualization of the aneurysm wall: a 7.0-tesla magnetic resonance imaging study.

    PubMed

    Kleinloog, Rachel; Korkmaz, Emine; Zwanenburg, Jaco J M; Kuijf, Hugo J; Visser, Fredy; Blankena, Roos; Post, Jan A; Ruigrok, Ynte M; Luijten, Peter R; Regli, Luca; Rinkel, Gabriel J E; Verweij, Bon H

    2014-12-01

    Risk prediction of rupture of intracranial aneurysms is poor and is based mainly on lumen characteristics. However, characteristics of the aneurysm wall may be more informative predictors. The limited resolution of currently available imaging techniques and the thin aneurysm wall make imaging of wall thickness challenging. To introduce a novel protocol for imaging wall thickness variation using ultra--high-resolution 7.0-Tesla (7.0-T) magnetic resonance imaging (MRI). We studied 33 unruptured intracranial aneurysms in 24 patients with a T1-weighted 3-dimensional magnetization-prepared inversion-recovery turbo-spin-echo whole-brain sequence with a resolution of 0.8 × 0.8 × 0.8 mm. We performed a validation study with a wedge phantom and with 2 aneurysm wall biopsies obtained during aneurysm treatment using ex vivo MRI and histological examination and correlating variations in MRI signal intensity with variations in actual thickness of the aneurysm wall. In vivo, the aneurysm wall was visible in 28 of the 33 aneurysms. Variation in signal intensity was observed in all visible aneurysm walls. Ex vivo MRI showed variation in signal intensity across the wall of the biopsies, similar to that observed on the in vivo images. Signal intensity and actual thickness in both biopsies had a linear correlation, with Pearson correlation coefficients of 0.85 and 0.86. Unruptured intracranial aneurysm wall and its variation in thickness can be visualized with 7.0-T MRI. Aneurysm wall thickness variation can now be further studied as a risk factor for rupture in prospective studies.

  10. Scattering of electromagnetic plane wave from a perfect electric conducting strip placed at interface of topological insulator-chiral medium

    NASA Astrophysics Data System (ADS)

    Shoukat, Sobia; Naqvi, Qaisar A.

    2016-12-01

    In this manuscript, scattering from a perfect electric conducting strip located at planar interface of topological insulator (TI)-chiral medium is investigated using the Kobayashi Potential method. Longitudinal components of electric and magnetic vector potential in terms of unknown weighting function are considered. Use of related set of boundary conditions yields two algebraic equations and four dual integral equations (DIEs). Integrand of two DIEs are expanded in terms of the characteristic functions with expansion coefficients which must satisfy, simultaneously, the discontinuous property of the Weber-Schafheitlin integrals, required edge and boundary conditions. The resulting expressions are then combined with algebraic equations to express the weighting function in terms of expansion coefficients, these expansion coefficients are then substituted in remaining DIEs. The projection is applied using the Jacobi polynomials. This treatment yields matrix equation for expansion coefficients which is solved numerically. These unknown expansion coefficients are used to find the scattered field. The far zone scattering width is investigated with respect to different parameters of the geometry, i.e, chirality of chiral medium, angle of incidence, size of the strip. Significant effects of different parameters including TI parameter on the scattering width are noted.

  11. Rate Coefficients for Reactions of Ethynyl Radical (C2H) With HCN and CH3CN: Implications for the Formation of Comples Nitriles on Titan

    NASA Technical Reports Server (NTRS)

    Hoobler, Ray J.; Leone, Stephen R.

    1997-01-01

    Rate coefficients for the reactions of C2H + HCN yields products and C2H + CH3CN yields products have been measured over the temperature range 262-360 K. These experiments represent an ongoing effort to accurately measure reaction rate coefficients of the ethynyl radical, C2H, relevant to planetary atmospheres such as those of Jupiter and Saturn and its satellite Titan. Laser photolysis of C2H2 is used to produce C2H, and transient infrared laser absorption is employed to measure the decay of C2H to obtain the subsequent reaction rates in a transverse flow cell. Rate constants for the reaction C2H + HCN yields products are found to increase significantly with increasing temperature and are measured to be (3.9-6.2) x 10(exp 13) cm(exp 3) molecules(exp -1) s(exp -1) over the temperature range of 297-360 K. The rate constants for the reaction C2H + CH3CN yields products are also found to increase substantially with increasing temperature and are measured to be (1.0-2.1) x 10(exp -12) cm(exp 3) molecules(exp -1) s(exp -1) over the temperature range of 262-360 K. For the reaction C2H + HCN yields products, ab initio calculations of transition state structures are used to infer that the major products form via an addition/elimination pathway. The measured rate constants for the reaction of C2H + HCN yields products are significantly smaller than values currently employed in photochemical models of Titan, which will affect the HC3N distribution.

  12. Anomalous temperature dependence of yield stress and work hardening coefficient of B2-stabilized NiTi alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosoda, Hideki; Mishima, Yoshinao; Suzuki, Tomoo

    Yield stress and work hardening coefficient of B2-stabilized NiTi alloys are investigated using compression tests. Compositions of NiTi alloys are based on Ni-49mol.%Ti, to which Cr, Co and Al are chosen as ternary elements which reduce martensitic transformation temperatures of the B2 phase. Mechanical tests are carried out in liquid nitrogen at 77 K, air at room temperature (R.T.) and in an argon atmosphere between 473 K and 873 K. Only at 77 K, some alloys show characteristic stress-strain curves which indicate stress induced martensitic transformation (SIMT), but the others do not. Work hardening coefficient is found to be betweenmore » 2 and 11GPa in all the test temperature range. The values are extremely high compared with Young`s modulus of B2 NiTi. Yield stress and work hardening coefficient increase with test temperature between R.T. and about 650 K in most alloys. The anomalous temperature dependence of mechanical properties is not related to SIMT but to precipitation hardening and/or anomalous dislocation motion similar to B2-type CoTi. Solution hardening by adding ternary elements is evaluated to be small for Cr and Co additions, and large for Al addition, depending on difference in atomic size of the ternary element with respect to Ni or Ti.« less

  13. Skidding Coefficients on an Alluvial Soil

    Treesearch

    W. N. Darwin

    1965-01-01

    The Southern Hardwoods Laboratory is studying the influence of ground conditions and load characteristics on the performance of skidding vehicles in southern bottom lands. The exploratory test was aimed at evaluating the effects of bark on skidding coefficients, but it also yielded information on other log characteristics and on effects of soil moisture.

  14. An Application of Practical Strategies in Assessing the Criterion-Related Validity of Credentialing Examinations.

    ERIC Educational Resources Information Center

    Fidler, James R.

    1993-01-01

    Criterion-related validities of 2 laboratory practitioner certification examinations for medical technologists (MTs) and medical laboratory technicians (MLTs) were assessed for 81 MT and 70 MLT examinees. Validity coefficients are presented for both measures. Overall, summative ratings yielded stronger validity coefficients than ratings based on…

  15. Merchantable sawlog and bole-length equations for the Northeastern United States

    Treesearch

    Daniel A. Yaussy; Martin E. Dale; Martin E. Dale

    1991-01-01

    A modified Richards growth model is used to develop species-specific coefficients for equations estimating the merchantable sawlog and bole lengths of trees from 25 species groups common to the Northeastern United States. These regression coefficients have been incorporated into the growth-and-yield simulation software, NE-TWIGS.

  16. Multi-threshold de-noising of electrical imaging logging data based on the wavelet packet transform

    NASA Astrophysics Data System (ADS)

    Xie, Fang; Xiao, Chengwen; Liu, Ruilin; Zhang, Lili

    2017-08-01

    A key problem of effectiveness evaluation for fractured-vuggy carbonatite reservoir is how to accurately extract fracture and vug information from electrical imaging logging data. Drill bits quaked during drilling and resulted in rugged surfaces of borehole walls and thus conductivity fluctuations in electrical imaging logging data. The occurrence of the conductivity fluctuations (formation background noise) directly affects the fracture/vug information extraction and reservoir effectiveness evaluation. We present a multi-threshold de-noising method based on wavelet packet transform to eliminate the influence of rugged borehole walls. The noise is present as fluctuations in button-electrode conductivity curves and as pockmarked responses in electrical imaging logging static images. The noise has responses in various scales and frequency ranges and has low conductivity compared with fractures or vugs. Our de-noising method is to decompose the data into coefficients with wavelet packet transform on a quadratic spline basis, then shrink high-frequency wavelet packet coefficients in different resolutions with minimax threshold and hard-threshold function, and finally reconstruct the thresholded coefficients. We use electrical imaging logging data collected from fractured-vuggy Ordovician carbonatite reservoir in Tarim Basin to verify the validity of the multi-threshold de-noising method. Segmentation results and extracted parameters are shown as well to prove the effectiveness of the de-noising procedure.

  17. Numerical investigation of rarefaction effects in the vicinity of a sharp leading edge

    NASA Astrophysics Data System (ADS)

    Pan, Shaowu; Gao, Zhenxun; Lee, Chunhian

    2014-12-01

    This paper presents a study of rarefaction effect on hypersonic flow over a sharp leading edge. Both continuum approach and kinetic method: a widely spread commercial Computational Fluid Dynamics-Navior-Stokes-Fourier (CFD-NSF) software - Fluent together with a direct simulation Monte Carlo (DSMC) code developed by the authors are employed for simulation of transition regime with Knudsen number ranging from 0.005 to 0.2. It is found that Fluent can predict the wall fluxes in the case of hypersonic argon flow over the sharp leading edge for the lowest Kn case (Kn = 0.005) in current paper while for other cases it also has a good agreement with DSMC except at the location near the sharp leading edge. Among all of the wall fluxes, it is found that coefficient of pressure is the most sensitive to rarefaction while heat transfer is the least one. A parameter based on translational nonequilibrium and a cut-off value of 0.34 is proposed for continuum breakdown in this paper. The structure of entropy and velocity profile in boundary layer is analyzed. Also, it is found that the ratio of heat transfer coefficient to skin friction coefficient remains uniform along the surface for the four cases in this paper.

  18. Derivation and application of an analytical rock displacement solution on rectangular cavern wall using the inverse mapping method.

    PubMed

    Gao, Mingzhong; Yu, Bin; Qiu, Zhiqiang; Yin, Xiangang; Li, Shengwei; Liu, Qiang

    2017-01-01

    Rectangular caverns are increasingly used in underground engineering projects, the failure mechanism of rectangular cavern wall rock is significantly different as a result of the cross-sectional shape and variations in wall stress distributions. However, the conventional computational method always results in a long-winded computational process and multiple displacement solutions of internal rectangular wall rock. This paper uses a Laurent series complex method to obtain a mapping function expression based on complex variable function theory and conformal transformation. This method is combined with the Schwarz-Christoffel method to calculate the mapping function coefficient and to determine the rectangular cavern wall rock deformation. With regard to the inverse mapping concept, the mapping relation between the polar coordinate system within plane ς and a corresponding unique plane coordinate point inside the cavern wall rock is discussed. The disadvantage of multiple solutions when mapping from the plane to the polar coordinate system is addressed. This theoretical formula is used to calculate wall rock boundary deformation and displacement field nephograms inside the wall rock for a given cavern height and width. A comparison with ANSYS numerical software results suggests that the theoretical solution and numerical solution exhibit identical trends, thereby demonstrating the method's validity. This method greatly improves the computing accuracy and reduces the difficulty in solving for cavern boundary and internal wall rock displacements. The proposed method provides a theoretical guide for controlling cavern wall rock deformation failure.

  19. Derivation and application of an analytical rock displacement solution on rectangular cavern wall using the inverse mapping method

    PubMed Central

    Gao, Mingzhong; Qiu, Zhiqiang; Yin, Xiangang; Li, Shengwei; Liu, Qiang

    2017-01-01

    Rectangular caverns are increasingly used in underground engineering projects, the failure mechanism of rectangular cavern wall rock is significantly different as a result of the cross-sectional shape and variations in wall stress distributions. However, the conventional computational method always results in a long-winded computational process and multiple displacement solutions of internal rectangular wall rock. This paper uses a Laurent series complex method to obtain a mapping function expression based on complex variable function theory and conformal transformation. This method is combined with the Schwarz-Christoffel method to calculate the mapping function coefficient and to determine the rectangular cavern wall rock deformation. With regard to the inverse mapping concept, the mapping relation between the polar coordinate system within plane ς and a corresponding unique plane coordinate point inside the cavern wall rock is discussed. The disadvantage of multiple solutions when mapping from the plane to the polar coordinate system is addressed. This theoretical formula is used to calculate wall rock boundary deformation and displacement field nephograms inside the wall rock for a given cavern height and width. A comparison with ANSYS numerical software results suggests that the theoretical solution and numerical solution exhibit identical trends, thereby demonstrating the method’s validity. This method greatly improves the computing accuracy and reduces the difficulty in solving for cavern boundary and internal wall rock displacements. The proposed method provides a theoretical guide for controlling cavern wall rock deformation failure. PMID:29155892

  20. Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites

    NASA Astrophysics Data System (ADS)

    Hewitt, Corey A.; Montgomery, David S.; Barbalace, Ryan L.; Carlson, Rowland D.; Carroll, David L.

    2014-05-01

    By appropriately selecting the carbon nanotube type and n-type dopant for the conduction layers in a multilayered carbon nanotube composite, the total device thermoelectric power output can be increased significantly. The particular materials chosen in this study were raw single walled carbon nanotubes for the p-type layers and polyethylenimine doped single walled carbon nanotubes for the n-type layers. The combination of these two conduction layers leads to a single thermocouple Seebeck coefficient of 96 ± 4 μVK-1, which is 6.3 times higher than that previously reported. This improved Seebeck coefficient leads to a total power output of 14.7 nW per thermocouple at the maximum temperature difference of 50 K, which is 44 times the power output per thermocouple for the previously reported results. Ultimately, these thermoelectric power output improvements help to increase the potential use of these lightweight, flexible, and durable organic multilayered carbon nanotube based thermoelectric modules in low powered electronics applications, where waste heat is available.

  1. Weighted sum of gray gases model optimization for numerical investigations of processes inside pulverized coal-fired furnaces

    NASA Astrophysics Data System (ADS)

    Crnomarkovic, Nenad; Belosevic, Srdjan; Tomanovic, Ivan; Milicevic, Aleksandar

    2017-12-01

    The effects of the number of significant figures (NSF) in the interpolation polynomial coefficients (IPCs) of the weighted sum of gray gases model (WSGM) on results of numerical investigations and WSGM optimization were investigated. The investigation was conducted using numerical simulations of the processes inside a pulverized coal-fired furnace. The radiative properties of the gas phase were determined using the simple gray gas model (SG), two-term WSGM (W2), and three-term WSGM (W3). Ten sets of the IPCs with the same NSF were formed for every weighting coefficient in both W2 and W3. The average and maximal relative difference values of the flame temperatures, wall temperatures, and wall heat fluxes were determined. The investigation showed that the results of numerical investigations were affected by the NSF unless it exceeded certain value. The increase in the NSF did not necessarily lead to WSGM optimization. The combination of the NSF (CNSF) was the necessary requirement for WSGM optimization.

  2. Experimental study of laminar forced convective heat transfer of deionized water based copper (I) oxide nanofluids in a tube with constant wall heat flux

    NASA Astrophysics Data System (ADS)

    Umer, Asim; Naveed, Shahid; Ramzan, Naveed

    2016-10-01

    Nanofluids, having 1-100 nm size particles in any base fluid are promising fluid for heat transfer intensification due to their enhanced thermal conductivity as compared with the base fluid. The forced convection of nanofluids is the major practical application in heat transfer equipments. In this study, heat transfer enhancements at constant wall heat flux under laminar flow conditions were investigated. Nanofluids of different volume fractions (1, 2 and 4 %) of copper (I) oxide nanoparticles in deionized water were prepared using two step technique under mechanical mixing and ultrasonication. The results were investigated by increasing the Reynolds number of the nanofluids at constant heat flux. The trends of Nusselt number variation with dimensionless length (X/D) and Reynolds numbers were studied. It was observed that heat transfer coefficient increases with increases particles volume concentration and Reynolds number. The maximum enhancement in heat transfer coefficient of 61 % was observed with 4 % particle volume concentration at Reynolds number (Re ~ 605).

  3. A study of the flow boiling heat transfer in an annular heat exchanger with a mini gap

    NASA Astrophysics Data System (ADS)

    Musiał, Tomasz; Piasecka, Magdalena; Hożejowska, Sylwia

    In this paper the research on flow boiling heat transfer in an annular mini gap was discussed. A one- dimensional mathematical approach was proposed to describe stationary heat transfer in the gap. The mini gap 1 mm wide was created between a metal pipe with enhanced exterior surface and an external tempered glass pipe positioned along the same axis. The experimental test stand consists of several systems: the test loop in which distilled water circulates, the data and image acquisition system and the supply and control system. Known temperature distributions of the metal pipe with enhanced surface and of the working fluid helped to determine, from the Robin boundary condition, the local heat transfer coefficients at the fluid - heated surface contact. In the proposed mathematical model it is assumed that the cylindrical wall is a planar multilayer wall. The numerical results are presented on a chart as function of the heat transfer coefficient along the length of the mini gap.

  4. Analysis of supersonic plug nozzle flowfield and heat transfer

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.; Sheu, W. H.

    1988-01-01

    A number of problems pertaining to the flowfield in a plug nozzle, designed as a supersonic thruster nozzle, with provision for cooling the plug with a coolant stream admitted parallel to the plug wall surface, were studied. First, an analysis was performed of the inviscid, nonturbulent, gas dynamic interaction between the primary hot stream and the secondary coolant stream. A numerical prediction code for establishing the resulting flowfield with a dividing surface between the two streams, for various combinations of stagnation and static properties of the two streams, was utilized for illustrating the nature of interactions. Secondly, skin friction coefficient, heat transfer coefficient and heat flux to the plug wall were analyzed under smooth flow conditions (without shocks or separation) for various coolant flow conditions. A numerical code was suitably modified and utilized for the determination of heat transfer parameters in a number of cases for which data are available. Thirdly, an analysis was initiated for modeling turbulence processes in transonic shock-boundary layer interaction without the appearance of flow separation.

  5. Relevance of octanol-water distribution measurements to the potential ecological uptake of multi-walled carbon nanotubes.

    PubMed

    Petersen, Elijah J; Huang, Qingguo; Weber, Walter J

    2010-05-01

    Many potential applications of carbon nanotubes (CNTs) require various physicochemical modifications prior to use, suggesting that nanotubes having varied properties may pose risks in ecosystems. A means for estimating bioaccumulation potentials of variously modified CNTs for incorporation in predictive fate models would be highly valuable. An approach commonly used for sparingly soluble organic contaminants, and previously suggested for use as well with carbonaceous nanomaterials, involves measurement of their octanol-water partitioning coefficient (KOW) values. To test the applicability of this approach, a methodology was developed to measure apparent octanol-water distribution behaviors for purified multi-walled carbon nanotubes and those acid treated. Substantial differences in apparent distribution coefficients between the two types of CNTs were observed, but these differences did not influence accumulation by either earthworms (Eisenia foetida) or oligochaetes (Lumbriculus variegatus), both of which showed minimal nanotube uptake for both types of nanotubes. The results suggest that traditional distribution behavior-based KOW approaches are likely not appropriate for predicting CNT bioaccumulation. Copyright (c) 2010 SETAC.

  6. Selective electrochemical reduction of CO2 to CO with a cobalt chlorin complex adsorbed on multi-walled carbon nanotubes in water.

    PubMed

    Aoi, Shoko; Mase, Kentaro; Ohkubo, Kei; Fukuzumi, Shunichi

    2015-06-25

    Electrocatalytic reduction of CO2 occurred efficiently using a glassy carbon electrode modified with a cobalt(II) chlorin complex adsorbed on multi-walled carbon nanotubes at an applied potential of -1.1 V vs. NHE to yield CO with a Faradaic efficiency of 89% with hydrogen production accounting for the remaining 11% at pH 4.6.

  7. Improvement in Saccharification Yield of Mixed Rumen Enzymes by Identification of Recalcitrant Cell Wall Constituents Using Enzyme Fingerprinting.

    PubMed

    Badhan, Ajay; Wang, Yu-Xi; Gruninger, Robert; Patton, Donald; Powlowski, Justin; Tsang, Adrian; McAllister, Tim A

    2015-01-01

    Identification of recalcitrant factors that limit digestion of forages and the development of enzymatic approaches that improve hydrolysis could play a key role in improving the efficiency of meat and milk production in ruminants. Enzyme fingerprinting of barley silage fed to heifers and total tract indigestible fibre residue (TIFR) collected from feces was used to identify cell wall components resistant to total tract digestion. Enzyme fingerprinting results identified acetyl xylan esterases as key to the enhanced ruminal digestion. FTIR analysis also suggested cross-link cell wall polymers as principal components of indigested fiber residues in feces. Based on structural information from enzymatic fingerprinting and FTIR, enzyme pretreatment to enhance glucose yield from barley straw and alfalfa hay upon exposure to mixed rumen-enzymes was developed. Prehydrolysis effects of recombinant fungal fibrolytic hydrolases were analyzed using microassay in combination with statistical experimental design. Recombinant hemicellulases and auxiliary enzymes initiated degradation of plant structural polysaccharides upon application and improved the in vitro saccharification of alfalfa and barley straw by mixed rumen enzymes. The validation results showed that microassay in combination with statistical experimental design can be successfully used to predict effective enzyme pretreatments that can enhance plant cell wall digestion by mixed rumen enzymes.

  8. Effects of Plant Growth Hormones on Mucor indicus Growth and Chitosan and Ethanol Production.

    PubMed

    Safaei, Zahra; Karimi, Keikhosro; Golkar, Poorandokht; Zamani, Akram

    2015-07-22

    The objective of this study was to investigate the effects of indole-3-acetic acid (IAA) and kinetin (KIN) on Mucor indicus growth, cell wall composition, and ethanol production. A semi-synthetic medium, supplemented with 0-5 mg/L hormones, was used for the cultivations (at 32 °C for 48 h). By addition of 1 mg/L of each hormone, the biomass and ethanol yields were increased and decreased, respectively. At higher levels, however, an inverse trend was observed. The glucosamine fraction of the cell wall, as a representative for chitosan, followed similar but sharper changes, compared to the biomass. The highest level was 221% higher than that obtained without hormones. The sum of glucosamine and N-acetyl glucosamine (chitin and chitosan) was noticeably enhanced in the presence of the hormones. Increase of chitosan was accompanied by a decrease in the phosphate content, with the lowest phosphate (0.01 g/g cell wall) being obtained when the chitosan was at the maximum (0.45 g/g cell wall). In conclusion, IAA and KIN significantly enhanced the M. indicus growth and chitosan production, while at the same time decreasing the ethanol yield to some extent. This study shows that plant growth hormones have a high potential for the improvement of fungal chitosan production by M. indicus.

  9. National Transonic Facility Wall Pressure Calibration Using Modern Design of Experiments (Invited)

    NASA Technical Reports Server (NTRS)

    Underwood, Pamela J.; Everhart, Joel L.; DeLoach, Richard

    2001-01-01

    The Modern Design of Experiments (MDOE) has been applied to wind tunnel testing at NASA Langley Research Center for several years. At Langley, MDOE has proven to be a useful and robust approach to aerodynamic testing that yields significant reductions in the cost and duration of experiments while still providing for the highest quality research results. This paper extends its application to include empty tunnel wall pressure calibrations. These calibrations are performed in support of wall interference corrections. This paper will present the experimental objectives, and the theoretical design process. To validate the tunnel-empty-calibration experiment design, preliminary response surface models calculated from previously acquired data are also presented. Finally, lessons learned and future wall interference applications of MDOE are discussed.

  10. Development of buoyant currents in yield stress fluids

    NASA Astrophysics Data System (ADS)

    Rossi, P.; Karimfazli, I.

    2017-11-01

    Infinitesimal perturbations are known to decay in a motionless yield stress fluid. We present experimental evidence to reveal other mechanisms promoting free advection from a motionless background state. Development of natural convection in a cavity with differentially heated side-walls is investigated as a benchmark. Velocity and temperature fields are measured using particle image velocimetry/thermometry. We examine time evolution of the flow, compare experimental findings with theoretical predictions and comment on the striking features brought about by the yield stress.

  11. Recovery of mechanical pressure in a gas of underdamped active dumbbells with Brownian noise

    NASA Astrophysics Data System (ADS)

    Joyeux, Marc

    2017-05-01

    In contrast with a gas at thermodynamic equilibrium, the mean force exerted on a wall by a gas of active particles usually depends on the confining potential, thereby preventing a proper definition of mechanical pressure. In this paper, we investigate numerically the properties of a gas of underdamped self-propelled dumbbells subject to Brownian noise of increasing intensity, in order to understand how the notion of pressure is recovered as noise progressively masks the effects of self-propulsion and the system approaches thermodynamic equilibrium. The simulations performed for a mobile asymmetric wall separating two chambers containing an equal number of active dumbbells highlight some subtle and unexpected properties of the system. First, Brownian noise of moderate intensity is sufficient to let mean forces equilibrate for small values of the damping coefficient, while much stronger noise is required for larger values of the damping coefficient. Moreover, the displacement of the mean position of the wall upon increase of the intensity of the noise is not necessarily monotonous and may instead display changes of direction. Both facts actually reflect the existence of several mechanisms leading to the rupture of force balance, which tend to displace the mean position of the wall towards different directions and display different robustness against an increase of the intensity of Brownian noise. This work therefore provides a clear illustration of the fact that driving an autonomous system towards (or away from) thermodynamic equilibrium may not be a straightforward process, but may instead proceed through the variations of the relative weights of several conflicting mechanisms.

  12. Handheld echocardiography during hospitalization for acute myocardial infarction.

    PubMed

    Cullen, Michael W; Geske, Jeffrey B; Anavekar, Nandan S; Askew, J Wells; Lewis, Bradley R; Oh, Jae K

    2017-11-01

    Handheld echocardiography (HHE) is concordant with standard transthoracic echocardiography (TTE) in a variety of settings but has not been thoroughly compared to traditional TTE in patients with acute myocardial infarction (AMI). Completed by experienced operators, HHE provides accurate diagnostic capabilities compared with standard TTE in AMI patients. This study prospectively enrolled patients admitted to the coronary care unit with AMI. Experienced sonographers performed HHE with a V-scan. All patients underwent clinical TTE. Each HHE was interpreted by 2 experts blinded to standard TTE. Agreement was assessed with κ statistics and concordance correlation coefficients. Analysis included 82 patients (mean age, 66 years; 74% male). On standard TTE, mean left ventricular (LV) ejection fraction was 46%. Correlation coefficients between HHE and TTE were 0.75 (95% confidence interval: 0.66 to 0.82) for LV ejection fraction and 0.69 (95% confidence interval: 0.58 to 0.77) for wall motion score index. The κ statistics ranged from 0.47 to 0.56 for LV enlargement, 0.55 to 0.79 for mitral regurgitation, and 0.44 to 0.57 for inferior vena cava dilatation. The κ statistics were highest for the anterior (0.81) and septal (0.71) apex and lowest for the mid inferolateral (0.36) and basal inferoseptal (0.36) walls. In patients with AMI, HHE and standard TTE demonstrate good correlation for LV function and wall motion. Agreement was less robust for structural abnormalities and specific wall segments. In experienced hands, HHE can provide a focused assessment of LV function in patients hospitalized with AMI; however, HHE should not substitute for comprehensive TTE. © 2017 Wiley Periodicals, Inc.

  13. Reliability and Validity of Nonradiologic Measures of Forward Flexed Posture in Parkinson Disease.

    PubMed

    Nair, Prajakta; Bohannon, Richard W; Devaney, Laurie; Maloney, Catherine; Romano, Alexis

    2017-03-01

    To examine the intertester reliability and validity of 5 nonradiologic measures of forward flexed posture in individuals with Parkinson disease (PD). Cross-sectional observational study. University outpatient facility and community centers. Individuals (N=28) with PD with Hoehn and Yahr scores of 1 through 4. Not applicable. Occiput to wall status, tragus to wall distance, C7 to wall distance, photographically derived trunk flexion angle, and inclinometric kyphosis measure. Participants were older adults (mean, 69.7±10.6y) with a 14-month to 15-year (mean, 5.9±3.5y) history of PD. Intertester reliability was excellent for all measures (κ=.89 [cued condition] and 1.0 [relaxed condition] for occiput to wall status; intraclass correlation coefficients, .779-.897 for tragus to wall distance, C7 to wall distance, flexion angle, and inclinometric kyphosis measure). Convergent validity was supported for all measures by significant correlations between the same measures obtained during relaxed and cued conditions (eg, occiput to wall relaxed and cued) and for most measures by significant correlations between measures obtained under the same condition (eg, occiput to wall cued and tragus to wall cued). Significant correlations between tragus to wall distance, C7 to wall distance, flexion angle, and inclinometric kyphosis measure and the Unified Parkinson Disease Rating Scale item 28 (posture) also supported convergent validity. Significant differences between tragus to wall distance, C7 to wall distance, and inclinometric kyphosis measure values under relaxed and cued conditions supported known condition validity. Known group validity was demonstrated by significant differences in tragus to wall distance, C7 to wall distance, and inclinometric kyphosis measure obtained from individuals able and individuals unable to touch their occiput to wall when cued to stand tall. Tragus to wall distance, C7 to wall distance, and inclinometric kyphosis measure are reliable and valid nonradiologic measures of forward flexed posture in PD. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. Skin-Friction Measurements in Incompressible Flow

    NASA Technical Reports Server (NTRS)

    Smith, Donald W.; Walker, John H.

    1959-01-01

    Experiments have been conducted to measure the local surface-shear stress and the average skin-friction coefficient in Incompressible flow for a turbulent boundary layer on a smooth flat plate having zero pressure gradient. Data were obtained for a range of Reynolds numbers from 1 million to 45 million. The local surface-shear stress was measured by a floating-element skin-friction balance and also by a calibrated total head tube located on the surface of the test wall. The average skin-friction coefficient was obtained from boundary-layer velocity profiles.

  15. The utilization of brick walls for resisting earthquake in building technology

    NASA Astrophysics Data System (ADS)

    Tarigan, J.; Benedicta, C.

    2018-03-01

    Many structures in Indonesia use reinforced concrete frames with brick walls as their infill. Commonly, the engineers consider brick walls as the partitions and count them as the non-structural elements in the structure design. However, brick walls are capable of resisting earthquake by yielding high stiffness to the structure in case the brick walls are integrated well with the frames. It will reduce the non-structural destructions that happen to structures which is one of the most frequently impacts in the earthquake. This paper will take the effects of applying brick walls as the structural elements up by comparing it with the structure using brick walls as the partitions. The modeling of the brick walls uses the equivalent spectrum method meanwhile the seismic analysis uses the respon spectrum method. The utilization of brick walls can cause the decrement of the natural period to 42%. It also reduce the structure displacements to 53% in X-direction and 67% in Y-direction and the story drifts to 57% in X-direction and 71% in Y-direction. Otherwise, it causes the increment of the base shear only up to 3% in X-direction and 7% in Y-direction.

  16. Anchorage Behaviors of Frictional Tieback Anchors in Silty Sand

    NASA Astrophysics Data System (ADS)

    Hsu, Shih-Tsung; Hsiao, Wen-Ta; Chen, Ke-Ting; Hu, Wen-Chi; Wu, Ssu-Yi

    2017-06-01

    Soil anchors are extensively used in geotechnical applications, most commonly serve as tieback walls in deep excavations. To investigate the anchorage mechanisms of this tieback anchor, a constitutive model that considers both strain hardening and softening and volume dilatancy entitled SHASOVOD model, and FLAC3D software are used to perform 3-D numerical analyses. The results from field anchor tests are compared with those calculated by numerical analyses to enhance the applicability of the numerical method. After the calibration, this research carried out the parameter studies by numerical analyses. The numerical results reveal that whether the yield of soil around an anchor develops to ground surface and/or touches the diaphragm wall depending on the overburden depth H and the embedded depth Z of an anchor, this study suggests the minimum overburden and embedded depths to avoid the yield of soils develop to ground surface and/or touch the diaphragm wall. When the embedded depth, overburden depth or fixed length of an anchor increases, the anchorage capacity also increases. Increasing fixed length should be the optimum method to increase the anchorage capacity for fixed length less than 20m. However, when the fixed length of an anchor exceeds 30 m, the increasing rate of anchorage capacity per fixed length decreases, and progressive yield occurs obviously between the fixed length and surrounding soil.

  17. Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content.

    PubMed

    Waclawovsky, Alessandro J; Sato, Paloma M; Lembke, Carolina G; Moore, Paul H; Souza, Glaucia M

    2010-04-01

    An increasing number of plant scientists, including breeders, agronomists, physiologists and molecular biologists, are working towards the development of new and improved energy crops. Research is increasingly focused on how to design crops specifically for bioenergy production and increased biomass generation for biofuel purposes. The most important biofuel to date is bioethanol produced from sugars (sucrose and starch). Second generation bioethanol is also being targeted for studies to allow the use of the cell wall (lignocellulose) as a source of carbon. If a crop is to be used for bioenergy production, the crop should be high yielding, fast growing, low lignin content and requiring relatively small energy inputs for its growth and harvest. Obtaining high yields in nonprime agricultural land is a key for energy crop development to allow sustainability and avoid competition with food production. Sugarcane is the most efficient bioenergy crop of tropical and subtropical regions, and biotechnological tools for the improvement of this crop are advancing rapidly. We focus this review on the studies of sugarcane genes associated with sucrose content, biomass and cell wall metabolism and the preliminary physiological characterization of cultivars that contrast for sugar and biomass yield.

  18. Ozone deposition velocities, reaction probabilities and product yields for green building materials

    NASA Astrophysics Data System (ADS)

    Lamble, S. P.; Corsi, R. L.; Morrison, G. C.

    2011-12-01

    Indoor surfaces can passively remove ozone that enters buildings, reducing occupant exposure without an energy penalty. However, reactions between ozone and building surfaces can generate and release aerosols and irritating and carcinogenic gases. To identify desirable indoor surfaces the deposition velocity, reaction probability and carbonyl product yields of building materials considered green (listed, recycled, sustainable, etc.) were quantified. Nineteen separate floor, wall or ceiling materials were tested in a 10 L, flow-through laboratory reaction chamber. Inlet ozone concentrations were maintained between 150 and 200 ppb (generally much lower in chamber air), relative humidity at 50%, temperature at 25 °C and exposure occurred over 24 h. Deposition velocities ranged from 0.25 m h -1 for a linoleum style flooring up to 8.2 m h -1 for a clay based paint; reaction probabilities ranged from 8.8 × 10 -7 to 6.9 × 10 -5 respectively. For all materials, product yields of C 1 thru C 12 saturated n-aldehydes, plus acetone ranged from undetectable to greater than 0.70 The most promising material was a clay wall plaster which exhibited a high deposition velocity (5.0 m h -1) and a low product yield (

  19. Characterization of Natural Organic Matter in Conventional Water Treatment Processes and Evaluation of THM Formation with Chlorine

    PubMed Central

    Özdemır, Kadir

    2014-01-01

    This study investigates the fractions of natural organic matter (NOM) and trihalomethane (THM) formation after chlorination in samples of raw water and the outputs from ozonation, coagulation-flocculation, and conventional filtration treatment units. All the water samples are passed through various ultrafiltration (UF) membranes. UF membranes with different molecular size ranges based on apparent molecular weight (AMW), such as 1000, 3000, 10,000, and 30,000 Daltons (Da), are commonly used. The NOM fraction with AMW < 1000 Da (1 K) is the dominant fraction within all the fractionated water samples. Its maximum percentage is 85.86% after the filtration process and the minimum percentage is 65.01% in raw water samples. The total THM (TTHM) yield coefficients range from 22.5 to 42 μg-TTHM/mg-DOC in all fractionated samples, which is related to their specific ultraviolet Absorbance (SUVA) levels. As the molecular weight of the fractions decreased, the TTHM yield coefficients increased. The NOM fractions with AMW values less than 1 K had lower SUVA values (<3 L/mg·m) for all treatment stages and also they had higher yield of TTHM per unit of DOC. The NOM fraction with AMW < 1 K for chlorinated raw water samples has the highest yield coefficient (42 μg-TTHM/mg-DOC). PMID:24558323

  20. Tabulation of hybrid theory calculated e-N2 vibrational and rotational cross sections

    NASA Technical Reports Server (NTRS)

    Chandra, N.; Temkin, A.

    1976-01-01

    Vibrational excitation cross sections of N2 by electron impact are tabulated. Integrated cross sections are given for transitions v yields v prime where o=or v=or 8 in the energy range 0.1 eV=or E=or 10 eV. The energy grid is chosen to be most dense in the resonance region (2 to 4 eV) so that the substructure is present in the numerical results. Coefficients in the angular distribution formula (differential scattering cross section) for transitions v=0 yields v prime = or 8 are also numerically given over the same grid of energies. Simultaneous rotation-vibration coefficients are also given for transitions v=o,j=o; 1 yields v prime=o, j=o,2,4; 1,3,5. All results are obtained from the hybrid theory.

  1. Wall shear measurement in sand-water mixture flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yucel, O.; Grad, W.H.

    1975-07-01

    The wall shear stress was measured in clear-water and sand-water mixture flows with the use of a flush-mounting hot-film shear-sensor. Data were obtained with 2 shear-sensors and 2 different sands (d50 = 0.45 mm and d50 = 0.88 mm) with solids concentrations of up to Cmax = 1.6% by vol, and for flow Reynolds number of 10/sup 5/ < RD < 6 x 10/sup 5/. The measured sensor wall shear stresses were compared with the true wall shear stresses obtained with the energy head loss measurements conducted in a pipeline system. The results of the tests in the clear-water flowsmore » confirmed the relationship between the sensor power output, Ps, and the wall shear stress, tauo, given by tauo1/3 = APs + B, in which A and B are calibration coefficients. The tests with the low-concentration sand-water mixtures in a vertical pipe indicated that for the present range of experiments, sensor power outputs with the mixtures exceeded those for clear-water by an average of 5%. It is shown that the shear sensors are delicate but accurate instruments that can be used for the measurement of the wall shear stress. (13 refs.)« less

  2. The validation of a swimming turn wall-contact-time measurement system: a touchpad application reliability study.

    PubMed

    Brackley, Victoria; Ball, Kevin; Tor, Elaine

    2018-05-12

    The effectiveness of the swimming turn is highly influential to overall performance in competitive swimming. The push-off or wall contact, within the turn phase, is directly involved in determining the speed the swimmer leaves the wall. Therefore, it is paramount to develop reliable methods to measure the wall-contact-time during the turn phase for training and research purposes. The aim of this study was to determine the concurrent validity and reliability of the Pool Pad App to measure wall-contact-time during the freestyle and backstroke tumble turn. The wall-contact-times of nine elite and sub-elite participants were recorded during their regular training sessions. Concurrent validity statistics included the standardised typical error estimate, linear analysis and effect sizes while the intraclass correlating coefficient (ICC) was used for the reliability statistics. The standardised typical error estimate resulted in a moderate Cohen's d effect size with an R 2 value of 0.80 and the ICC between the Pool Pad and 2D video footage was 0.89. Despite these measurement differences, the results from this concurrent validity and reliability analyses demonstrated that the Pool Pad is suitable for measuring wall-contact-time during the freestyle and backstroke tumble turn within a training environment.

  3. Transient liquid-crystal technique used to produce high-resolution convective heat-transfer-coefficient maps

    NASA Technical Reports Server (NTRS)

    Hippensteele, Steven A.; Poinsatte, Philip E.

    1993-01-01

    In this transient technique the preheated isothermal model wall simulates the classic one-dimensional, semi-infinite wall heat transfer conduction problem. By knowing the temperature of the air flowing through the model, the initial temperature of the model wall, and the surface cooling rate measured at any location with time (using the fast-response liquid-crystal patterns recorded on video tape), the heat transfer coefficient can be calculated for the color isothermal pattern produced. Although the test was run transiently, the heat transfer coefficients are for the steady-state case. The upstream thermal boundary condition was considered to be isothermal. This transient liquid-crystal heat-transfer technique was used in a transient air tunnel in which a square-inlet, 3-to-1 exit transition duct was placed. The duct was preheated prior to allowing room temperature air to be suddenly drawn through it. The resulting isothermal contours on the duct surfaces were revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record was made of the temperature and time data for all points on the duct surfaces during each test. The duct surfaces were uniformly heated using two heating systems: the first was an automatic temperature-controlled heater blanket completely surrounding the test duct like an oven, and the second was an internal hot-air loop through the inside of the test duct. The hot-air loop path was confined inside the test duct by insulated heat dams located at the inlet and exit ends of the test duct. A recirculating fan moved hot air into the duct inlet, through the duct, out of the duct exit, through the oven, and back to the duct inlet. The temperature nonuniformity of the test duct model wall was held very small. Test results are reported for two inlet Reynolds numbers of 200,000 and 1,150,000 (based on the square-inlet hydraulic diameter) and two free-stream turbulence intensities of about 1 percent, which is typical of wind tunnels, and up to 20 percent (using a grid), which is typical of real engine conditions.

  4. Real-time myocardial perfusion imaging for pharmacologic stress testing: added value to single photon emission computed tomography.

    PubMed

    Korosoglou, Grigorios; Dubart, Alain-Eric; DaSilva, K Gaspar C; Labadze, Nino; Hardt, Stefan; Hansen, Alexander; Bekeredjian, Raffi; Zugck, Christian; Zehelein, Joerg; Katus, Hugo A; Kuecherer, Helmut

    2006-01-01

    Little is known about the incremental value of real-time myocardial contrast echocardiography (MCE) as an adjunct to pharmacologic stress testing. This study was performed to evaluate the diagnostic value of MCE to detect abnormal myocardial perfusion by technetium Tc 99m sestamibi-single photon emission computed tomography (SPECT) and anatomically significant coronary artery disease (CAD) by angiography. Myocardial contrast echocardiography was performed at rest and during vasodilator stress in consecutive patients (N = 120) undergoing SPECT imaging for known or suspected CAD. Myocardial opacification, wall motion, and tracer uptake were visually analyzed in 12 myocardial segments by 2 pairs of blinded observers. Concordance between the 2 methods was assessed using the kappa statistic. Of 1356 segments, 1025 (76%) were interpretable by MCE, wall motion, and SPECT. Sensitivity of wall motion was 75%, specificity 83%, and accuracy 81% for detecting abnormal myocardial perfusion by SPECT (kappa = 0.53). Myocardial contrast echocardiography and wall motion together yielded significantly higher sensitivity (85% vs 74%, P < .05), specificity of 83%, and accuracy of 85% (kappa = 0.64) for the detection of abnormal myocardial perfusion. In 89 patients who underwent coronary angiography, MCE and wall motion together yielded higher sensitivity (83% vs 64%, P < .05) and accuracy (77% vs 68%, P < .05) but similar specificity (72%) compared with SPECT for the detection of high-grade, stenotic (> or = 75%) coronary lesions. Assessment of myocardial perfusion adds value to conventional stress echocardiography by increasing its sensitivity for the detection of functionally abnormal myocardial perfusion. Myocardial contrast echocardiography and wall motion together provide higher sensitivity and accuracy for detection of CAD compared with SPECT.

  5. Identification and Deletion of Tft1, a Predicted Glycosyltransferase Necessary for Cell Wall β-1,3;1,4-Glucan Synthesis in Aspergillus fumigatus

    PubMed Central

    Samar, Danial; Kieler, Joshua B.; Klutts, J. Stacey

    2015-01-01

    Aspergillus fumigatus is an environmental mold that causes severe, often fatal invasive infections in immunocompromised patients. The search for new antifungal drug targets is critical, and the synthesis of the cell wall represents a potential area to find such a target. Embedded within the main β-1,3-glucan core of the A. fumigatus cell wall is a mixed linkage, β-D-(1,3;1,4)-glucan. The role of this molecule or how it is synthesized is unknown, though it comprises 10% of the glucans within the wall. While this is not a well-studied molecule in fungi, it has been studied in plants. Using the sequences of two plant mixed linkage glucan synthases, a single ortholog was identified in A. fumigatus (Tft1). A strain lacking this enzyme (tft1Δ) was generated along with revertant strains containing the native gene under the control of either the native or a strongly expressing promoter. Immunofluorescence staining with an antibody against β-(1,3;1,4)-glucan and biochemical quantification of this polysaccharide in the tft1Δ strain demonstrated complete loss of this molecule. Reintroduction of the gene into the knockout strain yielded reappearance in amounts that correlated with expected expression of the gene. The loss of Tft1 and mixed linkage glucan yielded no in vitro growth phenotype. However, there was a modest increase in virulence for the tft1Δ strain in a wax worm model. While the precise roles for β-(1,3;1,4)-glucan within A. fumigatus cell wall are still uncertain, it is clear that Tft1 plays a pivotal role in the biosynthesis of this cell wall polysaccharide. PMID:25723175

  6. Relationship between the magnitude of the inbreeding coefficient and milk traits in Holstein and Jersey dairy bull semen used in Brazil.

    PubMed

    Soares, M P; Gaya, L G; Lorentz, L H; Batistel, F; Rovadoscki, G A; Ticiani, E; Zabot, V; Di Domenico, Q; Madureira, A P; Pértile, S F N

    2011-09-06

    Artificial insemination has been used to improve production in Brazilian dairy cattle; however, this can lead to problems due to increased inbreeding. To evaluate the effect of the magnitude of inbreeding coefficients on predicted transmitting abilities (PTAs) for milk traits of Holstein and Jersey breeds, data on 392 Holstein and 92 Jersey sires used in Brazil were tabulated. The second-degree polynomial equations and points of maximum or minimal response were estimated to establish the regression equation of the variables as a function of the inbreeding coefficients. The mean inbreeding coefficient of the Holstein bulls was 5.10%; this did not significantly affect the PTA for percent milk fat, protein percentage and protein (P = 0.479, 0.058 and 0.087, respectively). However, the PTAs for milk yield and fat decreased significantly after reaching inbreeding coefficients of 6.43 (P = 0.034) and 5.75 (P = 0.007), respectively. The mean inbreeding coefficient of Jersey bulls was 6.45%; the PTAs for milk yield, fat and protein, in pounds, decreased significantly after reaching inbreeding coefficients of 15.04, 9.83 and 12.82% (P < 0.001, P = 0.002, and P = 0.001, respectively). The linear regression was only significant for fat and protein percentages in the Jersey breed (P = 0.002 and P = 0.005, respectively). The PTAs of Holstein sires were more affected by smaller magnitudes of inbreeding coefficients than those of Jersey sires. It is necessary to monitor the inbreeding coefficients of sires used for artificial insemination in breeding schemes in Brazil, since the low genetic variability of the available sires may lead to reduced production.

  7. First-principles simulation on Seebeck coefficient in silicon nanowires

    NASA Astrophysics Data System (ADS)

    Nakamura, Koichi

    2017-06-01

    The Seebeck coefficients of silicon nanowires (SiNWs) were simulated on the basis of first-principles calculation using various atomistic structure models. The electronic band structures of fully hydrogen-terminated SiNW models give the correct image of quantum mechanical confinement from bulk silicon to SiNW for each axial direction, and the change in the density of states by dimensional reduction to SiNW enhances the thermoelectric performance in terms of the Seebeck coefficient, compared with those of bulk silicon and silicon nanosheets. The uniaxial tensile strain for the SiNW models does not strongly affect the Seebeck coefficient even for the SiNW system with giant piezoresistivity. In contrast, dangling bonds on a wire wall sharply reduce the Seebeck coefficient of SiNW and totally degrade thermoelectric performance from the viewpoint of the power factor. The exclusion of dangling bonds is a key element for the design and application of high-performance thermoelectric nanowires of semiconducting materials.

  8. A simplified fourwall interference assessment procedure for airfoil data obtained in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Murthy, A. V.

    1987-01-01

    A simplified fourwall interference assessment method has been described, and a computer program developed to facilitate correction of the airfoil data obtained in the Langley 0.3-m Transonic Cryogenic Tunnel (TCT). The procedure adopted is to first apply a blockage correction due to sidewall boundary-layer effects by various methods. The sidewall boundary-layer corrected data are then used to calculate the top and bottom wall interference effects by the method of Capallier, Chevallier and Bouinol, using the measured wall pressure distribution and the model force coefficients. The interference corrections obtained by the present method have been compared with other methods and found to give good agreement for the experimental data obtained in the TCT with slotted top and bottom walls.

  9. Peristaltic Transport of Prandtl-Eyring Liquid in a Convectively Heated Curved Channel

    PubMed Central

    Hayat, Tasawar; Bibi, Shahida; Alsaadi, Fuad; Rafiq, Maimona

    2016-01-01

    Here peristaltic activity for flow of a Prandtl-Eyring material is modeled and analyzed for curved geometry. Heat transfer analysis is studied using more generalized convective conditions. The channel walls satisfy complaint walls properties. Viscous dissipation in the thermal equation accounted. Unlike the previous studies is for uniform magnetic field on this topic, the radial applied magnetic field has been utilized in the problems development. Solutions for stream function (ψ), velocity (u), and temperature (θ) for small parameter β have been derived. The salient features of heat transfer coefficient Z and trapping are also discussed for various parameters of interest including magnetic field, curvature, material parameters of fluid, Brinkman, Biot and compliant wall properties. Main observations of present communication have been included in the conclusion section. PMID:27304458

  10. Variation of the temperature coefficient of collapse field in bismuth-based bubble garnets

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Pierce, R. D.; Brandle, C. D.

    1985-01-01

    An approximation to the collapse-field formula is used to show its dependence on magnetization and wall energy and the effect of additions of Gd, Sm, and Eu on 1-micron Bi:YIG bubble materials. The collapse field, magnetization, and wall energy are fitted to quadratic functions of temperature from -50 to 150 C. It is shown that the addition of the various classes of rare earths reduces the temperature derivative of the collapse field in Bi:YIG. Gd influences the collapse field through the magnetization, Sm affects it through the domain wall energy, and Eu does both. The singular magnetic properties of Eu result in the most nearly constant temperature dependence of the collapse field and the best match to a barium-ferrite bias magnite.

  11. Influence of Wall Material on VUV Emission from Hydrogen Plasma in H- Source

    NASA Astrophysics Data System (ADS)

    Bacal, M.; Glass-Maujean, M.; Ivanov, A. A., Jr; Nishiura, M.; Sasao, M.; Wada, M.

    2002-11-01

    The study of VUV emission from a hydrogen plasma produced in a filament discharge in a magnetic multicusp device showed that the use of tantalum and tungsten filaments leads to significant differences in the spectra. The effect of the filament material is interpreted in terms of the fresh film of this material, deposited on the wall. The synthetic spectrum convoluted with our apparatus function for the conditions of this experiment (gas temperature 500 K, electron energy 100 eV) agrees roughly well with the spectrum obtained with tungsten covered walls, but not with the spectrum obtained with tantalum covered walls. We show that in the case of tungsten covered walls the E-V singlet excitation is indeed a two-step Franck-Condon transition, going through either B or C state from an initial H2 molecule with v"=0, added to a Franck-Condon transition to highly excited states cascading to the B or C states. The excitation process to high v" states in the case of tantalum covered walls is a three step process, in which the first step is the formation by recombinative desorption on the wall of a vibrationally excited molecule with v"=1 or 2, which serves as the initial molecule in the subsequent E-V excitation through the B state. The results indicate a larger recombination coefficient of atoms on the tantalum covered wall.

  12. Large Eddy Simulation of Wall-Bounded Turbulent Flows with the Lattice Boltzmann Method: Effect of Collision Model, SGS Model and Grid Resolution

    NASA Astrophysics Data System (ADS)

    Pradhan, Aniruddhe; Akhavan, Rayhaneh

    2017-11-01

    Effect of collision model, subgrid-scale model and grid resolution in Large Eddy Simulation (LES) of wall-bounded turbulent flows with the Lattice Boltzmann Method (LBM) is investigated in turbulent channel flow. The Single Relaxation Time (SRT) collision model is found to be more accurate than Multi-Relaxation Time (MRT) collision model in well-resolved LES. Accurate LES requires grid resolutions of Δ+ <= 4 in the near-wall region, which is comparable to Δ+ <= 2 required in DNS. At larger grid resolutions SRT becomes unstable, while MRT remains stable but gives unacceptably large errors. LES with no model gave errors comparable to the Dynamic Smagorinsky Model (DSM) and the Wall Adapting Local Eddy-viscosity (WALE) model. The resulting errors in the prediction of the friction coefficient in turbulent channel flow at a bulk Reynolds Number of 7860 (Reτ 442) with Δ+ = 4 and no-model, DSM and WALE were 1.7%, 2.6%, 3.1% with SRT, and 8.3% 7.5% 8.7% with MRT, respectively. These results suggest that LES of wall-bounded turbulent flows with LBM requires either grid-embedding in the near-wall region, with grid resolutions comparable to DNS, or a wall model. Results of LES with grid-embedding and wall models will be discussed.

  13. New variational bounds on convective transport. II. Computations and implications

    NASA Astrophysics Data System (ADS)

    Souza, Andre; Tobasco, Ian; Doering, Charles R.

    2016-11-01

    We study the maximal rate of scalar transport between parallel walls separated by distance h, by an incompressible fluid with scalar diffusion coefficient κ. Given velocity vector field u with intensity measured by the Péclet number Pe =h2 < | ∇ u |2 >1/2 / κ (where < . > is space-time average) the challenge is to determine the largest enhancement of wall-to-wall scalar flux over purely diffusive transport, i.e., the Nusselt number Nu . Variational formulations of the problem are studied numerically and optimizing flow fields are computed over a range of Pe . Implications of this optimal wall-to-wall transport problem for the classical problem of Rayleigh-Bénard convection are discussed: the maximal scaling Nu Pe 2 / 3 corresponds, via the identity Pe2 = Ra (Nu - 1) where Ra is the usual Rayleigh number, to Nu Ra 1 / 2 as Ra -> ∞ . Supported in part by National Science Foundation Graduate Research Fellowship DGE-0813964, awards OISE-0967140, PHY-1205219, DMS-1311833, and DMS-1515161, and the John Simon Guggenheim Memorial Foundation.

  14. In Situ Identification of Pigment Composition and Particle Size on Wall Paintings Using Visible Spectroscopy as a Noninvasive Measurement Method.

    PubMed

    Li, Junfeng; Wan, Xiaoxia; Bu, Yajing; Li, Chan; Liang, Jinxing; Liu, Qiang

    2016-11-01

    Noninvasive examination methods of chemical composition and particle size are presented here based on visible spectroscopy to achieve the identification and recording of mineral pigments used on ancient wall paintings. The normalized spectral curve, slope and curvature extracted from visible spectral reflectance are combined with adjustable weighting coefficients to construct the identification feature space, and Euclid distances between spectral reflectance from wall paintings and a reference database are calculated in the feature space as the discriminant criterion to identify the chemical composition of mineral pigments. A parametric relationship between the integral quantity of spectral reflectance and logarithm of mean particle size is established using a quadratic polynomial to accomplish the noninvasive prediction of mineral pigment particle size used on ancient wall paintings. The feasibility of the proposed methods is validated by the in situ nondestructive identification of the wall paintings in the Mogao Grottoes at Dunhuang. Chinese painting styles and historical evolution are then analyzed according to the identification results of 16 different grottoes constructed from the Sixteen Kingdoms to the Yuan Dynasty. © The Author(s) 2016.

  15. A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Sil; Kim, Jae-Seung; Lee, Seong-Hyun; Seo, Yun-Ho

    2014-12-01

    Insertion loss prediction of large acoustical enclosures using Statistical Energy Analysis (SEA) method is presented. The SEA model consists of three elements: sound field inside the enclosure, vibration energy of the enclosure panel, and sound field outside the enclosure. It is assumed that the space surrounding the enclosure is sufficiently large so that there is no energy flow from the outside to the wall panel or to air cavity inside the enclosure. The comparison of the predicted insertion loss to the measured data for typical large acoustical enclosures shows good agreements. It is found that if the critical frequency of the wall panel falls above the frequency region of interest, insertion loss is dominated by the sound transmission loss of the wall panel and averaged sound absorption coefficient inside the enclosure. However, if the critical frequency of the wall panel falls into the frequency region of interest, acoustic power from the sound radiation by the wall panel must be added to the acoustic power from transmission through the panel.

  16. Gas-liquid two-phase flow pattern identification by ultrasonic echoes reflected from the inner wall of a pipe

    NASA Astrophysics Data System (ADS)

    Liang, Fachun; Zheng, Hongfeng; Yu, Hao; Sun, Yuan

    2016-03-01

    A novel ultrasonic pulse echo method is proposed for flow pattern identification in a horizontal pipe with gas-liquid two-phase flow. A trace of echoes reflected from the pipe’s internal wall rather than the gas-liquid interface is used for flow pattern identification. Experiments were conducted in a horizontal air-water two-phase flow loop. Two ultrasonic transducers with central frequency of 5 MHz were mounted at the top and bottom of the pipe respectively. The experimental results show that the ultrasonic reflection coefficient of the wall-gas interface is much larger than that of the wall-liquid interface due to the large difference in the acoustic impedance of gas and liquid. The stratified flow, annular flow and slug flow can be successfully recognized using the attenuation ratio of the echoes. Compared with the conventional ultrasonic echo measurement method, echoes reflected from the inner surface of a pipe wall are independent of gas-liquid interface fluctuation, sound speed, and gas and liquid superficial velocities, which makes the method presented a promising technique in field practice.

  17. Effect of harvesting date on the composition and saccharification of Miscanthus x giganteus.

    PubMed

    Le Ngoc Huyen, T; Rémond, C; Dheilly, R M; Chabbert, B

    2010-11-01

    The chemical composition of the whole aerial biomass and isolated organs of Miscanthus x giganteus was examined for saccharification into fermentable sugars at early and late harvesting dates. Delayed harvest was mainly related to increased amounts of cell wall and ester-linked phenolic acids. Addition of an enzyme cocktail (cellulases, beta-glucosidase and xylanase) resulted in similar enzyme digestibilities at the two harvesting dates, ranging from 11-13% and 8-9% of the cellulose and arabinoxylan, respectively. However, the internodes, leaves and sheaths varied in cell wall content and composition and gave rise to different saccharification yields with internodes being the most recalcitrant organs. Non-cell wall fraction was estimated as the amount of material extracted by neutral detergent solution, and accounted for 23% of the whole aerial biomass harvested at an early date. However, saccharification yields from the miscanthus biomass did not change after soluble fraction removal. An ammonia pretreatment improved enzyme efficiency on early-harvested miscanthus, to a greater extent than on late-harvested biomass. This trend was confirmed for two different years of harvesting. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Anatomy and cell wall polysaccharides of almond (Prunus dulcis D. A. Webb) seeds.

    PubMed

    Dourado, Fernando; Barros, António; Mota, Manuel; Coimbra, Manuel A; Gama, Francisco M

    2004-03-10

    The anatomy of Prunus dulcis was analyzed by applying several differential staining techniques and light microscopy. Prunus dulcis seed has a thin and structurally complex seed coat, with lignified cellulosic tissue. The embryo has two voluminous cotyledons. Cotyledon cells have a high number of protein and lipid bodies, some of which have phytin. The provascular tissue, located in the cotyledons, is oriented in small bundles perpendicular to the transverse embryonic axis. Prunus dulcis cell wall material is very rich in arabinose (45 mol %). Glucose (23%), uronic acids (12%), and xylose (12%) are also major sugar components. The polymers obtained from the imidazole and Na(2)CO(3) extracts contain mainly pectic substances rich in arabinose, but the sugar content of these extracts was very low. The majority of the pectic substances (also rich in arabinose) was recovered with the KOH extracts. These extracts, with high sugar content, yielded also xyloglucans and acidic xylans. The 4 M KOH + H(3)BO(3) extracts yielded polysaccharides rich in uronic acids and xylose and very rich in arabinose, accounting for 27% of the cell wall material.

  19. Wall yield threshold and effective turgor in growing bean leaves.

    PubMed

    Van Volkenburgh, E; Cleland, R E

    1986-01-01

    The rate of cell enlargement depends on cell-wall extensibility (m) and on the amount of turgor pressure (P) which exceeds the wall yield threshold (Y). The difference (P-Y) is the growth-effective turgor (P e). Values of P, Y and P ehave been measured in growing bean (Phaseolus vulgaris L.) leaves with an isopiestic psychrometer, using the stress-relaxation method to derive Y. When rapid leaf growth is initiated by light, P, Y and P eall decrease. Thereafter, while the growth rate declines in maturing leaves, Y continues to decrease and P eactually increases. These data confirm earlier results indicating that the changes in light-stimulated leaf growth rate are primarily controlled by changes in m, and not by changes in P e. Seedlings incubated at 100% relative humidity have increased P, but this treatment does not increase growth rate. In some cases Y changes in parallel with P, so that P eremains unchanged. These data point out the importance of determining P e, rather than just P, when relating cell turgor to the growth rate.

  20. The effect of wind tunnel wall interference on the performance of a fan-in-wing VTOL model

    NASA Technical Reports Server (NTRS)

    Heyson, H. H.

    1974-01-01

    A fan-in-wing model with a 1.07-meter span was tested in seven different test sections with cross-sectional areas ranging from 2.2 sq meters to 265 sq meters. The data from the different test sections are compared both with and without correction for wall interference. The results demonstrate that extreme care must be used in interpreting uncorrected VTOL data since the wall interference may be so large as to invalidate even trends in the data. The wall interference is particularly large at the tail, a result which is in agreement with recently published comparisons of flight and large scale wind tunnel data for a propeller-driven deflected-slipstream configuration. The data verify the wall-interference theory even under conditions of extreme interference. A method yields reasonable estimates for the onset of Rae's minimum-speed limit. The rules for choosing model sizes to produce negligible wall effects are considerably in error and permit the use of excessively large models.

  1. The effect of plasma impurities on the sputtering of tungsten carbide

    NASA Astrophysics Data System (ADS)

    Vörtler, K.; Björkas, C.; Nordlund, K.

    2011-03-01

    Understanding of sputtering by ion bombardment is needed in a wide range of applications. In fusion reactors, ion impacts originating from a hydrogen-isotope-rich plasma will lead, among other effects, to sputtering of the wall material. To study the effect of plasma impurities on the sputtering of the wall mixed material tungsten carbide molecular dynamics simulations were carried out. Simulations of cumulative D cobombardment with C, W, He, Ne or Ar impurities on crystalline tungsten carbide were performed in the energy range 100-300 eV. The sputtering yields obtained at low fluences were compared to steady state SDTrimSP yields. During bombardment single C atom sputtering was preferentially observed. We also detected significant WxCy molecule sputtering. We found that this molecule sputtering mechanism is of physical origin.

  2. Parameter Governing of Wave Resonance in Water Chamber and Its Application

    NASA Astrophysics Data System (ADS)

    Husain, F.; Alie, M. Z. M.; Rahman, T.

    2018-04-01

    It has become known that the oscillating water column (OWC) device is very popular as one of wave energy extraction facilities installed in coastal and ocean structures. However, it has not been clarified sufficiently how to obtain an effective cross section design of the structure until now. This paper describes theoretical procedure to yield effective cross section of water chamber type of sea wall, which is similar to the OWC type structure in relation to wave period or wave length. The water chamber type sea wall has a water chamber partitioned by a curtain wall installed in front of part of the structure. This type of sea wall also can be applied to extract wave power same as of OWC function. When the wave conditions on site are known, the dimensions especially the breadth of water chamber type sea wall can be determined.

  3. A fiber-reinforced-fluid model of anisotropic plant root cell growth

    NASA Astrophysics Data System (ADS)

    Jensen, Oliver E.; Dyson, Rosemary J.

    2009-11-01

    We present a theoretical model of a single cell in the expansion zone of the primary root of the plant Arabidopsis thaliana. The cell undergoes rapid elongation with approximately constant radius. Growth is driven by high internal turgor pressure causing viscous stretching of the cell wall, with embedded cellulose microfibrils providing the wall with strongly anisotropic properties. We represent the cell as a thin cylindrical fiber-reinforced viscous sheet between rigid end plates. Asymptotic reduction of the governing equations, under simple sets of assumptions about fiber and wall properties, yields variants of the traditional Lockhart equation that relates the axial cell growth rate to the internal pressure. The model provides insights into the geometric and biomechanical parameters underlying bulk quantities such as wall extensibility and shows how either dynamical changes in wall material properties or passive fibre reorientation may suppress cell elongation.

  4. Description and evaluation of an interference assessment for a slotted-wall wind tunnel

    NASA Technical Reports Server (NTRS)

    Kemp, William B., Jr.

    1991-01-01

    A wind-tunnel interference assessment method applicable to test sections with discrete finite-length wall slots is described. The method is based on high order panel method technology and uses mixed boundary conditions to satisfy both the tunnel geometry and wall pressure distributions measured in the slotted-wall region. Both the test model and its sting support system are represented by distributed singularities. The method yields interference corrections to the model test data as well as surveys through the interference field at arbitrary locations. These results include the equivalent of tunnel Mach calibration, longitudinal pressure gradient, tunnel flow angularity, wall interference, and an inviscid form of sting interference. Alternative results which omit the direct contribution of the sting are also produced. The method was applied to the National Transonic Facility at NASA Langley Research Center for both tunnel calibration tests and tests of two models of subsonic transport configurations.

  5. Metabolic control analysis using transient metabolite concentrations. Determination of metabolite concentration control coefficients.

    PubMed Central

    Delgado, J; Liao, J C

    1992-01-01

    The methodology previously developed for determining the Flux Control Coefficients [Delgado & Liao (1992) Biochem. J. 282, 919-927] is extended to the calculation of metabolite Concentration Control Coefficients. It is shown that the transient metabolite concentrations are related by a few algebraic equations, attributed to mass balance, stoichiometric constraints, quasi-equilibrium or quasi-steady states, and kinetic regulations. The coefficients in these relations can be estimated using linear regression, and can be used to calculate the Control Coefficients. The theoretical basis and two examples are discussed. Although the methodology is derived based on the linear approximation of enzyme kinetics, it yields reasonably good estimates of the Control Coefficients for systems with non-linear kinetics. PMID:1497632

  6. Diffusion kinetics of the glucose/glucose oxidase system in swift heavy ion track-based biosensors

    NASA Astrophysics Data System (ADS)

    Fink, Dietmar; Vacik, Jiri; Hnatowicz, V.; Muñoz Hernandez, G.; Garcia Arrelano, H.; Alfonta, Lital; Kiv, Arik

    2017-05-01

    For understanding of the diffusion kinetics and their optimization in swift heavy ion track-based biosensors, recently a diffusion simulation was performed. This simulation aimed at yielding the degree of enrichment of the enzymatic reaction products in the highly confined space of the etched ion tracks. A bunch of curves was obtained for the description of such sensors that depend only on the ratio of the diffusion coefficient of the products to that of the analyte within the tracks. As hitherto none of these two diffusion coefficients is accurately known, the present work was undertaken. The results of this paper allow one to quantify the previous simulation and hence yield realistic predictions of glucose-based biosensors. At this occasion, also the influence of the etched track radius on the diffusion coefficients was measured and compared with earlier prediction.

  7. Analysis of eccentric annular incompressible seals. II - Effects of eccentricity on rotordynamic coefficients

    NASA Technical Reports Server (NTRS)

    Nelson, C. C.; Nguyen, D. T.

    1987-01-01

    A new analysis procedure has been presented which solves for the flow variables of an annular pressure seal in which the rotor has a large static displacement (eccentricity) from the centered position. The present paper incorporates the solutions to investigate the effect of eccentricity on the rotordynamic coefficients. The analysis begins with a set of governing equations based on a turbulent bulk-flow model and Moody's friction factor equation. Perturbations of the flow variables yields a set of zeroth- and first-order equations. After integration of the zeroth-order equations, the resulting zeroth-order flow variables are used as input in the solution of the first-order equations. Further integration of the first order pressures yields the eccentric rotordynamic coefficients. The results from this procedure compare well with available experimental and theoretical data, with accuracy just as good or slightly better than the predictions based on a finite-element model.

  8. Relationships of concentrations of certain blood constituents with milk yield and age of cows in dairy herds.

    PubMed

    Kitchenham, B A; Rowlands, G J; Shorbagi, H

    1975-05-01

    Regression analyses were performed on data from 48 Compton metabolic profile tests relating the concentrations of certain constituents in the blood of dairy cows to their milk yield, age and stage of lactation. The common partial regression coefficients for milk yield, age and stage of lactation were estimated for each blood constituent. The relationships of greatest statistical significance were between the concentrations of inorganic phosphate and globulin and age, and the concentration of albumin and milk yield.

  9. Statistical Analysis of a Round-Robin Measurement Survey of Two Candidate Materials for a Seebeck Coefficient Standard Reference Material

    DTIC Science & Technology

    2009-02-01

    data was linearly fit, and the slope yielded the Seebeck coefficient. A small resis - tor was epoxied to the top of the sample, and the oppo- site end...space probes in its radioisotope thermoelectric generators (RTGs) and is of current interest to automobile manufacturers to supply additional power... resis - tivity or conductivity, thermal conductivity, and Seebeck coefficient. These required measurements are demanding, especially the thermal

  10. Relationships of the phase velocity with the microarchitectural parameters in bovine trabecular bone in vitro: Application of a stratified model

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il

    2012-08-01

    The present study aims to provide insight into the relationships of the phase velocity with the microarchitectural parameters in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 22 bovine femoral trabecular bone samples by using a pair of transducers with a diameter of 25.4 mm and a center frequency of 0.5 MHz. The phase velocity exhibited positive correlation coefficients of 0.48 and 0.32 with the ratio of bone volume to total volume and the trabecular thickness, respectively, but a negative correlation coefficient of -0.62 with the trabecular separation. The best univariate predictor of the phase velocity was the trabecular separation, yielding an adjusted squared correlation coefficient of 0.36. The multivariate regression models yielded adjusted squared correlation coefficients of 0.21-0.36. The theoretical phase velocity predicted by using a stratified model for wave propagation in periodically stratified media consisting of alternating parallel solid-fluid layers showed reasonable agreements with the experimental measurements.

  11. Turbulent boundary layer separation over a rearward facing ramp and its control through mechanical excitation

    NASA Technical Reports Server (NTRS)

    Mckinzie, Daniel J., Jr.

    1991-01-01

    A vane oscillating about a fixed point at the inlet to a two-dimensional 20 degree rearward facing ramp has proven effective in delaying the separation of a turbulent boundary layer. Measurements of the ramp surface static pressure coefficient obtained under the condition of vane oscillation and constant inlet velocity revealed that two different effects occurred with surface distance along the ramp. In the vicinity of the oscillating vane, the pressure coefficients varied as a negative function of the vane's trailing edge rms velocity; the independent variable on which the rms velocity depends are the vane's oscillation frequency and its displacement amplitude. From a point downstream of the vane to the exit of the ramp; however, the pressure coefficient varied as a more complex function of the two independent variables. That is, it was found to vary as a function of the vane's oscillation frequency throughout the entire range of frequencies covered during the test, but over only a limited range of the trailing edge displacement amplitudes covered. More specifically, the value of the pressure coefficient was independent of increases in the vane's displacement amplitude above approximately 35 inner wall units of the boundary layer. Below this specific amplitude it varied as a function of the vane's trailing edge rms velocity. This height is close to the upper limit of the buffer layer. A parametric study was made to determine the variation of the maximum static pressure recovery as a function of the vane's oscillation frequency, for several ramp inlet velocities and a constant displacement amplitude of the vane's trailing edge. The results indicate that the phenomenon producing the optimum delay of separation may be Strouhal number dependent. Corona anemometer measurements obtained in the inner wall regions of the boundary layer for the excited case reveal a large range of unsteadiness in the local velocities. These measurements imply the existence of inflections in the profiles, which provide a mechanism for resulting inviscid flow instabilities to produce turbulence in the near wall region, thereby delaying separation of the boundary layer.

  12. Composite asymptotic expansions and scaling wall turbulence.

    PubMed

    Panton, Ronald L

    2007-03-15

    In this article, the assumptions and reasoning that yield composite asymptotic expansions for wall turbulence are discussed. Particular attention is paid to the scaling quantities that are used to render the variables non-dimensional and of order one. An asymptotic expansion is proposed for the streamwise Reynolds stress that accounts for the active and inactive turbulence by using different scalings. The idea is tested with the data from the channel flows and appears to have merit.

  13. Studying Transonic Gases With a Hydraulic Analog

    NASA Technical Reports Server (NTRS)

    Wagner, W.; Lepore, F.

    1986-01-01

    Water table for hydraulic-flow research yields valuable information about gas flow at transonic speeds. Used to study fuel and oxidizer flow in high-pressure rocket engines. Method applied to gas flows in such equipment as furnaces, nozzles, and chemical lasers. Especially suitable when wall contours nonuniform, discontinuous, or unusually shaped. Wall shapes changed quickly for study and evaluated on spot. Method used instead of computer simulation when computer models unavailable, inaccurate, or costly to run.

  14. Procedures for Computing Transonic Flows for Control of Adaptive Wind Tunnels. Ph.D. Thesis - Technische Univ., Berlin, Mar. 1986

    NASA Technical Reports Server (NTRS)

    Rebstock, Rainer

    1987-01-01

    Numerical methods are developed for control of three dimensional adaptive test sections. The physical properties of the design problem occurring in the external field computation are analyzed, and a design procedure suited for solution of the problem is worked out. To do this, the desired wall shape is determined by stepwise modification of an initial contour. The necessary changes in geometry are determined with the aid of a panel procedure, or, with incident flow near the sonic range, with a transonic small perturbation (TSP) procedure. The designed wall shape, together with the wall deflections set during the tunnel run, are the input to a newly derived one-step formula which immediately yields the adapted wall contour. This is particularly important since the classical iterative adaptation scheme is shown to converge poorly for 3D flows. Experimental results obtained in the adaptive test section with eight flexible walls are presented to demonstrate the potential of the procedure. Finally, a method is described to minimize wall interference in 3D flows by adapting only the top and bottom wind tunnel walls.

  15. Dynamic non-equilibrium wall-modeling for large eddy simulation at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Kawai, Soshi; Larsson, Johan

    2013-01-01

    A dynamic non-equilibrium wall-model for large-eddy simulation at arbitrarily high Reynolds numbers is proposed and validated on equilibrium boundary layers and a non-equilibrium shock/boundary-layer interaction problem. The proposed method builds on the prior non-equilibrium wall-models of Balaras et al. [AIAA J. 34, 1111-1119 (1996)], 10.2514/3.13200 and Wang and Moin [Phys. Fluids 14, 2043-2051 (2002)], 10.1063/1.1476668: the failure of these wall-models to accurately predict the skin friction in equilibrium boundary layers is shown and analyzed, and an improved wall-model that solves this issue is proposed. The improvement stems directly from reasoning about how the turbulence length scale changes with wall distance in the inertial sublayer, the grid resolution, and the resolution-characteristics of numerical methods. The proposed model yields accurate resolved turbulence, both in terms of structure and statistics for both the equilibrium and non-equilibrium flows without the use of ad hoc corrections. Crucially, the model accurately predicts the skin friction, something that existing non-equilibrium wall-models fail to do robustly.

  16. Changes in cell wall properties coincide with overexpression of extensin fusion proteins in suspension cultured tobacco cells.

    PubMed

    Tan, Li; Pu, Yunqiao; Pattathil, Sivakumar; Avci, Utku; Qian, Jin; Arter, Allison; Chen, Liwei; Hahn, Michael G; Ragauskas, Arthur J; Kieliszewski, Marcia J

    2014-01-01

    Extensins are one subfamily of the cell wall hydroxyproline-rich glycoproteins, containing characteristic SerHyp4 glycosylation motifs and intermolecular cross-linking motifs such as the TyrXaaTyr sequence. Extensins are believed to form a cross-linked network in the plant cell wall through the tyrosine-derivatives isodityrosine, pulcherosine, and di-isodityrosine. Overexpression of three synthetic genes encoding different elastin-arabinogalactan protein-extensin hybrids in tobacco suspension cultured cells yielded novel cross-linking glycoproteins that shared features of the extensins, arabinogalactan proteins and elastin. The cell wall properties of the three transgenic cell lines were all changed, but in different ways. One transgenic cell line showed decreased cellulose crystallinity and increased wall xyloglucan content; the second transgenic cell line contained dramatically increased hydration capacity and notably increased cell wall biomass, increased di-isodityrosine, and increased protein content; the third transgenic cell line displayed wall phenotypes similar to wild type cells, except changed xyloglucan epitope extractability. These data indicate that overexpression of modified extensins may be a route to engineer plants for bioenergy and biomaterial production.

  17. The Modification of Cell Wall Properties by Expression of Recombinant Resilin in Transgenic Plants.

    PubMed

    Preis, Itan; Abramson, Miron; Shoseyov, Oded

    2018-04-01

    Plant tissue is composed of many different types of cells. Plant cells required to withstand mechanical pressure, such as vessel elements and fibers, have a secondary cell wall consisting of polysaccharides and lignin, which strengthen the cell wall structure and stabilize the cell shape. Previous attempts to alter the properties of the cell wall have mainly focused on reducing the amount of lignin or altering its structure in order to ease its extraction from raw woody materials for the pulp and paper and biorefinery industries. In this work, we propose the in vivo modification of the cell wall structure and mechanical properties by the introduction of resilin, an elastic protein that is able to crosslink with lignin monomers during cell wall synthesis. The effects of resilin were studied in transgenic eucalyptus plants. The protein was detected within the cell wall and its expression led to an increase in the elastic modulus of transgenic stems. In addition, transgenic stems displayed a higher yield point and toughness, indicating that they were able to absorb more energy before breaking.

  18. Morphologic changes in the vein after different numbers of radiofrequency ablation cycles.

    PubMed

    Shaidakov, Evgeny V; Grigoryan, Arsen G; Korzhevskii, Dmitriy E; Ilyukhin, Evgeny A; Rosukhovski, Dmitriy A; Bulatov, Vasiliy L; Tsarev, Oleg I

    2015-10-01

    It has not yet been clarified whether it is possible to decrease the percentage of recurrences after radiofrequency (RF) ablation by way of increasing the number of RF ablation cycles. The aim of this study was to assess the morphologic changes in excised vein fragments after different durations of RF ablation exposure. In the first part of the study, we performed a morphologic analysis of eight cases of great saphenous vein (GSV) recanalization 6 months after RF ablation. The second part was performed on a suprafascial segment of the GSV with a length of >22 cm and a minimum diameter of 5 mm in 10 patients, who had given their consent to intraoperative excision of suprafascial GSV segments after RF ablation treatment through four 1-cm-long diametrical cuts. Prior ultrasound analysis had shown an average 6.9-mm diameter of the suprafascial segments. The segment was divided into three 7-cm-long subsegments and one control segment. The first, second, and third segments were treated with three, two, and one RF ablation cycles (ClosureFast; Covidien, Mansfield, Mass), respectively; the control segment was not exposed to RF ablation at all. Morphologic study of 160 sections of the vein (five sections of each segment and 10 control specimens) was carried out. The specimens were dyed with hematoxylin and orcein. The ensuing analysis was performed by an experienced expert with the blind study method (the specimens were numbered without any hint as to the quantity of RF ablation cycles performed on them). The intergroup comparison of the depth of venous wall damage was based on comparison of the coefficient of alteration, which is calculated as the relation of damage depth to thickness of the vein. After one RF ablation cycle, the depth of blurring of the structural elements only on some portions reached the middle of the muscle layer of the wall (coefficient of alteration, α = 26%). After two cycles, blurring of the structural elements on some portions extended to the adventitia (α = 53%). After three cycles, uniform blurring of the structural elements of all layers of the venous wall up to the adventitia was seen (α = 92%). The statistically significant difference in the alteration coefficient, depending on the number of cycles of RF ablation (P < .005), was established. The number of RF ablation cycles has an impact on the depth of vein wall damage. One and two cycles do not cause damage to all layers of the vein wall. Three cycles cause damage to all vein wall layers. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  19. Large-Eddy Simulation of the Flat-plate Turbulent Boundary Layer at High Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Inoue, Michio

    The near-wall, subgrid-scale (SGS) model [Chung and Pullin, "Large-eddy simulation and wall-modeling of turbulent channel flow'', J. Fluid Mech. 631, 281--309 (2009)] is used to perform large-eddy simulations (LES) of the incompressible developing, smooth-wall, flat-plate turbulent boundary layer. In this model, the stretched-vortex, SGS closure is utilized in conjunction with a tailored, near-wall model designed to incorporate anisotropic vorticity scales in the presence of the wall. The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. This is then used to study several aspects of zero- and adverse-pressure gradient turbulent boundary layers. First, LES of the zero-pressure gradient turbulent boundary layer are performed at Reynolds numbers Retheta based on the free-stream velocity and the momentum thickness in the range Retheta = 103-1012. Results include the inverse skin friction coefficient, 2/Cf , velocity profiles, the shape factor H, the Karman "constant", and the Coles wake factor as functions of Re theta. Comparisons with some direct numerical simulation (DNS) and experiment are made, including turbulent intensity data from atmospheric-layer measurements at Retheta = O (106). At extremely large Retheta , the empirical Coles-Fernholz relation for skin-friction coefficient provides a reasonable representation of the LES predictions. While the present LES methodology cannot of itself probe the structure of the near-wall region, the present results show turbulence intensities that scale on the wall-friction velocity and on the Clauser length scale over almost all of the outer boundary layer. It is argued that the LES is suggestive of the asymptotic, infinite Reynolds-number limit for the smooth-wall turbulent boundary layer and different ways in which this limit can be approached are discussed. The maximum Retheta of the present simulations appears to be limited by machine precision and it is speculated, but not demonstrated, that even larger Retheta could be achieved with quad- or higher-precision arithmetic. Second, the time series velocity signals obtained from LES within the logarithmic region of the zero-pressure gradient turbulent boundary layer are used in combination with an empirical, predictive inner--outer wall model [Marusic et al., "Predictive model for wall-bounded turbulent flow'', Science 329, 193 (2010)] to calculate the statistics of the fluctuating streamwise velocity in the inner region of the zero-pressure gradient turbulent boundary layer. Results, including spectra and moments up to fourth order, are compared with equivalent predictions using experimental time series, as well as with direct experimental measurements at Reynolds numbers Retau based on the friction velocity and the boundary layer thickness, Retau = 7,300, 13,600 and 19,000. LES combined with the wall model are then used to extend the inner-layer predictions to Reynolds numbers Retau = 62,000, 100,000 and 200,000 that lie within a gap in log(Retau) space between laboratory measurements and surface-layer, atmospheric experiments. The present results support a log-like increase in the near-wall peak of the streamwise turbulence intensities with Retau and also provide a means of extending LES results at large Reynolds numbers to the near-wall region of wall-bounded turbulent flows. Finally, we apply the wall model to LES of a turbulent boundary layer subject to an adverse pressure gradient. Computed statistics are found to be consistent with recent experiments and some Reynolds number similarity is observed over a range of two orders of magnitude.

  20. Comparison of experimental methods for estimating matrix diffusion coefficients for contaminant transport modeling

    DOE PAGES

    Telfeyan, Katherine Christina; Ware, Stuart Doug; Reimus, Paul William; ...

    2018-01-31

    Here, diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged frommore » 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.« less

  1. Comparison of experimental methods for estimating matrix diffusion coefficients for contaminant transport modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Telfeyan, Katherine Christina; Ware, Stuart Doug; Reimus, Paul William

    Here, diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged frommore » 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.« less

  2. A visual detection model for DCT coefficient quantization

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Watson, Andrew B.

    1994-01-01

    The discrete cosine transform (DCT) is widely used in image compression and is part of the JPEG and MPEG compression standards. The degree of compression and the amount of distortion in the decompressed image are controlled by the quantization of the transform coefficients. The standards do not specify how the DCT coefficients should be quantized. One approach is to set the quantization level for each coefficient so that the quantization error is near the threshold of visibility. Results from previous work are combined to form the current best detection model for DCT coefficient quantization noise. This model predicts sensitivity as a function of display parameters, enabling quantization matrices to be designed for display situations varying in luminance, veiling light, and spatial frequency related conditions (pixel size, viewing distance, and aspect ratio). It also allows arbitrary color space directions for the representation of color. A model-based method of optimizing the quantization matrix for an individual image was developed. The model described above provides visual thresholds for each DCT frequency. These thresholds are adjusted within each block for visual light adaptation and contrast masking. For given quantization matrix, the DCT quantization errors are scaled by the adjusted thresholds to yield perceptual errors. These errors are pooled nonlinearly over the image to yield total perceptual error. With this model one may estimate the quantization matrix for a particular image that yields minimum bit rate for a given total perceptual error, or minimum perceptual error for a given bit rate. Custom matrices for a number of images show clear improvement over image-independent matrices. Custom matrices are compatible with the JPEG standard, which requires transmission of the quantization matrix.

  3. Concentration dependence of lipopolymer self-diffusion in supported bilayer membranes

    PubMed Central

    Zhang, Huai-Ying; Hill, Reghan J.

    2011-01-01

    Self-diffusion coefficients of poly(ethylene glycol)2k-derivatized lipids (DSPE-PEG2k-CF) in glass-supported DOPC phospholipid bilayers are ascertained from quantitative fluorescence recovery after photobleaching (FRAP). We developed a first-order reaction–diffusion model to ascertain the bleaching constant, mobile fraction and lipopolymer self-diffusion coefficient Ds at concentrations in the range c ≈ 0.5–5 mol%. In contrast to control experiments with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt) (DOPE-NBD) in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), the lipopolymer self-diffusion coefficient decreases monotonically with increasing concentration, without a distinguishing mushroom-to-brush transition. Our data yield a correlation Ds = D0/(1 + αc), where D0 ≈ 3.36 µm2 s−1 and α ≈ 0.56 (with c expressed as a mole percent). Interpreting the dilute limit with the Scalettar–Abney–Owicki statistical mechanical theory for transmembrane proteins yields an effective disc radius ae ≈ 2.41 nm. On the other hand, the Bussell–Koch–Hammer theory, which includes hydrodynamic interactions, yields ae ≈ 2.92 nm. As expected, both measures are smaller than the Flory radius of the 2 kDa poly(ethylene glycol) (PEG) chains, RF ≈ 3.83 nm, and significantly larger than the nominal radius of the phospholipid heads, al ≈ 0.46 nm. The diffusion coefficient at infinite dilution D0 was interpreted using the Evans–Sackmann theory, furnishing an inter-leaflet frictional drag coefficient bs ≈ 1.33 × 108 N s m−3. Our results suggest that lipopolymer interactions are dominated by the excluded volume of the PEG-chain segments, with frictional drag dominated by the two-dimensional bilayer hydrodynamics. PMID:20504804

  4. Simulation of genotype-by-environment interactions on irrigated soybean yields in the U.S. Midsouth

    USDA-ARS?s Scientific Manuscript database

    Dynamic crop models that incorporate the effect of environmental variables can potentially explain yield differences associated with location, year, planting date, and cultivars with different growing cycles. Soybean (Glycine max (L.) Mer.) cultivar coefficients for the DSSAT-CROPGRO model were cali...

  5. Theory versus experiment for the rotordynamic coefficients of annular gas seals. I - Test facility and apparatus

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Nelson, C. E.; Nicks, C.; Scharrer, J.; Elrod, D.

    1985-01-01

    A facility and apparatus are described for determining the rotordynamic coefficients and leakage characteristics of annular gas seals. The coefficients and leakage characteristics of annular gas seals. The apparatus has a current top speed of 8000 cpm with a nominal seal diameter of 15.24 cmn (6 in.). The air supply unit yields a seal pressure ratio of approximately 7. An external shaker is used to excite the test rotor. The capability to independently calculate all rotordynamic coefficients at a given operating condition with one excitation frequency are discussed.

  6. Investigation of Plant Cell Wall Properties: A Study of Contributions from the Nanoscale to the Macroscale Impacting Cell Wall Recalcitrance

    NASA Astrophysics Data System (ADS)

    Crowe, Jacob Dillon

    Biochemical conversion of lignocellulosic biomass to fuel ethanol is one of a few challenging, yet opportune technologies that can reduce the consumption of petroleum-derived transportation fuels, while providing parallel reductions in greenhouse gas emissions. Biomass recalcitrance, or resistance to deconstruction, is a major technical challenge that limits effective conversion of biomass to fermentable sugars, often requiring a costly thermochemical pretreatment step to improve biomass deconstruction. Biomass recalcitrance is imparted largely by the secondary cell wall, a complex polymeric matrix of cell wall polysaccharides and aromatic heteropolymers, that provides structural stability to cells and enables plant upright growth. Polymers within the cell wall can vary both compositionally and structurally depending upon plant species and anatomical fraction, and have varied responses to thermochemical pretreatments. Cell wall properties impacting recalcitrance are still not well understood, and as a result, the goal of this dissertation is to investigate structural features of the cell wall contributing to recalcitrance (1) in diverse anatomical fractions of a single species, (2) in response to diverse pretreatments, and (3) resulting from genetic modification. In the first study, feedstock cell wall heterogeneity was investigated in anatomical (stem, leaf sheaths, and leaf blades) and internode fractions of switchgrass at varying tissue maturities. Lignin content was observed as the key contributor to recalcitrance in maturing stem tissues only, with non-cellulosic substituted glucuronoarabinoxylans and pectic polysaccharides contributing to cell wall recalcitrance in leaf sheath and leaf blades. Hydroxycinnamate (i.e., saponifiable p-coumarate and ferulate) content along with xylan and pectin extractability decreased with tissue maturity, suggesting lignification is only one component imparting maturity specific cell wall recalcitrance. In the second study, alkaline hydrogen peroxide and liquid hot water pretreatments were shown to alter structural properties impacting nanoscale porosity in corn stover. Delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity, with subsequent cell wall swelling resulting in increased nanoscale porosity and improved enzymatic hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 A dextran probe within the cell wall was found to be positively correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields. In the third study, the effect of altered xylan content and structure was investigated in irregular xylem (irx) Arabidopsis thaliana mutants to understand the role xylan plays in secondary cell wall development and organization. Higher xylan extractability and lower cellulose crystallinity observed in irx9 and irx15 irx15-L mutants compared to wild type indicated altered xylan integration into the secondary cell wall. Nanoscale cell wall organization observed using multiple microscopy techniques was impacted to some extent in all irx mutants, with disorganized cellulose microfibril layers in sclerenchyma secondary cell walls likely resulting from irregular xylan structure and content. Irregular secondary cell wall microfibril layers showed heterogeneous nanomechanical properties compared to wild type, which translated to mechanical deficiencies observed in stem tensile tests. These results suggest nanoscale defects in cell wall strength can correspond to macroscale phenotypes.

  7. Phosphorus component in AnnAGNPS

    USGS Publications Warehouse

    Yuan, Y.; Bingner, R.L.; Theurer, F.D.; Rebich, R.A.; Moore, P.A.

    2005-01-01

    The USDA Annualized Agricultural Non-Point Source Pollution model (AnnAGNPS) has been developed to aid in evaluation of watershed response to agricultural management practices. Previous studies have demonstrated the capability of the model to simulate runoff and sediment, but not phosphorus (P). The main purpose of this article is to evaluate the performance of AnnAGNPS on P simulation using comparisons with measurements from the Deep Hollow watershed of the Mississippi Delta Management Systems Evaluation Area (MDMSEA) project. A sensitivity analysis was performed to identify input parameters whose impact is the greatest on P yields. Sensitivity analysis results indicate that the most sensitive variables of those selected are initial soil P contents, P application rate, and plant P uptake. AnnAGNPS simulations of dissolved P yield do not agree well with observed dissolved P yield (Nash-Sutcliffe coefficient of efficiency of 0.34, R2 of 0.51, and slope of 0.24); however, AnnAGNPS simulations of total P yield agree well with observed total P yield (Nash-Sutcliffe coefficient of efficiency of 0.85, R2 of 0.88, and slope of 0.83). The difference in dissolved P yield may be attributed to limitations in model simulation of P processes. Uncertainties in input parameter selections also affect the model's performance.

  8. Mapping the Landscape of Domain-Wall Pinning in Ferromagnetic Films Using Differential Magneto-Optical Microscopy

    NASA Astrophysics Data System (ADS)

    Badea, Robert; Berezovsky, Jesse

    2016-06-01

    The propagation of domain walls in a ferromagnetic film is largely determined by domain-wall pinning at defects in the material. In this article, we map the effective potential landscape for domain-wall pinning in permalloy films by raster scanning a single ferromagnetic vortex and monitoring the hysteretic vortex displacement vs applied magnetic field. The measurement is carried out using a differential magneto-optical microscopy technique which yields spatial sensitivity of approximately 10 nm. We present a simple algorithm for extracting an effective pinning potential from the measurement of vortex displacement vs applied field. The resulting maps of the pinning potential reveal distinct types of pinning sites, which we attribute to quasi-zero-, one-, and two-dimensional defects in the permalloy film.

  9. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors.

    PubMed

    Waugh, C J; Rosenberg, M J; Zylstra, A B; Frenje, J A; Séguin, F H; Petrasso, R D; Glebov, V Yu; Sangster, T C; Stoeckl, C

    2015-05-01

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  10. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    DOE PAGES

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.; ...

    2015-05-27

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less

  11. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less

  12. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waugh, C. J., E-mail: cjwaugh@mit.edu; Zylstra, A. B.; Frenje, J. A.

    2015-05-15

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less

  13. A viscoplastic shear-zone model for episodic slow slip events in oceanic subduction zones

    NASA Astrophysics Data System (ADS)

    Yin, A.; Meng, L.

    2016-12-01

    Episodic slow slip events occur widely along oceanic subduction zones at the brittle-ductile transition depths ( 20-50 km). Although efforts have been devoted to unravel their mechanical origins, it remains unclear about the physical controls on the wide range of their recurrence intervals and slip durations. In this study we present a simple mechanical model that attempts to account for the observed temporal evolution of slow slip events. In our model we assume that slow slip events occur in a viscoplastic shear zone (i.e., Bingham material), which has an upper static and a lower dynamic plastic yield strength. We further assume that the hanging wall deformation is approximated as an elastic spring. We envision the shear zone to be initially locked during forward/landward motion but is subsequently unlocked when the elastic and gravity-induced stress exceeds the static yield strength of the shear zone. This leads to backward/trenchward motion damped by viscous shear-zone deformation. As the elastic spring progressively loosens, the hanging wall velocity evolves with time and the viscous shear stress eventually reaches the dynamic yield strength. This is followed by the termination of the trenchward motion when the elastic stress is balanced by the dynamic yield strength of the shear zone and the gravity. In order to account for the zig-saw slip-history pattern of typical repeated slow slip events, we assume that the shear zone progressively strengthens after each slow slip cycle, possibly caused by dilatancy as commonly assumed or by progressive fault healing through solution-transport mechanisms. We quantify our conceptual model by obtaining simple analytical solutions. Our model results suggest that the duration of the landward motion increases with the down-dip length and the static yield strength of the shear zone, but decreases with the ambient loading velocity and the elastic modulus of the hanging wall. The duration of the backward/trenchward motion depends on the thickness, viscosity, and dynamic yield strength of the shear zone. Our model predicts a linear increase in slip with time during the landward motion and an exponential decrease in slip magnitude during the trenchward motion.

  14. DWI in Pediatric Small-Bowel Crohn Disease: Are Apparent Diffusion Coefficients Surrogates for Disease Activity in Patients Receiving Infliximab Therapy?

    PubMed

    Dillman, Jonathan R; Smith, Ethan A; Sanchez, Ramon; Adler, Jeremy; Fazeli, Soudabeh; Zhang, Bin; Davenport, Matthew S

    2016-11-01

    The purpose of this study was to determine prospectively whether bowel wall apparent diffusion coefficient (ADC) measurements can be used to monitor treatment response to infliximab therapy in the setting of pediatric small-bowel Crohn disease. Twenty-eight pediatric subjects with newly diagnosed biopsy-proven Crohn disease of the distal or terminal ileum treated with infliximab were enrolled. Subjects underwent MR enterography at baseline, 1 month after therapy, and 6 months after therapy. Imaging features were documented, including bowel wall ADC and arterial or enteric phase contrast-enhanced signal intensity normalized to that of unenhanced imaging. A linear mixed model assessed the relationship between ADC and time; patient age and sex and azathioprine combination therapy were covariates. The diagnostic performance (with 95% CIs) of an increase in bowel wall ADC of 20% or more for identifying response to infliximab was calculated using a decrease in normalized contrast-enhanced bowel wall signal intensity of 20% or more as the reference standard. Bowel wall ADC increased over time (mean [± SD], 1180 ± 200 × 10 -6 mm 2 /s at baseline, 1420 ± 420 × 10 -6 mm 2 /s at 1 month, and 1450 ± 450 × 10 -6 mm 2 /s at 6 months; p = 0.0003); azathioprine therapy modulated this rate of change (p = 0.003). There was a statistically significant negative correlation between change in ADC and change in normalized contrast-enhanced signal intensity over time (ρ = -0.36; p < 0.001). The diagnostic performance of change in ADC for identifying response to infliximab therapy was sensitivity of 0.58 (95% CI, 0.34-0.80), specificity of 0.52 (95% CI, 0.31-0.72), positive predictive value of 0.48 (95% CI, 0.27-0.69), and negative predictive value of 0.62 (95% CI, 0.38-0.82). Bowel wall ADC increases over time in pediatric subjects receiving infliximab, but the diagnostic performance of ADC is likely insufficient for reliable treatment monitoring.

  15. Redistribution Principle Approach for Evaluation of Seismic Active Earth Pressure Behind Retaining Wall

    NASA Astrophysics Data System (ADS)

    Maskar, A. D.; Madhekar, S. N.; Phatak, D. R.

    2017-11-01

    The knowledge of seismic active earth pressure behind the rigid retaining wall is very essential in the design of retaining wall in earthquake prone regions. Commonly used Mononobe-Okabe (MO) method considers pseudo-static approach. Recently there are many pseudo-dynamic methods used to evaluate the seismic earth pressure. However, available pseudo-static and pseudo-dynamic methods do not incorporate the effect of wall movement on the earth pressure distribution. Dubrova (Interaction between soils and structures, Rechnoi Transport, Moscow, 1963) was the first, who considered such effect and till date, it is used for cohesionless soil, without considering the effect of seismicity. In this paper, Dubrova's model based on redistribution principle, considering the seismic effect has been developed. It is further used to compute the distribution of seismic active earth pressure, in a more realistic manner, by considering the effect of wall movement on the earth pressure, as it is displacement based method. The effects of a wide range of parameters like soil friction angle (ϕ), wall friction angle (δ), horizontal and vertical seismic acceleration coefficients (kh and kv); on seismic active earth pressure (Kae) have been studied. Results are presented for comparison of pseudo-static and pseudo-dynamic methods, to highlight the realistic, non-linearity of seismic active earth pressure distribution. The current study results in the variation of Kae with kh in the same manner as that of MO method and Choudhury and Nimbalkar (Geotech Geol Eng 24(5):1103-1113, 2006) study. To increase in ϕ, there is a reduction in static as well as seismic earth pressure. Also, by keeping constant ϕ value, as kh increases from 0 to 0.3, earth pressure increases; whereas as δ increases, active earth pressure decreases. The seismic active earth pressure coefficient (Kae) obtained from the present study is approximately same as that obtained by previous researchers. Though seismic earth pressure obtained by pseudo-dynamic approach and seismic earth pressure obtained by redistribution principle have different background of formulation, the final earth pressure distribution is approximately same.

  16. Investigation of the ellipsoidal-statistical Bhatnagar-Gross-Krook kinetic model applied to gas-phase transport of heat and tangential momentum between parallel walls

    NASA Astrophysics Data System (ADS)

    Gallis, M. A.; Torczynski, J. R.

    2011-03-01

    The ellipsoidal-statistical Bhatnagar-Gross-Krook (ES-BGK) kinetic model is investigated for steady gas-phase transport of heat, tangential momentum, and mass between parallel walls (i.e., Fourier, Couette, and Fickian flows). This investigation extends the original study of Cercignani and Tironi, who first applied the ES-BGK model to heat transport (i.e., Fourier flow) shortly after this model was proposed by Holway. The ES-BGK model is implemented in a molecular-gas-dynamics code so that results from this model can be compared directly to results from the full Boltzmann collision term, as computed by the same code with the direct simulation Monte Carlo (DSMC) algorithm of Bird. A gas of monatomic molecules is considered. These molecules collide in a pairwise fashion according to either the Maxwell or the hard-sphere interaction and reflect from the walls according to the Cercignani-Lampis-Lord model with unity accommodation coefficients. Simulations are performed at pressures from near-free-molecular to near-continuum. Unlike the BGK model, the ES-BGK model produces heat-flux and shear-stress values that both agree closely with the DSMC values at all pressures. However, for both interactions, the ES-BGK model produces molecular-velocity-distribution functions that are qualitatively similar to those determined for the Maxwell interaction from Chapman-Enskog theory for small wall temperature differences and moment-hierarchy theory for large wall temperature differences. Moreover, the ES-BGK model does not produce accurate values of the mass self-diffusion coefficient for either interaction. Nevertheless, given its reasonable accuracy for heat and tangential-momentum transport, its sound theoretical foundation (it obeys the H-theorem), and its available extension to polyatomic molecules, the ES-BGK model may be a useful method for simulating certain classes of single-species noncontinuum gas flows, as Cercignani suggested.

  17. Heat transfer enhancement due to a longitudinal vortex produced by a single winglet in a pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyakawa, Kenyu; Senaha, Izuru; Ishikawa, Shuji

    1999-07-01

    Longitudinal vortices were artificially generated by a single winglet vortex generator in a pipe. The purpose of this study is to analyze the motion of longitudinal vortices and their effects on heat transfer enhancement. The flow pattern was visualized by means of both fluorescein and rhodamine B as traces in a water flow. The main vortex was moved spirally along the circumference and the behavior of the other vortices was observed. Streamwise and circumferential heat transfer coefficients on the wall, wall static pressure, and velocity distribution in an overall cross section were also measured for the air flow in amore » range of Reynolds numbers from 18,800 to 62,400. The distributions of the streamwise heat transfer coefficient had a periodic pattern, and the peaks in the distribution were circumferentially moved due to the spiral motion of the main vortex. Lastly, the relationships between the iso-velocity distribution, wall static pressure, and heat transfer characteristics was shown. In the process of forming the vortex behind the winglet vortex generator, behaviors of both the main vortex and the corner vortex were observed as streak lines. The vortex being raised along the end of the winglet, and the vortex ring being rolled up to the main vortex were newly observed. Both patterns of the streamwise velocity on a cross-section and the static pressure on the wall show good correspondences to phenomena of the main vortex spirally flowing downstream. The increased ratio of the heat transfer is similar to that of the friction factor based on the shear stress on the wall surface of the pipe. The quantitative analogy between the heat transfer and the shear stress is confirmed except for some regions, where the effects of the down-wash or blow-away of the secondary flows is caused due to the main vortex.« less

  18. Kinetics of styrene biodegradation by Pseudomonas sp. E-93486.

    PubMed

    Gąszczak, Agnieszka; Bartelmus, Grażyna; Greń, Izabela

    2012-01-01

    The research into kinetics of styrene biodegradation by bacterial strain Pseudomonas sp. E-93486 coming from VTT Culture Collection (Finland) was presented in this work. Microbial growth tests in the presence of styrene as the sole carbon and energy source were performed both in batch and continuous cultures. Batch experiments were conducted for initial concentration of styrene in the liquid phase changed in the range of 5-90 g m(-3). The Haldane model was found to be the best to fit the kinetic data, and the estimated constants of the equation were: μ (m) = 0.1188 h(-1), K(S) = 5.984 mg l(-1), and K (i) = 156.6 mg l(-1). The yield coefficient mean value [Formula in text] for the batch culture was 0.72 g(dry cells weight) (g(substrate))(-1). The experiments conducted in a chemostat at various dilution rates (D = 0.035-0.1 h(-1)) made it possible to determine the value of the coefficient for maintenance metabolism m (d) = 0.0165 h(-1) and the maximum yield coefficient value [Formula in text]. Chemostat experiments confirmed the high value of yield coefficient [Formula in text] observed in the batch culture. The conducted experiments showed high activity of the examined strain in the styrene biodegradation process and a relatively low sensitivity to inhibition of its growth at higher concentrations of styrene in the solution. Such exceptional features of Pseudomonas sp. E-93486 make this bacterial strain the perfect candidate for technical applications.

  19. Statistical optimization of medium components for avilamycin production by Streptomyces viridochromogenes Tü57-1 using response surface methodology.

    PubMed

    Zhu, Chuan-He; Lu, Fu-Ping; He, Ya-Nan; Zhang, Juan-Kun; Du, Lian-Xiang

    2007-04-01

    A fermentation medium for avilamycin production by Streptomyces viridochromogenes Tü57-1 has been optimized. Important components and their concentrations were investigated using fractional factorial design and Box-Behnken Design. The results showed that soybean flour, soluble starch, MgSO4.7H2O and CaCl2.2H2O are important for avilamycin production. A polynomial model related to medium components and avilamycin yield had been established. A high coefficient of determination (R2 = 0.92) was obtained that indicated good agreement between the experimental and predicted values of avilamycin yield. Student's T-test of each coefficient showed that all the linear and quadratic terms had significant effect (P > |T| < 0.05) on avilamycin yield. The significance of tested components was related to MgSO4.7H2O (0.37 g/L), CaCl2.2H2O (0.39 g/L), soybean flour (21.97 g/L) and soluble starch (37.22 g/L). The yield of avilamycin reached 88.33 +/- 0.94 mg/L (p < 0.05) that was 2.8-fold the initial yield.

  20. Evaluation of analytical procedures for prediction of turbulent boundary layers on a porous wall

    NASA Technical Reports Server (NTRS)

    Towne, C. E.

    1974-01-01

    An analytical study has been made to determine how well current boundary layer prediction techniques work when there is mass transfer normal to the wall. The data that were considered in this investigation were for two-dimensional, incompressible, turbulent boundary layers with suction and blowing. Some of the bleed data were taken in an adverse pressure gradient. An integral prediction method was used three different porous wall skin friction relations, in addition to a solid-surface relation for the suction cases. A numerical prediction method was also used. Comparisons were made between theoretical and experimental skin friction coefficients, displacement and momentum thicknesses, and velocity profiles. The integral method with one of the porous wall skin friction laws gave very good agreement with data for most of the cases considered. The use of the solid-surface skin friction law caused the integral to overpredict the effectiveness of the bleed. The numerical techniques also worked well for most of the cases.

Top