Sample records for wall-less contractile bacteria

  1. Molecular evolution of the actin-like MreB protein gene family in wall-less bacteria.

    PubMed

    Ku, Chuan; Lo, Wen-Sui; Kuo, Chih-Horng

    2014-04-18

    The mreB gene family encodes actin-like proteins that determine cell shape by directing cell wall synthesis and often exists in one to three copies in the genomes of non-spherical bacteria. Intriguingly, while most wall-less bacteria do not have this gene, five to seven mreB homologs are found in Spiroplasma and Haloplasma, which are both characterized by cell contractility. To investigate the molecular evolution of this gene family in wall-less bacteria, we sampled the available genome sequences from these two genera and other related lineages for comparative analysis. The gene phylogenies indicated that the mreB homologs in Haloplasma are more closely related to those in Firmicutes, whereas those in Spiroplasma form a separate clade. This finding suggests that the gene family expansions in these two lineages are the results of independent ancient duplications. Moreover, the Spiroplasma mreB homologs can be classified into five clades, of which the genomic positions are largely conserved. The inference of gene gains and losses suggests that there has been an overall trend to retain only one homolog from each of the five mreB clades in the evolutionary history of Spiroplasma. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Correlation between cardiac remodelling, function, and myocardial contractility in rat hearts 5 weeks after myocardial infarction.

    PubMed

    Gosselin, H; Qi, X; Rouleau, J L

    1998-01-01

    Early after infarction, ventricular dysfunction occurs as a result of loss of myocardial tissue. Although papillary muscle studies suggest that reduced myocardial contractility contributes to this ventricular dysfunction, in vivo studies indicate that at rest, cardiac output is normal or near normal, suggesting that contractility of the remaining viable myocardium of the ventricular wall is preserved. However, this has never been verified. To explore this further, 100 rats with various-sized myocardial infarctions had ventricular function assessed by Langendorff preparation or by isolated papillary muscle studies 5 weeks after infarction. Morphologic studies were also done. Rats with large infarctions (54%) had marked ventricular dilatation (dilatation index from 0.23 to 0.75, p < 0.01) and papillary muscle dysfunction (total tension from 6.7 to 3.2 g/mm2, p < 0.01) but only moderate left ventricular dysfunction (maximum developed tension from 206 to 151 mmHg (1 mmHg = 133.3 Pa), p < 0.01), a decrease less than one would expect with an infarct size of 54%. The contractility of the remaining viable myocardium of the ventricle was also moderately depressed (peak systolic midwall stress 91 to 60 mmHg, p < 0.01). Rats with moderate infarctions (32%) had less marked but still moderate ventricular dilatation (dilatation index 0.37, p < 0.001) and moderate papillary muscle dysfunction (total tension 4.2 g/mm2, p < 0.01). However, their decrease in ventricular function was only mild (maximum developed pressure 178 mmHg, p < 0.01) and less than one would expect with an infarct size of 32%. The remaining viable myocardium of the ventricular wall appeared to have normal contractility (peak systolic midwall stress = 86 mmHg, ns). We conclude that in this postinfarction model, in large myocardial infarctions, a loss of contractility of the remaining viable myocardium of the ventricular wall occurs as early as 5 weeks after infarction and that papillary muscle studies slightly

  3. The Fiber Contractility and Cytoskeleton Losses in Space are Less Pronounced in Mongolian Gerbils

    NASA Astrophysics Data System (ADS)

    Lipets, E. N.; Ponomareva, E. V.; Ogneva, I. V.; Vikhliantsev, I. M.; Karaduleva, E. V.; Kartashkina, N. L.; Kuznetsov, S. L.; Podlubnaia, Z. A.; Shenkman, B. S.

    2008-06-01

    This work was purposed on the comparison of space flight effects on m. soleus and m. tibialis anterior of Mongolian gerbils. The animals have been flown onboard biosatellite Foton-M3 for 12 days. Contractile properties of single skinned muscle fibers were studied. It was revealed that diameter of m. soleus skinned fibers and maximal isometric tension were decreased by 19.7% and 21.8% respectively. The Ca-sensitivity reduction wasn't significant, that was in accordance with absence of changes of titin and nebulin relative content in soleus and minor manifestations in slow-to-fast fiber ratio (9%, p<0.05). There weren't observed significant changes of the same parameters in m. tibialis anterior. Ultimately the fiber contractility and cytoskeleton losses in space are less pronounced in Mongolian gerbils than in rats.

  4. Hydrodynamic Trapping of Swimming Bacteria by Convex Walls

    NASA Astrophysics Data System (ADS)

    Sipos, O.; Nagy, K.; Di Leonardo, R.; Galajda, P.

    2015-06-01

    Swimming bacteria display a remarkable tendency to move along flat surfaces for prolonged times. This behavior may have a biological importance but can also be exploited by using microfabricated structures to manipulate bacteria. The main physical mechanism behind the surface entrapment of swimming bacteria is, however, still an open question. By studying the swimming motion of Escherichia coli cells near microfabricated pillars of variable size, we show that cell entrapment is also present for convex walls of sufficiently low curvature. Entrapment is, however, markedly reduced below a characteristic radius. Using a simple hydrodynamic model, we predict that trapped cells swim at a finite angle with the wall and a precise relation exists between the swimming angle at a flat wall and the critical radius of curvature for entrapment. Both predictions are quantitatively verified by experimental data. Our results demonstrate that the main mechanism for wall entrapment is hydrodynamic in nature and show the possibility of inhibiting cell adhesion, and thus biofilm formation, using convex features of appropriate curvature.

  5. Wall accumulation of bacteria with different motility patterns

    NASA Astrophysics Data System (ADS)

    Sartori, Paolo; Chiarello, Enrico; Jayaswal, Gaurav; Pierno, Matteo; Mistura, Giampaolo; Brun, Paola; Tiribocchi, Adriano; Orlandini, Enzo

    2018-02-01

    We systematically investigate the role of different swimming patterns on the concentration distribution of bacterial suspensions confined between two flat walls, by considering wild-type motility Escherichia coli and Pseudomonas aeruginosa, which perform Run and Tumble and Run and Reverse patterns, respectively. The experiments count motile bacteria at different distances from the bottom wall. In agreement with previous studies, an accumulation of motile bacteria close to the walls is observed. Different wall separations, ranging from 100 to 250 μ m , are tested. The concentration profiles result to be independent on the motility pattern and on the walls' separation. These results are confirmed by numerical simulations, based on a collection of self-propelled dumbbells-like particles interacting only through steric interactions. The good agreement with the simulations suggests that the behavior of the investigated bacterial suspensions is determined mainly by steric collisions and self-propulsion, as well as hydrodynamic interactions.

  6. Wall accumulation of bacteria with different motility patterns.

    PubMed

    Sartori, Paolo; Chiarello, Enrico; Jayaswal, Gaurav; Pierno, Matteo; Mistura, Giampaolo; Brun, Paola; Tiribocchi, Adriano; Orlandini, Enzo

    2018-02-01

    We systematically investigate the role of different swimming patterns on the concentration distribution of bacterial suspensions confined between two flat walls, by considering wild-type motility Escherichia coli and Pseudomonas aeruginosa, which perform Run and Tumble and Run and Reverse patterns, respectively. The experiments count motile bacteria at different distances from the bottom wall. In agreement with previous studies, an accumulation of motile bacteria close to the walls is observed. Different wall separations, ranging from 100 to 250μm, are tested. The concentration profiles result to be independent on the motility pattern and on the walls' separation. These results are confirmed by numerical simulations, based on a collection of self-propelled dumbbells-like particles interacting only through steric interactions. The good agreement with the simulations suggests that the behavior of the investigated bacterial suspensions is determined mainly by steric collisions and self-propulsion, as well as hydrodynamic interactions.

  7. Comparing contractile apparatus-driven cytokinesis mechanisms across kingdoms.

    PubMed

    Balasubramanian, Mohan K; Srinivasan, Ramanujam; Huang, Yinyi; Ng, Kian-Hong

    2012-11-01

    Cytokinesis is the final stage of the cell cycle during which a cell physically divides into two daughters through the assembly of new membranes (and cell wall in some cases) between the forming daughters. New membrane assembly can either proceed centripetally behind a contractile apparatus, as in the case of prokaryotes, archaea, fungi, and animals or expand centrifugally, as in the case of higher plants. In this article, we compare the mechanisms of cytokinesis in diverse organisms dividing through the use of a contractile apparatus. While an actomyosin ring participates in cytokinesis in almost all centripetally dividing eukaryotes, the majority of bacteria and archaea (except Crenarchaea) divide using a ring composed of the tubulin-related protein FtsZ. Curiously, despite molecular conservation of the division machinery components, division site placement and its cell cycle regulation occur by a variety of unrelated mechanisms even among organisms from the same kingdom. While molecular motors and cytoskeletal polymer dynamics contribute to force generation during eukaryotic cytokinesis, cytoskeletal polymer dynamics alone appears to be sufficient for force generation during prokaryotic cytokinesis. Intriguingly, there are life forms on this planet that appear to lack molecules currently known to participate in cytokinesis and how these cells perform cytokinesis remains a mystery waiting to be unravelled. Copyright © 2012 Wiley Periodicals, Inc.

  8. The contractile ring coordinates curvature-dependent septum assembly during fission yeast cytokinesis

    PubMed Central

    Zhou, Zhou; Munteanu, Emilia Laura; He, Jun; Ursell, Tristan; Bathe, Mark; Huang, Kerwyn Casey; Chang, Fred

    2015-01-01

    The functions of the actin-myosin–based contractile ring in cytokinesis remain to be elucidated. Recent findings show that in the fission yeast Schizosaccharomyces pombe, cleavage furrow ingression is driven by polymerization of cell wall fibers outside the plasma membrane, not by the contractile ring. Here we show that one function of the ring is to spatially coordinate septum cell wall assembly. We develop an improved method for live-cell imaging of the division apparatus by orienting the rod-shaped cells vertically using microfabricated wells. We observe that the septum hole and ring are circular and centered in wild-type cells and that in the absence of a functional ring, the septum continues to ingress but in a disorganized and asymmetric manner. By manipulating the cleavage furrow into different shapes, we show that the ring promotes local septum growth in a curvature-dependent manner, allowing even a misshapen septum to grow into a more regular shape. This curvature-dependent growth suggests a model in which contractile forces of the ring shape the septum cell wall by stimulating the cell wall machinery in a mechanosensitive manner. Mechanical regulation of the cell wall assembly may have general relevance to the morphogenesis of walled cells. PMID:25355954

  9. Dependence of Intramyocardial Pressure and Coronary Flow on Ventricular Loading and Contractility: A Model Study

    PubMed Central

    Borsje, Petra; Arts, Theo; van De Vosse, Frans N.

    2006-01-01

    The phasic coronary arterial inflow during the normal cardiac cycle has been explained with simple (waterfall, intramyocardial pump) models, emphasizing the role of ventricular pressure. To explain changes in isovolumic and low afterload beats, these models were extended with the effect of three-dimensional wall stress, nonlinear characteristics of the coronary bed, and extravascular fluid exchange. With the associated increase in the number of model parameters, a detailed parameter sensitivity analysis has become difficult. Therefore we investigated the primary relations between ventricular pressure and volume, wall stress, intramyocardial pressure and coronary blood flow, with a mathematical model with a limited number of parameters. The model replicates several experimental observations: the phasic character of coronary inflow is virtually independent of maximum ventricular pressure, the amplitude of the coronary flow signal varies about proportionally with cardiac contractility, and intramyocardial pressure in the ventricular wall may exceed ventricular pressure. A parameter sensitivity analysis shows that the normalized amplitude of coronary inflow is mainly determined by contractility, reflected in ventricular pressure and, at low ventricular volumes, radial wall stress. Normalized flow amplitude is less sensitive to myocardial coronary compliance and resistance, and to the relation between active fiber stress, time, and sarcomere shortening velocity. PMID:17048105

  10. Dependence of intramyocardial pressure and coronary flow on ventricular loading and contractility: a model study.

    PubMed

    Bovendeerd, Peter H M; Borsje, Petra; Arts, Theo; van De Vosse, Frans N

    2006-12-01

    The phasic coronary arterial inflow during the normal cardiac cycle has been explained with simple (waterfall, intramyocardial pump) models, emphasizing the role of ventricular pressure. To explain changes in isovolumic and low afterload beats, these models were extended with the effect of three-dimensional wall stress, nonlinear characteristics of the coronary bed, and extravascular fluid exchange. With the associated increase in the number of model parameters, a detailed parameter sensitivity analysis has become difficult. Therefore we investigated the primary relations between ventricular pressure and volume, wall stress, intramyocardial pressure and coronary blood flow, with a mathematical model with a limited number of parameters. The model replicates several experimental observations: the phasic character of coronary inflow is virtually independent of maximum ventricular pressure, the amplitude of the coronary flow signal varies about proportionally with cardiac contractility, and intramyocardial pressure in the ventricular wall may exceed ventricular pressure. A parameter sensitivity analysis shows that the normalized amplitude of coronary inflow is mainly determined by contractility, reflected in ventricular pressure and, at low ventricular volumes, radial wall stress. Normalized flow amplitude is less sensitive to myocardial coronary compliance and resistance, and to the relation between active fiber stress, time, and sarcomere shortening velocity.

  11. Critical cell wall hole size for lysis in Gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Mitchell, Gabriel; Wiesenfeld, Kurt; Nelson, Daniel; Weitz, Joshua

    2013-03-01

    Gram-positive bacteria transport molecules necessary for their survival through holes in their cell wall. The holes in cell walls need to be large enough to let critical nutrients pass through. However, the cell wall must also function to prevent the bacteria's membrane from protruding through a large hole into the environment and lysing the cell. As such, we hypothesize that there exists a range of cell wall hole sizes that allow for molecule transport but prevent membrane protrusion. Here we develop and analyze a biophysical theory of the response of a Gram-positive cell's membrane to the formation of a hole in the cell wall. We predict a critical hole size in the range 15-24nm beyond which lysis occurs. To test our theory, we measured hole sizes in Streptococcus pyogenes cells undergoing enzymatic lysis via transmission electron microscopy. The measured hole sizes are in strong agreement with our theoretical prediction. Together, the theory and experiments provide a means to quantify the mechanisms of death of Gram-positive cells via enzymatically mediated lysis and provides insight into the range of cell wall hole sizes compatible with bacterial homeostasis.

  12. Growth mechanics of bacterial cell wall and morphology of bacteria

    NASA Astrophysics Data System (ADS)

    Jiang, Hongyuan; Sun, Sean

    2010-03-01

    The peptidoglycan cell wall of bacteria is responsible for maintaining the cell shape and integrity. During the bacterial life cycle, the growth of the cell wall is affected by mechanical stress and osmotic pressure internal to the cell. We develop a theory to describe cell shape changes under the influence of mechanical forces. We find that the theory predicts a steady state size and shape for bacterial cells ranging from cocci to spirillum. Moreover, the theory suggest a mechanism by which bacterial cytoskeletal proteins such as MreB and crescentin can maintain the shape of the cell. The theory can also explain the several recent experiments on growing bacteria in micro-environments.

  13. Cadmium translocation by contractile roots differs from that in regular, non-contractile roots

    PubMed Central

    Lux, Alexander; Lackovič, Andrej; Van Staden, Johannes; Lišková, Desana; Kohanová, Jana; Martinka, Michal

    2015-01-01

    Background and Aims Contractile roots are known and studied mainly in connection with the process of shrinkage of their basal parts, which acts to pull the shoot of the plant deeper into the ground. Previous studies have shown that the specific structure of these roots results in more intensive water uptake at the base, which is in contrast to regular root types. The purpose of this study was to find out whether the basal parts of contractile roots are also more active in translocation of cadmium to the shoot. Methods Plants of the South African ornamental species Tritonia gladiolaris were cultivated in vitro for 2 months, at which point they possessed well-developed contractile roots. They were then transferred to Petri dishes with horizontally separated compartments of agar containing 50 µmol Cd(NO3)2 in the region of the root base or the root apex. Seedlings of 4-d-old maize (Zea mays) plants, which do not possess contractile roots, were also transferred to similar Petri dishes. The concentrations of Cd in the leaves of the plants were compared after 10 d of cultivation. Anatomical analyses of Tritonia roots were performed using appropriately stained freehand cross-sections. Key Results The process of contraction required specific anatomical adaptation of the root base in Tritonia, with less lignified and less suberized tissues in comparison with the subapical part of the root. These unusual developmental characteristics were accompanied by more intensive translocation of Cd ions from the basal part of contractile roots to the leaves than from the apical–subapical root parts. The opposite effects were seen in the non-contractile roots of maize, with higher uptake and transport by the apical parts of the root and lower uptake and transport by the basal part. Conclusions The specific characteristics of contractile roots may have a significant impact on the uptake of ions, including toxic metals from the soil surface layers. This may be important for plant

  14. The contractile ring coordinates curvature-dependent septum assembly during fission yeast cytokinesis.

    PubMed

    Zhou, Zhou; Munteanu, Emilia Laura; He, Jun; Ursell, Tristan; Bathe, Mark; Huang, Kerwyn Casey; Chang, Fred

    2015-01-01

    The functions of the actin-myosin-based contractile ring in cytokinesis remain to be elucidated. Recent findings show that in the fission yeast Schizosaccharomyces pombe, cleavage furrow ingression is driven by polymerization of cell wall fibers outside the plasma membrane, not by the contractile ring. Here we show that one function of the ring is to spatially coordinate septum cell wall assembly. We develop an improved method for live-cell imaging of the division apparatus by orienting the rod-shaped cells vertically using microfabricated wells. We observe that the septum hole and ring are circular and centered in wild-type cells and that in the absence of a functional ring, the septum continues to ingress but in a disorganized and asymmetric manner. By manipulating the cleavage furrow into different shapes, we show that the ring promotes local septum growth in a curvature-dependent manner, allowing even a misshapen septum to grow into a more regular shape. This curvature-dependent growth suggests a model in which contractile forces of the ring shape the septum cell wall by stimulating the cell wall machinery in a mechanosensitive manner. Mechanical regulation of the cell wall assembly may have general relevance to the morphogenesis of walled cells. © 2015 Zhou et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Genetic Diversity and Association Characters of Bacteria Isolated from Arbuscular Mycorrhizal Fungal Spore Walls

    PubMed Central

    Selvakumar, Gopal; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sa, Tong-Min

    2016-01-01

    Association between arbuscular mycorrhizal fungi (AMF) and bacteria has long been studied. However, the factors influencing their association in the natural environment is still unknown. This study aimed to isolate bacteria associated with spore walls of AMF and identify their potential characters for association. Spores collected from coastal reclamation land were differentiated based on their morphology and identified by 18S rDNA sequencing as Funneliformis caledonium, Racocetra alborosea and Funneliformis mosseae. Bacteria associated with AMF spore walls were isolated after treating them with disinfection solution at different time intervals. After 0, 10 and 20 min of spore disinfection, 86, 24 and 10 spore associated bacteria (SAB) were isolated, respectively. BOX-PCR fingerprinting analysis showed that diverse bacterial communities were associated to AMF spores. Bacteria belonging to the same genera could associate with different AMF spores. Gram positive bacteria were more closely associated with AMF spores. Isolated SAB were characterized and tested for spore association characters such as chitinase, protease, cellulase enzymes and exopolysaccharide production (EPS). Among the 120 SAB, 113 SAB were able to show one or more characters for association and seven SAB did not show any association characters. The 16S rDNA sequence of SAB revealed that bacteria belonging to the phyla Firmicutes, Proteobacteria, Actinobacteria and Bactereiodes were associated with AMF spore walls. PMID:27479250

  16. New phenotypic aspects of the decidual spiral artery wall during early post-implantation mouse pregnancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elia, Artemis; Charalambous, Fotini; Georgiades, Pantelis, E-mail: pgeor@ucy.ac.cy

    Highlights: Black-Right-Pointing-Pointer Spiral artery (SA) wall remodeling (SAR) is ill-defined and clinically important. Black-Right-Pointing-Pointer SA muscular phenotype prior to and during SAR in mice is underexplored. Black-Right-Pointing-Pointer SA muscular wall consists of contractile and non-contractile components. Black-Right-Pointing-Pointer SA wall non-contractile component may be synthetic smooth muscle. Black-Right-Pointing-Pointer Timing and extent of SA wall contractile component loss is revealed. -- Abstract: During pregnancy the walls of decidual spiral arteries (SAs) undergo clinically important structural modifications crucial for embryo survival/growth and maternal health. However, the mechanisms of SA remodeling (SAR) are poorly understood. Although an important prerequisite to this understanding is knowledgemore » about the phenotype of SA muscular wall prior to and during the beginning of mouse SAR, this remains largely unexplored and was the main aim of this work. Using histological and immunohistochemical techniques, this study shows for the first time that during early mouse gestation, from embryonic day 7.5 (E7.5) to E10.5, the decidual SA muscular coat is not a homogeneous structure, but consists of two concentric layers. The first is a largely one cell-thick sub-endothelial layer of contractile mural cells (positive for {alpha}-smooth muscle actin, calponin and SM22{alpha}) with pericyte characteristics (NG2 positive). The second layer is thicker, and evidence is presented that it may be of the synthetic/proliferative smooth muscle phenotype, based on absence ({alpha}-smooth muscle actin and calponin) or weak (SM22{alpha}) expression of contractile mural cell markers, and presence of synthetic smooth muscle characteristics (expression of non-muscle Myosin heavy chain-IIA and of the cell proliferation marker PCNA). Importantly, immunohistochemistry and morphometrics showed that the contractile mural cell layer although prominent at E7

  17. Operative contractility: a functional concept of the inotropic state.

    PubMed

    Curiel, Roberto; Perez-Gonzalez, Juan; Torres, Edwar; Landaeta, Ruben; Cerrolaza, Miguel

    2005-10-01

    1. Initial unsuccessful attempts to evaluate ventricular function in terms of the 'heart as a pump' led to focusing on the 'heart as a muscle' and to the concept of myocardial contractility. However, no clinically ideal index exists to assess the contractile state. The aim of the present study was to develop a mathematical model to assess cardiac contractility. 2. A tri-axial system was conceived for preload (PL), afterload (AL) and contractility, where stroke volume (SV) was represented as the volume of the tetrahedron. Based on this model, 'operative' contractility ('OperCon') was calculated from the readily measured values of PL, AL and SV. The model was tested retrospectively under a variety of different experimental and clinical conditions, in 71 studies in humans and 29 studies in dogs. A prospective echocardiographic study was performed in 143 consecutive subjects to evaluate the ability of the model to assess contractility when SV and PL were measured volumetrically (mL) or dimensionally (cm). 3. With inotropic interventions, OperCon changes were comparable to those of ejection fraction (EF), velocity of shortening (Vcf) and dP/dt-max. Only with positive inotropic interventions did elastance (Ees) show significantly larger changes. With load manipulations, OperCon showed significantly smaller changes than EF and Ees and comparable changes to Vcf and dP/dt-max. Values of OperCon were similar when AL was represented by systolic blood pressure or wall stress and when volumetric or dimensional values were used. 4. Operative contractility is a reliable, simple and versatile method to assess cardiac contractility.

  18. Comparative chemical characterization of pigmented and less pigmented cell walls of Alternaria tenuissima.

    PubMed

    Kishore, Kankipati Hara; Kanjilal, Sanjit; Misra, Sunil; Reddy, Chinnathimma Rajagopal; Murty, Upadyayula Suryanarayana

    2005-12-01

    Alternaria tenuissima, the parasitic fungus, was obtained from the pruned upper-cut surfaces of mulberry stems. This fungus contains dark pigment because of the presence of melanin in the cell wall. To obtain less-pigmented cell walls, this fungus was grown under dark condition. When the pigmented and less-pigmented cell walls were chemically analyzed, no differences were observed in amino-acid composition, hexoses, or pentoses. However, in pigmented cell walls, higher contents of melanin (2.6%) were found than in less-pigmented cell walls (0.3%). Interestingly, a significant difference was observed in the relative fatty-acid compositions between these two types of cell walls. Among the major fatty acids, there were increased concentrations of tetradecanoic acid (C14:0), hexadecanoic acid (C16:0), 9-hexadecenoic acid (C16: 1,Delta 9), and 9-octadecanoic acid (C18:1,Delta 9) and a concomitant decrease in 9,12-octadecadienoic acid (C18:2,Delta 9,12) in less-pigmented compared with pigmented cell walls. This difference in fatty-acid composition may be related to the higher percentage of melanin in the pigmented than the less-pigmented cell walls. Lesser amounts of 9,12-octadecadienoic acid in less-pigmented cell walls may have been caused by the growth of the fungus under environmental stress conditions. An interesting observation was the presence in pigmented cell walls only of methyl-substituted fatty acids with carbon numbers C14 to C17, but their occurrence could not be ascertained in the present study.

  19. Probiotic bacteria cell walls stimulate the activity of the intestinal epithelial cells and macrophage functionality.

    PubMed

    Lemme-Dumit, J M; Polti, M A; Perdigón, G; Galdeano, C Maldonado

    2018-01-29

    The effect of oral administration of probiotic bacteria cell walls (PBCWs) in the stimulation of the immune system in healthy BALB/c mice was evaluated. We focused our investigation mainly on intestinal epithelial cells (IECs) which are essential for coordinating an adequate mucosal immune response and on the functionality of macrophages. The probiotic bacteria and their cell walls were able to stimulate the IECs exhibiting an important activation and cytokine releases. Supplementation with PBCWs promoted macrophage activation from peritoneum and spleen, indicating that the PBCWs oral administration was able to improve the functionality of the macrophages. In addition, the PBCWs increased immunoglobulin A (IgA)-producing cells in the gut lamina propria in a similar way to probiotic bacteria, but this supplementation did not have an effect on the population of goblet cells in the small intestine epithelium. These results indicate that the probiotic bacteria and their cell walls have an important immunoregulatory effect on the IECs without altering the homeostatic environment but with an increase in IgA+ producing cells and in the innate immune cells, mainly those distant from the gut such as spleen and peritoneum. These findings about the capacity of the cell walls from probiotic bacteria to stimulate key cells, such as IECs and macrophages, and to improve the functioning of the immune system, suggest that those structures could be applied as a new oral adjuvant.

  20. Rubrobacter-related bacteria associated with rosy discolouration of masonry and lime wall paintings.

    PubMed

    Schabereiter-Gurtner, C; Piñar, G; Vybiral, D; Lubitz, W; Rölleke, S

    2001-11-01

    A molecular approach was chosen to analyse the correlation between bacterial colonisation and rosy discolouration of masonry and lime wall paintings of two historically important buildings in Austria and Germany. The applied molecular method included PCR amplification of genes encoding the small subunit rRNA of bacteria (16S rDNA), genetic fingerprinting by denaturing gradient gel electrophoresis (DGGE), construction of 16S rDNA clone libraries, and comparative phylogenetic sequence analyses. The bacterial community of one red-pigmented biofilm sampled in Herberstein (Austria) contained bacteria phylogenetically related to the genera Saccharopolyspora, Nocardioides, Pseudonocardia, Rubrobacter, and to a Kineococcus-like bacterium. The bacterial community of the second red-pigmented biofilm sampled in Herberstein contained bacteria related to Arthrobacter, Comamonas, and to Rubrobacter. Rubrobacter-related 16S rDNA sequences were the most abundant. In the red-pigmented biofilm sampled in Burggen (Germany), only Rubrobacter-related bacteria were identified. No Rubrobacter-related bacteria were detected in non-rosy biofilms. The majority of sequences (70%) obtained from the bacterial communities of the three investigated rosy biofilms were related to sequences of the genus Rubrobacter (red-pigmented bacteria), demonstrating a correlation between Rubrobacter-related bacteria and the phenomenon of rosy discolouration of masonry and lime wall paintings.

  1. Construction and geometric stability of physiological flow rate wall-less stenosis phantoms.

    PubMed

    Ramnarine, K V; Anderson, T; Hoskins, P R

    2001-02-01

    Wall-less flow phantoms are preferred for ultrasound (US) because tissue-mimicking material (TMM) with good acoustical properties can be made and cast to form anatomical models. The construction and geometrical stability of wall-less TMM flow phantoms is described using a novel method of sealing to prevent leakage of the blood-mimicking fluid (BMF). Wall-less stenosis flow models were constructed using a robust agar-based TMM and sealed using reticulated foam at the inlet and outlet tubes. There was no BMF leakage at the highest flow rate of 2.8 L/min in 0%, 35% and 57% diameter reduction stenoses models. Failure of the 75% stenosis model, due to TMM fracture, occurred at maximum flow rate of 2 L/min (mean velocity 10 m/s within the stenosis). No change of stenosis geometry was measured over 4 days. The construction is simple and effective and extends the possibility for high flow rate studies using robust TMM wall-less phantoms.

  2. Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria

    PubMed Central

    Zeng, Ximin; Lin, Jun

    2013-01-01

    Production of beta-lactamases, the enzymes that degrade beta-lactam antibiotics, is the most widespread and threatening mechanism of antibiotic resistance. In the past, extensive research has focused on the structure, function, and ecology of beta-lactamases while limited efforts were placed on the regulatory mechanisms of beta-lactamases. Recently, increasing evidence demonstrate a direct link between beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Specifically, expression of beta-lactamase could be induced by the liberated murein fragments, such as muropeptides. This article summarizes current knowledge on cell wall metabolism, beta-lactam antibiotics, and beta-lactamases. In particular, we comprehensively reviewed recent studies on the beta-lactamase induction by muropeptides via two major molecular mechanisms (the AmpG–AmpR–AmpC pathway and BlrAB-like two-component regulatory system) in Gram-negative bacteria. The signaling pathways for beta-lactamase induction offer a broad array of promising targets for the discovery of new antibacterial drugs used for combination therapies. Therefore, to develop effective mitigation strategies against the widespread beta-lactam resistance, examination of the molecular basis of beta-lactamase induction by cell wall fragment is highly warranted. PMID:23734147

  3. Contractile-Ring Assembly in Fission Yeast Cytokinesis: Recent Advances and New Perspectives

    PubMed Central

    Lee, I-Ju; Coffman, Valerie C.; Wu, Jian-Qiu

    2017-01-01

    The fission yeast Schizosaccharomyces pombe is an excellent model organism to study cytokinesis. Here, we review recent advances on contractile-ring assembly in fission yeast. First, we summarize the assembly of cytokinesis nodes, the precursors of a normal contractile ring. IQGAP Rng2 and myosin essential light chain Cdc4 are recruited by the anillin-like protein Mid1, followed by the addition of other cytokinesis node proteins. Mid1 localization on the plasma membrane is stabilized by interphase node proteins. Second, we discuss proteins and processes that contribute to the search, capture, pull, and release mechanism of contractile-ring assembly. Actin filaments nucleated by formin Cdc12, the motor activity of myosin-II, the stiffness of the actin network, and severing of actin filaments by cofilin all play essential roles in contractile-ring assembly. Finally, we discuss the Mid1-independent pathway for ring assembly, and the possible mechanisms underlying the ring maturation and constriction. Collectively, we provide an overview of the current understanding of contractile-ring assembly and uncover future directions in studying cytokinesis in fission yeast. PMID:22887981

  4. Contractile-ring assembly in fission yeast cytokinesis: Recent advances and new perspectives.

    PubMed

    Lee, I-Ju; Coffman, Valerie C; Wu, Jian-Qiu

    2012-10-01

    The fission yeast Schizosaccharomyces pombe is an excellent model organism to study cytokinesis. Here, we review recent advances on contractile-ring assembly in fission yeast. First, we summarize the assembly of cytokinesis nodes, the precursors of a normal contractile ring. IQGAP Rng2 and myosin essential light chain Cdc4 are recruited by the anillin-like protein Mid1, followed by the addition of other cytokinesis node proteins. Mid1 localization on the plasma membrane is stabilized by interphase node proteins. Second, we discuss proteins and processes that contribute to the search, capture, pull, and release mechanism of contractile-ring assembly. Actin filaments nucleated by formin Cdc12, the motor activity of myosin-II, the stiffness of the actin network, and severing of actin filaments by cofilin all play essential roles in contractile-ring assembly. Finally, we discuss the Mid1-independent pathway for ring assembly, and the possible mechanisms underlying the ring maturation and constriction. Collectively, we provide an overview of the current understanding of contractile-ring assembly and uncover future directions in studying cytokinesis in fission yeast. Copyright © 2012 Wiley Periodicals, Inc.

  5. Stalk-length-dependence of the contractility of Vorticella convallaria

    NASA Astrophysics Data System (ADS)

    Gul Chung, Eun; Ryu, Sangjin

    2017-12-01

    Vorticella convallaria is a sessile protozoan of which the spasmoneme contracts on a millisecond timescale. Because this contraction is induced and powered by the binding of calcium ions (Ca2+), the spasmoneme showcases Ca2+-powered cellular motility. Because the isometric tension of V. convallaria increases linearly with its stalk length, it is hypothesized that the contractility of V. convallaria during unhindered contraction depends on the stalk length. In this study, the contractile force and energetics of V. convallaria cells of different stalk lengths were evaluated using a fluid dynamic drag model which accounts for the unsteadiness and finite Reynolds number of the water flow caused by contracting V. convallaria and the wall effect of the no-slip substrate. It was found that the contraction displacement, peak contraction speed, peak contractile force, total mechanical work, and peak power depended on the stalk length. The observed stalk-length-dependencies were simulated using a damped spring model, and the model estimated that the average spring constant of the contracting stalk was 1.34 nN µm-1. These observed length-dependencies of Vorticella’s key contractility parameters reflect the biophysical mechanism of the spasmonemal contraction, and thus they should be considered in developing a theoretical model of the Vorticella spasmoneme.

  6. Systolic Intrinsic Frequency and Various Measures of Left Ventricle Contractility

    NASA Astrophysics Data System (ADS)

    Pahlevan, Niema

    2017-11-01

    There has been growing interest during past six decades to introduce new indices for quantifying left ventricular (LV) contractility. We have recently introduced a new method, called intrinsic frequency (IF), for analyzing the dynamics of systemic circulation. IF method models LV and arterial network as an object rotating around an origin where the angular velocity of the rotation during systole (when LV and arterial network are coupled) and diastole (when arterial network is decoupled) are intrinsic frequencies, ω1 and ω2 respectively. ω1 and ω2 can be extracted from a carotid pulse waveform using IF method. In this study, Huntington Medical Research Institutes heart study data have been used to compare ω1 with various measures of LV contractility such as ejection fraction, mean velocity of circumferential fiber shortening, LV end-systolic meridional wall stress, and maximal LV power corrected for end-diastolic volume. Here, LV contractility indices were computed noninvasively from cardiac MRI and tonometry data. The results indicate that ω1 can be used as a surrogate of LV contractility. This is clinically significant since ω1 can be accurately obtained by a standard iPhone camera.

  7. Cardiac-Specific Overexpression of Catalase Attenuates Lipopolysaccharide-Induced Myocardial Contractile Dysfunction: Role of Autophagy

    PubMed Central

    Turdi, Subat; Han, Xuefeng; Huff, Anna F.; Roe, Nathan D.; Hu, Nan; Gao, Feng; Ren, Jun

    2012-01-01

    Lipopolysaccharide (LPS) from Gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complication in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity and carbonyl formation. Kaplan-Meier curve was constructed for survival following LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice following LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O2−, and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury following LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by antioxidant NAC and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy. PMID:22902401

  8. Cell stiffness, contractile stress and the role of extracellular matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Steven S., E-mail: san@jhsph.edu; Kim, Jina; Ahn, Kwangmi

    Here we have assessed the effects of extracellular matrix (ECM) composition and rigidity on mechanical properties of the human airway smooth muscle (ASM) cell. Cell stiffness and contractile stress showed appreciable changes from the most relaxed state to the most contracted state: we refer to the maximal range of these changes as the cell contractile scope. The contractile scope was least when the cell was adherent upon collagen V, followed by collagen IV, laminin, and collagen I, and greatest for fibronectin. Regardless of ECM composition, upon adherence to increasingly rigid substrates, the ASM cell positively regulated expression of antioxidant genesmore » in the glutathione pathway and heme oxygenase, and disruption of a redox-sensitive transcription factor, nuclear erythroid 2 p45-related factor (Nrf2), culminated in greater contractile scope. These findings provide biophysical evidence that ECM differentially modulates muscle contractility and, for the first time, demonstrate a link between muscle contractility and Nrf2-directed responses.« less

  9. Impaired Vascular Contractility and Aortic Wall Degeneration in Fibulin-4 Deficient Mice: Effect of Angiotensin II Type 1 (AT1) Receptor Blockade

    PubMed Central

    Moltzer, Els; te Riet, Luuk; Swagemakers, Sigrid M. A.; van Heijningen, Paula M.; Vermeij, Marcel; van Veghel, Richard; Bouhuizen, Angelique M.; van Esch, Joep H. M.; Lankhorst, Stephanie; Ramnath, Natasja W. M.; de Waard, Monique C.; Duncker, Dirk J.; van der Spek, Peter J.; Rouwet, Ellen V.; Danser, A. H. Jan; Essers, Jeroen

    2011-01-01

    Medial degeneration is a key feature of aneurysm disease and aortic dissection. In a murine aneurysm model we investigated the structural and functional characteristics of aortic wall degeneration in adult fibulin-4 deficient mice and the potential therapeutic role of the angiotensin (Ang) II type 1 (AT1) receptor antagonist losartan in preventing aortic media degeneration. Adult mice with 2-fold (heterozygous Fibulin-4+/R) and 4-fold (homozygous Fibulin-4R/R) reduced expression of fibulin-4 displayed the histological features of cystic media degeneration as found in patients with aneurysm or dissection, including elastin fiber fragmentation, loss of smooth muscle cells, and deposition of ground substance in the extracellular matrix of the aortic media. The aortic contractile capacity, determined by isometric force measurements, was diminished, and was associated with dysregulation of contractile genes as shown by aortic transcriptome analysis. These structural and functional alterations were accompanied by upregulation of TGF-β signaling in aortas from fibulin-4 deficient mice, as identified by genome-scaled network analysis as well as by immunohistochemical staining for phosphorylated Smad2, an intracellular mediator of TGF-β. Tissue levels of Ang II, a regulator of TGF-β signaling, were increased. Prenatal treatment with the AT1 receptor antagonist losartan, which blunts TGF-β signaling, prevented elastic fiber fragmentation in the aortic media of newborn Fibulin-4R/R mice. Postnatal losartan treatment reduced haemodynamic stress and improved lifespan of homozygous knockdown fibulin-4 animals, but did not affect aortic vessel wall structure. In conclusion, the AT1 receptor blocker losartan can prevent aortic media degeneration in a non-Marfan syndrome aneurysm mouse model. In established aortic aneurysms, losartan does not affect aortic architecture, but does improve survival. These findings may extend the potential therapeutic application of inhibitors of

  10. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria.

    PubMed

    Domínguez-Escobar, Julia; Chastanet, Arnaud; Crevenna, Alvaro H; Fromion, Vincent; Wedlich-Söldner, Roland; Carballido-López, Rut

    2011-07-08

    The peptidoglycan cell wall and the actin-like MreB cytoskeleton are major determinants of cell shape in rod-shaped bacteria. The prevailing model postulates that helical, membrane-associated MreB filaments organize elongation-specific peptidoglycan-synthesizing complexes along sidewalls. We used total internal reflection fluorescence microscopy to visualize the dynamic relation between MreB isoforms and cell wall synthesis in live Bacillus subtilis cells. During exponential growth, MreB proteins did not form helical structures. Instead, together with other morphogenetic factors, they assembled into discrete patches that moved processively along peripheral tracks perpendicular to the cell axis. Patch motility was largely powered by cell wall synthesis, and MreB polymers restricted diffusion of patch components in the membrane and oriented patch motion.

  11. [Gallbladder contractility in children with functional abdominal pain or irritable bowel syndrome].

    PubMed

    Iwańczak, Franciszek; Siedlecka-Dawidko, Jolanta; Iwanczak, Barbara

    2013-07-01

    III Rome Criteria of functional gastrointestinal disorders in children, distinguished the disturbances with abdominal pain, to which irritable bowel syndrome, functional abdominal pains, functional dyspepsia and abdominal migraine were included. THE AIM OF THE STUDY was sonographic assessment of the gallbladder and its contractility in functional abdominal pain and irritable bowel syndrome in children. The study comprised 96 children aged 6 to 18 years, 59 girls and 37 boys. Depending on diagnosis, the children were divided into three groups. 38 children with functional abdominal pain constituted the first group, 26 children with irritable bowel syndrome were included to the second group, the third group consisted of 32 healthy children (control group). Diagnosis of functional abdominal pain and irritable bowel syndrome was made based on the III Rome Criteria. In irritable bowel syndrome both forms with diarrhea (13) and with constipation (13) were observed. Anatomy and contractility of the gallbladder were assessed by ultrasound examination. The presence of septum, wall thickness, thick bile, vesicle volume in fasting state and 30th and 60th minute after test meal were taken into consideration. Test meal comprised about 15% of caloric requirement of moderate metabolism. Children with bile stones and organic diseases were excluded from the study. Thickened vesicle wall and thick bile were present more frequently in children with irritable bowel syndrome and functional abdominal pain than in control group (p < 0.02). Fasting vesicle volume was significantly greater in children with functional abdominal pain than in irritable bowel syndrome and control group (p = 0.003, p = 0.05). Vesicle contractility after test meal was greatest in children with functional abdominal pain. Evaluation of diminished (smaller than 30%) and enlarged (greater then 80%) gallbladder contractility at 30th and 60th minute after test meal demonstrated disturbances of contractility in children

  12. The bio-physics of condensation of divalent cations into the bacterial wall has implications for growth of Gram-positive bacteria.

    PubMed

    Rauch, Cyril; Cherkaoui, Mohammed; Egan, Sharon; Leigh, James

    2017-02-01

    The anionic-polyelectrolyte nature of the wall of Gram-positive bacteria has long been suspected to be involved in homeostasis of essential cations and bacterial growth. A better understanding of the coupling between the biophysics and the biology of the wall is essential to understand some key features at play in ion-homeostasis in this living system. We consider the wall as a polyelectrolyte gel and balance the long-range electrostatic repulsion within this structure against the penalty entropy required to condense cations around wall polyelectrolytes. The resulting equations define how cations interact physically with the wall and the characteristic time required for a cation to leave the wall and enter into the bacterium to enable its usage for bacterial metabolism and growth. The model was challenged against experimental data regarding growth of Gram-positive bacteria in the presence of varying concentration of divalent ions. The model explains qualitatively and quantitatively how divalent cations interact with the wall as well as how the biophysical properties of the wall impact on bacterial growth (in particular the initiation of bacterial growth). The interplay between polymer biophysics and the biology of Gram positive bacteria is defined for the first time as a new set of variables that contribute to the kinetics of bacterial growth. Providing an understanding of how bacteria capture essential metal cations in way that does not follow usual binding laws has implications when considering the control of such organisms and their ability to survive and grow in extreme environments. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  13. Super-resolution microscopy reveals cell wall dynamics and peptidoglycan architecture in ovococcal bacteria.

    PubMed

    Wheeler, Richard; Mesnage, Stéphane; Boneca, Ivo G; Hobbs, Jamie K; Foster, Simon J

    2011-12-01

    Cell morphology and viability in Eubacteria is dictated by the architecture of peptidoglycan, the major and essential structural component of the cell wall. Although the biochemical composition of peptidoglycan is well understood, how the peptidoglycan architecture can accommodate the dynamics of growth and division while maintaining cell shape remains largely unknown. Here, we elucidate the peptidoglycan architecture and dynamics of bacteria with ovoid cell shape (ovococci), which includes a number of important pathogens, by combining biochemical analyses with atomic force and super-resolution microscopies. Atomic force microscopy analysis showed preferential orientation of the peptidoglycan network parallel to the short axis of the cell, with distinct architectural features associated with septal and peripheral wall synthesis. Super-resolution three-dimensional structured illumination fluorescence microscopy was applied for the first time in bacteria to unravel the dynamics of peptidoglycan assembly in ovococci. The ovococci have a unique peptidoglycan architecture and growth mode not observed in other model organisms. © 2011 Blackwell Publishing Ltd.

  14. Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope

    PubMed Central

    Navarre, William Wiley; Schneewind, Olaf

    1999-01-01

    The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins. PMID:10066836

  15. MEMS piezoresistive cantilever for the direct measurement of cardiomyocyte contractile force

    NASA Astrophysics Data System (ADS)

    Matsudaira, Kenei; Nguyen, Thanh-Vinh; Hirayama Shoji, Kayoko; Tsukagoshi, Takuya; Takahata, Tomoyuki; Shimoyama, Isao

    2017-10-01

    This paper reports on a method to directly measure the contractile forces of cardiomyocytes using MEMS (micro electro mechanical systems)-based force sensors. The fabricated sensor chip consists of piezoresistive cantilevers that can measure contractile forces with high frequency (several tens of kHz) and high sensing resolution (less than 0.1 nN). Moreover, the proposed method does not require a complex observation system or image processing, which are necessary in conventional optical-based methods. This paper describes the design, fabrication, and evaluation of the proposed device and demonstrates the direct measurements of contractile forces of cardiomyocytes using the fabricated device.

  16. Short term doxycycline treatment induces sustained improvement in myocardial infarction border zone contractility

    PubMed Central

    Collins, Alexander; Faraji, Farshid; Wang, Guanying; Aguayo, Esteban; Ge, Liang; Saloner, David; Wallace, Arthur W.; Baker, Anthony J.; Lovett, David H.

    2018-01-01

    Decreased contractility in the non-ischemic border zone surrounding a MI is in part due to degradation of cardiomyocyte sarcomeric components by intracellular matrix metalloproteinase-2 (MMP-2). We recently reported that MMP-2 levels were increased in the border zone after a MI and that treatment with doxycycline for two weeks after MI was associated with normalization of MMP-2 levels and improvement in ex-vivo contractile protein developed force in the myocardial border zone. The purpose of the current study was to determine if there is a sustained effect of short term treatment with doxycycline (Dox) on border zone function in a large animal model of antero-apical myocardial infarction (MI). Antero-apical MI was created in 14 sheep. Seven sheep received doxycycline 0.8 mg/kg/hr IV for two weeks. Cardiac MRI was performed two weeks before, and then two and six weeks after MI. Two sheep died prior to MRI at six weeks from surgical/anesthesia-related causes. The remaining 12 sheep completed the protocol. Doxycycline induced a sustained reduction in intracellular MMP-2 by Western blot (3649±643 MI+Dox vs 9236±114 MI relative intensity; p = 0.0009), an improvement in ex-vivo contractility (65.3±2.0 MI+Dox vs 39.7±0.8 MI mN/mm2; p<0.0001) and an increase in ventricular wall thickness at end-systole 1.0 cm from the infarct edge (12.4±0.6 MI+Dox vs 10.0±0.5 MI mm; p = 0.0095). Administration of doxycycline for a limited two week period is associated with a sustained improvement in ex-vivo contractility and an increase in wall thickness at end-systole in the border zone six weeks after MI. These findings were associated with a reduction in intracellular MMP-2 activity. PMID:29432443

  17. Short term doxycycline treatment induces sustained improvement in myocardial infarction border zone contractility.

    PubMed

    Spaulding, Kimberly; Takaba, Kiyoaki; Collins, Alexander; Faraji, Farshid; Wang, Guanying; Aguayo, Esteban; Ge, Liang; Saloner, David; Wallace, Arthur W; Baker, Anthony J; Lovett, David H; Ratcliffe, Mark B

    2018-01-01

    Decreased contractility in the non-ischemic border zone surrounding a MI is in part due to degradation of cardiomyocyte sarcomeric components by intracellular matrix metalloproteinase-2 (MMP-2). We recently reported that MMP-2 levels were increased in the border zone after a MI and that treatment with doxycycline for two weeks after MI was associated with normalization of MMP-2 levels and improvement in ex-vivo contractile protein developed force in the myocardial border zone. The purpose of the current study was to determine if there is a sustained effect of short term treatment with doxycycline (Dox) on border zone function in a large animal model of antero-apical myocardial infarction (MI). Antero-apical MI was created in 14 sheep. Seven sheep received doxycycline 0.8 mg/kg/hr IV for two weeks. Cardiac MRI was performed two weeks before, and then two and six weeks after MI. Two sheep died prior to MRI at six weeks from surgical/anesthesia-related causes. The remaining 12 sheep completed the protocol. Doxycycline induced a sustained reduction in intracellular MMP-2 by Western blot (3649±643 MI+Dox vs 9236±114 MI relative intensity; p = 0.0009), an improvement in ex-vivo contractility (65.3±2.0 MI+Dox vs 39.7±0.8 MI mN/mm2; p<0.0001) and an increase in ventricular wall thickness at end-systole 1.0 cm from the infarct edge (12.4±0.6 MI+Dox vs 10.0±0.5 MI mm; p = 0.0095). Administration of doxycycline for a limited two week period is associated with a sustained improvement in ex-vivo contractility and an increase in wall thickness at end-systole in the border zone six weeks after MI. These findings were associated with a reduction in intracellular MMP-2 activity.

  18. Cell-Wall Recycling of the Gram-Negative Bacteria and the Nexus to Antibiotic Resistance.

    PubMed

    Dik, David A; Fisher, Jed F; Mobashery, Shahriar

    2018-05-30

    The importance of the cell wall to the viability of the bacterium is underscored by the breadth of antibiotic structures that act by blocking key enzymes that are tasked with cell-wall creation, preservation, and regulation. The interplay between cell-wall integrity, and the summoning forth of resistance mechanisms to deactivate cell-wall-targeting antibiotics, involves exquisite orchestration among cell-wall synthesis and remodeling and the detection of and response to the antibiotics through modulation of gene regulation by specific effectors. Given the profound importance of antibiotics to the practice of medicine, the assertion that understanding this interplay is among the most fundamentally important questions in bacterial physiology is credible. The enigmatic regulation of the expression of the AmpC β-lactamase, a clinically significant and highly regulated resistance response of certain Gram-negative bacteria to the β-lactam antibiotics, is the exemplar of this challenge. This review gives a current perspective to this compelling, and still not fully solved, 35-year enigma.

  19. Glucan common to the microcyst walls of cyst-forming bacteria.

    PubMed Central

    Sutherland, I W; Mackenzie, C L

    1977-01-01

    Chemical analysis indicated that D-glucose is tha major neutral monosaccharide present in the microcysts of a range of gram-negative bacteria. Varying amounts of other neutral sugars were found. The glucose was mainly present as a glucan that could be extracted from microcysts of representative strains with alkali or mild acid treatment. The glucan could be identified as an alpha-1,3-linked polymer on the basis of (i) periodate resistance of the extracted polymer and the material present in microcysts; (ii) lectin agglutination of the microcysts; (iii) lectin precipitation of the extracted glucans; and (iv) susceptibility of the glucan either in the walls or after extraction to a specific alpha-1,3-glucanase from Aspergillus nidulans, yielding glucose as the sole hydrolysis product. The galactosamine found in microcysts of Myxococcus xanthus by other workers is clearly a component of another polymer, distinct from the glucan. The presence of an alpha 1,3-linked glucan, common to microcyst walls of various bacterial genera, probably contributes to the rigidity of the walls of these forms and, inter alia, to their resistance to ultrasonic treatment. Preliminary experiments indicate that the gulcan is discarded on germination of the microcysts rather than being broken down by specific enzymes. PMID:402353

  20. Actomyosin contractility rotates the cell nucleus.

    PubMed

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G V

    2014-01-21

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells.

  1. Identification of bacteria in a biodegraded wall painting by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA.

    PubMed Central

    Rölleke, S; Muyzer, G; Wawer, C; Wanner, G; Lubitz, W

    1996-01-01

    Medieval wall paintings are often affected by biodecay. An inventory of the existing microorganisms associated with the damage to the paintings is not yet an integral part of the restoration process. This stems from the lack of effective means for such a stocktaking. Nevertheless, fungi and bacteria cause severe damage through mechanical processes from growth into the painting and its grounding and through their metabolism. Detailed information on the bacterial colonization of ancient wall paintings is essential for the protection of the paintings. We used a molecular approach based on the detection and identification of DNA sequences encoding rRNA (rDNA) to identify bacteria present on an ancient wall painting without prior cultivation of the organisms, since it has been shown that most of these bacteria cannot be cultivated under laboratory conditions. To trace the noncultivated fraction of bacteria, total DNA from a biodegraded wall painting sample from a 13th century fresco was extracted and 194-bp fragments of the 16S rDNA were amplified with eubacterial primers. The 16S rDNA fragments of uniform length obtained from the different bacterial species were separated according to their sequence differences by denaturing gradient gel electrophoresis (DGGE). By sequencing excised and reamplified individual DNA bands, we characterized the phylogenetic affiliation of the corresponding bacteria. Using this approach, we identified members or close relatives of the genera Halomonas, Clostridium, and Frankia. To our knowledge, these groups of bacteria have not yet been isolated and implicated by conventional microbiological techniques as contributing to the biodegradation of wall paintings. PMID:8787403

  2. New, Virtually Wall-less Cannulas Designed for Augmented Venous Drainage in Minimally Invasive Cardiac Surgery.

    PubMed

    von Segesser, Ludwig Karl; Berdajs, Denis; Abdel-Sayed, Saad; Tozzi, Piergiorgio; Ferrari, Enrico; Maisano, Francesco

    2016-01-01

    Inadequate venous drainage during minimally invasive cardiac surgery becomes most evident when the blood trapped in the pulmonary circulation floods the surgical field. The present study was designed to assess the in vivo performance of new, thinner, virtually wall-less, venous cannulas designed for augmented venous drainage in comparison to traditional thin-wall cannulas. Remote cannulation was realized in 5 bovine experiments (74.0 ± 2.4 kg) with percutaneous venous access over the wire, serial dilation up to 18 F and insertion of either traditional 19 F thin wall, wire-wound cannulas, or through the same access channel, new, thinner, virtually wall-less, braided cannulas designed for augmented venous drainage. A standard minimal extracorporeal circuit set with a centrifugal pump and a hollow fiber membrane oxygenator, but no in-line reservoir was used. One hundred fifty pairs of pump-flow and required pump inlet pressure values were recorded with calibrated pressure transducers and a flowmeter calibrated by a volumetric tank and timer at increasing pump speed from 1500 RPM to 3500 RPM (500-RPM increments). Pump flow accounted for 1.73 ± 0.85 l/min for wall-less versus 1.17 ± 0.45 l/min for thin wall at 1500 RPM, 3.91 ± 0.86 versus 3.23 ± 0.66 at 2500 RPM, 5.82 ± 1.05 versus 4.96 ± 0.81 at 3500 RPM. Pump inlet pressure accounted for 9.6 ± 9.7 mm Hg versus 4.2 ± 18.8 mm Hg for 1500 RPM, -42.4 ± 26.7 versus -123 ± 51.1 at 2500 RPM, and -126.7 ± 55.3 versus -313 ± 116.7 for 3500 RPM. At the well-accepted pump inlet pressure of -80 mm Hg, the new, thinner, virtually wall-less, braided cannulas provide unmatched venous drainage in vivo. Early clinical analyses have confirmed these findings.

  3. Redox protein noncovalent functionalization of double-wall carbon nanotubes: electrochemical binder-less glucose biosensor.

    PubMed

    Pumera, Martin; Smíd, Bretislav

    2007-10-01

    Double wall carbon nanotubes are noncovalently functionalized with redox protein and such assembly is used for construction of electrochemical binder-less glucose biosensor. Redox protein glucose oxidase performs as biorecognition element and double wall carbon nanotubes act both as immobilization platform for redox enzyme and as signal transducer. The double carbon nanotubes are characterized by cyclic voltammetry and specific surface area measurements; the redox protein noncovalently functionalized double wall carbon nanotubes are characterized in detail by X-ray photoelectron spectroscopy, cyclic voltammetry, amperometry, and transmission electron microscopy.

  4. Actomyosin contractility rotates the cell nucleus

    PubMed Central

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G. V.

    2014-01-01

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells. PMID:24445418

  5. Efficacy of 3D conforming nickel titanium rotary instruments in eliminating canal wall bacteria from oval-shaped root canals.

    PubMed

    Bortoluzzi, Eduardo A; Carlon, Daniel; Meghil, Mohamed M; El-Awady, Ahmed R; Niu, Lina; Bergeron, Brian E; Susin, Lisiane; Cutler, Christopher W; Pashley, David H; Tay, Franklin R

    2015-05-01

    To evaluate the effectiveness of TRUShape® 3D Conforming Files, compared with Twisted Files, in reducing bacteria load from root canal walls, in the presence or absence of irrigant agitation. Extracted human premolars with single oval-shaped canals were infected with Enterococcus faecalis. Teeth in Group I (N=10; NaOCl and QMix® 2in1 as respective initial and final irrigants) were subdivided into 4 subgroups: (A) TRUShape® instrumentation without irrigant activation; (B) TRUShape® instrumentation with sonic irrigant agitation; (C) Twisted Files without irrigant agitation; (D) Twisted Files with sonic irrigant agitation. To remove confounding factor (antimicrobial irrigants), teeth in Group II (N=10) were irrigated with sterile saline, using the same subgroup designations. Specimens before and after chemomechanical débridement were cultured for quantification of colony-forming units (CFUs). Data from each group were analyzed separately using two-factor ANOVA and Holm-Sidak multiple comparison (α=0.05). Canal wall bacteria were qualitatively examined using scanning electron microscopy (SEM) and light microscopy of Taylor-modified Brown and Brenn-stained demineralised sections. CFUs from subgroups in Group I were not significantly different (P=0.935). For Group II, both file type (P<0.001) and irrigant agitation (P<0.001) significantly affected log-reduction in CFU concentrations. The interaction of these two factors was not significant (P=0.601). Although SEM showed reduced canal wall bacteria, bacteria were present within dentinal tubules after rotary instrumentation, as revealed by light microscopy of longitudinal root sections. TRUShape® files removed significantly more canal wall bacteria than Twisted Files when used without an antibacterial irrigant; the latter is required to decontaminate dentinal tubules. Root canal disinfection should not be focused only on a mechanistic approach. Rather, the rational choice of a rotary instrumentation system should be

  6. Mesozoic contractile and extensional structures in the Boyer Gap area, northern Dome Rock Mountains, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boettcher, S.S.

    1993-04-01

    Mesozoic polyphase contractile and superposed ductile extensional structures affect Proterozoic augen gneiss, Paleozoic metasedimentary rocks, and Jurassic granitoids in the Boyer Gap area of the northern Dome Rock Mtns, W-central Arizona. The nappe-style contractile structures are preserved in the footwall of the Tyson Thrust shear zone, which is one of the structurally lowest thrust faults in the E-trending Jurassic and Cretaceous Maria fold and thrust belt. Contractile deformation preceded emplacement of Late Cretaceous granite (ca 80 Ma, U-Pb zircon) and some may be older than variably deformed Late Jurassic leucogranite. Specifically, detailed structural mapping reveals the presence of a km-scalemore » antiformal syncline that apparently formed as a result of superposition of tight to isoclinal, south-facing folds on an earlier, north-facing recumbent fold. The stratigraphic sequence of metamorphosed Paleozoic cratonal strata is largely intact in the northern Dome Rock Mtns, such that overturned and upright stratigraphic units can be distinguished. A third phase of folding in the Boyer Gap area is distinguished by intersection lineations that are folded obliquely across the hinges of open to tight, sheath folds. The axial planes of the sheet folds are subparallel to the mylonitic foliation in top-to-the-northeast extensional shear zones. The timing of ductile extensional structures in the northern Dome Rock is constrained by [sup 40]Ar/[sup 39]Ar isochron ages of 56 Ma and 48 Ma on biotite from mylonitic rocks in both the hanging wall and footwall of the Tyson Thrust shear zone. The two early phases of folding are the dominant mechanism by which shortening was accommodated in the Boyer Gap area, as opposed to deformation along discrete thrust faults with large offset. All of the ductile extensional structures are spectacularly displayed at an outcrop scale but are not of sufficient magnitude to obliterate the km-scale Mesozoic polyphase contractile

  7. 3D cardiac wall thickening assessment for acute myocardial infarction

    NASA Astrophysics Data System (ADS)

    Khalid, A.; Chan, B. T.; Lim, E.; Liew, Y. M.

    2017-06-01

    Acute myocardial infarction (AMI) is the most severe form of coronary artery disease leading to localized myocardial injury and therefore irregularities in the cardiac wall contractility. Studies have found very limited differences in global indices (such as ejection fraction, myocardial mass and volume) between healthy subjects and AMI patients, and therefore suggested regional assessment. Regional index, specifically cardiac wall thickness (WT) and thickening is closely related to cardiac function and could reveal regional abnormality due to AMI. In this study, we developed a 3D wall thickening assessment method to identify regional wall contractility dysfunction due to localized myocardial injury from infarction. Wall thickness and thickening were assessed from 3D personalized cardiac models reconstructed from cine MRI images by fitting inscribed sphere between endocardial and epicardial wall. The thickening analysis was performed in 5 patients and 3 healthy subjects and the results were compared against the gold standard 2D late-gadolinium-enhanced (LGE) images for infarct localization. The notable finding of this study is the highly accurate estimation and visual representation of the infarct size and location in 3D. This study provides clinicians with an intuitive way to visually and qualitatively assess regional cardiac wall dysfunction due to infarction in AMI patients.

  8. Gene transfer of heterologous G protein-coupled receptors to cardiomyocytes: differential effects on contractility.

    PubMed

    Laugwitz, K L; Weig, H J; Moretti, A; Hoffmann, E; Ueblacker, P; Pragst, I; Rosport, K; Schömig, A; Ungerer, M

    2001-04-13

    In heart failure, reduced cardiac contractility is accompanied by blunted cAMP responses to beta-adrenergic stimulation. Parathyroid hormone (PTH)-related peptide and arginine vasopressin are released from the myocardium in response to increased wall stress but do not stimulate contractility or adenylyl cyclase at physiological concentrations. To bypass the defective beta-adrenergic signaling cascade, recombinant P1 PTH/PTH-related peptide receptors (rPTH1-Rs) and V(2) vasopressin receptors (rV(2)-Rs), which are normally not expressed in the myocardium and which are both strongly coupled to adenylyl cyclase, and recombinant beta(2)-adrenergic receptors (rbeta(2)-ARs) were overexpressed in cardiomyocytes by viral gene transfer. The capacity of endogenous hormones to increase contractility via the heterologous, recombinant receptors was compared. Whereas V(2)-Rs are uniquely coupled to Gs, PTH1-Rs and beta(2)-ARs are also coupled to other G proteins. Gene transfer of rPTH1-Rs or rbeta(2)-ARs to adult cardiomyocytes resulted in maximally increased basal contractility, which could not be further stimulated by adding receptor agonists. Agonists at rPTH1-Rs induced increased cAMP formation and phospholipase C activity. In contrast, healthy or failing rV(2)-R-expressing cardiomyocytes showed unaltered basal contractility. Their contractility and cAMP formation increased only at agonist exposure, which did not activate phospholipase C. In summary, we found that gene transfer of PTH1-Rs to cardiomyocytes results in constitutive activity of the transgene, as does that of beta(2)-ARS: In the absence of receptor agonists, rPTH1-Rs and rbeta(2)-ARs increase basal contractility, coupling to 2 G proteins simultaneously. In contrast, rV(2)-Rs are uniquely coupled to Gs and are not constitutively active, retaining their property to be activated exclusively on agonist stimulation. Therefore, gene transfer of V(2)-Rs might be more suited to test the effects of c

  9. Validation of an in vitro contractility assay using canine ventricular myocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmer, A.R., E-mail: alex.harmer@astrazeneca.com; Abi-Gerges, N.; Morton, M.J.

    Measurement of cardiac contractility is a logical part of pre-clinical safety assessment in a drug discovery project, particularly if a risk has been identified or is suspected based on the primary- or non-target pharmacology. However, there are limited validated assays available that can be used to screen several compounds in order to identify and eliminate inotropic liability from a chemical series. We have therefore sought to develop an in vitro model with sufficient throughput for this purpose. Dog ventricular myocytes were isolated using a collagenase perfusion technique and placed in a perfused recording chamber on the stage of a microscopemore » at ∼ 36 °C. Myocytes were stimulated to contract at a pacing frequency of 1 Hz and a digital, cell geometry measurement system (IonOptix™) was used to measure sarcomere shortening in single myocytes. After perfusion with vehicle (0.1% DMSO), concentration–effect curves were constructed for each compound in 4–30 myocytes taken from 1 or 2 dog hearts. The validation test-set was 22 negative and 8 positive inotropes, and 21 inactive compounds, as defined by their effect in dog, cynolomolgous monkey or humans. By comparing the outcome of the assay to the known in vivo contractility effects, the assay sensitivity was 81%, specificity was 75%, and accuracy was 78%. With a throughput of 6–8 compounds/week from 1 cell isolation, this assay may be of value to drug discovery projects to screen for direct contractility effects and, if a hazard is identified, help identify inactive compounds. -- Highlights: ► Cardiac contractility is an important physiological function of the heart. ► Assessment of contractility is a logical part of pre-clinical drug safety testing. ► There are limited validated assays that predict effects of compounds on contractility. ► Using dog myocytes, we have developed an in vitro cardiac contractility assay. ► The assay predicted the in vivo contractility with a good level of

  10. Regional Differences in Rat Vaginal Smooth Muscle Contractility and Morphology

    PubMed Central

    Skoczylas, Laura C.; Jallah, Zegbeh; Sugino, Yoshio; Stein, Suzan E.; Feola, Andrew; Yoshimura, Naoki

    2013-01-01

    The objective of this study was to define the regional differences in rat vaginal smooth muscle contractility and morphology. We evaluated circumferential segments from the proximal, middle, and distal rat vagina (n = 21) in vitro. Contractile responses to carbachol, phenylephrine, potassium chloride, and electrical field stimulation (EFS) were measured. Immunohistochemical analyses were also performed. The dose–response curves for carbachol- and phenylephrine-dependent contractions were different in the distal (P = .05, P = .04) compared to the proximal/middle regions. Adjusted for region-dependent changes in contractility, the distal vagina generated lower force in response to carbachol and higher force in response to phenylephrine. There was less force with increasing EFS frequency in the distal (P = .03), compared to the proximal/middle regions. Cholinergic versus adrenergic nerves were more frequent in the proximal region (P = .03). In summary, the results indicate that functional and morphological differences in smooth muscle and nerve fibers of the distal versus proximal/middle regions of the vagina exist. PMID:23298869

  11. Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture.

    PubMed

    Turner, Robert D; Hurd, Alexander F; Cadby, Ashley; Hobbs, Jamie K; Foster, Simon J

    2013-01-01

    Cellular integrity and morphology of most bacteria is maintained by cell wall peptidoglycan, the target of antibiotics essential in modern healthcare. It consists of glycan strands, cross-linked by peptides, whose arrangement determines cell shape, prevents lysis due to turgor pressure and yet remains dynamic to allow insertion of new material, and hence growth. The cellular architecture and insertion pattern of peptidoglycan have remained elusive. Here we determine the peptidoglycan architecture and dynamics during growth in rod-shaped Gram-negative bacteria. Peptidoglycan is made up of circumferentially oriented bands of material interspersed with a more porous network. Super-resolution fluorescence microscopy reveals an unexpected discontinuous, patchy synthesis pattern. We present a consolidated model of growth via architecture-regulated insertion, where we propose only the more porous regions of the peptidoglycan network that are permissive for synthesis.

  12. Probing the contractile vacuole as Achilles' heel of the biotrophic grapevine pathogen Plasmopara viticola.

    PubMed

    Tröster, Viktoria; Setzer, Tabea; Hirth, Thomas; Pecina, Anna; Kortekamp, Andreas; Nick, Peter

    2017-09-01

    The causative agent of Grapevine Downy Mildew, the oomycete Plasmopara viticola, poses a serious threat to viticulture. In the current work, the contractile vacuole of the zoospore is analysed as potential target for novel plant protection strategies. Using a combination of electron microscopy, spinning disc confocal microscopy, and video differential interference contrast microscopy, we have followed the genesis and dynamics of this vacuole required during the search for the stomata, when the non-walled zoospore is exposed to hypotonic conditions. This subcellular description was combined with a pharmacological study, where the functionality of the contractile vacuole was blocked by manipulation of actin, by Na, Cu, and Al ions or by inhibition of the NADPH oxidase. We further observe that RGD peptides (mimicking binding sites for integrins at the extracellular matrix) can inhibit the function of the contractile vacuole as well. Finally, we show that an extract from Chinese liquorice (Glycyrrhiza uralensis) proposed as biocontrol for Downy Mildews can efficiently induce zoospore burst and that this activity depends on the activity of NADPH oxidase. The effect of the extract can be phenocopied by its major compound, glycyrrhizin, suggesting a mode of action for this biologically safe alternative to copper products.

  13. Matrix elasticity regulates the optimal cardiac myocyte shape for contractility

    PubMed Central

    McCain, Megan L.; Yuan, Hongyan; Pasqualini, Francesco S.; Campbell, Patrick H.

    2014-01-01

    Concentric hypertrophy is characterized by ventricular wall thickening, fibrosis, and decreased myocyte length-to-width aspect ratio. Ventricular thickening is considered compensatory because it reduces wall stress, but the functional consequences of cell shape remodeling in this pathological setting are unknown. We hypothesized that decreases in myocyte aspect ratio allow myocytes to maximize contractility when the extracellular matrix becomes stiffer due to conditions such as fibrosis. To test this, we engineered neonatal rat ventricular myocytes into rectangles mimicking the 2-D profiles of healthy and hypertrophied myocytes on hydrogels with moderate (13 kPa) and high (90 kPa) elastic moduli. Actin alignment was unaffected by matrix elasticity, but sarcomere content was typically higher on stiff gels. Microtubule polymerization was higher on stiff gels, implying increased intracellular elastic modulus. On moderate gels, myocytes with moderate aspect ratios (∼7:1) generated the most peak systolic work compared with other cell shapes. However, on stiffer gels, low aspect ratios (∼2:1) generated the most peak systolic work. To compare the relative contributions of intracellular vs. extracellular elasticity to contractility, we developed an analytical model and used our experimental data to fit unknown parameters. Our model predicted that matrix elasticity dominates over intracellular elasticity, suggesting that the extracellular matrix may potentially be a more effective therapeutic target than microtubules. Our data and model suggest that myocytes with lower aspect ratios have a functional advantage when the elasticity of the extracellular matrix decreases due to conditions such as fibrosis, highlighting the role of the extracellular matrix in cardiac disease. PMID:24682394

  14. Mechanism of Cytokinetic Contractile Ring Constriction in Fission Yeast

    PubMed Central

    Stachowiak, Matthew R.; Laplante, Caroline; Chin, Harvey F.; Guirao, Boris; Karatekin, Erdem; Pollard, Thomas D.; O’Shaughnessy, Ben

    2014-01-01

    SUMMARY Cytokinesis involves constriction of a contractile actomyosin ring. The mechanisms generating ring tension and setting the constriction rate remain unknown, since the organization of the ring is poorly characterized, its tension was rarely measured, and constriction is coupled to other processes. To isolate ring mechanisms we studied fission yeast protoplasts, where constriction occurs without the cell wall. Exploiting the absence of cell wall and actin cortex, we measured ring tension and imaged ring organization, which was dynamic and disordered. Computer simulations based on the amounts and biochemical properties of the key proteins showed that they spontaneously self-organize into a tension-generating bundle. Together with rapid component turnover, the self-organization mechanism continuously reassembles and remodels the constricting ring. Ring constriction depended on cell shape, revealing that the ring operates close to conditions of isometric tension. Thus, the fission yeast ring sets its own tension, but other processes set the constriction rate. PMID:24914559

  15. Oxytocin plus antibiotics: A synergism of potentiation to enhance bovine uterine contractility.

    PubMed

    Piccinno, M; Rizzo, A; Cariello, G; Staffieri, F; Sciorsci, R L

    2016-09-15

    This in vitro study investigates the modulatory effect of three antibiotics (amoxicillin, enrofloxacin, and rifaximin) on contractility of the bovine uterine tissue, in follicular and luteal phases. The evaluation of the effects of these antibiotics (10(-4) M) was performed on oxytocin-induced contractility. The decision to test these antibiotics with the oxytocin (10(-6) M) comes from the reported ability of these combinations of hinder the antibiotic resistance and the formation of bacterial biofilms. The procedures were carried out in isolated organ bath, and the contractile functionality of the strip throughout the experiment was evaluated after a dose of carbachol (10(-5) M). The results demonstrate the different modulatory activity of these antibiotics, on the plateau of contraction induced by oxytocin, in both phases of the estrus cycle. The differing individual antibiotic effects of our testing made it possible to identify, only in some cases. Rifaximin in the follicular phase and enrofloxacin in both phases of the estrous cycle, induced a synergistic enhancement (potentiation) of uterine strip contraction induced by oxytocin. This result is thought important because these associations might enable, in vivo, a simultaneous increase of uterine cleaning and the antimicrobial action on bacteria in planktonic form and of those organized in biofilms. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Involvement of an Actomyosin Contractile Ring in Saccharomyces cerevisiae Cytokinesis

    PubMed Central

    Bi, Erfei; Maddox, Paul; Lew, Daniel J.; Salmon, E.D.; McMillan, John N.; Yeh, Elaine; Pringle, John R.

    1998-01-01

    In Saccharomyces cerevisiae, the mother cell and bud are connected by a narrow neck. The mechanism by which this neck is closed during cytokinesis has been unclear. Here we report on the role of a contractile actomyosin ring in this process. Myo1p (the only type II myosin in S. cerevisiae) forms a ring at the presumptive bud site shortly before bud emergence. Myo1p ring formation depends on the septins but not on F-actin, and preexisting Myo1p rings are stable when F-actin is depolymerized. The Myo1p ring remains in the mother–bud neck until the end of anaphase, when a ring of F-actin forms in association with it. The actomyosin ring then contracts to a point and disappears. In the absence of F-actin, the Myo1p ring does not contract. After ring contraction, cortical actin patches congregate at the mother–bud neck, and septum formation and cell separation rapidly ensue. Strains deleted for MYO1 are viable; they fail to form the actin ring but show apparently normal congregation of actin patches at the neck. Some myo1Δ strains divide nearly as efficiently as wild type; other myo1Δ strains divide less efficiently, but it is unclear whether the primary defect is in cytokinesis, septum formation, or cell separation. Even cells lacking F-actin can divide, although in this case division is considerably delayed. Thus, the contractile actomyosin ring is not essential for cytokinesis in S. cerevisiae. In its absence, cytokinesis can still be completed by a process (possibly localized cell–wall synthesis leading to septum formation) that appears to require septin function and to be facilitated by F-actin. PMID:9732290

  17. Bacterial cell-wall recycling

    PubMed Central

    Johnson, Jarrod W.; Fisher, Jed F.; Mobashery, Shahriar

    2012-01-01

    Many Gram-negative and Gram-positive bacteria recycle a significant proportion of the peptidoglycan components of their cell walls during their growth and septation. In many—and quite possibly all—bacteria, the peptidoglycan fragments are recovered and recycled. While cell-wall recycling is beneficial for the recovery of resources, it also serves as a mechanism to detect cell-wall–targeting antibiotics and to regulate resistance mechanisms. In several Gram-negative pathogens, anhydro-MurNAc-peptide cell-wall fragments regulate AmpC β-lactamase induction. In some Gram-positive organisms, short peptides derived from the cell wall regulate the induction of both β-lactamase and β-lactam-resistant penicillin-binding proteins. The involvement of peptidoglycan recycling with resistance regulation suggests that inhibitors of the enzymes involved in the recycling might synergize with cell-wall-targeted antibiotics. Indeed, such inhibitors improve the potency of β-lactams in vitro against inducible AmpC β-lactamase-producing bacteria. We describe the key steps of cell-wall remodeling and recycling, the regulation of resistance mechanisms by cell-wall recycling, and recent advances toward the discovery of cell-wall recycling inhibitors. PMID:23163477

  18. Recovery in skeletal muscle contractile function after prolonged hindlimb immobilization

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Brimmer, C. J.

    1985-01-01

    The effect of three-month hindlimb immobilization (IM) in rats on contractile properties of slow-twitch soleus (SOL), fast-twitch extensor digitorum longus, and fast-twitch superficial region of the vastus lateralis were measured after 0, 14, 28, 60, and 90 days of recovery on excized, horizontally suspended muscles stimulated electrically to maximal twitch tension. IM caused decreases in muscle-to-body weight ratios for all muscles, with no complete recovery even after 90 days. The contractile properties of the fast-twitch muscles were less affected by IM than those of the slow-twitch SOL. The SOL isometric twitch duration was shortened, due to reduced contraction and half-relaxation time, both of which returned to control levels after 14 days of recovery. The peak tetanic tension, P(O), g/sq cm,, decreased with IM by 46 percent in the SOL, but recovered by the 28th day. The maximum shortening velocity was not altered by IM in any of the muscles. Thus, normal contractile function could recover after prolonged limb IM.

  19. Degradation of Staphylococcus aureus bacteria by neutral oxygen atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cvelbar, U.; Mozetic, M.; Hauptman, N.

    2009-11-15

    The degradation of Staphylococcus aureus bacteria during treatment with neutral oxygen atoms was monitored by scanning electron microscopy. Experiments were performed in an afterglow chamber made from borosilicate glass. The source of oxygen atoms was remote inductively coupled radiofrequency oxygen plasma. The density of atoms at the samples was 8x10{sup 20} m{sup -3}. The treatment was performed at room temperature. The first effect was the removal of dried capsule. Capsule on exposed parts of bacteria was removed after receiving the dose of 6x10{sup 23} at./m{sup 2}, while the parts of capsule filling the gaps between bacteria were removed after receivingmore » the dose of 2.4x10{sup 24} m{sup -2}. After removing the capsule, degradation continued as etching of bacterial cell wall. The etching was rather nonuniform as holes with diameter of several 10 nm were observed. The cell wall was removed after receiving the dose of about 7x10{sup 24} m{sup -2}. The etching probabilities were about 2x10{sup -5} for the capsule and 2x10{sup -6} for the cell wall. The results were explained by different compositions of capsule and the cell wall.« less

  20. Roles of Formin Nodes and Myosin Motor Activity in Mid1p-dependent Contractile-Ring Assembly during Fission Yeast Cytokinesis

    PubMed Central

    Coffman, Valerie C.; Nile, Aaron H.; Lee, I-Ju; Liu, Huayang

    2009-01-01

    Two prevailing models have emerged to explain the mechanism of contractile-ring assembly during cytokinesis in the fission yeast Schizosaccharomyces pombe: the spot/leading cable model and the search, capture, pull, and release (SCPR) model. We tested some of the basic assumptions of the two models. Monte Carlo simulations of the SCPR model require that the formin Cdc12p is present in >30 nodes from which actin filaments are nucleated and captured by myosin-II in neighboring nodes. The force produced by myosin motors pulls the nodes together to form a compact contractile ring. Live microscopy of cells expressing Cdc12p fluorescent fusion proteins shows for the first time that Cdc12p localizes to a broad band of 30–50 dynamic nodes, where actin filaments are nucleated in random directions. The proposed progenitor spot, essential for the spot/leading cable model, usually disappears without nucleating actin filaments. α-Actinin ain1 deletion cells form a normal contractile ring through nodes in the absence of the spot. Myosin motor activity is required to condense the nodes into a contractile ring, based on slower or absent node condensation in myo2-E1 and UCS rng3-65 mutants. Taken together, these data provide strong support for the SCPR model of contractile-ring formation in cytokinesis. PMID:19864459

  1. Is depressed myocyte contractility centrally involved in heart failure?

    PubMed

    Houser, Steven R; Margulies, Kenneth B

    2003-03-07

    This review examines the evidence for and against the hypothesis that abnormalities in cardiac contractility initiate the heart failure syndrome and drive its progression. There is substantial evidence that the contractility of failing human hearts is depressed and that abnormalities of basal Ca2+ regulation and adrenergic regulation of Ca2+ signaling are responsible. The cellular and molecular defects that cause depressed myocyte contractility are not well established but seem to culminate in abnormal sarcoplasmic reticulum uptake, storage, and release. There are also strong links between Ca2+ regulation, Ca2+ signaling pathways, hypertrophy, and heart failure that need to be more clearly delineated. There is not substantial direct evidence for a causative role for depressed contractility in the initiation and progression of human heart failure, and some studies show that heart failure can occur without depressed myocyte contractility. Stronger support for a causal role for depressed contractility in the initiation of heart failure comes from animal studies where maintaining or improving contractility can prevent heart failure. Recent clinical studies in humans also support the idea that beneficial heart failure treatments, such as beta-adrenergic antagonists, involve improved contractility. Current or previously used heart failure treatments that increase contractility, primarily by increasing cAMP, have generally increased mortality. Novel heart failure therapies that increase or maintain contractility or adrenergic signaling by selectively modulating specific molecules have produced promising results in animal experiments. How to reliably implement these potentially beneficial inotropic therapies in humans without introducing negative side effects is the major unanswered question in this field.

  2. Contractile ring stability in S. pombe depends on F-BAR protein Cdc15p and Bgs1p transport from the Golgi complex.

    PubMed

    Arasada, Rajesh; Pollard, Thomas D

    2014-09-11

    Cdc15p is known to contribute to cytokinesis in fission yeast; however, the protein is not required to assemble the contractile ring of actin and myosin, but it helps to anchor the ring to the plasma membrane. Cdc15p has a lipid-binding F-BAR domain, suggesting that it provides a physical link between the plasma membrane and contractile ring proteins. However, we find that a more important function of Cdc15p during cytokinesis is to help deliver a transmembrane enzyme, Bgs1p (also called Cps1p), from the Golgi apparatus to the plasma membrane, where it appears to anchor the contractile ring. Bgs1p synthesizes the cell wall in the cleavage furrow, but its enzyme activity is not required to anchor the contractile ring. We estimate that ∼ 2,000 Bgs1p molecules are required to anchor the ring. Without Bgs1p anchors, contractile rings slide along the plasma membrane, a phenomenon that depends on an unconventional type II myosin called Myp2p. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. The fission yeast cytokinetic contractile ring regulates septum shape and closure

    PubMed Central

    Thiyagarajan, Sathish; Munteanu, Emilia Laura; Arasada, Rajesh; Pollard, Thomas D.; O'Shaughnessy, Ben

    2015-01-01

    ABSTRACT During cytokinesis, fission yeast and other fungi and bacteria grow a septum that divides the cell in two. In fission yeast closure of the circular septum hole by the β-glucan synthases (Bgs) and other glucan synthases in the plasma membrane is tightly coupled to constriction of an actomyosin contractile ring attached to the membrane. It is unknown how septum growth is coordinated over scales of several microns to maintain septum circularity. Here, we documented the shapes of ingrowing septum edges by measuring the roughness of the edges, a measure of the deviation from circularity. The roughness was small, with spatial correlations indicative of spatially coordinated growth. We hypothesized that Bgs-mediated septum growth is mechanosensitive and coupled to contractile ring tension. A mathematical model showed that ring tension then generates almost circular septum edges by adjusting growth rates in a curvature-dependent fashion. The model reproduced experimental roughness statistics and showed that septum synthesis sets the mean closure rate. Our results suggest that the fission yeast cytokinetic ring tension does not set the constriction rate but regulates septum closure by suppressing roughness produced by inherently stochastic molecular growth processes. PMID:26240178

  4. The fission yeast cytokinetic contractile ring regulates septum shape and closure.

    PubMed

    Thiyagarajan, Sathish; Munteanu, Emilia Laura; Arasada, Rajesh; Pollard, Thomas D; O'Shaughnessy, Ben

    2015-10-01

    During cytokinesis, fission yeast and other fungi and bacteria grow a septum that divides the cell in two. In fission yeast closure of the circular septum hole by the β-glucan synthases (Bgs) and other glucan synthases in the plasma membrane is tightly coupled to constriction of an actomyosin contractile ring attached to the membrane. It is unknown how septum growth is coordinated over scales of several microns to maintain septum circularity. Here, we documented the shapes of ingrowing septum edges by measuring the roughness of the edges, a measure of the deviation from circularity. The roughness was small, with spatial correlations indicative of spatially coordinated growth. We hypothesized that Bgs-mediated septum growth is mechanosensitive and coupled to contractile ring tension. A mathematical model showed that ring tension then generates almost circular septum edges by adjusting growth rates in a curvature-dependent fashion. The model reproduced experimental roughness statistics and showed that septum synthesis sets the mean closure rate. Our results suggest that the fission yeast cytokinetic ring tension does not set the constriction rate but regulates septum closure by suppressing roughness produced by inherently stochastic molecular growth processes. © 2015. Published by The Company of Biologists Ltd.

  5. Store-operated Ca2+ entry supports contractile function in hearts of hibernators

    PubMed Central

    Nakipova, Olga V.; Averin, Alexey S.; Evdokimovskii, Edward V.; Pimenov, Oleg Yu.; Kosarski, Leonid; Ignat’ev, Dmitriy; Anufriev, Andrey; Kokoz, Yuri M.; Reyes, Santiago; Terzic, Andre; Alekseev, Alexey E.

    2017-01-01

    Hibernators have a distinctive ability to adapt to seasonal changes of body temperature in a range between 37°C and near freezing, exhibiting, among other features, a unique reversibility of cardiac contractility. The adaptation of myocardial contractility in hibernation state relies on alterations of excitation contraction coupling, which becomes less-dependent from extracellular Ca2+ entry and is predominantly controlled by Ca2+ release from sarcoplasmic reticulum, replenished by the Ca2+-ATPase (SERCA). We found that the specific SERCA inhibitor cyclopiazonic acid (CPA), in contrast to its effect in papillary muscles (PM) from rat hearts, did not reduce but rather potentiated contractility of PM from hibernating ground squirrels (GS). In GS ventricles we identified drastically elevated, compared to rats, expression of Orai1, Stim1 and Trpc1/3/4/5/6/7 mRNAs, putative components of store operated Ca2+ channels (SOC). Trpc3 protein levels were found increased in winter compared to summer GS, yet levels of Trpc5, Trpc6 or Trpc7 remained unchanged. Under suppressed voltage-dependent K+, Na+ and Ca2+ currents, the SOC inhibitor 2-aminoethyl diphenylborinate (2-APB) diminished whole-cell membrane currents in isolated cardiomyocytes from hibernating GS, but not from rats. During cooling-reheating cycles (30°C–7°C–30°C) of ground squirrel PM, 2-APB did not affect typical CPA-sensitive elevation of contractile force at low temperatures, but precluded the contractility at 30°C before and after the cooling. Wash-out of 2-APB reversed PM contractility to control values. Thus, we suggest that SOC play a pivotal role in governing the ability of hibernator hearts to maintain their function during the transition in and out of hibernating states. PMID:28531217

  6. Acid base activity of live bacteria: Implications for quantifying cell wall charge

    NASA Astrophysics Data System (ADS)

    Claessens, Jacqueline; van Lith, Yvonne; Laverman, Anniet M.; Van Cappellen, Philippe

    2006-01-01

    To distinguish the buffering capacity associated with functional groups in the cell wall from that resulting from metabolic processes, base or acid consumption by live and dead cells of the Gram-negative bacterium Shewanella putrefaciens was measured in a pH stat system. Live cells exhibited fast consumption of acid (pH 4) or base (pH 7, 8, 9, and 10) during the first few minutes of the experiments. At pH 5.5, no acid or base was required to maintain the initial pH constant. The initial amounts of acid or base consumed by the live cells at pH 4, 8, and 10 were of comparable magnitudes as those neutralized at the same pHs by intact cells killed by exposure to gamma radiation or ethanol. Cells disrupted in a French press required higher amounts of acid or base, due to additional buffering by intracellular constituents. At pH 4, acid neutralization by suspensions of live cells stopped after 50 min, because of loss of viability. In contrast, under neutral and alkaline conditions, base consumption continued for the entire duration of the experiments (5 h). This long-term base neutralization was, at least partly, due to active respiration by the cells, as indicated by the build-up of succinate in solution. Qualitatively, the acid-base activity of live cells of the Gram-positive bacterium Bacillus subtilis resembled that of S. putrefaciens. The pH-dependent charging of ionizable functional groups in the cell walls of the live bacteria was estimated from the initial amounts of acid or base consumed in the pH stat experiments. From pH 4 to 10, the cell wall charge increased from near-zero values to about -4 × 10 -16 mol cell -1 and -6.5 × 10 -16 mol cell -1 for S. putrefaciens and B. subtilis, respectively. The similar cell wall charging of the two bacterial strains is consistent with the inferred low contribution of lipopolysaccharides to the buffering capacity of the Gram-negative cell wall (of the order of 10%).

  7. Compensatory Hypertrophy of Skeletal Muscle: Contractile Characteristics

    ERIC Educational Resources Information Center

    Ianuzzo, C. D.; Chen, V.

    1977-01-01

    Describes an experiment using rats that demonstrates contractile characteristics of normal and hypertrophied muscle. Compensatory hypertrophy of the plantaris muscle is induced by surgical removal of the synergistic gastrocnemium muscle. Includes methods for determination of contractile properties of normal and hypertrophied muscle and…

  8. A human in vitro model of Duchenne muscular dystrophy muscle formation and contractility.

    PubMed

    Nesmith, Alexander P; Wagner, Matthew A; Pasqualini, Francesco S; O'Connor, Blakely B; Pincus, Mark J; August, Paul R; Parker, Kevin Kit

    2016-10-10

    Tongue weakness, like all weakness in Duchenne muscular dystrophy (DMD), occurs as a result of contraction-induced muscle damage and deficient muscular repair. Although membrane fragility is known to potentiate injury in DMD, whether muscle stem cells are implicated in deficient muscular repair remains unclear. We hypothesized that DMD myoblasts are less sensitive to cues in the extracellular matrix designed to potentiate structure-function relationships of healthy muscle. To test this hypothesis, we drew inspiration from the tongue and engineered contractile human muscle tissues on thin films. On this platform, DMD myoblasts formed fewer and smaller myotubes and exhibited impaired polarization of the cell nucleus and contractile cytoskeleton when compared with healthy cells. These structural aberrations were reflected in their functional behavior, as engineered tongues from DMD myoblasts failed to achieve the same contractile strength as healthy tongue structures. These data suggest that dystrophic muscle may fail to organize with respect to extracellular cues necessary to potentiate adaptive growth and remodeling. © 2016 Nesmith et al.

  9. T-tubule disease: Relationship between t-tubule organization and regional contractile performance in human dilated cardiomyopathy.

    PubMed

    Crossman, David J; Young, Alistair A; Ruygrok, Peter N; Nason, Guy P; Baddelely, David; Soeller, Christian; Cannell, Mark B

    2015-07-01

    Evidence from animal models suggest that t-tubule changes may play an important role in the contractile deficit associated with heart failure. However samples are usually taken at random with no regard as to regional variability present in failing hearts which leads to uncertainty in the relationship between contractile performance and possible t-tubule derangement. Regional contraction in human hearts was measured by tagged cine MRI and model fitting. At transplant, failing hearts were biopsy sampled in identified regions and immunocytochemistry was used to label t-tubules and sarcomeric z-lines. Computer image analysis was used to assess 5 different unbiased measures of t-tubule structure/organization. In regions of failing hearts that showed good contractile performance, t-tubule organization was similar to that seen in normal hearts, with worsening structure correlating with the loss of regional contractile performance. Statistical analysis showed that t-tubule direction was most highly correlated with local contractile performance, followed by the amplitude of the sarcomeric peak in the Fourier transform of the t-tubule image. Other area based measures were less well correlated. We conclude that regional contractile performance in failing human hearts is strongly correlated with the local t-tubule organization. Cluster tree analysis with a functional definition of failing contraction strength allowed a pathological definition of 't-tubule disease'. The regional variability in contractile performance and cellular structure is a confounding issue for analysis of samples taken from failing human hearts, although this may be overcome with regional analysis by using tagged cMRI and biopsy mapping. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Roles of tRNA in cell wall biosynthesis

    PubMed Central

    Dare, Kiley; Ibba, Michael

    2013-01-01

    Recent research into various aspects of bacterial metabolism such as cell wall and antibiotic synthesis, degradation pathways, cellular stress, and amino acid biosynthesis has elucidated roles of aminoacyl-transfer ribonucleic acid (aa-tRNA) outside of translation. Although the two enzyme families responsible for cell wall modifications, aminoacyl-phosphatidylglycerol synthases (aaPGSs) and Fem, were discovered some time ago, they have recently become of intense interest for their roles in the antimicrobial resistance of pathogenic microorganisms. The addition of positively charged amino acids to phosphatidylglycerol (PG) by aaPGSs neutralizes the lipid bilayer making the bacteria less susceptible to positively charged antimicrobial agents. Fem transferases utilize aa-tRNA to form peptide bridges that link strands of peptidoglycan. These bridges vary among the bacterial species in which they are present and play a role in resistance to antibiotics that target the cell wall. Additionally, the formation of truncated peptides results in shorter peptide bridges and loss of branched linkages which makes bacteria more susceptible to antimicrobials. A greater understanding of the structure and substrate specificity of this diverse enzymatic family is necessary to aid current efforts in designing potential bactericidal agents. These two enzyme families are linked only by the substrate with which they modify the cell wall, aa-tRNA; their structure, cell wall modification processes and the physiological changes they impart on the bacterium differ greatly. PMID:22262511

  11. Contractile effect of rifaximin on bovine uterus in the presence of steroid hormone antagonists.

    PubMed

    Sciorsci, R L; Piccinno, M; Rizzo, A

    2018-04-01

    This in vitro study investigated the modulatory effect of rifaximin on bovine uterus contractility, in both phases of the oestrous cycle, with and without the steroid hormones that are predominant in the respective phases: oestrogen in the follicular phase and progesterone in the luteal phase. The procedures were conducted in an isolated organ bath by using rifaximin alone (10 -4  M) and in association with the steroid hormone antagonists (10 -5  M) tamoxifen (oestrogen antagonist) in the follicular phase and mifepristone (progesterone antagonist) in the luteal phase. The results indicated that rifaximin can stimulate uterine contractility. Indeed, the administration of rifaximin in the presence of tamoxifen or mifepristone increased the tonic activity of the uterus in both phases of the cycle. This result is clinically significant because rifaximin might also enable, in vivo, a simultaneous increase in uterine cleaning and the antimicrobial action against bacteria during the first 14 days postpartum, during the development of acute metritis. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Extracellular cell wall β(1,3)glucan is required to couple septation to actomyosin ring contraction.

    PubMed

    Muñoz, Javier; Cortés, Juan Carlos G; Sipiczki, Matthias; Ramos, Mariona; Clemente-Ramos, José Angel; Moreno, M Belén; Martins, Ivone M; Pérez, Pilar; Ribas, Juan Carlos

    2013-10-28

    Cytokinesis has been extensively studied in different models, but the role of the extracellular cell wall is less understood. Here we studied this process in fission yeast. The essential protein Bgs4 synthesizes the main cell wall β(1,3)glucan. We show that Bgs4-derived β(1,3)glucan is required for correct and stable actomyosin ring positioning in the cell middle, before the start of septum formation and anchorage to the cell wall. Consequently, β(1,3)glucan loss generated ring sliding, oblique positioned rings and septa, misdirected septum synthesis indicative of relaxed rings, and uncoupling between a fast ring and membrane ingression and slow septum synthesis, suggesting that cytokinesis can progress with defective septum pushing and/or ring pulling forces. Moreover, Bgs4-derived β(1,3)glucan is essential for secondary septum formation and correct primary septum completion. Therefore, our results show that extracellular β(1,3)glucan is required for cytokinesis to connect the cell wall with the plasma membrane and for contractile ring function, as proposed for the equivalent extracellular matrix in animal cells.

  13. Extracellular cell wall β(1,3)glucan is required to couple septation to actomyosin ring contraction

    PubMed Central

    Muñoz, Javier; Cortés, Juan Carlos G.; Sipiczki, Matthias; Ramos, Mariona; Clemente-Ramos, José Angel; Moreno, M. Belén; Martins, Ivone M.; Pérez, Pilar

    2013-01-01

    Cytokinesis has been extensively studied in different models, but the role of the extracellular cell wall is less understood. Here we studied this process in fission yeast. The essential protein Bgs4 synthesizes the main cell wall β(1,3)glucan. We show that Bgs4-derived β(1,3)glucan is required for correct and stable actomyosin ring positioning in the cell middle, before the start of septum formation and anchorage to the cell wall. Consequently, β(1,3)glucan loss generated ring sliding, oblique positioned rings and septa, misdirected septum synthesis indicative of relaxed rings, and uncoupling between a fast ring and membrane ingression and slow septum synthesis, suggesting that cytokinesis can progress with defective septum pushing and/or ring pulling forces. Moreover, Bgs4-derived β(1,3)glucan is essential for secondary septum formation and correct primary septum completion. Therefore, our results show that extracellular β(1,3)glucan is required for cytokinesis to connect the cell wall with the plasma membrane and for contractile ring function, as proposed for the equivalent extracellular matrix in animal cells. PMID:24165938

  14. Elevated ventricular wall stress disrupts cardiomyocyte t-tubule structure and calcium homeostasis.

    PubMed

    Frisk, Michael; Ruud, Marianne; Espe, Emil K S; Aronsen, Jan Magnus; Røe, Åsmund T; Zhang, Lili; Norseng, Per Andreas; Sejersted, Ole M; Christensen, Geir A; Sjaastad, Ivar; Louch, William E

    2016-10-01

    Invaginations of the cellular membrane called t-tubules are essential for maintaining efficient excitation-contraction coupling in ventricular cardiomyocytes. Disruption of t-tubule structure during heart failure has been linked to dyssynchronous, slowed Ca(2+) release and reduced power of the heartbeat. The underlying mechanism is, however, unknown. We presently investigated whether elevated ventricular wall stress triggers remodelling of t-tubule structure and function. MRI and blood pressure measurements were employed to examine regional wall stress across the left ventricle of sham-operated and failing, post-infarction rat hearts. In failing hearts, elevated left ventricular diastolic pressure and ventricular dilation resulted in markedly increased wall stress, particularly in the thin-walled region proximal to the infarct. High wall stress in this proximal zone was associated with reduced expression of the dyadic anchor junctophilin-2 and disrupted cardiomyocyte t-tubular structure. Indeed, local wall stress measurements predicted t-tubule density across sham and failing hearts. Elevated wall stress and disrupted cardiomyocyte structure in the proximal zone were also associated with desynchronized Ca(2+) release in cardiomyocytes and markedly reduced local contractility in vivo. A causative role of wall stress in promoting t-tubule remodelling was established by applying stretch to papillary muscles ex vivo under culture conditions. Loads comparable to wall stress levels observed in vivo in the proximal zone reduced expression of junctophilin-2 and promoted t-tubule loss. Elevated wall stress reduces junctophilin-2 expression and disrupts t-tubule integrity, Ca(2+) release, and contractile function. These findings provide new insight into the role of wall stress in promoting heart failure progression. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  15. Frequent premature atrial contractions impair left atrial contractile function and promote adverse left atrial remodeling.

    PubMed

    John, Anub G; Hirsch, Glenn A; Stoddard, Marcus F

    2018-06-10

    This study assessed if frequent premature atrial contractions (PACs) were associated with decreased left atrial (LA) strain and adverse remodeling. Left atrial dysfunction and enlargement increases risk of stroke. If frequent PACs cause LA dysfunction and remodeling, PAC suppressive therapy may be beneficial. Inclusion criteria were age ≥18 years and sinus rhythm. Exclusion criteria were atrial fibrillation or any etiology for LA enlargement. Hundred and thirty-two patients with frequent PACs (≥100/24 hours) by Holter were matched to controls. Speckle tracking strain of the left atrium was performed from the 4-chamber view. Strain measurements were LA peak contractile, reservoir and conduit strain and strain rates. In the frequent PAC vs control group, PACs were more frequent (1959 ± 3796 vs 28 ± 25/24 hours, P < .0001). LA peak contractile strain was reduced in the group with frequent PACs vs controls (-7.85 ± 4.12% vs -9.33 ± 4.45%, P = .006). LA peak late negative contractile strain rate was less negative in the frequent PAC vs control group (-0.63 ± 0.27 s -1 vs -0.69 ± 0.32 s -1 , P = .051). LA reservoir and conduit strain and strain rates did not differ. LA volume index (LAVI) was larger in the frequent PAC vs control group (26.6 ± 7.8 vs 24.6 ± 8.8 mL/m 2 , P < .05). Frequent PACs were an independent predictor of reduced LA peak contractile strain and reduced LA peak late negative contractile strain rate. Patients with frequent PACs have reduced LA peak contractile strain and strain rates and larger LAVI compared to controls. Frequent PACs are an independent predictor of reduced LA peak contractile strain and strain rate. These findings support the hypothesis that frequent PACs impair LA contractile function and promote adverse LA remodeling. © 2018 Wiley Periodicals, Inc.

  16. Cytoskeletal Role in the Contractile Dysfunction of Hypertrophied Myocardium

    NASA Astrophysics Data System (ADS)

    Tsutsui, Hiroyuki; Ishihara, Kazuaki; Cooper, George

    1993-04-01

    Cardiac hypertrophy in response to systolic pressure loading frequently results in contractile dysfunction of unknown cause. In the present study, pressure loading increased the microtubule component of the cardiac muscle cell cytoskeleton, which was responsible for the cellular contractile dysfunction observed. The linked microtubule and contractile abnormalities were persistent and thus may have significance for the deterioration of initially compensatory cardiac hypertrophy into congestive heart failure.

  17. Structure of the Elastin-Contractile Units in the Thoracic Aorta and How Genes That Cause Thoracic Aortic Aneurysms and Dissections Disrupt This Structure.

    PubMed

    Karimi, Ashkan; Milewicz, Dianna M

    2016-01-01

    The medial layer of the aorta confers elasticity and strength to the aortic wall and is composed of alternating layers of smooth muscle cells (SMCs) and elastic fibres. The SMC elastin-contractile unit is a structural unit that links the elastin fibres to the SMCs and is characterized by the following: (1) layers of elastin fibres that are surrounded by microfibrils; (2) microfibrils that bind to the integrin receptors in focal adhesions on the cell surface of the SMCs; and (3) SMC contractile filaments that are linked to the focal adhesions on the inner side of the membrane. The genes that are altered to cause thoracic aortic aneurysms and aortic dissections encode proteins involved in the structure or function of the SMC elastin-contractile unit. Included in this gene list are the genes encoding protein that are structural components of elastin fibres and microfibrils, FBN1, MFAP5, ELN, and FBLN4. Also included are genes that encode structural proteins in the SMC contractile unit, including ACTA2, which encodes SMC-specific α-actin and MYH11, which encodes SMC-specific myosin heavy chain, along with MYLK and PRKG1, which encode kinases that control SMC contraction. Finally, mutations in the gene encoding the protein linking integrin receptors to the contractile filaments, FLNA, also predispose to thoracic aortic disease. Thus, these data suggest that functional SMC elastin-contractile units are important for maintaining the structural integrity of the aorta. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  18. Eradicating group A streptococcus bacteria and biofilms using functionalised multi-wall carbon nanotubes.

    PubMed

    Levi-Polyachenko, Nicole; Young, Christie; MacNeill, Christopher; Braden, Amy; Argenta, Louis; Reid, Sean

    2014-11-01

    The aim of this study was to demonstrate that multi-wall carbon nanotubes can be functionalised with antibodies to group A streptoccocus (GAS) for targeted photothermal ablation of planktonic and biofilm residing bacteria. Antibodies for GAS were covalently attached to carboxylated multi-wall carbon nanotubes and incubated with either planktonic or biofilm GAS. Bacterium was then exposed to 1.3 W/cm(2) of 800 nm light for 10-120 s, and then serially diluted onto agar plates from which the number of colony forming units was determined. Photothermal ablation of GAS on the surface of full thickness ex vivo porcine skin and histological sectioning were done to examine damage in adjacent tissue. Approximately 14% of the GAS antibody-functionalised nanotubes attached to the bacterium, and this amount was found to be capable of inducing photothermal ablation of GAS upon exposure to 1.3 W/cm(2) of 800 nm light. Cell viability was not decreased upon exposure to nanotubes or infrared light alone. Compared to carboxylated multi-wall carbon nanotubes, antibody-labelled nanotubes enhanced killing in both planktonic and biofilm GAS in conjunction with infrared light. Analysis of GAS photothermally ablated in direct contact with ex vivo porcine skin shows that heat sufficient for killing GAS remains localised and does not cause collateral damage in tissue adjacent to the treated area. The results of this study support the premise that carbon nanotubes may be effectively utilised as highly localised photothermal agents with the potential for translation into the clinical treatment of bacterial infections of soft tissue.

  19. Geometrical Origins of Contractility in Disordered Actomyosin Networks

    NASA Astrophysics Data System (ADS)

    Lenz, Martin

    2014-10-01

    Movement within eukaryotic cells largely originates from localized forces exerted by myosin motors on scaffolds of actin filaments. Although individual motors locally exert both contractile and extensile forces, large actomyosin structures at the cellular scale are overwhelmingly contractile, suggesting that the scaffold serves to favor contraction over extension. While this mechanism is well understood in highly organized striated muscle, its origin in disordered networks such as the cell cortex is unknown. Here, we develop a mathematical model of the actin scaffold's local two- or three-dimensional mechanics and identify four competing contraction mechanisms. We predict that one mechanism dominates, whereby local deformations of the actin break the balance between contraction and extension. In this mechanism, contractile forces result mostly from motors plucking the filaments transversely rather than buckling them longitudinally. These findings shed light on recent in vitro experiments and provide a new geometrical understanding of contractility in the myriad of disordered actomyosin systems found in vivo.

  20. Contractile response of fescue-naive bovine lateral saphenous veins to increasing concentrations of tall fescue alkaloids.

    PubMed

    Klotz, J L; Kirch, B H; Aiken, G E; Bush, L P; Strickland, J R

    2010-01-01

    Various alkaloids found in endophyte-infected tall fescue have been shown to elicit different effects in the grazing animal. As part of an ongoing characterization of vascular response generated by different alkaloids, the objective of this study was to examine the vasoconstrictive potentials of ergonovine (a simple lysergic acid derivative) and alpha-ergocryptine, ergocristine, and ergocornine (all ergopeptine alkaloids) using bovine lateral saphenous veins (cranial branch) biopsied from fescue-naïve cattle. Segments (2 to 3 cm) of vein were surgically biopsied from healthy crossbred yearling cattle (n = 18; 274 +/- 8 kg of BW). Veins were trimmed of excess fat and connective tissue, sliced into 2 to 3 mm sections, and suspended in a myograph chamber containing 5 mL of oxygenated Krebs-Henseleit buffer (95% O(2)/5% CO(2); pH = 7.4; 37 degrees C). Tissue was allowed to equilibrate at 1 g of tension for 90 min before initiation of treatment additions. Increasing doses of each alkaloid (1 x 10(-10) to 1 x 10(-4) M) were administered every 15 min after buffer replacement. Data were normalized as a percentage of contractile response induced by a reference dose of norepinephrine (1 x 10(-4) M). Exposure of vein segments to increasing concentrations of ergocryptine, ergocristine, and ergonovine did not result in a contractile response until 1 x 10(-7) M, and ergocornine was even less potent (P < 0.05). Ergonovine had a greater maximal contractile intensity than ergocristine and ergocryptine (P < 0.05), with the 1 x 10(-4) M responses of ergonovine, ergocristine, ergocryptine, and ergocornine reaching maximums of 68.5 +/- 4.1, 45.5 +/- 4.5, 42.9 +/- 4.1%, and 57.2 +/- 9.9% of the norepinephrine maximum, respectively. The contractile response to increasing concentrations of ergonovine vs. ergocryptine, ergocristine, and ergocornine were opposite from previous evaluations of ergoline (e.g., lysergic acid) and ergopeptine (e.g., ergovaline) alkaloids using this bioassay

  1. Effects of hypoxia and hypercapnia on geniohyoid contractility and endurance.

    PubMed

    Salmone, R J; Van Lunteren, E

    1991-08-01

    Sleep apnea and other respiratory diseases produce hypoxemia and hypercapnia, factors that adversely affect skeletal muscle performance. To examine the effects of these chemical alterations on force production by an upper airway dilator muscle, the contractile and endurance characteristics of the geniohyoid muscle were examined in situ during severe hypoxia (arterial PO2 less than 40 Torr), mild hypoxia (PO2 45-65 Torr), and hypercapnia (PCO2 55-80 Torr) and compared with hyperoxic-normocapnic conditions in anesthetized cats. Muscles were studied at optimal length, and contractile force was assessed in response to supramaximal electrical stimulation of the hypoglossal nerve (n = 7 cats) or geniohyoid muscle (n = 2 cats). There were no significant changes in the twitch kinetics or force-frequency curve of the geniohyoid muscle during hypoxia or hypercapnia. However, the endurance of the geniohyoid, as reflected in the fatigue index (ratio of force at 2 min to initial force in response to 40-Hz stimulation at a duty cycle 0.33), was significantly reduced by severe hypoxia but not by hypercapnia or mild hypoxia. In addition, the downward shift in the force-frequency curve after the repetitive stimulation protocol was greater during hypoxia than hyperoxia, especially at higher frequencies. In conclusion, the ability of the geniohyoid muscle to maintain force output during high levels of activation is adversely affected by severe hypoxia but not mild hypoxia or hypercapnia. However, none of these chemical perturbations affected muscle contractility acutely.

  2. Molecular analysis of the microbial diversity present in the colonic wall, colonic lumen, and cecal lumen of a pig.

    PubMed

    Pryde, S E; Richardson, A J; Stewart, C S; Flint, H J

    1999-12-01

    Random clones of 16S ribosomal DNA gene sequences were isolated after PCR amplification with eubacterial primers from total genomic DNA recovered from samples of the colonic lumen, colonic wall, and cecal lumen from a pig. Sequences were also obtained for cultures isolated anaerobically from the same colonic-wall sample. Phylogenetic analysis showed that many sequences were related to those of Lactobacillus or Streptococcus spp. or fell into clusters IX, XIVa, and XI of gram-positive bacteria. In addition, 59% of randomly cloned sequences showed less than 95% similarity to database entries or sequences from cultivated organisms. Cultivation bias is also suggested by the fact that the majority of isolates (54%) recovered from the colon wall by culturing were related to Lactobacillus and Streptococcus, whereas this group accounted for only one-third of the sequence variation for the same sample from random cloning. The remaining cultured isolates were mainly Selenomonas related. A higher proportion of Lactobacillus reuteri-related sequences than of Lactobacillus acidophilus- and Lactobacillus amylovorus-related sequences were present in the colonic-wall sample. Since the majority of bacterial ribosomal sequences recovered from the colon wall are less than 95% related to known organisms, the roles of many of the predominant wall-associated bacteria remain to be defined.

  3. Molecular Analysis of the Microbial Diversity Present in the Colonic Wall, Colonic Lumen, and Cecal Lumen of a Pig

    PubMed Central

    Pryde, Susan E.; Richardson, Anthony J.; Stewart, Colin S.; Flint, Harry J.

    1999-01-01

    Random clones of 16S ribosomal DNA gene sequences were isolated after PCR amplification with eubacterial primers from total genomic DNA recovered from samples of the colonic lumen, colonic wall, and cecal lumen from a pig. Sequences were also obtained for cultures isolated anaerobically from the same colonic-wall sample. Phylogenetic analysis showed that many sequences were related to those of Lactobacillus or Streptococcus spp. or fell into clusters IX, XIVa, and XI of gram-positive bacteria. In addition, 59% of randomly cloned sequences showed less than 95% similarity to database entries or sequences from cultivated organisms. Cultivation bias is also suggested by the fact that the majority of isolates (54%) recovered from the colon wall by culturing were related to Lactobacillus and Streptococcus, whereas this group accounted for only one-third of the sequence variation for the same sample from random cloning. The remaining cultured isolates were mainly Selenomonas related. A higher proportion of Lactobacillus reuteri-related sequences than of Lactobacillus acidophilus- and Lactobacillus amylovorus-related sequences were present in the colonic-wall sample. Since the majority of bacterial ribosomal sequences recovered from the colon wall are less than 95% related to known organisms, the roles of many of the predominant wall-associated bacteria remain to be defined. PMID:10583991

  4. A selective and sensitive D-xylose electrochemical biosensor based on xylose dehydrogenase displayed on the surface of bacteria and multi-walled carbon nanotubes modified electrode.

    PubMed

    Li, Liang; Liang, Bo; Shi, Jianguo; Li, Feng; Mascini, Marco; Liu, Aihua

    2012-03-15

    A novel Nafion/bacteria-displaying xylose dehydrogenase (XDH)/multi-walled carbon nanotubes (MWNTs) composite film-modified electrode was fabricated and applied for the sensitive and selective determination of d-xylose (INS 967), where the XDH-displayed bacteria (XDH-bacteria) was prepared using a newly identified ice nucleation protein from Pseudomonas borealis DL7 as an anchoring motif. The XDH-displayed bacteria can be used directly, eliminating further enzyme-extraction and purification, thus greatly improved the stability of the enzyme. The optimal conditions for the construction of biosensor were established: homogeneous Nafion-MWNTs composite dispersion (10 μL) was cast onto the inverted glassy carbon electrode, followed by casting 10-μL of XDH-bacteria aqueous solution to stand overnight to dry, then a 5-μL of Nafion solution (0.05 wt%) is syringed to the electrode surface. The bacteria-displaying XDH could catalyze the oxidization of xylose to xylonolactone with coenzyme NAD(+) in 0.1M PBS buffer (pH7.4), where NAD(+) (nicotinamide adenine dinucleotide) is reduced to NADH (the reduced form of nicotinamide adenine dinucleotide). The resultant NADH is further electrocatalytically oxidized by MWNTs on the electrode, resulting in an obvious oxidation peak around 0.50 V (vs. Ag/AgCl). In contrast, the bacteria-XDH-only modified electrode showed oxidation peak at higher potential of 0.7 V and less sensitivity. Therefore, the electrode/MWNTs/bacteria-XDH/Nafion exhibited good analytical performance such as long-term stability, a wide dynamic range of 0.6-100 μM and a low detection limit of 0.5 μM D-xylose (S/N=3). No interference was observed in the presence of 300-fold excess of other saccharides including D-glucose, D-fructose, D-maltose, D-galactose, D-mannose, D-sucrose, and D-cellbiose as well as 60-fold excess of L-arabinose. The proposed microbial biosensor is stable, specific, sensitive, reproducible, simple, rapid and cost-effective, which holds

  5. Interleukin-6 downregulated vascular smooth muscle cell contractile proteins via ATG4B-mediated autophagy in thoracic aortic dissection.

    PubMed

    An, Zhao; Qiao, Fan; Lu, Qijue; Ma, Ye; Liu, Yang; Lu, Fanglin; Xu, Zhiyun

    2017-12-01

    Interleukin-6 (IL-6) overexpression played an important role in the pathogenesis of thoracic aortic dissection (TAD). Our previous study found enhanced autophagy accompanying with contractile proteins α smooth muscle actin (α-SMA) and smooth muscle 22α (SM22α) degradation in TAD aortic vascular smooth muscle cells (VSMCs). Autophagy is an important way for intracellular proteins degradation, while IL-6 has been found as a contributing factor of autophagy in some cancers. These indicated IL-6 might contribute to the occurrence of TAD by promoting autophagy-induced contractile proteins degradation, which has not been investigated. The aim of the present study is to verify this hypothesis and investigate the mechanism of it. We collected 10 TAD and 10 control aortic specimens from patients underwent TAD surgical repair and coronary artery bypass grafting, respectively. Quantitative real-time polymerase chain reaction was used to detect mRNA expression. Protein expression level was assessed by enzyme-linked immunosorbent assay, western blot, and immunohistochemistry. Microtubule-associated protein 1 light chain 3 beta overexpression adenovirus with green and red fluorescent protein tags and transmission electron microscopy were used to detect autophagy level in VSMCs. 3-Methyladenine (3-MA) and chloroquine were used to block autophagy in human VSMCs. Experiment results showed that the expression of IL-6 was significantly increased accompanying with up-regulated autophagy in TAD aortic wall compared with controls. In vitro results showed that IL-6 stimulation decreased the expression of VSMCs contractile proteins α-SMA and SM22α accompanying with up-regulated autophagy. Blocking autophagy with 3-MA or chloroquine inhibited IL-6 induced α-SMA and SM22α degradation. Further investigation showed that autophagy-related 4B cysteine peptidase (ATG4B) was significantly overexpressed in TAD aortic wall and played important role in IL-6 induced autophagy up

  6. Intracellular vesicles as reproduction elements in cell wall-deficient L-form bacteria.

    PubMed

    Briers, Yves; Staubli, Titu; Schmid, Markus C; Wagner, Michael; Schuppler, Markus; Loessner, Martin J

    2012-01-01

    Cell wall-deficient bacteria, or L-forms, represent an extreme example of bacterial plasticity. Stable L-forms can multiply and propagate indefinitely in the absence of a cell wall. Data presented here are consistent with the model that intracellular vesicles in Listeria monocytogenes L-form cells represent the actual viable reproductive elements. First, small intracellular vesicles are formed along the mother cell cytoplasmic membrane, originating from local phospholipid accumulation. During growth, daughter vesicles incorporate a small volume of the cellular cytoplasm, and accumulate within volume-expanding mother cells. Confocal Raman microspectroscopy demonstrated the presence of nucleic acids and proteins in all intracellular vesicles, but only a fraction of which reveals metabolic activity. Following collapse of the mother cell and release of the daughter vesicles, they can establish their own membrane potential required for respiratory and metabolic processes. Premature depolarization of the surrounding membrane promotes activation of daughter cell metabolism prior to release. Based on genome resequencing of L-forms and comparison to the parental strain, we found no evidence for predisposing mutations that might be required for L-form transition. Further investigations revealed that propagation by intracellular budding not only occurs in Listeria species, but also in L-form cells generated from different Enterococcus species. From a more general viewpoint, this type of multiplication mechanism seems reminiscent of the physicochemical self-reproducing properties of abiotic lipid vesicles used to study the primordial reproduction pathways of putative prokaryotic precursor cells.

  7. Intracellular Vesicles as Reproduction Elements in Cell Wall-Deficient L-Form Bacteria

    PubMed Central

    Briers, Yves; Staubli, Titu; Schmid, Markus C.; Wagner, Michael; Schuppler, Markus; Loessner, Martin J.

    2012-01-01

    Cell wall-deficient bacteria, or L-forms, represent an extreme example of bacterial plasticity. Stable L-forms can multiply and propagate indefinitely in the absence of a cell wall. Data presented here are consistent with the model that intracellular vesicles in Listeria monocytogenes L-form cells represent the actual viable reproductive elements. First, small intracellular vesicles are formed along the mother cell cytoplasmic membrane, originating from local phospholipid accumulation. During growth, daughter vesicles incorporate a small volume of the cellular cytoplasm, and accumulate within volume-expanding mother cells. Confocal Raman microspectroscopy demonstrated the presence of nucleic acids and proteins in all intracellular vesicles, but only a fraction of which reveals metabolic activity. Following collapse of the mother cell and release of the daughter vesicles, they can establish their own membrane potential required for respiratory and metabolic processes. Premature depolarization of the surrounding membrane promotes activation of daughter cell metabolism prior to release. Based on genome resequencing of L-forms and comparison to the parental strain, we found no evidence for predisposing mutations that might be required for L-form transition. Further investigations revealed that propagation by intracellular budding not only occurs in Listeria species, but also in L-form cells generated from different Enterococcus species. From a more general viewpoint, this type of multiplication mechanism seems reminiscent of the physicochemical self-reproducing properties of abiotic lipid vesicles used to study the primordial reproduction pathways of putative prokaryotic precursor cells. PMID:22701656

  8. Cardiac contractile dysfunction during mild coronary flow reductions is due to an altered calcium-pressure relationship in rat hearts.

    PubMed Central

    Figueredo, V M; Brandes, R; Weiner, M W; Massie, B M; Camacho, S A

    1992-01-01

    Coronary artery stenosis or occlusion results in reduced coronary flow and myocardial contractile depression. At severe flow reductions, increased inorganic phosphate (Pi) and intracellular acidosis clearly play a role in contractile depression. However, during milder flow reductions the mechanism(s) underlying contractile depression are less clear. Previous perfused heart studies demonstrated no change of Pi or pH during mild flow reductions, suggesting that changes of intravascular pressure (garden hose effect) may be the mediator of this contractile depression. Others have reported conflicting results regarding another possible mediator of contractility, the cytosolic free calcium (Cai). To examine the respective roles of Cai, Pi, pH, and vascular pressure in regulating contractility during mild flow reductions, Indo-1 calcium fluorescence and 31P magnetic resonance spectroscopy measurements were performed on Langendorff-perfused rat hearts. Cai and diastolic calcium levels did not change during flow reductions to 50% of control. Pi demonstrated a close relationship with developed pressure and significantly increased from 2.5 +/- 0.3 to 4.2 +/- 0.4 mumol/g dry weight during a 25% flow reduction. pH was unchanged until a 50% flow reduction. Increasing vascular pressure to superphysiological levels resulted in further increases of developed pressure, with no change in Cai. These findings are consistent with the hypothesis that during mild coronary flow reductions, contractile depression is mediated by an altered relationship between Cai and pressure, rather than by decreased Cai. Furthermore, increased Pi and decreased intravascular pressure may be responsible for this altered calcium-pressure relationship during mild coronary flow reductions. PMID:1430205

  9. Enhanced mucosal delivery of antigen with cell wall mutants of lactic acid bacteria.

    PubMed

    Grangette, Corinne; Müller-Alouf, Heide; Hols, Pascal; Goudercourt, Denise; Delcour, Jean; Turneer, Mireille; Mercenier, Annick

    2004-05-01

    The potential of recombinant lactic acid bacteria (LAB) to deliver heterologous antigens to the immune system and to induce protective immunity has been best demonstrated by using the C subunit of tetanus toxin (TTFC) as a model antigen. Two types of LAB carriers have mainly been used, Lactobacillus plantarum and Lactococcus lactis, which differ substantially in their abilities to resist passage through the stomach and to persist in the mouse gastrointestinal tract. Here we analyzed the effect of a deficiency in alanine racemase, an enzyme that participates in cell wall synthesis, in each of these bacterial carriers. Recombinant wild-type and mutant strains of L. plantarum NCIMB8826 and L. lactis MG1363 producing TTFC intracellularly were constructed and used in mouse immunization experiments. Remarkably, we observed that the two cell wall mutant strains were far more immunogenic than their wild-type counterparts when the intragastric route was used. However, intestinal TTFC-specific immunoglobulin A was induced only after immunization with the recombinant L. plantarum mutant strain. Moreover, the alanine racemase mutant of either LAB strain allowed induction of a much stronger serum TTFC-specific immune response after immunization via the vagina, which is a quite different ecosystem than the gastrointestinal tract. The design and use of these mutants thus resulted in a major improvement in the mucosal delivery of antigens exhibiting vaccine properties.

  10. Eubiotics for Food Security at Farm Level: Yeast Cell Wall Products and Their Antimicrobial Potential Against Pathogenic Bacteria.

    PubMed

    Santovito, Elisa; Greco, Donato; Logrieco, Antonio F; Avantaggiato, Giuseppina

    2018-06-06

    The population increase in the last century was the first cause of the industrialization of animal productions, together with the necessity to satisfy the high food demand and the lack of space and land for the husbandry practices. As a consequence, the farmers moved from extensive to intensive agricultural systems and introduced new practices, such as the administration of antimicrobial drugs. Antibiotics were then used as growth promoters and for disease prevention. The uncontrolled and continuous use of antibiotics contributed to the spread of antibiotic resistance in animals, and this had adverse impacts on human health. This emergence led the European Union, in 2003, to ban the marketing and use of antibiotics as growth promoters, and for prophylaxis purposes from January 2006. This ban caused problems in farms, due to the decrease in animal performances (weight gain, feed conversion ratio, reproduction, etc.), and the rise in the incidence of certain diseases, such as those induced by Clostridium perfringens, Salmonella, Escherichia coli, and Listeria monocytogenes. The economic losses due to the ban increased the interest in researching alternative strategies for the prophylaxis of infectious diseases and for health and growth promotion, such as feed additives. Yeast-based materials, such as cell wall extract, represent promising alternatives to antibiotics, on the base of their prebiotic activity and their claimed capacity to bind enteropathogenic bacteria. Several authors reported examples of the effectiveness of yeast cell wall products in adsorbing bacteria, but there is a lack of knowledge on the mechanisms involved in this interaction. The purpose of this review is to provide an overview of the current approaches used for the control of pathogenic bacteria in feed, with a particular focus on the use of yeast-derived materials proposed to control zoonoses at farm level, and on their effect on animal health.

  11. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, M.J., E-mail: michael.morton@astrazeneca.com; Armstrong, D.; Abi Gerges, N.

    2014-09-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity inmore » the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility.« less

  12. Peptidoglycan turnover and recycling in Gram-positive bacteria.

    PubMed

    Reith, Jan; Mayer, Christoph

    2011-10-01

    Bacterial cells are protected by an exoskeleton, the stabilizing and shape-maintaining cell wall, consisting of the complex macromolecule peptidoglycan. In view of its function, it could be assumed that the cell wall is a static structure. In truth, however, it is steadily broken down by peptidoglycan-cleaving enzymes during cell growth. In this process, named cell wall turnover, in one generation up to half of the preexisting peptidoglycan of a bacterial cell is released from the wall. This would result in a massive loss of cell material, if turnover products were not be taken up and recovered. Indeed, in the Gram-negative model organism Escherichia coli, peptidoglycan recovery has been recognized as a complex pathway, named cell wall recycling. It involves about a dozen dedicated recycling enzymes that convey cell wall turnover products to peptidoglycan synthesis or energy pathways. Whether Gram-positive bacteria also recover their cell wall is currently questioned. Given the much larger portion of peptidoglycan in the cell wall of Gram-positive bacteria, however, recovery of the wall material would provide an even greater benefit in these organisms compared to Gram-negatives. Consistently, in many Gram-positives, orthologs of recycling enzymes were identified, indicating that the cell wall may also be recycled in these organisms. This mini-review provides a compilation of information about cell wall turnover and recycling in Gram-positive bacteria during cell growth and division, including recent findings relating to muropeptide recovery in Bacillus subtilis and Clostridium acetobutylicum from our group. Furthermore, the impact of cell wall turnover and recycling on biotechnological processes is discussed.

  13. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma

    NASA Astrophysics Data System (ADS)

    Mai-Prochnow, Anne; Clauson, Maryse; Hong, Jungmi; Murphy, Anthony B.

    2016-12-01

    Cold atmospheric-pressure plasma (CAP) is a relatively new method being investigated for antimicrobial activity. However, the exact mode of action is still being explored. Here we report that CAP efficacy is directly correlated to bacterial cell wall thickness in several species. Biofilms of Gram positive Bacillus subtilis, possessing a 55.4 nm cell wall, showed the highest resistance to CAP, with less than one log10 reduction after 10 min treatment. In contrast, biofilms of Gram negative Pseudomonas aeruginosa, possessing only a 2.4 nm cell wall, were almost completely eradicated using the same treatment conditions. Planktonic cultures of Gram negative Pseudomonas libanensis also had a higher log10 reduction than Gram positive Staphylococcus epidermidis. Mixed species biofilms of P. aeruginosa and S. epidermidis showed a similar trend of Gram positive bacteria being more resistant to CAP treatment. However, when grown in co-culture, Gram negative P. aeruginosa was more resistant to CAP overall than as a mono-species biofilm. Emission spectra indicated OH and O, capable of structural cell wall bond breakage, were present in the plasma. This study indicates that cell wall thickness correlates with CAP inactivation times of bacteria, but cell membranes and biofilm matrix are also likely to play a role.

  14. Quantifying esophagogastric junction contractility with a novel HRM topographic metric, the EGJ-Contractile Integral: normative values and preliminary evaluation in PPI non-responders.

    PubMed

    Nicodème, F; Pipa-Muniz, M; Khanna, K; Kahrilas, P J; Pandolfino, J E

    2014-03-01

    Despite its obvious pathophysiological relevance, the clinical utility of measures of esophagogastric junction (EGJ) contractility is unsubstantiated. High-resolution manometry (HRM) may improve upon this with its inherent ability to integrate the magnitude of contractility over time and length of the EGJ. This study aimed to develop a novel HRM metric summarizing EGJ contractility and test its ability distinguish among subgroups of proton pump inhibitor non-responders (PPI-NRs). 75 normal controls and 88 PPI-NRs were studied. All underwent HRM. PPI-NRs underwent pH-impedance monitoring on PPI therapy scored in terms of acid exposure, number of reflux events, and reflux-symptom correlation and grouped as meeting all criteria, some criteria, or no criteria of abnormality. Control HRM studies were used to establish normal values for candidate EGJ contractility metrics, which were then compared in their ability to differentiate among PPI-NR subgroups. The EGJ contractile integral (EGJ-CI), a metric integrating contractility across the EGJ for three respiratory cycles, best distinguished the All Criteria PPI-NR subgroup from controls and other PPI-NR subgroups. Normal values (median, [IQR]) for this measure were 39 mmHg-cm [25-55 mmHg-cm]. The correlation between the EGJ-CI and a previously proposed metric, the lower esophageal sphincter-pressure integral, that used a fixed 10 s time frame and an atmospheric as opposed to gastric pressure reference was weak. Among HRM metrics tested, the EGJ-CI was best in distinguishing PPI-NRs meeting all criteria of abnormality on pH-impedance testing. Future prospective studies are required to explore its utility in management of broader groups of gastroesophageal reflux disease patients. © 2013 John Wiley & Sons Ltd.

  15. Integration of actomyosin contractility with cell-cell adhesion during dorsal closure.

    PubMed

    Duque, Julia; Gorfinkiel, Nicole

    2016-12-15

    In this work, we combine genetic perturbation, time-lapse imaging and quantitative image analysis to investigate how pulsatile actomyosin contractility drives cell oscillations, apical cell contraction and tissue closure during morphogenesis of the amnioserosa, the main force-generating tissue during the dorsal closure in Drosophila We show that Myosin activity determines the oscillatory and contractile behaviour of amnioserosa cells. Reducing Myosin activity prevents cell shape oscillations and reduces cell contractility. By contrast, increasing Myosin activity increases the amplitude of cell shape oscillations and the time cells spend in the contracted phase relative to the expanded phase during an oscillatory cycle, promoting cell contractility and tissue closure. Furthermore, we show that in AS cells, Rok controls Myosin foci formation and Mbs regulates not only Myosin phosphorylation but also adhesion dynamics through control of Moesin phosphorylation, showing that Mbs coordinates actomyosin contractility with cell-cell adhesion during amnioserosa morphogenesis. © 2016. Published by The Company of Biologists Ltd.

  16. Role of microtubules in the contractile dysfunction of hypertrophied myocardium

    NASA Technical Reports Server (NTRS)

    Zile, M. R.; Koide, M.; Sato, H.; Ishiguro, Y.; Conrad, C. H.; Buckley, J. M.; Morgan, J. P.; Cooper, G. 4th

    1999-01-01

    OBJECTIVES: We sought to determine whether the ameliorative effects of microtubule depolymerization on cellular contractile dysfunction in pressure overload cardiac hypertrophy apply at the tissue level. BACKGROUND: A selective and persistent increase in microtubule density causes decreased contractile function of cardiocytes from cats with hypertrophy produced by chronic right ventricular (RV) pressure overloading. Microtubule depolymerization by colchicine normalizes contractility in these isolated cardiocytes. However, whether these changes in cellular function might contribute to changes in function at the more highly integrated and complex cardiac tissue level was unknown. METHODS: Accordingly, RV papillary muscles were isolated from 25 cats with RV pressure overload hypertrophy induced by pulmonary artery banding (PAB) for 4 weeks and 25 control cats. Contractile state was measured using physiologically sequenced contractions before and 90 min after treatment with 10(-5) mol/liter colchicine. RESULTS: The PAB significantly increased RV systolic pressure and the RV weight/body weight ratio in PAB; it significantly decreased developed tension from 59+/-3 mN/mm2 in control to 25+/-4 mN/mm2 in PAB, shortening extent from 0.21+/-0.01 muscle lengths (ML) in control to 0.12+/-0.01 ML in PAB, and shortening rate from 1.12+/-0.07 ML/s in control to 0.55+/-0.03 ML/s in PAB. Indirect immunofluorescence confocal microscopy showed that PAB muscles had a selective increase in microtubule density and that colchicine caused complete microtubule depolymerization in both control and PAB papillary muscles. Microtubule depolymerization normalized myocardial contractility in papillary muscles of PAB cats but did not alter contractility in control muscles. CONCLUSIONS: Excess microtubule density, therefore, is equally important to both cellular and to myocardial contractile dysfunction caused by chronic, severe pressure-overload cardiac hypertrophy.

  17. Endocrine regulation of airway contractility is overlooked.

    PubMed

    Bossé, Ynuk

    2014-08-01

    Asthma is a prevalent respiratory disorder triggered by a variety of inhaled environmental factors, such as allergens, viruses, and pollutants. Asthma is characterized by an elevated activation of the smooth muscle surrounding the airways, as well as a propensity of the airways to narrow excessively in response to a spasmogen (i.e. contractile agonist), a feature called airway hyperresponsiveness. The level of airway smooth muscle (ASM) activation is putatively controlled by mediators released in its vicinity. In asthma, many mediators that affect ASM contractility originate from inflammatory cells that are mobilized into the airways, such as eosinophils. However, mounting evidence indicates that mediators released by remote organs can also influence the level of activation of ASM, as well as its level of responsiveness to spasmogens and relaxant agonists. These remote mediators are transported through circulating blood to act either directly on ASM or indirectly via the nervous system by tuning the level of cholinergic activation of ASM. Indeed, mediators generated from diverse organs, including the adrenals, pancreas, adipose tissue, gonads, heart, intestines, and stomach, affect the contractility of ASM. Together, these results suggest that, apart from a paracrine mode of regulation, ASM is subjected to an endocrine mode of regulation. The results also imply that defects in organs other than the lungs can contribute to asthma symptoms and severity. In this review, I suggest that the endocrine mode of regulation of ASM contractility is overlooked. © 2014 Society for Endocrinology.

  18. Spatial differences of cellular origins and in vivo hypoxia modify contractile properties of pulmonary artery smooth muscle cells: lessons for arterial tissue engineering.

    PubMed

    Hall, S M; Soueid, A; Smith, T; Brown, R A; Haworth, S G; Mudera, V

    2007-01-01

    Tissue engineering of functional arteries is challenging. Within the pulmonary artery wall, smooth muscle cells (PASMCs) have site-specific developmental and functional phenotypes, reflecting differing contractile roles. The force generated by PASMCs isolated from the inner 25% and outer 50% of the media of intrapulmonary elastic arteries from five normal and eight chronically hypoxic (hypertensive) 14 day-old piglets was quantified in a three-dimensional (3D) collagen construct, using a culture force monitor. Outer medial PASMCs from normal piglets exerted more force (528 +/- 50 dynes) than those of hypoxic piglets (177 +/- 42 dynes; p < 0.01). Force generation by inner medial PASMCs from normal and hypoxic piglets was similar (349 +/- 35 and 239 +/- 60 dynes). In response to agonist (thromboxane) stimulation, all PASMCs from normal and hypoxic piglets contracted, but the increase in force generated by outer and inner hypoxic PASMCs (ranges 13-72 and 14-56 dynes) was less than by normal PASMCs (ranges 27-154 and 34-159 dynes, respectively; p < 0.05 for both). All hypoxic PASMCs were unresponsive to antagonist (sodium nitroprusside) stimulation, all normal PASMCs relaxed (range - 87 to - 494 dynes). Myosin heavy chain expression by both hypoxic PASMC phenotypes was less than normal (p < 0.05 for both), as was the activity of focal adhesion kinase, regulating contraction, in hypoxic inner PASMCs (p < 0.01). Chronic hypoxia resulted in the development of abnormal PASMC phenotypes, which in collagen constructs exhibited a reduction in contractile force and reactivity to agonists. Characterization of the mechanical response of spatially distinct cells and modification of their behaviour by hypoxia is critical for successful tissue engineering of major blood vessels.

  19. Optimum periodicity of repeated contractile actions applied in mass transport

    NASA Astrophysics Data System (ADS)

    Ahn, Sungsook; Lee, Sang Joon

    2015-01-01

    Dynamically repeated periodic patterns are abundant in natural and artificial systems, such as tides, heart beats, stock prices, and the like. The characteristic repeatability and periodicity are expected to be optimized in effective system-specific functions. In this study, such optimum periodicity is experimentally evaluated in terms of effective mass transport using one-valve and multi-valve systems working in contractile fluid flows. A set of nanoscale gating functions is utilized, operating in nanocomposite networks through which permeates selectively pass under characteristic contractile actions. Optimized contractile periodicity exists for effective energy impartment to flow in a one-valve system. In the sequential contractile actions for a multi-valve system, synchronization with the fluid flow is critical for effective mass transport. This study provides fundamental understanding on the various repeated periodic patterns and dynamic repeatability occurring in nature and mechanical systems, which are useful for broad applications.

  20. Diadenosine tetra- and pentaphosphates affect contractility and bioelectrical activity in the rat heart via P2 purinergic receptors.

    PubMed

    Pustovit, Ksenia B; Kuzmin, Vladislav S; Abramochkin, Denis V

    2016-03-01

    Diadenosine polyphosphates (Ap(n)As) are endogenously produced molecules which have been identified in various tissues of mammalian organism, including myocardium. Ap(n)As contribute to the blood clotting and are also widely accepted as regulators of blood vascular tone. Physiological role of Ap(n)As in cardiac muscle has not been completely elucidated. The present study aimed to investigate the effects of diadenosine tetra- (Ap4A) and penta- (Ap5A) polyphosphates on contractile function and action potential (AP) waveform in rat supraventricular and ventricular myocardium. We have also demonstrated the effects of A4pA and Ap5A in myocardial sleeves of pulmonary veins (PVs), which play a crucial role in genesis of atrial fibrillation. APs were recorded with glass microelectrodes in multicellular myocardial preparations. Contractile activity was measured in isolated Langendorff-perfused rat hearts. Both Ap4A and Ap5A significantly reduced contractility of isolated Langendorff-perfused heart and produced significant reduction of AP duration in left and right auricle, interatrial septum, and especially in right ventricular wall myocardium. Ap(n)As also shortened APs in rat pulmonary veins and therefore may be considered as potential proarrhythmic factors. Cardiotropic effects of Ap4A and Ap5A were strongly antagonized by selective blockers of P2 purine receptors suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), while P1 blocker DPCPX was not effective. We conclude that Ap(n)As may be considered as new class of endogenous cardioinhibitory compounds. P2 purine receptors play the central role in mediation of Ap4A and Ap5A inhibitory effects on electrical and contractile activity in different regions of the rat heart.

  1. Anaerobic Ammonium-Oxidizing Bacteria: Unique Microorganisms with Exceptional Properties

    PubMed Central

    Jetten, Mike S. M.

    2012-01-01

    Summary: Anaerobic ammonium-oxidizing (anammox) bacteria defy many microbiological concepts and share numerous properties with both eukaryotes and archaea. Among their most intriguing characteristics are their compartmentalized cell plan and archaeon-like cell wall. Here we review our current knowledge about anammox cell biology. The anammox cell is divided into three separate compartments by bilayer membranes. The anammox cell consists of (from outside to inside) the cell wall, paryphoplasm, riboplasm, and anammoxosome. Not much is known about the composition or function of both the anammox cell wall and the paryphoplasm compartment. The cell wall is proposed to be proteinaceous and to lack both peptidoglycan and an outer membrane typical of Gram-negative bacteria. The function of the paryphoplasm is unknown, but it contains the cell division ring. The riboplasm resembles the standard cytoplasmic compartment of other bacteria; it contains ribosomes and the nucleoid. The anammoxosome occupies most of the cell volume and is a so-called “prokaryotic organelle” analogous to the eukaryotic mitochondrion. This is the site where the anammox reaction takes place, coupled over the curved anammoxosome membrane, possibly giving rise to a proton motive force and subsequent ATP synthesis. With these unique properties, anammox bacteria are food for thought concerning the early evolution of the domains Bacteria, Archaea, and Eukarya. PMID:22933561

  2. Measurement of microdosimetric spectra with a wall-less tissue-equivalent proportional counter for a 290 MeV/u 12C beam.

    PubMed

    Tsuda, Shuichi; Sato, Tatsuhiko; Takahashi, Fumiaki; Satoh, Daiki; Endo, Akira; Sasaki, Shinichi; Namito, Yoshihito; Iwase, Hiroshi; Ban, Shuichi; Takada, Masashi

    2010-09-07

    The frequency distribution of the lineal energy, y, of a 290 MeV/u carbon beam was measured to obtain the dose-weighted mean of y and compare it with the linear energy transfer (LET). In the experiment, a wall-less tissue-equivalent proportional counter (TEPC) in a cylindrical volume with a simulated diameter of 0.72 microm was used. The measured frequency distribution of y as well as its dose-mean value agrees within 10% uncertainty with the corresponding data from microdosimetric calculations using the PHITS code. The ratio of the measured dose-mean lineal energy to the LET of the 290 MeV/u carbon beam is 0.73, which is much smaller than the corresponding data obtained by a wall TEPC. This result demonstrates that a wall-less TEPC is necessary to precisely measure the dose-mean of y for energetic heavy ion beams.

  3. Do wheelchairs spread pathogenic bacteria within hospital walls?

    PubMed

    Peretz, Avi; Koiefman, Anna; Dinisman, Eleonora; Brodsky, Diana; Labay, Kozitta

    2014-02-01

    Transmission of nosocomial pathogens has been linked to transient colonization of health care workers, medical devices and other constituents of patients' environment. In this paper we present our findings concerning the presence of pathogenic bacteria on wheelchairs, and the possibility that wheelchairs constitute a reservoir of these bacteria and a means of spreading them. In this work we examined four wheelchairs, each from a different location: the internal medicine ward, the emergency department, the general surgery ward and wheelchair stockpile of the transportation unit of the hospital. The samples were collected and cultured on different media. Bacterial identification and antimicrobial sensitivity testing were carried out using accepted practices in the microbiology laboratory. We found that wheelchairs are contaminated with several pathogenic bacteria, among them antibiotic-resistant strains such as MRSA, Pseudomonas aeruginosa, Acinetobacter baumanni etc. Since there is no specific guideline protocol that deals with disinfection and cleaning frequency of wheelchairs in hospitals, we suggest each hospital to write one.

  4. Effects of the Tibetan herbal formula Padma Lax on visceral nociception and contractility of longitudinal smooth muscle in a rat model.

    PubMed

    Gschossmann, J M; Krayer, M; Flogerzi, B; Balsiger, B M

    2010-09-01

    The high prevalence of functional bowel disorders among the general population contrasts with the limited number of pharmacological treatment options for this condition. This has led to an interest for alternative therapeutic approaches. Padma Lax is an herbal laxative on the basis of Tibetan formulas. Our aim is to examine the effect of Padma Lax on visceral nociception in vivo and (B) on contractile activity of longitudinal smooth muscle of the lower gut in vitro and ex vivo. (A) Visceral sensory function in response to colorectal distension was assessed by abdominal wall electromyography in male Wistar rats pretreated with Padma Lax. (B) Effects of Padma Lax on contractility of gut smooth muscles were studied both in vitro with superfusion of the agent and ex vivo following oral administration of the preparation. Activities were measured as area under the curve. (A) For visceral sensitivity, no differences were observed between the Padma Lax and the control group. (B) Proximal colon muscle strips of the Padma Lax pretreated group showed significantly lower spontaneous contractility ex vivo than controls. Cholinergic procontractile stimulation was reduced in Padma Lax pretreated group and in colon strips of naive rats when Padma Lax was superfused in vitro (all P < 0.05). Cholinergic mechanisms appear to be important in the modulation of rat proximal colon contractility of orally and directly applied Padma Lax. These findings help elucidate a potential mechanism of action of this herbal remedy which has undergone clinical testing in patients with constipation predominant irritable bowel syndrome.

  5. A mathematical model for expected time to extinction of pathogenic bacteria through antibiotic

    NASA Astrophysics Data System (ADS)

    Ghosh, M. K.; Nandi, S.; Roy, P. K.

    2016-04-01

    Application of antibiotics in human system to prevent bacterial diseases like Gastritis, Ulcers, Meningitis, Pneumonia and Gonorrhea are indispensable. Antibiotics saved innumerable lives and continue to be a strong support for therapeutic application against pathogenic bacteria. In human system, bacterial diseases occur when pathogenic bacteria gets into the body and begin to reproduce and crowd out healthy bacteria. In this process, immature bacteria releases enzyme which is essential for bacterial cell-wall biosynthesis. After complete formation of cell wall, immature bacteria are converted to mature or virulent bacteria which are harmful to us during bacterial infections. Use of antibiotics as drug inhibits the bacterial cell wall formation. After application of antibiotics within body, the released bacterial enzyme binds with antibiotic molecule instead of its functional site during the cell wall synthesis in a competitive inhibition approach. As a consequence, the bacterial cell-wall formation as well as maturation process of pathogenic bacteria is halted and the disease is cured with lysis of bacterial cells. With this idea, a mathematical model has been developed in the present research investigation to review the inhibition of biosynthesis of bacterial cell wall by the application of antibiotics as drug in the light of enzyme kinetics. This approach helps to estimate the expected time to extinction of the pathogenic bacteria. Our mathematical approach based on the enzyme kinetic model for finding out expected time to extinction contributes favorable results for understanding of disease dynamics. Analytical and numerical results based on simulated findings validate our mathematical model.

  6. Contractile function and motor unit firing rates of the human hamstrings.

    PubMed

    Kirk, Eric A; Rice, Charles L

    2017-01-01

    Neuromuscular properties of the lower limb in health, aging, and disease are well described for major lower limb muscles comprising the quadriceps, triceps surae, and dorsiflexors, with the notable exception of the posterior thigh (hamstrings). The purpose of this study was to further characterize major muscles of the lower limb by comprehensively exploring contractile properties in relation to spinal motor neuron output expressed as motor unit firing rates (MUFRs) in the hamstrings of 11 (26.5 ± 3.8) young men. Maximal isometric voluntary contraction (MVC), voluntary activation, stimulated contractile properties including a force-frequency relationship, and MUFRs from submaximal to maximal voluntary contractile intensities were assessed in the hamstrings. Strength and MUFRs were assessed at two presumably different muscle lengths by varying the knee joint angles (90° and 160°). Knee flexion MVCs were 60-70% greater in the extended position (160°). The frequency required to elicit 50% of maximum tetanic torque was 16-17 Hz. Mean MUFRs at 25-50% MVC were 9-31% less in the biceps femoris compared with the semimembranosus-semitendinosus group. Knee joint angle (muscle length) influenced MUFRs such that mean MUFRs were greater in the shortened (90°) position at 50% and 100% MVC. Compared with previous reports, mean maximal MUFRs in the hamstrings are greater than those in the quadriceps and triceps surae and somewhat less than those in the tibialis anterior. Mean maximal MUFRs in the hamstrings are influenced by changes in knee joint angle, with lower firing rates in the biceps femoris compared with the semimembranosus-semitendinosus muscle group. We studied motor unit firing rates (MUFRs) at various voluntary contraction intensities in the hamstrings, one of the only major lower limb muscles to have MUFRs affected by muscle length changes. Within the hamstrings muscle-specific differences have greater impact on MUFRs than length changes, with the biceps femoris

  7. Ex Vivo Assessment of Contractility, Fatigability and Alternans in Isolated Skeletal Muscles

    PubMed Central

    Park, Ki Ho; Brotto, Leticia; Lehoang, Oanh; Brotto, Marco; Ma, Jianjie; Zhao, Xiaoli

    2012-01-01

    Described here is a method to measure contractility of isolated skeletal muscles. Parameters such as muscle force, muscle power, contractile kinetics, fatigability, and recovery after fatigue can be obtained to assess specific aspects of the excitation-contraction coupling (ECC) process such as excitability, contractile machinery and Ca2+ handling ability. This method removes the nerve and blood supply and focuses on the isolated skeletal muscle itself. We routinely use this method to identify genetic components that alter the contractile property of skeletal muscle though modulating Ca2+ signaling pathways. Here, we describe a newly identified skeletal muscle phenotype, i.e., mechanic alternans, as an example of the various and rich information that can be obtained using the in vitro muscle contractility assay. Combination of this assay with single cell assays, genetic approaches and biochemistry assays can provide important insights into the mechanisms of ECC in skeletal muscle. PMID:23149471

  8. SEM study of the effects of bacteria and yeasts on wood decay by brown and white-rot fungi. [Enterobacter, Cryptococcus Pichia, and Saccharomyces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchette, R.A.; Shaw, C.G.; Cohen, A.L.

    The scanning electron microscope was used to 1) examine the associations among microorganisms during wood decay and 2) observe the effect of these organisms on degradation of cell wall components. Bacteria (Enterobacter) and yeasts (Cryptococcus Pichia, and Saccharomyces) were found to have a mutualistic association with a white-rot fungus during decay of coniferous wood. Coriolus (Polyporus versicolar) degraded cell wall components in a typical ''erosion trough'' manner (i.e., by lysing zones around fungal hyphae). Bacteria and yeasts were seen only in these lysed zones. Typical gross decay patterns caused by the white-rot fungus were unaltered by bacteria and yeasts. Themore » SEM study suggests that the decay process is enhanced when these organisms are associated. In contrast, the same bacteria and yeasts were inhibitory when combined with a brown-rot fungus.« less

  9. Prostacyclin primes pregnant human myometrium for an enhanced contractile response in parturition

    PubMed Central

    Fetalvero, Kristina M.; Zhang, Peisheng; Shyu, Maureen; Young, Benjamin T.; Hwa, John; Young, Roger C.; Martin, Kathleen A.

    2008-01-01

    An incomplete understanding of the molecular events that regulate the myometrial transition from the quiescent pregnant state to the active contractile state during labor has hindered the development of improved therapies for preterm labor. During myometrial activation, proteins that prime the smooth muscle for contraction are upregulated, allowing maximal responsiveness to contractile agonists and thereby producing strong phasic contractions. Upregulation of one such protein, COX-2, generates PGs that induce contractions. Intriguingly, the predominant myometrial PG produced just prior to labor is prostacyclin (PGI2), a smooth muscle relaxant. However, here we have shown that activation of PGI2 receptor (IP) upregulated the expression of several contractile proteins and the gap junction protein connexin 43 through cAMP/PKA signaling in human myometrial tissue in organ and cell culture. Functionally, these IP-dependent changes in gene expression promoted an enhanced contractile response to oxytocin in pregnant human myometrial tissue strips, which was inhibited by the IP antagonist RO3244794. Furthermore, contractile protein induction was dependent on the concentration and time of exposure to the PGI2 analog iloprost and was blocked by both RO3244794 and PKA knockdown. We therefore propose that PGI2-mediated upregulation of contractile proteins and connexin 43 is a critical step in myometrial activation, allowing for a maximal contractile response. Our observations have important implications regarding activation of the myometrium prior to the onset of labor. PMID:19033666

  10. Blood pressure and the contractility of a human leg muscle.

    PubMed

    Luu, Billy L; Fitzpatrick, Richard C

    2013-11-01

    These studies investigate the relationships between perfusion pressure, force output and pressor responses for the contracting human tibialis anterior muscle. Eight healthy adults were studied. Changing the height of tibialis anterior relative to the heart was used to control local perfusion pressure. Electrically stimulated tetanic force output was highly sensitive to physiological variations in perfusion pressure showing a proportionate change in force output of 6.5% per 10 mmHg. This perfusion-dependent change in contractility begins within seconds and is reversible with a 53 s time constant, demonstrating a steady-state equilibrium between contractility and perfusion pressure. These stimulated contractions did not produce significant cardiovascular responses, indicating that the muscle pressor response does not play a major role in cardiovascular regulation at these workloads. Voluntary contractions at forces that would require constant motor drive if perfusion pressure had remained constant generated a central pressor response when perfusion pressure was lowered. This is consistent with a larger cortical drive being required to compensate for the lost contractility with lower perfusion pressure. The relationship between contractility and perfusion for this large postural muscle was not different from that of a small hand muscle (adductor pollicis) and it responded similarly to passive peripheral and active central changes in arterial pressure, but extended over a wider operating range of pressures. If we consider that, in a goal-oriented motor task, muscle contractility determines central motor output and the central pressor response, these results indicate that muscle would fatigue twice as fast without a pressor response. From its extent, timing and reversibility we propose a testable hypothesis that this change in contractility arises through contraction- and perfusion-dependent changes in interstitial K(+) concentration.

  11. Effects of Hindlimb Unweighting on Arterial Contractile Responses in Mice

    NASA Technical Reports Server (NTRS)

    Ma, Jia; Ren, Xin-Ling; Purdy, Ralph E.

    2003-01-01

    The aim of this work was to determine if hindlimb unweighting in mice alters arterial contractile responses. Sixteen male C57B/6 mice and 16 male Chinese Kunming mice were divided into control and 3 weeks hindlimb unweighting groups, respectively. Using isolated arterial rings from different arteries of mouse, effects of 3 weeks hindlimb unweighting on arterial contractile responsiveness were examined in vitro. The results showed that, in arterial rings from both C57B/6 and Chinese Kunming mice, maximum isometric contractile tensions evoked by either KCl or phenylephrine were significantly lower in abdominal aortic, mesenteric arterial and femoral arterial rings from hindlimb unweighting, compared to control mice. However, the maximal contractile responses of common carotid rings to KCl and PE were not significantly different between control and hindlimb unweighting groups. The sensitivity (EC(sub 50)) of all arteries to KCl or PE showed no significant differences between control and hindlimb unweighting mice. These data indicated that 3 weeks hindlimb unweighting results in a reduced capacity of the arterial smooth muscle of the hindquarter to develop tension. In addition, the alterations in arterial contractile responses caused by hindlimb unweighting in mice are similar as those in rats. Our work suggested that hindlimb unweighting mouse model may be used as a model for the study of postflight cardiovascular deconditioning.

  12. Changes in contractile properties of muscles receiving repeat injections of botulinum toxin (Botox).

    PubMed

    Fortuna, Rafael; Vaz, Marco Aurélio; Youssef, Aliaa Rehan; Longino, David; Herzog, Walter

    2011-01-04

    Botulinum toxin type A (BTX-A) is a frequently used therapeutic tool to denervate muscles in the treatment of neuromuscular disorders. Although considered safe by the US Food and Drug Administration, BTX-A can produce adverse effects in target and non-target muscles. With an increased use of BTX-A for neuromuscular disorders, the effects of repeat injections of BTX-A on strength, muscle mass and structure need to be known. Therefore, the purpose of this study was to investigate the changes in strength, muscle mass and contractile material in New Zealand White (NZW) rabbits. Twenty NZW rabbits were divided into 4 groups: control and 1, 3 and 6 months of unilateral, repeat injections of BTX-A into the quadriceps femoris. Outcome measures included knee extensor torque, muscle mass and the percentage of contractile material in the quadriceps muscles of the target and non-injected contralateral hindlimbs. Strength in the injected muscles was reduced by 88%, 89% and 95% in the 1, 3 and 6 months BTX-A injected hindlimbs compared to controls. Muscle mass was reduced by 50%, 42% and 31% for the vastus lateralis (VL), rectus femoris (RF) and vastus medialis (VM), respectively, at 1 month, by 68%, 51% and 50% at 3 months and by 76%, 44% and 13% at 6 months. The percentage of contractile material was reduced for the 3 and 6 months animals to 80-64%, respectively, and was replaced primarily by fat. Similar, but less pronounced results were also observed for the quadriceps muscles of the contralateral hindlimbs, suggesting that repeat BTX-A injections cause muscle atrophy and loss of contractile tissue in target muscles and also in non-target muscles that are far removed from the injection site. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. The Influence of Soft Layer Electrokinetics on Electroporation of Gram-positive Bacteria

    NASA Astrophysics Data System (ADS)

    Dingari, Naga Neehar; Moran, Jeffrey L.; Garcia, Paulo A.; Buie, Cullen R.

    2016-11-01

    Bacterial electroporation involves subjecting cells to intense ( 10 kV/cm) electric pulses, to open pores on the cell membrane for intracellular delivery of exogenous molecules. Its high efficiency in genetic transformation makes it an attractive tool for synthetic biology. While mammalian cell electroporation has received extensive theoretical and experimental investigation, bacterial electroporation has received markedly less attention. In this work, we develop a theoretical model of electroporation for gram-positive bacteria, taking into account the effect of the bacterial cell envelope on the cell's response to an electroporation pulse. We model the influence of the cell wall charge on the electrokinetic transport (and hence the pore properties) around the bacterial cell envelope using the Poisson-Nernst-Planck equations. Further, we account for the influence of the cell wall's mechanical elasticity on the pore radius evolution during electroporation, which is typically neglected in mammalian cell electroporation. This yields valuable information about favorable conditions for pore formation and will enable designing optimal platforms for bacteria electroporation.

  14. Comparison of contractile and extensile pneumatic artificial muscles

    NASA Astrophysics Data System (ADS)

    Pillsbury, Thomas E.; Wereley, Norman M.; Guan, Qinghua

    2017-09-01

    Pneumatic artificial muscles (PAMs) are used in robotic and prosthetic applications due to their high power to weight ratio, controllable compliance, and simple design. Contractile PAMs are typically used in traditional hard robotics in place of heavy electric motors. As the field of soft robotics grows, extensile PAMs are beginning to have increased usage. This work experimentally tests, models, and compares contractile and extensile PAMs to demonstrate the advantages and disadvantages of each type of PAM and applications for which they are best suited.

  15. LipidII: Just Another Brick in the Wall?

    PubMed Central

    Scheffers, Dirk-Jan; Tol, Menno B.

    2015-01-01

    Nearly all bacteria contain a peptidoglycan cell wall. The peptidoglycan precursor molecule is LipidII, containing the basic peptidoglycan building block attached to a lipid. Although the suitability of LipidII as an antibacterial target has long been recognized, progress on elucidating the role(s) of LipidII in bacterial cell biology has been slow. The focus of this review is on exciting new developments, both with respect to antibacterials targeting LipidII as well as the emerging role of LipidII in organizing the membrane and cell wall synthesis. It appears that on both sides of the membrane, LipidII plays crucial roles in organizing cytoskeletal proteins and peptidoglycan synthesis machineries. Finally, the recent discovery of no less than three different categories of LipidII flippases will be discussed. PMID:26679002

  16. An evaluation of a partial-walled laminar-flow operating room

    PubMed Central

    Whyte, W.; Shaw, B. H.; Freeman, M. A. R.

    1974-01-01

    This paper contains an assessment of the physical performance of a permanently installed down-flow laminar-flow operating room at the London Hospital. This system employs partial walls extending 0·76 m (2·5 ft.) from the ceiling, from which the air is allowed to issue freely downwards at an initial velocity of about 0·4 m./sec. (80 ft./min.). The usefulness of the partial wall, as compared with a free issuing system, was demonstrated and a comparison made with a fully walled system. It was shown that a fully walled system would be more efficient than a partial-walled system as there was a loss in air velocity of about 20-25% with the partial wall due to the nonconstrained flow of air. This loss would be reflected in an increase in airborne bacterial count and would mean that an increase of 20-25% in the air volume would be required to obtain the same conditions as with the full-walled system. Entrainment of contaminated air was demonstrated but it was concluded that this would be of little consequence in the centre of the clean area, i.e. at the wound site. Sterile instruments, etc., however, on the outside of the clean area, would be more liable to airborne contamination. Bacterial and dust airborne counts taken during total hip operations gave a very low average figure (0·3 bacteria/ft.3 or 10·5/m.3) from which we conclude that the system was about 30 times cleaner in terms of airborne bacteria than a well ventilated conventional operating-room. We concluded that although the partial-walled system was slightly less efficacious than a normal full-walled system, the freedom of movement and of communication for the operating team could in some circumstances outweigh this disadvantage. Sound levels were such that normal conversation was possible with little or no awareness of background noise. ImagesFig. 2Fig. 3Plate 2Plate 2Plate 3Plate 3Plate 1 PMID:4529595

  17. Blood pressure and the contractility of a human leg muscle

    PubMed Central

    Luu, Billy L; Fitzpatrick, Richard C

    2013-01-01

    These studies investigate the relationships between perfusion pressure, force output and pressor responses for the contracting human tibialis anterior muscle. Eight healthy adults were studied. Changing the height of tibialis anterior relative to the heart was used to control local perfusion pressure. Electrically stimulated tetanic force output was highly sensitive to physiological variations in perfusion pressure showing a proportionate change in force output of 6.5% per 10 mmHg. This perfusion-dependent change in contractility begins within seconds and is reversible with a 53 s time constant, demonstrating a steady-state equilibrium between contractility and perfusion pressure. These stimulated contractions did not produce significant cardiovascular responses, indicating that the muscle pressor response does not play a major role in cardiovascular regulation at these workloads. Voluntary contractions at forces that would require constant motor drive if perfusion pressure had remained constant generated a central pressor response when perfusion pressure was lowered. This is consistent with a larger cortical drive being required to compensate for the lost contractility with lower perfusion pressure. The relationship between contractility and perfusion for this large postural muscle was not different from that of a small hand muscle (adductor pollicis) and it responded similarly to passive peripheral and active central changes in arterial pressure, but extended over a wider operating range of pressures. If we consider that, in a goal-oriented motor task, muscle contractility determines central motor output and the central pressor response, these results indicate that muscle would fatigue twice as fast without a pressor response. From its extent, timing and reversibility we propose a testable hypothesis that this change in contractility arises through contraction- and perfusion-dependent changes in interstitial K+ concentration. PMID:24018946

  18. Phylogenetic diversity of bacteria associated with Paleolithic paintings and surrounding rock walls in two Spanish caves (Llonín and La Garma).

    PubMed

    Schabereiter-Gurtner, Claudia; Saiz-Jimenez, Cesareo; Piñar, Guadalupe; Lubitz, Werner; Rölleke, Sabine

    2004-02-01

    Bacterial diversity in caves is still rarely investigated using culture-independent techniques. In the present study, bacterial communities on Paleolithic paintings and surrounding rock walls in two Spanish caves (Llonín and La Garma) were analyzed, using 16S rDNA-based denaturing gradient gel electrophoresis community fingerprinting and phylogenetic analyses without prior cultivation. Results revealed complex bacterial communities consisting of a high number of novel 16S rDNA sequence types and indicated a high biodiversity of lithotrophic and heterotrophic bacteria. Identified bacteria were related to already cultured bacteria (39 clones) and to environmental 16S rDNA clones (46 clones). The nearest phylogenetic relatives were members of the Proteobacteria (41.1%), of the Acidobacterium division (16.5%), Actinobacteria (20%), Firmicutes (10.6%), of the Cytophaga/Flexibacter/Bacteroides division (5.9%), Nitrospira group (3.5%), green non-sulfur bacteria (1.2%), and candidate WS3 division (1.2%). Thirteen of these clones were most closely related to those obtained from the previous studies on Tito Bustillo Cave. The comparison of the present data with the data obtained previously from Altamira and Tito Bustillo Caves revealed similarities in the bacterial community components, especially in the high abundance of the Acidobacteria and Rhizobiaceae, and in the presence of bacteria related to ammonia and sulfur oxidizers.

  19. Inhibition of isolated human myometrium contractility by minoxidil and reversal by glibenclamide.

    PubMed

    Prabhakaran, S S; Dhanasekar, K R; Thomas, E; Jose, R; Peedicayil, J; Samuel, P

    2010-03-01

    This study investigated the ability of the antihypertensive drug minoxidil to inhibit potassium chloride (KCl)-induced contractility of the isolated human myometrium. Twelve strips of myometrium obtained from 12 patients who underwent hysterectomy were triggered to contract with 55 mM KCl before and after incubation with 3 concentrations (1, 3 and 10 microM) of minoxidil. The percent inhibition by minoxidil on the extent of contraction, and the area under the contractile curve of KCl-induced contraction of the myometrial strips was determined. Furthermore, the effect of 10 microM glibenclamide on the inhibition generated by 3 microM minoxidil on KCl-induced contractility was studied. It was found that minoxidil produced a concentration-dependent inhibition of KCl-induced contractility of the myometrium and that glibenclamide reversed this inhibitory effect. These results suggest that the inhibitory effect of minoxidil on isolated human myometrium contractility may prove useful in clinical conditions requiring relaxation of the myometrium. 2010 Prous Science, S.A.U. or its licensors. All rights reserved.

  20. Identification of Contractile Vacuole Proteins in Trypanosoma cruzi

    PubMed Central

    Park, Miyoung; Martins, Vicente P.; Atwood, James; Moles, Kristen; Collins, Dalis; Rohloff, Peter; Tarleton, Rick; Moreno, Silvia N. J.; Orlando, Ron; Docampo, Roberto

    2011-01-01

    Contractile vacuole complexes are critical components of cell volume regulation and have been shown to have other functional roles in several free-living protists. However, very little is known about the functions of the contractile vacuole complex of the parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, other than a role in osmoregulation. Identification of the protein composition of these organelles is important for understanding their physiological roles. We applied a combined proteomic and bioinfomatic approach to identify proteins localized to the contractile vacuole. Proteomic analysis of a T. cruzi fraction enriched for contractile vacuoles and analyzed by one-dimensional gel electrophoresis and LC-MS/MS resulted in the addition of 109 newly detected proteins to the group of expressed proteins of epimastigotes. We also identified different peptides that map to at least 39 members of the dispersed gene family 1 (DGF-1) providing evidence that many members of this family are simultaneously expressed in epimastigotes. Of the proteins present in the fraction we selected several homologues with known localizations in contractile vacuoles of other organisms and others that we expected to be present in these vacuoles on the basis of their potential roles. We determined the localization of each by expression as GFP-fusion proteins or with specific antibodies. Six of these putative proteins (Rab11, Rab32, AP180, ATPase subunit B, VAMP1, and phosphate transporter) predominantly localized to the vacuole bladder. TcSNARE2.1, TcSNARE2.2, and calmodulin localized to the spongiome. Calmodulin was also cytosolic. Our results demonstrate the utility of combining subcellular fractionation, proteomic analysis, and bioinformatic approaches for localization of organellar proteins that are difficult to detect with whole cell methodologies. The CV localization of the proteins investigated revealed potential novel roles of these organelles in phosphate metabolism

  1. Patterns of cell division, DNA base compositions, and fine structures of some radiation-resistant vegetative bacteria found in food

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, S.W.; Maxcy, R.B.

    1979-01-01

    Representative highly radiation-resistant Moraxella-Acinetobacter (M-A), Pseudomonas radiora, Micrococcus radiodurans, and Micrococcus radiophilus exhibited a wide variety of division systems and cell wall characteristics. However, the more resistant M-A possessed unusually thick cell walls, indicating a possible role of the cell wall in radiation resistance in the M-A. Thick septation was present in most of the bacteria studied, but was absent in P. radiora, thus excluding this as a necessity for high resistance. Reliable determination of the number of division planes of the M-A for use as a taxonomic criterion was achieved by the direct observation of dividing cells. The highlymore » resistant M-A were found to divide in multiple planes and had base compositions of 54.0 to 57.5%, unlike typical Moraxella and/or Acinetobacter species. The taxonomic position of most highly resistant bacteria remains unclear.« less

  2. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria

    PubMed Central

    Mistou, Michel-Yves; Sutcliffe, Iain C.; van Sorge, Nina M.

    2016-01-01

    The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. PMID:26975195

  3. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria.

    PubMed

    Mistou, Michel-Yves; Sutcliffe, Iain C; van Sorge, Nina M

    2016-07-01

    The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. © FEMS 2016.

  4. Risk factors for gallbladder contractility after cholecystolithotomy in elderly high-risk surgical patients

    PubMed Central

    Wang, Tao; Luo, Hao; Yan, Hong-tao; Zhang, Guo-hu; Liu, Wei-hui; Tang, Li-jun

    2017-01-01

    Objective Cholecystolithiasis is a common disease in the elderly patient. The routine therapy is open or laparoscopic cholecystectomy. In the previous study, we designed a minimally invasive cholecystolithotomy based on percutaneous cholecystostomy combined with a choledochoscope (PCCLC) under local anesthesia. Methods To investigate the effect of PCCLC on the gallbladder contractility function, PCCLC and laparoscope combined with a choledochoscope were compared in this study. Results The preoperational age and American Society of Anesthesiologists (ASA) scores, as well as postoperational lithotrity rate and common biliary duct stone rate in the PCCLC group, were significantly higher than the choledochoscope group. However, the pre- and postoperational gallbladder ejection fraction was not significantly different. Univariable and multivariable logistic regression analyses indicated that the preoperational thickness of gallbladder wall (odds ratio [OR]: 0.540; 95% confidence interval [CI]: 0.317–0.920; P=0.023) and lithotrity (OR: 0.150; 95% CI: 0.023–0.965; P=0.046) were risk factors for postoperational gallbladder ejection fraction. The area under receiver operating characteristics curve was 0.714 (P=0.016; 95% CI: 0.553–0.854). Conclusion PCCLC strategy should be carried out cautiously. First, restricted by the diameter of the drainage tube, the PCCLC should be used only for small gallstones in high-risk surgical patients. Second, the usage of lithotrity should be strictly limited to avoid undermining the gallbladder contractility and increasing the risk of secondary common bile duct stones. PMID:28138229

  5. Smooth muscle architecture within cell-dense vascular tissues influences functional contractility.

    PubMed

    Win, Zaw; Vrla, Geoffrey D; Steucke, Kerianne E; Sevcik, Emily N; Hald, Eric S; Alford, Patrick W

    2014-12-01

    The role of vascular smooth muscle architecture in the function of healthy and dysfunctional vessels is poorly understood. We aimed at determining the relationship between vascular smooth muscle architecture and contractile output using engineered vascular tissues. We utilized microcontact printing and a microfluidic cell seeding technique to provide three different initial seeding conditions, with the aim of influencing the cellular architecture within the tissue. Cells seeded in each condition formed confluent and aligned tissues but within the tissues, the cellular architecture varied. Tissues with a more elongated cellular architecture had significantly elevated basal stress and produced more contractile stress in response to endothelin-1 stimulation. We also found a correlation between the contractile phenotype marker expression and the cellular architecture, contrary to our previous findings in non-confluent tissues. Taken with previous results, these data suggest that within cell-dense vascular tissues, smooth muscle contractility is strongly influenced by cell and tissue architectures.

  6. Nanoscale architecture of the Schizosaccharomyces pombe contractile ring.

    PubMed

    McDonald, Nathan A; Lind, Abigail L; Smith, Sarah E; Li, Rong; Gould, Kathleen L

    2017-09-15

    The contractile ring is a complex molecular apparatus which physically divides many eukaryotic cells. Despite knowledge of its protein composition, the molecular architecture of the ring is not known. Here we have applied super-resolution microscopy and FRET to determine the nanoscale spatial organization of Schizosaccharomyces pombe contractile ring components relative to the plasma membrane. Similar to other membrane-tethered actin structures, we find proteins localize in specific layers relative to the membrane. The most membrane-proximal layer (0-80 nm) is composed of membrane-binding scaffolds, formin, and the tail of the essential myosin-II. An intermediate layer (80-160 nm) consists of a network of cytokinesis accessory proteins as well as multiple signaling components which influence cell division. Farthest from the membrane (160-350 nm) we find F-actin, the motor domains of myosins, and a major F-actin crosslinker. Circumferentially within the ring, multiple proteins proximal to the membrane form clusters of different sizes, while components farther from the membrane are uniformly distributed. This comprehensive organizational map provides a framework for understanding contractile ring function.

  7. Nanoscale architecture of the Schizosaccharomyces pombe contractile ring

    PubMed Central

    McDonald, Nathan A; Lind, Abigail L; Smith, Sarah E; Li, Rong

    2017-01-01

    The contractile ring is a complex molecular apparatus which physically divides many eukaryotic cells. Despite knowledge of its protein composition, the molecular architecture of the ring is not known. Here we have applied super-resolution microscopy and FRET to determine the nanoscale spatial organization of Schizosaccharomyces pombe contractile ring components relative to the plasma membrane. Similar to other membrane-tethered actin structures, we find proteins localize in specific layers relative to the membrane. The most membrane-proximal layer (0–80 nm) is composed of membrane-binding scaffolds, formin, and the tail of the essential myosin-II. An intermediate layer (80–160 nm) consists of a network of cytokinesis accessory proteins as well as multiple signaling components which influence cell division. Farthest from the membrane (160–350 nm) we find F-actin, the motor domains of myosins, and a major F-actin crosslinker. Circumferentially within the ring, multiple proteins proximal to the membrane form clusters of different sizes, while components farther from the membrane are uniformly distributed. This comprehensive organizational map provides a framework for understanding contractile ring function. PMID:28914606

  8. Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly.

    PubMed

    Tojkander, Sari; Gateva, Gergana; Husain, Amjad; Krishnan, Ramaswamy; Lappalainen, Pekka

    2015-12-10

    Adhesion and morphogenesis of many non-muscle cells are guided by contractile actomyosin bundles called ventral stress fibers. While it is well established that stress fibers are mechanosensitive structures, physical mechanisms by which they assemble, align, and mature have remained elusive. Here we show that arcs, which serve as precursors for ventral stress fibers, undergo lateral fusion during their centripetal flow to form thick actomyosin bundles that apply tension to focal adhesions at their ends. Importantly, this myosin II-derived force inhibits vectorial actin polymerization at focal adhesions through AMPK-mediated phosphorylation of VASP, and thereby halts stress fiber elongation and ensures their proper contractility. Stress fiber maturation additionally requires ADF/cofilin-mediated disassembly of non-contractile stress fibers, whereas contractile fibers are protected from severing. Taken together, these data reveal that myosin-derived tension precisely controls both actin filament assembly and disassembly to ensure generation and proper alignment of contractile stress fibers in migrating cells.

  9. Differential staining of bacteria: acid fast stain.

    PubMed

    Reynolds, Jackie; Moyes, Rita B; Breakwell, Donald P

    2009-11-01

    Acid-fastness is an uncommon characteristic shared by the genera Mycobacterium (Section 10A) and Nocardia. Because of this feature, this stain is extremely helpful in identification of these bacteria. Although Gram positive, acid-fast bacteria do not take the crystal violet into the wall well, appearing very light purple rather than the deep purple of normal Gram-positive bacteria. (c) 2009 by John Wiley & Sons, Inc.

  10. Protective effects of anisodamine on cigarette smoke extract-induced airway smooth muscle cell proliferation and tracheal contractility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Guang-Ni; Yang, Kai; Xu, Zu-Peng

    2012-07-01

    Anisodamine, an antagonist of muscarinic acetylcholine receptors (mAChRs), has been used therapeutically to improve smooth muscle function, including microvascular, intestinal and airway spasms. Our previous studies have revealed that airway hyper-reactivity could be prevented by anisodamine. However, whether anisodamine prevents smoking-induced airway smooth muscle (ASM) cell proliferation remained unclear. In this study, a primary culture of rat ASM cells was used to evaluate an ASM phenotype through the ability of the cells to proliferate and express contractile proteins in response to cigarette smoke extract (CSE) and intervention of anisodamine. Our results showed that CSE resulted in an increase in cyclinmore » D1 expression concomitant with the G0/G1-to-S phase transition, and high expression of M2 and M3. Functional studies showed that tracheal hyper-contractility accompanied contractile marker α-SMA high-expression. These changes, which occur only after CSE stimulation, were prevented and reversed by anisodamine, and CSE-induced cyclin D1 expression was significantly inhibited by anisodamine and the specific inhibitor U0126, BAY11-7082 and LY294002. Thus, we concluded that the protective and reversal effects and mechanism of anisodamine on CSE-induced events might involve, at least partially, the ERK, Akt and NF-κB signaling pathways associated with cyclin D1 via mAChRs. Our study validated that anisodamine intervention on ASM cells may contribute to anti-remodeling properties other than bronchodilation. -- Highlights: ► CSE induces tracheal cell proliferation, hyper-contractility and α-SMA expression. ► Anisodamine reverses CSE-induced tracheal hyper-contractility and cell proliferation. ► ERK, PI3K, and NF-κB pathways and cyclin D1 contribute to the reversal effect.« less

  11. Bladder smooth muscle organ culture preparation maintains the contractile phenotype

    PubMed Central

    Wang, Tanchun; Kendig, Derek M.; Chang, Shaohua; Trappanese, Danielle M.; Chacko, Samuel

    2012-01-01

    Smooth muscle cells, when subjected to culture, modulate from a contractile to a secretory phenotype. This has hampered the use of cell culture for molecular techniques to study the regulation of smooth muscle biology. The goal of this study was to develop a new organ culture model of bladder smooth muscle (BSM) that would maintain the contractile phenotype and aid in the study of BSM biology. Our results showed that strips of BSM subjected to up to 9 days of organ culture maintained their contractile phenotype, including the ability to achieve near-control levels of force with a temporal profile similar to that of noncultured tissues. The technical aspects of our organ culture preparation that were responsible, in part, for the maintenance of the contractile phenotype were a slight longitudinal stretch during culture and subjection of the strips to daily contraction-relaxation. The tissues contained viable cells throughout the cross section of the strips. There was an increase in extracellular collagenous matrix, resulting in a leftward shift in the passive length-tension relationship. There were no significant changes in the content of smooth muscle-specific α-actin, calponin, h-caldesmon, total myosin heavy chain, protein kinase G, Rho kinase-I, or the ratio of SM1 to SM2 myosin isoforms. Moreover the organ cultured tissues maintained functional voltage-gated calcium channels and large-conductance calcium-activated potassium channels. Therefore, we propose that this novel BSM organ culture model maintains the contractile phenotype and will be a valuable tool for the use in cellular/molecular biology studies of bladder myocytes. PMID:22896042

  12. Contractile function and motor unit firing rates of the human hamstrings

    PubMed Central

    Kirk, Eric A.

    2016-01-01

    Neuromuscular properties of the lower limb in health, aging, and disease are well described for major lower limb muscles comprising the quadriceps, triceps surae, and dorsiflexors, with the notable exception of the posterior thigh (hamstrings). The purpose of this study was to further characterize major muscles of the lower limb by comprehensively exploring contractile properties in relation to spinal motor neuron output expressed as motor unit firing rates (MUFRs) in the hamstrings of 11 (26.5 ± 3.8) young men. Maximal isometric voluntary contraction (MVC), voluntary activation, stimulated contractile properties including a force-frequency relationship, and MUFRs from submaximal to maximal voluntary contractile intensities were assessed in the hamstrings. Strength and MUFRs were assessed at two presumably different muscle lengths by varying the knee joint angles (90° and 160°). Knee flexion MVCs were 60–70% greater in the extended position (160°). The frequency required to elicit 50% of maximum tetanic torque was 16–17 Hz. Mean MUFRs at 25–50% MVC were 9–31% less in the biceps femoris compared with the semimembranosus-semitendinosus group. Knee joint angle (muscle length) influenced MUFRs such that mean MUFRs were greater in the shortened (90°) position at 50% and 100% MVC. Compared with previous reports, mean maximal MUFRs in the hamstrings are greater than those in the quadriceps and triceps surae and somewhat less than those in the tibialis anterior. Mean maximal MUFRs in the hamstrings are influenced by changes in knee joint angle, with lower firing rates in the biceps femoris compared with the semimembranosus-semitendinosus muscle group. NEW & NOTEWORTHY We studied motor unit firing rates (MUFRs) at various voluntary contraction intensities in the hamstrings, one of the only major lower limb muscles to have MUFRs affected by muscle length changes. Within the hamstrings muscle-specific differences have greater impact on MUFRs than length changes

  13. Slack length reduces the contractile phenotype of the Swine carotid artery.

    PubMed

    Rembold, Christopher M; Garvey, Sean M; Tejani, Ankit D

    2013-01-01

    Contraction is the primary function of adult arterial smooth muscle. However, in response to vessel injury or inflammation, arterial smooth muscle is able to phenotypically modulate from the contractile state to several 'synthetic' states characterized by proliferation, migration and/or increased cytokine secretion. We examined the effect of tissue length (L) on the phenotype of intact, isometrically held, initially contractile swine carotid artery tissues. Tissues were studied (1) without prolonged incubation at the optimal length for force generation (1.0 Lo, control), (2) with prolonged incubation for 17 h at 1.0 Lo, or (3) with prolonged incubation at slack length (0.6 Lo) for 16 h and then restoration to 1.0 Lo for 1 h. Prolonged incubation at 1.0 Lo minimally reduced the contractile force without substantially altering the mediators of contraction (crossbridge phosphorylation, shortening velocity or stimulated actin polymerization). Prolonged incubation of tissues at slack length (0.6 Lo), despite return of length to 1.0 Lo, substantially reduced contractile force, reduced crossbridge phosphorylation, nearly abolished crossbridge cycling (shortening velocity) and abolished stimulated actin polymerization. These data suggest that (1) slack length treatment significantly alters the contractile phenotype of arterial tissue, and (2) slack length treatment is a model to study acute phenotypic modulation of intact arterial smooth muscle. Copyright © 2013 S. Karger AG, Basel.

  14. Contractile markers distinguish structures of the mouse aqueous drainage tract

    PubMed Central

    Ko, MinHee K.

    2013-01-01

    Purpose Structures of the aqueous humor drainage tract are contractile, although the tract is not entirely composed of muscle. We characterized the mouse aqueous drainage tract by immunolabeling contractile markers and determined whether profiling these markers within the tract distinguished its key structures of the trabecular meshwork (TM) and ciliary muscle (CM). Methods Enucleated eyes from pigmented C57BL/6 (n=8 mice) and albino BALB/c (n=6 mice) mice were processed for cryo- and formalin-fixed paraffin-embedded sectioning. Immunofluorescence labeling was performed for the following: (a) filamentous actin (using fluorescence-conjugated phalloidin), representing a global contractile marker; (b) α-smooth muscle actin (α-SMA), caldesmon, and calponin, representing classic smooth muscle epitopes; and (c) nonmuscle myosin heavy chain, representing a nonmuscle contractile protein. Tissue labeling was identified by confocal microscopy and analyzed quantitatively. Hematoxylin and eosin staining provided structural orientation. Results A small portion of the TM faced the anterior chamber; the rest extended posteriorly alongside Schlemm’s canal (SC) within the inner sclera. Within the drainage tract, filamentous actin labeling was positive in TM and CM. α-SMA and caldesmon labeling was seen primarily along the CM, which extended from the anterior chamber angle to its posterior termination beyond the SC near the retina. Low intensity, patchy α-SMA and caldesmon labeling was seen in the TM. Myosin heavy chain immunoreactivity was primarily found in the TM and calponin was primarily observed in the CM. C57BL/6 and BALB/c comparison showed that pigment obscured fluorescence in the ciliary body. Conclusions Our strategy of profiling contractile markers distinguished mouse aqueous drainage tract structures that were otherwise indistinguishable by hematoxylin and eosin staining. The mouse TM was seen as an intervening structure between SC, a part of the conventional

  15. Relationship between shortening load, contractility, and myocardial energetics in intact dog.

    PubMed

    Dell'Italia, L J; Evanochko, W T; Blackwell, G G; Pearce, D J; Pohost, G M

    1993-06-01

    A canine model was developed to estimate left ventricular wall stress, volumes, contractility, and high-energy phosphate metabolites without the need for major surgery. A percutaneously inserted catheter-tip manometer was used to record high-fidelity left ventricular pressure while gradient echo cinemagnetic resonance (cine-MR) imaging alternated with in vivo 31P-nuclear magnetic resonance (NMR) spectroscopy during pharmacological maneuvers to increase cardiac work. Left ventricular circumferential wall stress, volumes, maximum rate of pressure development (dP/dtmax), and the ratio of phosphocreatine (PCr) to gamma-ATP (PCr/gamma-ATP) were recorded sequentially during control 1, dobutamine infusion, control 2, angiotensin infusion, and control 3 in five anesthetized, closed-chest dogs. PCr/gamma-ATP did not change significantly during controls 1-3, angiotensin, and dobutamine infusion. Left ventricular peak positive dP/dt (+dP/dtmax) increased significantly during dobutamine (3,338 +/- 831 mmHg/s, P < 0.001) but was unchanged during angiotensin (1,818 +/- 317 mmHg/s) and controls 1-3 (1,915 +/- 434 vs. 1,808 +/- 478 vs. 1,859 +/- 414 mmHg/s). However, dobutamine decreased the total systolic stress integral (area under the wall stress-time relationship) and end-diastolic and end-systolic volumes, whereas angiotensin increased these parameters compared with control conditions. The unchanged PCr/gamma-ATP is in accord with the results from other open-chest surface coil 31P-NMR experiments in the normal heart. Our assessment of left ventricular functional parameters provides new information that complements these more invasive studies in which heart rate-pressure product was measured during increases in cardiac work.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Multicellular contractility contributes to the emergence of mesothelioma nodules

    NASA Astrophysics Data System (ADS)

    Czirok, Andras

    Malignant pleural mesothelioma (MPM) nodules arise from the mesothelial lining of the pleural cavity by a poorly understood mechanism. We demonstrate that macroscopic multicellular aggregates, reminiscent of the MPM nodules found in patients, develop when MPM cell lines are cultured at high cell densities for several weeks. Surprisingly, the nodule-like aggregates do not arise by excessive local cell proliferation, but by myosin II-driven cell contractility. Contractile nodules contain prominent actin cables that can span several cells. Several features of the in vitro MPM nodule development can be explained by a computational model that assumes uniform and steady intercellular contractile forces within a monolayer of cells, and a mechanical load-dependent lifetime of cell-cell contacts. The model behaves as a self-tensioned Maxwell fluid and exhibits an instability that leads to pattern formation. Altogether, our findings suggest that inhibition of the actomyosin system may provide a hitherto not utilized therapeutic approach to affect MPM growth. NIH R01-GM102801.

  17. Calcium-responsive contractility during fertilization in sea urchin eggs.

    PubMed

    Stack, Christianna; Lucero, Amy J; Shuster, Charles B

    2006-04-01

    Fertilization triggers a reorganization of oocyte cytoskeleton, and in sea urchins, there is a dramatic increase in cortical F-actin. However, the role that myosin II plays during fertilization remains largely unexplored. Myosin II is localized to the cortical cytoskeleton both before and after fertilization and to examine myosin II contractility in living cells, Lytechinus pictus eggs were observed by time-lapse microscopy. Upon sperm binding, a cell surface deflection traversed the egg that was followed by and dependent on the calcium wave. The calcium-dependence of surface contractility could be reproduced in unfertilized eggs, where mobilization of intracellular calcium in unfertilized eggs under compression resulted in a marked contractile response. Lastly, inhibition of myosin II delayed absorption of the fertilization cone, suggesting that myosin II not only responds to the same signals that activate eggs but also participates in the remodeling of the cortical actomyosin cytoskeleton during the first zygotic cell cycle. (c) 2006 Wiley-Liss, Inc.

  18. Calcium-Responsive Contractility During Fertilization in Sea Urchin Eggs

    PubMed Central

    Stack, Christianna; Lucero, Amy J.; Shuster, Charles B.

    2008-01-01

    Fertilization triggers a reorganization of oocyte cytoskeleton, and in sea urchins there is a dramatic increase in cortical F-actin. However, the role that myosin II plays during fertilization remains largely unexplored. Myosin II is localized to the cortical cytoskeleton both prior to- and following fertilization, and to examine myosin II contractility in living cells, Lytechinus pictus eggs were observed by time-lapse microscopy. Upon sperm binding, a cell surface deflection traversed the egg that was followed- and dependent on the calcium wave. The calcium-dependence of surface contractility could be reproduced in unfertilized eggs, where mobilization of intracellular calcium in unfertilized eggs under compression resulted in a marked contractile response. Lastly, inhibition of myosin II delayed absorption of the fertilization cone, suggesting that myosin II not only responds to the same signals that activate eggs, but also participates in the remodeling of the cortical actomyosin cytoskeleton during the first zygotic cell cycle. PMID:16470603

  19. Ginseng Is Useful to Enhance Cardiac Contractility in Animals

    PubMed Central

    Cherng, Yih-Giun; Chen, Li-Jen; Niu, Ho-Shan; Chang, Chen Kuei; Niu, Chiang-Shan

    2014-01-01

    Ginseng has been shown to be effective on cardiac dysfunction. Recent evidence has highlighted the mediation of peroxisome proliferator-activated receptors (PPARs) in cardiac function. Thus, we are interested to investigate the role of PPARδ in ginseng-induced modification of cardiac contractility. The isolated hearts in Langendorff apparatus and hemodynamic analysis in catheterized rats were applied to measure the actions of ginseng ex vivo and in vivo. In normal rats, ginseng enhanced cardiac contractility and hemodynamic dP/dt max significantly. Both actions were diminished by GSK0660 at a dose enough to block PPARδ. However, ginseng failed to modify heart rate at the same dose, although it did produce a mild increase in blood pressure. Data of intracellular calcium level and Western blotting analysis showed that both the PPARδ expression and troponin I phosphorylation were raised by ginseng in neonatal rat cardiomyocyte. Thus, we suggest that ginseng could enhance cardiac contractility through increased PPARδ expression in cardiac cells. PMID:24689053

  20. Mechanically Induced Chromatin Condensation Requires Cellular Contractility in Mesenchymal Stem Cells.

    PubMed

    Heo, Su-Jin; Han, Woojin M; Szczesny, Spencer E; Cosgrove, Brian D; Elliott, Dawn M; Lee, David A; Duncan, Randall L; Mauck, Robert L

    2016-08-23

    Mechanical cues play important roles in directing the lineage commitment of mesenchymal stem cells (MSCs). In this study, we explored the molecular mechanisms by which dynamic tensile loading (DL) regulates chromatin organization in this cell type. Our previous findings indicated that the application of DL elicited a rapid increase in chromatin condensation through purinergic signaling mediated by ATP. Here, we show that the rate and degree of condensation depends on the frequency and duration of mechanical loading, and that ATP release requires actomyosin-based cellular contractility. Increases in baseline cellular contractility via the addition of an activator of G-protein coupled receptors (lysophosphatidic acid) induced rapid ATP release, resulting in chromatin condensation independent of loading. Conversely, inhibition of contractility through pretreatment with either a RhoA/Rock inhibitor (Y27632) or MLCK inhibitor (ML7) abrogated ATP release in response to DL, blocking load-induced chromatin condensation. With loading, ATP release occurred very rapidly (within the first 10-20 s), whereas changes in chromatin occurred at a later time point (∼10 min), suggesting a downstream biochemical pathway mediating this process. When cells were pretreated with blockers of the transforming growth factor (TGF) superfamily, purinergic signaling in response to DL was also eliminated. Further analysis showed that this pretreatment decreased contractility, implicating activity in the TGF pathway in the establishment of the baseline contractile state of MSCs (in the absence of exogenous ligands). These data indicate that chromatin condensation in response to DL is regulated through the interplay between purinergic and RhoA/Rock signaling, and that ligandless activity in the TGF/bone morphogenetic proteins signaling pathway contributes to the establishment of baseline contractility in MSCs. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly

    PubMed Central

    Tojkander, Sari; Gateva, Gergana; Husain, Amjad; Krishnan, Ramaswamy; Lappalainen, Pekka

    2015-01-01

    Adhesion and morphogenesis of many non-muscle cells are guided by contractile actomyosin bundles called ventral stress fibers. While it is well established that stress fibers are mechanosensitive structures, physical mechanisms by which they assemble, align, and mature have remained elusive. Here we show that arcs, which serve as precursors for ventral stress fibers, undergo lateral fusion during their centripetal flow to form thick actomyosin bundles that apply tension to focal adhesions at their ends. Importantly, this myosin II-derived force inhibits vectorial actin polymerization at focal adhesions through AMPK-mediated phosphorylation of VASP, and thereby halts stress fiber elongation and ensures their proper contractility. Stress fiber maturation additionally requires ADF/cofilin-mediated disassembly of non-contractile stress fibers, whereas contractile fibers are protected from severing. Taken together, these data reveal that myosin-derived tension precisely controls both actin filament assembly and disassembly to ensure generation and proper alignment of contractile stress fibers in migrating cells. DOI: http://dx.doi.org/10.7554/eLife.06126.001 PMID:26652273

  2. New methods for isolation of keratolytic bacteria inducing intractable hoof wall cavity (Gidoh) in a horse; double screening procedures of the horn powder agar-translucency test and horn zymography

    PubMed Central

    KUWANO, Atsutoshi; NIWA, Hidekazu; ARAI, Katsuhiko

    2017-01-01

    ABSTRACT To establish a new system to isolate keratolytic bacteria from the hoof wall cavity (Gidoh) of a racehorse, we invented the horn powder agar-translucency (HoPAT) test and horn zymography (HZ). Using routine bacteriological techniques and these methods, we isolated five strains of keratolytic soil bacteria, which were then identified by means of 16S ribosomal RNA (rRNA) gene sequencing analysis. The findings from the study on the horse suggested that Brevibacterium luteolum played the main role in the local fragility of the hoof, eventually forming a Gidoh in coordination with four other strains of keratolytic bacteria. The double screening procedures of the HoPAT test and HZ were useful and easy techniques for isolating the keratolytic bacteria from the horn lesions. PMID:28400703

  3. Thick Filament Length and Isoform Composition Determine Self-Organized Contractile Units in Actomyosin Bundles

    PubMed Central

    Thoresen, Todd; Lenz, Martin; Gardel, Margaret L.

    2013-01-01

    Diverse myosin II isoforms regulate contractility of actomyosin bundles in disparate physiological processes by variations in both motor mechanochemistry and the extent to which motors are clustered into thick filaments. Although the role of mechanochemistry is well appreciated, the extent to which thick filament length regulates actomyosin contractility is unknown. Here, we study the contractility of minimal actomyosin bundles formed in vitro by mixtures of F-actin and thick filaments of nonmuscle, smooth, and skeletal muscle myosin isoforms with varied length. Diverse myosin II isoforms guide the self-organization of distinct contractile units within in vitro bundles with shortening rates similar to those of in vivo myofibrils and stress fibers. The tendency to form contractile units increases with the thick filament length, resulting in a bundle shortening rate proportional to the length of constituent myosin thick filament. We develop a model that describes our data, providing a framework in which to understand how diverse myosin II isoforms regulate the contractile behaviors of disordered actomyosin bundles found in muscle and nonmuscle cells. These experiments provide insight into physiological processes that use dynamic regulation of thick filament length, such as smooth muscle contraction. PMID:23442916

  4. An electron microscope study of the contractile vacuole in Tokophrya infusionum.

    PubMed

    RUDZINSKA, M A

    1958-03-25

    Contractile vacuoles are organelles that collect fluid from the cytoplasm and expel it to the outside. After each discharge (systole), they appear again and expand (diastole). They are widely distributed among Protozoa, and have been found also in some fresh water algae, sponges, and recently in some blood cells of the frog, guinea pig, and man. In spite of the extensive work on the contractile vacuole, very little is known concerning its mode of operation. An electron microscope study of a suctorian Tokophrya infusionum provided an opportunity to study thin sections of contractile vacuoles, and in these some structures were found which could be part of a mechanism for the systolic and diastolic motions the organelle displays. In Tokophrya, as in Suctoria and Ciliata in general, the contractile vacuole has a permanent canal connecting it with the outside. The canal appears to have a very elaborate structure and is composed of three parts: (1) a pore; (2) a channel; and (3) a narrow tubule located in a papilla protruding into the cavity of the contractile vacuole. Whereas the pore and channel have fixed dimensions and are permanently widely open, the tubule has a changeable diameter. At diastole it is so narrow (about 25 to 30 mmicro in diameter) that it could be regarded as closed, while at systole it is widely open. It is assumed that the change in diameter is due to the contraction of numerous fine fibrils (about 180 A thick) which are radially disposed around the canal in form of a truncated cone, with its tip at the channel, and its base at the vacuolar membrane. It seems most probable that the broadening of the tubule results in discharge of the content of the contractile vacuole. In the vicinity of the very thin limiting vacuolar membrane, small vesicles and canaliculi of the endoplasmic reticulum, very small dense particles, and mitochondria may be found. In addition, rows of closely packed vesicles are present in this region, and in other parts of the

  5. Mechanisms underlying hypothermia-induced cardiac contractile dysfunction.

    PubMed

    Han, Young-Soo; Tveita, Torkjel; Prakash, Y S; Sieck, Gary C

    2010-03-01

    Rewarming patients after profound hypothermia may result in acute heart failure and high mortality (50-80%). However, the underlying pathophysiological mechanisms are largely unknown. We characterized cardiac contractile function in the temperature range of 15-30 degrees C by measuring the intracellular Ca(2+) concentration ([Ca(2+)](i)) and twitch force in intact left ventricular rat papillary muscles. Muscle preparations were loaded with fura-2 AM and electrically stimulated during cooling at 15 degrees C for 1.5 h before being rewarmed to the baseline temperature of 30 degrees C. After hypothermia/rewarming, peak twitch force decreased by 30-40%, but [Ca(2+)](i) was not significantly altered. In addition, we assessed the maximal Ca(2+)-activated force (F(max)) and Ca(2+) sensitivity of force in skinned papillary muscle fibers. F(max) was decreased by approximately 30%, whereas the pCa required for 50% of F(max) was reduced by approximately 0.14. In rewarmed papillary muscle, both total cardiac troponin I (cTnI) phosphorylation and PKA-mediated cTnI phosphorylation at Ser23/24 were significantly increased compared with controls. We conclude that after hypothermia/rewarming, myocardial contractility is significantly reduced, as evidenced by reduced twitch force and F(max). The reduced myocardial contractility is attributed to decreased Ca(2+) sensitivity of force rather than [Ca(2+)](i) itself, resulting from increased cTnI phosphorylation.

  6. [Urodynamics foundations: contractile potency and urethral doppler].

    PubMed

    Benítez Navío, Julio; Caballero Gómez, Pilar; Delgado Elipe, Ildefonso

    2002-12-01

    To calculate the bladder softening factor, elastic constant and contractile potency. For the analysis we considered bladder behavior like that of a spring. See articles 1 and 2 published in this issue. Using flowmetry, Doppler ultrasound and abdominal pressure (Transrectal pressure register catheter) an analytical solution that permits calculation of factors defining bladder behavior was looked for. Doppler ultrasound allows us to know urine velocity through the prostatic urethra and, therefore, to calculate bladder contractile potency. Equations are solved reaching an analytical solution that allows calculating those factors that define bladder behavior: Bladder contractile potency, detrusor elastic constant, considering it behaves like a spring, and calculation of muscle resistance to movement. All thanks to Doppler ultrasound that allows to know urine speed. The bladder voiding phase is defined with the aforementioned factors; storage phase behavior can be indirectly inferred. Only uroflowmetry curves, Doppler ultrasound and abdominal pressure value are used. We comply with the so called non invasive urodynamics although for us it is just another phase in the biomechanical study of the detrusor muscle. Main conclusion is the addition of Doppler ultrasound to the urodynamist armamentarium as an essential instrument for the comprehension of bladder dynamics and calculation of bladder behavior defining factors. It is not a change in the focus but in the methods, gaining knowledge and diminishing invasion.

  7. Mitosis-Specific Mechanosensing and Contractile Protein Redistribution Control Cell Shape

    PubMed Central

    Effler, Janet C.; Kee, Yee-Seir; Berk, Jason M.; Tran, Minhchau N.; Iglesias, Pablo A.; Robinson, Douglas N.

    2008-01-01

    Summary Because cell division failure is deleterious, promoting tumorigenesis in mammals [1], cells utilize numerous mechanisms to control their cell-cycle progression [2–4]. Though cell division is considered a well-ordered sequence of biochemical events [5], cytokinesis, an inherently mechanical process, must also be mechanically controlled to ensure that two equivalent daughter cells are produced with high fidelity. Since cells respond to their mechanical environment [6, 7], we hypothesized that cells utilize mechanosensing and mechanical feedback to sense and correct shape asymmetries during cytokinesis. Because the mitotic spindle and myosin-II are vital to cell division [8, 9], we explored their roles in responding to shape perturbations during cell division. We demonstrate that the contractile proteins, myosin-II and cortexillin-I, redistribute in response to intrinsic and externally induced shape asymmetries. In early cytokinesis, mechanical load overrides spindle cues and slows cytokinesis progression while contractile proteins accumulate and correct shape asymmetries. In late cytokinesis, mechanical perturbation also directs contractile proteins but without apparently disrupting cytokinesis. Significantly, this response only occurs during anaphase through cytokinesis, does not require microtubules, is independent of spindle orientation, but is dependent on myosin-II. Our data provide evidence for a mechanosensory system that directs contractile proteins to regulate cell shape during mitosis. PMID:17027494

  8. Estimation of Bladder Contractility From Intravesical Pressure–Volume Measurements

    PubMed Central

    Fry, Christopher H.; Gammie, Andrew; Drake, Marcus John; Abrams, Paul; Kitney, Darryl Graham; Vahabi, Bahareh

    2017-01-01

    Aims To describe parameters from urodynamic pressure recordings that describe urinary bladder contractility through the use of principles of muscle mechanics. Methods Subtracted detrusor pressure and voided flow were recorded from patients undergoing filling cystometry. The isovolumetric increase of detrusor pressure, P, of a voluntary bladder contraction before voiding was used to generate a plot of (dP/dt)/P versus P. Extrapolation of the plot to the y-axis and the x-axis generated a contractility parameter, vCE (the maximum rate of pressure development) and the maximum isovolumetric pressure, P0, respectively. Similar curves were obtained in ex vivo pig bladders with different concentrations of the inotropic agent carbachol and shown in a supplement. Results Values of vCE, but not P0, diminished with age in female subjects. vCE was most significantly associated with the 20–80% duration of isovolumetric contraction t20–80;and a weaker association with maximum flow rate and BCI in women. P0 was not associated with any urodynamic variable in women, but in men was with t20–80 and isovolumetric pressure indices. Conclusions The rate of isovolumetric subtracted detrusor pressure (t20–80) increase shows a very significant association with indices of bladder contractility as derived from a derived force–velocity curve. We propose that t20–80 is a detrusor contractility parameter (DCP). PMID:27265671

  9. Antimicrobial Peptides Targeting Gram-Positive Bacteria

    PubMed Central

    Malanovic, Nermina; Lohner, Karl

    2016-01-01

    Antimicrobial peptides (AMPs) have remarkably different structures as well as biological activity profiles, whereupon most of these peptides are supposed to kill bacteria via membrane damage. In order to understand their molecular mechanism and target cell specificity for Gram-positive bacteria, it is essential to consider the architecture of their cell envelopes. Before AMPs can interact with the cytoplasmic membrane of Gram-positive bacteria, they have to traverse the cell wall composed of wall- and lipoteichoic acids and peptidoglycan. While interaction of AMPs with peptidoglycan might rather facilitate penetration, interaction with anionic teichoic acids may act as either a trap for AMPs or a ladder for a route to the cytoplasmic membrane. Interaction with the cytoplasmic membrane frequently leads to lipid segregation affecting membrane domain organization, which affects membrane permeability, inhibits cell division processes or leads to delocalization of essential peripheral membrane proteins. Further, precursors of cell wall components, especially the highly conserved lipid II, are directly targeted by AMPs. Thereby, the peptides do not inhibit peptidoglycan synthesis via binding to proteins like common antibiotics, but form a complex with the precursor molecule, which in addition can promote pore formation and membrane disruption. Thus, the multifaceted mode of actions will make AMPs superior to antibiotics that act only on one specific target. PMID:27657092

  10. Spontaneous actin dynamics in contractile rings

    NASA Astrophysics Data System (ADS)

    Kruse, Karsten; Wollrab, Viktoria; Thiagarajan, Raghavan; Wald, Anne; Riveline, Daniel

    Networks of polymerizing actin filaments are known to be capable to self-organize into a variety of structures. For example, spontaneous actin polymerization waves have been observed in living cells in a number of circumstances, notably, in crawling neutrophils and slime molds. During later stages of cell division, they can also spontaneously form a contractile ring that will eventually cleave the cell into two daughter cells. We present a framework for describing networks of polymerizing actin filaments, where assembly is regulated by various proteins. It can also include the effects of molecular motors. We show that the molecular processes driven by these proteins can generate various structures that have been observed in contractile rings of fission yeast and mammalian cells. We discuss a possible functional role of each of these patterns. The work was supported by Agence Nationale de la Recherche, France, (ANR-10-LABX-0030-INRT) and by Deutsche Forschungsgemeinschaft through SFB1027.

  11. Rumen Bacterial Degradation of Forage Cell Walls Investigated by Electron Microscopy

    PubMed Central

    Akin, Danny E.; Amos, Henry E.

    1975-01-01

    The association of rumen bacteria with specific leaf tissues of the forage grass Kentucky-31 tall fescue (Festuca arundinacea Schreb.) during in vitro degradation was investigated by transmission and scanning electron microscopy. Examination of degraded leaf cross-sections revealed differential rates of tissue degradation in that the cell walls of the mesophyll and pholem were degraded prior to those of the outer bundle sheath and epidermis. Rumen bacteria appeared to degrade the mesophyll, in some cases, and phloem without prior attachment to the plant cell walls. The degradation of bundle sheath and epidermal cell walls appeared to be preceded by attachment of bacteria to the plant cell wall. Ultrastructural features apparently involved in the adhesion of large cocci to plant cells were observed by transmission and scanning electron microscopy. The physical association between plant and rumen bacterial cells during degradation apparently varies with tissue types. Bacterial attachment, by extracellular features in some microorganisms, is required prior to degradation of the more resistant tissues. Images PMID:16350017

  12. Upregulation of contractile endothelin type B receptors by lipid-soluble cigarette smoking particles in rat cerebral arteries via activation of MAPK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, Hardip, E-mail: sandhu.hardip@gmail.co; Xu, Cang Bao; Edvinsson, Lars

    2010-11-15

    Cigarette smoke exposure increases the risk of stroke. However, the underlying molecular mechanisms are poorly understood. Endothelin system plays key roles in the pathogenesis of stroke. The present study was designed to examine if lipid-soluble (dimethyl sulfoxide-soluble) cigarette smoke particles (DSP) induces upregulation of contractile endothelin type B (ET{sub B}) receptors in rat cerebral arteries and if activation of mitogen activated protein kinase (MAPK) and nuclear factor-kappaB (NF-{kappa}B) mediate the upregulation of contractile endothelin receptors in the cerebral arteries. Rat middle cerebral arteries were isolated and organ cultured in serum free medium for 24 h in the presence of DSPmore » with or without specific inhibitors: MEK specific (U0126), p38 specific (SB202190), JNK specific (SP600125), NF-{kappa}B specific (BMS-345541) or (IMD-0354), transcription inhibitor (actinomycin D), or translation blocker (cycloheximide). Contractile responses to the ET{sub B} receptor agonist sarafotoxin 6c were investigated by a sensitive myograph. The expression of the ET{sub B} receptors were studied at mRNA and protein levels using quantitative real time PCR and immunohistochemistry, respectively. Results show that organ culture per se induced transcriptional upregulation of contractile ET{sub B} receptors in the cerebral vascular smooth muscle cells. This upregulation was further increased at the translational level by addition of DSP to the organ culture, but this increase was not seen by addition of nicotine or water-soluble cigarette smoke particles to the organ culture. The increased upregulation of contractile ET{sub B} receptors by DSP was abrogated by U0126, SP600125, actinomycin D, and cycloheximide, suggesting that the underlying molecular mechanisms involved in this process include activation of MEK and JNK MAPK-mediated transcription and translation of new contractile ET{sub B} receptors. Thus, the MAPK-mediated upregulation of contractile ET

  13. Thick filament length and isoform composition determine self-organized contractile units in actomyosin bundles.

    PubMed

    Thoresen, Todd; Lenz, Martin; Gardel, Margaret L

    2013-02-05

    Diverse myosin II isoforms regulate contractility of actomyosin bundles in disparate physiological processes by variations in both motor mechanochemistry and the extent to which motors are clustered into thick filaments. Although the role of mechanochemistry is well appreciated, the extent to which thick filament length regulates actomyosin contractility is unknown. Here, we study the contractility of minimal actomyosin bundles formed in vitro by mixtures of F-actin and thick filaments of nonmuscle, smooth, and skeletal muscle myosin isoforms with varied length. Diverse myosin II isoforms guide the self-organization of distinct contractile units within in vitro bundles with shortening rates similar to those of in vivo myofibrils and stress fibers. The tendency to form contractile units increases with the thick filament length, resulting in a bundle shortening rate proportional to the length of constituent myosin thick filament. We develop a model that describes our data, providing a framework in which to understand how diverse myosin II isoforms regulate the contractile behaviors of disordered actomyosin bundles found in muscle and nonmuscle cells. These experiments provide insight into physiological processes that use dynamic regulation of thick filament length, such as smooth muscle contraction. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Muscle Contractile Properties in Severely Burned Rats

    PubMed Central

    Wu, Xiaowu; Wolf, Steven E.; Walters, Thomas J.

    2010-01-01

    Burn induces a sustained catabolic response which causes massive loss of muscle mass after injury. A better understanding of the dynamics of muscle wasting and its impact on muscle function is necessary for the development of effective treatments. Male Sprague-Dawley rats underwent either a 40% total body surface area (TBSA) scald burn or sham burn, and were further assigned to subgroups at four time points after injury (days 3, 7, 14 and 21). In situ isometric contractile properties were measured including twitch tension (Pt), tetanic tension (Po) and fatigue properties. Body weight decreased in burn and sham groups through day 3, however, body weight in the sham groups recovered and increased over time compared to burned groups, which progressively decreased until day 21 after injury. Significant differences in muscle wet weight and protein weight were found between sham and burn. Significant differences in muscle contractile properties were found at day 14 with lower absolute Po as well as specific Po in burned rats compared to sham. After burn, the muscle twitch tension was significantly higher than the sham at day 21. No significant difference in fatigue properties was found between the groups. This study demonstrates dynamics of muscle atrophy and muscle contractile properties after severe burn; this understanding will aid in the development of approaches designed to reduce the rate and extent of burn induced muscle loss and function. PMID:20381255

  15. Effects of regular exercise training on skeletal muscle contractile function

    NASA Technical Reports Server (NTRS)

    Fitts, Robert H.

    2003-01-01

    Skeletal muscle function is critical to movement and one's ability to perform daily tasks, such as eating and walking. One objective of this article is to review the contractile properties of fast and slow skeletal muscle and single fibers, with particular emphasis on the cellular events that control or rate limit the important mechanical properties. Another important goal of this article is to present the current understanding of how the contractile properties of limb skeletal muscle adapt to programs of regular exercise.

  16. Effects of minoxidil and nitroprusside on reflex increases in myocardial contractility.

    PubMed Central

    Robie, N W

    1978-01-01

    1 The effects of nitroprusside and minoxidil on increases in myocardial contractility resulting from carotid artery occlusion were investigated in anaesthetized dogs. The results were compared with those produced by intravenous influsion of noradrenaline. 2 Nitroprusside and minoxidil attenuated the pressor responses produced by carotid artery occlusion. 3 Nitroprusside, but not minoxidil, attenuated the maximal myocardial contractility resulting from carotid occlusion. 4 The pressor and contractility responses to noradrenaline infusion were unaffected by either agent. 5 Nitroprusside failed to alter the myocardial responses produced by dimethylphenylpiperazinium. 6 These results, in conjunction with those of other investigators who have demonstrated that nitroprusside does not affect the release of noradrenaline from adrenergic neurons, suggest that nitroprusside may inhibit sympathetic nervous system reflex activity via an afferent and/or central component. PMID:620094

  17. Temporal Adaptive Changes in Contractility and Fatigability of Diaphragm Muscles from Streptozotocin-Diabetic Rats

    PubMed Central

    Brotto, Marco; Brotto, Leticia; Jin, J.-P.; Nosek, Thomas M.; Romani, Andrea

    2010-01-01

    Diabetes is characterized by ventilatory depression due to decreased diaphragm (DPH) function. This study investigated the changes in contractile properties of rat DPH muscles over a time interval encompassing from 4 days to 14 weeks after the onset of streptozotocin-induced diabetes, with and without insulin treatment for 2 weeks. Maximum tetanic force in intact DPH muscle strips and recovery from fatiguing stimulation were measured. An early (4-day) depression in contractile function in diabetic DPH was followed by gradual improvement in muscle function and fatigue recovery (8 weeks). DPH contractile function deteriorated again at 14 weeks, a process that was completely reversed by insulin treatment. Maximal contractile force and calcium sensitivity assessed in Triton-skinned DPH fibers showed a similar bimodal pattern and the same beneficial effect of insulin treatment. While an extensive analysis of the isoforms of the contractile and regulatory proteins was not conducted, Western blot analysis of tropomyosin suggests that the changes in diabetic DPH response depended, at least in part, on a switch in fiber type. PMID:20467472

  18. Temporal adaptive changes in contractility and fatigability of diaphragm muscles from streptozotocin-diabetic rats.

    PubMed

    Brotto, Marco; Brotto, Leticia; Jin, J-P; Nosek, Thomas M; Romani, Andrea

    2010-01-01

    Diabetes is characterized by ventilatory depression due to decreased diaphragm (DPH) function. This study investigated the changes in contractile properties of rat DPH muscles over a time interval encompassing from 4 days to 14 weeks after the onset of streptozotocin-induced diabetes, with and without insulin treatment for 2 weeks. Maximum tetanic force in intact DPH muscle strips and recovery from fatiguing stimulation were measured. An early (4-day) depression in contractile function in diabetic DPH was followed by gradual improvement in muscle function and fatigue recovery (8 weeks). DPH contractile function deteriorated again at 14 weeks, a process that was completely reversed by insulin treatment. Maximal contractile force and calcium sensitivity assessed in Triton-skinned DPH fibers showed a similar bimodal pattern and the same beneficial effect of insulin treatment. While an extensive analysis of the isoforms of the contractile and regulatory proteins was not conducted, Western blot analysis of tropomyosin suggests that the changes in diabetic DPH response depended, at least in part, on a switch in fiber type.

  19. Aspen Tension Wood Fibers Contain β-(1---> 4)-Galactans and Acidic Arabinogalactans Retained by Cellulose Microfibrils in Gelatinous Walls.

    PubMed

    Gorshkova, Tatyana; Mokshina, Natalia; Chernova, Tatyana; Ibragimova, Nadezhda; Salnikov, Vadim; Mikshina, Polina; Tryfona, Theodora; Banasiak, Alicja; Immerzeel, Peter; Dupree, Paul; Mellerowicz, Ewa J

    2015-11-01

    Contractile cell walls are found in various plant organs and tissues such as tendrils, contractile roots, and tension wood. The tension-generating mechanism is not known but is thought to involve special cell wall architecture. We previously postulated that tension could result from the entrapment of certain matrix polymers within cellulose microfibrils. As reported here, this hypothesis was corroborated by sequential extraction and analysis of cell wall polymers that are retained by cellulose microfibrils in tension wood and normal wood of hybrid aspen (Populus tremula × Populus tremuloides). β-(1→4)-Galactan and type II arabinogalactan were the main large matrix polymers retained by cellulose microfibrils that were specifically found in tension wood. Xyloglucan was detected mostly in oligomeric form in the alkali-labile fraction and was enriched in tension wood. β-(1→4)-Galactan and rhamnogalacturonan I backbone epitopes were localized in the gelatinous cell wall layer. Type II arabinogalactans retained by cellulose microfibrils had a higher content of (methyl)glucuronic acid and galactose in tension wood than in normal wood. Thus, β-(1→4)-galactan and a specialized form of type II arabinogalactan are trapped by cellulose microfibrils specifically in tension wood and, thus, are the main candidate polymers for the generation of tensional stresses by the entrapment mechanism. We also found high β-galactosidase activity accompanying tension wood differentiation and propose a testable hypothesis that such activity might regulate galactan entrapment and, thus, mechanical properties of cell walls in tension wood. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. Vascular wall function in insulin-resistant JCR:LA-cp rats: role of male and female sex.

    PubMed

    O'Brien, S F; Russell, J C; Dolphin, P J; Davidge, S T

    2000-08-01

    Vascular wall function was assessed in obese insulin-resistant (cp/cp) and lean normal (+/?), male and female, JCR:LA-cp rats. Both male and female cp/cp rats showed enhanced maximum contractility in response to norepinephrine; impaired smooth muscle in response to sodium nitroprusside, a nitric oxide (NO) donor; and impaired relaxation in response to acetylcholine (ACh), compared with their lean counterparts. The abnormalities were similar in male and female cp/cp rats. The NO synthase inhibitor, Nomega-nitro-L-arginine methyl ester (L-NAME), inhibited ACh-mediated relaxation significantly in male rats, both cp/cp and +/?. The inhibition of ACh-mediated relaxation by L-NAME in +/? females was less, with no reduction in maximal relaxation, and was absent in cp/cp females. These effects suggest that the relative importance of NO in the endothelial modulation of smooth muscle contractility is greater in male rats. The results are consistent with a decreased role for endothelial NO in the cp/cp rats of both sexes and a reduction in NO-independent cholinergic relaxation in the male cp/cp rat. This NO-independent mechanism is not affected in the female cp/cp rats. The relatively small differences between males and females in smooth muscle cell and vascular function may contribute to sex-related differences in the atherogenesis, vasospasm, and ischemic damage associated with the obese insulin-resistant state.

  1. Assembly and positioning of actomyosin rings by contractility and planar cell polarity

    PubMed Central

    Sehring, Ivonne M; Recho, Pierre; Denker, Elsa; Kourakis, Matthew; Mathiesen, Birthe; Hannezo, Edouard; Dong, Bo; Jiang, Di

    2015-01-01

    The actomyosin cytoskeleton is a primary force-generating mechanism in morphogenesis, thus a robust spatial control of cytoskeletal positioning is essential. In this report, we demonstrate that actomyosin contractility and planar cell polarity (PCP) interact in post-mitotic Ciona notochord cells to self-assemble and reposition actomyosin rings, which play an essential role for cell elongation. Intriguingly, rings always form at the cells′ anterior edge before migrating towards the center as contractility increases, reflecting a novel dynamical property of the cortex. Our drug and genetic manipulations uncover a tug-of-war between contractility, which localizes cortical flows toward the equator and PCP, which tries to reposition them. We develop a simple model of the physical forces underlying this tug-of-war, which quantitatively reproduces our results. We thus propose a quantitative framework for dissecting the relative contribution of contractility and PCP to the self-assembly and repositioning of cytoskeletal structures, which should be applicable to other morphogenetic events. DOI: http://dx.doi.org/10.7554/eLife.09206.001 PMID:26486861

  2. Successive contractile periods activate mitochondria at the onset of contractions in intact rat cardiac trabeculae.

    PubMed

    Wüst, Rob C I; Stienen, Ger J M

    2018-04-01

    The rate of oxidative phosphorylation depends on the contractile activity of the heart. Cardiac mitochondrial oxidative phosphorylation is determined by free ADP concentration, mitochondrial Ca 2+ accumulation, mitochondrial enzyme activities, and Krebs cycle intermediates. The purpose of the present study was to examine the factors that limit oxidative phosphorylation upon rapid changes in contractile activity in cardiac muscle. We tested the hypotheses that prior contractile performance enhances the changes in NAD(P)H and FAD concentration upon an increase in contractile activity and that this mitochondrial "priming" depends on pyruvate dehydrogenase activity. Intact rat cardiac trabeculae were electrically stimulated at 0.5 Hz for at least 30 min. Thereafter, two equal bouts at elevated stimulation frequency of 1, 2, or 3 Hz were applied for 3 min with 3 min of 0.5-Hz stimulation in between. No discernible time delay was observed in the changes in NAD(P)H and FAD fluorescence upon rapid changes in contractile activity. The amplitudes of the rapid changes in fluorescence upon an increase in stimulation frequency (the on-transients) were smaller than upon a decrease in stimulation frequency (the off-transients). A first bout in glucose-containing superfusion solution resulted, during the second bout, in an increase in the amplitudes of the on-transients, but the off-transients remained the same. No such priming effect was observed after addition of 10 mM pyruvate. These results indicate that mitochondrial priming can be observed in cardiac muscle in situ and that pyruvate dehydrogenase activity is critically involved in the mitochondrial adaptation to increases in contractile performance. NEW & NOTEWORTHY Mitochondrial respiration increases with increased cardiac contractile activity. Similar to mitochondrial "priming" in skeletal muscle, we hypothesized that cardiac mitochondrial activity is altered upon successive bouts of contractions and depends on pyruvate

  3. Challenges in realizing a self-contained hydraulically-driven contractile fiber actuator.

    PubMed

    Smela, Elisabeth

    2017-07-01

    The field of soft robots would benefit from electrically controlled contractile actuators in the form of fibers that achieve a strain of 20% in less than a second while exerting high force. This work explores possible designs for achieving this goal using self-contained electroosmotic fluid pumping within a tube-shaped structure. The most promising configuration is a combination of a bellows and a McKibben-type muscle, since pumping fluid from the former to the latter results in contraction of both portions. Realizing such a device entails challenges in fabrication and electrokinetic fluid pumping in closed systems. Further studies of electroosmotic flow in salt-free organic solvents are needed.

  4. High-Throughput Screening of Myometrial Calcium-Mobilization to Identify Modulators of Uterine Contractility

    PubMed Central

    Herington, Jennifer L.; Swale, Daniel R.; Brown, Naoko; Shelton, Elaine L.; Choi, Hyehun; Williams, Charles H.; Hong, Charles C.; Paria, Bibhash C.; Denton, Jerod S.; Reese, Jeff

    2015-01-01

    The uterine myometrium (UT-myo) is a therapeutic target for preterm labor, labor induction, and postpartum hemorrhage. Stimulation of intracellular Ca2+-release in UT-myo cells by oxytocin is a final pathway controlling myometrial contractions. The goal of this study was to develop a dual-addition assay for high-throughput screening of small molecular compounds, which could regulate Ca2+-mobilization in UT-myo cells, and hence, myometrial contractions. Primary murine UT-myo cells in 384-well plates were loaded with a Ca2+-sensitive fluorescent probe, and then screened for inducers of Ca2+-mobilization and inhibitors of oxytocin-induced Ca2+-mobilization. The assay exhibited robust screening statistics (Z´ = 0.73), DMSO-tolerance, and was validated for high-throughput screening against 2,727 small molecules from the Spectrum, NIH Clinical I and II collections of well-annotated compounds. The screen revealed a hit-rate of 1.80% for agonist and 1.39% for antagonist compounds. Concentration-dependent responses of hit-compounds demonstrated an EC50 less than 10μM for 21 hit-antagonist compounds, compared to only 7 hit-agonist compounds. Subsequent studies focused on hit-antagonist compounds. Based on the percent inhibition and functional annotation analyses, we selected 4 confirmed hit-antagonist compounds (benzbromarone, dipyridamole, fenoterol hydrobromide and nisoldipine) for further analysis. Using an ex vivo isometric contractility assay, each compound significantly inhibited uterine contractility, at different potencies (IC50). Overall, these results demonstrate for the first time that high-throughput small-molecules screening of myometrial Ca2+-mobilization is an ideal primary approach for discovering modulators of uterine contractility. PMID:26600013

  5. Alterations in serotonin receptor-induced contractility of bovine lateral saphenous vein in cattle grazing endophyte-infected tall fescue.

    PubMed

    Klotz, J L; Brown, K R; Xue, Y; Matthews, J C; Boling, J A; Burris, W R; Bush, L P; Strickland, J R

    2012-02-01

    As part of a 2-yr study documenting the physiologic impact of grazing endophyte-infected tall fescue on growing cattle, 2 experiments were conducted to characterize and evaluate effects of grazing 2 levels of toxic endophyte-infected tall fescue pastures on vascular contractility and serotonin receptors. Experiment 1 examined vasoconstrictive activities of 5-hydroxytryptamine (5HT), α-methylserotonin (ME5HT; a 5HT(2) receptor agonist), d-lysergic acid (LSA), and ergovaline (ERV) on lateral saphenous veins collected from steers immediately removed from a high-endophyte-infected tall fescue pasture (HE) or a low-endophyte-infected mixed-grass (LE) pasture. Using the same pastures, Exp. 2 evaluated effects of grazing 2 levels of toxic endophyte-infected tall fescue on vasoconstrictive activities of (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI), BW 723C86 (BW7), CGS-12066A (CGS), and 5-carboxamidotryptamine hemiethanolate maleate (5CT), agonists for 5HT(2A),( 2B), 5HT(1B), and 5HT(7) receptors, respectively. One-half of the steers in Exp. 2 were slaughtered immediately after removal from pasture, and the other one-half were fed finishing diets for >91 d before slaughter. For Exp. 1, maximal contractile intensities were greater (P < 0.05) for steers grazing LE pastures than HE pastures for 5HT (73.3 vs. 48.9 ± 2.1%), ME5HT (52.7 vs. 24.9 ± 1.5%), and ERV (65.7 vs. 49.1 ± 2.6%). Onset of contractile response did not differ for 5HT (P = 0.26) and ERV (P = 0.93), but onset of ME5HT contraction was not initiated (P < 0.05) in HE steers until 10(-4) compared with 10(-5) M in LE-grazing steers. For Exp. 2, maximal contractile intensities achieved with DOI were 35% less (P < 0.05), whereas those achieved with 5CT were 37% greater (P < 0.05), in steers grazing HE pastures. Contractile response to CGS did not differ between pasture groups, and there was an absence of contractile response to BW7 in both groups. There were no differences between

  6. Visualization and contractile activity of cochlear pericytes in the capillaries of the spiral ligament.

    PubMed

    Dai, Min; Nuttall, Alfred; Yang, Yue; Shi, Xiaorui

    2009-08-01

    Pericytes, mural cells located on microvessels, are considered to play an important role in the formation of the vasculature and the regulation of local blood flow in some organs. Little is known about the physiology of cochlear pericytes. In order to investigate the function of cochlear pericytes, we developed a method to visualize cochlear pericytes using diaminofluorescein-2 diacetate (DAF-2DA) and intravital fluorescence microscopy. This method can permit the study of the effect of vasoactive agents on pericytes under the in vivo and normal physiological condition. The specificity of the labeling method was verified by the immunofluorescence labeling of pericyte maker proteins such as desmin, neural proteoglycan (NG2), and thymocyte differentiation antigen 1 (Thy-1). Superfused K(+) and Ca(2+) to the cochlear lateral wall resulted in localized constriction of capillaries at pericyte locations both in vivo and in vitro, while there was no obvious change in cochlear capillary diameters with application of the adrenergic neurotransmitter noradrenaline. The method could be an effective way to visualize cochlear pericytes and microvessels and study lateral wall vascular physiology. Moreover, we demonstrate for the first time that cochlear pericytes have contractility, which may be important for regulation of cochlear blood flow.

  7. The role of the urothelium and ATP in mediating detrusor smooth muscle contractility.

    PubMed

    Santoso, Aneira Gracia Hidayat; Sonarno, Ika Ariyani Bte; Arsad, Noor Aishah Bte; Liang, Willmann

    2010-11-01

    To examine the contractility of urothelium-intact (+UE) and urothelium-denuded (-UE) rat detrusor strips under adenosine triphosphate (ATP) treatment. Purinergic signaling exists in the bladder but both the inhibitory effect of ATP on detrusor contractions and the function of urothelial ATP are not established. Detrusor strips were obtained from bladders of young adult rats. Isometric tension from both transverse and longitudinal contractions was measured using a myograph. The muscarinic agonist carbachol (CCh) was used to induce contractions, which were under the influences of different concentrations of ATP. In both +UE and -UE strips, 1 mM ATP suppressed CCh-induced contractions. In longitudinal contractions, ATP added to the inhibitory effect of urothelium on CCh responses. Removal of the urothelium, but with exogenous ATP added, recovered the CCh responses to the same level as in +UE strips with no added ATP. Transverse contractions were less susceptible to ATP in the presence of urothelium. We showed that the urothelium and ATP suppressed CCh-induced contractions to a similar extent. The findings suggest an inhibitory role of urothelial ATP in mediating detrusor smooth muscle contractility, which may be impaired in diseased bladders. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Protein secretion and surface display in Gram-positive bacteria

    PubMed Central

    Schneewind, Olaf; Missiakas, Dominique M.

    2012-01-01

    The cell wall peptidoglycan of Gram-positive bacteria functions as a surface organelle for the transport and assembly of proteins that interact with the environment, in particular, the tissues of an infected host. Signal peptide-bearing precursor proteins are secreted across the plasma membrane of Gram-positive bacteria. Some precursors carry C-terminal sorting signals with unique sequence motifs that are cleaved by sortase enzymes and linked to the cell wall peptidoglycan of vegetative forms or spores. The sorting signals of pilin precursors are cleaved by pilus-specific sortases, which generate covalent bonds between proteins leading to the assembly of fimbrial structures. Other precursors harbour surface (S)-layer homology domains (SLH), which fold into a three-pronged spindle structure and bind secondary cell wall polysaccharides, thereby associating with the surface of specific Gram-positive microbes. Type VII secretion is a non-canonical secretion pathway for WXG100 family proteins in mycobacteria. Gram-positive bacteria also secrete WXG100 proteins and carry unique genes that either contribute to discrete steps in secretion or represent distinctive substrates for protein transport reactions. PMID:22411983

  9. Progesterone Metabolites Produced by Cytochrome P450 3A Modulate Uterine Contractility in a Murine Model

    PubMed Central

    Patil, Avinash S.; Swamy, Geeta K.; Murtha, Amy P.; Heine, R. Phillips; Zheng, Xiaomei; Grotegut, Chad A.

    2015-01-01

    Objective: We seek to characterize the effect of progesterone metabolites on spontaneous and oxytocin-induced uterine contractility. Study Design: Spontaneous contractility was studied in mouse uterine horns after treatment with progesterone, 2α-hydroxyprogesterone, 6β-hydroxyprogesterone (6β-OHP), 16α-hydroxyprogesterone (16α-OHP), or 17-hydroxyprogesterone caproate (17-OHPC) at 10−9 to 10−6 mol/L. Uterine horns were exposed to progestins (10−6 mol/L), followed by increasing concentrations of oxytocin (1-100 nmol/L) to study oxytocin-induced contractility. Contraction parameters were compared for each progestin and matched vehicle control using repeated measures 2-way analysis of variance. In vitro metabolism of progesterone by recombinant cytochrome P450 3A (CYP3A) microsomes (3A5, 3A5, and 3A7) identified major metabolites. Results: Oxytocin-induced contractile frequency was decreased by 16α-OHP (P = .03) and increased by 6β-OHP (P = .05). Progesterone and 17-OHPC decreased oxytocin-induced contractile force (P = .02 and P = .04, respectively) and frequency (P = .02 and P = .03, respectively). Only progesterone decreased spontaneous contractile force (P = .02). Production of 16α-OHP and 6β-OHP metabolites were confirmed in all CYP3A isoforms tested. Conclusion: Progesterone metabolites produced by maternal or fetal CYP3A enzymes influence uterine contractility. PMID:26037300

  10. Testosterone deficiency prevents left ventricular contractility dysfunction after myocardial infarction.

    PubMed

    Ribeiro Júnior, R F; Ronconi, K S; Jesus, I C G; Almeida, P W M; Forechi, L; Vassallo, D V; Guatimosim, S; Stefanon, I; Fernandes, A A

    2018-01-15

    Testosterone may affect myocardial contractility since its deficiency decreases the contraction and relaxation of the heart. Meanwhile, testosterone replacement therapy has raised concerns because it may worsen cardiac dysfunction and remodeling after myocardial infarction (MI). In this study, we evaluate cardiac contractility 60 days after MI in rats with suppressed testosterone. Male Wistar rats underwent bilateral orchidectomy one week before the ligation of the anterior descending left coronary artery. The animals were divided into orchidectomized (OCT); MI; orchidectomized + MI (OCT + MI); orchidectomized + MI + testosterone (OCT + MI + T) and control (Sham) groups. Eight weeks after MI, papillary muscle contractility was analyzed under increasing calcium (0.62, 1.25, 2.5 and 3.75 mM) and isoproterenol (10 -8 to 10 -2  M) concentrations. Ventricular myocytes were isolated for intracellular calcium measurements and assessment of Ca 2+ handling proteins. Contractility was preserved in the orchidectomized animals after myocardial infarction and was reduced when testosterone was replaced (Ca 2+ 3.75 mM: Sham: 608 ± 70 (n = 11); OCT: 590 ± 37 (n = 16); MI: 311 ± 33* (n = 9); OCT + MI: 594 ± 76 (n = 7); OCT + MI + T: 433 ± 38* (n=4), g/g *p < 0.05 vs Sham). Orchidectomy also increased the Ca 2+ transient amplitude of the ventricular myocytes and SERCA-2a protein expression levels. PLB phosphorylation levels at Thr 17 were not different in the orchidectomized animals compared to the Sham animals but were reduced after testosterone replacement. CAMKII phosphorylation and protein nitrosylation increased in the orchidectomized animals. Our results support the view that testosterone deficiency prevents MI contractility dysfunction by altering the key proteins involved in Ca 2+ handling. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The contractile adaption to preload depends on the amount of afterload

    PubMed Central

    Schotola, Hanna; Sossalla, Samuel T.; Renner, André; Gummert, Jan; Danner, Bernhard C.; Schott, Peter

    2017-01-01

    Abstract Aims The Frank–Starling mechanism (rapid response (RR)) and the secondary slow response (SR) are known to contribute to increases contractile performance. The contractility of the heart muscle is influenced by pre‐load and after‐load. Because of the effect of pre‐load vs. after‐load on these mechanisms in not completely understood, we studied the effect in isolated muscle strips. Methods and results Progressive stretch lead to an increase in shortening/force development under isotonic (only pre‐load) and isometric conditions (pre‐ and after‐load). Muscle length with maximal function was reached earlier under isotonic (L max‐isotonic) compared with isometric conditions (L max‐isometric) in nonfailing rabbit, in human atrial and in failing ventricular muscles. Also, SR after stretch from slack to L max‐isotonic was comparable under isotonic and isometric conditions (human: isotonic 10 ± 4%, isometric 10 ± 4%). Moreover, a switch from isotonic to isometric conditions at L max‐isometric showed no SR proving independence of after‐load. To further analyse the degree of SR on the total contractile performance at higher pre‐load muscles were stretched from slack to 98% L max‐isometric under isotonic conditions. Thereby, the SR was 60 ± 9% in rabbit and 51 ± 14% in human muscle strips. Conclusions This work shows that the acute contractile response largely depends on the degree and type of mechanical load. Increased filling of the heart elevates pre‐load and prolongs the isotonic part of contraction. The reduction in shortening at higher levels of pre‐load is thereby partially compensated by the pre‐load‐induced SR. After‐load shifts the contractile curve to a better ‘myofilament function’ by probably influencing thin fibers and calcium sensitivity, but has no effect on the SR. PMID:29154423

  12. Electrical and contractile activities of the human rectosigmoid.

    PubMed Central

    Sarna, S; Latimer, P; Campbell, D; Waterfall, W E

    1982-01-01

    Electrical and mechanical activities were recorded from the rectosigmoid of normal subjects using an intraluminal recording tube with two sets of bipolar electrodes and strain gauges. Four distinct types of electrical activities were recorded. (1) Electrical control activity (ECA). This activity varied in amplitude and frequency over time and the control waves were not phase-locked. The means of dominant frequency components in the lower and higher frequency ranges were 3.86 +/- 0.18 SD and 10.41 +/- 0.46 SD c/min, respectively. The overall dominant frequency component was mostly in the lower frequency range of 2.0-9.0 c/min. (2) Discrete electrical response activity (DERA). This activity appeared as short duration bursts (less than 10 s) of response potentials whose repetition rate was in the total colonic electrical control activity frequency range of 2.0-13.0 c/min. The mean duration of this activity was 2.24 +/- 1.30 SD s. (3) Continuous electrical response activity (CERA). This activity appeared as long duration bursts (greater than 10 s) of response potentials which were not related to electrical control activity. Its mean duration was 14.78 +/- 3.68 SD s. This activity generally did not propagate. (4) Contractile electrical complex (CEC). This activity appeared as oscillations in the frequency range of 25-40 c/min and was also not related to electrical control activity. This activity propagated, sometimes proximally and sometimes distally. Its mean duration was 18.87 +/- 9.22 SD s. The latter three types of electrical activities were all associated with different types of contractions. These contractions, however, did not always occlude the lumen. Colonic electrical control activity controls the appearance of discrete electrical response activity in time and space. The mechanism of generation of continuous electrical response activity and contractile electrical complex is not yet known. PMID:7095566

  13. Cardiac-Specific Knockout of ETA Receptor Mitigates Paraquat-Induced Cardiac Contractile Dysfunction.

    PubMed

    Wang, Jiaxing; Lu, Songhe; Zheng, Qijun; Hu, Nan; Yu, Wenjun; Li, Na; Liu, Min; Gao, Beilei; Zhang, Guoyong; Zhang, Yingmei; Wang, Haichang

    2016-07-01

    Paraquat (1,1'-dim ethyl-4-4'-bipyridinium dichloride), a highly toxic quaternary ammonium herbicide widely used in agriculture, exerts potent toxic prooxidant effects resulting in multi-organ failure including the lung and heart although the underlying mechanism remains elusive. Recent evidence suggests possible involvement of endothelin system in paraquat-induced acute lung injury. This study was designed to examine the role of endothelin receptor A (ETA) in paraquat-induced cardiac contractile and mitochondrial injury. Wild-type (WT) and cardiac-specific ETA receptor knockout mice were challenged to paraquat (45 mg/kg, i.p.) for 48 h prior to the assessment of echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties, as well as apoptosis and mitochondrial damage. Levels of the mitochondrial proteins for biogenesis and oxidative phosphorylation including UCP2, HSP90 and PGC1α were evaluated. Our results revealed that paraquat elicited cardiac enlargement, mechanical anomalies including compromised echocardiographic parameters (elevated left ventricular end-systolic and end-diastolic diameters as well as reduced factional shortening), suppressed cardiomyocyte contractile function, intracellular Ca(2+) handling, overt apoptosis and mitochondrial damage. ETA receptor knockout itself failed to affect myocardial function, apoptosis, mitochondrial integrity and mitochondrial protein expression. However, ETA receptor knockout ablated or significantly attenuated paraquat-induced cardiac contractile and intracellular Ca(2+) defect, apoptosis and mitochondrial damage. Taken together, these findings revealed that endothelin system in particular the ETA receptor may be involved in paraquat-induced toxic myocardial contractile anomalies possibly related to apoptosis and mitochondrial damage.

  14. Comparative Effects of Urocortins and Stresscopin on Cardiac Myocyte Contractility

    PubMed Central

    Makarewich, Catherine A.; Troupes, Constantine D.; Schumacher, Sarah M.; Gross, Polina; Koch, Walter J.; Crandall, David L.; Houser, Steven R.

    2015-01-01

    Rationale There is a current need for development of new therapies for patients with heart failure. Objective To test the effects of members of the Corticotropin-Releasing Factor (CRF) family of peptides on myocyte contractility to validate them as potential heart failure therapeutics. Methods and Results Adult feline left ventricular myocytes (AFMs) were isolated and contractility was assessed in the presence and absence of CRF peptides Urocortin 2 (UCN2), Urocortin 3 (UCN3), Stresscopin (SCP), and the β-adrenergic agonist isoproterenol (Iso). An increase in fractional shortening and peak Ca2+ transient amplitude was seen in the presence of all CRF peptides. A decrease in Ca2+ decay rate (Tau) was also observed at all concentrations tested. cAMP generation was measured by ELISA in isolated AFMs in response to the CRF peptides and Iso and significant production was seen at all concentrations and time points tested. Conclusions The CRF family of peptides effectively increases cardiac contractility and should be evaluated as potential novel therapeutics for heart failure patients. PMID:26231084

  15. Bacteria entombed in the center of cholesterol gallstones induce fewer infectious manifestations than bacteria in the matrix of pigment stones.

    PubMed

    Stewart, Lygia; Griffiss, J McLeod; Jarvis, Gary A; Way, Lawrence W

    2007-10-01

    The clinical significance of bacteria in the pigment centers of cholesterol stones is unknown. We compared the infectious manifestations and characteristics of bacteria from pigment stones and predominantly cholesterol stones. Three hundred forty patients were studied. Bile was cultured. Gallstones were cultured and examined with scanning electron microscopy. Level of bacterial immunoglobulin G (bile, serum), complement killing, and tumor necrosis factor-alpha production were determined. Twenty-three percent of cholesterol stones and 68% of pigment stones contained bacteria (P < 0.0001). Stone culture correlated with scanning electron microscopy results. Pigment stone bacteria were more often present in bile and blood. Cholesterol stone bacteria caused more severe infections (19%) than sterile stones (0%), but less than pigment stone bacteria (57%) (P < 0.0001). Serum and bile from patients with cholesterol stone bacteria had less bacterial-specific immunoglobulin G. Cholesterol stone bacteria produced more slime. Pigment stone bacteria were more often killed by a patient's serum. Tumor necrosis factor-alpha production of the groups was similar. Bacteria are readily cultured from cholesterol stones with pigment centers, allowing for analysis of their virulence factors. Bacteria sequestered in cholesterol stones cause infectious manifestations, but less than bacteria in pigment stones. Possibly because of their isolation, cholesterol stone bacteria were less often present in bile and blood, induced less immunoglobulin G, were less often killed by a patient's serum, and demonstrated fewer infectious manifestations than pigment stone bacteria. This is the first study to analyze the clinical relevance of bacteria within cholesterol gallstones.

  16. Adenoviral gene transfer of Akt enhances myocardial contractility and intracellular calcium handling

    PubMed Central

    Cittadini, A; Monti, MG; Iaccarino, G; Di Rella, F; Tsichlis, PN; Di Gianni, A; Strömer, H; Sorriento, D; Peschle, C; Trimarco, B; Saccà, L; Condorelli, G

    2010-01-01

    The serine-threonine kinase Akt/PKB mediates stimuli from different classes of cardiomyocyte receptors, including the growth hormone/insulin like growth factor and the β-adrenergic receptors. Whereas the growth-promoting and antiapoptotic properties of Akt activation are well established, little is known about the effects of Akt on myocardial contractility, intracellular calcium (Ca2+) handling, oxygen consumption, and β-adrenergic pathway. To this aim, Sprague–Dawley rats were subjected to a wild-type Akt in vivo adenoviral gene transfer using a catheter-based technique combined with aortopulmonary crossclamping. Left ventricular (LV) contractility and intracellular Ca2+ handling were evaluated in an isolated isovolumic buffer-perfused, aequorin-loaded whole heart preparations 10 days after the surgery. The Ca2+–force relationship was obtained under steady-state conditions in tetanized muscles. No significant hypertrophy was detected in adenovirus with wild-type Akt (Ad.Akt) versus controls rats (LV-to-body weight ratio 2.6±0.2 versus 2.7±0.1 mg/g, controls versus Ad.Akt, P, NS). LV contractility, measured as developed pressure, increased by 41% in Ad.Akt. This was accounted for by both more systolic Ca2+ available to the contractile machinery (+19% versus controls) and by enhanced myofilament Ca2+ responsiveness, documented by an increased maximal Ca2+-activated pressure (+19% versus controls) and a shift to the left of the Ca2+–force relationship. Such increased contractility was paralleled by a slight increase of myocardial oxygen consumption (14%), while titrated dose of dobutamine providing similar inotropic effect augmented oxygen consumption by 39% (P<0.01). Phospholamban, calsequestrin, and ryanodine receptor LV mRNA and protein content were not different among the study groups, while sarcoplasmic reticulum Ca2+ ATPase protein levels were significantly increased in Ad.Akt rats. β-Adrenergic receptor density, affinity, kinase-1 levels, and

  17. American ginseng acutely regulates contractile function of rat heart.

    PubMed

    Jiang, Mao; Murias, Juan M; Chrones, Tom; Sims, Stephen M; Lui, Edmund; Noble, Earl G

    2014-01-01

    Chronic ginseng treatments have been purported to improve cardiac performance. However reports of acute administration of ginseng on cardiovascular function remain controversial and potential mechanisms are not clear. In this study, we examined the effects of acute North American ginseng (Panax quinquefolius) administration on rat cardiac contractile function by using electrocardiogram (ECG), non-invasive blood pressure (BP) measurement, and Langendorff isolated, spontaneously beating, perfused heart measurements (LP). Eight-week old male Sprague-Dawley rats (n = 8 per group) were gavaged with a single dose of water-soluble American ginseng at 300 mg/kg body weight. Heart rate (HR) and BP were measured prior to and at 1 and 24 h after gavaging (ECG and BP). Additional groups were used for each time point for Langendorff measurements. HR was significantly decreased (ECG: 1 h: 6 ± 0.2%, 24 h: 8 ± 0.3%; BP: 1 h: 8.8 ± 0.2%, 24 h: 13 ± 0.4% and LP: 1 h: 22 ± 0.4%, 24 h: 19 ± 0.4%) in rats treated with water-soluble ginseng compared with pre or control measures. An initial marked decrease in left ventricular developed pressure was observed in LP hearts but BP changes were not observed in BP group. A direct inhibitory effect of North American ginseng was observed on cardiac contractile function in LP rats and on fluorescence measurement of intracellular calcium transient in freshly isolated cardiac myocytes when exposed to ginseng (1 and 10 μg/ml). Collectively these data present evidence of depressed cardiac contractile function by acute administration of North American ginseng in rat. This acute reduction in cardiac contractile function appears to be intrinsic to the myocardium.

  18. American ginseng acutely regulates contractile function of rat heart

    PubMed Central

    Jiang, Mao; Murias, Juan M.; Chrones, Tom; Sims, Stephen M.; Lui, Edmund; Noble, Earl G.

    2014-01-01

    Chronic ginseng treatments have been purported to improve cardiac performance. However reports of acute administration of ginseng on cardiovascular function remain controversial and potential mechanisms are not clear. In this study, we examined the effects of acute North American ginseng (Panax quinquefolius) administration on rat cardiac contractile function by using electrocardiogram (ECG), non-invasive blood pressure (BP) measurement, and Langendorff isolated, spontaneously beating, perfused heart measurements (LP). Eight-week old male Sprague–Dawley rats (n = 8 per group) were gavaged with a single dose of water-soluble American ginseng at 300 mg/kg body weight. Heart rate (HR) and BP were measured prior to and at 1 and 24 h after gavaging (ECG and BP). Additional groups were used for each time point for Langendorff measurements. HR was significantly decreased (ECG: 1 h: 6 ± 0.2%, 24 h: 8 ± 0.3%; BP: 1 h: 8.8 ± 0.2%, 24 h: 13 ± 0.4% and LP: 1 h: 22 ± 0.4%, 24 h: 19 ± 0.4%) in rats treated with water-soluble ginseng compared with pre or control measures. An initial marked decrease in left ventricular developed pressure was observed in LP hearts but BP changes were not observed in BP group. A direct inhibitory effect of North American ginseng was observed on cardiac contractile function in LP rats and on fluorescence measurement of intracellular calcium transient in freshly isolated cardiac myocytes when exposed to ginseng (1 and 10 μg/ml). Collectively these data present evidence of depressed cardiac contractile function by acute administration of North American ginseng in rat. This acute reduction in cardiac contractile function appears to be intrinsic to the myocardium. PMID:24672484

  19. Cell division requires a direct link between microtubule-bound RacGAP and Anillin in the contractile ring.

    PubMed

    Gregory, Stephen L; Ebrahimi, Saman; Milverton, Joanne; Jones, Whitney M; Bejsovec, Amy; Saint, Robert

    2008-01-08

    The mitotic microtubule array plays two primary roles in cell division. It acts as a scaffold for the congression and separation of chromosomes, and it specifies and maintains the contractile-ring position. The current model for initiation of Drosophila and mammalian cytokinesis [1-5] postulates that equatorial localization of a RhoGEF (Pbl/Ect2) by a microtubule-associated motor protein complex creates a band of activated RhoA [6], which subsequently recruits contractile-ring components such as actin, myosin, and Anillin [1-3]. Equatorial microtubules are essential for continued constriction, but how they interact with the contractile apparatus is unknown. Here, we report the first direct molecular link between the microtubule spindle and the actomyosin contractile ring. We find that the spindle-associated component, RacGAP50C, which specifies the site of cleavage [1-5], interacts directly with Anillin, an actin and myosin binding protein found in the contractile ring [7-10]. Both proteins depend on this interaction for their localization. In the absence of Anillin, the spindle-associated RacGAP loses its association with the equatorial cortex, and cytokinesis fails. These results account for the long-observed dependence of cytokinesis on the continual presence of microtubules at the cortex.

  20. Differential effects of peroxynitrite on contractile protein properties in fast- and slow-twitch skeletal muscle fibers of rat.

    PubMed

    Dutka, T L; Mollica, J P; Lamb, G D

    2011-03-01

    Oxidative modification of contractile proteins is thought to be a key factor in muscle weakness observed in many pathophysiological conditions. In particular, peroxynitrite (ONOO(-)), a potent short-lived oxidant, is a likely candidate responsible for this contractile dysfunction. In this study ONOO(-) or 3-morpholinosydnonimine (Sin-1, a ONOO(-) donor) was applied to rat skinned muscle fibers to characterize the effects on contractile properties. Both ONOO(-) and Sin-1 exposure markedly reduced maximum force in slow-twitch fibers but had much less effect in fast-twitch fibers. The rate of isometric force development was also reduced without change in the number of active cross bridges. Sin-1 exposure caused a disproportionately large decrease in Ca(2+) sensitivity, evidently due to coproduction of superoxide, as it was prevented by Tempol, a superoxide dismutase mimetic. The decline in maximum force with Sin-1 and ONOO(-) treatments could be partially reversed by DTT, provided it was applied before the fiber was activated. Reversal by DTT indicates that the decrease in maximum force was due at least in part to oxidation of cysteine residues. Ascorbate caused similar reversal, further suggesting that the cysteine residues had undergone S-nitrosylation. The reduction in Ca(2+) sensitivity, however, was not reversed by either DTT or ascorbate. Western blot analysis showed cross-linking of myosin heavy chain (MHC) I, appearing as larger protein complexes after ONOO(-) exposure. The findings suggest that ONOO(-) initially decreases maximum force primarily by oxidation of cysteine residues on the myosin heads, and that the accompanying decrease in Ca(2+) sensitivity is likely due to other, less reversible actions of hydroxyl or related radicals.

  1. Effects of Antihypertensive Agents on Intestinal Contractility in the Spontaneously Hypertensive Rat: Angiotensin Receptor System Downregulation by Losartan

    PubMed Central

    Abeywardena, Mahinda Yapa

    2017-01-01

    Hypertension is an inflammatory condition controlled by the renin angiotensin system and is linked to kidney disease, diabetes mellitus, and recently to dysfunction of the gut. The aim of this study was to determine what effect antihypertensive drug treatments may have on intestinal function of the spontaneously hypertensive rat (SHR). In the first experiment, SHRs were treated with enalapril, hydralazine, or with no treatment as a control. In the second experiment, SHRs were treated with losartan or with no treatment as a control. All drug treatments led to significant lowering of blood pressure after 16 weeks. At termination, intact tissue sections of the ileum and colon were induced to contract ex vivo by KCl; electrical stimulation; and agonists carbachol, angiotensin II, and prostaglandin E2 (PGE2). There were no differences in ileal or colonic contractility due to hydralazine or enalapril compared with no-treatment SHR control. However, for the ileum, the losartan group responded significantly more to KCl and carbachol while responding less to angiotensin II, with no difference for PGE2 compared with the no-treatment SHR control. In contrast, the colon responded similarly to KCl, electrical stimulation, and PGE2 but responded significantly less to angiotensin II. These results demonstrate that the ileum responds differently (with KCl and carbachol as agonists) to the colon after losartan treatment, whereas there is a reduced contractile response in both the ileum and colon following losartan treatment. Although there are few well documented major contraindications for angiotensin receptor blockers, the modulation of gut contractility by losartan may have wider implications for bowel health. PMID:27903643

  2. Effects of Antihypertensive Agents on Intestinal Contractility in the Spontaneously Hypertensive Rat: Angiotensin Receptor System Downregulation by Losartan.

    PubMed

    Patten, Glen Stephen; Abeywardena, Mahinda Yapa

    2017-02-01

    Hypertension is an inflammatory condition controlled by the renin angiotensin system and is linked to kidney disease, diabetes mellitus, and recently to dysfunction of the gut. The aim of this study was to determine what effect antihypertensive drug treatments may have on intestinal function of the spontaneously hypertensive rat (SHR). In the first experiment, SHRs were treated with enalapril, hydralazine, or with no treatment as a control. In the second experiment, SHRs were treated with losartan or with no treatment as a control. All drug treatments led to significant lowering of blood pressure after 16 weeks. At termination, intact tissue sections of the ileum and colon were induced to contract ex vivo by KCl; electrical stimulation; and agonists carbachol, angiotensin II, and prostaglandin E 2 (PGE 2 ). There were no differences in ileal or colonic contractility due to hydralazine or enalapril compared with no-treatment SHR control. However, for the ileum, the losartan group responded significantly more to KCl and carbachol while responding less to angiotensin II, with no difference for PGE 2 compared with the no-treatment SHR control. In contrast, the colon responded similarly to KCl, electrical stimulation, and PGE 2 but responded significantly less to angiotensin II. These results demonstrate that the ileum responds differently (with KCl and carbachol as agonists) to the colon after losartan treatment, whereas there is a reduced contractile response in both the ileum and colon following losartan treatment. Although there are few well documented major contraindications for angiotensin receptor blockers, the modulation of gut contractility by losartan may have wider implications for bowel health. Copyright © 2017 by The Author(s).

  3. Bacteria in the Tatahouine meteorite: nanometric-scale life in rocks.

    PubMed

    Gillet, P h; Barrat, J A; Heulin, T h; Achouak, W; Lesourd, M; Guyot, F; Benzerara, K

    2000-02-15

    We present a study of the textural signature of terrestrial weathering and related biological activity in the Tatahouine meteorite. Scanning and transmission electron microscopy images obtained on the weathered samples of the Tatahouine meteorite and surrounding soil show two types of bacteria-like forms lying on mineral surfaces: (1) rod-shaped forms (RSF) about 70-80 nm wide and ranging from 100 nm to 600 nm in length; (2) ovoid forms (OVF) with diameters between 70 and 300 nm. They look like single cells surrounded by a cell wall. Only Na, K, C, O and N with traces of P and S are observed in the bulk of these objects. The chemical analyses and electron diffraction patterns confirm that the RSF and OVF cannot be magnetite or other iron oxides, iron hydroxides, silicates or carbonates. The sizes of the RSF and OVF are below those commonly observed for bacteria but are very similar to some bacteria-like forms described in the Martian meteorite ALH84001. All the previous observations strongly suggest that they are bacteria or their remnants. This conclusion is further supported by microbiological experiments in which pleomorphic bacteria with morphology similar to the OVF and RSF objects are obtained from biological culture of the soil surrounding the meteorite pieces. The present results show that bacteriomorphs of diameter less than 100 nm may in fact represent real bacteria or their remnants.

  4. Sex differences and the effects of ovariectomy on the β-adrenergic contractile response

    PubMed Central

    McIntosh, Victoria J.; Chandrasekera, P. Charukeshi

    2011-01-01

    The presence of sex differences in myocardial β-adrenergic responsiveness is controversial, and limited studies have addressed the mechanism underlying these differences. Studies were performed using isolated perfused hearts from male, intact female and ovariectomized female mice to investigate sex differences and the effects of ovarian hormone withdrawal on β-adrenergic receptor function. Female hearts exhibited blunted contractile responses to the β-adrenergic receptor agonist isoproterenol (ISO) compared with males but not ovariectomized females. There were no sex differences in β1-adrenergic receptor gene or protein expression. To investigate the role of adenylyl cyclase, phosphodiesterase, and the cAMP-signaling cascade in generating sex differences in the β-adrenergic contractile response, dose-response studies were performed in isolated perfused male and female hearts using forskolin, 3-isobutyl-1-methylxanthine (IBMX), and 8-(4-chlorophenylthio)adenosine 3′,5′-cyclic monophosphate (CPT-cAMP). Males showed a modestly enhanced contractile response to forskolin at 300 nM and 5 μM compared with females, but there were no sex differences in the response to IBMX or CPT-cAMP. The role of the A1 adenosine receptor (A1AR) in antagonizing the β-adrenergic contractile response was investigated using both the A1AR agonist 2-chloro-N6-cyclopentyl-adenosine and A1AR knockout (KO) mice. Intact females showed an enhanced A1AR anti-adrenergic effect compared with males and ovariectomized females. The β-adrenergic contractile response was potentiated in both male and female A1ARKO hearts, with sex differences no longer present above 1 nM ISO. The β-adrenergic contractile response is greater in male hearts than females, and minor differences in the action of adenylyl cyclase or the A1AR may contribute to these sex differences. PMID:21685268

  5. IGF-II and IGFBP-6 regulate cellular contractility and proliferation in Dupuytren's disease.

    PubMed

    Raykha, Christina; Crawford, Justin; Gan, Bing Siang; Fu, Ping; Bach, Leon A; O'Gorman, David B

    2013-10-01

    Dupuytren's disease (DD) is a common and heritable fibrosis of the palmar fascia that typically manifests as permanent finger contractures. The molecular interactions that induce the development of hyper-contractile fibroblasts, or myofibroblasts, in DD are poorly understood. We have identified IGF2 and IGFBP6, encoding insulin-like growth factor (IGF)-II and IGF binding protein (IGFBP)-6 respectively, as reciprocally dysregulated genes and proteins in primary cells derived from contracture tissues (DD cells). Recombinant IGFBP-6 inhibited the proliferation of DD cells, patient-matched control (PF) cells and normal palmar fascia (CT) cells. Co-treatments with IGF-II, a high affinity IGFBP-6 ligand, were unable to rescue these effects. A non-IGF-II binding analog of IGFBP-6 also inhibited cellular proliferation, implicating IGF-II-independent roles for IGFBP-6 in this process. IGF-II enhanced the proliferation of CT cells, but not DD or PF cells, and significantly enhanced DD and PF cell contractility in stressed collagen lattices. While IGFBP-6 treatment did not affect cellular contractility, it abrogated the IGF-II-induced contractility of DD and PF cells in stressed collagen lattices. IGF-II also significantly increased the contraction of DD cells in relaxed lattices, however this effect was not evident in relaxed collagen lattices containing PF cells. The disparate effects of IGF-II on DD and PF cells in relaxed and stressed contraction models suggest that IGF-II can enhance lattice contractility through more than one mechanism. This is the first report to implicate IGFBP-6 as a suppressor of cellular proliferation and IGF-II as an inducer of cellular contractility in this connective tissue disease. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Catecholamines and myocardial contractile function during hypodynamia and with an altered thyroid hormone balance

    NASA Technical Reports Server (NTRS)

    Pruss, G. M.; Kuznetsov, V. I.; Zhilinskaya, A. A.

    1980-01-01

    The dynamics of catecholamine content and myocardial contractile function during hypodynamia were studied in 109 white rats whose motor activity was severely restricted for up to 30 days. During the first five days myocardial catecholamine content, contractile function, and physical load tolerance decreased. Small doses of thyroidin counteracted this tendency. After 15 days, noradrenalin content and other indices approached normal levels and, after 30 days, were the same as control levels, although cardiac functional reserve was decreased. Thyroidin administration after 15 days had no noticeable effect. A detailed table shows changes in 17 indices of myocardial contractile function during hypodynamia.

  7. The Role of Rac1 on Carbachol-induced Contractile Activity in Detrusor Smooth Muscle from Streptozotocin-induced Diabetic Rats.

    PubMed

    Evcim, Atiye Sinem; Micili, Serap Cilaker; Karaman, Meral; Erbil, Guven; Guneli, Ensari; Gidener, Sedef; Gumustekin, Mukaddes

    2015-06-01

    This study was designed to determine the role of the small GTPase Rac1 on carbachol-induced contractile activity in detrusor smooth muscle using small inhibitor NSC 23766 in diabetic rats. Rac1 expression in bladder tissue was also evaluated. In the streptozotocin (STZ)-induced diabetic rat model, three study groups were composed of control, diabetic and insulin-treated diabetic subjects. The detrusor muscle strips were suspended in organ baths at the end of 8-12 weeks after STZ injection. Carbachol (CCh) (10(-9) -10(-4) M) concentration-response curves were obtained both in the absence and in the presence of Rac1 inhibitor NSC 23766 (0.1, 1 and 10 μM). Diabetes-related histopathological changes and Rac1 expressions were assessed by haematoxylin and eosin staining and immunohistochemical staining, respectively. CCh caused dose-dependent contractile responses in all the study groups. Rac1 inhibitor NSC 23766 inhibited CCh-induced contractile responses in all groups, but this inhibition seen in both diabetes groups was greater than in the control group. Histological examination revealed an increased bladder wall thickness both in the diabetes and in the insulin-treated diabetes groups compared to the control group. In immunohistochemical staining, expression of Rac1 was observed to be increased in all layers of bladder in both diabetic groups compared to the control group. In the diabetic bladders, increased expression of Rac1 and considerable inhibition of CCh-induced responses in the presence of NSC 23766 compared to those of the control group may indicate a specific role of Rac1 in diabetes-related bladder dysfunction, especially associated with cholinergic mediated detrusor overactivity. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  8. Aspen Tension Wood Fibers Contain β-(1→4)-Galactans and Acidic Arabinogalactans Retained by Cellulose Microfibrils in Gelatinous Walls1[OPEN

    PubMed Central

    Gorshkova, Tatyana; Mokshina, Natalia; Chernova, Tatyana; Ibragimova, Nadezhda; Salnikov, Vadim; Mikshina, Polina; Tryfona, Theodora; Banasiak, Alicja; Immerzeel, Peter; Dupree, Paul; Mellerowicz, Ewa J.

    2015-01-01

    Contractile cell walls are found in various plant organs and tissues such as tendrils, contractile roots, and tension wood. The tension-generating mechanism is not known but is thought to involve special cell wall architecture. We previously postulated that tension could result from the entrapment of certain matrix polymers within cellulose microfibrils. As reported here, this hypothesis was corroborated by sequential extraction and analysis of cell wall polymers that are retained by cellulose microfibrils in tension wood and normal wood of hybrid aspen (Populus tremula × Populus tremuloides). β-(1→4)-Galactan and type II arabinogalactan were the main large matrix polymers retained by cellulose microfibrils that were specifically found in tension wood. Xyloglucan was detected mostly in oligomeric form in the alkali-labile fraction and was enriched in tension wood. β-(1→4)-Galactan and rhamnogalacturonan I backbone epitopes were localized in the gelatinous cell wall layer. Type II arabinogalactans retained by cellulose microfibrils had a higher content of (methyl)glucuronic acid and galactose in tension wood than in normal wood. Thus, β-(1→4)-galactan and a specialized form of type II arabinogalactan are trapped by cellulose microfibrils specifically in tension wood and, thus, are the main candidate polymers for the generation of tensional stresses by the entrapment mechanism. We also found high β-galactosidase activity accompanying tension wood differentiation and propose a testable hypothesis that such activity might regulate galactan entrapment and, thus, mechanical properties of cell walls in tension wood. PMID:26378099

  9. Suppression of guinea pig ileum induced contractility by plasma albumin of hibernators

    USGS Publications Warehouse

    Bruce, David S.; Ambler, Douglas L.; Henschel, Timothy M.; Oeltgen, Peter R.; Nilekani, Sita P.; Amstrup, Steven C.

    1992-01-01

    Previous studies suggest that hibernation may be regulated by internal opioids and that the putative “hibernation induction trigger” (HIT) may itself be an opioid. This study examined the effect of plasma albumin (known to bind HIT) on induced contractility of the guinea pig ileum muscle strip. Morphine (400 nM) depressed contractility and 100 nM naloxone restored it. Ten milligrams of lyophilized plasma albumin fractions from hibernating ground squirrels, woodchucks, black bears, and polar bears produced similar inhibition, with partial reversal by naloxone. Five hundredths mg of d-Ala2-d-Leu5-enkephalin (DADLE) also inhibited contractility and naloxone reversed it. Conclusions are that hibernating individuals of these species contain an HIT substance that is opioid in nature and summer animals do not; an endogenous opioid similar to leu-enkephalin may be the HIT compound or give rise to it.

  10. A global, myosin light chain kinase-dependent increase in myosin II contractility accompanies the metaphase-anaphase transition in sea urchin eggs.

    PubMed

    Lucero, Amy; Stack, Christianna; Bresnick, Anne R; Shuster, Charles B

    2006-09-01

    Myosin II is the force-generating motor for cytokinesis, and although it is accepted that myosin contractility is greatest at the cell equator, the temporal and spatial cues that direct equatorial contractility are not known. Dividing sea urchin eggs were placed under compression to study myosin II-based contractile dynamics, and cells manipulated in this manner underwent an abrupt, global increase in cortical contractility concomitant with the metaphase-anaphase transition, followed by a brief relaxation and the onset of furrowing. Prefurrow cortical contractility both preceded and was independent of astral microtubule elongation, suggesting that the initial activation of myosin II preceded cleavage plane specification. The initial rise in contractility required myosin light chain kinase but not Rho-kinase, but both signaling pathways were required for successful cytokinesis. Last, mobilization of intracellular calcium during metaphase induced a contractile response, suggesting that calcium transients may be partially responsible for the timing of this initial contractile event. Together, these findings suggest that myosin II-based contractility is initiated at the metaphase-anaphase transition by Ca2+-dependent myosin light chain kinase (MLCK) activity and is maintained through cytokinesis by both MLCK- and Rho-dependent signaling. Moreover, the signals that initiate myosin II contractility respond to specific cell cycle transitions independently of the microtubule-dependent cleavage stimulus.

  11. A Global, Myosin Light Chain Kinase-dependent Increase in Myosin II Contractility Accompanies the Metaphase–Anaphase Transition in Sea Urchin Eggs

    PubMed Central

    Lucero, Amy; Stack, Christianna; Bresnick, Anne R.

    2006-01-01

    Myosin II is the force-generating motor for cytokinesis, and although it is accepted that myosin contractility is greatest at the cell equator, the temporal and spatial cues that direct equatorial contractility are not known. Dividing sea urchin eggs were placed under compression to study myosin II-based contractile dynamics, and cells manipulated in this manner underwent an abrupt, global increase in cortical contractility concomitant with the metaphase–anaphase transition, followed by a brief relaxation and the onset of furrowing. Prefurrow cortical contractility both preceded and was independent of astral microtubule elongation, suggesting that the initial activation of myosin II preceded cleavage plane specification. The initial rise in contractility required myosin light chain kinase but not Rho-kinase, but both signaling pathways were required for successful cytokinesis. Last, mobilization of intracellular calcium during metaphase induced a contractile response, suggesting that calcium transients may be partially responsible for the timing of this initial contractile event. Together, these findings suggest that myosin II-based contractility is initiated at the metaphase–anaphase transition by Ca2+-dependent myosin light chain kinase (MLCK) activity and is maintained through cytokinesis by both MLCK- and Rho-dependent signaling. Moreover, the signals that initiate myosin II contractility respond to specific cell cycle transitions independently of the microtubule-dependent cleavage stimulus. PMID:16837551

  12. Single-Walled Carbon Nanotubes as Fluorescence Biosensors for Pathogen Recognition in Water Systems

    DOE PAGES

    Upadhyayula, Venkata K. K.; Ghoshroy, Soumitra; Nair, Vinod S.; ...

    2008-01-01

    Tmore » he possibility of using single-walled carbon nanotubes (SWCNs) aggregates as fluorescence sensors for pathogen recognition in drinking water treatment applications has been studied. Batch adsorption study is conducted to adsorb large concentrations of Staphylococcus aureus aureus SH 1000 and Escherichia coli pKV-11 on single-walled carbon nanotubes. Subsequently the immobilized bacteria are detected with confocal microscopy by coating the nanotubes with fluorescence emitting antibodies. he Freundlich adsorption equilibrium constant ( k ) for S.aureus and E.coli determined from batch adsorption study was found to be 9 × 10 8 and 2 × 10 8  ml/g, respectively. he visualization of bacterial cells adsorbed on fluorescently modified carbon nanotubes is also clearly seen. he results indicate that hydrophobic single-walled carbon nanotubes have excellent bacterial adsorption capacity and fluorescent detection capability. his is an important advancement in designing fluorescence biosensors for pathogen recognition in water systems.« less

  13. Mechanical influences in bacterial morphogenesis and cell division

    NASA Astrophysics Data System (ADS)

    Sun, Sean

    2010-03-01

    Bacterial cells utilize a ring-like organelle (the Z-ring) to accomplish cell division. The Z-ring actively generates a contractile force and influences cell wall growth. We will discuss a general model of bacterial morphogenesis where mechanical forces are coupled to the growth dynamics of the cell wall. The model suggests a physical mechanism that determines the shapes of bacteria cells. The roles of several bacterial cytoskeletal proteins and the Z-ring are discussed. We will also explore molecular mechanisms of force generation by the Z-ring and how cells can generate mechanical forces without molecular motors.

  14. Modeling beta-adrenergic control of cardiac myocyte contractility in silico.

    PubMed

    Saucerman, Jeffrey J; Brunton, Laurence L; Michailova, Anushka P; McCulloch, Andrew D

    2003-11-28

    The beta-adrenergic signaling pathway regulates cardiac myocyte contractility through a combination of feedforward and feedback mechanisms. We used systems analysis to investigate how the components and topology of this signaling network permit neurohormonal control of excitation-contraction coupling in the rat ventricular myocyte. A kinetic model integrating beta-adrenergic signaling with excitation-contraction coupling was formulated, and each subsystem was validated with independent biochemical and physiological measurements. Model analysis was used to investigate quantitatively the effects of specific molecular perturbations. 3-Fold overexpression of adenylyl cyclase in the model allowed an 85% higher rate of cyclic AMP synthesis than an equivalent overexpression of beta 1-adrenergic receptor, and manipulating the affinity of Gs alpha for adenylyl cyclase was a more potent regulator of cyclic AMP production. The model predicted that less than 40% of adenylyl cyclase molecules may be stimulated under maximal receptor activation, and an experimental protocol is suggested for validating this prediction. The model also predicted that the endogenous heat-stable protein kinase inhibitor may enhance basal cyclic AMP buffering by 68% and increasing the apparent Hill coefficient of protein kinase A activation from 1.0 to 2.0. Finally, phosphorylation of the L-type calcium channel and phospholamban were found sufficient to predict the dominant changes in myocyte contractility, including a 2.6x increase in systolic calcium (inotropy) and a 28% decrease in calcium half-relaxation time (lusitropy). By performing systems analysis, the consequences of molecular perturbations in the beta-adrenergic signaling network may be understood within the context of integrative cellular physiology.

  15. Modeling beta-adrenergic control of cardiac myocyte contractility in silico

    NASA Technical Reports Server (NTRS)

    Saucerman, Jeffrey J.; Brunton, Laurence L.; Michailova, Anushka P.; McCulloch, Andrew D.; McCullough, A. D. (Principal Investigator)

    2003-01-01

    The beta-adrenergic signaling pathway regulates cardiac myocyte contractility through a combination of feedforward and feedback mechanisms. We used systems analysis to investigate how the components and topology of this signaling network permit neurohormonal control of excitation-contraction coupling in the rat ventricular myocyte. A kinetic model integrating beta-adrenergic signaling with excitation-contraction coupling was formulated, and each subsystem was validated with independent biochemical and physiological measurements. Model analysis was used to investigate quantitatively the effects of specific molecular perturbations. 3-Fold overexpression of adenylyl cyclase in the model allowed an 85% higher rate of cyclic AMP synthesis than an equivalent overexpression of beta 1-adrenergic receptor, and manipulating the affinity of Gs alpha for adenylyl cyclase was a more potent regulator of cyclic AMP production. The model predicted that less than 40% of adenylyl cyclase molecules may be stimulated under maximal receptor activation, and an experimental protocol is suggested for validating this prediction. The model also predicted that the endogenous heat-stable protein kinase inhibitor may enhance basal cyclic AMP buffering by 68% and increasing the apparent Hill coefficient of protein kinase A activation from 1.0 to 2.0. Finally, phosphorylation of the L-type calcium channel and phospholamban were found sufficient to predict the dominant changes in myocyte contractility, including a 2.6x increase in systolic calcium (inotropy) and a 28% decrease in calcium half-relaxation time (lusitropy). By performing systems analysis, the consequences of molecular perturbations in the beta-adrenergic signaling network may be understood within the context of integrative cellular physiology.

  16. Skeletal muscle morphology and contractile function in relation to muscle denervation in diabetic neuropathy

    PubMed Central

    Major, Brendan; Kimpinski, Kurt; Doherty, Timothy J.; Rice, Charles L.

    2013-01-01

    The objective of the study was to assess the effects of diabetic polyneuropathy (DPN) on muscle contractile properties in humans, and how these changes are related to alterations in muscle morphology and denervation. Patients with DPN (n = 12) were compared with age- and sex-matched controls (n = 12). Evoked and voluntary contractile properties, including stimulated twitch responses and maximal voluntary contractions, of the dorsiflexor muscles were assessed using an isometric ankle dynamometer. Motor unit number estimates (MUNE) of the tibialis anterior (TA) were performed via quantitative electromyography and decomposition-enhanced spike-triggered averaging. Peak tibialis anterior (TA) cross-sectional area (CSA; cm2), and relative proportion of contractile to noncontractile tissue (%) was determined from magnetic resonance images. Patients with DPN demonstrated decreased strength (−35%) and slower (−45%) dorsiflexion contractile properties for both evoked and voluntary contractions (P < 0.05). These findings were not accounted for by differences in voluntary activation (P > 0.05) or antagonist coactivation (P > 0.05). Additionally, patients with DPN were weaker when strength was normalized to TA total CSA (−30%; P < 0.05) or contractile tissue CSA (−26%; P < 0.05). In the DPN patient group, TA MUNEs were negatively related to both % noncontractile tissue (P < 0.05; r = 0.72) and twitch half-relaxation time (P < 0.05; r = 0.60), whereas no relationships were found between these variables in controls (P > 0.05). We conclude that patients with DPN demonstrated reduced strength and muscle quality as well as contractile slowing. This process may contribute to muscle power loss and functional impairments reported in patients with DPN, beyond the loss of strength commonly observed. PMID:24356519

  17. Physiological response of cardiac tissue to bisphenol a: alterations in ventricular pressure and contractility

    PubMed Central

    Brooks, Daina; Chandra, Akhil; Jaimes, Rafael; Sarvazyan, Narine; Kay, Matthew

    2015-01-01

    Biomonitoring studies have indicated that humans are routinely exposed to bisphenol A (BPA), a chemical that is commonly used in the production of polycarbonate plastics and epoxy resins. Epidemiological studies have shown that BPA exposure in humans is associated with cardiovascular disease; however, the direct effects of BPA on cardiac physiology are largely unknown. Previously, we have shown that BPA exposure slows atrioventricular electrical conduction, decreases epicardial conduction velocity, and prolongs action potential duration in excised rat hearts. In the present study, we tested if BPA exposure also adversely affects cardiac contractile performance. We examined the impact of BPA exposure level, sex, and pacing rate on cardiac contractile function in excised rat hearts. Hearts were retrogradely perfused at constant pressure and exposed to 10−9-10−4 M BPA. Left ventricular developed pressure and contractility were measured during sinus rhythm and during pacing (5, 6.5, and 9 Hz). Ca2+ transients were imaged from whole hearts and from neonatal rat cardiomyocyte layers. During sinus rhythm in female hearts, BPA exposure decreased left ventricular developed pressure and inotropy in a dose-dependent manner. The reduced contractile performance was exacerbated at higher pacing rates. BPA-induced effects on contractile performance were also observed in male hearts, albeit to a lesser extent. Exposure to BPA altered Ca2+ handling within whole hearts (reduced diastolic and systolic Ca2+ transient potentiation) and neonatal cardiomyocytes (reduced Ca2+ transient amplitude and prolonged Ca2+ transient release time). In conclusion, BPA exposure significantly impaired cardiac performance in a dose-dependent manner, having a major negative impact upon electrical conduction, intracellular Ca2+ handing, and ventricular contractility. PMID:25980024

  18. A device for rapid and quantitative measurement of cardiac myocyte contractility

    NASA Astrophysics Data System (ADS)

    Gaitas, Angelo; Malhotra, Ricky; Li, Tao; Herron, Todd; Jalife, José

    2015-03-01

    Cardiac contractility is the hallmark of cardiac function and is a predictor of healthy or diseased cardiac muscle. Despite advancements over the last two decades, the techniques and tools available to cardiovascular scientists are limited in their utility to accurately and reliably measure the amplitude and frequency of cardiomyocyte contractions. Isometric force measurements in the past have entailed cumbersome attachment of isolated and permeabilized cardiomyocytes to a force transducer followed by measurements of sarcomere lengths under conditions of submaximal and maximal Ca2+ activation. These techniques have the inherent disadvantages of being labor intensive and costly. We have engineered a micro-machined cantilever sensor with an embedded deflection-sensing element that, in preliminary experiments, has demonstrated to reliably measure cardiac cell contractions in real-time. Here, we describe this new bioengineering tool with applicability in the cardiovascular research field to effectively and reliably measure cardiac cell contractility in a quantitative manner. We measured contractility in both primary neonatal rat heart cardiomyocyte monolayers that demonstrated a beat frequency of 3 Hz as well as human embryonic stem cell-derived cardiomyocytes with a contractile frequency of about 1 Hz. We also employed the β-adrenergic agonist isoproterenol (100 nmol l-1) and observed that our cantilever demonstrated high sensitivity in detecting subtle changes in both chronotropic and inotropic responses of monolayers. This report describes the utility of our micro-device in both basic cardiovascular research as well as in small molecule drug discovery to monitor cardiac cell contractions.

  19. Some Fundamental Molecular Mechanisms of Contractility in Fibrous Macromolecules

    PubMed Central

    Mandelkern, L.

    1967-01-01

    The fundamental molecular mechanisms of contractility and tension development in fibrous macromolecules are developed from the point of view of the principles of polymer physical chemistry. The problem is treated in a general manner to encompass the behavior of all macromolecular systems irrespective of their detailed chemical structure and particular function, if any. Primary attention is given to the contractile process which accompanies the crystal-liquid transition in axially oriented macromolecular systems. The theoretical nature of the process is discussed, and many experimental examples are given from the literature which demonstrate the expected behavior. Experimental attention is focused on the contraction of fibrous proteins, and the same underlying molecular mechanism is shown to be operative for a variety of different systems. PMID:6050598

  20. Denaturing gradient gel electrophoresis fingerprinting of soil bacteria in the vicinity of the Chinese Great Wall Station, King George Island, Antarctica.

    PubMed

    Pan, Qi; Wang, Feng; Zhang, Yang; Cai, Minghong; He, Jianfeng; Yang, Haizhen

    2013-08-01

    Bacterial diversity was investigated in soil samples collected from 13 sites around the Great Wall Station, Fildes Peninsula, King George Island, Antarctica, using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes. The classes alpha-, beta-, and gamma-Proteobacteria, as well as the phylum Actinobacteria, were found to be the dominant bacteria in the soils around the Great Wall Station. Although the selected samples were not contaminated by oil, a relationship between soil parameters, microbial biodiversity, and human impact was still seen. Sample sites in human impacted areas showed lower bacterial biodiversity (average H' = 2.65) when compared to non-impacted sites (average H' = 3.05). There was no statistically significant correlation between soil bacterial diversity and total organic carbon (TOC), total nitrogen, or total phosphorus contents of the soil. Canonical correlation analysis showed that TOC content was the most important factor determining bacterial community profiles among the measured soil parameters. In conclusion, microbial biodiversity and community characteristics within relatively small scales (1.5 km) were determined as a function of local environment parameters and anthropogenic impact.

  1. The Most Abundant Glycoprotein of Amebic Cyst Walls (Jacob) Is a Lectin with Five Cys-Rich, Chitin-Binding Domains

    PubMed Central

    Frisardi, Marta; Ghosh, Sudip K.; Field, Jessica; Van Dellen, Katrina; Rogers, Rick; Robbins, Phillips; Samuelson, John

    2000-01-01

    The infectious stage of amebae is the chitin-walled cyst, which is resistant to stomach acids. In this study an extraordinarily abundant, encystation-specific glycoprotein (Jacob) was identified on two-dimensional protein gels of cyst walls purified from Entamoeba invadens. Jacob, which was acidic and had an apparent molecular mass of ∼100 kDa, contained sugars that bound to concanavalin A and ricin. The jacob gene encoded a 45-kDa protein with a ladder-like series of five Cys-rich domains. These Cys-rich domains were reminiscent of but not homologous to the Cys-rich chitin-binding domains of insect chitinases and peritrophic matrix proteins that surround the food bolus in the insect gut. Jacob bound purified chitin and chitin remaining in sodium dodecyl sulfate-treated cyst walls. Conversely, the E. histolytica plasma membrane Gal/GalNAc lectin bound sugars of intact cyst walls and purified Jacob. In the presence of galactose, E. invadens formed wall-less cysts, which were quadranucleate and contained Jacob and chitinase (another encystation-specific protein) in secretory vesicles. A galactose lectin was found to be present on the surface of wall-less cysts, which phagocytosed bacteria and mucin-coated beads. These results suggest that the E. invadens cyst wall forms when the plasma membrane galactose lectin binds sugars on Jacob, which in turn binds chitin via its five chitin-binding domains. PMID:10858239

  2. Assessment of the Contractile Properties of Permeabilized Skeletal Muscle Fibers.

    PubMed

    Claflin, Dennis R; Roche, Stuart M; Gumucio, Jonathan P; Mendias, Christopher L; Brooks, Susan V

    2016-01-01

    Permeabilized individual skeletal muscle fibers offer the opportunity to evaluate contractile behavior in a system that is greatly simplified, yet physiologically relevant. Here we describe the steps required to prepare, permeabilize and preserve small samples of skeletal muscle. We then detail the procedures used to isolate individual fiber segments and attach them to an experimental apparatus for the purpose of controlling activation and measuring force generation. We also describe our technique for estimating the cross-sectional area of fiber segments. The area measurement is necessary for normalizing the absolute force to obtain specific force, a measure of the intrinsic force-generating capability of the contractile system.

  3. Variations in carbachol- and ATP-induced contractions of the rat detrusor: effects of gender, mucosa and contractile direction.

    PubMed

    Liang, Willmann; Leung, Ping Chung

    2012-12-01

    Contractile characteristics of the bladder may depend on variables such as gender, mucosa (MU) and direction of the contractions. However, definitive information is not yet available despite earlier studies on the effects of one variable or another. Here, we explored the differences in the rat detrusor attributable to gender, mucosa and contractile direction. K+, carbachol (CCh) and ATP were used as contractile stimuli on rat detrusor strips with and without MU. Contractility was monitored using a myograph system. Both tonic and phasic contractile activities were analyzed. MU-independent contractions induced by CCh were more potent in females, an effect specific to the longitudinal direction only. The maximal CCh response was larger also in females when MU was removed, suggesting a stronger MU-independent component in the contraction. The larger area under curves of the females under ATP stimulation showed dependence on MU and contractile direction as well. ATP-induced contractions in the males were affected more by MU in the transverse direction than in the females. Direction- and MU-dependent variability of ATP responses was also observed in the males but not in females. Findings here added new information to the understanding of bladder contractile physiology, providing insights into the quest for better drugs in managing bladder disorders.

  4. Enzyme-Less Growth in Chara and Terrestrial Plants

    DOE PAGES

    Boyer, John S.

    2016-06-21

    Enzyme-less chemistry appears to control the growth rate of the green alga Chara corallina. The chemistry occurs in the wall where a calcium pectate cycle determines both the rate of wall enlargement and the rate of pectate deposition into the wall. The process is the first to indicate that a wall polymer can control how a plant cell enlarges after exocytosis releases the polymer to the wall. This raises the question of whether other species use a similar mechanism. Chara is one of the closest relatives of the progenitors of terrestrial plants and during the course of evolution, new wallmore » features evolved while pectate remained one of the most conserved components. In addition, charophytes contain auxin which affects Chara in ways resembling its action in terrestrial plants. Furthermore, this review considers whether more recently acquired wall features require different mechanisms to explain cell expansion.« less

  5. Enzyme-Less Growth in Chara and Terrestrial Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyer, John S.

    Enzyme-less chemistry appears to control the growth rate of the green alga Chara corallina. The chemistry occurs in the wall where a calcium pectate cycle determines both the rate of wall enlargement and the rate of pectate deposition into the wall. The process is the first to indicate that a wall polymer can control how a plant cell enlarges after exocytosis releases the polymer to the wall. This raises the question of whether other species use a similar mechanism. Chara is one of the closest relatives of the progenitors of terrestrial plants and during the course of evolution, new wallmore » features evolved while pectate remained one of the most conserved components. In addition, charophytes contain auxin which affects Chara in ways resembling its action in terrestrial plants. Furthermore, this review considers whether more recently acquired wall features require different mechanisms to explain cell expansion.« less

  6. Store-operated Ca(2+) entry (SOCE) contributes to normal skeletal muscle contractility in young but not in aged skeletal muscle.

    PubMed

    Thornton, Angela M; Zhao, Xiaoli; Weisleder, Noah; Brotto, Leticia S; Bougoin, Sylvain; Nosek, Thomas M; Reid, Michael; Hardin, Brian; Pan, Zui; Ma, Jianjie; Parness, Jerome; Brotto, Marco

    2011-06-01

    Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca(2+) to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca(2+) entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular Ca(2+) to contractile function of skeletal muscle during aging. First, we demonstrate graded coupling between SR Ca(2+) release channel-mediated Ca(2+) release and activation of SOCE. Inhibition of SOCE produced significant reduction of contractile force in young skeletal muscle, particularly at high frequency stimulation, and such effects were completely absent in aged skeletal muscle. Our data indicate that SOCE contributes to the normal physiological contractile response of young healthy skeletal muscle and that defective extracellular Ca(2+) entry through SOCE contributes to the reduced contractile force characteristic of aged skeletal muscle.

  7. Sharper and faster "nano darts" kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube.

    PubMed

    Liu, Shaobin; Wei, Li; Hao, Lin; Fang, Ning; Chang, Matthew Wook; Xu, Rong; Yang, Yanhui; Chen, Yuan

    2009-12-22

    To further our understanding on the antibacterial activity of single-walled carbon nanotubes (SWCNTs), high purity SWCNTs with average diameter of 0.83 nm and (7,5) chirality as dominate (n,m) structure were dispersed in a biocompatible surfactant solution. Ultraviolet-visible-near-infrared radiation absorption spectroscopy was employed to monitor the aggregation of SWCNTs. The results demonstrated that individually dispersed SWCNTs were more toxic than SWCNT aggregates toward bacteria (gram-negative Escherichia coli, Pseudomonas aeruginosa, and gram-positive Staphylococcus aureus, Bacillus subtilis). Individually dispersed SWCNTs can be visualized as numerous moving "nano darts" in the solution, constantly attacking the bacteria; thereby, degrading the bacterial cell integrity and causing the cell death. Controlled experimental results suggested that inhibiting cell growth and oxidative stress were not the major causes responsible for the death of cells. Furthermore, the detrimental effects of Co metal residues (up to 1 mug/mL) on SWCNT samples can be ruled out. Atomic force microscope study conducted in suspension proved that the death rates of bacteria were strongly correlated with their mechanical properties; soft cells were more vulnerable to SWCNT piercing. The antibacterial activity of SWCNTs can be remarkably improved by enhancing the SWCNT physical puncture on bacteria in the following ways: (1) dispersing SWCNTs individually to sharpen the nano darts; (2) increasing SWCNT concentration to raise the population density of nano darts; and (3) elevating the shaking speed of incubation to speed up the nano darts. This study elucidated several factors controlling the antibacterial activity of pristine SWCNTs and it provided an insight in developing strategies that can maximize the SWCNT application potentials while minimizing the health and environment risks.

  8. PKA catalytic subunit compartmentation regulates contractile and hypertrophic responses to β-adrenergic signaling

    PubMed Central

    Yang, Jason H.; Polanowska-Grabowska, Renata K.; Smith, Jeffrey S.; Shields, Charles W.; Saucerman, Jeffrey J.

    2014-01-01

    β-adrenergic signaling is spatiotemporally heterogeneous in the cardiac myocyte, conferring exquisite control to sympathetic stimulation. Such heterogeneity drives the formation of protein kinase A (PKA) signaling microdomains, which regulate Ca2+ handling and contractility. Here, we test the hypothesis that the nucleus independently comprises a PKA signaling microdomain regulating myocyte hypertrophy. Spatially-targeted FRET reporters for PKA activity identified slower PKA activation and lower isoproterenol sensitivity in the nucleus (t50 = 10.60±0.68 min; EC50 = 89.00 nmol/L) than in the cytosol (t50 = 3.71±0.25 min; EC50 = 1.22 nmol/L). These differences were not explained by cAMP or AKAP-based compartmentation. A computational model of cytosolic and nuclear PKA activity was developed and predicted that differences in nuclear PKA dynamics and magnitude are regulated by slow PKA catalytic subunit diffusion, while differences in isoproterenol sensitivity are regulated by nuclear expression of protein kinase inhibitor (PKI). These were validated by FRET and immunofluorescence. The model also predicted differential phosphorylation of PKA substrates regulating cell contractility and hypertrophy. Ca2+ and cell hypertrophy measurements validated these predictions and identified higher isoproterenol sensitivity for contractile enhancements (EC50 = 1.84 nmol/L) over cell hypertrophy (EC50 = 85.88 nmol/L). Over-expression of spatially targeted PKA catalytic subunit to the cytosol or nucleus enhanced contractile and hypertrophic responses, respectively. We conclude that restricted PKA catalytic subunit diffusion is an important PKA compartmentation mechanism and the nucleus comprises a novel PKA signaling microdomain, insulating hypertrophic from contractile β-adrenergic signaling responses. PMID:24225179

  9. The role of microtubules in contractile ring function.

    PubMed

    Conrad, A H; Paulsen, A Q; Conrad, G W

    1992-05-01

    During cytokinesis, a cortical contractile ring forms around a cell, constricts to a stable tight neck and terminates in separation of the daughter cells. At first cleavage, Ilyanassa obsoleta embryos form two contractile rings simultaneously. The cleavage furrow (CF), in the animal hemisphere between the spindle poles, constricts to a stable tight neck and separates the daughter cells. The third polar lobe constriction (PLC-3), in the vegetal hemisphere below the spindle, constricts to a transient tight neck, but then relaxes, allowing the polar lobe cytoplasm to merge with one daughter cell. Eggs exposed to taxol, a drug that stabilizes microtubules, before the CF or the PLC-3 develop, fail to form CFs, but form stabilized tight PLCs. Eggs exposed to taxol at the time of PLC-3 formation develop varied numbers of constriction rings in their animal hemispheres and one PLC in their vegetal hemisphere, none of which relax. Eggs exposed to taxol after PLC-3 initiation form stabilized tight CFs and PLCs. At maximum constriction, control embryos display immunolocalization of nonextractable alpha-tubulin in their CFs, but not in their PLCs, and reveal, via electron microscopy, many microtubules extending through their CFs, but not through their PLCs. Embryos which form stabilized tightly constricted CFs and PLCs in the presence of taxol display immunolocalization of nonextractable alpha-tubulin in both constrictions and show many polymerized microtubules extending through both CFs and PLCs. These results suggest that the extension of microtubules through a tight contractile ring may be important for stabilizing that constriction and facilitating subsequent cytokinesis.

  10. The role of microtubules in contractile ring function

    NASA Technical Reports Server (NTRS)

    Conrad, A. H.; Paulsen, A. Q.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    During cytokinesis, a cortical contractile ring forms around a cell, constricts to a stable tight neck and terminates in separation of the daughter cells. At first cleavage, Ilyanassa obsoleta embryos form two contractile rings simultaneously. The cleavage furrow (CF), in the animal hemisphere between the spindle poles, constricts to a stable tight neck and separates the daughter cells. The third polar lobe constriction (PLC-3), in the vegetal hemisphere below the spindle, constricts to a transient tight neck, but then relaxes, allowing the polar lobe cytoplasm to merge with one daughter cell. Eggs exposed to taxol, a drug that stabilizes microtubules, before the CF or the PLC-3 develop, fail to form CFs, but form stabilized tight PLCs. Eggs exposed to taxol at the time of PLC-3 formation develop varied numbers of constriction rings in their animal hemispheres and one PLC in their vegetal hemisphere, none of which relax. Eggs exposed to taxol after PLC-3 initiation form stabilized tight CFs and PLCs. At maximum constriction, control embryos display immunolocalization of nonextractable alpha-tubulin in their CFs, but not in their PLCs, and reveal, via electron microscopy, many microtubules extending through their CFs, but not through their PLCs. Embryos which form stabilized tightly constricted CFs and PLCs in the presence of taxol display immunolocalization of nonextractable alpha-tubulin in both constrictions and show many polymerized microtubules extending through both CFs and PLCs. These results suggest that the extension of microtubules through a tight contractile ring may be important for stabilizing that constriction and facilitating subsequent cytokinesis.

  11. The Functional Lumen Imaging Probe Detects Esophageal Contractility not Observed with Manometry in Patients with Achalasia

    PubMed Central

    Carlson, Dustin A.; Lin, Zhiyue; Kahrilas, Peter J.; Sternbach, Joel; Donnan, Erica N.; Friesen, Laurel; Listernick, Zoe; Mogni, Benjamin; Pandolfino, John E.

    2015-01-01

    Background & Aims The functional lumen imaging probe (FLIP) could improve characterization of achalasia subtypes by detecting non-occlusive esophageal contractions not observed with standard manometry. We aimed to evaluate for esophageal contractions during volumetric distention in patients with achalasia using FLIP topography. Methods Fifty one treatment-naïve patients with achalasia, defined and sub-classified by high-resolution esophageal pressure topography, and 10 asymptomatic individuals (controls) were evaluated with the FLIP during endoscopy. During stepwise distension, simultaneous intra-bag pressures and 16 channels of cross-sectional areas were measured; data were exported to software that generated FLIP topography plots. Esophageal contractility was identified by noting periods of reduced luminal diameter. Esophageal contractions were further characterized by propagation direction, repetitiveness, and based on whether they were occluding or non-occluding. Results Esophageal contractility was detected in all 10 controls: 8/10 had repetitive, antegrade, contractions and 9/10 had occluding contractions. Contractility was detected in 27% (4/15) of patients with type I achalasia and 65% (18/26, including 9 with occluding contractions) of patients with type II achalasia. Contractility was detected in all 10 patients with type III achalasia; 8 of these patients had a pattern of contractility not observed in controls (repetitive, retrograde contractions). Conclusions Esophageal contractility not observed with manometry can be detected in patients with achalasia using FLIP topography. The presence and patterns of contractility detected with FLIP topography may represent variations in pathophysiology, such as mechanisms of pan-esophageal pressurization in patients with type II achalasia. These findings could have implications for additional sub-classification to supplement prediction of the achalasia disease course. PMID:26278501

  12. DBIO Best Thesis Award: Mechanics, Dynamics, and Organization of the Bacterial Cytoskeleton and Cell Wall

    NASA Astrophysics Data System (ADS)

    Wang, Siyuan

    2012-02-01

    Bacteria come in a variety of shapes. While the peptidoglycan (PG) cell wall serves as an exoskeleton that defines the static cell shape, the internal bacterial cytoskeleton mediates cell shape by recruiting PG synthesis machinery and thus defining the pattern of cell-wall synthesis. While much is known about the chemistry and biology of the cytoskeleton and cell wall, much of their biophysics, including essential aspects of the functionality, dynamics, and organization, remain unknown. This dissertation aims to elucidate the detailed biophysical mechanisms of cytoskeleton guided wall synthesis. First, I find that the bacterial cytoskeleton MreB contributes nearly as much to the rigidity of an Escherichia coli cell as the cell wall. This conclusion implies that the cytoskeletal polymer MreB applies meaningful force to the cell wall, an idea favored by theoretical modeling of wall growth, and suggests an evolutionary origin of cytoskeleton-governed cell rigidity. Second, I observe that MreB rotates around the long axis of E. coli, and the motion depends on wall synthesis. This is the first discovery of a cell-wall assembly driven molecular motor in bacteria. Third, I prove that both cell-wall synthesis and the PG network have chiral ordering, which is established by the spatial pattern of MreB. This work links the molecular structure of the cytoskeleton and of the cell wall with organismal-scale behavior. Finally, I develop a mathematical model of cytoskeleton-cell membrane interactions, which explains the preferential orientation of different cytoskeleton components in bacteria.

  13. Clinical Characteristics and Associated Systemic Diseases in Patients With Esophageal "Absent Contractility"-A Clinical Algorithm.

    PubMed

    Laique, Sobia; Singh, Tavankit; Dornblaser, David; Gadre, Abhishek; Rangan, Vikram; Fass, Ronnie; Kirby, Donald; Chatterjee, Soumya; Gabbard, Scott

    2018-01-19

    This study was carried out to assess the clinical characteristics and associated systemic diseases seen in patients diagnosed with absent contractility as per the Chicago Classification version 3.0, allowing us to propose a diagnostic algorithm for their etiologic testing. The Chicago Classification version 3.0 has redefined major and minor esophageal motility disorders using high-resolution esophageal manometry. There is a dearth of publications based on research on absent contractility, which historically has been associated with myopathic processes such as systemic sclerosis (SSc). We conducted a retrospective, multicenter study. Data of patients diagnosed with absent contractility were pooled from Cleveland Clinic, Cleveland, OH (January 2006 to July 2016) and Metrohealth Medical Center, Cleveland, OH (July 2014 to July 2016) and included: age, gender, associated medical conditions, surgical history, medications, and specific antibody testing. A total of 207 patients, including 57 male individuals and 150 female individuals, with mean age of 56.1 and 60.0 years, respectively, were included. Disease distribution was as follows: SSc (diffuse or limited cutaneous) 132, overlap syndromes 7, systemic lupus erythematosus17, Sjögren syndrome 4, polymyositis 3, and dermatomyositis 3. Various other etiologies including gastroesophageal reflux disease, postradiation esophagitis, neuromuscular disorders, and surgical complications were seen in the remaining cohort. Most practitioners use the term "absent contractility" interchangeably with "scleroderma esophagus"; however, only 63% of patients with absent contractility had SSc. Overall, 20% had another systemic autoimmune rheumatologic disease and 16% had a nonrheumatologic etiology for absent contractility. Therefore, alternate diagnosis must be sought in these patients. We propose an algorithm for their etiologic evaluation.

  14. Decreased contractile response of peripheral arterioles to serotonin after CPB in patients with diabetes.

    PubMed

    Sabe, Sharif A; Feng, Jun; Liu, Yuhong; Scrimgeour, Laura A; Ehsan, Afshin; Sellke, Frank W

    2018-05-11

    Regulation of coronary vasomotor tone by serotonin is significantly changed after cardioplegic arrest and reperfusion. The current study investigates whether cardiopulmonary bypass may also affect peripheral arteriolar response to serotonin in patients with or without diabetes. Human peripheral microvessels (90-180 µm diameter) were dissected from harvested skeletal muscle tissues from diabetic and non-diabetic patients before and after cardiopulmonary bypass and cardiac surgery (n = 8/group). In vitro contractile response to serotonin was assessed by videomicroscopy in the presence or absence of serotonin alone (10 -9 -10 -5 M) or combined with the selective serotonin 1B receptor (5-HT1B) antagonist, SB224289 (10 -6 M). 5-HT1A/1B protein expression in the skeletal muscle was measured by Western-blot and immunohistochemistry. There were no significant differences in contractile response of peripheral arterioles to serotonin (10 -5 M) pre-cardiopulmonary bypass between diabetic and non-diabetic patients. After cardiopulmonary bypass, contractile response to serotonin was significantly impaired in both diabetic and non-diabetic patients compared to their pre-cardiopulmonary bypass counterparts (P < .05). This effect was more pronounced in diabetic patients than non-diabetic patients (P < .05 versus non-diabetic). The contractile response to serotonin was significantly inhibited by the 5-HT1B antagonist in both diabetic and non-diabetic vessels (P < .05 versus serotonin alone). There were no significant differences in the expression/distribution of 5-HT1A/1B between non-diabetic and diabetic groups or between pre- versus post- cardiopulmonary bypass vessels. Cardiopulmonary bypass is associated with decreased contractile response of peripheral arterioles to serotonin and this effect was exaggerated in the presence of diabetes. Serotonin-induced contractile response of the peripheral arterioles was via 5-HT1B in both diabetic and non-diabetic patients. Copyright

  15. Multiparity modifies contractile properties of pelvic muscles affecting the genesis of vaginal pressure in rabbits.

    PubMed

    López-Juárez, Rhode; Zempoalteca, René; Corona-Quintanilla, Dora Luz; Jiménez-Estrada, Ismael; Castelán, Francisco; Martínez-Gómez, Margarita

    2018-01-01

    To characterize the contractile properties of the bulbospongiosus (Bsm), isquiocavernosus (Ism), and pubococcygeus muscles (Pcm), and their involvement in the genesis of vaginal pressure in nulliparous and multiparous rabbits. Age-matched nulliparous and multiparous rabbits were used to record the isometric contractile responses of each muscle as well as the intravaginal pressure evoked by single square electrical pulses and stimulation trains of ascending frequency. To establish significant differences between groups, two-tail unpaired Student t tests were carried out. The linear correlation between intravaginal pressure and muscle contractile force was analyzed with Pearson correlation tests. For all cases, a P ≤ 0.05 was set as statistically significant. Multiparity decreased the contractile force of Bsm and Ism generated by high-frequency stimulation trains. The normalized force of the Pcm increased when evoked at 1, 4, and 10 Hz while this decreased at higher frequencies (20, 50, and 100 Hz). The contraction of both Bsm and Ism raised particularly the pressure on the perineal vagina while that of the Pcm increased the pressure in the pelvic vagina. Such a functional segregation is still present in multiparous rabbits albeit it was modified. Multiparity induces changes in the contractile responses of Bsm, Ism, and Pcm, which alterates the vaginal pressure. © 2017 Wiley Periodicals, Inc.

  16. Effect of hypokinesia on contractile function of cardiac muscle

    NASA Technical Reports Server (NTRS)

    Meyerson, F. Z.; Kapelko, V. I.; Trikhpoyeva, A. M.; Gorina, M. S.

    1980-01-01

    Rats were subjected to hypokinesia for two months and the contractile function of isolated papillary muscle was studied. Hypokinesia reduced significantly the isotonic contraction rate which depended on the ATPase activity of the myofibrils; it also reduced the rate and index of relaxation which depended on the functional capacity of the Ca(++) pump of the sarcoplasmic reticulum. The maximum force of isometric contraction determined by the quantity of actomyosin bridges in the myofibrils did not change after hypokinesia. This complex of changes is contrary to that observed in adaptation to exercise when the rate of isotonic contraction and relaxation increases while the force of isometric contraction does not change. The possible mechanism of this stability of the contractile force during adaptation and readaptation of the heart is discussed.

  17. A Near-Wall Reynolds-Stress Closure without Wall Normals

    NASA Technical Reports Server (NTRS)

    Yuan, S. P.; So, R. M. C.

    1997-01-01

    With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on the SSG high-Reynolds-stress model with wall-independent near-wall corrections. Only one damping function is used for flows with a wide range of Reynolds numbers to ensure that the near-wall modifications diminish away from the walls. The model is able to reproduce complicated flow phenomena induced by complex geometry, such as flow recirculation, reattachment and boundary-layer redevelopment in backward-facing step flow and secondary flow in three-dimensional square duct flow. In simple flows, including fully developed channel/pipe flow, Couette flow and boundary-layer flow, the wall effects are dominant, and the NNWRS model predicts less degree of turbulent anisotropy in the near-wall region compared with a wall-dependent near-wall Reynolds Stress model (NWRS) developed by So and colleagues. The comparison of the predictions given by the two models rectifies the misconception that the overshooting of skin friction coefficient in backward-facing step flow prevalent in those near-wall, models with wall normal is caused by he use of wall normal.

  18. Store-Operated Ca2+ Entry (SOCE) Contributes to Normal Skeletal Muscle Contractility in young but not in aged skeletal muscle

    PubMed Central

    Brotto, Leticia S.; Bougoin, Sylvain; Nosek, Thomas M.; Reid, Michael; Hardin, Brian; Pan, Zui; Ma, Jianjie; Parness, Jerome

    2011-01-01

    Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca2+ to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca2+ entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular Ca2+ to contractile function of skeletal muscle during aging. First, we demonstrate graded coupling between SR Ca2+ release channel-mediated Ca2+ release and activation of SOCE. Inhibition of SOCE produced significant reduction of contractile force in young skeletal muscle, particularly at high frequency stimulation, and such effects were completely absent in aged skeletal muscle. Our data indicate that SOCE contributes to the normal physiological contractile response of young healthy skeletal muscle and that defective extracellular Ca2+ entry through SOCE contributes to the reduced contractile force characteristic of aged skeletal muscle. PMID:21666285

  19. [Contractile properties of skeletal muscles of rats after flight on "Kosmos-1887"].

    PubMed

    Oganov, V S; Skuratova, S A; Murashko, L M

    1991-01-01

    Contractile properties of skeletal muscles of rats were investigated using glycerinated muscle preparations that were obtained from Cosmos-1887 animals flown for 13 days (plus 2 days on the ground) and from rats that remained hypokinetic for 13 days on the ground. In the flow rats, the absolute mass of postural muscles remained unchanged while their relative mass increased; this may be attributed to their enhanced hydration which developed during the first 2 days after landing. Strength losses of the postural muscles were less significant than after previous flights. Comparison of the Cosmos-1887 and hypokinesia control data has shown that even 2-day exposure to 1 G after 13-day flight can modify drastically flight-induced changes.

  20. Evaluation of aortic contractility based on analysis of CT images of the heart

    NASA Astrophysics Data System (ADS)

    DzierŻak, RóŻa; Maciejewski, Ryszard; Uhlig, Sebastian

    2017-08-01

    The paper presents a method to assess the aortic contractility based on the analysis of CT images of the heart. This is an alternative method that can be used for patients who cannot be examined by using echocardiography. Usage of medical imaging application for DICOM file processing allows to evaluate the aortic cross section during systole and diastole. It makes possible to assess the level of aortic contractility.

  1. A study of ventricular contractility and other parameters possibly related to vasodepressor syncope

    NASA Technical Reports Server (NTRS)

    Hyatt, K. H.; Sullivan, R. W.; Spears, W. R.; Vetter, W. R.

    1973-01-01

    The effects of diminished orthostatic and exercise tolerance resulting from prolonged bedrest were studied by noninvasion methods to determine if alterations in myocardial contractility were induced by bedrest. These methods were apexcardiography, systolic time intervals, and echocardiography. It is concluded that bedrest causes detrimental alterations in the contractile state of the myocardium which accounts for the decreases in maximal oxygen uptaken during exercise after bedrest. Tabulated test data are included.

  2. Analysis of Tyrosine Kinase Inhibitor-Mediated Decline in Contractile Force in Rat Engineered Heart Tissue.

    PubMed

    Jacob, Fabian; Yonis, Amina Y; Cuello, Friederike; Luther, Pradeep; Schulze, Thomas; Eder, Alexandra; Streichert, Thomas; Mannhardt, Ingra; Hirt, Marc N; Schaaf, Sebastian; Stenzig, Justus; Force, Thomas; Eschenhagen, Thomas; Hansen, Arne

    2016-01-01

    Left ventricular dysfunction is a frequent and potentially severe side effect of many tyrosine kinase inhibitors (TKI). The mode of toxicity is not identified, but may include impairment of mitochondrial or sarcomeric function, autophagy or angiogenesis, either as an on-target or off-target mechanism. We studied concentration-response curves and time courses for nine TKIs in three-dimensional, force generating engineered heart tissue (EHT) from neonatal rat heart cells. We detected a concentration- and time-dependent decline in contractile force for gefitinib, lapatinib, sunitinib, imatinib, sorafenib, vandetanib and lestaurtinib and no decline in contractile force for erlotinib and dasatinib after 96 hours of incubation. The decline in contractile force was associated with an impairment of autophagy (LC3 Western blot) and appearance of autophagolysosomes (transmission electron microscopy). This study demonstrates the feasibility to study TKI-mediated force effects in EHTs and identifies an association between a decline in contractility and inhibition of autophagic flux.

  3. Analysis of Tyrosine Kinase Inhibitor-Mediated Decline in Contractile Force in Rat Engineered Heart Tissue

    PubMed Central

    Cuello, Friederike; Luther, Pradeep; Schulze, Thomas; Eder, Alexandra; Streichert, Thomas; Mannhardt, Ingra; Hirt, Marc N.; Schaaf, Sebastian; Stenzig, Justus; Force, Thomas

    2016-01-01

    Introduction Left ventricular dysfunction is a frequent and potentially severe side effect of many tyrosine kinase inhibitors (TKI). The mode of toxicity is not identified, but may include impairment of mitochondrial or sarcomeric function, autophagy or angiogenesis, either as an on-target or off-target mechanism. Methods and Results We studied concentration-response curves and time courses for nine TKIs in three-dimensional, force generating engineered heart tissue (EHT) from neonatal rat heart cells. We detected a concentration- and time-dependent decline in contractile force for gefitinib, lapatinib, sunitinib, imatinib, sorafenib, vandetanib and lestaurtinib and no decline in contractile force for erlotinib and dasatinib after 96 hours of incubation. The decline in contractile force was associated with an impairment of autophagy (LC3 Western blot) and appearance of autophagolysosomes (transmission electron microscopy). Conclusion This study demonstrates the feasibility to study TKI-mediated force effects in EHTs and identifies an association between a decline in contractility and inhibition of autophagic flux. PMID:26840448

  4. Loss of Gα12/13 exacerbates apical area dependence of actomyosin contractility

    PubMed Central

    Xie, Shicong; Mason, Frank M.; Martin, Adam C.

    2016-01-01

    During development, coordinated cell shape changes alter tissue shape. In the Drosophila ventral furrow and other epithelia, apical constriction of hundreds of epithelial cells folds the tissue. Genes in the Gα12/13 pathway coordinate collective apical constriction, but the mechanism of coordination is poorly understood. Coupling live-cell imaging with a computational approach to identify contractile events, we discovered that differences in constriction behavior are biased by initial cell shape. Disrupting Gα12/13 exacerbates this relationship. Larger apical area is associated with delayed initiation of contractile pulses, lower apical E-cadherin and F-actin levels, and aberrantly mobile Rho-kinase structures. Our results suggest that loss of Gα12/13 disrupts apical actin cortex organization and pulse initiation in a size-dependent manner. We propose that Gα12/13 robustly organizes the apical cortex despite variation in apical area to ensure the timely initiation of contractile pulses in a tissue with heterogeneity in starting cell shape. PMID:27489340

  5. Robust gap repair in the contractile ring ensures timely completion of cytokinesis

    PubMed Central

    Maiato, Helder; Pinto, Inês Mendes; Rubinstein, Boris

    2016-01-01

    Cytokinesis in animal cells requires the constriction of an actomyosin contractile ring, whose architecture and mechanism remain poorly understood. We use laser microsurgery to explore the biophysical properties of constricting rings in Caenorhabditis elegans embryos. Laser cutting causes rings to snap open. However, instead of disintegrating, ring topology recovers and constriction proceeds. In response to severing, a finite gap forms and is repaired by recruitment of new material in an actin polymerization–dependent manner. An open ring is able to constrict, and rings repair from successive cuts. After gap repair, an increase in constriction velocity allows cytokinesis to complete at the same time as controls. Our analysis demonstrates that tension in the ring increases while net cortical tension at the site of ingression decreases throughout constriction and suggests that cytokinesis is accomplished by contractile modules that assemble and contract autonomously, enabling local repair of the actomyosin network. Consequently, cytokinesis is a highly robust process impervious to discontinuities in contractile ring structure. PMID:27974482

  6. Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development

    PubMed Central

    Raie, Diana S.; Mhatre, Eisha; El-Desouki, Doaa S.; Labena, Ahmed; El-Ghannam, Gamal; Farahat, Laila A.; Youssef, Tareq; Fritzsche, Wolfgang; Kovács, Ákos T.

    2018-01-01

    The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed by heat treatment. Successfully, quercetin was immobilized on the nanocomposite via physical adsorption to form a quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite. The adhesion of bacteria on the coated-slides was verified after 24 h using confocal laser-scanning microscopy. Results indicated that the quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite had more negativity and higher recovery by glass surfaces than its counterpart. Moreover, coating surfaces with the quercetin-modified nanocomposite lowered both hydrophilicity and surface-attached bacteria compared to surfaces coated with the multi-walled carbon nanotubes/titanium dioxide nanocomposite. PMID:29346268

  7. Enhanced performance of microbial fuel cell with a bacteria/multi-walled carbon nanotube hybrid biofilm

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Liu, Jia; Qu, Youpeng; Zhang, Jian; Zhong, Yingjuan; Feng, Yujie

    2017-09-01

    The biofilm on the anode of a microbial fuel cell (MFC) is a vital component in system, and its formation and characteristic determines the performance of the system. In this study, a bacteria/Multi-Walled Carbon Nanotube (MWCNT) hybrid biofilm is fabricated by effectively inserting the MWCNTs into the anode biofilm via an adsorption-filtration method. This hybrid biofilm has been demonstrated to be an efficient structure for improving an anode biofilm performance. Electrochemical impedance spectroscopy (EIS) results show that the hybrid biofilm takes advantage of the conductivity and structure of MWCNT to enhance the electron transfer and substrate diffusion of the biofilm. With this hybrid biofilm, the current density, power density and coulombic efficiency are increased by 46.2%, 58.8% and 84.6%, respectively, relative to naturally grown biofilm. Furthermore, the start-up time is reduced by 53.8% compared with naturally grown biofilm. The perturbation test demonstrates that this type of hybrid biofilm exhibits strong adsorption ability and enhances the biofilm's resistance to a sudden change of substrate concentration. The superior performance of the hybrid biofilm with MWCNT ;nanowire; matrix compared with naturally grown biofilm demonstrates its great potential for boosting the performance of MFCs.

  8. Dose-dependent inhibition of uterine contractility by nitric oxide: A potential mechanism underlying persistent breeding-induced endometritis in the mare.

    PubMed

    Khan, Firdous A; Chenier, Tracey S; Murrant, Coral L; Foster, Robert A; Hewson, Joanne; Scholtz, Elizabeth L

    2017-03-01

    Nitric oxide (NO) may have a role in persistent breeding-induced endometritis in mares through an inhibitory effect on uterine contractility. The objectives of this study were to test the effect of NO on spontaneous uterine contractility in-vitro and to evaluate whether this effect varied between the longitudinal and circular muscle layers of the uterus. Reproductive tracts were collected from eight euthanized non-pregnant mares (age 4-19 years; body weight 405-530 kg). Transrectal examination of the reproductive tract was performed before euthanasia to evaluate stage of the estrous cycle and presence of any apparent abnormality. After euthanasia, one uterine tissue sample was collected for histological evaluation and four full-thickness uterine tissue strips (10-12 mm × 2 mm), two parallel to each muscle layer, were excised for in-vitro contractility evaluation. Strips were suspended in tissue chambers containing Krebs-Henseleit solution, with continuous aeration (95% O 2 -5% CO 2 ; pH 7.4) at 37 °C. After equilibration, spontaneous contractility was recorded (pre-treatment) and strips excised in each direction were randomly allocated to each of two groups: 1) SNAP (S-nitroso-N-acetylpenicillamine, an NO donor); or 2) NAP (N-acetyl-d-penicillamine, vehicle and time-matched control). These were treated at 15 min intervals with increasing concentrations (10 -7  M to 10 -3  M) of SNAP and NAP, respectively. Contractility data was recorded throughout the experiment. An interaction effect of group-by-concentration was observed (P < 0.0001). The mean contractility after treatment with 10 -4  M and 10 -3  M SNAP were significantly lower than the pre-treatment contractility and the mean contractility after treatment with lower SNAP concentrations. In contrast, contractility did not change significantly in the NAP treated controls. The effect of treatment on uterine contractility was not influenced by age or weight of the mare, stage of estrous cycle

  9. Retosiban Prevents Stretch-Induced Human Myometrial Contractility and Delays Labor in Cynomolgus Monkeys.

    PubMed

    Aye, Irving L M H; Moraitis, Alexandros A; Stanislaus, Dinesh; Charnock-Jones, D Stephen; Smith, Gordon C S

    2018-03-01

    Stretch of the myometrium promotes its contractility and is believed to contribute to the control of parturition at term and to the increased risk of preterm birth in multiple pregnancies. To determine the effects of the putative oxytocin receptor (OTR) inverse agonist retosiban on (1) the contractility of human myometrial explants and (2) labor in nonhuman primates. Human myometrial biopsies were obtained at planned term cesarean, and explants were exposed to stretch in the presence and absence of a range of drugs, including retosiban. The in vivo effects of retosiban were determined in cynomolgus monkeys. Prolonged mechanical stretch promoted myometrial extracellular signal-regulated kinase (ERK)1/2 phosphorylation. Moreover, stretch-induced stimulation of myometrial contractility was prevented by ERK1/2 inhibitors. Retosiban (10 nM) prevented stretch-induced stimulation of myometrial contractility and phosphorylation of ERK1/2. Moreover, the inhibitory effect of retosiban on stretch-induced ERK1/2 phosphorylation was prevented by coincubation with a 100-fold excess of a peptide OTR antagonist, atosiban. Compared with vehicle-treated cynomolgus monkeys, treatment with oral retosiban (100 to 150 days of gestational age) reduced the risk of spontaneous delivery (hazard ratio = 0.07, 95% confidence interval 0.01 to 0.60, P = 0.015). The OTR acts as a uterine mechanosensor, whereby stretch increases myometrial contractility through agonist-free activation of the OTR. Retosiban prevents this through inverse agonism of the OTR and, in vivo, reduced the likelihood of spontaneous labor in nonhuman primates. We hypothesize that retosiban may be an effective preventative treatment of preterm birth in high-risk multiple pregnancies, an area of unmet clinical need.

  10. Cell-wall deficient L. monocytogenes L-forms feature abrogated pathogenicity

    PubMed Central

    Schnell, Barbara; Staubli, Titu; Harris, Nicola L.; Rogler, Gerhard; Kopf, Manfred; Loessner, Martin J.; Schuppler, Markus

    2014-01-01

    Stable L-forms are cell wall-deficient bacteria which are able to multiply and propagate indefinitely, despite the absence of a rigid peptidoglycan cell wall. We investigated whether L-forms of the intracellular pathogen L. monocytogenes possibly retain pathogenicity, and if they could trigger an innate immune response. While phagocytosis of L. monocytogenes L-forms by non-activated macrophages sometimes resulted in an unexpected persistence of the bacteria in the phagocytes, they were effectively eliminated by IFN-γ preactivated or bone marrow-derived macrophages (BMM). These findings were in line with the observed down-regulation of virulence factors in the cell-wall deficient L. monocytogenes. Absence of Interferon-β (IFN-β) triggering indicated inability of L-forms to escape from the phagosome into the cytosol. Moreover, abrogated cytokine response in MyD88-deficient dendritic cells (DC) challenged with L. monocytogenes L-forms suggested an exclusive TLR-dependent host response. Taken together, our data demonstrate a strong attenuation of Listeria monocytogenes L-form pathogenicity, due to diminished expression of virulence factors and innate immunity recognition, eventually resulting in elimination of L-form bacteria from phagocytes. PMID:24904838

  11. Activity-induced regulation of myosin isoform distribution - Comparison of two contractile activity programs

    NASA Technical Reports Server (NTRS)

    Diffee, Gary M.; Caiozzo, Vince J.; Mccue, Samuel A.; Herrick, Robert E.; Baldwin, Kenneth M.

    1993-01-01

    This study examined the role of specific types of contractile activity in regulating myosin heavy chain (MHC) isoform expression in rodent soleus. A combination of hindlimb suspension (SN) and two programmed contractile training activity paradigms, either isometric contractile activity (ST-IM) or high-load slowly shortening isovelocity activity, were utilized. Both training paradigms increased muscle mass compared with SN alone. However, only ST-IM resulted in a partial prevention of the suspension-induced decrease in type I MHC. With the use of a fluorescently labeled antibody to type IIa MHC, the distribution of MHCs among fibers was examined immunohistochemically. In SN, the percentage of cells staining positive for type IIa MHC was increased but the staining intensity of the positively staining cells was unchanged compared with control cells. In the ST-IM soleus, the percentage of positively staining fibers was unchanged but the intensity of the positively staining cells was decreased compared with SN values. These results suggest that 1) isometric contractile activity is more effective than isovelocity activity in preventing suspension-induced shifts in soleus MHC distribution and 2) changes associated with both suspension and training occur in only a small number of fibers, with the majority of fibers apparently unresponsive to these interventions.

  12. A discrete mesoscopic particle model of the mechanics of a multi-constituent arterial wall.

    PubMed

    Witthoft, Alexandra; Yazdani, Alireza; Peng, Zhangli; Bellini, Chiara; Humphrey, Jay D; Karniadakis, George Em

    2016-01-01

    Blood vessels have unique properties that allow them to function together within a complex, self-regulating network. The contractile capacity of the wall combined with complex mechanical properties of the extracellular matrix enables vessels to adapt to changes in haemodynamic loading. Homogenized phenomenological and multi-constituent, structurally motivated continuum models have successfully captured these mechanical properties, but truly describing intricate microstructural details of the arterial wall may require a discrete framework. Such an approach would facilitate modelling interactions between or the separation of layers of the wall and would offer the advantage of seamless integration with discrete models of complex blood flow. We present a discrete particle model of a multi-constituent, nonlinearly elastic, anisotropic arterial wall, which we develop using the dissipative particle dynamics method. Mimicking basic features of the microstructure of the arterial wall, the model comprises an elastin matrix having isotropic nonlinear elastic properties plus anisotropic fibre reinforcement that represents the stiffer collagen fibres of the wall. These collagen fibres are distributed evenly and are oriented in four directions, symmetric to the vessel axis. Experimental results from biaxial mechanical tests of an artery are used for model validation, and a delamination test is simulated to demonstrate the new capabilities of the model. © 2016 The Author(s).

  13. Differential staining of bacteria: gram stain.

    PubMed

    Moyes, Rita B; Reynolds, Jackie; Breakwell, Donald P

    2009-11-01

    In 1884, Hans Christian Gram, a Danish doctor, developed a differential staining technique that is still the cornerstone of bacterial identification and taxonomic division. This multistep, sequential staining protocol separates bacteria into four groups based on cell morphology and cell wall structure: Gram-positive cocci, Gram-negative cocci, Gram-positive rods, and Gram-negative rods. The Gram stain is useful for assessing bacterial contamination of tissue culture samples or for examining the Gram stain status and morphological features of bacteria isolated from mixed or isolated bacterial cultures. (c) 2009 by John Wiley & Sons, Inc.

  14. Contrasting mechanisms of growth in two model rod-shaped bacteria

    PubMed Central

    Billaudeau, Cyrille; Chastanet, Arnaud; Yao, Zhizhong; Cornilleau, Charlène; Mirouze, Nicolas; Fromion, Vincent; Carballido-López, Rut

    2017-01-01

    How cells control their shape and size is a long-standing question in cell biology. Many rod-shaped bacteria elongate their sidewalls by the action of cell wall synthesizing machineries that are associated to actin-like MreB cortical patches. However, little is known about how elongation is regulated to enable varied growth rates and sizes. Here we use total internal reflection fluorescence microscopy and single-particle tracking to visualize MreB isoforms, as a proxy for cell wall synthesis, in Bacillus subtilis and Escherichia coli cells growing in different media and during nutrient upshift. We find that these two model organisms appear to use orthogonal strategies to adapt to growth regime variations: B. subtilis regulates MreB patch speed, while E. coli may mainly regulate the production capacity of MreB-associated cell wall machineries. We present numerical models that link MreB-mediated sidewall synthesis and cell elongation, and argue that the distinct regulatory mechanism employed might reflect the different cell wall integrity constraints in Gram-positive and Gram-negative bacteria. PMID:28589952

  15. Passive and active response of bacteria under mechanical compression

    NASA Astrophysics Data System (ADS)

    Garces, Renata; Miller, Samantha; Schmidt, Christoph F.; Byophysics Team; Institute of Medical Sciences Collaboration

    Bacteria display simple but fascinating cellular structures and geometries. Their shapes are the result of the interplay between osmotic pressure and cell wall construction. Typically, bacteria maintain a high difference of osmotic pressure (on the order of 1 atm) to the environment. This pressure difference (turgor pressure) is supported by the cell envelope, a composite of lipid membranes and a rigid cell wall. The response of the cell envelope to mechanical perturbations such as geometrical confinements is important for the cells survival. Another key property of bacteria is the ability to regulate turgor pressure after abrupt changes of external osmotic conditions. This response relies on the activity of mechanosensitive (MS) channels: membrane proteins that release solutes in response to excessive stress in the cell envelope. We here present experimental data on the mechanical response of the cell envelope and on turgor regulation of bacteria subjected to compressive forces. We indent living cells with micron-sized beads attached to the cantilever of an atomic force microscope (AFM). This approach ensures global deformation of the cell. We show that such mechanical loading is sufficient to gate mechanosensitive channels in isosmotic conditions.

  16. Role of nitric oxide in in vitro contractile activity of the third compartment of the stomach in llamas.

    PubMed

    Van Hoogmoed, L; Rakestraw, P C; Snyder, J R; Harmon, F A

    1998-09-01

    To determine the role of nitric oxide and an apamin-sensitive nonadrenergic-noncholinergic inhibitory transmitter in in vitro contractile activity of the third compartment in llamas. Isolated strips of third compartment of the stomach from 5 llamas. Strips were mounted in tissue baths containing oxygenated Kreb's buffer solution and connected to a polygraph chart recorder to measure contractile activity. Atropine, guanethidine, and indomethacin were added to tissue baths to inhibit muscarinic receptors, adrenoreceptors, and prostaglandin synthesis. Responses to electrical field stimulation following addition of the nitric oxide antagonist Nwo-nitro-L-arginine methyl ester (L-NAME) and apamin were evaluated. Electrical field stimulation (EFS) resulted in a reduction in the amplitude and frequency of contractile activity, followed by rebound contraction when EFS was stopped. Addition of L-NAME resulted in a significant reduction in inhibition of contractile activity. Addition of apamin also resulted in a significant reduction in inhibitory contractile activity at most stimulation frequencies. The combination of L-NAME and apamin resulted in a significant reduction in inhibition at all frequencies. Nitric oxide and a transmitter acting via an apamin-sensitive mechanism appear to be involved in inhibition of contractile activity of the third compartment in llamas. Results suggest that nitric oxide plays an important role in mediating contractile activity of the third compartment in llamas. Use of nitric oxide synthase inhibitors may have a role in the therapeutic management of llamas with lesions of the third compartment.

  17. Evidence for non-adrenergic non-cholinergic contractile responses in bovine and swine trachea.

    PubMed

    Matera, M G; Amorena, M; Marabese, I; Loffreda, A; D'Agostino, B; Lucisano, A; Rossi, F

    1997-01-01

    Non-adrenergic non-cholinergic (NANC) contraction of airway smooth muscle has been observed in some but not all animal species. The aim of this study was to investigate the NANC-contractile responses in bovine and swine trachea. Proximal and distal bovine and swine trachea were cut in strips and placed in 10 ml organ baths equilibrated in Krebs Henseleit (KH) solution and electrically stimulated (10 sec, 60 V, 2 ms, 4, 10 and 30 Hz). Contractile frequency response curves performed in the presence of the muscarinic antagonist, atropine (100 mM), the angiotensin converting enzyme inhibitor, captopril (1 microM) and the neutral endopeptidase inhibitor, thiorphan (1 microM), added 30 min prior to electrical field stimulation (EFS). In some tissues, incubated with atropine thiorphan and captopril, were also evaluated the effects of a pretreatment with capsaicin (10 microM) or a selective NK1 receptor antagonist, SR 14033 (100 nM) added to the baths 30 min prior to EFS. Bovine and swine proximal and distal tracheal preparations contracted in a frequency-dependent manner to EFS (4, 10 and 30 Hz). Some experiments were also performed with substance P (0.1 nM to 1 microM) in absence or in presence of SR 14033 (10 nM or 100 nM). At the maximum frequency tested (30 Hz), the contractile response elicited in bovine proximal and distal preparations was 194.5 +/- 17.1% and 229.7 +/- 24.1%, of ACh (100 microM), respectively. Similarly, the contractile response elicited by EFS (30 Hz) in swine proximal and distal preparations was 187.2 +/- 12.1% and 181.6 +/- 9.2% of ACh (100 microM), respectively. In tissues incubated with atropine, a significant decrease in smooth muscle sensitivity to EFS was observed (P < 0.05). When tissues were pretreated with captopril and thiorphan, a significant increase in the contractile response to EFS (30 Hz) was observed in all tested tissue preparations (bovine, proximal 210.1 +/- 14.4%, distal 264.3 +/- 16.2%; swine, proximal 199.3 +/- 14.9%, distal

  18. The tail sheath structure of bacteriophage T4: a molecular machine for infecting bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksyuk, Anastasia A.; Leiman, Petr G.; Kurochkina, Lidia P.

    2009-07-22

    The contractile tail of bacteriophage T4 is a molecular machine that facilitates very high viral infection efficiency. Its major component is a tail sheath, which contracts during infection to less than half of its initial length. The sheath consists of 138 copies of the tail sheath protein, gene product (gp) 18, which surrounds the central non-contractile tail tube. The contraction of the sheath drives the tail tube through the outer membrane, creating a channel for the viral genome delivery. A crystal structure of about three quarters of gp18 has been determined and was fitted into cryo-electron microscopy reconstructions of themore » tail sheath before and after contraction. It was shown that during contraction, gp18 subunits slide over each other with no apparent change in their structure.« less

  19. The Functional Lumen Imaging Probe Detects Esophageal Contractility Not Observed With Manometry in Patients With Achalasia.

    PubMed

    Carlson, Dustin A; Lin, Zhiyue; Kahrilas, Peter J; Sternbach, Joel; Donnan, Erica N; Friesen, Laurel; Listernick, Zoe; Mogni, Benjamin; Pandolfino, John E

    2015-12-01

    The functional lumen imaging probe (FLIP) could improve the characterization of achalasia subtypes by detecting nonocclusive esophageal contractions not observed with standard manometry. We aimed to evaluate esophageal contractions during volumetric distention in patients with achalasia using FLIP topography. Fifty-one treatment-naive patients with achalasia, defined and subclassified by high-resolution esophageal pressure topography, and 10 asymptomatic individuals (controls) were evaluated with the FLIP during endoscopy. During stepwise distension, simultaneous intrabag pressures and 16 channels of cross-sectional areas were measured; data were exported to software that generated FLIP topography plots. Esophageal contractility was identified by noting periods of reduced luminal diameter. Esophageal contractions were characterized further by propagation direction, repetitiveness, and based on whether they were occluding or nonoccluding. Esophageal contractility was detected in all 10 controls: 8 of 10 had repetitive antegrade contractions and 9 of 10 had occluding contractions. Contractility was detected in 27% (4 of 15) of patients with type I achalasia and in 65% (18 of 26, including 9 with occluding contractions) of patients with type II achalasia. Contractility was detected in all 10 patients with type III achalasia; 8 of these patients had a pattern of contractility that was not observed in controls (repetitive retrograde contractions). Esophageal contractility not observed with manometry can be detected in patients with achalasia using FLIP topography. The presence and patterns of contractility detected with FLIP topography may represent variations in pathophysiology, such as mechanisms of panesophageal pressurization in patients with type II achalasia. These findings could have implications for additional subclassification to supplement prediction of the achalasia disease course. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights

  20. Endoplasmic reticulum Chaperon Tauroursodeoxycholic Acid Alleviates Obesity-Induced Myocardial Contractile Dysfunction

    PubMed Central

    Ceylan-Isik, Asli F.; Sreejayan, Nair; Ren, Jun

    2010-01-01

    ER stress is involved in the pathophysiology of obesity although little is known about the role of ER stress on obesity-associated cardiac dysfunction. This study was designed to examine the effect of ER chaperone tauroursodeoxycholic acid (TUDCA) on obesity-induced myocardial dysfunction. Adult lean and ob/ob obese mice were treated TUDCA (50 mg/kg/d, p.o.) or vehicle for 5 wks. Oral glucose tolerance test (OGTT) was performed. Echocardiography, cardiomyocyte contractile and intracellular Ca2+ properties were assessed. Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity and protein expression of intracellular Ca2+ regulatory proteins were measured using 45Ca2+ uptake and Western blot analysis, respectively. Insulin signaling, ER stress markers and HSP90 were evaluated. Our results revealed that chronic TUDCA treatment lower systolic blood pressure and lessened glucose intolerance in obese mice. Obesity led to increased diastolic diameter, cardiac hypertrophy, compromised fractional shortening, cardiomyocyte contractile (peak shortening, maximal velocity of shortening/relengthening, and duration of contraction/relaxation) and intracellular Ca2+ properties, all of which were significantly attenuated by TUDCA. TUDCA reconciled obesity-associated decreased in SERCA activity and expression, and increase in serine phosphorylation of IRS, total and phosphorylated cJun, ER stress markers Bip, peIF2α and pPERK. Obesity-induced changes in phospholamban and HSP90 were unaffected by TUDCA. In vitro finding revealed that TUDCA ablated palmitic acid-induced cardiomyocyte contractile dysfunction. In summary, these data depicted a pivotal role of ER stress in obesity-associated cardiac contractile dysfunction, suggesting the therapeutic potential of ER stress as a target in the management of cardiac dysfunction in obesity. PMID:21035453

  1. Porcine uterus cryopreservation: an analysis of contractile function using different uterotonics.

    PubMed

    Schölch, Daniel; Schölch, Sebastian; Strahl, Olga; Hoffmann, Inge; Beckmann, Matthias W; Dittrich, Ralf

    2012-10-01

    Cryopreservation of whole organs has become increasingly successful in recent years, and establishing reliable methods for confirming the success of specific cryopreservation procedures has therefore become extremely important. On the assumption that methods such as histological evaluation do not provide definitive evidence of long-term cryopreservation and that clear signs of conserved function in an organ are good evidence of its viability, contractile function was analysed in porcine uteri (n=60), either after long-term (group A) or short-term (group B) cryopreservation and post-thaw treatment with three different uterotonics. A slow freezing protocol was used to preserve the organs. Fifteen fresh uteri were analysed similarly for contractile function, which was evaluated by measuring intrauterine pressure after administration of oxytocin, prostaglandin E(1) (PGE(1)), and carbachol. After cryopreservation, all but three uteri (95%) showed rhythmic contractions similar to those in fresh uteri except for differences in the heights of contraction peaks, with lower contractions in PGE(1) subgroup B (P<0.05). With the exception of three nonresponsive uteri in group A, there were no differences in contractility between uteri after long-term cryopreservation and fresh uteri. The results of this study thus contribute to the debate on whether slow freezing or vitrification techniques are best for whole-organ cryopreservation. In summary, (1) preservation of muscular function in porcine uteri is feasible with a slow freezing protocol; (2) measurement of contractile function following administration of uterotonics is a useful method of confirming functionality; and (3) long-term cryopreservation does not significantly impair post-thaw contractibility in comparison with fresh uteri. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Ultraslow myosin molecular motors of placental contractile stem villi in humans.

    PubMed

    Lecarpentier, Yves; Claes, Victor; Lecarpentier, Edouard; Guerin, Catherine; Hébert, Jean-Louis; Arsalane, Abdelilah; Moumen, Abdelouahab; Krokidis, Xénophon; Michel, Francine; Timbely, Oumar

    2014-01-01

    Human placental stem villi (PSV) present contractile properties. In vitro mechanics were investigated in 40 human PSV. Contraction of PSV was induced by both KCl exposure (n = 20) and electrical tetanic stimulation (n = 20). Isotonic contractions were registered at several load levels ranging from zero-load up to isometric load. The tension-velocity relationship was found to be hyperbolic. This made it possible to apply the A. Huxley formalism for determining the rate constants for myosin cross-bridge (CB) attachment and detachment, CB single force, catalytic constant, myosin content, and maximum myosin ATPase activity. These molecular characteristics of myosin CBs did not differ under either KCl exposure or tetanus. A comparative approach was established from studies previously published in the literature and driven by mean of a similar method. As compared to that described in mammalian striated muscles, we showed that in human PSV, myosin CB rate constants for attachment and detachment were about 103 times lower whereas myosin ATPase activity was 105 times lower. Up to now, CB kinetics of contractile cells arranged along the long axis of the placental sheath appeared to be the slowest ever observed in any mammalian contractile tissue.

  3. A multiscale active structural model of the arterial wall accounting for smooth muscle dynamics.

    PubMed

    Coccarelli, Alberto; Edwards, David Hughes; Aggarwal, Ankush; Nithiarasu, Perumal; Parthimos, Dimitris

    2018-02-01

    Arterial wall dynamics arise from the synergy of passive mechano-elastic properties of the vascular tissue and the active contractile behaviour of smooth muscle cells (SMCs) that form the media layer of vessels. We have developed a computational framework that incorporates both these components to account for vascular responses to mechanical and pharmacological stimuli. To validate the proposed framework and demonstrate its potential for testing hypotheses on the pathogenesis of vascular disease, we have employed a number of pharmacological probes that modulate the arterial wall contractile machinery by selectively inhibiting a range of intracellular signalling pathways. Experimental probes used on ring segments from the rabbit central ear artery are: phenylephrine, a selective α 1-adrenergic receptor agonist that induces vasoconstriction; cyclopiazonic acid (CPA), a specific inhibitor of sarcoplasmic/endoplasmic reticulum Ca 2+ -ATPase; and ryanodine, a diterpenoid that modulates Ca 2+ release from the sarcoplasmic reticulum. These interventions were able to delineate the role of membrane versus intracellular signalling, previously identified as main factors in smooth muscle contraction and the generation of vessel tone. Each SMC was modelled by a system of nonlinear differential equations that account for intracellular ionic signalling, and in particular Ca 2+ dynamics. Cytosolic Ca 2+ concentrations formed the catalytic input to a cross-bridge kinetics model. Contractile output from these cellular components forms the input to the finite-element model of the arterial rings under isometric conditions that reproduces the experimental conditions. The model does not account for the role of the endothelium, as the nitric oxide production was suppressed by the action of L-NAME, and also due to the absence of shear stress on the arterial ring, as the experimental set-up did not involve flow. Simulations generated by the integrated model closely matched experimental

  4. Contractile reserve and calcium regulation are depressed in myocytes from chronically unloaded hearts

    NASA Technical Reports Server (NTRS)

    Ito, Kenta; Nakayama, Masaharu; Hasan, Faisal; Yan, Xinhua; Schneider, Michael D.; Lorell, Beverly H.

    2003-01-01

    BACKGROUND: Chronic cardiac unloading of the normal heart results in the reduction of left ventricular (LV) mass, but effects on myocyte contractile function are not known. METHODS AND RESULTS: Cardiac unloading and reduction in LV mass were induced by heterotopic heart transplantation to the abdominal aorta in isogenic rats. Contractility and [Ca(2+)](i) regulation in LV myocytes were studied at both 2 and 5 weeks after transplantation. Native in situ hearts from recipient animals were used as the controls for all experiments. Contractile function indices in myocytes from 2-week unloaded and native (control) hearts were similar under baseline conditions (0.5 Hz, 1.2 mmol/L [Ca(2+)](o), and 36 degrees C) and in response to stimulation with high [Ca(2+)](o) (range 2.5 to 4.0 mmol/L). In myocytes from 5-week unloaded hearts, there were no differences in fractional cell shortening and peak-systolic [Ca(2+)](i) at baseline; however, time to 50% relengthening and time to 50% decline in [Ca(2+)](i) were prolonged compared with controls. Severe defects in fractional cell shortening and peak-systolic [Ca(2+)](i) were elicited in myocytes from 5-week unloaded hearts in response to high [Ca(2+)](o). However, there were no differences in the contractile response to isoproterenol between myocytes from unloaded and native hearts. In 5-week unloaded hearts, but not in 2-week unloaded hearts, LV protein levels of phospholamban were increased (345% of native heart values). Protein levels of sarcoplasmic reticulum Ca(2+) ATPase and the Na(+)/Ca(2+) exchanger were not changed. CONCLUSIONS: Chronic unloading of the normal heart caused a time-dependent depression of myocyte contractile function, suggesting the potential for impaired performance in states associated with prolonged cardiac atrophy.

  5. Contractility and Ventricular Systolic Stiffening in Hypertensive Heart Disease: Insights into the Pathogenesis of Heart Failure with Preserved Ejection Fraction

    PubMed Central

    Borlaug, Barry A.; Lam, Carolyn S.P.; Roger, Véronique L.; Rodeheffer, Richard J.; Redfield, Margaret M.

    2009-01-01

    Objectives: 1) Compare left ventricular (LV) systolic stiffness and contractility in normal subjects, hypertensives without heart failure, and patients with heart failure and preserved ejection fraction (HFpEF); and 2) Determine whether LV systolic stiffness or myocardial contractility are associated with mortality in HFpEF. Background: Arterial load is increased in hypertension and is matched by increased end-systolic LV stiffness (ventricular-arterial coupling). Increased end-systolic LV stiffness may be mediated by enhanced myocardial contractility or processes which increase passive myocardial stiffness. Methods: Healthy controls (n=617), hypertensives (No HF, n=719) and patients with HFpEF (n=244, 96% hypertensive) underwent echo-Doppler characterization of arterial (Ea) and LV end-systolic (Ees) stiffness (elastance), ventricular-arterial coupling (Ea/Ees ratio), chamber-level and myocardial contractility (stress-corrected midwall shortening). Results: Ea and Ees were similarly elevated in hypertensives with or without HFpEF compared with controls, but ventricular-arterial coupling was similar across groups. In hypertensives, elevated Ees was associated with enhanced chamber-level and myocardial contractility, while in HFpEF, chamber and myocardial contractility were depressed compared with both hypertensives and controls. Group differences persisted after adjusting for geometry. In HFpEF, impaired myocardial contractility (but not Ees) was associated with increased age-adjusted mortality. Conclusions: While arterial load is elevated and matched by increased LV systolic stiffness in hypertension with or without HFpEF, the mechanisms of systolic LV stiffening differ substantially. These data suggest that myocardial contractility increases to match arterial load in asymptomatic hypertensive heart disease, but that progression to HFpEF may be mediated by processes which simultaneously impair myocardial contractility and increase passive myocardial stiffness

  6. In situ assessment of shortening and lengthening contractile properties of hind limb ankle flexors in intact mice.

    PubMed

    Gorselink, M; Drost, M R; de Louw, J; Willems, P J; Hesselink, M K; Dekkers, E C; Rosielle, N; van der Vusse, G J

    2001-05-01

    The availability of animal models with disrupted genes has increased the need for small-scale measurement devices. Recently, we developed an experimental device to assess in situ mechanical properties of isometric contractions of intact muscle complexes of the mouse. Although this apparatus provides valuable information on muscle mechanical performance, it is not appropriate for determining contractile properties during shortening and lengthening contractions. In the present study we therefore developed and evaluated an experimental apparatus for assessment of shortening and lengthening contractile properties of intact plantar and dorsal flexors of the mouse. The current through a custom-built, low-inertia servomotor was measured to assess contractile muscular torque ranging from -50 to mN.m. Evaluation of the fixation procedure of the animal to the apparatus via 3-D monitoring of the muscle-tendon complex length showed that the additional shortening in length due to a contraction with maximal torque output has only minor effects on the measured torque. Furthermore, misalignment of the axis of rotation of the apparatus relative to the axis of rotation in the ankle joint, i.e. eccentricity, during a routine experiment was estimated to be less than 1.0 mm and hence did not influence the measured torque output under our experimental conditions. Peak power per unit muscle mass (mean +/- SD) of intact dorsal and plantar flexors was 0.27 +/- 0.02 and 0.19 +/- 0.03 W.g-1, respectively. The angular velocity at maximal peak power generated by the dorsal flexor complex and the plantar flexor complex was 1100 +/- 190 and 700 +/- 90 degrees.s-1, respectively.

  7. Plasticity of TOM complex assembly in skeletal muscle mitochondria in response to chronic contractile activity.

    PubMed

    Joseph, Anna-Maria; Hood, David A

    2012-03-01

    We investigated the assembly of the TOM complex within skeletal muscle under conditions of chronic contractile activity-induced mitochondrial biogenesis. Tom40 import into mitochondria was increased by chronic contractile activity, as was its time-dependent assembly into the TOM complex. These changes coincided with contractile activity-induced augmentations in the expression of key protein import machinery components Tim17, Tim23, and Tom22, as well as the cytosolic chaperone Hsp90. These data indicate the adaptability of the TOM protein import complex and suggest a regulatory role for the assembly of this complex in exercise-induced mitochondrial biogenesis. Copyright © 2011 Elsevier B.V. and Mitochondria Research Society. All rights reserved. All rights reserved.

  8. Myometrial contractility influences oxytocin receptor (OXTR) expression in term trophoblast cells obtained from the maternal surface of the human placenta.

    PubMed

    Szukiewicz, Dariusz; Bilska, Anna; Mittal, Tarun Kumar; Stangret, Aleksandra; Wejman, Jaroslaw; Szewczyk, Grzegorz; Pyzlak, Michal; Zamlynski, Jacek

    2015-09-16

    Oxytocin (OXT) acts through its specific receptor (OXTR) and increased density of OXTR and/or augmented sensitivity to OXT were postulated as prerequisites of normal onset of labor. Expression of OXTR in the placental term trophoblast cells has not yet been analyzed in the context of contractile activity of the uterus. Here we examine comparatively OXT contents in the placental tissue adjacent to the uterine wall and expressions of OXTR in this tissue and corresponding isolated placental trophoblast cells. Twenty eight placentae after normal labors at term (group I, N = 14) and after cesarean sections performed without uterine contractile activity (group II, N = 14) have been collected. Tissue excised from the maternal surface of examined placenta was used for OXT concentration measurement, cytotrophoblast cell cultures preparation and immunohistochemistry of OXTR. Concentration of OXT was estimated in the tissue homogenates by an enzyme immunoassay with colorimetric detection. Cytotrophoblast cells were isolated using Kliman's method based on trypsin, DNase, and a 5-70% Percoll gradient centrifugation. The cultures were incubated for 5 days in normoxia. Both placental specimens and terminated cytotrophoblast cultures were fixed and embedded in paraffin before being immunostained for OXTR. Using light microscopy with computed morphometry for quantitative analysis, OXTR expressions were estimated in calibrated areas of the paraffin sections. There were not significant differences between the groups in respect to the mean OXT concentration. However, in both groups the median value of OXT concentration was significantly (p < 0.05) higher in the tissue obtained from the peripheral regions of the maternal surface of the placenta, compared to the samples from the central region of this surface. In placental tissue the mean expression of OXTR in group I was significantly (p < 0.05) increased by approximately 3.2-fold and 3.45-fold (the samples collected

  9. Processive motions of MreB micro-filaments coordinate cell wall growth

    NASA Astrophysics Data System (ADS)

    Garner, Ethan

    2012-02-01

    Rod-shaped bacteria elongate by the action of cell-wall synthesis complexes linked to underlying dynamic MreB filaments, but how these proteins function to allow continued elongation as a rod remains unknown. To understand how the movement of these filaments relates to cell wall synthesis, we characterized the dynamics of MreB and the cell wall elongation machinery using high-resolution particle tracking in Bacillus subtilis. We found that both MreB and the elongation machinery move in linear paths across the cell, moving at similar rates (˜20nm / second) and angles to the cell body, suggesting they function as single complexes. These proteins move circumferentially around the cell, principally perpendicular to its length. We find that the motions of these complexes are independent, as they can pause and reverse,and also as nearby complexes move independently in both directions across one surface of the cell. Inhibition of cell wall synthesis with antibiotics or depletions in the cell wall synthesis machinery blocked MreB movement, suggesting that the cell wall synthetic machinery is the motor in this system. We propose that bacteria elongate by the uncoordinated, circumferential movements of synthetic complexes that span the plasma membrane and insert radial hoops of new peptidoglycan during their transit.

  10. Aqueous two-phase printing of cell-containing contractile collagen microgels.

    PubMed

    Moraes, Christopher; Simon, Arlyne B; Putnam, Andrew J; Takayama, Shuichi

    2013-12-01

    This work describes the use of aqueous two-phase systems to print cell-containing contractile collagen microdroplets. The fully aqueous conditions enable convenient formation of sub-microliter 'microgels' that are much smaller than otherwise possible to fabricate while maintaining high cell viability. The produced microgels contract over several days, mimicking the behavior of macroscale contraction assays, which have been valued as an important biological readout for over three decades. Use of microgels not only reduces reagent consumption and increases throughput of the assay, but also improves transport of molecules into and out of the collagen matrix, thereby enabling efficient and more precise studies of timed stimulation profiles. Utility of the technology is demonstrated by analyzing the effects of TGF-β1 on gel contraction, and we demonstrate that brief 'burst' stimulation profiles in microgels prompt contraction of the matrix, a feature not observed in the conventional macroscale assay. The fully aqueous process also enables the integration of contractile collagen microgels within existing cell culture systems, and we demonstrate proof-of-principle experiments in which a contractile collagen droplet is fabricated in situ on an existing epithelial monolayer. The simplicity, versatility and ability to robustly produce collagen microgels should allow effective translation of this microengineering technology into a variety of research environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Binary Interactions of Antagonistic Bacteria with Candida albicans Under Aerobic and Anaerobic Conditions.

    PubMed

    Benadé, Eliska; Stone, Wendy; Mouton, Marnel; Postma, Ferdinand; Wilsenach, Jac; Botha, Alfred

    2016-04-01

    We used both aerobic and anaerobic liquid co-cultures, prepared with Luria Bertani broth, to study the effect of bacteria on the survival of Candida albicans in the external environment, away from an animal host. The bacteria were represented by Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Clostridium, Enterobacter, Klebsiella pneumoniae, Kluyvera ascorbata and Serratia marcescens. Under aerobic conditions, the yeast's growth was inhibited in the presence of bacterial growth; however, under anaerobic conditions, yeast and bacterial growth in co-cultures was similar to that observed for pure cultures. Subsequent assays revealed that the majority of bacterial strains aerobically produced extracellular hydrolytic enzymes capable of yeast cell wall hydrolysis, including chitinases and mannan-degrading enzymes. In contrast, except for the A. hydrophila strain, these enzymes were not detected in anaerobic bacterial cultures, nor was the antimicrobial compound prodigiosin found in anaerobic cultures of S. marcescens. When we suspended C. albicans cells in crude extracellular enzyme preparations from K. pneumoniae and S. marcescens, we detected no negative effect on yeast viability. However, we found that these preparations enhance the toxicity of prodigiosin towards the yeast, especially in combination with mannan-degrading enzymes. Analyses of the chitin and mannan content of yeast cell walls revealed that less chitin was produced under anaerobic than aerobic conditions; however, the levels of mannan, known for its low permeability, remained the same. The latter phenomenon, as well as reduced production of the bacterial enzymes and prodigiosin, may contribute to anaerobic growth and survival of C. albicans in the presence of bacteria.

  12. Omecamtiv mercabil and blebbistatin modulate cardiac contractility by perturbing the regulatory state of the myosin filament

    PubMed Central

    Kampourakis, Thomas; Zhang, Xuemeng; Sun, Yin‐Biao

    2017-01-01

    Key points Omecamtiv mecarbil and blebbistatin perturb the regulatory state of the thick filament in heart muscle.Omecamtiv mecarbil increases contractility at low levels of activation by stabilizing the ON state of the thick filament.Omecamtiv mecarbil decreases contractility at high levels of activation by disrupting the acto‐myosin ATPase cycle.Blebbistatin reduces contractility by stabilizing the thick filament OFF state and inhibiting acto‐myosin ATPase.Thick filament regulation is a promising target for novel therapeutics in heart disease. Abstract Contraction of heart muscle is triggered by a transient rise in intracellular free calcium concentration linked to a change in the structure of the actin‐containing thin filaments that allows the head or motor domains of myosin from the thick filaments to bind to them and induce filament sliding. It is becoming increasingly clear that cardiac contractility is also regulated through structural changes in the thick filaments, although the molecular mechanisms underlying thick filament regulation are still relatively poorly understood. Here we investigated those mechanisms using small molecules – omecamtiv mecarbil (OM) and blebbistatin (BS) – that bind specifically to myosin and respectively activate or inhibit contractility in demembranated cardiac muscle cells. We measured isometric force and ATP utilization at different calcium and small‐molecule concentrations in parallel with in situ structural changes determined using fluorescent probes on the myosin regulatory light chain in the thick filaments and on troponin C in the thin filaments. The results show that BS inhibits contractility and actin‐myosin ATPase by stabilizing the OFF state of the thick filament in which myosin head domains are more parallel to the filament axis. In contrast, OM stabilizes the ON state of the thick filament, but inhibits contractility at high intracellular calcium concentration by disrupting the actin‐myosin ATPase

  13. Effects of endothelin, calcium channel blockade and EDRF inhibition on the contractility of human uteroplacental arteries.

    PubMed

    Fried, G; Liu, Y A

    1994-08-01

    In order to examine the possibility that endothelin might be important in the regulation of placental blood flow, human uteroplacental vessels were superfused in vitro to study the contractile effect of endothelin as compared with a known strong contractor of placental blood vessels, serotonin (5-HT). The contractile responses were compared in the presence and absence of calcium channel blocking agents, as well as in the presence of L-NMA, an inhibitor of EDRF/nitric oxide. Endothelin (ET, 10(-10)-10(-6) M) and 5-HT (10(-8)-10(-4) M) induced contractions in the vessels. Maximal contractions in the presence of endothelin were elicited at 10(-7) M, whereas 5-HT elicited maximal contractions at 10(-5) M. At 10(-7) M, ET was more potent than 5-HT. The calcium-channel blocking agents nifedipine, diltiazem and NiCl2 relaxed the vessels by 5-15% from baseline. The contractile response to ET in the presence of nifedipine or diltiazem was reduced by 55 and 67%, respectively. The response of 5-HT in the presence of nifedipine was reduced by 58%. The contractile response to 5-HT as well as ET in the presence of both nifedipine and NiCl2 was not significantly lower than in the presence of nifedipine only. The EDRF-inhibiting agent L-NMA caused a small contractile response at concentrations of 10(-6)-10(-5) M. ET as well as 5-HT added after pretreatment with L-NMA produced a larger contractile response than ET or 5-HT alone. The results show that ET has a strong contractile effect on placental blood vessels at concentrations likely to occur during labor and delivery. The mechanism whereby ET as well as 5-HT contracts placental vessel smooth muscle appears to partly involve nifedipine- and diltiazem-sensitive calcium channels, but almost half of the response depends on mobilization of calcium through other means.

  14. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR

    PubMed Central

    Romaniuk, Joseph A. H.; Cegelski, Lynette

    2015-01-01

    The ability to characterize bacterial cell-wall composition and structure is crucial to understanding the function of the bacterial cell wall, determining drug modes of action and developing new-generation therapeutics. Solid-state NMR has emerged as a powerful tool to quantify chemical composition and to map cell-wall architecture in bacteria and plants, even in the context of unperturbed intact whole cells. In this review, we discuss solid-state NMR approaches to define peptidoglycan composition and to characterize the modes of action of old and new antibiotics, focusing on examples in Staphylococcus aureus. We provide perspectives regarding the selected NMR strategies as we describe the exciting and still-developing cell-wall and whole-cell NMR toolkit. We also discuss specific discoveries regarding the modes of action of vancomycin analogues, including oritavancin, and briefly address the reconsideration of the killing action of β-lactam antibiotics. In such chemical genetics approaches, there is still much to be learned from perturbations enacted by cell-wall assembly inhibitors, and solid-state NMR approaches are poised to address questions of cell-wall composition and assembly in S. aureus and other organisms. PMID:26370936

  15. Antimicrobial activity of Manuka honey against antibiotic-resistant strains of the cell wall-free bacteria Ureaplasma parvum and Ureaplasma urealyticum.

    PubMed

    Hillitt, K L; Jenkins, R E; Spiller, O B; Beeton, M L

    2017-03-01

    The susceptibility of the cell wall-free bacterial pathogens Ureaplasma spp. to Manuka honey was examined. The minimum inhibitory concentration (MIC) of Manuka honey for four Ureaplasma urealyticum and four Ureaplasma parvum isolates was determined. Sensitivity to honey was also compared to clinical isolates with resistance to tetracycline, macrolide and fluoroquinolone antibiotics. Finally step-wise resistance training was utilized in an attempt to induce increased tolerance to honey. The MIC was dependent on the initial bacterial load with 7·5 and 18·0% w/v honey required to inhibit U. urealyticum at 1 and 10 6 colour changing units (CCU), respectively, and 4·8 and 15·3% w/v required to inhibit U. parvum at 1 and 10 6  CCU respectively. MIC values were consistently lower for U. parvum compared with U. urealyticum. Antimicrobial activity was seen against tetracycline-resistant, erythromycin-resistant and ciprofloxacin-resistant isolates at 10 5  CCU. No resistance to honey was observed with 50 consecutive challenges at increasing concentrations of honey. This is the first report of the antimicrobial activity of Manuka honey against a cell wall-free bacterial pathogen. The antimicrobial activity was retained against antibiotic-resistant strains and it was not possible to generate resistant mutants. Manuka honey is known to have a broad spectrum of antimicrobial activity, with the bacterial cell wall being suggested as a predominant site of action. This study has demonstrated that Manuka honey has activity against Ureaplasma spp., a genus of cell wall-free bacteria which are intrinsically resistant to many available antibiotics making treatment inherently difficult. This is the first report of the antimicrobial activity of Manuka honey against a bacterial pathogen, in the absence of a cell well and opens scope for the use of components of Manuka honey as a therapeutic among Ureaplasma infections. © 2016 The Society for Applied Microbiology.

  16. Disordered Actomyosin Is Sufficient to Promote Cooperative and Telescopic Contractility

    NASA Astrophysics Data System (ADS)

    Murrell, Michael; Linsmeier, Ian; Banerjee, Shiladitya; Kim, Tae Yoon; Jung, Wonyeong; Oakes, Patrick

    While the molecular interactions between myosin motors and F-actin are well known, the relationship between F-actin organization and myosin-mediated force generation remains poorly understood. Here, we explore the accumulation of myosin-induced stresses within a 2D biomimetic model of the actomyosin cortex, where myosin activity is controlled spatially and temporally using light. By controlling the geometry and the duration of myosin activation, we show that contraction of disordered actomyosin is highly cooperative, telescopic with the activation area and generates a pattern of mechanical stresses consistent with those observed in contractile cells. We quantitatively reproduce these properties using an in vitro isotropic model of the actomyosin cytoskeleton, and explore the physical origins of telescopic contractility in disordered networks using agent-based simulations. NSF CMMI-1525316.

  17. Recommendations for future development of contractility and obstruction nomograms for women. ICI-RS 2014.

    PubMed

    Rademakers, Kevin; Apostolidis, Apostolos; Constantinou, Christos; Fry, Christopher; Kirschner-Hermanns, Ruth; Oelke, Matthias; Parsons, Brian; Nelson, Pierre; Valentini, Françoise; Gammie, Andrew

    2016-02-01

    At present, existing bladder outlet obstruction (BOO) nomograms for women are still not universally accepted. Moreover, only limited information is available regarding bladder contractility in women. The aim is to present the discussions and recommendations from the think tank session "Can we construct and validate contractility and obstruction nomograms for women?" held at the 2014 International Consultation on Incontinence-Research Society (ICI-RS) meeting in Bristol, UK. An overview of clinical significance, bladder mechanics and modelling, lack of existing nomograms for women, and development of new nomograms were presented and discussed in a multidisciplinary think tank session. This think tank session was based on a collaboration between physicians, engineers, and researchers and consensus was achieved on future research initiatives. Based on the think tank discussion, the ICI-RS panel put forward the following recommendations: the need to acquire normative age-matched data in women to define "normal" and "pathological" values of urodynamic parameters; the inclusion of additional clinical data in new nomograms and the use of this extra dimension to develop clinically applicable nomograms for female BOO and contractility; and finally, the need to take into account the variability of BOO in women when developing female bladder contractility nomograms. © 2016 Wiley Periodicals, Inc.

  18. [Subcellular basis of disorders of the contractile capacity of the heart in L-thyroxine-induced thyrotoxicosis].

    PubMed

    Karsanov, N V; Melashvili, N O; Khugashvili, Z G; Mamulashvili, L D; Azrumelashvili, M I; Khaindrava, G K; Kapanadze, R V

    1990-02-01

    In experiments on dogs, the authors examined the functional activity of three cardiomyocyte systems responsible for contraction-relaxation (the systems of contractile proteins, calcium transport and energy supply) in the dynamics of L-thyroxine-induced toxicosis. A fall in the capacity of the contractile protein system to generate energy and to perform was shown to play the leading role in decrease of myocardial reserve forces and reduction in cardiac contractility. There was a drop in the intensity of calcium transport through the membranes of the sarcoplasmic reticulum and mitochondria and a deficiency of the direct energy source for contraction only in the late period of the disease.

  19. Biocalcification using Ureolytic Bacteria (UB) for strengthening Interlocking Compressed Earth Blocks (ICEB)

    NASA Astrophysics Data System (ADS)

    Zamer, M. M.; Irwan, J. M.; Othman, N.; Faisal, S. K.; Anneza, L. H.; Alshalif, A. F.; Teddy, T.

    2018-02-01

    Interlocking compressed earth blocks (ICEB) are soil based blocks that allows for mortarless construction. This characteristic resulted to faster the process of building walls and required less skilled labor as the blocks are laid dry and lock into place. Recently, implementation in using bacteria as construction material improvement is vigorously used in research in order pursuit the sustainable construction works. This paper provide the results of ureolytic bacteria (UB) throughout enrichment process in soil condition to acclimatize the ICEB environment, compressive strength of 1%, 3% and 5% UB and SEM analysis of ICEB. The bacteria were added as partial replacement of limestone water in ICEB. The results showed the optimal growth achieved based on the days and absorbance from optical density (OD) test which are in 12th days with absorbance of 0.55 whereas the results for strength shows the increment of 15.25% with 5% UB on 28th days of testing compared to control specimen. Therefore this study hopes that positive results from the UB as improving in strength of ICEB which will lead to improve others ICEB properties and others construction materials.

  20. Bacterial Community and PHB-Accumulating Bacteria Associated with the Wall and Specialized Niches of the Hindgut of the Forest Cockchafer (Melolontha hippocastani).

    PubMed

    Alonso-Pernas, Pol; Arias-Cordero, Erika; Novoselov, Alexey; Ebert, Christina; Rybak, Jürgen; Kaltenpoth, Martin; Westermann, Martin; Neugebauer, Ute; Boland, Wilhelm

    2017-01-01

    A characterization of the bacterial community of the hindgut wall of two larval and the adult stages of the forest cockchafer ( Melolontha hippocastani ) was carried out using amplicon sequencing of the 16S rRNA gene fragment. We found that, in second-instar larvae, Caulobacteraceae and Pseudomonadaceae showed the highest relative abundances, while in third-instar larvae, the dominant families were Porphyromonadaceae and Bacteroidales-related. In adults, an increase of the relative abundance of Bacteroidetes, Proteobacteria (γ- and δ- classes) and the family Enterococcaceae (Firmicutes) was observed. This suggests that the composition of the hindgut wall community may depend on the insect's life stage. Additionally, specialized bacterial niches hitherto very poorly described in the literature were spotted at both sides of the distal part of the hindgut chamber. We named these structures "pockets." Amplicon sequencing of the 16S rRNA gene fragment revealed that the pockets contained a different bacterial community than the surrounding hindgut wall, dominated by Alcaligenaceae and Micrococcaceae-related families. Poly-β-hydroxybutyrate (PHB) accumulation in the pocket was suggested in isolated Achromobacter sp. by Nile Blue staining, and confirmed by gas chromatography-mass spectrometry analysis (GC-MS) on cultured bacterial mass and whole pocket tissue. Raman micro-spectroscopy allowed to visualize the spatial distribution of PHB accumulating bacteria within the pocket tissue. The presence of this polymer might play a role in the colonization of these specialized niches.

  1. Impaired right ventricular contractile function in childhood obesity and its association with right and left ventricular changes: a cine DENSE cardiac magnetic resonance study.

    PubMed

    Jing, Linyuan; Pulenthiran, Arichanah; Nevius, Christopher D; Mejia-Spiegeler, Abba; Suever, Jonathan D; Wehner, Gregory J; Kirchner, H Lester; Haggerty, Christopher M; Fornwalt, Brandon K

    2017-06-28

    Pediatric obesity is a growing public health problem, which is associated with increased risk of cardiovascular disease and premature death. Left ventricular (LV) remodeling (increased myocardial mass and thickness) and contractile dysfunction (impaired longitudinal strain) have been documented in obese children, but little attention has been paid to the right ventricle (RV). We hypothesized that obese/overweight children would have evidence of RV remodeling and contractile dysfunction. One hundred and three children, ages 8-18 years, were prospectively recruited and underwent cardiovascular magnetic resonance (CMR), including both standard cine imaging and displacement encoding with stimulated echoes (DENSE) imaging, which allowed for quantification of RV geometry and function/mechanics. RV free wall longitudinal strain was quantified from the end-systolic four-chamber DENSE image. Linear regression was used to quantify correlations of RV strain with LV strain and measurements of body composition (adjusted for sex and height). Analysis of variance was used to study the relationship between RV strain and LV remodeling types (concentric remodeling, eccentric/concentric hypertrophy). The RV was sufficiently visualized with DENSE in 70 (68%) subjects, comprising 36 healthy weight (13.6 ± 2.7 years) and 34 (12.1 ± 2.9 years) obese/overweight children. Obese/overweight children had a 22% larger RV mass index (8.2 ± 0.9 vs 6.7 ± 1.1 g/m 2.7 , p < 0.001) compared to healthy controls. RV free wall longitudinal strain was impaired in obese/overweight children (-16 ± 4% vs -19 ± 5%, p = 0.02). Ten (14%) out of 70 children had LV concentric hypertrophy, and these children had the most impaired RV longitudinal strain compared to those with normal LV geometry (-13 ± 4% vs -19 ± 5%, p = 0.002). RV longitudinal strain was correlated with LV longitudinal strain (r = 0.34, p = 0.004), systolic blood pressure (r = 0

  2. Lactic acid bacteria found in fermented fish in Thailand.

    PubMed

    Tanasupawat, Somboon; Okada, Sanae; Komagata, Kazuo

    1998-06-01

    Forty-seven strains of homofermentative rod-shaped and 5 heterofermentative sphere-shaped lactic acid bacteria were isolated from 4 kinds of fermented fish (pla-ra, pla-chom, kung-chom, and hoi-dong) in Thailand. These bacteria were separated into four groups by phenotypic and chemotaxonomic characteristics, including fluorometric DNA-DNA hybridization. Five strains (Group I) contained meso-diaminopimelic acid in the cell wall. Four strains were identified as Lactobacillus pentosus, and one strain was L. plantarum. Tested strains of this group produced DL-lactic acid. The rest of the rod-shaped bacteria, 23 strains (Group II) and 19 strains (Group III), lacked meso-diaminopimelic acid in the cell wall and were identified as L. farciminis and Lactobacillus species, respectively. The tested strains of these groups produced L-lactic acid. The amount of cellular fatty acids of C16:0 and C18:1, and the DNA base compositions were significant for differentiating the strains in Groups II and III. Five strains of cocci in chains (Group IV) produced gas from glucose. The tested strains of this group produced d-lactic acid. They were identified as a Leuconostoc species. The distribution of these bacteria in fermented fish in Thailand is discussed.

  3. Preservation of protein globules and peptidoglycan in the mineralized cell wall of nitrate-reducing, iron(II)-oxidizing bacteria: a cryo-electron microscopy study.

    PubMed

    Miot, J; Maclellan, K; Benzerara, K; Boisset, N

    2011-11-01

    Iron-oxidizing bacteria are important actors of the geochemical cycle of iron in modern environments and may have played a key role all over Earth's history. However, in order to better assess that role on the modern and the past Earth, there is a need for better understanding the mechanisms of bacterial iron oxidation and for defining potential biosignatures to be looked for in the geologic record. In this study, we investigated experimentally and at the nanometre scale the mineralization of iron-oxidizing bacteria with a combination of synchrotron-based scanning transmission X-ray microscopy (STXM), scanning transmission electron microscopy (STEM) and cryo-transmission electron microscopy (cryo-TEM). We show that the use of cryo-TEM instead of conventional microscopy provides detailed information of the successive iron biomineralization stages in anaerobic nitrate-reducing iron-oxidizing bacteria. These results suggest the existence of preferential Fe-binding and Fe-oxidizing sites on the outer face of the plasma membrane leading to the nucleation and growth of Fe minerals within the periplasm of these cells that eventually become completely encrusted. In contrast, the septa of dividing cells remain nonmineralized. In addition, the use of cryo-TEM offers a detailed view of the exceptional preservation of protein globules and the peptidoglycan within the Fe-mineralized cell walls of these bacteria. These organic molecules and ultrastructural details might be protected from further degradation by entrapment in the mineral matrix down to the nanometre scale. This is discussed in the light of previous studies on the properties of Fe-organic interactions and more generally on the fossilization of mineral-organic assemblies. © 2011 Blackwell Publishing Ltd.

  4. Affinity sensor using 3-aminophenylboronic acid for bacteria detection.

    PubMed

    Wannapob, Rodtichoti; Kanatharana, Proespichaya; Limbut, Warakorn; Numnuam, Apon; Asawatreratanakul, Punnee; Thammakhet, Chongdee; Thavarungkul, Panote

    2010-10-15

    Boronic acid that can reversibly bind to diols was used to detect bacteria through its affinity binding reaction with diol-groups on bacterial cell walls. 3-aminophenylboronic acid (3-APBA) was immobilized on a gold electrode via a self-assembled monolayer. The change in capacitance of the sensing surface caused by the binding between 3-APBA and bacteria in a flow system was detected by a potentiostatic step method. Under optimal conditions the linear range of 1.5×10(2)-1.5×10(6) CFU ml(-1) and the detection limit of 1.0×10(2) CFU ml(-1) was obtained. The sensing surface can be regenerated and reused up to 58 times. The method was used for the analysis of bacteria in several types of water, i.e., bottled, well, tap, reservoir and wastewater. Compared with the standard plate count method, the results were within one standard deviation of each other. The proposed method can save both time and cost of analysis. The electrode modified with 3-APBA would also be applicable to the detection of other cis-diol-containing analytes. The concept could be extended to other chemoselective ligands, offering less expensive and more robust affinity sensors for a wide range of compounds. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Spontaneous flow in polar active fluids: the effect of a phenomenological self propulsion-like term.

    PubMed

    Bonelli, Francesco; Gonnella, Giuseppe; Tiribocchi, Adriano; Marenduzzo, Davide

    2016-01-01

    We present hybrid lattice Boltzmann simulations of extensile and contractile active fluids where we incorporate phenomenologically the tendency of active particles such as cell and bacteria, to move, or swim, along the local orientation. Quite surprisingly, we show that the interplay between alignment and activity can lead to completely different results, according to geometry (periodic boundary conditions or confinement between flat walls) and nature of the activity (extensile or contractile). An interesting generic outcome is that the alignment interaction can transform stationary active patterns into continuously moving ones: the dynamics of these evolving patterns can be oscillatory or chaotic according to the strength of the alignment term. Our results suggest that flow-polarisation alignment can have important consequences on the collective dynamics of active fluids and active gel.

  6. Metronidazole and 5-aminosalicylic acid enhance the contractile activity of histaminergic agonists on the guinea-pig isolated ileum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winbery, S.L.; Barker, L.A.

    1986-03-01

    The effects of metronidazole and 5-aminosalicylic acid (5-ASA) on histamine receptor-effector systems in the small intestine and right atrium of the guinea pig were studied. In an apparently all-or-none manner, both caused a sinistral shift in dose-response curves for the phasic component of the contractile response to histamine at H1 receptors on the ileum. In the presence of either, the EC50 value for histamine was reduced from 0.07 to about 0.03 microM. Similarly, in an apparently all-or-none fashion, both produced an elevation in the dose-response curve for the actions of dimaprit at H2-receptors in the ileum; the response to allmore » doses was increased about 30% with no significant change in the EC50 value. Metronidazole and 5-ASA did not alter dose-response curves for the tonic contractile response to histamine or curves generated by the cumulative addition of histamine. Also, neither altered the positive chronotropic response on isolated right atria or the phasic contractile response on isolated segments of jejunum and duodenum to histamine or dimaprit. Likewise, neither altered dose-response curves for the direct action of carbamylcholine at muscarinic receptors or for the indirect actions of dimethylphenylpiperazinium on the ileum. The effects of 5-ASA or metronidazole on the response to histamine could be prevented as well as reversed by scopolamine or tetrodotoxin. The results suggest that metronidazole and 5-ASA enhance the actions of histamine and dimaprit on the ileum by an action on myenteric plexus neurons.« less

  7. Assessment of drug-induced arrhythmic risk using limit cycle and autocorrelation analysis of human iPSC-cardiomyocyte contractility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, R. Jason

    2016-08-15

    Cardiac safety assays incorporating label-free detection of human stem-cell derived cardiomyocyte contractility provide human relevance and medium throughput screening to assess compound-induced cardiotoxicity. In an effort to provide quantitative analysis of the large kinetic datasets resulting from these real-time studies, we applied bioinformatic approaches based on nonlinear dynamical system analysis, including limit cycle analysis and autocorrelation function, to systematically assess beat irregularity. The algorithms were integrated into a software program to seamlessly generate results for 96-well impedance-based data. Our approach was validated by analyzing dose- and time-dependent changes in beat patterns induced by known proarrhythmic compounds and screening a cardiotoxicitymore » library to rank order compounds based on their proarrhythmic potential. We demonstrate a strong correlation for dose-dependent beat irregularity monitored by electrical impedance and quantified by autocorrelation analysis to traditional manual patch clamp potency values for hERG blockers. In addition, our platform identifies non-hERG blockers known to cause clinical arrhythmia. Our method provides a novel suite of medium-throughput quantitative tools for assessing compound effects on cardiac contractility and predicting compounds with potential proarrhythmia and may be applied to in vitro paradigms for pre-clinical cardiac safety evaluation. - Highlights: • Impedance-based monitoring of human iPSC-derived cardiomyocyte contractility • Limit cycle analysis of impedance data identifies aberrant oscillation patterns. • Nonlinear autocorrelation function quantifies beat irregularity. • Identification of hERG and non-hERG inhibitors with known risk of arrhythmia • Automated software processes limit cycle and autocorrelation analyses of 96w data.« less

  8. Apelin Increases Cardiac Contractility via Protein Kinase Cε- and Extracellular Signal-Regulated Kinase-Dependent Mechanisms

    PubMed Central

    Perjés, Ábel; Skoumal, Réka; Tenhunen, Olli; Kónyi, Attila; Simon, Mihály; Horváth, Iván G.; Kerkelä, Risto; Ruskoaho, Heikki; Szokodi, István

    2014-01-01

    Background Apelin, the endogenous ligand for the G protein-coupled apelin receptor, is an important regulator of the cardiovascular homoeostasis. We previously demonstrated that apelin is one of the most potent endogenous stimulators of cardiac contractility; however, its underlying signaling mechanisms remain largely elusive. In this study we characterized the contribution of protein kinase C (PKC), extracellular signal-regulated kinase 1/2 (ERK1/2) and myosin light chain kinase (MLCK) to the positive inotropic effect of apelin. Methods and Results In isolated perfused rat hearts, apelin increased contractility in association with activation of prosurvival kinases PKC and ERK1/2. Apelin induced a transient increase in the translocation of PKCε, but not PKCα, from the cytosol to the particulate fraction, and a sustained increase in the phosphorylation of ERK1/2 in the left ventricle. Suppression of ERK1/2 activation diminished the apelin-induced increase in contractility. Although pharmacological inhibition of PKC attenuated the inotropic response to apelin, it had no effect on ERK1/2 phosphorylation. Moreover, the apelin-induced positive inotropic effect was significantly decreased by inhibition of MLCK, a kinase that increases myofilament Ca2+ sensitivity. Conclusions Apelin increases cardiac contractility through parallel and independent activation of PKCε and ERK1/2 signaling in the adult rat heart. Additionally MLCK activation represents a downstream mechanism in apelin signaling. Our data suggest that, in addition to their role in cytoprotection, modest activation of PKCε and ERK1/2 signaling improve contractile function, therefore these pathways represent attractive possible targets in the treatment of heart failure. PMID:24695532

  9. Myosin phosphorylation potentiates steady-state work output without altering contractile economy of mouse fast skeletal muscles.

    PubMed

    Gittings, William; Bunda, Jordan; Vandenboom, Rene

    2018-01-30

    Skeletal myosin light chain kinase (skMLCK)-catalyzed phosphorylation of the myosin regulatory light chain (RLC) increases (i.e. potentiates) mechanical work output of fast skeletal muscle. The influence of this event on contractile economy (i.e. energy cost/work performed) remains controversial, however. Our purpose was to quantify contractile economy of potentiated extensor digitorum longus (EDL) muscles from mouse skeletal muscles with (wild-type, WT) and without (skMLCK ablated, skMLCK -/- ) the ability to phosphorylate the RLC. Contractile economy was calculated as the ratio of total work performed to high-energy phosphate consumption (HEPC) during a period of repeated isovelocity contractions that followed a potentiating stimulus (PS). Consistent with genotype, the PS increased RLC phosphorylation measured during, before and after isovelocity contractions in WT but not in skMLCK -/- muscles (i.e. 0.65 and 0.05 mol phosphate mol -1 RLC, respectively). In addition, although the PS enhanced work during repeated isovelocity contractions in both genotypes, the increase was significantly greater in WT than in skMLCK -/- muscles (1.51±0.03 versus 1.10±0.05, respectively; all data P <0.05, n =8). Interestingly, the HEPC determined during repeated isovelocity contractions was statistically similar between genotypes at 19.03±3.37 and 16.02±3.41 μmol P; respectively ( P <0.27). As a result, despite performing significantly more work, the contractile economy calculated for WT muscles was similar to that calculated for skMLCK -/- muscles (i.e. 5.74±0.67 and 4.61±0.71 J kg -1  μmol -1 P, respectively ( P <0.27). In conclusion, our results support the notion that myosin RLC phosphorylation enhances dynamic contractile function of mouse fast skeletal muscle but does so without decreasing contractile economy. © 2018. Published by The Company of Biologists Ltd.

  10. O-Acetylation of Plant Cell Wall Polysaccharides

    PubMed Central

    Gille, Sascha; Pauly, Markus

    2011-01-01

    Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides – the reduced wall acetylation (RWA) and the trichome birefringence-like (TBL) proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria, and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation. From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of, e.g., lignocellulosic based biofuel production. PMID:22639638

  11. Cell wall peptidoglycan architecture in Bacillus subtilis

    PubMed Central

    Hayhurst, Emma J.; Kailas, Lekshmi; Hobbs, Jamie K.; Foster, Simon J.

    2008-01-01

    The bacterial cell wall is essential for viability and shape determination. Cell wall structural dynamics allowing growth and division, while maintaining integrity is a basic problem governing the life of bacteria. The polymer peptidoglycan is the main structural component for most bacteria and is made up of glycan strands that are cross-linked by peptide side chains. Despite study and speculation over many years, peptidoglycan architecture has remained largely elusive. Here, we show that the model rod-shaped bacterium Bacillus subtilis has glycan strands up to 5 μm, longer than the cell itself and 50 times longer than previously proposed. Atomic force microscopy revealed the glycan strands to be part of a peptidoglycan architecture allowing cell growth and division. The inner surface of the cell wall has a regular macrostructure with ≈50 nm-wide peptidoglycan cables [average 53 ± 12 nm (n = 91)] running basically across the short axis of the cell. Cross striations with an average periodicity of 25 ± 9 nm (n = 96) along each cable are also present. The fundamental cabling architecture is also maintained during septal development as part of cell division. We propose a coiled-coil model for peptidoglycan architecture encompassing our data and recent evidence concerning the biosynthetic machinery for this essential polymer. PMID:18784364

  12. The growing outer epidermal wall: design and physiological role of a composite structure.

    PubMed

    Kutschera, U

    2008-04-01

    The cells of growing plant organs secrete an extracellular fibrous composite (the primary wall) that allows the turgid protoplasts to expand irreversibly via wall-yielding events, which are regulated by processes within the cytoplasm. The role of the epidermis in the control of stem elongation is described with special reference to the outer epidermal wall (OEW), which forms a 'tensile skin'. The OEW is much thicker and less extensible than the walls of the inner tissues. Moreover, in the OEW the amount of cellulose per unit wall mass is considerably greater than in the inner tissues. Ultrastructural studies have shown that the expanding OEW is composed of a highly ordered internal and a diffuse outer half, with helicoidally organized cellulose microfibrils in the inner (load-bearing) region of this tension-stressed organ wall. The structural and mechanical backbone of the wall consists of helicoids, i.e. layers of parallel, inextensible cellulose microfibrils. These 'plywood laminates' contain crystalline 'cables' orientated in all directions with respect to the axis of elongation (isotropic material). Cessation of cell elongation is accompanied by a loss of order, i.e. the OEW is a dynamic structure. Helicoidally arranged extracellular polymers have also been found in certain bacteria, algae, fungi and animals. In the insect cuticle crystalline cutin nanofibrils form characteristic 'OEW-like' herringbone patterns. Theoretical considerations, in vitro studies and computer simulations suggest that extracellular biological helicoids form by directed self-assembly of the crystalline biopolymers. This spontaneous generation of complex design 'without an intelligent designer' evolved independently in the protective 'skin' of plants, animals and many other organisms.

  13. Initial diameter of the polar body contractile ring is minimized by the centralspindlin complex.

    PubMed

    Fabritius, Amy S; Flynn, Jonathan R; McNally, Francis J

    2011-11-01

    Polar body formation is an essential step in forming haploid eggs from diploid oocytes. This process involves completion of a highly asymmetric cytokinesis that results in a large egg and two small polar bodies. Unlike mitotic contractile rings, polar body contractile rings assemble over one spindle pole so that the spindle must move through the contractile ring before cytokinesis. During time-lapse imaging of C. elegans meiosis, the contractile ring moved downward along the length of the spindle and completed scission at the midpoint of the spindle, even when spindle length or rate of ring movement was increased. Patches of myosin heavy chain and dynamic furrowing of the plasma membrane over the entire embryo suggested that global cortical contraction forces the meiotic spindle and overlying membrane out through the contractile ring center. Consistent with this model, depletion of myosin phosphatase increased the velocity of ring movement along the length of the spindle. Global dynamic furrowing, which was restricted to anaphase I and II, was dependent on myosin II, the anaphase promoting complex and separase, but did not require cortical contact by the spindle. Large cortical patches of myosin during metaphase I and II indicated that myosin was already in the active form before activation of separase. To identify the signal at the midpoint of the anaphase spindle that induces scission, we depleted two proteins that mark the exact midpoint of the spindle during late anaphase, CYK-4 and ZEN-4. Depletion of either protein resulted in the unexpected phenotype of initial ingression of a polar body ring with twice the diameter of wild type. This phenotype revealed a novel mechanism for minimizing polar body size. Proteins at the spindle midpoint are required for initial ring ingression to occur close to the membrane-proximal spindle pole. 2011 Elsevier Inc. All rights reserved.

  14. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiedler, Tomas, E-mail: tomas.fiedler@med.uni-rostock.de; Salamon, Achim; Adam, Stefanie

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiationmore » of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC.« less

  15. Omecamtiv mercabil and blebbistatin modulate cardiac contractility by perturbing the regulatory state of the myosin filament.

    PubMed

    Kampourakis, Thomas; Zhang, Xuemeng; Sun, Yin-Biao; Irving, Malcolm

    2018-01-01

    Omecamtiv mecarbil and blebbistatin perturb the regulatory state of the thick filament in heart muscle. Omecamtiv mecarbil increases contractility at low levels of activation by stabilizing the ON state of the thick filament. Omecamtiv mecarbil decreases contractility at high levels of activation by disrupting the acto-myosin ATPase cycle. Blebbistatin reduces contractility by stabilizing the thick filament OFF state and inhibiting acto-myosin ATPase. Thick filament regulation is a promising target for novel therapeutics in heart disease. Contraction of heart muscle is triggered by a transient rise in intracellular free calcium concentration linked to a change in the structure of the actin-containing thin filaments that allows the head or motor domains of myosin from the thick filaments to bind to them and induce filament sliding. It is becoming increasingly clear that cardiac contractility is also regulated through structural changes in the thick filaments, although the molecular mechanisms underlying thick filament regulation are still relatively poorly understood. Here we investigated those mechanisms using small molecules - omecamtiv mecarbil (OM) and blebbistatin (BS) - that bind specifically to myosin and respectively activate or inhibit contractility in demembranated cardiac muscle cells. We measured isometric force and ATP utilization at different calcium and small-molecule concentrations in parallel with in situ structural changes determined using fluorescent probes on the myosin regulatory light chain in the thick filaments and on troponin C in the thin filaments. The results show that BS inhibits contractility and actin-myosin ATPase by stabilizing the OFF state of the thick filament in which myosin head domains are more parallel to the filament axis. In contrast, OM stabilizes the ON state of the thick filament, but inhibits contractility at high intracellular calcium concentration by disrupting the actin-myosin ATPase pathway. The effects of BS and OM

  16. Right ventricular contractile reserve in mitral stenosis: implications on hemodynamic burden and clinical outcome.

    PubMed

    Sade, Leyla Elif; Ozin, Bülent; Ulus, Taner; Açikel, Sadik; Pirat, Bahar; Bilgi, Muhammed; Uluçam, Melek; Müderrisoğlu, Haldun

    2009-06-26

    We investigated whether isovolumic acceleration (IVA) under inotropic stimulation as a means of right ventricular (RV) contractile reserve, is a surrogate for hemodynamic burden and has prognostic value in patients with mitral stenosis (MS). Thirty-one pure MS patients and 20 controls underwent cardiac catheterization, exercise test, and dobutamine stress echocardiography. RV fractional area change (FAC), +dP/dt/P(max), RV tissue Doppler indices (isovolumic contraction [IVC] and systolic [S] velocity, and IVA) were measured. Patients were followed-up for the occurrence of cardiac adverse events. Inotropic modulation unmasked statistically significant differences regarding magnitude of changes in IVA, IVC, S, and +dP/dt/P(max), but not RV FAC. Inability to increase IVA more than 6.5 m/s(2) was the only independent determinant of pulmonary capillary wedge pressure >or=18 mm Hg (P=.004). Although MS severity did not predict the RV contractile reserve and pulmonary artery pressure (PAP) behavior during inotropic stimulation, the RV contractile reserve was related to the degree of systolic PAP. IVA increases of <3.4 m/s(2) had 86% sensitivity and 75% specificity to predict unfavorable outcomes during long-term follow-up (20+/-8 months). RV contractile reserve provides complementary data to the hemodynamic significance of MS severity, may contribute to clinical decision making, and be of prognostic value in these patients.

  17. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging

    DOE PAGES

    Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; ...

    2014-10-31

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip windowmore » surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria.« less

  18. Polyphasic approach to characterize heterotrophic bacteria of biofilms and patina on walls of the Suburban Bath of the Herculaneum's archaeological excavations in Italy

    NASA Astrophysics Data System (ADS)

    Ventorino, V.; Pepe, O.; Sannino, L.; Blaiotta, G.; Palomba, S.

    2012-04-01

    Built between the walls of Herculaneum excavations, one of the world's most important archaeological sites, and the sea in the early 1st cent. AD, the Suburban Bath is one of the best thermal complexes better preserved in ancient times. The entrance opens onto a large courtyard that leads into a hallway well lit by a skylight, impluvium, with a portrait of "Apollo". From this room you can access various parts of the thermae, all beautifully preserved. A single room, mostly occupied by the pool, serving both apodyterium (dressing room) that frigidarium. Among tepidarium and frigidarium there's a room elegantly decorated with stucco and marble. The vestibule opens to the right, through a corridor, onto a waiting room with a floor in signinum opus and into a praefurnium (oven for heating). A large pool of tepidarium, connected with laconicum, a small circular room for the baths sweat, is also present. The calidarium, as usual, has a small tank for hot water and a basin for washing in cold water. Behind the calidarium is the praefurnium, an environment with the boiler for heating the bath. Although the suburban baths are well preserved, unfortunately in you can observe the development of visible microbial coatings. During the biodeterioration process, secondary colonization of wall is due to heterotrophic bacteria and fungi that induce deterioration cause structural as well as aesthetic damage such as the discoloration of materials, the formation of crusts on surfaces and the loss of material. This investigation was carried out sampling the surfaces of walls of different rooms in the Suburban Thermae according to Italian legal procedures. Depending on the samples typology, sampling was carry out using sterile nitrocellulose membranes pressed on the surface of the walls, sterile swabs or with sterile tweezers by tearing out surface material. The samples were suspended in physiological solution and immediately refrigerated until analysis. Isolated colonies grown on PCA

  19. Mechanics of membrane bulging during cell-wall disruption in Gram-negative bacteria

    NASA Astrophysics Data System (ADS)

    Daly, Kristopher E.; Huang, Kerwyn Casey; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2011-04-01

    The bacterial cell wall is a network of sugar strands crosslinked by peptides that serve as the primary structure for bearing osmotic stress. Despite its importance in cellular survival, the robustness of the cell wall to network defects has been relatively unexplored. Treatment of the Gram-negative bacterium Escherichia coli with the antibiotic vancomycin, which disrupts the crosslinking of new material during growth, leads to the development of pronounced bulges and eventually of cell lysis. Here, we model the mechanics of the bulging of the cytoplasmic membrane through pores in the cell wall. We find that the membrane undergoes a transition between a nearly flat state and a spherical bulge at a critical pore radius of ~20 nm. This critical pore size is large compared to the typical distance between neighboring peptides and glycan strands, and hence pore size acts as a constraint on network integrity. We also discuss the general implications of our model to membrane deformations in eukaryotic blebbing and vesiculation in red blood cells.

  20. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis.

    PubMed

    Garner, Ethan C; Bernard, Remi; Wang, Wenqin; Zhuang, Xiaowei; Rudner, David Z; Mitchison, Tim

    2011-07-08

    Rod-shaped bacteria elongate by the action of cell wall synthesis complexes linked to underlying dynamic MreB filaments. To understand how the movements of these filaments relate to cell wall synthesis, we characterized the dynamics of MreB and the cell wall elongation machinery using high-precision particle tracking in Bacillus subtilis. We found that MreB and the elongation machinery moved circumferentially around the cell, perpendicular to its length, with nearby synthesis complexes and MreB filaments moving independently in both directions. Inhibition of cell wall synthesis by various methods blocked the movement of MreB. Thus, bacteria elongate by the uncoordinated, circumferential movements of synthetic complexes that insert radial hoops of new peptidoglycan during their transit, possibly driving the motion of the underlying MreB filaments.

  1. Changes in contractile activation characteristics of rat fast and slow skeletal muscle fibres during regeneration.

    PubMed

    Gregorevic, Paul; Plant, David R; Stupka, Nicole; Lynch, Gordon S

    2004-07-15

    Damaged skeletal muscle fibres are replaced with new contractile units via muscle regeneration. Regenerating muscle fibres synthesize functionally distinct isoforms of contractile and regulatory proteins but little is known of their functional properties during the regeneration process. An advantage of utilizing single muscle fibre preparations is that assessment of their function is based on the overall characteristics of the contractile apparatus and regulatory system and as such, these preparations are sensitive in revealing not only coarse, but also subtle functional differences between muscle fibres. We examined the Ca(2+)- and Sr(2+)-activated contractile characteristics of permeabilized fibres from rat fast-twitch (extensor digitorum longus) and slow-twitch (soleus) muscles at 7, 14 and 21 days following myotoxic injury, to test the hypothesis that fibres from regenerating fast and slow muscles have different functional characteristics to fibres from uninjured muscles. Regenerating muscle fibres had approximately 10% of the maximal force producing capacity (P(o)) of control (uninjured) fibres, and an altered sensitivity to Ca(2+) and Sr(2+) at 7 days post-injury. Increased force production and a shift in Ca(2+) sensitivity consistent with fibre maturation were observed during regeneration such that P(o) was restored to 36-45% of that in control fibres by 21 days, and sensitivity to Ca(2+) and Sr(2+) was similar to that of control (uninjured) fibres. The findings support the hypothesis that regenerating muscle fibres have different contractile activation characteristics compared with mature fibres, and that they adopt properties of mature fast- or slow-twitch muscle fibres in a progressive manner as the regeneration process is completed.

  2. Carboxyl-terminal-dependent recruitment of nonmuscle myosin II to megakaryocyte contractile ring during polyploidization

    PubMed Central

    Badirou, Idinath; Pan, Jiajia; Legrand, Céline; Wang, Aibing; Lordier, Larissa; Boukour, Siham; Roy, Anita; Vainchenker, William

    2014-01-01

    Endomitosis is a unique megakaryocyte (MK) differentiation process that is the consequence of a late cytokinesis failure associated with a contractile ring defect. Evidence from in vitro studies has revealed the distinct roles of 2 nonmuscle myosin IIs (NMIIs) on MK endomitosis: only NMII-B (MYH10), but not NMII-A (MYH9), is localized in the MK contractile ring and implicated in mitosis/endomitosis transition. Here, we studied 2 transgenic mouse models in which nonmuscle myosin heavy chain (NMHC) II-A was genetically replaced either by II-B or by a chimeric NMHCII that combined the head domain of II-A with the rod and tail domains of II-B. This study provides in vivo evidence on the specific role of NMII-B on MK polyploidization. It demonstrates that the carboxyl-terminal domain of the heavy chains determines myosin II localization to the MK contractile ring and is responsible for the specific role of NMII-B in MK polyploidization. PMID:25185263

  3. Carboxyl-terminal-dependent recruitment of nonmuscle myosin II to megakaryocyte contractile ring during polyploidization.

    PubMed

    Badirou, Idinath; Pan, Jiajia; Legrand, Céline; Wang, Aibing; Lordier, Larissa; Boukour, Siham; Roy, Anita; Vainchenker, William; Chang, Yunhua

    2014-10-16

    Endomitosis is a unique megakaryocyte (MK) differentiation process that is the consequence of a late cytokinesis failure associated with a contractile ring defect. Evidence from in vitro studies has revealed the distinct roles of 2 nonmuscle myosin IIs (NMIIs) on MK endomitosis: only NMII-B (MYH10), but not NMII-A (MYH9), is localized in the MK contractile ring and implicated in mitosis/endomitosis transition. Here, we studied 2 transgenic mouse models in which nonmuscle myosin heavy chain (NMHC) II-A was genetically replaced either by II-B or by a chimeric NMHCII that combined the head domain of II-A with the rod and tail domains of II-B. This study provides in vivo evidence on the specific role of NMII-B on MK polyploidization. It demonstrates that the carboxyl-terminal domain of the heavy chains determines myosin II localization to the MK contractile ring and is responsible for the specific role of NMII-B in MK polyploidization.

  4. Novel approaches to determine contractile function of the isolated adult zebrafish ventricular cardiac myocyte.

    PubMed

    Dvornikov, Alexey V; Dewan, Sukriti; Alekhina, Olga V; Pickett, F Bryan; de Tombe, Pieter P

    2014-05-01

    The zebrafish (Danio rerio) has been used extensively in cardiovascular biology, but mainly in the study of heart development. The relative ease of its genetic manipulation may indicate the suitability of this species as a cost-effective model system for the study of cardiac contractile biology. However, whether the zebrafish heart is an appropriate model system for investigations pertaining to mammalian cardiac contractile structure-function relationships remains to be resolved. Myocytes were isolated from adult zebrafish hearts by enzymatic digestion, attached to carbon rods, and twitch force and intracellular Ca(2+) were measured. We observed the modulation of twitch force, but not of intracellular Ca(2+), by both extracellular [Ca(2+)] and sarcomere length. In permeabilized cells/myofibrils, we found robust myofilament length-dependent activation. Moreover, modulation of myofilament activation-relaxation and force redevelopment kinetics by varied Ca(2+) activation levels resembled that found previously in mammalian myofilaments. We conclude that the zebrafish is a valid model system for the study of cardiac contractile structure-function relationships.

  5. A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells.

    PubMed

    Burnette, Dylan T; Shao, Lin; Ott, Carolyn; Pasapera, Ana M; Fischer, Robert S; Baird, Michelle A; Der Loughian, Christelle; Delanoe-Ayari, Helene; Paszek, Matthew J; Davidson, Michael W; Betzig, Eric; Lippincott-Schwartz, Jennifer

    2014-04-14

    How adherent and contractile systems coordinate to promote cell shape changes is unclear. Here, we define a counterbalanced adhesion/contraction model for cell shape control. Live-cell microscopy data showed a crucial role for a contractile meshwork at the top of the cell, which is composed of actin arcs and myosin IIA filaments. The contractile actin meshwork is organized like muscle sarcomeres, with repeating myosin II filaments separated by the actin bundling protein α-actinin, and is mechanically coupled to noncontractile dorsal actin fibers that run from top to bottom in the cell. When the meshwork contracts, it pulls the dorsal fibers away from the substrate. This pulling force is counterbalanced by the dorsal fibers' attachment to focal adhesions, causing the fibers to bend downward and flattening the cell. This model is likely to be relevant for understanding how cells configure themselves to complex surfaces, protrude into tight spaces, and generate three-dimensional forces on the growth substrate under both healthy and diseased conditions.

  6. [Effect of acetylcholine and acetylcholinesterase on the activity of contractile vacuole of Amoeba proteus].

    PubMed

    Bagrov, Ia Iu; Manusova, N B

    2011-01-01

    Acetylcholine (ACh, 1 microM) stimulates activity of the contractile vacuole of proteus. The effect of ACh is not mimicked by its analogs which are not hydrolyzed by acetylcholinesterase (AChE), i. e., carbacholine and 5-methylfurmethide. The effect of ACh is not sensitive to the blocking action of M-cholinolytics, atropine and mytolone, but is suppressed by N-cholinolytic, tubocurarine. The inhibitors of AChE, eserine (0.01 microM) and armine (0.1 microM), suppress the effect of ACh on amoeba contractile vacuole. ACh does not affect activation of contractile vacuole induced by arginine-vasopressin (1 microM), but it blocks such effect of opiate receptors agonist, dynorphin A1-13 (0.01 microM). This effect of ACh is also suppressed by the inhibitors of AChE. These results suggest that, in the above-described effects of ACh, AChE acts not as an antagonist, but rather as a synergist.

  7. A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells

    PubMed Central

    Burnette, Dylan T.; Shao, Lin; Ott, Carolyn; Pasapera, Ana M.; Fischer, Robert S.; Baird, Michelle A.; Der Loughian, Christelle; Delanoe-Ayari, Helene; Paszek, Matthew J.; Davidson, Michael W.; Betzig, Eric

    2014-01-01

    How adherent and contractile systems coordinate to promote cell shape changes is unclear. Here, we define a counterbalanced adhesion/contraction model for cell shape control. Live-cell microscopy data showed a crucial role for a contractile meshwork at the top of the cell, which is composed of actin arcs and myosin IIA filaments. The contractile actin meshwork is organized like muscle sarcomeres, with repeating myosin II filaments separated by the actin bundling protein α-actinin, and is mechanically coupled to noncontractile dorsal actin fibers that run from top to bottom in the cell. When the meshwork contracts, it pulls the dorsal fibers away from the substrate. This pulling force is counterbalanced by the dorsal fibers’ attachment to focal adhesions, causing the fibers to bend downward and flattening the cell. This model is likely to be relevant for understanding how cells configure themselves to complex surfaces, protrude into tight spaces, and generate three-dimensional forces on the growth substrate under both healthy and diseased conditions. PMID:24711500

  8. Myosin phosphorylation improves contractile economy of mouse fast skeletal muscle during staircase potentiation.

    PubMed

    Bunda, Jordan; Gittings, William; Vandenboom, Rene

    2018-01-30

    Phosphorylation of the myosin regulatory light chain (RLC) by skeletal myosin light chain kinase (skMLCK) potentiates rodent fast twitch muscle but is an ATP-requiring process. Our objective was to investigate the effect of skMLCK-catalyzed RLC phosphorylation on the energetic cost of contraction and the contractile economy (ratio of mechanical output to metabolic input) of mouse fast twitch muscle in vitro (25°C). To this end, extensor digitorum longus (EDL) muscles from wild-type (WT) and from skMLCK-devoid (skMLCK -/- ) mice were subjected to repetitive low-frequency stimulation (10 Hz for 15 s) to produce staircase potentiation of isometric twitch force, after which muscles were quick frozen for determination of high-energy phosphate consumption (HEPC). During stimulation, WT muscles displayed significant potentiation of isometric twitch force while skMLCK -/- muscles did not (i.e. 23% versus 5% change, respectively). Consistent with this, RLC phosphorylation was increased ∼3.5-fold from the unstimulated control value in WT but not in skMLCK -/- muscles. Despite these differences, the HEPC of WT muscles was not greater than that of skMLCK -/- muscles. As a result of the increased contractile output relative to HEPC, the calculated contractile economy of WT muscles was greater than that of skMLCK -/- muscles. Thus, our results suggest that skMLCK-catalyzed phosphorylation of the myosin RLC increases the contractile economy of WT mouse EDL muscle compared with skMLCK -/- muscles without RLC phosphorylation. © 2018. Published by The Company of Biologists Ltd.

  9. Dietary phytoestrogens maintain contractile responses to carbachol with age in the female rat isolated bladder.

    PubMed

    Owen, Suzzanne J; Rose'Meyer, Roselyn B; Massa, Helen M

    2011-08-15

    Development of urinary incontinence, for many women, occurs following menopause. Dietary phytoestrogens consumed over the long term may affect the contractile function and maintenance of the urinary bladder in post menopausal women. This study examined the muscarinic receptor mediated contractile responses in the rat isolated bladder in response to ovariectomy and long term dietary phytoestrogen consumption. Ovariectomised or sham-operated female Wistar rats (8 weeks) were fed either normal rat chow (soy, phytoestrogens) or a non-soy (phytoestrogen free) diet. Bladders were dissected from rats at 12, 24 and 52 weeks of age and placed in 25 ml organ baths filled with McEwans solution. The contractile response to carbachol, in 12 week old female rats did not change as a result of dietary phytoestrogens or ovariectomy (P>0.05). At 24 weeks of age, detrusor muscle strip responses to carbachol from non-soy fed ovariectomised rats were attenuated (P<0.05). At 52 weeks, bladder detrusor strip responses to carbachol were reduced in all treatment groups with the exception of the soy-fed sham operated rats. These results suggest an age-related reduction in the contractile response of the detrusor to the muscarinic receptor agonist carbachol, which may be prevented by long term dietary phytoestrogen intake. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Comparison of prosthetic materials for abdominal wall reconstruction in the presence of contamination and infection.

    PubMed Central

    Brown, G L; Richardson, J D; Malangoni, M A; Tobin, G R; Ackerman, D; Polk, H C

    1985-01-01

    Abdominal wall defects resulting from trauma, invasive infection, or hernia present a difficult problem for the surgeon. In order to study the problems associated with the prosthetic materials used for abdominal wall reconstruction, an animal model was used to simulate abdominal wall defects in the presence of peritonitis and invasive infection. One hundred guinea pigs were repaired with either polytetrafluorethylene (PTFE) or polypropylene mesh (PPM). Our experiments included intra-operative contamination with Staphylococcus aureus. We found significantly fewer organisms (p less than 0.05) adherent to the PTFE than to the PPM when antibiotics were administered after surgery, as well as when no antibiotics were given. In the presence of peritonitis, we found no real difference in numbers of intraperitoneal bacteria present whether PTFE or PPM was used. In all instances, the PTFE patches produced fewer adhesions and were more easily removed. From these experiments, it appears that PTFE may be associated with fewer problems than PPM in the presence of contamination and infection. Images FIG. 1. PMID:3159353

  11. Enhanced contractility of the rat stomach during suppression of angiotensin converting enzyme by captopril in vitro.

    PubMed

    Rani, R; Rao, K S

    1991-04-01

    1. Intragastric pressure (IGP) was used as an index, of the effect of serosal application of captopril (SQ 14,225; D-3-mercapto-2-methylpropanoyl-L-proline) on the contractility of rat stomach in vitro. 2. Captopril, at concentrations greater than 0.3 microM, enhanced the spontaneous gastric motility (GM) in a concentration-dependent manner whereas concentrations less than 0.3 microM selectively potentiated 4 nM bradykinin (BK)-evoked gastric contractions without significantly affecting the spontaneous GM. 3. The kallikrein inhibitor, aprotinin (100 u ml-1), markedly antagonized the enhanced GM to 1.4 microM captopril and BK (4 nM)-evoked contractions, without affecting the contractions evoked by angiotensin 1 (10 nM) and acetylcholine (0.4 microM). The angiotensin II antagonist, saralasin (50 microM) failed to mimic aprotinin. 4. The enhanced GM to captopril was markedly inhibited by tetrodotoxin (1 microM), and partially inhibited by atropine (1 microM). 5. These results indicate that in vitro, captopril (greater than 0.3 microM) enhances gastric contractility through kininase/ACE inhibitory action, presumably by increasing the concentration of undegraded tissue kinins and substance P. This motor response seems to be predominantly due to activation of the cholinergic neurones but non-cholinergic excitatory neurones are also involved.

  12. Estrogen and testosterone in concert with EFNB3 regulate vascular smooth muscle cell contractility and blood pressure.

    PubMed

    Wang, Yujia; Wu, Zenghui; Thorin, Eric; Tremblay, Johanne; Lavoie, Julie L; Luo, Hongyu; Peng, Junzheng; Qi, Shijie; Wu, Tao; Chen, Fei; Shen, Jianzhong; Hu, Shenjiang; Wu, Jiangping

    2016-04-01

    EPH kinases and their ligands, ephrins (EFNs), have vital and diverse biological functions, although their function in blood pressure (BP) control has not been studied in detail. In the present study, we report that Efnb3 gene knockout (KO) led to increased BP in female but not male mice. Vascular smooth muscle cells (VSMCs) were target cells for EFNB3 function in BP regulation. The deletion of EFNB3 augmented contractility of VSMCs from female but not male KO mice, compared with their wild-type (WT) counterparts. Estrogen augmented VSMC contractility while testosterone reduced it in the absence of EFNB3, although these sex hormones had no effect on the contractility of VSMCs from WT mice. The effect of estrogen on KO VSMC contractility was via a nongenomic pathway involving GPER, while that of testosterone was likely via a genomic pathway, according to VSMC contractility assays and GPER knockdown assays. The sex hormone-dependent contraction phenotypes in KO VSMCs were reflected in BP in vivo. Ovariectomy rendered female KO mice normotensive. At the molecular level, EFNB3 KO in VSMCs resulted in reduced myosin light chain kinase phosphorylation, an event enhancing sensitivity to Ca(2+)flux in VSMCs. Our investigation has revealed previously unknown EFNB3 functions in BP regulation and show that EFNB3 might be a hypertension risk gene in certain individuals. Copyright © 2016 the American Physiological Society.

  13. [The relationship between contractile characteristics and fiber type conversion in hind-limb unloading mice soleus].

    PubMed

    Li, Li; Liu, Hong-Ju; Yang, Ming-Hao; Li, Jing-Long; Wang, Lu; Chen, Xiao-Ping; Fan, Ming

    2012-03-01

    To explore the relationship between contractile characteristics and fiber type conversion in hind-limb unloading mice soleus. After 28-day hind-limb unloading and muscle atrophy, we used the method of isolated muscle perfusion with different stimulated protocols to determine the changes in contractile characteristics including the isometric twitch force and tetanus force and fatigue index of slow twitch muscle in mice. The muscle myofibrillar composition and fiber type conversion were detected by immunofluorescence staining and real-time PCR. The isometric twitch force and the tetanus force and fatigue index were decreased progressively in 28-day unloaded mice soleus, with the increase in fast twitch fiber subtype and the decrease in slow twitch fiber subtype. The alteration of contractile characteristics is relevant to the slow-to-fast fiber conversion in mice soleus after 28-day hind-limb unloading.

  14. Insights into drying of non-circular sessile nanofluid droplet towards multi-scale surface patterning using a wall-less confinement architecture.

    PubMed

    Kabi, Prasenjit; Chaudhuri, Swetaprovo; Basu, Saptarshi

    2016-10-04

    Surface patterning with functional colloids is an important research area due to its widespread applicability in domains ranging from nano-electronics, pharmaceutics, semi-conductors, photovoltaics among others. To this endeavour, we propose a low-cost patterning technique that aspires to eliminate the more expensive methodologies presently in practise. Using a simple document stamp on which patterns of any geometry can be embossed, we are able to print two-dimensional mm-scale "wall-less confinement" using ink based hydrophobic fence on any plasma treated superhydrophilic surface. The confinement is subsequently filled with nanocolloidal liquid(s). Using the confinement geometry, we are able to control the 3D shape of the droplet to exhibit multiple interfacial curvatures. The droplet in the "wall-less confinements" evaporates naturally exhibiting unique geometry (curvature) induced flow structures which induce the nanoparticles to self-assemble into functional patterns. We have also shown that by modifying the geometry of the pattern, evaporation, flow and particle deposition dynamics get altered leading to precipitate topologies from macro to microscales. We, present two such geometrical designs which demonstrate the capability of modifying both the macroscopic as well as the microscopic features of the final precipitate. We have also provided a description of the physical mechanisms of the drying process by resolving the unique flow pattern using a combination of imaging and μPIV (micro particle image velocimetry). These provide insights into the coupled dynamics of evaporation and flow responsible for the evolution of particle deposition pattern. Precipitate characterization using SEM and dark-field microscopy highlight the transformation in the deposit morphology.

  15. Removal of urothelium affects bladder contractility and release of ATP but not release of NO in rat urinary bladder.

    PubMed

    Munoz, Alvaro; Gangitano, David A; Smith, Christopher P; Boone, Timothy B; Somogyi, George T

    2010-05-24

    The objective of our work was to investigate both the contractile function and the release of ATP and NO from strips of bladder tissue after removal of the urothelium. The method of removal was a gentle swabbing motion rather than a sharp surgical cutting to separate the urothelium from the smooth muscle. The contractile response and ATP and NO release were measured in intact as well as on swabbed preparations. The removal of the urothelial layer was affirmed microscopically. After the swabbing, the smaller contractions were evoked by electrical as well as by chemical stimulation (50 microM carbachol or 50 microM alpha, beta meATP). Electrical stimulation, carbachol and substance P (5 microM) evoked lower release of ATP in the swabbed strips than in intact strips. Although release of NO evoked by electrical stimulation or substance P was not changed, release of NO evoked by carbachol was significantly less in the swabbed preparations. Since swabbing removes only the urothelium, the presence of the suburothelial layer may explain the difference between our findings and those of others who found an increase in contractility. Evoked release of ATP is reduced in swabbed strips, indicating that ATP derives solely from the urothelium. On the other hand, electrical stimulation and substance P evoke identical degrees of NO release in both intact and swabbed preparations, suggesting that NO can be released from the suburothelium. Conversely, carbachol-induced release of NO is lower in swabbed strips, implying that the cholinergic receptors (muscarinic or nicotinic) are located in the upper layer of the urothelium.

  16. Investigating bacteria-surface interactions with microfluidics and Digital Holographic Microscopy

    NASA Astrophysics Data System (ADS)

    Agarwal, Harsh; Barry, Michael; Stocker, Roman; Sheng, Jian

    2009-11-01

    Quantitative data of swimming characteristics of bacteria in the shear flow adjacent to a surface are crucial for understanding cell attachment and detachment, and thus biofilm formation. We combined microfluidics and holography to expose Escherichia coli AW405 to a carefully controlled flow environment and visualize their movement in three dimensions. We investigated wall shear rates up to 200 (1/s) and recorded holograms at 40X magnification and 15fps for several minutes. Three-dimensional locations and orientations of bacteria were extracted from numerically reconstructed images. We obtained thousands of 3D trajectories over a sample volume of 380x380x200 μm, with a resolution of 0.2 μm in the two in-plane directions and 1 μm in the out-of-plane direction. Preliminary results revealed a range of behaviors, including circular trajectories near surfaces and migration normal to the wall. We expect that ongoing analysis will provide robust statistics of wall effects on bacterial motility. Sponsored by NIH (1-R21-EB008844-01) and NSF (CBET-0844647, DBI-0852875)

  17. Modelling maternal obesity: the effects of a chronic high-fat, high-cholesterol diet on uterine expression of contractile-associated proteins and ex vivo contractile activity during labour in the rat.

    PubMed

    Muir, Ronan; Ballan, Jean; Clifford, Bethan; McMullen, Sarah; Khan, Raheela; Shmygol, Anatoly; Quenby, Siobhan; Elmes, Matthew

    2016-02-01

    Maternal obesity is associated with prolonged and dysfunctional labour and emergency caesarean section, but the mechanisms are unknown. The present study investigated the effects of an adiposity-inducing high-fat, high-cholesterol (HFHC) diet on uterine contractile-associated protein (CAP) expression and ex vivo uterine contractility in term non-labouring (TNL) and term labouring (TL) rats. Female rats were fed either control chow (CON n=20) or HFHC (n=20) diet 6 weeks before conception and during pregnancy. On gestational day 21 (TNL) or day 22 (TL) CON and HFHC (n=10) rats were killed to determine plasma cholesterol, triacylglycerol and progesterone concentrations and collection of myometrium for contractility studies and expression of CAPs caveolin-1 (Cav-1), connexin-43 (CX-43) and it's phosphorylated form (pCX-43), oxytocin receptor (OXTR) and cyclooxygenase-2 (COX-2). HFHC feeding increased visceral fat (P≤0.001), plasma cholesterol (P≤0.001) and triacylglycerol (P=0.039) concentrations. Stage of labour effected uterine expression of CAV-1 (P<0.02), pCX43 and COX-2 (both P<0.03). CAV-1 and pCX43 decreased but COX-2 increased with parturition. Significant diet- and labour-stage interactions were evident for CX-43 and pCX43 (P<0.03 and P<0.004 respectively). CX-43 decreased with TL in HFHC animals but was unaltered in CON. pCX-43 fell with labour in CON but remained high in HFHC. OXTR expression was significantly higher in HFHC compared with CON animals (P<0.03). Progesterone was higher in HFHC rats at term (P<0.014) but fell significantly with labour to similar concentrations as CON. Contractility studies identified synchronous contractions of stable amplitude in lean animals, but unstable asynchronous contractions with obesity. Uterine dose response to oxytocin was blunted during labour in HFHC rats with a log EC50 of -8.84 compared with -10.25 M in CON for integral activity (P<0.05). In conclusion, our adiposity model exhibits adverse effects on

  18. Diabetes attenuates urothelial modulation of detrusor contractility and spontaneous activity.

    PubMed

    Wang, Yi; Tar, Moses T; Fu, Shibo; Melman, Arnold; Davies, Kelvin P

    2014-10-01

    To investigate the effect of diabetes on urothelial modulation of bladder contractility. Bladder strips (urothelium intact or denuded) were prepared from 8-week-old streptozotocin-induced diabetic (n = 19) and non-diabetic control rats (n = 10). The effect of modulators of MaxiK (iberiotoxin and tetraethylammonium) and Kv7 (XE991 and retigabine) potassium channel activity were investigated for their effects on both carbachol-induced force generation and spontaneous contractile activity. In bladder strips from non-diabetic animals, the presence of the urothelium resulted in marked sensitivity to carbachol-induced force generation by modulators of MaxiK and Kv7 channel activity, whereas in the diabetic animal urothelial sensitivity to these agents was significantly diminished. Urothelial-intact bladder strips from non-diabetic animals were more sensitive to modulators of Kv7 activity in reducing the amplitude of spontaneous phasic contractions than urothelial-denuded bladder strips, whereas in diabetic animals the presence or absence of the urothelium did not alter the sensitivity to modulators of Kv7 activity. Spontaneous activity in the presence of tetraethylammonium was not affected by the urothelium in bladder strips from either diabetic or non-diabetic animals. The presence of the urothelium in bladders from non-diabetic animals modulates the activity of potassium blockers to affect bladder contractility, whereas in the diabetic bladder this effect is attenuated. These findings could help to explain the lack of success of pharmaceutical treatments targeting potassium channels to treat bladder pathology in patients with diseases imparing urothelial function. © 2014 The Japanese Urological Association.

  19. In vitro characterization of the effects of rat/mouse hemokinin-1 on mouse colonic contractile activity: a comparison with substance P.

    PubMed

    Kong, Zi-Qing; Han, Min; Yang, Wen-Le; Zhao, You-Li; Fu, Cai-Yun; Tao, Yan; Chen, Qiang; Wang, Rui

    2009-06-01

    Rat/mouse hemokinin-1 (r/m HK-1) has been identified as a member of the tachykinin family and its effect in colonic contractile activity remains unknown. We investigated the effects and mechanisms of actions of r/m HK-1 on the mouse colonic contractile activity in vitro by comparing it with that of substance P (SP). R/m HK-1 induced substantial contractions on the circular muscle of mouse colon. The maximal contractile responses to r/m HK-1 varied significantly among proximal-, mid- and distal-colon, suggesting that the action of r/m HK-1 was region-specific in mouse colon. The contractile response induced by r/m HK-1 is primarily via activation of tachykinin NK(1) receptors leading to activation of cholinergic excitatory pathways and with a minor contribution of NK(2) receptors, which may be on the smooth muscle itself. A direct action on colonic smooth muscles may be also involved. In contrast, SP induced biphasic colonic responses (contractile and relaxant responses) on the circular muscle, in which the contractile action of SP was equieffective with r/m HK-1. SP exerted its contractile effect predominantly through neural and muscular tachykinin NK(1) receptors, but unlike r/m HK-1 did not appear to act via NK(2) receptors. The relaxation induced by SP was largely due to release of nitric oxide (NO) produced via an action on neural NK(1) receptors. These results indicate that the receptors and the activation properties involved in r/m HK-1-induced mouse colonic contractile activity are different from those of SP.

  20. Microtubule depolymerization normalizes in vivo myocardial contractile function in dogs with pressure-overload left ventricular hypertrophy

    NASA Technical Reports Server (NTRS)

    Koide, M.; Hamawaki, M.; Narishige, T.; Sato, H.; Nemoto, S.; DeFreyte, G.; Zile, M. R.; Cooper G, I. V.; Carabello, B. A.

    2000-01-01

    BACKGROUND: Because initially compensatory myocardial hypertrophy in response to pressure overloading may eventually decompensate to myocardial failure, mechanisms responsible for this transition have long been sought. One such mechanism established in vitro is densification of the cellular microtubule network, which imposes a viscous load that inhibits cardiocyte contraction. METHODS AND RESULTS: In the present study, we extended this in vitro finding to the in vivo level and tested the hypothesis that this cytoskeletal abnormality is important in the in vivo contractile dysfunction that occurs in experimental aortic stenosis in the adult dog. In 8 dogs in which gradual stenosis of the ascending aorta had caused severe left ventricular (LV) pressure overloading (gradient, 152+/-16 mm Hg) with contractile dysfunction, LV function was measured at baseline and 1 hour after the intravenous administration of colchicine. Cardiocytes obtained by biopsy before and after in vivo colchicine administration were examined in tandem. Microtubule depolymerization restored LV contractile function both in vivo and in vitro. CONCLUSIONS: These and additional corroborative data show that increased cardiocyte microtubule network density is an important mechanism for the ventricular contractile dysfunction that develops in large mammals with adult-onset pressure-overload-induced cardiac hypertrophy.

  1. Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia.

    PubMed

    Moshal, Karni S; Tipparaju, Srinivas M; Vacek, Thomas P; Kumar, Munish; Singh, Mahavir; Frank, Iluiana E; Patibandla, Phani K; Tyagi, Neetu; Rai, Jayesh; Metreveli, Naira; Rodriguez, Walter E; Tseng, Michael T; Tyagi, Suresh C

    2008-08-01

    Cardiomyocyte N-methyl-d-aspartate receptor-1 (NMDA-R1) activation induces mitochondrial dysfunction. Matrix metalloproteinase protease (MMP) induction is a negative regulator of mitochondrial function. Elevated levels of homocysteine [hyperhomocysteinemia (HHCY)] activate latent MMPs and causes myocardial contractile abnormalities. HHCY is associated with mitochondrial dysfunction. We tested the hypothesis that HHCY activates myocyte mitochondrial MMP (mtMMP), induces mitochondrial permeability transition (MPT), and causes contractile dysfunction by agonizing NMDA-R1. The C57BL/6J mice were administered homocystinemia (1.8 g/l) in drinking water to induce HHCY. NMDA-R1 expression was detected by Western blot and confocal microscopy. Localization of MMP-9 in the mitochondria was determined using confocal microscopy. Ultrastructural analysis of the isolated myocyte was determined by electron microscopy. Mitochondrial permeability was measured by a decrease in light absorbance at 540 nm using the spectrophotometer. The effect of MK-801 (NMDA-R1 inhibitor), GM-6001 (MMP inhibitor), and cyclosporine A (MPT inhibitor) on myocyte contractility and calcium transients was evaluated using the IonOptix video edge track detection system and fura 2-AM. Our results demonstrate that HHCY activated the mtMMP-9 and caused MPT by agonizing NMDA-R1. A significant decrease in percent cell shortening, maximal rate of contraction (-dL/dt), and maximal rate of relaxation (+dL/dt) was observed in HHCY. The decay of calcium transient amplitude was faster in the wild type compared with HHCY. Furthermore, the HHCY-induced decrease in percent cell shortening, -dL/dt, and +dL/dt was attenuated in the mice treated with MK-801, GM-6001, and cyclosporin A. We conclude that HHCY activates mtMMP-9 and induces MPT, leading to myocyte mechanical dysfunction by agonizing NMDA-R1.

  2. Exposure to low mercury concentration in vivo impairs myocardial contractile function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furieri, Lorena Barros; Fioresi, Mirian; Junior, Rogerio Faustino Ribeiro

    2011-09-01

    Increased cardiovascular risk after mercury exposure has been described but cardiac effects resulting from controlled chronic treatment are not yet well explored. We analyzed the effects of chronic exposure to low mercury concentrations on hemodynamic and ventricular function of isolated hearts. Wistar rats were treated with HgCl{sub 2} (1st dose 4.6 {mu}g/kg, subsequent dose 0.07 {mu}g/kg/day, im, 30 days) or vehicle. Mercury treatment did not affect blood pressure (BP) nor produced cardiac hypertrophy or changes of myocyte morphometry and collagen content. This treatment: 1) in vivo increased left ventricle end diastolic pressure (LVEDP) without changing left ventricular systolic pressure (LVSP)more » and heart rate; 2) in isolated hearts reduced LV isovolumic systolic pressure and time derivatives, and {beta}-adrenergic response; 3) increased myosin ATPase activity; 4) reduced Na{sup +}-K{sup +} ATPase (NKA) activity; 5) reduced protein expression of SERCA and phosphorylated phospholamban on serine 16 while phospholamban expression increased; as a consequence SERCA/phospholamban ratio reduced; 6) reduced sodium/calcium exchanger (NCX) protein expression and {alpha}-1 isoform of NKA, whereas {alpha}-2 isoform of NKA did not change. Chronic exposure for 30 days to low concentrations of mercury does not change BP, heart rate or LVSP but produces small but significant increase of LVEDP. However, in isolated hearts mercury treatment promoted contractility dysfunction as a result of the decreased NKA activity, reduction of NCX and SERCA and increased PLB protein expression. These findings offer further evidence that mercury chronic exposure, even at small concentrations, is an environmental risk factor affecting heart function. - Highlights: > Unchanges blood pressure, heart rate, systolic pressure. > Increases end diastolic pressure. > Promotes cardiac contractility dysfunction. > Decreases NKA activity, NCX and SERCA, increases PLB protein expression. > Small

  3. Thrombopoietin modulates cardiac contractility in vitro and contributes to myocardial depressing activity of septic shock serum.

    PubMed

    Lupia, Enrico; Spatola, Tiziana; Cuccurullo, Alessandra; Bosco, Ornella; Mariano, Filippo; Pucci, Angela; Ramella, Roberta; Alloatti, Giuseppe; Montrucchio, Giuseppe

    2010-09-01

    Thrombopoietin (TPO) is a humoral growth factor that has been shown to increase platelet activation in response to several agonists. Patients with sepsis have increased circulating TPO levels, which may enhance platelet activation, potentially participating to the pathogenesis of multi-organ failure. Aim of this study was to investigate whether TPO affects myocardial contractility and participates to depress cardiac function during sepsis. We showed the expression of the TPO receptor c-Mpl on myocardial cells and tissue by RT-PCR, immunofluorescence and western blotting. We then evaluated the effect of TPO on the contractile function of rat papillary muscle and isolated heart. TPO did not change myocardial contractility in basal conditions, but, when followed by epinephrine (EPI) stimulation, it blunted the enhancement of contractile force induced by EPI both in papillary muscle and isolated heart. An inhibitor of TPO prevented TPO effect on cardiac inotropy. Treatment of papillary muscle with pharmacological inhibitors of phosphatidylinositol 3-kinase, NO synthase, and guanilyl cyclase abolished TPO effect, indicating NO as the final mediator. We finally studied the role of TPO in the negative inotropic effect exerted by human septic shock (HSS) serum and TPO cooperation with TNF-alpha and IL-1beta. Pre-treatment with the TPO inhibitor prevented the decrease in contractile force induced by HSS serum. Moreover, TPO significantly amplified the negative inotropic effect induced by TNF-alpha and IL-1beta in papillary muscle. In conclusion, TPO negatively modulates cardiac inotropy in vitro and contributes to the myocardial depressing activity of septic shock serum.

  4. Contractile properties of skinned muscle fibres from young and adult normal and dystrophic (mdx) mice.

    PubMed Central

    Williams, D A; Head, S I; Lynch, G S; Stephenson, D G

    1993-01-01

    1. Single muscle fibres were enzymatically isolated from the soleus and extensor digitorum longus (EDL) muscles of genetically dystrophic mdx and normal (C57BL/10) mice aged 3-6 or 17-23 weeks. 2. Fibres of both muscles were chemically skinned with the non-ionic detergent Triton X-100 (2% v/v). Ca(2+)- and Sr(2+)-activated contractile responses were recorded and comparisons were made between several contractile parameters of various fibre types of normal and dystrophic mice of similar age. 3. There were no significant differences in the following contractile parameters of skinned fibres of normal and mdx mice of the same age: sensitivity to activating Ca2+ (pCa50) or Sr2+ (pSr50) and differential sensitivity to the activating ions (pCa50-pSr50). However the maximum isometric tension (Po) and the frequency of myofibrillar force oscillations in EDL fast-twitch fibres of young mdx mice were significantly lower than those of soleus fast-twitch fibres of the same animals, or fast-twitch fibres (EDL or soleus) of normal mice. 4. Age-related differences were apparent in some contractile parameters of both normal and mdx mice. In particular the steepness of force-pCa and force-pSr curves increased with age in normal mice, yet decreased with age in fibres of mdx mice. 5. A fluorescent probe, ethidium bromide, which interchelates with DNA, was used with laser-scanning confocal microscopy to determine the distribution of myonuclei in fibres. Fibres isolated from either muscle type of normal animals displayed a characteristic peripheral spiral of myonuclei. Fibres from muscles of mdx mice displayed three major patterns of nuclear distribution; the normal peripheral spiral, long central strands of nuclei, and a mixture of these two patterns. 6. The contractile characteristics of mdx fibres were not markedly influenced by the nuclear distribution pattern in that there were no discernible differences in the major contractile parameters (the Hill coefficients nCa and nSr, which

  5. Cell shape acquisition and maintenance in rodlike bacteria

    NASA Astrophysics Data System (ADS)

    van Teeffelen, Sven; Wingreen, Ned; Gitai, Zemer

    2010-03-01

    The shape of rodlike bacteria such as Escherichia coli is mainly governed by the expansion and reorganization of the peptidoglycan cell wall. The cell wall is a huge, mostly single-layered molecule of stiff glycan strands that typically run perpendicular to the long axis and are crosslinked by short peptides. The wall resists the excess pressure from inside the cell. Although much is known about the enzymes that synthesize the wall, the mechanisms by which the cell maintains a constant rod diameter and uniform glycan strand orientation during growth remain unknown. Here we present quantitative results on the structure and dynamics of two essential proteins, which are believed to play an important role in cell wall synthesis. In particular, we have focused on the filament-forming protein MreB, an actin homolog that forms a long helical bundle along the inner membrane of the cell, and penicillin-binding protein 2, an essential protein for peptide bond formation in the periplasm. Based on their interplay we discuss the possibility of MreB serving as a guide and ruler for cell wall synthesis.

  6. Investigating Cardiac MRI Based Right Ventricular Contractility As A Novel Non-Invasive Metric of Pulmonary Arterial Pressure

    PubMed Central

    Menon, Prahlad G; Adhypak, Srilakshmi M; Williams, Ronald B; Doyle, Mark; Biederman, Robert WW

    2014-01-01

    BACKGROUND We test the hypothesis that cardiac magnetic resonance (CMR) imaging-based indices of four-dimensional (4D) (three dimensions (3D) + time) right ventricle (RV) function have predictive values in ascertaining invasive pulmonary arterial systolic pressure (PASP) measurements from right heart catheterization (RHC) in patients with pulmonary arterial hypertension (PAH). METHODS We studied five patients with idiopathic PAH and two age and sex-matched controls for RV function using a novel contractility index (CI) for amplitude and phase to peak contraction established from analysis of regional shape variation in the RV endocardium over 20 cardiac phases, segmented from CMR images in multiple orientations. RESULTS The amplitude of RV contractility correlated inversely with RV ejection fraction (RVEF; R2 = 0.64, P = 0.03) and PASP (R2 = 0.71, P = 0.02). Phase of peak RV contractility also correlated inversely to RVEF (R2 = 0.499, P = 0.12) and PASP (R2 = 0.66, P = 0.04). CONCLUSIONS RV contractility analyzed from CMR offers promising non-invasive metrics for classification of PAH, which are congruent with invasive pressure measurements. PMID:25624777

  7. Urgency of micturition and detrusor contractility in men with prostatic obstruction and overactive bladders.

    PubMed

    Cucchi, A; Quaglini, S; Giannantoni, A; Guarnaschelli, C; Rovereto, B

    2005-01-01

    In men with prostatic obstruction and detrusor overactivity (DO), to ascertain whether urgency of micturition affects bladder contractility. We urodynamically assessed five groups of 20 men each who had bladder outflow obstruction (BOO) from benign prostatic enlargement-Groups 1 (with no DO and no urgency), 2 (with DO and no urgency), 3A (with DO and moderate urgency), 3B (with DO and severe urgency), and 4 (with DO, severe urgency and chronic ischemic cerebral lesions). Urgency was graded as moderate or severe by the ability to avert an urgent void at cystometry for > or =2 or <2 min, respectively. BOO was assessed by the "Abrams-Griffiths number" (AG) and bladder contractility by the parameters PIP and WF(max). AG did not differ significantly in Groups 2, 3A, and 3B, proved higher in such groups than in Group 1, and was nearly the same in Groups 1 and 4. PIP and WF(max) were significantly higher in Groups 2, 3A, and 3B than in Groups 1 and 4, had the highest levels in Group 3B, and did not differ significantly in Groups 1-4 and 2-3A. In DO patients with prostatic obstruction there seems to be a DO-related facilitation of bladder contractility. In the same patients, severe urgency of micturition might over-amplify (i.e., enhance a DO-related facilitation of) bladder contractility, provided there are no neurogenic (chronic ischemic cerebral) lesions.

  8. Aim44p regulates phosphorylation of Hof1p to promote contractile ring closure during cytokinesis in budding yeast

    PubMed Central

    Wolken, Dana M. Alessi; McInnes, Joseph; Pon, Liza A.

    2014-01-01

    Whereas actomyosin and septin ring organization and function in cytokinesis are thoroughly described, little is known regarding the mechanisms by which the actomyosin ring interacts with septins and associated proteins to coordinate cell division. Here we show that the protein product of YPL158C, Aim44p, undergoes septin-dependent recruitment to the site of cell division. Aim44p colocalizes with Myo1p, the type II myosin of the contractile ring, throughout most of the cell cycle. The Aim44p ring does not contract when the actomyosin ring closes. Instead, it forms a double ring that associates with septin rings on mother and daughter cells after cell separation. Deletion of AIM44 results in defects in contractile ring closure. Aim44p coimmunoprecipitates with Hof1p, a conserved F-BAR protein that binds both septins and type II myosins and promotes contractile ring closure. Deletion of AIM44 results in a delay in Hof1p phosphorylation and altered Hof1p localization. Finally, overexpression of Dbf2p, a kinase that phosphorylates Hof1p and is required for relocalization of Hof1p from septin rings to the contractile ring and for Hof1p-triggered contractile ring closure, rescues the cytokinesis defect observed in aim44∆ cells. Our studies reveal a novel role for Aim44p in regulating contractile ring closure through effects on Hof1p. PMID:24451263

  9. In vitro study on the effects of some selected agonists and antagonists of alpha(1)-adrenergic receptors on the contractility of the aneurysmally-changed aortic smooth muscle in humans.

    PubMed

    Gnus, J; Czerski, A; Ferenc, S; Zawadzki, W; Witkiewicz, W; Hauzer, W; Rusiecka, A; Bujok, J

    2012-02-01

    The study included 18 sections of the aneurysmally-changed abdominal aortas, obtained from patients of the Provincial Specialist Hospital in Wroclaw and 18 sections of normal abdominal aortas obtained from swine. The collected samples were placed horizontally in the incubation chamber. Changes in their transverse section area were registered. They were stretched to a tension of 5 mN. Krebs-Henseleit buffer was used as the incubatory environment. Incubation of the sections was performed at a temperature of 37°C, in the gaseous mixture of oxygen and carbon dioxide used in the following proportion: 95% of O(2) and 5% of CO(2). Contractions of the aorta were registered with isotonic transducers (Letica Scientific Instruments). In the studies, we examined the influence of α(1)-adrenergic receptors (and their subtypes α(1A), α(1B), α(1D)) on the contractility of the aortic muscle in humans and swine by their stimulation or inhibition with some selected agonists or antagonists. This time, it was shown that the stimulation of α(1)-adrenergic receptors leads to contractions of the human and swine aortic muscle; the observed increase in the muscle tone may follow from the stimulation of all subtypes of alpha-1 receptor (α(1A), α(1B), α(1D)). All three subtypes of 1-adrenergic receptor are engaged in vasoconstriction, especially of α(1A) and α(1D) subtypes; the α(1B) subtype is less significant for aortic contractility. The contractile response of the aneurysmally-changed abdominal aorta in humans to agonists of α-adrenergic receptors was significantly less intense than that of the normal porcine aorta. It can be concluded that aneurysms influence the contractile response of the aorta.

  10. Histamine H2-receptors on guinea-pig ileum myenteric plexus neurons mediate the release of contractile agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, L.A.; Ebersole, B.J.

    1982-04-01

    Dimaprit, a highly selective H2-agonist, caused a multiphasic contraction of guinea-pig ileal segments and ileal myenteric plexus-longitudinal muscle preparations. The initial phase was characterized by a twitch which reached a maximum in 15 to 30 sec and was followed by a partial relaxation. The later phase was variable and consisted of a series of twitch responses or of a slowly developing contracture which sometimes was accompanied by oscillatory changes in tension. dose-response curves were generated for the initial response; for isolated ileal segments the EC50 was 5.1 +/- 1.8 micrometers (mean +/- S.D., N . 7) and the Hill coefficientmore » was 1.1 +/- 0.2 and for longitudinal muscle strips the EC50 was 5.8 +/- 1.2 micrometer and the Hill coefficient was 1.2 +/- 0.1 (N . 7). Both the initial and secondary components of the contractile responses to dimaprit were prevented by 0.2 micron tetrodotoxin or 10 microns mefenamic acid and by the production of tachphylaxis to either substance P or serotonin. Scopolamine, 0.001 to 0.1 micron, insurmountably antagonized only the initial component of the response. Mepyramine (1.0 micrometer), hexamethonium (100 microns), bromolysergic acid (0.25 microns) and p-(imidazol-1-yl)phenyl (10 microns) were without effect on the response to dimaprit. The histamine H2-receptor antagonist, tiotidine, produced parallel dextral shifts in the dose-response curve for dimaprit. The apparent pA2 value for tiotidine was 7.65. The results suggest that dimaprit acts on H2-receptors located on myenteric plexus neurons to cause the release of contractile substances. The mediators of the contractile response are tentatively identified as acetylcholine, substance P, serotonin and a product(s) of the arachadonic acid cascade.« less

  11. Atypical sympathomimetic drug lerimazoline mediates contractile effects in rat aorta predominantly by 5-HT2A receptors.

    PubMed

    Rizvić, Eldina; Janković, Goran; Kostić-Rajačić, Slađana; Savić, Miroslav M

    2017-08-20

    Lerimazoline is a sympathomimetic drug that belongs to the imidazoline class of compounds, and is used as a nasal decongestant. Studies on lerimazoline are rare, and its pharmacological profile is not completely understood. Here, we analyzed the affinity of lerimazoline for dopamine receptor D2, serotonin 5-HT1A and 5-HT2A receptors and α1-adrenoceptor, and investigated lerimazoline contractile effects in isolated rat thoracic aorta. We also determined the effect of several antagonists on the contractile response to lerimazoline, including prazosin (α1-adrenoceptor antagonist), RX 821002 and rauwolscine (α2-adrenoceptor antagonists), JP 1302 (α2C-adrenoceptor antagonist), methiothepin (non-selective 5-HT receptor antagonist), SB 224289 (5-HT1B receptor antagonist), BRL 15572 (5-HT1D receptor antagonist), and ketanserin (5-HT2A receptor antagonist). Lerimazoline displayed high affinity for the 5-HT1A receptor (Ki = 162.5 nM), similar to the previously reported affinity for the 5-HT1D receptor. Binding affinity estimates (Ki) for α1, 5-HT2A, and D2 receptors were 6656, 4202 and 3437.5 nM, respectively (the literature reported Ki for 5-HT1B receptor is 3480 nM). Lerimazoline caused concentration-dependent contractions in 70% of preparations, varying in the range between 40% and 55% of the maximal contraction elicited by phenylephrine. While prazosin reduced the maximum contractile response to lerimazoline, rauwolscine showed a non-significant trend in reduction of the response. Both ketanserin (10 nM and 1 µM) and methiothepin strongly suppressed the maximum response to lerimazoline. Overall, our results suggest that 5-HT2A and, less distinctly, α1-adrenergic receptors are involved in the lerimazoline-induced contractions, which makes lerimazoline an "atypical" decongestant.

  12. Correlation of Metabolic Variables with the Number of ORFs in Human Pathogenic and Phylogenetically Related Non- or Less-Pathogenic Bacteria.

    PubMed

    Brambila-Tapia, Aniel Jessica Leticia; Poot-Hernández, Augusto Cesar; Garcia-Guevara, Jose Fernando; Rodríguez-Vázquez, Katya

    2016-06-01

    To date, a few works have performed a correlation of metabolic variables in bacteria; however specific correlations with these variables have not been reported. In this work, we included 36 human pathogenic bacteria and 18 non- or less-pathogenic-related bacteria and obtained all metabolic variables, including enzymes, metabolic pathways, enzymatic steps and specific metabolic pathways, and enzymatic steps of particular metabolic processes, from a reliable metabolic database (KEGG). Then, we correlated the number of the open reading frames (ORF) with these variables and with the proportions of these variables, and we observed a negative correlation with the proportion of enzymes (r = -0.506, p < 0.0001), metabolic pathways (r = -0.871, p < 00.0001), enzymatic reactions (r = -0.749, p < 00.0001), and with the proportions of central metabolism variables as well as a positive correlation with the proportions of multistep reactions (r = 0.650, p < 00.0001) and secondary metabolism variables. The proportion of multifunctional reactions (r: -0.114, p = 0.41) and the proportion of enzymatic steps (r: -0.205, p = 0.14) did not present a significant correlation. These correlations indicate that as the size of a genome (measured in the number of ORFs) increases, the proportion of genes that encode enzymes significantly diminishes (especially those related to central metabolism), suggesting that when essential metabolic pathways are complete, an increase in the number of ORFs does not require a similar increase in the metabolic pathways and enzymes, but only a slight increase is sufficient to cope with a large genome.

  13. Age-related peculiarities of contractile activity of rat myocardium during blockade of hyperpolarization-activated currents.

    PubMed

    Zefirov, T L; Gibina, A E; Sergejeva, A M; Ziyatdinova, N I; Zefirov, A L

    2007-09-01

    Contractile activity of atrial and ventricular myocardial strips isolated from rats of various age was examined under conditions of blockade of non-selective hyperpolarization-activated cation currents. Addition of ZD7288, a blocker of non-selective hyperpolarization-activated cation currents, to the perfusion solution increased the contraction force of atrial and ventricular strips in 1-, 8-, and 20-week rats, but produced an opposite effect on contractile activity of atrial and ventricular strips in 3-week rats.

  14. Contractile properties are disrupted in Becker muscular dystrophy, but not in limb girdle type 2I.

    PubMed

    Løkken, Nicoline; Hedermann, Gitte; Thomsen, Carsten; Vissing, John

    2016-09-01

    We investigated whether a linear relationship between muscle strength and cross-sectional area (CSA) is preserved in calf muscles of patients with Becker muscular dystrophy (BMD, n = 14) and limb-girdle type 2I muscular dystrophy (LGMD2I, n = 11), before and after correcting for muscle fat infiltration. The Dixon magnetic resonance imaging technique was used to quantify fat and calculate a fat-free contractile CSA. Strength was assessed by dynamometry. Muscle strength/CSA relationships were significantly lower in patients versus controls. The strength/contractile-CSA relationship was still severely lowered in BMD, but was almost normalized in LGMD2I. Our findings suggest close to intact contractile properties in LGMD2I, which are severely disrupted in BMD. Ann Neurol 2016;80:466-471. © 2016 American Neurological Association.

  15. Mechanobiological induction of long-range contractility by diffusing biomolecules and size scaling in cell assemblies

    NASA Astrophysics Data System (ADS)

    Dasbiswas, K.; Alster, E.; Safran, S. A.

    2016-06-01

    Mechanobiological studies of cell assemblies have generally focused on cells that are, in principle, identical. Here we predict theoretically the effect on cells in culture of locally introduced biochemical signals that diffuse and locally induce cytoskeletal contractility which is initially small. In steady-state, both the concentration profile of the signaling molecule as well as the contractility profile of the cell assembly are inhomogeneous, with a characteristic length that can be of the order of the system size. The long-range nature of this state originates in the elastic interactions of contractile cells (similar to long-range “macroscopic modes” in non-living elastic inclusions) and the non-linear diffusion of the signaling molecules, here termed mechanogens. We suggest model experiments on cell assemblies on substrates that can test the theory as a prelude to its applicability in embryo development where spatial gradients of morphogens initiate cellular development.

  16. New biodiagnostics based on optical tweezers: typing red blood cells, and identification of drug resistant bacteria

    NASA Astrophysics Data System (ADS)

    Chen, Jia-Wen; Lin, Chuen-Fu; Wang, Shyang-Guang; Lee, Yi-Chieh; Chiang, Chung-Han; Huang, Min-Hui; Lee, Yi-Hsiung; Vitrant, Guy; Pan, Ming-Jeng; Lee, Horng-Mo; Liu, Yi-Jui; Baldeck, Patrice L.; Lin, Chih-Lang

    2013-09-01

    Measurements of optical tweezers forces on biological micro-objects can be used to develop innovative biodiagnostics methods. In the first part of this report, we present a new sensitive method to determine A, B, D types of red blood cells. Target antibodies are coated on glass surfaces. Optical forces needed to pull away RBC from the glass surface increase when RBC antigens interact with their corresponding antibodies. In this work, measurements of stripping optical forces are used to distinguish the major RBC types: group O Rh(+), group A Rh(+) and group B Rh(+). The sensitivity of the method is found to be at least 16-folds higher than the conventional agglutination method. In the second part of this report, we present an original way to measure in real time the wall thickness of bacteria that is one of the most important diagnostic parameters of bacteria drug resistance in hospital diagnostics. The optical tweezers force on a shell bacterium is proportional to its wall thickness. Experimentally, we determine the optical tweezers force applied on each bacteria family by measuring their escape velocity. Then, the wall thickness of shell bacteria can be obtained after calibrating with known bacteria parameters. The method has been successfully applied to indentify, from blind tests, Methicillinresistant Staphylococcus aureus (MRSA), including VSSA (NCTC 10442), VISA (Mu 50), and heto-VISA (Mu 3)

  17. Urothelial acetylcholine involvement in ATP-induced contractile responses of the rat urinary bladder.

    PubMed

    Stenqvist, Johanna; Winder, Michael; Carlsson, Thomas; Aronsson, Patrik; Tobin, Gunnar

    2017-08-15

    Both acetylcholine and adenosine 5'-triphosphate (ATP) are released from the urothelium. In in vivo experiments ATP has been shown to evoke contractile responses that are significantly reduced by atropine. Currently, we aimed to examine the cholinergic part of the ATP-evoked contractile response of normal and inflamed (cyclophosphamide-treated rats) bladders. A whole bladder preparation that enabled drug administration either outside or inside the urinary bladder was used. The responses were examined in bladders from control and cyclophosphamide-treated rats that were either intact or urothelium-denuded. The expression of choline acetyltransferase and carnitine acetyltransferase were examined by Western blotting of normal and inflamed bladders. Methacholine evoked larger contractions when administered to the outside of the bladder in comparison to instillation. For ATP, an opposite trend emerged. While atropine substantially reduced the ATP-induced responses at internal administration (7.4±1.1 and 3.7±0.9 mN at 10 -3 M; n=13; P<0.001), it had no effect when administered outside the bladder. The removal of the urothelium caused a similar reduction of the responses to internal administration of ATP as caused by atropine. In cyclophosphamide-treated rats, neither atropine nor urothelium-denudation had any effect on the ATP-evoked responses. No changes in the expressions of the acetylcholine synthesising enzymes were observed. The current study shows that ATP induces a release of urothelial acetylcholine that contributes to the purinergic contractile response in the rat urinary bladder. This atropine-sensitive part of the purinergic contractile response is absent in the inflamed bladder. This may be one pathological mechanism involved in bladder dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. TRPA1-dependent regulation of bladder detrusor smooth muscle contractility in normal and type I diabetic rats

    PubMed Central

    Philyppov, Igor B.; Paduraru, Oksana N.; Gulak, Kseniya L.; Skryma, Roman; Prevarskaya, Natalia; Shuba, Yaroslav M.

    2016-01-01

    TRPA1 is a Ca2+-permeable cation channel that is activated by painful low temperatures (˂17 °C), irritating chemicals, reactive metabolites and mediators of inflammation. In the bladder TRPA1 is predominantly expressed in sensory afferent nerve endings, where it mediates sensory transduction. The contractile effect of its activation on detrusor smooth muscle (DSM) is explained by the release from sensory afferents of inflammatory factors – tachykinins and prostaglandins, which cause smooth muscle cell contraction. Diabetes is a systemic disease, with common complications being diabetic cystopathies and urinary incontinence. However, data on how diabetes affects bladder contractility associated with TRPA1 activation are not available. In this study, by using a rat model with streptozotocin-induced type I diabetes, contractility measurements of DSM strips in response to TRPA1-activating and modulating pharmacological agents and assessment of TRPA1 mRNA expression in bladder-innervating dorsal root ganglia, we have shown that diabetes enhances the TRPA1-dependent mechanism involved in bladder DSM contractility. This is not due to changes in TRPA1 expression, but mainly due to the general inflammatory reaction caused by diabetes. The latter leads to an increase in cyclooxygenase-2-dependent prostaglandin synthesis through the mechanisms associated with substance P activity. This results in the enhanced functional coupling between the tachykinin and prostanoid systems, and the concomitant increase of their impact on DSM contractility in response to TRPA1 activation. PMID:26935999

  19. TRPA1-dependent regulation of bladder detrusor smooth muscle contractility in normal and type I diabetic rats.

    PubMed

    Philyppov, Igor B; Paduraru, Oksana N; Gulak, Kseniya L; Skryma, Roman; Prevarskaya, Natalia; Shuba, Yaroslav M

    2016-01-01

    TRPA1 is a Ca(2+)-permeable cation channel that is activated by painful low temperatures (<17°C), irritating chemicals, reactive metabolites and mediators of inflammation. In the bladder TRPA1 is predominantly expressed in sensory afferent nerve endings, where it mediates sensory transduction. The contractile effect of its activation on detrusor smooth muscle (DSM) is explained by the release from sensory afferents of inflammatory factors - tachykinins and prostaglandins, which cause smooth muscle cell contraction. Diabetes is a systemic disease, with common complications being diabetic cystopathies and urinary incontinence. However, data on how diabetes affects bladder contractility associated with TRPA1 activation are not available. In this study, by using a rat model with streptozotocin-induced type I diabetes, contractility measurements of DSM strips in response to TRPA1-activating and modulating pharmacological agents and assessment of TRPA1 mRNA expression in bladder-innervating dorsal root ganglia, we have shown that diabetes enhances the TRPA1-dependent mechanism involved in bladder DSM contractility. This is not due to changes in TRPA1 expression, but mainly due to the general inflammatory reaction caused by diabetes. The latter leads to an increase in cyclooxygenase-2-dependent prostaglandin synthesis through the mechanisms associated with substance P activity. This results in the enhanced functional coupling between the tachykinin and prostanoid systems, and the concomitant increase of their impact on DSM contractility in response to TRPA1 activation.

  20. Impaired pulmonary artery contractile responses in a rat model of microgravity: role of nitric oxide

    NASA Technical Reports Server (NTRS)

    Nyhan, Daniel; Kim, Soonyul; Dunbar, Stacey; Li, Dechun; Shoukas, Artin; Berkowitz, Dan E.

    2002-01-01

    Vascular contractile hyporesponsiveness is an important mechanism underlying orthostatic intolerance after microgravity. Baroreceptor reflexes can modulate both pulmonary resistance and capacitance function and thus cardiac output. We hypothesized, therefore, that pulmonary vasoreactivity is impaired in the hindlimb-unweighted (HLU) rat model of microgravity. Pulmonary artery (PA) contractile responses to phenylephrine (PE) and U-46619 (U4) were significantly decreased in the PAs from HLU vs. control (C) animals. N(G)-nitro-L-arginine methyl ester (10(-5) M) enhanced the contractile responses in the PA rings from both C and HLU animals and completely abolished the differential responses to PE and U4 in HLU vs. C animals. Vasorelaxant responses to ACh were significantly enhanced in PA rings from HLU rats compared with C. Moreover, vasorelaxant responses to sodium nitroprusside were also significantly enhanced. Endothelial nitric oxide synthase (eNOS) and soluble guanlyl cyclase expression were significantly enhanced in PA and lung tissue from HLU rats. In marked contrast, the expression of inducible nitric oxide synthase was unchanged in lung tissue. These data support the hypothesis that vascular contractile responsiveness is attenuated in PAs from HLU rats and that this hyporesponsiveness is due at least in part to increased nitric oxide synthase activity resulting from enhanced eNOS expression. These findings may have important implications for blood volume distribution and attenuated stroke volume responses to orthostatic stress after microgravity exposure.

  1. Bumper wall for plasma device

    DOEpatents

    Coultas, Thomas A.

    1977-01-01

    Operation of a plasma device such as a reactor for controlled thermonuclear fusion is facilitated by an improved bumper wall enclosing the plasma to smooth the flow of energy from the plasma as the energy impinges upon the bumper wall. The bumper wall is flexible to withstand unequal and severe thermal shocks and it is readily replaced at less expense than the cost of replacing structural material in the first wall and blanket that surround it.

  2. Parvalbumin Gene Transfer Impairs Skeletal Muscle Contractility in Old Mice

    PubMed Central

    Murphy, Kate T.; Ham, Daniel J.; Church, Jarrod E.; Naim, Timur; Trieu, Jennifer; Williams, David A.

    2012-01-01

    Abstract Sarcopenia is the progressive age-related loss of skeletal muscle mass associated with functional impairments that reduce mobility and quality of life. Overt muscle wasting with sarcopenia is usually preceded by a slowing of the rate of relaxation and a reduction in maximum force production. Parvalbumin (PV) is a cytosolic Ca2+ buffer thought to facilitate relaxation in muscle. We tested the hypothesis that restoration of PV levels in muscles of old mice would increase the magnitude and hasten relaxation of submaximal and maximal force responses. The tibialis anterior (TA) muscles of young (6 month), adult (13 month), and old (26 month) C57BL/6 mice received electroporation-assisted gene transfer of plasmid encoding PV or empty plasmid (pcDNA3.1). Contractile properties of TA muscles were assessed in situ 14 days after transfer. In old mice, muscles with increased PV expression had a 40% slower rate of tetanic force development (p<0.01), and maximum twitch and tetanic force were 22% and 16% lower than control values, respectively (p<0.05). Muscles with increased PV expression from old mice had an 18% lower maximum specific (normalized) force than controls, and absolute force was ∼26% lower at higher stimulation frequencies (150–300 Hz, p<0.05). In contrast, there was no effect of increased PV expression on TA muscle contractile properties in young and adult mice. The impairments in skeletal muscle function in old mice argue against PV overexpression as a therapeutic strategy for ameliorating aspects of contractile dysfunction with sarcopenia and help clarify directions for therapeutic interventions for age-related changes in skeletal muscle structure and function. PMID:22455364

  3. Loss of atrial contractility is primary cause of atrial dilatation during first days of atrial fibrillation.

    PubMed

    Schotten, Ulrich; de Haan, Sunniva; Neuberger, Hans-Ruprecht; Eijsbouts, Sabine; Blaauw, Yuri; Tieleman, Robert; Allessie, Maurits

    2004-11-01

    Atrial fibrillation (AF) induces a progressive dilatation of the atria which in turn might promote the arrhythmia. The mechanism of atrial dilatation during AF is not known. To test the hypothesis that loss of atrial contractile function is a primary cause of atrial dilatation during the first days of AF, eight goats were chronically instrumented with epicardial electrodes, a pressure transducer in the right atrium, and piezoelectric crystals to measure right atrial diameter. AF was induced with the use of repetitive burst pacing. Atrial contractility was assessed during sinus rhythm, atrial pacing (160-, 300-, and 400-ms cycle length), and electrically induced AF. The compliance of the fibrillating right atrium was measured during unloading the atria with diuretics and loading with 1 liter of saline. All measurements were repeated after 6, 12, and 24 h of AF and then once a day during the first 5 days of AF. Recovery of the observed changes after spontaneous cardioversion was also studied. After 5 days of AF, atrial contractility during sinus rhythm or slow atrial pacing was greatly reduced. During rapid pacing (160 ms) or AF, the amplitude of the atrial pressure waves had declined to 20% of control. The compliance of the fibrillating atria increased twofold, whereas the right atrial pressure was unchanged. As a result, the mean right atrial diameter increased by approximately 12%. All changes were reversible within 3 days of sinus rhythm. We conclude that atrial dilatation during the first days of AF is due to an increase in atrial compliance caused by loss of atrial contractility during AF. Atrial compliance and size are restored when atrial contractility recovers after cardioversion of AF.

  4. AMP-Activated Protein Kinase Deficiency Rescues Paraquat-Induced Cardiac Contractile Dysfunction Through an Autophagy-Dependent Mechanism

    PubMed Central

    Wang, Qiurong; Yang, Lifang; Hua, Yinan; Nair, Sreejayan; Xu, Xihui; Ren, Jun

    2014-01-01

    Aim: Paraquat, a quaternary nitrogen herbicide, is a highly toxic prooxidant resulting in multi-organ failure including the heart although the underlying mechanism still remains elusive. This study was designed to examine the role of the cellular fuel sensor AMP-activated protein kinase (AMPK) in paraquat-induced cardiac contractile and mitochondrial injury. Results: Wild-type and transgenic mice with overexpression of a mutant AMPK α2 subunit (kinase dead, KD), with reduced activity in both α1 and α2 subunits, were administered with paraquat (45 mg/kg) for 48 h. Paraquat elicited cardiac mechanical anomalies including compromised echocardiographic parameters (elevated left ventricular end-systolic diameter and reduced factional shortening), suppressed cardiomyocyte contractile function, intracellular Ca2+ handling, reduced cell survival, and overt mitochondrial damage (loss in mitochondrial membrane potential). In addition, paraquat treatment promoted phosphorylation of AMPK and autophagy. Interestingly, deficiency in AMPK attenuated paraquat-induced cardiac contractile and intracellular Ca2+ derangement. The beneficial effect of AMPK inhibition was associated with inhibition of the AMPK-TSC-mTOR-ULK1 signaling cascade. In vitro study revealed that inhibitors for AMPK and autophagy attenuated paraquat-induced cardiomyocyte contractile dysfunction. Conclusion: Taken together, our findings revealed that AMPK may mediate paraquat-induced myocardial anomalies possibly by regulating the AMPK/mTOR-dependent autophagy. PMID:25092649

  5. Drosophila F-BAR protein Syndapin contributes to coupling the plasma membrane and contractile ring in cytokinesis.

    PubMed

    Takeda, Tetsuya; Robinson, Iain M; Savoian, Matthew M; Griffiths, John R; Whetton, Anthony D; McMahon, Harvey T; Glover, David M

    2013-08-07

    Cytokinesis is a highly ordered cellular process driven by interactions between central spindle microtubules and the actomyosin contractile ring linked to the dynamic remodelling of the plasma membrane. The mechanisms responsible for reorganizing the plasma membrane at the cell equator and its coupling to the contractile ring in cytokinesis are poorly understood. We report here that Syndapin, a protein containing an F-BAR domain required for membrane curvature, contributes to the remodelling of the plasma membrane around the contractile ring for cytokinesis. Syndapin colocalizes with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P₂) at the cleavage furrow, where it directly interacts with a contractile ring component, Anillin. Accordingly, Anillin is mislocalized during cytokinesis in Syndapin mutants. Elevated or diminished expression of Syndapin leads to cytokinesis defects with abnormal cortical dynamics. The minimal segment of Syndapin, which is able to localize to the cleavage furrow and induce cytokinesis defects, is the F-BAR domain and its immediate C-terminal sequences. Phosphorylation of this region prevents this functional interaction, resulting in reduced ability of Syndapin to bind to and deform membranes. Thus, the dephosphorylated form of Syndapin mediates both remodelling of the plasma membrane and its proper coupling to the cytokinetic machinery.

  6. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    NASA Astrophysics Data System (ADS)

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-11-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  7. Combining cell sheet technology and electrospun scaffolding for engineered tubular, aligned, and contractile blood vessels.

    PubMed

    Rayatpisheh, Shahrzad; Heath, Daniel E; Shakouri, Amir; Rujitanaroj, Pim-On; Chew, Sing Yian; Chan-Park, Mary B

    2014-03-01

    Herein we combine cell sheet technology and electrospun scaffolding to rapidly generate circumferentially aligned tubular constructs of human aortic smooth muscles cells with contractile gene expression for use as tissue engineered blood vessel media. Smooth muscle cells cultured on micropatterned and N-isopropylacrylamide-grafted (pNIPAm) polydimethylsiloxane (PDMS), a small portion of which was covered by aligned electrospun scaffolding, resulted in a single sheet of unidirectionally aligned cells. Upon cooling to room temperature, the scaffold, its adherent cells, and the remaining cell sheet detached and were collected on a mandrel to generating tubular constructs with circumferentially aligned smooth muscle cells which possess contractile gene expression and a single layer of electrospun scaffold as an analogue to a small diameter blood vessel's internal elastic lamina (IEL). This method improves cell sheet handling, results in rapid circumferential alignment of smooth muscle cells which immediately express contractile genes, and introduction of an analogue to small diameter blood vessel IEL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Doppler-derived myocardial systolic strain rate is a strong index of left ventricular contractility

    NASA Technical Reports Server (NTRS)

    Greenberg, Neil L.; Firstenberg, Michael S.; Castro, Peter L.; Main, Michael; Travaglini, Agnese; Odabashian, Jill A.; Drinko, Jeanne K.; Rodriguez, L. Leonardo; Thomas, James D.; Garcia, Mario J.

    2002-01-01

    BACKGROUND: Myocardial fiber strain is directly related to left ventricular (LV) contractility. Strain rate can be estimated as the spatial derivative of velocities (dV/ds) obtained by tissue Doppler echocardiography (TDE). The purposes of the study were (1) to determine whether TDE-derived strain rate may be used as a noninvasive, quantitative index of contractility and (2) to compare the relative accuracy of systolic strain rate against TDE velocities alone. METHODS AND RESULTS: TDE color M-mode images of the interventricular septum were recorded from the apical 4-chamber view in 7 closed-chest anesthetized mongrel dogs during 5 different inotropic stages. Simultaneous LV volume and pressure were obtained with a combined conductance-high-fidelity pressure catheter. Peak elastance (Emax) was determined as the slope of end-systolic pressure-volume relationships during caval occlusion and was used as the gold standard of LV contractility. Peak systolic TDE myocardial velocities (Sm) and peak (epsilon'(p)) and mean (epsilon'(m)) strain rates obtained at the basal septum were compared against Emax by linear regression. Emax as well as TDE systolic indices increased during inotropic stimulation with dobutamine and decreased with the infusion of esmolol. A stronger association was found between Emax and epsilon'(p) (r=0.94, P<0.01, y=0.29x+0.46) and epsilon'(m) (r=0.88, P<0.01) than for Sm (r=0.75, P<0.01). CONCLUSIONS: TDE-derived epsilon'(p) and epsilon'(m) are strong noninvasive indices of LV contractility. These indices appear to be more reliable than S(m), perhaps by eliminating translational artifact.

  9. Human thoracic duct in vitro: diameter-tension properties, spontaneous and evoked contractile activity.

    PubMed

    Telinius, Niklas; Drewsen, Nanna; Pilegaard, Hans; Kold-Petersen, Henrik; de Leval, Marc; Aalkjaer, Christian; Hjortdal, Vibeke; Boedtkjer, Donna Briggs

    2010-09-01

    The current study characterizes the mechanical properties of the human thoracic duct and demonstrates a role for adrenoceptors, thromboxane, and endothelin receptors in human lymph vessel function. With ethical permission and informed consent, portions of the thoracic duct (2-5 cm) were resected and retrieved at T(7)-T(9) during esophageal and cardia cancer surgery. Ring segments (2 mm long) were mounted in a myograph for isometric tension (N/m) measurement. The diameter-tension relationship was established using ducts from 10 individuals. Peak active tension of 6.24 +/- 0.75 N/m was observed with a corresponding passive tension of 3.11 +/- 0.67 N/m and average internal diameter of 2.21 mm. The equivalent active and passive transmural pressures by LaPlace's law were 47.3 +/- 4.7 and 20.6 +/- 3.2 mmHg, respectively. Subsequently, pharmacology was performed on rings from 15 ducts that were normalized by stretching them until an equivalent pressure of 21 mmHg was calculable from the wall tension. At low concentrations, norepinephrine, endothelin-1, and the thromboxane-A(2) analog U-46619 evoked phasic contractions (analogous to lymphatic pumping), whereas at higher contractions they induced tonic activity (maximum tension values of 4.46 +/- 0.63, 5.90 +/- 1.4, and 6.78 +/- 1.4 N/m, respectively). Spontaneous activity was observed in 44% of ducts while 51% of all the segments produced phasic contractions after agonist application. Acetylcholine and bradykinin relaxed norepinephrine preconstrictions by approximately 20% and approximately 40%, respectively. These results demonstrate that the human thoracic duct can develop wall tensions that permit contractility to be maintained across a wide range of transmural pressures and that isolated ducts contract in response to important vasoactive agents.

  10. Electron microscopic examination of uncultured soil-dwelling bacteria.

    PubMed

    Amako, Kazunobu; Takade, Akemi; Taniai, Hiroaki; Yoshida, Shin-ichi

    2008-05-01

    Bacteria living in soil collected from a rice paddy in Fukuoka, Japan, were examined by electron microscopy using a freeze-substitution fixation method. Most of the observed bacteria could be categorized, based on the structure of the cell envelope and overall morphology, into one of five groups: (i) bacterial spore; (ii) Gram-positive type; (iii) Gram-negative type; (iv) Mycobacterium like; and (v) Archaea like. However, a few of the bacteria could not be readily categorized into one of these groups because they had unique cell wall structures, basically resembling those of Gram-negative bacteria, but with the layer corresponding to the peptidoglycan layer in Gram-negative bacteria being extremely thick, like that of the cortex of a bacterial spore. The characteristic morphological features found in many of these uncultured, soil-dwelling cells were the nucleoid being in a condensed state and the cytoplasm being shrunken. We were able to produce similar morphologies in vitro using a Salmonella sp. by culturing under low-temperature, low-nutrient conditions, similar to those found in some natural environments. These unusual morphologies are therefore hypothesized to be characteristic of bacteria in resting or dormant stages.

  11. TRPM4 Is a Novel Component of the Adhesome Required for Focal Adhesion Disassembly, Migration and Contractility

    PubMed Central

    Cáceres, Mónica; Ortiz, Liliana; Recabarren, Tatiana; Romero, Anibal; Colombo, Alicia; Leiva-Salcedo, Elías; Varela, Diego; Rivas, José; Silva, Ian; Morales, Diego; Campusano, Camilo; Almarza, Oscar; Simon, Felipe; Toledo, Hector; Park, Kang-Sik; Trimmer, James S.; Cerda, Oscar

    2015-01-01

    Cellular migration and contractility are fundamental processes that are regulated by a variety of concerted mechanisms such as cytoskeleton rearrangements, focal adhesion turnover, and Ca2+ oscillations. TRPM4 is a Ca2+-activated non-selective cationic channel (Ca2+-NSCC) that conducts monovalent but not divalent cations. Here, we used a mass spectrometry-based proteomics approach to identify putative TRPM4-associated proteins. Interestingly, the largest group of these proteins has actin cytoskeleton-related functions, and among these nine are specifically annotated as focal adhesion-related proteins. Consistent with these results, we found that TRPM4 localizes to focal adhesions in cells from different cellular lineages. We show that suppression of TRPM4 in MEFs impacts turnover of focal adhesions, serum-induced Ca2+ influx, focal adhesion kinase (FAK) and Rac activities, and results in reduced cellular spreading, migration and contractile behavior. Finally, we demonstrate that the inhibition of TRPM4 activity alters cellular contractility in vivo, affecting cutaneous wound healing. Together, these findings provide the first evidence, to our knowledge, for a TRP channel specifically localized to focal adhesions, where it performs a central role in modulating cellular migration and contractility. PMID:26110647

  12. Expansion and concatenation of nonmuscle myosin IIA filaments drive cellular contractile system formation during interphase and mitosis

    PubMed Central

    Fenix, Aidan M.; Taneja, Nilay; Buttler, Carmen A.; Lewis, John; Van Engelenburg, Schuyler B.; Ohi, Ryoma; Burnette, Dylan T.

    2016-01-01

    Cell movement and cytokinesis are facilitated by contractile forces generated by the molecular motor, nonmuscle myosin II (NMII). NMII molecules form a filament (NMII-F) through interactions of their C-terminal rod domains, positioning groups of N-terminal motor domains on opposite sides. The NMII motors then bind and pull actin filaments toward the NMII-F, thus driving contraction. Inside of crawling cells, NMIIA-Fs form large macromolecular ensembles (i.e., NMIIA-F stacks), but how this occurs is unknown. Here we show NMIIA-F stacks are formed through two non–mutually exclusive mechanisms: expansion and concatenation. During expansion, NMIIA molecules within the NMIIA-F spread out concurrent with addition of new NMIIA molecules. Concatenation occurs when multiple NMIIA-Fs/NMIIA-F stacks move together and align. We found that NMIIA-F stack formation was regulated by both motor activity and the availability of surrounding actin filaments. Furthermore, our data showed expansion and concatenation also formed the contractile ring in dividing cells. Thus interphase and mitotic cells share similar mechanisms for creating large contractile units, and these are likely to underlie how other myosin II–based contractile systems are assembled. PMID:26960797

  13. Ultrastructural characteristics of some bacteria after treatment with Lubrol W.

    PubMed

    Cherepova, N; Spasova, D

    1994-01-01

    Specific ultrastructural changes occurred mainly in the cell wall and cytoplasmic membrane of Listeria monocytogenes, Salmonella typhimurium, Pseudomonas pseudomallei and Pseudomonas aeruginosa bacteria when treated with 0.5% and 1% Lubrol W1 by means of transmission and scanning electron microscopy.

  14. Changes of contractile responses due to simulated weightlessness in rat soleus muscle

    NASA Astrophysics Data System (ADS)

    Elkhammari, A.; Noireaud, J.; Léoty, C.

    1994-08-01

    Some contractile and electrophysiological properties of muscle fibers isolated from the slow-twitch soleus (SOL) and fast-twitch extensor digitorum longus (EDL) muscles of rats were compared with those measured in SOL muscles from suspended rats. In suspendede SOL (21 days of tail-suspension) membrane potential (Em), intracellular sodium activity (aiNa) and the slope of the relationship between Em and log [K]o were typical of fast-twitch muscles. The relation between the maximal amplitude of K-contractures vs Em was steeper for control SOL than for EDL and suspended SOL muscles. After suspension, in SOL muscles the contractile threshold and the inactivation curves for K-contractures were shifted to more positive Em. Repriming of K-contractures was unaffected by suspencion. The exposure of isolated fibers to perchlorate (ClO4-)-containing (6-40 mM) solutions resulted ina similar concentration-dependent shift to more negative Em of activation curves for EDL and suspended SOL muscles. On exposure to a Na-free TEA solution, SOL from control and suspended rats, in contrast to EDL muscles, generated slow contractile responses. Suspended SOL showed a reduced sensitivity to the contracture-producing effect of caffeine compared to control muscles. These results suggested that the modification observed due to suspension could be encounted by changes in the characteristics of muscle fibers from slow to fast-twitch type.

  15. Symbiotic interaction of endophytic bacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Ganoderma boninense.

    PubMed

    Sundram, Shamala; Meon, Sariah; Seman, Idris Abu; Othman, Radziah

    2011-08-01

    Endophytic bacteria (Pseudomonas aeruginosa UPMP3 and Burkholderia cepacia UMPB3), isolated from within roots of oil palm (Elaeis guineensis Jacq.) were tested for their presymbiotic effects on two arbuscular mcorrhizal fungi, Glomus intraradices UT126 and Glomus clarum BR152B). These endophytic bacteria were also tested for antagonistic effects on Ganoderma boninense PER 71, a white wood rot fungal pathogen that causes a serious disease in oil palm. Spore germination and hyphal length of each arbuscular mycorrhizal fungal (AMF) pairing with endophytic bacteria was found to be significantly higher than spores plated in the absence of bacteria. Scanning electron microscopy (SEM) showed that the endophytic bacteria were scattered, resting or embedded on the surface hyaline layer or on the degraded walls of AMF spores, possibly feeding on the outer hyaline spore wall. The antagonistic effect of the endophytic bacteria was expressed as severe morphological abnormalities in the hyphal structures of G. boninense PER 71. The effects of the endophytic bacteria on G. boninense PER 71 hyphal structures were observed clearly under SEM. Severe inter-twisting, distortion, lysis and shriveling of the hyphal structures were observed. This study found that the effect of endophytic bacteria on G. intraradices UT126 and G. clarum BR152B resembled that of a mycorrhiza helper bacteria (MHB) association because the association significantly promoted AMF spore germination and hyphal length. However, the endophytic bacteria were extremely damaging to G. boninense PER 71.

  16. Electroweak bubble wall speed limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bödeker, Dietrich; Moore, Guy D., E-mail: bodeker@physik.uni-bielefeld.de, E-mail: guymoore@ikp.physik.tu-darmstadt.de

    In extensions of the Standard Model with extra scalars, the electroweak phase transition can be very strong, and the bubble walls can be highly relativistic. We revisit our previous argument that electroweak bubble walls can 'run away,' that is, achieve extreme ultrarelativistic velocities γ ∼ 10{sup 14}. We show that, when particles cross the bubble wall, they can emit transition radiation. Wall-frame soft processes, though suppressed by a power of the coupling α, have a significance enhanced by the γ-factor of the wall, limiting wall velocities to γ ∼ 1/α. Though the bubble walls can move at almost the speedmore » of light, they carry an infinitesimal share of the plasma's energy.« less

  17. Alterations in Vasoreactivity of Femoral Artery Induced by Hindlimb Unweighting are Related to the Changes of Contractile Protein in Rats

    NASA Technical Reports Server (NTRS)

    Ma, Jin; Ren, Xinling; Meng, Qinjun; Zhang, Lifan; Purdy, Ralph E.

    2005-01-01

    Responses of endothelium removed femoral arterial rings to vasoactive compounds were examined in vitro, and the expression of Myosin and Actin of femoral artery were observed by Western Blotting and Immunohistochemistry in hndlimb unweighting rats and control rats. The results showed that contractile responses of femoral arterial rings evoked by Phenylephrine, Endothelin-1, Vasopressin, KCl, Ca(2+) and Ca(2+) ionophore A23187 were decreased in hindlimb unweighting rats as compared with that of controls. But vasoddatory responses induced by SNPand cGMP were not different between groups. No significant differences have been found in expressions of Calponin, Myosin, Actin, and the ratio of MHC SM1/SM2 between the two groups, but expression of alpha-SM-Actin decreased in hindlimb unweighting rats. The data indicated that the diminished contractile responsiveness probably result from altered contractile apparatus, especially the contractile proteins.

  18. Post-exercise contractility, diastolic function, and pressure: Operator-independent sensor-based intelligent monitoring for heart failure telemedicine

    PubMed Central

    Bombardini, Tonino; Gemignani, Vincenzo; Bianchini, Elisabetta; Pasanisi, Emilio; Pratali, Lorenza; Pianelli, Mascia; Faita, Francesco; Giannoni, Massimo; Arpesella, Giorgio; Sicari, Rosa; Picano, Eugenio

    2009-01-01

    Background New sensors for intelligent remote monitoring of the heart should be developed. Recently, a cutaneous force-frequency relation recording system has been validated based on heart sound amplitude and timing variations at increasing heart rates. Aim To assess sensor-based post-exercise contractility, diastolic function and pressure in normal and diseased hearts as a model of a wireless telemedicine system. Methods We enrolled 150 patients and 22 controls referred for exercise-stress echocardiography, age 55 ± 18 years. The sensor was attached in the precordial region by an ECG electrode. Stress and recovery contractility were derived by first heart sound amplitude vibration changes; diastolic times were acquired continuously. Systemic pressure changes were quantitatively documented by second heart sound recording. Results Interpretable sensor recordings were obtained in all patients (feasibility = 100%). Post-exercise contractility overshoot (defined as increase > 10% of recovery contractility vs exercise value) was more frequent in patients than controls (27% vs 8%, p < 0.05). At 100 bpm stress heart rate, systolic/diastolic time ratio (normal, < 1) was > 1 in 20 patients and in none of the controls (p < 0.01); at recovery systolic/diastolic ratio was > 1 in only 3 patients (p < 0.01 vs stress). Post-exercise reduced arterial pressure was sensed. Conclusion Post-exercise contractility, diastolic time and pressure changes can be continuously measured by a cutaneous sensor. Heart disease affects not only exercise systolic performance, but also post-exercise recovery, diastolic time intervals and blood pressure changes – in our study, all of these were monitored by a non-invasive wearable sensor. PMID:19442285

  19. Chronic clenbuterol treatment compromises force production without directly altering skeletal muscle contractile machinery

    PubMed Central

    Py, G; Ramonatxo, C; Sirvent, P; Sanchez, A M J; Philippe, A G; Douillard, A; Galbès, O; Lionne, C; Bonnieu, A; Chopard, A; Cazorla, O; Lacampagne, A; Candau, R B

    2015-01-01

    Clenbuterol is a β2-adrenergic receptor agonist known to induce skeletal muscle hypertrophy and a slow-to-fast phenotypic shift. The aim of the present study was to test the effects of chronic clenbuterol treatment on contractile efficiency and explore the underlying mechanisms, i.e. the muscle contractile machinery and calcium-handling ability. Forty-three 6-week-old male Wistar rats were randomly allocated to one of six groups that were treated with either subcutaneous equimolar doses of clenbuterol (4 mg kg−1 day−1) or saline solution for 9, 14 or 21 days. In addition to the muscle hypertrophy, although an 89% increase in absolute maximal tetanic force (Po) was noted, specific maximal tetanic force (sPo) was unchanged or even depressed in the slow twitch muscle of the clenbuterol-treated rats (P < 0.05). The fit of muscle contraction and relaxation force kinetics indicated that clenbuterol treatment significantly reduced the rate constant of force development and the slow and fast rate constants of relaxation in extensor digitorum longus muscle (P < 0.05), and only the fast rate constant of relaxation in soleus muscle (P < 0.05). Myofibrillar ATPase activity increased in both relaxed and activated conditions in soleus (P < 0.001), suggesting that the depressed specific tension was not due to the myosin head alteration itself. Moreover, action potential-elicited Ca2+ transients in flexor digitorum brevis fibres (fast twitch fibres) from clenbuterol-treated animals demonstrated decreased amplitude after 14 days (−19%, P < 0.01) and 21 days (−25%, P < 0.01). In conclusion, we showed that chronic clenbuterol treatment reduces contractile efficiency, with altered contraction and relaxation kinetics, but without directly altering the contractile machinery. Lower Ca2+ release during contraction could partially explain these deleterious effects. PMID:25656230

  20. Enhanced contractility of the rat stomach during suppression of angiotensin converting enzyme by captopril in vitro.

    PubMed Central

    Rani, R.; Rao, K. S.

    1991-01-01

    1. Intragastric pressure (IGP) was used as an index, of the effect of serosal application of captopril (SQ 14,225; D-3-mercapto-2-methylpropanoyl-L-proline) on the contractility of rat stomach in vitro. 2. Captopril, at concentrations greater than 0.3 microM, enhanced the spontaneous gastric motility (GM) in a concentration-dependent manner whereas concentrations less than 0.3 microM selectively potentiated 4 nM bradykinin (BK)-evoked gastric contractions without significantly affecting the spontaneous GM. 3. The kallikrein inhibitor, aprotinin (100 u ml-1), markedly antagonized the enhanced GM to 1.4 microM captopril and BK (4 nM)-evoked contractions, without affecting the contractions evoked by angiotensin 1 (10 nM) and acetylcholine (0.4 microM). The angiotensin II antagonist, saralasin (50 microM) failed to mimic aprotinin. 4. The enhanced GM to captopril was markedly inhibited by tetrodotoxin (1 microM), and partially inhibited by atropine (1 microM). 5. These results indicate that in vitro, captopril (greater than 0.3 microM) enhances gastric contractility through kininase/ACE inhibitory action, presumably by increasing the concentration of undegraded tissue kinins and substance P. This motor response seems to be predominantly due to activation of the cholinergic neurones but non-cholinergic excitatory neurones are also involved. PMID:1713107

  1. Initial contact guidance during cell spreading is contractility-independent.

    PubMed

    Sales, Adrià; Holle, Andrew W; Kemkemer, Ralf

    2017-08-02

    A wide variety of cell types exhibit substrate topography-based behavior, also known as contact guidance. However, the precise cellular mechanisms underlying this process are still unknown. In this study, we investigated contact guidance by studying the reaction of human endothelial cells (ECs) to well-defined microgroove topographies, both during and after initial cell spreading. As the cytoskeleton plays a major role in cellular adaptation to topographical features, two methods were used to perturb cytoskeletal structures. Inhibition of actomyosin contractility with the chemical inhibitor blebbistatatin demonstrated that initial contact guidance events are independent of traction force generation. However, cell alignment to the grooved substrate was altered at later time points, suggesting an initial 'passive' phase of contact guidance, followed by a contractility-dependent 'active' phase that relies on mechanosensitive feedback. The actin cytoskeleton was also perturbed in an indirect manner by culturing cells upside down, resulting in decreased levels of contact guidance and suggesting that a possible loss of contact between the actin cytoskeleton and the substrate could lead to cytoskeleton impairment. The process of contact guidance at the microscale was found to be primarily lamellipodia driven, as no bias in filopodia extension was observed on micron-scale grooves.

  2. Skeletal muscle contractile properties in a novel murine model for limb girdle muscular dystrophy 2i.

    PubMed

    Rehwaldt, Jordan D; Rodgers, Buel D; Lin, David C

    2017-12-01

    Limb-girdle muscular dystrophy (LGMD) 2i results from mutations in fukutin-related protein and aberrant α-dystroglycan glycosylation. Although this significantly compromises muscle function and ambulation, the comprehensive characteristics of contractile dysfunction are unknown. Therefore, we quantified the in situ contractile properties of the medial gastrocnemius in young adult P448L mice, an affected muscle of a novel model of LGMD2i. Normalized maximal twitch force, tetanic force, and power were significantly smaller in P448L mice, compared with sex-matched, wild-type mice. These differences were consistent with the replacement of contractile fibers by passive tissue. The shape of the active force-length relationships were similar in both groups, regardless of sex, consistent with an intact sarcomeric structure in P448L mice. Passive force-length curves normalized to maximal isometric force were steeper in P448L mice, and passive elements contribute disproportionately more to total contractile force in P448L mice. Sex differences were mostly noted in the force-velocity curves, as normalized values for maximal and optimal velocities were significantly slower in P448L males, compared with wild-type, but not in P448L females. This suggests that the dystrophic phenotype, which may include possible changes in cross-bridge kinetics and fiber-type proportions, progresses more quickly in P448L males. These results together indicate that active force and power generation are compromised in both sexes of P448L mice, while passive forces increase. More importantly, the results identified several functional markers of disease pathophysiology that could aid in developing and assessment of novel therapeutics for LGMD2i and possibly other dystroglycanopathies as well. NEW & NOTEWORTHY Comprehensive assessments of muscle contractile function have, until now, never been performed in an animal model for any dystroglycanopathy. This study suggests that skeletal muscle

  3. Serotonin-induced contractile responses of esophageal smooth muscle in the house musk shrew (Suncus murinus).

    PubMed

    Shiina, T; Naitou, K; Nakamori, H; Suzuki, Y; Horii, K; Sano, Y; Shimaoka, H; Shimizu, Y

    2016-11-01

    Serotonin (5-hydroxytryptamine, 5-HT) is a regulatory factor in motility of the gastrointestinal tract including the esophagus. Although we proposed that vagal cholinergic and mast cell-derived non-cholinergic components including serotonin coordinately shorten the esophagus, the precise mechanism of serotonin-induced contractions in the suncus esophagus is still unclear. Therefore, the aims of this study were to determine characteristics of contractile responses induced by serotonin and to identify 5-HT receptor subtypes responsible for regulating motility in the suncus esophagus. An isolated segment of the suncus esophagus was placed in an organ bath, and longitudinal or circular mechanical responses were recorded using a force transducer. Serotonin evoked contractile responses of the suncus esophagus in the longitudinal direction but not in the circular direction. Tetrodotoxin did not affect the serotonin-induced contractions. Pretreatment with a non-selective 5-HT receptor antagonist or double application of 5-HT 1 and 5-HT 2 receptor antagonists blocked the serotonin-induced contractions. 5-HT 1 and 5-HT 2 receptor agonists, but not a 5-HT 3 receptor agonist, evoked contractile responses in the suncus esophagus. The findings suggest that serotonin induces contractile responses of the longitudinal smooth muscle in the muscularis mucosae of the suncus esophagus that are mediated via 5-HT 1 and 5-HT 2 receptors on muscle cells. The serotonin-induced contractions might contribute to esophageal peristalsis and emetic response. © 2016 John Wiley & Sons Ltd.

  4. In a non-human primate model, aging disrupts the neural control of intestinal smooth muscle contractility in a region-specific manner.

    PubMed

    Tran, L; Greenwood-Van Meerveld, B

    2014-03-01

    Incidences of gastrointestinal (GI) motility disorders increase with age. However, there is a paucity of knowledge about the aging mechanisms leading to GI dysmotility. Motility in the GI tract is a function of smooth muscle contractility, which is modulated in part by the enteric nervous system (ENS). Evidence suggests that aging impairs the ENS, thus we tested the hypothesis that senescence in the GI tract precipitates abnormalities in smooth muscle and neurally mediated contractility in a region-specific manner. Jejunal and colonic circular muscle strips were isolated from young (4-10 years) and old (18+ years) baboons. Myogenic responses were investigated using potassium chloride (KCl) and carbachol (CCh). Neurally mediated contractile responses were evoked by electrical field stimulation (EFS) and were recorded in the absence and presence of atropine (1 μM) or NG-Nitro-l-arginine methyl ester (l-NAME; 100 μM). The myogenic responses to KCl in the jejunum and colon were unaffected by age. In the colon, but not the jejunum, CCh-induced contractile responses were reduced in aged animals. Compared to young baboons, there was enhanced EFS-induced contractility of old baboon jejunal smooth muscle in contrast to the reduced contractility in the colon. The effect of atropine on the EFS response was lower in aged colonic tissue, suggesting reduced participation of acetylcholine. In aged jejunal tissue, higher contractile responses to EFS were found to be due to reduced nitregic inhibition. These findings provide key evidence for the importance of intestinal smooth muscle and ENS senescence in age-associated GI motility disorders. © 2014 The Authors. Neurogastroenterology & Motility published by John Wiley & Sons Ltd.

  5. Wall of fundamental constants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olive, Keith A.; School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota, 55455; Peloso, Marco

    2011-02-15

    We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilatonlike scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, {alpha}. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in {alpha} relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the contradiction between claims of a variation of {alpha} based on Keck/Hires data and of themore » constancy of {alpha} based on Very Large Telescope data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of {alpha}. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.« less

  6. Locomotion in a liquid crystal near a wall

    NASA Astrophysics Data System (ADS)

    Powers, Thomas; Krieger, Madison; Spagnolie, Saverio

    2015-11-01

    Recent observations of bacteria swimming in nematic liquid crystal solution motivate the theoretical study of how swimming speed depends on liquid crystal properties. We consider the Taylor sheet near a wall, in which propulsion is achieved by the propagation of traveling waves along the length of the swimmer. Using the lubrication approximation, we determine how swimming speed depends on the Ericksen number, which is the ratio of elastic to viscous stresses. We also study the effect of anchoring strength, at the surface of the swimmer and the surface of the wall. Supported by NSF-CBET 1437195.

  7. Growth of Walled Cells: From Shells to Vesicles

    NASA Astrophysics Data System (ADS)

    Boudaoud, Arezki

    2003-07-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi, and yeast cells. They are modeled as elastic shells containing a liquid. Cell growth is driven by fluid pressure and is is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  8. Impact of tamsulosin and nifedipine on contractility of pregnant rat ureters in vitro.

    PubMed

    Haddad, Lisette; Corriveau, Stéphanie; Rousseau, Eric; Blouin, Simon; Pasquier, Jean-Charles; Ponsot, Yves; Roy-Lacroix, Marie-Ève

    2018-01-01

    To evaluate the in vitro effect of tamsulosin and nifedipine on the contractility of pregnant rat ureters and to perform quantitative analysis of the pharmacological effects. Medical expulsive therapy (MET) is commonly used to treat urolithiasis. However, this treatment is seldom used in pregnant women since no studies support this practice. This was an in vitro study on animal tissue derived from pregnant Sprague-Dawley rats. A total of 124 ureteral segments were mounted in an organ bath system and contractile response to methacholine (MCh) was assessed. Tamsulosin or nifedipine were added at cumulative concentrations (0.001-1 μM). The area under the curve (AUC) from isometric tension measurements was calculated. The effect of pharmacological agents and the respective controls were assessed by calculating the AUC for each 5-min interval. Statistical analyses were performed using the Mann-Whitney-Wilcoxon nonparametric test. Both drugs displayed statistically significant inhibitory activity at concentrations of 0.1 and 1 μM for tamsulosin and 1 μM for nifedipine when calculated as the AUC as compared to DMSO controls. Tamsulosin and nifedipine directly inhibit MCh-induced contractility of pregnant rat ureters. Further work is needed to determine the clinical efficacy of these medications for MET in pregnancy.

  9. Recovery time course in contractile function of fast and slow skeletal muscle after hindlimb immobilization

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Kim, D. H.; Fitts, R. H.

    1982-01-01

    The present study was undertaken to characterize the time course and extent of recovery in the isometric and isotonic contractile properties of fast and slow skeletal muscle following 6 wk of hindlimb immobilization. Female Sprague-Dawley rats were randomly assigned to an immobilized group or a control group. The results of the study show that fast and slow skeletal muscles possess the ability to completely recover normal contractile function following 6 wk of hindlimb immobilization. The rate of recovery is dependent on the fiber type composition of the affected muscle.

  10. Passive heat acclimation improves skeletal muscle contractility in humans.

    PubMed

    Racinais, S; Wilson, M G; Périard, J D

    2017-01-01

    The aim of this study was to investigate the effect of repeated passive heat exposure (i.e., acclimation) on muscle contractility in humans. Fourteen nonheat-acclimated males completed two trials including electrically evoked twitches and voluntary contractions in thermoneutral conditions [Cool: 24°C, 40% relative humidity (RH)] and hot ambient conditions in the hyperthermic state (Hot: 44-50°C, 50% RH) on consecutive days in a counterbalanced order. Rectal temperature was ~36.5°C in Cool and was maintained at ~39°C throughout Hot. Both trials were repeated after 11 days of passive heat acclimation (1 h per day, 48-50°C, 50% RH). Heat acclimation decreased core temperature in Cool (-0.2°C, P < 0.05), increased the time required to reach 39°C in Hot (+9 min, P < 0.05) and increased sweat rate in Hot (+0.7 liter/h, P < 0.05). Moreover, passive heat acclimation improved skeletal muscle contractility as evidenced by an increase in evoked peak twitch amplitude both in Cool (20.5 ± 3.6 vs. 22.0 ± 4.0 N·m) and Hot (20.5 ± 4.7 vs. 22.0 ± 4.0 N·m) (+9%, P < 0.05). Maximal voluntary torque production was also increased both in Cool (145 ± 42 vs. 161 ± 36 N·m) and Hot (125 ± 36 vs. 145 ± 30 N·m) (+17%, P < 0.05), despite voluntary activation remaining unchanged. Furthermore, the slope of the relative torque/electromyographic linear relationship was improved postacclimation (P < 0.05). These adjustments demonstrate that passive heat acclimation improves skeletal muscle contractile function during electrically evoked and voluntary muscle contractions of different intensities both in Cool and Hot. These results suggest that repeated heat exposure may have important implications to passively maintain or even improve muscle function in a variety of performance and clinical settings. Copyright © 2017 the American Physiological Society.

  11. Recently active contractile deformation in the forearc of southern Peru

    NASA Astrophysics Data System (ADS)

    Hall, S. R.; Farber, D.; Audin, L.; Finkel, R. C.

    2010-12-01

    In the Precordillera and Western Cordillera of southern Peru (14°-18°S), vast pediment surfaces have been abandoned through drainage diversion and river incision, with the major drainages carving deep canyons. Within this region, we have identified range-sub-parallel contractile structures that accommodate significant distributed crustal deformation. Young geomorphic features document both the presence and youthfulness of these contractile structures. Here, we determine exposure ages on geomorphic features such as pediment surfaces and fluvial terraces using in situ produced cosmogenic radionuclides, in conjunction with field and remote mapping. This chronologic data reveals that ancient surfaces have been preserved as a result of very low erosion rates. We measure this rate to be <0.5m/Ma on genetically similar surfaces spanning over 4 degrees of latitude throughout this region. While many ancient surfaces are preserved in forearc localities, we also observe young (30ka-1Ma) low-relief pediment surfaces modified by recent processes. Specifically, active structures accommodating compressional stresses locally displace active drainages and offset river terraces leading to their abandonment. Based on our chronology and geomorphic mapping, we calculate a Pleistocene river incision rate of ~0.3mm/yr determined from data collected along exoreic rivers. This rate is consistent with longer-term incision rates measured in other localities along this margin. We suggest that, in this region of southern Peru, the steep western wedge of the Andean margin supports the high topography of the Altiplano through a combination of uplift along steeply dipping contractile west-vergent structures and isostatic responses to the focused removal of large amounts of crustal material through canyon incision. Further, that these range sub-parallel structures are related at depth to a thrust system that plays a role in not only the maintenance of the Andean margin, but potentially in its

  12. Muscle contractile characteristics: relationship to high-intensity exercise.

    PubMed

    Morris, Martyn G; Dawes, Helen; Howells, Ken; Scott, Oona M; Cramp, Mary; Izadi, Hooshang

    2010-09-01

    We investigated the relationship between muscle contractile characteristics, collected using percutaneous electrical stimulation, and high-intensity exercise performance. Seventeen participants performed a muscle performance test for the calculation of rate of torque development (RTD), rate of relaxation (RR(1/2)), rate of fatigue and fatigue resistance. On a second visit the participants completed a Wingate cycle ergometer test with peak power, mean power, fatigue index and fatigue rate calculated. The muscle fatigue index related significantly to the WAnT fatigue index and fatigue rate (p < 0.01). The change in rate of torque development (%DeltaRTD) was also related significantly to the fatigue rate (W/s) during the WAnT. Subjects displaying the greatest reduction in RTD had the greatest fatigue rate during the WAnT and greater fatigue during the electrical stimulation protocol. There were no significant relationships between peak (r 0.36; p > 0.01) or mean power (r -0.11, p > 0.01) with any of the muscle performance measures. These findings demonstrate that muscle contractile characteristics, elicited during standardised in vivo electrical stimulation, relate to performance during a Wingate anaerobic test. They suggest that muscle contraction characteristics play an important role in high-intensity exercise performance and indicate that electrical stimulation protocols can be a useful additional tool to explore muscle contraction characteristics in relation to exercise performance and trainability.

  13. Pericyte contractility controls endothelial cell cycle progression and sprouting: insights into angiogenic switch mechanics.

    PubMed

    Durham, Jennifer T; Surks, Howard K; Dulmovits, Brian M; Herman, Ira M

    2014-11-01

    Microvascular stability and regulation of capillary tonus are regulated by pericytes and their interactions with endothelial cells (EC). While the RhoA/Rho kinase (ROCK) pathway has been implicated in modulation of pericyte contractility, in part via regulation of the myosin light chain phosphatase (MLCP), the mechanisms linking Rho GTPase activity with actomyosin-based contraction and the cytoskeleton are equivocal. Recently, the myosin phosphatase-RhoA-interacting protein (MRIP) was shown to mediate the RhoA/ROCK-directed MLCP inactivation in vascular smooth muscle. Here we report that MRIP directly interacts with the β-actin-specific capping protein βcap73. Furthermore, manipulation of MRIP expression influences pericyte contractility, with MRIP silencing inducing cytoskeletal remodeling and cellular hypertrophy. MRIP knockdown induces a repositioning of βcap73 from the leading edge to stress fibers; thus MRIP-silenced pericytes increase F-actin-driven cell spreading twofold. These hypertrophied and cytoskeleton-enriched pericytes demonstrate a 2.2-fold increase in contractility upon MRIP knockdown when cells are plated on a deformable substrate. In turn, silencing pericyte MRIP significantly affects EC cycle progression and angiogenic activation. When MRIP-silenced pericytes are cocultured with capillary EC, there is a 2.0-fold increase in EC cycle entry. Furthermore, in three-dimensional models of injury and repair, silencing pericyte MRIP results in a 1.6-fold elevation of total tube area due to EC network formation and increased angiogenic sprouting. The pivotal role of MRIP expression in governing pericyte contractile phenotype and endothelial growth should lend important new insights into how chemomechanical signaling pathways control the "angiogenic switch" and pathological angiogenic induction. Copyright © 2014 the American Physiological Society.

  14. Effects of sodium metabisulphite on guinea pig contractile airway smooth muscle responses in vitro.

    PubMed

    Sun, J; Sakamoto, T; Chung, K F

    1995-08-01

    Sodium metabisulphite (MBS) is known to induce bronchoconstriction in asthmatic patients. The effects of MBS on guinea pig airway smooth muscle and on neurally mediated contraction in vitro have been examined. Tracheal and bronchial airway segments were placed in oxygenated buffer solution and electrical field stimulation was performed in the presence of indomethacin (10(-5) M) and propranolol (10(-6) M) for the measurement of isometric tension. Atropine (10(-6) M) was added to bronchial tissues. Concentrations of MBS up to 10(-3) M had no direct effect on airway smooth muscle contraction and did not alter either tracheal smooth muscle contraction induced by electrical field stimulation at all frequencies or acetylcholine-induced tracheal smooth muscle contraction. There was a similar response in the absence of epithelium, except for potentiation of the response induced by electrical field stimulation at 0.5 Hz (24 (10)% increase). However, MBS (10(-5), 10(-6) and 10(-7) M) augmented neurally-mediated non-adrenergic non-cholinergic contractile responses in the bronchi (13.3 (3.2)%, 23.8 (9.6)%, and 6.4 (1.6)%, respectively). MBS had no effect on the contractile response induced by substance P, but at higher concentrations (10(-3) M and 10(-4) M) it caused a time-dependent attenuation of responses induced by either electrical field stimulation or exogenously applied acetylcholine or substance P. MBS had no direct contractile responses but enhanced bronchoconstriction induced by activation of non-cholinergic neural pathways in the bronchus, probably through increased release of neuropeptides. At high concentrations MBS inhibited contractile responses initiated by receptor or neural stimulation.

  15. Effects of sodium metabisulphite on guinea pig contractile airway smooth muscle responses in vitro.

    PubMed Central

    Sun, J.; Sakamoto, T.; Chung, K. F.

    1995-01-01

    BACKGROUND--Sodium metabisulphite (MBS) is known to induce bronchoconstriction in asthmatic patients. The effects of MBS on guinea pig airway smooth muscle and on neurally mediated contraction in vitro have been examined. METHODS--Tracheal and bronchial airway segments were placed in oxygenated buffer solution and electrical field stimulation was performed in the presence of indomethacin (10(-5) M) and propranolol (10(-6) M) for the measurement of isometric tension. Atropine (10(-6) M) was added to bronchial tissues. RESULTS--Concentrations of MBS up to 10(-3) M had no direct effect on airway smooth muscle contraction and did not alter either tracheal smooth muscle contraction induced by electrical field stimulation at all frequencies or acetylcholine-induced tracheal smooth muscle contraction. There was a similar response in the absence of epithelium, except for potentiation of the response induced by electrical field stimulation at 0.5 Hz (24 (10)% increase). However, MBS (10(-5), 10(-6) and 10(-7) M) augmented neurally-mediated non-adrenergic non-cholinergic contractile responses in the bronchi (13.3 (3.2)%, 23.8 (9.6)%, and 6.4 (1.6)%, respectively). MBS had no effect on the contractile response induced by substance P, but at higher concentrations (10(-3) M and 10(-4) M) it caused a time-dependent attenuation of responses induced by either electrical field stimulation or exogenously applied acetylcholine or substance P. CONCLUSIONS--MBS had no direct contractile responses but enhanced bronchoconstriction induced by activation of non-cholinergic neural pathways in the bronchus, probably through increased release of neuropeptides. At high concentrations MBS inhibited contractile responses initiated by receptor or neural stimulation. Images PMID:7570440

  16. Swim pressure on walls with curves and corners.

    PubMed

    Smallenburg, Frank; Löwen, Hartmut

    2015-09-01

    The concept of swim pressure quantifies the average force exerted by microswimmers on confining walls in nonequilibrium. Here we explore how the swim pressure depends on the wall curvature and on the presence of sharp corners in the wall. For active Brownian particles at high dilution, we present a coherent framework which describes the force and torque on passive particles of arbitrary shape, in the limit of large particles compared to the persistence length of the swimmer trajectories. The resulting forces can be used to derive, for example, the activity-induced depletion interaction between two disks, as well as to optimize the shape of a tracer particle for high swimming velocity. Our predictions are verifiable in experiments on passive obstacles exposed to a bath of bacteria or artificial microswimmers.

  17. Swim pressure on walls with curves and corners

    NASA Astrophysics Data System (ADS)

    Smallenburg, Frank; Löwen, Hartmut

    2015-09-01

    The concept of swim pressure quantifies the average force exerted by microswimmers on confining walls in nonequilibrium. Here we explore how the swim pressure depends on the wall curvature and on the presence of sharp corners in the wall. For active Brownian particles at high dilution, we present a coherent framework which describes the force and torque on passive particles of arbitrary shape, in the limit of large particles compared to the persistence length of the swimmer trajectories. The resulting forces can be used to derive, for example, the activity-induced depletion interaction between two disks, as well as to optimize the shape of a tracer particle for high swimming velocity. Our predictions are verifiable in experiments on passive obstacles exposed to a bath of bacteria or artificial microswimmers.

  18. Contractile function is unaltered in diaphragm from mice lacking calcium release channel isoform 3

    NASA Technical Reports Server (NTRS)

    Clancy, J. S.; Takeshima, H.; Hamilton, S. L.; Reid, M. B.

    1999-01-01

    Skeletal muscle expresses at least two isoforms of the calcium release channel in the sarcoplasmic reticulum (RyR1 and RyR3). Whereas the function of RyR1 is well defined, the physiological significance of RyR3 is unclear. Some authors have suggested that RyR3 participates in excitation-contraction coupling and that RyR3 may specifically confer resistance to fatigue. To test this hypothesis, we measured contractile function of diaphragm strips from adult RyR3-deficient mice (exon 2-targeted mutation) and their heterozygous and wild-type littermates. In unfatigued diaphragm, there were no differences in isometric contractile properties (twitch characteristics, force-frequency relationships, maximal force) among the three groups. Our fatigue protocol (30 Hz, 0.25 duty cycle, 37 degrees C) depressed force to 25% of the initial force; however, lack of RyR3 did not accelerate the decline in force production. The force-frequency relationship was shifted to higher frequencies and was depressed in fatigued diaphragm; lack of RyR3 did not exaggerate these changes. We therefore provide evidence that RyR3 deficiency does not alter contractile function of adult muscle before, during, or after fatigue.

  19. [A basis for application of cardiac contractility variability in the Evaluation and assessment of exercise and fitness].

    PubMed

    Bu, Bin; Wang, Aihua; Han, Haijun; Xiao, Shouzhong

    2010-06-01

    Cardiac contractility variability (CCV) is a new concept which is introduced in the research field of cardiac contractility in recent years, that is to say, there are some disparities between cardiac contractilities when heart contracts. The changing signals of cardiac contractility contain a plenty of information on the cardiovascular function and disorder. In order to collect and analyze the message, we could quantitatively evaluate the tonicity and equilibrium of cardiac sympathetic nerve and parasympathetic nerve, and the effects of bio-molecular mechanism on the cardiovascular activities. By analyzing CCV, we could further understand the background of human being's heritage characteristics, nerve types, the adjusting mechanism, the molecular biology, and the adjustment of cardiac automatic nerve. With the development of the computing techniques, the digital signal processing method and its application in medical field, this analysis has been progressing greatly. By now, the assessment of CCV, just like the analysis of heart rate variability, is mainly via time domain and frequency domain analysis. CCV is one of the latest research fields in human cardiac signals being scarcely reported in the field of sports medicine; however, its research progresses are of important value for cardiac physiology and pathology in sports medicine and rehabilitation medicine.

  20. Enhanced Uterine Contractility and Stillbirth in Mice Lacking G Protein-Coupled Receptor Kinase 6 (GRK6): Implications for Oxytocin Receptor Desensitization

    PubMed Central

    Mao, Lan; Pierce, Stephanie L.; Swamy, Geeta K.; Heine, R. Phillips; Murtha, Amy P.

    2016-01-01

    Oxytocin is a potent uterotonic agent and is used clinically for induction and augmentation of labor, as well as for prevention and treatment of postpartum hemorrhage. Oxytocin increases uterine contractility by activating the oxytocin receptor (OXTR), a member of the G protein-coupled receptor family, which is prone to molecular desensitization. After oxytocin binding, the OXTR is phosphorylated by a member of the G protein-coupled receptor kinase (GRK) family, which allows for recruitment of β-arrestin, receptor internalization, and desensitization. According to previous in vitro analyses, desensitization of calcium signaling by the OXTR is mediated by GRK6. The objective of this study was to determine the role of GRK6 in mediating uterine contractility. Here, we demonstrate that uterine GRK6 levels increase in pregnancy and using a telemetry device to measure changes in uterine contractility in live mice during labor, show that mice lacking GRK6 produce a phenotype of enhanced uterine contractility during both spontaneous and oxytocin-induced labor compared with wild-type or GRK5 knockout mice. In addition, the observed enhanced contractility was associated with high rates of term stillbirth. Lastly, using a heterologous in vitro model, we show that β-arrestin recruitment to the OXTR, which is necessary for homologous OXTR desensitization, is dependent on GRK6. Our findings suggest that GRK6-mediated OXTR desensitization in labor is necessary for normal uterine contractile patterns and optimal fetal outcome. PMID:26886170

  1. Activation of Toll-like receptor 3 increases mouse aortic vascular smooth muscle cell contractility through ERK1/2 pathway.

    PubMed

    Hardigan, Trevor; Spitler, Kathryn; Matsumoto, Takayuki; Carrillo-Sepulveda, Maria Alicia

    2015-11-01

    Activation of Toll-like receptor 3 (TLR3), a pattern recognition receptor of the innate immune system, is associated with vascular complications. However, whether activation of TLR3 alters vascular contractility is unknown. We, therefore, hypothesized that TLR3 activation augments vascular contractility and activates vascular smooth muscle cell (VSMC) contractile apparatus proteins. Male mice were treated with polyinosinic-polycytidylic acid (Poly I:C group, 14 days), a TLR3 agonist; control mice received saline (vehicle, 14 days). At the end of protocol, blood pressure was measured by tail cuff method. Aortas were isolated and assessed for contractility experiments using a wire myograph. Aortic protein content was used to determine phosphorylated/total interferon regulatory factor 3 (IRF3), a downstream target of TLR3 signaling, and ERK1/2 using Western blot. We investigated the TLR3/IRF3/ERK1/2 signaling pathway and contractile-related proteins such as phosphorylated/total myosin light chain (MLC) and caldesmon (CaD) in aortic VSMC primary cultures. Poly I:C-treated mice exhibited (vs. vehicle-treated mice) (1) elevated systolic blood pressure. Moreover, Poly I:C treatment (2) enhanced aortic phenylephrine-induced maximum contraction, which was suppressed by PD98059 (ERK1/2 inhibitor), and (3) increased aortic levels of phosphorylated IRF3 and ERK1/2. Stimulation of mouse aortic VSMCs with Poly I:C resulted in increased phosphorylation of IRF3, ERK1/2, MLC, and CaD. Inhibition of ERK1/2 abolished Poly I:C-mediated phosphorylation of MLC and CaD. Our data provide functional evidence for the role of TLR3 in vascular contractile events, suggesting TLR3 as a potential new therapeutic target in vascular dysfunction and regulation of blood pressure.

  2. Trinitrobenzenesulfonic Acid Colitis Induces Changes in the Contractile Response of Circular Smooth Muscle in the Distal Colon

    DTIC Science & Technology

    1996-03-27

    contractile response of circular smooth muscle in the rat distal colon" Name of Candidate: Jeanette M. Hosseini Doctor of Philosophy Degree 27 March 1996... muscle in the rat distal colon" beyond brief excerpts is with the pennission of the copyright owner, and will save and hold harmless the Unifonned...induces changes in the contractile response of circular smooth muscle 10 the rat colon. Jeanette Marie Hosseini, 1996 Dissertation directed by: Terez

  3. Laboratory Studies of Survival Limits of Bacteria During Shock Compression: Application to Impacts on the Early Earth

    NASA Astrophysics Data System (ADS)

    Willis, M. J.; Ahrens, T. J.; Bertani, L. E.; Nash, C. Z.

    2004-12-01

    Shock recovery experiments on suspensions of 106 mm-3 E. coli bacteria contained in water-based medium, within stainless steel containers, are used to simulate the impact environment of bacteria residing in water-filled cracks in rocks. Early Earth life is likely to have existed in such environments. Some 10-2 to 10-4 of the bacteria population survived initial (800 ns duration) shock pressures in water of 219 and 260 MPa. TEM images of shock recovered bacteria indicate cell wall indentations and rupture, possibly induced by inward invasion of medium into the cell wall. Notably cell wall rupture occurs dynamically at ˜0.1 times the static pressures E.coli have been demonstrated (Sharma et al., 2002) to survive and may be caused by Rayleigh-Taylor instabilities. We infer the invading fluid pressure may exceed the tensile strength of the cell wall. We assume the overpressures are limited to the initial shock pressure in water. Parameters for the Grady & Lipkin (1980) model of tensile failure versus time-scale (strain rate) are fit to present data, assuming that at low strain rates, overpressures exceeding cell Turgor pressure require ˜103 sec. This model, if validated by experiments at other timescales, may permit using short loading duration laboratory data to infer response of organisms to lower shock overpressures for the longer times (100 to 103 s) of planetary impacts. An Ahrens & O'Keefe (1987) shock attenuation model is then applied for Earth impactors. This model suggests that Earth impactors of radius 1.5 km induce shocks within water-filled cracks in rock to dynamic pressure such that stresses exceeding the survivability threshold of E. coli bacteria, to radii of 1.7-2.6×102 km. In contrast, a giant (1500 km radius) impactor produces a non survival zone for E. coli that encompasses the entire Earth.

  4. Rotational stabilization of the resistive wall modes in tokamaks with a ferritic wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pustovitov, V. D.; National Research Nuclear University “MEPhI,” Kashirskoe sh. 31, Moscow 115409; Yanovskiy, V. V.

    The dynamics of the rotating resistive wall modes (RWMs) is analyzed in the presence of a uniform ferromagnetic resistive wall with μ{sup ^}≡μ/μ{sub 0}≤4 (μ is the wall magnetic permeability, and μ{sub 0} is the vacuum one). This mimics a possible arrangement in ITER with ferromagnetic steel in test blanket modules or in future experiments in JT-60SA tokamak [Y. Kamada, P. Barabaschi, S. Ishida, the JT-60SA Team, and JT-60SA Research Plan Contributors, Nucl. Fusion 53, 104010 (2013)]. The earlier studies predict that such a wall must provide a destabilizing influence on the plasma by reducing the beta limit and increasingmore » the growth rates, compared to the reference case with μ{sup ^}=1. This is true for the locked modes, but the presented results show that the mode rotation changes the tendency to the opposite. At μ{sup ^}>1, the rotational stabilization related to the energy sink in the wall becomes even stronger than at μ{sup ^}=1, and this “external” effect develops at lower rotation frequency, estimated as several kHz at realistic conditions. The study is based on the cylindrical dispersion relation valid for arbitrary growth rates and frequencies. This relation is solved numerically, and the solutions are compared with analytical dependences obtained for slow (s/d{sub w}≫1) and fast (s/d{sub w}≪1) “ferromagnetic” rotating RWMs, where s is the skin depth and d{sub w} is the wall thickness. It is found that the standard thin-wall modeling becomes progressively less reliable at larger μ{sup ^}, and the wall should be treated as magnetically thick. The analysis is performed assuming only a linear plasma response to external perturbations without constraints on the plasma current and pressure profiles.« less

  5. Preparation of Purified Gram-positive Bacterial Cell Wall and Detection in Placenta and Fetal Tissues

    PubMed Central

    Mann, Beth; Loh, Lip Nam; Gao, Geli; Tuomanen, Elaine

    2017-01-01

    Cell wall is a complex biopolymer on the surface of all Gram-positive bacteria. During infection, cell wall is recognized by the innate immune receptor Toll-like receptor 2 causing intense inflammation and tissue damage. In animal models, cell wall traffics from the blood stream to many organs in the body, including brain, heart, placenta and fetus. This protocol describes how to prepare purified cell wall from Streptococcus pneumoniae, detect its distribution in animal tissues, and study the tissue response using the placenta and fetal brain as examples. PMID:28573167

  6. Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete.

    PubMed

    Wang, J Y; Belie, N De; Verstraete, W

    2012-04-01

    Crack repair is crucial since cracks are the main cause for the decreased service life of concrete structures. An original and promising way to repair cracks is to pre-incorporate healing agents inside the concrete matrix to heal cracks the moment they appear. Thus, the concrete obtains self-healing properties. The goal of our research is to apply bacterially precipitated CaCO₃ to heal cracks in concrete since the microbial calcium carbonate is more compatible with the concrete matrix and more environmentally friendly relative to the normally used polymeric materials. Diatomaceous earth (DE) was used in this study to protect bacteria from the high-pH environment of concrete. The experimental results showed that DE had a very good protective effect for bacteria. DE immobilized bacteria had much higher ureolytic activity (12-17 g/l urea was decomposed within 3 days) than that of un-immobilized bacteria (less than 1 g/l urea was decomposed within the same time span) in cement slurry. The optimal concentration of DE for immobilization was 60% (w/v, weight of DE/volume of bacterial suspension). Self-healing in cracked specimens was visualized under light microscopy. The images showed that cracks with a width ranging from 0.15 to 0.17 mm in the specimens containing DE immobilized bacteria were completely filled by the precipitation. Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) were used to characterize the precipitation around the crack wall, which was confirmed to be calcium carbonate. The result from a capillary water absorption test showed that the specimens with DE immobilized bacteria had the lowest water absorption (30% of the reference ones), which indicated that the precipitation inside the cracks increased the water penetration resistance of the cracked specimens.

  7. Temporal Fourier analysis applied to equilibrium radionuclide cineangiography. Importance in the study of global and regional left ventricular wall motion.

    PubMed

    Cardot, J C; Berthout, P; Verdenet, J; Bidet, A; Faivre, R; Bassand, J P; Bidet, R; Maurat, J P

    1982-01-01

    Regional and global left ventricular wall motion was assessed in 120 patients using radionuclide cineangiography (RCA) and contrast angiography. Functional imaging procedures based on a temporal Fourier analysis of dynamic image sequences were applied to the study of cardiac contractility. Two images were constructed by taking the phase and amplitude values of the first harmonic in the Fourier transform for each pixel. These two images aided in determining the perimeter of the left ventricle to calculate the global ejection fraction. Regional left ventricular wall motion was studied by analyzing the phase value and by examining the distribution histogram of these values. The accuracy of global ejection fraction calculation was improved by the Fourier technique. This technique increased the sensitivity of RCA for determining segmental abnormalities especially in the left anterior oblique view (LAO).

  8. Relationship between improvement in left ventricular dyssynchrony and contractile function and clinical outcome with cardiac resynchronization therapy: the MADIT-CRT trial.

    PubMed

    Pouleur, Anne-Catherine; Knappe, Dorit; Shah, Amil M; Uno, Hajime; Bourgoun, Mikhail; Foster, Elyse; McNitt, Scott; Hall, W Jackson; Zareba, Wojciech; Goldenberg, Ilan; Moss, Arthur J; Pfeffer, Marc A; Solomon, Scott D

    2011-07-01

    To assess long-term effects of cardiac resynchronization therapy (CRT) on left ventricular (LV) dyssynchrony and contractile function, by two-dimensional speckle-tracking echocardiography, compared with implantable cardioverter defibrillator (ICD) only in MADIT-CRT. We studied 761 patients in New York Heart Association I/II, ejection fraction ≤30%, and QRS ≥130 ms [n = 434, CRT-defibrillator (CRT-D), n = 327, ICD] with echocardiographic studies available at baseline and 12 months. Dyssynchrony was determined as the standard deviation of time to peak transverse strain between 12 segments of apical four- and two-chamber views, and contractile function as global longitudinal strain (GLS) by averaging longitudinal strain over these 12 segments. We compared changes in LV dyssynchrony and contractile function between treatment groups and assessed relationships between these changes over the first year and subsequent outcomes (median post 1-year follow-up = 14.9 months). Mean changes in LV dyssynchrony and contractile function measured by GLS in the overall population were, respectively, -29 ± 83 ms and -1 ± 2.9%. However, both LV dyssynchrony (CRT-D: -47 ± 83 ms vs. ICD: -6 ± 76 ms, P < 0.001) and contractile function (CRT-D: -1.4 ± 3.1% vs. ICD: -0.4 ± 2.5%, P < 0.001) improved to a greater extent in the CRT-D group compared with the ICD-only group. A greater improvement in dyssynchrony and contractile function at 1 year was associated with lower rates of the subsequent primary outcome of death or heart failure, adjusting for baseline dyssynchrony and contractile function, treatment arm, ischaemic status, and change in LV end-systolic volume. Each 20 ms decrease in LV dyssynchrony was associated with a 7% reduction in the primary outcome (P = 0.047); each 1% improvement in GLS over the 12-month period was associated with a 24% reduction in the primary outcome (P < 0.001). Cardiac resynchronization therapy resulted in a significant improvement in both LV

  9. Long-term effects of UV light on contractility of rat arteries in vivo.

    PubMed

    Morimoto, Yuji; Kohyama, Shinya; Nakai, Kanji; Matsuo, Hirotaka; Karasawa, Fujio; Kikuchi, Makoto

    2003-10-01

    Several studies have shown that UV irradiation may be effective for preventing vascular restenosis or vasopasm. However, the long-term effects of UV light on the physiological properties of vessels such as arterial tension have not been elucidated. We therefore studied the long-term effects of UV using rat carotid arteries treated with UV-B light (wavelength = 313 nm, total energy = 14 mJ/mm2). The animals were sacrificed at 1, 7 and 14 days after UV light exposure, and the carotid arteries were studied by light microscopy and the contractile responses of isolated arterial rings were recorded under isometric tension. UV treatment had induced a substantial loss of smooth muscle cells (SMC) along the entire circumference of the media on days 7 and 14, whereas loss of SMC on day 1 was negligible. Contractile responses of arteries that had been exposed to UV light were significantly reduced on days, 1, 7 and 14. The susceptibility of UV-treated arteries to phenylephrine and prostaglandin F2 alpha was significantly decreased on days 1 and 7, but decreased susceptibility was not seen on day 14. Acetylcholine-induced relaxations were not altered by UV treatment. These results suggest that the long-term effect of UV light is an attenuation of smooth muscle contractility without impairment of endothelial function.

  10. Commensal Fungi Recapitulate the Protective Benefits of Intestinal Bacteria.

    PubMed

    Jiang, Tony T; Shao, Tzu-Yu; Ang, W X Gladys; Kinder, Jeremy M; Turner, Lucien H; Pham, Giang; Whitt, Jordan; Alenghat, Theresa; Way, Sing Sing

    2017-12-13

    Commensal intestinal microbes are collectively beneficial in preventing local tissue injury and augmenting systemic antimicrobial immunity. However, given the near-exclusive focus on bacterial species in establishing these protective benefits, the contributions of other types of commensal microbes remain poorly defined. Here, we show that commensal fungi can functionally replace intestinal bacteria by conferring protection against injury to mucosal tissues and positively calibrating the responsiveness of circulating immune cells. Susceptibility to colitis and influenza A virus infection occurring upon commensal bacteria eradication is efficiently overturned by mono-colonization with either Candida albicans or Saccharomyces cerevisiae. The protective benefits of commensal fungi are mediated by mannans, a highly conserved component of fungal cell walls, since intestinal stimulation with this moiety alone overrides disease susceptibility in mice depleted of commensal bacteria. Thus, commensal enteric fungi safeguard local and systemic immunity by providing tonic microbial stimulation that can functionally replace intestinal bacteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Decreased airway narrowing and smooth muscle contraction in hyperresponsive pigs.

    PubMed

    Turner, Debra J; Noble, Peter B; Lucas, Matthew P; Mitchell, Howard W

    2002-10-01

    Increased smooth muscle contractility or reduced smooth muscle mechanical loads could account for the excessive airway narrowing and hyperresponsiveness seen in asthma. These mechanisms were investigated by using an allergen-induced porcine model of airway hyperresponsiveness. Airway narrowing to electric field stimulation was measured in isolated bronchial segments, over a range of transmural pressures (0-20 cmH(2)O). Contractile responses to ACh were measured in bronchial segments and in isolated tracheal smooth muscle strips isolated from control and test (ovalbumin sensitized and challenged) pigs. Test airways narrowed less than controls (P < 0.0001). Test pigs showed reduced contractility to ACh, both in isolated bronchi (P < 0.01) and smooth muscle strips (P < 0.01). Thus isolated airways from pigs exhibiting airway hyperresponsiveness in vivo are hyporesponsive in vitro. The decreased narrowing in bronchi from hyperresponsive pigs may be related to decreased smooth muscle contractility. These data suggest that mechanisms external to the airway wall may be important to the hyperresponsive nature of sensitized lungs.

  12. OmpA: A Flexible Clamp for Bacterial Cell Wall Attachment.

    PubMed

    Samsudin, Firdaus; Ortiz-Suarez, Maite L; Piggot, Thomas J; Bond, Peter J; Khalid, Syma

    2016-12-06

    The envelope of Gram-negative bacteria is highly complex, containing separate outer and inner membranes and an intervening periplasmic space encompassing a peptidoglycan (PGN) cell wall. The PGN scaffold is anchored non-covalently to the outer membrane via globular OmpA-like domains of various proteins. We report atomically detailed simulations of PGN bound to OmpA in three different states, including the isolated C-terminal domain (CTD), the full-length monomer, or the complete full-length dimeric form. Comparative analysis of dynamics of OmpA CTD from different bacteria helped to identify a conserved PGN-binding mode. The dynamics of full-length OmpA, embedded within a realistic representation of the outer membrane containing full-rough (Ra) lipopolysaccharide, phospholipids, and cardiolipin, suggested how the protein may provide flexible mechanical support to the cell wall. An accurate model of the heterogeneous bacterial cell envelope should facilitate future efforts to develop antibacterial agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Cardiac myofibrillar contractile properties during the progression from hypertension to decompensated heart failure.

    PubMed

    Hanft, Laurin M; Emter, Craig A; McDonald, Kerry S

    2017-07-01

    Heart failure arises, in part, from a constellation of changes in cardiac myocytes including remodeling, energetics, Ca 2+ handling, and myofibrillar function. However, little is known about the changes in myofibrillar contractile properties during the progression from hypertension to decompensated heart failure. The aim of the present study was to provide a comprehensive assessment of myofibrillar functional properties from health to heart disease. A rodent model of uncontrolled hypertension was used to test the hypothesis that myocytes in compensated hearts exhibit increased force, higher rates of force development, faster loaded shortening, and greater power output; however, with progression to overt heart failure, we predicted marked depression in these contractile properties. We assessed contractile properties in skinned cardiac myocyte preparations from left ventricles of Wistar-Kyoto control rats and spontaneous hypertensive heart failure (SHHF) rats at ~3, ~12, and >20 mo of age to evaluate the time course of myofilament properties associated with normal aging processes compared with myofilaments from rats with a predisposition to heart failure. In control rats, the myofilament contractile properties were virtually unchanged throughout the aging process. Conversely, in SHHF rats, the rate of force development, loaded shortening velocity, and power all increased at ~12 mo and then significantly fell at the >20-mo time point, which coincided with a decrease in left ventricular fractional shortening. Furthermore, these changes occurred independent of changes in β-myosin heavy chain but were associated with depressed phosphorylation of myofibrillar proteins, and the fall in loaded shortening and peak power output corresponded with the onset of clinical signs of heart failure. NEW & NOTEWORTHY This novel study systematically examined the power-generating capacity of cardiac myofilaments during the progression from hypertension to heart disease. Previously

  14. Contractile properties of rat skeletal muscles following storage at 4 degrees C.

    PubMed

    van der Heijden, E P; Kroese, A B; Stremel, R W; Bär, P R; Kon, M; Werker, P M

    1999-07-01

    The purpose of this study was to assess the potential of preservation solutions for protecting skeletal muscle function during storage at 4 degrees C. The soleus and the cutaneus trunci (CT) from the rat were stored for 2, 8 or 16 h at 4 degrees C in University of Wisconsin solution (UW), HTK-Bretschneider solution (HTK) or Krebs-Henseleit solution (KH). After storage, muscles were stimulated electrically to analyse the isometric contractile properties, such as the maximum tetanic tension (P(0)). Histological analysis was also performed. In separate experiments, the effect of the diffusion distance on muscle preservation was studied by bisecting the soleus. After 8 h of storage in UW or HTK, the contractile properties of the CT were similar to those of the control, whereas those of the soleus were reduced (P(0) values of 16% and 69% of control in UW and HTK respectively). At 16 h, the contractile properties of the CT (P(O) 28%) were again better preserved than those of the soleus (P(0) 9%). Muscle function deteriorated most after storage in KH (P(0) at 16 h: soleus, 3%; CT, 17%). The bisected soleus was equally well preserved as the CT (P(O) of bisected soleus at 8 h in UW and HTK: 86%). The functional data corresponded well with the histological data, which showed increasing muscle fibre derangement with increasing storage time. For both muscles and all solutions, the threshold stimulus current increased with increasing storage time (control, 0.1 mA; 16 h, 1.2 mA) and was strongly correlated with the deterioration in contractile properties. It is concluded that, at 4 degrees C, muscle is preserved better in UW and HTK (intracellular-like solutions) than in KH (extracellular-like solution). The soleus and CT were best protected in HTK. The diffusion distance is a critical factor for successful preservation of muscle function at 4 degrees C. The reduced function after 16 h of storage at 4 degrees C was caused by hypercontraction and necrosis of about 25% of the

  15. The CWB2 Cell Wall-Anchoring Module Is Revealed by the Crystal Structures of the Clostridium difficile Cell Wall Proteins Cwp8 and Cwp6.

    PubMed

    Usenik, Aleksandra; Renko, Miha; Mihelič, Marko; Lindič, Nataša; Borišek, Jure; Perdih, Andrej; Pretnar, Gregor; Müller, Uwe; Turk, Dušan

    2017-03-07

    Bacterial cell wall proteins play crucial roles in cell survival, growth, and environmental interactions. In Gram-positive bacteria, cell wall proteins include several types that are non-covalently attached via cell wall binding domains. Of the two conserved surface-layer (S-layer)-anchoring modules composed of three tandem SLH or CWB2 domains, the latter have so far eluded structural insight. The crystal structures of Cwp8 and Cwp6 reveal multi-domain proteins, each containing an embedded CWB2 module. It consists of a triangular trimer of Rossmann-fold CWB2 domains, a feature common to 29 cell wall proteins in Clostridium difficile 630. The structural basis of the intact module fold necessary for its binding to the cell wall is revealed. A comparison with previously reported atomic force microscopy data of S-layers suggests that C. difficile S-layers are complex oligomeric structures, likely composed of several different proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. SERS as analytical tool for detection of bacteria

    NASA Astrophysics Data System (ADS)

    Cialla, Dana; Rösch, Petra; Möller, Robert; Popp, Jürgen

    2007-07-01

    The detection of single bacteria should be improved by lowering the acquisition time via the application of SERS (surface enhanced Raman spectroscopy). Nano structured colloids or surfaces consisting of gold or silver can be used as SERS active substrates. However, for biological applications mostly gold is used as SERS active substrate since silver is toxic for bacterial cells. Furthermore, the application of gold as a SERS-active substrate allows the usage of Raman excitation wavelengths in the red part of the electromagnetic spectrum. For the SERS investigations on bacteria different colloids (purchased and self prepared, preaggregated and non-aggregated) are chosen as SERS active substrates. The application of different gold colloids under gently mixing conditions to prevent the bacterial damage allowed the recording of reproducible SERS spectra of bacteria. The SERS spectra of B. pumilus are dominated by contributions of ingredients of the outer cell wall, e.g. the peptidoglycan layer. SEM images of the coated bacteria demonstrate the incomplete adsorption most probably due to variations within the binding affinities between different outer cell components and the gold colloids.

  17. PTP1B triggers integrin-mediated repression of myosin activity and modulates cell contractility

    PubMed Central

    González Wusener, Ana E.; González, Ángela; Nakamura, Fumihiko; Arregui, Carlos O.

    2016-01-01

    ABSTRACT Cell contractility and migration by integrins depends on precise regulation of protein tyrosine kinase and Rho-family GTPase activities in specific spatiotemporal patterns. Here we show that protein tyrosine phosphatase PTP1B cooperates with β3 integrin to activate the Src/FAK signalling pathway which represses RhoA-myosin-dependent contractility. Using PTP1B null (KO) cells and PTP1B reconstituted (WT) cells, we determined that some early steps following cell adhesion to fibronectin and vitronectin occurred robustly in WT cells, including aggregation of β3 integrins and adaptor proteins, and activation of Src/FAK-dependent signalling at small puncta in a lamellipodium. However, these events were significantly impaired in KO cells. We established that cytoskeletal strain and cell contractility was highly enhanced at the periphery of KO cells compared to WT cells. Inhibition of the Src/FAK signalling pathway or expression of constitutive active RhoA in WT cells induced a KO cell phenotype. Conversely, expression of constitutive active Src or myosin inhibition in KO cells restored the WT phenotype. We propose that this novel function of PTP1B stimulates permissive conditions for adhesion and lamellipodium assembly at the protruding edge during cell spreading and migration. PMID:26700725

  18. Rhythmic contractility in the hepatic portal "corkscrew" vein of the rat snake.

    PubMed

    Conklin, Daniel J; Lillywhite, Harvey B; Bishop, Barbara; Hargens, Alan R; Olson, Kenneth R

    2009-03-01

    Terrestrial, but not aquatic, species of snakes have hepatic portal veins with a corkscrew morphology immediately posterior of the liver. Relatively large volumes of venous blood are associated with this region, and the corkscrew vein has been proposed to function as a bidirectional valve that impedes gravitational shifts of intravascular volume. To better understand the functional significance of the corkscrew anatomy, we investigated the histology and contractile mechanisms in isolated corkscrew segments of the hepatic portal vein of a yellow rat snake (Pantherophis obsoletus). Morphologically, the corkscrew portal vein is here shown to have two distinct layers of smooth muscle--an inner circular layer, and an outer longitudinal layer, separated by a layer of collagen--whereas only a single circular layer of smooth muscle is present in the adjacent posterior caval vein. Low frequency (approximately 0.3 cycles*min(-1)) spontaneous and catecholamine-induced rhythms were observed in 11% and 89% of portal vein segments, respectively, but neither spontaneous nor agonist-induced cycling was observed in adjacent posterior (non-corkscrew) caval veins. Catecholamines, angiotensin II, or stretch increased the amplitude and/or frequency of contractile cycles. Ouabain, verapamil or indomethacin, but not tetrodotoxin, alpha-, or ss-adrenergic receptor antagonists, inhibited cyclical contractions indicating a dependence of these cycles on Na+/K+ ATPase, extracellular Ca2+ and prostanoid(s). These data suggest that the rhythmic contractility of the corkscrew segment of the ophidian portal vein may act in conjunction with its morphological features to improve venous return and to prevent retrograde shifts of blood that might otherwise pool in posterior veins.

  19. Phenyl thiazolyl urea and carbamate derivatives as new inhibitors of bacterial cell-wall biosynthesis.

    PubMed

    Francisco, Gerardo D; Li, Zhong; Albright, J Donald; Eudy, Nancy H; Katz, Alan H; Petersen, Peter J; Labthavikul, Pornpen; Singh, Guy; Yang, Youjun; Rasmussen, Beth A; Lin, Yang-I; Mansour, Tarek S

    2004-01-05

    Over 50 phenyl thiazolyl urea and carbamate derivatives were synthesized for evaluation as new inhibitors of bacterial cell-wall biosynthesis. Many of them demonstrated good activity against MurA and MurB and gram-positive bacteria including MRSA, VRE and PRSP. 3,4-Difluorophenyl 5-cyanothiazolylurea (3p) with clog P of 2.64 demonstrated antibacterial activity against both gram-positive and gram-negative bacteria.

  20. Levothyroxine treatment generates an abnormal uterine contractility patterns in an in vitro animal model.

    PubMed

    Corriveau, Stéphanie; Blouin, Simon; Raiche, Évelyne; Nolin, Marc-Antoine; Rousseau, Éric; Pasquier, Jean-Charles

    2015-12-01

    Abnormal uterine contraction patterns were recently demonstrated in uterine strips from pregnant women treated with Levothyroxine (T4). These abnormalities were correlated with an increased risk of C-section delivery and associated surgical complications. To date, no study has investigated whether uterine contractility is modified by hypothyroidism or T4 treatment. Herein, we analyze the physiological role of T4 on uterine contractions. Female non-pregnant Sprague-Dawley rats ( N  = 22) were used and divided into four groups: 1) control, 2) hypothyroidism, 3) hypothyroidism treated with low T4 doses (20 μg/kg/day) and 4) with high T4 doses (100 μg/kg/day). Hypothyroidism was induced by an iodine-deficient diet. Isometric tension measurements were performed in vitro on myometrium tissues in isolated organ baths. Contractile activity parameters were quantified (amplitude, duration, frequency and area under the curve) using pharmacological tools to assess their effect. Screening of thyroid function confirmed a hypothyroid state for all rats under iodine-free diet to which T4 was subsequently administered to counterbalance hypothyroidism. Results demonstrate that hypothyroidism significantly decreased contractile duration (-17%) and increased contractile frequency (+26%), while high doses of T4 increased duration (+200%) and decreased frequency (-51%). These results thus mimic the pattern of abnormal contractions previously observed in uterine tissue from T4-treated hypothyroid pregnant women. Our data suggest that changes in myometrial reactivity are induced by T4 treatment. Thus, in conjunction with our previous observations on human myometrial strips, management of hypothyroidism should be improved to reduce the rate of C-sections in this group of patients.

  1. Heterologous surface display on lactic acid bacteria: non-GMO alternative?

    PubMed

    Zadravec, Petra; Štrukelj, Borut; Berlec, Aleš

    2015-01-01

    Lactic acid bacteria (LAB) are food-grade hosts for surface display with potential applications in food and therapy. Alternative approaches to surface display on LAB would avoid the use of recombinant DNA technology and genetically-modified organism (GMO)-related regulatory requirements. Non-covalent surface display of proteins can be achieved by fusing them to various cell-wall binding domains, of which the Lysine motif domain (LysM) is particularly well studied. Fusion proteins have been isolated from recombinant bacteria or from their growth medium and displayed on unmodified bacteria, enabling heterologous surface display. This was demonstrated on non-viable cells devoid of protein content, termed bacteria-like particles, and on various species of genus Lactobacillus. Of the latter, Lactobacillus salivarius ATCC 11741 was recently shown to be particularly amenable for LysM-mediated display. Possible regulatory implications of heterologous surface display are discussed, particularly those relevant for the European Union.

  2. The contractile basis of ameboid movement. II. Structure and contractility of motile extracts and plasmalemma-ectoplasm ghosts

    PubMed Central

    1976-01-01

    The role of calcium and magnesium-ATP on the structure and contractility in motile extracts of Amoeba proteus and plasmalemma- ectoplasm "ghosts" of Chaos carolinensis has been investigated by correlating light and electron microscope observations with turbidity and birefringence measurements. The extract is nonmotile and contains very few F-actin filaments and myosin aggregates when prepared in the presence of both low calcium ion and ATP concentrations at an ionic strength of I = 0.05, pH 6.8. The addition of 1.0 mM magnesium chloride, 1.0 mM ATP, in the presence of a low calcium ion concentration (relaxation solution) induced the formation of some fibrous bundles of actin without contracting, whereas the addition of a micromolar concentration of calcium in addition to 1.0 mM magnesium-ATP (contraction solution) (Taylor, D. L., J. S. Condeelis, P. L. Moore, and R. D. Allen. 1973. J. Cell Biol. 59:378-394) initiated the formation of large arrays of F-actin filaments followed by contractions. Furthermore, plasmalemma-ectoplasm ghosts prepared in the relaxation solution exhibited very few straight F-actin filaments and myosin aggregates. In contrast, plasmalemmaectoplasm ghosts treated with the contraction solution contained many straight F-actin filaments and myosin aggregates. The increase in the structure of ameba cytoplasm at the endoplasm-ectoplasm interface can be explained by a combination of the transformation of actin from a less filamentous to a more structured filamentous state possibly involving the cross-linking of actin to form fibrillar arrays (see above-mentioned reference) followed by contractions of the actin and myosin along an undetermined distance of the endoplasm and/or ectoplasm. PMID:6480

  3. Persistence in a single species CSTR model with suspended flocs and wall attached biofilms.

    PubMed

    Mašić, Alma; Eberl, Hermann J

    2012-04-01

    We consider a mathematical model for a bacterial population in a continuously stirred tank reactor (CSTR) with wall attachment. This is a modification of the Freter model, in which we model the sessile bacteria as a microbial biofilm. Our analysis indicates that the results of the algebraically simpler original Freter model largely carry over. In a computational simulation study, we find that the vast majority of bacteria in the reactor will eventually be sessile. However, we also find that suspended biomass is relatively more efficient in removing substrate from the reactor than biofilm bacteria.

  4. The effect of N-acetylcysteine on cardiac contractility to dobutamine in rats with streptozotocin-induced diabetes.

    PubMed

    Cheng, Xing; Xia, Zhengyuan; Leo, Joyce M; Pang, Catherine C Y

    2005-09-05

    We examined if myocardial depression at the acute phase of diabetes (3 weeks after injection of streptozotocin, 60 mg/kg i.v.) is due to activation of inducible nitric oxide synthase and production of peroxynitrite, and if treatment with N-acetylcysteine (1.2 g/day/kg for 3 weeks, antioxidant) improves cardiac function. Four groups of rats were used: control, N-acetylcysteine-treated control, diabetic and N-acetylcysteine-treated diabetic. Pentobarbital-anaesthetized diabetic rats, relative to the controls, had reduced left ventricular contractility to dobutamine (1-57 microg/min/kg). The diabetic rats also had increased myocardial levels of thiobarbituric acid reactive substances, immunostaining of inducible nitric oxide synthase and nitrotyrosine, and similar baseline 15-F2t-isoprostane. N-acetylcysteine did not affect responses in the control rats; but increased cardiac contractility to dobutamine, reduced myocardial immunostaining of inducible nitric oxide synthase and nitrotyrosine and level of 15-F2t-isoprostane, and increased cardiac contractility to dobutamine in the diabetic rats. Antioxidant supplementation in diabetes reduces oxidative stress and improves cardiac function.

  5. Intrinsic increase in lymphangion muscle contractility in response to elevated afterload

    PubMed Central

    Scallan, Joshua P.; Wolpers, John H.; Muthuchamy, Mariappan; Gashev, Anatoliy A.; Zawieja, David C.

    2012-01-01

    Collecting lymphatic vessels share functional and biochemical characteristics with cardiac muscle; thus, we hypothesized that the lymphatic vessel pump would exhibit behavior analogous to homeometric regulation of the cardiac pump in its adaptation to elevated afterload, i.e., an increase in contractility. Single lymphangions containing two valves were isolated from the rat mesenteric microcirculation, cannulated, and pressurized for in vitro study. Pressures at either end of the lymphangion [input pressure (Pin), preload; output pressure (Pout), afterload] were set by a servo controller. Intralymphangion pressure (PL) was measured using a servo-null micropipette while internal diameter and valve positions were monitored using video methods. The responses to step- and ramp-wise increases in Pout (at low, constant Pin) were determined. PL and diameter data recorded during single contraction cycles were used to generate pressure-volume (P-V) relationships for the subsequent analysis of lymphangion pump behavior. Ramp-wise Pout elevation led to progressive vessel constriction, a rise in end-systolic diameter, and an increase in contraction frequency. Step-wise Pout elevation produced initial vessel distention followed by time-dependent declines in end-systolic and end-diastolic diameters. Significantly, a 30% leftward shift in the end-systolic P-V relationship accompanied an 84% increase in dP/dt after a step increase in Pout, consistent with an increase in contractility. Calculations of stroke work from the P-V loop area revealed that robust pumps produced net positive work to expel fluid throughout the entire afterload range, whereas weaker pumps exhibited progressively more negative work as gradual afterload elevation led to pump failure. We conclude that lymphatic muscle adapts to output pressure elevation with an intrinsic increase in contractility and that this compensatory mechanism facilitates the maintenance of lymph pump output in the face of edemagenic and

  6. Assembly Mechanism of the Contractile Ring for Cytokinesis by Fission Yeast

    NASA Astrophysics Data System (ADS)

    Vavylonis, Dimitrios; Wu, Jian-Qiu; Huang, Xiaolei; O'Shaughnessy, Ben; Pollard, Thomas

    2008-03-01

    Animals and fungi assemble a contractile ring of actin filaments and the motor protein myosin to separate into individual daughter cells during cytokinesis. We studied the mechanism of contractile ring assembly in fission yeast with high time resolution confocal microscopy, computational image analysis methods, and numerical simulations. Approximately 63 nodes containing myosin, broadly distributed around the cell equator, assembled into a ring through stochastic motions, making many starts, stops, and changes of direction as they condense into a ring. Estimates of node friction coefficients from the mean square displacement of stationary nodes imply forces for node movement are greater than ˜ 4 pN, similarly to forces by a few molecular motors. Skeletonization and topology analysis of images of cells expressing fluorescent actin filament markers showed transient linear elements extending in all directions from myosin nodes and establishing connections among them. We propose a model with traction between nodes depending on transient connections established by stochastic search and capture (``search, capture, pull and release''). Numerical simulations of the model using parameter values obtained from experiment succesfully condense nodes into a continuous ring.

  7. Substrate stiffness regulates cadherin-dependent collective migration through myosin-II contractility

    PubMed Central

    Ng, Mei Rosa; Besser, Achim

    2012-01-01

    The mechanical microenvironment is known to influence single-cell migration; however, the extent to which mechanical cues affect collective migration of adherent cells is not well understood. We measured the effects of varying substrate compliance on individual cell migratory properties in an epithelial wound-healing assay. Increasing substrate stiffness increased collective cell migration speed, persistence, and directionality as well as the coordination of cell movements. Dynamic analysis revealed that wounding initiated a wave of motion coordination from the wound edge into the sheet. This was accompanied by a front-to-back gradient of myosin-II activation and establishment of cell polarity. The propagation was faster and farther reaching on stiff substrates, indicating that substrate stiffness affects the transmission of directional cues. Manipulation of myosin-II activity and cadherin–catenin complexes revealed that this transmission is mediated by coupling of contractile forces between neighboring cells. Thus, our findings suggest that the mechanical environment integrates in a feedback with cell contractility and cell–cell adhesion to regulate collective migration. PMID:23091067

  8. Wall Area of Influence and Growing Wall Heat Transfer due to Sliding Bubbles in Subcooled Boiling Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Junsoo; Estrada-Perez, Carlos E.; Hassan, Yassin A.

    A variety of dynamical features of sliding bubbles and their impact on wall heat transfer were observed at subcooled flow boiling conditions in a vertical square test channel. Among the wide range of parameters observed, we particularly focus in this paper on (i) the sliding bubbles’ effect on wall heat transfer (supplemantry discussion to the authors’ previous work in Yoo et al. (2016a,b)) and (ii) the wall area influenced by sliding bubbles in subcooled boiling flow. At first, this study reveals that the degree of wall heat transfer improvement due to sliding bubbles depended less on the wall superheat conditionmore » as the mass flux increased. Also, the sliding bubble trajectory was found to be one of the critical factors in order to properly describe the wall heat transfer associated with sliding bubbles. In particular, the wall area influenced by sliding bubbles depended strongly on both sliding bubble trajectory and sliding bubble size; the sliding bubble trajectory was also observed to be closely related to the sliding bubble size. Importantly, these results indicate the limitation of current approach in CFD analyses especially for the wall area of bubble influence. In addition, the analyses on the temporal fraction of bubbles’ residence (FR) along the heated wall show that the sliding bubbles typically travel through narrow path with high frequency while the opposite was observed downstream. That is, both FR and sliding bubble trajectory depended substantially on the distance from nucleation site, which is expected to be similar for the quenching heat transfer mode induced by sliding bubbles.« less

  9. Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method.

    PubMed

    Zardini, Hadi Zare; Amiri, Ahmad; Shanbedi, Mehdi; Maghrebi, Morteza; Baniadam, Majid

    2012-04-01

    Multi-walled carbon nanotubes (MWCNTs) were first functionalized by arginine and lysine under microwave radiation. Surface functionalization was confirmed by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and transmission electron microscopy (TEM). After the MWCNTs were functionalized by arginine and lysine, the antibacterial activity of all treated samples was increased significantly against all bacteria that were tested. Based on the observed minimum inhibitory concentration and radial diffusion assay, the sequence of antibacterial activity was MWCNTs-arginine>MWCNTs-lysine>pristine MWCNTs. The functionalized MWCNTs were especially effective against gram-negative bacteria (e.g., Escherichia coli and Salmonella typhimurium). Interestingly, the MWCNT samples were effective against the resistant strain Staphylococcos aureus. The enhanced antibacterial activity was attributed to electrostatic adsorption of bacteria membrane due to positive charges of the functional groups on MWCNTs surface. Since MWCNTs have lower cytotoxicity than single-walled carbon nanotubes, their functionalization with cationic amino acids could be a beneficial approach in the disinfection industry. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. NADPH oxidase-2 inhibition restores contractility and intracellular calcium handling and reduces arrhythmogenicity in dystrophic cardiomyopathy

    PubMed Central

    Gonzalez, Daniel R.; Treuer, Adriana V.; Lamirault, Guillaume; Mayo, Vera; Cao, Yenong; Dulce, Raul A.

    2014-01-01

    Duchenne muscular dystrophy may affect cardiac muscle, producing a dystrophic cardiomyopathy in humans and the mdx mouse. We tested the hypothesis that oxidative stress participates in disrupting calcium handling and contractility in the mdx mouse with established cardiomyopathy. We found increased expression (fivefold) of the NADPH oxidase (NOX) 2 in the mdx hearts compared with wild type, along with increased superoxide production. Next, we tested the impact of NOX2 inhibition on contractility and calcium handling in isolated cardiomyocytes. Contractility was decreased in mdx myocytes compared with wild type, and this was restored toward normal by pretreating with apocynin. In addition, the amplitude of evoked intracellular Ca2+ concentration transients that was diminished in mdx myocytes was also restored with NOX2 inhibition. Total sarcoplasmic reticulum (SR) Ca2+ content was reduced in mdx hearts and normalized by apocynin treatment. Additionally, NOX2 inhibition decreased the production of spontaneous diastolic calcium release events and decreased the SR calcium leak in mdx myocytes. In addition, nitric oxide (NO) synthase 1 (NOS-1) expression was increased eightfold in mdx hearts compared with wild type. Nevertheless, cardiac NO production was reduced. To test whether this paradox implied NOS-1 uncoupling, we treated cardiac myocytes with exogenous tetrahydrobioterin, along with the NOX inhibitor VAS2870. These agents restored NO production and phospholamban phosphorylation in mdx toward normal. Together, these results demonstrate that, in mdx hearts, NOX2 inhibition improves the SR calcium handling and contractility, partially by recoupling NOS-1. These findings reveal a new layer of nitroso-redox imbalance in dystrophic cardiomyopathy. PMID:25015966

  11. The Inhibitory Effect of Botulinum Toxin Type A on Rat Pyloric Smooth Muscle Contractile Response to Substance P In Vitro.

    PubMed

    Shao, Yu-Feng; Xie, Jun-Fan; Ren, Yin-Xiang; Wang, Can; Kong, Xiang-Pan; Zong, Xiao-Jian; Fan, Lin-Lan; Hou, Yi-Ping

    2015-10-15

    A decrease in pyloric myoelectrical activity and pyloric substance P (SP) content following intrasphincteric injection of botulinum toxin type A (BTX-A) in free move rats have been demonstrated in our previous studies. The aim of the present study was to investigate the inhibitory effect of BTX-A on rat pyloric muscle contractile response to SP in vitro and the distributions of SP and neurokinin 1 receptor (NK1R) immunoreactive (IR) cells and fibers within pylorus. After treatment with atropine, BTX-A (10 U/mL), similar to [D-Arg¹, D-Phe⁵, D-Trp(7,9), Leu(11)]-SP (APTL-SP, 1 μmol/L) which is an NK1R antagonist, decreased electric field stimulation (EFS)-induced contractile tension and frequency, whereas, subsequent administration of APTL-SP did not act on contractility. Incubation with BTX-A at 4 and 10 U/mL for 4 h respectively decreased SP (1 μmol/L)-induced contractions by 26.64% ± 5.12% and 74.92% ± 3.62%. SP-IR fibers and NK1R-IR cells both located within pylorus including mucosa and circular muscle layer. However, fewer SP-fibers were observed in pylorus treated with BTX-A (10 U/mL). In conclusion, BTX-A inhibits SP release from enteric terminals in pylorus and EFS-induced contractile responses when muscarinic cholinergic receptors are blocked by atropine. In addition, BTX-A concentration- and time-dependently directly inhibits SP-induced pyloric smooth muscle contractility.

  12. Numerical investigation of perforated polymer microcantilever sensor for contractile behavior of cardiomyocytes

    NASA Astrophysics Data System (ADS)

    Khoa Nguyen, Trieu; Lee, Dong-Weon; Lee, Bong-Kee

    2017-06-01

    In this study, a numerical investigation of microcantilever sensors for detecting the contractile behavior of cardiomyocytes (CMs) was performed. Recently, a novel surface-patterned perforated SU-8 microcantilever sensor has been developed for the preliminary screening of cardiac toxicity. From the contractile motion of the CMs cultured on the microcantilever surface, a macroscopic bending of the microcantilever was obtained, which is considered to reflect a physiological change. As a continuation of the previous research, a novel numerical method based on a surface traction model was proposed and verified to further understand the bending behavior of the microcantilevers. Effects of various factors, including surface traction magnitude, focal area of CMs, and stiffness of microcantilever, on the bending displacement were investigated. From static and transient analyses, the focal area was found to be the most crucial factor. In addition, the current result can provide a design guideline for various micromechanical devices based on the same principle.

  13. Bacteria attenuation by iron electrocoagulation governed by interactions between bacterial phosphate groups and Fe(III) precipitates.

    PubMed

    Delaire, Caroline; van Genuchten, Case M; Amrose, Susan E; Gadgil, Ashok J

    2016-10-15

    Iron electrocoagulation (Fe-EC) is a low-cost process in which Fe(II) generated from an Fe(0) anode reacts with dissolved O2 to form (1) Fe(III) precipitates with an affinity for bacterial cell walls and (2) bactericidal reactive oxidants. Previous work suggests that Fe-EC is a promising treatment option for groundwater containing arsenic and bacterial contamination. However, the mechanisms of bacteria attenuation and the impact of major groundwater ions are not well understood. In this work, using the model indicator Escherichia coli (E. coli), we show that physical removal via enmeshment in EC precipitate flocs is the primary process of bacteria attenuation in the presence of HCO3(-), which significantly inhibits inactivation, possibly due to a reduction in the lifetime of reactive oxidants. We demonstrate that the adhesion of EC precipitates to cell walls, which results in bacteria encapsulation in flocs, is driven primarily by interactions between EC precipitates and phosphate functional groups on bacteria surfaces. In single solute electrolytes, both P (0.4 mM) and Ca/Mg (1-13 mM) inhibited the adhesion of EC precipitates to bacterial cell walls, whereas Si (0.4 mM) and ionic strength (2-200 mM) did not impact E. coli attenuation. Interestingly, P (0.4 mM) did not affect E. coli attenuation in electrolytes containing Ca/Mg, consistent with bivalent cation bridging between bacterial phosphate groups and inorganic P sorbed to EC precipitates. Finally, we found that EC precipitate adhesion is largely independent of cell wall composition, consistent with comparable densities of phosphate functional groups on Gram-positive and Gram-negative cells. Our results are critical to predict the performance of Fe-EC to eliminate bacterial contaminants from waters with diverse chemical compositions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Cell wall evolution and diversity

    PubMed Central

    Fangel, Jonatan U.; Ulvskov, Peter; Knox, J. P.; Mikkelsen, Maria D.; Harholt, Jesper; Popper, Zoë A.; Willats, William G.T.

    2012-01-01

    Plant cell walls display a considerable degree of diversity in their compositions and molecular architectures. In some cases the functional significance of a particular cell wall type appears to be easy to discern: secondary cells walls are often reinforced with lignin that provides durability; the thin cell walls of pollen tubes have particular compositions that enable their tip growth; lupin seed cell walls are characteristically thickened with galactan used as a storage polysaccharide. However, more frequently the evolutionary mechanisms and selection pressures that underpin cell wall diversity and evolution are unclear. For diverse green plants (chlorophytes and streptophytes) the rapidly increasing availability of transcriptome and genome data sets, the development of methods for cell wall analyses which require less material for analysis, and expansion of molecular probe sets, are providing new insights into the diversity and occurrence of cell wall polysaccharides and associated biosynthetic genes. Such research is important for refining our understanding of some of the fundamental processes that enabled plants to colonize land and to subsequently radiate so comprehensively. The study of cell wall structural diversity is also an important aspect of the industrial utilization of global polysaccharide bio-resources. PMID:22783271

  15. Molecular organization of cytokinesis nodes and contractile rings by super-resolution fluorescence microscopy of live fission yeast

    PubMed Central

    Laplante, Caroline; Huang, Fang; Tebbs, Irene R.; Bewersdorf, Joerg; Pollard, Thomas D.

    2016-01-01

    Cytokinesis in animals, fungi, and amoebas depends on the constriction of a contractile ring built from a common set of conserved proteins. Many fundamental questions remain about how these proteins organize to generate the necessary tension for cytokinesis. Using quantitative high-speed fluorescence photoactivation localization microscopy (FPALM), we probed this question in live fission yeast cells at unprecedented resolution. We show that nodes, protein assembly precursors to the contractile ring, are discrete structural units with stoichiometric ratios and distinct distributions of constituent proteins. Anillin Mid1p, Fes/CIP4 homology-Bin/amphiphysin/Rvs (F-BAR) Cdc15p, IQ motif containing GTPase-activating protein (IQGAP) Rng2p, and formin Cdc12p form the base of the node that anchors the ends of myosin II tails to the plasma membrane, with myosin II heads extending into the cytoplasm. This general node organization persists in the contractile ring where nodes move bidirectionally during constriction. We observed the dynamics of the actin network during cytokinesis, starting with the extension of short actin strands from nodes, which sometimes connected neighboring nodes. Later in cytokinesis, a broad network of thick bundles coalesced into a tight ring around the equator of the cell. The actin ring was ∼125 nm wide and ∼125 nm thick. These observations establish the organization of the proteins in the functional units of a cytokinetic contractile ring. PMID:27647921

  16. Binding of /sup 18/F by cell membranes and cell walls of Streptococcus mutans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yotis, W.W.; Zeb, M.; McNulty, J.

    1983-07-01

    The binding of /sup 18/F to isolated cell membranes and cell walls of Streptococcus mutans GS-5 or other bacteria was assayed. The attachment of /sup 18/F to these cell envelopes proceeded slowly and reached equilibrium within 60 min. /sup 18/F binding was stimulated by Ca/sup 2 +/ (1 mM). The binding of /sup 18/F to cellular components was dependent upon the pH, as well as the amount of /sup 18/F and dose of the binder employed. The binding of /sup 18/F by cell walls prepared from fluoride-sensitive and fluoride-resistant cells of S. salivarius and S. mutans did not differ significantly.more » The pretreatment of cell walls or cell membranes for 60 min at 30 degrees C with 1 mg of RNase, DNase, or trypsin per ml did not influence the binding of /sup 18/F by the walls and membranes of S. mutans GS-5. However, prior exposure of cell membranes to sodium dodecyl sulfate caused a significant reduction in the number of /sup 18/F atoms bound by the membranes. In saturated assay systems, cell membranes of S. mutans GS-5 bound 10(15) to 10(16) atoms of /sup 18/F per mg (dry weight), whereas cell walls from S. mutans GS-5, FA-1, and HS-6 or Actinomyces viscosus T14V and T14AV bound 10(12) to 10(13) atoms of /sup 18/F per mg (dry weight). /sup 18/F in this quantity (10(12) to 10(13) atoms) cannot be detected with the fluoride electrode. The data provide, for the first time, a demonstration of /sup 18/F binding by cell membranes and walls of oral flora.« less

  17. Heterologous surface display on lactic acid bacteria: non-GMO alternative?

    PubMed Central

    Zadravec, Petra; Štrukelj, Borut; Berlec, Aleš

    2015-01-01

    Lactic acid bacteria (LAB) are food-grade hosts for surface display with potential applications in food and therapy. Alternative approaches to surface display on LAB would avoid the use of recombinant DNA technology and genetically-modified organism (GMO)-related regulatory requirements. Non-covalent surface display of proteins can be achieved by fusing them to various cell-wall binding domains, of which the Lysine motif domain (LysM) is particularly well studied. Fusion proteins have been isolated from recombinant bacteria or from their growth medium and displayed on unmodified bacteria, enabling heterologous surface display. This was demonstrated on non-viable cells devoid of protein content, termed bacteria-like particles, and on various species of genus Lactobacillus. Of the latter, Lactobacillus salivarius ATCC 11741 was recently shown to be particularly amenable for LysM-mediated display. Possible regulatory implications of heterologous surface display are discussed, particularly those relevant for the European Union. PMID:25880164

  18. New design for a rotatory joint actuator made with shape memory alloy contractile wire

    NASA Astrophysics Data System (ADS)

    Wang, Guoping; Shahinpoor, Mohsen

    1996-05-01

    A design approach for a rotatory joint actuator using a contractile shape memory alloy (SMA) wire is presented and an example design is followed. In this example, the output torque of the actuator is 18 Newton-meters, and its angular range is 30 degrees. Compared with a SMA spring type actuating component, a SMA wire type actuating component uses less SMA material and uses less electrical energy when it is electrically powered. On the other hand, a SMA wire type actuating component must have a large SMA wire length to produce a required amount of angular rotation of the joint. When pulleys are used to arrange a lengthy SMA wire in a small space, the friction between pulleys and pins is introduced and the performance of the joint actuator is degenerated to some degree. The investigated joint actuator provides a good chance for developing powered orthoses with SMA actuators for disabled individuals. It can relieve the weight concern with hydraulic and motor-powered orthoses and the safety concern with motor-powered orthoses. When electrically powered, a SMA actuator has the disadvantage of low energy efficiency.

  19. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ling; Naylor, Dan; Dong, Zhaobin

    Here, drought stress is a major obstacle to crop productivity, and the severity and frequency of drought are expected to increase in the coming century. Certain root-associated bacteria have been shown to mitigate the negative effects of drought stress on plant growth, and manipulation of the crop microbiome is an emerging strategy for overcoming drought stress in agricultural systems, yet the effect of drought on the development of the root microbiome is poorly understood. Through 16S rRNA amplicon and metatranscriptome sequencing, as well as root metabolomics, we demonstrate that drought delays the development of the early sorghum root microbiome andmore » causes increased abundance and activity of monoderm bacteria, which lack an outer cell membrane and contain thick cell walls. Our data suggest that altered plant metabolism and increased activity of bacterial ATP-binding cassette (ABC) transporter genes are correlated with these shifts in community composition. Finally, inoculation experiments with monoderm isolates indicate that increased colonization of the root during drought can positively impact plant growth. Collectively, these results demonstrate the role that drought plays in restructuring the root microbiome and highlight the importance of temporal sampling when studying plant-associated microbiomes.« less

  20. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ling; Naylor, Dan; Dong, Zhaobin

    Drought stress is a major obstacle to crop productivity and the severity and frequency of drought are expected to increase in the coming century. Certain root-associated bacteria have been shown to mitigate the negative effects of drought stress on plant growth, and manipulation of the crop microbiome is an emerging strategy for overcoming drought stress in agricultural systems, yet the effect of drought on the development of the root microbiome is poorly understood. Through16S amplicon and metatranscriptome sequencing, as well as root metabolomics, we demonstrate that drought delays the development of the early sorghum root microbiome and causes increased abundancemore » and activity of monoderm bacteria, which lack an outer cell membrane and contain thick cell walls. Our data suggest that altered plant metabolism and increased activity of bacterial ABC (ATP-binding cassette)-transporter genes may mediate these shifts in community composition. Finally, experiments with fluorescently tagged monoderms indicate that increased colonization of the root during drought can positively impact plant growth. Collectively, these results demonstrate the role drought plays in restructuring the root microbiome and highlight the importance of temporal sampling when studying plant-associated microbiomes.« less

  1. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria

    DOE PAGES

    Xu, Ling; Naylor, Dan; Dong, Zhaobin; ...

    2018-04-16

    Here, drought stress is a major obstacle to crop productivity, and the severity and frequency of drought are expected to increase in the coming century. Certain root-associated bacteria have been shown to mitigate the negative effects of drought stress on plant growth, and manipulation of the crop microbiome is an emerging strategy for overcoming drought stress in agricultural systems, yet the effect of drought on the development of the root microbiome is poorly understood. Through 16S rRNA amplicon and metatranscriptome sequencing, as well as root metabolomics, we demonstrate that drought delays the development of the early sorghum root microbiome andmore » causes increased abundance and activity of monoderm bacteria, which lack an outer cell membrane and contain thick cell walls. Our data suggest that altered plant metabolism and increased activity of bacterial ATP-binding cassette (ABC) transporter genes are correlated with these shifts in community composition. Finally, inoculation experiments with monoderm isolates indicate that increased colonization of the root during drought can positively impact plant growth. Collectively, these results demonstrate the role that drought plays in restructuring the root microbiome and highlight the importance of temporal sampling when studying plant-associated microbiomes.« less

  2. Lactic acid bacteria isolated from soy sauce mash in Thailand.

    PubMed

    Tanasupawat, Somboon; Thongsanit, Jaruwan; Okada, Sanae; Komagata, Kazuo

    2002-08-01

    Fourteen sphere-shaped and 30 rod-shaped lactic acid bacteria were isolated from soy sauce mash of two factories in Thailand. These strains were separated into two groups, Group A and Group B, by cell shape and DNA-DNA similarity. Group A contained 14 tetrad-forming strains, and these strains were identified as Tetragenococcus halophilus by DNA similarity. Group B contained 30 rod-shaped bacteria, and they were further divided into four Subgroups, B1, B2, B3, and B4, and three ungrouped strains by phenotypic characteristics and DNA similarity. Subgroup B1 contained 16 strains, and these strains were identified as Lactobacillus acidipiscis by DNA similarity. Subgroup B2 included two strains, and the strains were identified as Lactobacillus farciminis by DNA similarity. Subgroup B3 contained five strains. The strains had meso-diaminopimelic acid in the cell wall, and were identified as Lactobacillus pentosus by DNA similarity. The strains tested produced DL-lactic acid from D-glucose. Subgroup B4 contained four strains. The strains had meso-diaminopimelic acid in the cell wall, and they were identified as Lactobacillus plantarum by DNA similarity. Two ungrouped strains were homofermentative, and one was heterofermentative. They showed a low degree of DNA similarity with the type strains tested, and were left unnamed. The distribution of lactic acid bacteria in soy sauce mash in Thailand is discussed.

  3. On the growth of walled cells: From shells to vesicles.

    NASA Astrophysics Data System (ADS)

    Boudaoud, Arezki

    2003-03-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi and yeast cells. They are modeled as elastic shells inflated by a liquid. Cell growth is driven by fluid pressure and is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  4. Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales

    PubMed Central

    Huebsch, Nathaniel; Loskill, Peter; Mandegar, Mohammad A.; Marks, Natalie C.; Sheehan, Alice S.; Ma, Zhen; Mathur, Anurag; Nguyen, Trieu N.; Yoo, Jennie C.; Judge, Luke M.; Spencer, C. Ian; Chukka, Anand C.; Russell, Caitlin R.; So, Po-Lin

    2015-01-01

    Contractile motion is the simplest metric of cardiomyocyte health in vitro, but unbiased quantification is challenging. We describe a rapid automated method, requiring only standard video microscopy, to analyze the contractility of human-induced pluripotent stem cell-derived cardiomyocytes (iPS-CM). New algorithms for generating and filtering motion vectors combined with a newly developed isogenic iPSC line harboring genetically encoded calcium indicator, GCaMP6f, allow simultaneous user-independent measurement and analysis of the coupling between calcium flux and contractility. The relative performance of these algorithms, in terms of improving signal to noise, was tested. Applying these algorithms allowed analysis of contractility in iPS-CM cultured over multiple spatial scales from single cells to three-dimensional constructs. This open source software was validated with analysis of isoproterenol response in these cells, and can be applied in future studies comparing the drug responsiveness of iPS-CM cultured in different microenvironments in the context of tissue engineering. PMID:25333967

  5. Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales.

    PubMed

    Huebsch, Nathaniel; Loskill, Peter; Mandegar, Mohammad A; Marks, Natalie C; Sheehan, Alice S; Ma, Zhen; Mathur, Anurag; Nguyen, Trieu N; Yoo, Jennie C; Judge, Luke M; Spencer, C Ian; Chukka, Anand C; Russell, Caitlin R; So, Po-Lin; Conklin, Bruce R; Healy, Kevin E

    2015-05-01

    Contractile motion is the simplest metric of cardiomyocyte health in vitro, but unbiased quantification is challenging. We describe a rapid automated method, requiring only standard video microscopy, to analyze the contractility of human-induced pluripotent stem cell-derived cardiomyocytes (iPS-CM). New algorithms for generating and filtering motion vectors combined with a newly developed isogenic iPSC line harboring genetically encoded calcium indicator, GCaMP6f, allow simultaneous user-independent measurement and analysis of the coupling between calcium flux and contractility. The relative performance of these algorithms, in terms of improving signal to noise, was tested. Applying these algorithms allowed analysis of contractility in iPS-CM cultured over multiple spatial scales from single cells to three-dimensional constructs. This open source software was validated with analysis of isoproterenol response in these cells, and can be applied in future studies comparing the drug responsiveness of iPS-CM cultured in different microenvironments in the context of tissue engineering.

  6. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cosgrove, Daniel J.

    The advent of user-friendly instruments for measuring force/deflection curves of plant surfaces at high spatial resolution has resulted in a recent outpouring of reports of the ‘Young's modulus’ of plant cell walls. The stimulus for these mechanical measurements comes from biomechanical models of morphogenesis of meristems and other tissues, as well as single cells, in which cell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality. In this article I review the differences between elastic modulus and wall extensibility in the context of cell growth. Some of the inherent complexities, assumptions, and potentialmore » pitfalls in the interpretation of indentation force/deflection curves are discussed. Reported values of elastic moduli from surface indentation measurements appear to be 10- to >1000-fold smaller than realistic tensile elastic moduli in the plane of plant cell walls. Potential reasons for this disparity are discussed, but further work is needed to make sense of the huge range in reported values. The significance of wall stress relaxation for growth is reviewed and connected to recent advances and remaining enigmas in our concepts of how cellulose, hemicellulose, and pectins are assembled to make an extensible cell wall. A comparison of the loosening action of α-expansin and Cel12A endoglucanase is used to illustrate two different ways in which cell walls may be made more extensible and the divergent effects on wall mechanics.« less

  7. Low thermal dependence of the contractile properties of a wing muscle in the bat Carollia perspicillata.

    PubMed

    Rummel, Andrea D; Swartz, Sharon M; Marsh, Richard L

    2018-05-29

    Temperature affects contractile rate properties in muscle, which may affect locomotor performance. Endotherms are known to maintain high core body temperatures, but temperatures in the periphery of the body can fluctuate. Such a phenomenon occurs in bats, whose wing musculature is relatively poorly insulated, resulting in substantially depressed temperatures in the distal wing. We examined a wing muscle in the small-bodied tropical bat Carollia perspicillata and a hindlimb muscle in the laboratory mouse at 5°C intervals from 22 to 42°C to determine the thermal dependence of the contractile properties of both muscles. We found that the bat ECRL had low thermal dependence from near body temperature to 10°C lower, with Q 10 values of less than 1.5 for relaxation from contraction and shortening velocities in that interval, and with no significant difference in some rate properties in the interval between 32 and 37°C. In contrast, for all temperature intervals below 37°C, Q 10 values for the mouse EDL were 1.5 or higher, and rate properties differed significantly across successive temperature intervals from 37 to 22°C. An ANCOVA analysis found that the thermal dependencies of all measured isometric and isotonic rate processes were significantly different between the bat and mouse muscles. The relatively low thermal dependence of the bat muscle likely represents a downward shift of its optimal temperature and may be functionally significant in light of the variable operating temperatures of bat wing muscles. © 2018. Published by The Company of Biologists Ltd.

  8. Bacteria Counter

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Science Applications, Inc.'s ATP Photometer makes a rapid and accurate count of the bacteria in a body fluid sample. Instrument provides information on the presence and quantity of bacteria by measuring the amount of light emitted by the reaction between two substances. Substances are ATP adenosine triphosphate and luciferase. The reactants are applied to a human body sample and the ATP Photometer observes the intensity of the light emitted displaying its findings in a numerical output. Total time lapse is usually less than 10 minutes, which represents a significant time savings in comparison of other techniques. Other applications are measuring organisms in fresh and ocean waters, determining bacterial contamination of foodstuffs, biological process control in the beverage industry, and in assay of activated sewage sludge.

  9. Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel

    PubMed Central

    Poincloux, Renaud; Collin, Olivier; Lizárraga, Floria; Romao, Maryse; Debray, Marcel; Piel, Matthieu; Chavrier, Philippe

    2011-01-01

    Cancer cells use different modes of migration, including integrin-dependent mesenchymal migration of elongated cells along elements of the 3D matrix as opposed to low-adhesion-, contraction-based amoeboid motility of rounded cells. We report that MDA-MB-231 human breast adenocarcinoma cells invade 3D Matrigel with a characteristic rounded morphology and with F-actin and myosin-IIa accumulating at the cell rear in a uropod-like structure. MDA-MB-231 cells display neither lamellipodia nor bleb extensions at the leading edge and do not require Arp2/3 complex activity for 3D invasion in Matrigel. Accumulation of phospho-MLC and blebbing activity were restricted to the uropod as reporters of actomyosin contractility, and velocimetric analysis of fluorescent beads embedded within the 3D matrix showed that pulling forces exerted to the matrix are restricted to the side and rear of cells. Inhibition of actomyosin contractility or β1 integrin function interferes with uropod formation, matrix deformation, and invasion through Matrigel. These findings support a model whereby actomyosin-based uropod contractility generates traction forces on the β1 integrin adhesion system to drive cell propulsion within the 3D matrix, with no contribution of lamellipodia extension or blebbing to movement. PMID:21245302

  10. Pathways for degradation of lignin in bacteria and fungi.

    PubMed

    Bugg, Timothy D H; Ahmad, Mark; Hardiman, Elizabeth M; Rahmanpour, Rahman

    2011-11-01

    Lignin is a heterogeneous aromatic polymer found as 10-35% of lignocellulose, found in plant cell walls. The bio-conversion of plant lignocellulose to glucose is an important part of second generation biofuel production, but the resistance of lignin to breakdown is a major obstacle in this process, hence there is considerable interest in the microbial breakdown of lignin. White-rot fungi are known to break down lignin with the aid of extracellular peroxidase and laccase enzymes. There are also reports of bacteria that can degrade lignin, and recent work indicates that bacterial lignin breakdown may be more significant than previously thought. The review will discuss the enzymes for lignin breakdown in fungi and bacteria, and the catabolic pathways for breakdown of the β-aryl ether, biphenyl and other components of lignin in bacteria and fungi. The review will also discuss small molecule phenolic breakdown products from lignin that have been identified from lignin-degrading microbes, and includes a bioinformatic analysis of the occurrence of known lignin-degradation pathways in Gram-positive and Gram-negative bacteria.

  11. Atomic Structure of Type VI Contractile Sheath from Pseudomonas aeruginosa.

    PubMed

    Salih, Osman; He, Shaoda; Planamente, Sara; Stach, Lasse; MacDonald, James T; Manoli, Eleni; Scheres, Sjors H W; Filloux, Alain; Freemont, Paul S

    2018-02-06

    Pseudomonas aeruginosa has three type VI secretion systems (T6SSs), H1-, H2-, and H3-T6SS, each belonging to a distinct group. The two T6SS components, TssB/VipA and TssC/VipB, assemble to form tubules that conserve structural/functional homology with tail sheaths of contractile bacteriophages and pyocins. Here, we used cryoelectron microscopy to solve the structure of the H1-T6SS P. aeruginosa TssB1C1 sheath at 3.3 Å resolution. Our structure allowed us to resolve some features of the T6SS sheath that were not resolved in the Vibrio cholerae VipAB and Francisella tularensis IglAB structures. Comparison with sheath structures from other contractile machines, including T4 phage and R-type pyocins, provides a better understanding of how these systems have conserved similar functions/mechanisms despite evolution. We used the P. aeruginosa R2 pyocin as a structural template to build an atomic model of the TssB1C1 sheath in its extended conformation, allowing us to propose a coiled-spring-like mechanism for T6SS sheath contraction. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.

    PubMed

    Xu, Dake; Li, Yingchao; Gu, Tingyue

    2016-08-01

    Biocorrosion is also known as microbiologically influenced corrosion (MIC). Most anaerobic MIC cases can be classified into two major types. Type I MIC involves non-oxygen oxidants such as sulfate and nitrate that require biocatalysis for their reduction in the cytoplasm of microbes such as sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). This means that the extracellular electrons from the oxidation of metal such as iron must be transported across cell walls into the cytoplasm. Type II MIC involves oxidants such as protons that are secreted by microbes such as acid producing bacteria (APB). The biofilms in this case supply the locally high concentrations of oxidants that are corrosive without biocatalysis. This work describes a mechanistic model that is based on the biocatalytic cathodic sulfate reduction (BCSR) theory. The model utilizes charge transfer and mass transfer concepts to describe the SRB biocorrosion process. The model also includes a mechanism to describe APB attack based on the local acidic pH at a pit bottom. A pitting prediction software package has been created based on the mechanisms. It predicts long-term pitting rates and worst-case scenarios after calibration using SRB short-term pit depth data. Various parameters can be investigated through computer simulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. TRPC3 contributes to regulation of cardiac contractility and arrhythmogenesis by dynamic interaction with NCX1

    PubMed Central

    Doleschal, Bernhard; Primessnig, Uwe; Wölkart, Gerald; Wolf, Stefan; Schernthaner, Michaela; Lichtenegger, Michaela; Glasnov, Toma N.; Kappe, C. Oliver; Mayer, Bernd; Antoons, Gudrun; Heinzel, Frank; Poteser, Michael; Groschner, Klaus

    2015-01-01

    Aim TRPC3 is a non-selective cation channel, which forms a Ca2+ entry pathway involved in cardiac remodelling. Our aim was to analyse acute electrophysiological and contractile consequences of TRPC3 activation in the heart. Methods and results We used a murine model of cardiac TRPC3 overexpression and a novel TRPC3 agonist, GSK1702934A, to uncover (patho)physiological functions of TRPC3. GSK1702934A induced a transient, non-selective conductance and prolonged action potentials in TRPC3-overexpressing myocytes but lacked significant electrophysiological effects in wild-type myocytes. GSK1702934A transiently enhanced contractility and evoked arrhythmias in isolated Langendorff hearts from TRPC3-overexpressing but not wild-type mice. Interestingly, pro-arrhythmic effects outlasted TRPC3 current activation, were prevented by enhanced intracellular Ca2+ buffering, and suppressed by the NCX inhibitor 3′,4′-dichlorobenzamil hydrochloride. GSK1702934A substantially promoted NCX currents in TRPC3-overexpressing myocytes. The TRPC3-dependent electrophysiologic, pro-arrhythmic, and inotropic actions of GSK1702934A were mimicked by angiotensin II (AngII). Immunocytochemistry demonstrated colocalization of TRPC3 with NCX1 and disruption of local interaction upon channel activation by either GSK1702934A or AngII. Conclusion Cardiac TRPC3 mediates Ca2+ and Na+ entry in proximity of NCX1, thereby elevating cellular Ca2+ levels and contractility. Excessive activation of TRPC3 is associated with transient cellular Ca2+ overload, spatial uncoupling between TRPC3 and NCX1, and arrhythmogenesis. We propose TRPC3-NCX micro/nanodomain communication as determinant of cardiac contractility and susceptibility to arrhythmogenic stimuli. PMID:25631581

  14. The Inhibitory Effect of Botulinum Toxin Type A on Rat Pyloric Smooth Muscle Contractile Response to Substance P In Vitro

    PubMed Central

    Shao, Yu-Feng; Xie, Jun-Fan; Ren, Yin-Xiang; Wang, Can; Kong, Xiang-Pan; Zong, Xiao-Jian; Fan, Lin-Lan; Hou, Yi-Ping

    2015-01-01

    A decrease in pyloric myoelectrical activity and pyloric substance P (SP) content following intrasphincteric injection of botulinum toxin type A (BTX-A) in free move rats have been demonstrated in our previous studies. The aim of the present study was to investigate the inhibitory effect of BTX-A on rat pyloric muscle contractile response to SP in vitro and the distributions of SP and neurokinin 1 receptor (NK1R) immunoreactive (IR) cells and fibers within pylorus. After treatment with atropine, BTX-A (10 U/mL), similar to [D-Arg1, D-Phe5, D-Trp7,9, Leu11]-SP (APTL-SP, 1 μmol/L) which is an NK1R antagonist, decreased electric field stimulation (EFS)-induced contractile tension and frequency, whereas, subsequent administration of APTL-SP did not act on contractility. Incubation with BTX-A at 4 and 10 U/mL for 4 h respectively decreased SP (1 μmol/L)-induced contractions by 26.64% ± 5.12% and 74.92% ± 3.62%. SP-IR fibers and NK1R-IR cells both located within pylorus including mucosa and circular muscle layer. However, fewer SP-fibers were observed in pylorus treated with BTX-A (10 U/mL). In conclusion, BTX-A inhibits SP release from enteric terminals in pylorus and EFS-induced contractile responses when muscarinic cholinergic receptors are blocked by atropine. In addition, BTX-A concentration- and time-dependently directly inhibits SP-induced pyloric smooth muscle contractility. PMID:26501321

  15. Mitochondrial fusion dynamics is robust in the heart and depends on calcium oscillations and contractile activity

    PubMed Central

    Eisner, Verónica; Gao, Erhe; Csordás, György; Slovinsky, William S.; Paillard, Melanie; Cheng, Lan; Ibetti, Jessica; Chen, S. R. Wayne; Chuprun, J. Kurt; Hoek, Jan B.; Koch, Walter J.; Hajnóczky, György

    2017-01-01

    Mitochondrial fusion is thought to be important for supporting cardiac contractility, but is hardly detectable in cultured cardiomyocytes and is difficult to directly evaluate in the heart. We overcame this obstacle through in vivo adenoviral transduction with matrix-targeted photoactivatable GFP and confocal microscopy. Imaging in whole rat hearts indicated mitochondrial network formation and fusion activity in ventricular cardiomyocytes. Promptly after isolation, cardiomyocytes showed extensive mitochondrial connectivity and fusion, which decayed in culture (at 24–48 h). Fusion manifested both as rapid content mixing events between adjacent organelles and slower events between both neighboring and distant mitochondria. Loss of fusion in culture likely results from the decline in calcium oscillations/contractile activity and mitofusin 1 (Mfn1), because (i) verapamil suppressed both contraction and mitochondrial fusion, (ii) after spontaneous contraction or short-term field stimulation fusion activity increased in cardiomyocytes, and (iii) ryanodine receptor-2–mediated calcium oscillations increased fusion activity in HEK293 cells and complementing changes occurred in Mfn1. Weakened cardiac contractility in vivo in alcoholic animals is also associated with depressed mitochondrial fusion. Thus, attenuated mitochondrial fusion might contribute to the pathogenesis of cardiomyopathy. PMID:28096338

  16. Walls talk: Microbial biogeography of homes spanning urbanization

    PubMed Central

    Ruiz-Calderon, Jean F.; Cavallin, Humberto; Song, Se Jin; Novoselac, Atila; Pericchi, Luis R.; Hernandez, Jean N.; Rios, Rafael; Branch, Oralee H.; Pereira, Henrique; Paulino, Luciana C.; Blaser, Martin J.; Knight, Rob; Dominguez-Bello, Maria G.

    2016-01-01

    Westernization has propelled changes in urbanization and architecture, altering our exposure to the outdoor environment from that experienced during most of human evolution. These changes might affect the developmental exposure of infants to bacteria, immune development, and human microbiome diversity. Contemporary urban humans spend most of their time indoors, and little is known about the microbes associated with different designs of the built environment and their interaction with the human immune system. This study addresses the associations between architectural design and the microbial biogeography of households across a gradient of urbanization in South America. Urbanization was associated with households’ increased isolation from outdoor environments, with additional indoor space isolation by walls. Microbes from house walls and floors segregate by location, and urban indoor walls contain human bacterial markers of space use. Urbanized spaces uniquely increase the content of human-associated microbes—which could increase transmission of potential pathogens—and decrease exposure to the environmental microbes with which humans have coevolved. PMID:26933683

  17. Stochastic Ratcheting on a Funneled Energy Landscape Is Necessary for Highly Efficient Contractility of Actomyosin Force Dipoles

    NASA Astrophysics Data System (ADS)

    Komianos, James E.; Papoian, Garegin A.

    2018-04-01

    Current understanding of how contractility emerges in disordered actomyosin networks of nonmuscle cells is still largely based on the intuition derived from earlier works on muscle contractility. In addition, in disordered networks, passive cross-linkers have been hypothesized to percolate force chains in the network, hence, establishing large-scale connectivity between local contractile clusters. This view, however, largely overlooks the free energy of cross-linker binding at the microscale, which, even in the absence of active fluctuations, provides a thermodynamic drive towards highly overlapping filamentous states. In this work, we use stochastic simulations and mean-field theory to shed light on the dynamics of a single actomyosin force dipole—a pair of antiparallel actin filaments interacting with active myosin II motors and passive cross-linkers. We first show that while passive cross-linking without motor activity can produce significant contraction between a pair of actin filaments, driven by thermodynamic favorability of cross-linker binding, a sharp onset of kinetic arrest exists at large cross-link binding energies, greatly diminishing the effectiveness of this contractility mechanism. Then, when considering an active force dipole containing nonmuscle myosin II, we find that cross-linkers can also serve as a structural ratchet when the motor dissociates stochastically from the actin filaments, resulting in significant force amplification when both molecules are present. Our results provide predictions of how actomyosin force dipoles behave at the molecular level with respect to filament boundary conditions, passive cross-linking, and motor activity, which can explicitly be tested using an optical trapping experiment.

  18. Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome.

    PubMed

    Kranias, Evangelia G; Hajjar, Roger J

    2012-06-08

    Heart disease remains the leading cause of death and disability in the Western world. Current therapies aim at treating the symptoms rather than the subcellular mechanisms, underlying the etiology and pathological remodeling in heart failure. A universal characteristic, contributing to the decreased contractile performance in human and experimental failing hearts, is impaired calcium sequestration into the sarcoplasmic reticulum (SR). SR calcium uptake is mediated by a Ca(2+)-ATPase (SERCA2), whose activity is reversibly regulated by phospholamban (PLN). Dephosphorylated PLN is an inhibitor of SERCA and phosphorylation of PLN relieves this inhibition. However, the initial simple view of a PLN/SERCA regulatory complex has been modified by our recent identification of SUMO, S100 and the histidine-rich Ca-binding protein as regulators of SERCA activity. In addition, PLN activity is regulated by 2 phosphoproteins, the inhibitor-1 of protein phosphatase 1 and the small heat shock protein 20, which affect the overall SERCA-mediated Ca-transport. This review will highlight the regulatory mechanisms of cardiac contractility by the multimeric SERCA/PLN-ensemble and the potential for new therapeutic avenues targeting this complex by using small molecules and gene transfer methods.

  19. Isolation and maintenance-free culture of contractile myotubes from Manduca sexta embryos.

    PubMed

    Baryshyan, Amanda L; Woods, William; Trimmer, Barry A; Kaplan, David L

    2012-01-01

    Skeletal muscle tissue engineering has the potential to treat tissue loss and degenerative diseases. However, these systems are also applicable for a variety of devices where actuation is needed, such as microelectromechanical systems (MEMS) and robotics. Most current efforts to generate muscle bioactuators are focused on using mammalian cells, which require exacting conditions for survival and function. In contrast, invertebrate cells are more environmentally robust, metabolically adaptable and relatively autonomous. Our hypothesis is that the use of invertebrate muscle cells will obviate many of the limitations encountered when mammalian cells are used for bioactuation. We focus on the tobacco hornworm, Manduca sexta, due to its easy availability, large size and well-characterized muscle contractile properties. Using isolated embryonic cells, we have developed culture conditions to grow and characterize contractile M. sexta muscles. The insect hormone 20-hydroxyecdysone was used to induce differentiation in the system, resulting in cells that stained positive for myosin, contract spontaneously for the duration of the culture, and do not require media changes over periods of more than a month. These cells proliferate under normal conditions, but the application of juvenile hormone induced further proliferation and inhibited differentiation. Cellular metabolism under normal and low glucose conditions was compared for C2C12 mouse and M. sexta myoblast cells. While differentiated C2C12 cells consumed glucose and produced lactate over one week as expected, M. sexta muscle did not consume significant glucose, and lactate production exceeded mammalian muscle production on a per cell basis. Contractile properties were evaluated using index of movement analysis, which demonstrated the potential of these cells to perform mechanical work. The ability of cultured M. sexta muscle to continuously function at ambient conditions without medium replenishment, combined with the

  20. Facilitated ethanol metabolism promotes cardiomyocyte contractile dysfunction through autophagy in murine hearts.

    PubMed

    Guo, Rui; Hu, Nan; Kandadi, Machender R; Ren, Jun

    2012-04-01

    Chronic drinking leads to myocardial contractile dysfunction where ethanol metabolism plays an essential role. Acetaldehyde, the main ethanol metabolite, mediates alcohol-induced cell injury although the underlying mechanism is still elusive. This study was designed to examine the mechanism involved in accelerated ethanol metabolism-induced cardiac defect with a focus on autophagy. Wild-type FVB and cardiac-specific overexpression of alcohol dehydrogenase mice were placed on a 4% nutrition-balanced alcohol diet for 8 weeks. Myocardial histology, immunohistochemistry, autophagy markers and signal molecules were examined. Expression of micro RNA miR-30a, a potential target of Beclin 1, was evaluated by real-time PCR. Chronic alcohol intake led to cardiac acetaldehyde accumulation, hypertrophy and overt autophagosome accumulation (LC3-II and Atg7), the effect of which was accentuated by ADH. Signaling molecules governing autophagy initiation including class III PtdIns3K, phosphorylation of mTOR and p70S6K were enhanced and dampened, respectively, following alcohol intake. These alcohol-induced signaling responses were augmented by ADH. ADH accentuated or unmasked alcohol-induced downregulation of Bcl-2, Bcl-xL and MiR-30a. Interestingly, ADH aggravated alcohol-induced p62 accumulation. Autophagy inhibition using 3-MA abolished alcohol-induced cardiomyocyte contractile anomalies. Moreover, acetaldehyde led to cardiomyocyte contractile dysfunction and autophagy induction, which was ablated by 3-MA. Ethanol or acetaldehyde increased GFP-LC3 puncta in H9c2 cells, the effect of which was ablated by 3-MA but unaffected by lysosomal inhibition using bafilomycin A(1), E64D and pepstatin A. In summary, these data suggested that facilitated acetaldehyde production via ADH following alcohol intake triggered cardiac autophagosome formation along with impaired lysosomal degradation, en route to myocardial defect.

  1. Cell wall of pathogenic yeasts and implications for antimycotic therapy.

    PubMed

    Cassone, A

    1986-01-01

    Yeast cell wall is a complex, multilayered structure where amorphous, granular and fibrillar components interact with each other to confer both the specific cell shape and osmotic protection against lysis. Thus it is widely recognized that as is the case with bacteria, yeast cell wall is a major potential target for selective chemotherapeutic drugs. Despite intensive research, very few such drugs have been discovered and none has found substantial application in human diseases to date. Among the different cell wall components, beta-glucan and chitin are the fibrillar materials playing a fundamental role in the overall rigidity and resistance of the wall. Inhibition of the metabolism of these polymers, therefore, should promptly lead to lysis. This indeed occurs and aculeacin, echinocandin and polyoxins are examples of agents producing such an action. Particular attention should be focused on chitin synthesis. Although quantitatively a minor cell wall component, chitin is important in the mechanism of dimorphic transition, especially in Candida albicans, a major human opportunistic pathogen. This transition is associated with increased invasiveness and general virulence of the fungus. Yeast cell wall may also limit the effect of antifungals which owe their action to disturbance of the cytoplasmic membrane or of cell metabolism. Indeed, the cell wall may hinder access to the cell interior both under growing conditions and, particularly, during cell ageing in the stationary phase, when important structural changes occur in the cell wall due to unbalanced wall growth (phenotypic drug resistance).

  2. The Interaction between Heterotrophic Bacteria and Coliform, Fecal Coliform, Fecal Streptococci Bacteria in the Water Supply Networks.

    PubMed

    Amanidaz, Nazak; Zafarzadeh, Ali; Mahvi, Amir Hossein

    2015-12-01

    This study investigated the interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in water supply networks. This study was conducted during 2013 on water supply distribution network in Aq Qala City, Golestan Province, Northern Iran and standard methods were applied for microbiological analysis. The surface method was applied to test the heterotrophic bacteria and MPN method was used for coliform, fecal coliform and fecal streptococci bacteria measurements. In 114 samples, heterotrophic bacteria count were over 500 CFU/ml, which the amount of fecal coliform, coliform, and fecal streptococci were 8, 32, and 20 CFU/100 ml, respectively. However, in the other 242 samples, with heterotrophic bacteria count being less than 500 CFU/ml, the amount of fecal coliform, coliform, and fecal streptococci was 7, 23, and 11 CFU/100ml, respectively. The relationship between heterotrophic bacteria, coliforms and fecal streptococci was highly significant (P<0.05). We observed the concentration of coliforms, fecal streptococci bacteria being high, whenever the concentration of heterotrophic bacteria in the water network systems was high. Interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in the Aq Qala City water supply networks was not notable. It can be due to high concentrations of organic carbon, bio-films and nutrients, which are necessary for growth, and survival of all microorganisms.

  3. The Interaction between Heterotrophic Bacteria and Coliform, Fecal Coliform, Fecal Streptococci Bacteria in the Water Supply Networks

    PubMed Central

    AMANIDAZ, Nazak; ZAFARZADEH, Ali; MAHVI, Amir Hossein

    2015-01-01

    Background: This study investigated the interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in water supply networks. Methods: This study was conducted during 2013 on water supply distribution network in Aq Qala City, Golestan Province, Northern Iran and standard methods were applied for microbiological analysis. The surface method was applied to test the heterotrophic bacteria and MPN method was used for coliform, fecal coliform and fecal streptococci bacteria measurements. Results: In 114 samples, heterotrophic bacteria count were over 500 CFU/ml, which the amount of fecal coliform, coliform, and fecal streptococci were 8, 32, and 20 CFU/100 ml, respectively. However, in the other 242 samples, with heterotrophic bacteria count being less than 500 CFU/ml, the amount of fecal coliform, coliform, and fecal streptococci was 7, 23, and 11 CFU/100ml, respectively. The relationship between heterotrophic bacteria, coliforms and fecal streptococci was highly significant (P<0.05). We observed the concentration of coliforms, fecal streptococci bacteria being high, whenever the concentration of heterotrophic bacteria in the water network systems was high. Conclusion: Interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in the Aq Qala City water supply networks was not notable. It can be due to high concentrations of organic carbon, bio-films and nutrients, which are necessary for growth, and survival of all microorganisms. PMID:26811820

  4. [Two-wall decompression without resection of the medial wall. Effect on squint angle].

    PubMed

    Bertelmann, E; Rüther, K

    2011-11-01

    Postoperative new onset diplopia can be a disadvantage for surgical orbital decompression in patients with exophthalmos in thyroid eye disease. The various modifications of decompression (number and combination of walls) differ in their influence on the postoperative squint angle. We report on postoperative diplopia in a modified 2 wall decompression strategy (lateral wall and floor). This study was a retrospective analysis of 36 consecutive 2-wall decompressions performed between 2006-2010 in 24 patients with 6 months of stable exophthalmos in thyroid eye disease after medical therapy and radiotherapy. The preoperative and postoperative squint angle in prism cover test (PCT), motility, induction of diplopia, reduction of exophthalmos, visual acuity and complications were evaluated. In all 36 decompressions the postoperative squint angle was equal to or less than before surgery. In 8 eyes additional squint surgery was performed. The mean reduction in exopthalmos was 4.3 mm. An adverse effect of decompression on the postoperative squint angle was not evident in this study. New induction of diplopia was not observed at all. One possible explanation is the preservation of the medial wall.

  5. Contractile activity of ATP and diadenosine tetraphosphate on urinary bladder in the rats: role of superoxide anion and urothelium.

    PubMed

    Khattab, M M; Al-Hrasen, M N

    2006-04-01

    Both ATP and diadenosine tetraphosphate (AP(4)A) produced a dose-dependent contraction of rat isolated urinary bladder rings. The AP(4)A dose-response curve was to the left of that of ATP, and the maximum response was greater than that produced by ATP. Mechanical removal of the urothelium increased the contractile response to ATP by between 53% and 71%, and that to AP(4)A by 42% (at highest AP(4)A concentration) to 68% at lower concentration. Inhibition of Cu/Zn superoxide dismutase with diethylthiocarbamate (DETCA, 5 mm) significantly reduced the ATP-evoked contraction by 31% (at high ATP concentration) to 40% at low ATP concentration. Similarly, the AP(4)A-induced contractions were significantly decreased by 27% at low AP(4)A level to 38% at higher concentrations. Induction of exogenous superoxide anion stress by the use of the superoxide anion generator, pyrogallol (0.5 mm), significantly decreased both ATP- and AP(4)A-induced contractions of the rat urinary bladder over the whole dose range. Contractile responses to ATP decreased by 36-40%, and those to AP(4)A by 44-49%. In conclusion, the urinary bladder urothelium exerts an inhibitory control over the purinergic contractility produced by adenine mononucleotides and dinucleotides. Superoxide anion stress, whether endogenous or exogenous, attenuates the ATP-induced as well as AP(4)A-induced contractility.

  6. [Effect of dopamine and its antagonists on contractile activity of the lower esophageal sphincter and the stomach (author's transl)].

    PubMed

    Itoh, Z; Aizawa, I; Nakamura, T

    1980-06-01

    Effect of dopamine and its antagonists, domperidone and metoclopramide (MCP), on contractile activity of the lower esophageal sphincter (LES) and the stomach was studied in 5 healthy conscious dogs. Contractile activity was measured by means of chronically implanted force transducers. Contractile activity of the LES and the stomach was completely inhibited by an intravenous infusion of dopamine (10, 20 and 40 micrograms/kg-min) during the digestive and interdigestive state. Domperidone, when administered alone (0.5, 1.0 and 2.0 mg/kg), had no effect on contractile activity of the LES and the stomach during the both periods. Though deprived of any noticeable effect on the digestive contractions, MCP (0.25, 0.5 and 1.0 mg/kg) abolished the interdigestive contractions and produced characteristic contractions. Domperidone restored postprandial and interdigestive contractions to their initial stage before dopamine administration in a dose-related fashion. Dopamine-induced inhibition was antagonized by MCP during the digestive state, however, MCP had no effect on the interdigestive contractions that had been inhibited by dopamine. Since domperidone has no activity upon normal contractions of the gastrointestinal tract, it may be assumed that if domperidone alone has some influence upon gut motor activity or any improvement in clinical symptoms is seen after domperidone, a disorder of the dopaminergic system could be strongly suggested.

  7. Mycorrhiza helper bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deveau, Aurelie; Labbe, Jessy

    This chapter focuses on the Mycorrhiza Helper Bacteria (MHB), a generic name given to bacteria which stimulate the formation of mycorrhizal symbiosis. By extension, some bacterial strains that positively impact the functioning of mycorrhizal symbiosis are also called MHB. These bacteria have applicative interests, as they indirectly improve the health and growth of tree seedlings. MHB are not restricted to a specific type of ecosystem, but are rather generalist in the way that they associate with both herbaceous and woody mycorrhizal plants from boreal, temperate, arid and tropical ecosystems. However, understanding the molecular mechanisms and their specificities will help usmore » to know more about the ecology of the MHB. The process of acquisition varies between fungal species; while ectomycorrhizal fungi most probably recurrently acquire them from the environment, the association between bacterial endosymbionts and Glomeromycota probably dates back to very ancient times, and has since been vertically transmitted.« less

  8. A node organization in the actomyosin contractile ring generates tension and aids stability

    PubMed Central

    Thiyagarajan, Sathish; Wang, Shuyuan; O’Shaughnessy, Ben

    2017-01-01

    During cytokinesis, a contractile actomyosin ring constricts and divides the cell in two. How the ring marshals actomyosin forces to generate tension is not settled. Recently, a superresolution microscopy study of the fission yeast ring revealed that myosins and formins that nucleate actin filaments colocalize in plasma membrane-anchored complexes called nodes in the constricting ring. The nodes move bidirectionally around the ring. Here we construct and analyze a coarse-grained mathematical model of the fission yeast ring to explore essential consequences of the recently discovered ring ultrastructure. The model reproduces experimentally measured values of ring tension, explains why nodes move bidirectionally, and shows that tension is generated by myosin pulling on barbed-end-anchored actin filaments in a stochastic sliding-filament mechanism. This mechanism is not based on an ordered sarcomeric organization. We show that the ring is vulnerable to intrinsic contractile instabilities, and protection from these instabilities and organizational homeostasis require both component turnover and anchoring of components to the plasma membrane. PMID:28954859

  9. The kinetic study of hydrogen bacteria and methanotrophs in pure and defined mixed cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, D.K.

    The kinetics of pure and mixed cultures of Alcaligenes eutrophus H 16 and Methylobacterium organophilum CRL 26 under double substrate limited conditions were studied. In pure culture growth kinetics, a non-interactive model was found to fit the experimental data best. The yield of biomass on limiting substrate was found to vary with the dilution rate. The variation in the biomass yield may be attributed to the change in metabolic pathways resulting from a shift in the limiting substrates. Both species exhibited wall growth in the chemostat under dark conditions. However, under illuminated conditions, there was significant reduction in wall growth.more » Poly-{beta}-hydroxybutyric acid was synthesized by both species under ammonia and oxygen limiting conditions. The feed gas mixture was optimized to achieve the steady-state coexistence of these two species in a chemostate for the first time. In mixed cultures, the biomass species assays were differentiated on the basis of their selective growth on particular compounds: Sarcosine and D-arabinose were selected for hydrogen bacteria and methylotrophs, respectively. The kinetics parameters estimated from pure cultures were used to predict the growth kinetics of these species in defined mixed cultures.« less

  10. Moderate ethanol administration accentuates cardiomyocyte contractile dysfunction and mitochondrial injury in high fat diet-induced obesity.

    PubMed

    Yuan, Fang; Lei, Yonghong; Wang, Qiurong; Esberg, Lucy B; Huang, Zaixing; Scott, Glenda I; Li, Xue; Ren, Jun

    2015-03-18

    Light to moderate drinking confers cardioprotection although it remains unclear with regards to the role of moderate drinking on cardiac function in obesity. This study was designed to examine the impact of moderate ethanol intake on myocardial function in high fat diet intake-induced obesity and the mechanism(s) involved with a focus on mitochondrial integrity. C57BL/6 mice were fed low or high fat diet for 16 weeks prior to ethanol challenge (1g/kg/d for 3 days). Cardiac contractile function, intracellular Ca(2+) homeostasis, myocardial histology, and mitochondrial integrity [aconitase activity and the mitochondrial proteins SOD1, UCP-2 and PPARγ coactivator 1α (PGC-1α)] were assessed 24h after the final ethanol challenge. Fat diet intake compromised cardiomyocyte contractile and intracellular Ca(2+) properties (depressed peak shortening and maximal velocities of shortening/relengthening, prolonged duration of relengthening, dampened intracellular Ca(2+) rise and clearance without affecting duration of shortening). Although moderate ethanol challenge failed to alter cardiomyocyte mechanical property under low fat diet intake, it accentuated high fat diet intake-induced changes in cardiomyocyte contractile function and intracellular Ca(2+) handling. Moderate ethanol challenge failed to affect fat diet intake-induced cardiac hypertrophy as evidenced by H&E staining. High fat diet intake reduced myocardial aconitase activity, downregulated levels of mitochondrial protein UCP-2, PGC-1α, SOD1 and interrupted intracellular Ca(2+) regulatory proteins, the effect of which was augmented by moderate ethanol challenge. Neither high fat diet intake nor moderate ethanol challenge affected protein or mRNA levels as well as phosphorylation of Akt and GSK3β in mouse hearts. Taken together, our data revealed that moderate ethanol challenge accentuated high fat diet-induced cardiac contractile and intracellular Ca(2+) anomalies as well as mitochondrial injury. Copyright

  11. Inhibition of CYP2E1 attenuates chronic alcohol intake-induced myocardial contractile dysfunction and apoptosis.

    PubMed

    Zhang, Rong-Huai; Gao, Jian-Yuan; Guo, Hai-Tao; Scott, Glenda I; Eason, Anna R; Wang, Xiao-Ming; Ren, Jun

    2013-01-01

    Alcohol intake is associated with myocardial contractile dysfunction and apoptosis although the precise mechanism is unclear. This study was designed to examine the effect of the cytochrome P450 enzyme CYP2E1 inhibition on ethanol-induced cardiac dysfunction. Adult male mice were fed a 4% ethanol liquid or pair-fed control diet for 6weeks. Following 2weeks of diet feeding, a cohort of mice started to receive the CYP2E1 inhibitor diallyl sulfide (100mg/kg/d, i.p.) for the remaining feeding duration. Cardiac function was assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate CYP2E1, heme oxygenase-1 (HO-1), iNOS, the intracellular Ca(2+) regulatory proteins sarco(endo)plasmic reticulum Ca(2+)-ATPase, Na(+)Ca(2+) exchanger and phospholamban, pro-apoptotic protein cleaved caspase-3, Bax, c-Jun-NH(2)-terminal kinase (JNK) and apoptosis signal-regulating kinase (ASK-1). Ethanol led to elevated levels of CYP2E1, iNOS and phospholamban, decreased levels of HO-1 and Na(+)Ca(2+) exchanger, cardiac contractile and intracellular Ca(2+) defects, cardiac fibrosis, overt O(2)(-) production, and apoptosis accompanied with increased phosphorylation of JNK and ASK-1, the effects were significantly attenuated or ablated by diallyl sulfide. Inhibitors of JNK and ASK-1 but not HO-1 inducer or iNOS inhibitor obliterated ethanol-induced cardiomyocyte contractile dysfunction, substantiating a role for JNK and ASK-1 signaling in ethanol-induced myocardial injury. Taken together, these findings suggest that ethanol metabolism through CYP2E1 may contribute to the pathogenesis of alcoholic cardiomyopathy including myocardial contractile dysfunction, oxidative stress and apoptosis, possibly through activation of JNK and ASK-1 signaling. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Cardiac-specific knockout of ETA receptor mitigates low ambient temperature-induced cardiac hypertrophy and contractile dysfunction

    PubMed Central

    Zhang, Yingmei; Li, Linlin; Hua, Yinan; Nunn, Jennifer M.; Dong, Feng; Yanagisawa, Masashi; Ren, Jun

    2012-01-01

    Cold exposure is associated with oxidative stress and cardiac dysfunction. The endothelin (ET) system, which plays a key role in myocardial homeostasis, may participate in cold exposure-induced cardiovascular dysfunction. This study was designed to examine the role of ET-1 in cold stress-induced cardiac geometric and contractile responses. Wild-type (WT) and ETA receptor knockout (ETAKO) mice were assigned to normal or cold exposure (4°C) environment for 2 and 5 weeks prior to evaluation of cardiac geometry, contractile, and intracellular Ca2+ properties. Levels of the temperature sensor transient receptor potential vanilloid (TRPV1), mitochondrial proteins for biogenesis and oxidative phosphorylation, including UCP2, HSP90, and PGC1α were evaluated. Cold stress triggered cardiac hypertrophy, depressed myocardial contractile capacity, including fractional shortening, peak shortening, and maximal velocity of shortening/relengthening, reduced intracellular Ca2+ release, prolonged intracellular Ca2+ decay and relengthening duration, generation of ROS and superoxide, as well as apoptosis, the effects of which were blunted by ETAKO. Western blotting revealed downregulated TRPV1 and PGC1α as well as upregulated UCP2 and activation of GSK3β, GATA4, and CREB in cold-stressed WT mouse hearts, which were obliterated by ETAKO. Levels of HSP90, an essential regulator for thermotolerance, were unchanged. The TRPV1 agonist SA13353 attenuated whereas TRPV1 antagonist capsazepine mimicked cold stress- or ET-1-induced cardiac anomalies. The GSK3β inhibitor SB216763 ablated cold stress-induced cardiac contractile (but not remodeling) changes and ET-1-induced TRPV1 downregulation. These data suggest that ETAKO protects against cold exposure-induced cardiac remodeling and dysfunction mediated through TRPV1 and mitochondrial function. PMID:22442497

  13. Nitric oxide and CaMKII: Critical steps in the cardiac contractile response To IGF-1 and swim training.

    PubMed

    Burgos, Juan I; Yeves, Alejandra M; Barrena, Jorge P; Portiansky, Enrique L; Vila-Petroff, Martín G; Ennis, Irene L

    2017-11-01

    Cardiac adaptation to endurance training includes improved contractility by a non-yet clarified mechanism. Since IGF-1 is the main mediator of the physiological response to exercise, we explored its effect on cardiac contractility and the putative involvement of nitric oxide (NO) and CaMKII in control and swim-trained mice. IGF-1 increased cardiomyocyte shortening (128.1±4.6% vs. basal; p˂0.05) and accelerated relaxation (time to 50% relengthening: 49.2±2.0% vs. basal; p˂0.05), effects abrogated by inhibition of: AKT with MK-2206, NO production with the NO synthase (NOS) inhibitor L-NAME and the specific NOS1 inhibitor nitroguanidine (NG), and CaMKII with KN-93. In agreement, an increase in NO in response to IGF-1 (133.8±2.2%) was detected and prevented by both L-NAME and NG but not KN-93, suggesting that CaMKII activation was downstream NO. In addition, we determined CaMKII activity (P-CaMKII) and phosphorylation of its target, Thr17-PLN. IGF-1, by a NO-dependent mechanism, significantly increased both (227.2±29.4% and 145.3±5.4%, respectively) while no changes in the CaMKII phosphorylation site of ryanodine receptor were evident. The improvement in contractility induced by IGF-1 was associated with increased Ca 2+ transient amplitude, rate of decay and SR content. Interestingly, this response was absent in cardiomyocytes from transgenic mice that express a CaMKII inhibitory peptide (AC3-I strain). Moreover, AC3-I mice subjected to swim training did develop physiological cardiac hypertrophy but not the contractile adaptation. Therefore, we conclude that NO-dependent CaMKII activation plays a critical role in the improvement in contractility induced by IGF-1 and exercise training. Interestingly, this pathway would not contribute to the adaptive hypertrophy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A new technique for calculating individual dermal fibroblast contractile forces generated within collagen-GAG scaffolds.

    PubMed

    Harley, Brendan A; Freyman, Toby M; Wong, Matthew Q; Gibson, Lorna J

    2007-10-15

    Cell-mediated contraction plays a critical role in many physiological and pathological processes, notably organized contraction during wound healing. Implantation of an appropriately formulated (i.e., mean pore size, chemical composition, degradation rate) three-dimensional scaffold into an in vivo wound site effectively blocks the majority of organized wound contraction and results in induced regeneration rather than scar formation. Improved understanding of cell contraction within three-dimensional constructs therefore represents an important area of study in tissue engineering. Studies of cell contraction within three-dimensional constructs typically calculate an average contractile force from the gross deformation of a macroscopic substrate by a large cell population. In this study, cellular solids theory has been applied to conventional column buckling relationships to quantify the magnitude of individual cell contraction events within a three-dimensional, collagen-glycosaminoglycan scaffold. This new technique can be used for studying cell mechanics with a wide variety of porous scaffolds that resemble low-density, open-cell foams. It extends previous methods for analyzing cell buckling of two-dimensional substrates to three-dimensional constructs. From data available in the literature, the mean contractile force (Fc) generated by individual dermal fibroblasts within the collagen-glycosaminoglycan scaffold was calculated to range between 11 and 41 nN (Fc=26+/-13 nN, mean+/-SD), with an upper bound of cell contractility estimated at 450 nN.

  15. Urothelium-dependent and urothelium-independent detrusor contractility mediated by nitric oxide synthase and cyclooxygenase inhibition.

    PubMed

    Santoso, Aneira Gracia Hidayat; Lo, Wan Ning; Liang, Willmann

    2011-04-01

    The urothelium has been implicated in regulating detrusor smooth muscle contractility but the identity of the putative urothelium-derived inhibitory factor remains unconfirmed. There was inconclusive evidence on the role of nitric oxide synthase (NOS) and cyclooxygenase (COX) in mediating detrusor contractions. This study examined varying regulation by NOS and COX in transverse and longitudinal carbachol (CCh)-induced and unstimulated phasic contractions. Rat detrusor strips with the urothelium-intact (+UE) and urothelium-denuded (-UE) were isolated in both transverse and longitudinal directions. Isometric tension of the detrusor strips was recorded both during stimulation with CCh and at the unstimulated state. In the unstimulated state, phasic contractile activity was measured. Tension recordings were made with and without the NOS inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME) and COX inhibitor indomethacin (Indo). Only transverse +UE strips responded convincingly to L-NAME and Indo treatment, generating larger CCh-induced contractions. In unstimulated tissues, L-NAME treatment increased phasic amplitude in -UE strips only. Indo treatment failed to elicit any change in the amplitude but suppressed frequency of the phasic activity in transverse +UE strips. There was no significant Indo-mediated change in other strips. The data suggested heterogeneity in the regulation of directional detrusor contractility via NOS- and COX-associated mechanisms. Copyright © 2011 Wiley-Liss, Inc.

  16. Hall thruster with grooved walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Hong; Ning Zhongxi; Yu Daren

    2013-02-28

    Axial-oriented and azimuthal-distributed grooves are formed on channel walls of a Hall thruster after the engine undergoes a long-term operation. Existing studies have demonstrated the relation between the grooves and the near-wall physics, such as sheath and electron near-wall transport. The idea to optimize the thruster performance with such grooves was also proposed. Therefore, this paper is devoted to explore the effects of wall grooves on the discharge characteristics of a Hall thruster. With experimental measurements, the variations on electron conductivity, ionization distribution, and integrated performance are obtained. The involved physical mechanisms are then analyzed and discussed. The findings helpmore » to not only better understand the working principle of Hall thruster discharge but also establish a physical fundamental for the subsequent optimization with artificial grooves.« less

  17. Contraction of Abdominal Wall Muscles Influences Incisional Hernia Occurrence and Size

    PubMed Central

    Lien, Samuel C.; Hu, Yaxi; Wollstein, Adi; Franz, Michael G.; Patel, Shaun P.; Kuzon, William M.; Urbanchek, Melanie G.

    2015-01-01

    Background Incisional hernias are a complication in 10% of all open abdominal operations and can result in significant morbidity. The purpose of this study is to determine if inhibiting abdominal muscle contraction influences incisional hernia formation during laparotomy healing. We hypothesize that reducing abdominal musculature deformation reduces incisional hernia occurrence and size. Study Design Using an established rat model for incisional hernia, a laparotomy through the linea alba was closed with one mid-incision, fast-absorbing suture. Three groups were compared: a SHAM group (SHAM; n = 6) received no laparotomies while the Saline Hernia (SH; n = 6) and Botox Hernia (BH; n = 6) groups were treated once with equal volume saline or Botulinum Toxin (Botox®, Allergan) before the incomplete laparotomy closure. On post-operative day 14, the abdominal wall was examined for herniation and adhesions and contractile forces were measured for abdominal wall muscles. Results No hernias developed in SHAM rats. Rostral hernias developed in all SH and BH rats. Caudal hernias developed in all SH rats, but in only 50% of the BH rats. Rostral hernias in the BH group were 35% shorter and 43% narrower compared to those in the SH group (p < 0.05). The BH group had weaker abdominal muscles compared to the SHAM and SH groups (p < 0.05). Conclusions In our rat model, partial paralysis of abdominal muscles reduces the number and size of incisional hernias. These results confirm abdominal wall muscle contractions play a significant role in the pathophysiology of incisional hernia formation. PMID:25817097

  18. Time-varying wall stress: an index of ventricular vascular coupling.

    PubMed

    Dell'Italia, L J; Blackwell, G G; Thorn, B T; Pearce, D J; Bishop, S P; Pohost, G M

    1992-08-01

    Previous work in the isolated heart and intact circulation has suggested that the relationship between wall stress and time during left ventricular (LV) ejection is linear and that the slope, which will be referred to as time-varying wall stress, increases in response to augmentation in afterload. However, the etiology of the increase in slope has not been determined in an intact animal. Magnetic resonance imaging coupled with high-fidelity LV pressure measurement using a nonferrous catheter-tip manometer generates a detailed assessment of wall stress in an animal model where the thorax and pericardium have never been disturbed. Accordingly, six anesthetized dogs were studied during autonomic blockade with atropine and propranolol during angiotensin infusion, producing three widely disparate left ventricular systolic pressures (87 +/- 7 vs. 124 +/- 13 vs. 152 +/- 10 mmHg, P less than 0.001). Time-varying wall stress did not change from low to medium load (-42.4 +/- 9.5 to -27.3 +/- 22.3 g.cm-2.ms-1) but increased significantly at high load (-21.7 +/- 14.9 g.cm-2.ms-1, P less than 0.05). Analysis of the relative contribution of pressure, chamber radius, wall thickness, and long-axis dimension to the changes in time-varying wall stress demonstrated only the pressure component to change its relative contribution at medium (P less than 0.001) and high load (P less than 0.001). Therefore, we conclude that the increase in time-varying wall stress results from augmentation of pressure in the latter one-half of systole that is incompletely offset by shortening and wall thickening.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Differential effects of targeted tongue exercise and treadmill running on aging tongue muscle structure and contractile properties.

    PubMed

    Kletzien, Heidi; Russell, John A; Leverson, Glen E; Connor, Nadine P

    2013-02-15

    Age-associated changes in tongue muscle structure and strength may contribute to dysphagia in elderly people. Tongue exercise is a current treatment option. We hypothesized that targeted tongue exercise and nontargeted exercise that activates tongue muscles as a consequence of increased respiratory drive, such as treadmill running, are associated with different patterns of tongue muscle contraction and genioglossus (GG) muscle biochemistry. Thirty-one young adult, 34 middle-aged, and 37 old Fischer 344/Brown Norway rats received either targeted tongue exercise, treadmill running, or no exercise (5 days/wk for 8 wk). Protrusive tongue muscle contractile properties and myosin heavy chain (MHC) composition in the GG were examined at the end of 8 wk across groups. Significant age effects were found for maximal twitch and tetanic tension (greatest in young adult rats), MHCIIb (highest proportion in young adult rats), MHCIIx (highest proportion in middle-aged and old rats), and MHCI (highest proportion in old rats). The targeted tongue exercise group had the greatest maximal twitch tension and the highest proportion of MHCI. The treadmill running group had the shortest half-decay time, the lowest proportion of MHCIIa, and the highest proportion of MHCIIb. Fatigue was significantly less in the young adult treadmill running group and the old targeted tongue exercise group than in other groups. Thus, tongue muscle structure and contractile properties were affected by both targeted tongue exercise and treadmill running, but in different ways. Studies geared toward optimizing dose and manner of providing targeted and generalized tongue exercise may lead to alternative tongue exercise delivery strategies.

  20. Differential effects of targeted tongue exercise and treadmill running on aging tongue muscle structure and contractile properties

    PubMed Central

    Kletzien, Heidi; Russell, John A.; Leverson, Glen E.

    2013-01-01

    Age-associated changes in tongue muscle structure and strength may contribute to dysphagia in elderly people. Tongue exercise is a current treatment option. We hypothesized that targeted tongue exercise and nontargeted exercise that activates tongue muscles as a consequence of increased respiratory drive, such as treadmill running, are associated with different patterns of tongue muscle contraction and genioglossus (GG) muscle biochemistry. Thirty-one young adult, 34 middle-aged, and 37 old Fischer 344/Brown Norway rats received either targeted tongue exercise, treadmill running, or no exercise (5 days/wk for 8 wk). Protrusive tongue muscle contractile properties and myosin heavy chain (MHC) composition in the GG were examined at the end of 8 wk across groups. Significant age effects were found for maximal twitch and tetanic tension (greatest in young adult rats), MHCIIb (highest proportion in young adult rats), MHCIIx (highest proportion in middle-aged and old rats), and MHCI (highest proportion in old rats). The targeted tongue exercise group had the greatest maximal twitch tension and the highest proportion of MHCI. The treadmill running group had the shortest half-decay time, the lowest proportion of MHCIIa, and the highest proportion of MHCIIb. Fatigue was significantly less in the young adult treadmill running group and the old targeted tongue exercise group than in other groups. Thus, tongue muscle structure and contractile properties were affected by both targeted tongue exercise and treadmill running, but in different ways. Studies geared toward optimizing dose and manner of providing targeted and generalized tongue exercise may lead to alternative tongue exercise delivery strategies. PMID:23264540

  1. Analysis of microtubule growth dynamics arising from altered actin network structure and contractility in breast tumor cells

    NASA Astrophysics Data System (ADS)

    Ory, Eleanor C.; Bhandary, Lekhana; E Boggs, Amanda; Chakrabarti, Kristi R.; Parker, Joshua; Losert, Wolfgang; Martin, Stuart S.

    2017-04-01

    The periphery of epithelial cells is shaped by opposing cytoskeletal physical forces generated predominately by two dynamic force generating systems—growing microtubule ends push against the boundary from the cell center, and the actin cortex contracts the attached plasma membrane. Here we investigate how changes to the structure and dynamics of the actin cortex alter the dynamics of microtubules. Current drugs target actin polymerization and contraction to reduce cell division and invasiveness; however, the impacts on microtubule dynamics remain incompletely understood. Using human MCF-7 breast tumor cells expressing GFP-tagged microtubule end-binding-protein-1 (EB1) and coexpression of cytoplasmic fluorescent protein mCherry, we map the trajectories of growing microtubule ends and cytoplasmic boundary respectively. Based on EB1 tracks and cytoplasmic boundary outlines, we calculate the speed, distance from cytoplasmic boundary, and straightness of microtubule growth. Actin depolymerization with Latrunculin-A reduces EB1 growth speed as well as allows the trajectories to extend beyond the cytoplasmic boundary. Blebbistatin, a direct myosin-II inhibitor, reduced EB1 speed and yielded less straight EB1 trajectories. Inhibiting signaling upstream of myosin-II contractility via the Rho-kinase inhibitor, Y-27632, altered EB1 dynamics differently from Blebbistatin. These results indicate that reduced actin cortex integrity can induce distinct alterations in microtubule dynamics. Given recent findings that tumor stem cell characteristics are increased by drugs which reduce actin contractility or stabilize microtubules, it remains important to clearly define how cytoskeletal drugs alter the interactions between these two filament systems in tumor cells.

  2. Sensitive detection of maltose and glucose based on dual enzyme-displayed bacteria electrochemical biosensor.

    PubMed

    Liu, Aihua; Lang, Qiaolin; Liang, Bo; Shi, Jianguo

    2017-01-15

    Glucoamylase-displayed bacteria (GA-bacteria) and glucose dehydrogenase-displayed bacteria (GDH-bacteria) were co-immobilized on multi-walled carbon nanotubes (MWNTs) modified glassy carbon electrode (GCE) to construct GA-bacteria/GDH-bacteria/MWNTs/GCE biosensor. The biosensor was developed by optimizing the loading amount and the ratio of GA-bacteria to GDH-bacteria. The as-prepared biosensor exhibited a wide dynamic range of 0.2-10mM and a low detection limit of 0.1mM maltose (S/N=3). The biosensor also had a linear response to glucose in the range of 0.1-2.0mM and a low detection limit of 0.04mM glucose (S/N=3). Interestingly, at the same concentration, glucose was 3.75-fold sensitive than that of maltose at the proposed biosensor. No interferences were observed for other possible mono- and disaccharides. The biosensor also demonstrated good long-term storage stability and repeatability. Further, using both GDH-bacteria/MWNTs/GCE biosensor and GA-bacteria/GDH-bacteria/MWNTs/GCE biosensor, glucose and maltose in real samples can be detected. Therefore, the proposed biosensor is capable of monitoring the food manufacturing and fermentation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Increased CCT-eta expression is a marker of latent and active disease and a modulator of fibroblast contractility in Dupuytren's contracture.

    PubMed

    Satish, Latha; O'Gorman, David B; Johnson, Sandra; Raykha, Christina; Gan, Bing Siang; Wang, James H-C; Kathju, Sandeep

    2013-07-01

    Dupuytren's contracture (DC) is a fibroproliferative disorder of unknown etiology characterized by a scar-like contracture that develops in the palm and/or digits. We have previously reported that the eta subunit of the chaperonin containing T-complex polypeptide (CCT-eta) is increased in fibrotic wound healing, and is essential for the accumulation of α-smooth muscle actin (α-SMA) in fibroblasts. The purpose of this study was to determine if CCT-eta is similarly implicated in the aberrant fibrosis seen in DC and to investigate the role of CCT-eta in the behavior of myo/fibroblasts in DC. Fibroblasts were obtained from DC-affected palmar fascia, from adjacent phenotypically normal palmar fascia in the same DC patients (PF), and from non-DC palmar fascial tissues in patients undergoing carpal tunnel (CT) release. Inherent contractility in these three populations was examined using fibroblast-populated collagen lattices (FPCLs) and by cell traction force microscopy. Expression of CCT-eta and α-SMA protein was determined by Western blot. The effect of CCT-eta inhibition on the contractility of DC cells was determined by deploying an siRNA versus CCT-eta. DC cells were significantly more contractile than both matching palmar fascial (PF) cells and CT cells in both assays, with PF cells demonstrating an intermediate contractility in the FPCL assay. Whereas α-SMA protein was significantly increased only in DC cells compared to PF and CT cells, CCT-eta protein was significantly increased in both PF and DC cells compared to CT cells. siRNA-mediated depletion of CCT-eta inhibited the accumulation of both CCT-eta and α-SMA protein in DC cells, and also significantly decreased the contractility of treated DC cells. These observations suggest that increased expression of CCT-eta appears to be a marker for latent and active disease in these patients and to be essential for the increased contractility exhibited by these fibroblasts.

  4. Dissipation of contractile forces: the missing piece in cell mechanics.

    PubMed

    Kurzawa, Laetitia; Vianay, Benoit; Senger, Fabrice; Vignaud, Timothée; Blanchoin, Laurent; Théry, Manuel

    2017-07-07

    Mechanical forces are key regulators of cell and tissue physiology. The basic molecular mechanism of fiber contraction by the sliding of actin filament upon myosin leading to conformational change has been known for decades. The regulation of force generation at the level of the cell, however, is still far from elucidated. Indeed, the magnitude of cell traction forces on the underlying extracellular matrix in culture is almost impossible to predict or experimentally control. The considerable variability in measurements of cell-traction forces indicates that they may not be the optimal readout to properly characterize cell contractile state and that a significant part of the contractile energy is not transferred to cell anchorage but instead is involved in actin network dynamics. Here we discuss the experimental, numerical, and biological parameters that may be responsible for the variability in traction force production. We argue that limiting these sources of variability and investigating the dissipation of mechanical work that occurs with structural rearrangements and the disengagement of force transmission is key for further understanding of cell mechanics. © 2017 Kurzawa et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Simultaneously Targeting Myofibroblast Contractility and Extracellular Matrix Cross-Linking as a Therapeutic Concept in Airway Fibrosis

    PubMed Central

    Lin, Yu-chun; Sung, Yon K.; Jiang, Xinguo; Peters-Golden, Marc; Nicolls, Mark R.

    2016-01-01

    Fibrosis after solid organ transplantation is considered an irreversible process and remains the major cause of graft dysfunction and death with limited therapies. This remodeling is characterized by aberrant accumulation of contractile myofibroblasts that deposit excessive extracellular matrix (ECM) and increase tissue stiffness. However, studies demonstrate that a stiff ECM, itself, promotes fibroblast-to-myofibroblast differentiation, stimulating further ECM production. This creates a positive feedback loop that perpetuates fibrosis. We hypothesized that simultaneously targeting myofibroblast contractility with relaxin and ECM stiffness with lysyl oxidase inhibitors could break the feedback loop, thereby, reversing established fibrosis. To test this, we used the orthotopic tracheal transplanted (OTT) mouse model, which develops robust fibrotic airway remodeling. Mice with established fibrosis were treated with saline, mono-, or combination therapies. While monotherapies had no effect, combining these agents decreased collagen deposition and promoted re-epithelialization of remodeled airways. Relaxin inhibited myofibroblast differentiation and contraction, in a matrix-stiffness-dependent manner through prostaglandin E2 (PGE2). Furthermore, the effect of combination therapy was lost in PGE2 receptor knockout and PGE2 inhibited OTT mice. This study reveals the important synergistic roles of cellular contractility and tissue stiffness in the maintenance of fibrotic tissue and suggests a new therapeutic principle for fibrosis. PMID:27804215

  6. Distinct contractile and molecular differences between two goat models of atrial dysfunction: AV block-induced atrial dilatation and atrial fibrillation.

    PubMed

    Greiser, Maura; Neuberger, Hans-Ruprecht; Harks, Erik; El-Armouche, Ali; Boknik, Peter; de Haan, Sunniva; Verheyen, Fons; Verheule, Sander; Schmitz, Wilhelm; Ravens, Ursula; Nattel, Stanley; Allessie, Maurits A; Dobrev, Dobromir; Schotten, Ulrich

    2009-03-01

    Atrial dilatation is an independent risk factor for thromboembolism in patients with and without atrial fibrillation (AF). In many patients, atrial dilatation goes along with depressed contractile function of the dilated atria. While some mechanisms causing atrial contractile dysfunction in fibrillating atria have been addressed previously, the cellular and molecular mechanisms of atrial contractile remodeling in dilated atria are unknown. This study characterized in vivo atrial contractile function in a goat model of atrial dilatation and compared it to a goat model of AF. Differences in the underlying mechanisms were elucidated by studying contractile function, electrophysiology and sarcoplasmic reticulum (SR) Ca2+ load in atrial muscle bundles and by analyzing expression and phosphorylation levels of key Ca2+-handling proteins, myofilaments and the expression and activity of their upstream regulators. In 7 chronically instrumented, awake goats atrial contractile dysfunction was monitored during 3 weeks of progressive atrial dilatation after AV-node ablation (AV block goats (AVB)). In open chest experiments atrial work index (AWI) and refractoriness were measured (10 goats with AVB, 5 goats with ten days of AF induced by repetitive atrial burst pacing (AF), 10 controls). Isometric force of contraction (FC), transmembrane action potentials (APs) and rapid cooling contractures (RCC, a measure of SR Ca2+ load) were studied in right atrial muscle bundles. Total and phosphorylated Ca2+-handling and myofilament protein levels were quantified by Western blot. In AVB goats, atrial size increased by 18% (from 26.6+/-4.4 to 31.6+/-5.5 mm, n=7 p<0.01) while atrial fractional shortening (AFS) decreased (from 18.4+/-1.7 to 12.8+/-4.0% at 400 ms, n=7, p<0.01). In open chest experiments, AWI was reduced in AVB and in AF goats compared to controls (at 400 ms: 8.4+/-0.9, n=7, and 3.2+/-1.8, n=5, vs 18.9+/-5.3 mmxmmHg, n=7, respectively, p<0.05 vs control). FC of isolated right

  7. Prevalence and histopathological finding of thin-walled and thick-walled Sarcocysts in slaughtered cattle of Karaj abattoir, Iran.

    PubMed

    Nourollahi-Fard, Saeid R; Kheirandish, Reza; Sattari, Saeid

    2015-06-01

    Sarcocystosis is a zoonotic disease caused by Sarcocystis spp. with obligatory two host life cycle generally alternating between an herbivorous intermediate host and a carnivorous definitive host. Some species of this coccidian parasite can cause considerable morbidity and mortality in cattle. The present study was set to investigate the prevalence of Sarcocystis spp. and type of cyst wall in slaughtered cattle of Karaj abattoir, Iran. For this purpose 125 cattle (88 males and 37 females) were investigated for the presence of macroscopic and microscopic Sarcocystis cysts in muscular tissues. No macroscopic Sarcocystis cysts were found in any of the samples. In light microscopy, 121 out of 125 cattle (96.8 %) had thin-walled cysts of Sarcocystis cruzi, while 43 out of them (34.4 %) had thick-walled Sarcocystis cyst. In this survey, the most infected tissue was esophagus and heart and the less was diaphragm. Thin-walled cysts (S. cruzi) mostly found in heart and skeletal muscle showed the less. However, thick-walled cyst (S. hominis or S. hirsuta) mostly were detected in diaphragm, heart muscle showed no thick-walled cyst. No significant relation was observed between age and sex and the rate of infection. The results showed that Sarcocystis cyst is prevalent in cattle in the North part of Iran and the evaluation of infection potential can be useful when considering control programs.

  8. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres.

    PubMed

    Trinh, Huong H; Lamb, Graham D

    2006-07-01

    1. The twitch characteristics (fast-twitch or slow-twitch) of skeletal muscle fibres are determined not only by the contractile apparatus properties of the fibre, but also by the time-course of Ca2+ release and re-uptake by the sarcoplasmic reticulum (SR). The present study examined, in individual fibres from non-transforming muscle of the rat, whether particular SR properties are matched to the contractile apparatus properties of the fibre, in particular in the case of fibres with fast-twitch contractile apparatus located in a slow-twitch muscle, namely the soleus. 2. Force was recorded in single, mechanically skinned fibres from extensor digitorum longus (EDL), gastrocnemius, peroneus longus and soleus muscles. Using repeated cycles in which the SR was emptied of all releasable Ca2+ and then reloaded, it was possible to determine the relative amount of Ca2+ present in the SR endogenously, the maximum SR capacity and the rate of Ca2+ loading. The sensitivity of the contractile apparatus to Ca2+ and Sr2+ was used to classify the fibres as fast-twitch (FT), slow-twitch (ST) or mixed (< 3% of the fibres examined) and thereby identify the likely troponin C and myosin heavy chain types present. 3. There was no significant difference in SR properties between the groups of FT fibres obtained from the four different muscles, including soleus. Despite some overlap in the SR properties of individual fibres between the FT and ST groups, the properties of the FT fibres in all four muscles studied were significantly different from those of the ST and mixed fibres. 4. In general, in FT fibres the SR had a larger capacity and the endogenous Ca2+ content was a relatively lower percentage of maximum compared with ST fibres. Importantly, in terms of their SR properties, FT fibres from soleus muscle more closely resembled FT fibres from other muscles than they did ST fibres from soleus muscle.

  9. Fecal-coliform bacteria in extended-aeration plant sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, M.; Kester, G.; Arant, S.

    1998-07-01

    The concentration of fecal-coliform bacteria in sludge from extended-aeration plants was analyzed for compliance with new state and federal land application requirements. This study was initiated to determine if additional digestion would be necessary for plants to meet the new pathogen standards of less than 2 million CFU per gm of solids. Sludge was found to contain less than 2 million fecal coliform bacteria/gm of sludge as a result of a combination or aerobic digestion and/or long term storage.

  10. Coupled expression of troponin T and troponin I isoforms in single skeletal muscle fibers correlates with contractility.

    PubMed

    Brotto, Marco A; Biesiadecki, Brandon J; Brotto, Leticia S; Nosek, Thomas M; Jin, Jian-Ping

    2006-02-01

    Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca(2+) via the troponin complex. Slow- and fast-twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities, and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin, troponin T (TnT), and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton X-100-skinned single fibers from soleus, diaphragm, gastrocnemius, and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of the TnT and TnI isoforms to investigate their role in determining contractility. Types IIa, IIx, and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca(2+) sensitivity than that of the fast troponin fibers, whereas fibers containing fast troponin showed a higher cooperativity of Ca(2+) activation than that of the slow troponin fibers. These results demonstrate distinct but coordinated regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties of muscle.

  11. [Predation of micro-protozoa on bacteria in Taihu Lake].

    PubMed

    Chen, Mo; Gao, Guang; Zhu, Li-Ping; Feng, Sheng

    2007-10-01

    With dilution method, this paper studied the predation of different size micro-protozoa on bacteria in Taihu Lake, and approached the effects of the predation on bacterial growth and of the water temperature on the predation. The results showed that in the water body of Taihu Lake, the predation rate of micro-protozoa with its size less than 32 microm was 5.07 d(-1), and the nano-size (less than 16 microm) protozoa contributed about 90.7%. The predation of nano-protozoa reduced the abundance of bacteria significantly. With the increase of water temperature, the predation rate of nano-protozoa and the growth rate of bacteria increased obviously.

  12. Unravelling the contribution of lactic acid bacteria and acetic acid bacteria to cocoa fermentation using inoculated organisms.

    PubMed

    Ho, Van Thi Thuy; Fleet, Graham H; Zhao, Jian

    2018-08-20

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of the bean pulp by microorganisms is essential for developing the precursors of chocolate flavour. Currently, the cocoa fermentation is still conducted by an uncontrolled traditional process via a consortium of indigenous species of yeasts, lactic acid bacteria and acetic acid bacteria. Although the essential contribution of yeasts to the production of good quality beans and, typical chocolate character is generally agreed, the roles of lactic acid bacteria and acetic acid bacteria are less certain. The objective of this study was to investigate the contribution of LAB and AAB in cocoa bean fermentation by conducting small scale laboratory fermentations under aseptic conditions, inoculated with different groups of microorganisms previously isolated from spontaneous cocoa fermentations. The inoculation protocols were: (1) four yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae; (2) four yeasts plus the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum; (3) four yeasts plus the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateuri and (4) four yeasts plus two lactic acid bacteria and two acetic acid bacteria. Only the inoculated species were detected in the microbiota of their respective fermentations. Beans from the inoculated fermentations showed no significant differences in colour, shell weights and concentrations of residual sugars, alcohols and esters (p>0.05), but they were slightly different in contents of lactic acid and acetic acid (p<0.05). All beans were fully brown and free of mould. Residual sugar levels were less than 2.6 mg/g while the shell contents and ethanol were in the range of 11-13.4% and 4.8-7 mg/g, respectively. Beans fermented in the presence of LAB contained higher levels of lactic acid (0.6-1.2 mg/g) whereas higher concentrations of acetic acid

  13. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning.

    PubMed

    Baldwin, K M; Caiozzo, V J; Haddad, F; Baker, M J; Herrick, R E

    1994-05-01

    Previous studies have shown that the unloading of skeletal muscle, as occurring during exposure to space flight, exerts a profound effect on both the mass (cross sectional area) of skeletal muscle fibers and the relative expression of protein isoforms comprising the contractile system. Available information suggests that slow (type I) fibers, comprising chiefly the antigravity muscles of experimental animals, in addition to atrophying, undergo alterations in the type of myosin heavy chain (MHC) expressed such that faster isoforms become concomitantly expressed in a sub-population of slow fibers when insufficient force-bearing activity is maintained on the muscle. Consequently, these transformations in both mass and myosin heavy chain phenotype could exert a significant impact on the functional properties of skeletal muscle as manifest in the strength, contractile speed, and endurance scope of the muscle. To further explore these issues, a study was performed in which young adult male rats were exposed to zero gravity for six days, following which, the antigravity soleus muscle was examined for a) contractile properties, determined in situ and b) isomyosin expression, as studied using biochemical, molecular biology, and histochemical/immunohistochemical techniques.

  14. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.; Caiozzo, V. J.; Haddad, F.; Baker, M. J.; Herrick, R. E.

    1994-01-01

    Previous studies have shown that the unloading of skeletal muscle, as occurring during exposure to space flight, exerts a profound effect on both the mass (cross sectional area) of skeletal muscle fibers and the relative expression of protein isoforms comprising the contractile system. Available information suggests that slow (type I) fibers, comprising chiefly the antigravity muscles of experimental animals, in addition to atrophying, undergo alterations in the type of myosin heavy chain (MHC) expressed such that faster isoforms become concomitantly expressed in a sub-population of slow fibers when insufficient force-bearing activity is maintained on the muscle. Consequently, these transformations in both mass and myosin heavy chain phenotype could exert a significant impact on the functional properties of skeletal muscle as manifest in the strength, contractile speed, and endurance scope of the muscle. To further explore these issues, a study was performed in which young adult male rats were exposed to zero gravity for six days, following which, the antigravity soleus muscle was examined for a) contractile properties, determined in situ and b) isomyosin expression, as studied using biochemical, molecular biology, and histochemical/immunohistochemical techniques.

  15. Active invasion of bacteria into living fungal cells

    PubMed Central

    Moebius, Nadine; Üzüm, Zerrin; Dijksterhuis, Jan; Lackner, Gerald; Hertweck, Christian

    2014-01-01

    The rice seedling blight fungus Rhizopus microsporus and its endosymbiont Burkholderia rhizoxinica form an unusual, highly specific alliance to produce the highly potent antimitotic phytotoxin rhizoxin. Yet, it has remained a riddle how bacteria invade the fungal cells. Genome mining for potential symbiosis factors and functional analyses revealed that a type 2 secretion system (T2SS) of the bacterial endosymbiont is required for the formation of the endosymbiosis. Comparative proteome analyses show that the T2SS releases chitinolytic enzymes (chitinase, chitosanase) and chitin-binding proteins. The genes responsible for chitinolytic proteins and T2SS components are highly expressed during infection. Through targeted gene knock-outs, sporulation assays and microscopic investigations we found that chitinase is essential for bacteria to enter hyphae. Unprecedented snapshots of the traceless bacterial intrusion were obtained using cryo-electron microscopy. Beyond unveiling the pivotal role of chitinolytic enzymes in the active invasion of a fungus by bacteria, these findings grant unprecedented insight into the fungal cell wall penetration and symbiosis formation. DOI: http://dx.doi.org/10.7554/eLife.03007.001 PMID:25182414

  16. Chemometric Analysis of Bacterial Peptidoglycan Reveals Atypical Modifications That Empower the Cell Wall against Predatory Enzymes and Fly Innate Immunity.

    PubMed

    Espaillat, Akbar; Forsmo, Oskar; El Biari, Khouzaima; Björk, Rafael; Lemaitre, Bruno; Trygg, Johan; Cañada, Francisco Javier; de Pedro, Miguel A; Cava, Felipe

    2016-07-27

    Peptidoglycan is a fundamental structure for most bacteria. It contributes to the cell morphology and provides cell wall integrity against environmental insults. While several studies have reported a significant degree of variability in the chemical composition and organization of peptidoglycan in the domain Bacteria, the real diversity of this polymer is far from fully explored. This work exploits rapid ultraperformance liquid chromatography and multivariate data analysis to uncover peptidoglycan chemical diversity in the Class Alphaproteobacteria, a group of Gram negative bacteria that are highly heterogeneous in terms of metabolism, morphology and life-styles. Indeed, chemometric analyses revealed novel peptidoglycan structures conserved in Acetobacteria: amidation at the α-(l)-carboxyl of meso-diaminopimelic acid and the presence of muropeptides cross-linked by (1-3) l-Ala-d-(meso)-diaminopimelate cross-links. Both structures are growth-controlled modifications that influence sensitivity to Type VI secretion system peptidoglycan endopeptidases and recognition by the Drosophila innate immune system, suggesting relevant roles in the environmental adaptability of these bacteria. Collectively our findings demonstrate the discriminative power of chemometric tools on large cell wall-chromatographic data sets to discover novel peptidoglycan structural properties in bacteria.

  17. Myocardial mechanics, energetics, and hemodynamics during intraaortic balloon and transvalvular axial flow hemopump support with a bovine model of ischemic cardiac dysfunction.

    PubMed

    Marks, J D; Pantalos, G M; Long, J W; Kinoshita, M; Everett, S D; Olsen, D B

    1999-01-01

    Unlike the mechanisms of intraaortic balloon pump (IABP) support, the mechanisms by which transvalvular axial flow Hemopump (HP) support benefit dysfunctional myocardium are less clearly understood. To help elucidate these mechanisms, hemodynamic, metabolic, and mechanical indexes of left ventricular function were measured during conditions of control, ischemic dysfunction, IABP support, and HP support. A large animal (calf) model of left ventricular dysfunction was created with multiple coronary ligations. Peak intraventricular pressure increased with HP support and decreased with IABP support. Intramyocardial pressure (an indicator of intramyocardial stress), time rate of pressure change (an indicator of contractility), and left ventricular myocardial oxygen consumption decreased with IABP and HP support. Left ventricular work decreased with HP support and increased with IABP support. During HP support, indexes of wall stress, work, and contractility, all primary determinants of oxygen consumption, were reduced. During IABP support, indexes of wall stress and contractility were reduced and external work increased. These changes were attributed primarily to changes in ventricular preload, and geometry for HP support, and to a reduction in afterload for IABP support. These findings support the hypothesis that both HP and IABP support reduce intramyocardial stress development and the corresponding oxygen consumption, although via different mechanisms.

  18. Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion

    PubMed Central

    Ahmadzadeh, Hossein; Webster, Marie R.; Behera, Reeti; Jimenez Valencia, Angela M.; Wirtz, Denis; Weeraratna, Ashani T.; Shenoy, Vivek B.

    2017-01-01

    Cancer cell invasion from primary tumors is mediated by a complex interplay between cellular adhesions, actomyosin-driven contractility, and the physical characteristics of the extracellular matrix (ECM). Here, we incorporate a mechanochemical free-energy–based approach to elucidate how the two-way feedback loop between cell contractility (induced by the activity of chemomechanical interactions such as Ca2+ and Rho signaling pathways) and matrix fiber realignment and strain stiffening enables the cells to polarize and develop contractile forces to break free from the tumor spheroids and invade into the ECM. Interestingly, through this computational model, we are able to identify a critical stiffness that is required by the matrix to break intercellular adhesions and initiate cell invasion. Also, by considering the kinetics of the cell movement, our model predicts a biphasic invasiveness with respect to the stiffness of the matrix. These predictions are validated by analyzing the invasion of melanoma cells in collagen matrices of varying concentration. Our model also predicts a positive correlation between the elongated morphology of the invading cells and the alignment of fibers in the matrix, suggesting that cell polarization is directly proportional to the stiffness and alignment of the matrix. In contrast, cells in nonfibrous matrices are found to be rounded and not polarized, underscoring the key role played by the nonlinear mechanics of fibrous matrices. Importantly, our model shows that mechanical principles mediated by the contractility of the cells and the nonlinearity of the ECM behavior play a crucial role in determining the phenotype of the cell invasion. PMID:28196892

  19. New insights into roles of acidocalcisomes and contractile vacuole complex in osmoregulation in protists.

    PubMed

    Docampo, Roberto; Jimenez, Veronica; Lander, Noelia; Li, Zhu-Hong; Niyogi, Sayantanee

    2013-01-01

    While free-living protists are usually subjected to hyposmotic environments, parasitic protists are also in contact with hyperosmotic habitats. Recent work in one of these parasites, Trypanosoma cruzi, has revealed that its contractile vacuole complex, which usually collects and expels excess water as a mechanism of regulatory volume decrease after hyposmotic stress, has also a role in cell shrinking when the cells are submitted to hyperosmotic stress. Trypanosomes also have an acidic calcium store rich in polyphosphate (polyP), named the acidocalcisome, which is involved in their response to osmotic stress. Here, we review newly emerging insights on the role of acidocalcisomes and the contractile vacuole complex in the cellular response to hyposmotic and hyperosmotic stresses. We also review the current state of knowledge on the composition of these organelles and their other roles in calcium homeostasis and protein trafficking. © 2013, Elsevier Inc. All Rights Reserved.

  20. Free radicals mediate postshock contractile impairment in cardiomyocytes.

    PubMed

    Tsai, Min-Shan; Sun, Shijie; Tang, Wanchun; Ristagno, Giuseppe; Chen, Wen-Jone; Weil, Max Harry

    2008-12-01

    Previous studies demonstrated myocardial dysfunction after electrical shock and indicated it may be related to free radicals. Whether the free radicals are generated after electrical shock has not been documented at the cellular level. This study was to investigate whether electrical shock generates intracellular free radicals inside cardiomyocytes and to evaluate whether reducing intracellular free radicals by pretreatment of ascorbic acid would reduce the contractile dysfunction after electrical shock. Randomized prospective animal study. University affiliated research laboratory. Sprague-Dawley rats. Cardiomyocytes isolated from adult male rats were divided into four groups: (1) electrical shock alone; (2) electrical shock pretreated with ascorbic acid; (3) pretreated with ascorbic acid alone; and (4) control. Ascorbic acid (0.2 mM) was administrated in the perfusate of the ascorbic acid + electrical shock and ascorbic acid groups. A 2-J electrical shock was delivered to the electrical shock and ascorbic acid + electrical shock groups. DCFH-DA-loaded cardiomyocytes showed increased intracellular free radicals after electrical shock. The contractions and Ca2+ transients were recorded optically with fura-2 loading. Within 4 mins after electrical shock in the electrical shock group, the length shortening decreased from 8.4% +/- 2.5% to 5.6% +/- 3.4% (p = 0.000) and the Ca2+ transient decreased from 1.15 +/- 0.13 au to 1.08 +/- 0.1 au (p = 0.038). Compared with control, a significant difference in length shortening (p = 0.001) but not Ca2+ transient (p = 0.052) was noted. In the presence of ascorbic acid, electrical shock did not affect length shortening and Ca2+ transient. Electrical shock generates free radicals inside the cardiomyocyte, and causes contractile impairment and associated decrease of Ca transient. Administering ascorbic acid may improve such damage by eliminating free radicals.

  1. Dominant Groups of Potentially Active Bacteria Shared by Barley Seeds become Less Abundant in Root Associated Microbiome.

    PubMed

    Yang, Luhua; Danzberger, Jasmin; Schöler, Anne; Schröder, Peter; Schloter, Michael; Radl, Viviane

    2017-01-01

    Endophytes are microorganisms colonizing plant internal tissues. They are ubiquitously associated with plants and play an important role in plant growth and health. In this work, we grew five modern cultivars of barley in axenic systems using sterile sand mixture as well as in greenhouse with natural soil. We characterized the potentially active microbial communities associated with seeds and roots using rRNA based amplicon sequencing. The seeds of the different cultivars share a great part of their microbiome, as we observed a predominance of a few bacterial OTUs assigned to Phyllobacterium , Paenibacillus , and Trabusiella . Seed endophytes, particularly members of the Enterobacteriacea and Paenibacillaceae, were important members of root endophytes in axenic systems, where there were no external microbes. However, when plants were grown in soil, seed endophytes became less abundant in root associated microbiome. We observed a clear enrichment of Actinobacteriacea and Rhizobiaceae, indicating a strong influence of the soil bacterial communities on the composition of the root microbiome. Two OTUs assigned to Phyllobacteriaceae were found in all seeds and root samples growing in soil, indicating a relationship between seed-borne and root associated microbiome in barley. Even though the role of endophytic bacteria remains to be clarified, it is known that many members of the genera detected in our study produce phytohormones, shape seedling exudate profile and may play an important role in germination and establishment of the seedlings.

  2. Muscular tissues of the squid Doryteuthis pealeii express identical myosin heavy chain isoforms: an alternative mechanism for tuning contractile speed

    PubMed Central

    Shaffer, Justin F.; Kier, William M.

    2012-01-01

    SUMMARY The speed of muscle contraction is largely controlled at the sarcomere level by the ATPase activity of the motor protein myosin. Differences in amino acid sequence in catalytically important regions of myosin yield different myosin isoforms with varying ATPase activities and resulting differences in cross-bridge cycling rates and interfilamentary sliding velocities. Modulation of whole-muscle performance by changes in myosin isoform ATPase activity is regarded as a universal mechanism to tune contractile properties, especially in vertebrate muscles. Invertebrates such as squid, however, may exhibit an alternative mechanism to tune contractile properties that is based on differences in muscle ultrastructure, including variable myofilament and sarcomere lengths. To determine definitively whether contractile properties of squid muscles are regulated via different myosin isoforms (i.e. different ATPase activities), the nucleotide and amino acid sequences of the myosin heavy chain from the squid Doryteuthis pealeii were determined from the mantle, arm, tentacle, fin and funnel retractor musculature. We identified three myosin heavy chain isoforms in squid muscular tissues, with differences arising at surface loop 1 and the carboxy terminus. All three isoforms were detected in all five tissues studied. These results suggest that the muscular tissues of D. pealeii express identical myosin isoforms, and it is likely that differences in muscle ultrastructure, not myosin ATPase activity, represent the most important mechanism for tuning contractile speeds. PMID:22189767

  3. A film-based wall shear stress sensor for wall-bounded turbulent flows

    NASA Astrophysics Data System (ADS)

    Amili, Omid; Soria, Julio

    2011-07-01

    In wall-bounded turbulent flows, determination of wall shear stress is an important task. The main objective of the present work is to develop a sensor which is capable of measuring surface shear stress over an extended region applicable to wall-bounded turbulent flows. This sensor, as a direct method for measuring wall shear stress, consists of mounting a thin flexible film on the solid surface. The sensor is made of a homogeneous, isotropic, and incompressible material. The geometry and mechanical properties of the film are measured, and particles with the nominal size of 11 μm in diameter are embedded on the film's surface to act as markers. An optical technique is used to measure the film deformation caused by the flow. The film has typically deflection of less than 2% of the material thickness under maximum loading. The sensor sensitivity can be adjusted by changing the thickness of the layer or the shear modulus of the film's material. The paper reports the sensor fabrication, static and dynamic calibration procedure, and its application to a fully developed turbulent channel flow at Reynolds numbers in the range of 90,000-130,000 based on the bulk velocity and channel full height. The results are compared to alternative wall shear stress measurement methods.

  4. Itraconazole decreases left ventricular contractility in isolated rabbit heart: Mechanism of action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Yusheng, E-mail: yqu@amgen.com; Fang, Mei; Gao, BaoXi

    Itraconazole (ITZ) is an approved antifungal agent that carries a “black box warning” in its label regarding a risk of negative cardiac inotropy based on clinical findings. Since the mechanism of the negative inotropic effect is unknown, we performed a variety of preclinical and mechanistic studies to explore the pharmacological profile of ITZ and understand the negative inotropic mechanism. ITZ was evaluated in: (1) an isolated rabbit heart (IRH) preparation using Langendorff retrograde perfusion; (2) ion channel studies; (3) a rat heart mitochondrial function profiling screen; (4) a mitochondrial membrane potential (MMP) assay; (5) in vitro pharmacology profiling assays (148more » receptors, ion channels, transporters, and enzymes); and (6) a kinase selectivity panel (451 kinases). In the IRH, ITZ decreased cardiac contractility (> 30%) at 0.3 μM, with increasing effect at higher concentrations, which indicated a direct negative inotropic effect upon the heart. It also decreased heart rate and coronary flow (≥ 1 μM) and prolonged PR/QRS intervals (3 μM). In mechanistic studies, ITZ inhibited the cardiac NaV channel (IC{sub 50}: 4.2 μM) and was devoid of any functional inhibitory effect at the remaining pharmacological targets. Lastly, ITZ did not affect MMP, nor interfere with mitochondrial enzymes or processes involved with fuel substrate utilization or energy formation. Overall, the cardiovascular and mechanistic data suggest that ITZ-induced negative inotropy is a direct effect on the heart, in addition, the potential involvement of mitochondria function and L-type Ca{sup 2+} channels are eliminated. The exact mechanism underlying the negative inotropy is uncertain, and requires further study. - Highlights: ► Effect of itraconazole (ITZ) was assessed in the isolated rabbit heart (IRH) assay. ► ITZ decreased ventricular contractility in IRH, indicating a direct effect. ► IC{sub 50} of ITZ on L-type I{sub Ca} was greater than 30 μM, on I

  5. Aging near the wall in colloidal glasses

    NASA Astrophysics Data System (ADS)

    Cao, Cong; Huang, Xinru; Weeks, Eric

    In a colloidal glass system, particles move slower as sample ages. In addition, their motions may be affected by their local structure, and this structure will be different near a wall. We examine how the aging process near a wall differs from that in the bulk of the sample. In particular, we use a confocal microscope to observe 3D motion in a bidisperse colloidal glass sample. We find that flat walls induce the particles to organize into layers. The aging process behaves differently near the boundary, especially within the first three layers. Particle motion near the wall is noticeably slower but also changes less dramatically with age. We compare and contrast aging seen in samples with flat and rough walls.

  6. Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display

    PubMed Central

    Desvaux, Mickaël; Candela, Thomas; Serror, Pascale

    2018-01-01

    The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria) is formed of a cytoplasmic membrane (CM) and a cell wall (CW). While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG) covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO) for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226), i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658), i.e., the lipoproteins. At the CW (GO: 0009275), cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed. PMID:29491848

  7. Coupled expression of troponin T and troponin I isoforms in single skeletal muscle fibers correlates with contractility

    PubMed Central

    BROTTO, MARCO A.; BIESIADECKI, BRANDON J.; BROTTO, LETICIA S.; NOSEK, THOMAS M; JIN, J.-P.

    2005-01-01

    (Summary) Brotto, Marco A., Brandon J. Biesiadecki, Leticia S. Brotto, Thomas M. Nosek, and J.-P. Jin. Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca2+ via the troponin complex. Slow and fast twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin and troponin T (TnT) and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton skinned single fibers from soleus, diaphragm, gastrocnemius and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of TnT and TnI isoform to investigate their role in determining contractility. Type IIa, IIx and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca2+ sensitivity than that of the fast troponin fibers, while fibers containing fast troponin showed a higher cooperativity of Ca2+ activation than that of the slow troponin fibers. The results demonstrate distinctive, but coordinated, regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties. PMID:16192301

  8. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy.

    PubMed

    Mendias, Christopher L; Schwartz, Andrew J; Grekin, Jeremy A; Gumucio, Jonathan P; Sugg, Kristoffer B

    2017-03-01

    Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sF o ), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic

  9. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy

    PubMed Central

    Schwartz, Andrew J.; Grekin, Jeremy A.; Gumucio, Jonathan P.; Sugg, Kristoffer B.

    2017-01-01

    Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sFo), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic

  10. Local and global gravitational aspects of domain wall space-times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cvetic, M.; Griffies, S.; Soleng, H.H.

    1993-09-15

    Local and global gravitational effects induced by eternal vacuum domain walls are studied. We concentrate on thin walls between nonequal and nonpositive cosmological constants on each side of the wall. The assumption of homogeneity, isotropy, and geodesic completeness of the space-time intrinsic to the wall as described in the comoving coordinate system and the constraint that the same symmetries hold in hypersurfaces parallel to the wall yield a general [ital Ansatz] for the line element of space-time. We restrict the problem further by demanding that the wall's surface energy density, [sigma], is positive and by requiring that the infinitely thinmore » wall represents a thin-wall limit of kinklike scalar field configuration. These vacuum domain walls fall in three classes depending on the value of their [sigma]: (1) extreme walls with [sigma]=[sigma][sub ext] are planar, static walls corresponding to supersymmetric configurations, (2) nonextreme walls with [sigma]=[sigma][sub non][gt][sigma][sub ext] correspond to expanding bubbles with observers on either side of the wall being [ital inside] the bubble, and (3) ultraextreme walls with [sigma]=[sigma][sub ultra][lt][sigma][sub ext] represent the bubbles of false vacuum decay. On the sides with less negative cosmological constant, the extreme, nonextreme, and ultraextreme walls exhibit no, repulsive, and attractive effective gravitational forces,'' respectively. These gravitational forces'' are global effects not caused by local curvature. Since the nonextreme wall encloses observers on both sides, the supersymmetric system has the lowest gravitational mass accessible to outside observers. It is conjectured that similar positive mass protection occurs in all physical systems and that no finite negative mass object can exist inside the universe.« less

  11. Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for Gram-positive bacteria

    PubMed Central

    Richter, Stefan G.; Elli, Derek; Kim, Hwan Keun; Hendrickx, Antoni P. A.; Sorg, Joseph A.; Schneewind, Olaf; Missiakas, Dominique

    2013-01-01

    The current epidemic of infections caused by antibiotic-resistant Gram-positive bacteria requires the discovery of new drug targets and the development of new therapeutics. Lipoteichoic acid (LTA), a cell wall polymer of Gram-positive bacteria, consists of 1,3-polyglycerol-phosphate linked to glycolipid. LTA synthase (LtaS) polymerizes polyglycerol-phosphate from phosphatidylglycerol, a reaction that is essential for the growth of Gram-positive bacteria. We screened small molecule libraries for compounds inhibiting growth of Staphylococcus aureus but not of Gram-negative bacteria. Compound 1771 [2-oxo-2-(5-phenyl-1,3,4-oxadiazol-2-ylamino)ethyl 2-naphtho[2,1-b]furan-1-ylacetate] blocked phosphatidylglycerol binding to LtaS and inhibited LTA synthesis in S. aureus and in Escherichia coli expressing ltaS. Compound 1771 inhibited the growth of antibiotic-resistant Gram-positive bacteria and prolonged the survival of mice with lethal S. aureus challenge, validating LtaS as a target for the development of antibiotics. PMID:23401520

  12. Dislocation-mediated growth of bacterial cell walls

    PubMed Central

    Amir, Ariel; Nelson, David R.

    2012-01-01

    Recent experiments have illuminated a remarkable growth mechanism of rod-shaped bacteria: proteins associated with cell wall extension move at constant velocity in circles oriented approximately along the cell circumference [Garner EC, et al., (2011) Science 333:222–225], [Domínguez-Escobar J, et al. (2011) Science 333:225–228], [van Teeffelen S, et al. (2011) PNAS 108:15822–15827]. We view these as dislocations in the partially ordered peptidoglycan structure, activated by glycan strand extension machinery, and study theoretically the dynamics of these interacting defects on the surface of a cylinder. Generation and motion of these interacting defects lead to surprising effects arising from the cylindrical geometry, with important implications for growth. We also discuss how long range elastic interactions and turgor pressure affect the dynamics of the fraction of actively moving dislocations in the bacterial cell wall. PMID:22660931

  13. Turbine airfoil having near-wall cooling insert

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Jr., Nicholas F.; Wiebe, David J.

    A turbine airfoil is provided with at least one insert positioned in a cavity in an airfoil interior. The insert extends along a span-wise extent of the turbine airfoil and includes first and second opposite faces. A first near-wall cooling channel is defined between the first face and a pressure sidewall of an airfoil outer wall. A second near-wall cooling channel is defined between the second face and a suction sidewall of the airfoil outer wall. The insert is configured to occupy an inactive volume in the airfoil interior so as to displace a coolant flow in the cavity towardmore » the first and second near-wall cooling channels. A locating feature engages the insert with the outer wall for supporting the insert in position. The locating feature is configured to control flow of the coolant through the first or second near-wall cooling channel.« less

  14. Cell density and actomyosin contractility control the organization of migrating collectives within an epithelium

    PubMed Central

    Loza, Andrew J.; Koride, Sarita; Schimizzi, Gregory V.; Li, Bo; Sun, Sean X.; Longmore, Gregory D.

    2016-01-01

    The mechanisms underlying collective migration are important for understanding development, wound healing, and tumor invasion. Here we focus on cell density to determine its role in collective migration. Our findings show that increasing cell density, as might be seen in cancer, transforms groups from broad collectives to small, narrow streams. Conversely, diminishing cell density, as might occur at a wound front, leads to large, broad collectives with a distinct leader–follower structure. Simulations identify force-sensitive contractility as a mediator of how density affects collectives, and guided by this prediction, we find that the baseline state of contractility can enhance or reduce organization. Finally, we test predictions from these data in an in vivo epithelium by using genetic manipulations to drive collective motion between predicted migratory phases. This work demonstrates how commonly altered cellular properties can prime groups of cells to adopt migration patterns that may be harnessed in health or exploited in disease. PMID:27605707

  15. Platelets as Contractile Nanomachines for Targeting Drug Delivery in Hemostasis and Thrombosis

    DTIC Science & Technology

    2015-12-01

    capsules were suspended in platelet - rich plasma , which was subsequently exposed to 1 U/mL of thrombin, the capsules successfully targeted target...activated platelets . As thrombi in myocardial infarctions and strokes are platelet - rich , this is an ideal system to achieve high concentrations of...AWARD NUMBER: W81XWH-13-1-0495 TITLE: Platelets as Contractile Nanomachines for Targeting Drug Delivery in Hemostasis and Thrombosis PRINCIPAL

  16. Perfusion-induced changes in cardiac contractility depend on capillary perfusion.

    PubMed

    Dijkman, M A; Heslinga, J W; Sipkema, P; Westerhof, N

    1998-02-01

    The perfusion-induced increase in cardiac contractility (Gregg phenomenon) is especially found in heart preparations that lack adequate coronary autoregulation and thus protection of changes in capillary pressure. We determined in the isolated perfused papillary muscle of the rat whether cardiac muscle contractility is related to capillary perfusion. Oxygen availability of this muscle is independent of internal perfusion, and perfusion may be varied or even stopped without loss of function. Muscles contracted isometrically at 27 degrees C (n = 7). During the control state stepwise increases in perfusion pressure resulted in all muscles in a significant increase in active tension. Muscle diameter always increased with increased perfusion pressure, but muscle segment length was unaffected. Capillary perfusion was then obstructed by plastic microspheres (15 microns). Flow, at a perfusion pressure of 66.6 +/- 26.2 cmH2O, reduced from 17.6 +/- 5.4 microliters/min in the control state to 3.2 +/- 1.3 microliters/min after microspheres. Active tension developed by the muscle in the unperfused condition before microspheres and after microspheres did not differ significantly (-12.8 +/- 29.4% change). After microspheres similar perfusion pressure steps as in control never resulted in an increase in active tension. Even at the two highest perfusion pressures (89.1 +/- 28.4 and 106.5 +/- 31.7 cmH2O) that were applied a significant decrease in active tension was found. We conclude that the Gregg phenomenon is related to capillary perfusion.

  17. Cell wall reactivity of acidophilic and alkaliphilic bacteria determined by potentiometric titrations and Cd adsorption experiments.

    PubMed

    Kenney, Janice P L; Fein, Jeremy B

    2011-05-15

    In this study, we used potentiometric titrations and Cd adsorption experiments to determine the binding capacities of two acidophilic (A. cryptum and A. acidophilum) and two alkaliphilic (B. pseudofirmus and B. circulans) bacterial species in order to determine if any consistent trends could be observed relating bacterial growth environment to proton and Cd binding properties and to compare those binding behaviors to those of neutrophilic bacteria. All of the bacterial species studied exhibited significant proton buffering over the pH range in this study, with the alkaliphiles exhibiting significantly higher acidity constants than the acidophiles as well as the neutrophilic bacterial consortia. The calculated average site concentrations for each of the bacteria in this study are within 2σ experimental error of each other, with the exception of A. cryptum, which has a significantly higher Site 2 concentration than the other species. Despite differing acidity constants between the acidophiles and alkaliphiles, all bacteria except A. cryptum exhibited remarkably similar Cd adsorption behavior to each other, and the observed extent of adsorption was also similar to that predicted from a generalized model derived using neutrophilic bacterial consortia. This study demonstrates that bacteria that grow under extreme conditions exhibit similar proton and metal adsorption behavior to that of previously studied neutrophilic species and that a single set of proton and metal binding constants can be used to model the behavior of bacterial adsorption under a wide range of environmental conditions.

  18. Axion domain wall baryogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daido, Ryuji; Kitajima, Naoya; Takahashi, Fuminobu, E-mail: daido@tuhep.phys.tohoku.ac.jp, E-mail: kitajima@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp

    2015-07-01

    We propose a new scenario of baryogenesis, in which annihilation of axion domain walls generates a sizable baryon asymmetry. Successful baryogenesis is possible for a wide range of the axion mass and decay constant, m ≅ 10{sup 8}–10{sup 13} GeV and f ≅ 10{sup 13}–10{sup 16} GeV . Baryonic isocurvature perturbations are significantly suppressed in our model, in contrast to various spontaneous baryogenesis scenarios in the slow-roll regime. In particular, the axion domain wall baryogenesis is consistent with high-scale inflation which generates a large tensor-to-scalar ratio within the reach of future CMB B-mode experiments. We also discuss the gravitational waves produced by the domainmore » wall annihilation and its implications for the future gravitational wave experiments.« less

  19. The effect of obesity on the contractile performance of isolated mouse soleus, EDL, and diaphragm muscles.

    PubMed

    Tallis, Jason; Hill, Cameron; James, Rob S; Cox, Val M; Seebacher, Frank

    2017-01-01

    Obesity affects the major metabolic and cellular processes involved in skeletal muscle contractility. Surprisingly, the effect of obesity on isolated skeletal muscle performance remains unresolved. The present study is the first to examine the muscle-specific changes in contractility following dietary-induced obesity using an isolated muscle work-loop (WL) model that more closely represents in vivo muscle performance. Following 16-wk high-calorific feeding, soleus (SOL), extensor digitorum longus (EDL), and diaphragm (DIA) were isolated from female (CD-1) mice, and contractile performance was compared against a lean control group. Obese SOL produced greater isometric force; however, isometric stress (force per unit muscle area), absolute WL power, and normalized WL power (watts per kilogram muscle mass) were unaffected. Maximal isometric force and absolute WL power of the EDL were similar between groups. For both EDL and DIA, isometric stress and normalized WL power were reduced in the obese groups. Obesity caused a significant reduction in fatigue resistance in all cases. Our findings demonstrate a muscle-specific reduction in contractile performance and muscle quality that is likely related to in vivo mechanical role, fiber type, and metabolic profile, which may in part be related to changes in myosin heavy chain expression and AMP-activated protein kinase activity. These results infer that, beyond the additional requirement of moving a larger body mass, functional performance and quality of life may be further limited by poor muscle function in obese individuals. As such, a reduction in muscle performance may be a substantial contributor to the negative cycle of obesity. The effect of obesity on isolated muscle function is surprisingly underresearched. The present study is the first to examine the effects of obesity on isolated muscle performance using a method that more closely represents real-world muscle function. This work uniquely establishes a muscle

  20. Comparative genomics of the lactic acid bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarova, K.; Slesarev, A.; Wolf, Y.

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive genemore » loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.« less

  1. Racemization in reverse: evidence that D-amino acid toxicity on Earth is controlled by bacteria with racemases.

    PubMed

    Zhang, Gaosen; Sun, Henry J

    2014-01-01

    D-amino acids are toxic for life on Earth. Yet, they form constantly due to geochemical racemization and bacterial growth (the cell walls of which contain D-amino acids), raising the fundamental question of how they ultimately are recycled. This study provides evidence that bacteria use D-amino acids as a source of nitrogen by running enzymatic racemization in reverse. Consequently, when soils are inundated with racemic amino acids, resident bacteria consume D- as well as L-enantiomers, either simultaneously or sequentially depending on the level of their racemase activity. Bacteria thus protect life on Earth by keeping environments D-amino acid free.

  2. Vascular smooth muscle cell contractile protein expression is increased through protein kinase G-dependent and -independent pathways by glucose-6-phosphate dehydrogenase inhibition and deficiency.

    PubMed

    Chettimada, Sukrutha; Joshi, Sachindra Raj; Dhagia, Vidhi; Aiezza, Alessandro; Lincoln, Thomas M; Gupte, Rakhee; Miano, Joseph M; Gupte, Sachin A

    2016-10-01

    Homeostatic control of vascular smooth muscle cell (VSMC) differentiation is critical for contractile activity and regulation of blood flow. Recently, we reported that precontracted blood vessels are relaxed and the phenotype of VSMC is regulated from a synthetic to contractile state by glucose-6-phosphate dehydrogenase (G6PD) inhibition. In the current study, we investigated whether the increase in the expression of VSMC contractile proteins by inhibition and knockdown of G6PD is mediated through a protein kinase G (PKG)-dependent pathway and whether it regulates blood pressure. We found that the expression of VSMC-restricted contractile proteins, myocardin (MYOCD), and miR-1 and miR-143 are increased by G6PD inhibition or knockdown. Importantly, RNA-sequence analysis of aortic tissue from G6PD-deficient mice revealed uniform increases in VSMC-restricted genes, particularly those regulated by the MYOCD-serum response factor (SRF) switch. Conversely, expression of Krüppel-like factor 4 (KLF4) is decreased by G6PD inhibition. Interestingly, the G6PD inhibition-induced expression of miR-1 and contractile proteins was blocked by Rp-β-phenyl-1,N 2 -etheno-8-bromo-guanosine-3',5'-cyclic monophosphorothioate, a PKG inhibitor. On the other hand, MYOCD and miR-143 levels are increased by G6PD inhibition through a PKG-independent manner. Furthermore, blood pressure was lower in the G6PD-deficient compared with wild-type mice. Therefore, our results suggest that the expression of VSMC contractile proteins induced by G6PD inhibition occurs via PKG1α-dependent and -independent pathways. Copyright © 2016 the American Physiological Society.

  3. Contractile properties of muscle fibers from the deep and superficial digital flexors of horses.

    PubMed

    Butcher, M T; Chase, P B; Hermanson, J W; Clark, A N; Brunet, N M; Bertram, J E A

    2010-10-01

    Equine digital flexor muscles have independent tendons but a nearly identical mechanical relationship to the main joint they act upon. Yet these muscles have remarkable diversity in architecture, ranging from long, unipennate fibers ("short" compartment of DDF) to very short, multipennate fibers (SDF). To investigate the functional relevance of the form of the digital flexor muscles, fiber contractile properties were analyzed in the context of architecture differences and in vivo function during locomotion. Myosin heavy chain (MHC) isoform fiber type was studied, and in vitro motility assays were used to measure actin filament sliding velocity (V(f)). Skinned fiber contractile properties [isometric tension (P(0)/CSA), velocity of unloaded shortening (V(US)), and force-Ca(2+) relationships] at both 10 and 30°C were characterized. Contractile properties were correlated with MHC isoform and their respective V(f). The DDF contained a higher percentage of MHC-2A fibers with myosin (heavy meromyosin) and V(f) that was twofold faster than SDF. At 30°C, P(0)/CSA was higher for DDF (103.5 ± 8.75 mN/mm(2)) than SDF fibers (81.8 ± 7.71 mN/mm(2)). Similarly, V(US) (pCa 5, 30°C) was faster for DDF (2.43 ± 0.53 FL/s) than SDF fibers (1.20 ± 0.22 FL/s). Active isometric tension increased with increasing Ca(2+) concentration, with maximal Ca(2+) activation at pCa 5 at each temperature in fibers from each muscle. In general, the collective properties of DDF and SDF were consistent with fiber MHC isoform composition, muscle architecture, and the respective functional roles of the two muscles in locomotion.

  4. Differential regulation of myofilament protein isoforms underlying the contractility changes in skeletal muscle unloading

    PubMed Central

    Yu, Zhi-Bin; Gao, Fang; Feng, Han-Zhong; Jin, J-P

    2006-01-01

    Weight-bearing skeletal muscles change phenotype rapidly in response to unloading. Using the hind limb-suspension rat model, we investigated the regulation of myofilament protein isoforms in correlation to contractility. Four weeks of continuous hind limb unloading produced progressive atrophy and contractility changes in soleus but not extensor digitorum longus (EDL) muscle. The unloaded soleus muscle also had decreased fatigue resistance. Together with the decrease of myosin heavy chain (MHC) isoform I and IIa and increase of MHC IIb and IIx, coordinated regulation of thin filament regulatory protein isoforms were observed: γ- and β-tropomyosin decreased and α-tropomyosin increased, resulting in an α/β ratio similar to that in normal fast twitch skeletal muscle; troponin I and troponin T (TnT) both showed decrease in the slow isoform and increases in the fast isoform. The TnT isoform switching began after 7 days of unloading and TnI isoform showed detectable changes at 14 days while other protein isoform changes were not significant until 28 days of treatment. Correlating to the early changes in contractility, especially the resistance to fatigue, the early response of TnT isoform regulation may play a unique role in the adaptation of skeletal muscle to unloading. When the fast TnT gene expression was up-regulated in the unloaded soleus muscle, alternative RNA splicing switched to produce more high molecular weight acidic isoforms, reflecting a potential compensation for the decrease of slow TnT that is critical to skeletal muscle function. The results demonstrate that differential regulation of TnT isoforms is a sensitive mechanism in muscle adaptation to functional demands. PMID:17108008

  5. Troglitazone stimulates {beta}-arrestin-dependent cardiomyocyte contractility via the angiotensin II type 1{sub A} receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilley, Douglas G., E-mail: douglas.tilley@jefferson.edu; Center for Translational Medicine, Thomas Jefferson University; Nguyen, Anny D.

    2010-06-11

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonists are commonly used to treat cardiovascular diseases, and are reported to have several effects on cardiovascular function that may be due to PPAR{gamma}-independent signaling events. Select angiotensin receptor blockers (ARBs) interact with and modulate PPAR{gamma} activity, thus we hypothesized that a PPAR{gamma} agonist may exert physiologic effects via the angiotensin II type 1{sub A} receptor (AT1{sub A}R). In AT1{sub A}R-overexpressing HEK 293 cells, both angiotensin II (Ang II) and the PPAR{gamma} agonist troglitazone (Trog) enhanced AT1{sub A}R internalization and recruitment of endogenous {beta}-arrestin1/2 ({beta}arr1/2) to the AT1{sub A}R. A fluorescence assay to measure diacylglycerolmore » (DAG) accumulation showed that although Ang II induced AT1{sub A}R-G{sub q} protein-mediated DAG accumulation, Trog had no impact on DAG generation. Trog-mediated recruitment of {beta}arr1/2 was selective to AT1{sub A}R as the response was prevented by an ARB- and Trog-mediated {beta}arr1/2 recruitment to {beta}1-adrenergic receptor ({beta}1AR) was not observed. In isolated mouse cardiomyocytes, Trog increased both % and rate of cell shortening to a similar extent as Ang II, effects which were blocked with an ARB. Additionally, these effects were found to be {beta}arr2-dependent, as cardiomyocytes isolated from {beta}arr2-KO mice showed blunted contractile responses to Trog. These findings show for the first time that the PPAR{gamma} agonist Trog acts at the AT1{sub A}R to simultaneously block G{sub q} protein activation and induce the recruitment of {beta}arr1/2, which leads to an increase in cardiomyocyte contractility.« less

  6. Synthesis and contractile activity of the C-terminal heptapeptide of substance P with N5-dimethyl glutamine in the 6-position. Active site studies.

    PubMed

    Poulos, C P; Pinas, N; Theodoropoulos, D

    1980-09-15

    The synthesis and testing of [N5-dimethyl-Gln6]-SP5-11 showed 37 +/- 12% contractile activity relative to SP, and intrinsic efficacy 98 +/- 4%. This finding indicates that the carboxamide groups of the dual Gln5-Cln6 moiety are not equally related with the contractile response of the C-terminal heptapeptide of SP.

  7. Macrophage migration inhibitory factor plays a permissive role in the maintenance of cardiac contractile function under starvation through regulation of autophagy.

    PubMed

    Xu, Xihui; Pacheco, Benjamin D; Leng, Lin; Bucala, Richard; Ren, Jun

    2013-08-01

    The cytokine macrophage migration inhibitory factor (MIF) protects the heart through AMPK activation. Autophagy, a conserved pathway for bulk degradation of intracellular proteins and organelles, helps preserve and recycle energy and nutrients for cells to survive under starvation. This study was designed to examine the role of MIF in cardiac homeostasis and autophagy regulation following an acute starvation challenge. Wild-type (WT) and MIF knockout mice were starved for 48 h. Echocardiographic data revealed little effect of starvation on cardiac geometry, contractile and intracellular Ca²⁺ properties. MIF deficiency unmasked an increase in left ventricular end-systolic diameter, a drop in fractional shortening associated with cardiomyocyte contractile and intracellular Ca²⁺ anomalies following starvation. Interestingly, the unfavourable effect of MIF deficiency was associated with interruption of starvation-induced autophagy. Furthermore, restoration of autophagy using rapamycin partially protected against starvation-induced cardiomyocyte contractile defects. In our in vitro model of starvation, neonatal mouse cardiomyocytes from WT and MIF-/- mice and H9C2 cells were treated with serum free-glucose free DMEM for 2 h. MIF depletion dramatically attenuated starvation-induced autophagic vacuole formation in neonatal mouse cardiomyocytes and exacerbated starvation-induced cell death in H9C2 cells. In summary, these results indicate that MIF plays a permissive role in the maintenance of cardiac contractile function under starvation by regulation of autophagy.

  8. Modular first wall concept for steady state operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotzlowski, H.E.

    1981-01-01

    On the basis of the limiter design proposed for ZEPHYR a first wall concept has been developed which can also be used as a large area limiter, heat shield or beam pump. Its specific feature is the thermal contact of the wall armour elements with the water-cooled base plates. The combination of radiation and contact cooling, compared with radiation only, helps to lower the steady state temperatures of the first wall by approximately 50 % and to reduce the cooling-time between discharges. Particulary the lower wall temperature give a larger margin for additional heating of the wall by plasma disruptionmore » or neutral beams until excessive erosion or damage of the armour takes place.« less

  9. [Impedance between modiolus and different walls of scala tympani].

    PubMed

    Du, Qiang; Wang, Zhengmin

    2008-10-01

    To compare the impedance between the modiolus and the inner wall of scala tympani with that between the modiolus and the outer wall of scala tympani. The impedances between the modiolus and the inner wall of scala tympani and the impedance between the modiolus and the outer wall of scala tympani were measured, calculated and compared under different stimulating rates 0.1, 1.0, 10.0 kHz. The impedance between the modiolus and the inner wall of scala tympani is less than that between the modiolus and the outer wall of scala tympani (P < 0.05). To effectively stimulate the residual neurons in the spiral ganglion, the electrodes should be kept close to the inner wall of scale tympani.

  10. Quiescent Volcano-Chest Wall Hemangioma.

    PubMed

    Saldanha, Elroy; Martis, John J S; Kumar, B Vinod; D'Cunha, Rithesh J; Vijin, V

    2017-08-01

    Chest wall hemangiomas are rare tumors that may originate within the soft tissue or from the ribs. Intramuscular hemangioma is infrequent, representing less than 1 % of all hemangiomas, and the localization in the chest wall is even less frequent. They are typically cutaneous in location, large, and poorly circumscribed and can be locally destructive. We present a case of a 34-year-old lady presented with firm lump 3 × 3 cm in left upper and inner quadrant of left breast well defined borders, non-pulsatile and restricted mobility. Sono-mammogram was suggestive of ill-defined lesion at 10 o'clock position. CT chest was conclusive of chest wall hemangioma. The patient underwent excision of the lump. HPE was suggestive of cavernous hemangioma. Cavernous hemangioma typically manifest at birth or before the age of 30 years. CT is more sensitive than plain radiography in detecting phleboliths, which are present in approximately 30 % of cavernous hemangiomas. Surgical excision would be treatment of choice. In this case, the site of the lesion was in the breast clinically mimicking that of a fibroadenoma which warrants hemangioma as a differential diagnosis.

  11. Dominant Groups of Potentially Active Bacteria Shared by Barley Seeds become Less Abundant in Root Associated Microbiome

    PubMed Central

    Yang, Luhua; Danzberger, Jasmin; Schöler, Anne; Schröder, Peter; Schloter, Michael; Radl, Viviane

    2017-01-01

    Endophytes are microorganisms colonizing plant internal tissues. They are ubiquitously associated with plants and play an important role in plant growth and health. In this work, we grew five modern cultivars of barley in axenic systems using sterile sand mixture as well as in greenhouse with natural soil. We characterized the potentially active microbial communities associated with seeds and roots using rRNA based amplicon sequencing. The seeds of the different cultivars share a great part of their microbiome, as we observed a predominance of a few bacterial OTUs assigned to Phyllobacterium, Paenibacillus, and Trabusiella. Seed endophytes, particularly members of the Enterobacteriacea and Paenibacillaceae, were important members of root endophytes in axenic systems, where there were no external microbes. However, when plants were grown in soil, seed endophytes became less abundant in root associated microbiome. We observed a clear enrichment of Actinobacteriacea and Rhizobiaceae, indicating a strong influence of the soil bacterial communities on the composition of the root microbiome. Two OTUs assigned to Phyllobacteriaceae were found in all seeds and root samples growing in soil, indicating a relationship between seed-borne and root associated microbiome in barley. Even though the role of endophytic bacteria remains to be clarified, it is known that many members of the genera detected in our study produce phytohormones, shape seedling exudate profile and may play an important role in germination and establishment of the seedlings. PMID:28663753

  12. Dynamics of myosin II organization into cortical contractile networks and fibers

    NASA Astrophysics Data System (ADS)

    Nie, Wei; Wei, Ming-Tzo; Ou-Yang, Daniel; Jedlicka, Sabrina; Vavylonis, Dimitrios

    2014-03-01

    The morphology of adhered cells critically depends on the formation of a contractile meshwork of parallel and cross-linked stress fibers along the contacting surface. The motor activity and mini-filament assembly of non-muscle myosin II is an important component of cell-level cytoskeletal remodeling during mechanosensing. To monitor the dynamics of myosin II, we used confocal microscopy to image cultured HeLa cells that stably express myosin regulatory light chain tagged with GFP (MRLC-GFP). MRLC-GFP was monitored in time-lapse movies at steady state and during the response of cells to varying concentrations of blebbistatin which disrupts actomyosin stress fibers. Using image correlation spectroscopy analysis, we quantified the kinetics of disassembly and reassembly of actomyosin networks and compared them to studies by other groups. This analysis suggested that the following processes contribute to the assembly of cortical actomyosin into fibers: random myosin mini-filament assembly and disassembly along the cortex; myosin mini-filament aligning and contraction; stabilization of cortical myosin upon increasing contractile tension. We developed simple numerical simulations that include those processes. The results of simulations of cells at steady state and in response to blebbistatin capture some of the main features observed in the experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness.

  13. The regulation of smooth muscle contractility by zipper-interacting protein kinase.

    PubMed

    Ihara, Eikichi; MacDonald, Justin A

    2007-01-01

    Smooth muscle contractility is mainly regulated by phosphorylation of the 20 kDa myosin light chains (LC20), a process that is controlled by the opposing activities of myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP). Recently, intensive research has revealed that various protein kinase networks including Rho-kinase, integrin-linked kinase, zipper-interacting protein kinase (ZIPK), and protein kinase C (PKC) are involved in the regulation of LC20 phosphorylation and have important roles in modulating smooth muscle contractile responses to Ca2+ (i.e., Ca2+ sensitization and Ca2+ desensitization). Here, we review the general background and structure of ZIPK and summarize our current understanding of its involvement in a number of cell processes including cell death (apoptosis), cell motility, and smooth muscle contraction. ZIPK has been found to induce the diphosphorylation of LC20 at Ser-19 and Thr-18 in a Ca2+-independent manner and to regulate MLCP activity directly through its phosphorylation of the myosin-targeting subunit of MLCP or indirectly through its phosphorylation of the PKC-potentiated inhibitory protein of MLCP. Future investigations of ZIPK function in smooth muscle will undoubtably focus on determining the mechanisms that regulate its cellular activity, including the identification of upstream signaling pathways, the characterization of autoinhibitory domains and regulatory phosphorylation sites, and the development of specific inhibitor compounds.

  14. In vitro growth inhibition of mastitis causing bacteria by phenolics and metal chelators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chew, B.P.; Tjoelker, L.W.; Tanaka, T.S.

    1985-11-01

    Antimicrobial activities of three phenolic compounds and four metal chelators were tested at 0, 250, 500, and 1000 ppm in vitro against four major mastitis-causing bacteria, Streptococcus agalactiae, Staphylococcus aureus, Klebsiella pnuemoniae, and Escherichia coli. Overall, butylated hydroxyanisole and tert-butylhydroquinone showed the greatest antimicrobial activity. These phenolics were bactericidal at 250 to 500 ppm against all four bacteria tested. The butylated hydroxytoluene was bactericidal against the gram-positive bacteria but was ineffective against the coliforms. At 250 ppm, disodium ethylenediaminetetraacetic acid was bactericidal against the gram-positive bacteria but much less effective against the gram-negatives. However, diethylene-triaminepentaacetic acid was more growth inhibitorymore » than ethylenediaminetetraacetic acid against the gram-negative bacteria and especially against Escherichia coli. All other compounds were generally much less effective or ineffective against all four microorganisms. Therefore, butylated hydroxyanisole, butylated hydroxytoluene, tert-butylhydroquinone, ethylenediaminetetraacetic acid, and diethylenetriaminepentaacetic acid may have practical implications in the prevention or treatment of bovine mastitis.« less

  15. A murC gene from coryneform bacteria.

    PubMed

    Wachi, M; Wijayarathna, C D; Teraoka, H; Nagai, K

    1999-02-01

    The upstream flanking region of the ftsQ and ftsZ genes of Brevibacterium flavum MJ233, which belongs to the coryneform bacteria, was amplified by the inverse polymerase chain reaction method and cloned in Escherichia coli. Complementation analysis of E. coli mutant with a defective cell-wall synthesis mechanism with the cloned fragment and its DNA sequencing indicated the presence of the murC gene, encoding UDP-N-acetylmuramate:L-alanine ligase involved in peptidoglycan synthesis, just upstream from the ftsQ gene. The B. flavum murC gene could encode a protein of 486 amino acid residues with a calculated molecular mass of 51 198 Da. A 50-kDa protein was synthesized by the B. flavum murC gene in an in vitro transcription/translation system using E. coli S30 lysate. These results indicate that the genes responsible for cell-wall synthesis and cell division are located as a cluster in B. flavum similar to the E. coli mra region.

  16. Refractive index of plant cell walls

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Allen, W. A.; Escobar, D. E.

    1974-01-01

    Air was replaced with media of higher refractive indices by vacuum infiltration in leaves of cucumber, blackeye pea, tomato, and string bean plants, and reflectance of noninfiltrated and infiltrated leaves was spectrophotometrically measured. Infiltrated leaves reflected less light than noninfiltrated leaves over the 500-2500-nm wavelength interval because cell wall-air interfaces were partly eliminated. Minimal reflectance should occur when the average refractive index of plant cell walls was matched by the infiltrating fluid. Although refractive indices that resulted in minimal reflectance differed among the four plant genera, an average value of 1.425 approximates the refractive index of plant cell walls for the four plant genera.

  17. Yeast pro- and paraprobiotics have the capability to bind pathogenic bacteria associated with animal disease

    USDA-ARS?s Scientific Manuscript database

    Live yeast probiotics and yeast cell wall components (paraprobiotics) may serve as an alternative to the use of antibiotics in prevention and treatment of infections caused by pathogenic bacteria. Probiotics and paraprobiotics can bind directly to pathogens, which limits binding of the pathogens to ...

  18. Directed collective motion of bacteria under channel confinement

    NASA Astrophysics Data System (ADS)

    Wioland, H.; Lushi, E.; Goldstein, R. E.

    2016-07-01

    Dense suspensions of swimming bacteria are known to exhibit collective behaviour arising from the interplay of steric and hydrodynamic interactions. Unconfined suspensions exhibit transient, recurring vortices and jets, whereas those confined in circular domains may exhibit order in the form of a spiral vortex. Here we show that confinement into a long and narrow macroscopic ‘racetrack’ geometry stabilises bacterial motion to form a steady unidirectional circulation. This motion is reproduced in simulations of discrete swimmers that reveal the crucial role that bacteria-driven fluid flows play in the dynamics. In particular, cells close to the channel wall produce strong flows which advect cells in the bulk against their swimming direction. We examine in detail the transition from a disordered state to persistent directed motion as a function of the channel width, and show that the width at the crossover point is comparable to the typical correlation length of swirls seen in the unbounded system. Our results shed light on the mechanisms driving the collective behaviour of bacteria and other active matter systems, and stress the importance of the ubiquitous boundaries found in natural habitats.

  19. Pelvic floor muscle training program increases muscular contractility during first pregnancy and postpartum: electromyographic study.

    PubMed

    Marques, Joseane; Botelho, Simone; Pereira, Larissa Carvalho; Lanza, Ana Helena; Amorim, Cesar Ferreira; Palma, Paulo; Riccetto, Cassio

    2013-09-01

    The aim of this study was to evaluate the effect of a training program over both pelvic floor muscles contractility and urinary symptoms in primigravid pregnant and postpartum primiparous women. A clinical, prospective and blinded trial was conducted with 33 women divided into three groups: (G1) 13 primigravid pregnant women; (G2) 10 postpartum primiparous women (49.3 ± 5.84 days), after vaginal delivery with right mediolateral episiotomy; (G3) 10 postpartum primiparous women (46.3 ± 3.6 days), after cesarean section delivery. The evaluation was carried out using digital palpation (Modified Oxford Grading Scale), pelvic floor electromyography and, for the investigation of urinary symptoms, validated questionnaires (International Consultation on Incontinence Questionnaire-short form-ICIQ-UI SF and International Consultation on Incontinence Questionnaire Overactive Bladder-ICIQ-OAB). The protocol consisted of 10 individual sessions carried out by the physiotherapist through home visits, three times a week, with 60 min duration each. The statistical analysis was performed using ANOVA and Spearman's correlation coefficient. The pelvic floor muscle contractility increased after the training program (P = 0.0001) for all groups. Decreases in the scores of both ICIQ-UI SF (P = 0.009) and ICIQ-OAB (P = 0.0003) were also observed after training. Pelvic floor muscle training is an effective means for the increase in its own contractility in both primigravid pregnant and primiparous postpartum women, accompanied with a concomitant decrease in urinary symptoms. Copyright © 2012 Wiley Periodicals, Inc.

  20. The role of apical contractility in determining cell morphology in multilayered epithelial sheets and tubes

    NASA Astrophysics Data System (ADS)

    Zhen Tan, Rui; Lai, Tanny; Chiam, K.-H.

    2017-08-01

    A multilayered epithelium is made up of individual cells that are stratified in an orderly fashion, layer by layer. In such tissues, individual cells can adopt a wide range of shapes ranging from columnar to squamous. From histological images, we observe that, in flat epithelia such as the skin, the cells in the top layer are squamous while those in the middle and bottom layers are columnar, whereas in tubular epithelia, the cells in all layers are columnar. We develop a computational model to understand how individual cell shape is governed by the mechanical forces within multilayered flat and curved epithelia. We derive the energy function for an epithelial sheet of cells considering intercellular adhesive and intracellular contractile forces. We determine computationally the cell morphologies that minimize the energy function for a wide range of cellular parameters. Depending on the dominant adhesive and contractile forces, we find four dominant cell morphologies for the multilayered-layered flat sheet and three dominant cell morphologies for the two-layered curved sheet. We study the transitions between the dominant cell morphologies for the two-layered flat sheet and find both continuous and discontinuous transitions and also the presence of multistable states. Matching our computational results with histological images, we conclude that apical contractile forces from the actomyosin belt in the epithelial cells is the dominant force determining cell shape in multilayered epithelia. Our computational model can guide tissue engineers in designing artificial multilayered epithelia, in terms of figuring out the cellular parameters needed to achieve realistic epithelial morphologies.