Sample records for wall-mounted diffuser vertical

  1. Vertical repositioning accuracy of magnetic mounting systems on 4 articulator models.

    PubMed

    Lee, Wonsup; Kwon, Ho-Beom

    2018-03-01

    Research of the ability of a cast mounted on an articulator on maintaining the identical position of a cast mounted on an articulator after repeated repositioning is lacking, despite the possible effects this may have on the occlusion of a mounted cast. The purpose of this in vitro study was to verify and compare the vertical repositioning accuracy of 4 different, commercially available articulator magnetic mounting plate systems. Four articulators and their associated magnetic mounting plates were selected for the study. These were the Artex AR articulator (Amann Girrbach AG), the Denar Mark II articulator (Whip Mix Corp), the Kavo Protar Evo articulator (Kavo Dental GmbH), and the SAM3 articulator (SAM Präzisionstechnik GmbH). Three new magnetic mounting plates were prepared for each articulator system. The repositioning accuracy of each mounting plate was evaluated by comparing the standard deviation of the vertical distances measured between the mounting plate and a laser displacement sensor. The lower arm of the articulator was secured, and the vertical distance was measured by positioning the laser displacement sensor positioned vertically above the mounting plate. Once the vertical distance was measured, the mounting plate was detached from the articulator and reattached manually to prepare for the next measurement. This procedure was repeated 30 times for each of the 3 magnetic mounting plates. Data were analyzed by ANOVA for 2-stage nested design and the Levene test (α=.05). Significant differences were detected among articulator systems and between magnetic mounting plates of the same type. The standard deviations of the measurements made with the Artex AR articulator, Denar Mark II articulator, Kavo Protar Evo articulator, and SAM3 articulator were 0.0027, 0.0308, 0.0214, and 0.0215 mm, respectively. Thus, the repositioning accuracy could be ranked in the order as follows: Artex AR, Kavo Protar Evo, SAM3, and Denar Mark II. The position of the

  2. 21 CFR 892.1880 - Wall-mounted radiographic cassette holder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wall-mounted radiographic cassette holder. 892.1880 Section 892.1880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1880 Wall-mounted...

  3. Estimation of Solar Energy on Vertical 3D Building Walls on City Quarter Scale

    NASA Astrophysics Data System (ADS)

    Jaugsch, F.; Löwner, M.-O.

    2016-10-01

    In urban areas, solar energy is one promising source of renewable energy to achieve the EU parliament's goal of reducing CO2 emissions by 20 % compared to 1990. Although annual radiation on vertical walls is lower than that on roof surfaces, they are larger in area and, therefore may contribute to energy production. On the other hand, the modelling of shadowing effects is cost intensive in an complex urban environment. Here we present a method for the calculation of solar potential on vertical walls for simple 2D maps with additional building height information. We introduced observer point columns that enable a fast decision whether a whole vertical set of observer points is illuminated or not. By the introduction of a maximum shade length, we reduce processing time in ArcGIS. 206,291 points of 130 buildings have been analysed in time steps of 15 minutes resulting in 15 769 pairs of solar angles. Results disprove the potential of vertical walls serving to fill the winter gap of roof mounted solar energy plants. Best wall orientation for the deployment of solar panels are west and east in summer, whereas it is southeast in winter.

  4. Vortex propagation around a wall-mounted obstacle in pulsatile flow

    NASA Astrophysics Data System (ADS)

    Carr, Ian A.; Plesniak, Michael W.

    2015-11-01

    Wall-mounted obstacles are prevalent in nature and engineering applications. Physiological flows observed in human vocal fold pathologies, such as polyps, can be modeled by flow over a wall-mounted protuberance. Despite their prevalence, studies of wall-mounted obstacles have been restricted to steady (constant velocity) freestream flow. In biological and geophysical applications, pulsatile flow is much more common, yet effects of pulsatility on the wake of a wall-mounted obstacle remain to be extensively studied. This study aims to characterize the complex physics produced in this unsteady, separated flow. Experiments were performed in a low-speed wind tunnel with a set of rotating vanes, which produce the pulsatile inflow waveform. Instantaneous and phase-averaged particle image velocimetry (PIV) results acquired around a hemispherical obstacle are presented and compared. A mechanism based on self-induced vortex propagation, analogous to that in vortex rings, is proposed to explain the observed dynamics of coherent structures. Predictions of the propagation velocity based on analytical expressions for vortex rings in a viscous fluid are compared to the experimentally measured propagation velocity. Effects of the unsteady boundary layer on the observed physics are explored. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  5. Instantaneous Optical Wall-Temperature of Vertical Two-Phase Annular Flow

    NASA Astrophysics Data System (ADS)

    Fehring, Brian; Livingston-Jha, Simon; Morse, Roman; Chan, Jason; Doherty, James; Brueggeman, Colby; Nellis, Gregory; Dressler, Kristofer; Berson, ArganthaëL.; Multiphase Flow Visualization; Analysis Laboratory at University of Wisconsin-Madison Team

    2017-11-01

    We present a non-invasive optical technique for measuring the instantaneous temperature at the inner wall of a flow duct. The technique is used to characterize a fully-developed vertical annular flow of R245fa refrigerant. The test section includes transparent heating windows made of glass coated with fluorine-doped tin-oxide. A 15 mW helium-neon laser is directed through a prism mounted on one of the glass windows and reflected off of the interface between the 150-micron-thick liquid film and the inside wall of the testing section window. The intensity of the laser light reflected at the liquid film-window interface depends on the index of refraction of liquid R245fa, which itself depends on the temperature of the fluid. The intensity of the reflected light is measured using a photodiode and calibrated to a light reflectance model based on the Fresnel equations and Snell's law. Instantaneous temperature data is combined with optical liquid film thickness measurements to calculate the local instantaneous heat transfer coefficient at the wall.

  6. Design of a new engine mount for vertical and horizontal vibration control using magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Phu, D. X.; Choi, S. B.; Lee, Y. S.; Han, M. S.

    2014-10-01

    This paper presents a new design of a magnetorheological fluid (MR) mount for vibration control considering both vertical forces and horizontal moments such as are met in various engine systems, including a medium high-speed engine of ship. The newly designed mount, called a MR brake mount, offers several salient benefits such as small size and relatively high load capacity compared with a conventional MR engine mount that can control vertical vibration only. The principal design parameters of the proposed mount are optimally determined to achieve maximum torque with geometric and spatial constraints. Subsequently, the proposed MR mount is designed and manufactured based on the optimized design parameters. It is shown from experimental testing that the proposed mount, which combines MR mount with MR brake, can produce the desired force and torque to reduce unwanted vibration of a medium high-speed engine system of ship subjected to both vertical and horizontal exciting motions. In addition, it is verified that there is no large difference between experiment results and simulation results that are obtained from an analytical model derived in this work.

  7. Mount Protects Thin-Walled Glass or Ceramic Tubes from Large Thermal and Vibration Loads

    NASA Technical Reports Server (NTRS)

    Amato, Michael; Schmidt, Stephen; Marsh. James; Dahya, Kevin

    2011-01-01

    The design allows for the low-stress mounting of fragile objects, like thin walled glass, by using particular ways of compensating, isolating, or releasing the coefficient of thermal expansion (CTE) differences between the mounted object and the mount itself. This mount profile is lower than true full kinematic mounting. Also, this approach enables accurate positioning of the component for electrical and optical interfaces. It avoids the higher and unpredictable stress issues that often result from potting the object. The mount has been built and tested to space-flight specifications, and has been used for fiber-optic, optical, and electrical interfaces for a spaceflight mission. This mount design is often metal and is slightly larger than the object to be mounted. The objects are optical or optical/electrical, and optical and/or electrical interfaces are required from the top and bottom. This requires the mount to be open at both ends, and for the object s position to be controlled. Thin inside inserts at the top and bottom contact the housing at defined lips, or edges, and hold the fragile object in the mount. The inserts can be customized to mimic the outer surface of the object, which further reduces stress. The inserts have the opposite CTE of the housing material, partially compensating for the CTE difference that causes thermal stress. A spring washer is inserted at one end to compensate for more CTE difference and to hold the object against the location edge of the mount for any optical position requirements. The spring also ensures that any fiber-optic or optic interface, which often requires some pressure to ensure a good interface, does not overstress the fragile object. The insert thickness, material, and spring washer size can be traded against each other to optimize the mount and stresses for various thermal and vibration load ranges and other mounting requirements. The alternate design uses two separate, unique features to reduce stress and hold the

  8. Scour around vertical wall abutment in cohesionless sediment bed

    NASA Astrophysics Data System (ADS)

    Pandey, M.; Sharma, P. K.; Ahmad, Z.

    2017-12-01

    At the time of floods, failure of bridges is the biggest disaster and mainly sub-structure (bridge abutments and piers) are responsible for this failure of bridges. It is very risky if these sub structures are not constructed after proper designing and analysis. Scour is a natural phenomenon in rivers or streams caused by the erosive action of the flowing water on the bed and banks. The abutment undermines due to river-bed erosion and scouring, which generally recognized as the main cause of abutment failure. Most of the previous studies conducted on scour around abutment have concerned with the prediction of the maximum scour depth (Lim, 1994; Melvill, 1992, 1997 and Dey and Barbhuiya, 2005). Dey and Barbhuiya (2005) proposed a relationship for computing maximum scour depth near an abutment, based on laboratory experiments, for computing maximum scour depth around vertical wall abutment, which was confined to their experimental data only. However, this relationship needs to be also verified by the other researchers data in order to support the reliability to the relationship and its wider applicability. In this study, controlled experimentations have been carried out on the scour near a vertical wall abutment. The collected data in this study along with data of the previous investigators have been carried out on the scour near vertical wall abutment. The collected data in this study along with data of the previous have been used to check the validity of the existing equation (Lim, 1994; Melvill, 1992, 1997 and Dey and Barbhuiya, 2005) of maximum scour depth around the vertical wall abutment. A new relationship is proposed to estimate the maximum scour depth around vertical wall abutment, it gives better results all relationships.

  9. Research status and future trends on surface pre-grouting technology in reforming wall rock of vertical shafts in coal mines in China

    NASA Astrophysics Data System (ADS)

    Wang, Hua

    2018-02-01

    In the mine construction, the surface pre-grouting technology is an important method to prevent water blast in excavation process of vertical shaft when the shaft must pass through the thick, water-rich and high water-pressure bedrock aquifer. It has been nearly 60 years since the technology was used to reform wall rock of vertical shaft in coal mine in China for the first time, and the existing technology can basically meet the needs of constructing 1000m deep vertical shaft. Firstly, the article introduces that in view of Magg’s spherical seepage theory and Karol’s spherical seepage theory, Chinese scholars found that the diffusion of grout from borehole into the surrounding strata in horizontal direction is irregular through a lot of research and engineering practice of using the surface pre-grouting technology to reform wall rock of vertical shafts, and put forward the selecting principles of grout’s effective diffusion radius in one grouting engineering; Secondly, according to the shape of the grouting boreholes, surface pre-grouting technology of vertical shaft is divided into two stages: vertical borehole stage and S-type borehole stage. Thirdly, the development status of grouting materials and grouting equipment for the technology is introduced. Fourthly, grouting mode, stage height and pressure of the technology are introduced. Finally, it points out that with the increasing depth of coal mining in China, the technology of reforming wall rock of 1000~2000m deep vertical shafts will face many problems, such as grouting theory, grouting equipment, grouting finishing standard, testing and evaluation of grouting effect, and so on. And it put forward a preliminary approach to solving these problems. This paper points out future research directions of the surface pre-grouting technology in China.

  10. Simulation of chemical-vapor-deposited silicon carbide for a cold wall vertical reactor

    NASA Astrophysics Data System (ADS)

    Lee, Y. L.; Sanchez, J. M.

    1997-07-01

    The growth rate of silicon carbide obtained by low-pressure chemical vapor deposition from tetramethylsilane is numerically simulated for a cold wall vertical reactor. The transport equations for momentum, heat, and mass transfer are simultaneously solved by employing the finite volume method. A model for reaction rate is also proposed in order to predict the measured growth rates [A. Figueras, S. Garelik, J. Santiso, R. Rodroguez-Clemente, B. Armas, C. Combescure, R. Berjoan, J.M. Saurel and R. Caplain, Mater. Sci. Eng. B 11 (1992) 83]. Finally, the effects of thermal diffusion on the growth rate are investigated.

  11. A vertical wall in the Whittard Canyon with a novel community assemblage

    NASA Astrophysics Data System (ADS)

    Johnson, Mark; White, Martin; Wilson, Annette; Wuerzberg, Laura; Schwabe, Enrico; Folch, Helka; Allcock, Louise

    2013-04-01

    We describe a hitherto unreported community from a vertical wall in the Whittard Canyon system on the Atlantic Margin. The wall extended vertically for about 100 m from approximately 750 m depth. We explored the wall with an ROV and discovered an assemblage cominated by large limid bivalves Acesta excavata and deep-water oysters Neopycnodonte zibrowii at very high densities, particularly at overhangs. The assemblage also contained deep-water corals (including solitary corals). It had high numbers of flytrap anemones and had many mobile species associated with it including crustaceans such as Paramola cuvieri and Bathynectes longispina, echinoderms and fishes. We took CTD transects in the area of the wall and beam attenuation indicated nepheloid layers present in the water column. The greatest densities of suspended material at the ROV dive site were at the depth of the wall. We hypothesise that internal waves concentrate suspended sediment at the foot of the vertical wall. This may provide the resources to support the high density of large filter feeders at these depths.

  12. Structure of diffusion flames from a vertical burner

    Treesearch

    Mark A. Finney; Dan Jimenez; Jack D. Cohen; Isaac C. Grenfell; Cyle Wold

    2010-01-01

    Non-steady and turbulent flames are commonly observed to produce flame contacts with adjacent fuels during fire spread in a wide range of fuel bed depths. A stationary gas-fired burner (flame wall) was developed to begin study of flame edge variability along an analagous vertical fuel source. This flame wall is surrogate for a combustion interface at the edge of a deep...

  13. Turbulent vertical diffusivity in the sub-tropical stratosphere

    NASA Astrophysics Data System (ADS)

    Pisso, I.; Legras, B.

    2008-02-01

    Vertical (cross-isentropic) mixing is produced by small-scale turbulent processes which are still poorly understood and paramaterized in numerical models. In this work we provide estimates of local equivalent diffusion in the lower stratosphere by comparing balloon borne high-resolution measurements of chemical tracers with reconstructed mixing ratio from large ensembles of random Lagrangian backward trajectories using European Centre for Medium-range Weather Forecasts analysed winds and a chemistry-transport model (REPROBUS). We focus on a case study in subtropical latitudes using data from HIBISCUS campaign. An upper bound on the vertical diffusivity is found in this case study to be of the order of 0.5 m2 s-1 in the subtropical region, which is larger than the estimates at higher latitudes. The relation between diffusion and dispersion is studied by estimating Lyapunov exponents and studying their variation according to the presence of active dynamical structures.

  14. Viscous diffusion of vorticity in unsteady wall layers using the diffusion velocity concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strickland, J.H.; Kempka, S.N.; Wolfe, W.P.

    1995-03-01

    The primary purpose of this paper is to provide a careful evaluation of the diffusion velocity concept with regard to its ability to predict the diffusion of vorticity near a moving wall. A computer code BDIF has been written which simulates the evolution of the vorticity field near a wall of infinite length which is moving in an arbitrary fashion. The simulations generated by this code are found to give excellent results when compared to several exact solutions. We also outline a two-dimensional unsteady viscous boundary layer model which utilizes the diffusion velocity concept and is compatible with vortex methods.more » A primary goal of this boundary layer model is to minimize the number of vortices generated on the surface at each time step while achieving good resolution of the vorticity field near the wall. Preliminary results have been obtained for simulating a simple two-dimensional laminar boundary layer.« less

  15. Vertical regolith shield wall construction for lunar base applications

    NASA Technical Reports Server (NTRS)

    Kaplicky, Jan; Nixon, David; Wernick, Jane

    1992-01-01

    Lunar bases located on the lunar surface will require permanent protection from radiation and launch ejecta. This paper outlines a method of providing physical protection using lunar regolith that is constructed in situ as a modular vertical wall using specially devised methods of containment and construction. Deployable compartments, reinforced with corner struts, are elevated and filled by a moving gantry. The compartments interlock to form a stable wall. Different wall heights, thicknesses, and plan configurations are achieved by varying the geometry of the individual compartments, which are made from woven carbon fibers. Conventional terrestrial structural engineering techniques can be modified and used to establish the structural integrity and performance of the wall assembly.

  16. Flow characteristics and scaling past highly porous wall-mounted fences

    NASA Astrophysics Data System (ADS)

    Rodríguez-López, Eduardo; Bruce, Paul J. K.; Buxton, Oliver R. H.

    2017-07-01

    An extensive characterization of the flow past wall-mounted highly porous fences based on single- and multi-scale geometries has been performed using hot-wire anemometry in a low-speed wind tunnel. Whilst drag properties (estimated from the time-averaged momentum equation) seem to be mostly dependent on the grids' blockage ratio; wakes of different size and orientation bars seem to generate distinct behaviours regarding turbulence properties. Far from the near-grid region, the flow is dominated by the presence of two well-differentiated layers: one close to the wall dominated by the near-wall behaviour and another one corresponding to the grid's wake and shear layer, originating from between this and the freestream. It is proposed that the effective thickness of the wall layer can be inferred from the wall-normal profile of root-mean-square streamwise velocity or, alternatively, from the wall-normal profile of streamwise velocity correlation. Using these definitions of wall-layer thickness enables us to collapse different trends of the turbulence behaviour inside this layer. In particular, the root-mean-square level of the wall shear stress fluctuations, longitudinal integral length scale, and spanwise turbulent structure is shown to display a satisfactory scaling with this thickness rather than with the whole thickness of the grid's wake. Moreover, it is shown that certain grids destroy the spanwise arrangement of large turbulence structures in the logarithmic region, which are then re-formed after a particular streamwise extent. It is finally shown that for fences subject to a boundary layer of thickness comparable to their height, the effective thickness of the wall layer scales with the incoming boundary layer thickness. Analogously, it is hypothesized that the growth rate of the internal layer is also partly dependent on the incoming boundary layer thickness.

  17. Effects of vertical wall and tetrapod weights on wave overtopping in rubble mound breakwaters under irregular wave conditions

    NASA Astrophysics Data System (ADS)

    Park, Sang Kil; Dodaran, Asgar Ahadpour; Han, Chong Soo; Shahmirzadi, Mohammad Ebrahim Meshkati

    2014-12-01

    Rubble mound breakwaters protect the coastal line against severe erosion caused by wave action. This study examined the performance of different sizes and properties (i.e. height of vertical wall and tetrapod size) of rubble mound breakwaters on reducing the overtopping discharge. The physical model used in this study was derived based on an actual rubble mound in Busan Yacht Harbor. This research attempts to fill the gap in practical knowledge on the combined effect of the armor roughness and vertical wall on wave overtopping in rubble mound breakwaters. The main governing parameters used in this study were the vertical wall height, variation of the tetrapod weights, initial water level elevation, and the volume of overtopping under constant wave properties. The experimental results showed that the roughness factor differed according to the tetrapod size. Furthermore, the overtopping discharge with no vertical wall was similar to that with relatively short vertical walls ( 1 γv = 1). Therefore, the experimental results highlight the importance of the height of the vertical wall in reducing overtopping discharge. Moreover, a large tetrapod size may allow coastal engineers to choose a shorter vertical wall to save cost, while obtaining better performance.

  18. Stratospheric Turbulence and Vertical Effective Diffusion Coefficients

    DTIC Science & Technology

    1975-09-29

    UMBER AFCRL-TR-75.-0519 - 4. TILE (moiS."Eti) S. Tlr OF C RP~hT S PESO0 COVERED STRATOSPHERIC TURBULENCE AND VERTICAL EFFECTIVE DIFFUSION COEFFICIENTS...that CAT plays a prominent role in vertical transport in the stratosphere. I ~1 Unclassified t FUrs,*Tv C , Uq C ~ml .. at ’r *n he.. a* U I Department...phenomenon. Thorpe himself refers (1973) to underwater K-H as "underwater CAT." ____ ____ ____WE006 SflJGLE ( SPAD M LAVER 4" Ri" i0 15 0t (m’iJr

  19. Positioning for vertical integration through clinics "without walls".

    PubMed

    Johnson, B A; Schryver, D L

    1994-01-01

    Authors Bruce A. Johnson, J.D., M.P.A., and Darrell Schryver, D.P.A., offer the clinic without walls model as a transitory step to full vertical integration. They write that this model "may enable physicians to address the key issues associated with managed care and integration in a more gradual, controlled fashion.

  20. Numerical Modeling of Scour at the Head of a Vertical-Wall Breakwater in Waves

    NASA Astrophysics Data System (ADS)

    Baykal, C.; Balcı, H. B.; Sumer, B. M.; Fuhrman, D. R.

    2017-12-01

    This study presents a 3D numerical modeling study on the flow and scour at the head of a vertical-wall breakwater in regular waves. The numerical model utilized in the study is based on that given by Jacobsen (2011). The present model has been applied successfully to the scour and backfilling beneath submarine pipelines by Fuhrman et al. (2014), and around a vertical cylindrical pile mounted on a horizontal plane sediment bed by Baykal et al. (2015, 2017). The model is composed of two main modules. The first module is the hydrodynamic model where Reynolds Averaged Navier Stokes (RANS) equations are solved with a k-ω turbulence closure. The second module is the morphologic model which comprises five sub-modules, namely; bed load, suspended load, sand slide, bed evolution and 3D mesh motion. The model is constructed in open-source CFD toolbox OpenFOAM. In this study, the model is applied to experimental data sets of Sumer and Fredsoe (1997) on the scour around a vertical-wall breakwater with a circular round head. Here, it is given the preliminary results of bed evolution of Test-8 of Sumer and Fredsoe (1997) in which a vertical-wall breakwater head with a width of B=140 mm is subjected to oscillatory flow with Tw=2.0 s and maximum orbital velocity at the bed Um=22cm/s, resulting in a Keulegan-Carpenter number, KC=3.14, close to KC experienced in real-life situations (KC = O(1)). The grain size is d=0.17 mm. The Shields parameter in the test case is given as θc=0.11, larger than the critical value for the initiation of motion implying that the scour is in the live-bed regime. The computational domain used in the simulations has the following dimensions: Length, l=40B, Width, w=20B, and Height, h=2B. The total number of cells is O(105) in the simulations. The scoured bed profile computed at the end of 3 periods of oscillatory flow of Test-8 is given in the figure below. The color scale in the figure is given for the ratio of bed elevation to the width of breakwater

  1. Implicit LES of Turbulent, Separated Flow: Wall-Mounted Hump Configuration

    NASA Technical Reports Server (NTRS)

    Sekhar, Susheel; Mansour, Nagi N.; Caubilla, David Higuera

    2015-01-01

    Direct simulations (ILES) of turbulent, separated flow over the wall-mounted hump configuration is conducted to investigate the physics of separated flows. A chord-based Reynolds number of Re(sub c) = 47,500 is set up, with a turbulent in flow of Re(sub theta) = 1,400 (theta/c = 3%). FDL3DI, a code that solves the compressible Navier-Stokes equations using high- order compact-difference scheme and filter, with the standard recycling/rescaling method of turbulence generation, is used. Two different configurations of the upper-wall are analyzed, and results are compared with both a higher Re(sub c) (= 936,000, Re(sub theta) = 7,200, theta/c = 0.77%) experiment for major flow features, and RANS (k-omega SST) results. A lower Rec allows for DNS-like mesh resolution, and an adequately wide span. Both ILES and RANS show delayed reattachment compared to experiment, and significantly higher skin friction in the forebody of the hump, as expected. The upper-wall shape influences the C(sub p) distribution only. Results from this study are being used to setup higher Rec (lower theta/c) ILES.

  2. A black body absorber from vertically aligned single-walled carbon nanotubes

    PubMed Central

    Mizuno, Kohei; Ishii, Juntaro; Kishida, Hideo; Hayamizu, Yuhei; Yasuda, Satoshi; Futaba, Don N.; Yumura, Motoo; Hata, Kenji

    2009-01-01

    Among all known materials, we found that a forest of vertically aligned single-walled carbon nanotubes behaves most similarly to a black body, a theoretical material that absorbs all incident light. A requirement for an object to behave as a black body is to perfectly absorb light of all wavelengths. This important feature has not been observed for real materials because materials intrinsically have specific absorption bands because of their structure and composition. We found a material that can absorb light almost perfectly across a very wide spectral range (0.2–200 μm). We attribute this black body behavior to stem from the sparseness and imperfect alignment of the vertical single-walled carbon nanotubes. PMID:19339498

  3. A Vertical Diffusion Scheme to estimate the atmospheric rectifier effect

    NASA Astrophysics Data System (ADS)

    Chen, Baozhang; Chen, Jing M.; Liu, Jane; Chan, Douglas; Higuchi, Kaz; Shashkov, Alexander

    2004-02-01

    The magnitude and spatial distribution of the carbon sink in the extratropical Northern Hemisphere remain uncertain in spite of much progress made in recent decades. Vertical CO2 diffusion in the planetary boundary layer (PBL) is an integral part of atmospheric CO2 transport and is important in understanding the global CO2 distribution pattern, in particular, the rectifier effect on the distribution [Keeling et al., 1989; Denning et al., 1995]. Attempts to constrain carbon fluxes using surface measurements and inversion models are limited by large uncertainties in this effect governed by different processes. In this study, we developed a Vertical Diffusion Scheme (VDS) to investigate the vertical CO2 transport in the PBL and to evaluate CO2 vertical rectification. The VDS was driven by the net ecosystem carbon flux and the surface sensible heat flux, simulated using the Boreal Ecosystem Productivity Simulator (BEPS) and a land surface scheme. The VDS model was validated against half-hourly CO2 concentration measurements at 20 m and 40 m heights above a boreal forest, at Fraserdale (49°52'29.9''N, 81°34'12.3''W), Ontario, Canada. The amplitude and phase of the diurnal/seasonal cycles of simulated CO2 concentration during the growing season agreed closely with the measurements (linear correlation coefficient (R) equals 0.81). Simulated vertical and temporal distribution patterns of CO2 concentration were comparable to those measured at the North Carolina tower. The rectifier effect, in terms of an annual-mean vertical gradient of CO2 concentration in the atmosphere that decreases from the surface to the top of PBL, was found at Fraserdale to be about 3.56 ppmv. Positive covariance between the seasonal cycles of plant growth and PBL vertical diffusion was responsible for about 75% of the effect, and the rest was caused by covariance between their diurnal cycles. The rectifier effect exhibited strong seasonal variations, and the contribution from the diurnal cycle

  4. Representation and Reconconstruction of Triangular Irregular Networks with Vertical Walls

    NASA Astrophysics Data System (ADS)

    Gorte, B.; Lesparre, J.

    2012-06-01

    Point clouds obtained by aerial laser scanning are a convenient input source for high resolution 2.5d elevation models, such as the Dutch AHN-2. More challenging is the fully automatic reconstruction of 3d city models. An actual demand for a combined 2.5d terrain and 3d city model for an urban hydrology application led to the design of an extension to the well-known Delaunay triangulated irregular networks (TINs) as to accommodate vertical walls. In addition we introduce methods to generate and refine models adhering to our data structure. These are based on combining two approaches: a representation of the TIN using stars of vertices and triangles, together with segmenting the TIN on the basis of coplanarity of adjacent triangles. The approach is supposed to deliver the complete model including walls at the correct locations, without relying on additional map data, as these often lack completeness, actuality and accuracy, and moreover most of the time do not account for parts facades not going down to street level. However, automatic detection of height discontinuities to obtain the exact location of the walls is currently still under implementation.

  5. Feasibility study of an aerial manipulator interacting with a vertical wall

    DTIC Science & Technology

    2017-06-01

    each blade . Some tests are run with different levels of PWM input and the resultant angular acceleration in each case is measured with the motion...Helicopter Near a Vertical Surface ...................29 Figure 15. Near-Wall Moment for a Single Blade Helicopter. Source: [30]. .............30...with canted propellers is proposed, so that each blade applies thrust with components in the vertical and in the horizontal plane. In Figure 10

  6. Wall-Resolved Large-Eddy Simulation of Flow Separation Over NASA Wall-Mounted Hump

    NASA Technical Reports Server (NTRS)

    Uzun, Ali; Malik, Mujeeb R.

    2017-01-01

    This paper reports the findings from a study that applies wall-resolved large-eddy simulation to investigate flow separation over the NASA wall-mounted hump geometry. Despite its conceptually simple flow configuration, this benchmark problem has proven to be a challenging test case for various turbulence simulation methods that have attempted to predict flow separation arising from the adverse pressure gradient on the aft region of the hump. The momentum-thickness Reynolds number of the incoming boundary layer has a value that is near the upper limit achieved by recent direct numerical simulation and large-eddy simulation of incompressible turbulent boundary layers. The high Reynolds number of the problem necessitates a significant number of grid points for wall-resolved calculations. The present simulations show a significant improvement in the separation-bubble length prediction compared to Reynolds-Averaged Navier-Stokes calculations. The current simulations also provide good overall prediction of the skin-friction distribution, including the relaminarization observed over the front portion of the hump due to the strong favorable pressure gradient. We discuss a number of problems that were encountered during the course of this work and present possible solutions. A systematic study regarding the effect of domain span, subgrid-scale model, tunnel back pressure, upstream boundary layer conditions and grid refinement is performed. The predicted separation-bubble length is found to be sensitive to the span of the domain. Despite the large number of grid points used in the simulations, some differences between the predictions and experimental observations still exist (particularly for Reynolds stresses) in the case of the wide-span simulation, suggesting that additional grid resolution may be required.

  7. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes.

    PubMed

    Shi, Wenbo; Li, Jinjing; Polsen, Erik S; Oliver, C Ryan; Zhao, Yikun; Meshot, Eric R; Barclay, Michael; Fairbrother, D Howard; Hart, A John; Plata, Desiree L

    2017-04-20

    A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. Here, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ± 1.3 nm to 6.4 ± 1.1 nm over 0-800 ppm O 2 , and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O 2 , and this effect was mitigated by high H 2 concentrations and not due to water vapor (as confirmed in O 2 -free water addition experiments), supporting the importance of O 2 specifically. Further characterization of the interface between the Fe catalyst and Al 2 O 3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Taken as a whole, our results suggest that the impacts of O 2 and H 2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.

  8. Electrochemical wall shear rate microscopy of collapsing bubbles

    NASA Astrophysics Data System (ADS)

    Reuter, Fabian; Mettin, Robert

    2018-06-01

    An electrochemical high-speed wall shear raster microscope is presented. It involves chronoamperometric measurements on a microelectrode that is flush-mounted in a submerged test specimen. Wall shear rates are derived from the measured microelectrode signal by numerically solving a convection-diffusion equation with an optimization approach. This way, the unsteady wall shear rates from the collapse of a laser pulse seeded cavitation bubble close to a substrate are measured. By planar scanning, they are resolved in high spatial resolution. The wall shear rates are related to the bubble dynamics via synchronized high-speed imaging of the bubble shape.

  9. Tidal influences on vertical diffusion and diurnal variability of ozone in the mesosphere

    NASA Technical Reports Server (NTRS)

    Bjarnason, Gudmundur G.; Solomon, Susan; Garcia, Rolando R.

    1987-01-01

    Possible dynamical influences on the diurnal behavior of ozone are investigated. A time dependent one-dimensional photochemical model is developed for this purpose; all model calculations are made at 70 deg N during summer. It is shown that the vertical diffusion can vary as much as 1 order of magnitude within a day as a result of large changes in the zonal wind induced by atmospheric thermal tides. It is found that by introducing a dissipation time scale for turbulence produced by breaking gravity waves, the agreement with Poker Flat echo data is improved. Comparisons of results from photochemical model calculations, where the vertical diffusion is a function of height only, with those in which the vertical diffusion coefficient is changing in time show large differences in the diurnal behavior of ozone between 70 and 90 km. By including the dynamical effect, much better agreement with the Solar Mesosphere Explorers data is obtained. The results are, however, sensitive to the background zonally averaged wind. The influence of including time-varying vertical diffusion coefficient on the OH densities is also large, especially between 80 and 90 km. This suggests that dynamical effects are important in determining the diurnal behavior of the airglow emission from the Meinel bands.

  10. Vertical eddy diffusion coefficient from the LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Viswanadham, Y. (Principal Investigator); Torsani, J. A.

    1982-01-01

    Analysis of five stable cases of the smoke plumes that originated in eastern Cabo Frio (22 deg 59'S; 42 deg 02'W), Brazil using LANDSAT imagery is presented for different months and years. From these images the lateral standard deviation (sigma sub y) and the lateral eddy diffusion coefficient (K sub y) are obtained from the formula based on Taylor's theory of diffusion by continuous moment. The rate of kinetic energy dissipation (e) is evaluated from the diffusion parameters sigma sub y and K sub y. Then, the vertical diffusion coefficient (K sub z) is estimated using Weinstock's formulation. These results agree well with the previous experimental values obtained over water surfaces by various workers. Values of e and K sub z show the weaker mixing processes in the marine stable boundary layer. The data sample is apparently to small to include representative active turbulent regions because such regions are so intermittent in time and in space. These results form a data base for use in the development and validation of mesoscale atmospheric diffusion models.

  11. Vertical Diffusivities of Active and Passive Tracers

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Cheng, Y.; Howard, A. M.

    2010-01-01

    The climate models that include a carbon-cycle need the vertical diffusivity of a passive tracer. Since an expression for the latter is not available, it has been common practice to identify it with that of salt. The identification is questionable since T, S are active, not passive tracers. We present the first derivation of the diffusivity of a passive tracer in terms of Ri (Richardson number) and Rq (density ratio, ratio of salinity over temperature z-gradients). The following results have emerged: (a) The passive tracer diffusivity is an algebraic function of Ri, Rq. (b) In doubly stable regimes (DS, partial derivative of T with respect to z > 0, partial derivative of S with respect to z < 0), the passive scalar diffusivity is nearly the same as that of salt/heat for any values of Rq < 0 and Ri > 0. (c) In DC regimes (diffusive convection, partial derivative of T with respect to z < 0, partial derivative of S with respect to z < 0, Rq > 1), the passive scalar diffusivity is larger than that of salt. At Ri = O(1), it can be more than twice as large. (d) In SF regimes (salt fingers, partial derivative of T with respect to z > 0, partial derivative of S with respect to z > 0, Rq < 1), the passive scalar diffusivity is smaller than that of salt. At Ri = O(1), it can be less than half of it. (e) The passive tracer diffusivity predicted at the location of NATRE (North Atlantic Tracer Release Experiment) is discussed. (f) Perhaps the most relevant conclusion is that the common identification of the tracer diffusivity with that of salt is valid only in DS regimes. In the Southern Ocean, where there is the largest CO2 absorption, the dominant regime is diffusive convection discussed in (c) above.

  12. Performance Characteristics of Plane-Wall Two-Dimensional Diffusers

    NASA Technical Reports Server (NTRS)

    Reid, Elliott G

    1953-01-01

    Experiments have been made at Stanford University to determine the performance characteristics of plane-wall, two-dimensional diffusers which were so proportioned as to insure reasonable approximation of two-dimensional flow. All of the diffusers had identical entrance cross sections and discharged directly into a large plenum chamber; the test program included wide variations of divergence angle and length. During all tests a dynamic pressure of 60 pounds per square foOt was maintained at the diffuser entrance and the boundary layer there was thin and fully turbulent. The most interesting flow characteristics observed were the occasional appearance of steady, unseparated, asymmetric flow - which was correlated with the boundary-layer coalescence - and the rapid deterioration of flow steadiness - which occurred as soon as the divergence angle for maximum static pressure recovery was exceeded. Pressure efficiency was found to be controlled almost exclusively by divergence angle, whereas static pressure recovery was markedly influenced by area ratio (or length) as well as divergence angle. Volumetric efficiency. diminished as area ratio increased, and at a greater rate with small lengths than with large ones. Large values of the static-pressure-recovery coefficient were attained only with long diffusers of large area ratio; under these conditions pressure efficiency was high and. volumetric efficiency low. Auxiliary tests with asymmetric diffusers demonstrated that longitudinal pressure gradient, rather than wall divergence angle, controlled flow separation. Others showed that the addition of even a short exit duct of uniform section augmented pressure recovery. Finally, it was found that the installation of a thin, central, longitudinal partition suppressed flow separation in short diffusers and thereby improved pressure recovery

  13. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Wenbo; Li, Jinjing; Polsen, Erik S.

    A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. In this paper, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ±more » 1.3 nm to 6.4 ± 1.1 nm over 0–800 ppm O 2, and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O 2, and this effect was mitigated by high H 2 concentrations and not due to water vapor (as confirmed in O 2-free water addition experiments), supporting the importance of O 2 specifically. Further characterization of the interface between the Fe catalyst and Al 2O 3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Finally, taken as a whole, our results suggest that the impacts of O 2 and H 2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.« less

  14. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes

    DOE PAGES

    Shi, Wenbo; Li, Jinjing; Polsen, Erik S.; ...

    2017-04-11

    A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. In this paper, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ±more » 1.3 nm to 6.4 ± 1.1 nm over 0–800 ppm O 2, and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O 2, and this effect was mitigated by high H 2 concentrations and not due to water vapor (as confirmed in O 2-free water addition experiments), supporting the importance of O 2 specifically. Further characterization of the interface between the Fe catalyst and Al 2O 3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Finally, taken as a whole, our results suggest that the impacts of O 2 and H 2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.« less

  15. Vertical Scales of Turbulence at the Mount Wilson Observatory

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.; Lowe, Stephen T.; Bester, Manfred; Danchi, William C.; Townes, Charles H.

    1995-01-01

    The vertical scales of turbulence at the Mount Wilson Observatory are inferred from data from the University of California at Berkeley Infrared Spatial Interferometer (ISI), by modeling path length fluctuations observed in the interferometric paths to celestial objects and those in instrumental ground-based paths. The correlations between the stellar and ground-based path length fluctuations and the temporal statistics of those fluctuations are modeled on various timescales to constrain the vertical scales. A Kolmogorov-Taylor turbulence model with a finite outer scale was used to simulate ISI data. The simulation also included the white instrumental noise of the interferometer, aperture-filtering effects, and the data analysis algorithms. The simulations suggest that the path delay fluctuations observed in the 1992-1993 ISI data are largely consistent with being generated by refractivity fluctuations at two characteristic vertical scales: one extending to a height of 45 m above the ground, with a wind speed of about 1 m/ s, and another at a much higher altitude, with a wind speed of about 10 m/ s. The height of the lower layer is of the order of the dimensions of trees and other structures near the interferometer, which suggests that these objects, including elements of the interferometer, may play a role in generating the lower layer of turbulence. The modeling indicates that the high- attitude component contributes primarily to short-period (less than 10 s) fluctuations, while the lower component dominates the long-period (up to a few minutes) fluctuations. The lower component turbulent height, along with outer scales of the order of 10 m, suggest that the baseline dependence of long-term interferometric, atmospheric fluctuations should weaken for baselines greater than a few tens of meters. Simulations further show that there is the potential for improving the seeing or astrometric accuracy by about 30%-50% on average, if the path length fluctuations in the

  16. Turbulent flow near the wall of a conical diffuser

    NASA Astrophysics Data System (ADS)

    Satyaprakash, B. R.; Azad, R. S.; Nagabushana, K. A.; Kassab, S. Z.

    The turbulent flow in a conical diffuser is predicted adapting the boundary layer calculation method of Bradshaw, Ferris and Atwell. The predicted mean velocity and shear stress profiles, using the experimental data as initial input, agree well with the measured profiles. The universal low of the wall present at the inlet vahishes in the initial region and reappears later, but the width of validity is diminished considerably. The effect of divergence is present in the initial region of the diffuser only. This technique fails to predict beyond one half the total length of the diffuser.

  17. In-vitro detection of artificial caries on vertical dental cavity walls using infrared photothermal radiometry and modulated luminescence

    NASA Astrophysics Data System (ADS)

    Kim, Jungho; Mandelis, Andreas; Abrams, Stephen H.; Vu, Jaclyn T.; Amaechi, Bennett T.

    2012-12-01

    The main objective of the study was to investigate the ability of frequency-domain photothermal radiometry (PTR) and modulated luminescence (LUM) to detect secondary caries lesions on the walls of restorations (wall lesions). Changes in experimental PTR-LUM signals due to sequential demineralization on entire vertical walls of sectioned tooth samples were investigated. In addition, transverse micro-radiography (TMR) analysis (used as a gold standard) was conducted to measure the degree of demineralization that occurred in each sample. Statistical correlation between TMR results and PTR-LUM signals was determined using Pearson's correlation coefficient. LUM signals were found to be dominated by the scattered component of the incident laser beam. The more clinically relevant cases of localized demineralization and remineralization on vertical walls were also investigated to examine whether PTR-LUM signals are sensitive to demineralization and remineralization of much smaller areas. The overall results demonstrated that PTR-LUM is sensitive to progressive demineralization and remineralization on vertical walls of sectioned tooth samples.

  18. Production of vertical arrays of small diameter single-walled carbon nanotubes

    DOEpatents

    Hauge, Robert H; Xu, Ya-Qiong

    2013-08-13

    A hot filament chemical vapor deposition method has been developed to grow at least one vertical single-walled carbon nanotube (SWNT). In general, various embodiments of the present invention disclose novel processes for growing and/or producing enhanced nanotube carpets with decreased diameters as compared to the prior art.

  19. Computations of Vertical Displacement Events with Toroidal Asymmetry

    NASA Astrophysics Data System (ADS)

    Sovinec, C. R.; Bunkers, K. J.

    2017-10-01

    Nonlinear numerical MHD modeling with the NIMROD code [https://nimrodteam.org] is being developed to investigate asymmetry during vertical displacement events. We start from idealized up/down symmetric tokamak equilibria with small levels of imposed toroidally asymmetric field errors. Vertical displacement results when removing current from one of the two divertor coils. The Eulerian reference-frame modeling uses temperature-dependent resistivity and anisotropic thermal conduction to distinguish the hot plasma region from surrounding cold, low-density conditions. Diffusion through a resistive wall is slow relative to Alfvenic scales but much faster than resistive plasma diffusion. Loss of the initial edge pressure and current distributions leads to a narrow layer of parallel current, which drives low-n modes that may be related to peeling-dominated ELMs. These modes induce toroidal asymmetry in the conduction current, which connects the simulated plasma to the wall. Work supported by the US DOE through Grant Numbers DE-FG02-06ER54850 and DE-FC02-08ER54975.

  20. Implementation of a diffusion convection surface evolution model in WallDYN

    NASA Astrophysics Data System (ADS)

    Schmid, K.

    2013-07-01

    In thermonuclear fusion experiments with multiple plasma facing materials the formation of mixed materials is inevitable. The formation of these mixed material layers is a dynamic process driven the tight interaction between transport in the plasma scrape off layer and erosion/(re-) deposition at the surface. To track this global material erosion/deposition balance and the resulting formation of mixed material layers the WallDYN code has been developed which couples surface processes and plasma transport. The current surface model in WallDYN cannot fully handle the growth of layers nor does it include diffusion. However at elevated temperatures diffusion is a key process in the formation of mixed materials. To remedy this shortcoming a new surface model has been developed which, for the first time, describes both layer growth/recession and diffusion in a single continuous diffusion/convection equation. The paper will detail the derivation of the new surface model and compare it to TRIDYN calculations.

  1. Natural convection in a parallel-plate vertical channel with discrete heating by two flush-mounted heaters: effect of the clearance between the heaters

    NASA Astrophysics Data System (ADS)

    Sarper, Bugra; Saglam, Mehmet; Aydin, Orhan; Avci, Mete

    2018-04-01

    In this study, natural convection in a vertical channel is studied experimentally and numerically. One of the channel walls is heated discretely by two flush-mounted heaters while the other is insulated. The effects of the clearance between the heaters on heat transfer and hot spot temperature while total length of the heaters keeps constant are investigated. Four different settlements of two discrete heaters are comparatively examined. Air is used as the working fluid. The range of the modified Grashof number covers the values between 9.6 × 105 and 1.53 × 10.7 Surface to surface radiation is taken into account. Flow visualizations and temperature measurements are performed in the experimental study. Numerical computations are performed using the commercial CFD code ANSYS FLUENT. The results are represented as the variations of surface temperature, hot spot temperature and Nusselt number with the modified Grashof number and the clearance between the heaters as well as velocity and temperature variations of the fluid.

  2. Diameter modulation of vertically aligned single-walled carbon nanotubes.

    PubMed

    Xiang, Rong; Einarsson, Erik; Murakami, Yoichi; Shiomi, Junichiro; Chiashi, Shohei; Tang, Zikang; Maruyama, Shigeo

    2012-08-28

    We demonstrate wide-range diameter modulation of vertically aligned single-walled carbon nanotubes (SWNTs) using a wet chemistry prepared catalyst. In order to ensure compatibility to electronic applications, the current minimum mean diameter of 2 nm for vertically aligned SWNTs is challenged. The mean diameter is decreased to about 1.4 nm by reducing Co catalyst concentrations to 1/100 or by increasing Mo catalyst concentrations by five times. We also propose a novel spectral analysis method that allows one to distinguish absorbance contributions from the upper, middle, and lower parts of a nanotube array. We use this method to quantitatively characterize the slight diameter change observed along the array height. On the basis of further investigation of the array and catalyst particles, we conclude that catalyst aggregation-rather than Ostwald ripening-dominates the growth of metal particles.

  3. A method for the estimate of the wall diffusion for non-axisymmetric fields using rotating external fields

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Olofsson, K. E. J.; Fridström, R.; Setiadi, A. C.; Brunsell, P. R.; Volpe, F. A.; Drake, J.

    2013-08-01

    A new method for the estimate of the wall diffusion time of non-axisymmetric fields is developed. The method based on rotating external fields and on the measurement of the wall frequency response is developed and tested in EXTRAP T2R. The method allows the experimental estimate of the wall diffusion time for each Fourier harmonic and the estimate of the wall diffusion toroidal asymmetries. The method intrinsically considers the effects of three-dimensional structures and of the shell gaps. Far from the gaps, experimental results are in good agreement with the diffusion time estimated with a simple cylindrical model that assumes a homogeneous wall. The method is also applied with non-standard configurations of the coil array, in order to mimic tokamak-relevant settings with a partial wall coverage and active coils of large toroidal extent. The comparison with the full coverage results shows good agreement if the effects of the relevant sidebands are considered.

  4. Hydraulic Performance of Shallow Foundations for the Support of Vertical-Wall Bridge Abutments

    DOT National Transportation Integrated Search

    2017-02-01

    This study combined abutment flume experiments with numerical modeling using computational fluid dynamics (CFD) to investigate flow fields and scour at vertical-wall abutments with shallow foundations. The focus was situations dominated by flow contr...

  5. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  6. Numerical study of the flow structures in flat plate and the wall-mounted hump induced by the unsteady DBD plasma

    NASA Astrophysics Data System (ADS)

    Yu, Jianyang; Liu, Huaping; Wang, Ruoyu; Chen, Fu

    2017-01-01

    In this work, the dielectric-barrier-discharge plasma actuator was employed to study the flow structures induced by the plasma actuator over a flat plate and a wall-mounted hump. A phenomenological dielectric-barrier-discharge plasma model which regarded the plasma effect as the body force was implemented into the Navier-Stokes equations solved by the method of large eddy simulations. The results show that a series of vortex pairs, which indicated dipole formation and periodicity distribution were generated in the boundary layer when the plasma was applied to the flow over a flat plane. They would enhance the energy exchanged between the near wall region and the free stream. Besides, their spatial trajectories are deeply affected by the actuation strength. When the actuator was engaged in the flow over a wall-mounted hump, the vortex pairs were also produced, which was able to delay flow separation as well as to promote flow reattachment and reduce the generation of a vortex, achieving the goal of reducing dissipation and decreasing flow resistance.

  7. Obliquely Incident Solitary Wave onto a Vertical Wall

    NASA Astrophysics Data System (ADS)

    Yeh, Harry

    2012-10-01

    When a solitary wave impinges obliquely onto a reflective vertical wall, it can take the formation of a Mach reflection (a geometrically similar reflection from acoustics). The mathematical theory predicts that the wave at the reflection can amplify not twice, but as high as four times the incident wave amplitude. Nevertheless, this theoretical four-fold amplification has not been verified by numerical or laboratory experiments. We discuss the discrepancies between the theory and the experiments; then, improve the theory with higher-order corrections. The modified theory results in substantial improvement and is now in good agreement with the numerical as well as our laboratory results. Our laboratory experiments indicate that the wave amplitude along the reflective wall can reach 0.91 times the quiescent water depth, which is higher than the maximum of a freely propagating solitary wave. Hence, this maximum runup 0.91 h would be possible even if the amplitude of the incident solitary wave were as small as 0.24 h. This wave behavior could provide an explanation for local variability of tsunami runup as well as for sneaker waves.

  8. VERTICAL DIFFUSION IN SMALL STRATIFIED LAKES: DATA AND ERROR ANALYSIS

    EPA Science Inventory

    Water temperature profiles were measured at 2-min intervals in a stratified temperate lake with a surface area of 0.06 km2 and a aximum depth of 10 m from May 7 to August 9, 1989. he data were used to calculate the vertical eddy diffusion coefficient K2 in the hypolimnion. he dep...

  9. A study of the vortex structures around circular cylinder mounted on vertical heated plate

    NASA Astrophysics Data System (ADS)

    Malah, Hamid; Chumakov, Yurii S.; Levchenya, Alexander M.

    2018-05-01

    In recent years, studies of natural convection boundary layer interacting with obstacles draw much of attention, because of its practical applications. Pressure gradient resulting from this interaction leads to separation of the boundary layer. The formation of vortex structure around obstacle is characteristic to any kind of convection flow. In this paper, we describe the formation of three-dimensional vortex structure for the case of natural convection flow around the circular cylinder mounted on vertical heated plate. Navier-Stokes equations were used for numerical computations. The results proved the presence of a horseshoe vortex system in the case of natural convection flow as in the forced convection flow.

  10. Steady motion of skyrmions and domains walls under diffusive spin torques

    NASA Astrophysics Data System (ADS)

    Elías, Ricardo Gabriel; Vidal-Silva, Nicolas; Manchon, Aurélien

    2017-03-01

    We explore the role of the spin diffusion of conducting electrons in two-dimensional magnetic textures (domain walls and skyrmions) with spatial variation of the order of the spin precession length λex. The effect of diffusion reflects in four additional torques that are third order in spatial derivatives of magnetization and bilinear in λex and in the nonadiabatic parameter β'. In order to study the dynamics of the solitons when these diffusive torques are present, we derive the Thiele equation in the limit of steady motion and we compare the results with the nondiffusive limit. When considering a homogenous current these torques increase the longitudinal velocity of transverse domain walls of width Δ by a factor (λex/Δ)2(α/3), α being the magnetic damping constant. In the case of single skyrmions with core radius r0these new contributions tend to increase the Magnus effect in an amount proportional to (λex/r0) 2(1 +2 α β') .

  11. Rebuilding Mount St. Helens

    USGS Publications Warehouse

    Schilling, Steve P.; Ramsey, David W.; Messerich, James A.; Thompson, Ren A.

    2006-01-01

    On May 18, 1980, Mount St. Helens, Washington exploded in a spectacular and devastating eruption that shocked the world. The eruption, one of the most powerful in the history of the United States, removed 2.7 cubic kilometers of rock from the volcano's edifice, the bulk of which had been constructed by nearly 4,000 years of lava-dome-building eruptions. In seconds, the mountain's summit elevation was lowered from 2,950 meters to 2,549 meters, leaving a north-facing, horseshoe-shaped crater over 2 kilometers wide. Following the 1980 eruption, Mount St. Helens remained active. A large lava dome began episodically extruding in the center of the volcano's empty crater. This dome-building eruption lasted until 1986 and added about 80 million cubic meters of rock to the volcano. During the two decades following the May 18, 1980 eruption, Crater Glacier formed tongues of ice around the east and west sides of the lava dome in the deeply shaded niche between the lava dome and the south crater wall. Long the most active volcano in the Cascade Range with a complex 300,000-year history, Mount St. Helens erupted again in the fall of 2004 as a new period of dome building began within the 1980 crater. Between October 2004 and February 2006, about 80 million cubic meters of dacite lava erupted immediately south of the 1980-86 lava dome. The erupting lava separated the glacier into two parts, first squeezing the east arm of the glacier against the east crater wall and then causing equally spectacular crevassing and broad uplift of the glacier's west arm. Vertical aerial photographs document dome growth and glacier deformation. These photographs enabled photogrammetric construction of a series of high-resolution digital elevation models (DEMs) showing changes from October 4, 2004 to February 9, 2006. From the DEMs, Geographic Information Systems (GIS) applications were used to estimate extruded volumes and growth rates of the new lava dome. The DEMs were also used to quantify dome

  12. Protein diffusion in plant cell plasma membranes: the cell-wall corral.

    PubMed

    Martinière, Alexandre; Runions, John

    2013-01-01

    Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment.

  13. Separation Control Over A Wall-Mounted Hump

    NASA Technical Reports Server (NTRS)

    Greenblatt, D.; Paschal, K. B.; Schaeffler, N. W.; Washburn, A. E.; Harris, J.; Yao, C. S.

    2007-01-01

    Separation control by means of steady suction or zero efflux oscillatory jets is known to be effective in a wide variety of flows under different flow conditions. Control is effective when applied in a nominally two-dimensional manner, for example, at the leading-edge of a wing or at the shoulder of a deflected flap. Despite intuitive understanding of the flow, at present there is no accepted theoretical model that can adequately explain or describe the observed effects of the leading parameters such as reduced suction-rate, or frequency and momentum input. This difficulty stems partly from the turbulent nature of the flows combined with superimposed coherent structures, which are usually driven by at least one instability mechanism. The ever increasing technological importance of these flows has spurned an urgent need to develop turbulence models with a predictive capability. Present attempts to develop such models are hampered in one way or another by incomplete data sets, uncertain or undocumented inflow and boundary conditions, or inadequate flow-field measurements. This paper attempts to address these issues by conducting an experimental investigation of a lowspeed separated flow over a wall-mounted hump model. The model geometry was designed by Seifert & Pack, who measured static and dynamic pressures on the model for a wide range of Reynolds and Mach numbers and control conditions. This paper describes the present experimental setup, as well as the types and range of data acquired. Sample data is presented and future work is discussed.

  14. Modeling the sound transmission between rooms coupled through partition walls by using a diffusion model.

    PubMed

    Billon, Alexis; Foy, Cédric; Picaut, Judicaël; Valeau, Vincent; Sakout, Anas

    2008-06-01

    In this paper, a modification of the diffusion model for room acoustics is proposed to account for sound transmission between two rooms, a source room and an adjacent room, which are coupled through a partition wall. A system of two diffusion equations, one for each room, together with a set of two boundary conditions, one for the partition wall and one for the other walls of a room, is obtained and numerically solved. The modified diffusion model is validated by numerical comparisons with the statistical theory for several coupled-room configurations by varying the coupling area surface, the absorption coefficient of each room, and the volume of the adjacent room. An experimental comparison is also carried out for two coupled classrooms. The modified diffusion model results agree very well with both the statistical theory and the experimental data. The diffusion model can then be used as an alternative to the statistical theory, especially when the statistical theory is not applicable, that is, when the reverberant sound field is not diffuse. Moreover, the diffusion model allows the prediction of the spatial distribution of sound energy within each coupled room, while the statistical theory gives only one sound level for each room.

  15. Vertical and Horizontal Vegetation Structure across Natural and Modified Habitat Types at Mount Kilimanjaro

    PubMed Central

    Rutten, Gemma; Ensslin, Andreas; Hemp, Andreas; Fischer, Markus

    2015-01-01

    In most habitats, vegetation provides the main structure of the environment. This complexity can facilitate biodiversity and ecosystem services. Therefore, measures of vegetation structure can serve as indicators in ecosystem management. However, many structural measures are laborious and require expert knowledge. Here, we used consistent and convenient measures to assess vegetation structure over an exceptionally broad elevation gradient of 866–4550m above sea level at Mount Kilimanjaro, Tanzania. Additionally, we compared (human)-modified habitats, including maize fields, traditionally managed home gardens, grasslands, commercial coffee farms and logged and burned forests with natural habitats along this elevation gradient. We distinguished vertical and horizontal vegetation structure to account for habitat complexity and heterogeneity. Vertical vegetation structure (assessed as number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) displayed a unimodal elevation pattern, peaking at intermediate elevations in montane forests, whereas horizontal structure (assessed as coefficient of variation of number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) was lowest at intermediate altitudes. Overall, vertical structure was consistently lower in modified than in natural habitat types, whereas horizontal structure was inconsistently different in modified than in natural habitat types, depending on the specific structural measure and habitat type. Our study shows how vertical and horizontal vegetation structure can be assessed efficiently in various habitat types in tropical mountain regions, and we suggest to apply this as a tool for informing future biodiversity and ecosystem service studies. PMID:26406985

  16. Vertical and Horizontal Vegetation Structure across Natural and Modified Habitat Types at Mount Kilimanjaro.

    PubMed

    Rutten, Gemma; Ensslin, Andreas; Hemp, Andreas; Fischer, Markus

    2015-01-01

    In most habitats, vegetation provides the main structure of the environment. This complexity can facilitate biodiversity and ecosystem services. Therefore, measures of vegetation structure can serve as indicators in ecosystem management. However, many structural measures are laborious and require expert knowledge. Here, we used consistent and convenient measures to assess vegetation structure over an exceptionally broad elevation gradient of 866-4550 m above sea level at Mount Kilimanjaro, Tanzania. Additionally, we compared (human)-modified habitats, including maize fields, traditionally managed home gardens, grasslands, commercial coffee farms and logged and burned forests with natural habitats along this elevation gradient. We distinguished vertical and horizontal vegetation structure to account for habitat complexity and heterogeneity. Vertical vegetation structure (assessed as number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) displayed a unimodal elevation pattern, peaking at intermediate elevations in montane forests, whereas horizontal structure (assessed as coefficient of variation of number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) was lowest at intermediate altitudes. Overall, vertical structure was consistently lower in modified than in natural habitat types, whereas horizontal structure was inconsistently different in modified than in natural habitat types, depending on the specific structural measure and habitat type. Our study shows how vertical and horizontal vegetation structure can be assessed efficiently in various habitat types in tropical mountain regions, and we suggest to apply this as a tool for informing future biodiversity and ecosystem service studies.

  17. Transmission XMCD-PEEM imaging of an engineered vertical FEBID cobalt nanowire with a domain wall

    NASA Astrophysics Data System (ADS)

    Wartelle, A.; Pablo-Navarro, J.; Staňo, M.; Bochmann, S.; Pairis, S.; Rioult, M.; Thirion, C.; Belkhou, R.; de Teresa, J. M.; Magén, C.; Fruchart, O.

    2018-01-01

    Using focused electron-beam-induced deposition, we fabricate a vertical, platinum-coated cobalt nanowire with a controlled three-dimensional structure. The latter is engineered to feature bends along the height: these are used as pinning sites for domain walls, which are obtained at remanence after saturation of the nanostructure in a horizontally applied magnetic field. The presence of domain walls is investigated using x-ray magnetic circular dichroism (XMCD) coupled to photoemission electron microscopy (PEEM). The vertical geometry of our sample combined with the low incidence of the x-ray beam produce an extended wire shadow which we use to recover the wire’s magnetic configuration. In this transmission configuration, the whole sample volume is probed, thus circumventing the limitation of PEEM to surfaces. This article reports on the first study of magnetic nanostructures standing perpendicular to the substrate with XMCD-PEEM. The use of this technique in shadow mode enabled us to confirm the presence of a domain wall without direct imaging of the nanowire.

  18. Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets

    NASA Astrophysics Data System (ADS)

    Akosa, Collins Ashu; Kim, Won-Seok; Bisig, André; Kläui, Mathias; Lee, Kyung-Jin; Manchon, Aurélien

    2015-03-01

    Current-induced spin transfer torque and magnetization dynamics in the presence of spin diffusion in disordered magnetic textures is studied theoretically. We demonstrate using tight-binding calculations that weak, spin-conserving impurity scattering dramatically enhances the nonadiabaticity. To further explore this mechanism, a phenomenological drift-diffusion model for incoherent spin transport is investigated. We show that incoherent spin diffusion indeed produces an additional spatially dependent torque of the form ˜∇2[m ×(u .∇ ) m ] +ξ ∇2[(u .∇ ) m ] , where m is the local magnetization direction, u is the direction of injected current, and ξ is a parameter characterizing the spin dynamics (precession, dephasing, and spin-flip). This torque, which scales as the inverse square of the domain wall width, only weakly enhances the longitudinal velocity of a transverse domain wall but significantly enhances the transverse velocity of vortex walls. The spatial-dependent spin transfer torque uncovered in this study is expected to have significant impact on the current-driven motion of abrupt two-dimensional textures such as vortices, skyrmions, and merons.

  19. Experimental characterization of vertical-axis wind turbine noise.

    PubMed

    Pearson, C E; Graham, W R

    2015-01-01

    Vertical-axis wind turbines are wind-energy generators suitable for use in urban environments. Their associated noise thus needs to be characterized and understood. As a first step, this work investigates the relative importance of harmonic and broadband contributions via model-scale wind-tunnel experiments. Cross-spectra from a pair of flush-mounted wall microphones exhibit both components, but further analysis shows that the broadband dominates at frequencies corresponding to the audible range in full-scale operation. This observation has detrimental implications for noise-prediction reliability and hence also for acoustic design optimization.

  20. Vertical eddy diffusivity as a control parameter in the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Martinez Avellaneda, N.; Cornuelle, B.

    2011-12-01

    Ocean models suffer from errors in the treatment of turbulent sub-grid-scale motions responsible for mixing and energy dissipation. Unrealistic small-scale physics in models can have large-scale consequences, such as biases in the upper ocean temperature, a symptom of poorly-simulated upwelling, currents and air-sea interactions. This is of special importance in the tropical Pacific Ocean (TP), which is home to energetic air-sea interactions that affect global climate. It has been shown in a number of studies that the simulated ENSO variability is highly dependent on the state of the ocean (e.g.: background mixing). Moreover, the magnitude of the vertical numerical diffusion is of primary importance in properly reproducing the Pacific equatorial thermocline. This work is part of a NASA-funded project to estimate the space- and time-varying ocean mixing coefficients in an eddy-permitting (1/3dgr) model of the TP to obtain an improved estimate of its time-varying circulation and its underlying dynamics. While an estimation procedure for the TP (26dgr S - 30dgr N) in underway using the MIT general circulation model, complementary adjoint-based sensitivity studies have been carried out for the starting ocean state from Forget (2010). This analysis aids the interpretation of the estimated mixing coefficients and possible error compensation. The focus of the sensitivity tests is the Equatorial Undercurrent and sub-thermocline jets (i.e., Tsuchiya Jets), which have been thought to have strong dependence on vertical diffusivity and should provide checks on the estimated mixing parameters. In order to build intuition for the vertical diffusivity adjoint results in the TP, adjoint and forward perturbed simulations were carried out for an idealized sharp thermocline in a rectangular domain.

  1. Wall pressure measurements of flooding in vertical countercurrent annular air–water flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choutapalli, I., Vierow, K.

    2010-01-01

    An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4Γ/μ; Γ is the liquid mass flow rate per unit perimeter; μ is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet andmore » is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.« less

  2. Tsunami Wave Run-up on a Vertical Wall in Tidal Environment

    NASA Astrophysics Data System (ADS)

    Didenkulova, Ira; Pelinovsky, Efim

    2018-04-01

    We solve analytically a nonlinear problem of shallow water theory for the tsunami wave run-up on a vertical wall in tidal environment. Shown that the tide can be considered static in the process of tsunami wave run-up. In this approximation, it is possible to obtain the exact solution for the run-up height as a function of the incident wave height. This allows us to investigate the tide influence on the run-up characteristics.

  3. Structure and Characterization of Vertically Aligned Single-Walled Carbon Nanotube Bundles

    DOE PAGES

    Márquez, Francisco; López, Vicente; Morant, Carmen; ...

    2010-01-01

    Arrmore » ays of vertically aligned single-walled carbon nanotube bundles, SWCNTs, have been synthesized by simple alcohol catalytic chemical vapor deposition process, carried out at 800 ° C . The formed SWCNTs are organized in small groups perpendicularly aligned and attached to the substrate. These small bundles show a constant diameter of ca. 30 nm and are formed by the adhesion of no more than twenty individual SWCNTs perfectly aligned along their length.« less

  4. The Impact of a Deepwater Wave on a Wall with Finite Vertical Extent

    NASA Astrophysics Data System (ADS)

    Wang, An; Duncan, James H.

    2016-11-01

    The impact of a dispersively focused 2D plunging breaker (average wave frequency 1.15 Hz) on a 2D wall that is 45 cm high and 30 cm thick is studied experimentally. The temporal evolution of the water surface profile upstream of the wall is measured with a cinematic LIF technique using frame rates up to 4,500 Hz. Impact pressures on the wall are measured simultaneously at sample rates up to 900 kHz. The wall is located horizontally 6.41 m from the wave maker in all cases and the submergence of the bottom surface of the wall is varied. It is found that the impact behavior varies dramatically with the wall submergence. When the bottom is submerged by 13.3 cm, a flip-through impact occurs. In this case, the impact evolves without wave breaking and a vertical jet is formed. When the wall is submerged by less than 4.5 cm, small-amplitude components in the wave packet interact with the bottom of the wall before the main crest arrives. Ripples reflected during this interaction modify the behavior of the incoming breaker significantly. When the bottom of the wall is located sufficiently high above the mean water level, the first interaction occurs when the undisturbed wave crest collides with the wall. The highest pressures are observed in this case. The support of the Office of Naval Research is gratefully acknowledged.

  5. Interaction of an Artificially Thickened Boundary Layer with a Vertically Mounted Pitching Airfoil

    NASA Astrophysics Data System (ADS)

    Hohman, Tristen; Smits, Alexander; Martinelli, Luigi

    2011-11-01

    Wind energy represents a large portion of the growing market in alternative energy technologies and the current landscape has been dominated by the more prevalent horizontal axis wind turbine. However, there are several advantages to the vertical axis wind turbine (VAWT) or Darrieus type design and yet there is much to be understood about how the atmospheric boundary layer (ABL) affects their performance. In this study the ABL was simulated in a wind tunnel through the use of elliptical shaped vortex generators, a castellated wall, and floor roughness elements as described in the method of Counihan (1967) and then verified its validity by hot wire measurement of the mean velocity profile as well as the turbulence intensity. The motion of an blade element around a vertical axis is approximated through the use of a pitching airfoil. The wake of the airfoil is investigated through hot wire anemometry in both uniform flow and in the simulated boundary layer both at Re = 1 . 37 ×105 based on the chord of the airfoil. Sponsored by Hopewell Wind Power (Hong Kong) Limited.

  6. Experimental and Computational Investigations of Vertical Axis Wind Turbine Enclosed with Flanged Diffuser

    NASA Astrophysics Data System (ADS)

    Surya Raj, G.; Sangeetha, N.; Prince, M.

    2018-02-01

    Generation of wind energy is a must to meet out additional demand. To meet out the additional demand several long term plans were considered now being taken up for generation of energy for the fast developing industries. Detailed researches were since taken up to improve the efficiency of such vertical axis wind turbine (VAWT). In this work VAWT with diffuser and without diffuser arrangement are considered for experimental and analysis. Five diffusers were since provided around its blades of VAWT which will be placed inside a pentagon shaped fabricated structure. In this power output of the diffuser based VAWT arrangement were studied in both numerical and experimental methods and related with that of a bared VAWT. Finally, it was found that the output power of diffuser based VAWT generates approximately two times than that of bared VAWT.

  7. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    PubMed

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  8. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    PubMed Central

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559

  9. Theoretical Relationships between Luminescence and Hillslope Soil Vertical Diffusivity: a Numerical Modeling Approach

    NASA Astrophysics Data System (ADS)

    Gray, H. J.; Tucker, G. E.; Mahan, S.

    2017-12-01

    Luminescence is a property of matter that can be used to obtain depositional ages from fine sand. Luminescence generates due to exposure to background ionizing radiation and is removed by sunlight exposure in a process known as bleaching. There is evidence to suggest that luminescence can also serve as a sediment tracer in fluvial and hillslope environments. For hillslope environments, it has been suggested that the magnitude of luminescence as a function of soil depth is related to the strength of soil mixing. Hillslope soils with a greater extent of mixing will have previously surficial sand grains moved to greater depths in a soil column. These previously surface-exposed grains will contain a lower luminescence than those which have never seen the surface. To attempt to connect luminescence profiles with soil mixing rate, here defined as the soil vertical diffusivity, I conduct numerical modelling of particles in hillslope soils coupled with equations describing the physics of luminescence. I use recently published equations describing the trajectories of particles under both exponential and uniform soil velocity soils profiles and modify them to include soil diffusivity. Results from the model demonstrates a strong connection between soil diffusivity and luminescence. Both the depth profiles of luminescence and the total percent of surface exposed grains will change drastically based on the magnitude of the diffusivity. This suggests that luminescence could potentially be used to infer the magnitude of soil diffusivity. However, I test other variables such as the soil production rate, e-folding length of soil velocity, background dose rate, and soil thickness, and I find these other variables can also affect the relationship between luminescence and diffusivity. This suggests that these other variables may need to be constrained prior to any inferences of soil diffusivity from luminescence measurements. Further field testing of the model in areas where the soil

  10. Curb Mounting, Vertical Mobility, and Inverted Mobility on Rough Surfaces Using Microspine-Enabled Robots

    NASA Technical Reports Server (NTRS)

    Parness, Aaron

    2012-01-01

    Three robots that extend microspine technology to enable advanced mobility are presented. First, the Durable Reconnaissance and Observation Platform (DROP) and the ReconRobotics Scout platform use a new rotary configuration of microspines to provide improved soldier-portable reconnaissance by moving rapidly over curbs and obstacles, transitioning from horizontal to vertical surfaces, climbing rough walls and surviving impacts. Next, the four-legged LEMUR robot uses new configurations of opposed microspines to anchor to both manmade and natural rough surfaces. Using these anchors as feet enables mobility in unstructured environments, from urban disaster areas to deserts and caves.

  11. The flush-mounted rail Langmuir probe array designed for the Alcator C-Mod vertical target plate divertor

    NASA Astrophysics Data System (ADS)

    Kuang, A. Q.; Brunner, D.; LaBombard, B.; Leccacorvi, R.; Vieira, R.

    2018-04-01

    An array of flush-mounted and toroidally elongated Langmuir probes (henceforth called rail probes) have been specifically designed for the Alcator C-Mod's vertical target plate divertor and operated over multiple campaigns. The "flush" geometry enables the tungsten electrodes to survive high heat flux conditions in which traditional "proud" tungsten electrodes suffer damage from melting. The toroidally elongated rail-like geometry reduces the influence of sheath expansion, which is an important effect to consider in the design and interpretation of flush-mounted Langmuir probes. The new rail probes successfully operated during C-Mod's FY2015 and FY2016 experimental campaigns with no evidence of damage, despite being regularly subjected to heat flux densities parallel to the magnetic field exceeding ˜1 GW m-2 for short periods of time. A comparison between rail and proud probe data indicates that sheath expansion effects were successfully mitigated by the rail design, extending the use of these Langmuir probes to incident magnetic field line angles as low as 0.5°.

  12. Ocean floor mounting of wave energy converters

    DOEpatents

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  13. Reinforcement mechanism of multi-anchor wall with double wall facing

    NASA Astrophysics Data System (ADS)

    Suzuki, Kouta; Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo

    2017-10-01

    The reinforced soil wall has high seismic performance as generally known. However, the seismic behavior has not been clarified accurately yet, especially on multi-anchor wall with double wall facing. Indefinite behavior of reinforced soil wall during earthquake make us complicated in case with adopting to the abutment, because of arrangement of anchor plate as reinforcement often different according to the width of roads. In this study, a series of centrifuge model tests were carried out to investigate the reinforcement mechanism of multi anchor wall with double wall facing from the perspective of the vertical earth pressure. Several types of reinforce arrangement and rigid wall were applied in order to verify the arch function in the reinforced regions. The test results show unique behavior of vertical earth pressure, which was affected by arch action. All the vertical earth pressure placed behind facing panel, are larger than that of middle part between facing panel despite of friction between backfill and facing panel. Similar results were obtained in case using rigid wall. On the other hands, the vertical earth pressure, which were measured at the 3cm high from bottom of model container, shows larger than that of bottom. This results show the existence of arch action between double walls. In addition, it implies that the wall facing of such soil structure confined the backfill as pseudo wall, which is very reason that the multi anchor wall with double wall facing has high seismic performance.

  14. Innovation Becoming Trajectories: Leveraging Lateral and Vertical Moves for Collaborative Diffusion of Twenty-First Century Learning Practices

    ERIC Educational Resources Information Center

    Hung, David; Toh, Yancy; Jamaludin, Azilawati; So, Hyo-Jeong

    2017-01-01

    This paper argues for innovation diffusion as a "becoming" process in the context of lateral and vertical moves. The context of these innovations involves technology-mediated innovations and their diffusion trajectories in the Singapore education system. Embedded in a centralized-decentralized dialectics, this paper traces particular…

  15. General view of a Space Shuttle Main Engine (SSME) mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent feature in this view is the Expansion Nozzle . The rings that loop around the nozzle, vertically in this view, add structural stability to the nozzle walls and are referred to Hatbands. The ring on the left most edge of the nozzle is the Coolant Inlet Manifold. The tubes that branch off and connect to the manifold are Coolant Transfer Ducts and the tubes that terminate with a visible opening at the manifold are Drain Lines. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  16. Closeup view of a Space Shuttle Main Engine (SSME) mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent feature in this view is the Expansion Nozzle . The rings that loop around the nozzle, vertically in this view, add structural stability to the nozzle walls and are referred to Hatbands. The ring on the left most edge of the nozzle is the Coolant Inlet Manifold. The tubes that branch off and connect to the manifold are Coolant Transfer Ducts and the tubes that terminate with a visible opening at the manifold are Drain Lines. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  17. Ocean Turbulence. Paper 2; One-Point Closure Model Momentum, Heat and Salt Vertical Diffusivities in the Presence of Shear

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Howard, A.; Cheng, Y.; Dubovikov, M. S.

    1999-01-01

    We develop and test a 1-point closure turbulence model with the following features: 1) we include the salinity field and derive the expression for the vertical turbulent diffusivities of momentum K(sub m) , heat K(sub h) and salt K(sub s) as a function of two stability parameters: the Richardson number R(sub i) (stratification vs. shear) and the Turner number R(sub rho) (salinity gradient vs. temperature gradient). 2) to describe turbulent mixing below the mixed layer (ML), all previous models have adopted three adjustable "background diffusivities" for momentum, heat and salt. We propose a model that avoids such adjustable diffusivities. We assume that below the ML, the three diffusivities have the same functional dependence on R( sub i) and R(sub rho) as derived from the turbulence model. However, in order to compute R(sub i) below the ML, we use data of vertical shear due to wave-breaking.measured by Gargett et al. The procedure frees the model from adjustable background diffusivities and indeed we employ the same model throughout the entire vertical extent of the ocean. 3) in the local model, the turbulent diffusivities K(sub m,h,s) are given as analytical functions of R(sub i) and R(sub rho). 5) the model is used in an O-GCM and several results are presented to exhibit the effect of double diffusion processes. 6) the code is available upon request.

  18. Laminar natural convection from a vertical plate with a step change in wall temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.; Yovanovich, M.M.

    1991-05-01

    The study of natural convection heat transfer from a vertical flat plate in a quiescent medium has attracted a great deal of interest from many investigators in the past few decades. The plate with various thermal conditions that allow similarity transformations as well as those that are continuous and well defined have been examined. However, practical problems often involve wall conditions that are arbitrary and unknown a priori. To understand and solve problems involving general nonsimilar conditions at the wall, it is useful to investigate problems subjected to a step change in wall temperature. The problems impose a mathematical singularitymore » and severe nonsimilar conditions at the wall. In this paper, a new analytical model that can deal with a discontinuous wall temperature variation is presented. The method results in a set of approximate solutions for temperature and velocity distributions. The validity and accuracy of the model is demonstrated by comparisons with the results of the aforementioned investigators. The agreement is excellent and the results obtained with the solution of this work are remarkably close to existing numerical data of Hayday et al. and the perturbation series solution of Kao.« less

  19. Scale interaction and arrangement in a turbulent boundary layer perturbed by a wall-mounted cylindrical element

    NASA Astrophysics Data System (ADS)

    Tang, Zhanqi; Jiang, Nan

    2018-05-01

    This study reports the modifications of scale interaction and arrangement in a turbulent boundary layer perturbed by a wall-mounted circular cylinder. Hot-wire measurements were executed at multiple streamwise and wall-normal wise locations downstream of the cylindrical element. The streamwise fluctuating signals were decomposed into large-, small-, and dissipative-scale signatures by corresponding cutoff filters. The scale interaction under the cylindrical perturbation was elaborated by comparing the small- and dissipative-scale amplitude/frequency modulation effects downstream of the cylinder element with the results observed in the unperturbed case. It was obtained that the large-scale fluctuations perform a stronger amplitude modulation on both the small and dissipative scales in the near-wall region. At the wall-normal positions of the cylinder height, the small-scale amplitude modulation coefficients are redistributed by the cylinder wake. The similar observation was noted in small-scale frequency modulation; however, the dissipative-scale frequency modulation seems to be independent of the cylindrical perturbation. The phase-relationship observation indicated that the cylindrical perturbation shortens the time shifts between both the small- and dissipative-scale variations (amplitude and frequency) and large-scale fluctuations. Then, the integral time scale dependence of the phase-relationship between the small/dissipative scales and large scales was also discussed. Furthermore, the discrepancy of small- and dissipative-scale time shifts relative to the large-scale motions was examined, which indicates that the small-scale amplitude/frequency leads the dissipative scales.

  20. Uniform, dense arrays of vertically aligned, large-diameter single-walled carbon nanotubes.

    PubMed

    Han, Zhao Jun; Ostrikov, Kostya

    2012-04-04

    Precisely controlled reactive chemical vapor synthesis of highly uniform, dense arrays of vertically aligned single-walled carbon nanotubes (SWCNTs) using tailored trilayered Fe/Al(2)O(3)/SiO(2) catalyst is demonstrated. More than 90% population of thick nanotubes (>3 nm in diameter) can be produced by tailoring the thickness and microstructure of the secondary catalyst supporting SiO(2) layer, which is commonly overlooked. The proposed model based on the atomic force microanalysis suggests that this tailoring leads to uniform and dense arrays of relatively large Fe catalyst nanoparticles on which the thick SWCNTs nucleate, while small nanotubes and amorphous carbon are effectively etched away. Our results resolve a persistent issue of selective (while avoiding multiwalled nanotubes and other carbon nanostructures) synthesis of thick vertically aligned SWCNTs whose easily switchable thickness-dependent electronic properties enable advanced applications in nanoelectronic, energy, drug delivery, and membrane technologies.

  1. Convective response of a wall-mounted hot-film sensor in a shock tube

    NASA Technical Reports Server (NTRS)

    Roberts, A. Sidney, Jr.; Ortgies, Kelly R.; Gartenberg, Ehud; Carraway, Debra L.

    1991-01-01

    Shock tube experiments were performed in order to determine the response of a single hot-film element of a sensor array to transiently induced flow behind weak normal shock waves. The experiments attempt to isolate the response due only to the change in convective heat transfer at the hot-film surface mounted on the wall of the shock tube. The experiments are described, the results being correlated with transient boundary layer theory and compared with an independent set of experimental results. One of the findings indicates that the change in the air properties (temperature and pressure) precedes the air mass transport, causing an ambiguity in the sensor response to the development of the velocity boundary layer. Also, a transient, local heat transfer coefficient is formulated to be used as a forcing function in an hot-film instrument model and simulation which remains under investigation.

  2. Experimental Study on the Seismic Performance of Recycled Concrete Brick Walls Embedded with Vertical Reinforcement.

    PubMed

    Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun

    2014-08-19

    Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied.

  3. Experimental Study on the Seismic Performance of Recycled Concrete Brick Walls Embedded with Vertical Reinforcement

    PubMed Central

    Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun

    2014-01-01

    Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied. PMID:28788170

  4. Microwave and Millimeter Wave Properties of Vertically-Aligned Single Wall Carbon Nanotubes Films

    NASA Astrophysics Data System (ADS)

    Haddadi, K.; Tripon-Canseliet, C.; Hivin, Q.; Ducournau, G.; Teo, E.; Coquet, P.; Tay, B. K.; Lepilliet, S.; Avramovic, V.; Chazelas, J.; Decoster, D.

    2016-05-01

    We present the experimental determination of the complex permittivity of vertically aligned single wall carbon nanotubes (SWCNTs) films grown on quartz substrates in the microwave regime from 10 MHz up to 67 GHz, with the electrical field perpendicular to the main axis of the carbon nanotubes (CNTs), based on coplanar waveguide transmission line approach together with the measurement of the microwave impedance of top metalized vertically—aligned SWCNTs grown on conductive silicon substrates up to 26 GHz. From coplanar waveguide measurements, we obtain a real part of the permittivity almost equal to unity, which is interpreted in terms of low carbon atom density (3 × 1019 at/cm3) associated with a very low imaginary part of permittivity (<10-3) in the frequency range considered due to a very small perpendicular conductivity. The microwave impedance of a vertically aligned CNTs bundle equivalent to a low resistance reveals a good conductivity (3 S/cm) parallel to the CNTs axis. From these two kinds of data, we experimentally demonstrate the tensor nature of the vertically grown CNTs bundles.

  5. MRI diffusion-weighted imaging (DWI) in pediatric small bowel Crohn disease: correlation with MRI findings of active bowel wall inflammation.

    PubMed

    Ream, Justin M; Dillman, Jonathan R; Adler, Jeremy; Khalatbari, Shokoufeh; McHugh, Jonathan B; Strouse, Peter J; Dhanani, Muhammad; Shpeen, Benjamin; Al-Hawary, Mahmoud M

    2013-09-01

    Restricted diffusion on diffusion-weighted imaging (DWI) sequences during magnetic resonance enterography (MRE) has been shown in segments of bowel affected by Crohn disease. However, the exact meaning of this finding, particularly within the pediatric Crohn disease population, is poorly understood. The purpose of this study was to determine the significance of bowel wall restricted diffusion in children with small bowel Crohn disease by correlating apparent diffusion coefficient (ADC) values with other MRI markers of disease activity. A retrospective review of pediatric patients (≤ 18 years of age) with Crohn disease terminal ileitis who underwent MRE with DWI at our institution between May 1, 2009 and May 31, 2011 was undertaken. All of the children had either biopsy-proven Crohn disease terminal ileitis or clinically diagnosed Crohn disease, including terminal ileal involvement by imaging. The mean minimum ADC value within the wall of the terminal ileum was determined for each examination. ADC values were tested for correlation/association with other MRI findings to determine whether a relationship exists between bowel wall restricted diffusion and disease activity. Forty-six MRE examinations with DWI in children with terminal ileitis were identified (23 girls and 23 boys; mean age, 14.3 years). There was significant negative correlation or association between bowel wall minimum ADC value and established MRI markers of disease activity, including degree of bowel wall thickening (R = (-)0.43; P = 0.003), striated pattern of arterial enhancement (P = 0.01), degree of arterial enhancement (P = 0.01), degree of delayed enhancement (P = 0.045), amount of mesenteric inflammatory changes (P < 0.0001) and presence of a stricture (P = 0.02). ADC values were not significantly associated with bowel wall T2-weighted signal intensity, length of disease involvement or mesenteric fibrofatty proliferation. Increasing bowel wall restricted diffusion

  6. Diffusion of One-Dimensional Crystals in Channels of Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Zhigalina, V. G.; Kumskov, A. S.; Falaleev, N. S.; Vasiliev, A. L.; Kiselev, N. A.

    2018-05-01

    The transport of one-dimensional CuI crystals in channels of single-walled carbon nanotubes (SWCNTs) has been studied by high resolution electron microscopy. The diffusion kinetics has been investigated by counting the number of CuI atoms escaping from the nanotube channel. The diffusivity is calculated to be 6.8 × 10-21 m2/s, which corresponds to an activation-barrier height of 1 eV/atom. A comparison with the theoretically estimated height of the energy barrier for molecular transport through a graphene layer is indicative of mass transfer through vacancy defects in graphene.

  7. Effect of occlusal vertical dimension on lip positions at smile.

    PubMed

    Chou, Jang-Ching; Thompson, Geoffrey A; Aggarwal, Harshit A; Bosio, Jose A; Irelan, Jon P

    2014-09-01

    In complete mouth reconstructive dentistry, the occlusal vertical dimension may be increased to provide adequate restorative space or to improve esthetics. The effect of increasing the occlusal vertical dimension on the smile is not well understood. The purpose of this study was to evaluate the effect of increasing the occlusal vertical dimension on the dimensions of the smile. Thirty dental students, 12 men and 18 women between the ages of 21 and 30 years old, participated in this study. Polyvinyl siloxane occlusal registrations 2, 4, 6, and 8 mm in thickness were fabricated from articulated stone casts. Posed smile images at occlusal vertical dimension +0, +2, +4, +6, and +8 mm were made with a digital single lens reflex camera mounted on a tripod. A wall-mounted head-positioning device, modified from a cephalometric unit, was used to stabilize the head position. Interlabial gap height, intercommissural width, incisal edge to upper lip, and incisal edge-to-lower lip measurements were made with computer software. The smile index was obtained by dividing width by height. The display zone area was measured by using computer software tracing. One-way repeated measures ANOVA (α=.05) was used for statistical analysis. With an increase in the occlusal vertical dimension, the interlabial gap height, incisal edge to lower lip distance, and display zone area increased significantly (P<.001), whereas the smile index decreased significantly (P<.001). No significant changes were observed in the intercommissural width and incisal edge to upper lip distance. The interlabial gap height, incisal edge-to-lower lip distance, and display zone area increase with increased occlusal vertical dimension. The smile index decreases with increased occlusal vertical dimension. However, the width of the smile and the length of the upper lip tend to remain unchanged. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights

  8. Radial diffusion, vertical transport, and refixation of labeled bicarbonate in scots pine stems

    NASA Astrophysics Data System (ADS)

    Marshall, J. D.; Tarvainen, L.; Wallin, G.

    2016-12-01

    The CO2 produced by a respiring stem provides an index of metabolic activity in the stem and a quantitative estimate of an important component of the forest carbon budget. Production of CO2 by a given stem volume is lost by three competing processes. First, some diffuses radially outward through the bark. Second, some is dissolved and vertically transported upward out of the control volume by the xylem stream. Third, some is refixed by photosynthesis under the bark. The relative balance among these pathways was quantified in 17-m Scots pine trees by 13C-bicarbonate labeling of the xylem stream and monitoring of the 13CO2 in the xylem water, along with continuous monitoring of the radial diffusive flux at four canopy heights and in transpiration from leaves. Most of the label diffused out radially, as 13CO2, immediately above the labeling site, over about a week. The pulse was weakly and briefly detected 4 m above that height. Further up the stem it was not detected at all. We detected significant refixation of CO2 in the stems at all heights above 4 m, where the bark becomes papery and thin, but the label was so weak at this height that refixation had little influence on the pulse chase. We conclude that the vertical flux is negligible in Scots pine, but that the refixation flux must be accounted for in estimates of whole-stem CO2 efflux.

  9. The significance of vertical moisture diffusion on drifting snow sublimation near snow surface

    NASA Astrophysics Data System (ADS)

    Huang, Ning; Shi, Guanglei

    2017-12-01

    Sublimation of blowing snow is an important parameter not only for the study of polar ice sheets and glaciers, but also for maintaining the ecology of arid and semi-arid lands. However, sublimation of near-surface blowing snow has often been ignored in previous studies. To study sublimation of near-surface blowing snow, we established a sublimation of blowing snow model containing both a vertical moisture diffusion equation and a heat balance equation. The results showed that although sublimation of near-surface blowing snow was strongly reduced by a negative feedback effect, due to vertical moisture diffusion, the relative humidity near the surface does not reach 100 %. Therefore, the sublimation of near-surface blowing snow does not stop. In addition, the sublimation rate near the surface is 3-4 orders of magnitude higher than that at 10 m above the surface and the mass of snow sublimation near the surface accounts for more than half of the total snow sublimation when the friction wind velocity is less than about 0.55 m s-1. Therefore, the sublimation of near-surface blowing snow should not be neglected.

  10. Performance of an asymmetric short annular diffuser with a nondiverging inner wall using suction. [control of radial profiles of diffuser exit velocity

    NASA Technical Reports Server (NTRS)

    Juhasz, A.

    1974-01-01

    The performance of a short highly asymmetric annular diffuser equipped with wall bleed (suction) capability was evaluated at nominal inlet Mach numbers of 0.188, 0.264, and 0.324 with the inlet pressure and temperature at near ambient values. The diffuser had an area ratio of 2.75 and a length- to inlet-height ratio of 1.6. Results show that the radial profiles of diffuser exit velocity could be controlled from a severely hub peaked to a slightly tip biased form by selective use of bleed. At the same time, other performance parameters were also improved. These results indicate the possible application of the diffuser bleed technique to control flow profiles to gas turbine combustors.

  11. Flow characteristics and spillage mechanisms of wall-mounted and jet-isolated range hoods subject to influence from cross draft.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Peng, Kuan-Lin

    2012-01-01

    The effects of draft on the flow and spillage characteristics of wall-mounted and jet-isolated range hoods were investigated. A specially designed draft generator that could supply low-swirl air current was used to provide "cross draft" from three directions, lateral (θ = 0(o)), oblique (θ = 45(o)), and front (θ = 90(o)), with respect to the center point of the range hoods. Flow characteristics of oil mist were inspected through visualization of smoke flows with light scattering (laser light sheet-assisted visualization of smoke flow). The leakage mechanisms, which were closely related to the flow features, were studied by examining both movies and still pictures showing smoke-flow evolution. The sulfur hexafluoride tracer gas concentration detection method was employed to measure the capture indices. The results showed that the lateral draft pushed the pollutants generated under the hood in the opposite direction and induced serious spillage. The oblique draft pushed the pollutants toward both the rear wall and opposite side and induced more serious spillage than did the lateral draft. The frontal draft forced the pollutants to bifurcate into streams moving toward the left and the right, and induced the most serious pollutant spillage among the three tested drafts. Pollutant spillage became critically significant as the cross draft velocity was increased to greater than 0.2 m/sec. Spillage of pollutants increased as the velocity of the cross draft was increased. Increasing the suction flow rate of the range hood may increase resistance to the draft, but the benefits were limited at draft velocities greater than 0.2 m/sec. Both range hoods had a similarly low capture index under the influence of the lateral draft. For the oblique and frontal drafts, the jet-isolated range hood demonstrated a higher capture index than did the wall-mounted range hood.

  12. Vertical Eddy Diffusivity as a Control Parameter in the Tropical Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Martinez Avellaneda, N.; Cornuelle, B.; Mazloff, M. R.; Stammer, D.

    2012-12-01

    Ocean models suffer from errors in the treatment of turbulent sub-grid scale motions causing mixing and energy dissipation. Unrealistic small-scale features in models can have large-scale consequences, such as biases in the upper ocean temperature, a symptom of poorly-simulated upwelling, currents and air-sea interactions. This is of special importance in the tropical Pacific Ocean, which is home to energetic air-sea interactions that affect global climate. It has been shown in a number of studies that the simulated ENSO variability is highly dependent on the state of the ocean (e.g.: background mixing). Moreover, the magnitude of the vertical numerical diffusion is of primary importance in properly reproducing the Pacific equatorial thermocline. Yet, it is a common practice to use spatially uniform mixing parameters in ocean simulations. This work is part of a NASA-funded project to estimate the space-varying ocean mixing coefficients in an eddy-permitting model of the tropical Pacific. The usefulness of assimilation techniques in estimating mixing parameters has been previously explored (e.g.: Stammer, 2005, Ferreira et al., 2005). The authors also demonstrated that the spatial structure of the Equatorial Undercurrent (EUC) could be improved by adjusting wind-stress and surface buoyancy flux within their error bounds. In our work, we address the important question of whether adjusting mixing parameterizations can bring about similar improvements. To that end, an eddy-permitting state estimate for the tropical Pacific is developed using the MIT general circulation model and its adjoint where the vertical diffusivity is set as a control parameter. Complementary adjoint-based sensitivity results show strong sensitivities of the Tropical Pacific thermocline (thickness and location) and the EUC transport to the vertical diffusivity in the tropics. Argo, CTD, XBT and mooring in-situ data, as well as TMI SST and altimetry observations are assimilated in order to reduce

  13. Purging of a tank-mounted multilayer insulation system by gas diffusion

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.

    1978-01-01

    The investigation was conducted on a multilayer insulation (MLI) system mounted on a spherical liquid hydrogen propellant tank. The MLI consisted of two blankets of insulation each containing 15 double-aluminized Mylar radiation shields separated by double silk net spacers. The gaseous nitrogen initially contained within the MLI system and vacuum chamber was purged with gaseous helium introduced both underneath the MLI and into the vacuum chamber. The MLI panels were assumed to be purged primarily by means of gas diffusion. Overall, test results indicated that nitrogen concentrations well below 1 percent could be achieved everywhere within the MLI system. Typical times to achieve 1 percent nitrogen concentration within the MLI panels ranged from 69 minutes at the top of the tank to 158 minutes at the bottom of the tank. Four space-hold thermal performance tests indicated no significant thermal degradation of the MLI system had occurred due to the purge tests conducted. The final measured heat input attributed to the MLI was 7.23 watts as compared to 7.18 watts for the initial baseline thermal performance test.

  14. Wall shear measurement in sand-water mixture flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yucel, O.; Grad, W.H.

    1975-07-01

    The wall shear stress was measured in clear-water and sand-water mixture flows with the use of a flush-mounting hot-film shear-sensor. Data were obtained with 2 shear-sensors and 2 different sands (d50 = 0.45 mm and d50 = 0.88 mm) with solids concentrations of up to Cmax = 1.6% by vol, and for flow Reynolds number of 10/sup 5/ < RD < 6 x 10/sup 5/. The measured sensor wall shear stresses were compared with the true wall shear stresses obtained with the energy head loss measurements conducted in a pipeline system. The results of the tests in the clear-water flowsmore » confirmed the relationship between the sensor power output, Ps, and the wall shear stress, tauo, given by tauo1/3 = APs + B, in which A and B are calibration coefficients. The tests with the low-concentration sand-water mixtures in a vertical pipe indicated that for the present range of experiments, sensor power outputs with the mixtures exceeded those for clear-water by an average of 5%. It is shown that the shear sensors are delicate but accurate instruments that can be used for the measurement of the wall shear stress. (13 refs.)« less

  15. Thermal Impacts of Vertical Greenery Systems

    NASA Astrophysics Data System (ADS)

    Safikhani, Tabassom; Abdullah, Aminatuzuhariah Megat; Ossen, Dilshan Remaz; Baharvand, Mohammad

    2014-12-01

    - Using vertical greenery systems to reduce heat transmission is becoming more common in modern architecture. Vertical greenery systems are divided into two main categories; green facades and living walls. This study aims to examine the thermal performance of vertical greenery systems in hot and humid climates. An experimental procedure was used to measure indoor temperature and humidity. These parameters were also measured for the gap between the vertical greenery systems and wall surfaces. Three boxes were used as small-scale rooms. Two boxes were provided with either a living wall or a green facade and one box did not have any greenery (benchmark). Blue Trumpet Vine was used in the vertical greenery systems. The data were recorded over the course of three sunny days in April 2013. An analyses of the results showed that the living wall and green facade reduced indoor temperature up to 4.0 °C and 3.0 °C, respectively. The living wall and green facade also reduced cavity temperatures by 8.0 °C and 6.5 °C, respectively.

  16. Research on LQR optimal control method of active engine mount

    NASA Astrophysics Data System (ADS)

    Huan, Xie; Yu, Duan

    2018-04-01

    In this paper, the LQR control method is applied to the active mount of the engine, and a six-cylinder engine excitation model is established. Through the joint simulation of AMESim and MATLAB, the vibration isolation performance of the active mount system and the passive mount system is analyzed. Excited by the multi-engine operation, the simulation results of the vertical displacement, acceleration and dynamic deflection of the vehicle body show that the vibration isolation capability of the active mount system is superior to that of the passive mount system. It shows that compared with the passive mount, LQR active mount can greatly improve the vibration isolation performance, which proves the feasibility and effectiveness of the LQR control method.

  17. Influence of rotating in-plane field on vertical Bloch lines in the walls of second kind of dumbbell domains

    NASA Astrophysics Data System (ADS)

    Sun, H. Y.; Hu, H. N.; Sun, Y. P.; Nie, X. F.

    2004-08-01

    Influence of rotating in-plane field on vertical Bloch lines in the walls of second kind of dumbbell domains (IIDs) was investigated, and a critical in-plane field range [ Hip1, Hip2] of which vertical-Bloch lines (VBLs) annihilated in IIDs is found under rotating in-plane field ( Hip1 is the maximal critical in-plane-field of which hard domains remain stable, Hip2 is the minimal critical in-plane-field of which all of the hard domains convert to soft bubbles (SBs, without VBLs)). It shows that the in-plane field range [ Hip1, Hip2] changes with the change of the rotating angle Δ ϕ. Hip1 maintains stable, while Hip2 decreases with the decreasing of rotating angle Δ ϕ. Comparing it with the spontaneous shrinking experiment of IIDs under both bias field and in-plane field, we presume that under the application of in-plane field there exists a direction along which the VBLs in the domain walls annihilate most easily, and it is in the direction that domain walls are perpendicular to the in-plane field.

  18. Explicit solutions of a gravity-induced film flow along a convectively heated vertical wall.

    PubMed

    Raees, Ammarah; Xu, Hang

    2013-01-01

    The gravity-driven film flow has been analyzed along a vertical wall subjected to a convective boundary condition. The Boussinesq approximation is applied to simplify the buoyancy term, and similarity transformations are used on the mathematical model of the problem under consideration, to obtain a set of coupled ordinary differential equations. Then the reduced equations are solved explicitly by using homotopy analysis method (HAM). The resulting solutions are investigated for heat transfer effects on velocity and temperature profiles.

  19. Model mount system for testing flutter

    NASA Technical Reports Server (NTRS)

    Farmer, M. G. (Inventor)

    1984-01-01

    A wind tunnel model mount system is disclosed for effectively and accurately determining the effects of attack and airstream velocity on a model airfoil or aircraft. The model mount system includes a rigid model attached to a splitter plate which is supported away from the wind tunnel wall several of flexible rods. Conventional instrumentation is employed to effect model rotation through a turntable and to record model flutter data as a function of the angle of attack versus dynamic pressure.

  20. Double-diffusive boundary layers along vertical free surfaces

    NASA Astrophysics Data System (ADS)

    Napolitano, L. G.; Viviani, A.; Savino, R.

    1992-05-01

    This paper deals with double-diffusive (or thermosolutal) combined free convection, i.e., free convection due to buoyant forces (natural convection) and surface tension gradients (Marangoni convection), which are generated by volume differences and surface gradients of temperature and solute concentration. Attention is focused on boundary layers that form along a vertical liquid-gas interface, when the appropriately defined nondimensional characteristic transport numbers are large enough, in problems of thermosolutal natural and Marangoni convection, such as buoyancy and surface tension driven flows in differentially heated open cavities and liquid bridges. Classes of similar solutions are derived for each class of convection on the basis of a rigorous order of magnitude analysis. Velocity, temperature and concentration profiles are reported in the similarity plane; flow and transport properties at the liquid-gas interface (interfacial velocity, heat and mass transfer bulk coefficients) are obtained for a wide range of Prandtl and Schmidt numbers and different values of the similarity parameter.

  1. Tuning vertical alignment and field emission properties of multi-walled carbon nanotube bundles

    NASA Astrophysics Data System (ADS)

    Sreekanth, M.; Ghosh, S.; Srivastava, P.

    2018-01-01

    We report the growth of vertically aligned carbon nanotube bundles on Si substrate by thermal chemical vapor deposition technique. Vertical alignment was achieved without any carrier gas or lithography-assisted deposition. Growth has been carried out at 850 °C for different quantities of solution of xylene and ferrocene ranging from 2.25 to 3.00 ml in steps of 0.25 ml at a fixed concentration of 0.02 gm (ferrocene) per ml. To understand the growth mechanism, deposition was carried out for different concentrations of the solution by changing only the ferrocene quantity, ranging from 0.01 to 0.03 gm/ml. A tunable vertical alignment of multi-walled carbon nanotubes (CNTs) has been achieved by this process and examined by scanning and transmission electron microscopic techniques. Micro-crystalline structural analysis has been done using Raman spectroscopy. A systematic variation in field emission (FE) current density has been observed. The highest FE current density is seen for the film grown with 0.02 gm/ml concentration, which is attributed to the better alignment of CNTs, less structural disorder and less entanglement of CNTs on the surface. The alignment of CNTs has been qualitatively understood on the basis of self-assembled catalytic particles.

  2. Solid-state selective (13)C excitation and spin diffusion NMR to resolve spatial dimensions in plant cell walls.

    PubMed

    Foston, Marcus; Katahira, Rui; Gjersing, Erica; Davis, Mark F; Ragauskas, Arthur J

    2012-02-15

    The average spatial dimensions between major biopolymers within the plant cell wall can be resolved using a solid-state NMR technique referred to as a (13)C cross-polarization (CP) SELDOM (selectively by destruction of magnetization) with a mixing time delay for spin diffusion. Selective excitation of specific aromatic lignin carbons indicates that lignin is in close proximity to hemicellulose followed by amorphous and finally crystalline cellulose. (13)C spin diffusion time constants (T(SD)) were extracted using a two-site spin diffusion theory developed for (13)C nuclei under magic angle spinning (MAS) conditions. These time constants were then used to calculate an average lower-limit spin diffusion length between chemical groups within the plant cell wall. The results on untreated (13)C enriched corn stover stem reveal that the lignin carbons are, on average, located at distances ∼0.7-2.0 nm from the carbons in hemicellulose and cellulose, whereas the pretreated material had larger separations.

  3. Indoor imagery with a 3D through-wall synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Sévigny, Pascale; DiFilippo, David J.; Laneve, Tony; Fournier, Jonathan

    2012-06-01

    Through-wall radar imaging is an emerging technology with great interest to military and police forces operating in an urban environment. A through-wall imaging radar can potentially provide interior room layouts as well as detection and localization of targets of interest within a building. In this paper, we present our through-wall radar system mounted on the side of a vehicle and driven along a path in front of a building of interest. The vehicle is equipped with a LIDAR (Light Detection and Ranging) and motion sensors that provide auxiliary information. The radar uses an ultra wideband frequency-modulated continuous wave (FMCW) waveform to obtain high range resolution. Our system is composed of a vertical linear receive array to discriminate targets in elevation, and two transmit elements operated in a slow multiple-input multiple output (MIMO) configuration to increase the achievable elevation resolution. High resolution in the along-track direction is obtained through synthetic aperture radar (SAR) techniques. We present experimental results that demonstrate the 3-D capability of the radar. We further demonstrate target detection behind challenging walls, and imagery of internal wall features. Finally, we discuss future work.

  4. Effect of Riblets on Pressure Recovery in a Straight-Walled Diffuser

    DTIC Science & Technology

    1990-12-01

    in the boundary layer velocity pro - file. As the flow continues to oppose the adverse pressure gradient, the fluid near the wall begins to flow in the...and was 37 inches long. The floor and ceiling of the test section were con - 3 structed of wood and the side panels were made of plexiglass. Both side...the diffuser remained fairly con - stant at 52 percent. The riblet results seem to follow the same trend, providing an approximate 35 percent increase in

  5. New mounting improves solar-cell efficiency

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1980-01-01

    Method boosts output by about 20 percent by trapping and redirecting solar radiation without increasing module depth. Mounted solar-cell array is covered with internally reflecting plate. Plate is attached to each cell by transparent adhesive, and space between cells is covered with layer of diffusely reflecting material. Solar energy falling on space between cells is diffused and reflected internally by plate until it is reflected onto solar cell.

  6. Wall mounted heat exchanger characterization. [cryogenic propellant tanks

    NASA Technical Reports Server (NTRS)

    Bullard, B. R.

    1975-01-01

    Analytical models are presented for describing the heat and mass transfer and the energy distribution in the contents of a cryogenic propellant tank, under varying gravity levels. These models are used to analytically evaluate the effectiveness of a wall heat exchanger as a means of controlling the pressure in the tank during flight and during fill operations. Pressure and temperature histories are presented for tanks varying in size from 4 to 22.5 feet in diameter and gravity levels from 0-1. Results from the subscale test program, utilizing both non-cryogenic and cryogenic fluid, designed to evaluate a tank wall heat exchanger are described and compared with the analytical models. Both the model and test results indicate that a passive tank wall heat exchanger can effectively control tank pressure. However, the weight of such a system is considerably higher than that of an active mixer system.

  7. The effect of different temperature profiles upon the length and crystallinity of vertically-aligned multi-walled carbon nanotubes.

    PubMed

    Yun, Jongju; Lee, Cheesung; Zheng, Qing; Baik, Seunghyun

    2012-08-01

    We synthesized vertically-aligned multi-walled carbon nanotubes with an inner diameter of 1.6-7.5 nm and stack height of 80-28600 microm by chemical vapor deposition. The effects of synthesis conditions such as substrate position in the tube furnace, maximum temperature, temperature increasing rate and synthesis duration on the structure of nanotubes were investigated. It was found that slightly faster temperature increase rate resulted in significantly longer length, larger diameter and more defects of nanotubes. Structural parameters such as inner, outer diameters, wall thickness and defects were investigated using transmission electron microscopy and Raman spectroscopy.

  8. Diffusion of Drag-Reducing Polymers within a High-Reynolds-Number, Rough-Wall Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Elbing, Brian; Perlin, Marc; Dowling, David; Solomon, Michael; Ceccio, Steven

    2008-11-01

    Two experiments were conducted to investigate polymer drag reduction (PDR) within high Reynolds number (to 200 million based on downstream distance), rough-wall turbulent boundary layers. The first experiment was conducted at the U.S. Navy's Large Cavitation Channel on a 12.9 m long flat-plate at speeds to 20 m/s with the surface hydraulically smooth and fully rough. Local skin-friction measurements on the smooth and rough surfaces had maximum PDR levels of 65 and 75 percent, respectively. However, PDR decreased with increasing downstream distance and flow speed more rapidly on the rough surface, and at the top speed no measureable level of PDR was observed. The roughness-induced increased diffusion was quantified with near-wall concentration measurements and the second experiment, which measured concentration profiles on a 0.94 m long flat-plate with three surface conditions: smooth, 240-grit, and 60-grit sandpaper. The increased diffusion does not fully explain the smooth-rough PDR differences observed in the first experiment. Rheological analysis of drawn samples from the first experiment indicates that polymer degradation (chain scission) could be responsible for the remaining loss of rough-wall PDR. These results have implications for the cost effectiveness of PDR for surface ships.

  9. Parallel flow diffusion battery

    DOEpatents

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  10. Parallel flow diffusion battery

    DOEpatents

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  11. Towards mapping of rock walls using a UAV-mounted 2D laser scanner in GPS denied environments

    NASA Astrophysics Data System (ADS)

    Turner, Glen

    In geotechnical engineering, the stability of rock excavations and walls is estimated by using tools that include a map of the orientations of exposed rock faces. However, measuring these orientations by using conventional methods can be time consuming, sometimes dangerous, and is limited to regions of the exposed rock that are reachable by a human. This thesis introduces a 2D, simulated, quadcopter-based rock wall mapping algorithm for GPS denied environments such as underground mines or near high walls on surface. The proposed algorithm employs techniques from the field of robotics known as simultaneous localization and mapping (SLAM) and is a step towards 3D rock wall mapping. Not only are quadcopters agile, but they can hover. This is very useful for confined spaces such as underground or near rock walls. The quadcopter requires sensors to enable self localization and mapping in dark, confined and GPS denied environments. However, these sensors are limited by the quadcopter payload and power restrictions. Because of these restrictions, a light weight 2D laser scanner is proposed. As a first step towards a 3D mapping algorithm, this thesis proposes a simplified scenario in which a simulated 1D laser range finder and 2D IMU are mounted on a quadcopter that is moving on a plane. Because the 1D laser does not provide enough information to map the 2D world from a single measurement, many measurements are combined over the trajectory of the quadcopter. Least Squares Optimization (LSO) is used to optimize the estimated trajectory and rock face for all data collected over the length of a light. Simulation results show that the mapping algorithm developed is a good first step. It shows that by combining measurements over a trajectory, the scanned rock face can be estimated using a lower-dimensional range sensor. A swathing manoeuvre is introduced as a way to promote loop closures within a short time period, thus reducing accumulated error. Some suggestions on how to

  12. Natural convection in symmetrically heated vertical parallel plates with discrete heat sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manca, O.; Nardini, S.; Naso, V.

    Laminar air natural convection in a symmetrically heated vertical channel with uniform flush-mounted discrete heat sources has been experimentally investigated. The effects of heated strips location and of their number are pointed out in terms of the maximum wall temperatures. A flow visualization in the entrance region of the channel was carried out and air temperatures and velocities in two cross sections have been measured. Dimensionless local heat transfer coefficients have been evaluated and monomial correlations among relevant parameters have bee derived in the local Rayleigh number range 10--10{sup 6}. Channel Nusselt number has been correlated in a polynomial formmore » in terms of channel Rayleigh number.« less

  13. Diffusion of drag-reducing polymer solutions within a rough-walled turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Elbing, Brian R.; Dowling, David R.; Perlin, Marc; Ceccio, Steven L.

    2010-04-01

    The influence of surface roughness on diffusion of wall-injected, drag-reducing polymer solutions within a turbulent boundary layer was studied with a 0.94 m long flat-plate test model at speeds of up to 10.6 m s-1 and Reynolds numbers of up to 9×106. The surface was hydraulically smooth, transitionally rough, or fully rough. Mean concentration profiles were acquired with planar laser induced fluorescence, which was the primary flow diagnostic. Polymer concentration profiles with high injection concentrations (≥1000 wppm) had the peak concentration shifted away from the wall, which was partially attributed to a lifting phenomenon. The diffusion process was divided into three zones—initial, intermediate, and final. Studies of polymer injection into a polymer ocean at concentrations sufficient for maximum drag reduction indicated that the maximum initial zone length is of the order of 100 boundary layer thicknesses. The intermediate zone results indicate that friction velocity and roughness height are important scaling parameters in addition to flow and injection conditions. Lastly, the current results were combined with those in Petrie et al. ["Polymer drag reduction with surface roughness in flat-plate turbulent boundary layer flow," Exp. Fluids 35, 8 (2003)] to demonstrate that the influence of polymer degradation increases with increased surface roughness.

  14. Diffusion capacity and CT measures of emphysema and airway wall thickness - relation to arterial oxygen tension in COPD patients.

    PubMed

    Saure, Eirunn Waatevik; Bakke, Per Sigvald; Lind Eagan, Tomas Mikal; Aanerud, Marianne; Jensen, Robert Leroy; Grydeland, Thomas Blix; Johannessen, Ane; Nilsen, Roy Miodini; Thorsen, Einar; Hardie, Jon Andrew

    2016-01-01

    Decreased diffusing capacity of the lung for carbon monoxide (DLCO) is associated with emphysema. DLCO is also related to decreased arterial oxygen tension (PaO2), but there are limited data on associations between PaO2 and computed tomography (CT) derived measures of emphysema and airway wall thickness. To examine whether CT measures of emphysema and airway wall thickness are associated with level of arterial oxygen tension beyond that provided by measurements of diffusion capacity and spirometry. The study sample consisted of 271 smoking or ex-smoking COPD patients from the Bergen COPD Cohort Study examined in 2007-2008. Emphysema was assessed as percent of low-attenuation areas<-950 Hounsfield units (%LAA), and airway wall thickness as standardised measure at an internal perimeter of 10 mm (AWT-Pi10). Multiple linear regression models were fitted with PaO2 as the outcome variable, and %LAA, AWT-Pi10, DLCO and carbon monoxide transfer coefficient (KCO) as main explanatory variables. The models were adjusted for sex, age, smoking status, and haemoglobin concentration, as well as forced expiratory volume in one second (FEV1). Sixty two per cent of the subjects were men, mean (SD) age was 64 (7) years, mean (SD) FEV1 in percent predicted was 50 (15)%, and mean PaO2 (SD) was 9.3 (1.1) kPa. The adjusted regression coefficient (CI) for PaO2 was -0.32 (-0.04-(-0.019)) per 10% increase in %LAA (p<0.01). When diffusion capacity and FEV1 were added to the model, respectively, the association lost its statistical significance. No relationship between airway wall thickness and PaO2 was found. CT assessment of airway wall thickness is not associated with arterial oxygen tension in COPD patients. Emphysema score measured by chest CT, is related to decreased PaO2, but cannot replace measurements of diffusion capacity in the clinical evaluation of hypoxaemia.

  15. Growth mechanism and internal structure of vertically aligned single-walled carbon nanotubes.

    PubMed

    Einarsson, Erik; Kadowaki, Masayuki; Ogura, Kazuaki; Okawa, Jun; Xiang, Rong; Zhang, Zhengyi; Yamamoto, Takahisa; Ikuhara, Yuichi; Maruyama, Shigeo

    2008-11-01

    An in situ optical absorbance technique was used to monitor the growth of vertically aligned single-walled carbon nanotubes (VA-SWNTs) at various temperatures and pressures. The effects of the growth temperature and ethanol pressure on the initial growth rate and catalyst lifetime were investigated. It was found that the ideal pressure for VA-SWNT synthesis changes with the growth temperature, shifting toward higher pressure as the growth temperature increases. It was also found that the growth reaction is first-order below this ideal pressure. Additionally, the internal structure of the VA-SWNT film was observed at different depths into the film by transmission electron microscopy. The absence of large bundles was confirmed, and little change in the structure was observed to a depth of approximately 1 microm.

  16. Kinematics and dynamics of a solitary wave interacting with varying bathymetry and/or a vertical wall

    NASA Astrophysics Data System (ADS)

    Papoutsellis, Christos; Athanassoulis, Gerassimos; Charalampopoulos, Alexis-Tzianni

    2017-04-01

    In this work, we investigate the transformations that solitary surface waves undergo during their interaction with uneven seabed and/or fully reflective vertical boundaries. This is accomplished by performing simulations using a non-local Hamiltonian formulation, taking into account full nonlinearity and dispersion, in the presence of variable seabed [1]. This formulation is based on an exact coupled-mode representation of the velocity potential, leading to efficient and accurate computations of the Dirichlet to Neumann operator, required in Zakharov/Craig-Sulem formulation [2], [3]. In addition, it allows for the efficient computation of wave kinematics (velocity, acceleration) and the pressure field, in the time-dependent fluid domain, up to its physical boundaries. Such computations are performed for the case of high-amplitude solitary waves interacting with varying bathymetry and/or a vertical wall, shedding light to their kinematics and dynamics. More specifically, we first consider two benchmark cases, namely the transformation of solitary waves over a plane beach [4], and the reflection of solitary waves on a vertical wall [5]. As a further step, results on the scattering/reflection of a solitary wave due to an undulating seabed, and on the disintegration of a solitary wave travelling form shallow to deep water are also presented. References:[1] G.A. Athanassoulis. & Ch.E. Papoutsellis, in Volume 7: Ocean Engineering, ASME, OMAE2015-41452, p. V007T06A029 (2015)[2] W. Craig, C. Sulem, J. Comp. Phys. 108, 73-83 (1993) [3] V. Zakharov, J. Appl. Mech. Tech. Phys 9, 86-94 (1968)[4] S. Grilli, R. Subramanya, T. Svendsen. & J. Veeramony, J. Waterway, Port, Coastal, Ocean Eng. 120(6), 609-628. (1994)[5] Y.Y. Chen, C. Kharif , J.H. Yang, H.C. Hsu, J. Touboul & J. Chambarel, Eur. J. Mech B-Fluid 49, 20-28 (2015)

  17. Numerical prediction of wall temperatures for near-critical para-hydrogen in turbulent upflow inside vertical tubes

    NASA Technical Reports Server (NTRS)

    Bellmore, C. P.; Reid, R. L.

    1980-01-01

    Presented herein is a method of including density fluctuations in the equations of turbulent transport. Results of a numerical analysis indicate that the method may be used to predict heat transfer for the case of near-critical para-hydrogen in turbulent upflow inside vertical tubes. Wall temperatures, heat transfer coefficients, and velocities obtained by coupling the equations of turbulent momentum and heat transfer with a perturbed equation of state show good agreement with experiment for inlet reduced pressures of 1.28-5.83.

  18. Steerable vertical to horizontal energy transducer for mobile robots

    DOEpatents

    Spletzer, Barry L.; Fischer, Gary J.; Feddema, John T.

    2001-01-01

    The present invention provides a steerable vertical to horizontal energy transducer for mobile robots that less complex and requires less power than two degree of freedom tilt mechanisms. The present invention comprises an end effector that, when mounted with a hopping actuator, translates along axis (typically vertical) actuation into combined vertical and horizontal motion. The end effector, or foot, mounts with an end of the actuator that moves toward the support surface (typically a floor or the earth). The foot is shaped so that the first contact with the support surface is off the axis of the actuator. Off-axis contact with the support surface generates an on-axis force (typically resulting in vertical motion) and a moment orthogonal to the axis. The moment initiates a horizontal tumbling motion, and tilts the actuator so that its axis is oriented with a horizontal component and continued actuation generates both vertical and horizontal force.

  19. Discrete ordinates solutions of nongray radiative transfer with diffusely reflecting walls

    NASA Technical Reports Server (NTRS)

    Menart, J. A.; Lee, Haeok S.; Kim, Tae-Kuk

    1993-01-01

    Nongray gas radiation in a plane parallel slab bounded by gray, diffusely reflecting walls is studied using the discrete ordinates method. The spectral equation of transfer is averaged over a narrow wavenumber interval preserving the spectral correlation effect. The governing equations are derived by considering the history of multiple reflections between two reflecting wails. A closure approximation is applied so that only a finite number of reflections have to be explicitly included. The closure solutions express the physics of the problem to a very high degree and show relatively little error. Numerical solutions are obtained by applying a statistical narrow-band model for gas properties and a discrete ordinates code. The net radiative wail heat fluxes and the radiative source distributions are obtained for different temperature profiles. A zeroth-degree formulation, where no wall reflection is handled explicitly, is sufficient to predict the radiative transfer accurately for most cases considered, when compared with increasingly accurate solutions based on explicitly tracing a larger number of wail reflections without any closure approximation applied.

  20. Test of the diffusing-diffusivity mechanism using near-wall colloidal dynamics

    NASA Astrophysics Data System (ADS)

    Matse, Mpumelelo; Chubynsky, Mykyta V.; Bechhoefer, John

    2017-10-01

    The mechanism of diffusing diffusivity predicts that, in environments where the diffusivity changes gradually, the displacement distribution becomes non-Gaussian, even though the mean-square displacement grows linearly with time. Here, we report single-particle tracking measurements of the diffusion of colloidal spheres near a planar substrate. Because the local effective diffusivity is known, we have been able to carry out a direct test of this mechanism for diffusion in inhomogeneous media.

  1. Fixture For Mounting A Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Cagle, Christopher M.

    1995-01-01

    Fixture for mounting pressure sensor in aerodynamic model simplifies task of removal and replacement of sensor in event sensor becomes damaged. Makes it unnecessary to dismantle model. Also minimizes any change in aerodynamic characteristics of model in event of replacement. Removable pressure sensor installed in fixture in wall of model. Wires from sensor pass through channel under surface.

  2. Angular Alignment Testing of Laser Mirror Mounts Under Temperature Cycling

    NASA Technical Reports Server (NTRS)

    Bullock, K. T.; DeYoung, R. J.; Sandford, S. P.

    1997-01-01

    A number of commercial and custom-built laser mirror mounts were tested for angular alignment sensitivity during temperature cycling from room temperature (20 C) to 40 C. A Nd:YAG laser beam was reflected off a mirror that was held by the mount under test and was directed to a position-sensitive detector. Horizontal and vertical movement of the reflected beam was recorded, and the angular movement, as a function of temperature (coefficient of thermal tilt (CTT)) was calculated from these data. In addition, the amount of hysteresis in the movement after cycling from room temperature to 40 C and back was determined. All commercial mounts showed greater angular movement than the simpler National Aeronautics and Space Administration Lidar Atmospheric Sensing Experiment (NASA LASE) custom mirror mounts.

  3. Use of thermoacoustic excitation for control of turbulent flow over a wall-mounted hump

    NASA Astrophysics Data System (ADS)

    Yeh, Chi-An; Munday, Phillip; Taira, Kunihiko

    2014-11-01

    We numerically examine the effectiveness of high-frequency acoustic excitation for drag reduction control of turbulent flow over a wall-mounted hump at a free stream Reynolds number of 500,000 and Mach number of 0.25. Actuation frequencies around Helmholtz number of 3 are considered based on the characteristics of recently developed graphene/carbon nanotube-based surface compliant loud speakers. The present study utilizes LES (CharLES) with an oscillatory heat flux boundary condition to produce high-intensity acoustic waves, which interact with the turbulent flow structures by introducing small-scale perturbations to the shear layer in the wake of the hump. With thermoacoustic control, the recirculation zone downstream of the hump becomes elongated with thinner shear layer profile compared to the uncontrolled case. This change in the flow shifts the low-pressure region of the wake further downstream and results in reduction in drag by 10% for two-dimensional and 15% for three-dimensional flows. The influence of actuation frequency and amplitude is also examined. This work is supported by the US Army Research Office (W911NF-13-1-0062, W911NF-14-1-0224).

  4. Angular dependent anisotropic terahertz response of vertically aligned multi-walled carbon nanotube arrays with spatial dispersion.

    PubMed

    Zhou, Yixuan; E, Yiwen; Xu, Xinlong; Li, Weilong; Wang, Huan; Zhu, Lipeng; Bai, Jintao; Ren, Zhaoyu; Wang, Li

    2016-12-14

    Spatial dispersion effect of aligned carbon nanotubes (CNTs) in the terahertz (THz) region has significance for both theoretical and applied consideration due to the unique intrinsically anisotropic physical properties of CNTs. Herein, we report the angular dependent reflection of p-polarized THz wave from vertically aligned multi-walled CNT arrays in both experiment and theory. The spectra indicate that the reflection depends on the film thickness of vertically aligned CNTs, the incident angle, and the frequency. The calculation model is based on the spatial dispersion effect of aligned CNTs and performed with effective impedance method and the Maxwell-Garnett approximation. The results fit well with the experiment when the thickness of CNT film is thin, which reveals a coherent superposition mechanism of the CNT surface reflection and CNTs/Si interface reflection. For thick CNT films, the CNTs/Si interface response determines the reflection at small incident angles, while the CNTs surface effect dominates at large incident angles. This work investigates the spatial dispersion effect of vertically aligned CNT arrays in the THz region, and paves a way for potential anisotropic THz applications based on CNTs with oblique incidence requirements.

  5. Angular dependent anisotropic terahertz response of vertically aligned multi-walled carbon nanotube arrays with spatial dispersion

    NASA Astrophysics Data System (ADS)

    Zhou, Yixuan; Yiwen, E.; Xu, Xinlong; Li, Weilong; Wang, Huan; Zhu, Lipeng; Bai, Jintao; Ren, Zhaoyu; Wang, Li

    2016-12-01

    Spatial dispersion effect of aligned carbon nanotubes (CNTs) in the terahertz (THz) region has significance for both theoretical and applied consideration due to the unique intrinsically anisotropic physical properties of CNTs. Herein, we report the angular dependent reflection of p-polarized THz wave from vertically aligned multi-walled CNT arrays in both experiment and theory. The spectra indicate that the reflection depends on the film thickness of vertically aligned CNTs, the incident angle, and the frequency. The calculation model is based on the spatial dispersion effect of aligned CNTs and performed with effective impedance method and the Maxwell-Garnett approximation. The results fit well with the experiment when the thickness of CNT film is thin, which reveals a coherent superposition mechanism of the CNT surface reflection and CNTs/Si interface reflection. For thick CNT films, the CNTs/Si interface response determines the reflection at small incident angles, while the CNTs surface effect dominates at large incident angles. This work investigates the spatial dispersion effect of vertically aligned CNT arrays in the THz region, and paves a way for potential anisotropic THz applications based on CNTs with oblique incidence requirements.

  6. Improving breast cancer diagnosis by reducing chest wall effect in diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Feifei; Mostafa, Atahar; Zhu, Quing

    2017-03-01

    We have developed the ultrasound (US)-guided diffuse optical tomography technique to assist US diagnosis of breast cancer and to predict neoadjuvant chemotherapy response of patients with breast cancer. The technique was implemented using a hand-held hybrid probe consisting of a coregistered US transducer and optical source and detector fibers which couple the light illumination from laser diodes and photon detection to the photomultiplier tube detectors. With the US guidance, diffused light measurements were made at the breast lesion site and the normal contralateral reference site which was used to estimate the background tissue optical properties for imaging reconstruction. However, background optical properties were affected by the chest wall underneath the breast tissue. We have analyzed data from 297 female patients, and results have shown statistically significant correlation between the fitted optical properties (μa and μs‧) and the chest wall depth. After subtracting the background μa at each wavelength, the difference of computed total hemoglobin (tHb) between malignant and benign lesion groups has improved. For early stage malignant lesions, the area-under-the-receiver operator characteristic curve (AUC) has improved from 88.5% to 91.5%. For all malignant lesions, the AUC has improved from 85.3% to 88.1%. Statistical test has revealed the significant difference of the AUC improvements after subtracting background tHb values.

  7. Probing Exciton Diffusion and Dissociation in Single-Walled Carbon Nanotube-C(60) Heterojunctions.

    PubMed

    Dowgiallo, Anne-Marie; Mistry, Kevin S; Johnson, Justin C; Reid, Obadiah G; Blackburn, Jeffrey L

    2016-05-19

    The efficiency of thin-film organic photovoltaic (OPV) devices relies heavily upon the transport of excitons to type-II heterojunction interfaces, where there is sufficient driving force for exciton dissociation and ultimately the formation of charge carriers. Semiconducting single-walled carbon nanotubes (SWCNTs) are strong near-infrared absorbers that form type-II heterojunctions with fullerenes such as C60. Although the efficiencies of SWCNT-fullerene OPV devices have climbed over the past few years, questions remain regarding the fundamental factors that currently limit their performance. In this study, we determine the exciton diffusion length in the C60 layer of SWCNT-C60 bilayer active layers using femtosecond transient absorption measurements. We demonstrate that hole transfer from photoexcited C60 molecules to SWCNTs can be tracked by the growth of narrow spectroscopic signatures of holes in the SWCNT "reporter layer". In bilayers with thick C60 layers, the SWCNT charge-related signatures display a slow rise over hundreds of picoseconds, reflecting exciton diffusion through the C60 layer to the interface. A model based on exciton diffusion with a Beer-Lambert excitation profile, as well as Monte Carlo simulations, gives the best fit to the data as a function of C60 layer thickness using an exciton diffusion length of approximately 5 nm.

  8. How social media matter: Repression and the diffusion of the Occupy Wall Street movement.

    PubMed

    Suh, Chan S; Vasi, Ion Bogdan; Chang, Paul Y

    2017-07-01

    This study explores the role played by social media in reshaping the repression-mobilization relationship. Drawing on the case of the Occupy Wall Street movement, we examine the impact of Facebook and Twitter on the spatial diffusion of protests during a period of heightened state repression. Results from event history analyses suggest that the effects of repression on protest diffusion are contingent on the presence of social media accounts supporting the movement. We find that state repression at earlier protest sites encouraged activists to create Facebook and Twitter accounts in their own cities, which then served as important vehicles for the initiation of new Occupy protests. Moreover, results suggest that repression incidents can directly facilitate future protests in cities that already have Occupy Facebook accounts. This study highlights the potential of social media to both mediate and moderate the influence of repression on the diffusion of contemporary movements. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. 10. INTERIOR VIEW SHOWING MOUNTINGS FROM TUNING DEVICE. VIEW SHOWS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. INTERIOR VIEW SHOWING MOUNTINGS FROM TUNING DEVICE. VIEW SHOWS COPPER SHEETING ON WALLS. - Chollas Heights Naval Radio Transmitting Facility, Helix House, 6410 Zero Road, San Diego, San Diego County, CA

  10. Clamp-mount device

    NASA Technical Reports Server (NTRS)

    Clark, K. H. (Inventor)

    1983-01-01

    A clamp-mount device is disclosed for mounting equipment to an associated I-beam and the like structural member of the type having oppositely extending flanges wherein the device comprises a base and a pair of oppositely facing clamping members carried diagonally on the base clamping flanges therebetween and having flange receiving openings facing one another. Lock means are carried diagonally by the base opposite the clamping members locking the flanges in the clamping members. A resilient hub is carried centrally of the base engaging and biasing a back side of the flanges maintaining tightly clamped and facilitating use on vertical as well as horizontal members. The base turns about the hub to receive the flanges within the clamping members. Equipment may be secured to the base by any suitable means such as bolts in openings. Slidable gate latches secure the hinged locks in an upright locking position. The resilient hub includes a recess opening formed in the base and a rubber-like pad carried in this opening being depressably and rotatably carried therein.

  11. Summit firn caves, mount rainier, washington.

    PubMed

    Kiver, E P; Mumma, M D

    1971-07-23

    Heat and steam from the crater fumaroles have melted over 5700 feet (1737 meters) of cave passage in the ice-filled east crater of Mount Rainier. The caves are in approximate balance with the present geothermal heat release. Future changes in the thermal activity of the summit cone will cause corresponding changes in cave passage dimensions, location, and ceiling and wall ablation features.

  12. Dielectric properties of vertically aligned multi-walled carbon nanotubes in the terahertz and mid-infrared range

    NASA Astrophysics Data System (ADS)

    Thomson, Mark D.; Zouaghi, Wissem; Meng, Fanqi; Wiecha, Matthias M.; Rabia, Kaneez; Heinlein, Thorsten; Hussein, Laith; Babu, Deepu; Yadav, Sandeep; Engstler, Jörg; Schneider, Jörg J.; Nicoloso, Norbert; Rychetský, Ivan; Kužel, Petr; Roskos, Hartmut G.

    2018-01-01

    We investigate the broadband dielectric properties of vertically aligned, multi-wall carbon nanotubes (VACNT), over both the terahertz (THz) and mid-infrared spectral ranges. The nominally undoped, metallic VACNT samples are probed at normal incidence, i.e. the response is predominantly due to polarisation perpendicular to the CNT axis. A detailed comparison of various conductivity models and previously reported results is presented for the non-Drude behaviour we observe in the conventional THz range (up to 2.5 THz). Extension to the mid-infrared range reveals an absorption peak at \

  13. Mounting system for optical frequency reference cavities

    NASA Technical Reports Server (NTRS)

    Notcutt, Mark (Inventor); Hall, John L. (Inventor); Ma, Long-Sheng (Inventor)

    2008-01-01

    A technique for reducing the vibration sensitivity of laser-stabilizing optical reference cavities is based upon an improved design and mounting method for the cavity, wherein the cavity is mounted vertically. It is suspended at one plane, around the spacer cylinder, equidistant from the mirror ends of the cavity. The suspension element is a collar of an extremely low thermal expansion coefficient material, which surrounds the spacer cylinder and contacts it uniformly. Once the collar has been properly located, it is cemented in place so that the spacer cylinder is uniformly supported and does not have to be squeezed at all. The collar also includes a number of cavities partially bored into its lower flat surface, around the axial bore. These cavities are support points, into which mounting base pins will be inserted. Hence the collar is supported at a minimum of three points.

  14. Hall Current Plasma Source Having a Center-Mounted or a Surface-Mounted Cathode

    NASA Technical Reports Server (NTRS)

    Martinez, Rafael A. (Inventor); Moritz, Jr., Joel A. (Inventor); Williams, John D. (Inventor); Farnell, Casey C. (Inventor)

    2018-01-01

    A miniature Hall current plasma source apparatus having magnetic shielding of the walls from ionized plasma, an integrated discharge channel and gas distributor, an instant-start hollow cathode mounted to the plasma source, and an externally mounted keeper, is described. The apparatus offers advantages over other Hall current plasma sources having similar power levels, including: lower mass, longer lifetime, lower part count including fewer power supplies, and the ability to be continuously adjustable to lower average power levels using pulsed operation and adjustment of the pulse duty cycle. The Hall current plasma source can provide propulsion for small spacecraft that either do not have sufficient power to accommodate a propulsion system or do not have available volume to incorporate the larger propulsion systems currently available. The present low-power Hall current plasma source can be used to provide energetic ions to assist the deposition of thin films in plasma processing applications.

  15. The nanofluidic confinement apparatus: studying confinement-dependent nanoparticle behavior and diffusion

    PubMed Central

    Fringes, Stefan; Holzner, Felix

    2018-01-01

    The behavior of nanoparticles under nanofluidic confinement depends strongly on their distance to the confining walls; however, a measurement in which the gap distance is varied is challenging. Here, we present a versatile setup for investigating the behavior of nanoparticles as a function of the gap distance, which is controlled to the nanometer. The setup is designed as an open system that operates with a small amount of dispersion of ≈20 μL, permits the use of coated and patterned samples and allows high-numerical-aperture microscopy access. Using the tool, we measure the vertical position (termed height) and the lateral diffusion of 60 nm, charged, Au nanospheres as a function of confinement between a glass surface and a polymer surface. Interferometric scattering detection provides an effective particle illumination time of less than 30 μs, which results in lateral and vertical position detection accuracy ≈10 nm for diffusing particles. We found the height of the particles to be consistently above that of the gap center, corresponding to a higher charge on the polymer substrate. In terms of diffusion, we found a strong monotonic decay of the diffusion constant with decreasing gap distance. This result cannot be explained by hydrodynamic effects, including the asymmetric vertical position of the particles in the gap. Instead we attribute it to an electroviscous effect. For strong confinement of less than 120 nm gap distance, we detect the onset of subdiffusion, which can be correlated to the motion of the particles along high-gap-distance paths. PMID:29441273

  16. Aeroelastic Flutter Behavior of a Cantilever and Elastically Mounted Plate within a Nozzle-Diffuser Geometry

    NASA Astrophysics Data System (ADS)

    Tosi, Luis Phillipe; Colonius, Tim; Lee, Hyeong Jae; Sherrit, Stewart; Jet Propulsion Laboratory Collaboration; California Institute of Technology Collaboration

    2016-11-01

    Aeroelastic flutter arises when the motion of a structure and its surrounding flowing fluid are coupled in a constructive manner, causing large amplitudes of vibration in the immersed solid. A cantilevered beam in axial flow within a nozzle-diffuser geometry exhibits interesting resonance behavior that presents good prospects for internal flow energy harvesting. Different modes can be excited as a function of throat velocity, nozzle geometry, fluid and cantilever material parameters. Similar behavior has been also observed in elastically mounted rigid plates, enabling new designs for such devices. This work explores the relationship between the aeroelastic flutter instability boundaries and relevant non-dimensional parameters via experiments, numerical, and stability analyses. Parameters explored consist of a non-dimensional stiffness, a non-dimensional mass, non-dimensional throat size, and Reynolds number. A map of the system response in this parameter space may serve as a guide to future work concerning possible electrical output and failure prediction in harvesting devices.

  17. Vertically aligned single-walled carbon nanotubes by chemical assembly--methodology, properties, and applications.

    PubMed

    Diao, Peng; Liu, Zhongfan

    2010-04-06

    Single-walled carbon nanotubes (SWNTs), as one of the most promising one-dimension nanomaterials due to its unique structure, peculiar chemical, mechanical, thermal, and electronic properties, have long been considered as an important building block to construct ordered alignments. Vertically aligned SWNTs (v-SWNTs) have been successfully prepared by using direct growth and chemical assembly strategies. In this review, we focus explicitly on the v-SWNTs fabricated via chemical assembly strategy. We provide the readers with a full and systematic summary covering the advances in all aspects of this area, including various approaches for the preparation of v-SWNTs using chemical assembly techniques, characterization, assembly kinetics, and electrochemical properties of v-SWNTs. We also review the applications of v-SWNTs in electrochemical and bioelectrochemical sensors, photoelectric conversion, and scanning probe microscopy.

  18. Anomalous heat conduction and anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard gas channels.

    PubMed

    Li, Baowen; Wang, Jiao; Wang, Lei; Zhang, Gang

    2005-03-01

    We study anomalous heat conduction and anomalous diffusion in low-dimensional systems ranging from nonlinear lattices, single walled carbon nanotubes, to billiard gas channels. We find that in all discussed systems, the anomalous heat conductivity can be connected with the anomalous diffusion, namely, if energy diffusion is sigma(2)(t)=2Dt(alpha) (0diffusion (alpha=1) implies a normal heat conduction obeying the Fourier law (beta=0), a superdiffusion (alpha>1) implies an anomalous heat conduction with a divergent thermal conductivity (beta>0), and more interestingly, a subdiffusion (alpha<1) implies an anomalous heat conduction with a convergent thermal conductivity (beta<0), consequently, the system is a thermal insulator in the thermodynamic limit. Existing numerical data support our theoretical prediction.

  19. Improving breast cancer diagnosis by reducing chest wall effect in diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Feifei; Mostafa, Atahar; Zhu, Quing

    2017-02-01

    We have developed ultrasound (US)-guided diffuse optical tomography (DOT) technique to assist US diagnosis of breast cancer and to predict neoadjuvant chemotherapy response of breast cancer patients. The technique was implemented using a hand-held hybrid probe consisting co-registered US transducer and optical source and detector fibers which couple the light illumination from laser diodes and photon detection to PMT detectors. With the US guidance, diffused light measurements were made at the breast lesion site and the normal contralateral reference site which was used to estimate the background tissue optical properties for imaging reconstruction. However, background optical properties were affected by the chest wall underneath the breast tissue. In this study, we have analyzed data from 297 female patients and results have shown statistical significant correlation between fitted optical properties (μa and μs') and the chest wall depth detected by a boundary detection algorithm applied to co-registered US images (r < 0.27, p < 1.0 x 10-4). After subtracting the background total hemoglobin (tHb) computed with μa at each wavelength, the difference between malignant and benign lesion groups has improved. The Area-under-the- ROC curve (AUC) has improved from 88.5% to 91.5% (sensitivity improved from 85.0% to 87.5% and specificity from 90.2% to 92.6%). Statistical test has revealed significant difference of the AUC improvements after subtracting background tHb values.

  20. Probing Exciton Diffusion and Dissociation in Single-Walled Carbon Nanotube-C60 Heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowgiallo, Anne-Marie; Mistry, Kevin S.; Johnson, Justin C.

    The efficiency of thin-film organic photovoltaic (OPV) devices relies heavily upon the transport of excitons to type-II heterojunction interfaces, where there is sufficient driving force for exciton dissociation and ultimately the formation of charge carriers. Semiconducting single-walled carbon nanotubes (SWCNTs) are strong near-infrared absorbers that form type-II heterojunctions with fullerenes such as C60. Although the efficiencies of SWCNT-fullerene OPV devices have climbed over the past few years, questions remain regarding the fundamental factors that currently limit their performance. In this study, we determine the exciton diffusion length in the C60 layer of SWCNT-C60 bilayer active layers using femtosecond transient absorptionmore » measurements. We demonstrate that hole transfer from photoexcited C60 molecules to SWCNTs can be tracked by the growth of narrow spectroscopic signatures of holes in the SWCNT 'reporter layer'. In bilayers with thick C60 layers, the SWCNT charge-related signatures display a slow rise over hundreds of picoseconds, reflecting exciton diffusion through the C60 layer to the interface. A model based on exciton diffusion with a Beer-Lambert excitation profile, as well as Monte Carlo simulations, gives the best fit to the data as a function of C60 layer thickness using an exciton diffusion length of approximately 5 nm.« less

  1. Diffusion of radon through concrete block walls: A significant source of indoor radon

    USGS Publications Warehouse

    Lively, R.S.; Goldberg, L.F.

    1999-01-01

    Basement modules located in southern Minnesota have been the site of continuous radon and environmental measurements during heating seasons since 1993. Concentrations of radon within the basement modules ranged from 70 Bq.m-3 to over 4000 Bq.m-3 between November to April during the three measurement periods. In the soil gas for the same times, concentrations of radon ranged between 25,000 and 70,000 Bq.m-3. Levels of radon within the basement modules changed by factors of five or more within 24 h, in concert with pressure gradients of 4 to 20 Pa that developed between the basement modules and their surroundings. Diffusion is identified as the principal method by which radon is transferred into and out of the basement modules, and appears to be relatively independent of insulating materials and vapour retarders. The variability of radon and correlations with differential pressure gradients may be related to air currents in the block walls and soil that interrupt radon diffusing inward. This yields a net decrease of radon in the basement modules by decay and outward diffusion. Levels of radon within the basement modules increase when the pressure differential is zero and air flow ceases, allowing diffusion gradients to be re-established. Radon levels in both the soil and the basement modules then increase until an equilibrium is achieved.

  2. Ultrafast Spectral Diffusion of the First Subband Exciton in Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Schilling, Daniel; Hertel, Tobias

    2013-03-01

    The width of optical transitions in semiconductors is determined by homogeneous and inhomogeneous contributions. Here, we report on the determination of homogeneous linewidths for the first exciton subband transition and the dynamics of spectral diffusion in single-wall carbon nanotubes (SWNTs) using one- and two-dimensional time resolved spectral hole burning spectroscopy. Our investigation of highly purified semiconducting (6,5)-SWNTs suggests that room temperature homogeneous linewidths are on the order of 4 meV and are rapidly broadened by an ultrafast sub-ps spectral diffusion process. These findings are supported by our off-resonant excitation experiments where we observe sub-ps population transfer reflecting the thermal distribution of energy levels around the first subband exciton transition. The results of temperature-dependent spectral hole burning experiments between 17 K and 293 K suggest that homogeneous linewidths are due to exciton interaction with low energy optical phonons, most likely of the radial breathing mode type. In contrast, we find that inhomogeneous broadening is determined by an electronic degree of freedom such as ultrafast intra-tube exciton diffusion which is characteristic and unique for excitons in these one-dimensional semiconductors.

  3. Chemisorption and Diffusion of H on a Graphene Sheet and Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Dzegilenko, Fedor; Menon, Madhu

    2000-01-01

    Recent experiments on hydrogen storage in single wall nanotubes and nanotube bundles have reported large fractional weight of stored molecular hydrogen which are not in agreement with theoretical estimates based of simulation of hydrogen storage by physisorption mechanisms. Hydrogen storage in catalytically doped nanotube bundles indicate that atomic H might undergo chemisorption changing the basic nature of the storage mechanism under investigation by many groups. Using a generalized tight-binding molecular dynamics (GTBMD) method for reactive C-H dynamics, we investigate chemisorption and diffusion of atomic H on graphene sheet and C nanotubes. Effective potential energy surfaces (EPS) for chemisorption and diffusion are calculated for graphene sheet and nanotubes of different curvatures. Analysis of the activation barriers and quantum rate constants, computed via wave-packet dynamics method, will be discussed in this presentation.

  4. Use of flexible facing for soil nail walls.

    DOT National Transportation Integrated Search

    2011-11-01

    Soil nail walls are a widely used technology for retaining vertical and nearly vertical cuts in soil. A : significant portion of the cost of soil nail wall construction is related to the construction of a reinforced : concrete face. The potential for...

  5. Vertical dimensional stability and rigidity of occlusal registration materials.

    PubMed

    Walker, Mary P; Wu, Edis; Heckman, M Elizabeth; Alderman, Nicholas

    2009-01-01

    Dimensionally accurate occlusal registration records are essential for restorative dentistry; moreover, since records are not used immediately or may be used more than once, the registration material should exhibit accuracy over time (a concept known as dimensional stability). It has been speculated that materials with increased hardness or rigidity should produce more accurate registration records due to an increased resistance to distortion. This study compared the rigidity and associated dimensional accuracy of a recently marketed bisacrylic occlusal registration material and a vinyl polysiloxane (VPS). Maxillary and mandibular typodont arches were mounted on a plasterless articulator from which teeth No. 3, 13, and 15 had been removed to simulate edentulous spaces. After preparing teeth No. 2, 4, 12, and 14 as bridge abutments, the remaining teeth were equilibrated selectively to produce even anterior contact. Four digital photographs were taken to make vertical interarch measurements at four locations (teeth No. 3, 7, 10, and 14). Following initial photos (controls), 10 interocclusal records were made using each registration material, with material placed only in the segments in which teeth were prepared. The records were used for mounting the maxillary arch against the mandibular arch after 48, 72, and 120 hours. There were significant effects on vertical dimensional change related to arch location, material, and mounting time. Both materials demonstrated significantly larger posterior vertical openings than anterior vertical openings, while the bisacrylate produced a larger posterior opening than VPS at 48 and 72 hours and a larger anterior opening at all mounting times. There also was a significant difference in hardness/rigidity due to material and measurement time; at all measurement times, bisacrylate exhibited a significantly higher hardness number.

  6. Constraining the Magmatic System at Mount St. Helens (2004-2008) Using Bayesian Inversion With Physics-Based Models Including Gas Escape and Crystallization

    NASA Astrophysics Data System (ADS)

    Wong, Ying-Qi; Segall, Paul; Bradley, Andrew; Anderson, Kyle

    2017-10-01

    Physics-based models of volcanic eruptions track conduit processes as functions of depth and time. When used in inversions, these models permit integration of diverse geological and geophysical data sets to constrain important parameters of magmatic systems. We develop a 1-D steady state conduit model for effusive eruptions including equilibrium crystallization and gas transport through the conduit and compare with the quasi-steady dome growth phase of Mount St. Helens in 2005. Viscosity increase resulting from pressure-dependent crystallization leads to a natural transition from viscous flow to frictional sliding on the conduit margin. Erupted mass flux depends strongly on wall rock and magma permeabilities due to their impact on magma density. Including both lateral and vertical gas transport reveals competing effects that produce nonmonotonic behavior in the mass flux when increasing magma permeability. Using this physics-based model in a Bayesian inversion, we link data sets from Mount St. Helens such as extrusion flux and earthquake depths with petrological data to estimate unknown model parameters, including magma chamber pressure and water content, magma permeability constants, conduit radius, and friction along the conduit walls. Even with this relatively simple model and limited data, we obtain improved constraints on important model parameters. We find that the magma chamber had low (<5 wt %) total volatiles and that the magma permeability scale is well constrained at ˜10-11.4m2 to reproduce observed dome rock porosities. Compared with previous results, higher magma overpressure and lower wall friction are required to compensate for increased viscous resistance while keeping extrusion rate at the observed value.

  7. Theoretical analysis of oxygen diffusion at startup in an alkali metal heat pipe with gettered alloy walls

    NASA Technical Reports Server (NTRS)

    Tower, L. K.

    1973-01-01

    The diffusion of oxygen into, or out of, a gettered alloy exposed to oxygenated alkali liquid metal coolant, a situation arising in some high temperature heat transfer systems, was analyzed. The relation between the diffusion process and the thermochemistry of oxygen in the alloy and in the alkali metal was developed by making several simplifying assumptions. The treatment is therefore theoretical in nature. However, a practical example pertaining to the startup of a heat pipe with walls of T-111, a tantalum alloy, and lithium working fluid illustrates the use of the figures contained in the analysis.

  8. Photogeologic maps of the 2004-2005 Mount St. Helens eruption: Chapter 10 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Herriott, Trystan M.; Sherrod, David R.; Pallister, John S.; Vallance, James W.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The 2004-5 eruption of Mount St. Helens, still ongoing as of this writing (September 2006), has comprised chiefly lava dome extrusion that produced a series of solid, faultgouge-mantled dacite spines. Vertical aerial photographs taken every 2 to 4 weeks, visual observations, and oblique photographs taken from aircraft and nearby observation points provide the basis for two types of photogeologic maps of the dome--photo-based maps and rectified maps. Eight map pairs, covering the period from October 1, 2004, through December 15, 2005, document the development of seven spines: an initial small, fin-shaped vertical spine; a north-south elongate wall of dacite; two large and elongate recumbent spines (“whalebacks”); a tall and elongate inclined spine; a smaller bulbous spine; and an initially endogenous spine extruded between remnants of preceding spines. All spines rose from the same general vent area near the southern margin of the 1980s lava dome. Maps also depict translation and rotation of active and abandoned spines, progressive deformation affecting Crater Glacier, and distribution of ash on the crater floor from phreatic and phreatomagmatic explosions. The maps help track key geologic and geographic features in the rapidly changing crater and help date dome, gouge, and ash samples that are no longer readily correlated to their original context because of deformation in a dynamic environment where spines extrude, deform, slough, and are overrun by newly erupted material.

  9. Bio-mixing due to Diel Vertical Migration of Daphnia spp. in a Small Lake

    NASA Astrophysics Data System (ADS)

    Simoncelli, Stefano; Wain, Danielle; Thackeray, Stephen

    2016-04-01

    Bio-turbulence or bio-mixing refers to the contribution of living organisms towards the mixing of waters in oceans and lakes. Experimental measurements in an unstratified tank by Wilhelmus & Dabiri (2014) show that zooplankton can trigger fluid instabilities through collective motions and that energy is imparted to scales bigger than organism's size of few mm. Length scales analysis, for low-Reynolds-number organisms in stratified water by Leshansky & Pismen (2010) and Kunze (2011), estimate eddy diffusivity up two orders of magnitude larger than the molecular thermal diffusivity. Very recently, Wand & Ardekani (2015) showed a maximum diffusivity of 10-5 m2/s for millimetre-sized organisms from numerical simulations in the intermediate Reynolds number regime. Here we focus our attention on turbulence generated by the vertical migration of zooplankton in a small lake, mostly populated by Daphnia spp. This very common species, belonging to Cladocera order, is engaged in a vertical migration (DVM) at sunset, with many organisms crossing the thermocline despite the density stratification. During the ascension they may create hydrodynamic disturbances in the lake interior where the stratification usually suppresses the vertical diffusion. We have conducted five turbulence experiments in Vobster Quay, a small (area ˜ 59,000 m2), deep (40m) man-made basin with small wind fetch and steep sides, located in the South West UK. Turbulence was measured with a temperature microstructure profiler. To asses the zooplankton vertical concentration we used a 100 μm mesh net, by collecting and analyzing samples in 8 layers of the lake. A bottom-mounted acoustic Doppler current profiler was also employed to track their concentration and migration with the measured backscatter strength. Measured dissipation rates ɛ during the day showed low turbulence level (<= 10-8 W/Kg) in the thermocline and in the zooplankton layer. Turbulence, during the DVM in two different days, is highest on

  10. Wind effect on the Atlantic meridional overturning circulation via sea ice and vertical diffusion

    NASA Astrophysics Data System (ADS)

    Yang, Haijun; Wang, Kun; Dai, Haijin; Wang, Yuxing; Li, Qing

    2016-06-01

    Effects of wind and fresh water on the Atlantic meridional overturning circulation (AMOC) are investigated using a fully coupled climate model. The AMOC can change significantly when perturbed by either wind stress or freshwater flux in the North Atlantic. This study focuses on wind stress effect. Our model results show that the wind forcing is crucial in maintaining the AMOC. Reducing wind forcing over the ocean can cause immediately weakening of the vertical salinity diffusion and convection in the mid-high latitudes Atlantic, resulting in an enhancement of vertical salinity stratification that restrains the deep water formation there, triggering a slowdown of the thermohaline circulation. As the thermohaline circulation weakens, the sea ice expands southward and melts, providing the upper ocean with fresh water that weakens the thermohaline circulation further. The wind perturbation experiments suggest a positive feedback between sea-ice and thermohaline circulation strength, which can eventually result in a complete shutdown of the AMOC. This study also suggests that sea-ice variability may be also important to the natural AMOC variability on decadal and longer timescales.

  11. Measurements of ultrafast spin-profiles and spin-diffusion properties in the domain wall area at a metal/ferromagnetic film interface.

    PubMed

    Sant, T; Ksenzov, D; Capotondi, F; Pedersoli, E; Manfredda, M; Kiskinova, M; Zabel, H; Kläui, M; Lüning, J; Pietsch, U; Gutt, C

    2017-11-08

    Exciting a ferromagnetic material with an ultrashort IR laser pulse is known to induce spin dynamics by heating the spin system and by ultrafast spin diffusion processes. Here, we report on measurements of spin-profiles and spin diffusion properties in the vicinity of domain walls in the interface region between a metallic Al layer and a ferromagnetic Co/Pd thin film upon IR excitation. We followed the ultrafast temporal evolution by means of an ultrafast resonant magnetic scattering experiment in surface scattering geometry, which enables us to exploit the evolution of the domain network within a 1/e distance of 3 nm to 5 nm from the Al/FM film interface. We observe a magnetization-reversal close to the domain wall boundaries that becomes more pronounced closer to the Al/FM film interface. This magnetization-reversal is driven by the different transport properties of majority and minority carriers through a magnetically disordered domain network. Its finite lateral extension has allowed us to measure the ultrafast spin-diffusion coefficients and ultrafast spin velocities for majority and minority carriers upon IR excitation.

  12. South Fork Latrine, interior showing head with steel tank mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South Fork Latrine, interior showing head with steel tank mounted to wall; view south - Fort McKinley, South Fork Latrine, West side of East Side Drive, approximately 225 feet south of Weymouth Way, Great Diamond Island, Portland, Cumberland County, ME

  13. Constraining the magmatic system at Mount St. Helens (2004–2008) using Bayesian inversion with physics-based models including gas escape and crystallization

    USGS Publications Warehouse

    Wong, Ying-Qi; Segall, Paul; Bradley, Andrew; Anderson, Kyle R.

    2017-01-01

    Physics-based models of volcanic eruptions track conduit processes as functions of depth and time. When used in inversions, these models permit integration of diverse geological and geophysical data sets to constrain important parameters of magmatic systems. We develop a 1-D steady state conduit model for effusive eruptions including equilibrium crystallization and gas transport through the conduit and compare with the quasi-steady dome growth phase of Mount St. Helens in 2005. Viscosity increase resulting from pressure-dependent crystallization leads to a natural transition from viscous flow to frictional sliding on the conduit margin. Erupted mass flux depends strongly on wall rock and magma permeabilities due to their impact on magma density. Including both lateral and vertical gas transport reveals competing effects that produce nonmonotonic behavior in the mass flux when increasing magma permeability. Using this physics-based model in a Bayesian inversion, we link data sets from Mount St. Helens such as extrusion flux and earthquake depths with petrological data to estimate unknown model parameters, including magma chamber pressure and water content, magma permeability constants, conduit radius, and friction along the conduit walls. Even with this relatively simple model and limited data, we obtain improved constraints on important model parameters. We find that the magma chamber had low (<5wt%) total volatiles and that the magma permeability scale is well constrained at ~10-11.4 m2 to reproduce observed dome rock porosities. Compared with previous results, higher magma overpressure and lower wall friction are required to compensate for increased viscous resistance while keeping extrusion rate at the observed value.

  14. Effect of porosity variation on the electrochemical behavior of vertically aligned multi-walled carbon nanotubes.

    PubMed

    Raut, Akshay S; Parker, Charles B; Stoner, Brian R; Glass, Jeffrey T

    2012-06-01

    Electrochemical charge storage characteristics of vertically aligned multi-walled carbon nanotubes (MWCNTs) as a function of varying diameter and spacing are reported. It was observed that the specific capacitance of the MWCNTs increased as both diameter and inter-tube spacing decreased. The MWCNT films with 229 nm inter-MWCNT spacing exhibited specific capacitance of 228 F/g versus 70 F/g for 506 nm spacing, when tested in a non-aqueous electrolyte. Further, a trend in specific capacitance versus pore size is proposed. Coupled with previously reported trends observed in the sub-10 nm pore size regime, this is expected to offer better understanding of electrochemical behavior of porous carbon materials over a wide range of pore sizes.

  15. Three-dimensional repositioning accuracy of semiadjustable articulator cast mounting systems.

    PubMed

    Tan, Ming Yi; Ung, Justina Youlin; Low, Ada Hui Yin; Tan, En En; Tan, Keson Beng Choon

    2014-10-01

    In spite of its importance in prosthesis precision and quality, the 3-dimensional repositioning accuracy of cast mounting systems has not been reported in detail. The purpose of this study was to quantify the 3-dimensional repositioning accuracy of 6 selected cast mounting systems. Five magnetic mounting systems were compared with a conventional screw-on system. Six systems on 3 semiadjustable articulators were evaluated: Denar Mark II with conventional screw-on mounting plates (DENSCR) and magnetic mounting system with converter plates (DENCON); Denar Mark 330 with in-built magnetic mounting system (DENMAG) and disposable mounting plates; and Artex CP with blue (ARTBLU), white (ARTWHI), and black (ARTBLA) magnetic mounting plates. Test casts with 3 high-precision ceramic ball bearings at the mandibular central incisor (Point I) and the right and left second molar (Point R; Point L) positions were mounted on 5 mounting plates (n=5) for all 6 systems. Each cast was repositioned 10 times by 4 operators in random order. Nine linear (Ix, Iy, Iz; Rx, Ry, Rz; Lx, Ly, Lz) and 3 angular (anteroposterior, mediolateral, twisting) displacements were measured with a coordinate measuring machine. The mean standard deviations of the linear and angular displacements defined repositioning accuracy. Anteroposterior linear repositioning accuracy ranged from 23.8 ±3.7 μm (DENCON) to 4.9 ±3.2 μm (DENSCR). Mediolateral linear repositioning accuracy ranged from 46.0 ±8.0 μm (DENCON) to 3.7 ±1.5 μm (ARTBLU), and vertical linear repositioning accuracy ranged from 7.2 ±9.6 μm (DENMAG) to 1.5 ±0.9 μm (ARTBLU). Anteroposterior angular repositioning accuracy ranged from 0.0084 ±0.0080 degrees (DENCON) to 0.0020 ±0.0006 degrees (ARTBLU), and mediolateral angular repositioning accuracy ranged from 0.0120 ±0.0111 degrees (ARTWHI) to 0.0027 ±0.0008 degrees (ARTBLU). Twisting angular repositioning accuracy ranged from 0.0419 ±0.0176 degrees (DENCON) to 0.0042 ±0.0038 degrees

  16. A scale-entropy diffusion equation to describe the multi-scale features of turbulent flames near a wall

    NASA Astrophysics Data System (ADS)

    Queiros-Conde, D.; Foucher, F.; Mounaïm-Rousselle, C.; Kassem, H.; Feidt, M.

    2008-12-01

    Multi-scale features of turbulent flames near a wall display two kinds of scale-dependent fractal features. In scale-space, an unique fractal dimension cannot be defined and the fractal dimension of the front is scale-dependent. Moreover, when the front approaches the wall, this dependency changes: fractal dimension also depends on the wall-distance. Our aim here is to propose a general geometrical framework that provides the possibility to integrate these two cases, in order to describe the multi-scale structure of turbulent flames interacting with a wall. Based on the scale-entropy quantity, which is simply linked to the roughness of the front, we thus introduce a general scale-entropy diffusion equation. We define the notion of “scale-evolutivity” which characterises the deviation of a multi-scale system from the pure fractal behaviour. The specific case of a constant “scale-evolutivity” over the scale-range is studied. In this case, called “parabolic scaling”, the fractal dimension is a linear function of the logarithm of scale. The case of a constant scale-evolutivity in the wall-distance space implies that the fractal dimension depends linearly on the logarithm of the wall-distance. We then verified experimentally, that parabolic scaling represents a good approximation of the real multi-scale features of turbulent flames near a wall.

  17. Flow-Meter and Passive Diffusion Bag Tests and Potential Influences on the Vertical Distribution of Contaminants in Wells at Galena Airport, Galena, Alaska, August to October 2002

    USGS Publications Warehouse

    Vroblesky, Don A.; Peterson, J.E.

    2004-01-01

    Past activities at Galena Airport, a U.S. Air Force Base in Galena, Alaska, have resulted in ground-water contamination by volatile organic compounds. The primary contaminants are petroleum hydrocarbons and chlorinated aliphatic hydrocarbons. The U.S. Geological Survey and Earth Tech, in cooperation with the Air Force Center for Environmental Excellence, conducted investigations at Galena Airport from August to October 2002 using polyethylene diffusion bag samplers and borehole flow-meter testing to examine the vertical distribution of ground-water contamination in selected wells. This investigation was limited to the vicinity of building 1845 and to the area between building 1845 and the Yukon River. In addition, the U.S. Geological Survey was asked to determine whether additional wells are needed to more clearly define the nature and extent of the ground-water contamination at the Air Force Base. Little or no vertical water movement occurred under ambient conditions in the wells tested at Galena Airport, Alaska, in August 2002. All of the ambient vertical flows detected in wells were at rates less than the quantitative limit of the borehole flow meter (0.03 gallons per minute). In wells 06-MW-07 and 10-MW-01, no vertical flow was detected. In wells where ambient flow was detected, the direction of flow was downward. In general, concentrations of volatile organic compounds detected in the low-flow samples from wells at Galena Airport were approximately the same concentrations detected in the closest polyethylene diffusion bag sample for a wide variety of volatile organic compounds. The data indicate that the polyethylene diffusion bag sample results are consistent with the low-flow sample results. Vertical profiling of selected wells using polyethylene diffusion bag samplers at Galena Airport showed that from September 30 to October 1, 2002, little vertical change occurred in volatile organic compound concentrations along the screen length despite the fact that

  18. Sentinel-2 diffuser on-ground calibration

    NASA Astrophysics Data System (ADS)

    Mazy, E.; Camus, F.; Chorvalli, V.; Domken, I.; Laborie, A.; Marcotte, S.; Stockman, Y.

    2013-10-01

    The Sentinel-2 multi-spectral instrument (MSI) will provide Earth imagery in the frame of the Global Monitoring for Environment and Security (GMES) initiative which is a joint undertaking of the European Commission and the Agency. MSI instrument, under Astrium SAS responsibility, is a push-broom spectro imager in 13 spectral channels in VNIR and SWIR. The instrument radiometric calibration is based on in-flight calibration with sunlight through a quasi Lambertian diffuser. The diffuser covers the full pupil and the full field of view of the instrument. The on-ground calibration of the diffuser BRDF is mandatory to fulfil the in-flight performances. The diffuser is a 779 x 278 mm2 rectangular flat area in Zenith-A material. It is mounted on a motorised door in front of the instrument optical system entrance. The diffuser manufacturing and calibration is under the Centre Spatial of Liege (CSL) responsibility. The CSL has designed and built a completely remote controlled BRDF test bench able to handle large diffusers in their mount. As the diffuser is calibrated directly in its mount with respect to a reference cube, the error budget is significantly improved. The BRDF calibration is performed directly in MSI instrument spectral bands by using dedicated band-pass filters (VNIR and SWIR up to 2200 nm). Absolute accuracy is better than 0.5% in VNIR spectral bands and 1% in SWIR spectral bands. Performances were cross checked with other laboratories. The first MSI diffuser for flight model was calibrated mid 2013 on CSL BRDF measurement bench. The calibration of the diffuser consists mainly in thermal vacuum cycles, BRDF uniformity characterisation and BRDF angular characterisation. The total amount of measurement for the first flight model diffuser corresponds to more than 17500 BRDF acquisitions. Performance results are discussed in comparison with requirements.

  19. Combined effects of suction/injection and wall surface curvature on natural convection flow in a vertical micro-porous annulus

    NASA Astrophysics Data System (ADS)

    Jha, B. K.; Aina, B.; Muhammad, S. A.

    2015-03-01

    This study investigates analytically the hydrodynamic and thermal behaviour of a fully developed natural convection flow in a vertical micro-porous-annulus (MPA) taking into account the velocity slip and temperature jump at the outer surface of inner porous cylinder and inner surface of outer porous cylinder. A closed — form solution is presented for velocity, temperature, volume flow rate, skin friction and rate of heat transfer expressed as a Nusselt number. The influence of each governing parameter on hydrodynamic and thermal behaviour is discussed with the aid of graphs. During the course of investigation, it is found that as suction/injection on the cylinder walls increases, the fluid velocity and temperature is enhanced. In addition, it is observed that wall surface curvature has a significant effect on flow and thermal characteristics.

  20. Mounting and Alignment of Full-Shell Replicated X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Arnold, William; Kester, Thomas; Ramsey, Brian; Smithers, Martin

    2007-01-01

    We are developing grazing-incidence x-ray optics for astronomy. The optics are full-cylinder mirror shells fabricated using electroformed-nickel replication off super-polished mandrels. For space-based applications where weight is at a premium, very-thin-walled, light-weight mirrors are required. Such shells have been fabricated at MSFC with greater than 15 arcsec resolution. The challenge, however, is to preserve this resolution during mounting and assembly. We present here a status report on a mounting and alignment system currently under development at Marshall Space Flight Center to meet this challenge.

  1. Growth of vertically aligned single-walled carbon nanotubes with metallic chirality through faceted FePt-Au catalysts

    NASA Astrophysics Data System (ADS)

    Ohashi, Toshiyuki; Iwama, Hiroki; Shima, Toshiyuki

    2016-02-01

    Direct synthesis of vertically aligned metallic single-walled carbon nanotubes (m-SWCNT forests) is a difficult challenge. We have successfully synthesized m-SWCNT forests using faceted iron platinum-gold catalysts epitaxially grown on a single crystalline magnesium oxide substrate. The metallic content of the forests estimated by Raman spectroscopy reaches 90%. From the standpoint of growth rate of the forests, the growth mechanism is probably based on the catalyst of solid state. It is suggested that preferential growth of m-SWCNTs is achieved when both factors are satisfied, namely, {111} dominant octahedral facet and ideal size (fine particles) of FePt particles.

  2. Superemission in vertically-aligned single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Khmelinskii, Igor; Makarov, Vladimir

    2016-09-01

    Presently we used two samples of vertically aligned single-wall carbon nanotubes (VA SWCNTs) with parallelepiped geometry, sized 0.02 cm × 0.2 cm × 1.0 cm and 0.2 cm × 0.2 cm × 1.0 cm. We report absorption and emission properties of the VA SWCNTs, including strong anisotropy in both their absorption and emission spectra. We found that the emission spectra extend from the middle-IR range to the near-IR range, with such extended spectra being reported for the first time. Pumping the VA SWCNTs in the direction normal to their axis, superemission (SE) was observed in the direction along their axis. The SE band maximum is located at 7206 ± 0.4 cm-1. The energy and the power density of the superemission were estimated, along with the diffraction-limited divergence. At the pumping energy of 3 mJ/pulse, the SE energy measured by the detector was 0.74 mJ/pulse, corresponding to the total SE energy of 1.48 mJ/pulse, with the energy density of 18.5 mJ cm-2/pulse and the SE power density of 1.2 × 105 W cm-2/pulse. We report that a bundle of VA SWCNTs is an emitter with a relatively small divergence, not exceeding 3.9 × 10-3 rad. We developed a theoretical approach to explain such absorption and emission spectra. The developed theory is based on the earlier proposed SSH theory, which we extended to include the exchange interactions between the closest SWCNT neighbors. The developed theoretical ideas were implemented in a homemade FORTRAN code. This code was successfully used to calculate and reproduce the experimental spectra and to determine the SWCNT species that originate the respective absorption bands, with acceptable agreement between theory and experiment.

  3. Cross-hole radar scanning of two vertical, permeable, reactive-iron walls at the Massachusetts Military Reservation, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Lane, J.W.; Joesten, P.K.; Savoie, J.G.

    2001-01-01

    A pilot-scale study was conducted by the U.S. Army National Guard (USANG) at the Massachusetts Military Reservation (MMR) on Cape Cod, Massachusetts, to assess the use of a hydraulic-fracturing method to create vertical, permeable walls of zero-valent iron to passively remediate ground water contaminated with chlorinated solvents. The study was conducted near the source area of the Chemical Spill-10 (CS-10) plume, a plume containing chlorinated solvents that underlies the MMR. Ground-water contamination near the source area extends from about 24 m (meters) to 35 m below land surface. The USANG designed two reactive-iron walls to be 12 m long and positioned 24 to 37 m below land surface to intersect and remediate part of the CS-10 plume.Because iron, as an electrical conductor, absorbs electromagnetic energy, the US Geological Survey used a cross-hole common-depth, radar scanning method to assess the continuity and to estimate the lateral and vertical extent of the two reactive-iron walls. The cross-hole radar surveys were conducted in boreholes on opposite sides of the iron injection zones using electric-dipole antennas with dominant center frequencies of 100 and 250 MHz. Significant decreases in the radar-pulse amplitudes observed in scans that traversed the injection zones were interpreted by comparing field data to results of two-dimensional finite-difference time-domain numerical models and laboratory-scale physical models.The numerical and physical models simulate a wall of perfectly conducting material embedded in saturated sand. Results from the numerical and physical models show that the amplitude of the radar pulse transmitted across the edge of a conductive wall is about 43 percent of the amplitude of a radar pulse transmitted across background material. The amplitude of a radar pulse transmitted through a hole in a conductive wall increases as the aperture of the hole increases. The modeling results indicate that holes with an aperture of less than 40

  4. Freeform correction polishing for optics with semi-kinematic mounting

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Yao; Kuo, Ching-Hsiang; Peng, Wei-Jei; Yu, Zong-Ru; Ho, Cheng-Fang; Hsu, Ming-Ying; Hsu, Wei-Yao

    2015-10-01

    Several mounting configurations could be applied to opto-mechanical design for achieving high precise optical system. The retaining ring mounting is simple and cost effective. However, it would deform the optics due to its unpredictable over-constraint forces. The retaining ring can be modified to three small contact areas becoming a semi-kinematic mounting. The semi-kinematic mounting can give a fully constrained in lens assembly and avoid the unpredictable surface deformation. However, there would be still a deformation due to self-weight in large optics especially in vertical setup applications. The self-weight deformation with a semi-kinematic mounting is a stable, repeatable and predictable combination of power and trefoil aberrations. This predictable deformation can be pre-compensated onto the design surface and be corrected by using CNC polisher. Thus it is a freeform surface before mounting to the lens cell. In this study, the freeform correction polishing is demonstrated in a Φ150 lens with semi-kinematic mounting. The clear aperture of the lens is Φ143 mm. We utilize ANSYS simulation software to analyze the lens deformation due to selfweight deformation with semi-kinematic mounting. The simulation results of the self-weight deformation are compared with the measurement results of the assembled lens cell using QED aspheric stitching interferometer (ASI). Then, a freeform surface of a lens with semi-kinematic mounting due to self-weight deformation is verified. This deformation would be corrected by using QED Magnetorheological Finishing (MRF® ) Q-flex 300 polishing machine. The final surface form error of the assembled lens cell after MRF figuring is 0.042 λ in peak to valley (PV).

  5. Constraining the Magmatic System at Mount St. Helens (2004-2008) Using Bayesian Inversion With Physics-Based Models Including Gas Escape and Crystallization

    DOE PAGES

    Wong, Ying -Qi; Segall, Paul; Bradley, Andrew; ...

    2017-10-04

    Physics-based models of volcanic eruptions track conduit processes as functions of depth and time. When used in inversions, these models permit integration of diverse geological and geophysical data sets to constrain important parameters of magmatic systems. We develop a 1-D steady state conduit model for effusive eruptions including equilibrium crystallization and gas transport through the conduit and compare with the quasi-steady dome growth phase of Mount St. Helens in 2005. Viscosity increase resulting from pressure-dependent crystallization leads to a natural transition from viscous flow to frictional sliding on the conduit margin. Erupted mass flux depends strongly on wall rock andmore » magma permeabilities due to their impact on magma density. Including both lateral and vertical gas transport reveals competing effects that produce nonmonotonic behavior in the mass flux when increasing magma permeability. Using this physics-based model in a Bayesian inversion, we link data sets from Mount St. Helens such as extrusion flux and earthquake depths with petrological data to estimate unknown model parameters, including magma chamber pressure and water content, magma permeability constants, conduit radius, and friction along the conduit walls. Even with this relatively simple model and limited data, we obtain improved constraints on important model parameters. We find that the magma chamber had low (<5 wt %) total volatiles and that the magma permeability scale is well constrained at ~10 –11.4m 2 to reproduce observed dome rock porosities. Here, compared with previous results, higher magma overpressure and lower wall friction are required to compensate for increased viscous resistance while keeping extrusion rate at the observed value.« less

  6. Constraining the Magmatic System at Mount St. Helens (2004-2008) Using Bayesian Inversion With Physics-Based Models Including Gas Escape and Crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Ying -Qi; Segall, Paul; Bradley, Andrew

    Physics-based models of volcanic eruptions track conduit processes as functions of depth and time. When used in inversions, these models permit integration of diverse geological and geophysical data sets to constrain important parameters of magmatic systems. We develop a 1-D steady state conduit model for effusive eruptions including equilibrium crystallization and gas transport through the conduit and compare with the quasi-steady dome growth phase of Mount St. Helens in 2005. Viscosity increase resulting from pressure-dependent crystallization leads to a natural transition from viscous flow to frictional sliding on the conduit margin. Erupted mass flux depends strongly on wall rock andmore » magma permeabilities due to their impact on magma density. Including both lateral and vertical gas transport reveals competing effects that produce nonmonotonic behavior in the mass flux when increasing magma permeability. Using this physics-based model in a Bayesian inversion, we link data sets from Mount St. Helens such as extrusion flux and earthquake depths with petrological data to estimate unknown model parameters, including magma chamber pressure and water content, magma permeability constants, conduit radius, and friction along the conduit walls. Even with this relatively simple model and limited data, we obtain improved constraints on important model parameters. We find that the magma chamber had low (<5 wt %) total volatiles and that the magma permeability scale is well constrained at ~10 –11.4m 2 to reproduce observed dome rock porosities. Here, compared with previous results, higher magma overpressure and lower wall friction are required to compensate for increased viscous resistance while keeping extrusion rate at the observed value.« less

  7. Electrical and Raman spectroscopic studies of vertically aligned multi-walled carbon nanotubes.

    PubMed

    Mathur, Ashish; Tweedie, Mark; Roy, Susanta Sinha; Maguire, P D; McLaughlin, James A

    2009-07-01

    Microwave plasma enhanced chemical vapour deposition (MPECVD) was used for the production of carbon nanotubes. Vertically aligned multi-walled carbon nanotubes (MWCNTs) were grown on silicon substrates coated with cobalt thin films of thickness ranging from 0.5 nm to 3 nm. Prior to the nanotube growth the catalyst were treated with N2 plasma for 5-10 minutes that break the films into small nanoparticles which favour the growth of nanotubes. The CNTs were grown at a substrate temperature of 700 degrees C for 5, 10 and 15 minutes. The height of the CNT films ranging from 10 microm-30 microm indicating that the initial growth rate of the CNTs are very high at a rate of approximately 100 nm/sec. Electrical resistivity of the above samples was evaluated from I-V measurements. The activation energy (E(a)) was also calculated from the temperature dependent studies and it was found that the E(a) lies in the range of 15-35 meV. Raman spectroscopy was used to identify the quality of the nanotubes.

  8. Use of Ultrasound to Improve the Effectiveness of a Permeable Treatment Wall

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Reinhart, Debra R. (Inventor); Ruiz, Nancy (Inventor)

    2000-01-01

    A method for increasing the effectiveness of a permeable treatment wall is described. The method includes the introduction of ultrasonic radiation in or near the wall. A permeable treatment wall is also described which has an ultrasonic radiation generating transducer in or near the wall. Permeable treatment walls are described as having either a well vertically extending into the wall, or a rod vertically extending into the treatment wall. Additionally, a method for adapting a permeable treatment wall to allow for the introduction of ultrasonic radiation in or near the wall is described.

  9. High Rayleigh number convection in rectangular enclosures with differentially heated vertical walls and aspect ratios between zero and unity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassemi, S.A.

    1988-04-01

    High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.

  10. High Rayleigh number convection in rectangular enclosures with differentially heated vertical walls and aspect ratios between zero and unity

    NASA Technical Reports Server (NTRS)

    Kassemi, Siavash A.

    1988-01-01

    High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.

  11. Extensive Chest Wall Tissue Loss and its Management by Vertical Rectus Abdominis Myocutaneous Flap

    PubMed Central

    Basu, Sandip Kanti; Bain, Jayanta; Chattopadhyay, Debarati; Majumdar, Bijay Kumar

    2017-01-01

    Extensive electric burn around the chest in children is rare and this type of injury always poses a great challenge for its management. A 12-year-old male child with extensive electric burn of the chest wall was admitted to hospital. It was a neglected case of 9 days old burn; the young boy was in critical condition having systemic features of toxemia with widespread necrosis of the skin, subcutaneous tissues, and muscles along with exposed bones (ribs and sternum) with the risk of impending rupture of pleura through the exposed intercostal spaces. After initial resuscitation, a thorough debridement of all necrotic tissues was done. Thereafter, a superiorly based vertical rectus abdominis myocutaneous flap was harvested to cover the exposed bones and intercostal spaces. The remaining raw areas were skin grafted. The child made an excellent recovery with good outcome. PMID:28082777

  12. Mediated Electron Transfer at Vertically Aligned Single-Walled Carbon Nanotube Electrodes During Detection of DNA Hybridization.

    PubMed

    Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu

    2015-12-01

    Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 (3-/4-) as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.

  13. Mediated Electron Transfer at Vertically Aligned Single-Walled Carbon Nanotube Electrodes During Detection of DNA Hybridization

    NASA Astrophysics Data System (ADS)

    Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu

    2015-06-01

    Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 3-/4- as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.

  14. Lateral resistance of piles near vertical MSE abutment walls.

    DOT National Transportation Integrated Search

    2013-03-01

    Full scale lateral load tests were performed on eight piles located at various distances behind MSE walls. The objective of the testing was to determine the effect of spacing from the wall on the lateral resistance of the piles and on the force induc...

  15. Wall-Friction Support of Vertical Loads in Submerged Sand and Gravel Columns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walton, O. R.; Vollmer, H. J.; Hepa, V. S.

    Laboratory studies of the ‘floor-loads’ under submerged vertical columns of sand and/or gravel indicate that such loads can be approximated by a buoyancy-corrected Janssen-silo-theory-like relationship. Similar to conditions in storage silos filled with dry granular solids, most of the weight of the sand or gravel is supported by wall friction forces. Laboratory measurements of the loads on the floor at the base of the water-filled columns (up to 25-diameters tall) indicate that the extra floor-load from the addition of the granular solid never exceeded the load that would exist under an unsupported (wide) bed of submerged sand or gravel thatmore » has a total depth corresponding to only two column-diameters. The measured floorloads reached an asymptotic maximum value when the depth of granular material in the columns was only three or four pipe-diameters, and never increased further as the columns were filled to the top (e.g. up to heights of 10 to 25 diameters). The floor-loads were stable and remained the same for days after filling. Aggressive tapping (e.g. hitting the containing pipe on the outside, manually with a wrench up and down the height and around the circumference) could increase (and occasionally decrease) the floor load substantially, but there was no sudden collapse or slumping to a state without significant wall friction effects. Considerable effort was required, repeatedly tapping over almost the entire column wall periphery, in order to produce floor-loads that corresponded to the total buoyancy-corrected weight of granular material added to the columns. Projecting the observed laboratory behavior to field conditions would imply that a stable floor-load condition, with only a slightly higher total floor pressure than the preexisting hydrostatic-head, would exist after a water-filled bore-hole is filled with sand or gravel. Significant seismic vibration (either a large nearby event or many micro-seismic events over an extended period) would

  16. Localized traveling pulses in natural doubly diffusive convection

    NASA Astrophysics Data System (ADS)

    Lo Jacono, D.; Bergeon, A.; Knobloch, E.

    2017-09-01

    Two-dimensional natural doubly diffusive convection in a vertical slot driven by an imposed temperature difference in the horizontal is studied using numerical continuation and direct numerical simulation. Two cases are considered and compared. In the first a concentration difference that balances thermal buoyancy is imposed in the horizontal and stationary localized structures are found to be organized in a standard snakes-and-ladders bifurcation diagram. Disconnected branches of traveling pulses TPn consisting of n ,n =1 ,2 ,⋯ , corotating cells are identified and shown to accumulate on a tertiary branch of traveling waves. With Robin or mixed concentration boundary conditions on one wall all localized states travel and the hitherto stationary localized states may connect up with the traveling pulses. The stability of the TPn states is determined and unstable TPn shown to evolve into spatio-temporal chaos. The calculations are done with no-slip boundary conditions in the horizontal and periodic boundary conditions in the vertical.

  17. Modular off-axis solar concentrator

    DOEpatents

    Plesniak, Adam P; Hall, John C

    2015-01-27

    A solar concentrator including a housing defining a vertical axis and including a receiving wall connected to a reflecting wall to define an internal volume and an opening into the internal volume, wherein the reflecting wall defines at least one primary optical element, and wherein at least a portion of the reflecting wall includes a layer of reflective material, the housing further including a cover connected to the receiving wall and the reflecting wall to seal the opening, and at least one receiver mounted on the receiving wall such that a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, the receiver including at least one photovoltaic cell.

  18. Fast mean and variance computation of the diffuse sound transmission through finite-sized thick and layered wall and floor systems

    NASA Astrophysics Data System (ADS)

    Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.

    2018-05-01

    A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.

  19. Protective interior wall and attaching means for a fusion reactor vacuum vessel

    DOEpatents

    Phelps, R.D.; Upham, G.A.; Anderson, P.M.

    1985-03-01

    The wall basically consists of an array of small rectangular plates attached to the existing walls with threaded fasteners. The protective wall effectively conceals and protects all mounting hardware beneath the plate array, while providing a substantial surface area that will absorb plasma energy.

  20. Diffusion and localization of hematoporphyrin derivative in the normal bladder wall of pig and rat after local administration

    NASA Astrophysics Data System (ADS)

    Bisson, Jean F.; Notter, Dominique; Labrude, P.; Vigneron, C.; Guillemin, Francois H.

    1996-01-01

    Photodynamic therapy (PDT) consists in the administration of a photosensitizer and subsequent irradiation of the tumor with visible light. Routinely, the photosensitizer is given intravenously (i.v.), but the major drawback of this procedure is the resulting skin photosensitivity. The goal of our study was to examine whether intravesical (i.b.) instillation of the photosensitizer for PDT of bladder cancer might be feasible in order to target the tumors and to avoid the photosensitization phenomenon. After studying the normal bladder histology of pig and rat, not much described so far, we studied the diffusion and localization of hematoporphyrin derivative (HpD) in vitro on the pig bladder and the biodistribution of HpD in vivo in the rat bladder, two and four hours after intravesical administration, by spectrofluorimetry and fluorescence microscopy. We have the following results: (1) no diffusion through the pig bladder wall was detected; (2) the penetration depth of HpD into the pig bladder wall was 450 plus or minus 44 micrometers (n equals 8), including urothelium and chorion in totality and a small part of the muscles; (3) the penetration depth of HpD into the rat bladder wall was 55 plus or minus 9 micrometer (n equals 9) after two hours and 960 plus or minus 118 micrometer (n equals 9) after four hours, corresponding respectively to the totality of the urothelium and a small part of the chorion or almost completely in the bladder wall, a small part of the adventicia being excluded. In conclusion, intravesical instillation is feasible and, as superficial bladder cancer, especially carcinoma in situ particularly occur in the urothelium or in the chorion, a bladder instillation of two hours should be advantageous.

  1. Vertical exploration and dimensional modularity in mice

    PubMed Central

    Benjamini, Yoav; Golani, Ilan

    2018-01-01

    Exploration is a central component of animal behaviour studied extensively in rodents. Previous tests of free exploration limited vertical movement to rearing and jumping. Here, we attach a wire mesh to the arena wall, allowing vertical exploration. This provides an opportunity to study the morphogenesis of behaviour along the vertical dimension, and examine the context in which it is performed. In the current set-up, the mice first use the doorway as a point reference for establishing a borderline linear path along the circumference of the arena floor, and then use this path as a linear reference for performing horizontal forays towards the centre (incursions) and vertical forays on the wire mesh (ascents). Vertical movement starts with rearing on the wall, and commences with straight vertical ascents that increase in extent and complexity. The mice first reach the top of the wall, then mill about within circumscribed horizontal sections, and then progress horizontally for increasingly longer distances on the upper edge of the wire mesh. Examination of the sequence of borderline segments, incursions and ascents reveals dimensional modularity: an initial series (bout) of borderline segments precedes alternating bouts of incursions and bouts of ascents, thus exhibiting sustained attention to each dimension separately. The exhibited separate growth in extent and in complexity of movement and the sustained attention to each of the three dimensions disclose the mice's modular perception of this environment and validate all three as natural kinds. PMID:29657827

  2. Vertical diffusivity in the benthic boundary layer of the Oregon shelf from a deliberate tracer release experiment

    NASA Astrophysics Data System (ADS)

    Ferrón, S.; Ho, D. T.; Hales, B. R.

    2010-12-01

    A Fluorescein/SF6 deliberate tracer release experiment was conducted in benthic boundary layer (BBL) waters of the outer shelf of Oregon, as part of a multi-disciplinary research project that aims to study cross-shelf carbon transport and biogeochemical reaction rates within the BBL. The purpose of the tracers release was to examine physical transport processes, the rate of turbulent mixing and to provide a Lagrangian frame of reference for tracking other chemical species (pCO2, O2, CH4, DIC, DOC, POC, NO3-, NH4+, Fe). The tracers were injected on May 2009 during moderate upwelling favorable conditions with weak near-bottom currents, along a 4-km N-S line near the shelf streak at the 150 m isobath. Tracers distribution in the patch were tracked for over 5 days by tow-yo surveys using a winch-controlled pumping profiling vehicle that incorporated several in situ instruments such as CTD sensors, a 1200 kHz ADCP and a dye fluorometer for Fluorescein. Dissolved SF6 concentrations were analyzed on board from the underway water stream pumped from the towed vehicle by using an automated high-resolution chromatographic system equipped with an electron capture detector (ECD). The work presented here focuses on the estimation of the effective vertical diffusivity (Kz) in the BBL of the Oregon Shelf from the change in moment of the tracers’ vertical distribution, calculated using a 1D advection-diffusion model.

  3. Vertical-plane pendulum absorbers for minimizing helicopter vibratory loads

    NASA Technical Reports Server (NTRS)

    Amer, K. B.; Neff, J. R.

    1974-01-01

    The use of pendulum dynamic absorbers mounted on the blade root and operating in the vertical plane to minimize helicopter vibratory loads was discussed. A qualitative description was given of the concept of the dynamic absorbers and some results of analytical studies showing the degree of reduction in vibratory loads attainable are presented. Operational experience of vertical plane dynamic absorbers on the OH-6A helicopter is also discussed.

  4. DNB heat flux in forced convection of liquid hydrogen for a wire set in central axis of vertically mounted flow channel

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.; Shirai, Y.; Shiotsu, M.; Fujita, K.; Kainuma, T.; Tatsumoto, H.; Naruo, Y.; Kobayashi, H.; Nonaka, S.; Inatani, Y.

    2017-12-01

    Liquid hydrogen has excellent physical properties, high latent heat and low viscosity of liquid, as a coolant for superconductors like MgB2. The knowledge of Departure from Nucleate Boiling (DNB) heat flux of liquid hydrogen is necessary for designing and cooling analysis of high critical temperature superconducting devices. In this paper, DNB heat fluxes of liquid hydrogen were measured under saturated and subcooled conditions at absolute pressures of 400, 700 and 1100 kPa for various flow velocities. Two wire test heaters made by Pt-Co alloy with the length of 200 mm and the diameter of 0.7 mm were used. And these round heaters were set in central axis of a flow channel made of Fiber Reinforced Plastic (FRP) with inner diameters of 8 mm and 12 mm. These test bodies were vertically mounted and liquid hydrogen flowed upward through the channel. From these experimental values, the correlations of DNB heat flux under saturated and subcooled conditions are presented in this paper.

  5. Effect of Enhanced Thermal Stability of Alumina Support Layer on Growth of Vertically Aligned Single-Walled Carbon Nanotubes and Their Application in Nanofiltration Membranes

    NASA Astrophysics Data System (ADS)

    In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P.; Noy, Aleksandr; Fornasiero, Francesco

    2018-06-01

    We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.

  6. Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III

    1996-01-01

    The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

  7. Variable mass diffusion effects on free convection flow past an impulsively started infinite vertical plate

    NASA Astrophysics Data System (ADS)

    Rushi Kumar, B.; Jayakar, R.; Vijay Kumar, A. G.

    2017-11-01

    An exact analysis of the problem of free convection flow of a viscous incompressible chemically reacting fluid past an infinite vertical plate with the flow due to impulsive motion of the plate with Newtonian heating in the presence of thermal radiation and variable mass diffusion is performed. The resulting governing equations were tackled by Laplace transform technique. Finally the effects of pertinent flow parameters such as the radiation parameter, chemical reaction parameter, buoyancy ratio parameter, thermal Grashof number, Schmidt number, Prandtl number and time on the velocity, temperature, concentration and skin friction for both aiding and opposing flows were examined in detail when Pr=0.71(conducting air) and Pr=7.0(water).

  8. Perspective view. notes on reverse: The main facade of Mount ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view. notes on reverse: The main facade of Mount Atlas was built by Peter B. Whiting in 1790. All exterior woodwork except the cornice is said to be carved by Mr. Foley. Some original frames and casings around transom window over front door. Front door is also original. Some original beaded weatherboards on wall protected by basement entrance (poplar weatherboards). Porch added after 1900. Original mantelpiece with painting of girl above (may be a late eighteenth-century painting). Smokehouse to left is original. Charles B. Carter owned the house from 1801-35 and is buried in the cemetery nearby. - Mount Atlas, State Route 731 vicinity, Waterfall, Prince William County, VA

  9. The shear-lag effect of thin-walled box girder under vertical earthquake excitation

    NASA Astrophysics Data System (ADS)

    Zhai, Zhipeng; Li, Yaozhuang; Guo, Wei

    2017-03-01

    The variation method based on the energy variation principle is proved to be accurate and valid for analyzing the shear lag effect of box girder under static and dynamic load. Meanwhile, dynamic problems gradually become the key factors in engineering practice. Therefore, a method for calculating the shear lag effect in thin-walled box girder under vertical seismic excitation is proposed by applying Hamilton Principle in this paper. The Timoshenko shear deformation is taken into account. And a new definition of shear lag ratio for box girder is given. What's more, some conclusions are drawn by analysis of numerical example. The results show that small amplitude of earthquake ground motion can generate high stress and obvious shear lag, especially in the region of resonance. And the influence of rotary inertia cannot be ignored for analyzing the shear lag effect. With the increase of span to width ratio, shear lag effect becomes smaller and smaller. These research conclusions will be useful for the engineering practice and enrich the theoretical studies of box girders.

  10. High Electrocatalytic Activity of Vertically Aligned Single-Walled Carbon Nanotubes towards Sulfide Redox Shuttles.

    PubMed

    Hao, Feng; Dong, Pei; Zhang, Jing; Zhang, Yongchang; Loya, Phillip E; Hauge, Robert H; Li, Jianbao; Lou, Jun; Lin, Hong

    2012-01-01

    Vertically aligned single-walled carbon nanotubes (VASWCNTs) have been successfully transferred onto transparent conducting oxide glass and implemented as efficient low-cost, platinum-free counter electrode in sulfide -mediated dye-sensitized solar cells (DSCs), featuring notably improved electrocatalytic activity toward thiolate/disulfide redox shuttle over conventional Pt counter electrodes. Impressively, device with VASWCNTs counter electrode demonstrates a high fill factor of 0.68 and power conversion efficiency up to 5.25%, which is significantly higher than 0.56 and 3.49% for that with a conventional Pt electrode. Moreover, VASWCNTs counter electrode produces a charge transfer resistance of only 21.22 Ω towards aqueous polysulfide electrolyte commonly applied in quantum dots-sensitized solar cells (QDSCs), which is several orders of magnitude lower than that of a typical Pt electrode. Therefore, VASWCNTs counter electrodes are believed to be a versatile candidate for further improvement of the power conversion efficiency of other iodine-free redox couple based DSCs and polysulfide electrolyte based QDSCs.

  11. Effect of vertical-tail location on the aerodynamic characteristics at subsonic speeds of a close-coupled canard configuration

    NASA Technical Reports Server (NTRS)

    Huffman, J. K.

    1975-01-01

    The effects were studied of various vertical-tail configurations on the longitudinal and lateral directional-stability characteristics of a general research fighter model utilizing wing-body-canard. The study indicates that the addition of the high canard resulted in an increase in total lift at angles of attack above 4 deg with a maximum lift coefficient about twice as large as that for the wing-body configuration. For the wing-body (canard off) configuration, the center-line vertical tail indicates positive vertical-tail effectiveness throughout the test angle-of-attack range; however, for this configuration none of the wing-mounted vertical-tail locations tested resulted in a positive directional-stability increment at the higher angles of attack. For the wing-body-canard configuration several outboard locations of the wing-mounted vertical tails were found.

  12. Cutting assembly including expanding wall segments of auger

    DOEpatents

    Treuhaft, Martin B.; Oser, Michael S.

    1983-01-01

    A mining auger comprises a cutting head carried at one end of a tubular shaft and a plurality of wall segments which in a first position thereof are disposed side by side around said shaft and in a second position thereof are disposed oblique to said shaft. A vane projects outwardly from each wall segment. When the wall segments are in their first position, the vanes together form a substantially continuous helical wall. A cutter is mounted on the peripheral edge of each of the vanes. When the wall segments are in their second position, the cutters on the vanes are disposed radially outward from the perimeter of the cutting head.

  13. Algebraic motion of vertically displacing plasmas

    NASA Astrophysics Data System (ADS)

    Pfefferlé, D.; Bhattacharjee, A.

    2018-02-01

    The vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to come in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear "sinking" behaviour shown to be algebraic and decelerating. The acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.

  14. Effect of Enhanced Thermal Stability of Alumina Support Layer on Growth of Vertically Aligned Single-Walled Carbon Nanotubes and Their Application in Nanofiltration Membranes.

    PubMed

    In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P; Noy, Aleksandr; Fornasiero, Francesco

    2018-06-07

    We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.

  15. Mirror, Mirror, on the Wall.

    ERIC Educational Resources Information Center

    Flowers, Jim; Rose, M. Annette

    1998-01-01

    Students use tables of anthropometric data, their own measurements, underlying principles of physics, and math to solve a problem. The problem is to determine the height of a wall mirror, and where to mount it, so that 90% of the clientele can view their entire length without stretching or bending. (Author)

  16. Ocean Turbulence. Paper 3; Two-Point Closure Model Momentum, Heat and Salt Vertical Diffusivities in the Presence of Shear

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Dubovikov, M. S.; Howard, A.; Cheng, Y.

    1999-01-01

    In papers 1 and 2 we have presented the results of the most updated 1-point closure model for the turbulent vertical diffusivities of momentum, heat and salt, K(sub m,h,s). In this paper, we derive the analytic expressions for K(sub m,h,s) using a new 2-point closure model that has recently been developed and successfully tested against some approx. 80 turbulence statistics for different flows. The new model has no free parameters. The expressions for K(sub m, h. s) are analytical functions of two stability parameters: the Turner number R(sub rho) (salinity gradient/temperature gradient) and the Richardson number R(sub i) (temperature gradient/shear). The turbulent kinetic energy K and its rate of dissipation may be taken local or non-local (K-epsilon model). Contrary to all previous models that to describe turbulent mixing below the mixed layer (ML) have adopted three adjustable "background diffusivities" for momentum. heat and salt, we propose a model that avoids such adjustable diffusivities. We assume that below the ML, K(sub m,h,s) have the same functional dependence on R(sub i) and R(sub rho) derived from the turbulence model. However, in order to compute R(sub i) below the ML, we use data of vertical shear due to wave-breaking measured by Gargett et al. (1981). The procedure frees the model from adjustable background diffusivities and indeed we use the same model throughout the entire vertical extent of the ocean. Using the new K(sub m,h, s), we run an O-GCM and present a variety of results that we compare with Levitus and the KPP model. Since the traditional 1-point (used in papers 1 and 2) and the new 2-point closure models used here represent different modeling philosophies and procedures, testing them in an O-GCM is indispensable. The basic motivation is to show that the new 2-point closure model gives results that are overall superior to the 1-point closure in spite of the fact that the latter rely on several adjustable parameters while the new 2-point

  17. Directed Vertical Diffusion of Photovoltaic Active Layer Components into Porous ZnO-Based Cathode Buffer Layers.

    PubMed

    Kang, Jia-Jhen; Yang, Tsung-Yu; Lan, Yi-Kang; Wu, Wei-Ru; Su, Chun-Jen; Weng, Shih-Chang; Yamada, Norifumi L; Su, An-Chung; Jeng, U-Ser

    2018-04-01

    Cathode buffer layers (CBLs) can effectively further the efficiency of polymer solar cells (PSCs), after optimization of the active layer. Hidden between the active layer and cathode of the inverted PSC device configuration is the critical yet often unattended vertical diffusion of the active layer components across CBL. Here, a novel methodology of contrast variation with neutron and anomalous X-ray reflectivity to map the multicomponent depth compositions of inverted PSCs, covering from the active layer surface down to the bottom of the ZnO-based CBL, is developed. Uniquely revealed for a high-performance model PSC are the often overlooked porosity distributions of the ZnO-based CBL and the differential diffusions of the polymer PTB7-Th and fullerene derivative PC 71 BM of the active layer into the CBL. Interface modification of the ZnO-based CBL with fullerene derivative PCBEOH for size-selective nanochannels can selectively improve the diffusion of PC 71 BM more than that of the polymer. The deeper penetration of PC 71 BM establishes a gradient distribution of fullerene derivatives over the ZnO/PCBE-OH CBL, resulting in markedly improved electron mobility and device efficiency of the inverted PSC. The result suggests a new CBL design concept of progressive matching of the conduction bands. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Estimating vertical velocity and radial flow from Doppler radar observations of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Lee, J. L.; Lee, W. C.; MacDonald, A. E.

    2006-01-01

    The mesoscale vorticity method (MVM) is used in conjunction with the ground-based velocity track display (GBVTD) to derive the inner-core vertical velocity from Doppler radar observations of tropical cyclone (TC) Danny (1997). MVM derives the vertical velocity from vorticity variations in space and in time based on the mesoscale vorticity equation. The use of MVM and GBVTD allows us to derive good correlations among the eye-wall maximum wind, bow-shaped updraught and echo east of the eye-wall in Danny. Furthermore, we demonstrate the dynamically consistent radial flow can be derived from the vertical velocity obtained from MVM using the wind decomposition technique that solves the Poisson equations over a limited-area domain. With the wind decomposition, we combine the rotational wind which is obtained from Doppler radar wind observations and the divergent wind which is inferred dynamically from the rotational wind to form the balanced horizontal wind in TC inner cores, where rotational wind dominates the divergent wind. In this study, we show a realistic horizontal and vertical structure of the vertical velocity and the induced radial flow in Danny's inner core. In the horizontal, the main eye-wall updraught draws in significant surrounding air, converging at the strongest echo where the maximum updraught is located. In the vertical, the main updraught tilts vertically outwards, corresponding very well with the outward-tilting eye-wall. The maximum updraught is located at the inner edge of the eye-wall clouds, while downward motions are found at the outer edge. This study demonstrates that the mesoscale vorticity method can use high-temporal-resolution data observed by Doppler radars to derive realistic vertical velocity and the radial flow of TCs. The vorticity temporal variations crucial to the accuracy of the vorticity method have to be derived from a high-temporal-frequency observing system such as state-of-the-art Doppler radars.

  19. Simulations of vertical disruptions with VDE code: Hiro and Evans currents

    NASA Astrophysics Data System (ADS)

    Li, Xujing; Di Hu Team; Leonid Zakharov Team; Galkin Team

    2014-10-01

    The recently created numerical code VDE for simulations of vertical instability in tokamaks is presented. The numerical scheme uses the Tokamak MHD model, where the plasma inertia is replaced by the friction force, and an adaptive grid numerical scheme. The code reproduces well the surface currents generated at the plasma boundary by the instability. Five regimes of the vertical instability are presented: (1) Vertical instability in a given plasma shaping field without a wall; (2) The same with a wall and magnetic flux ΔΨ|plX< ΔΨ|Xwall(where X corresponds to the X-point of a separatrix); (3) The same with a wall and magnetic flux ΔΨ|plX> ΔΨ|Xwall; (4) Vertical instability without a wall with a tile surface at the plasma path; (5) The same in the presence of a wall and a tile surface. The generation of negative Hiro currents along the tile surface, predicted earlier by the theory and measured on EAST in 2012, is well-reproduced by simulations. In addition, the instability generates the force-free Evans currents at the free plasma surface. The new pattern of reconnection of the plasma with the vacuum magnetic field is discovered. This work is supported by US DoE Contract No. DE-AC02-09-CH11466.

  20. A method for estimating mount isolations of powertrain mounting systems

    NASA Astrophysics Data System (ADS)

    Qin, Wu; Shangguan, Wen-Bin; Luo, Guohai; Xie, Zhengchao

    2018-07-01

    A method for calculating isolation ratios of mounts at a powertrain mounting systems (PMS) is proposed assuming a powertrain as a rigid body and using the identified powertrain excitation forces and the measured IPI (input point inertance) of mounting points at the body side. With measured accelerations of mounts at powertrain and body sides of one Vehicle (Vehicle A), the excitation forces of a powertrain are identified using conversational method firstly. Another Vehicle (Vehicle B) has the same powertrain as that of Vehicle A, but with different body and mount configuration. The accelerations of mounts at powertrain side of a PMS on Vehicle B are calculated using the powertrain excitation forces identified from Vehicle A. The identified forces of the powertrain are validated by comparing the calculated and the measured accelerations of mounts at the powertrain side of the powertrain on Vehicle B. A method for calculating acceleration of mounting point at body side for Vehicle B is presented using the identified powertrain excitation forces and the measured IPI at a connecting point between car body and mount. Using the calculated accelerations of mounts at powertrain side and body side at different directions, the isolation ratios of a mount are then estimated. The isolation ratios are validated using the experiment, which verified the proposed methods for estimating isolation ratios of mounts. The developed method is beneficial for optimizing mount stiffness to meet mount isolation requirements before prototype.

  1. A Versatile Mounting Method for Long Term Imaging of Zebrafish Development.

    PubMed

    Hirsinger, Estelle; Steventon, Ben

    2017-01-26

    Zebrafish embryos offer an ideal experimental system to study complex morphogenetic processes due to their ease of accessibility and optical transparency. In particular, posterior body elongation is an essential process in embryonic development by which multiple tissue deformations act together to direct the formation of a large part of the body axis. In order to observe this process by long-term time-lapse imaging it is necessary to utilize a mounting technique that allows sufficient support to maintain samples in the correct orientation during transfer to the microscope and acquisition. In addition, the mounting must also provide sufficient freedom of movement for the outgrowth of the posterior body region without affecting its normal development. Finally, there must be a certain degree in versatility of the mounting method to allow imaging on diverse imaging set-ups. Here, we present a mounting technique for imaging the development of posterior body elongation in the zebrafish D. rerio. This technique involves mounting embryos such that the head and yolk sac regions are almost entirely included in agarose, while leaving out the posterior body region to elongate and develop normally. We will show how this can be adapted for upright, inverted and vertical light-sheet microscopy set-ups. While this protocol focuses on mounting embryos for imaging for the posterior body, it could easily be adapted for the live imaging of multiple aspects of zebrafish development.

  2. Nanoscale control of stripe-ordered magnetic domain walls by vertical spin transfer torque in La0.67Sr0.33MnO3 film

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Wu, Shizhe; Ma, Ji; Xie, Lishan; Wang, Chuanshou; Malik, Iftikhar Ahmed; Zhang, Yuelin; Xia, Ke; Nan, Ce-Wen; Zhang, Jinxing

    2018-02-01

    Stripe-ordered domains with perpendicular magnetic anisotropy have been intensively investigated due to their potential applications in high-density magnetic data-storage devices. However, the conventional control methods (e.g., epitaxial strain, local heating, magnetic field, and magnetoelectric effect) of the stripe-ordered domain walls either cannot meet the demands for miniaturization and low power consumption of spintronic devices or require high strength of the electric field due to the small value of the magnetoelectric effect at room temperature. Here, a domain-wall resistive effect of 0.1% was clarified in La0.67Sr0.33MnO3 thin films between the configurations of current in the plane and perpendicular to the plane of walls. Furthermore, a reversible nanoscale control of the domain-wall re-orientation by vertical spin transfer torque across the probe/film interface was achieved, where a probe voltage of 0.1 V was applied on a manganite-based capacitor. We also demonstrated that the stripe-ordered magnetic domain-wall re-orientation strongly depends on the AC frequency of the scanning probe voltage which was applied on the capacitor.

  3. Volcano hazards in the Mount Hood region, Oregon

    USGS Publications Warehouse

    Scott, W.E.; Pierson, T.C.; Schilling, S.P.; Costa, J.E.; Gardner, C.A.; Vallance, J.W.; Major, J.J.

    1997-01-01

    Mount Hood is a potentially active volcano close to rapidly growing communities and recreation areas. The most likely widespread and hazardous consequence of a future eruption will be for lahars (rapidly moving mudflows) to sweep down the entire length of the Sandy (including the Zigzag) and White River valleys. Lahars can be generated by hot volcanic flows that melt snow and ice or by landslides from the steep upper flanks of the volcano. Structures close to river channels are at greatest risk of being destroyed. The degree of hazard decreases as height above a channel increases, but large lahars can affect areas more than 30 vertical meters (100 vertical feet) above river beds. The probability of eruption-generated lahars affecting the Sandy and White River valleys is 1-in-15 to l-in-30 during the next 30 years, whereas the probability of extensive areas in the Hood River Valley being affected by lahars is about ten times less. The accompanying volcano-hazard-zonation map outlines areas potentially at risk and shows that some areas may be too close for a reasonable chance of escape or survival during an eruption. Future eruptions of Mount Hood could seriously disrupt transportation (air, river, and highway), some municipal water supplies, and hydroelectric power generation and transmission in northwest Oregon and southwest Washington.

  4. Is it better to include necrosis in apparent diffusion coefficient (ADC) measurements? The necrosis/wall ADC ratio to differentiate malignant and benign necrotic lung lesions: Preliminary results.

    PubMed

    Karaman, Adem; Durur-Subasi, Irmak; Alper, Fatih; Durur-Karakaya, Afak; Subasi, Mahmut; Akgun, Metin

    2017-10-01

    To determine whether the use of necrosis/wall apparent diffusion coefficient (ADC) ratios in the differentiation of necrotic lung lesions is more reliable than measuring the wall alone. In this retrospective study, a total of 76 patients (54 males and 22 females, 71% vs. 29%, with a mean age of 53 ± 18 years, range, 18-84) were enrolled, 33 of whom had lung carcinoma and 43 had a benign necrotic lung lesion. A 3T scanner was used. The calculation of the necrosis/wall ADC ratio was based on ADC values measured from necrosis and the wall of the lesions by diffusion-weighted imaging (DWI). Statistical analyses were performed with the independent samples t-test and receiver operating characteristic analysis. Intraobserver and interobserver reliability were calculated for ADC values of wall and necrosis. The mean necrosis/wall ADC ratio was 1.67 ± 0.23 for malignant lesions and 0.75 ± 0.19 for benign lung lesions (P < 0.001). To estimate malignancy the area under the curve (AUC) values for necrosis ADC, wall ADC, and the necrosis/wall ADC ratio were 0.720, 0.073, and 0.997, respectively. A wall/necrosis ADC ratio cutoff value of 1.12 demonstrated a 100% sensitivity and 98% specificity in the estimation of malignancy. Positive predictive value was 100%, and negative predictive value 98% and diagnostic accuracy 99%. There was a good intraobserver and interobserver reliability for wall and necrosis. The necrosis/wall ADC ratio appears to be a reliable and promising tool for discriminating lung carcinoma from benign necrotic lung lesions than measuring the wall alone. 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1001-1006. © 2017 International Society for Magnetic Resonance in Medicine.

  5. 62. SIXTEEN INCH GUN MOUNTED ON THE MACHINING LATHE; LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. SIXTEEN INCH GUN MOUNTED ON THE MACHINING LATHE; LOOKING WSW. THE GUN ITSELF EXTENDS BEYOND THE BRICK ARCHES OF THE MAIN SHOP FLOOR'S W WALL AND INTO THE W AISLE. THE LATHE'S CUTTING HEAD CAN BE SEEN AT THE RIGHT CENTER OF THE VIEW. (Ryan) - Watervliet Arsenal, Building No. 110, Hagner Road between Schull & Whittemore Roads, Watervliet, Albany County, NY

  6. PV module mounting method and mounting assembly

    DOEpatents

    Lenox, Carl J.S.; Johnson, Kurt M.

    2013-04-23

    A method for mounting PV modules to a deck includes selecting PV module layout pattern so that adjacent PV module edges are spaced apart. PV mounting and support assemblies are secured to the deck according to the layout pattern using fasteners extending into the deck. The PV modules are placed on the PV mounting and support assemblies. Retaining elements are located over and secured against the upper peripheral edge surfaces of the PV modules so to secure them to the deck with the peripheral edges of the PV modules spaced apart from the deck. In some examples a PV module mounting assembly, for use on a shingled deck, comprises flashing, a base mountable on the flashing, a deck-penetrating fastener engageable with the base and securable to the deck so to secure the flashing and the base to the shingled deck, and PV module mounting hardware securable to the base.

  7. Visible-Blind UV Photodetector Based on Single-Walled Carbon Nanotube Thin Film/ZnO Vertical Heterostructures.

    PubMed

    Li, Guanghui; Suja, Mohammad; Chen, Mingguang; Bekyarova, Elena; Haddon, Robert C; Liu, Jianlin; Itkis, Mikhail E

    2017-10-25

    Ultraviolet (UV) photodetectors based on heterojunctions of conventional (Ge, Si, and GaAs) and wide bandgap semiconductors have been recently demonstrated, but achieving high UV sensitivity and visible-blind photodetection still remains a challenge. Here, we utilized a semitransparent film of p-type semiconducting single-walled carbon nanotubes (SC-SWNTs) with an energy gap of 0.68 ± 0.07 eV in combination with a molecular beam epitaxy grown n-ZnO layer to build a vertical p-SC-SWNT/n-ZnO heterojunction-based UV photodetector. The resulting device shows a current rectification ratio of 10 3 , a current photoresponsivity up to 400 A/W in the UV spectral range from 370 to 230 nm, and a low dark current. The detector is practically visible-blind with the UV-to-visible photoresponsivity ratio of 10 5 due to extremely short photocarrier lifetimes in the one-dimensional SWNTs because of strong electron-phonon interactions leading to exciton formation. In this vertical configuration, UV radiation penetrates the top semitransparent SC-SWNT layer with low losses (10-20%) and excites photocarriers within the n-ZnO layer in close proximity to the p-SC-SWNT/n-ZnO interface, where electron-hole pairs are efficiently separated by a high built-in electric field associated with the heterojunction.

  8. An experimental study of near wall flow parameters in the blade end-wall corner region

    NASA Technical Reports Server (NTRS)

    Bhargava, Rakesh K.; Raj, Rishi S.

    1989-01-01

    The near wall flow parameters in the blade end-wall corner region is investigated. The blade end-wall corner region was simulated by mounting an airfoil section (NACA 65-015 base profile) symmetric blades on both sides of the flat plate with semi-circular leading edge. The initial 7 cm from the leading edge of the flat plate was roughened by gluing No. 4 floor sanding paper to artificially increase the boundary layer thickness on the flat plate. The initial flow conditions of the boundary layer upstream of the corner region are expected to dictate the behavior of flow inside the corner region. Therefore, an experimental investigation was extended to study the combined effect of initial roughness and increased level of free stream turbulence on the development of a 2-D turbulent boundary layer in the absence of the blade. The measurement techniques employed in the present investigation included, the conventional pitot and pitot-static probes, wall taps, the Preston tube, piezoresistive transducer and the normal sensor hot-wire probe. The pitot and pitot-static probes were used to obtain mean velocity profile measurements within the boundary layer. The measurements of mean surface static pressure were obtained with the surface static tube and the conventional wall tap method. The wall shear vector measurements were made with a specially constructed Preston tube. The flush mounted piezoresistive type pressure transducer were employed to measure the wall pressure fluctuation field. The velocity fluctuation measurements, used in obtaining the wall pressure-velocity correlation data, were made with normal single sensor hot-wire probe. At different streamwise stations, in the blade end-wall corner region, the mean values of surface static pressure varied more on the end-wall surface in the corner region were mainly caused by the changes in the curvature of the streamlines. The magnitude of the wall shear stress in the blade end-wall corner region increased significantly

  9. Painless acute myocardial infarction on Mount Kilimanjaro

    PubMed Central

    Jamal, Nasiruddin; Rajhy, Mubina; Bapumia, Mustaafa

    2016-01-01

    An individual experiencing dyspnoea or syncope at high altitude is commonly diagnosed to have high-altitude pulmonary edema or cerebral edema. Acute myocardial infarction (AMI) is generally not considered in the differential diagnosis. There have been very rare cases of AMI reported only from Mount Everest. We report a case of painless ST segment elevation myocardial infarction (STEMI) that occurred while climbing Mount Kilimanjaro. A 51-year-old man suffered dyspnoea and loss of consciousness near the mountain peak, at about 5600 m. At a nearby hospital, he was treated as a case of high-altitude pulmonary edema. ECG was not obtained. Two days after the incident, he presented to our institution with continued symptoms of dyspnoea, light-headedness and weakness, but no pain. He was found to have inferior wall and right ventricular STEMI complicated by complete heart block. He was successfully managed with coronary angioplasty, with good recovery. PMID:26989121

  10. Algebraic motion of vertically displacing plasmas

    DOE PAGES

    Pfefferle, D.; Bhattacharjee, A.

    2018-02-27

    In this paper, the vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to comemore » in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear “sinking” behaviour shown to be algebraic and decelerating. Finally, the acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.« less

  11. Algebraic motion of vertically displacing plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfefferle, D.; Bhattacharjee, A.

    In this paper, the vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to comemore » in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear “sinking” behaviour shown to be algebraic and decelerating. Finally, the acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.« less

  12. Investigation of the Non-Isothermal Convective Mixing of Turbulent, Round, Wall Jets

    NASA Astrophysics Data System (ADS)

    Kristo, Paul; Kimber, Mark

    2017-11-01

    The wall jet has become a paradigm for geometrically bounded flows due to the intrinsically difficult nature of the advection promoted by the geometry of the jet, coupled with prompt diffusion from the adjacent wall. Previous experimental investigations have sought to characterize the hydraulic and thermal behavior of such flows, however the physics promoted by parallel coplanar round jets has received inadequate experimental attention. The current effort is comprised of three parallel, coplanar, equidistant round jets issuing vertically downward into a pseudo-unconfined test section. The outer diameters of the jets are placed tangentially along a smooth flat plate. Non-intrusive optical techniques are incorporated for both hydraulic and thermal observations. Preliminary tests provide accurate inlet boundary conditions for each case. Reference metrics are captured during testing to account for ambient effects and readings inside of the test section. By varying the velocity and temperature inlet parameters, insights are drawn regarding the effects on the merging point (MP) and combined point (CP) of both the flow and thermal fields. Velocity fields in the plane normal to the wall yield additional insight into the deceleration caused by dissipation from both the plate and surrounding stagnant fluid.

  13. Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations.

    PubMed

    Bao, Hua; Ruan, Xiulin; Fisher, Timothy S

    2010-03-15

    A finite-difference time-domain (FDTD) method is used to model thermal radiative properties of vertical arrays of multi-walled carbon nanotubes (MWCNT). Individual CNTs are treated as solid circular cylinders with an effective dielectric tensor. Consistent with experiments, the results confirm that CNT arrays are highly absorptive. Compared with the commonly used Maxwell-Garnett theory, the FDTD calculations generally predict larger reflectance and absorbance, and smaller transmittance, which are attributed to the diffraction and scattering within the cylinder array structure. The effects of volume fraction, tube length, tube distance, and incident angle on radiative properties are investigated systematically. Low volume fraction and long tubes are more favorable to achieve low reflectance and high absorbance. For a fixed volume fraction and finite tube length, larger periodicity results in larger reflectance and absorbance. The angular dependence studies reveal an optimum incident angle at which the reflectance can be minimized. The results also suggest that an even darker material could be achieved by using CNTs with good alignment on the top surface.

  14. Geologic Map of Mount Mazama and Crater Lake Caldera, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.

    2008-01-01

    Crater Lake partly fills one of the most spectacular calderas of the world, an 8-by-10-km basin more than 1 km deep formed by collapse of the volcano known as Mount Mazama (fig. 1) during a rapid series of explosive eruptions about 7,700 years ago. Having a maximum depth of 594 m, Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 km2 of pristine forested and alpine terrain, including the lake itself, virtually all of Mount Mazama, and most of the area of the geologic map. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama's climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, greatly enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. Lastly, the many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama are a source of information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive

  15. The measurement of solute diffusion coefficients in dilute liquid alloys: the influence of unit gravity and g-jitter on buoyancy convection.

    PubMed

    Smith, R W; Yang, B J; Huang, W D

    2004-11-01

    Liquid diffusion experiments conducted on the MIR space station using the Canadian Space Agency QUELD II processing facility and the microgravity isolation mount (MIM) showed that g-jitter significantly increased the measured solute diffusion coefficients. In some experiments, milli-g forced vibration was superimposed on the sample when isolated from the ambient g-jitter; this resulted in markedly increased solute transport. To further explore the effects arising in these long capillary diffusion couples from the absence of unit-gravity and the presence of the forced g-jitter, the effects of a 1 milli-g forcing vibration on the mass transport in a 1.5 mm diameter long capillary diffusion couple have been simulated. In addition, to increase understanding of the role of unit gravity in determining the extent to which gravity can influence measured diffusion coefficient values, comparative experiments involving gold, silver, and antimony diffusing in liquid lead have been carried out using a similar QUELD II facility to that employed in the QUELD II/MIM/MIR campaign but under terrestrial conditions. It was found that buoyancy-driven convection may still persist in the liquid even when conditions are arranged for a continuously decreasing density gradient up the axis of a vertical long capillary diffusion couple due to the presence of small radial temperature gradients.

  16. Diffuser for augmenting a wind turbine

    DOEpatents

    Foreman, Kenneth M.; Gilbert, Barry L.

    1984-01-01

    A diffuser for augmenting a wind turbine having means for energizing the boundary layer at several locations along the diffuser walls is improved by the addition of a short collar extending radially outward from the outlet of the diffuser.

  17. Vertical mass transfer in open channel flow

    USGS Publications Warehouse

    Jobson, Harvey E.

    1968-01-01

    The vertical mass transfer coefficient and particle fall velocity were determined in an open channel shear flow. Three dispersants, dye, fine sand and medium sand, were used with each of three flow conditions. The dispersant was injected as a continuous line source across the channel and downstream concentration profiles were measured. From these profiles along with the measured velocity distribution both the vertical mass transfer coefficient and the local particle fall velocity were determined.The effects of secondary currents on the vertical mixing process were discussed. Data was taken and analyzed in such a way as to largely eliminate the effects of these currents on the measured values. A procedure was developed by which the local value of the fall velocity of sand sized particles could be determined in an open channel flow. The fall velocity of the particles in the turbulent flow was always greater than their fall velocity in quiescent water. Reynolds analogy between the transfer of momentum and marked fluid particles was further substantiated. The turbulent Schmidt number was shown to be approximately 1.03 for an open channel flow with a rough boundary. Eulerian turbulence measurements were not sufficient to predict the vertical transfer coefficient. Vertical mixing of sediment is due to three semi-independent processes. These processes are: secondary currents, diffusion due to tangential velocity fluctuations and diffusion due to the curvature of the fluid particle path lines. The diffusion coefficient due to tangential velocity fluctuations is approximately proportional to the transfer coefficient of marked fluid particles. The proportionality constant is less than or equal to 1.0 and decreases with increasing particle size. The diffusion coefficient due to the curvature of the fluid particle path lines is not related to the diffusion coefficient for marked fluid particles and increases with particle size, at least for sediment particles in the sand size

  18. Passive wall cooling panel with phase change material as a cooling agent

    NASA Astrophysics Data System (ADS)

    Majid, Masni A.; Tajudin, Rasyidah Ahmad; Salleh, Norhafizah; Hamid, Noor Azlina Abd

    2017-11-01

    The study was carried out to the determine performance of passive wall cooling panels by using Phase Change Materials as a cooling agent. This passive cooling system used cooling agent as natural energy storage without using any HVAC system. Eight full scale passive wall cooling panels were developed with the size 1500 mm (L) × 500 mm (W) × 100 mm (T). The cooling agent such as glycerine were filled in the tube with horizontal and vertical arrangement. The passive wall cooling panels were casting by using foamed concrete with density between 1200 kg/m3 - 1500 kg/m3. The passive wall cooling panels were tested in a small house and the differences of indoor and outdoor temperature was recorded. Passive wall cooling panels with glycerine as cooling agent in vertical arrangement showed the best performance with dropped of indoor air temperature within 3°C compared to outdoor air temperature. The lowest indoor air temperature recorded was 25°C from passive wall cooling panels with glycerine in vertical arrangement. From this study, the passive wall cooling system could be applied as it was environmental friendly and less maintenance.

  19. The self streamlining wind tunnel. [wind tunnel walls

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1975-01-01

    A two dimensional test section in a low speed wind tunnel capable of producing flow conditions free from wall interference is presented. Flexible top and bottom walls, and rigid sidewalls from which models were mounted spanning the tunnel are shown. All walls were unperforated, and the flexible walls were positioned by screw jacks. To eliminate wall interference, the wind tunnel itself supplied the information required in the streamlining process, when run with the model present. Measurements taken at the flexible walls were used by the tunnels computer check wall contours. Suitable adjustments based on streamlining criteria were then suggested by the computer. The streamlining criterion adopted when generating infinite flowfield conditions was a matching of static pressures in the test section at a wall with pressures computed for an imaginary inviscid flowfield passing over the outside of the same wall. Aerodynamic data taken on a cylindrical model operating under high blockage conditions are presented to illustrate the operation of the tunnel in its various modes.

  20. Performance effects of mounting a helmet-mounted display on the ANVIS mount of the HGU-56P helmet

    NASA Astrophysics Data System (ADS)

    Harding, Thomas H.; Martin, John S.; Rash, Clarence E.

    2006-05-01

    The U.S. Army, under the auspices of the Air Warrior Product Office, is developing a modular helmet-mounted display (HMD) for four aircraft series within its helicopter fleet. A design consideration is mounting the HMDs to the HGU- 56P Aviator's Night Vision Imaging System (ANVIS) mount. This particular mount is being considered, presumably due to its inherent cost savings, as the mount is already part of the helmet. Mounting the HMD in this position may have consequences for the daylight performance of these HMDs, as well as increasing the forward weight of the HMD. The latter would have consequences for helmet weight and center-of-mass biodynamic issues. Calculations were made of the increased luminance needed as a consequence of mounting the HMD in front of an HGU-56P tinted visor as opposed to mounting it behind the visor. By mounting in front of the helmet's visor, the HMD's light output will be filtered as light coming from the outside world. Special consideration then would have to be given to the HMD's light source selection process, as not to select a source that would differentially reduce luminance by a mounted visor (e.g., laser protection visors) compared to the ambient light in the aviator's field-of-view.

  1. Comparison of Turbulent Heat-Transfer Results for Uniform Wall Heat Flux and Uniform Wall Temperature

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Sparrow, E. M.

    1960-01-01

    The purpose of this note is to examine in a more precise way how the Nusselt numbers for turbulent heat transfer in both the fully developed and thermal entrance regions of a circular tube are affected by two different wall boundary conditions. The comparisons are made for: (a) Uniform wall temperature (UWT); and (b) uniform wall heat flux (UHF). Several papers which have been concerned with the turbulent thermal entrance region problem are given. 1 Although these analyses have all utilized an eigenvalue formulation for the thermal entrance region there were differences in the choices of eddy diffusivity expressions, velocity distributions, and methods for carrying out the numerical solutions. These differences were also found in the fully developed analyses. Hence when making a comparison of the analytical results for uniform wall temperature and uniform wall heat flux, it was not known if differences in the Nusselt numbers could be wholly attributed to the difference in wall boundary conditions, since all the analytical results were not obtained in a consistent way. To have results which could be directly compared, computations were carried out for the uniform wall temperature case, using the same eddy diffusivity, velocity distribution, and digital computer program employed for uniform wall heat flux. In addition, the previous work was extended to a lower Reynolds number range so that comparisons could be made over a wide range of both Reynolds and Prandtl numbers.

  2. High Temperature Ultrasonic Probe and Pulse-Echo Probe Mounting Fixture for Testing and Blind Alignment on Steam Pipes

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh (Inventor); Takano, Nobuyuki (Inventor); Lee, Hyeong Jae (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Ostlund, Patrick N. (Inventor)

    2017-01-01

    A high temperature ultrasonic probe and a mounting fixture for attaching and aligning the probe to a steam pipe using blind alignment. The high temperature ultrasonic probe includes a piezoelectric transducer having a high temperature. The probe provides both transmitting and receiving functionality. The mounting fixture allows the high temperature ultrasonic probe to be accurately aligned to the bottom external surface of the steam pipe so that the presence of liquid water in the steam pipe can be monitored. The mounting fixture with a mounted high temperature ultrasonic probe are used to conduct health monitoring of steam pipes and to track the height of condensed water through the wall in real-time.

  3. Improvement of Subsonic Basic Research Tunnel Flow Quality as Applied to Wall Mounted Testing

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.

    1995-01-01

    A survey to determine the characteristics of a boundary layer that forms on the wall of the Subsonic Basic Research Tunnel has been performed. Early results showed significant differences in the velocity profiles as measured spanwise across the wall. An investigation of the flow in the upstream contraction revealed the presence of a separation bubble at the beginning of the contraction which caused much of the observed unsteadiness. Vortex generators were successfully applied to the contraction inlet to alleviate the separation. A final survey of the wall boundary layer revealed variations in the displacement and momentum thicknesses to be less than +/- 5% for all but the most upper portion of the wall. The flow quality was deemed adequate to continue the planned follow-on tests to help develop the semi-span test technique.

  4. Evidence for fluid-triggered slip in the 2009 Mount Rainier, Washington earthquake swarm

    NASA Astrophysics Data System (ADS)

    Shelly, David R.; Moran, Seth C.; Thelen, Weston A.

    2013-04-01

    A vigorous swarm of over 1000 small, shallow earthquakes occurred 20-22 September 2009 beneath Mount Rainier, Washington, including the largest number of events ever recorded in a single day at Rainier since seismic stations were installed on the edifice in 1989. Many events were only clearly recorded on one or two stations on the edifice, or they overlapped in time with other events, and thus only ~200 were locatable by manual phase picking. To partially overcome this limitation, we applied waveform-based event detection integrated with precise double-difference relative relocation. With this procedure, detection and location goals are accomplished in tandem, using cross-correlation with continuous seismic data and waveform templates constructed from cataloged events. As a result, we obtained precise locations for 726 events, an improvement of almost a factor of 4. These event locations define a ~850 m long nearly vertical structure striking NNE, with episodic migration outward from the initial hypocenters. The activity front propagates in a manner consistent with a diffusional process. Double-couple-constrained focal mechanisms suggest dominantly near-vertical strike-slip motion on either NNW or ENE striking faults, more than 30° different than the strike of the event locations. This suggests the possibility of en echelon faulting, perhaps with a component of fault opening in a fracture-mesh-type geometry. We hypothesize that the swarm was initiated by a sudden release of high-pressure fluid into preexisting fractures, with subsequent activity triggered by diffusing fluid pressure in combination with stress transfer from the preceding events.

  5. Evidence for fluid-triggered slip in the 2009 Mount Rainier, Washington earthquake swarm

    USGS Publications Warehouse

    Shelly, David R.; Moran, Seth C.; Thelen, Weston A.

    2013-01-01

    A vigorous swarm of over 1000 small, shallow earthquakes occurred 20–22 September 2009 beneath Mount Rainier, Washington, including the largest number of events ever recorded in a single day at Rainier since seismic stations were installed on the edifice in 1989. Many events were only clearly recorded on one or two stations on the edifice, or they overlapped in time with other events, and thus only ~200 were locatable by manual phase picking. To partially overcome this limitation, we applied waveform-based event detection integrated with precise double-difference relative relocation. With this procedure, detection and location goals are accomplished in tandem, using cross-correlation with continuous seismic data and waveform templates constructed from cataloged events. As a result, we obtained precise locations for 726 events, an improvement of almost a factor of 4. These event locations define a ~850 m long nearly vertical structure striking NNE, with episodic migration outward from the initial hypocenters. The activity front propagates in a manner consistent with a diffusional process. Double-couple-constrained focal mechanisms suggest dominantly near-vertical strike-slip motion on either NNW or ENE striking faults, more than 30° different than the strike of the event locations. This suggests the possibility of en echelon faulting, perhaps with a component of fault opening in a fracture-mesh-type geometry. We hypothesize that the swarm was initiated by a sudden release of high-pressure fluid into preexisting fractures, with subsequent activity triggered by diffusing fluid pressure in combination with stress transfer from the preceding events.

  6. Thermal diffusion effect on MHD mixed convective flow along a vertically inclined plate: A casson fluid flow

    NASA Astrophysics Data System (ADS)

    Prasad, D. V. V. Krishna; Chaitanya, G. S. Krishna; Raju, R. Srinivasa

    2018-05-01

    The nature of Casson fluid on MHD free convective flow of over an impulsively started infinite vertically inclined plate in presence of thermal diffusion (Soret), thermal radiation, heat and mass transfer effects is studied. The basic governing nonlinear coupled partial differential equations are solved numerically using finite element method. The relevant physical parameters appearing in velocity, temperature and concentration profiles are analyzed and discussed through graphs. Finally, the results for velocity profiles and the reduced Nusselt and Sherwood numbers are obtained and compared with previous results in the literature and are found to be in excellent agreement. Applications of the present study would be useful in magnetic material processing and chemical engineering systems.

  7. Vertical-type chiroptical spectrophotometer (I): instrumentation and application to diffuse reflectance circular dichroism measurement.

    PubMed

    Harada, Takunori; Hayakawa, Hiroshi; Kuroda, Reiko

    2008-07-01

    We have designed and built a novel universal chiroptical spectrophotometer (UCS-2: J-800KCMF), which can carry out in situ chirality measurement of solid samples without any pretreatment, in the UV-vis region and with high relative efficiency. The instrument was designed to carry out transmittance and diffuse reflectance (DR) circular dichroism (CD) measurements simultaneously, thus housing two photomultipliers. It has a unique feature that light impinges on samples vertically so that loose powders can be measured by placing them on a flat sample holder in an integrating sphere. As is our first universal chiroptical spectrophotometer, UCS-1, two lock-in amplifiers are installed to remove artifact signals arising from macroscopic anisotropies which are unique to solid samples. High performance was achieved by theoretically analyzing and experimentally proven the effect of the photoelastic modulator position on the CD base line shifts, and by selecting high-quality optical and electric components. Measurement of microcrystallines of both enantiomers of ammonium camphorsulfonate by the DRCD mode gave reasonable results.

  8. Modelling of NSTX hot vertical displacement events using M 3 D -C 1

    NASA Astrophysics Data System (ADS)

    Pfefferlé, D.; Ferraro, N.; Jardin, S. C.; Krebs, I.; Bhattacharjee, A.

    2018-05-01

    The main results of an intense vertical displacement event (VDE) modelling activity using the implicit 3D extended MHD code M3D-C1 are presented. A pair of nonlinear 3D simulations are performed using realistic transport coefficients based on the reconstruction of a so-called NSTX frozen VDE where the feedback control was purposely switched off to trigger a vertical instability. The vertical drift phase is solved assuming axisymmetry until the plasma contacts the first wall, at which point the intricate evolution of the plasma, decaying to large extent in force-balance with induced halo/wall currents, is carefully resolved via 3D nonlinear simulations. The faster 2D nonlinear runs allow to assess the sensitivity of the simulations to parameter changes. In the limit of perfectly conducting wall, the expected linear relation between vertical growth rate and wall resistivity is recovered. For intermediate wall resistivities, the halo region contributes to slowing the plasma down, and the characteristic VDE time depends on the choice of halo temperature. The evolution of the current quench and the onset of 3D halo/eddy currents are diagnosed in detail. The 3D simulations highlight a rich structure of toroidal modes, penetrating inwards from edge to core and cascading from high-n to low-n mode numbers. The break-up of flux-surfaces results in a progressive stochastisation of field-lines precipitating the thermalisation of the plasma with the wall. The plasma current then decays rapidly, inducing large currents in the halo region and the wall. Analysis of normal currents flowing in and out of the divertor plate reveals rich time-varying patterns.

  9. [Clinicopathological study of diffuse carcinoma of stomach (author's transl)].

    PubMed

    Shimoda, T

    1978-11-01

    The biological behavior of ulcer type gastric carcinoma was studied on 114 cases of diffuse carcinoma (Borrmann's 4 type) and 262 cases of early like advanced carcinoma (including superficial spreading type). In both types of gastric carcinoma, the age distribution, location, ulcer with cancer focus and prognosis differed greatly. The early like carcinoma was speculated to have advanced maintaining the groos findings of early gastric carcinoma, and its location and associated ulcer were the same as the early ulcer type of carcinoma. The prognosis of this type of carcinoma was good, showing a figure of 70% in 3 year survival rate. On the other hand, diffuse carcinoma demonstrated diffuse extensive infiltration of tumor cells along the gastric wall, resulting in poor prognosis with a 3 year survival rate of almost 0%. Histologically, diffuse type of carcinoma showed lymphatic infiltration of tumor cells, and this is probably the main reason for the diffuse infiltration in this type of carcinoma. Diffuse carcinoma is, therefore, considered to be one special type of carcinoma having different biological behavior compared with the other ulcer type of carcinoma, and diffuse carcinoma is not the terminal stage of early like advanced carcinoma. There are three stages in diffuse carcinoma: 1. Infiltrative stage: wide spread infiltration of cancer cells through lymphatic channels (lymphangiosis carcinomatosa) 2. Edematous stage: soluble collagen appearing in gastric wall 3. Sclerosing stage: soluble collagen changing into insoluble collagen leading to marked thickening and stiffness of the gastric wall. This is the end stage of gastric diffuse carcinoma. It is difficult to explain that the marked fibrosis of gastric wall is a result to stromal reaction from tumor cell infiltration, since extensive fibrosis is found in areas without tumor cells and stiffness of the gastric wall occurs in a too short period of time. The production of abundunt soluble collagen is probably

  10. Modeling the dynamic response of a crater glacier to lava-dome emplacement: Mount St Helens, Washington, USA

    USGS Publications Warehouse

    Price, Stephen F.; Walder, Joseph S.

    2007-01-01

    The debris-rich glacier that grew in the crater of Mount St Helens after the volcano's cataclysmic 1980 eruption was split in two by a new lava dome in 2004. For nearly six months, the eastern part of the glacier was squeezed against the crater wall as the lava dome expanded. Glacier thickness nearly doubled locally and surface speed increased substantially. As squeezing slowed and then stopped, surface speed fell and ice was redistributed downglacier. This sequence of events, which amounts to a field-scale experiment on the deformation of debris-rich ice at high strain rates, was interpreted using a two-dimensional flowband model. The best match between modeled and observed glacier surface motion, both vertical and horizontal, requires ice that is about 5 times stiffer and 1.2 times denser than normal, temperate ice. Results also indicate that lateral squeezing, and by inference lava-dome growth adjacent to the glacier, likely slowed over a period of about 30 days rather than stopping abruptly. This finding is supported by geodetic data documenting dome growth.

  11. Enclosed, off-axis solar concentrator

    DOEpatents

    Benitez, Pablo; Grip, Robert E; Minano, Juan C; Narayanan, Authi A; Plesniak, Adam; Schwartz, Joel A

    2013-11-26

    A solar concentrator including a housing having receiving wall, a reflecting wall and at least two end walls, the receiving, reflecting and end walls defining a three-dimensional volume having an inlet, wherein a vertical axis of the housing is generally perpendicular to the inlet, a receiver mounted on the receiving wall of the housing, the receiver including at least one photovoltaic cell, wherein a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, at least one clip disposed on the reflecting wall an optical element received within the three-dimensional volume, the optical element including at least one tab, the tab being engaged by the clip to align the optical element with the receiver, and a window received over the inlet to enclose the housing.

  12. Experimental investigation of wall shock cancellation and reduction of wall interference in transonic testing

    NASA Technical Reports Server (NTRS)

    Ferri, A.; Roffe, G.

    1975-01-01

    A series of experiments were performed to evaluate the effectiveness of a three-dimensional land and groove wall geometry and a variable permeability distribution to reduce the interference produced by the porous walls of a supercritical transonic test section. The three-dimensional wall geometry was found to diffuse the pressure perturbations caused by small local mismatches in wall porosity permitting the use of a relatively coarse wall porosity control to reduce or eliminate wall interference effects. The wall porosity distribution required was found to be a sensitive function of Mach number requiring that the Mach number repeatability characteristics of the test apparatus be quite good. The effectiveness of a variable porosity wall is greatest in the upstream region of the test section where the pressure differences across the wall are largest. An effective variable porosity wall in the down stream region of the test section requires the use of a slightly convergent test section geometry.

  13. 10. DETAIL OF NUCLEAR ALERT INSIGNIA, EAST WALL NORTHWEST OFFICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL OF NUCLEAR ALERT INSIGNIA, EAST WALL NORTHWEST OFFICE ABOVE FORMER FALSE CEILING - Selfridge Field, Building Nos. 1424, 1425, South of Carswell Street, west of Castle Avenue, Mount Clemens, Macomb County, MI

  14. A film-based wall shear stress sensor for wall-bounded turbulent flows

    NASA Astrophysics Data System (ADS)

    Amili, Omid; Soria, Julio

    2011-07-01

    In wall-bounded turbulent flows, determination of wall shear stress is an important task. The main objective of the present work is to develop a sensor which is capable of measuring surface shear stress over an extended region applicable to wall-bounded turbulent flows. This sensor, as a direct method for measuring wall shear stress, consists of mounting a thin flexible film on the solid surface. The sensor is made of a homogeneous, isotropic, and incompressible material. The geometry and mechanical properties of the film are measured, and particles with the nominal size of 11 μm in diameter are embedded on the film's surface to act as markers. An optical technique is used to measure the film deformation caused by the flow. The film has typically deflection of less than 2% of the material thickness under maximum loading. The sensor sensitivity can be adjusted by changing the thickness of the layer or the shear modulus of the film's material. The paper reports the sensor fabrication, static and dynamic calibration procedure, and its application to a fully developed turbulent channel flow at Reynolds numbers in the range of 90,000-130,000 based on the bulk velocity and channel full height. The results are compared to alternative wall shear stress measurement methods.

  15. Aeroservoelastic Testing of a Sidewall Mounted Free Flying Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Vetter, Travis K.; Penning, Kevin B.; Coulson, David A.; Heeg, Jennifer

    2008-01-01

    A team comprised of the Air Force Research Laboratory (AFRL), Northrop Grumman, Lockheed Martin, and the NASA Langley Research Center conducted three j wind-tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, exible vehicles. In the rst of these three tests, a semispan, aeroelastically scaled, wind-tunnel model of a ying wing SensorCraft vehi- cle was mounted to a force balance to demonstrate gust load alleviation. In the second and third tests, the same wing was mated to a new, multi-degree-of-freedom, sidewall mount. This mount allowed the half-span model to translate vertically and pitch at the wing root, allowing better simulation of the full span vehicle's rigid-body modes. Gust Load Alleviation (GLA) and Body Freedom Flutter (BFF) suppression were successfully demonstrated. The rigid body degrees-of-freedom required that the model be own in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free-flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort.

  16. Protective interior wall and attach8ing means for a fusion reactor vacuum vessel

    DOEpatents

    Phelps, Richard D.; Upham, Gerald A.; Anderson, Paul M.

    1988-01-01

    An array of connected plates mounted on the inside wall of the vacuum vessel of a magnetic confinement reactor in order to provide a protective surface for energy deposition inside the vessel. All fasteners are concealed and protected beneath the plates, while the plates themselves share common mounting points. The entire array is installed with torqued nuts on threaded studs; provision also exists for thermal expansion by mounting each plate with two of its four mounts captured in an oversize grooved spool. A spool-washer mounting hardware allows one edge of a protective plate to be torqued while the other side remains loose, by simply inverting the spool-washer hardware.

  17. Improved diffuser for augmenting a wind turbine

    DOEpatents

    Foreman, K.M.; Gilbert, B.L.

    A diffuser for augmenting a wind turbine having means for energizing the boundary layer at several locations along the diffuser walls is improved by the addition of a short collar extending radially outward from the outlet of the diffuser.

  18. Built-up outer wall and roofing sections for double walled envelope homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodhead, B.

    1980-01-01

    A site built system that uses the inner envelope wall is described. Blocking and vertical nailers are attached to this wall and sheathed with foil faced drywall to create the envelope cavity. An outer layer of 3 1/2 in. of Expended Poly Styrene provides continuous solid insulation. The trusses are also sheathed in foil faced drywall and insulated with 5 1/2 in. of E.P.S. This effectively surrounds the building with a continuous vapor and infiltration barrier. Construction details as well as cost breakdowns are presented.

  19. Computational Study of Separating Flow in a Planar Subsonic Diffuser

    NASA Technical Reports Server (NTRS)

    DalBello, Teryn; Dippold, Vance, III; Georgiadis, Nicholas J.

    2005-01-01

    A computational study of the separated flow through a 2-D asymmetric subsonic diffuser has been performed. The Wind Computational Fluid Dynamics code is used to predict the separation and reattachment behavior for an incompressible diffuser flow. The diffuser inlet flow is a two-dimensional, turbulent, and fully-developed channel flow with a Reynolds number of 20,000 based on the centerline velocity and the channel height. Wind solutions computed with the Menter SST, Chien k-epsilon, Spalart-Allmaras and Explicit Algebraic Reynolds Stress turbulence models are compared with experimentally measured velocity profiles and skin friction along the upper and lower walls. In addition to the turbulence model study, the effects of grid resolution and use of wall functions were investigated. The grid studies varied the number of grid points across the diffuser and varied the initial wall spacing from y(sup +) = 0.2 to 60. The wall function study assessed the applicability of wall functions for analysis of separated flow. The SST and Explicit Algebraic Stress models provide the best agreement with experimental data, and it is recommended wall functions should only be used with a high level of caution.

  20. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts.

    PubMed

    Cui, Kehang; Kumamoto, Akihito; Xiang, Rong; An, Hua; Wang, Benjamin; Inoue, Taiki; Chiashi, Shohei; Ikuhara, Yuichi; Maruyama, Shigeo

    2016-01-21

    We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices.

  1. Effect of diffusive and nondiffusive surfaces combinations on sound diffusion

    NASA Astrophysics Data System (ADS)

    Shafieian, Masoume; Kashani, Farokh Hodjat

    2010-05-01

    One of room acoustic goals, especially in small to medium rooms, is sound diffusion in low frequencies, which have been the subject of lots of researches. Sound diffusion is a very important consideration in acoustics because it minimizes the coherent reflections that cause problems. It also tends to make an enclosed space sound larger than it is. Diffusion is an excellent alternative or complement to sound absorption in acoustic treatment because it doesn’t really remove much energy, which means it can be used to effectively reduce reflections while still leaving an ambient or live sounding space. Distribution of diffusive and nondiffusive surfaces on room walls affect sound diffusion in room, but the amount, combination, and location of these surfaces are still the matter of question. This paper investigates effects of these issues on room acoustic frequency response in different parts of the room with different source-receiver locations. Room acoustic model based on wave method is used (implemented) which is very accurate and convenient for low frequencies in such rooms. Different distributions of acoustic surfaces on room walls have been introduced to the model and room frequency response results are calculated. For the purpose of comparison, some measurements results are presented. Finally for more smooth frequency response in small and medium rooms, some suggestions are made.

  2. A solution-processed quaternary oxide system obtained at low-temperature using a vertical diffusion technique

    PubMed Central

    Yoon, Seokhyun; Kim, Si Joon; Tak, Young Jun; Kim, Hyun Jae

    2017-01-01

    We report a method for fabricating solution-processed quaternary In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) at low annealing temperatures using a vertical diffusion technique (VDT). The VDT is a deposition process for spin-coating binary and ternary oxide layers consecutively and annealing at once. With the VDT, uniform and dense quaternary oxide layers were fabricated at lower temperatures (280 °C). Compared to conventional IGZO and ternary In-Zn-O (IZO) thin films, VDT IGZO thin film had higher density of the metal-oxide bonds and lower density of the oxygen vacancies. The field-effect mobility of VDT IGZO TFT increased three times with an improved stability under positive bias stress than IZO TFT due to the reduction in oxygen vacancies. Therefore, the VDT process is a simple method that reduces the processing temperature without any additional treatment for quaternary oxide semiconductors with uniform layers. PMID:28230088

  3. A solution-processed quaternary oxide system obtained at low-temperature using a vertical diffusion technique

    NASA Astrophysics Data System (ADS)

    Yoon, Seokhyun; Kim, Si Joon; Tak, Young Jun; Kim, Hyun Jae

    2017-02-01

    We report a method for fabricating solution-processed quaternary In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) at low annealing temperatures using a vertical diffusion technique (VDT). The VDT is a deposition process for spin-coating binary and ternary oxide layers consecutively and annealing at once. With the VDT, uniform and dense quaternary oxide layers were fabricated at lower temperatures (280 °C). Compared to conventional IGZO and ternary In-Zn-O (IZO) thin films, VDT IGZO thin film had higher density of the metal-oxide bonds and lower density of the oxygen vacancies. The field-effect mobility of VDT IGZO TFT increased three times with an improved stability under positive bias stress than IZO TFT due to the reduction in oxygen vacancies. Therefore, the VDT process is a simple method that reduces the processing temperature without any additional treatment for quaternary oxide semiconductors with uniform layers.

  4. A solution-processed quaternary oxide system obtained at low-temperature using a vertical diffusion technique.

    PubMed

    Yoon, Seokhyun; Kim, Si Joon; Tak, Young Jun; Kim, Hyun Jae

    2017-02-23

    We report a method for fabricating solution-processed quaternary In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) at low annealing temperatures using a vertical diffusion technique (VDT). The VDT is a deposition process for spin-coating binary and ternary oxide layers consecutively and annealing at once. With the VDT, uniform and dense quaternary oxide layers were fabricated at lower temperatures (280 °C). Compared to conventional IGZO and ternary In-Zn-O (IZO) thin films, VDT IGZO thin film had higher density of the metal-oxide bonds and lower density of the oxygen vacancies. The field-effect mobility of VDT IGZO TFT increased three times with an improved stability under positive bias stress than IZO TFT due to the reduction in oxygen vacancies. Therefore, the VDT process is a simple method that reduces the processing temperature without any additional treatment for quaternary oxide semiconductors with uniform layers.

  5. 22. August 1974. BENCH SHOP, EAST WALL VIEW SHOWING HINGED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. August 1974. BENCH SHOP, EAST WALL VIEW SHOWING HINGED PANEL AND WHEELPIT FOR MOUNTING SPOKES IN WHEEL HUB. - Gruber Wagon Works, Pennsylvania Route 183 & State Hill Road at Red Bridge Park, Bernville, Berks County, PA

  6. Evacuated optical structure comprising optical bench mounted to sidewall of vacuum chamber in a manner which inhibits deflection and rotation of the optical bench

    DOEpatents

    Bowers, Joel M.

    1994-01-01

    An improved evacuated optical structure is disclosed comprising an optical bench mounted in a vacuum vessel in a manner which inhibits transmission of movement of the vacuum vessel to the optical bench, yet provides a compact and economical structure. The vacuum vessel is mounted, through a sidewall thereof, to a support wall at four symmetrically positioned and spaced apart areas, each of which comprises a symmetrically positioned group of mounting structures passing through the sidewall of the vacuum vessel. The optical bench is pivotally secured to the vacuum vessel by four symmetrically spaced apart bolts and spherical bearings, each of which is centrally positioned within one of the four symmetrically positioned groups of vacuum vessel mounting structures. Cover plates and o-ring seals are further provided to seal the vacuum vessel mounting structures from the interior of the vacuum vessel, and venting bores are provided to vent trapped gases in the bores used to secure the cover plates and o-rings to the vacuum vessel. Provision for detecting leaks in the mounting structures from the rear surface of the vacuum vessel sidewall facing the support wall are also provided. Deflection to the optical bench within the vacuum vessel is further minimized by tuning the structure for a resonant frequency of at least 100 Hertz.

  7. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts

    NASA Astrophysics Data System (ADS)

    Cui, Kehang; Kumamoto, Akihito; Xiang, Rong; An, Hua; Wang, Benjamin; Inoue, Taiki; Chiashi, Shohei; Ikuhara, Yuichi; Maruyama, Shigeo

    2016-01-01

    We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices.We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high

  8. The practicality of defensive ice walls: How would the great ice wall in Game of Thrones hold up?

    NASA Astrophysics Data System (ADS)

    Truffer, M.

    2017-12-01

    The Game of Thrones great ice wall is a colossal feature stretching several hundred miles and over 200 m high. Its purpose is to defend the realm from the wildlings. It is generally pictured as a near vertical wall. An ice wall of these proportions poses interesting challenges, mainly because ice acts as a non-linear shear-thinning fluid. A 200 m high vertical wall would create a large effective stress near its base of almost 1.8 MPa. Typical stresses responsible for ice flow in glaciers and ice sheets are more than a magnitude lower (0.1 MPa). Extrapolating a commonly used flow law for temperate ice to such high stresses would lead to strain rates at the bottom of the wall in excess of 1/day, meaning the wall would rapidly collapse and spread laterally under its own weight. To keep the wall stable, it would help to cool it significantly, as the flow of ice is also very temperature dependent. Cooling to a chilly -40 C would reduce strain rates by two orders of magnitude, but this still leads to significant slumping of the wall within just a few weeks. A time-dependent similarity solution for simplified ice flow equations that describe the evolving shape of the ice wall was provided by Halfar (1981), and demonstrates the rapid decay of the wall. A simple estimate can be derived by assuming that ice is a perfectly plastic fluid, able to maintain a basal shear stress of about 0.1 MPa. A stable ice wall would then spread laterally to about 4 km width. The resulting slope would only be steep at the very margin and the ice wall would loose much of its defensive capabilities. I conclude that the ice wall as proposed would not be a practicable defense under typical Earth conditions, and special magical powers would be necessary to maintain its shape, even for just a few days.

  9. Translational diffusion of cumene and 3-methylpentane on free surfaces and pore walls studied by time-of-flight secondary ion mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souda, Ryutaro

    2010-12-07

    Mobility of molecules in confined geometry has been studied extensively, but the origins of finite size effects on reduction of the glass transition temperature, T{sub g}, are controversial especially for supported thin films. We investigate uptake of probe molecules in vapor-deposited thin films of cumene, 3-methylpentane, and heavy water using secondary ion mass spectrometry and discuss roles of individual molecular motion during structural relaxation and glass-liquid transition. The surface mobility is found to be enhanced for low-density glasses in the sub-T{sub g} region because of the diffusion of molecules on pore walls, resulting in densification of a film via poremore » collapse. Even for high-density glasses without pores, self-diffusion commences prior to the film morphology change at T{sub g}, which is thought to be related to decoupling between translational diffusivity and viscosity. The diffusivity of deeply supercooled liquid tends to be enhanced when it is confined in pores of amorphous solid water. The diffusivity of molecules is further enhanced at temperatures higher than 1.2-1.3 T{sub g} irrespective of the confinement.« less

  10. Debris flow initiation in proglacial gullies on Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Legg, Nicholas T.; Meigs, Andrew J.; Grant, Gordon E.; Kennard, Paul

    2014-12-01

    Effects of climate change, retreating glaciers, and changing storm patterns on debris flow hazards concern managers in the Cascade Range (USA) and mountainous areas worldwide. During an intense rainstorm in November 2006, seven debris flows initiated from proglacial gullies of separate basins on the flanks of Mount Rainier. Gully heads at glacier termini and widespread failure of gully walls imply that overland flow was transformed into debris flow along gullies. We characterized gully change and morphology, and assessed spatial distributions of debris flows to infer the processes and conditions for debris flow initiation. Slopes at gully heads were greater than ~ 0.35 m m- 1 (19°) and exhibited a significant negative relationship with drainage area. A break in slope-drainage area trends among debris flow gullies also occurs at ~ 0.35 m m- 1, representing a possible transition to fluvial sediment transport and erosion. An interpreted hybrid model of debris flow initiation involves bed failure near gully heads followed by sediment recruitment from gully walls along gully lengths. Estimates of sediment volume loss from gully walls demonstrate the importance of sediment inputs along gullies for increasing debris flow volumes. Basin comparisons revealed significantly steeper drainage networks and higher elevations in debris flow-producing than non-debris flow-producing proglacial areas. The high slopes and elevations of debris flow-producing proglacial areas reflect positive slope-elevation trends for the Mount Rainier volcano. Glacier extent therefore controls the slope distribution in proglacial areas, and thus potential for debris flow generation. As a result, debris flow activity may increase as glacier termini retreat onto slopes inclined at angles above debris flow initiation thresholds.

  11. Characterization of vertical mixing in oscillatory vegetated flows

    NASA Astrophysics Data System (ADS)

    Abdolahpour, M.; Ghisalberti, M.; Lavery, P.; McMahon, K.

    2016-02-01

    Seagrass meadows are primary producers that provide important ecosystem services, such as improved water quality, sediment stabilisation and trapping and recycling of nutrients. Most of these ecological services are strongly influenced by the vertical exchange of water across the canopy-water interface. That is, vertical mixing is the main hydrodynamic process governing the large-scale ecological and environmental impact of seagrass meadows. The majority of studies into mixing in vegetated flows have focused on steady flow environments whereas many coastal canopies are subjected to oscillatory flows driven by surface waves. It is known that the rate of mass transfer will vary greatly between unidirectional and oscillatory flows, necessitating a specific investigation of mixing in oscillatory canopy flows. In this study, we conducted an extensive laboratory investigation to characterise the rate of vertical mixing through a vertical turbulent diffusivity (Dt,z). This has been done through gauging the evolution of vertical profiles of concentration (C) of a dye sheet injected into a wave-canopy flow. Instantaneous measurement of the variance of the vertical concentration distribution ( allowed the estimation of a vertical turbulent diffusivity (). Two types of model canopies, rigid and flexible, with identical heights and frontal areas, were subjected to a wide and realistic range of wave height and period. The results showed two important mechanisms that dominate vertical mixing under different conditions: a shear layer that forms at the top of the canopy and wake turbulence generated by the stems. By allowing a coupled contribution of wake and shear layer mixing, we present a relationship that can be used to predict the rate of vertical mixing in coastal canopies. The results further showed that the rate of vertical mixing within flexible vegetation was always lower than the corresponding rigid canopy, confirming the impact of plant flexibility on canopy

  12. Geologic field trip guide to Mount Mazama and Crater Lake Caldera, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.; Wright, Heather M.

    2017-08-08

    Crater Lake partly fills one of the most spectacular calderas of the world—an 8 by 10 kilometer (km) basin more than 1 km deep formed by collapse of the Mount Mazama volcano during a rapid series of explosive eruptions ~7,700 years ago. Having a maximum depth of 594 meters (m), Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 square kilometers (km2) of pristine forested and alpine terrain, including the lake itself, and virtually all of Mount Mazama. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama’s climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest United States, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. In addition, many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama provide information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive processes revealed by

  13. A Low Temperature Scanning Force Microscope with a Vertical Cantilever and Interferometric Detection Scheme

    NASA Astrophysics Data System (ADS)

    Kim, Jeehoon; Williams, T. L.; Chu, Sang Lin; Korre, Hasan; Chalfin, Max; Hoffman, J. E.

    2008-03-01

    We have developed a fiber-optic interferometry system with a vertical cantilever for scanning force microscopy. A lens, mounted on a Pan-type walker, was used to collect the interference signal in the cavity between the cantilever and the single mode fiber. This vertical geometry has several advantages: (1) it is directly sensitive to lateral forces; (2) low spring constant vertical cantilevers may allow increased force sensitivity by solving the ``snap-in'' problem that occurs with soft horizontal cantilevers. We have sharpened vertical cantilevers by focused ion beam (FIB), achieving a tip radius of 20 nm. We will show test results of a magnetic force microscope (MFM) with this vertical cantilever system.

  14. Investigation and visualization of liquid-liquid flow in a vertically mounted Hele-Shaw cell: flow regimes, velocity and shape of droplets

    NASA Astrophysics Data System (ADS)

    Shad, S.; Gates, I. D.; Maini, B. B.

    2009-11-01

    The motion and shape of a liquid drop flowing within a continuous, conveying liquid phase in a vertical Hele-Shaw cell were investigated experimentally. The continuous phase was more viscous and wetted the bounding walls of the Hele-Shaw cell. The gap between the Hele-Shaw plates was set equal to 0.0226 cm. Four different flow regimes were observed: (a) small-droplet flow, (b) elongated-droplet flow, (c) churn flow and (d) channel flow. At low capillary number, that is, when capillary forces are larger than viscous forces, the droplet shape was irregular and changed with time and distance, and it moved with lower velocity than that of the conveying phase. At higher capillary number, several different shapes of stabilized elongated and flattened drops were observed. In contrast to gas-liquid systems, the velocities of droplets are higher than that of conveying liquid. New correlations derived from dimensionless analysis and fitted to the experimental data were generated to predict the elongated-drop velocity and aspect ratio.

  15. Experimental Investigation of Subsonic Turbulent Boundary Layer Flow Over a Wall-Mounted Axisymmetric Hill

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Heineck, James T.; Zilliac, Gregory; Mehta, Rabindra D.; Long, Kurtis R.

    2016-01-01

    An important goal for modern fluid mechanics experiments is to provide datasets which present a challenge for Computational Fluid Dynamics simulations to reproduce. Such "CFD validation experiments" should be well-characterized and well-documented, and should investigate flows which are difficult for CFD to calculate. It is also often convenient for the experiment to be challenging for CFD in some aspects while simple in others. This report is part of the continuing documentation of a series of experiments conducted to characterize the flow around an axisymmetric, modified-cosine-shaped, wall-mounted hill named "FAITH" (Fundamental Aero Investigates The Hill). Computation of this flow is easy in some ways - subsonic flow over a simple shape - while being complex in others - separated flow and boundary layer interactions. The primary set of experiments were performed on a 15.2 cm high, 45.7 cm base diameter machined aluminum model that was tested at mean speeds of 50 m/s (Reynolds Number based on height = 500,000). The ratio of model height to boundary later height was approximately 3. The flow was characterized using surface oil flow visualization, Cobra probe to determine point-wise steady and unsteady 3D velocities, Particle Image Velocimetry (PIV) to determine 3D velocities and turbulence statistics along specified planes, Pressure Sensitive Paint (PSP) to determine mean surface pressures, and Fringe Imaging Skin Friction (FISF) to determine surface skin friction magnitude and direction. A set of pathfinder experiments were also performed in a water channel on a smaller scale (5.1 cm high, 15.2 cm base diameter) sintered nylon model. The water channel test was conducted at a mean test section speed of 3 cm/s (Reynolds Number of 1500), but at the same ratio of model height to boundary layer thickness. Dye injection from both the model and an upstream rake was used to visualize the flow. This report summarizes the experimental set-up, techniques used, and data

  16. Textural break foundation wall construction modules

    DOEpatents

    Phillips, Steven J.

    1990-01-01

    Below-grade, textural-break foundation wall structures are provided for inhibiting diffusion and advection of liquids and gases into and out from a surrounding hydrogeologic environment. The foundation wall structure includes a foundation wall having an interior and exterior surface and a porous medium disposed around a portion of the exterior surface. The structure further includes a modular barrier disposed around a portion of the porous medium. The modular barrier is substantially removable from the hydrogeologic environment.

  17. The role of the substrate surface morphology and water in growth of vertically aligned single-walled carbon nanotubes.

    PubMed

    Pint, Cary; Pheasant, Sean; Nicholas, Nolan; Horton, Charles; Hauge, Robert

    2008-11-01

    Growth of high quality, vertically aligned single-walled carbon nanotubes (carpets) is achieved using a rapid insertion hot filament chemical vapor deposition (HF-CVD) technique. The effect of the substrate morphology on growth is explored by comparing carpets grown on epitaxially polished MgO substrates to those grown on "as-cut", macroscopically rough MgO substrates. Depending on the substrate morphology, we observe differences in both the overall carpet morphology as well as the diameter distribution of nanotubes grown in the carpet based on optical measurements. In addition, we explore the role of water in the growth of carpets on MgO and the conventional Al2O3 coated Si substrates. We find that the addition of a small amount of water is beneficial to the growth rates of the SWNT carpets, enhancing the growth rates by up to eight times.

  18. Decoupling analysis for a powertrain mounting system with a combination of hydraulic mounts

    NASA Astrophysics Data System (ADS)

    Hu, Jinfang; Chen, Wuwei; Huang, He

    2013-07-01

    The existing torque roll axis(TRA) decoupling theories for a powertrain mounting system assume that the stiffness and viscous damping properties are constant. However, real-life mounts exhibit considerable spectrally varying stiffness and damping characteristics, and the influence of the spectrally-varying properties of the hydraulic mounts on the powertrain system cannot be ignored. To overcome the deficiency, an analytical quasi-linear model of the hydraulic mount and the coupled properties of the powertrain and hydraulic mounts system are formulated. The influence of the hydraulic mounts on the TRA decoupling of a powertrain system is analytically examined in terms of eigensolutions, frequency, and impulse responses, and then a new analytical axiom is proposed based on the TRA decoupling indices. With the experimental setup of a fixed decoupler hydraulic mount in the context of non-resonant dynamic stiffness testing procedure, the quasi-linear model of the hydraulic mount is verified by comparing the predictions with the measurement. And the quasi-linear formulation of the coupled system is also verified by comparing the frequency responses with the numerical results obtained by the direct inversion method. Finally, the mounting system with a combination of hydraulic mounts is redesigned in terms of the stiffness, damping and mount locations by satisfying the new axiom. The frequency and time domain results of the redesigned system demonstrate that the torque roll axis of the redesigned powertrain mounting system is indeed decoupled in the presence of hydraulic mounts (given oscillating torque or impulsive torque excitation). The proposed research provides an important basis and method for the research on a powertrain system with spectrally-varying mount properties, especially for the TRA decoupling.

  19. VIEW SHOWING THE ENTRY THROUGH THE RETAINING WALL (FOREGROUND) TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW SHOWING THE ENTRY THROUGH THE RETAINING WALL (FOREGROUND) TO THE CONCRETE SLAB. NOTE THE 1¾" MOUNTING BOLTS FOR THE STEEL PLATE BASE OF THE 5" GUN, SET IN THE GUN BLOCK. STEEL REINFORCING RODS PROTRUDING FROM THE BROKEN TOPS OF THE RETAINING WALLS ARE ALSO VISIBLE. VIEW FACING EAST - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, South Gun Emplacement, Ford Island, Pearl City, Honolulu County, HI

  20. Mirror mount

    DOEpatents

    Humpal, H.H.

    1987-11-10

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors. 5 figs.

  1. Mirror mount

    DOEpatents

    Humpal, H.H.

    1986-03-21

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors.

  2. Experiments in a three-dimensional adaptive-wall wind tunnel

    NASA Technical Reports Server (NTRS)

    Schairer, E. T.

    1983-01-01

    Three dimensional adaptive-wall experiments were performed in the Ames Research Center (ARC) 25- by 13-cm indraft wind tunnel. A semispan wing model was mounted to one sidewall of a test section with solid sidewalls, and slotted top and bottom walls. The test section had separate top and bottom plenums which were divided into streamwise and cross-stream compartments. An iterative procedure was demonstrated for measuring wall interference and for adjusting the plenum compartment pressures to eliminate such interference. The experiments were conducted at a freestream Mach number of 0.60 and model angles of attack between 0 and 6 deg. Although in all the experiments wall interference was reduced after the plenum pressures were adjusted, interference could not be completely eliminated.

  3. Fluid self-diffusion in Scots pine sapwood tracheid cells.

    PubMed

    Johannessen, Espen H; Hansen, Eddy W; Rosenholm, Jarl B

    2006-02-09

    The self-diffusion coefficients of water and toluene in Scots pine sapwood was measured using low field pulsed field gradient nuclear magnetic resonance (PFG-NMR). Wood chips of 8 mm diameter were saturated with the respective liquids, and liquid self-diffusion was then traced in one dimension orthogonal to the tracheid cell walls in the wood's radial direction. The experimental echo attenuation curves were exponential, and characteristic self-diffusion coefficients were produced for diffusion times spanning from very short times to times on the order of magnitude of seconds. Observed self-diffusion coefficients were decaying asymptotically as a function of diffusion time, an effect which was ascribed to the cell walls' restriction on confined liquid diffusion. The observed self-diffusion behavior in Scots pine sapwood was compared to self-diffusion coefficients obtained from simulations of diffusion in a square. Principles of molecular displacements in confined geometries were used for elucidating the wood's cellular structure from the observed diffusion coefficients. The results were compared with a mathematical model for diffusion between parallel planes.

  4. Nonequilibrium diffusive gas dynamics: Poiseuille microflow

    NASA Astrophysics Data System (ADS)

    Abramov, Rafail V.; Otto, Jasmine T.

    2018-05-01

    We test the recently developed hierarchy of diffusive moment closures for gas dynamics together with the near-wall viscosity scaling on the Poiseuille flow of argon and nitrogen in a one micrometer wide channel, and compare it against the corresponding Direct Simulation Monte Carlo computations. We find that the diffusive regularized Grad equations with viscosity scaling provide the most accurate approximation to the benchmark DSMC results. At the same time, the conventional Navier-Stokes equations without the near-wall viscosity scaling are found to be the least accurate among the tested closures.

  5. Photovoltaic module mounting system

    DOEpatents

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H

    2012-09-18

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  6. Photovoltaic module mounting system

    DOEpatents

    Miros, Robert H. J. [Fairfax, CA; Mittan, Margaret Birmingham [Oakland, CA; Seery, Martin N [San Rafael, CA; Holland, Rodney H [Novato, CA

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  7. Deformation monitoring at Mount St. Helens in 1981 and 1982

    USGS Publications Warehouse

    Chadwick, W.W.; Swanson, D.A.; Iwatsubo, E.Y.; Heliker, C.C.; Leighley, T.A.

    1983-01-01

    For several weeks before each eruption of Mount St. Helens in 1981 and 1982, viscous magma rising in the feeder conduit inflated the lava dome and shoved the crater floor laterally against the immobile crater walls, producing ground cracks and thrust faults. The rates of deformation accelerated before eruptions, and thus it was possible to predict eruptions 3 to 19 days in advance. Lack of deformation outside the crater showed that intrusion of magma during 1981 and 1982 was not voluminous.

  8. Initial Computations of Vertical Displacement Events with NIMROD

    NASA Astrophysics Data System (ADS)

    Bunkers, Kyle; Sovinec, C. R.

    2014-10-01

    Disruptions associated with vertical displacement events (VDEs) have potential for causing considerable physical damage to ITER and other tokamak experiments. We report on initial computations of generic axisymmetric VDEs using the NIMROD code [Sovinec et al., JCP 195, 355 (2004)]. An implicit thin-wall computation has been implemented to couple separate internal and external regions without numerical stability limitations. A simple rectangular cross-section domain generated with the NIMEQ code [Howell and Sovinec, CPC (2014)] modified to use a symmetry condition at the midplane is used to test linear and nonlinear axisymmetric VDE computation. As current in simulated external coils for large- R / a cases is varied, there is a clear n = 0 stability threshold which lies below the decay-index criterion for the current-loop model of a tokamak to model VDEs [Mukhovatov and Shafranov, Nucl. Fusion 11, 605 (1971)]; a scan of wall distance indicates the offset is due to the influence of the conducting wall. Results with a vacuum region surrounding a resistive wall will also be presented. Initial nonlinear computations show large vertical displacement of an intact simulated tokamak. This effort is supported by U.S. Department of Energy Grant DE-FG02-06ER54850.

  9. Theoretical axial wall angulation for rotational resistance form in an experimental-fixed partial denture

    PubMed Central

    2017-01-01

    PURPOSE The aim of this study was to determine the influence of long base lengths of a fixed partial denture (FPD) to rotational resistance with variation of vertical wall angulation. MATERIALS AND METHODS Trigonometric calculations were done to determine the maximum wall angle needed to resist rotational displacement of an experimental-FPD model in 2-dimensional plane. The maximum wall angle calculation determines the greatest taper that resists rotation. Two different axes of rotation were used to test this model with five vertical abutment heights of 3-, 3.5-, 4-, 4.5-, and 5-mm. The two rotational axes were located on the mesial-side of the anterior abutment and the distal-side of the posterior abutment. Rotation of the FPD around the anterior axis was counter-clockwise, Posterior-Anterior (P-A) and clockwise, Anterior-Posterior (A-P) around the distal axis in the sagittal plane. RESULTS Low levels of vertical wall taper, ≤ 10-degrees, were needed to resist rotational displacement in all wall height categories; 2–to–6–degrees is generally considered ideal, with 7–to–10–degrees as favorable to the long axis of the abutment. Rotation around both axes demonstrated that two axial walls of the FPD resisted rotational displacement in each direction. In addition, uneven abutment height combinations required the lowest wall angulations to achieve resistance in this study. CONCLUSION The vertical height and angulation of FPD abutments, two rotational axes, and the long base lengths all play a role in FPD resistance form. PMID:28874995

  10. Magnetic core mounting system

    DOEpatents

    Ronning, Jeffrey J.

    2002-01-01

    A mounting apparatus for an electromagnetic device such as a transformer of inductor includes a generally planar metallic plate as a first heat sink, and a metallic mounting cup as a second heat sink. The mounting cup includes a cavity configured to receive the electromagnetic device, the cavity being defined by a base, and an axially-extending annular sidewall extending from the base to a flange portion of the mounting cup. The mounting cup includes first and second passages for allowing the leads of first and second windings of the electromagnetic device to be routed out of the cavity. The cavity is filled with a polyurethane potting resin, and the mounting cup, including the potted electromagnetic device, is mounted to the plate heat sink using fasteners. The mounting cup, which surrounds the electromagnetic device, in combination with the potting resin provides improved thermal transfer to the plate heat sink, as well as providing resistance to vibration and shocks.

  11. Evacuated optical structure comprising optical bench mounted to sidewall of vacuum chamber in a manner which inhibits deflection and rotation of the optical bench

    DOEpatents

    Bowers, J.M.

    1994-04-19

    An improved evacuated optical structure is disclosed comprising an optical bench mounted in a vacuum vessel in a manner which inhibits transmission of movement of the vacuum vessel to the optical bench, yet provides a compact and economical structure. The vacuum vessel is mounted, through a sidewall thereof, to a support wall at four symmetrically positioned and spaced apart areas, each of which comprises a symmetrically positioned group of mounting structures passing through the sidewall of the vacuum vessel. The optical bench is pivotally secured to the vacuum vessel by four symmetrically spaced apart bolts and spherical bearings, each of which is centrally positioned within one of the four symmetrically positioned groups of vacuum vessel mounting structures. Cover plates and o-ring seals are further provided to seal the vacuum vessel mounting structures from the interior of the vacuum vessel, and venting bores are provided to vent trapped gases in the bores used to secure the cover plates and o-rings to the vacuum vessel. Provision for detecting leaks in the mounting structures from the rear surface of the vacuum vessel sidewall facing the support wall are also provided. Deflection to the optical bench within the vacuum vessel is further minimized by tuning the structure for a resonant frequency of at least 100 Hertz. 10 figures.

  12. A Forest of Sub-1.5-nm-wide Single-Walled Carbon Nanotubes over an Engineered Alumina Support

    NASA Astrophysics Data System (ADS)

    Yang, Ning; Li, Meng; Patscheider, Jörg; Youn, Seul Ki; Park, Hyung Gyu

    2017-04-01

    A precise control of the dimension of carbon nanotubes (CNTs) in their vertical array could enable many promising applications in various fields. Here, we demonstrate the growth of vertically aligned, single-walled CNTs (VA-SWCNTs) with diameters in the sub-1.5-nm range (0.98 ± 0.24 nm), by engineering a catalyst support layer of alumina via thermal annealing followed by ion beam treatment. We find out that the ion beam bombardment on the alumina allows the growth of ultra-narrow nanotubes, whereas the thermal annealing promotes the vertical alignment at the expense of enlarged diameters; in an optimal combination, these two effects can cooperate to produce the ultra-narrow VA-SWCNTs. According to micro- and spectroscopic characterizations, ion beam bombardment amorphizes the alumina surface to increase the porosity, defects, and oxygen-laden functional groups on it to inhibit Ostwald ripening of catalytic Fe nanoparticles effectively, while thermal annealing can densify bulk alumina to prevent subsurface diffusion of the catalyst particles. Our findings contribute to the current efforts of precise diameter control of VA-SWCNTs, essential for applications such as membranes and energy storage devices.

  13. Vertical Structure of Radiation-pressure-dominated Thin Disks: Link between Vertical Advection and Convective Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Hong-Yu; Gu, Wei-Min, E-mail: guwm@xmu.edu.cn

    2017-04-20

    In the classic picture of standard thin accretion disks, viscous heating is balanced by radiative cooling through the diffusion process, and the radiation-pressure-dominated inner disk suffers convective instability. However, recent simulations have shown that, owing to the magnetic buoyancy, the vertical advection process can significantly contribute to energy transport. In addition, in comparing the simulation results with the local convective stability criterion, no convective instability has been found. In this work, following on from simulations, we revisit the vertical structure of radiation-pressure-dominated thin disks and include the vertical advection process. Our study indicates a link between the additional energy transportmore » and the convectively stable property. Thus, the vertical advection not only significantly contributes to the energy transport, but it also plays an important role in making the disk convectively stable. Our analyses may help to explain the discrepancy between classic theory and simulations on standard thin disks.« less

  14. Computer-controlled wall servicing robot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefkowitz, S.

    1995-03-01

    After four years of cooperative research, Pentek has unveiled a new robot with the capability to automatically deliver a variety of cleaning, painting, inspection, and surveillance devices to large vertical surfaces. The completely computer-controlled robot can position a working tool on a 50-foot tall by 50-foot wide vertical surface with a repeatability of 1/16 inch. The working end can literally {open_quotes}fly{close_quotes} across the face of a wall at speed of 60 per minute, and can handle working loads of 350 pounds. The robot was originally developed to decontaminate the walls of reactor fueling cavities at commercial nuclear power plants duringmore » fuel outages. If these cavities are left to dry after reactor refueling, contamination present in the residue could later become airborne and move throughout the containment building. Decontaminating the cavity during the refueling outage reduces the need for restrictive personal protective equipment during plant operations to limit the dose rates.« less

  15. Slamming pressures on the bottom of a free-falling vertical wedge

    NASA Astrophysics Data System (ADS)

    Ikeda, C. M.; Judge, C. Q.

    2013-11-01

    High-speed planing boats are subjected to repeat impacts due to slamming, which can cause structural damage and injury to passengers. A first step in understanding and predicting the physics of a craft re-entering the water after becoming partially airborne is an experimental vertical drop test of a prismastic wedge (deadrise angle, β =20° beam, B = 300 mm; and length, L = 600 mm). The acrylic wedge was mounted to a rig allowing it to free-fall into a deep-water tank (5.2m × 5.2m × 4.2m deep) from heights 0 <= H <= 635 mm, measured from the keel to the free surface. The wedge was instrumented to record vertical position, acceleration, and pressure on the bottom surface. A pressure mapping system, capable of measuring several points over the area of the thin (0.1 mm) film sensor at sampling rates up to 20 kHz, is used and compared to surface-mounted pressure transducers (sampled at 10 kHz). A high speed camera (1000 fps, resolution of 1920 × 1200 pixels) is mounted above the wedge model to record the wetted surface as the wedge descended below the free surface. The pressure measurements taken with both conventional surface pressure transducers and the pressure mapping system agree within 10% of the peak pressure values (0.7 bar, typical). Supported by the Office of Naval Research.

  16. Mirror mount

    DOEpatents

    Humpal, Harold H.

    1987-01-01

    A mirror mount (10) is provided that allows free pitch, yaw and roll motion of the mirror (28) while keeping the location of a point (56) on the surface of the mirror (28) fixed in the rest frame of reference of the mount (10). Yaw movement is provided by two yaw cylinders (30,32) that are bearing (52) mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell (42) that is air bearing (72,74) mounted to move between a clamp (60) and an upper pedestal bearing (44). The centers of curvature of the spherical surfaces of the shell (42) lie upon the point (56). Pitch motion and roll motion are separately and independently imparted to mirror (28) by a pair of pitch paddles (34) and a pair of roll paddles (36) that are independently and separately moved by control rods (76,80) driven by motors (78,82).

  17. Vaginitis test - wet mount

    MedlinePlus

    ... prep - vaginitis; Vaginosis - wet mount; Trichomoniasis - wet mount; Vaginal candida - wet mount ... provider gently inserts an instrument (speculum) into the vagina to hold it open and view inside. A ...

  18. Convective flows in enclosures with vertical temperature or concentration gradients

    NASA Technical Reports Server (NTRS)

    Wang, L. W.; Chai, A. T.; Sun, D. J.

    1988-01-01

    The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.

  19. Convective flows in enclosures with vertical temperature or concentration gradients

    NASA Technical Reports Server (NTRS)

    Wang, L. W.; Chai, A. T.; Sun, D. J.

    1989-01-01

    The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.

  20. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics.

    PubMed

    Svensson, Tomas; Lewander, Märta; Svanberg, Sune

    2010-08-02

    We demonstrate high-resolution tunable diode laser absorption spectroscopy (TDLAS) of water vapor confined in nanoporous alumina. Strong multiple light scattering results in long photon pathlengths (1 m through a 6 mm sample). We report on strong line broadening due to frequent wall collisions (gas-surface interactions). For the water vapor line at 935.685 nm, the HWHM of confined molecules are about 4.3 GHz as compared to 2.9 GHz for free molecules (atmospheric pressure). Gas diffusion is also investigated, and in contrast to molecular oxygen (that moves rapidly in and out of the alumina), the exchange of water vapor is found very slow.

  1. Optoelectronic Mounting Structure

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Baca, Johnny R. F.; Bryan, Robert P.; Carson, Richard F.; Chu, Dahwey; Duckett, III, Edwin B.; McCormick, Frederick B.; Peterson, David W.; Peterson, Gary D.; Reber, Cathleen A.; Reysen, Bill H.

    2004-10-05

    An optoelectronic mounting structure is provided that may be used in conjunction with an optical transmitter, receiver or transceiver module. The mounting structure may be a flexible printed circuit board. Thermal vias or heat pipes in the head region may transmit heat from the mounting structure to the heat spreader. The heat spreader may provide mechanical rigidity or stiffness to the heat region. In another embodiment, an electrical contact and ground plane may pass along a surface of the head region so as to provide an electrical contact path to the optoelectronic devices and limit electromagnetic interference. In yet another embodiment, a window may be formed in the head region of the mounting structure so as to provide access to the heat spreader. Optoelectronic devices may be adapted to the heat spreader in such a manner that the devices are accessible through the window in the mounting structure.

  2. SPH Simulation of Impact of a Surge on a Wall

    NASA Astrophysics Data System (ADS)

    Diwakar, Manoj Kumar; Mohapatra, Pranab Kumar; Tripathi, Shivam

    2014-05-01

    Structures located on the downstream of a dam are prone to impact of the surge due to dam break flow. Ramsden (1996) experimentally studied the run-up height on a vertical wall due to propagation of bore and surge on dry bed and measured their impact on the wall. Mohapatra et al. (2000) applied Navier Stokes equations to numerically study the impact of bore on vertical and inclined walls. They also obtained the evolution of surge on dry bed. In the present work, the impact of a surge wave due to dam break flow against the wall is modeled with a two-dimensional smoothed particle hydrodynamics (SPH) model. SPH is a mesh-free method that relies on the particle view of the field problem and approximates the continuity and momentum equations on a set of particles. The method solves the strong form of Navier-Stokes equations. The governing equations are solved numerically in the vertical plane. The propagation of the surge wave, its impact and the maximum run-up on the wall located at the boundary are analyzed. Surface profile, velocity field and pressure distributions are simulated. Non-dimensional run-up height obtained from the present numerical model is 0.86 and is in good agreement with the available experimental data of Ramsden (1996) which is in the range of 0.75-0.9. Also, the simulated profile of the surge tip was comparable to the empirical equations refereed in Ramsden (1996). The model is applied to the study the maximum force and the run-up height on inclined walls with different inclinations. The results indicate that the maximum force and the run-up height on the wall increase with the increment of wall inclination. Comparison of numerical results with analytical solutions derived from shallow water equations clearly shows the breakdown of shallow water assumption during the impact. In addition to these results, the numerical simulation yields the complete velocity and pressure ?elds which may be used to design structures located in the path of a dam

  3. Flow field investigation in a bulb turbine diffuser

    NASA Astrophysics Data System (ADS)

    Pereira, M.; Duquesne, P.; Aeschlimann, V.; Deschênes, C.

    2017-04-01

    An important drop in turbine performances has been measured in a bulb turbine model operated at overload. Previous investigations have correlated the performance drop with diffuser losses, and particularly to the flow separation zone at the diffuser wall. The flow has been investigated in the transition part of the diffuser using two LDV measurement sections. The transition part is a diffuser section that transforms from a circular to a rectangular section. The two measurement sections are at the inlet and outlet of the diffuser transition part. The turbine has been operated at three operating points, which are representative of different flow patterns at the diffuser exit at overload. In addition to the average velocity field, the analysis is conducted based on a backflow occurrence function and on the swirl level. Results reveal a counter-rotating zone in the diffuser, which intensifies with the guide vanes opening. The guide vanes opening induces a modification of the flow phenomena: from a central backflow recirculation zone at the lowest flowrate to a backflow zone induced by flow separation at the wall at the highest flowrate.

  4. Measurements in the near-wall region of a relaxing three-dimensional low speed turbulent air boundary layer

    NASA Technical Reports Server (NTRS)

    Hebbar, K. S.; Melnik, W. L.

    1976-01-01

    An experimental investigation was conducted at selected locations of the near-wall region of a three dimensional turbulent air boundary layer relaxing in a nominally zero external pressure gradient behind a transverse hump (in the form of a 30 deg swept, 5-foot chord wing-type model) faired into the side wall of a low speed wind tunnel. Wall shear stresses measured with a flush-mounted hot-film gage and a sublayer fence were in very good agreement with experimental data obtained with two Preston probes. With the upstream unit Reynolds number held constant at 325,000/ft. approximately one-fourth of the boundary layer thickness adjacent to the wall was surveyed with a single rotated hot-wire probe mounted on a specially designed minimum interference traverse mechanism. The boundary layer (approximately 3.5 in thick near the first survey station where the length Reynolds number was 5.5 million) had a maximum crossflow velocity ratio of 0.145 and a maximum crossflow angle of 21.875 deg close to the wall.

  5. Crustal P-Wave Speed Structure Under Mount St. Helens From Local Earthquake Tomography

    NASA Astrophysics Data System (ADS)

    Waite, G. P.; Moran, S. C.

    2006-12-01

    We used local earthquake data to model the P-wave speed structure of Mount St. Helens with the aim of improving our understanding of the active magmatic system. Our study used new data recorded by a dense array of 19 broadband seismographs that were deployed during the current eruption together with permanent network data recorded since the May 18, 1980 eruption. Most earthquakes around Mount St. Helens during the last 25 years were clustered in a narrow vertical column beneath the volcano from the surface to a depth of about 10 km. Earthquakes also occurred in a well-defined zone extending to the NNW from the volcano known as the St. Helens Seismic Zone (SHZ). During the current eruption, earthquakes have been confined to within 3 km of the surface beneath the crater floor. These earthquakes apparently radiate little shear-wave energy and the shear arrivals are usually contaminated by surface waves. Thus, we focused on developing an improved P- wave speed model. We used two data sources: (1) the short-period, vertical-component Pacific Northwest Seismograph Network and (2) new data recorded on a temporary array between June 2005 and February 2006. We first solved for a minimum one-dimensional model, incorporating the Moho depth found during an earlier wide-aperture refraction study. The three-dimensional model was solved simultaneously with hypocenter locations using the computer code SIMULPS14, extended for full three-dimensional ray shooting. We modified the code to force raypaths to remain below the ground surface. We began with large grid spacing and progressed to smaller grid spacing where the earthquakes and stations were denser. In this way we achieve a 40 km by 40 km regional model as well as a 10 km by 10 km fine-scale model directly beneath Mount St. Helens. The large-scale model is consistent with mapped geology and other geophysical data in the vicinity of Mount St. Helens. For example, there is a zone of relatively low velocities (-2% to -5% lower

  6. Liner mounting assembly

    NASA Technical Reports Server (NTRS)

    Halila, Ely E. (Inventor)

    1994-01-01

    A mounting assembly includes an annular supporting flange disposed coaxially about a centerline axis which has a plurality of circumferentially spaced apart supporting holes therethrough. An annular liner is disposed coaxially with the supporting flange and includes a plurality of circumferentially spaced apart mounting holes aligned with respective ones of the supporting holes. Each of a plurality of mounting pins includes a proximal end fixedly joined to the supporting flange through a respective one of the supporting holes, and a distal end disposed through a respective one of the liner mounting holes for supporting the liner to the supporting flange while unrestrained differential thermal movement of the liner relative to the supporting flange.

  7. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOEpatents

    Rote, Donald M.; He, Jianliang; Johnson, Larry R.

    1994-01-01

    A propulsion and stabilization system comprising a series of FIG. 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the FIG. 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  8. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOEpatents

    Rote, D.M.; He, J.; Johnson, L.R.

    1994-01-04

    A propulsion and stabilization system are described comprising a series of coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance, and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension. 8 figures.

  9. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOEpatents

    Rote, D.M.; He, Jianliang; Johnson, L.R.

    1992-01-01

    This report discusses a propulsion and stabilization system comprising a series of figure 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the figure 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  10. High bandwidth optical mount

    DOEpatents

    Bender, Donald A.; Kuklo, Thomas

    1994-01-01

    An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage.

  11. High bandwidth optical mount

    DOEpatents

    Bender, D.A.; Kuklo, T.

    1994-11-08

    An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage. 5 figs.

  12. Integrating shotcrete walls into the natural landscape by application of 'Green Walls'

    NASA Astrophysics Data System (ADS)

    Medl, Alexandra; Kikuta, Silvia

    2017-04-01

    Steep slopes resulting from major road infrastructure constructions are increasingly perceived as disagreeable disturbance in the landscape. Thus, a tool to consider landscape aspects and integrate these slopes into the natural environment is required. The challenge is to establish a sustainable vegetation layer despite of adverse circumstances such as inclinations of almost 90⁰, exposed position of slopes near streets and lack of soil and water supply. The objective of this study was to assess the performance of an innovative greening technology for vertical structures (shotcrete wall) in terms of vegetation development on varying plant substrates and geotextiles. The field experiment in Steinach am Brenner, Tyrol, Austria, included testing three plant substrates on basis of nearby rocky excavation material ('Innsbrucker Quarzphyllit', 'Bündnerschiefer' and 'Zentralgneis') combined with compost. Additionally, five geotextiles (geogrid (3x4 mm), geogrid (9x10 mm), coir net, coir mat, geo mat) were applied for evaluation. All test combinations were evaluated regarding vegetation cover and biomass production from 2015 to 2016. Analyses of chemical properties were conducted for all plant substrates. Results showed highest vegetation cover ratio on 'Bündnerschiefer' and 'Innsbrucker Quarzphyllit', which can be explained by the favorable mineral composition (nutrient storage capacity) and chemical properties of compost (lower values of electrical conductivity and C/N ratio). In conclusion, the use of 'Green Walls' filled with 'Bündnerschiefer' or 'Innsbrucker Quarzphyllit' plant substrate in combination with netlike geotextiles proved best, since geo grid and coir net turned out as most successful one year after installation. 'Green Walls' are promising in terms of establishing an optimal vegetation cover on vertical structures and are well suited for integrating shotcrete walls into the landscape. The use of local excavation material for greening purposes can be

  13. Vertical profile of tritium concentration in air during a chronic atmospheric HT release.

    PubMed

    Noguchi, Hiroshi; Yokoyama, Sumi

    2003-03-01

    The vertical profiles of tritium gas and tritiated water concentrations in air, which would have an influence on the assessment of tritium doses as well as on the environmental monitoring of tritium, were measured in a chronic tritium gas release experiment performed in Canada in 1994. While both of the profiles were rather uniform during the day because of atmospheric mixing, large gradients of the profiles were observed at night. The gradient coefficients of the profiles were derived from the measurements. Correlations were analyzed between the gradient coefficients and meteorological conditions: solar radiation, wind speed, and turbulent diffusivity. It was found that the solar radiation was highly correlated with the gradient coefficients of tritium gas and tritiated water profiles and that the wind speed and turbulent diffusivity showed weaker correlations with those of tritiated water profiles. A one-dimensional tritium transport model was developed to analyze the vertical diffusion of tritiated water re-emitted from the ground into the atmosphere. The model consists of processes of tritium gas deposition to soil including oxidation into tritiated water, reemission of tritiated water, dilution of tritiated water in soil by rain, and vertical diffusion of tritiated water in the atmosphere. The model accurately represents the accumulation of tritiated water in soil water and the time variations and vertical profiles of tritiated water concentrations in air.

  14. Fixed mount wavefront sensor

    DOEpatents

    Neal, Daniel R.

    2000-01-01

    A rigid mount and method of mounting for a wavefront sensor. A wavefront dissector, such as a lenslet array, is rigidly mounted at a fixed distance relative to an imager, such as a CCD camera, without need for a relay imaging lens therebetween.

  15. Wave Augmented Diffusers for Centrifugal Compressors

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Skoch, Gary J.

    1998-01-01

    A conceptual device is introduced which would utilize unsteady wave motion to slow and turn flows in the diffuser section of a centrifugal compressor. The envisioned device would substantially reduce the size of conventional centrifugal diffusers by eliminating the relatively large ninety degree bend needed to turn the flow from the radial/tangential to the axial direction. The bend would be replaced by a wall and the flow would instead exit through a series of rotating ports located on a disk, adjacent to the diffuser hub, and fixed to the impeller shaft. The ports would generate both expansion and compression waves which would rapidly transition from the hub/shroud (axial) direction to the radial/tangential direction. The waves would in turn induce radial/tangential and axial flow. This paper presents a detailed description of the device. Simplified cycle analysis and performance results are presented which were obtained using a time accurate, quasi-one-dimensional CFD code with models for turning, port flow conditions, and losses due to wall shear stress. The results indicate that a periodic wave system can be established which yields diffuser performance comparable to a conventional diffuser. Discussion concerning feasibility, accuracy, and integration follow.

  16. Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors

    PubMed Central

    Li, T.; Heuvelink, E.; Dueck, T. A.; Janse, J.; Gort, G.; Marcelis, L. F. M.

    2014-01-01

    Background and Aims Plants use diffuse light more efficiently than direct light. However, experimental comparisons between diffuse and direct light have been obscured by co-occurring differences in environmental conditions (e.g. light intensity). This study aims to analyse the factors that contribute to an increase in crop photosynthesis in diffuse light and to quantify their relative contribution under different levels of diffuseness at similar light intensities. The hypothesis is that the enhancement of crop photosynthesis in diffuse light results not only from the direct effects of more uniform vertical and horizontal light distribution in the crop canopy, but also from crop physiological and morphological acclimation. Methods Tomato (Solanum lycopersicum) crops were grown in three greenhouse compartments that were covered by glass with different degrees of light diffuseness (0, 45 and 71 % of the direct light being converted into diffuse light) while maintaining similar light transmission. Measurements of horizontal and vertical photosynthetic photon flux density (PPFD) distribution in the crop, leaf photosynthesis light response curves and leaf area index (LAI) were used to quantify each factor's contribution to an increase in crop photosynthesis in diffuse light. In addition, leaf temperature, photoinhibition, and leaf biochemical and anatomical properties were studied. Key Results The highest degree of light diffuseness (71 %) increased the calculated crop photosynthesis by 7·2 %. This effect was mainly attributed to a more uniform horizontal (33 % of the total effect) and vertical PPFD distribution (21 %) in the crop. In addition, plants acclimated to the high level of diffuseness by gaining a higher photosynthetic capacity of leaves in the middle of the crop and a higher LAI, which contributed 23 and 13 %, respectively, to the total increase in crop photosynthesis in diffuse light. Moreover, diffuse light resulted in lower leaf temperatures and less

  17. Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors.

    PubMed

    Li, T; Heuvelink, E; Dueck, T A; Janse, J; Gort, G; Marcelis, L F M

    2014-07-01

    Plants use diffuse light more efficiently than direct light. However, experimental comparisons between diffuse and direct light have been obscured by co-occurring differences in environmental conditions (e.g. light intensity). This study aims to analyse the factors that contribute to an increase in crop photosynthesis in diffuse light and to quantify their relative contribution under different levels of diffuseness at similar light intensities. The hypothesis is that the enhancement of crop photosynthesis in diffuse light results not only from the direct effects of more uniform vertical and horizontal light distribution in the crop canopy, but also from crop physiological and morphological acclimation. Tomato (Solanum lycopersicum) crops were grown in three greenhouse compartments that were covered by glass with different degrees of light diffuseness (0, 45 and 71 % of the direct light being converted into diffuse light) while maintaining similar light transmission. Measurements of horizontal and vertical photosynthetic photon flux density (PPFD) distribution in the crop, leaf photosynthesis light response curves and leaf area index (LAI) were used to quantify each factor's contribution to an increase in crop photosynthesis in diffuse light. In addition, leaf temperature, photoinhibition, and leaf biochemical and anatomical properties were studied. The highest degree of light diffuseness (71 %) increased the calculated crop photosynthesis by 7·2 %. This effect was mainly attributed to a more uniform horizontal (33 % of the total effect) and vertical PPFD distribution (21 %) in the crop. In addition, plants acclimated to the high level of diffuseness by gaining a higher photosynthetic capacity of leaves in the middle of the crop and a higher LAI, which contributed 23 and 13 %, respectively, to the total increase in crop photosynthesis in diffuse light. Moreover, diffuse light resulted in lower leaf temperatures and less photoinhibition at the top of the canopy when

  18. Comparison of non-Gaussian and Gaussian diffusion models of diffusion weighted imaging of rectal cancer at 3.0 T MRI.

    PubMed

    Zhang, Guangwen; Wang, Shuangshuang; Wen, Didi; Zhang, Jing; Wei, Xiaocheng; Ma, Wanling; Zhao, Weiwei; Wang, Mian; Wu, Guosheng; Zhang, Jinsong

    2016-12-09

    Water molecular diffusion in vivo tissue is much more complicated. We aimed to compare non-Gaussian diffusion models of diffusion-weighted imaging (DWI) including intra-voxel incoherent motion (IVIM), stretched-exponential model (SEM) and Gaussian diffusion model at 3.0 T MRI in patients with rectal cancer, and to determine the optimal model for investigating the water diffusion properties and characterization of rectal carcinoma. Fifty-nine consecutive patients with pathologically confirmed rectal adenocarcinoma underwent DWI with 16 b-values at a 3.0 T MRI system. DWI signals were fitted to the mono-exponential and non-Gaussian diffusion models (IVIM-mono, IVIM-bi and SEM) on primary tumor and adjacent normal rectal tissue. Parameters of standard apparent diffusion coefficient (ADC), slow- and fast-ADC, fraction of fast ADC (f), α value and distributed diffusion coefficient (DDC) were generated and compared between the tumor and normal tissues. The SEM exhibited the best fitting results of actual DWI signal in rectal cancer and the normal rectal wall (R 2  = 0.998, 0.999 respectively). The DDC achieved relatively high area under the curve (AUC = 0.980) in differentiating tumor from normal rectal wall. Non-Gaussian diffusion models could assess tissue properties more accurately than the ADC derived Gaussian diffusion model. SEM may be used as a potential optimal model for characterization of rectal cancer.

  19. First measurements of Hiro currents in vertical displacement event in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Hao; Xu, Guosheng; Wang, Huiqian

    Specially designed tiles were setup in the 2012 campaign of the Experimental Advanced Superconducting Tokamak (EAST), to directly measure the toroidal surface currents during the disruptions. Hiro currents with direction opposite to the plasma currents have been observed, confirming the sign prediction by the Wall Touching Vertical Mode (WTVM) theory and numerical simulations. During the initial phase of the disruption, when the plasma begins to touch the wall, the surface currents can be excited by WTVM along the plasma facing tile surface, varying with the mode magnitude. The currents are not observed in the cases when the plasma moves awaymore » from the tile surface. This discovery addresses the importance of the plasma motion into the wall in vertical disruptions. WTVM, acting as a current generator, forces the Hiro currents to flow through the gaps between tiles. This effect, being overlooked so far in disruption analysis, may damage the edges of the tiles and is important for the ITER device.« less

  20. Three-Dimensional Waveguide Arrays for Coupling Between Fiber-Optic Connectors and Surface-Mounted Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Seiki; Kinoshita, Masao

    2005-09-01

    This paper describes the fabrication of novel surface-mountable waveguide connectors and presents test results for them. To ensure more highly integrated and low-cost fabrication, we propose new three-dimensional (3-D) waveguide arrays that feature two-dimensionally integrated optical inputs/outputs and optical path redirection. A wafer-level stack and lamination process was used to fabricate the waveguide arrays. Vertical-cavity surface-emitting lasers (VCSELs) and photodiodes were directly mounted on the arrays and combined with mechanical transferable ferrule using active alignment. With the help of a flip-chip bonder, the waveguide connectors were mounted on a printed circuit board by solder bumps. Using mechanical transferable connectors, which can easily plug into the waveguide connectors, we obtained multi-gigabits-per-second transmission performance.

  1. Double diffusive conjugate heat transfer: Part I

    NASA Astrophysics Data System (ADS)

    Azeem, Soudagar, Manzoor Elahi M.

    2018-05-01

    The present work is undertaken to investigate the effect of solid wall being placed at left of square cavity filled with porous medium. The presence of a solid wall in the porous medium turns the situation into a conjugate heat transfer problem. The boundary conditions are such that the left vertical surface is maintained at highest temperature and concentration whereas right vertical surface at lowest temperature and concentration in the medium. The top and bottom surfaces are adiabatic. The additional conduction equation along with the regular momentum and energy equations of porous medium are solved in an iterative manner with the help of finite element method. It is seen that the heat and mass transfer rate is lesser due to smaller thermal and concentration gradients.

  2. ANNULUS CLOSURE TECHNOLOGY DEVELOPMENT INSPECTION/SALT DEPOSIT CLEANING MAGNETIC WALL CRAWLER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minichan, R; Russell Eibling, R; James Elder, J

    2008-06-01

    The Liquid Waste Technology Development organization is investigating technologies to support closure of radioactive waste tanks at the Savannah River Site (SRS). Tank closure includes removal of the wastes that have propagated to the tank annulus. Although amounts and types of residual waste materials in the annuli of SRS tanks vary, simple salt deposits are predominant on tanks with known leak sites. This task focused on developing and demonstrating a technology to inspect and spot clean salt deposits from the outer primary tank wall located in the annulus of an SRS Type I tank. The Robotics, Remote and Specialty Equipmentmore » (RRSE) and Materials Science and Technology (MS&T) Sections of the Savannah River National Laboratory (SRNL) collaborated to modify and equip a Force Institute magnetic wall crawler with the tools necessary to demonstrate the inspection and spot cleaning in a mock-up of a Type I tank annulus. A remote control camera arm and cleaning head were developed, fabricated and mounted on the crawler. The crawler was then tested and demonstrated on a salt simulant also developed in this task. The demonstration showed that the camera is capable of being deployed in all specified locations and provided the views needed for the planned inspection. It also showed that the salt simulant readily dissolves with water. The crawler features two different techniques for delivering water to dissolve the salt deposits. Both water spay nozzles were able to dissolve the simulated salt, one is more controllable and the other delivers a larger water volume. The cleaning head also includes a rotary brush to mechanically remove the simulated salt nodules in the event insoluble material is encountered. The rotary brush proved to be effective in removing the salt nodules, although some fine tuning may be required to achieve the best results. This report describes the design process for developing technology to add features to a commercial wall crawler and the

  3. Ab initio study of edge effect on relative motion of walls in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Popov, Andrey M.; Lebedeva, Irina V.; Knizhnik, Andrey A.; Lozovik, Yurii E.; Potapkin, Boris V.

    2013-01-01

    Interwall interaction energies of double-walled nanotubes with long inner and short outer walls are calculated as functions of coordinates describing relative rotation and displacement of the walls using van der Waals corrected density functional theory. The magnitude of corrugation and the shape of the potential energy relief are found to be very sensitive to changes of the shorter wall length at subnanometer scale and atomic structure of the edges if at least one of the walls is chiral. Threshold forces required to start relative motion of the short walls and temperatures at which the transition between diffusive and free motion of the short walls takes place are estimated. The edges are also shown to provide a considerable contribution to the barrier to relative rotation of commensurate nonchiral walls. For such walls, temperatures of orientational melting, i.e., the crossover from rotational diffusion to free relative rotation, are estimated. The possibility to produce nanotube-based bolt/nut pairs and nanobearings is discussed.

  4. Sideways wall force produced during tokamak disruptions

    NASA Astrophysics Data System (ADS)

    Strauss, H.; Paccagnella, R.; Breslau, J.; Sugiyama, L.; Jardin, S.

    2013-07-01

    A critical issue for ITER is to evaluate the forces produced on the surrounding conducting structures during plasma disruptions. We calculate the non-axisymmetric ‘sideways’ wall force Fx, produced in disruptions. Simulations were carried out of disruptions produced by destabilization of n = 1 modes by a vertical displacement event (VDE). The force depends strongly on γτwall, where γ is the mode growth rate and τwall is the wall penetration time, and is largest for γτwall = constant, which depends on initial conditions. Simulations of disruptions caused by a model of massive gas injection were also performed. It was found that the wall force increases approximately offset linearly with the displacement from the magnetic axis produced by a VDE. These results are also obtained with an analytical model. Disruptions are accompanied by toroidal variation of the plasma current Iφ. This is caused by toroidal variation of the halo current, as verified computationally and analytically.

  5. Topographic enhancement of vertical turbulent mixing in the Southern Ocean

    PubMed Central

    Mashayek, A.; Ferrari, R.; Merrifield, S.; Ledwell, J. R.; St Laurent, L.; Garabato, A. Naveira

    2017-01-01

    It is an open question whether turbulent mixing across density surfaces is sufficiently large to play a dominant role in closing the deep branch of the ocean meridional overturning circulation. The diapycnal and isopycnal mixing experiment in the Southern Ocean found the turbulent diffusivity inferred from the vertical spreading of a tracer to be an order of magnitude larger than that inferred from the microstructure profiles at the mean tracer depth of 1,500 m in the Drake Passage. Using a high-resolution ocean model, it is shown that the fast vertical spreading of tracer occurs when it comes in contact with mixing hotspots over rough topography. The sparsity of such hotspots is made up for by enhanced tracer residence time in their vicinity due to diffusion toward weak bottom flows. The increased tracer residence time may explain the large vertical fluxes of heat and salt required to close the abyssal circulation. PMID:28262808

  6. Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR.

    PubMed

    White, Paul B; Wang, Tuo; Park, Yong Bum; Cosgrove, Daniel J; Hong, Mei

    2014-07-23

    Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water (1)H polarization to polysaccharides through distance- and mobility-dependent (1)H-(1)H dipolar couplings and detecting it through polysaccharide (13)C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that water-pectin polarization transfer is much faster than water-cellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the water-polysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Water-pectin spin diffusion precedes water-cellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.

  7. Estimates of advection and diffusion in the Potomac estuary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, A.J.

    1976-01-01

    A two-layered dispersion model, suitable for application to partially-mixed estuaries, has been developed to provide hydrological interpretation of the results of biological sampling. The model includes horizontal and vertical advection plus both horizontal and vertical diffusion. A pseudo-geostrophic method, which includes a damping factor to account for internal eddy friction, is used to estimate the horizontal advective fluxes and the results are compared with field observations. A salt balance model is then used to estimate the effective diffusivities in the Potomac estuary during the Spring of 1974.

  8. Wall-ablative laser-driven in-tube accelerator

    NASA Astrophysics Data System (ADS)

    Sasoh, Akihiro; Suzuki, Shingo; Matsuda, Atsushi

    2008-05-01

    The laser-driven in-tube accelerator in which the propellant is supplied from laser-ablated gas from the tube wall was developed. Proof-of concept demonstrations of vertical launch were successfully done. The device had a 25mm X 25mm square cross-section; two opposing walls were made of polyacetal and acted as the propellant, the other two acrylic window with guide grooves to the projectile. The upper end of the launch tube was connected to a vacuum chamber of an inner volume of 0.8 m2, in which the initial pressure was set to lower than 20 Pa. With plugging the bottom end of the launch tube, a momentum coupling coefficient exceeding 2.5 mN/W was obtained. Even with the bottom end connected to the same vacuum chamber through a different duct, the projectile was vertical launched successfully, obtaining 0.14 mN/W.

  9. The ability of different materials to reproduce accurate records of interocclusal relationships in the vertical dimension.

    PubMed

    Ghazal, M; Albashaireh, Z S; Kern, M

    2008-11-01

    Restorations made on incorrectly mounted casts might require considerable intra-oral adjustments to correct the occlusion or might even necessitate a remake of the restoration. The aim of this study was to evaluate interocclusal recording materials for their ability to reproduce accurate vertical interocclusal relationships after a storage time of 1 and 48 h, respectively. A custom-made apparatus was used to simulate the maxilla and mandible. Eight interocclusal records were made in each of the following groups: G1: Aluwax (aluminium wax), G2: Beauty Pink wax (hydrocarbon wax compound), G3: Futar D, G4: Futar D Fast, G5: Futar Scan (G3-G5: vinyl polysiloxane), G6: Ramitec (polyether). The vertical discrepancies were measured by an inductive displacement transducer connected to a carrier frequency amplifier after storage of the records for two periods of 1 and 48 h. Two-way anova was used for statistical analysis. The mean vertical discrepancies in mum (1/48 h) for G1 (31/35) and G2 (35/38) were statistically significantly higher than for the other groups G3 (8/10), G4 (11/12), G5 (6/8) and G6 (5/8) (P < or = 0.05). There were no statistically significant differences between the elastomers tested. The effect of storage on the vertical discrepancies was statistically significant (P < 0.001). Vinyl polysiloxane and polyether interocclusal records can be used to relate working casts during mounting procedures without significant vertical displacement of the casts.

  10. Wind Tunnel Investigation of the Effects of Surface Porosity and Vertical Tail Placement on Slender Wing Vortex Flow Aerodynamics at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2007-01-01

    A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the effects of passive surface porosity and vertical tail placement on vortex flow development and interactions about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used that featured pressure sensitive paint (PSP), laser vapor screen (LVS), and schlieren, These techniques were combined with conventional electronically-scanned pressure (ESP) and six-component force and moment measurements to quantify and to visualize the effects of flow-through porosity applied to a wing leading edge extension (LEX) and the placement of centerline and twin vertical tails on the vortex-dominated flow field of a 65 cropped delta wing model. Test results were obtained at free-stream Mach numbers of 1.6, 1.8, and 2.1 and a Reynolds number per foot of 2.0 million. LEX porosity promoted a wing vortex-dominated flow field as a result of a diffusion and weakening of the LEX vortex. The redistribution of the vortex-induced suction pressures contributed to large nose-down pitching moment increments but did not significantly affect the vortex-induced lift. The trends associated with LEX porosity were unaffected by vertical tail placement. The centerline tail configuration generally provided more stable rolling moments and yawing moments compared to the twin wing-mounted vertical tails. The strength of a complex system of shock waves between the twin tails was reduced by LEX porosity.

  11. Diffusive Gas Loss from Silica Glass Ampoules at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Palosz, W.

    1998-01-01

    Changes in the pressure of hydrogen, helium and neon due to diffusion through the wall of silica crystal growth ampoules at elevated temperatures were determined experimentally. We show that, while both He- and Ne-losses closely follow conventional model of diffusive gas permeation through the wall, hydrogen losses, in particular at low fill pressures, can be much larger. This is interpreted in terms of the high solubility of hydrogen in silica glasses.

  12. Applicability of tungsten/EUROFER blanket module for the DEMO first wall

    NASA Astrophysics Data System (ADS)

    Igitkhanov, Yu.; Bazylev, B.; Landman, I.; Boccaccini, L.

    2013-07-01

    In this paper we analyse a sandwich-type blanket configuration of W/EUROFER for DEMO first wall under steady-state normal operation and off-normal conditions, such as vertical displacements and runaway electrons. The heat deposition and consequent erosion of the tungsten armour is modelled under condition of helium cooling of the first wall blanket module and by taking into account the conversion of the magnetic energy stored in the runaway electron current into heat through the ohmic dissipation of the return current induced in the metallic armour structure. It is shown that under steady-state DEMO operation the first wall sandwich type module will tolerate heat loads up to ˜14 MW/m2. It will also sustain the off-normal events, apart from the hot vertical displacement events, which will melt the tungsten armour surface.

  13. Shoulder-Mounted Robot for MRI-guided arthrography: Accuracy and mounting study.

    PubMed

    Monfaredi, R; Wilson, E; Sze, R; Sharma, K; Azizi, B; Iordachita, I; Cleary, K

    2015-08-01

    A new version of our compact and lightweight patient-mounted MRI-compatible 4 degree-of-freedom (DOF) robot for MRI-guided arthrography procedures is introduced. This robot could convert the traditional two-stage arthrography procedure (fluoroscopy-guided needle insertion followed by a diagnostic MRI scan) to a one-stage procedure, all in the MRI suite. The results of a recent accuracy study are reported. A new mounting technique is proposed and the mounting stability is investigated using optical and electromagnetic tracking on an anthropomorphic phantom. Five volunteer subjects including 2 radiologists were asked to conduct needle insertion in 4 different random positions and orientations within the robot's workspace and the displacement of the base of the robot was investigated during robot motion and needle insertion. Experimental results show that the proposed mounting method is stable and promising for clinical application.

  14. Deposition and dose from the 18 May 1980 eruption of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Peterson, K. R.

    1982-01-01

    The downwind deposition and radiation doses was calculated for the tropospheric part of the ash cloud from the May 18, 1980 eruption of Mount St. Helens, by using a large cloud diffusion model. The naturally occurring radionnuclides of radium and thorium, whose radon daughters normally seep very slowly from the rocks and soil, were violently released to the atmosphere. The largest dose to an individual from these nuclides is small, but the population dose to those affected by the radioactivity in the ash is about 100 person rem. This population dose from Mount St. Helens is much greater than the annual person rem routinely released by a typical large nuclear power plant. It is estimated that subsequent eruptions of Mount St. Helens have doubled or tripled the person rem calculated from the initial large eruption. The long range global ash deposition of the May 18 eruption is estimated through 1984, by use of a global deposition model. The maximum deposition is nearly 1000 kg square km and occurs in the spring of 1981 over middle latitudes of the Northern Hemisphere.

  15. New methods for interpretation of magnetic vector and gradient tensor data II: application to the Mount Leyshon anomaly, Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Clark, David A.

    2013-04-01

    Acquisition of magnetic gradient tensor data is anticipated to become routine in the near future. In the meantime, modern ultrahigh resolution conventional magnetic data can be used, with certain important caveats, to calculate magnetic vector components and gradient tensor elements from total magnetic intensity (TMI) or TMI gradient surveys. An accompanying paper presented new methods for inverting gradient tensor data to obtain source parameters for several elementary, but useful, models. These include point dipole (sphere), vertical line of dipoles (narrow vertical pipe), line of dipoles (horizontal cylinder), thin dipping sheet, and contact models. A key simplification is the use of eigenvalues and associated eigenvectors of the tensor. The normalised source strength (NSS), calculated from the eigenvalues, is a particularly useful rotational invariant that peaks directly over 3D compact sources, 2D compact sources, thin sheets, and contacts, independent of magnetisation direction. Source locations can be inverted directly from the NSS and its vector gradient. Some of these new methods have been applied to analysis of the magnetic signature of the Early Permian Mount Leyshon gold-mineralised system, Queensland. The Mount Leyshon magnetic anomaly is a prominent TMI low that is produced by rock units with strong reversed remanence acquired during the Late Palaeozoic Reverse Superchron. The inferred magnetic moment for the source zone of the Mount Leyshon magnetic anomaly is ~1010Am2. Its direction is consistent with petrophysical measurements. Given estimated magnetisation from samples and geological information, this suggests a volume of ~1.5km×1.5km×2km (vertical). The inferred depth of the centre of magnetisation is ~900m below surface, suggesting that the depth extent of the magnetic zone is ~1800m. Some of the deeper, undrilled portion of the magnetic zone could be a mafic intrusion similar to the nearby coeval Fenian Diorite, representing part of the

  16. Vertically aligned single-walled carbon nanotubes as low-cost and high electrocatalytic counter electrode for dye-sensitized solar cells.

    PubMed

    Dong, Pei; Pint, Cary L; Hainey, Mel; Mirri, Francesca; Zhan, Yongjie; Zhang, Jing; Pasquali, Matteo; Hauge, Robert H; Verduzco, Rafael; Jiang, Mian; Lin, Hong; Lou, Jun

    2011-08-01

    A novel dye-sensitized solar cell (DSSC) structure using vertically aligned single-walled carbon nanotubes (VASWCNTs) as the counter electrode has been developed. In this design, the VASWCNTs serve as a stable high surface area and highly active electrocatalytic counter-electrode that could be a promising alternative to the conventional Pt analogue. Utilizing a scalable dry transfer approach to form a VASWCNTs conductive electrode, the DSSCs with various lengths of VASWCNTs were studied. VASWCNTs-DSSC with 34 μm original length was found to be the optimal choice in the present study. The highest conversion efficiencies of VASWCNTs-DSSC achieved 5.5%, which rivals that of the reference Pt DSSC. From the electrochemical impedance spectroscopy analysis, it shows that the new DSSC offers lower interface resistance between the electrolyte and the counter electrode. This reproducible work emphasizes the promise of VASWCNTs as efficient and stable counter electrode materials in DSSC device design, especially taking into account the low-cost merit of this promising material.

  17. Experimental Studies in Helicopter Vertical Climb Performance

    NASA Technical Reports Server (NTRS)

    McKillip, Robert M., Jr.

    1996-01-01

    Data and analysis from an experimental program to measure vertical climb performance on an eight-foot model rotor are presented. The rotor testing was performed using a unique moving-model facility capable of accurately simulating the flow conditions during axial flight, and was conducted from July 9, 1992 to July 16, 1992 at the Dynamic Model Track, or 'Long Track,' just prior to its demolition in August of 1992. Data collected during this brief test program included force and moment time histories from a sting-mounted strain gauge balance, support carriage velocity, and rotor rpm pulses. In addition, limited video footage (of marginal use) was recorded from smoke flow studies for both simulated vertical climb and descent trajectories. Analytical comparisons with these data include a series of progressively more detailed calculations ranging from simple momentum theory, a prescribed wake method, and a free-wake prediction.

  18. Heat transfer about a vertical permeable membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaviany, M.

    1988-05-01

    The natural convection heat transfer about both sides of vertical walls without any seepage has been studied and the effects of the wall thickness and thermal conductivity on the local and average heat transfer rates have been determined. Viskanta and Lankford have concluded that in predicting the heat transfer rate through the wall, for low-thermal-conductivity walls the a priori unknown wall surface temperatures can be walls the a priori unknown wall surface temperatures can be estimated as the arithmetic average of the reservoir temperatures without loss of accuracy (for most practical situations). Sparrow and Prakash treated the surface temperature asmore » variable but used the local temperature along with the available isothermal boundary-layer analysis for determination of the local heat transfer rate and found this to be reasonable at relatively low Grashof numbers. In this study the heat trasnfer rate between two reservoirs of different temperature connected in part through a permeable membrane is analyzed. Rather than solving the complete problem numerically for the three domains (fluid-wall-fluid), the available results on the effects of suction and blowing on the natural convection boundary layer are used in an analysis of the membranes with low thermal conductivity and small seepage velocities, which are characteristic of membranes considered. This will lead to rather simple expressions for the determination of the heat transfer rate.« less

  19. Development of helium electron cyclotron wall conditioning on TCV

    NASA Astrophysics Data System (ADS)

    Douai, D.; Goodman, T.; Isayama, A.; Fukumoto, M.; Wauters, T.; Sozzi, C.; Coda, S.; Blanchard, P.; Figini, L.; Garavaglia, S.; Miyata, Y.; Moro, A.; Ricci, D.; Silva, M.; Theiler, C.; Vartanian, S.; Verhaegh, K.; the EUROfusion MST1 Team; the TCV Team

    2018-02-01

    JT-60SA envisions electron cyclotron wall conditioning (ECWC), as wall conditioning method in the presence of the toroidal field to control fuel and impurity recycling and to improve plasma performance and reproducibility. This paper reports on Helium ECWC experiments on TCV in support of JT-60SA operation. Nearly sixty Helium conditioning discharges have been successfully produced in TCV, at a toroidal field B T  =  1.3 or 1.54 T, with gyrotrons at 82.7 GHz in X2 mode, mimicking ECWC operation in JT-60SA at the second harmonic of the EC wave. Discharge parameters were tuned in order to (i) minimize the time for the onset of ECWC plasmas, thus minimizing absorption of stray radiation by in-vessel components, (ii) improve discharge homogeneity by extending the discharge vertically and radially, and wall coverage, in particular of inboard surfaces where JT-60SA plasmas will be initiated, (iii) assess the efficiency of He-ECWC to deplete carbon walls from fuel. An optimized combination of vertical and radial magnetic fields, with amplitudes typically 0.1 to 0.6% of that of B T, has been determined, which resulted in lowest breakdown time, improved wall coverage and enhanced fuel removal. A standard ohmic D 2-plasma could be then sustained, whereas it would not have been possible without He-ECWC.

  20. Analysis of Nonplanar Wing-tip-mounted Lifting Surfaces on Low-speed Airplanes

    NASA Technical Reports Server (NTRS)

    Vandam, C. P.; Roskam, J.

    1983-01-01

    Nonplanar wing tip mounted lifting surfaces reduce lift induced drag substantially. Winglets, which are small, nearly vertical, winglike surfaces, are an example of these devices. To achieve reduction in lift induced drag, winglets produce significant side forces. Consequently, these surfaces can seriously affect airplane lateral directional aerodynamic characteristics. Therefore, the effects of nonplanar wing tip mounted surfaces on the lateral directional stability and control of low speed general aviation airplanes were studied. The study consists of a theoretical and an experimental, in flight investigation. The experimental investigation involves flight tests of winglets on an agricultural airplane. Results of these tests demonstrate the significant influence of winglets on airplane lateral directional aerodynamic characteristics. It is shown that good correlations exist between experimental data and theoretically predicted results. In addition, a lifting surface method was used to perform a parametric study of the effects of various winglet parameters on lateral directional stability derivatives of general aviation type wings.

  1. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    NASA Astrophysics Data System (ADS)

    Kowalski, Andrew S.

    2017-07-01

    The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface). This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example) but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux-gradient relationships (eddy diffusivities) requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube - with vapour transport into an overlying, horizontal airstream - was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  2. Mirrors, Mirrors on the Wall...The Ubiquitous Multiple Reflection Error

    ERIC Educational Resources Information Center

    Lawson, Rebecca

    2012-01-01

    Participants decided when somebody, Janine, could see their face in a horizontal row of adjacent mirrors mounted flat on the same wall. They saw real mirrors and a shop-dummy representing Janine. Such coplanar mirrors reflect different, non-overlapping areas of a scene. However, almost everybody made an unexpected error: they claimed that Janine…

  3. Self-contained instrument for measuring subterranean tunnel wall deflection

    DOEpatents

    Rasmussen, Donald Edgar; Hof, Jr., Peter John

    1978-01-01

    The deflection of a subterranean tunnel is measured with a rod-like, self-contained instrument that is adapted to be inserted into a radially extending bore of the tunnel adjacent an end of the tunnel where the tunnel is being dug. One end of the instrument is anchored at the end of the bore remote from the tunnel wall, while the other end of the intrument is anchored adjacent the end of the wall in proximity to the tunnel wall. The two ends of the instrument are linearly displaceable relative to each other; the displacement is measured by a transducer means mounted on the instrument. Included in the instrument is a data storage means including a paper tape recorder periodically responsive to a parallel binary signal indicative of the measured displacement.

  4. Theoretical prediction of gold vein location in deposits originated by a wall magma intrusion

    NASA Astrophysics Data System (ADS)

    Martin, Pablo; Maass-Artigas, Fernando; Cortés-Vega, Luis

    2016-05-01

    The isotherm time-evolution resulting from the intrusion of a hot dike in a cold rock is analized considering the general case of nonvertical walls. This is applied to the theoretical prediction of the gold veins location due to isothermal evolution. As in previous treatments earth surface effects are considered and the gold veins are determined by the envelope of the isotherms. The locations of the gold veins in the Callao mines of Venezuela are now well predicted. The new treatment is now more elaborated and complex that in the case of vertical walls, performed in previous papers, but it is more adequated to the real cases as the one in El Callao, where the wall is not vertical.

  5. Porins in the Cell Wall of Mycobacteria

    NASA Astrophysics Data System (ADS)

    Trias, Joaquim; Jarlier, Vincent; Benz, Roland

    1992-11-01

    The cell wall of mycobacteria is an efficient permeability barrier that makes mycobacteria naturally resistant to most antibiotics. Liposome swelling assays and planar bilayer experiments were used to investigate the diffusion process of hydrophilic molecules through the cell wall of Mycobacterium chelonae and identify the main hydrophilic pathway. A 59-kilodalton cell wall protein formed a water-filled channel with a diameter of 2.2 nanometers and an average single-channel conductance equal to 2.7 nanosiemens in 1 M potassium chloride. These results suggest that porins can be found in the cell wall of a Gram-positive bacterium. A better knowledge of the hydrophilic pathways should help in the design of more effective antimycobacterial agents.

  6. Glass Membrane For Controlled Diffusion Of Gases

    DOEpatents

    Shelby, James E.; Kenyon, Brian E.

    2001-05-15

    A glass structure for controlled permeability of gases includes a glass vessel. The glass vessel has walls and a hollow center for receiving a gas. The glass vessel contains a metal oxide dopant formed with at least one metal selected from the group consisting of transition metals and rare earth metals for controlling diffusion of the gas through the walls of the glass vessel. The vessel releases the gas through its walls upon exposure to a radiation source.

  7. Modeling and simulation of Cu diffusion and drift in porous CMOS backend dielectrics

    NASA Astrophysics Data System (ADS)

    Ali, R.; Fan, Y.; King, S.; Orlowski, M.

    2018-06-01

    With the advent of porous dielectrics, Cu drift-diffusion reliability issues in CMOS backend have only been exacerbated. In this regard, a modeling and simulation study of Cu atom/ion drift-diffusion in porous dielectrics is presented to assess the backend reliability and to explore conditions for a reliable Resistive Random Access Memory (RRAM) operation. The numerical computation, using elementary jump frequencies for a random walk in 2D and 3D, is based on an extended adjacency tensor concept. It is shown that Cu diffusion and drift transport are affected as much by the level of porosity as by the pore morphology. Allowance is made for different rates of Cu dissolution into the dielectric and for Cu absorption and transport at and on the inner walls of the pores. Most of the complex phenomena of the drift-diffusion transport in porous media can be understood in terms of local lateral and vertical gradients and the degree of their perturbation caused by the presence of pores in the transport domain. The impact of pore morphology, related to the concept of tortuosity, is discussed in terms of "channeling" and "trapping" effects. The simulations are calibrated to experimental results of porous SiCOH layers of 25 nm thickness, sandwiched between Cu and Pt(W) electrodes with experimental porosity levels of 0%, 8%, 12%, and 25%. We find that porous SICOH is more immune to Cu+ drift at 300 K than non-porous SICOH.

  8. Analysis of adjusting effects of mounting force on frequency conversion of mounted nonlinear optics.

    PubMed

    Su, Ruifeng; Liu, Haitao; Liang, Yingchun; Lu, Lihua

    2014-01-10

    Motivated by the need to increase the second harmonic generation (SHG) efficiency of nonlinear optics with large apertures, a novel mounting configuration with active adjusting function on the SHG efficiency is proposed and mechanically and optically studied. The adjusting effects of the mounting force on the distortion and stress are analyzed by the finite element methods (FEM), as well as the contribution of the distortion and stress to the change in phase mismatch, and the SHG efficiency are theoretically stated. Further on, the SHG efficiency is calculated as a function of the mounting force. The changing trends of the distortion, stress, and the SHG efficiency with the varying mounting force are obtained, and the optimal ones are figured out. Moreover, the mechanism of the occurrence of the optimal values is studied and the adjusting strategy is put forward. Numerical results show the robust adjustment of the mounting force, as well as the effectiveness of the mounting configuration, in increasing the SHG efficiency.

  9. Effects of lava-dome emplacement on the Mount St. Helens crater glacier

    NASA Astrophysics Data System (ADS)

    Walder, J. S.; Schilling, S. P.; Denlinger, R. P.; Vallance, J. W.

    2004-12-01

    Since the end of the 1981-1986 episode of lava-dome growth at Mount St. Helens, an unusual glacier has grown rapidly within the crater of the volcano. The glacier, which is fed primarily by avalanching from the crater walls, contains about 30% rock debris by volume, has a maximum thickness of about 220 m and a volume of about 120 million cubic m, and forms a crescent that wraps around the old lava dome on both east and west sides. The new (October 2004) lava dome in the south of the crater began to grow centered roughly on the contact between the old lava dome and the glacier, in the process uplifting both ice and old dome rock. As the new dome is spreading to the south, the adjacent glacier is bulging upward. Firn layers on the outer flank of the glacier bulge have been warped upward almost vertically. In contrast, ice adjacent to the new dome has been thoroughly fractured. The overall style of deformation is reminiscent of that associated with salt-dome intrusion. Drawing an analogy to sand-box experiments, we suggest that the glacier is being deformed by high-angle reverse faults propagating upward from depth. Comparison of Lidar images of the glacier from September 2003 and October 2004 reveals not only the volcanogenic bulge but also elevated domains associated with the passage of kinematic waves, which are caused by glacier-mass-balance perturbations and have nothing to do with volcanic activity. As of 25 October 2004, growth of the new lava dome has had negligible hydrological consequences. Ice-surface cauldrons are common consequences of intense melting caused by either subglacial eruptions (as in Iceland) or subglacial venting of hot gases (as presently taking place at Mount Spurr, Alaska). However, there has been a notable absence of ice-surface cauldrons in the Mount St. Helens crater glacier, aside from a short-lived pond formed where the 1 October eruption pierced the glacier. We suggest that heat transfer to the glacier base is inefficient because

  10. Stable mirror mount

    DOEpatents

    Cutburth, Ronald W.

    1990-01-01

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and a device for simultaneously locking the post assembly and the key assembly in a fixed position.

  11. Stable mirror mount

    DOEpatents

    Cutburth, R.W.

    1983-11-04

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and means for simultaneously locking said post assembly and said key assembly in a fixed position.

  12. Air-bridge and Vertical CNT Switches for High Performance Switching Applications

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Wong, Eric W.; Epp, Larry; Bronikowski, Michael J.; Hunt, BBrian D.

    2006-01-01

    Carbon nanotubes are attractive for switching applications since electrostatically-actuated CNT switches have low actuation voltages and power requirements, while allowing GHz switching speeds that stem from the inherently high elastic modulus and low mass of the CNT.Our first NEM structure, the air-bridge switch, consists of suspended single-walled nanotubes (SWNTs) that lie above a sputtered Nb base electrode, where contact to the CNTs is made using evaporated Au/Ti. Electrical measurements of these air-bridge devices show well-defined ON and OFF states as a dc bias of a few volts is applied between the CNT and the Nb-base electrode. The CNT air-bridge switches were measured to have switching times down to a few nanoseconds. Our second NEM structure, the vertical CNT switch, consists of nanotubes grown perpendicular to the substrate. Vertical multi-walled nanotubes (MWNTs) are grown directly on a heavily doped Si substrate, from 200 - 300 nm wide, approximately 1 micrometer deep nano-pockets, with Nb metal electrodes to result in the formation of a vertical single-pole-double-throw switch architecture.

  13. Turbulent flow separation in three-dimensional asymmetric diffusers

    NASA Astrophysics Data System (ADS)

    Jeyapaul, Elbert

    2011-12-01

    Turbulent three-dimensional flow separation is more complicated than 2-D. The physics of the flow is not well understood. Turbulent flow separation is nearly independent of the Reynolds number, and separation in 3-D occurs at singular points and along convergence lines emanating from these points. Most of the engineering turbulence research is driven by the need to gain knowledge of the flow field that can be used to improve modeling predictions. This work is motivated by the need for a detailed study of 3-D separation in asymmetric diffusers, to understand the separation phenomena using eddy-resolving simulation methods, assess the predictability of existing RANS turbulence models and propose modeling improvements. The Cherry diffuser has been used as a benchmark. All existing linear eddy-viscosity RANS models k--o SST,k--epsilon and v2- f fail in predicting such flows, predicting separation on the wrong side. The geometry has a doubly-sloped wall, with the other two walls orthogonal to each other and aligned with the diffuser inlet giving the diffuser an asymmetry. The top and side flare angles are different and this gives rise to different pressure gradient in each transverse direction. Eddyresolving simulations using the Scale adaptive simulation (SAS) and Large Eddy Simulation (LES) method have been used to predict separation in benchmark diffuser and validated. A series of diffusers with the same configuration have been generated, each having the same streamwise pressure gradient and parametrized only by the inlet aspect ratio. The RANS models were put to test and the flow physics explored using SAS-generated flow field. The RANS model indicate a transition in separation surface from top sloped wall to the side sloped wall at an inlet aspect ratio much lower than observed in LES results. This over-sensitivity of RANS models to transverse pressure gradients is due to lack of anisotropy in the linear Reynolds stress formulation. The complexity of the flow

  14. Evaluation of interaction properties of geosynthetics in cohesive soils : LTRC reinforced-soil test wall.

    DOT National Transportation Integrated Search

    2004-01-01

    This report presents the construction and performance evaluation of the LTRC reinforced-soil test wall. The 20 ft. high, 160 ft. long wall was constructed using low quality backfill. Its vertical front facing was constructed with modular blocks. It c...

  15. Nozzle and shroud assembly mounting structure

    DOEpatents

    Faulder, Leslie J.; Frey, deceased, Gary A.; Nielsen, Engward W.; Ridler, Kenneth J.

    1997-01-01

    The present nozzle and shroud assembly mounting structure configuration increases component life and reduces maintenance by reducing internal stress between the mounting structure having a preestablished rate of thermal expansion and the nozzle and shroud assembly having a preestablished rate of thermal expansion being less than that of the mounting structure. The mounting structure includes an outer sealing portion forming a cradling member in which an annular ring member is slidably positioned. The mounting structure further includes an inner mounting portion to which a hooked end of the nozzle and shroud assembly is attached. As the inner mounting portion expands and contracts, the nozzle and shroud assembly slidably moves within the outer sealing portion.

  16. Nozzle and shroud assembly mounting structure

    DOEpatents

    Faulder, L.J.; Frey, G.A.; Nielsen, E.W.; Ridler, K.J.

    1997-08-05

    The present nozzle and shroud assembly mounting structure configuration increases component life and reduces maintenance by reducing internal stress between the mounting structure having a preestablished rate of thermal expansion and the nozzle and shroud assembly having a preestablished rate of thermal expansion being less than that of the mounting structure. The mounting structure includes an outer sealing portion forming a cradling member in which an annular ring member is slidably positioned. The mounting structure further includes an inner mounting portion to which a hooked end of the nozzle and shroud assembly is attached. As the inner mounting portion expands and contracts, the nozzle and shroud assembly slidably moves within the outer sealing portion. 3 figs.

  17. Implementing Green Walls in Schools.

    PubMed

    McCullough, Michael B; Martin, Michael D; Sajady, Mollika A

    2018-01-01

    Numerous studies in applied pedagogical design have shown that, at all educational levels, direct exposure to the natural environment can enhance learning by improving student attention and behaviors. Implementing green walls-a "vertical garden," or "living wall" interior wall that typically includes greenery, a growing medium (soil or substrate) and a water delivery system-provides environmental health benefits, but also provides a practical application within classrooms for minimizing directed attention fatigue in students by connecting them to "outdoor nature" within the indoor environment. Hands-on "project-based" learning is another pedagogical strategy that has proved to be effective across the spectrum of educational levels and across subject areas. Green walls have the potential to inspire critical thinking through a combination of project-based learning strategies and environmental education. The authors have outlined a curriculum involving the implementation of an indoor living wall system within a classroom-learning environment, incorporating project-based learning modules that interact with the wall. In conjunction with the passive health benefits of a green wall, project-based curriculum models can connect students interactively with indoor nature and have the potential to inspire real-world thinking related to science, technology, engineering, art, and mathematics fields within the indoor learning environment. Through a combination of these passive and interactive modes, students are connected to nature in the indoor environment regardless of weather conditions outdoors. Future research direction could include post-construction studies of the effectiveness of project-based curricula related to living walls, and the long-term impacts of implementing green walls in classrooms on school achievement and student behaviors.

  18. Putting atomic diffusion theory of magnetic ApBp stars to the test: evaluation of the predictions of time-dependent diffusion models

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Ryabchikova, T. A.

    2018-02-01

    A series of recent theoretical atomic diffusion studies has address the challenging problem of predicting inhomogeneous vertical and horizontal chemical element distributions in the atmospheres of magnetic ApBp stars. Here we critically assess the most sophisticated of such diffusion models - based on a time-dependent treatment of the atomic diffusion in a magnetized stellar atmosphere - by direct comparison with observations as well by testing the widely used surface mapping tools with the spectral line profiles predicted by this theory. We show that the mean abundances of Fe and Cr are grossly underestimated by the time-dependent theoretical diffusion model, with discrepancies reaching a factor of 1000 for Cr. We also demonstrate that Doppler imaging inversion codes, based either on modelling of individual metal lines or line-averaged profiles simulated according to theoretical three-dimensional abundance distribution, are able to reconstruct correct horizontal chemical spot maps despite ignoring the vertical abundance variation. These numerical experiments justify a direct comparison of the empirical two-dimensional Doppler maps with theoretical diffusion calculations. This comparison is generally unfavourable for the current diffusion theory, as very few chemical elements are observed to form overabundance rings in the horizontal field regions as predicted by the theory and there are numerous examples of element accumulations in the vicinity of radial field zones, which cannot be explained by diffusion calculations.

  19. Feasibility of an endotracheal tube-mounted camera for percutaneous dilatational tracheostomy.

    PubMed

    Grensemann, J; Eichler, L; Hopf, S; Jarczak, D; Simon, M; Kluge, S

    2017-07-01

    Percutaneous dilatational tracheostomy (PDT) in critically ill patients is often led by optical guidance with a bronchoscope. This is not without its disadvantages. Therefore, we aimed to study the feasibility of a recently introduced endotracheal tube-mounted camera (VivaSight™-SL, ET View, Misgav, Israel) in the guidance of PDT. We studied 10 critically ill patients who received PDT with a VivaSight-SL tube that was inserted prior to tracheostomy for optical guidance. Visualization of the tracheal structures (i.e., identification and monitoring of the thyroid, cricoid, and tracheal cartilage and the posterior wall) and the quality of ventilation (before puncture and during the tracheostomy) were rated on four-point Likert scales. Respiratory variables were recorded, and blood gases were sampled before the interventions, before the puncture and before the insertion of the tracheal cannula. Visualization of the tracheal landmarks was rated as 'very good' or 'good' in all but one case. Monitoring during the puncture and dilatation was also rated as 'very good' or 'good' in all but one. In the cases that were rated 'difficult', the visualization and monitoring of the posterior wall of the trachea were the main concerns. No changes in the respiratory variables or blood gases occurred between the puncture and the insertion of the tracheal cannula. Percutaneous dilatational tracheostomy with optical guidance from a tube-mounted camera is feasible. Further studies comparing the camera tube with bronchoscopy as the standard approach should be performed. © 2017 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  20. In situ diffusion experiment in granite: Phase I

    NASA Astrophysics Data System (ADS)

    Vilks, P.; Cramer, J. J.; Jensen, M.; Miller, N. H.; Miller, H. G.; Stanchell, F. W.

    2003-03-01

    A program of in situ experiments, supported by laboratory studies, was initiated to study diffusion in sparsely fractured rock (SFR), with a goal of developing an understanding of diffusion processes within intact crystalline rock. Phase I of the in situ diffusion experiment was started in 1996, with the purpose of developing a methodology for estimating diffusion parameter values. Four in situ diffusion experiments, using a conservative iodide tracer, were performed in highly stressed SFR at a depth of 450 m in the Underground Research Laboratory (URL). The experiments, performed over a 2 year period, yielded rock permeability estimates of 2×10 -21 m 2 and effective diffusion coefficients varying from 2.1×10 -14 to 1.9×10 -13 m 2/s, which were estimated using the MOTIF code. The in situ diffusion profiles reveal a characteristic "dog leg" pattern, with iodide concentrations decreasing rapidly within a centimeter of the open borehole wall. It is hypothesized that this is an artifact of local stress redistribution and creation of a zone of increased constrictivity close to the borehole wall. A comparison of estimated in situ and laboratory diffusivities and permeabilities provides evidence that the physical properties of rock samples removed from high-stress regimes change. As a result of the lessons learnt during Phase I, a Phase II in situ program has been initiated to improve our general understanding of diffusion in SFR.

  1. Mounting for ceramic scroll

    DOEpatents

    Petty, Jack D.

    1993-01-01

    A mounting for a ceramic scroll on a metal engine block of a gas turbine engine includes a first ceramic ring and a pair of cross key connections between the first ceramic ring, the ceramic scroll, and the engine block. The cross key connections support the scroll on the engine block independent of relative radial thermal growth and for bodily movement toward an annular mounting shoulder on the engine. The scroll has an uninterrupted annular shoulder facing the mounting shoulder on the engine block. A second ceramic ring is captured between mounting shoulder and the uninterrupted shoulder on the scroll when the latter is bodily shifted toward the mouting shoulder to define a gas seal between the scroll and the engine block.

  2. Solar panel truss mounting systems and methods

    DOEpatents

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2015-10-20

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  3. Solar panel truss mounting systems and methods

    DOEpatents

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2016-06-28

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  4. Solar panel truss mounting systems and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the basemore » rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.« less

  5. Reaction-diffusion basis of retroviral infectivity

    NASA Astrophysics Data System (ADS)

    Sadiq, S. Kashif

    2016-11-01

    Retrovirus particle (virion) infectivity requires diffusion and clustering of multiple transmembrane envelope proteins (Env3) on the virion exterior, yet is triggered by protease-dependent degradation of a partially occluding, membrane-bound Gag polyprotein lattice on the virion interior. The physical mechanism underlying such coupling is unclear and only indirectly accessible via experiment. Modelling stands to provide insight but the required spatio-temporal range far exceeds current accessibility by all-atom or even coarse-grained molecular dynamics simulations. Nor do such approaches account for chemical reactions, while conversely, reaction kinetics approaches handle neither diffusion nor clustering. Here, a recently developed multiscale approach is considered that applies an ultra-coarse-graining scheme to treat entire proteins at near-single particle resolution, but which also couples chemical reactions with diffusion and interactions. A model is developed of Env3 molecules embedded in a truncated Gag lattice composed of membrane-bound matrix proteins linked to capsid subunits, with freely diffusing protease molecules. Simulations suggest that in the presence of Gag but in the absence of lateral lattice-forming interactions, Env3 diffuses comparably to Gag-absent Env3. Initial immobility of Env3 is conferred through lateral caging by matrix trimers vertically coupled to the underlying hexameric capsid layer. Gag cleavage by protease vertically decouples the matrix and capsid layers, induces both matrix and Env3 diffusion, and permits Env3 clustering. Spreading across the entire membrane surface reduces crowding, in turn, enhancing the effect and promoting infectivity. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  6. EM Diffusion for a Time-Domain Airborne EM System

    NASA Astrophysics Data System (ADS)

    Yin, C.; Qiu, C.; Liu, Y.; Cai, J.

    2014-12-01

    Visualization of EM diffusion for an airborne EM (AEM) system is important for understanding the transient procedure of EM diffusion. The current distribution and diffusion features also provide effective means to evaluate EM footprint, depth of exploration and further help AEM system design and data interpretation. Most previous studies on EM diffusion (or "smoke ring" effect) are based on the static presentation of EM field, where the dynamic features of EM diffusion were not visible. For visualizing the dynamic feature of EM diffusion, we first calculate in this paper the frequency-domain EM field by downward continuation of the EM field at the EM receiver to the deep earth. After that, we transform the results to time-domain via a Fourier transform. We take a homogeneous half-space and a two-layered earth induced by a step pulse to calculate the EM fields and display the EM diffusion in the earth as 3D animated vectors or time-varying contours. The "smoke ring" effect of EM diffusion, dominated by the resistivity distribution of the earth, is clearly observed. The numerical results for an HCP (vertical magnetic dipole) and a VCX (horizontal magnetic dipole) transmitting coil above a homogeneous half-space of 100 ohm-m are shown in Fig.1. We display as example only the distribution of EM field inside the earth for the diffusion time of 0.05ms. The detailed EM diffusion will be shown in our future presentation. From the numerical experiments for different models, we find that 1) the current for either an HCP or a VCX transmitting dipole propagates downward and outward with time, becoming wider and more diffuse, forming a "smoke ring"; 2) for a VCX transmitter, the underground current forms two ellipses, corresponding to the two polarities of the magnetic flux of a horizontal magnetic dipole, injecting into or ejected from the earth; 3) for a HCP transmitter, however, the underground current forms only one circle, corresponding to the polarity of the magnetic flux

  7. Algebraic motion of vertically displacing plasmas

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Amitava; Pfefferle, David; Hirvijoki, Eero

    2017-10-01

    The vertical displacement of tokamak plasmas is modelled during the non-linear phase by a free-moving current-carrying rod coupled to a set of fixed conducting wires and a cylindrical conducting shell. The models capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the vacuum vessel. The plasma is assumed not to vary during the VDE such that it behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented from coming in contact with the wall due to steep effective potential barriers by the eddy currents, and will hence oscillate at Alfvénic frequencies about a given force-free position. In addition to damping oscillations, resistivity allows for the column to drift towards the vessel on slow flux penetration timescales. The initial exponential motion of the plasma, i.e. the resistive vertical instability, is succeeded by a non-linear sinking behaviour, that is shown analytically to be algebraic and decelerative. The acceleration of the plasma column often observed in experiments is thus conjectured to originate from an early sharing of toroidal current between the core, the halo plasma and the wall or from the thermal quench dynamics precipitating loss of plasma current

  8. Diffusion and localization of hematoporphyrin derivative in the normal bladder wall of a pig and a rat after local administration

    NASA Astrophysics Data System (ADS)

    Bisson, Jean F.; Notter, Dominique; Labrude, P.; Vigneron, C.; Guillemin, Francois H.

    1996-04-01

    Photochemotherapy using I.V. administered porphyrin photosensitizers has been used to treat superficial bladder cancers. In order to avoid cutaneous photosensitivity, lasting 6 - 8 weeks, we instilled the photosensitizer intravesically. After first studying the diffusion and localization of HpD in aqueous phase (5 mg/ml) in vitro through the bladder wall of pig by spectrofluorimetry ((lambda) ex equals 392 nm and (lambda) em equals 612.8 nm) and fluorescence microscopy, we determined the biodistribution of HpD in vivo in the rat bladder wall, 2 and 4 hours after bladder instillation of 0.4 ml of HpD: (1) the controls show only a weak autofluorescence restricted to the urothelium after 2 hours (24 micrometers plus or minus 5 micrometers, n equals 3) as well as after 4 hours (29.5 micrometers plus or minus 5 micrometers, n equals 3); (2) on the test preparation a higher fluorescence was observed: after 2 hours, HpD was localized in the urothelium and a very small part of the chorion (55 micrometers plus or minus 9 micrometers, n equals 9) whereas after 4 hours, it penetrated almost completely in the bladder wall (960 micrometers plus or minus 118 micrometers, n equals 9). In conclusion, a bladder instillation of 2 hours seems to be the optimal time of application in the rat since superficial bladder cancers, like carcinoma in situ, particularly occur in the urothelium (stage 0, pTa) or in the chorion (stage 1, pT1).

  9. Geologic map and geothermal assessment of the Mount Adams volcanic field, Cascade Range of southern Washington

    USGS Publications Warehouse

    Hildreth, Wes; Fierstein, Judy

    1990-01-01

    More than 60 Quaternary vents make up the basalt-to-rhyodacite Mount Adams volcanic field and have erupted scoriae and lavas with a total volume of >370 km3. The Mount Adams andesite-dacite stratocone itself is a compound edifice that includes the high cone above 2300 m (20-10 ka), remnants of at least two earlier andesite-dacite cones as old as 0.5 Ma, and 7 Holocene flank vents. Four other Holocene vents and tens of vents contemporaneous with Mount Adams are peripheral to the stratocone. All of these vents, including Mount Adams, lie within a N-S eruptive zone 55 km long and 5 km wide. The age of all known Mount Adams silicic products (>100 ka) and the heterogeneous mafic compositions of the summit cone and Holocene lavas make it unlikely that the stratocone is underlain by an upper-crustal reservoir. Rather, the stratocone at the focus is built up of fractionated hybrid magmas that rise from MASH zones (melting-assimilation-storage-homogenization). The pyroclastic core of breccia and scoria at Mount Adams has undergone acid-sulfate leaching and deposition of alunite, kaolinite, silica, gypsum, sulfur, and Fe-oxides and has been a constant source of avalanches and debris flows. Most heat supplied from depth to the fumarolically altered core is dispersed by the high precipitation rate and high permeability of the rubbly lava flows so that a hydrothermal convection pattern is not maintained. Summit-restricted fumaroles are weak and diffuse.

  10. Vibration isolation mounting system

    NASA Technical Reports Server (NTRS)

    Carter, Sam D. (Inventor); Bastin, Paul H. (Inventor)

    1995-01-01

    A system is disclosed for mounting a vibration producing device onto a spacecraft structure and also for isolating the vibration forces thereof from the structure. The system includes a mount on which the device is securely mounted and inner and outer rings. The rings and mount are concentrically positioned. The system includes a base (secured to the structure) and a set of links which are interconnected by a set of torsion bars which allow and resist relative rotational movement therebetween. The set of links are also rotatably connected to a set of brackets which are rigidly connected to the outer ring. Damped leaf springs interconnect the inner and outer rings and the mount allow relative translational movement therebetween in X and Y directions. The links, brackets and base are interconnected and configured so that they allow and resist translational movement of the device in the Z direction so that in combination with the springs they provide absorption of vibrational energy produced by the device in all three dimensions while providing rotational stiffness about all three axes to prevent undesired rotational motions.

  11. Laminar Premixed and Diffusion Flames (Ground-Based Study)

    NASA Technical Reports Server (NTRS)

    Dai, Z.; El-Leathy, A. M.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    Ground-based studies of soot processes in laminar flames proceeded in two phases, considering laminar premixed flames and laminar diffusion flames, in turn. The test arrangement for laminar premixed flames involved round flat flame burners directed vertically upward at atmospheric pressure. The test arrangement for laminar jet diffusion flames involved a round fuel port directed vertically upward with various hydrocarbon fuels burning at atmospheric pressure in air. In both cases, coflow was used to prevent flame oscillations and measurements were limited to the flame axes. The measurements were sufficient to resolve soot nucleation, growth and oxidation rates, as well as the properties of the environment needed to evaluate mechanisms of these processes. The experimental methods used were also designed to maintain capabilities for experimental methods used in corresponding space-based experiments. This section of the report will be limited to consideration of flame structure for both premixed and diffusion flames.

  12. Eruption-triggered avalanche, flood, and lahar at Mount St. Helens - Effects of winter snowpack

    USGS Publications Warehouse

    Waitt, R.B.; Pierson, T.C.; MacLeod, N.S.; Janda, R.J.; Voight, B.; Holcomb, R.T.

    1983-01-01

    An explosive eruption of Mount St. Helens on 19 March 1982 had substantial impact beyond the vent because hot eruption products interacted with a thick snowpack. A blast of hot pumice, dome rocks, and gas dislodged crater-wall snow that avalanched through the crater and down the north flank. Snow in the crater swiftly melted to form a transient lake, from which a destructive flood and lahar swept down the north flank and the North Fork Toutle River.

  13. Modeling of near-wall turbulence

    NASA Technical Reports Server (NTRS)

    Shih, T. H.; Mansour, N. N.

    1990-01-01

    An improved k-epsilon model and a second order closure model is presented for low Reynolds number turbulence near a wall. For the k-epsilon model, a modified form of the eddy viscosity having correct asymptotic near wall behavior is suggested, and a model for the pressure diffusion term in the turbulent kinetic energy equation is proposed. For the second order closure model, the existing models are modified for the Reynolds stress equations to have proper near wall behavior. A dissipation rate equation for the turbulent kinetic energy is also reformulated. The proposed models satisfy realizability and will not produce unphysical behavior. Fully developed channel flows are used for model testing. The calculations are compared with direct numerical simulations. It is shown that the present models, both the k-epsilon model and the second order closure model, perform well in predicting the behavior of the near wall turbulence. Significant improvements over previous models are obtained.

  14. Field Electron Emission Characteristics of Single-Walled Carbon Nanotube on Tungsten Blunt Tip

    NASA Astrophysics Data System (ADS)

    Mousa, Marwan S.; Daradkeh, Samer

    2018-02-01

    Recent investigations that are presented here illustrate the initial results that were obtained from a modified technique for holding the CNT on a W clean blunt tip. Field Electron Emission (FEE) has been investigated for single walled carbon nanotube (SWCNT) mounted on tungsten tip under (~10-8 mbar) vacuum conditions. The measurements recorded presented results showed that the CNT mounted on the W tip could emit electron current of at (0.7 V/μm) and reach up to (24 μA) of emission current at normal emission conditions. Such electron field emission tip was fabricated by electrolytically etching the high purity tungsten wire of (0.1 mm) in diameter in NaOH of (0.1) Molar solution, then mounting the single-walled carbon nanotube on the tip to be nearest to the tin oxide-coated and phosphorus glass anode. Such process was possible to be carried out under the microscope. A field electron microscope with a tip-screen separation at (~10mm) was used to characterize the electron emitter. The system was evacuated to an ultra-high vacuum level obtained after initial backing the system at up to (~180 °C) overnight. The emission characteristic has been investigated employing the I-V characteristics with Fowler-Nordheim plots and recording the emission images

  15. A scalable diffraction-based scanning 3D colour video display as demonstrated by using tiled gratings and a vertical diffuser.

    PubMed

    Jia, Jia; Chen, Jhensi; Yao, Jun; Chu, Daping

    2017-03-17

    A high quality 3D display requires a high amount of optical information throughput, which needs an appropriate mechanism to distribute information in space uniformly and efficiently. This study proposes a front-viewing system which is capable of managing the required amount of information efficiently from a high bandwidth source and projecting 3D images with a decent size and a large viewing angle at video rate in full colour. It employs variable gratings to support a high bandwidth distribution. This concept is scalable and the system can be made compact in size. A horizontal parallax only (HPO) proof-of-concept system is demonstrated by projecting holographic images from a digital micro mirror device (DMD) through rotational tiled gratings before they are realised on a vertical diffuser for front-viewing.

  16. A scalable diffraction-based scanning 3D colour video display as demonstrated by using tiled gratings and a vertical diffuser

    PubMed Central

    Jia, Jia; Chen, Jhensi; Yao, Jun; Chu, Daping

    2017-01-01

    A high quality 3D display requires a high amount of optical information throughput, which needs an appropriate mechanism to distribute information in space uniformly and efficiently. This study proposes a front-viewing system which is capable of managing the required amount of information efficiently from a high bandwidth source and projecting 3D images with a decent size and a large viewing angle at video rate in full colour. It employs variable gratings to support a high bandwidth distribution. This concept is scalable and the system can be made compact in size. A horizontal parallax only (HPO) proof-of-concept system is demonstrated by projecting holographic images from a digital micro mirror device (DMD) through rotational tiled gratings before they are realised on a vertical diffuser for front-viewing. PMID:28304371

  17. The head-mounted microscope.

    PubMed

    Chen, Ting; Dailey, Seth H; Naze, Sawyer A; Jiang, Jack J

    2012-04-01

    Microsurgical equipment has greatly advanced since the inception of the microscope into the operating room. These advancements have allowed for superior surgical precision and better post-operative results. This study focuses on the use of the Leica HM500 head-mounted microscope for the operating phonosurgeon. The head-mounted microscope has an optical zoom from 2× to 9× and provides a working distance from 300 mm to 700 mm. The headpiece, with its articulated eyepieces, adjusts easily to head shape and circumference, and offers a focus function, which is either automatic or manually controlled. We performed five microlaryngoscopic operations utilizing the head-mounted microscope with successful results. By creating a more ergonomically favorable operating posture, a surgeon may be able to obtain greater precision and success in phonomicrosurgery. Phonomicrosurgery requires the precise manipulation of long-handled cantilevered instruments through the narrow bore of a laryngoscope. The head-mounted microscope shortens the working distance compared with a stand microscope, thereby increasing arm stability, which may improve surgical precision. Also, the head-mounted design permits flexibility in head position, enabling operator comfort, and delaying musculoskeletal fatigue. A head-mounted microscope decreases the working distance and provides better ergonomics in laryngoscopic microsurgery. These advances provide the potential to promote precision in phonomicrosurgery. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  18. Vertical bloch line memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R. (Inventor); Stadler, Henry L. (Inventor); Wu, Jiin-chuan (Inventor)

    1995-01-01

    A new read gate design for the vertical Bloch line (VBL) memory is disclosed which offers larger operating margin than the existing read gate designs. In the existing read gate designs, a current is applied to all the stripes. The stripes that contain a VBL pair are chopped, while the stripes that do not contain a VBL pair are not chopped. The information is then detected by inspecting the presence or absence of the bubble. The margin of the chopping current amplitude is very small, and sometimes non-existent. A new method of reading Vertical Bloch Line memory is also disclosed. Instead of using the wall chirality to separate the two binary states, the spatial deflection of the stripe head is used. Also disclosed herein is a compact memory which uses vertical Bloch line (VBL) memory technology for providing data storage. A three-dimensional arrangement in the form of stacks of VBL memory layers is used to achieve high volumetric storage density. High data transfer rate is achieved by operating all the layers in parallel. Using Hall effect sensing, and optical sensing via the Faraday effect to access the data from within the three-dimensional packages, an even higher data transfer rate can be achieved due to parallel operation within each layer.

  19. Effects of Wind and Freshwater on the Atlantic Meridional Overturning Circulation: Role of Sea Ice and Vertical Diffusion

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Yang, Haijun; Dai, Haijin; Wang, Yuxing; Li, Qing

    2015-04-01

    Effects of wind and fresh water on the Atlantic meridional overturning circulation (AMOC) are investigated in a fully coupled climate model (CESM1.0). The AMOC can change significantly when perturbing either the wind stress or fresh water flux in the northern North Atlantic. This work pays special attention on the wind stress effect. Our model results show that the wind forcing is a crucial element in maintaining the AMOC. When the wind-stress is reduced, the vertical convection and diffusion are weakened immediately, triggering a salt deficit in the northern North Atlantic that prevents the deep water formation there. The salinity advection from the south, however, plays a contrary role to salt the upper ocean. As the AMOC weakens, the sea ice expends southward and melts, freshening the upper ocean that weakens the AMOC further. There is a positive feedback between the sea ice melting and AMOC strength, which eventually determines the AMOC strength in the reduced wind world.

  20. Vertical visual features have a strong influence on cuttlefish camouflage.

    PubMed

    Ulmer, K M; Buresch, K C; Kossodo, M M; Mäthger, L M; Siemann, L A; Hanlon, R T

    2013-04-01

    Cuttlefish and other cephalopods use visual cues from their surroundings to adaptively change their body pattern for camouflage. Numerous previous experiments have demonstrated the influence of two-dimensional (2D) substrates (e.g., sand and gravel habitats) on camouflage, yet many marine habitats have varied three-dimensional (3D) structures among which cuttlefish camouflage from predators, including benthic predators that view cuttlefish horizontally against such 3D backgrounds. We conducted laboratory experiments, using Sepia officinalis, to test the relative influence of horizontal versus vertical visual cues on cuttlefish camouflage: 2D patterns on benthic substrates were tested versus 2D wall patterns and 3D objects with patterns. Specifically, we investigated the influence of (i) quantity and (ii) placement of high-contrast elements on a 3D object or a 2D wall, as well as (iii) the diameter and (iv) number of 3D objects with high-contrast elements on cuttlefish body pattern expression. Additionally, we tested the influence of high-contrast visual stimuli covering the entire 2D benthic substrate versus the entire 2D wall. In all experiments, visual cues presented in the vertical plane evoked the strongest body pattern response in cuttlefish. These experiments support field observations that, in some marine habitats, cuttlefish will respond to vertically oriented background features even when the preponderance of visual information in their field of view seems to be from the 2D surrounding substrate. Such choices highlight the selective decision-making that occurs in cephalopods with their adaptive camouflage capability.

  1. Active thrusting offshore Mount Lebanon: Source of the tsunamigenic A.D. 551 Beirut-Tripoli earthquake

    NASA Astrophysics Data System (ADS)

    Elias, Ata; Tapponnier, Paul; Singh, Satish C.; King, Geoffrey C. P.; Briais, Anne; Daëron, Mathieu; Carton, Helene; Sursock, Alexander; Jacques, Eric; Jomaa, Rachid; Klinger, Yann

    2007-08-01

    On 9 July A.D. 551, a large earthquake, followed by a tsunami, destroyed most of the coastal cities of Phoenicia (modern-day Lebanon). Tripoli is reported to have “drowned,” and Berytus (Beirut) did not recover for nearly 1300 yr afterwards. Geophysical data from the Shalimar survey unveil the source of this event, which may have had a moment magnitude (Mw) of 7.5 and was arguably one of the most devastating historical submarine earthquakes in the eastern Mediterranean: rupture of the offshore, hitherto unknown, ˜100-150-km-long active, east-dipping Mount Lebanon thrust. Deep-towed sonar swaths along the base of prominent bathymetric escarpments reveal fresh, west-facing seismic scarps that cut the sediment-smoothed seafloor. The Mount Lebanon thrust trace comes closest (˜8 km) to the coast between Beirut and Enfeh, where, as 13 14C-calibrated ages indicate, a shoreline-fringing vermetid bench suddenly emerged by ˜80 cm in the sixth century A.D. At Tabarja, the regular vertical separation (˜1 m) of higher fossil benches suggests uplift by three more earthquakes of comparable size since the Holocene sea level reached a maximum ca. 7-6 ka, implying a 1500-1750 yr recurrence time. Unabated thrusting on the Mount Lebanon thrust likely drove the growth of Mount Lebanon since the late Miocene.

  2. Opto-Mechanics of the Constellation-X SXT Mirrors: Challenges in Mounting and Assembling the Mirror Segments

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Zhang, WIlliam W.; Saha, Timo; Lehan, John P.; Mazzarella, James; Lozipone, Lawrence; Hong, Melinda; Byron, Glenn

    2008-01-01

    The Constellation-X Spectroscopy X-Ray Telescopes consists of segmented glass mirrors with an axial length of 200 mm, a width of up to 400 mm, and a thickness of 0.4 mm. To meet the requirement of less than 15 arc-second half-power diameter with the small thickness and relatively large size is a tremendous challenge in opto-mechanics. How shall we limit distortion of the mirrors due to gravity in ground tests, that arises from thermal stress, and that occurs in the process of mounting, affixing and assembling of these mirrors? In this paper, we will describe our current opto-mechanical approach to these problems. We will discuss, in particular, the approach and experiment where the mirrors are mounted vertically by first suspending it at two points.

  3. Surgical Videos with Synchronised Vertical 2-Split Screens Recording the Surgeons' Hand Movement.

    PubMed

    Kaneko, Hiroki; Ra, Eimei; Kawano, Kenichi; Yasukawa, Tsutomu; Takayama, Kei; Iwase, Takeshi; Terasaki, Hiroko

    2015-01-01

    To improve the state-of-the-art teaching system by creating surgical videos with synchronised vertical 2-split screens. An ultra-compact, wide-angle point-of-view camcorder (HX-A1, Panasonic) was mounted on the surgical microscope focusing mostly on the surgeons' hand movements. In combination with the regular surgical videos obtained from the CCD camera in the surgical microscope, synchronised vertical 2-split-screen surgical videos were generated with the video-editing software. Using synchronised vertical 2-split-screen videos, residents of the ophthalmology department could watch and learn how assistant surgeons controlled the eyeball, while the main surgeons performed scleral buckling surgery. In vitrectomy, the synchronised vertical 2-split-screen videos showed the surgeons' hands holding the instruments and moving roughly and boldly, in contrast to the very delicate movements of the vitrectomy instruments inside the eye. Synchronised vertical 2-split-screen surgical videos are beneficial for the education of young surgical trainees when learning surgical skills including the surgeons' hand movements. © 2015 S. Karger AG, Basel.

  4. Spherical mirror mount

    NASA Technical Reports Server (NTRS)

    Meyer, Jay L. (Inventor); Messick, Glenn C. (Inventor); Nardell, Carl A. (Inventor); Hendlin, Martin J. (Inventor)

    2011-01-01

    A spherical mounting assembly for mounting an optical element allows for rotational motion of an optical surface of the optical element only. In that regard, an optical surface of the optical element does not translate in any of the three perpendicular translational axes. More importantly, the assembly provides adjustment that may be independently controlled for each of the three mutually perpendicular rotational axes.

  5. Vertical Carbon Nanotube Device in Nanoporous Templates

    NASA Technical Reports Server (NTRS)

    Sands, Timothy (Inventor); Fisher, Timothy Scott (Inventor); Bashir, Rashid (Inventor); Maschmann, Matthew Ralph (Inventor)

    2014-01-01

    A modified porous anodic alumina template (PAA) containing a thin CNT catalyst layer directly embedded into the pore walls. CNT synthesis using the template selectively catalyzes SWNTs and DWNTs from the embedded catalyst layer to the top PAA surface, creating a vertical CNT channel within the pores. Subsequent processing allows for easy contact metallization and adaptable functionalization of the CNTs and template for a myriad of applications.

  6. [Diffusion and diffusion-osmosis models of the charged macromolecule transfer in barriers of biosystems].

    PubMed

    Varakin, A I; Mazur, V V; Arkhipova, N V; Serianov, Iu V

    2009-01-01

    Mathematical models of the transfer of charged macromolecules have been constructed on the basis of the classical equations of electromigration diffusion of Helmholtz-Smolukhovskii, Goldman, and Goldman-Hodgkin-Katz. It was shown that ion transfer in placental (mimicking lipid-protein barriers) and muscle barriers occurs by different mechanisms. In placental barriers, the electromigration diffusion occurs along lipid-protein channels formed due to the conformational deformation of phospholipid and protein molecules with the coefficients of diffusion D = (2.6-3.6) x 10(-8) cm2/s. The transfer in muscle barriers is due to the migration across charged interfibrillar channels with the negative diffusion activation energy, which is explained by changes in the structure of muscle fibers and expenditures of thermal energy for the extrusion of Cl- from channel walls with the diffusion coefficient D = (6.0-10.0) x 10(-6) cm2/s.

  7. Effect of using guide walls and piers with different geometries on the flow at entrance of a spillway

    NASA Astrophysics Data System (ADS)

    Jahani, Matin; Sarkardeh, Hamed; Jabbari, Ebrahim

    2018-03-01

    In the present paper, the effect of guide wall and pier geometry on the flow pattern of a dam spillway was studied. Different scenarios were numerically simulated to optimize the geometry of the guide walls and piers of the spillway in different hydraulic conditions. The RNG and VOF models were used for turbulence and free surface simulations, respectively. Numerical results were validated with experimental data and good agreement was found with an average relative deviation of less than 10%. Results showed that the vertical inclination of the guide wall and pier was the main affecting factor in the approach flow condition through the spillway. A 44% increase in the vertical inclination of the guide wall resulted in a 43% reduction of the turbulence factor and in a 13% increment of the discharge coefficient of the spillway. By increasing the vertical inclination of the piers of the spillway by 28%, the flow behaviour becomes more uniform and the discharge coefficient increases by as much as 11%. Moreover, the results indicate that increasing the straight length of the guide wall leads to a reduction of the depth-averaged velocity and of the turbulence energy in the approach channel.

  8. Cross diffusion effect on MHD mixed convection flow of nonlinear radiative heat and mass transfer of Casson fluid over a vertical plate

    NASA Astrophysics Data System (ADS)

    Ganesh Kumar, K.; Archana, M.; Gireesha, B. J.; Krishanamurthy, M. R.; Rudraswamy, N. G.

    2018-03-01

    A study on magnetohydrodynamic mixed convection flow of Casson fluid over a vertical plate has been modelled in the presence of Cross diffusion effect and nonlinear thermal radiation. The governing partial differential equations are remodelled into ordinary differential equations by using similarity transformation. The accompanied differential equations are resolved numerically by using Runge-Kutta-Fehlberg forth-fifth order along with shooting method (RKF45 Method). The results of various physical parameters on velocity and temperature profiles are given diagrammatically. The numerical values of the local skin friction coefficient, local Nusselt number and local Sherwood number also are shown in a tabular form. It is found that, effect of Dufour and Soret parameter increases the temperature and concentration component correspondingly.

  9. Applications of a new wall function to turbulent flow computations

    NASA Astrophysics Data System (ADS)

    Chen, Y. S.

    1986-01-01

    A new wall function approach is developed based on a wall law suitable for incompressible turbulent boundary layers under strong adverse pressure gradients. This wall law was derived from a one-dimensional analysis of the turbulent kinetic energy equation with gradient diffusion concept employed in modeling the near-wall shear stress gradient. Numerical testing cases for the present wall functions include turbulent separating flows around an airfoil and turbulent recirculating flows in several confined regions. Improvements on the predictions using the present wall functions are illustrated. For cases of internal recirculating flows, one modification factor for improving the performance of the k-epsilon turbulence model in the flow recirculation regions is also included.

  10. Nozzle wall roughness effects on free-stream noise and transition in the pilot low-disturbance tunnel

    NASA Technical Reports Server (NTRS)

    Creel, T. R., Jr.; Beckwith, I. E.; Chen, F. J.

    1985-01-01

    An investigation at Mach 3.5 into the effects of nozzle wall roughness on free stream pressure fluctuations and cone transition Reynolds numbers was conducted in the pilot low disturbance tunnel at the Langley Research Center. Nozzle wall roughness caused by either particle deposits or imperfections in surface finish increased free stream noise levels and reduced the transition Reynolds numbers on a cone mounted in the test rhombus.

  11. Development and evaluation of a boat-mounted RFID antenna for monitoring freshwater mussels

    USGS Publications Warehouse

    Fischer, Jesse R.; Neebling, Travis E.; Quist, Michael C.

    2012-01-01

    Development of radio frequency identification (RFID) technology and passive integrated transponder (PIT) tags has substantially increased the ability of researchers and managers to monitor populations of aquatic organisms. However, use of transportable RFID antenna systems (i.e., backpack-mounted) is currently limited to wadeable aquatic environments (<1.4 m water depth). We describe the design, construction, and evaluation of a boat-mounted RFID antenna to detect individually PIT-tagged benthic aquatic organisms (mussels). We evaluated the effects of tag orientation on detection distances in water with a 32-mm half-duplex PIT tag. Detection distances up to 50 cm from the antenna coils were obtained, but detection distance was dependent on tag orientation. We also evaluated detection distance of PIT tags beneath the sediment to simulate detection of burrowing mussels with 23- and 32-mm tags. In sand substrate, the maximum detection distance varied from 3.5 cm and 4.5 cm (vertical tag orientation) to 24.7 cm and 39.4 cm (45° tag orientation) for the 23- and 32-mm PIT tags, respectively. Our results suggest a 1.4-m total detection width for tagged mussels on the substrate surface by the boat-mounted antenna system regardless of tag orientation. However, burrowed mussels may require multiple passes to increase detection that would be influenced by depth, tag orientation, and tag size. Construction of the boat-mounted antenna was relatively low in cost (<500 USD) and had several advantages (less labor and time intensive, increased safety) over traditional mussel sampling techniques (diving, snorkeling) in nonwadeable habitats.

  12. Diffusive deposition of aerosols in Phebus containment during FPT-2 test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontautas, A.; Urbonavicius, E.

    2012-07-01

    At present the lumped-parameter codes is the main tool to investigate the complex response of the containment of Nuclear Power Plant in case of an accident. Continuous development and validation of the codes is required to perform realistic investigation of the processes that determine the possible source term of radioactive products to the environment. Validation of the codes is based on the comparison of the calculated results with the measurements performed in experimental facilities. The most extensive experimental program to investigate fission product release from the molten fuel, transport through the cooling circuit and deposition in the containment is performedmore » in PHEBUS test facility. Test FPT-2 performed in this facility is considered for analysis of processes taking place in containment. Earlier performed investigations using COCOSYS code showed that the code could be successfully used for analysis of thermal-hydraulic processes and deposition of aerosols, but there was also noticed that diffusive deposition on the vertical walls does not fit well with the measured results. In the CPA module of ASTEC code there is implemented different model for diffusive deposition, therefore the PHEBUS containment model was transferred from COCOSYS code to ASTEC-CPA to investigate the influence of the diffusive deposition modelling. Analysis was performed using PHEBUS containment model of 16 nodes. The calculated thermal-hydraulic parameters are in good agreement with measured results, which gives basis for realistic simulation of aerosol transport and deposition processes. Performed investigations showed that diffusive deposition model has influence on the aerosol deposition distribution on different surfaces in the test facility. (authors)« less

  13. Mount Ararat, Turkey, Perspective with Landsat Image Overlay

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This perspective view shows Mount Ararat in easternmost Turkey, which has been the site of several searches for the remains of Noah's Ark. The main peak, known as Great Ararat, is the tallest peak in Turkey, rising to 5165 meters (16,945 feet). This southerly, near horizontal view additionally shows the distinctly conically shaped peak known as 'Little Ararat' on the left. Both peaks are volcanoes that are geologically young, but activity during historic times is uncertain.

    This image was generated from a Landsat satellite image draped over an elevation model produced by the Shuttle Radar Topography Mission (SRTM). The view uses a 1.25-times vertical exaggeration to enhance topographic expression. Natural colors of the scene are enhanced by image processing, inclusion of some infrared reflectance (as green) to highlight the vegetation pattern, and inclusion of shading of the elevation model to further highlight the topographic features.

    Volcanoes pose hazards for people, the most obvious being the threat of eruption. But other hazards are associated with volcanoes too. In 1840 an earthquake shook the Mount Ararat region, causing an unstable part of mountain's north slope to tumble into and destroy a village. Visualizations of satellite imagery when combined with elevation models can be used to reveal such hazards leading to disaster prevention through improved land use planning.

    But the hazards of volcanoes are balanced in part by the benefits they provide. Over geologic time volcanic materials break down to form fertile soils. Cultivation of these soils has fostered and sustained civilizations, as has occurred in the Mount Ararat region. Likewise, tall volcanic peaks often catch precipitation, providing a water supply to those civilizations. Mount Ararat hosts an icefield and set of glaciers, as seen here in this late summer scene, that are part of this beneficial natural process

    Elevation data used in this image was acquired by the Shuttle Radar

  14. Vertical Redistribution of Ocean Salt Content

    NASA Astrophysics Data System (ADS)

    Liang, X.; Liu, C.; Ponte, R. M.; Piecuch, C. G.

    2017-12-01

    Ocean salinity is an important proxy for change and variability in the global water cycle. Multi-decadal trends have been observed in both surface and subsurface salinity in the past decades, and are usually attributed to the change in air-sea freshwater flux. Although air-sea freshwater flux, a major component of the global water cycle, certainly contributes to the change in surface and upper ocean salinity, the salt redistribution inside the ocean can affect the surface and upper ocean salinity as well. Also, the mechanisms controlling the surface and upper ocean salinity changes likely depend on timescales. Here we examined the ocean salinity changes as well as the contribution of the vertical redistribution of salt with a 20-year dynamically consistent and data-constrained ocean state estimate (ECCO: Estimating Circulation and Climate of the Ocean). A decrease in the spatial mean upper ocean salinity and an upward salt flux inside the ocean were observed. These findings indicate that over 1992-2011, surface freshwater fluxes contribute to the decrease in spatial mean upper ocean salinity and are partly compensated by the vertical redistribution of salt inside the ocean. Between advection and diffusion, the two major processes determining the vertical exchange of salt, the advective term at different depths shows a downward transport, while the diffusive term is the dominant upward transport contributor. These results suggest that the salt transport in the ocean interior should be considered in interpreting the observed surface and upper ocean salinity changes, as well as inferring information about the changes in the global water cycle.

  15. Measurement of vertical stability metrics in KSTAR

    NASA Astrophysics Data System (ADS)

    Hahn, Sang-Hee; Humphreys, D. A.; Mueller, D.; Bak, J. G.; Eidietis, N. W.; Kim, H.-S.; Ko, J. S.; Walker, M. L.; Kstar Team

    2017-10-01

    The paper summarizes results of multi-year ITPA experiments regarding measurement of the vertical stabilization capability of KSTAR discharges, including most recent measurements at the highest achievable elongation (κ 2.0 - 2.1). The measurements of the open-loop growth rate of VDE (γz) and the maximum controllable vertical displacement (ΔZmax) are done by the release-and-catch method. The dynamics of the vertical movement of the plasma is verified by both relevant magnetic reconstructions and non-magnetic diagnostics. The measurements of γz and ΔZmax were done for different plasma currents, βp, internal inductances, elongations and different configurations of the vessel conductors that surround the plasma as the first wall. Effects of control design choice and diagnostics noise are discussed, and comparison with the axisymmetric plasma response model is given for partial accounting for the measured control capability. This work supported by Ministry of Science, ICT, and Future Planning under KSTAR project.

  16. Fiber optics welder having movable aligning mirror

    DOEpatents

    Higgins, Robert W.; Robichaud, Roger E.

    1981-01-01

    A system for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45.degree. angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  17. Response of hot element flush wall gauges in oscillating laminar flow

    NASA Technical Reports Server (NTRS)

    Giddings, T. A.; Cook, W. J.

    1986-01-01

    The time dependent response characteristics of flush-mounted hot element gauges used as instruments to measure wall shear stress in unsteady periodic air flows were investigated. The study was initiated because anomalous results were obtained from the gauges in oscillating turbulent flows for the phase relation of the wall shear stress variation, indicating possible gauge response problems. Flat plate laminar oscillating turbulent flows characterized by a mean free stream velocity with a superposed sinusoidal variation were performed. Laminar rather than turbulent flows were studied, because a numerical solution for the phase angle between the free stream velocity and the wall shear stress variation that is known to be correct can be obtained. The focus is on comparing the phase angle indicated by the hot element gauges with corresponding numerical prediction for the phase angle, since agreement would indicate that the hot element gauges faithfully follow the true wall shear stress variation.

  18. Proposal for a Domain Wall Nano-Oscillator driven by Non-uniform Spin Currents

    PubMed Central

    Sharma, Sanchar; Muralidharan, Bhaskaran; Tulapurkar, Ashwin

    2015-01-01

    We propose a new mechanism and a related device concept for a robust, magnetic field tunable radio-frequency (rf) oscillator using the self oscillation of a magnetic domain wall subject to a uniform static magnetic field and a spatially non-uniform vertical dc spin current. The self oscillation of the domain wall is created as it translates periodically between two unstable positions, one being in the region where both the dc spin current and the magnetic field are present, and the other, being where only the magnetic field is present. The vertical dc spin current pushes it away from one unstable position while the magnetic field pushes it away from the other. We show that such oscillations are stable under noise and can exhibit a quality factor of over 1000. A domain wall under dynamic translation, not only being a source for rich physics, is also a promising candidate for advancements in nanoelectronics with the actively researched racetrack memory architecture, digital and analog switching paradigms as candidate examples. Devising a stable rf oscillator using a domain wall is hence another step towards the realization of an all domain wall logic scheme. PMID:26420544

  19. Narrow groove welding gas diffuser assembly and welding torch

    DOEpatents

    Rooney, Stephen J.

    2001-01-01

    A diffuser assembly is provided for narrow groove welding using an automatic gas tungsten arc welding torch. The diffuser assembly includes a manifold adapted for adjustable mounting on the welding torch which is received in a central opening in the manifold. Laterally extending manifold sections communicate with a shield gas inlet such that shield gas supplied to the inlet passes to gas passages of the manifold sections. First and second tapered diffusers are respectively connected to the manifold sections in fluid communication with the gas passages thereof. The diffusers extend downwardly along the torch electrode on opposite sides thereof so as to release shield gas along the length of the electrode and at the distal tip of the electrode. The diffusers are of a transverse width which is on the order of the thickness of the electrode so that the diffusers can, in use, be inserted into a narrow welding groove before and after the electrode in the direction of the weld operation.

  20. Inertial navigation system using three TDF gyroscopic sensors not jointly mounted on a stable platform

    NASA Technical Reports Server (NTRS)

    Stieler, B.

    1971-01-01

    An inertial navigation system is described and analyzed based on two two-degree-of-freedom Schuler-gyropendulums and one two-degree-of-freedom azimuth gyro. The three sensors, each base motion isolated about its two input axes, are mounted on a common base, strapped down to the vehicle. The up and down pointing spin vectors of the two properly tuned gyropendulums track the vertical and indicate physically their velocity with respect to inertial space. The spin vector of the azimuth gyro is pointing northerly parallel to the earth axis. The system can be made self-aligning on a stationary base. If external measurements for the north direction and the vertical are available, initial disturbance torques can be measured and easily biased out. The error analysis shows that the system is practicable with today's technology.

  1. Analysis of a dusty wall jet

    NASA Technical Reports Server (NTRS)

    Lim, Hock-Bin; Roberts, Leonard

    1991-01-01

    An analysis is given for the entrainment of dust into a turbulent radial wall jet. Equations are solved based on incompressible flow of a radial wall jet into which dust is entrained from the wall and transported by turbulent diffusion and convection throughout the flow. It is shown that the resulting concentration of dust particles in the flow depends on the difference between the applied shear stress at the surface and the maximum level of shear stress that the surface can withstand (varies as rho(sub d)a(sub g)D) i.e., the pressure due to the weight of a single layer of dust. The analysis is expected to have application to the downflow that results from helicopter and VTOL aircraft.

  2. Mount St. Helens and Kilauea volcanoes

    USGS Publications Warehouse

    Barrat, J.

    1989-01-01

    From the south, snow-covered Mount St. Helens looms proudly under a fleecy halo of clouds, rivaling the majestic beauty of neighboring Mount Rainer, Mount Hood, and Mount Adams. Salmon fishermen dot the shores of lakes and streams in the mountain's shadow, trucks loaded with fresh-cut timber barrel down backroads, and deer peer out from stands of tall fir trees. 

  3. Vertical length scale selection for pancake vortices in strongly stratified viscous fluids

    NASA Astrophysics Data System (ADS)

    Godoy-Diana, Ramiro; Chomaz, Jean-Marc; Billant, Paul

    2004-04-01

    The evolution of pancake dipoles of different aspect ratio is studied in a stratified tank experiment. Two cases are reported here for values of the dipole initial aspect ratio alpha_0 = L_v/L_h (where L_v and L_h are vertical and horizontal length scales, respectively) of alpha_0 = 0.4 (case I) and alpha_0 = 1.2 (case II). In the first case, the usual decay scenario is observed where the dipole diffuses slowly with a growing thickness and a decaying circulation. In case II, we observed a regime where the thickness of the dipole decreases and the circulation in the horizontal mid-plane of the vortices remains constant. We show that this regime where the vertical length scale decreases can be explained by the shedding of two boundary layers at the top and bottom of the dipole that literally peel off vorticity layers. Horizontal advection and vertical diffusion cooperate in this regime and the decrease towards the viscous vertical length scale delta = L_hRe(-1/2) occurs on a time scale alpha_0 Re(1/2) T_A, T_A being the advection time L_h/U. From a scaling analysis of the equations for a stratified viscous fluid in the Boussinesq approximation, two dominant balances depending on the parameter R = ReF_h(2) are discussed, where F_h = U/NL_h is the horizontal Froude number and Re = UL_h/nu is the Reynolds number, U, N and nu being, respectively, the translation speed of the dipole, the Brunt Väisälä frequency and the kinematic viscosity. When R≫ 1 the vertical length scale is determined by buoyancy effects to be of order L_b = U/N. The experiments presented in this paper pertain to the case of small R, where viscous effects govern the selection of the vertical length scale. We show that if initially L_v ≤ delta, the flow diffuses on the vertical (case I), while if L_v ≫ delta (case II), vertically sheared horizontal advection decreases the vertical length scale down to delta. This viscous regime may explain results from experiments and numerical simulations on

  4. Use of vertical temperature gradients for prediction of tidal flat sediment characteristics

    USGS Publications Warehouse

    Miselis, Jennifer L.; Holland, K. Todd; Reed, Allen H.; Abelev, Andrei

    2012-01-01

    Sediment characteristics largely govern tidal flat morphologic evolution; however, conventional methods of investigating spatial variability in lithology on tidal flats are difficult to employ in these highly dynamic regions. In response, a series of laboratory experiments was designed to investigate the use of temperature diffusion toward sediment characterization. A vertical thermistor array was used to quantify temperature gradients in simulated tidal flat sediments of varying compositions. Thermal conductivity estimates derived from these arrays were similar to measurements from a standard heated needle probe, which substantiates the thermistor methodology. While the thermal diffusivities of dry homogeneous sediments were similar, diffusivities for saturated homogeneous sediments ranged approximately one order of magnitude. The thermal diffusivity of saturated sand was five times the thermal diffusivity of saturated kaolin and more than eight times the thermal diffusivity of saturated bentonite. This suggests that vertical temperature gradients can be used for distinguishing homogeneous saturated sands from homogeneous saturated clays and perhaps even between homogeneous saturated clay types. However, experiments with more realistic tidal flat mixtures were less discriminating. Relationships between thermal diffusivity and percent fines for saturated mixtures varied depending upon clay composition, indicating that clay hydration and/or water content controls thermal gradients. Furthermore, existing models for the bulk conductivity of sediment mixtures were improved only through the use of calibrated estimates of homogeneous end-member conductivity and water content values. Our findings suggest that remotely sensed observations of water content and thermal diffusivity could only be used to qualitatively estimate tidal flat sediment characteristics.

  5. Dual resolution, vacuum compatible optical mount

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halpin, John Michael

    2011-10-04

    An optical mount for an optical element includes a mounting plate, a lever arm pivot coupled to mounting plate, and an adjustment plate. The optical mount also includes a flexure pivot mechanically coupling the adjustment plate to the mounting plate and a lever arm. The optical mount further includes a first adjustment device extending from the adjustment plate to make contact with the lever arm at a first contact point. A projection of a line from the first contact point to a pivot point, measured along the lever arm, is a first predetermined distance. The optical mount additionally includes amore » second adjustment device extending from the adjustment plate to make contact with the lever arm at a second contact point. A projection of a line from the second contact point to the pivot point, measured along the lever arm, is a second predetermined distance greater than the first predetermined distance.« less

  6. LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties

    DOEpatents

    Tong, Tao; Le Toquin, Ronan; Keller, Bernd; Tarsa, Eric; Youmans, Mark; Lowes, Theodore; Medendorp, Jr., Nicholas W; Van De Ven, Antony; Negley, Gerald

    2014-11-11

    An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and an optical cavity. The optical cavity comprises a phosphor carrier having a conversions material and arranged over an opening to the cavity. The phosphor carrier comprises a thermally conductive transparent material and is thermally coupled to the heat sink structure. An LED based light source is mounted in the optical cavity remote to the phosphor carrier with light from the light source passing through the phosphor carrier. A diffuser dome is included that is mounted over the optical cavity, with light from the optical cavity passing through the diffuser dome. The properties of the diffuser, such as geometry, scattering properties of the scattering layer, surface roughness or smoothness, and spatial distribution of the scattering layer properties may be used to control various lamp properties such as color uniformity and light intensity distribution as a function of viewing angle.

  7. Interferometric measurements of a dendritic growth front solutal diffusion layer

    NASA Technical Reports Server (NTRS)

    Hopkins, John A.; Mccay, T. D.; Mccay, Mary H.

    1991-01-01

    An experimental study was undertaken to measure solutal distributions in the diffusion layer produced during the vertical directional solidification (VDS) of an ammonium chloride - water (NH4Cl-H2O) solution. Interferometry was used to obtain concentration measurements in the 1-2 millimeter region defining the diffusion layer. These measurements were fitted to an exponential form to extract the characteristic diffusion parameter for various times after the start of solidification. The diffusion parameters are within the limits predicted by steady state theory and suggest that the effective solutal diffusivity is increasing as solidification progresses.

  8. Space Radar Image of Great Wall of China

    NASA Image and Video Library

    1999-04-15

    These radar images show two segments of the Great Wall of China in a desert region of north-central China, about 700 kilometers (434 miles) west of Beijing. The wall appears as a thin orange band, running from the top to the bottom of the left image, and from the middle upper-left to the lower-right of the right image. These segments of the Great Wall were constructed in the 15th century, during the Ming Dynasty. The wall is between 5 and 8 meters high (16 to 26 feet) in these areas. The entire wall is about 3,000 kilometers (1,864 miles) long and about 150 kilometers (93 miles) of the wall appear in these two images. The wall is easily detected from space by radar because its steep, smooth sides provide a prominent surface for reflection of the radar beam. Near the center of the left image, two dry lake beds have been developed for salt extraction. Rectangular patterns in both images indicate agricultural development, primarily wheat fields. The images were acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on April 10, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The left image is centered at 37.7 degrees North latitude and 107.5 degrees East longitude. The right image is centered at 37.5 degrees North latitude and 108.1 degrees East longitude. North is toward the upper right. Each area shown measures 25 kilometers by 75 kilometers (15.5 miles by 45.5 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is C-band horizontally transmitted, vertically received. http://photojournal.jpl.nasa.gov/catalog/PIA01794

  9. Miniature modular microwave end-to-end receiver

    NASA Technical Reports Server (NTRS)

    Sukamto, Lin M. (Inventor); Cooley, Thomas W. (Inventor); Janssen, Michael A. (Inventor); Parks, Gary S. (Inventor)

    1993-01-01

    An end-to-end microwave receiver system contained in a single miniature hybrid package mounted on a single heatsink is presented. It includes an input end connected to a microwave receiver antenna and an output end which produces a digital count proportional to the amplitude of a signal of a selected microwave frequency band received at the antenna and corresponding to one of the water vapor absorption lines near frequencies of 20 GHz or 30 GHz. The hybrid package is on the order of several centimeters in length and a few centimeters in height and width. The package includes an L-shaped carrier having a base surface, a vertical wall extending up from the base surface and forming a corner therewith, and connection pins extending through the vertical wall. Modular blocks rest on the base surface against the vertical wall and support microwave monolithic integrated circuits on top surfaces thereof connected to the external connection pins. The modular blocks lie end-to-end on the base surface so as to be modularly removable by sliding along the base surface beneath the external connection pins away from the vertical wall.

  10. Behaviour of Masonry Walls under Horizontal Shear in Mining Areas

    NASA Astrophysics Data System (ADS)

    Kadela, Marta; Bartoszek, Marek; Fedorowicz, Jan

    2017-12-01

    The paper discusses behaviour of masonry walls constructed with small-sized elements under the effects of mining activity. It presents some mechanisms of damage occurring in such structures, its forms in real life and the behaviour of large fragments of masonry walls subjected to specific loads in FEM computational models. It offers a constitutive material model, which enables numerical analyses and monitoring of the behaviour of numerical models as regards elastic-plastic performance of the material, with consideration of its degradation. Results from the numerical analyses are discussed for isolated fragments of the wall subjected to horizontal shear, with consideration of degradation, impact of imposed vertical load as well as the effect of weakening of the wall, which was achieved by introducing openings in it, on the performance and deformation of the wall.

  11. Mean-flow measurements of the flow field diffusing bend

    NASA Technical Reports Server (NTRS)

    Mcmillan, O. J.

    1982-01-01

    Time-average measurements of the low-speed turbulent flow in a diffusing bend are presented. The experimental geometry consists of parallel top and bottom walls and curved diverging side walls. The turning of the center line of this channel is 40 deg, the area ratio is 1.5 and the ratios of height and center-line length to throat width are 1.5 and 3, respectively. The diffusing bend is preceded and followed by straight constant area sections. The inlet boundary layers on the parallel walls are artificially thickened and occupy about 30% of the channel height; those on the side walls develop naturally and are about half as thick. The free-stream speed at the inlet was approximately 30 m/sec for all the measurements. Inlet boundary layer mean velocity and turbulence intensity profiles are presented, as are data for wall static pressures, and at six cross sections, surveys of the velocity-vector and static-pressure fields. The dominant feature of the flow field is a pair of counter-rotating streamwise vortices formed by the cross-stream pressure gradient in the bend on which an overall deceleration is superimposed.

  12. Fem Simulation of Triple Diffusive Natural Convection Along Inclined Plate in Porous Medium: Prescribed Surface Heat, Solute and Nanoparticles Flux

    NASA Astrophysics Data System (ADS)

    Goyal, M.; Goyal, R.; Bhargava, R.

    2017-12-01

    In this paper, triple diffusive natural convection under Darcy flow over an inclined plate embedded in a porous medium saturated with a binary base fluid containing nanoparticles and two salts is studied. The model used for the nanofluid is the one which incorporates the effects of Brownian motion and thermophoresis. In addition, the thermal energy equations include regular diffusion and cross-diffusion terms. The vertical surface has the heat, mass and nanoparticle fluxes each prescribed as a power law function of the distance along the wall. The boundary layer equations are transformed into a set of ordinary differential equations with the help of group theory transformations. A wide range of parameter values are chosen to bring out the effect of buoyancy ratio, regular Lewis number and modified Dufour parameters of both salts and nanofluid parameters with varying angle of inclinations. The effects of parameters on the velocity, temperature, solutal and nanoparticles volume fraction profiles, as well as on the important parameters of heat and mass transfer, i.e., the reduced Nusselt, regular and nanofluid Sherwood numbers, are discussed. Such problems find application in extrusion of metals, polymers and ceramics, production of plastic films, insulation of wires and liquid packaging.

  13. Heat and momentum transport scalings in vertical convection

    NASA Astrophysics Data System (ADS)

    Shishkina, Olga

    2016-11-01

    For vertical convection, where a fluid is confined between two differently heated isothermal vertical walls, we investigate the heat and momentum transport, which are measured, respectively, by the Nusselt number Nu and the Reynolds number Re . For laminar vertical convection we derive analytically the dependence of Re and Nu on the Rayleigh number Ra and the Prandtl number Pr from our boundary layer equations and find two different scaling regimes: Nu Pr 1 / 4 Ra 1 / 4 , Re Pr - 1 / 2 Ra 1 / 2 for Pr << 1 and Nu Pr0 Ra 1 / 4 , Re Pr-1 Ra 1 / 2 for Pr >> 1 . Direct numerical simulations for Ra from 105 to 1010 and Pr from 0.01 to 30 are in excellent ageement with our theoretical findings and show that the transition between the regimes takes place for Pr around 0.1. We summarize the results from and present new theoretical and numerical results for transitional and turbulent vertical convection. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh 405/4 - Heisenberg fellowship.

  14. Performance of PV panels for solar energy conversion at the South Pole

    NASA Astrophysics Data System (ADS)

    Peeran, Syed M.

    Expanding research facilities at the Amundson-Scott South pole station require increased electric power generation. Presently, electric power generation is by diesel generators using the JP8 fuel. As the station is accessible only for a short supply period during the austral summer, there are limitations upon the supply of fuel for power generation. This makes it necessary to seriously consider the use of the renewable energy sources. Although there is no sunlight for six months in the year, abundant solar energy is available during the remaining 6 months because of the clear skies, the clarity of air and the low humidity at the south pole. As the buildings at the south pole are built either without windows or with only porthole type windows, large areas on the walls and the roof are available for mounting the photovoltaic (PV) panels. In addition there is unlimited space around the station for constructing a PV panel 'farm'. In this paper four types of PV panels are evaluated; the 2-axis tracking panels, vertical 1-axis tracking panels, fixed vertical panels on the walls of buildings and mounted outdoors, and fixed horizontal panels on the roofs of the buildings. Equations are developed for the power output in KW/sq. ft and annual energy in kWh/sq. ft for each type of panel. The equations include the effects of the inclination of the sun above the horizon, the movement of the sun around the horizon, the direct, reflected and diffused components of the solar radiation, the characteristics of the solar cells and the types of dc/ac inverters used to interface the output of the cells with the existing ac power. A conceptual design of a 150-kW PV generation system suitable for the south pole is also discussed in this paper.

  15. Forces and pressures beneath the saddle during mounting from the ground and from a raised mounting platform.

    PubMed

    Geutjens, C A; Clayton, H M; Kaiser, L J

    2008-03-01

    The objective was to use an electronic pressure mat to measure and compare forces and pressures of the saddle on a horse's back when riders mounted from the ground and with the aid of a mounting platform. Ten riders mounted a horse three times each from the ground and from a 35 cm high mounting platform in random order. Total force (summation of forces over all 256 sensors) was measured and compared at specific points on the force-time curve. Total force was usually highest as the rider's right leg was swinging upwards and was correlated with rider mass. When normalized to rider mass, total force and peak pressure were significantly higher when mounting from the ground than from a raised platform (P<0.05). The area of highest pressure was on the right side of the withers in 97% of mounting efforts, confirming the importance of the withers in stabilizing the saddle during mounting.

  16. Flow effects in a vertical CVD reactor

    NASA Technical Reports Server (NTRS)

    Young, G. W.; Hariharan, S. I.; Carnahan, R.

    1992-01-01

    A model is presented to simulate the non-Boussinesq flow in a vertical, two-dimensional, chemical vapor deposition reactor under atmospheric pressure. Temperature-dependent conductivity, mass diffusivity, viscosity models, and reactive species mass transfer to the substrate are incorporated. In the limits of small Mach number and small aspect ratio, asymptotic expressions for the flow, temperature, and species fields are developed. Soret diffusion effects are also investigated. Analytical solutions predict an inverse relationship between temperature field and concentration field due to Soret effects. This finding is consistent with numerical simulations, assisting in the understanding of the complex interactions amongst the flow, thermal, and species fields in a chemically reacting system.

  17. Forced convective heat transfer in curved diffusers

    NASA Technical Reports Server (NTRS)

    Rojas, J.; Whitelaw, J. H.; Yianneskis, M.

    1987-01-01

    Measurements of the velocity characteristics of the flows in two curved diffusers of rectangular cross section with C and S-shaped centerlines are presented and related to measurements of wall heat transfer coefficients along the heated flat walls of the ducts. The velocity results were obtained by laser-Doppler anemometry in a water tunnel and the heat transfer results by liquid crystal thermography in a wind tunnel. The thermographic technique allowed the rapid and inexpensive measurement of wall heat transfer coefficients along flat walls of arbitrary boundary shapes with an accuracy of about 5 percent. The results show that an increase in secondary flow velocities near the heated wall causes an increase in the local wall heat transfer coefficient, and quantify the variation for maximum secondary-flow velocities in a range from 1.5 to 17 percent of the bulk flow velocity.

  18. The importance of vertical resolution in the free troposphere for modeling intercontinental plumes

    NASA Astrophysics Data System (ADS)

    Zhuang, Jiawei; Jacob, Daniel J.; Eastham, Sebastian D.

    2018-05-01

    Chemical plumes in the free troposphere can preserve their identity for more than a week as they are transported on intercontinental scales. Current global models cannot reproduce this transport. The plumes dilute far too rapidly due to numerical diffusion in sheared flow. We show how model accuracy can be limited by either horizontal resolution (Δx) or vertical resolution (Δz). Balancing horizontal and vertical numerical diffusion, and weighing computational cost, implies an optimal grid resolution ratio (Δx / Δz)opt ˜ 1000 for simulating the plumes. This is considerably higher than current global models (Δx / Δz ˜ 20) and explains the rapid plume dilution in the models as caused by insufficient vertical resolution. Plume simulations with the Geophysical Fluid Dynamics Laboratory Finite-Volume Cubed-Sphere Dynamical Core (GFDL-FV3) over a range of horizontal and vertical grid resolutions confirm this limiting behavior. Our highest-resolution simulation (Δx ≈ 25 km, Δz ≈ 80 m) preserves the maximum mixing ratio in the plume to within 35 % after 8 days in strongly sheared flow, a drastic improvement over current models. Adding free tropospheric vertical levels in global models is computationally inexpensive and would also improve the simulation of water vapor.

  19. New approaches to high-resolution mapping of marine vertical structures.

    PubMed

    Robert, Katleen; Huvenne, Veerle A I; Georgiopoulou, Aggeliki; Jones, Daniel O B; Marsh, Leigh; D O Carter, Gareth; Chaumillon, Leo

    2017-08-21

    Vertical walls in marine environments can harbour high biodiversity and provide natural protection from bottom-trawling activities. However, traditional mapping techniques are usually restricted to down-looking approaches which cannot adequately replicate their 3D structure. We combined sideways-looking multibeam echosounder (MBES) data from an AUV, forward-looking MBES data from ROVs and ROV-acquired videos to examine walls from Rockall Bank and Whittard Canyon, Northeast Atlantic. High-resolution 3D point clouds were extracted from each sonar dataset and structure from motion photogrammetry (SfM) was applied to recreate 3D representations of video transects along the walls. With these reconstructions, it was possible to interact with extensive sections of video footage and precisely position individuals. Terrain variables were derived on scales comparable to those experienced by megabenthic individuals. These were used to show differences in environmental conditions between observed and background locations as well as explain spatial patterns in ecological characteristics. In addition, since the SfM 3D reconstructions retained colours, they were employed to separate and quantify live coral colonies versus dead framework. The combination of these new technologies allows us, for the first time, to map the physical 3D structure of previously inaccessible habitats and demonstrates the complexity and importance of vertical structures.

  20. Molecular discriminators using single wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Tamoghna; Dasgupta, Anjan Kr; Ranjan Ray, Nihar; Sarkar, Sabyasachi

    2012-09-01

    The interaction between single wall carbon nanotubes (SWNTs) and amphiphilic molecules has been studied in a solid phase. SWNTs are allowed to interact with different amphiphilic probes (e.g. lipids) in a narrow capillary interface. Contact between strong hydrophobic and amphiphilic interfaces leads to a molecular restructuring of the lipids at the interface. The geometry of the diffusion front and the rate and the extent of diffusion of the interface are dependent on the structure of the lipid at the interface. Lecithin having a linear tail showed greater mobility of the interface as compared to a branched tail lipid like dipalmitoyl phosphatidylcholine, indicating the hydrophobic interaction between single wall carbon nanotube core and the hydrophobic tail of the lipid. Solid phase interactions between SWNT and lipids can thus become a very simple but efficient means of discriminating amphiphilic molecules in general and lipids in particular.

  1. The laboratory investigation of surface envelope solitons: reflection from a vertical wall and collisions of solitons

    NASA Astrophysics Data System (ADS)

    Slunyaev, Alexey; Klein, Marco; Clauss, Günther F.

    2016-04-01

    Envelope soliton solutions are key elements governing the nonlinear wave dynamics within a simplified theory for unidirectional weakly modulated weakly nonlinear wave groups on the water surface. Within integrable models the solitons preserve their structure in collisions with other waves; they do not disperse and can carry energy infinitively long. Steep and short soliton-like wave groups have been shown to exist in laboratory tests [1] and, even earlier, in numerical simulations [2, 3]. Thus, long-living wave groups may play important role in the dynamics of intense sea waves and wave-structure interactions. The solitary wave groups may change the wave statistics and can be taken into account when developing approaches for the deterministic forecasting of dangerous waves, including so-called rogue waves. An experimental campaign has been conducted in the wave basin of the Technical University of Berlin on simulations of intense solitary wave groups. The first successful experimental observation of intense envelope solitons took place in this facility [1]. The new experiments aimed at following main goals: 1) to reproduce intense envelope solitons with different carrier wave lengths; 2) to estimate the rate of envelope soliton dissipation; 3) to consider the reflection of envelope solitons on a vertical wall; 4) to consider head-on collisions of envelope solitons, and 5) to consider overtaking interactions of envelope solitons. Up to 9 wave gauges were used in each experimental run, which enabled registration of the surface movement at different distances from the wavemaker, at different locations across the wave flume and near the wall. Besides surface displacements, the group envelope shapes were directly recorded, with use of phase shifts applied to the modulated waves generated by the wavemaker. [1] A. Slunyaev, G.F. Clauss, M. Klein, M. Onorato, Simulations and experiments of short intense envelope solitons of surface water waves. Phys. Fluids 25, 067105

  2. Experimental investigation of turbulent diffusion of slightly buoyant droplets in locally isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Gopalan, Balaji; Malkiel, Edwin; Katz, Joseph

    2008-09-01

    High-speed inline digital holographic cinematography is used for studying turbulent diffusion of slightly buoyant 0.5-1.2 mm diameter diesel droplets and 50 μm diameter neutral density particles. Experiments are performed in a 50×50×70 mm3 sample volume in a controlled, nearly isotropic turbulence facility, which is characterized by two dimensional particle image velocimetry. An automated tracking program has been used for measuring velocity time history of more than 17 000 droplets and 15 000 particles. For most of the present conditions, rms values of horizontal droplet velocity exceed those of the fluid. The rms values of droplet vertical velocity are higher than those of the fluid only for the highest turbulence level. The turbulent diffusion coefficient is calculated by integration of the ensemble-averaged Lagrangian velocity autocovariance. Trends of the asymptotic droplet diffusion coefficient are examined by noting that it can be viewed as a product of a mean square velocity and a diffusion time scale. To compare the effects of turbulence and buoyancy, the turbulence intensity (ui') is scaled by the droplet quiescent rise velocity (Uq). The droplet diffusion coefficients in horizontal and vertical directions are lower than those of the fluid at low normalized turbulence intensity, but exceed it with increasing normalized turbulence intensity. For most of the present conditions the droplet horizontal diffusion coefficient is higher than the vertical diffusion coefficient, consistent with trends of the droplet velocity fluctuations and in contrast to the trends of the diffusion timescales. The droplet diffusion coefficients scaled by the product of turbulence intensity and an integral length scale are a monotonically increasing function of ui'/Uq.

  3. Wall Area of Influence and Growing Wall Heat Transfer due to Sliding Bubbles in Subcooled Boiling Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Junsoo; Estrada-Perez, Carlos E.; Hassan, Yassin A.

    A variety of dynamical features of sliding bubbles and their impact on wall heat transfer were observed at subcooled flow boiling conditions in a vertical square test channel. Among the wide range of parameters observed, we particularly focus in this paper on (i) the sliding bubbles’ effect on wall heat transfer (supplemantry discussion to the authors’ previous work in Yoo et al. (2016a,b)) and (ii) the wall area influenced by sliding bubbles in subcooled boiling flow. At first, this study reveals that the degree of wall heat transfer improvement due to sliding bubbles depended less on the wall superheat conditionmore » as the mass flux increased. Also, the sliding bubble trajectory was found to be one of the critical factors in order to properly describe the wall heat transfer associated with sliding bubbles. In particular, the wall area influenced by sliding bubbles depended strongly on both sliding bubble trajectory and sliding bubble size; the sliding bubble trajectory was also observed to be closely related to the sliding bubble size. Importantly, these results indicate the limitation of current approach in CFD analyses especially for the wall area of bubble influence. In addition, the analyses on the temporal fraction of bubbles’ residence (FR) along the heated wall show that the sliding bubbles typically travel through narrow path with high frequency while the opposite was observed downstream. That is, both FR and sliding bubble trajectory depended substantially on the distance from nucleation site, which is expected to be similar for the quenching heat transfer mode induced by sliding bubbles.« less

  4. Diffusion of macromolecules in self-assembled cellulose/hemicellulose hydrogels.

    PubMed

    Lopez-Sanchez, Patricia; Schuster, Erich; Wang, Dongjie; Gidley, Michael J; Strom, Anna

    2015-05-28

    Cellulose hydrogels are extensively applied in many biotechnological fields and are also used as models for plant cell walls. We synthesised model cellulosic hydrogels containing hemicelluloses, as a biomimetic of plant cell walls, in order to study the role of hemicelluloses on their mass transport properties. Microbial cellulose is able to self-assemble into composites when hemicelluloses, such as xyloglucan and arabinoxylan, are present in the incubation media, leading to hydrogels with different nano and microstructures. We investigated the diffusivities of a series of fluorescently labelled dextrans, of different molecular weight, and proteins, including a plant pectin methyl esterase (PME), using fluorescence recovery after photobleaching (FRAP). The presence of xyloglucan, known to be able to crosslink cellulose fibres, confirmed by scanning electron microscopy (SEM) and (13)C NMR, reduced mobility of macromolecules of molecular weight higher than 10 kDa, reflected in lower diffusion coefficients. Furthermore PME diffusion was reduced in composites containing xyloglucan, despite the lack of a particular binding motif in PME for this polysaccharide, suggesting possible non-specific interactions between PME and this hemicellulose. In contrast, hydrogels containing arabinoxylan coating cellulose fibres showed enhanced diffusivity of the molecules studied. The different diffusivities were related to the architectural features found in the composites as a function of polysaccharide composition. Our results show the effect of model hemicelluloses in the mass transport properties of cellulose networks in highly hydrated environments relevant to understanding the role of hemicelluloses in the permeability of plant cell walls and aiding design of plant based materials with tailored properties.

  5. A MULTI-STREAM MODEL FOR VERTICAL MIXING OF A PASSIVE TRACER IN THE CONVECTIVE BOUNDARY LAYER

    EPA Science Inventory

    We study a multi-stream model (MSM) for vertical mixing of a passive tracer in the convective boundary layer, in which the tracer is advected by many vertical streams with different probabilities and diffused by small scale turbulence. We test the MSM algorithm for investigatin...

  6. Study of the Accelerating Channel Wall Property Influence on the Hall Thruster Discharge Characteristics

    DTIC Science & Technology

    2004-11-01

    Hall thruster characteristics there was prepared Hall thruster model of the SPT-100 type for these experiments and there were manufactured the required discharge chamber parts (rings) made of the Russian BN-SiO2 (borosil) ceramics and of the Russian AIN-BN (ABN) and Western ABN ceramics having secondary electron emission yield (SEEY) different from that one for borosil. These parts were replaceable during experiments. Thruster model was equipped by set of the near wall probes mounted at external discharge chamber wall. There was made characterization

  7. The effects of dietary biotin supplementation on vertical fissures of the claw wall in beef cattle.

    PubMed Central

    Campbell, J R; Greenough, P R; Petrie, L

    2000-01-01

    A clinical field trial was performed on a herd of Hereford beef cows in central Saskatchewan. The herd had a history of being severely affected with vertical fissures. The objective of the study was to determine the effects of supplemental dietary biotin on the prevalence of vertical fissures in beef cows. In June 1994 and June 1995, 1- and 2-year-old heifers were randomly allocated into 2 treatment groups, each composed of 79 animals. One group received a 10 mg/head/day biotin-supplemented free-choice mineral supplement, while the other groups received an identical free-choice mineral without the biotin supplementation. The claws from these animals were evaluated in June 1994, October 1994, June 1995, October 1995, and June 1996 for the presence of vertical fissures. Supplemental dietary biotin significantly increased serum levels of biotin and significantly increased claw hardness in supplemented cows. Both groups of heifers started the trial without vertical fissures. After 18 months, 15% of the cows fed supplemental dietary biotin had vertical fissures compared with 33% in the nonsupplemented group. The difference was statistically significant (P = 0.01). PMID:10992986

  8. Aerodynamic Loads at Mach Numbers from 0.70 to 2.22 on a Airplane Model Having a Wing and Canard of Triangular Plan Form and Either Single or Twin Vertical Tails

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Menees, Gene P.

    1961-01-01

    Results of an investigation of the aerodynamic loads on a canard airplane model are presented without detailed analysis for the Mach number range of 0.70 t o 2.22. The model consisted of a triangular wing and canard of aspect ratio 2 mounted on a Sears-Haack body of fineness ratio 12.5 and either a single body-mounted vertical tail or twin wing mounted vertical tails of low aspect ratio and sweptback plan form. The body, right wing panel, single vertical tail, and left twin vertical tail were instrumented for measuring pressures. Data were obtained for angles of attack ranging from -4 degrees to +16 degrees, nominal canard deflection angles of 0 degrees and 10 degrees, and angles of sideslip of 0 degrees and 5.3 degrees. The Reynolds number was 2.9 x 10(exp 6) based on the wing mean aerodynamic chord. Selected portions of the data are presented in graphical form and attention is directed to some of the results of the investigation. All of the experimental results have been tabulated in the form of pressure coefficients and integrations of the pressure coefficients and are available as supplements to this paper. A brief summary of the contents of the tabular material is given.

  9. Advanced high performance vertical hybrid synthetic jet actuator

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)

    2011-01-01

    The present invention comprises a high performance, vertical, zero-net mass-flux, synthetic jet actuator for active control of viscous, separated flow on subsonic and supersonic vehicles. The present invention is a vertical piezoelectric hybrid zero-net mass-flux actuator, in which all the walls of the chamber are electrically controlled synergistically to reduce or enlarge the volume of the synthetic jet actuator chamber in three dimensions simultaneously and to reduce or enlarge the diameter of orifice of the synthetic jet actuator simultaneously with the reduction or enlargement of the volume of the chamber. The jet velocity and mass flow rate for the present invention will be several times higher than conventional piezoelectric synthetic jet actuators.

  10. Oblique wave trapping by vertical permeable membrane barriers located near a wall

    NASA Astrophysics Data System (ADS)

    Koley, Santanu; Sahoo, Trilochan

    2017-12-01

    The effectiveness of a vertical partial flexible porous membrane wave barrier located near a rigid vertical impermeable seawall for trapping obliquely incident surface gravity waves are analyzed in water of uniform depth under the assumption of linear water wave theory and small amplitude membrane barrier response. From the general formulation of the submerged membrane barrier, results for bottom-standing and surface-piercing barriers are computed and analyzed in special cases. Using the eigenfunction expansion method, the boundary-value problems are converted into series relations and then the required unknowns are obtained using the least squares approximation method. Various physical quantities of interests like reflection coefficient, wave energy dissipation, wave forces acting on the membrane barrier and the seawall are computed and analyzed for different values of the wave and structural parameters. The study will be useful in the design of the membrane wave barrier for the creation of tranquility zone in the lee side of the barrier to protect the seawall.

  11. Kosmos 856 and Kosmos 914 measurements of high-energy diffuse gamma rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinkin, L.F.; Nagornykh, Y.I.

    1982-09-01

    The measurements by the Kosmos 856 and Kosmos 914 satellites of diffuse cosmic ..gamma.. rays with photon energies above 100 MeV are discussed. Integrated energy spectra for the 100--4000 MeV energy range are given for galactic lattitudes Vertical BarbVertical Bar< or =30/sup 0/ and Vertical BarbVertical Bar>30/sup 0/. The form of the spectra suggests that at high lattitudes there may still be some contribution from the galactic component.

  12. Evaluation of Aesthetic Function and Thermal Modification of Vertical Greenery at Bogor City, Indonesia

    NASA Astrophysics Data System (ADS)

    Sulistyantara, B.; Sesara, R.

    2017-10-01

    Bogor city currently develops vertical greenery due to counter the decreasing of green space quantity. Vertical greenery is a planting method using vertical structure similar to retaining walls. There are some benefits of vertical greenery, such as providing aesthetics value of the landscape, to protect from the heat, to reduce noise, and to reduce pollution. The purpose of this study were to identify thermal modification by vertical greenery in Bogor city, to assess the aesthetics value from vertical greenery, and to provide a recommendation in attempt to manage and improve the quality of vertical greenery in Bogor city. The study was conducted using Scenic Beauty Estimation method, and was done by providing questionnaires to the respondents in order to assess the aesthetics value of vertical greenery. Infrared thermometer was also used to measure the surface’s temperature to evaluate thermal modification function of the vertical greenery. The result of study proved that vertical greenery in the Bogor city has considerably good aesthetic. It also showed that there is a decreasing in surface temperature of the vertical greenery structure.

  13. Flush Mounting Of Thin-Film Sensors

    NASA Technical Reports Server (NTRS)

    Moore, Thomas C., Sr.

    1992-01-01

    Technique developed for mounting thin-film sensors flush with surfaces like aerodynamic surfaces of aircraft, which often have compound curvatures. Sensor mounted in recess by use of vacuum pad and materials selected for specific application. Technique involves use of materials tailored to thermal properties of substrate in which sensor mounted. Together with customized materials, enables flush mounting of thin-film sensors in most situations in which recesses for sensors provided. Useful in both aircraft and automotive industries.

  14. Research on Measurement Accuracy of Laser Tracking System Based on Spherical Mirror with Rotation Errors of Gimbal Mount Axes

    NASA Astrophysics Data System (ADS)

    Shi, Zhaoyao; Song, Huixu; Chen, Hongfang; Sun, Yanqiang

    2018-02-01

    This paper presents a novel experimental approach for confirming that spherical mirror of a laser tracking system can reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy. By simplifying the optical system model of laser tracking system based on spherical mirror, we can easily extract the laser ranging measurement error caused by rotation errors of gimbal mount axes with the positions of spherical mirror, biconvex lens, cat's eye reflector, and measuring beam. The motions of polarization beam splitter and biconvex lens along the optical axis and vertical direction of optical axis are driven by error motions of gimbal mount axes. In order to simplify the experimental process, the motion of biconvex lens is substituted by the motion of spherical mirror according to the principle of relative motion. The laser ranging measurement error caused by the rotation errors of gimbal mount axes could be recorded in the readings of laser interferometer. The experimental results showed that the laser ranging measurement error caused by rotation errors was less than 0.1 μm if radial error motion and axial error motion were within ±10 μm. The experimental method simplified the experimental procedure and the spherical mirror could reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy of the laser tracking system.

  15. An improved design method and experimental performance of two dimensional curved wall diffusers

    NASA Technical Reports Server (NTRS)

    Yang, T.; Hudson, W. G.; El-Nashar, A. M.

    1972-01-01

    A computer design program was developed to incorporate the suction slots in solving the potential flow equations with prescribed boundary conditions. Using the contour generated from this program two Griffith diffusers were tested having area ratios AR = 3 and 4. The inlet Reynolds number ranged from 600,000 to 7 million. It was found that the slot suction required for metastable operation depends on the sidewall suction applied. Values of slot suction of 8% of the inlet flow rate was required for AR = 4 with metastable condition, provided that enough sidewall suction was applied. For AR = 3, the values of slot suction was about 25% lower than those required for AR = 4. For nearly all unseparated test runs, the effectiveness was 100% and the exit flow was uniform. In addition to the Griffith diffusers, dump and cusp diffusers of comparable area ratios were built and tested. The results obtained from these diffusers were compared with those of the Griffith diffusers. Flow separation occurred in all test runs with the dump and cusp diffusers.

  16. Fiber optics welder

    DOEpatents

    Higgins, R.W.; Robichaud, R.E.

    A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  17. Vertical nutrient fluxes, turbulence and the distribution of chlorophyll a in the north-eastern North Sea

    NASA Astrophysics Data System (ADS)

    Bendtsen, Jørgen; Richardson, Katherine

    2017-04-01

    During summer the northern North Sea is characterized by nutrient rich bottom water masses and nutrient poor surface layers. This explains the distribution of chlorophyll a in the water column where a subsurface maximum, referred to as the deep chlorophyll maximum (DCM), often is present during the growth season. Vertical transport of nutrients between bottom water masses and the well lit surface layer stimulates phytoplankton growth and this generally explains the location of the DCM. However, a more specific understanding of the interplay between vertical transports, nutrient fluxes and phytoplankton abundance is required for identifying the nature of the vertical transport processes, e.g the role of advection versus vertical turbulent diffusion or the role of localized mixing associated with mesoscale eddies. We present results from the VERMIX study in the north-eastern North Sea where nutrients, chlorophyll a and turbulence profiles were measured along five north-south directed transects in July 2016. A high-resolution sampling program, with horizontal distances of 1-10 km between CTD-stations, resolved the horizontal gradients of chlorophyll a across the steep bottom slope from the relatively shallow central North Sea ( 50-80 m) towards the deep Norwegian Trench (>700 m). Low oxygen concentrations in the bottom water masses above the slope indicated enhanced biological production where vertical mixing would stimulate phytoplankton growth around the DCM. Measurements of variable fluorescence (Fv/Fm) showed elevated values in the DCM which demonstrates a higher potential for electron transport in the Photosystem II in the phytoplankton cells, i.e. an indication of nutrient-rich conditions favorable for phytoplankton production. Profiles of the vertical shear and microstructure of temperature and salinity were measured by a VMP-250 turbulence profiler and the vertical diffusion of nutrients was calculated from the estimated vertical turbulent diffusivity and the

  18. A study of atmospheric diffusion from the LANDSAT imagery. [pollution transport over the ocean

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Viswanadham, Y.; Torsani, J. A.

    1981-01-01

    LANDSAT multispectral scanner data of the smoke plumes which originated in eastern Cabo Frio, Brazil and crossed over into the Atlantic Ocean, are analyzed to illustrate how high resolution LANDSAT imagery can aid meteorologists in evaluating specific air pollution events. The eleven LANDSAT images selected are for different months and years. The results show that diffusion is governed primarily by water and air temperature differences. With colder water, low level air is very stable and the vertical diffusion is minimal; but water warmer than the air induces vigorous diffusion. The applicability of three empirical methods for determining the horizontal eddy diffusivity coefficient in the Gaussian plume formula was evaluated with the estimated standard deviation of the crosswind distribution of material in the plume from the LANDSAT imagery. The vertical diffusion coefficient in stable conditions is estimated using Weinstock's formulation. These results form a data base for use in the development and validation of meso scale atmospheric diffusion models.

  19. Free-Boundary 3D Equilibria and Resistive Wall Instabilities with Extended-MHD

    NASA Astrophysics Data System (ADS)

    Ferraro, N. M.

    2015-11-01

    The interaction of the plasma with external currents, either imposed or induced, is a critical element of a wide range of important tokamak phenomena, including resistive wall mode (RWM) stability and feedback control, island penetration and locking, and disruptions. A model of these currents may be included within the domain of extended-MHD codes in a way that preserves the self-consistency, scalability, and implicitness of their numerical methods. Such a model of the resistive wall and non-axisymmetric coils is demonstrated using the M3D-C1 code for a variety of applications, including RWMs, perturbed non-axisymmetric equilibria, and a vertical displacement event (VDE) disruption. The calculated free-boundary equilibria, which include Spitzer resistivity, rotation, and two-fluid effects, are compared to external magnetic and internal thermal measurements for several DIII-D discharges. In calculations of the perturbed equilibria in ELM suppressed discharges, the tearing response at the top of the pedestal is found to correlate with the onset of ELM suppression. Nonlinear VDE calculations, initialized using a vertically unstable DIII-D equilibrium, resolve in both space and time the currents induced in the wall and on the plasma surface, and also the currents flowing between the plasma and the wall. The relative magnitude of these contributions and the total impulse to the wall depend on the resistive wall time, although the maximum axisymmetric force on the wall over the course of the VDE is found to be essentially independent of the wall conductivity. This research was supported by US DOE contracts DE-FG02-95ER54309, DE-FC02-04ER54698 and DE-AC52-07NA27344.

  20. In vitro attenuation of impact shock in equine digits.

    PubMed

    Lanovaz, J L; Clayton, H M; Watson, L G

    1998-09-01

    This study was designed to test the impact characteristics of the equine digit in vitro with the objective of providing a better understanding of the role of the digital structures in the attenuation of impact shock. Uni-axial accelerometers were mounted on cadaver digits on the distolateral hoof wall, the proximolateral hoof wall, the dorsal surface of the second phalanx, and the mid-lateral first phalanx. The hoof-mounted accelerometers were aligned with the hoof tubules while the bone-mounted accelerometers were oriented along the longitudinal axis of the bone. Each digit was mounted in a test apparatus designed to simulate impact of the hoof with the ground during locomotion. The digits were subjected to 3 impact trials against a barrier at each of 3 vertical impact velocities that simulated a forward trotting velocity in the range of 2.67 to 4.46 m/s. The impact deceleration tended to increase with impact velocity. Attenuation of the impact shock by the digital tissues resulted in a reduction in impact decleration in the more proximal measuring locations. The interphalangeal joints appeared to play a larger role in amplitude attenuation than the hoof wall or the soft tissue structures within the hoof wall. The signal frequency data showed that the soft tissues within the hoof acted as a 'lowpass' filter, attenuating the higher deceleration frequencies. The hoof wall and the interphalangeal joints showed little frequency attenuation.

  1. Optical processing furnace with quartz muffle and diffuser plate

    DOEpatents

    Sopori, Bhushan L.

    1995-01-01

    An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the door or wall of the muffle is also provided for controlling the source of optical energy. The quartz for the diffuser plate is surface etched (to give the quartz diffusive qualities) in the furnace during a high intensity burn-in process.

  2. Reduction of asymmetric wall force in ITER disruptions with fast current quench

    NASA Astrophysics Data System (ADS)

    Strauss, H.

    2018-02-01

    One of the problems caused by disruptions in tokamaks is the asymmetric electromechanical force produced in conducting structures surrounding the plasma. The asymmetric wall force in ITER asymmetric vertical displacement event (AVDE) disruptions is calculated in nonlinear 3D MHD simulations. It is found that the wall force can vary by almost an order of magnitude, depending on the ratio of the current quench time to the resistive wall magnetic penetration time. In ITER, this ratio is relatively low, resulting in a low asymmetric wall force. In JET, this ratio is relatively high, resulting in a high asymmetric wall force. Previous extrapolations based on JET measurements have greatly overestimated the ITER wall force. It is shown that there are two limiting regimes of AVDEs, and it is explained why the asymmetric wall force is different in the two limits.

  3. Eruptive history of Mount Mazama and Crater Lake Caldera, Cascade Range, U.S.A.

    USGS Publications Warehouse

    Bacon, C.R.

    1983-01-01

    New investigations of the geology of Crater Lake National Park necessitate a reinterpretation of the eruptive history of Mount Mazama and of the formation of Crater Lake caldera. Mount Mazama consisted of a glaciated complex of overlapping shields and stratovolcanoes, each of which was probably active for a comparatively short interval. All the Mazama magmas apparently evolved within thermally and compositionally zoned crustal magma reservoirs, which reached their maximum volume and degree of differentiation in the climactic magma chamber ??? 7000 yr B.P. The history displayed in the caldera walls begins with construction of the andesitic Phantom Cone ??? 400,000 yr B.P. Subsequently, at least 6 major centers erupted combinations of mafic andesite, andesite, or dacite before initiation of the Wisconsin Glaciation ??? 75,000 yr B.P. Eruption of andesitic and dacitic lavas from 5 or more discrete centers, as well as an episode of dacitic pyroclastic activity, occurred until ??? 50,000 yr B.P.; by that time, intermediate lava had been erupted at several short-lived vents. Concurrently, and probably during much of the Pleistocene, basaltic to mafic andesitic monogenetic vents built cinder cones and erupted local lava flows low on the flanks of Mount Mazama. Basaltic magma from one of these vents, Forgotten Crater, intercepted the margin of the zoned intermediate to silicic magmatic system and caused eruption of commingled andesitic and dacitic lava along a radial trend sometime between ??? 22,000 and ??? 30,000 yr B.P. Dacitic deposits between 22,000 and 50,000 yr old appear to record emplacement of domes high on the south slope. A line of silicic domes that may be between 22,000 and 30,000 yr old, northeast of and radial to the caldera, and a single dome on the north wall were probably fed by the same developing magma chamber as the dacitic lavas of the Forgotten Crater complex. The dacitic Palisade flow on the northeast wall is ??? 25,000 yr old. These relatively

  4. Low profile, high load vertical rolling positioning stage

    DOEpatents

    Shu, Deming; Barraza, Juan

    1996-01-01

    A stage or support platform assembly for use in a synchrotron accurately positions equipment to be used in the beam line of the synchrotron. The support platform assembly includes an outer housing in which is disposed a lifting mechanism having a lifting platform or stage at its upper extremity on which the equipment is mounted. A worm gear assembly is located in the housing and is adapted to raise and lower a lifting shaft that is fixed to the lifting platform by an anti-binding connection. The lifting platform is moved vertically as the lifting shaft is moved vertically. The anti-binding connection prevents the shaft from rotating with respect to the platform, but does permit slight canting of the shaft with respect to the lifting platform so as to eliminate binding and wear due to possible tolerance mismatches. In order to ensure that the lifting mechanism does not move in a horizontal direction as it is moved vertically, at least three linear roller bearing assemblies are arranged around the outer-periphery of the lifting mechanism. One of the linear roller bearing assemblies can be adjusted so that the roller bearings apply a loading force against the lifting mechanism. Alternatively, a cam mechanism can be used to provide such a loading force.

  5. Anaglyph with Landsat Overlay, Mount Meru, Tanzania

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Mount Meru is an active volcano located just 70 kilometers (44 miles) west of Mount Kilimanjaro. It reaches 4,566 meters (14,978 feet) in height but has lost much of its bulk due to an eastward volcanic blast sometime in its distant past, perhaps similar to the eruption of Mount Saint Helens in Washington State in 1980. Mount Meru most recently had a minor eruption about a century ago. The several small cones and craters seen in the vicinity probably reflect numerous episodes of volcanic activity. Mount Meru is the topographic centerpiece of Arusha National Park, but Ngurdoto Crater to the east (image top) is also prominent. The fertile slopes of both volcanoes rise above the surrounding savanna and support a forest that hosts diverse wildlife, including nearly 400 species of birds, and also monkeys and leopards, while the floor of Ngurdoto Crater hosts herds of elephants and buffaloes.

    The stereoscopic effect of this anaglyph was created by first draping a Landsat satellite image over a digital elevation data from the Shuttle Radar Topography Mission (SRTM), and then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space

  6. Numerical simulation of water evaporation inside vertical circular tubes

    NASA Astrophysics Data System (ADS)

    Ocłoń, Paweł; Nowak, Marzena; Majewski, Karol

    2013-10-01

    In this paper the results of simplified numerical analysis of water evaporation in vertical circular tubes are presented. The heat transfer in fluid domain (water or wet steam) and solid domain (tube wall) is analyzed. For the fluid domain the temperature field is calculated solving energy equation using the Control Volume Method and for the solid domain using the Finite Element Method. The heat transfer between fluid and solid domains is conjugated using the value of heat transfer coefficient from evaporating liquid to the tube wall. It is determined using the analytical Steiner-Taborek correlation. The pressure changes in fluid are computed using Friedel model.

  7. Unsteady planar diffusion flames: Ignition, travel, burnout

    NASA Technical Reports Server (NTRS)

    Fendell, F.; Wu, F.

    1995-01-01

    In microgravity, a thin planar diffusion flame is created and thenceforth travels so that the flame is situated at all times at an interface at which the hydrogen and oxygen meet in stoichiometric proportion. If the initial amount of hydrogen is deficient relative to the initial amount of oxygen, then the planar flame will travel further and further into the half volume initially containing hydrogen, until the hydrogen is (virtually) fully depleted. Of course, when the amount of residual hydrogen becomes small, the diffusion flame is neither vigorous nor thin; in practice, the flame is extinguished before the hydrogen is fully depleted, owing to the finite rate of the actual chemical-kinetic mechanism. The rate of travel of the hydrogen-air diffusion flame is much slower than the rate of laminar flame propagation through a hydrogen-air mixture. This slow travel facilitates diagnostic detection of the flame position as a function of time, but the slow travel also means that the time to burnout (extinction) probably far exceeds the testing time (typically, a few seconds) available in earth-sited facilities for microgravity-environment experiments. We undertake an analysis to predict (1) the position and temperature of the diffusion flame as a function of time, (2) the time at which extinction of the diffusion flame occurs, and (3) the thickness of quench layers formed on side walls (i.e., on lateral boundaries, with normal vectors parallel to the diffusion-flame plane), and whether, prior to extinction, water vapor formed by burning will condense on these cold walls.

  8. Mount Kilimanjaro, Tanzania

    NASA Image and Video Library

    1996-01-20

    STS072-722-004 (11-20 Jan. 1996) --- Mount Kilimanjaro in Tanzania is featured in this 70mm frame exposed from the Earth-orbiting Space Shuttle Endeavour. Orient with the clouds trailing to the left; then the view is southwest from Kenya past Kilimanjaro to Mount Meru, in Tanzania. Mount Kilimanjaro is about three degrees south of the Equator, but at nearly 6,000 meters has a permanent snowfield. The mountain displays a classic zonation of vegetation types from seasonally dry savannah on the plains at 1,000 meters, to the cloud forest near the top. The mountain is being managed experimentally as an international biosphere reserve. A buffer zone of "traditional" agriculture and pastoral land use is designated around the closed-canopy forest reserve. Specialists familiar with this area say management is partially successful so far, but cleared areas of the forest can be seen on this photograph as light green "nibbles" or "cookie cuts" extending into the dark forest region.

  9. 49 CFR 178.255-11 - Tank mountings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Tank mountings. 178.255-11 Section 178.255-11... Portable Tanks § 178.255-11 Tank mountings. (a) Tanks shall be designed and fabricated with mountings to... requirement. (b) All tank mountings such as skids, fastenings, brackets, cradles, lifting lugs, etc., intended...

  10. 49 CFR 178.255-11 - Tank mountings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Tank mountings. 178.255-11 Section 178.255-11... Portable Tanks § 178.255-11 Tank mountings. (a) Tanks shall be designed and fabricated with mountings to... requirement. (b) All tank mountings such as skids, fastenings, brackets, cradles, lifting lugs, etc., intended...

  11. 49 CFR 178.255-11 - Tank mountings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Tank mountings. 178.255-11 Section 178.255-11... Portable Tanks § 178.255-11 Tank mountings. (a) Tanks shall be designed and fabricated with mountings to... requirement. (b) All tank mountings such as skids, fastenings, brackets, cradles, lifting lugs, etc., intended...

  12. 49 CFR 178.255-11 - Tank mountings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Tank mountings. 178.255-11 Section 178.255-11... Portable Tanks § 178.255-11 Tank mountings. (a) Tanks shall be designed and fabricated with mountings to... requirement. (b) All tank mountings such as skids, fastenings, brackets, cradles, lifting lugs, etc., intended...

  13. Influence of loading forces on the vertical accuracy of interocclusal records.

    PubMed

    Ghazal, Muhamad; Kern, Matthias

    2010-02-01

    To evaluate the influence of loading forces on the vertical discrepancies caused by interocclusal recording materials. A custom-made apparatus was used to simulate the maxilla and mandible. Eight interocclusal records were made in each of the following groups: G1-Aluwax (aluminum wax; Aluwax), G2-Beauty Pink wax (hydrocarbon wax compound; Miltex), G3-Futar D, G4-Futar D Fast, G5-Futar Scan (polyvinyl siloxanes; Kettenbach), and G6-Ramitec (polyether; 3M ESPE). The vertical discrepancies were measured by an inductive displacement transducer connected to a carrier frequency amplifier after storage of the records for 1 hour at room temperature. Different compressive loading forces up to 1 kg were applied onto the upper part of the apparatus to evaluate the influence on the vertical discrepancies of the records. Two-way ANOVA was used for statistical analysis. The compressive loading force had a statistically significant influence on the vertical discrepancies (P<.01) (ie, higher forces reduced the vertical discrepancies). When a compressive force of 1 kg was applied to the upper part of the apparatus, the mean vertical discrepancies for G1 (11+/-3 microm) and G2 (12+/-3 microm) were statistically significantly higher than in groups G3 (1+/-1 microm), G4 (2+/-1 microm), G5 (0+/-1 microm), and G6 (-2+/-2 microm). A compressive force of 1 kg could be used to stabilize the cast during mounting procedures in an articulator using an interocclusal record made of polyvinyl siloxane without vertically changing the interocclusal relationships.

  14. Threshold for ion movements in wood cell walls below fiber saturation observed by X-ray fluorescence microscopy (XFM)

    Treesearch

    Samuel L. Zelinka; Sophie-Charlotte Gleber; Stefan Vogt; Gabriela M. Rodriguez Lopez; Joseph E. Jakes

    2015-01-01

    Diffusion of chemicals and ions through the wood cell wall plays an important role in wood damage mechanisms. In the present work, free diffusion of ions through wood secondary walls and middle lamellae has been investigated as a function of moisture content (MC) and anatomical direction. Various ions (K, Cl, Zn, Cu) were injected into selected regions of 2 ìm thick...

  15. Optical mounts for harsh environments

    NASA Astrophysics Data System (ADS)

    Mimovich, Mark E.; Griffee, Jonathan C.; Goodding, James C.

    2009-08-01

    Development and testing of a lightweight-kinematic optical mount with integrated passive vibration-and-shock mitigation technologies and simple / robust optical alignment functionality is presented. Traditionally, optical mounts are designed for use in laboratory environments where the thermal-mechanical environments are carefully controlled to preserve beam path conditions and background disturbances are minimized to facilitate precise optically based measurements. Today's weapon and surveillance systems, however, have optical sensor suites where static and dynamic alignment performance in the presence of harsh operating environments is required to nearly the same precision and where the system cannot afford the mass of laboratory-grade stabilized mounting systems. Jitter and alignment stability is particularly challenging for larger optics operating within moving vehicles and aircraft where high shock and significant temperature excursions occur. The design intent is to have the mount be suitable for integration into existing defense and security optical systems while also targeting new commercial and military components for improved structural dynamic and thermal distortion performance. A mount suitable for moderate-sized optics and an integrated disturbance-optical metrology system are described. The mount design has performance enhancements derived from the integration of proven aerospace mechanical vibration and shock mitigation technologies (i.e. multi-axis passive isolation and integral damping), precision alignment adjustment and lock-out functionality, high dimensional stability materials and design practices which provide benign optical surface figure errors under harsh thermal-mechanical loading. Optical jitter, alignment, and wave-front performance testing of an eight-inch-aperture optical mount based on this design approach are presented to validate predicted performance improvements over an existing commercial off-the-shelf (COTS) design.

  16. A search for thermospheric composition perturbations due to vertical winds

    NASA Astrophysics Data System (ADS)

    Krynicki, Matthew P.

    The thermosphere is generally in hydrostatic equilibrium, with winds blowing horizontally along stratified constant-pressure surfaces, driven by the dayside-to-nightside pressure gradient. A marked change in this paradigm resulted after Spencer et al. [1976] reported vertical wind measurements of 80 m·s-1 from analyses of AE-C satellite data. It is now established that the thermosphere routinely supports large-magnitude (˜30-150 m·s-1) vertical winds at auroral latitudes. These vertical winds represent significant departure from hydrostatic and diffusive equilibrium, altering locally---and potentially globally---the thermosphere's and ionosphere's composition, chemistry, thermodynamics and energy budget. Because of their localized nature, large-magnitude vertical wind effects are not entirely known. This thesis presents ground-based Fabry-Perot Spectrometer OI(630.0)-nm observations of upper-thermospheric vertical winds obtained at Inuvik, NT, Canada and Poker Flat, AK. The wind measurements are compared with vertical displacement estimates at ˜104 km2 horizontal spatial scales determined from a new modification to the electron transport code of Lummerzheim and Lilensten [1994] as applied to FUV-wavelength observations by POLAR spacecraft's Ultraviolet Imager [Torr et al. , 1995]. The modification, referred to as the column shift, simulates vertical wind effects such as neutral transport and disruption of diffusive equilibrium by vertically displacing the Hedin [1991] MSIS-90 [O2]/[N2] and [O]/([N2]+[O2]) mixing ratios and subsequently redistributing the O, O2, and N 2 densities used in the transport code. Column shift estimates are inferred from comparisons of UVI OI(135.6)-nm auroral observations to their corresponding modeled emission. The modeled OI(135.6)-nm brightness is determined from the modeled thermospheric response to electron precipitation and estimations of the energy flux and characteristic energy of the precipitation, which are inferred from UVI

  17. Mount assembly for porous transition panel at annular combustor outlet

    NASA Technical Reports Server (NTRS)

    Sweeney, Ralph B. (Inventor); Verdouw, Albert J. (Inventor)

    1980-01-01

    A gas turbine engine combustor assembly of annular configuration has outer and inner walls made up of a plurality of axially extending multi-layered porous metal panels joined together at butt joints therebetween and each outer and inner wall including a transition panel of porous metal defining a combustor assembly outlet supported by a combustor mount assembly including a stiffener ring having a side undercut thereon fit over a transition panel end face; and wherein an annular weld joins the ring to the end face to transmit exhaust heat from the end face to the stiffener ring for dissipation from the combustor; a combustor pilot member is located in axially spaced, surrounding relationship to the end face and connector means support the stiffener ring in free floating relationship with the pilot member to compensate for both radial and axial thermal expansion of the transition panel; and said connector means includes a radial gap for maintaining a controlled flow of coolant from outside of the transition panel into cooling relationship with the stiffener ring and said weld to further cool the end face against excessive heat build-up therein during flow of hot gas exhaust through said outlet.

  18. Solar panel parallel mounting configuration

    NASA Technical Reports Server (NTRS)

    Mutschler, Jr., Edward Charles (Inventor)

    1998-01-01

    A spacecraft includes a plurality of solar panels interconnected with a power coupler and an electrically operated device to provide power to the device when the solar cells are insolated. The solar panels are subject to bending distortion when entering or leaving eclipse. Spacecraft attitude disturbances are reduced by mounting each of the solar panels to an elongated boom made from a material with a low coefficient of thermal expansion, so that the bending of one panel is not communicated to the next. The boom may be insulated to reduce its bending during changes in insolation. A particularly advantageous embodiment mounts each panel to the boom with a single mounting, which may be a hinge. The single mounting prevents transfer of bending moments from the panel to the boom.

  19. Comparative Assessment of Torso and Seat Mounted Restraint Systems using Manikins on the Vertical Deceleration Tower

    DTIC Science & Technology

    2017-03-01

    experimental effort involving a series of +z-axis impact tests was conducted on the 711th Human Performance Wing’s Vertical Deceleration Tower (VDT...parameters) and a JSF-styled ejection seat configuration (combined non -baseline test parameters) produced similar biodynamic response parameters for the LOIS...Photography .............................................................................. 12 6.0 EXPERIMENTAL DESIGN

  20. Synthesis of an ultradense forest of vertically aligned triple-walled carbon nanotubes of uniform diameter and length using hollow catalytic nanoparticles.

    PubMed

    Baliyan, Ankur; Nakajima, Yoshikata; Fukuda, Takahiro; Uchida, Takashi; Hanajiri, Tatsuro; Maekawa, Toru

    2014-01-22

    It still remains a crucial challenge to actively control carbon nanotube (CNT) structure such as the alignment, area density, diameter, length, chirality, and number of walls. Here, we synthesize an ultradense forest of CNTs of a uniform internal diameter by the plasma-enhanced chemical vapor deposition (PECVD) method using hollow nanoparticles (HNPs) modified with ligand as a catalyst. The diameters of the HNPs and internal cavities in the HNPs are uniform. A monolayer of densely packed HNPs is self-assembled on a silicon substrate by spin coating. HNPs shrink via the collapse of the internal cavities and phase transition from iron oxide to metallic iron in hydrogen plasma during the PECVD process. Agglomeration of catalytic NPs is avoided on account of the shrinkage of the NPs and ligand attached to the NPs. Diffusion of NPs into the substrate, which would inactivate the growth of CNTs, is also avoided on account of the ligand. As a result, an ultradense forest of triple-walled CNTs of a uniform internal diameter is successfully synthesized. The area density of the grown CNTs is as high as 0.6 × 10(12) cm(-2). Finally, the activity of the catalytic NPs and the NP/carbon interactions during the growth process of CNTs are investigated and discussed. We believe that the present approach may make a great contribution to the development of an innovative synthetic method for CNTs with selective properties.

  1. Advective and diapycnal diffusive oceanic flux in Tenerife - La Gomera Channel

    NASA Astrophysics Data System (ADS)

    Marrero-Díaz, A.; Rodriguez-Santana, A.; Hernández-Arencibia, M.; Machín, F.; García-Weil, L.

    2012-04-01

    During the year 2008, using the commercial passenger ship Volcán de Tauce of the Naviera Armas company several months, it was possible to obtain vertical profiles of temperature from expandable bathythermograph probes in eight stations across the Tenerife - La Gomera channel. With these data of temperature we have been estimated vertical sections of potential density and geostrophic transport with high spatial and temporal resolution (5 nm between stations, and one- two months between cruises). The seasonal variability obtained for the geostrophic transport in this channel shows important differences with others Canary Islands channels. From potential density and geostrophic velocity data we estimated the vertical diffusion coefficients and diapycnal diffusive fluxes, using a parameterization that depends of Richardson gradient number. In the center of the channel and close to La Gomera Island, we found higher values for these diffusive fluxes. Convergence and divergence of these fluxes requires further study so that we can draw conclusions about its impact on the distribution of nutrients in the study area and its impact in marine ecosystems. This work is being used in research projects TRAMIC and PROMECA.

  2. Commercial/industrial photovoltaic module and array requirement study. Low-cost solar array project engineering area

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Design requirements for photovoltaic modules and arrays used in commercial and industrial applications were identified. Building codes and referenced standards were reviewed for their applicability to commercial and industrial photovoltaic array installation. Four general installation types were identified - integral (replaces roofing), direct (mounted on top of roofing), stand-off (mounted away from roofing), and rack (for flat or low slope roofs, or ground mounted). Each of the generic mounting types can be used in vertical wall mounting systems. This implies eight mounting types exist in the commercial/industrial sector. Installation costs were developed for these mounting types as a function of panel/module size. Cost drivers were identified. Studies were performed to identify optimum module shapes and sizes and operating voltage cost drivers. The general conclusion is that there are no perceived major obstacles to the use of photovoltaic modules in commercial/industrial arrays.

  3. Internal tides and vertical mixing over the Kerguelen Plateau

    NASA Astrophysics Data System (ADS)

    Park, Young-Hyang; Fuda, Jean-Luc; Durand, Isabelle; Naveira Garabato, Alberto C.

    2008-03-01

    Within the context of the natural iron-fertilization study KEOPS, time series measurements of CTD and LADCP profiles at a site (50.6°S, 72°E; 528 m) coinciding with an annual phytoplankton bloom over the Kerguelen Plateau were made during the January-February 2005 KEOPS cruise. An important activity of highly nonlinear semidiurnal internal tides having peak-to-peak isopycnal displacements of up to 80 m is identified. These internal tides appear to be a principal agent for promoting elevated vertical mixing indispensable for upward transfer of iron within the seasonal thermocline. We estimate local vertical eddy diffusivities of the order of 4×10 -4 m 2 s -1 using a Thorpe scale analysis. Although this estimate is higher by an order of magnitude than the canonical value O (0.1×10 -4 m 2 s -1) in the open ocean away from boundaries, it is consistent with nonlinear internal wave/wave interaction theories, as verified by independent diffusivity estimates using the vertical wavenumber spectral methods for shear and strain. It is also suggested that the general ocean circulation may play an important role in preconditioning the bloom in that the relatively sluggish circulation over the shallow plateau (compared to the much more dynamic neighbouring deep ocean) may foster the bloom's observed annual recurrence over the plateau.

  4. Building America Case Study: Advanced Extended Plate and Beam Wall System in a Cold-Climate House, Mount Joy, Pennsylvania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This report presents the design and evaluation of a innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders. The EP&B design combines optimized framing with integrated rigid foam sheathing to increase the wallmore » system's R-value and reduce thermal bridging. The foam sheathing is installed between the wall studs and structural wood sheathing. The exterior wood sheathing is attached directly to a framing extension formed by extended top and bottom plates. The exterior wood sheathing can dry to the exterior and provides bracing, a clear drainage plane and flashing surface for window and door openings, and a nailing surface for siding attachment. With support of the DOE Building America program, Home Innovation Research Labs partnered with Lancaster County Career and Technology Center (LCCTC) to build a NCTH in Lancaster, PA to demonstrate the EP&B wall design in a cold climate (IECC climate zone 5A). The results of the study confirmed the benefits of the systems and the viability of its integration into the house construction process.« less

  5. Steady MHD free convection heat and mass transfer flow about a vertical porous surface with thermal diffusion and induced magnetic field

    NASA Astrophysics Data System (ADS)

    Touhid Hossain, M. M.; Afruz-Zaman, Md.; Rahman, Fouzia; Hossain, M. Arif

    2013-09-01

    In this study the thermal diffusion effect on the steady laminar free convection flow and heat transfer of viscous incompressible MHD electrically conducting fluid above a vertical porous surface is considered under the influence of an induced magnetic field. The governing non-dimensional equations relevant to the problem, containing the partial differential equations, are transformed by usual similarity transformations into a system of coupled non-linear ordinary differential equations and will be solved analytically by using the perturbation technique. On introducing the non-dimensional concept and applying Boussinesq's approximation, the solutions for velocity field, temperature distribution and induced magnetic field to the second order approximations are obtained for large suction with different selected values of the established dimensionless parameters. The influences of these various establish parameters on the velocity and temperature fields and on the induced magnetic fields are exhibited under certain assumptions and are studied graphically in the present analysis. It is observed that the effects of thermal-diffusion and large suction have great importance on the velocity, temperature and induced magnetic fields and mass concentration for several fluids considered, so that their effects should be taken into account with other useful parameters associated. It is also found that the dimensionless Prandtl number, Grashof number, Modified Grashof number and magnetic parameter have an appreciable influence on the concerned independent variables.

  6. Easily Accessible Camera Mount

    NASA Technical Reports Server (NTRS)

    Chalson, H. E.

    1986-01-01

    Modified mount enables fast alinement of movie cameras in explosionproof housings. Screw on side and readily reached through side door of housing. Mount includes right-angle drive mechanism containing two miter gears that turn threaded shaft. Shaft drives movable dovetail clamping jaw that engages fixed dovetail plate on camera. Mechanism alines camera in housing and secures it. Reduces installation time by 80 percent.

  7. Holding fixture for metallographic mount polishing

    DOEpatents

    Barth, Clyde H.; Cramer, Charles E.

    1997-01-01

    A fixture for holding mounted specimens for polishing, having an arm; a body attached to one end of the arm, the body having at least one flange having an opening to accommodate a mounted specimen; and a means applying pressure against the outer surface of the mounted specimen to hold the specimen in contact with the polishing surface.

  8. Mounting Thin Samples For Electrical Measurements

    NASA Technical Reports Server (NTRS)

    Matus, L. G.; Summers, R. L.

    1988-01-01

    New method for mounting thin sample for electrical measurements involves use of vacuum chuck to hold a ceramic mounting plate, which holds sample. Contacts on mounting plate establish electrical connection to sample. Used to make electrical measurements over temperature range from 77 to 1,000 K and does not introduce distortions into magnetic field during Hall measurements.

  9. Imaging carbon nanotube interactions, diffusion, and stability in nanopores.

    PubMed

    Eichmann, Shannon L; Smith, Billy; Meric, Gulsum; Fairbrother, D Howard; Bevan, Michael A

    2011-07-26

    We report optical microscopy measurements of three-dimensional trajectories of individual multiwalled carbon nanotubes (MWCNTs) in nanoscale silica slit pores. Trajectories are analyzed to nonintrusively measure MWCNT interactions, diffusion, and stability as a function of pH and ionic strength. Evanescent wave scattering is used to track MWCNT positions normal to pore walls with nanometer-scale resolution, and video microscopy is used to track lateral positions with spatial resolution comparable to the diffraction limit. Analysis of MWCNT excursions normal to pore walls yields particle-wall potentials that agree with theoretical electrostatic and van der Waals potentials assuming a rotationally averaged potential of mean force. MWCNT lateral mean square displacements are used to quantify translational diffusivities, which are comparable to predictions based on the best available theories. Finally, measured MWCNT pH and ionic strength dependent stabilities are in excellent agreement with predictions. Our findings demonstrate novel measurement and modeling tools to understand the behavior of confined MWCNTs relevant to a broad range of applications.

  10. Vibration dissipation mount for motors or the like

    DOEpatents

    Small, Thomas R.

    1987-01-01

    A vibration dissipation mount which permits the mounting of a motor, generator, or the like such that the rotatable shaft thereof passes through the mount and the mount permits the dissipation of self-induced and otherwise induced vibrations wherein the mount comprises a pair of plates having complementary concave and convex surfaces, a semi-resilient material being disposed therebetween.

  11. Including scattering within the room acoustics diffusion model: An analytical approach.

    PubMed

    Foy, Cédric; Picaut, Judicaël; Valeau, Vincent

    2016-10-01

    Over the last 20 years, a statistical acoustic model has been developed to predict the reverberant sound field in buildings. This model is based on the assumption that the propagation of the reverberant sound field follows a transport process and, as an approximation, a diffusion process that can be easily solved numerically. This model, initially designed and validated for rooms with purely diffuse reflections, is extended in the present study to mixed reflections, with a proportion of specular and diffuse reflections defined by a scattering coefficient. The proposed mathematical developments lead to an analytical expression of the diffusion constant that is a function of the scattering coefficient, but also on the absorption coefficient of the walls. The results obtained with this extended diffusion model are then compared with the classical diffusion model, as well as with a sound particles tracing approach considering mixed wall reflections. The comparison shows a good agreement for long rooms with uniform low absorption (α = 0.01) and uniform scattering. For a larger absorption (α = 0.1), the agreement is moderate, due to the fact that the proposed expression of the diffusion coefficient does not vary spatially. In addition, the proposed model is for now limited to uniform diffusion and should be extended in the future to more general cases.

  12. ASTER-SRTM Perspective of Mount Oyama Volcano, Miyake-Jima Island, Japan

    NASA Image and Video Library

    2000-08-10

    Mount Oyama is a 820-meter-high (2,700 feet) volcano on the island of Miyake-Jima, Japan. In late June 2000, a series of earthquakes alerted scientists to possible volcanic activity. On June 27, authorities evacuated 2,600 people, and on July 8 the volcano began erupting and erupted five times over that week. The dark gray blanket covering green vegetation in the image is the ash deposited by prevailing northeasterly winds between July 8 and 17. This island is about 180 kilometers (110 miles) south of Tokyo and is part of the Izu chain of volcanic islands that runs south from the main Japanese island of Honshu. Miyake-Jima is home to 3,800 people. The previous major eruptions of Mount Oyama occurred in 1983 and 1962, when lava flows destroyed hundreds of houses. An earlier eruption in 1940 killed 11 people. This image is a perspective view created by combining image data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard NASA's Terra satellite with an elevation model from the Shuttle Radar Topography Mission (SRTM). Vertical relief is exaggerated, and the image includes cosmetic adjustments to clouds and image color to enhance clarity of terrain features. http://photojournal.jpl.nasa.gov/catalog/PIA02771

  13. Holding fixture for metallographic mount polishing

    DOEpatents

    Barth, C.H.; Cramer, C.E.

    1997-12-30

    A fixture is described for holding mounted specimens for polishing, having an arm; a body attached to one end of the arm, the body having at least one flange having an opening to accommodate a mounted specimen; and a means applying pressure against the outer surface of the mounted specimen to hold the specimen in contact with the polishing surface. 3 figs.

  14. Coarsening and persistence in a one-dimensional system of orienting arrowheads: Domain-wall kinetics with A+B→0.

    PubMed

    Khandkar, Mahendra D; Stinchcombe, Robin; Barma, Mustansir

    2017-01-01

    We demonstrate the large-scale effects of the interplay between shape and hard-core interactions in a system with left- and right-pointing arrowheads <> on a line, with reorientation dynamics. This interplay leads to the formation of two types of domain walls, >< (A) and <> (B). The correlation length in the equilibrium state diverges exponentially with increasing arrowhead density, with an ordered state of like orientations arising in the limit. In this high-density limit, the A domain walls diffuse, while the B walls are static. In time, the approach to the ordered state is described by a coarsening process governed by the kinetics of domain-wall annihilation A+B→0, quite different from the A+A→0 kinetics pertinent to the Glauber-Ising model. The survival probability of a finite set of walls is shown to decay exponentially with time, in contrast to the power-law decay known for A+A→0. In the thermodynamic limit with a finite density of walls, coarsening as a function of time t is studied by simulation. While the number of walls falls as t^{-1/2}, the fraction of persistent arrowheads decays as t^{-θ} where θ is close to 1/4, quite different from the Ising value. The global persistence too has θ=1/4, as follows from a heuristic argument. In a generalization where the B walls diffuse slowly, θ varies continuously, increasing with increasing diffusion constant.

  15. Separation of methane-nitrogen mixtures using synthesis vertically aligned carbon nanotube membranes

    NASA Astrophysics Data System (ADS)

    Gilani, Neda; Daryan, Jafar Towfighi; Rashidi, Alimorad; Omidkhah, Mohammad Reza

    2012-03-01

    In this paper, capabilities of carbon nanotube (CNT) membranes fabricated in cylindrical pores of anodic aluminum oxide (AAO) substrate to separate the binary mixtures of CH4/N2 are studied experimentally. For this purpose, the permeability and selectivity of three CNT/AAO membranes with different growth time as 6 h, 12 h and 18 h are investigated. CNTs are grown vertically through holes of AAO with average pore diameter of 45 nm by chemical vapor deposition (CVD) of acetylene gas. CNT/AAO membranes with the same CNTs' outer diameters and different inner diameters are synthesized. The AAO are characterized by SEM analysis. In addition, SEM, TEM, BET N2 adsorption analysis and Raman spectroscopy are employed to characterize aligned CNTs. Study on permeability and selectivity of membranes for three binary mixtures of CH4/N2 showed that when the CNT inner diameters are 34 nm and 24 nm, viscous flow is the governing mechanism and insignificant selectivities of 1.2-1.24 are achieved. However, the membrane with CNT inner diameter and wall thickness of 8 nm and 16 nm respectively is considerably selective for CH4 over N2. It was also found that CH4 mole fraction in the feed and upstream feed pressure have major effect on permeability and selectivity. The membrane with 18 h synthesis time showed the selectivity is in the range of 1.8-3.85. The enhancement factor for N2 single gas diffusivity was also found to be about three times larger than that predicted by Knudsen diffusion model.

  16. Effects of wall temperature on skin-friction measurements by oil-film interferometry

    NASA Astrophysics Data System (ADS)

    Bottini, H.; Kurita, M.; Iijima, H.; Fukagata, K.

    2015-10-01

    Wind-tunnel skin-friction measurements with thin-oil-film interferometry have been taken on an aluminum sample to investigate the effects of wall temperature on the accuracy of the technique. The sample has been flush-mounted onto a flat plate with an electric heater at its bottom and mirror-smooth temperature-sensitive paint sprayed on its top. The heater has varied the sample temperature from ambient to 328 K, and the paint has permitted wall temperature measurements on the same area of the skin-friction measurements and during the same test. The measured wall temperatures have been used to calculate the correct oil viscosities, and these viscosities and the constant nominal viscosity at 298 K have been used to calculate two different sets of skin-friction coefficients. These sets have been compared to each other and with theoretical values. This comparison shows that the effects of wall temperature on the accuracy of skin-friction measurements are sensible, and more so as wall temperature differs from 298 K. Nonetheless, they are effectively neutralized by the use of wall temperature measurements in combination with the correct oil viscosity-temperature law. In this regard, the special temperature-sensitive paint developed for this study shows advantages with respect to more traditional wall temperature measurement techniques.

  17. Low-Thermal-Resistance Baseplate Mounting

    NASA Technical Reports Server (NTRS)

    Perreault, W. T.

    1984-01-01

    Low-thermal-resistance mounting achieved by preloading baseplate to slight convexity with screws threaded through beam. As mounting bolts around edge of base-place tightened, baseplate and cold plate contact first in center, with region of intimate contact spreading outward as bolts tightened.

  18. Mount Rainier: A decade volcano

    NASA Astrophysics Data System (ADS)

    Swanson, Donald A.; Malone, Stephen D.; Samora, Barbara A.

    Mount Rainier, the highest (4392 m) volcano in the Cascade Range, towers over a population of more than 2.5 million in the Seattle-Tacoma metropolitan area, and its drainage system via the Columbia River potentially affects another 500,000 residents of southwestern Washington and northwestern Oregon (Figure 1). Mount Rainier is the most hazardous volcano in the Cascades in terms of its potential for magma-water interaction and sector collapse. Major eruptions, or debris flows even without eruption, pose significant dangers and economic threats to the region. Despite such hazard and risk, Mount Rainier has received little study; such important topics as its petrologic and geochemical character, its proximal eruptive history, its susceptibility to major edifice failure, and its development over time have been barely investigated. This situation may soon change because of Mount Rainier's recent designation as a “Decade Volcano.”

  19. An experimental study on compressive behavior of rubble stone walls retrofitted with BFRP grids

    NASA Astrophysics Data System (ADS)

    Huang, Hui; Jia, Bin; Li, Wenjing; Liu, Xiao; Yang, Dan; Deng, Chuanli

    2018-03-01

    An experimental study was conducted to investigate the compressive behavior of rubble stone walls retrofitted with BFRP grids. The experimental program consisted of four rubble stone walls: one unretrofitted rubble stone wall (reference wall) and three BFRP grids retrofitted rubble stone walls. The main purpose of the tests was to gain a better understanding of the compressive behavior of rubble stone walls retrofitted with different amount of BFRP grids. The experimental results showed that the reference wall failed with out-of-plane collapse due to poor connection between rubble stone blocks and the three BFRP grids retrofitted walls failed with BFRP grids rupture followed by out-of-plane collapse. The measured compressive strength of the BFRP grids retrofitted walls is about 1.4 to 2.5 times of that of the reference wall. Besides, the rubble stone wall retrofitted with the maximum amount of BFRP grids showed the minimum vertical and out-of-plane displacements under the same load.

  20. The Resistive-Wall Instability in Multipulse Linear Induction Accelerators

    DOE PAGES

    Ekdahl, Carl

    2017-05-01

    The resistive-wall instability results from the Lorentz force on the beam due to the beam image charge and current. If the beam pipe is perfectly conducting, the electric force due to the image charge attracts the beam to the pipe wall, and the magnetic force due to the image current repels the beam from the wall. For a relativistic beam, these forces almost cancel, leaving a slight attractive force, which is easily overcome by external magnetic focusing. However, if the beam pipe is not perfectly conducting, the magnetic field due to the image current decays on a magnetic-diffusion time scale.more » If the beam pulse is longer than the magnetic diffusion time, the repulsion of the beam tail will be weaker than the repulsion of the beam head. In the absence of an external focusing force, this causes a head-to-tail sweep of the beam toward the wall. This instability is usually thought to be a concern only for long-pulse relativistic electron beams. However, with the advent of multipulse, high current linear induction accelerators, the possibility of pulse-to-pulse coupling of this instability should be investigated. Lastly, we have explored pulse-to-pulse coupling using the linear accelerator model for Dual Axis Radiography for Hydrodynamic Testing beam dynamics code, and we present the results of this paper.« less

  1. The Resistive-Wall Instability in Multipulse Linear Induction Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Carl

    The resistive-wall instability results from the Lorentz force on the beam due to the beam image charge and current. If the beam pipe is perfectly conducting, the electric force due to the image charge attracts the beam to the pipe wall, and the magnetic force due to the image current repels the beam from the wall. For a relativistic beam, these forces almost cancel, leaving a slight attractive force, which is easily overcome by external magnetic focusing. However, if the beam pipe is not perfectly conducting, the magnetic field due to the image current decays on a magnetic-diffusion time scale.more » If the beam pulse is longer than the magnetic diffusion time, the repulsion of the beam tail will be weaker than the repulsion of the beam head. In the absence of an external focusing force, this causes a head-to-tail sweep of the beam toward the wall. This instability is usually thought to be a concern only for long-pulse relativistic electron beams. However, with the advent of multipulse, high current linear induction accelerators, the possibility of pulse-to-pulse coupling of this instability should be investigated. Lastly, we have explored pulse-to-pulse coupling using the linear accelerator model for Dual Axis Radiography for Hydrodynamic Testing beam dynamics code, and we present the results of this paper.« less

  2. Mount Cameroon

    NASA Image and Video Library

    2014-10-09

    NASA Terra spacecraft shows Mount Cameroon, an active volcano in Cameroon near the Gulf of Guinea. It is one of Africa largest volcanoes, rising over 4,000 meters, with more than 100 small cinder cones.

  3. An improved loopless mounting method for cryocrystallography

    NASA Astrophysics Data System (ADS)

    Qi, Jian-Xun; Jiang, Fan

    2010-01-01

    Based on a recent loopless mounting method, a simplified loopless and bufferless crystal mounting method is developed for macromolecular crystallography. This simplified crystal mounting system is composed of the following components: a home-made glass capillary, a brass seat for holding the glass capillary, a flow regulator, and a vacuum pump for evacuation. Compared with the currently prevalent loop mounting method, this simplified method has almost the same mounting procedure and thus is compatible with the current automated crystal mounting system. The advantages of this method include higher signal-to-noise ratio, more accurate measurement, more rapid flash cooling, less x-ray absorption and thus less radiation damage to the crystal. This method can be extended to the flash-freeing of a crystal without or with soaking it in a lower concentration of cryoprotectant, thus it may be the best option for data collection in the absence of suitable cryoprotectant. Therefore, it is suggested that this mounting method should be further improved and extensively applied to cryocrystallographic experiments.

  4. Vertically Aligned Carbon Nanotubes at Different Temperatures by Spray Pyrolysis Techniques

    NASA Astrophysics Data System (ADS)

    Afre, Rakesh A.; Soga, T.; Jimbo, T.; Kumar, Mukul; Ando, Y.; Sharon, M.

    Vertically aligned arrays of multi-walled carbon nanotubes (VACNTs) were grown by spray pyrolysis of turpentine oil and ferrocene mixture at temperatures higher than 700°C. Using this simple method, we report the successful growth of vertically aligned nanotubes of ~300μm length and diameter in the range of ?20-80nm on Si(100) substrate. The ferrocene acts as an in situ Fe catalyst precursor, forming the nano-sized metallic iron particles for formation of VACNTs on the Si substrate. The morphological characteristics of VACNTs are confirmed by SEM, TEM and Raman spectroscopy and growth mechanism is discussed in short.

  5. The ins and outs of modelling vertical displacement events

    NASA Astrophysics Data System (ADS)

    Pfefferle, David

    2017-10-01

    Of the many reasons a plasma discharge disrupts, Vertical Displacement Events (VDEs) lead to the most severe forces and stresses on the vacuum vessel and Plasma Facing Components (PFCs). After loss of positional control, the plasma column drifts across the vacuum vessel and comes in contact with the first wall, at which point the stored magnetic and thermal energy is abruptly released. The vessel forces have been extensively modelled in 2D but, with the constraint of axisymmetry, the fundamental 3D effects that lead to toroidal peaking, sideways forces, field-line stochastisation and halo current rotation have been vastly overlooked. In this work, we present the main results of an intense VDE modelling activity using the implicit 3D extended MHD code M3D-C1 and share our experience with the multi-domain and highly non-linear physics encountered. At the culmination of code development by the M3D-C1 group over the last decade, highlighted by the inclusion of a finite-thickness resistive vacuum vessel within the computational domain, a series of fully 3D non-linear simulations are performed using realistic transport coefficients based on the reconstruction of so-called NSTX frozen VDEs, where the feedback control was purposely switched off to trigger a vertical instability. The vertical drift phase, the evolution of the current quench and the onset of 3D halo/eddy currents are diagnosed and investigated in detail. The sensitivity of the current quench to parameter changes is assessed via 2D non-linear runs. The growth of individual toroidal modes is monitored via linear-complex runs. The intricate evolution of the plasma, which is decaying to large extent in force-balance with induced halo/wall currents, is carefully resolved via 3D non-linear runs. The location, amplitude and rotation of normal currents and wall forces are analysed and compared with experimental traces.

  6. Investigating the Eddy Diffusivity Concept in the Coastal Ocean

    NASA Astrophysics Data System (ADS)

    Rypina, I.; Kirincich, A.; Lentz, S. J.; Sundermeyer, M. A.

    2016-12-01

    We test the validity, utility, and limitations of the lateral eddy diffusivity concept in a coastal environment through analyzing data from coupled drifter and dye releases within the footprint of a high-resolution (800 m) high-frequency radar south of Martha's Vineyard, Massachusetts. Specifically, we investigate how well a combination of radar-based velocities and drifter-derived diffusivities can reproduce observed dye spreading over an 8-h time interval. A drifter-based estimate of an anisotropic diffusivity tensor is used to parameterize small-scale motions that are unresolved and under-resolved by the radar system. This leads to a significant improvement in the ability of the radar to reproduce the observed dye spreading. Our drifter-derived diffusivity estimates are O(10 m2/s), are consistent with the diffusivity inferred from aerial images of the dye taken using the quadcopter-mounted digital camera during the dye release, and are roughly an order of magnitude larger than diffusivity estimates of Okubo (O(1 m2/s)) for similar spatial scales ( 1 km). Despite the fact that the drifter-based diffusivity approach was successful in improving the ability of the radar to reproduce the observed dye spreading, the dispersion of drifters was, for the most part, not consistent with the diffusive spreading regime.

  7. Three-point spherical mirror mount

    DOEpatents

    Cutburth, Ronald W.

    1990-01-01

    A three-point spherical mirror mount for use with lasers is disclosed. The improved mirror mount is adapted to provide a pivot ring having an outer surface with at least three spaced apart mating points to engage an inner spherical surface of a support housing.

  8. Three-point spherical mirror mount

    DOEpatents

    Cutburth, R.W.

    1984-01-23

    A three-point spherical mirror mount for use with lasers is disclosed. The improved mirror mount is adapted to provide a pivot ring having an outer surface with at least three spaced apart mating points to engage an inner spherical surface of a support housing.

  9. Effects of consecutive irradiation and bias temperature stress in p-channel power vertical double-diffused metal oxide semiconductor transistors

    NASA Astrophysics Data System (ADS)

    Davidović, Vojkan; Danković, Danijel; Ilić, Aleksandar; Manić, Ivica; Golubović, Snežana; Djorić-Veljković, Snežana; Prijić, Zoran; Prijić, Aneta; Stojadinović, Ninoslav

    2018-04-01

    The mechanisms responsible for the effects of consecutive irradiation and negative bias temperature (NBT) stress in p-channel power vertical double-diffused MOS (VDMOS) transistors are presented in this paper. The investigation was performed in order to clarify the mechanisms responsible for the effects of specific kind of stress in devices previously subjected to the other kind of stress. In addition, it may help in assessing the behaviour of devices subjected to simultaneous irradiation and NBT stressing. It is shown that irradiation of previously NBT stressed devices leads to additional build-up of oxide trapped charge and interface traps, while NBT stress effects in previously irradiated devices depend on gate bias applied during irradiation and on the total dose received. In the cases of low-dose irradiation or irradiation without gate bias, the subsequent NBT stress leads to slight further device degradation. On the other hand, in the cases of devices previously irradiated to high doses or with gate bias applied during irradiation, NBT stress may have a positive role, as it actually anneals a part of radiation-induced degradation.

  10. Effects of lava-dome growth on the crater glacier of Mount St. Helens, Washington: Chapter 13 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Walder, Joseph S.; Schilling, Steve P.; Vallance, James W.; LaHusen, Richard G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The process of lava-dome emplacement through a glacier was observed for the first time as the 2004-6 eruption of Mount St. Helens proceeded. The glacier that had grown in the crater since the cataclysmic 1980 eruption was split in two by the new lava dome. The two parts of the glacier were successively squeezed against the crater wall. Photography, photogrammetry, and geodetic measurements document glacier deformation of an extreme variety, with strain rates of extraordinary magnitude as compared to normal temperate alpine glaciers. Unlike such glaciers, the Mount St. Helens crater glacier shows no evidence of either speed-up at the beginning of the ablation season or diurnal speed fluctuations during the ablation season. Thus there is evidently no slip of the glacier over its bed. The most reasonable explanation for this anomaly is that meltwater penetrating the glacier is captured by a thick layer of coarse rubble at the bed and then enters the volcano’s groundwater system rather than flowing through a drainage network along the bed. Mechanical consideration of the glacier-squeeze process also leads to an estimate for the driving pressure applied by the growing lava dome.

  11. The vertical distribution of tropospheric ammonia

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Hoell, J. M.; Augustsson, T. R.

    1980-01-01

    A one-dimensional tropospheric photochemical model is used to simulate measured profiles of NH3 obtained with the Infrared Heterodyne Radiometer. The relative roles of homogeneous loss, heterogeneous loss, and vertical eddy transport are discussed in terms of selecting parameters which best fit the measurements. The best fit was obtained for a vertical eddy diffusion coefficient of 200,000/sq cm per sec or greater (corresponding to a characteristic vertical transport time in excess of about 35 days), and a characteristic heterogeneous loss time in excess of 10 days. The characteristic homogeneous chemical loss time was found to be about 40 days at the surface and decreased to about 180 days at 10 km, and not very sensitive to model chemical perturbations. Increased ground-level concentrations of NH3 to about 10 ppb, compared to background surface concentrations of about 1 ppb, were measured several weeks after application of ammonium nitrate fertilizer. This suggests that the volatilization of ammonium nitrate fertilizer is rapid, and an important source of NH3. Because of the characteristic times for the loss mechanisms, synoptic time-scale phenomena may play an important role in determining the tropospheric distribution of NH3 concentrations.

  12. Diffusion and Surface Reaction in Heterogeneous Catalysis

    ERIC Educational Resources Information Center

    Baiker, A.; Richarz, W.

    1978-01-01

    Ethylene hydrogenation on a platinum catalyst, electrolytically applied to a tube wall, is a good system for the study of the interactions between diffusion and surface reaction in heterogeneous catalysis. Theoretical background, apparatus, procedure, and student performance of this experiment are discussed. (BB)

  13. The solar ultraviolet B radiation protection provided by shading devices with regard to its diffuse component.

    PubMed

    Kudish, Avraham I; Harari, Marco; Evseev, Efim G

    2011-10-01

    The composition of the incident solar global ultraviolet B (UVB) radiation with regard to its beam and diffuse radiation fractions is highly relevant with regard to outdoor sun protection. This is especially true with respect to sun protection during leisure-time outdoor sun exposure at the shore and pools, where people tend to escape the sun under shade trees or different types of shading devices, e.g., umbrellas, overhangs, etc., believing they offer protection from the erythemal solar radiation. The degree of sun protection offered by such devices is directly related to the composition of the solar global UVB radiation, i.e., its beam and diffuse fractions. The composition of the incident solar global UVB radiation can be determined by measuring the global UVB (using Solar Light Co. Inc., Model 501A UV-Biometer) and either of its components. The beam component of the UVB radiation was determined by measuring the normal incidence beam radiation using a prototype, tracking instrument consisting of a Solar Light Co. Inc. Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The horizontal beam component of the global UVB radiation was calculated from the measured normal incidence using a simple geometric correlation and the diffuse component is determined as the difference between global and horizontal beam radiations. Horizontal and vertical surfaces positioned under a horizontal overhang/sunshade or an umbrella are not fully protected from exposure to solar global UVB radiation. They can receive a significant fraction of the UVB radiation, depending on their location beneath the shading device, the umbrella radius and the albedo (reflectance) of the surrounding ground surface in the case of a vertical surface. Shading devices such as an umbrella or horizontal overhang/shade provide relief from the solar global radiation and do block the solar global UVB radiation to some extent; nevertheless, a significant fraction of the solar global UVB

  14. Multi-Mounted X-Ray Computed Tomography.

    PubMed

    Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng

    2016-01-01

    Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT.

  15. Multi-Mounted X-Ray Computed Tomography

    PubMed Central

    Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng

    2016-01-01

    Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT. PMID:27073911

  16. A Systematic Approach for Determining Vertical Pile Depth of Embedment in Cohensionless Soils to Withstand Lateral Barge Train Impact Loads

    DTIC Science & Technology

    2017-01-30

    dynamic structural time- history response analysis of flexible approach walls founded on clustered pile groups using Impact_Deck. In Preparation, ERDC...research (Ebeling et al. 2012) has developed simplified analysis procedures for flexible approach wall systems founded on clustered groups of vertical...history response analysis of flexible approach walls founded on clustered pile groups using Impact_Deck. In Preparation, ERDC/ITL TR-16-X. Vicksburg, MS

  17. Housing And Mounting Structure

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Baca, Johnny R.F.; Bryan, Robert P.; Carson, Richard F.; Duckett, III, Edwin B.; McCormick, Frederick B.; Miller, Gregory V.; Peterson, David W.; Smith, Terrance T.

    2005-03-08

    This invention relates to an optical transmitter, receiver or transceiver module, and more particularly, to an apparatus for connecting a first optical connector to a second optical connector. The apparatus comprises: (1) a housing having at least a first end and at least a second end, the first end of the housing capable of receiving the first optical connector, and the second end of the housing capable of receiving the second optical connector; (2) a longitudinal cavity extending from the first end of the housing to the second end of the housing; and (3) an electromagnetic shield comprising at least a portion of the housing. This invention also relates to an apparatus for housing a flexible printed circuit board, and this apparatus comprises: (1) a mounting structure having at least a first surface and a second surface; (2) alignment ridges along the first and second surfaces of the mounting structure, the alignment ridges functioning to align and secure a flexible printed circuit board that is wrapped around and attached to the first and second surfaces of the mounting structure; and (3) a series of heat sink ridges adapted to the mounting structure, the heat sink ridges functioning to dissipate heat that is generated from the flexible printed circuit board.

  18. Off-great-circle paths in transequatorial propagation: 1. Discrete and diffuse types

    NASA Astrophysics Data System (ADS)

    Tsunoda, Roland T.; Maruyama, Takashi; Tsugawa, Takuya; Yokoyama, Tatsuhiro; Ishii, Mamoru; Nguyen, Trang T.; Ogawa, Tadahiko; Nishioka, Michi

    2016-11-01

    There is mounting evidence that plasma structure in nighttime equatorial F layer evolves from large-scale wave structure (LSWS) in the bottomside F layer. This process cannot be ignored because equatorial plasma bubbles (EPBs) arise from large-amplitude LSWS; and, because intense radiowave scintillations are associated with EPBs, understanding the LSWS-to-EPB process is a crucial step toward reliable Space Weather Forecasting. In this regard, the transequatorial propagation (TEP) experiment appears to be the most useful among available research instruments. After a lapse of 30 years, the TEP experiment has been resurrected; a goal of this research is to understand TEP measurements well enough so that they can be used to diagnose the LSWS-to-EPB process. Toward this end, new results are presented in two companion papers. Herein (P1), off-great-circle (OGC) propagation paths are shown to consist of two types, discrete and diffuse. The new findings include the following: (1) a generalized multireflection model that can explain most of the observed properties; (2) the discrete type is supported by multireflections from an unstructured upwelling, (3) the diffuse type is supported by reflections from plasma structure in EPBs; and (4) the observed east-west (EW) asymmetry can be explained in terms of a distorted upwelling or plasma structure along the west wall of an upwelling. In Paper 2 (P2), a second form of observed EW asymmetry is explained in terms of plasma structure, which is not aligned with the geomagnetic field. The findings strongly confirm a close relationship between upwellings, ESF patches, and OGC paths.

  19. High frequency testing of rubber mounts.

    PubMed

    Vahdati, Nader; Saunders, L Ken Lauderbaugh

    2002-04-01

    Rubber and fluid-filled rubber engine mounts are commonly used in automotive and aerospace applications to provide reduced cabin noise and vibration, and/or motion accommodations. In certain applications, the rubber mount may operate at frequencies as high as 5000 Hz. Therefore, dynamic stiffness of the mount needs to be known in this frequency range. Commercial high frequency test machines are practically nonexistent, and the best high frequency test machine on the market is only capable of frequencies as high as 1000 Hz. In this paper, a high frequency test machine is described that allows test engineers to study the high frequency performance of rubber mounts at frequencies up to 5000 Hz.

  20. Pressure vessel bottle mount

    NASA Technical Reports Server (NTRS)

    Wingett, Paul (Inventor)

    2001-01-01

    A mounting assembly for mounting a composite pressure vessel to a vehicle includes a saddle having a curved surface extending between two pillars for receiving the vessel. The saddle also has flanged portions which can be bolted to the vehicle. Each of the pillars has hole in which is mounted the shaft portion of an attachment member. A resilient member is disposed between each of the shaft portions and the holes and loaded by a tightening nut. External to the holes, each of the attachment members has a head portion to which a steel band is attached. The steel band circumscribes the vessel and translates the load on the springs into a clamping force on the vessel. As the vessel expands and contracts, the resilient members expand and contract so that the clamping force applied by the band to the vessel remains constant.

  1. At the border: the plasma membrane-cell wall continuum.

    PubMed

    Liu, Zengyu; Persson, Staffan; Sánchez-Rodríguez, Clara

    2015-03-01

    Plant cells rely on their cell walls for directed growth and environmental adaptation. Synthesis and remodelling of the cell walls are membrane-related processes. During cell growth and exposure to external stimuli, there is a constant exchange of lipids, proteins, and other cell wall components between the cytosol and the plasma membrane/apoplast. This exchange of material and the localization of cell wall proteins at certain spots in the plasma membrane seem to rely on a particular membrane composition. In addition, sensors at the plasma membrane detect changes in the cell wall architecture, and activate cytoplasmic signalling schemes and ultimately cell wall remodelling. The apoplastic polysaccharide matrix is, on the other hand, crucial for preventing proteins diffusing uncontrollably in the membrane. Therefore, the cell wall-plasma membrane link is essential for plant development and responses to external stimuli. This review focuses on the relationship between the cell wall and plasma membrane, and its importance for plant tissue organization. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Vapor transfer prior to the October 2004 eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Kent, A.J.R.; Blundy, J.; Cashman, K.V.; Copper, K.M.; Donnelly, C.; Pallister, J.S.; Reagan, M.; Rowe, M.C.; Thornber, C.R.

    2007-01-01

    Dome lavas from the 2004 eruption of Mount St. Helens show elevated Li contents in plagioclase phenocrysts at the onset of dome growth in October 2004. These cannot be explained by variations in plagioclase-melt partitioning, but require elevated Li contents in coexisting melt, a fact confirmed by measurements of Li contents as high as 207 ??g/g in coexisting melt inclusions. Similar Li enrichment has been observed in material erupted prior to and during the climactic May 1980 eruption, and is likewise best explained via pre-eruptive transfer of an exsolved alkali-rich vapor phase derived from deeper within the magma transport system. Unlike 1980, however, high Li samples from 2004 show no evidence of excess (210Pb)/(226 Ra), implying that measurable Li enrichments may occur despite significant differences in the timing and/or extent of magmatic degassing. Diffusion modeling shows that Li enrichment occurred within -1 yr before eruption, and that magma remained Li enriched until immediately before eruption and cooling. This short flux time and the very high Li contents in ash produced by phreatomagmatic activity prior to the onset of dome extrusion suggest that vapor transfer and accumulation were associated with initiation of the current eruption. Overall, observation of a high Li signature in both 1980 and 2004 dacites indicates that Li enrichment may be a relatively common phenomenon, and may prove useful for petrologic monitoring of Mount St. Helens and other silicic volcanoes. Lithium diffusion is also sufficiently rapid to constrain vapor transfer on similar time scales to short-lived radionuclides. ?? 2007 Geological Society of America.

  3. A measurement system for vertical seawater profiles close to the air-sea interface

    NASA Astrophysics Data System (ADS)

    Sims, Richard P.; Schuster, Ute; Watson, Andrew J.; Yang, Ming Xi; Hopkins, Frances E.; Stephens, John; Bell, Thomas G.

    2017-09-01

    This paper describes a near-surface ocean profiler, which has been designed to precisely measure vertical gradients in the top 10 m of the ocean. Variations in the depth of seawater collection are minimized when using the profiler compared to conventional CTD/rosette deployments. The profiler consists of a remotely operated winch mounted on a tethered yet free-floating buoy, which is used to raise and lower a small frame housing sensors and inlet tubing. Seawater at the inlet depth is pumped back to the ship for analysis. The profiler can be used to make continuous vertical profiles or to target a series of discrete depths. The profiler has been successfully deployed during wind speeds up to 10 m s-1 and significant wave heights up to 2 m. We demonstrate the potential of the profiler by presenting measured vertical profiles of the trace gases carbon dioxide and dimethylsulfide. Trace gas measurements use an efficient microporous membrane equilibrator to minimize the system response time. The example profiles show vertical gradients in the upper 5 m for temperature, carbon dioxide and dimethylsulfide of 0.15 °C, 4 µatm and 0.4 nM respectively.

  4. Reduced-Stress Mounting for Thermocouples

    NASA Technical Reports Server (NTRS)

    Wood, C.

    1986-01-01

    Mounting accommodates widely different coefficients of thermal expansion. In new method, legs of thermocouple placed in separate n- and p-type arrays. Two arrays contact common heat pipe as source but have separate heatpipe sinks. Net expansion (or contraction) taken up by spring mounting on heat-pipe sinks.

  5. Coarsening and persistence in a one-dimensional system of orienting arrowheads: Domain-wall kinetics with A +B →0

    NASA Astrophysics Data System (ADS)

    Khandkar, Mahendra D.; Stinchcombe, Robin; Barma, Mustansir

    2017-01-01

    We demonstrate the large-scale effects of the interplay between shape and hard-core interactions in a system with left- and right-pointing arrowheads <> on a line, with reorientation dynamics. This interplay leads to the formation of two types of domain walls, >< (A ) and <> (B ). The correlation length in the equilibrium state diverges exponentially with increasing arrowhead density, with an ordered state of like orientations arising in the limit. In this high-density limit, the A domain walls diffuse, while the B walls are static. In time, the approach to the ordered state is described by a coarsening process governed by the kinetics of domain-wall annihilation A +B →0 , quite different from the A +A →0 kinetics pertinent to the Glauber-Ising model. The survival probability of a finite set of walls is shown to decay exponentially with time, in contrast to the power-law decay known for A +A →0 . In the thermodynamic limit with a finite density of walls, coarsening as a function of time t is studied by simulation. While the number of walls falls as t-1/2, the fraction of persistent arrowheads decays as t-θ where θ is close to 1/4 , quite different from the Ising value. The global persistence too has θ =1/4 , as follows from a heuristic argument. In a generalization where the B walls diffuse slowly, θ varies continuously, increasing with increasing diffusion constant.

  6. Comparison of mounting methods for the evaluation of fibers by phase contrast microscopy.

    PubMed

    Lee, Eun Gyung; Pang, Thomas W S; Nelson, John; Andrew, Mike; Harper, Martin

    2011-07-01

    The objectives of this study were to evaluate mounting methods for fiber examination of air sample filters by phase contrast microscopy (PCM) and to evaluate differences in fiber counts that might be due to fiber movement. Acetone/triacetin (AT) with various amounts of triacetin and acetone/Euparal (AE) where the mounting medium was placed between the cleared filter wedge and the coverslip were tested as a function of time. Field sample slides collected from a taconite iron-ore processing mill, a tremolitic talc-ore processing mill, and from around a crusher in a meta-basalt stone quarry were prepared with relocatable coverslips to revisit the same field areas on the slides. For each slide, three or four field areas were randomly selected and pictures were taken every 2 weeks to determine any sign of fiber movement over time. For 11 AT slides (named as AT-3.5) prepared with 3.5 μl of the mounting medium according to the NIOSH 7400 method, no fiber movements were detected over 59 weeks. On the other hand, AT slides prepared with larger quantities (10, 15, and 20 μl) of the mounting medium (named as AT-10) and AE slides prepared with ∼10 μl mounting medium showed fiber movement from the eighth day at the earliest. Fiber movement began earlier for the slides mounted with excess triacetin than for those mounted with Euparal. The sample slide storage method, either vertically or horizontally, did not seem to accelerate fiber movement. Additionally, two other modified methods, dimethylformamide solution/Euparal (mDE) and dimethylformamide solution/triacetin (mDT), were also prepared where the mounting medium was placed between the cleared filter wedge and the glass slide. The findings of fiber movements were similar; when 3.5 μl of triacetin was used for the mDT slides, fiber movements were not detected, while fibers on slides prepared with 10 μl triacetin (mDT-10) moved around. No fiber movements were observed for the mDE slides at any time during 59 weeks. Once

  7. Stereo Pair with Landsat Overlay, Mount Meru, Tanzania

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Mount Meru is an active volcano located just 70 kilometers (44 miles)west of Mount Kilimanjaro. It reaches 4,566 meters (14,978 feet) in height but has lost much of its bulk due to an eastward volcanic blast sometime in its distant past, perhaps similar to the eruption of Mount Saint Helens in Washington State in 1980. Mount Meru most recently had a minor eruption about a century ago. The several small cones and craters seen in the vicinity probably reflect numerous episodes of volcanic activity. Mount Meru is the topographic centerpiece of Arusha National Park, but Ngurdoto Crater to the east (image top) is also prominent. The fertile slopes of both volcanoes rise above the surrounding savanna and support a forest that hosts diverse wildlife, including nearly 400 species of birds, and also monkeys and leopards, while the floor of Ngurdoto Crater hosts herds of elephants and buffaloes.

    This stereoscopic image was generated by draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model. Two differing perspectives were then calculated, one for each eye. They can be seen in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing or by downloading and printing the image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of Earth's surface in its full three dimensions.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot)resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar

  8. On extreme points of the diffusion polytope

    DOE PAGES

    Hay, M. J.; Schiff, J.; Fisch, N. J.

    2017-01-04

    Here, we consider a class of diffusion problems defined on simple graphs in which the populations at any two vertices may be averaged if they are connected by an edge. The diffusion polytope is the convex hull of the set of population vectors attainable using finite sequences of these operations. A number of physical problems have linear programming solutions taking the diffusion polytope as the feasible region, e.g. the free energy that can be removed from plasma using waves, so there is a need to describe and enumerate its extreme points. We also review known results for the case ofmore » the complete graph Kn, and study a variety of problems for the path graph Pn and the cyclic graph Cn. Finall, we describe the different kinds of extreme points that arise, and identify the diffusion polytope in a number of simple cases. In the case of increasing initial populations on Pn the diffusion polytope is topologically an n-dimensional hypercube.« less

  9. The influence of vertical sorbed phase transport on the fate of organic chemicals in surface soils.

    PubMed

    McLachlan, Michael S; Czub, Gertje; Wania, Frank

    2002-11-15

    Gaseous exchange between surface soil and the atmosphere is an important process in the environmental fate of many chemicals. It was hypothesized that this process is influenced by vertical transport of chemicals sorbed to soil particles. Vertical sorbed phase transport in surface soils occurs by many processes such as bioturbation, cryoturbation, and erosion into cracks formed by soil drying. The solution of the advection/diffusion equation proposed by Jury et al. to describe organic chemical fate in a uniformly contaminated surface soil was modified to include vertical sorbed phase transport This process was modeled using a sorbed phase diffusion coefficient, the value of which was derived from soil carbon mass balances in the literature. The effective diffusivity of the chemical in a typical soil was greater in the modified model than in the model without sorbed phase transport for compounds with log K(OW) > 2 and log K(OA) > 6. Within this chemical partitioning space, the rate of volatilization from the surface soil was larger in the modified model than in the original model by up to a factor of 65. The volatilization rate was insensitive to the value of the sorbed phase diffusion coefficient throughout much of this chemical partitioning space, indicating that the surface soil layer was essentially well-mixed and that the mass transfer coefficient was determined by diffusion through the atmospheric boundary layer only. When this process was included in a non-steady-state regional multimedia chemical fate model running with a generic emissions scenario to air, the predicted soil concentrations increased by upto a factor of 25,whilethe air concentrations decreased by as much as a factor of approximately 3. Vertical sorbed phase transport in the soil thus has a major impact on predicted air and soil concentrations, the state of equilibrium, and the direction and magnitude of the chemical flux between air and soil. It is a key process influencing the environmental

  10. Double-diffusive instabilities in ancient seawater

    NASA Astrophysics Data System (ADS)

    Pawlowicz, Rich; Scheifele, Ben; Zaloga, Artem; Wuest, Alfred; Sommer, Tobias

    2015-04-01

    Powell Lake, British Columbia, Canada is a geothermally heated lake about 350m deep with a saline lower layer that was isolated from the ocean by coastal uplift about 11000 years ago, after the last ice age. Careful temperature and conductivity profiling measurements show consistent, stable, and spatially/temporally coherent steps resulting from double-diffusive processes in certain ranges of depth, vertically interspersed with other depth ranges where these signatures are not present. These features are quasi-stable for at least several years. Although molecular diffusion has removed about half the salt from the deepest waters and biogeochemical processes have slightly modified the water composition, the lack of tidal processes and shear-driven mixing, as well as an accurate estimate of heat flux from both sediment heat flux measurements and gradient measurements in a region not susceptible to diffusive instabilities, makes this a unique geophysical laboratory to study double diffusion. Here we present a detailed picture of the structure of Powell Lake and its double-diffusive stair cases, and suggest shortcomings with existing parameterizations for fluxes through such staircases.

  11. Bearing capacity and rigidity of short plastic-concrete-tubal vertical columns under transverse load

    NASA Astrophysics Data System (ADS)

    Dolzhenko, A. V.; Naumov, A. E.; Shevchenko, A. E.

    2018-03-01

    The results of mathematical modeling in determining strain-stress distribution parameters of a short plastic-concrete-tubal vertical column under horizontal load as those in vertical constructions are described. Quantitative parameters of strain-stress distribution during vertical and horizontal loads and horizontal stiffness were determined by finite element modeling. The internal stress in the concrete column core was analyzed according to equivalent stress in Mohr theory of failure. It was determined that the bearing capacity of a short plastic- concrete-tubal vertical column is 25% higher in resistibility and 15% higher in rigidness than those of the caseless concrete columns equal in size. Cracks formation in the core of a short plastic-concrete-tubal vertical column happens under significantly bigger horizontal loads with less amount of concrete spent than that in caseless concrete columns. The significant increase of bearing capacity and cracking resistance of a short plastic-concrete-tubal vertical column under vertical and horizontal loads allows recommending them as highly effective and highly reliable structural wall elements in civil engineering.

  12. SWCNT-MoS2 -SWCNT Vertical Point Heterostructures.

    PubMed

    Zhang, Jin; Wei, Yang; Yao, Fengrui; Li, Dongqi; Ma, He; Lei, Peng; Fang, Hehai; Xiao, Xiaoyang; Lu, Zhixing; Yang, Juehan; Li, Jingbo; Jiao, Liying; Hu, Weida; Liu, Kaihui; Liu, Kai; Liu, Peng; Li, Qunqing; Lu, Wei; Fan, Shoushan; Jiang, Kaili

    2017-02-01

    A vertical point heterostructure (VPH) is constructed by sandwiching a two-dimensional (2D) MoS 2 flake with two cross-stacked metallic single-walled carbon nanotubes. It can be used as a field-effect transistor with high on/off ratio and a light detector with high spatial resolution. Moreover, the hybrid 1D-2D-1D VPHs open up new possibilities for nanoelectronics and nano-optoelectronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The 19 March 1982 Eruption and Lahar at Mount Saint Helens: Implications for Martian Outlfow Channels?

    NASA Technical Reports Server (NTRS)

    Beach, G. L.

    1984-01-01

    A small explosive eruption of Mount St. Helens set into motion an unusually complex series of geomorphic and hydrologic processes that had not previously been described in the literature. This event was unusual in that a laterally-directed eruption dislodged and mobilized a thick snowpack from the surrounding crater floor and walls, resulting in the formation of a temporary lake. Catastrophic release of this self-impounded lake spawned a series of destructive debris avalanches and debris flows that moved rapidly down the volcano's north flank and into the North Toutle River valley. Catastrophic release of volatiles mobilized by volcanic activity has been discussed as a possible mechanism to explain a class of outflow channels on Mars. The eruption of Mount St. Helens provides a unique opportunity to study the deposits and landforms created by such an event; a more detailed field study and examination of Viking photographs of martian outflow channels is underway.

  14. Mounting support for a photovoltaic module

    DOEpatents

    Brandt, Gregory Michael; Barsun, Stephan K.; Coleman, Nathaniel T.; Zhou, Yin

    2013-03-26

    A mounting support for a photovoltaic module is described. The mounting support includes a foundation having an integrated wire-way ledge portion. A photovoltaic module support mechanism is coupled with the foundation.

  15. Performance of a low-pressure-ratio centrifugal compressor with four diffuser designs

    NASA Technical Reports Server (NTRS)

    Klassen, H. A.

    1973-01-01

    A low-pressure-ratio centrifugal compressor was tested with four different diffuser configurations. One diffuser had airfoil vanes. Two were pipe diffusers. One pipe diffuser had 7.5 deg cone diffusing passages. The other had trumpet-shaped passages designed for linear static-pressure rise from throat to exit. The fourth configuration had flat vanes with elliptical leading edges similar to those of pipe diffusers. The side walls were contoured to produce a linear pressure rise. Peak compressor efficiencies were 0.82 with the airfoil vane and conical pipe diffusers, 0.80 with the trumpet, and 0.74 with the flat-vane design. Surge margin and useful range were greater for the airfoil-vane diffuser than for the other three.

  16. Optical processing furnace with quartz muffle and diffuser plate

    DOEpatents

    Sopori, B.L.

    1996-11-19

    An optical furnace for annealing a process wafer is disclosed comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy. 5 figs.

  17. Wall Boundary Layer Measurements for the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Wieseman, Carol D.; Bennett, Robert M.

    2007-01-01

    Measurements of the boundary layer parameters in the NASA Langley Transonic Dynamics tunnel were conducted during extensive calibration activities following the facility conversion from a Freon-12 heavy-gas test medium to R-134a. Boundary-layer rakes were mounted on the wind-tunnel walls, ceiling, and floor. Measurements were made over the range of tunnel operation envelope in both heavy gas and air and without a model in the test section at three tunnel stations. Configuration variables included open and closed east sidewall wall slots, for air and R134a test media, reentry flap settings, and stagnation pressures over the full range of tunnel operation. The boundary layer thickness varied considerably for the six rakes. The thickness for the east wall was considerably larger that the other rakes and was also larger than previously reported. There generally was some reduction in thickness at supersonic Mach numbers, but the effect of stagnation pressure, and test medium were not extensive.

  18. Full waveform ambient noise tomography of Mount Rainer

    NASA Astrophysics Data System (ADS)

    Flinders, A. F.; Shen, Y.

    2014-12-01

    Mount Rainier towers over the landscape of western Washington, ranking with Fuji-yama in Japan, Mt. Pinatubo in the Philippines, and Mt. Vesuvius in Italy, as one of the great stratovolcanoes of the world. Notwithstanding it's picturesque stature, Mt. Rainier is potentially the most devastating stratovolcano in North America, with more than 3.5 million people living beneath its shadow in the Seattle-Tacoma area. The primary hazard posed by the volcano is in the form of highly destructive volcanic debris flows (lahars). These lahars form when water and/or melted ice erode away and entrain preexisting volcanic sediment. At Mt. Rainier these flows are often initiated by sector collapse of the volcano's hydrothermally rotten flanks and compounded from Mt. Rainier's extensive snow and glacial ice coverage. It is therefore imperative to ascertain the extent of summit hydrothermal alteration within the volcano, and determine areas prone to collapse. Despite being one of the sixteen volcanoes globally designated by the International Association of Volcanology and Chemistry of the Earth's Interior as warranting detailed and focused study, Mt. Rainier remains enigmatic both in terms of shallow internal structure and the degree of summit hydrothermal alteration. We image this shallow internal structure and areas of possible summit alteration using ambient noise tomography. Our full waveform forward modeling includes high-resolution topography, allowing us to accurately account for the effects of topography on the propagation of short-period Rayleigh waves. Empirical Green's functions were extracted from 80 stations within 200 km of Mount Rainier and compared with synthetic greens functions over multiple frequency bands from 2-28 seconds. The preliminary model shows a broad (60 km wide) low shear-wave velocity anomaly in the mid-crust beneath the volcano. The mid-crust low-velocity body extends to the surface beneath the volcano summit in a narrow near-vertical conduit, the

  19. High-resolution well-log derived dielectric properties of gas-hydrate-bearing sediments, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Sun, Y.; Goldberg, D.; Collett, T.; Hunter, R.

    2011-01-01

    A dielectric logging tool, electromagnetic propagation tool (EPT), was deployed in 2007 in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert Well), North Slope, Alaska. The measured dielectric properties in the Mount Elbert well, combined with density log measurements, result in a vertical high-resolution (cm-scale) estimate of gas hydrate saturation. Two hydrate-bearing sand reservoirs about 20 m thick were identified using the EPT log and exhibited gas-hydrate saturation estimates ranging from 45% to 85%. In hydrate-bearing zones where variation of hole size and oil-based mud invasion are minimal, EPT-based gas hydrate saturation estimates on average agree well with lower vertical resolution estimates from the nuclear magnetic resonance logs; however, saturation and porosity estimates based on EPT logs are not reliable in intervals with substantial variations in borehole diameter and oil-based invasion.EPT log interpretation reveals many thin-bedded layers at various depths, both above and below the thick continuous hydrate occurrences, which range from 30-cm to about 1-m thick. Such thin layers are not indicated in other well logs, or from the visual observation of core, with the exception of the image log recorded by the oil-base microimager. We also observe that EPT dielectric measurements can be used to accurately detect fine-scale changes in lithology and pore fluid properties of hydrate-bearing sediments where variation of hole size is minimal. EPT measurements may thus provide high-resolution in-situ hydrate saturation estimates for comparison and calibration with laboratory analysis. ?? 2010 Elsevier Ltd.

  20. A seismic analysis for masonry constructions: The different schematization methods of masonry walls

    NASA Astrophysics Data System (ADS)

    Olivito, Renato. S.; Codispoti, Rosamaria; Scuro, Carmelo

    2017-11-01

    Seismic analysis of masonry structures is usually analyzed through the use of structural calculation software based on equivalent frames method or to macro-elements method. In these approaches, the masonry walls are divided into vertical elements, masonry walls, and horizontal elements, so-called spandrel elements, interconnected by rigid nodes. The aim of this work is to make a critical comparison between different schematization methods of masonry wall underlining the structural importance of the spandrel elements. In order to implement the methods, two different structural calculation software were used and an existing masonry building has been examined.