Sample records for wallerian degeneration wlds

  1. Activity-dependent degeneration of axotomized neuromuscular synapses in WldS mice

    PubMed Central

    Brown, R.; Hynes-Allen, A.; Swan, A.J.; Dissanayake, K.N.; Gillingwater, T.H.; Ribchester, R.R.

    2015-01-01

    Activity and disuse of synapses are thought to influence progression of several neurodegenerative diseases in which synaptic degeneration is an early sign. Here we tested whether stimulation or disuse renders neuromuscular synapses more or less vulnerable to degeneration, using axotomy as a robust trigger. We took advantage of the slow synaptic degeneration phenotype of axotomized neuromuscular junctions in flexor digitorum brevis (FDB) and deep lumbrical (DL) muscles of Wallerian degeneration-Slow (WldS) mutant mice. First, we maintained ex vivo FDB and DL nerve-muscle explants at 32 °C for up to 48 h. About 90% of fibers from WldS mice remained innervated, compared with about 36% in wild-type muscles at the 24-h checkpoint. Periodic high-frequency nerve stimulation (100 Hz: 1 s/100 s) reduced synaptic protection in WldS preparations by about 50%. This effect was abolished in reduced Ca2+ solutions. Next, we assayed FDB and DL innervation after 7 days of complete tetrodotoxin (TTX)-block of sciatic nerve conduction in vivo, followed by tibial nerve axotomy. Five days later, only about 9% of motor endplates remained innervated in the paralyzed muscles, compared with about 50% in 5 day-axotomized muscles from saline-control-treated WldS mice with no conditioning nerve block. Finally, we gave mice access to running wheels for up to 4 weeks prior to axotomy. Surprisingly, exercising WldS mice ad libitum for 4 weeks increased about twofold the amount of subsequent axotomy-induced synaptic degeneration. Together, the data suggest that vulnerability of mature neuromuscular synapses to axotomy, a potent neurodegenerative trigger, may be enhanced bimodally, either by disuse or by hyperactivity. PMID:25617654

  2. The axon-protective WLD(S) protein partially rescues mitochondrial respiration and glycolysis after axonal injury.

    PubMed

    Godzik, Katharina; Coleman, Michael P

    2015-04-01

    The axon-protective Wallerian degeneration slow (WLD(S)) protein can ameliorate the decline in axonal ATP levels after neurite transection. Here, we tested the hypothesis that this effect is associated with maintenance of mitochondrial respiration and/or glycolysis. We used isolated neurites of superior cervical ganglion (SCG) cultures in the Seahorse XF-24 Metabolic Flux Analyser to determine mitochondrial respiration and glycolysis under different conditions. We observed that both mitochondrial respiration and glycolysis declined significantly during the latent phase of Wallerian degeneration. WLD(S) partially reduced the decline both in glycolysis and in mitochondrial respiration. In addition, we found that depleting NAD levels in uncut cultures led to changes in mitochondrial respiration and glycolysis similar to those rescued by WLD(S) after cut, suggesting that the maintenance of NAD levels in Wld(S) neurites after axonal injury at least partially underlies the maintenance of ATP levels. However, by using another axon-protective mutation (Sarm1(-/-)), we could demonstrate that rescue of basal ECAR (and hence probably glycolysis) rather than basal OCR (mitochondrial respiration) may be part of the protective phenotype to delay Wallerian degeneration. These findings open new routes to study glycolysis and the connection between NAD and ATP levels in axon degeneration, which may help to eventually develop therapeutic strategies to treat neurodegenerative diseases.

  3. WldS but not Nmnat1 protects dopaminergic neurites from MPP+ neurotoxicity.

    PubMed

    Antenor-Dorsey, Jo Ann V; O'Malley, Karen L

    2012-02-08

    The WldS mouse mutant ("Wallerian degeneration-slow") delays axonal degeneration in a variety of disorders including in vivo models of Parkinson's disease. The mechanisms underlying WldS -mediated axonal protection are unclear, although many studies have attributed WldS neuroprotection to the NAD+-synthesizing Nmnat1 portion of the fusion protein. Here, we used dissociated dopaminergic cultures to test the hypothesis that catalytically active Nmnat1 protects dopaminergic neurons from toxin-mediated axonal injury. Using mutant mice and lentiviral transduction of dopaminergic neurons, the present findings demonstrate that WldS but not Nmnat1, Nmnat3, or cytoplasmically-targeted Nmnat1 protects dopamine axons from the parkinsonian mimetic N-methyl-4-phenylpyridinium (MPP+). Moreover, NAD+ synthesis is not required since enzymatically-inactive WldS still protects. In addition, NAD+ by itself is axonally protective and together with WldS is additive in the MPP+ model. Our data suggest that NAD+ and WldS act through separate and possibly parallel mechanisms to protect dopamine axons. As MPP+ is thought to impair mitochondrial function, these results suggest that WldS might be involved in preserving mitochondrial health or maintaining cellular metabolism.

  4. Relationship of acute axonal damage, Wallerian degeneration, and clinical disability in multiple sclerosis.

    PubMed

    Singh, Shailender; Dallenga, Tobias; Winkler, Anne; Roemer, Shanu; Maruschak, Brigitte; Siebert, Heike; Brück, Wolfgang; Stadelmann, Christine

    2017-03-17

    Axonal damage and loss substantially contribute to the incremental accumulation of clinical disability in progressive multiple sclerosis. Here, we assessed the amount of Wallerian degeneration in brain tissue of multiple sclerosis patients in relation to demyelinating lesion activity and asked whether a transient blockade of Wallerian degeneration decreases axonal loss and clinical disability in a mouse model of inflammatory demyelination. Wallerian degeneration and acute axonal damage were determined immunohistochemically in the periplaque white matter of multiple sclerosis patients with early actively demyelinating lesions, chronic active lesions, and inactive lesions. Furthermore, we studied the effects of Wallerian degeneration blockage on clinical severity, inflammatory pathology, acute axonal damage, and long-term axonal loss in experimental autoimmune encephalomyelitis using Wallerian degeneration slow (Wld S ) mutant mice. The highest numbers of axons undergoing Wallerian degeneration were found in the perilesional white matter of multiple sclerosis patients early in the disease course and with actively demyelinating lesions. Furthermore, Wallerian degeneration was more abundant in patients harboring chronic active as compared to chronic inactive lesions. No co-localization of neuropeptide Y-Y1 receptor, a bona fide immunohistochemical marker of Wallerian degeneration, with amyloid precursor protein, frequently used as an indicator of acute axonal transport disturbance, was observed in human and mouse tissue, indicating distinct axon-degenerative processes. Experimentally, a delay of Wallerian degeneration, as observed in Wld S mice, did not result in a reduction of clinical disability or acute axonal damage in experimental autoimmune encephalomyelitis, further supporting that acute axonal damage as reflected by axonal transport disturbances does not share common molecular mechanisms with Wallerian degeneration. Furthermore, delaying Wallerian degeneration

  5. Age-dependent synapse withdrawal at axotomised neuromuscular junctions in Wlds mutant and Ube4b/Nmnat transgenic mice

    PubMed Central

    Gillingwater, Thomas H; Thomson, Derek; Mack, Till G A; Soffin, Ellen M; Mattison, Richard J; Coleman, Michael P; Ribchester, Richard R

    2002-01-01

    Axons in WldS mutant mice are protected from Wallerian degeneration by overexpression of a chimeric Ube4b/Nmnat (Wld) gene. Expression of Wld protein was independent of age in these mice. However we identified two distinct neuromuscular synaptic responses to axotomy. In young adult Wlds mice, axotomy induced progressive, asynchronous synapse withdrawal from motor endplates, strongly resembling neonatal synapse elimination. Thus, five days after axotomy, 50–90 % of endplates were still partially or fully occupied and expressed endplate potentials (EPPs). By 10 days, fewer than 20 % of endplates still showed evidence of synaptic activity. Recordings from partially occupied junctions indicated a progressive decrease in quantal content in inverse proportion to endplate occupancy. In Wlds mice aged > 7 months, axons were still protected from axotomy but synapses degenerated rapidly, in wild-type fashion: within three days less than 5 % of endplates contained vestiges of nerve terminals. The axotomy-induced synaptic withdrawal phenotype decayed with a time constant of ∼30 days. Regenerated synapses in mature Wlds mice recapitulated the juvenile phenotype. Within 4–6 days of axotomy 30–50 % of regenerated nerve terminals still occupied motor endplates. Age-dependent synapse withdrawal was also seen in transgenic mice expressing the Wld gene. Co-expression of Wld protein and cyan fluorescent protein (CFP) in axons and neuromuscular synapses did not interfere with the protection from axotomy conferred by the Wld gene. Thus, Wld expression unmasks age-dependent, compartmentally organised programmes of synapse withdrawal and degeneration. PMID:12231635

  6. Death Receptor 6 Promotes Wallerian Degeneration in Peripheral Axons.

    PubMed

    Gamage, Kanchana K; Cheng, Irene; Park, Rachel E; Karim, Mardeen S; Edamura, Kazusa; Hughes, Christopher; Spano, Anthony J; Erisir, Alev; Deppmann, Christopher D

    2017-03-20

    Axon degeneration during development is required to sculpt a functional nervous system and is also a hallmark of pathological insult, such as injury [1, 2]. Despite similar morphological characteristics, very little overlap in molecular mechanisms has been reported between pathological and developmental degeneration [3-5]. In the peripheral nervous system (PNS), developmental axon pruning relies on receptor-mediated extrinsic degeneration mechanisms to determine which axons are maintained or degenerated [5-7]. Receptors have not been implicated in Wallerian axon degeneration; instead, axon autonomous, intrinsic mechanisms are thought to be the primary driver for this type of axon disintegration [8-10]. Here we survey the role of neuronally expressed, paralogous tumor necrosis factor receptor super family (TNFRSF) members in Wallerian degeneration. We find that an orphan receptor, death receptor 6 (DR6), is required to drive axon degeneration after axotomy in sympathetic and sensory neurons cultured in microfluidic devices. We sought to validate these in vitro findings in vivo using a transected sciatic nerve model. Consistent with the in vitro findings, DR6 -/- animals displayed preserved axons up to 4 weeks after injury. In contrast to phenotypes observed in Wld s and Sarm1 -/- mice, preserved axons in DR6 -/- animals display profound myelin remodeling. This indicates that deterioration of axons and myelin after axotomy are mechanistically distinct processes. Finally, we find that JNK signaling after injury requires DR6, suggesting a link between this novel extrinsic pathway and the axon autonomous, intrinsic pathways that have become established for Wallerian degeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Mechanisms of motor recovery after subtotal spinal cord injury: insights from the study of mice carrying a mutation (WldS) that delays cellular responses to injury.

    PubMed

    Zhang, Z; Guth, L; Steward, O

    1998-01-01

    Partial lesions of the mammalian spinal cord result in an immediate motor impairment that recovers gradually over time; however, the cellular mechanisms responsible for the transient nature of this paralysis have not been defined. A unique opportunity to identify those injury-induced cellular responses that mediate the recovery of function has arisen from the discovery of a unique mutant strain of mice in which the onset of Wallerian degeneration is dramatically delayed. In this strain of mice (designated WldS for Wallerian degeneration, slow), many of the cellular responses to spinal cord injury are also delayed. We have used this experimental animal model to evaluate possible causal relationships between these delayed cellular responses and the onset of functional recovery. For this purpose, we have compared the time course of locomotor recovery in C57BL/6 (control) mice and in WldS (mutant) mice by hemisecting the spinal cord at T8 and evaluating locomotor function at daily postoperative intervals. The time course of locomotor recovery (as determined by the Tarlov open-field walking procedure) was substantially delayed in mice carrying the WldS mutation: C57BL/6 control mice began to stand and walk within 6 days (mean Tarlov score of 4), whereas mutant mice did not exhibit comparable locomotor function until 16 days postoperatively. (a) The rapid return of locomotor function in the C57BL/6 mice suggests that the recovery resulted from processes of functional plasticity rather than from regeneration or collateral sprouting of nerve fibers. (b) The marked delay in the return of locomotor function in WldS mice indicates that the processes of neuroplasticity are induced by degenerative changes in the damaged neurons. (c) These strains of mice can be effectively used in future studies to elucidate the specific biochemical and physiological alterations responsible for inducing functional plasticity and restoring locomotor function after spinal cord injury.

  8. Retrograde and Wallerian Axonal Degeneration Occur Synchronously after Retinal Ganglion Cell Axotomy

    PubMed Central

    Kanamori, Akiyasu; Catrinescu, Maria-Magdalena; Belisle, Jonathan M.; Costantino, Santiago; Levin, Leonard A.

    2013-01-01

    Axonal injury and degeneration are pivotal pathological events in diseases of the nervous system. In the past decade, it has been recognized that the process of axonal degeneration is distinct from somal degeneration and that axoprotective strategies may be distinct from those that protect the soma. Preserving the cell body via neuroprotection cannot improve function if the axon is damaged, because the soma is still disconnected from its target. Therefore, understanding the mechanisms of axonal degeneration is critical for developing new therapeutic interventions for axonal disease treatment. We combined in vivo imaging with a multilaser confocal scanning laser ophthalmoscope and in vivo axotomy with a diode-pumped solid-state laser to assess the time course of Wallerian and retrograde degeneration of unmyelinated retinal ganglion cell axons in living rats for 4 weeks after intraretinal axotomy. Laser injury resulted in reproducible axon loss both distal and proximal to the site of injury. Longitudinal polarization-sensitive imaging of axons demonstrated that Wallerian and retrograde degeneration occurred synchronously. Neurofilament immunostaining of retinal whole-mounts confirmed axonal loss and demonstrated sparing of adjacent axons to the axotomy site. In vivo fluorescent imaging of axonal transport and photobleaching of labeled axons demonstrated that the laser axotomy model did not affect adjacent axon function. These results are consistent with a shared mechanism for Wallerian and retrograde degeneration. PMID:22642911

  9. Calpains mediate axonal cytoskeleton disintegration during Wallerian degeneration

    PubMed Central

    Ma, Marek; Ferguson, Toby A.; Schoch, Kathleen M.; Li, Jian; Qian, Yaping; Shofer, Frances S.; Saatman, Kathryn E.; Neumar, Robert W.

    2013-01-01

    In both the central nervous system (CNS) and peripheral nervous system (PNS), transected axons undergo Wallerian degeneration. Even though Augustus Waller first described this process after transection of axons in 1850, the molecular mechanisms may be shared, at least in part, by many human diseases. Early pathology includes failure of synaptic transmission, target denervation, and granular disintegration of the axonal cytoskeleton (GDC). The Ca2+-dependent proteases calpains have been implicated in GDC but causality has not been established. To test the hypothesis that calpains play a causal role in axonal and synaptic degeneration in vivo, we studied transgenic mice that express human calpastatin (hCAST), the endogenous calpain inhibitor, in optic and sciatic nerve axons. Five days after optic nerve transection and 48 hours after sciatic nerve transection, robust neurofilament proteolysis observed in wild-type controls was reduced in hCAST transgenic mice. Protection of the axonal cytoskeleton in sciatic nerves of hCAST mice was nearly complete 48 hours post-transection. In addition, hCAST expression preserved the morphological integrity of neuromuscular junctions. However, compound muscle action potential amplitudes after nerve transection were similar in wild-type and hCAST mice. These results, in total, provide direct evidence that calpains are responsible for the morphological degeneration of the axon and synapse during Wallerian degeneration. PMID:23542511

  10. Wld S protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice.

    PubMed

    Conforti, Laura; Wilbrey, Anna; Morreale, Giacomo; Janeckova, Lucie; Beirowski, Bogdan; Adalbert, Robert; Mazzola, Francesca; Di Stefano, Michele; Hartley, Robert; Babetto, Elisabetta; Smith, Trevor; Gilley, Jonathan; Billington, Richard A; Genazzani, Armando A; Ribchester, Richard R; Magni, Giulio; Coleman, Michael

    2009-02-23

    The slow Wallerian degeneration (Wld(S)) protein protects injured axons from degeneration. This unusual chimeric protein fuses a 70-amino acid N-terminal sequence from the Ube4b multiubiquitination factor with the nicotinamide adenine dinucleotide-synthesizing enzyme nicotinamide mononucleotide adenylyl transferase 1. The requirement for these components and the mechanism of Wld(S)-mediated neuroprotection remain highly controversial. The Ube4b domain is necessary for the protective phenotype in mice, but precisely which sequence is essential and why are unclear. Binding to the AAA adenosine triphosphatase valosin-containing protein (VCP)/p97 is the only known biochemical property of the Ube4b domain. Using an in vivo approach, we show that removing the VCP-binding sequence abolishes axon protection. Replacing the Wld(S) VCP-binding domain with an alternative ataxin-3-derived VCP-binding sequence restores its protective function. Enzyme-dead Wld(S) is unable to delay Wallerian degeneration in mice. Thus, neither domain is effective without the function of the other. Wld(S) requires both of its components to protect axons from degeneration.

  11. Acute Axonal Degeneration Drives Development of Cognitive, Motor, and Visual Deficits after Blast-Mediated Traumatic Brain Injury in Mice

    PubMed Central

    Voorhees, Jaymie R.; Genova, Rachel M.; Britt, Jeremiah K.; McDaniel, Latisha; Harper, Matthew M.

    2016-01-01

    Abstract Axonal degeneration is a prominent feature of many forms of neurodegeneration, and also an early event in blast-mediated traumatic brain injury (TBI), the signature injury of soldiers in Iraq and Afghanistan. It is not known, however, whether this axonal degeneration is what drives development of subsequent neurologic deficits after the injury. The Wallerian degeneration slow strain (WldS) of mice is resistant to some forms of axonal degeneration because of a triplicated fusion gene encoding the first 70 amino acids of Ufd2a, a ubiquitin-chain assembly factor, that is linked to the complete coding sequence of nicotinamide mononucleotide adenylyltransferase 1 (NMAT1). Here, we demonstrate that resistance of WldS mice to axonal degeneration after blast-mediated TBI is associated with preserved function in hippocampal-dependent spatial memory, cerebellar-dependent motor balance, and retinal and optic nerve–dependent visual function. Thus, early axonal degeneration is likely a critical driver of subsequent neurobehavioral complications of blast-mediated TBI. Future therapeutic strategies targeted specifically at mitigating axonal degeneration may provide a uniquely beneficial approach to treating patients suffering from the effects of blast-mediated TBI. PMID:27822499

  12. Acute Axonal Degeneration Drives Development of Cognitive, Motor, and Visual Deficits after Blast-Mediated Traumatic Brain Injury in Mice.

    PubMed

    Yin, Terry C; Voorhees, Jaymie R; Genova, Rachel M; Davis, Kevin C; Madison, Ashley M; Britt, Jeremiah K; Cintrón-Pérez, Coral J; McDaniel, Latisha; Harper, Matthew M; Pieper, Andrew A

    2016-01-01

    Axonal degeneration is a prominent feature of many forms of neurodegeneration, and also an early event in blast-mediated traumatic brain injury (TBI), the signature injury of soldiers in Iraq and Afghanistan. It is not known, however, whether this axonal degeneration is what drives development of subsequent neurologic deficits after the injury. The Wallerian degeneration slow strain ( WldS ) of mice is resistant to some forms of axonal degeneration because of a triplicated fusion gene encoding the first 70 amino acids of Ufd2a, a ubiquitin-chain assembly factor, that is linked to the complete coding sequence of nicotinamide mononucleotide adenylyltransferase 1 (NMAT1). Here, we demonstrate that resistance of WldS mice to axonal degeneration after blast-mediated TBI is associated with preserved function in hippocampal-dependent spatial memory, cerebellar-dependent motor balance, and retinal and optic nerve-dependent visual function. Thus, early axonal degeneration is likely a critical driver of subsequent neurobehavioral complications of blast-mediated TBI. Future therapeutic strategies targeted specifically at mitigating axonal degeneration may provide a uniquely beneficial approach to treating patients suffering from the effects of blast-mediated TBI.

  13. Mechanisms of Distal Axonal Degeneration in Peripheral Neuropathies

    PubMed Central

    Cashman, Christopher R.; Höke, Ahmet

    2015-01-01

    Peripheral neuropathy is a common complication of a variety of diseases and treatments, including diabetes, cancer chemotherapy, and infectious causes (HIV, hepatitis C, and Campylobacter jejuni). Despite the fundamental difference between these insults, peripheral neuropathy develops as a combination of just six primary mechanisms: altered metabolism, covalent modification, altered organelle function and reactive oxygen species formation, altered intracellular and inflammatory signaling, slowed axonal transport, and altered ion channel dynamics and expression. All of these pathways converge to lead to axon dysfunction and symptoms of neuropathy. The detailed mechanisms of axon degeneration itself have begun to be elucidated with studies of animal models with altered degeneration kinetics, including the slowed Wallerian degeneration (Wlds) and Sarmknockout animal models. These studies have shown axonal degeneration to occur througha programmed pathway of injury signaling and cytoskeletal degradation. Insights into the common disease insults that converge on the axonal degeneration pathway promise to facilitate the development of therapeutics that may be effective against other mechanisms of neurodegeneration. PMID:25617478

  14. Deletion of Sarm1 gene is neuroprotective in two models of peripheral neuropathy.

    PubMed

    Turkiew, Elliot; Falconer, Debbie; Reed, Nicole; Höke, Ahmet

    2017-09-01

    Distal axon degeneration seen in many peripheral neuropathies is likely to share common molecular mechanisms with Wallerian degeneration. Although several studies in mouse models of peripheral neuropathy showed prevention of axon degeneration in the slow Wallerian degeneration (Wlds) mouse, the role of a recently identified player in Wallerian degeneration, Sarm1, has not been explored extensively. In this study, we show that mice lacking the Sarm1 gene are resistant to distal axonal degeneration in a model of chemotherapy induced peripheral neuropathy caused by paclitaxel and a model of high fat diet induced putative metabolic neuropathy. This study extends the role of Sarm1 to axon degeneration seen in peripheral neuropathies and identifies it as a likely target for therapeutic development. © 2017 Peripheral Nerve Society.

  15. Wallerian demyelination: chronicle of a cellular cataclysm.

    PubMed

    Tricaud, Nicolas; Park, Hwan Tae

    2017-11-01

    Wallerian demyelination is characteristic of peripheral nerve degeneration after traumatic injury. After axonal degeneration, the myelinated Schwann cell undergoes a stereotypical cellular program that results in the disintegration of the myelin sheath, a process termed demyelination. In this review, we chronologically describe this program starting from the late and visible features of myelin destruction and going backward to the initial molecular steps that trigger the nuclear reprogramming few hours after injury. Wallerian demyelination is a wonderful model for myelin degeneration occurring in the diverse forms of demyelinating peripheral neuropathies that plague human beings.

  16. Extracellular ATP inhibits Schwann cell dedifferentiation and proliferation in an ex vivo model of Wallerian degeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Youn Ho; Lee, Seo Jin; Jung, Junyang, E-mail: jjung@khu.ac.kr

    Highlights: Black-Right-Pointing-Pointer ATP-treated sciatic explants shows the decreased expression of p75NGFR. Black-Right-Pointing-Pointer Extracellular ATP inhibits the expression of phospho-ERK1/2. Black-Right-Pointing-Pointer Lysosomal exocytosis is involved in Schwann cell dedifferentiation. Black-Right-Pointing-Pointer Extracellular ATP blocks Schwann cell proliferation in sciatic explants. -- Abstract: After nerve injury, Schwann cells proliferate and revert to a phenotype that supports nerve regeneration. This phenotype-changing process can be viewed as Schwann cell dedifferentiation. Here, we investigated the role of extracellular ATP in Schwann cell dedifferentiation and proliferation during Wallerian degeneration. Using several markers of Schwann cell dedifferentiation and proliferation in sciatic explants, we found that extracellular ATP inhibitsmore » Schwann cell dedifferentiation and proliferation during Wallerian degeneration. Furthermore, the blockage of lysosomal exocytosis in ATP-treated sciatic explants is sufficient to induce Schwann cell dedifferentiation. Together, these findings suggest that ATP-induced lysosomal exocytosis may be involved in Schwann cell dedifferentiation.« less

  17. Gradual Loss of Myelin and Formation of an Astrocytic Scar during Wallerian Degeneration in the Human Spinal Cord

    ERIC Educational Resources Information Center

    A. Buss, G. A. Brook; B. Kakulas; D. Martin; R. Franzen; J. Schoenen; J. Noth; A. B. Schmitt

    2004-01-01

    Axons undergo Wallerian degeneration distal to a point of injury. Experimental investigations have documented many of the cellular and molecular events that underlie this behaviour. Since relatively little is known about such events in human CNS pathologies and current experimental intervention strategies indicate the possibility of significant…

  18. Live Imaging of Calcium Dynamics during Axon Degeneration Reveals Two Functionally Distinct Phases of Calcium Influx

    PubMed Central

    Yamagishi, Yuya; Tessier-Lavigne, Marc

    2015-01-01

    Calcium is a key regulator of axon degeneration caused by trauma and disease, but its specific spatial and temporal dynamics in injured axons remain unclear. To clarify the function of calcium in axon degeneration, we observed calcium dynamics in single injured neurons in live zebrafish larvae and tested the temporal requirement for calcium in zebrafish neurons and cultured mouse DRG neurons. Using laser axotomy to induce Wallerian degeneration (WD) in zebrafish peripheral sensory axons, we monitored calcium dynamics from injury to fragmentation, revealing two stereotyped phases of axonal calcium influx. First, axotomy triggered a transient local calcium wave originating at the injury site. This initial calcium wave only disrupted mitochondria near the injury site and was not altered by expression of the protective WD slow (WldS) protein. Inducing multiple waves with additional axotomies did not change the kinetics of degeneration. In contrast, a second phase of calcium influx occurring minutes before fragmentation spread as a wave throughout the axon, entered mitochondria, and was abolished by WldS expression. In live zebrafish, chelating calcium after the first wave, but before the second wave, delayed the progress of fragmentation. In cultured DRG neurons, chelating calcium early in the process of WD did not alter degeneration, but chelating calcium late in WD delayed fragmentation. We propose that a terminal calcium wave is a key instructive component of the axon degeneration program. SIGNIFICANCE STATEMENT Axon degeneration resulting from trauma or neurodegenerative disease can cause devastating deficits in neural function. Understanding the molecular and cellular events that execute axon degeneration is essential for developing treatments to address these conditions. Calcium is known to contribute to axon degeneration, but its temporal requirements in this process have been unclear. Live calcium imaging in severed zebrafish neurons and temporally controlled

  19. TGF-β1 is critical for Wallerian degeneration after rat sciatic nerve injury.

    PubMed

    Li, M; Zhang, P; Li, H; Zhu, Y; Cui, S; Yao, D

    2015-01-22

    Wallerian degeneration (WD) is a process of axonal degeneration distal to the injury site followed by a robust regenerative response. It involves degeneration and regeneration which can be directly induced by nerve injury and activated by transcription factors. Although WD has been studied extensively, the precise mechanisms of transcription factors regulating WD are still elusive. In this study, we reported the effect of transforming growth factor-β1 (TGF-β1) on WD after rat sciatic nerve injury. The data showed that TGF-β1 may express in injured rat sciatic nerve and cultured Schwann cells (SCs). Knock down of TGF-β1 expressions resulted in the reduction of SC proliferation and apoptosis, up regulation of cytokines and Smad2, 4. Enhanced expression of TGF-β1 could promote SC proliferation and apoptosis, down regulation of cytokines and Smad2, 4. Altered expressions of TGF-β1 may affect Smad and AKT but not c-Jun and extracellular regulated protein kinase (ERK) pathways. Our results revealed the role of TGF-β1 on WD and provided the basis for the molecular mechanisms of TGF-β1-regulated nerve degeneration and/or regeneration. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Wallerian Degeneration Beyond the Corticospinal Tracts: Conventional and Advanced MRI Findings.

    PubMed

    Chen, Yin Jie; Nabavizadeh, Seyed Ali; Vossough, Arastoo; Kumar, Sunil; Loevner, Laurie A; Mohan, Suyash

    2017-05-01

    Wallerian degeneration (WD) is defined as progressive anterograde disintegration of axons and accompanying demyelination after an injury to the proximal axon or cell body. Since the 1980s and 1990s, conventional magnetic resonance imaging (MRI) sequences have been shown to be sensitive to changes of WD in the subacute to chronic phases. More recently, advanced MRI techniques, such as diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI), have demonstrated some of earliest changes attributed to acute WD, typically on the order of days. In addition, there is increasing evidence on the value of advanced MRI techniques in providing important prognostic information related to WD. This article reviews the utility of conventional and advanced MRI techniques for assessing WD, by focusing not only on the corticospinal tract but also other neural tracts less commonly thought of, including corticopontocerebellar tract, dentate-rubro-olivary pathway, posterior column of the spinal cord, corpus callosum, limbic circuit, and optic pathway. The basic anatomy of these neural pathways will be discussed, followed by a comprehensive review of existing literature supported by instructive clinical examples. The goal of this review is for readers to become more familiar with both conventional and advanced MRI findings of WD involving important neural pathways, as well as to illustrate increasing utility of advanced MRI techniques in providing important prognostic information for various pathologies. Copyright © 2016 by the American Society of Neuroimaging.

  1. Wallerian degeneration in C57BL/6J and A/J mice: differences in time course of neurofilament and myelin breakdown, macrophage recruitment and iNOS expression

    PubMed Central

    de la Hoz, Cristiane L R; Oliveira, Alexandre L R; de S Queiroz, Luciano; Langone, Francesco

    2003-01-01

    The lower regeneration potential reported for C57BL/6J mice strain after peripheral nerve lesion may result from alterations in crucial events during Wallerian degeneration. We analysed neurofilament and myelin breakdown, macrophage recruitment, NADPH-diaphorase reaction and inducible nitric oxide synthase (iNOS) expression in transected sciatic nerves of C57BL/6J and A/J mice. The neurofilament volume density was lower in C57BL/6J strain mice at 1 and 3 days after lesion, and later equalled the density observed in A/J. C57BL/6J mice presented a high number of cells containing myelin debris, 3 and 5 days after the lesion. In both strains iNOS immunoreactivity was intense in macrophages and less evident in Schwann cells. However, a delay in macrophage recruitment and a lower percentage of iNOS-expressing macrophages on the third day were observed in C57BL/6J mice. NADPH-diaphorase reaction disclosed a similar pattern for both strains until the seventh day. However, at 5 days, cells with slender processes involving ellipsoid segments showed a well-defined cytoplasmic labelling in C57BL/6J whereas in A/J most of these cells exhibited a more granular and disperse labelling. We propose that these differences between A/J and C57BL/6J strains during Wallerian degeneration may be implicated in the lower regeneration potential observed in the latter. PMID:14686692

  2. Complete adult neurogenesis within a Wallerian degenerating nerve expressed as an ectopic ganglion.

    PubMed

    Nakano, Tomonori; Kurimoto, Shigeru; Kato, Shuichi; Asano, Kenichi; Hirata, Takuma; Kiyama, Hiroshi; Hirata, Hitoshi

    2018-06-01

    Neurogenesis in the adult peripheral nervous system remains to be demonstrated. We transplanted embryonic neural stem cells into a Wallerian degenerating nerve graft and observed development of a nodular structure consisting of neurons, glia, and Schwann cells. Histological analysis revealed a structure loosely resembling the spinal cord, including a synaptic network that formed along the neuron. Furthermore, the new axons reinnervated the paralysed muscle, forming both de novo and revived neuromuscular junctions. Reinnervation of the paralysed muscle resulted in significantly greater mean wet muscle weight and muscle fibre cross-sectional area on the cell transplantation side than on the surgical control side (body weight 0.071 ± 0.011% vs. 0.051 ± 0.007%, p = .006; area 355.6 ± 345.2 vs. 114.0 ± 132.0 μm 2 , p < .001). Electrophysiological experiments demonstrated a functional connection between the neurons and muscle; hence, we identified this nodule as an ectopic ganglion. Surprisingly, in green rat experiments, most of these glial cells, but none of the neurons, expressed enhanced green fluorescent protein, suggesting that the cells constituting the ectopic ganglion were derived from both transplanted stem cells and endogenous stem cells. Such adult neurogenesis in a peripheral nerve related to neural stem cell transplantation has not been reported previously, and these results form the basis for a novel regenerative medicine approach in paralysed muscle. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Endomicroscopy and electromyography of neuromuscular junctions in situ

    PubMed Central

    Brown, Rosalind; Dissanayake, Kosala N; Skehel, Paul A; Ribchester, Richard R

    2014-01-01

    Objective Electromyography (EMG) is used routinely to diagnose neuromuscular dysfunction in a wide range of peripheral neuropathies, myopathies, and neuromuscular degenerative diseases including motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Definitive neurological diagnosis may also be indicated by the analysis of pathological neuromuscular innervation in motor-point biopsies. Our objective in this study was to preempt motor-point biopsy by combining live imaging with electrophysiological analysis of slow degeneration of neuromuscular junctions (NMJs) in vivo. Methods We combined conventional needle electromyography with fiber-optic confocal endomicroscopy (CEM), using an integrated hand-held, 1.5-mm-diameter probe. We utilized as a test bed, various axotomized muscles in the hind limbs of anaesthetized, double-homozygous thy1.2YFP16: WldS mice, which coexpress the Wallerian-degeneration Slow (WldS) protein and yellow fluorescent protein (YFP) in motor neurons. We also tested exogenous vital stains, including Alexa488-α-bungarotoxin; the styryl pyridinium dye 4-Di-2-Asp; and a GFP conjugate of botulinum toxin Type A heavy chain (GFP-HcBoNT/A). Results We show that an integrated EMG/CEM probe is effective in longitudinal evaluation of functional and morphological changes that take place over a 7-day period during axotomy-induced, slow neuromuscular synaptic degeneration. EMG amplitude declined in parallel with overt degeneration of motor nerve terminals. EMG/CEM was safe and effective when nerve terminals and motor endplates were selectively stained with vital dyes. Interpretation Our findings constitute proof-of-concept, based on live imaging in an animal model, that combining EMG/CEM may be useful as a minimally invasive precursor or alternative to motor-point biopsy in neurological diagnosis and for monitoring local administration of potential therapeutics. PMID:25540801

  4. Neuroimmune processes associated with Wallerian degeneration support neurotrophin-3-induced axonal sprouting in the injured spinal cord.

    PubMed

    Chen, Qin; Shine, H David

    2013-10-01

    Lesions of the spinal cord cause two distinctive types of neuroimmune responses, a response at the lesion site that leads to additional tissue destruction and a more subtle response, termed Wallerian degeneration (WD), that occurs distal to the lesion site. We have evidence that the neuroimmune response associated with WD may support tissue repair. Previously, we found that overexpression of neurotrophin-3 (NT-3) induced axonal growth in the spinal cord after a unilateral corticospinal tract (CST) lesion, but only if the immune system was intact and activated. We reasoned that a neuroimmune response associated with WD was involved in this neuroplasticity. To test this, we compared NT-3-induced axonal sprouting in athymic nude rats that lack functional T cells with rats with functional T cells and in nude rats grafted with CD4(+) T cells or CD8(+) T cells. There was no sprouting in nude rats and in nude rats grafted with CD8(+) T cells. However, nude rats grafted with CD4(+) T cells mounted a sprouting response. To determine which CD4(+) subtype, type 1 T helper (Th1) or type 2 T helper (Th2) cells, was responsible, we grafted Th1 and Th2 cells into nude rats and tested whether they would support sprouting. Axonal sprouting was greater in rats grafted with Th2 cells, demonstrating that the Th2 subtype was responsible for supporting axonal sprouting. These data suggest that WD activates Th2 cells that, along with the direct effects of NT-3 on CST axons, act to support axonal sprouting in the lesioned spinal cord. Copyright © 2013 Wiley Periodicals, Inc.

  5. Chronic nerve compression alters Schwann cell myelin architecture in a murine model

    PubMed Central

    Gupta, Ranjan; Nassiri, Nima; Hazel, Antony; Bathen, Mary; Mozaffar, Tahseen

    2011-01-01

    Introduction Myelinating Schwann cells compartmentalize their outermost layer to form actin-rich channels known as Cajal bands. Here, we investigate changes in Schwann cell architecture and cytoplasmic morphology in a novel mouse model of carpal tunnel syndrome. Methods Chronic nerve compression (CNC) injury was created in wild-type and slow-Wallerian degeneration (WldS) mice. Over 12 weeks, nerves were electrodiagnostically assessed, and Schwann cell morphology was thoroughly evaluated. Results A decline in nerve conduction velocity and increase in g-ratio is observed without early axonal damage. Schwann cells display shortened internodal lengths and severely disrupted Cajal bands. Quite surprisingly, the latter is reconstituted without improvements to nerve conduction velocity. Discussion Chronic entrapment injuries like carpal tunnel syndrome are primarily mediated by the Schwann cell response, wherein decreases in internodal length and myelin thickness disrupt the efficiency of impulse propagation. Restitution of Cajal bands is not sufficient for remyelination post-CNC injury. PMID:22246880

  6. MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2

    PubMed Central

    Walker, Lauren J; Summers, Daniel W; Sasaki, Yo; Brace, EJ; Milbrandt, Jeffrey; DiAntonio, Aaron

    2017-01-01

    Injury-induced (Wallerian) axonal degeneration is regulated via the opposing actions of pro-degenerative factors such as SARM1 and a MAPK signal and pro-survival factors, the most important of which is the NAD+ biosynthetic enzyme NMNAT2 that inhibits activation of the SARM1 pathway. Here we investigate the mechanism by which MAPK signaling facilitates axonal degeneration. We show that MAPK signaling promotes the turnover of the axonal survival factor NMNAT2 in cultured mammalian neurons as well as the Drosophila ortholog dNMNAT in motoneurons. The increased levels of NMNAT2 are required for the axonal protection caused by loss of MAPK signaling. Regulation of NMNAT2 by MAPK signaling does not require SARM1, and so cannot be downstream of SARM1. Hence, pro-degenerative MAPK signaling functions upstream of SARM1 by limiting the levels of the essential axonal survival factor NMNAT2 to promote injury-dependent SARM1 activation. These findings are consistent with a linear molecular pathway for the axonal degeneration program. DOI: http://dx.doi.org/10.7554/eLife.22540.001 PMID:28095293

  7. Intracellular calcium release through IP3R or RyR contributes to secondary axonal degeneration.

    PubMed

    Orem, Ben C; Pelisch, Nicolas; Williams, Joshua; Nally, Jacqueline M; Stirling, David P

    2017-10-01

    Severed CNS axons often retract or dieback away from the injury site and fail to regenerate. The precise mechanisms underlying acute axonal dieback and secondary axonal degeneration remain poorly understood. Here we investigate the role of Ca 2+ store mediated intra-axonal Ca 2+ release in acute axonal dieback and secondary axonal degeneration. To differentiate between primary (directly transected) and "bystander" axonal injury (axons spared by the initial injury but then succumb to secondary degeneration) in real-time we use our previously published highly focal laser-induced spinal cord injury (LiSCI) ex vivo model. Ascending spinal cord dorsal column axons that express YFP were severed using an 800 nm laser pulse while being imaged continuously using two-photon excitation microscopy. We inhibited two major intra-axonal Ca 2+ store channels, ryanodine receptors (RyR) and IP 3 R, with ryanodine or 2-APB, respectively, to individually determine their role in axonal dieback and secondary axonal degeneration. Each antagonist was dissolved in artificial CSF and applied 1h post-injury alone or in combination, and continuously perfused for the remainder of the imaging session. Initially following LiSCI, transected axons retracted equal distances both distal and proximal to the lesion. However, by 4h after injury, the distal axonal segments that are destined for Wallerian degeneration had significantly retracted further than their proximal counterparts. We also found that targeting either RyR or IP 3 R using pharmacological and genetic approaches significantly reduced proximal axonal dieback and "bystander" secondary degeneration of axons compared to vehicle controls at 6h post-injury. Combined treatment effects on secondary axonal degeneration were similar to either drug in isolation. Together, these results suggest that intra-axonal Ca 2+ store mediated Ca 2+ release through RyR or IP 3 R contributes to secondary axonal degeneration following SCI. Copyright © 2017

  8. A neuroprotective agent that inactivates prodegenerative TrkA and preserves mitochondria

    PubMed Central

    Feinberg, Konstantin; Kolaj, Adelaida; Wu, Chen; Grinshtein, Natalie; Krieger, Jonathan R.; Moran, Michael F.; Rubin, Lee L.

    2017-01-01

    Axon degeneration is an early event and pathological in neurodegenerative conditions and nerve injuries. To discover agents that suppress neuronal death and axonal degeneration, we performed drug screens on primary rodent neurons and identified the pan-kinase inhibitor foretinib, which potently rescued sympathetic, sensory, and motor wt and SOD1 mutant neurons from trophic factor withdrawal-induced degeneration. By using primary sympathetic neurons grown in mass cultures and Campenot chambers, we show that foretinib protected neurons by suppressing both known degenerative pathways and a new pathway involving unliganded TrkA and transcriptional regulation of the proapoptotic BH3 family members BimEL, Harakiri,and Puma, culminating in preservation of mitochondria in the degenerative setting. Foretinib delayed chemotherapy-induced and Wallerian axonal degeneration in culture by preventing axotomy-induced local energy deficit and preserving mitochondria, and peripheral Wallerian degeneration in vivo. These findings identify a new axon degeneration pathway and a potentially clinically useful therapeutic drug. PMID:28877995

  9. Nerve fiber layer (NFL) degeneration associated with acute q-switched laser exposure in the nonhuman primate

    NASA Astrophysics Data System (ADS)

    Zwick, Harry; Zuclich, Joseph A.; Stuck, Bruce E.; Gagliano, Donald A.; Lund, David J.; Glickman, Randolph D.

    1995-01-01

    We have evaluated acute laser retinal exposure in non-human primates using a Rodenstock scanning laser ophthalmoscope (SLO) equipped with spectral imaging laser sources at 488, 514, 633, and 780 nm. Confocal spectral imaging at each laser wavelength allowed evaluation of the image plane from deep within the retinal vascular layer to the more superficial nerve fiber layer in the presence and absence of the short wavelength absorption of the macular pigment. SLO angiography included both fluorescein and indocyanine green procedures to assess the extent of damage to the sensory retina, the retinal pigment epithelium (RPE), and the choroidal vasculature. All laser exposures in this experiment were from a Q-switched Neodymium laser source at an exposure level sufficient to produce vitreous hemorrhage. Confocal imaging of the nerve fiber layer revealed discrete optic nerve sector defects between the lesion site and the macula (retrograde degeneration) as well as between the lesion site and the optic disk (Wallerian degeneration). In multiple hemorrhagic exposures, lesions placed progressively distant from the macula or overlapping the macula formed bridging scars visible at deep retinal levels. Angiography revealed blood flow disturbance at the retina as well as at the choroidal vascular level. These data suggest that acute parafoveal laser retinal injury can involve both direct full thickness damage to the sensory and non-sensory retina and remote nerve fiber degeneration. Such injury has serious functional implications for both central and peripheral visual function.

  10. Integrating retrogenesis theory to Alzheimer's disease pathology: insight from DTI-TBSS investigation of the white matter microstructural integrity.

    PubMed

    Alves, Gilberto Sousa; Oertel Knöchel, Viola; Knöchel, Christian; Carvalho, André Férrer; Pantel, Johannes; Engelhardt, Eliasz; Laks, Jerson

    2015-01-01

    Microstructural abnormalities in white matter (WM) are often reported in Alzheimer's disease (AD) and may reflect primary or secondary circuitry degeneration (i.e., due to cortical atrophy). The interpretation of diffusion tensor imaging (DTI) eigenvectors, known as multiple indices, may provide new insights into the main pathological models supporting primary or secondary patterns of WM disruption in AD, the retrogenesis, and Wallerian degeneration models, respectively. The aim of this review is to analyze the current literature on the contribution of DTI multiple indices to the understanding of AD neuropathology, taking the retrogenesis model as a reference for discussion. A systematic review using MEDLINE, EMBASE, and PUBMED was performed. Evidence suggests that AD evolves through distinct patterns of WM disruption, in which retrogenesis or, alternatively, the Wallerian degeneration may prevail. Distinct patterns of WM atrophy may be influenced by complex interactions which comprise disease status and progression, fiber localization, concurrent risk factors (i.e., vascular disease, gender), and cognitive reserve. The use of DTI multiple indices in addition to other standard multimodal methods in dementia research may help to determine the contribution of retrogenesis hypothesis to the understanding of neuropathological hallmarks that lead to AD.

  11. Secondary damage in the spinal cord after motor cortex injury in rats.

    PubMed

    Weishaupt, Nina; Silasi, Gergely; Colbourne, Frederick; Fouad, Karim

    2010-08-01

    When neurons within the motor cortex are fatally injured, their axons, many of which project into the spinal cord, undergo wallerian degeneration. Pathological processes occurring downstream of the cortical damage have not been extensively studied. We created a focal forelimb motor cortex injury in rats and found that axons from cell bodies located in the hindlimb motor cortex (spared by the cortical injury) become secondarily damaged in the spinal cord. To assess axonal degeneration in the spinal cord, we quantified silver staining in the corticospinal tract (CST) at 1 week and 4 weeks after the injury. We found a significant increase in silver deposition at the thoracic spinal cord level at 4 weeks compared to 1 week post-injury. At both time points, no degenerating neurons could be found in the hindlimb motor cortex. In a separate experiment, we showed that direct injury of neurons within the hindlimb motor cortex caused marked silver deposition in the thoracic CST at 1 week post-injury, and declined thereafter. Therefore, delayed axonal degeneration in the thoracic spinal cord after a focal forelimb motor cortex injury is indicative of secondary damage at the spinal cord level. Furthermore, immunolabeling of spinal cord sections showed that a local inflammatory response dominated by partially activated Iba-1-positive microglia is mounted in the CST, a viable mechanism to cause the observed secondary degeneration of fibers. In conclusion, we demonstrate that following motor cortex injury, wallerian degeneration of axons in the spinal cord leads to secondary damage, which is likely mediated by inflammatory processes.

  12. Macular degeneration (image)

    MedlinePlus

    Macular degeneration is a disease of the retina that affects the macula in the back of the eye. ... see fine details. There are two types of macular degeneration, dry and wet. Dry macular degeneration is more ...

  13. Changes of statistical structural fluctuations unveils an early compacted degraded stage of PNS myelin

    NASA Astrophysics Data System (ADS)

    Poccia, Nicola; Campi, Gaetano; Ricci, Alessandro; Caporale, Alessandra S.; di Cola, Emanuela; Hawkins, Thomas A.; Bianconi, Antonio

    2014-06-01

    Degradation of the myelin sheath is a common pathology underlying demyelinating neurological diseases from Multiple Sclerosis to Leukodistrophies. Although large malformations of myelin ultrastructure in the advanced stages of Wallerian degradation is known, its subtle structural variations at early stages of demyelination remains poorly characterized. This is partly due to the lack of suitable and non-invasive experimental probes possessing sufficient resolution to detect the degradation. Here we report the feasibility of the application of an innovative non-invasive local structure experimental approach for imaging the changes of statistical structural fluctuations in the first stage of myelin degeneration. Scanning micro X-ray diffraction, using advances in synchrotron x-ray beam focusing, fast data collection, paired with spatial statistical analysis, has been used to unveil temporal changes in the myelin structure of dissected nerves following extraction of the Xenopus laevis sciatic nerve. The early myelin degeneration is a specific ordered compacted phase preceding the swollen myelin phase of Wallerian degradation. Our demonstration of the feasibility of the statistical analysis of SµXRD measurements using biological tissue paves the way for further structural investigations of degradation and death of neurons and other cells and tissues in diverse pathological states where nanoscale structural changes may be uncovered.

  14. Macular degeneration

    MedlinePlus Videos and Cool Tools

    ... center of the field of vision. Macular degeneration results from a partial breakdown of the insulating layer ... of blood vessels behind the retina. Macular degeneration results in the loss of central vision only.

  15. Macular Degeneration: An Overview.

    ERIC Educational Resources Information Center

    Chalifoux, L. M.

    1991-01-01

    This article presents information on macular degeneration for professionals helping persons with this disease adjust to their visual loss. It covers types of macular degeneration, the etiology of the disease, and its treatment. Also considered are psychosocial problems and other difficulties that persons with age-related macular degeneration face.…

  16. Dry Macular Degeneration

    MedlinePlus

    ... developing macular degeneration. Include fish in your diet. Omega-3 fatty acids, which are found in fish, may ... macular degeneration. Nuts, such as walnuts, also contain omega-3 fatty acids. By Mayo Clinic Staff . Mayo Clinic ...

  17. Degenerate pressure driven modified nucleus-acoustic waves in degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Mamun, A. A.

    2018-02-01

    The existence of degenerate pressure driven modified nucleus-acoustic (DPDMNA) waves propagating in a cold degenerate quantum plasma (DQP) system [containing cold inertialess degenerate electron species (DES), cold inertial non-degenerate light nucleus species (LNS), and stationary heavy nucleus species (HNS)] is predicted for the first time. The DPDMNA waves (in which the mass density of the cold LNS provides the inertia and the cold inertialess DES gives rise to the restoring force) are new since they completely disappear if the degenerate pressure of the cold DES is neglected. It is found that the phase speed (Vp) of the DPDMNA waves decreases with the rise of the charge number density of the stationary HNS for both non-relativistic and ultra-relativistic DES, and that the ultra-relativistic DES does not have any effect on Vp when β = 1, where β = Λc/Λe with Λ e = ne 0 - 1 / 3 being the average inter-electron distance in the DQP system and Λc being the constant (˜10-10 cm) for the DES. However, the ultra-relativistic DES does have quite a significant effect on Vp for β ≫ 1 and β ≪ 1, and the ultra-relativistic effect significantly enhances (reduces) Vp for β ≫ 1 (β ≪ 1). The DPDMNA waves and their dispersion properties are expected to be useful in understanding the basic features of the electrostatic perturbation mode in space and laboratory DQP systems.

  18. X-82 to Treat Age-related Macular Degeneration

    ClinicalTrials.gov

    2018-05-30

    Age-Related Macular Degeneration (AMD); Macular Degeneration; Exudative Age-related Macular Degeneration; AMD; Macular Degeneration, Age-related, 10; Eye Diseases; Retinal Degeneration; Retinal Diseases

  19. Accelerated cellular senescence in degenerate intervertebral discs: a possible role in the pathogenesis of intervertebral disc degeneration

    PubMed Central

    Le Maitre, Christine Lyn; Freemont, Anthony John; Hoyland, Judith Alison

    2007-01-01

    Current evidence implicates intervertebral disc degeneration as a major cause of low back pain, although its pathogenesis is poorly understood. Numerous characteristic features of disc degeneration mimic those seen during ageing but appear to occur at an accelerated rate. We hypothesised that this is due to accelerated cellular senescence, which causes fundamental changes in the ability of disc cells to maintain the intervertebral disc (IVD) matrix, thus leading to IVD degeneration. Cells isolated from non-degenerate and degenerate human tissue were assessed for mean telomere length, senescence-associated β-galactosidase (SA-β-gal), and replicative potential. Expression of P16INK4A (increased in cellular senescence) was also investigated in IVD tissue by means of immunohistochemistry. RNA from tissue and cultured cells was used for real-time polymerase chain reaction analysis for matrix metalloproteinase-13, ADAMTS 5 (a disintegrin and metalloprotease with thrombospondin motifs 5), and P16INK4A. Mean telomere length decreased with age in cells from non-degenerate tissue and also decreased with progressive stages of degeneration. In non-degenerate discs, there was an age-related increase in cellular expression of P16INK4A. Cells from degenerate discs (even from young patients) exhibited increased expression of P16INK4A, increased SA-β-gal staining, and a decrease in replicative potential. Importantly, there was a positive correlation between P16INK4A and matrix-degrading enzyme gene expression. Our findings indicate that disc cell senescence occurs in vivo and is accelerated in IVD degeneration. Furthermore, the senescent phenotype is associated with increased catabolism, implicating cellular senescence in the pathogenesis of IVD degeneration. PMID:17498290

  20. Expression of inducible heat shock proteins Hsp27 and Hsp70 in the visual pathway of rats subjected to various models of retinal ganglion cell injury.

    PubMed

    Chidlow, Glyn; Wood, John P M; Casson, Robert J

    2014-01-01

    Inducible heat shock proteins (Hsps) are upregulated in the central nervous system in response to a wide variety of injuries. Surprisingly, however, no coherent picture has emerged regarding the magnitude, duration and cellular distribution of inducible Hsps in the visual system following injury to retinal ganglion cells (RGCs). The current study sought, therefore, to achieve the following two objectives. The first aim of this study was to systematically characterise the patterns of Hsp27 and -70 expression in the retina and optic nerve in four discrete models of retinal ganglion cell (RGC) degeneration: axonal injury (ON crush), somato-dendritic injury (NMDA-induced excitotoxicity), chronic hypoperfusion (bilateral occlusion of the carotid arteris) and experimental glaucoma. The second aim was to document Hsp27 and -70 expression in the optic tract, the subcortical retinorecipient areas of the brain, and the visual cortex during Wallerian degeneration of RGC axons. Hsp27 was robustly upregulated in the retina in each injury paradigm, with the chronic models, 2VO and experimental glaucoma, displaying a more persistent Hsp27 transcriptional response than the acute models. Hsp27 expression was always associated with astrocytes and with a subset of RGCs in each of the models excluding NMDA. Hsp27 was present within astrocytes of the optic nerve/optic tract in control rats. During Wallerian degeneration, Hsp27 was upregulated in the optic nerve/optic tract and expressed de novo by astrocytes in the lateral geniculate nucleus and the stratum opticum of the superior colliculus. Conversely, the results of our study indicate Hsp70 was minimally induced in any of the models of injury, either in the retina, or in the optic nerve/optic tract, or in the subcortical, retinorecipient areas of the brain. The findings of the present study augment our understanding of the involvement of Hsp27 and Hsp70 in the response of the visual system to RGC degeneration.

  1. Expression of Inducible Heat Shock Proteins Hsp27 and Hsp70 in the Visual Pathway of Rats Subjected to Various Models of Retinal Ganglion Cell Injury

    PubMed Central

    Chidlow, Glyn; Wood, John P. M.; Casson, Robert J.

    2014-01-01

    Inducible heat shock proteins (Hsps) are upregulated in the central nervous system in response to a wide variety of injuries. Surprisingly, however, no coherent picture has emerged regarding the magnitude, duration and cellular distribution of inducible Hsps in the visual system following injury to retinal ganglion cells (RGCs). The current study sought, therefore, to achieve the following two objectives. The first aim of this study was to systematically characterise the patterns of Hsp27 and −70 expression in the retina and optic nerve in four discrete models of retinal ganglion cell (RGC) degeneration: axonal injury (ON crush), somato-dendritic injury (NMDA-induced excitotoxicity), chronic hypoperfusion (bilateral occlusion of the carotid arteris) and experimental glaucoma. The second aim was to document Hsp27 and −70 expression in the optic tract, the subcortical retinorecipient areas of the brain, and the visual cortex during Wallerian degeneration of RGC axons. Hsp27 was robustly upregulated in the retina in each injury paradigm, with the chronic models, 2VO and experimental glaucoma, displaying a more persistent Hsp27 transcriptional response than the acute models. Hsp27 expression was always associated with astrocytes and with a subset of RGCs in each of the models excluding NMDA. Hsp27 was present within astrocytes of the optic nerve/optic tract in control rats. During Wallerian degeneration, Hsp27 was upregulated in the optic nerve/optic tract and expressed de novo by astrocytes in the lateral geniculate nucleus and the stratum opticum of the superior colliculus. Conversely, the results of our study indicate Hsp70 was minimally induced in any of the models of injury, either in the retina, or in the optic nerve/optic tract, or in the subcortical, retinorecipient areas of the brain. The findings of the present study augment our understanding of the involvement of Hsp27 and Hsp70 in the response of the visual system to RGC degeneration. PMID:25535743

  2. Acute myelopathy selectively involving lumbar anterior horns following intranasal insufflation of ecstasy and heroin

    PubMed Central

    Riva, Nilo; Riva, Nilo; Morana, Paolo; Cerri, Federica; Gerevini, Simonetta; Amadio, Stefano; Formaglio, Fabio; Comi, Giancarlo; Comola, Mauro; Del Carro, Ubaldo

    2009-01-01

    We report a patient who developed acute myelopathy after intranasal insufflation of amphetamines and heroin. The functional prognosis was very poor; after 4 months, she remained paraplegic. MRI imaging showed selective T2 hyperintensity and intense enhancement confined to the spinal anterior horns and lumbar nerve roots and plexus. This unique MRI pattern, together with neurophysiological data, suggests that the pathological process at the first primary affected spinal anterior horns (SAH), conditioning motoneuron cell death, and then nerve roots and lumbar plexus as a consequence of wallerian degeneration PMID:21686691

  3. Indian hedgehog contributes to human cartilage endplate degeneration.

    PubMed

    Wang, Shaowei; Yang, Kun; Chen, Shuai; Wang, Jiying; Du, Guoqing; Fan, Shunwu; Wei, Lei

    2015-08-01

    To determine the role of Indian hedgehog (Ihh) signaling in human cartilage endplate (CEP) degeneration. CEP-degenerated tissues from patients with Modic I or II changes (n = 9 and 45, respectively) and normal tissues from vertebral burst fracture patients (n = 17) were collected. Specimens were either cut into slices for organ culture ex vivo or digested to isolate chondrocytes for cell culture in vitro. Ihh expression and the effect of Ihh on cartilage degeneration were determined by investigating degeneration markers in this study. Ihh expression and cartilage degeneration markers significantly increased in the Modic I and II groups. The expression of cartilage degeneration markers was positively correlated with degeneration severity. Gain-of-function for Ihh promoted expression of cartilage degeneration markers in vitro, while loss-of-function for Ihh inhibited their expression both in vitro and ex vivo. These findings demonstrated that Ihh promotes CEP degeneration. Blocking Ihh pathway has potential clinical usage for attenuating CEP degeneration.

  4. Spectral thresholds in macular degeneration.

    PubMed Central

    Alvarez, S L; King-Smith, P E; Bhargava, S K

    1983-01-01

    Spectral sensitivities were measured in 18 normal eyes, 9 eyes in patients with senile macular degeneration, 4 patients with Stargardt's juvenile macular degeneration (JMD), and 2 patients without conclusive signs--that is, genetic or morphological abnormalities--to indicate the cause of loss of central vision. Spectral sensitivity, testing for which included measurements on white, yellow, purple, and blue backgrounds, is here used as an aid in differential diagnosis for cases of macular degeneration. PMID:6871142

  5. Counting Patterns in Degenerated Sequences

    NASA Astrophysics Data System (ADS)

    Nuel, Grégory

    Biological sequences like DNA or proteins, are always obtained through a sequencing process which might produce some uncertainty. As a result, such sequences are usually written in a degenerated alphabet where some symbols may correspond to several possible letters (ex: IUPAC DNA alphabet). When counting patterns in such degenerated sequences, the question that naturally arises is: how to deal with degenerated positions ? Since most (usually 99%) of the positions are not degenerated, it is considered harmless to discard the degenerated positions in order to get an observation, but the exact consequences of such a practice are unclear. In this paper, we introduce a rigorous method to take into account the uncertainty of sequencing for biological sequences (DNA, Proteins). We first introduce a Forward-Backward approach to compute the marginal distribution of the constrained sequence and use it both to perform a Expectation-Maximization estimation of parameters, as well as deriving a heterogeneous Markov distribution for the constrained sequence. This distribution is hence used along with known DFA-based pattern approaches to obtain the exact distribution of the pattern count under the constraints. As an illustration, we consider a EST dataset from the EMBL database. Despite the fact that only 1% of the positions in this dataset are degenerated, we show that not taking into account these positions might lead to erroneous observations, further proving the interest of our approach.

  6. Degenerate Cauchy numbers of the third kind.

    PubMed

    Pyo, Sung-Soo; Kim, Taekyun; Rim, Seog-Hoon

    2018-01-01

    Since Cauchy numbers were introduced, various types of Cauchy numbers have been presented. In this paper, we define degenerate Cauchy numbers of the third kind and give some identities for the degenerate Cauchy numbers of the third kind. In addition, we give some relations between four kinds of the degenerate Cauchy numbers, the Daehee numbers and the degenerate Bernoulli numbers.

  7. Abnormal turning behaviour, GABAergic inhibition and the degeneration of astrocytes in ovine Tribulus terrestris motor neuron disease.

    PubMed

    Bourke, C A

    2006-01-01

    To observe the clinical signs of sheep affected by Tribulus terrestris motor neuron disease, to ascertain their response to striatal dopamine reducing drugs, and to examine their brains and spinal cords for microscopic changes. Twenty-eight sheep displaying well developed clinical signs of the disorder were observed. Twenty-two of these and 22 normal sheep were then randomly allocated to three groups and treated with diazepam, chlorpromazine, or xylazine. The time that it took an animal to return to a standing position following drug administration was recorded. The brain and complete spinal cord were removed from each of the other six affected sheep and fixed in formalin. Brains were sectioned throughout at 5 mm intervals and spinal cords at 10 mm intervals. All tissues were paraffin embedded and examined by light microscopy. A few samples were examined by electron microscopy. Clinical signs included postural asymmetry with a right:left body-side dominance within the group of 50:50, unequal flaccid paresis in the pelvic limbs, extensor muscle atrophy and adduction of the weaker pelvic limb, and concurrent abduction of the stronger. Forward motion followed either a fixed left or right hand curved trajectory, the sheep no longer being able to choose which. Twelve animals intermittently displayed rotational behaviour that involved loss of postural balance without locomotor activation. The administration of diazepam, chlorpromazine, or xylazine caused limb paresis and sedation, with affected sheep being slower than normal sheep by factors of 8, 3 and 2 respectively, to return to a standing position. There were scattered areas of mild Wallerian degeneration throughout the spinal cord, and in both the brain and the cord there were small numbers of degenerate astrocytes containing novel cytoplasmic pigment granules. Affected sheep had a dysfunction in the control of directional change and this provides a new insight into the normal mechanism for 'turning' in quadrupeds

  8. Evolution of Degenerate Space-Time from Non-Degenerate Initial Value in Ashtekar's Formalism

    NASA Astrophysics Data System (ADS)

    Ma, Yongge; Liang, Canbin

    1998-09-01

    The possibility of evolving a degenerate space-time from non-degenerate initial value in Ashtekar's formalism is considered in a constructed example. It is found that this possibility could be realized in the time evolution given by Ashtekar's equations, but the topology change of space makes it fail to be a Cauchy evolution.

  9. Diffusion tensor imaging of early changes in corpus callosum after acute cerebral hemisphere lesions in newborns.

    PubMed

    Righini, Andrea; Doneda, Chiara; Parazzini, Cecilia; Arrigoni, Filippo; Matta, Ursula; Triulzi, Fabio

    2010-11-01

    The main purpose was to investigate any early diffusion tensor imaging (DTI) changes in corpus callosum (CC) associated with acute cerebral hemisphere lesions in term newborns. We retrospectively analysed 19 cases of term newborns acutely affected by focal or multi-focal lesions: hypoxic-ischemic encephalopathy, hypoglycaemic encephalopathy, focal ischemic stroke and deep medullary vein associated lesions. DTI was acquired at 1.5 Tesla with dedicated neonatal coil. DTI metrics (apparent diffusion coefficient (ADC), fractional anisotropy (FA), axial λ(∐) and radial λ(⟂) diffusivity) were measured in the hemisphere lesions and in the CC. The control group included seven normal newborns. The following significant differences were found between patients and normal controls in the CC: mean ADC was lower in patients (0.88 SD 0.23 versus 1.18 SD 0.07 μm(2)/s) and so was mean FA (0.50 SD 0.1 versus 0.67 SD 0.05) and mean λ(∐) value (1.61 SD 0.52 versus 2.36 SD 0.14 μm(2)/s). In CC the percentage of ADC always diminished independently of lesion age (with one exception), whereas in hemisphere lesions, it was negative in earlier lesions, but exceeded normal values in the older lesions. CC may undergo early DTI changes in newborns with acute focal or multi-focal hemisphere lesions of different aetiology. Although a direct insult to CC cannot be totally ruled out, DTI changes in CC (in particular λ(∐)) may also be compatible with very early Wallerian degeneration or pre-Wallerian degeneration.

  10. Are ovine fenugreek (Trigonella foenum-graecum) staggers and kangaroo gait of lactating ewes two clinically and pathologically similar nervous disorders?

    PubMed

    Bourke, Ca

    2009-03-01

    Fenugreek staggers has occurred in sheep in Victoria, as both an acute and a chronic syndrome. Signs included quadraparesis, a high stepping fore limb gait and a 'bunny-hopping' hind limb gait. Changes consistent with acute oedema were found in the brain and spinal cord of acute cases, and Wallerian degeneration in the peripheral nerves of chronic cases. Kangaroo gait occurred in ewes in New South Wales, and the clinical signs and microscopic changes were remarkably similar to those of fenugreek staggers. Although the diet associated with each is different the causal agent may be the same.

  11. Kraepelin and degeneration theory.

    PubMed

    Hoff, Paul

    2008-06-01

    Emil Kraepelin's contribution to the clinical and scientific field of psychiatry is recognized world-wide. In recent years, however, there have been a number of critical remarks on his acceptance of degeneration theory in particular and on his political opinion in general, which was said to have carried "overtones of proto-fascism" by Michael Shepherd [28]. The present paper discusses the theoretical cornerstones of Kraepelinian psychiatry with regard to their relevance for Kraepelin's attitude towards degeneration theory. This theory had gained wide influence not only in scientific, but also in philosophical and political circles in the last decades of the nineteenth century. There is no doubt that Kraepelin, on the one hand, accepted and implemented degeneration theory into the debate on etiology and pathogenesis of mental disorders. On the other hand, it is not appropriate to draw a simple and direct line from early versions of degeneration theory to the crimes of psychiatrists and politicians during the rule of national socialism. What we need, is a differentiated view, since this will be the only scientific one. Much research needs to be done here in the future, and such research will surely have a significant impact not only on the historical field, but also on the continuous debate about psychiatry, neuroscience and neurophilosophy.

  12. Reprogramming the metabolome rescues retinal degeneration.

    PubMed

    Park, Karen Sophia; Xu, Christine L; Cui, Xuan; Tsang, Stephen H

    2018-05-01

    Metabolomics studies in the context of ophthalmology have largely focused on identifying metabolite concentrations that characterize specific retinal diseases. Studies involving mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy have shown that individuals suffering from retinal diseases exhibit metabolic profiles that markedly differ from those of control individuals, supporting the notion that metabolites may serve as easily identifiable biomarkers for specific conditions. An emerging branch of metabolomics resulting from biomarker studies, however, involves the study of retinal metabolic dysfunction as causes of degeneration. Recent publications have identified a number of metabolic processes-including but not limited to glucose and oxygen metabolism-that, when perturbed, play a role in the degeneration of photoreceptor cells. As a result, such studies have led to further research elucidating methods for prolonging photoreceptor survival in an effort to halt degeneration in its early stages. This review will explore the ways in which metabolomics has deepened our understanding of the causes of retinal degeneration and discuss how metabolomics can be used to prevent retinal degeneration from progressing to its later disease stages.

  13. Lipofuscin accumulation, abnormal electrophysiology, and photoreceptor degeneration in mutant ELOVL4 transgenic mice: a model for macular degeneration.

    PubMed

    Karan, G; Lillo, C; Yang, Z; Cameron, D J; Locke, K G; Zhao, Y; Thirumalaichary, S; Li, C; Birch, D G; Vollmer-Snarr, H R; Williams, D S; Zhang, K

    2005-03-15

    Macular degeneration is a heterogeneous group of disorders characterized by photoreceptor degeneration and atrophy of the retinal pigment epithelium (RPE) in the central retina. An autosomal dominant form of Stargardt macular degeneration (STGD) is caused by mutations in ELOVL4, which is predicted to encode an enzyme involved in the elongation of long-chain fatty acids. We generated transgenic mice expressing a mutant form of human ELOVL4 that causes STGD. In these mice, we show that accumulation by the RPE of undigested phagosomes and lipofuscin, including the fluorophore, 2-[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E,7E-octatetraenyl]-1-(2-hyydroxyethyl)-4-[4-methyl-6-(2,6,6,-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E-hexatrienyl]-pyridinium (A2E) is followed by RPE atrophy. Subsequently, photoreceptor degeneration occurs in the central retina in a pattern closely resembling that of human STGD and age-related macular degeneration. The ELOVL4 transgenic mice thus provide a good model for both STGD and dry age-related macular degeneration, and represent a valuable tool for studies on therapeutic intervention in these forms of blindness.

  14. Stanniocalcin-1 Rescued Photoreceptor Degeneration in Two Rat Models of Inherited Retinal Degeneration

    PubMed Central

    Roddy, Gavin W; Rosa Jr, Robert H; Youn Oh, Joo; Ylostalo, Joni H; Bartosh, Thomas J; Choi, Hosoon; Lee, Ryang Hwa; Yasumura, Douglas; Ahern, Kelly; Nielsen, Gregory; Matthes, Michael T; LaVail, Matthew M; Prockop, Darwin J

    2012-01-01

    Oxidative stress and photoreceptor apoptosis are prominent features of many forms of retinal degeneration (RD) for which there are currently no effective therapies. We previously observed that mesenchymal stem/stromal cells reduce apoptosis by being activated to secrete stanniocalcin-1 (STC-1), a multifunctional protein that reduces oxidative stress by upregulating mitochondrial uncoupling protein-2 (UCP-2). Therefore, we tested the hypothesis that intravitreal injection of STC-1 can rescue photoreceptors. We first tested STC-1 in the rhodopsin transgenic rat characterized by rapid photoreceptor loss. Intravitreal STC-1 decreased the loss of photoreceptor nuclei and transcripts and resulted in measurable retinal function when none is otherwise present in this rapid degeneration. We then tested STC-1 in the Royal College of Surgeons (RCS) rat characterized by a slower photoreceptor degeneration. Intravitreal STC-1 reduced the number of pyknotic nuclei in photoreceptors, delayed the loss of photoreceptor transcripts, and improved function of rod photoreceptors. Additionally, STC-1 upregulated UCP-2 and decreased levels of two protein adducts generated by reactive oxygen species (ROS). Microarrays from the two models demonstrated that STC-1 upregulated expression of a similar profile of genes for retinal development and function. The results suggested that intravitreal STC-1 is a promising therapy for various forms of RD including retinitis pigmentosa and atrophic age-related macular degeneration (AMD). PMID:22294148

  15. Cortical-basal ganglionic degeneration.

    PubMed

    Riley, D E; Lang, A E; Lewis, A; Resch, L; Ashby, P; Hornykiewicz, O; Black, S

    1990-08-01

    We report our experience with 15 patients believed to have cortical-basal ganglionic degeneration. The clinical picture is distinctive, comprising features referable to both cortical and basal ganglionic dysfunction. Characteristic manifestations include cortical sensory loss, focal reflex myoclonus, "alien limb" phenomena, apraxia, rigidity and akinesia, a postural-action tremor, limb dystonia, hyperreflexia, and postural instability. The asymmetry of symptoms and signs is often striking. Brain imaging may demonstrate greater abnormalities contralateral to the more affected side. Postmortem studies in 2 patients revealed the characteristic pathologic features of swollen, poorly staining (achromatic) neurons and degeneration of cerebral cortex and substantia nigra. Biochemical analysis of 1 brain showed a severe, diffuse loss of dopamine in the striatum. This condition is more frequent than previously believed, and the diagnosis can be predicted during life on the basis of clinical findings. However, as with other "degenerative" diseases of the nervous system, a definitive diagnosis of cortical-basal ganglionic degeneration requires confirmation by autopsy.

  16. Frontotemporal Lobar Degeneration

    PubMed Central

    Rabinovici, Gil D.; Miller, Bruce L.

    2010-01-01

    Frontotemporal lobar degeneration (FTLD) is a clinically and pathologically heterogeneous syndrome, characterized by progressive decline in behaviour or language associated with degeneration of the frontal and anterior temporal lobes. While the seminal cases were described at the turn of the 20th century, FTLD has only recently been appreciated as a leading cause of dementia, particularly in patients presenting before the age of 65 years. Three distinct clinical variants of FTLD have been described: (i) behavioural-variant frontotemporal dementia, characterized by changes in behaviour and personality in association with frontal-predominant cortical degeneration; (ii) semantic dementia, a syndrome of progressive loss of knowledge about words and objects associated with anterior temporal neuronal loss; and (iii) progressive nonfluent aphasia, characterized by effortful language output, loss of grammar and motor speech deficits in the setting of left perisylvian cortical atrophy. The majority of pathologies associated with FTLD clinical syndromes include either tau-positive (FTLD-TAU) or TAR DNA-binding protein 43 (TDP-43)-positive (FTLD-TDP) inclusion bodies. FTLD overlaps clinically and pathologically with the atypical parkinsonian disorders corticobasal degeneration and progressive supranuclear palsy, and with amyotrophic lateral sclerosis. The majority of familial FTLD cases are caused by mutations in the genes encoding microtubule-associated protein tau (leading to FTLD-TAU) or progranulin (leading to FTLD-TDP). The clinical and pathologic heterogeneity of FTLD poses a significant diagnostic challenge, and in vivo prediction of underlying histopathology can be significantly improved by supplementing the clinical evaluation with genetic tests and emerging biological markers. Current pharmacotherapy for FTLD focuses on manipulating serotonergic or dopaminergic neurotransmitter systems to ameliorate behavioural or motor symptoms. However, recent advances in FTLD

  17. Histopathology of cryoballoon ablation-induced phrenic nerve injury.

    PubMed

    Andrade, Jason G; Dubuc, Marc; Ferreira, Jose; Guerra, Peter G; Landry, Evelyn; Coulombe, Nicolas; Rivard, Lena; Macle, Laurent; Thibault, Bernard; Talajic, Mario; Roy, Denis; Khairy, Paul

    2014-02-01

    Hemi-diaphragmatic paralysis is the most common complication associated with cryoballoon ablation for atrial fibrillation, yet the histopathology of phrenic nerve injury has not been well described. A preclinical randomized study was conducted to characterize the histopathology of phrenic nerve injury induced by cryoballoon ablation and assess the potential for electromyographic (EMG) monitoring to limit phrenic nerve damage. Thirty-two dogs underwent cryoballoon ablation of the right superior pulmonary vein with the objective of inducing phrenic nerve injury. Animals were randomized 1:1 to standard monitoring (i.e., interruption of ablation upon reduction in diaphragmatic motion) versus EMG guidance (i.e., cessation of ablation upon a 30% reduction in the diaphragmatic compound motor action potential [CMAP] amplitude). The acute procedural endpoint was achieved in all dogs. Phrenic nerve injury was characterized by Wallerian degeneration, with subperineural injury to large myelinated axons and evidence of axonal regeneration. The degree of phrenic nerve injury paralleled the reduction in CMAP amplitude (P = 0.007). Animals randomized to EMG guidance had a lower incidence of acute hemi-diaphragmatic paralysis (50% vs 100%; P = 0.001), persistent paralysis at 30 days (21% vs 75%; multivariate odds ratio 0.12, 95% confidence interval [0.02, 0.69], P = 0.017), and a lesser severity of histologic injury (P = 0.001). Mature pulmonary vein ablation lesion characteristics, including circumferentiality and transmurality, were similar in both groups. Phrenic nerve injury induced by cryoballoon ablation is axonal in nature and characterized by Wallerian degeneration, with potential for recovery. An EMG-guided approach is superior to standard monitoring in limiting phrenic nerve damage. © 2013 Wiley Periodicals, Inc.

  18. The curious ability of PEG-fusion technologies to restore lost behaviors after nerve severance

    PubMed Central

    Bittner, G.D.; Sengelaub, D.R.; Trevino, R.C.; Peduzzi, J.D.; Mikesh, M.; Ghergherehchi, C.L.; Schallert, T.; Thayer, W.P.

    2016-01-01

    Traumatic injuries to PNS and CNS axons are not uncommon. Restoration of lost behaviors following severance of mammalian peripheral nerve axons (PNAs) relies on regeneration by slow outgrowths and is typically poor or nonexistent if after ablation or injuries close to the soma. Behavioral recovery after severing spinal tract axons (STAs) is poor because STAs do not naturally regenerate. Current techniques to enhance PNA and/or STA regeneration have had limited success and do not prevent the onset of Wallerian degeneration of severed distal segments. This review describes the use of a recently-developed polyethylene glycol (PEG)-fusion technology combining concepts in biochemical engineering, cell biology and clinical microsurgery. Within minutes after micro-suturing carefully-trimmed cut ends and applying a well-specified sequence of solutions, PEG-fused axons exhibit morphological continuity (assessed by intra-axonal dye diffusion) and electrophysiological continuity (assessed by conduction of action potentials) across the lesion site. Wallerian degeneration of PEG-fused PNAs is greatly reduced as measured by counts of sensory and/or motor axons, and maintenance of axonal diameters and neuromuscular synapses. After PEG-fusion repair, cut- or crush-severed or ablated PNAs or crush-severed STAs rapidly (within days to weeks), more completely, and permanently restore PNA- or STA-mediated behaviors compared to non-treated or conventionally-treated animals. PEG-fusion success is enhanced or decreased by applying anti-oxidants or oxidants, trimming cut ends or stretching axons, exposure to Ca2+-free or - containing solutions, respectively. PEG-fusion technology employs surgical techniques and chemicals already used by clinicians and has the potential to produce a paradigm-shift in the treatment of traumatic injuries to PNAs and STAs. PMID:26525605

  19. Macular Degeneration

    MedlinePlus

    ... happens when the light-sensitive cells in the macula slowly break down. Your gradually lose your central vision. A common early symptom is that straight lines appear crooked. Regular comprehensive eye exams can detect macular degeneration before the disease causes vision loss. Treatment can ...

  20. Formation of Degenerate Band Gaps in Layered Systems

    PubMed Central

    Ignatov, Anton I.; Merzlikin, Alexander M.; Levy, Miguel; Vinogradov, Alexey P.

    2012-01-01

    In the review, peculiarities of spectra of one-dimensional photonic crystals made of anisotropic and/or magnetooptic materials are considered. The attention is focused on band gaps of a special type—the so called degenerate band gaps which are degenerate with respect to polarization. Mechanisms of formation and properties of these band gaps are analyzed. Peculiarities of spectra of photonic crystals that arise due to the linkage between band gaps are discussed. Particularly, it is shown that formation of a frozen mode is caused by linkage between Brillouin and degenerate band gaps. Also, existence of the optical Borrmann effect at the boundaries of degenerate band gaps and optical Tamm states at the frequencies of degenerate band gaps are analyzed. PMID:28817024

  1. Does corticobasal degeneration exist? A clinicopathological re-evaluation.

    PubMed

    Ling, Helen; O'Sullivan, Sean S; Holton, Janice L; Revesz, Tamas; Massey, Luke A; Williams, David R; Paviour, Dominic C; Lees, Andrew J

    2010-07-01

    The pathological findings of corticobasal degeneration are associated with several distinct clinical syndromes, and the corticobasal syndrome has been linked with a number of diverse pathologies. We have reviewed all the archival cases in the Queen Square Brain Bank for Neurological Disorders over a 20-year period with either a clinical diagnosis of corticobasal syndrome or pathological diagnosis of corticobasal degeneration in an attempt to identify the main diagnostic pitfalls. Of 19 pathologically confirmed corticobasal degeneration cases, only five had been diagnosed correctly in life (sensitivity=26.3%) and four of these had received an alternative earlier diagnosis. All five of these had a unilateral presentation, clumsy useless limb, limb apraxia and myoclonus, four had cortical sensory impairment and focal limb dystonia and three had an alien limb. Eight cases of corticobasal degeneration had been clinically diagnosed as progressive supranuclear palsy, all of whom had vertical supranuclear palsy and seven had falls within the first 2 years. On the other hand, of 21 cases with a clinical diagnosis of corticobasal syndrome, only five had corticobasal degeneration pathology, giving a positive predictive value of 23.8%; six others had progressive supranuclear palsy pathology, five had Alzheimer's disease and the remaining five had other non-tau pathologies. Corticobasal degeneration can present very commonly with a clinical picture closely resembling classical progressive supranuclear palsy or Richardson's syndrome, and we propose the term corticobasal degeneration-Richardson's syndrome for this subgroup. Cases of corticobasal degeneration-Richardson's syndrome have delayed onset of vertical supranuclear gaze palsy (>3 years after onset of first symptom) and the infrequent occurrence of predominant downgaze abnormalities, both of which can be helpful pointers to their underlying corticobasal degeneration pathology. Fourty-two per cent of corticobasal

  2. Degenerate r-Stirling Numbers and r-Bell Polynomials

    NASA Astrophysics Data System (ADS)

    Kim, T.; Yao, Y.; Kim, D. S.; Jang, G.-W.

    2018-01-01

    The purpose of this paper is to exploit umbral calculus in order to derive some properties, recurrence relations, and identities related to the degenerate r-Stirling numbers of the second kind and the degenerate r-Bell polynomials. Especially, we will express the degenerate r-Bell polynomials as linear combinations of many well-known families of special polynomials.

  3. Phagocyte dysfunction, tissue aging and degeneration

    PubMed Central

    2013-01-01

    Immunologically-silent phagocytosis of apoptotic cells is critical to maintaining tissue homeostasis and innate immune balance. Aged phagocytes reduce their functional activity, leading to accumulation of unphagocytosed debris, chronic sterile inflammation and exacerbation of tissue aging and damage. Macrophage dysfunction plays an important role in immunosenescence. Microglial dysfunction has been linked to age-dependent neurodegenerations. Retinal pigment epithelial (RPE) cell dysfunction has been implicated in the pathogenesis of age-related macular degeneration (AMD). Despite several reports on the characterization of aged phagocytes, the role of phagocyte dysfunction in tissue aging and degeneration is yet to be fully appreciated. Lack of knowledge of molecular mechanisms by which aging reduces phagocyte function has hindered our capability to exploit the therapeutic potentials of phagocytosis for prevention or delay of tissue degeneration. This review summarizes our current knowledge of phagocyte dysfunction in aged tissues and discusses possible links to age-related diseases. We highlight the challenges to decipher the molecular mechanisms, present new research approaches and envisage future strategies to prevent phagocyte dysfunction, tissue aging and degeneration. PMID:23748186

  4. Phagocyte dysfunction, tissue aging and degeneration.

    PubMed

    Li, Wei

    2013-09-01

    Immunologically-silent phagocytosis of apoptotic cells is critical to maintaining tissue homeostasis and innate immune balance. Aged phagocytes reduce their functional activity, leading to accumulation of unphagocytosed debris, chronic sterile inflammation and exacerbation of tissue aging and damage. Macrophage dysfunction plays an important role in immunosenescence. Microglial dysfunction has been linked to age-dependent neurodegenerations. Retinal pigment epithelial (RPE) cell dysfunction has been implicated in the pathogenesis of age-related macular degeneration (AMD). Despite several reports on the characterization of aged phagocytes, the role of phagocyte dysfunction in tissue aging and degeneration is yet to be fully appreciated. Lack of knowledge of molecular mechanisms by which aging reduces phagocyte function has hindered our capability to exploit the therapeutic potentials of phagocytosis for prevention or delay of tissue degeneration. This review summarizes our current knowledge of phagocyte dysfunction in aged tissues and discusses possible links to age-related diseases. We highlight the challenges to decipher the molecular mechanisms, present new research approaches and envisage future strategies to prevent phagocyte dysfunction, tissue aging and degeneration. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Degenerate pressure driven self-gravito-acoustic solitary waves in a self-gravitating degenerate quantum plasma system

    NASA Astrophysics Data System (ADS)

    Mamun, A. A.

    2018-02-01

    A general (but realistic) self-gravitating degenerate quantum plasma system (SG-DQPS) containing inertialess degenerate electron species, inertial degenerate light, and heavy ion/nucleus species is considered to examine the possibility for the existence of degenerate pressure driven self-gravito-acoustic (DPD-SGA) solitary waves (SWs) formed in such a SG-DQPS. The pseudo-potential approach, which is valid for the arbitrary amplitude DPD-SGA SWs, is employed. It is found that depending on the value of the number density of heavy ion/nucleus species, the SG-DQPS under consideration supports the existence of positive or the coexistence of positive and negative DPD-SGA SWs. The basic features (polarity, amplitude, and width) of both positive and negative DPD-SGA SWs are found to be significantly modified by the dynamics of heavy ion/nucleus species. The theoretical investigation presented here is so general that it can be applied not only in astrophysical SG-DQPSs (such as white dwarf and neutron star SG-DQPSs), but also in laboratory SG-DQPSs (viz., solid density and laser-produced SG-DQPSs) to identify the salient features of the DPD-SGA SWs formed in them.

  6. Human disc degeneration is associated with increased MMP 7 expression.

    PubMed

    Le Maitre, C L; Freemont, A J; Hoyland, J A

    2006-01-01

    During intervertebral disc (IVD) degeneration, normal matrix synthesis decreases and degradation of disc matrix increases. A number of proteases that are increased during disc degeneration are thought to be involved in its pathogenesis. Matrix metalloproteinase 7 (MMP 7) (Matrilysin, PUMP-1) is known to cleave the major matrix molecules found within the IVD, i.e., the proteoglycan aggrecan and collagen type II. To date, however, it is not known how its expression changes with degeneration or its exact location. We investigated the localization of MMP 7 in human, histologically graded, nondegenerate, degenerated and prolapsed discs to ascertain whether MMP 7 is up-regulated during disc degeneration. Samples of human IVD tissue were fixed in neutral buffered formalin, embedded in paraffin, and sections stained with hematoxylin and eosin to score the degree of morphological degeneration. Immunohistochemistry was performed to localize MMP 7 in 41 human IVDs with varying degrees of degeneration. We found that the chondrocyte-like cells of the nucleus pulposus and inner annulus fibrosus were MMP 7 immunopositive; little immunopositivity was observed in the outer annulus. Nondegenerate discs showed few immunopositive cells. A significant increase in the proportion of MMP 7 immunopositive cells was seen in the nucleus pulposus of discs classified as showing intermediate levels of degeneration and a further increase was seen in discs with severe degeneration. Prolapsed discs showed more MMP 7 immunopositive cells compared to nondegenerated discs, but fewer than those seen in cases of severe degeneration.

  7. Notochord Cells in Intervertebral Disc Development and Degeneration

    PubMed Central

    McCann, Matthew R.; Séguin, Cheryle A.

    2016-01-01

    The intervertebral disc is a complex structure responsible for flexibility, multi-axial motion, and load transmission throughout the spine. Importantly, degeneration of the intervertebral disc is thought to be an initiating factor for back pain. Due to a lack of understanding of the pathways that govern disc degeneration, there are currently no disease-modifying treatments to delay or prevent degenerative disc disease. This review presents an overview of our current understanding of the developmental processes that regulate intervertebral disc formation, with particular emphasis on the role of the notochord and notochord-derived cells in disc homeostasis and how their loss can result in degeneration. We then describe the role of small animal models in understanding the development of the disc and their use to interrogate disc degeneration and associated pathologies. Finally, we highlight essential development pathways that are associated with disc degeneration and/or implicated in the reparative response of the tissue that might serve as targets for future therapeutic approaches. PMID:27252900

  8. Arbitrary electron acoustic waves in degenerate dense plasmas

    NASA Astrophysics Data System (ADS)

    Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.

    2017-05-01

    A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.

  9. Oocyte Degeneration Associated with Follicle Cells in Female Mactra chinensis (Bivalvia: Mactridae)

    PubMed Central

    Kim, Sung Han; Chung, Ee-Yung; Lee, Ki-Young

    2014-01-01

    Ultrastructural studies of oocyte degeneration in the oocyte, and the functions of follicle cells during oocyte degeneration are described to clarify the reproductive mechanism on oocyte degeneration of Mactra chinensis using cytological methods. Commonly, the follicle cells are attached to the oocyte. Follicle cells play an important role in oocyte degeneration. In particular, the functions of follicle cells during oocyte degeneration are associated with phagocytosis and the intracellular digestion of products. In this study, morphologically similar degenerated phagosomes (various lysosomes), which were observed in the degenerated oocytes, appeared in the follicle cells. After the spawning of the oocytes, the follicle cells were involved in oocyte degeneration through phagocytosis by phagolysosomes. Therefore, it can be assumed that follicle cells reabsorb phagosomes from degenerated oocytes. In this study, the presence of lipid granules, which occurred from degenerating yolk granules, gradually increased in degenerating oocytes. The function of follicle cells can accumulate reserves of lipid granules and glycogen in the cytoplasm, which can be employed by the vitellogenic oocyte. Based on observations of follicle cells attached to degenerating oocytes after spawning, the follicle cells of this species are involved in the lysosomal induction of oocyte degeneration for the reabsorption of phagosomes (phagolysosomes) in the cytoplasm for nutrient storage, as seen in other bivalves. PMID:25949203

  10. Wet Macular Degeneration

    MedlinePlus

    ... has a hereditary component. Researchers have identified several genes related to developing the condition. Smoking. Smoking cigarettes or being regularly exposed to smoke significantly increases your risk of macular degeneration. Obesity. Research indicates that being obese increases the chance ...

  11. Prospectives for Gene Therapy of Retinal Degenerations

    PubMed Central

    Thumann, Gabriele

    2012-01-01

    Retinal degenerations encompass a large number of diseases in which the retina and associated retinal pigment epithelial (RPE) cells progressively degenerate leading to severe visual disorders or blindness. Retinal degenerations can be divided into two groups, a group in which the defect has been linked to a specific gene and a second group that has a complex etiology that includes environmental and genetic influences. The first group encompasses a number of relatively rare diseases with the most prevalent being Retinitis pigmentosa that affects approximately 1 million individuals worldwide. Attempts have been made to correct the defective gene by transfecting the appropriate cells with the wild-type gene and while these attempts have been successful in animal models, human gene therapy for these inherited retinal degenerations has only begun recently and the results are promising. To the second group belong glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). These retinal degenerations have a genetic component since they occur more often in families with affected probands but they are also linked to environmental factors, specifically elevated intraocular pressure, age and high blood sugar levels respectively. The economic and medical impact of these three diseases can be assessed by the number of individuals affected; AMD affects over 30 million, DR over 40 million and glaucoma over 65 million individuals worldwide. The basic defect in these diseases appears to be the relative lack of a neurogenic environment; the neovascularization that often accompanies these diseases has suggested that a decrease in pigment epithelium-derived factor (PEDF), at least in part, may be responsible for the neurodegeneration since PEDF is not only an effective neurogenic and neuroprotective agent but also a potent inhibitor of neovascularization. In the last few years inhibitors of vascularization, especially antibodies against vascular endothelial cell

  12. Polyethylene glycol treated allografts not tissue matched nor immunosuppressed rapidly repair sciatic nerve gaps, maintain neuromuscular functions, and restore voluntary behaviors in female rats.

    PubMed

    Mikesh, Michelle; Ghergherehchi, Cameron L; Rahesh, Sina; Jagannath, Karthik; Ali, Amir; Sengelaub, Dale R; Trevino, Richard C; Jackson, David M; Tucker, Haley O; Bittner, George D

    2018-07-01

    Many publications report that ablations of segments of peripheral nerves produce the following unfortunate results: (1) Immediate loss of sensory signaling and motor control; (2) rapid Wallerian degeneration of severed distal axons within days; (3) muscle atrophy within weeks; (4) poor behavioral (functional) recovery after many months, if ever, by slowly-regenerating (∼1mm/d) axon outgrowths from surviving proximal nerve stumps; and (5) Nerve allografts to repair gap injuries are rejected, often even if tissue matched and immunosuppressed. In contrast, using a female rat sciatic nerve model system, we report that neurorrhaphy of allografts plus a well-specified-sequence of solutions (one containing polyethylene glycol: PEG) successfully addresses each of these problems by: (a) Reestablishing axonal continuity/signaling within minutes by nonspecific ally PEG-fusing (connecting) severed motor and sensory axons across each anastomosis; (b) preventing Wallerian degeneration by maintaining many distal segments of inappropriately-reconnected, PEG-fused axons that continuously activate nerve-muscle junctions; (c) maintaining innervation of muscle fibers that undergo much less atrophy than otherwise-denervated muscle fibers; (d) inducing remarkable behavioral recovery to near-unoperated levels within days to weeks, almost certainly by CNS and PNS plasticities well-beyond what most neuroscientists currently imagine; and (e) preventing rejection of PEG-fused donor nerve allografts with no tissue matching or immunosuppression. Similar behavioral results are produced by PEG-fused autografts. All results for Negative Control allografts agree with current neuroscience data 1-5 given above. Hence, PEG-fusion of allografts for repair of ablated peripheral nerve segments expand on previous observations in single-cut injuries, provoke reconsideration of some current neuroscience dogma, and further extend the potential of PEG-fusion in clinical practice. © 2018 Wiley Periodicals

  13. Spinal cord compression in two related Ursus arctos horribilis.

    PubMed

    Thomovsky, Stephanie A; Chen, Annie V; Roberts, Greg R; Schmidt, Carrie E; Layton, Arthur W

    2012-09-01

    Two 15-yr-old grizzly bear littermates were evaluated within 9 mo of each other with the symptom of acute onset of progressive paraparesis and proprioceptive ataxia. The most significant clinical examination finding was pelvic limb paresis in both bears. Magnetic resonance examinations of both bears showed cranial thoracic spinal cord compression. The first bear had left-sided extradural, dorsolateral spinal cord compression at T3-T4. Vertebral canal stenosis was also observed at T2-T3. Images of the second bear showed lateral spinal cord compression from T2-T3 to T4-T5. Intervertebral disk disease and associated spinal cord compression was also observed at T2-T3 and T3-T4. One grizzly bear continued to deteriorate despite reduced exercise, steroid, and antibiotic therapy. The bear was euthanized, and a necropsy was performed. The postmortem showed a spinal ganglion cyst that caused spinal cord compression at the level of T3-T4. Wallerian-like degeneration was observed from C3-T6. The second bear was prescribed treatment that consisted of a combination of reduced exercise and steroid therapy. He continued to deteriorate with these medical therapies and was euthanized 4 mo after diagnosis. A necropsy showed hypertrophy and protrusion of the dorsal longitudinal ligament at T2-T3 and T3-T4, with resulting spinal cord compression in this region. Wallerian-like degeneration was observed from C2-L1. This is one of few case reports that describes paresis in bears. It is the only case report, to the authors' knowledge, that describes spinal magnetic resonance imaging findings in a grizzly bear and also the only report that describes a cranial thoracic myelopathy in two related grizzly bears with neurologic signs.

  14. Spectroscopic observations of cool degenerate star candidates

    NASA Technical Reports Server (NTRS)

    Hintzen, P.

    1986-01-01

    Spectroscopic observations are reported for 23 Luyten Half-Second degenerate star candidates and for 13 Luyten-Palomar common proper-motion pairs containing possible degenerate star components. Twenty-five degenerate stars are identified, 20 of which lack previous spectroscopy. Most of these stars are cool - Luyten color class g or later. One star, LP 77-57, shows broad continuum depressions similar to those in LHS 1126, which Liebert and Dahn attributed to pressure-shifted C2. A second degenerate star, LHS 290, exhibits apparent strong Swan bands which are blueshifted about 75 A. Further observations, including polarimetry and photometry, are required to appraise the spectroscopic peculiarities of these stars. Finally, five cool, sharp-lined DA white dwarfs have been observed to detect lines of metals and to determine line strengths. None of these DAs show signs of Mg b or the G band, and four show no evidence of Ca II K. The attempt to detect Ca MI in the fifth star, G199-71, was inconclusive.

  15. Mutations in ABCR (ABCA4) in patients with Stargardt macular degeneration or cone-rod degeneration.

    PubMed

    Briggs, C E; Rucinski, D; Rosenfeld, P J; Hirose, T; Berson, E L; Dryja, T P

    2001-09-01

    To determine the spectrum of ABCR mutations associated with Stargardt macular degeneration and cone-rod degeneration (CRD). One hundred eighteen unrelated patients with recessive Stargardt macular degeneration and eight with recessive CRD were screened for mutations in ABCR (ABCA4) by single-strand conformation polymorphism analysis. Variants were characterized by direct genomic sequencing. Segregation analysis was performed on the families of 20 patients in whom at least two or more likely pathogenic sequence changes were identified. The authors found 77 sequence changes likely to be pathogenic: 21 null mutations (15 novel), 55 missense changes (26 novel), and one deletion of a consensus glycosylation site (also novel). Fifty-two patients with Stargardt macular degeneration (44% of those screened) and five with CRD each had two of these sequence changes or were homozygous for one of them. Segregation analyses in the families of 19 of these patients were informative and revealed that the index cases and all available affected siblings were compound heterozygotes or homozygotes. The authors found one instance of an apparently de novo mutation, Ile824Thr, in a patient. Thirty-seven (31%) of the 118 patients with Stargardt disease and one with CRD had only one likely pathogenic sequence change. Twenty-nine patients with Stargardt disease (25%) and two with CRD had no identified sequence changes. This report of 42 novel mutations brings the growing number of identified likely pathogenic sequence changes in ABCR to approximately 250.

  16. Corticobasal degeneration.

    PubMed

    Stover, N P; Watts, R L

    2001-01-01

    Corticobasal degeneration (CBG) is an increasingly recognized neurodegenerative disease with both motor and cognitive dysfunction. The diagnosis is probably underestimated because of the heterogeneity of clinical features, overlap with symptoms, and pathologic findings of other neurodegenerative diseases. The most characteristic initial motor symptoms are akinesia, rigidity, and apraxia. Dystonia and alien limb phenomena are frequently observed. There is often a parkinsonian picture with failure or lack of efficacy of dopaminergic medical therapy. Cognitive decline, prompting the diagnosis of dementia, may be the most common presentation of CBD that is misdiagnosed. Pathology is characterized by an asymmetric frontoparietal neuronal loss and gliosis with ballooned, achromatic cortical neurons, nigral degeneration, and variable subcortical involvement. Neuroimaging and electrophysiologic studies may help with the diagnosis but are not specific. Treatment is primarily symptomatic and minimally effective, especially after the first several years of symptoms. CBD should be considered in the differential diagnosis of patients with motor and cognitive dysfunction presenting with cortical and subcortical features. Further studies to elucidate molecular abnormalities and biological markers associated with CBD are needed to improve clinical diagnosis and treatment of patients with this disorder.

  17. Early immune responses are independent of RGC dysfunction in glaucoma with complement component C3 being protective

    PubMed Central

    Harder, Jeffrey M.; Braine, Catherine E.; Williams, Pete A.; Zhu, Xianjun; MacNicoll, Katharine H.; Sousa, Gregory L.; Buchanan, Rebecca A.; Smith, Richard S.; Howell, Gareth R.; John, Simon W. M.

    2017-01-01

    Various immune response pathways are altered during early, predegenerative stages of glaucoma; however, whether the early immune responses occur secondarily to or independently of neuronal dysfunction is unclear. To investigate this relationship, we used the Wlds allele, which protects from axon dysfunction. We demonstrate that DBA/2J.Wlds mice develop high intraocular pressure (IOP) but are protected from retinal ganglion cell (RGC) dysfunction and neuroglial changes that otherwise occur early in DBA/2J glaucoma. Despite this, immune pathways are still altered in DBA/2J.Wlds mice. This suggests that immune changes are not secondary to RGC dysfunction or altered neuroglial interactions, but may be directly induced by the increased strain imposed by high IOP. One early immune response following IOP elevation is up-regulation of complement C3 in astrocytes of DBA/2J and DBA/2J.Wlds mice. Unexpectedly, because the disruption of other complement components, such as C1Q, is protective in glaucoma, C3 deficiency significantly increased the number of DBA/2J eyes with nerve damage and RGC loss at an early time point after IOP elevation. Transcriptional profiling of C3-deficient cultured astrocytes implicated EGFR signaling as a hub in C3-dependent responses. Treatment with AG1478, an EGFR inhibitor, also significantly increased the number of DBA/2J eyes with glaucoma at the same early time point. These findings suggest that C3 protects from early glaucomatous damage, a process that may involve EGFR signaling and other immune responses in the optic nerve head. Therefore, therapies that target specific components of the complement cascade, rather than global inhibition, may be more applicable for treating human glaucoma. PMID:28446616

  18. [Tauopathy and Alzheimer disease: a full degenerating process].

    PubMed

    Buée, Luc; Delacourte, André

    2006-12-01

    Neurofibrillary degeneration is well correlated to the clinical signs of Alzheimer disease. However, the amyloid cascade is so well established in the scientific and medical community that the role of neurofibrillary degeneration in Alzheimer's disease etiopathogenesis is often underestimated. However, neuronal vulnerability is clearly a key factor for facilitating the amyloid pathology which allows the propagation of the degenerating process. In the present work, the role of tau pathology as both diagnostic marker and therapeutic target is highlighted in Alzheimer disease and related disorders.

  19. Solubility of amphotericin B in water-lecithin-dispersions and lecithin-based submicron emulsions.

    PubMed

    Salerno, Claudia; Perez, Sebastian; Monteagudo, Ezequiel; Carlucci, Adriana; Bregni, Carlos

    2013-01-01

    The aim of this work was to evaluate water-lecithin-dispersions (WLDs) as carriers for amphotericin B (AmB) and to compare the drug solubility in WLDs and O/W lecithin-based submicron emulsions (SMEs) in order to evaluate the influence of lecithin content on the dosage form solubilization of the active compound. WLDs and different SMEs with either 1.2 or 2.4% of lecithin were prepared. WLD with 2.4% lecithin show a 10-fold increase in solubilization of AmB compared with 1.2% lecithin WLD. SMEs with 1.2% lecithin show an increase of over 400 times in solubilization compared with WLD containing the same concentration of lecithin, whereas SMEs with 2.4% lecithin show an increase of over 40 times compared with the corresponding WLD. Drug solubilization in SMEs with 2.4% lecithin is not significantly greater than in those containing 1.2% lecithin. The content of surfactant Brij 97 ® had a significant influence on drug solubilization in SMEs (P < 0.05). Results indicate that indicate that SMEs are proper systems to solubilize AmB. It can be assumed that solubilization is due to the formulation microstructure and not to the separate components themselves.

  20. Oxygen-induced retinopathy in mice with retinal photoreceptor cell degeneration.

    PubMed

    Zhang, Qian; Zhang, Zuo-Ming

    2014-04-25

    It is reported that retinal neovascularization seems to rarely co-exist with retinitis pigmentosa in patients and in some mouse models; however, it is not widely acknowledged as a universal phenomenon in all strains of all animal species. We aimed to further explore this phenomenon with an oxygen-induced retinopathy model in mice with retinal photoreceptor cell degeneration. Oxygen-induced retinopathy of colored and albino mice with rapid retinal degeneration were compared to homologous wild-type mice. The retinas were analyzed using high-molecular-weight FITC-dextran stained flat-mount preparation, hematoxylin and eosin (H&E) stained cross-sections, an immunohistochemical test for vascular endothelial growth factor (VEGF) distribution and Western blotting for VEGF expression after exposure to hyperoxia between postnatal days 17 (P17) and 21. Leakage and areas of non-perfusion of the retinal blood vessels were alleviated in the retinal degeneration mice. The number of preretinal vascular endothelial cell nuclei in the retinal degeneration mice was smaller than that in the homologous wild-type mice after exposure to hyperoxia (P<0.01). The degree of oxygen-induced retinopathy was positively correlated with the VEGF expression level. However, the VEGF expression level was lower in the retinal degeneration mice. Proliferative retinopathy occurred in mice with rapid retinal degeneration, but retinal photoreceptor cell degeneration could partially restrain the retinal neovascularization in this rapid retinal degeneration mouse model. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. The prevalence of sacroiliac joint degeneration in asymptomatic adults.

    PubMed

    Eno, Jonathan-James T; Boone, Christopher R; Bellino, Michael J; Bishop, Julius A

    2015-06-03

    Degenerative changes of the sacroiliac joint have been implicated as a cause of lower back pain in adults. The purpose of this study was to determine the prevalence of sacroiliac joint degeneration in asymptomatic patients. Five hundred consecutive pelvic computed tomography (CT) scans, made at a tertiary-care medical center, of patients with no history of pain in the lower back or pelvic girdle were retrospectively reviewed and analyzed for degenerative changes of the sacroiliac joint. After exclusion criteria were applied, 373 CT scans (746 sacroiliac joints) were evaluated for degenerative changes. Regression analysis was used to determine the association between age and the degree of sacroiliac joint degeneration. The prevalence of sacroiliac joint degeneration was 65.1%, with substantial degeneration occurring in 30.5% of asymptomatic subjects. The prevalence steadily increased with age, with 91% of subjects in the ninth decade of life displaying degenerative changes. Radiographic evidence of sacroiliac joint degeneration is highly prevalent in the asymptomatic population and is associated with age. Caution must be exercised when attributing lower back or pelvic girdle pain to sacroiliac joint degeneration seen on imaging. Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  2. [Pharmacological therapy of age-related macular degeneration based on etiopathogenesis].

    PubMed

    Fischer, Tamás

    2015-11-15

    It is of great therapeutic significance that disordered function of the vascular endothelium which supply the affected ocular structures plays a major role in the pathogenesis and development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfunction, and age-related macular degeneration is accompanied by a general inflammatory response. According to current concept, age-related macular degeneration is a local manifestation of systemic vascular disease. This recognition could have therapeutic implications because restoration of endothelial dysfunction can restabilize the condition of chronic vascular disease including age-related macular degeneration as well. Restoration of endothelial dysfunction by pharmaacological or non pharmacological interventions may prevent the development or improve endothelial dysfunction, which result in prevention or improvement of age related macular degeneration as well. Medicines including inhibitors of the renin-angiotensin system (converting enzyme inhibitors, angiotensin-receptor blockers and renin inhibitors), statins, acetylsalicylic acid, trimetazidin, third generation beta-blockers, peroxisome proliferator-activated receptor gamma agonists, folate, vitamin D, melatonin, advanced glycation end-product crosslink breaker alagebrium, endothelin-receptor antagonist bosentan, coenzyme Q10; "causal" antioxidant vitamins, N-acetyl-cysteine, resveratrol, L-arginine, serotonin receptor agonists, tumor necrosis factor-alpha blockers, specific inhibitor of the complement alternative pathway, curcumin and doxycyclin all have beneficial effects on endothelial dysfunction. Restoration of endothelial dysfunction can restabilize chronic vascular disease including age-related macular degeneration as well. Considering that the human vascular system is consubstantial, medicines listed above should be given to patients (1) who have no macular degeneration but have risk factors

  3. Bilateral aniridia lenticular coloboma and snowflake retinal degeneration.

    PubMed

    Doganay, Selim; Emre, Sinan; Firat, Penpegül

    2009-01-01

    A 6-year-old boy presented with bilateral aniridia associated with lens coloboma and snowflake retinal degeneration. Ophthalmologic examination revealed bilateral corneal peripheral epithelial thickening and aniridia. Additionally, the patient had lenticular coloboma and snowflake retinal degeneration in both eyes. Intraocular pressure was 22 mm Hg bilaterally. The patient also had pendular nystagmus. Uncorrected visual acuity was counting fingers at 2 meters for both eyes, but improved to 0.2 and 0.05, respectively, with correction. Congenital aniridia has been reported with various ophthalmic pathologies, but this is the first case to display bilateral lenticular coloboma and snowflake retinal degeneration associated with aniridia.

  4. The burden of age-related macular degeneration: a value-based analysis.

    PubMed

    Brown, Melissa M; Brown, Gary C; Sharma, Sanjay; Stein, Joshua D; Roth, Zachary; Campanella, Joseph; Beauchamp, George R

    2006-06-01

    The quality-of-life loss and the financial consequences associated with age-related macular degeneration are assessed. The quality-of-life loss associated with macular degeneration is markedly underestimated by the general public, nonophthalmic physicians, and ophthalmologists who treat patients with this condition. Mild age-related macular degeneration causes a 17% decrement in the quality of life of the average patient, similar to that encountered with moderate cardiac angina or symptomatic human immunodeficiency virus syndrome. Moderate age-related macular degeneration causes a 40% decrease in the average patient's quality of life, similar to that associated with severe cardiac angina or renal dialysis. Very severe age-related macular degeneration causes a large 63% decrease in the average patient's quality of life, similar to that encountered with end-stage prostatic cancer or a catastrophic stroke that leaves a person bedridden, incontinent and requiring constant nursing care. The return on investment is high for both treatment with current age-related macular degeneration therapies and the research costs invested in the development of age-related macular degeneration treatment modalities. Age-related macular degeneration is a major public health problem that has a devastating effect upon patients and marked adverse financial consequences for the economy.

  5. Coupled modes in magnetized dense plasma with relativistic-degenerate electrons

    NASA Astrophysics Data System (ADS)

    Khan, S. A.

    2012-01-01

    Low frequency electrostatic and electromagnetic waves are investigated in ultra-dense quantum magnetoplasma with relativistic-degenerate electron and non-degenerate ion fluids. The dispersion relation is derived for mobile as well as immobile ions by employing hydrodynamic equations for such plasma under the influence of electromagnetic forces and pressure gradient of relativistic-degenerate Fermi gas of electrons. The result shows the coexistence of shear Alfven and ion modes with relativistically modified dispersive properties. The relevance of results to the dense degenerate plasmas of astrophysical origin (for instance, white dwarf stars) is pointed out with brief discussion on ultra-relativistic and non-relativistic limits.

  6. Anomalous skin effects in a weakly magnetized degenerate electron plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, G., E-mail: gohar.abbas@gcu.edu.pk; Sarfraz, M.; Shah, H. A.

    2014-09-15

    Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly magnetized degenerate electron plasma is presented and a graphical comparison is made with the results obtained using relativistic Maxwellian distribution function [G. Abbas, M. F. Bashir, and G. Murtaza, Phys. Plasmas 18, 102115 (2011)]. It is found that the penetration depth for R- and L-waves for degenerate case is qualitatively small in comparison with the Maxwellian plasma case. The quantitative reduction due to weak magnetic field in the skin depth in R-wave for degenerate plasma is large as compared to the non-degenerate one. By ignoring themore » ambient magnetic field, previous results for degenerate field free case are salvaged [A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag, Berlin/Heidelberg, 1984), p. 90].« less

  7. The degenerate parametric oscillator and Ince's equation

    NASA Astrophysics Data System (ADS)

    Cordero-Soto, Ricardo; Suslov, Sergei K.

    2011-01-01

    We construct Green's function for the quantum degenerate parametric oscillator in the coordinate representation in terms of standard solutions of Ince's equation in a framework of a general approach to variable quadratic Hamiltonians. Exact time-dependent wavefunctions and their connections with dynamical invariants and SU(1, 1) group are also discussed. An extension to the degenerate parametric oscillator with time-dependent amplitude and phase is also mentioned.

  8. Iron homeostasis and toxicity in retinal degeneration.

    PubMed

    He, Xining; Hahn, Paul; Iacovelli, Jared; Wong, Robert; King, Chih; Bhisitkul, Robert; Massaro-Giordano, Mina; Dunaief, Joshua L

    2007-11-01

    Iron is essential for many metabolic processes but can also cause damage. As a potent generator of hydroxyl radical, the most reactive of the free radicals, iron can cause considerable oxidative stress. Since iron is absorbed through diet but not excreted except through menstruation, total body iron levels buildup with age. Macular iron levels increase with age, in both men and women. This iron has the potential to contribute to retinal degeneration. Here we present an overview of the evidence suggesting that iron may contribute to retinal degenerations. Intraocular iron foreign bodies cause retinal degeneration. Retinal iron buildup resulting from hereditary iron homeostasis disorders aceruloplasminemia, Friedreich's ataxia, and panthothenate kinase-associated neurodegeneration cause retinal degeneration. Mice with targeted mutation of the iron exporter ceruloplasmin have age-dependent retinal iron overload and a resulting retinal degeneration with features of age-related macular degeneration (AMD). Post mortem retinas from patients with AMD have more iron and the iron carrier transferrin than age-matched controls. Over the past 10 years much has been learned about the intricate network of proteins involved in iron handling. Many of these, including transferrin, transferrin receptor, divalent metal transporter-1, ferritin, ferroportin, ceruloplasmin, hephaestin, iron-regulatory protein, and histocompatibility leukocyte antigen class I-like protein involved in iron homeostasis (HFE) have been found in the retina. Some of these proteins have been found in the cornea and lens as well. Levels of the iron carrier transferrin are high in the aqueous and vitreous humors. The functions of these proteins in other tissues, combined with studies on cultured ocular tissues, genetically engineered mice, and eye exams on patients with hereditary iron diseases provide clues regarding their ocular functions. Iron may play a role in a broad range of ocular diseases, including

  9. Iron homeostasis and toxicity in retinal degeneration

    PubMed Central

    He, Xining; Hahn, Paul; Iacovelli, Jared; Wong, Robert; King, Chih; Bhisitkul, Robert; Massaro-Giordano, Mina; Dunaief, Joshua L.

    2007-01-01

    Iron is essential for many metabolic processes but can also cause damage. As a potent generator of hydroxyl radical, the most reactive of the free radicals, iron can cause considerable oxidative stress. Since iron is absorbed through diet but not excreted except through menstruation, total body iron levels build up with age. Macular iron levels increase with age, in both men and women. This iron has the potential to contribute to retinal degeneration. Here we present an overview of the evidence suggesting that iron may contribute to retinal degenerations. Intraocular iron foreign bodies cause retinal degeneration. Retinal iron buildup resulting from hereditary iron homeostasis disorders aceruloplasminemia, Friedreich’s Ataxia, and panthothenate kinase associated neurodegeneration cause retinal degeneration. Mice with targeted mutation of the iron exporter ceruloplasmin have age-dependent retinal iron overload and a resulting retinal degeneration with features of age-related macular degeneration (AMD). Post mortem retinas from patients with AMD have more iron and the iron carrier transferrin than age- matched controls. Over the past ten years much has been learned about the intricate network of proteins involved in iron handling. Many of these, including transferrin, transferrin receptor, divalent metal transporter 1, ferritin, ferroportin, ceruloplasmin, hephaestin, iron regulatory protein, and histocompatibility leukocyte antigen class I-like protein involved in iron homeostasis (HFE) have been found in the retina. Some of these proteins have been found in the cornea and lens as well. Levels of the iron carrier transferrin are high in the aqueous and vitreous humors. The functions of these proteins in other tissues, combined with studies on cultured ocular tissues, genetically engineered mice, and eye exams on patients with hereditary iron diseases provide clues regarding their ocular functions. Iron may play a role in a broad range of ocular diseases, including

  10. Progress toward the maintenance and repair of degenerating retinal circuitry.

    PubMed

    Vugler, Anthony A

    2010-01-01

    Retinal diseases such as age-related macular degeneration and retinitis pigmentosa remain major causes of severe vision loss in humans. Clinical trials for treatment of retinal degenerations are underway and advancements in our understanding of retinal biology in health/disease have implications for novel therapies. A review of retinal biology is used to inform a discussion of current strategies to maintain/repair neural circuitry in age-related macular degeneration, retinitis pigmentosa, and Type 2 Leber congenital amaurosis. In age-related macular degeneration/retinitis pigmentosa, a progressive loss of rods/cones results in corruption of bipolar cell circuitry, although retinal output neurons/photoreceptive melanopsin cells survive. Visual function can be stabilized/enhanced after treatment in age-related macular degeneration, but in advanced degenerations, reorganization of retinal circuitry may preclude attempts to restore cone function. In Type 2 Leber congenital amaurosis, useful vision can be restored by gene therapy where central cones survive. Remarkable progress has been made in restoring vision to rodents using light-responsive ion channels inserted into bipolar cells/retinal ganglion cells. Advances in genetic, cellular, and prosthetic therapies show varying degrees of promise for treating retinal degenerations. While functional benefits can be obtained after early therapeutic interventions, efforts should be made to minimize circuitry changes as soon as possible after rod/cone loss. Advances in retinal anatomy/physiology and genetic technologies should allow refinement of future reparative strategies.

  11. Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration.

    PubMed

    Inoue, Yuji; Iriyama, Aya; Ueno, Shuji; Takahashi, Hidenori; Kondo, Mineo; Tamaki, Yasuhiro; Araie, Makoto; Yanagi, Yasuo

    2007-08-01

    Because there is no effective treatment for this retinal degeneration, potential application of cell-based therapy has attracted considerable attention. Several investigations support that bone marrow mesenchymal stem cells (MSCs) can be used for a broad spectrum of indications. Bone marrow MSCs exert their therapeutic effect in part by secreting trophic factors to promote cell survival. The current study investigates whether bone marrow MSCs secrete factor(s) to promote photoreceptor cell survival and whether subretinal transplantation of bone marrow MSCs promotes photoreceptor survival in a retinal degeneration model using Royal College of Surgeons (RCS) rats. In vitro, using mouse retinal cell culture, it was demonstrated that the conditioned medium of the MSCs delays photoreceptor cell apoptosis, suggesting that the secreted factor(s) from the MSCs promote photoreceptor cell survival. In vivo, the MSCs were injected into the subretinal space of the RCS rats and histological analysis, real-time RT-PCR and electrophysiological analysis demonstrated that the subretinal transplantation of MSCs delays retinal degeneration and preserves retinal function in the RCS rats. These results suggest that MSC is a useful cell source for cell-replacement therapy for some forms of retinal degeneration.

  12. [CORRELATION OF LUMBAR FACET JOINT DEGENERATION AND SPINE-PELVIC SAGITTAL BALANCE].

    PubMed

    Lo, Xin; Zhang, Bin; Liu, Yuan; Dai, Min

    2015-08-01

    To investigate the relationship between lumbar facet joint degeneration of each segment and spine-pelvic sagittal balance parameters. A retrospective analysis was made the clinical data of 120 patients with lumbar degenerative disease, who accorded with the inclusion criteria between June and November 2014. There were 58 males and 62 females with an average age of 53 years (range, 24-77 years). The disease duration ranged from 3 to 96 months (mean, 6.6 months). Affected segments included L3,4 in 32 cases, L4,5 in 47 cases, and L5, S1 in 52 cases. The CT and X-ray films of the lumbar vertebrae were taken. The facet joint degeneration was graded based on the grading system of Pathria. The spine-pelvic sagittal balance parameters were measured, including lumbar lordosis (LL), upper lumbar lordosis (ULL), lower lumbar lordosis (LLL), pelvic incidence (PI), pelvic tilt (PT), and sacral slope (SS). According to normal range of PI, the patients were divided into 3 groups: group A (PI was less than normal range), group B (PI was within normal range), and group C (PI was more than normal range). The facet joint degeneration was compared; according to the facet joint degeneration degree, the patients were divided into group N (mild degeneration group) and group M (serious degeneration group) to observe the relationship of lumbar facet joint degeneration of each segment and spine-pelvic sagittal balance parameters. At L4,5 and L5, S1, facet joint degeneration showed significant difference among groups A, B, and C (P < 0.05), more serious facet joint degeneration was observed in group C; no significant difference was found in facet joint degeneration at L3,4 (P > 0.05). There was no significant difference in the other spine-pelvic sagittal balance parameters between groups N and M at each segment (P > 0.05) except for PT (P < 0.05). PI of more than normal range may lead to or aggravate lumbar facet joint degeneration at L4,5 and L5, Si; PT and PI are significantly associated

  13. Relationship of Tear Size and Location to Fatty Degeneration of the Rotator Cuff

    PubMed Central

    Kim, H. Mike; Dahiya, Nirvikar; Teefey, Sharlene A.; Keener, Jay D.; Galatz, Leesa M.; Yamaguchi, Ken

    2010-01-01

    Background: Fatty degeneration of the rotator cuff muscles may have detrimental effects on both anatomical and functional outcomes following shoulder surgery. The purpose of this study was to investigate the relationship between tear geometry and muscle fatty degeneration in shoulders with a deficient rotator cuff. Methods: Ultrasonograms of both shoulders of 262 patients were reviewed to assess the type of rotator cuff tear and fatty degeneration in the supraspinatus and infraspinatus muscles. The 251 shoulders with a full-thickness tear underwent further evaluation for tear size and location. The relationship of tear size and location to fatty degeneration of the supraspinatus and infraspinatus muscles was investigated with use of statistical comparisons and regression models. Results: Fatty degeneration was found almost exclusively in shoulders with a full-thickness rotator cuff tear. Of the 251 shoulders with a full-thickness tear, eighty-seven (34.7%) had fatty degeneration in either the supraspinatus or infraspinatus, or both. Eighty-two (32.7%) of the 251 full-thickness tears had a distance of 0 mm between the biceps tendon and anterior margin of the tear. Ninety percent of the full-thickness tears with fatty degeneration in both muscles had a distance of 0 mm posterior from the biceps, whereas only 9% of those without fatty degeneration had a distance of 0 mm. Tears with fatty degeneration had significantly greater width and length than those without fatty degeneration (p < 0.0001). Tears with fatty degeneration had a significantly shorter distance posterior from the biceps than those without fatty degeneration (p < 0.0001). The distance posterior from the biceps was found to be the most important predictor for supraspinatus fatty degeneration, whereas tear width and length were found to be the most important predictors for infraspinatus fatty degeneration. Conclusions: Fatty degeneration of the rotator cuff muscles is closely associated with tear size and

  14. A disease-specific metabolic brain network associated with corticobasal degeneration

    PubMed Central

    Niethammer, Martin; Tang, Chris C.; Feigin, Andrew; Allen, Patricia J.; Heinen, Lisette; Hellwig, Sabine; Amtage, Florian; Hanspal, Era; Vonsattel, Jean Paul; Poston, Kathleen L.; Meyer, Philipp T.; Leenders, Klaus L.

    2014-01-01

    Corticobasal degeneration is an uncommon parkinsonian variant condition that is diagnosed mainly on clinical examination. To facilitate the differential diagnosis of this disorder, we used metabolic brain imaging to characterize a specific network that can be used to discriminate corticobasal degeneration from other atypical parkinsonian syndromes. Ten non-demented patients (eight females/two males; age 73.9 ± 5.7 years) underwent metabolic brain imaging with 18F-fluorodeoxyglucose positron emission tomography for atypical parkinsonism. These individuals were diagnosed clinically with probable corticobasal degeneration. This diagnosis was confirmed in the three subjects who additionally underwent post-mortem examination. Ten age-matched healthy subjects (five females/five males; age 71.7 ± 6.7 years) served as controls for the imaging studies. Spatial covariance analysis was applied to scan data from the combined group to identify a significant corticobasal degeneration-related metabolic pattern that discriminated (P < 0.001) the patients from the healthy control group. This pattern was characterized by bilateral, asymmetric metabolic reductions involving frontal and parietal cortex, thalamus, and caudate nucleus. These pattern-related changes were greater in magnitude in the cerebral hemisphere opposite the more clinically affected body side. The presence of this corticobasal degeneration-related metabolic topography was confirmed in two independent testing sets of patient and control scans, with elevated pattern expression (P < 0.001) in both disease groups relative to corresponding normal values. We next determined whether prospectively computed expression values for this pattern accurately discriminated corticobasal degeneration from multiple system atrophy and progressive supranuclear palsy (the two most common atypical parkinsonian syndromes) on a single case basis. Based upon this measure, corticobasal degeneration was successfully distinguished from

  15. [Current concepts in pathogenesis of age-related macular degeneration].

    PubMed

    Kubicka-Trząska, Agnieszka; Karska-Basta, Izabella; Romanowska-Dixon, Bożena

    2014-01-01

    Age-related macular degeneration is the leading cause of central blindness in elderly population of the western world. The pathogenesis of this disease, likely multifactorial, is not well known, although a number of theories have been put forward, including oxidative stress, genetic interactions, hemodynamic imbalance, immune and inflammatory processes. The understanding of age-related macular degeneration pathogenesis will give rise to new approaches in prevention and treatment of the early and late stages of both atrophic and neovascular age-related macular degeneration.

  16. MRI evaluation of spontaneous intervertebral disc degeneration in the alpaca cervical spine.

    PubMed

    Stolworthy, Dean K; Bowden, Anton E; Roeder, Beverly L; Robinson, Todd F; Holland, Jacob G; Christensen, S Loyd; Beatty, Amanda M; Bridgewater, Laura C; Eggett, Dennis L; Wendel, John D; Stieger-Vanegas, Susanne M; Taylor, Meredith D

    2015-12-01

    Animal models have historically provided an appropriate benchmark for understanding human pathology, treatment, and healing, but few animals are known to naturally develop intervertebral disc degeneration. The study of degenerative disc disease and its treatment would greatly benefit from a more comprehensive, and comparable animal model. Alpacas have recently been presented as a potential large animal model of intervertebral disc degeneration due to similarities in spinal posture, disc size, biomechanical flexibility, and natural disc pathology. This research further investigated alpacas by determining the prevalence of intervertebral disc degeneration among an aging alpaca population. Twenty healthy female alpacas comprised two age subgroups (5 young: 2-6 years; and 15 older: 10+ years) and were rated according to the Pfirrmann-grade for degeneration of the cervical intervertebral discs. Incidence rates of degeneration showed strong correlations with age and spinal level: younger alpacas were nearly immune to developing disc degeneration, and in older animals, disc degeneration had an increased incidence rate and severity at lower cervical levels. Advanced disc degeneration was present in at least one of the cervical intervertebral discs of 47% of the older alpacas, and it was most common at the two lowest cervical intervertebral discs. The prevalence of intervertebral disc degeneration encourages further investigation and application of the lower cervical spine of alpacas and similar camelids as a large animal model of intervertebral disc degeneration. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. LONGITUDINAL STRUCTURAL CHANGES IN LATE-ONSET RETINAL DEGENERATION.

    PubMed

    Cukras, Catherine; Flamendorf, Jason; Wong, Wai T; Ayyagari, Radha; Cunningham, Denise; Sieving, Paul A

    2016-12-01

    To characterize longitudinal structural changes in early stages of late-onset retinal degeneration to investigate pathogenic mechanisms. Two affected siblings, both with a S163R missense mutation in the causative gene C1QTNF5, were followed for 8+ years. Color fundus photos, fundus autofluorescence images, near-infrared reflectance fundus images, and spectral domain optical coherence tomography scans were acquired during follow-up. Both patients, aged 45 and 50 years, had good visual acuities (>20/20) in the context of prolonged dark adaptation. Baseline color fundus photography demonstrated yellow-white, punctate lesions in the temporal macula that correlated with a reticular pattern on fundus autofluorescence and near-infrared reflectance imaging. Baseline spectral domain optical coherence tomography imaging revealed subretinal deposits that resemble reticular pseudodrusen described in age-related macular degeneration. During follow-up, these affected areas developed confluent thickening of the retinal pigment epithelial layer and disruption of the ellipsoid zone of photoreceptors before progressing to overt retinal pigment epithelium and outer retinal atrophy. Structural changes in early stages of late-onset retinal degeneration, revealed by multimodal imaging, resemble those of reticular pseudodrusen observed in age-related macular degeneration and other retinal diseases. Longitudinal follow-up of these lesions helps elucidate their progression to frank atrophy and may lend insight into the pathogenic mechanisms underlying diverse retinal degenerations.

  18. Ethanol Exposure Causes Muscle Degeneration in Zebrafish

    PubMed Central

    Coffey, Elizabeth C.; Pasquarella, Maggie E.; Goody, Michelle F.

    2018-01-01

    Alcoholic myopathies are characterized by neuromusculoskeletal symptoms such as compromised movement and weakness. Although these symptoms have been attributed to neurological damage, EtOH may also target skeletal muscle. EtOH exposure during zebrafish primary muscle development or adulthood results in smaller muscle fibers. However, the effects of EtOH exposure on skeletal muscle during the growth period that follows primary muscle development are not well understood. We determined the effects of EtOH exposure on muscle during this phase of development. Strikingly, muscle fibers at this stage are acutely sensitive to EtOH treatment: EtOH induces muscle degeneration. The severity of EtOH-induced muscle damage varies but muscle becomes more refractory to EtOH as muscle develops. NF-kB induction in muscle indicates that EtOH triggers a pro-inflammatory response. EtOH-induced muscle damage is p53-independent. Uptake of Evans blue dye shows that EtOH treatment causes sarcolemmal instability before muscle fiber detachment. Dystrophin-null sapje mutant zebrafish also exhibit sarcolemmal instability. We tested whether Trichostatin A (TSA), which reduces muscle degeneration in sapje mutants, would affect EtOH-treated zebrafish. We found that TSA and EtOH are a lethal combination. EtOH does, however, exacerbate muscle degeneration in sapje mutants. EtOH also disrupts adhesion of muscle fibers to their extracellular matrix at the myotendinous junction: some detached muscle fibers retain beta-Dystroglycan indicating failure of muscle end attachments. Overexpression of Paxillin, which reduces muscle degeneration in zebrafish deficient for beta-Dystroglycan, is not sufficient to rescue degeneration. Taken together, our results suggest that EtOH exposure has pleiotropic deleterious effects on skeletal muscle. PMID:29615556

  19. The nature of apraxia in corticobasal degeneration.

    PubMed

    Leiguarda, R; Lees, A J; Merello, M; Starkstein, S; Marsden, C D

    1994-04-01

    Although apraxia is one of the most frequent signs in corticobasal degeneration, the phenomenology of this disorder has not been formally examined. Hence 10 patients with corticobasal degeneration were studied with a standardised evaluation for different types of apraxia. To minimise the confounding effects of the primary motor disorder, apraxia was assessed in the least affected limb. Whereas none of the patients showed buccofacial apraxia, seven showed deficits on tests of ideomotor apraxia and movement imitation, four on tests of sequential arm movements (all of whom had ideomotor apraxia), and three on tests of ideational apraxia (all of whom had ideomotor apraxia). Ideomotor apraxia significantly correlated with deficit in both the mini mental state examination and in a task sensitive to frontal lobe dysfunction (picture arrangement). Two of the three patients with ideomotor apraxia and ideational apraxia showed severe cognitive impairments. The alien limb behaviour was present only in patients with ideomotor apraxia. In conclusion, ideomotor apraxia is the most frequent type of apraxia in corticobasal degeneration, and may be due to dysfunction of the supplementary motor area. There is a subgroup of patients with corticobasal degeneration who have a severe apraxia (ideomotor and ideational apraxia), which correlates with global cognitive impairment, and may result from additional parietal or diffuse cortical damage.

  20. The nature of apraxia in corticobasal degeneration.

    PubMed Central

    Leiguarda, R; Lees, A J; Merello, M; Starkstein, S; Marsden, C D

    1994-01-01

    Although apraxia is one of the most frequent signs in corticobasal degeneration, the phenomenology of this disorder has not been formally examined. Hence 10 patients with corticobasal degeneration were studied with a standardised evaluation for different types of apraxia. To minimise the confounding effects of the primary motor disorder, apraxia was assessed in the least affected limb. Whereas none of the patients showed buccofacial apraxia, seven showed deficits on tests of ideomotor apraxia and movement imitation, four on tests of sequential arm movements (all of whom had ideomotor apraxia), and three on tests of ideational apraxia (all of whom had ideomotor apraxia). Ideomotor apraxia significantly correlated with deficit in both the mini mental state examination and in a task sensitive to frontal lobe dysfunction (picture arrangement). Two of the three patients with ideomotor apraxia and ideational apraxia showed severe cognitive impairments. The alien limb behaviour was present only in patients with ideomotor apraxia. In conclusion, ideomotor apraxia is the most frequent type of apraxia in corticobasal degeneration, and may be due to dysfunction of the supplementary motor area. There is a subgroup of patients with corticobasal degeneration who have a severe apraxia (ideomotor and ideational apraxia), which correlates with global cognitive impairment, and may result from additional parietal or diffuse cortical damage. PMID:8163995

  1. Cesare Lombroso: an anthropologist between evolution and degeneration.

    PubMed

    Mazzarello, Paolo

    2011-01-01

    Cesare Lombroso (1835-1909) was a prominent Italian medical doctor and intellectual in the second half of the nineteenth century. He became world famous for his theory that criminality, madness and genius were all sides of the same psychobiological condition: an expression of degeneration, a sort of regression along the phylogenetic scale, and an arrest at an early stage of evolution. Degeneration affected criminals especially, in particular the "born delinquent" whose development had stopped at an early stage, making them the most "atavistic" types of human being. Lombroso also advocated the theory that genius was closely linked with madness. A man of genius was a degenerate, an example of retrograde evolution in whom madness was a form of "biological compensation" for excessive intellectual development. To confirm this theory, in August 1897, Lombroso, while attending the Twelfth International Medical Congress in Moscow, decided to meet the great Russian writer Lev Tolstoy in order to directly verify, in him, his theory of degeneration in the genius. Lombroso's anthropological ideas fuelled a heated debate on the biological determinism of human behaviour.

  2. A disease-specific metabolic brain network associated with corticobasal degeneration.

    PubMed

    Niethammer, Martin; Tang, Chris C; Feigin, Andrew; Allen, Patricia J; Heinen, Lisette; Hellwig, Sabine; Amtage, Florian; Hanspal, Era; Vonsattel, Jean Paul; Poston, Kathleen L; Meyer, Philipp T; Leenders, Klaus L; Eidelberg, David

    2014-11-01

    Corticobasal degeneration is an uncommon parkinsonian variant condition that is diagnosed mainly on clinical examination. To facilitate the differential diagnosis of this disorder, we used metabolic brain imaging to characterize a specific network that can be used to discriminate corticobasal degeneration from other atypical parkinsonian syndromes. Ten non-demented patients (eight females/two males; age 73.9 ± 5.7 years) underwent metabolic brain imaging with (18)F-fluorodeoxyglucose positron emission tomography for atypical parkinsonism. These individuals were diagnosed clinically with probable corticobasal degeneration. This diagnosis was confirmed in the three subjects who additionally underwent post-mortem examination. Ten age-matched healthy subjects (five females/five males; age 71.7 ± 6.7 years) served as controls for the imaging studies. Spatial covariance analysis was applied to scan data from the combined group to identify a significant corticobasal degeneration-related metabolic pattern that discriminated (P < 0.001) the patients from the healthy control group. This pattern was characterized by bilateral, asymmetric metabolic reductions involving frontal and parietal cortex, thalamus, and caudate nucleus. These pattern-related changes were greater in magnitude in the cerebral hemisphere opposite the more clinically affected body side. The presence of this corticobasal degeneration-related metabolic topography was confirmed in two independent testing sets of patient and control scans, with elevated pattern expression (P < 0.001) in both disease groups relative to corresponding normal values. We next determined whether prospectively computed expression values for this pattern accurately discriminated corticobasal degeneration from multiple system atrophy and progressive supranuclear palsy (the two most common atypical parkinsonian syndromes) on a single case basis. Based upon this measure, corticobasal degeneration was successfully distinguished from

  3. Human cells derived from degenerate intervertebral discs respond differently to those derived from non-degenerate intervertebral discs following application of dynamic hydrostatic pressure.

    PubMed

    Le Maitre, Christine Lyn; Frain, Jennie; Fotheringham, Andrew P; Freemont, Anthony J; Hoyland, Judith Alison

    2008-01-01

    The intervertebral disc (IVD) is one of the body's most important load-bearing structures with the major mechanical force experienced in the nucleus pulposus (NP) being hydrostatic pressure (HP). Physiological levels of HP have an anabolic effect on IVD matrix metabolism in cells derived from non-degenerate animal and herniated IVD while excessive HP has a catabolic effect. However, no studies have investigated the response of non-degenerate and degenerate human disc cells derived from non-herniated discs to HP. Here we investigate the effect of physiological HP on such cells using a novel loading rig. Human IVD cells (both NP and AF) cultured in alginate were subjected to dynamic HP (0.8-1.7 MPa 0.5 Hz) for 2 h. Cell viability was assessed, RNA extracted and qRT-PCR for 18 s, c-fos, Sox-9, collagen type II, aggrecan and MMP-3 performed. Cell viability was unaffected by the loading regime. In non-degenerate NP cells, HP increased c-fos, aggrecan, Sox-9 and collagen type II (significantly so in the case of c-fos and aggrecan), but not MMP-3 gene expression. In contrast, application of HP to AF or degenerate NP cells had no effect on target gene expression. Our data shows that cells obtained from the healthy NP respond to dynamic HP by up-regulating genes indicative of healthy matrix homeostasis. However, responses differed in degenerate NP cells suggesting that an altered mechanotransduction pathway may be operational.

  4. Axonal Degeneration Is Mediated by the Mitochondrial Permeability Transition Pore

    PubMed Central

    Barrientos, Sebastian A.; Martinez, Nicolas W.; Yoo, Soonmoon; Jara, Juan S.; Zamorano, Sebastian; Hetz, Claudio; Twiss, Jeffery L.; Alvarez, Jaime; Court, Felipe A.

    2011-01-01

    Axonal degeneration is an active process that has been associated with neurodegenerative conditions triggered by mechanical, metabolic, infectious, toxic, hereditary and inflammatory stimuli. This degenerative process can cause permanent loss of function, so it represents a focus for neuroprotective strategies. Several signaling pathways are implicated in axonal degeneration, but identification of an integrative mechanism for this self-destructive process has remained elusive. Here, we show that rapid axonal degeneration triggered by distinct mechanical and toxic insults is dependent on the activation of the mitochondrial permeability transition pore (mPTP). Both pharmacological and genetic targeting of cyclophilin D, a functional component of the mPTP, protects severed axons and vincristine-treated neurons from axonal degeneration in ex vivo and in vitro mouse and rat model systems. These effects were observed in axons from both the peripheral and central nervous system. Our results suggest that the mPTP is a key effector of axonal degeneration, upon which several independent signaling pathways converge. Since axonal and synapse degeneration are increasingly considered early pathological events in neurodegeneration, our work identifies a potential target for therapeutic intervention in a wide variety of conditions that lead to loss of axons and subsequent functional impairment. PMID:21248121

  5. Fibrotic-like changes in degenerate human intervertebral discs revealed by quantitative proteomic analysis.

    PubMed

    Yee, A; Lam, M P Y; Tam, V; Chan, W C W; Chu, I K; Cheah, K S E; Cheung, K M C; Chan, D

    2016-03-01

    Intervertebral disc degeneration (IDD) can lead to symptomatic conditions including sciatica and back pain. The purpose of this study is to understand the extracellular matrix (ECM) changes in disc biology through comparative proteomic analysis of degenerated and non-degenerated human intervertebral disc (IVD) tissues of different ages. Seven non-degenerated (11-46 years of age) and seven degenerated (16-53 years of age) annulus fibrosus (AF) and nucleus pulposus (NP) samples were used. Proteins were extracted using guanidine hydrochloride, separated from large proteoglycans (PGs) by caesium chloride (CsCl) density gradient ultracentrifugation, and identified using liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS). For quantitative comparison, proteins were labeled with iTRAQ reagents. Collagen fibrils in the NP were assessed using scanning electron microscopy (SEM). In the AF, quantitative analysis revealed increased levels of HTRA1, COMP and CILP in degeneration when compared with samples from older individuals. Fibronectin showed increment with age and degeneration. In the NP, more CILP and CILP2 were present in degenerated samples of younger individuals. Reduced protein solubility was observed in degenerated and older non-degenerated samples correlated with an accumulation of type I collagen in the insoluble fibers. Characterization of collagen fibrils in the NP revealed smaller mean fibril diameters and decreased porosity in the degenerated samples. Our study identified distinct matrix changes associated with aging and degeneration in the intervertebral discs (IVDs). The nature of the ECM changes, together with observed decreased in solubility and changes in fibril diameter is consistent with a fibrotic-like environment. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  6. The role of interleukin-1 in the pathogenesis of human Intervertebral disc degeneration

    PubMed Central

    Le Maitre, Christine Lyn; Freemont, Anthony J; Hoyland, Judith Alison

    2005-01-01

    In this study, we investigated the hypotheses that in human intervertebral disc (IVD) degeneration there is local production of the cytokine IL-1, and that this locally produced cytokine can induce the cellular and matrix changes of IVD degeneration. Immunohistochemistry was used to localize five members of the IL-1 family (IL-1α, IL-1β, IL-1Ra (IL-1 receptor antagonist), IL-1RI (IL-1 receptor, type I), and ICE (IL-1β-converting enzyme)) in non-degenerate and degenerate human IVDs. In addition, cells derived from non-degenerate and degenerate human IVDs were challenged with IL-1 agonists and the response was investigated using real-time PCR for a number of matrix-degrading enzymes, matrix proteins, and members of the IL-1 family. This study has shown that native disc cells from non-degenerate and degenerate discs produced the IL-1 agonists, antagonist, the active receptor, and IL-1β-converting enzyme. In addition, immunopositivity for these proteins, with the exception of IL-1Ra, increased with severity of degeneration. We have also shown that IL-1 treatment of human IVD cells resulted in increased gene expression for the matrix-degrading enzymes (MMP 3 (matrix metalloproteinase 3), MMP 13 (matrix metalloproteinase 13), and ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs)) and a decrease in the gene expression for matrix genes (aggrecan, collagen II, collagen I, and SOX6). In conclusion we have shown that IL-1 is produced in the degenerate IVD. It is synthesized by native disc cells, and treatment of human disc cells with IL-1 induces an imbalance between catabolic and anabolic events, responses that represent the changes seen during disc degeneration. Therefore, inhibiting IL-1 could be an important therapeutic target for preventing and reversing disc degeneration. PMID:15987475

  7. Cystic adventitial degeneration: ectopic ganglia from adjacent joint capsules.

    PubMed

    Ortmann, J; Widmer, M K; Gretener, S; Do, D D; Willenberg, T; Daliri, A; Baumgartner, I

    2009-11-01

    Cystic adventitial degeneration is a rare non-atherosclerotic cause of peripheral arterial occlusive disease, mainly seen in young men without other evidence of vascular disease. Diagnosis will be established by clinical findings and by ultrasound or angiography and can be treated by excision or enucleation of the affected arterial segment or by percutaneous ultrasound-guided aspiration. However, the etiology of adventitial cysts remains unknown. We report a case of cystic adventitial degeneration showing a connection between the joint capsule and the adventitial cyst, supporting the theory that cystic adventitial degeneration may represent ectopic ganglia from adjacent joint capsules.

  8. Probing the degenerate states of V-point singularities.

    PubMed

    Ram, B S Bhargava; Sharma, Anurag; Senthilkumaran, Paramasivam

    2017-09-15

    V-points are polarization singularities in spatially varying linearly polarized optical fields and are characterized by the Poincare-Hopf index η. Each V-point singularity is a superposition of two oppositely signed orbital angular momentum states in two orthogonal spin angular momentum states. Hence, a V-point singularity has zero net angular momentum. V-points with given |η| have the same (amplitude) intensity distribution but have four degenerate polarization distributions. Each of these four degenerate states also produce identical diffraction patterns. Hence to distinguish these degenerate states experimentally, we present in this Letter a method involving a combination of polarization transformation and diffraction. This method also shows the possibility of using polarization singularities in place of phase singularities in optical communication and quantum information processing.

  9. Ecological transition predictably associated with gene degeneration.

    PubMed

    Wessinger, Carolyn A; Rausher, Mark D

    2015-02-01

    Gene degeneration or loss can significantly contribute to phenotypic diversification, but may generate genetic constraints on future evolutionary trajectories, potentially restricting phenotypic reversal. Such constraints may manifest as directional evolutionary trends when parallel phenotypic shifts consistently involve gene degeneration or loss. Here, we demonstrate that widespread parallel evolution in Penstemon from blue to red flowers predictably involves the functional inactivation and degeneration of the enzyme flavonoid 3',5'-hydroxylase (F3'5'H), an anthocyanin pathway enzyme required for the production of blue floral pigments. Other types of genetic mutations do not consistently accompany this phenotypic shift. This pattern may be driven by the relatively large mutational target size of degenerative mutations to this locus and the apparent lack of associated pleiotropic effects. The consistent degeneration of F3'5'H may provide a mechanistic explanation for the observed asymmetry in the direction of flower color evolution in Penstemon: Blue to red transitions are common, but reverse transitions have not been observed. Although phenotypic shifts in this system are likely driven by natural selection, internal constraints may generate predictable genetic outcomes and may restrict future evolutionary trajectories. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. NUTRITIONAL SUPPLEMENTATION IN AGE-RELATED MACULAR DEGENERATION.

    PubMed

    Parodi, Maurizio Battaglia; Zucchiatti, Ilaria; Cicinelli, Maria Vittoria; Cascavilla, Maria Lucia; Bandello, Francesco

    2016-06-01

    To evaluate the rate of adherence to prescribed nutritional supplementation in patients affected by age-related macular degeneration, in an Italian tertiary referral tertiary center. Patients with age-related macular degeneration, age-related eye disease study Categories 3 and 4, were recruited and underwent an 11-item questionnaire. The study included a total of 193 patients meeting the age-related eye disease study nutritional supplementation criteria (174 patients with age-related eye disease study Category 4 and 19 with Category 3). Seventy-seven (40%) were taking oral supplementation, 70 of whom (90%) 1 tablet/day. Oral supplementation was recommended by the personal ophthalmologist in 85 patients (44%), including all those currently receiving it. Eight patients of 85 (9.4%) rejected supplementation despite it being recommended, mostly because they were already taking other medicines. Ninety-four patients (48%) claimed they had not received any information from their ophthalmologist. Our data reveal that Italian patients with age-related eye disease study Categories 3 and 4 have a low adherence to nutritional supplementation. In 65% of cases, patients were not adequately informed by their ophthalmologist of the potential benefits of oral supplementation for age-related macular degeneration; indeed, 108 patients (56%) were not even aware such nutritional treatments are available. Ophthalmologists should be aware of the importance of giving advice to persons with age-related macular degeneration regarding the benefits of oral supplements.

  11. Tamoxifen Provides Structural and Functional Rescue in Murine Models of Photoreceptor Degeneration

    PubMed Central

    Wang, Xu; Ma, Wenxin; Gonzalez, Shaimar R.; Kretschmer, Friedrich; Badea, Tudor C.

    2017-01-01

    Photoreceptor degeneration is a cause of irreversible vision loss in incurable blinding retinal diseases including retinitis pigmentosa (RP) and atrophic age-related macular degeneration. We found in two separate mouse models of photoreceptor degeneration that tamoxifen, a selective estrogen receptor modulator and a drug previously linked with retinal toxicity, paradoxically provided potent neuroprotective effects. In a light-induced degeneration model, tamoxifen prevented onset of photoreceptor apoptosis and atrophy and maintained near-normal levels of electroretinographic responses. Rescue effects were correlated with decreased microglial activation and inflammatory cytokine production in the retina in vivo and a reduction of microglia-mediated toxicity to photoreceptors in vitro, indicating a microglia-mediated mechanism of rescue. Tamoxifen also rescued degeneration in a genetic (Pde6brd10) model of RP, significantly improving retinal structure, electrophysiological responses, and visual behavior. These prominent neuroprotective effects warrant the consideration of tamoxifen as a drug suitable for being repurposed to treat photoreceptor degenerative disease. SIGNIFICANCE STATEMENT Photoreceptor degeneration is a cause of irreversible blindness in a number of retinal diseases such as retinitis pigmentosa (RP) and atrophic age-related macular degeneration. Tamoxifen, a selective estrogen receptor modulator approved for the treatment of breast cancer and previously linked to a low incidence of retinal toxicity, was unexpectedly found to exert marked protective effects against photoreceptor degeneration. Structural and functional protective effects were found for an acute model of light-induced photoreceptor injury and for a genetic model for RP. The mechanism of protection involved the modulation of microglial activation and the production of inflammatory cytokines, highlighting the role of inflammatory mechanisms in photoreceptor degeneration. Tamoxifen may be

  12. 9 CFR 311.35 - Muscular inflammation, degeneration, or infiltration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Muscular inflammation, degeneration, or infiltration. 311.35 Section 311.35 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... PARTS § 311.35 Muscular inflammation, degeneration, or infiltration. (a) If muscular lesions are found...

  13. 9 CFR 311.35 - Muscular inflammation, degeneration, or infiltration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Muscular inflammation, degeneration, or infiltration. 311.35 Section 311.35 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... PARTS § 311.35 Muscular inflammation, degeneration, or infiltration. (a) If muscular lesions are found...

  14. 9 CFR 311.35 - Muscular inflammation, degeneration, or infiltration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Muscular inflammation, degeneration, or infiltration. 311.35 Section 311.35 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... PARTS § 311.35 Muscular inflammation, degeneration, or infiltration. (a) If muscular lesions are found...

  15. 9 CFR 311.35 - Muscular inflammation, degeneration, or infiltration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Muscular inflammation, degeneration, or infiltration. 311.35 Section 311.35 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... PARTS § 311.35 Muscular inflammation, degeneration, or infiltration. (a) If muscular lesions are found...

  16. 9 CFR 311.35 - Muscular inflammation, degeneration, or infiltration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Muscular inflammation, degeneration, or infiltration. 311.35 Section 311.35 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... PARTS § 311.35 Muscular inflammation, degeneration, or infiltration. (a) If muscular lesions are found...

  17. Qualitative and quantitative assessment of degeneration of cervical intervertebral discs and facet joints.

    PubMed

    Walraevens, Joris; Liu, Baoge; Meersschaert, Joke; Demaerel, Philippe; Delye, Hans; Depreitere, Bart; Vander Sloten, Jos; Goffin, Jan

    2009-03-01

    Degeneration of intervertebral discs and facet joints is one of the most frequently encountered spinal disorders. In order to describe and quantify degeneration and evaluate a possible relationship between degeneration and biomechanical parameters, e.g., the intervertebral range of motion and intradiscal pressure, a scoring system for degeneration is mandatory. However, few scoring systems for the assessment of degeneration of the cervical spine exist. Therefore, two separate objective scoring systems to qualitatively and quantitatively assess the degree of cervical intervertebral disc and facet joint degeneration were developed and validated. The scoring system for cervical disc degeneration consists of three variables which are individually scored on neutral lateral radiographs: "height loss" (0-4 points), "anterior osteophytes" (0-3 points) and "endplate sclerosis" (0-2 points). The scoring system for facet joint degeneration consists of four variables which are individually scored on neutral computed tomography scans: "hypertrophy" (0-2 points), "osteophytes" (0-1 point), "irregularity" on the articular surface (0-1 point) and "joint space narrowing" (0-1 point). Each variable contributes with varying importance to the overall degeneration score (max 9 points for the scoring system of cervical disc degeneration and max 5 points for facet joint degeneration). Degeneration of 20 discs and facet joints of 20 patients was blindly assessed by four raters: two neurosurgeons (one senior and one junior) and two radiologists (one senior and one junior), firstly based on first subjective impression and secondly using the scoring systems. Measurement errors and inter- and intra-rater agreement were determined. The measurement error of the scoring system for cervical disc degeneration was 11.1 versus 17.9% of the subjective impression results. This scoring system showed excellent intra-rater agreement (ICC = 0.86, 0.75-0.93) and excellent inter-rater agreement (ICC = 0

  18. Self-reported optometric practise patterns in age-related macular degeneration.

    PubMed

    Ly, Angelica; Nivison-Smith, Lisa; Zangerl, Barbara; Assaad, Nagi; Kalloniatis, Michael

    2017-11-01

    The use of advanced imaging in clinical practice is emerging and the use of this technology by optometrists in assessing patients with age-related macular degeneration is of interest. Therefore, this study explored contemporary, self-reported patterns of practice regarding age-related macular degeneration diagnosis and management using a cross-sectional survey of optometrists in Australia and New Zealand. Practising optometrists were surveyed on four key areas, namely, demographics, clinical skills and experience, assessment and management of age-related macular degeneration. Questions pertaining to self-rated competency, knowledge and attitudes used a five-point Likert scale. Completed responses were received from 127 and 87 practising optometrists in Australia and New Zealand, respectively. Advanced imaging showed greater variation in service delivery than traditional techniques (such as slitlamp funduscopy) and trended toward optical coherence tomography, which was routinely performed in age-related macular degeneration by 49 per cent of respondents. Optical coherence tomography was also associated with higher self-rated competency, knowledge and perceived relevance to practice than other modalities. Most respondents (93 per cent) indicated that they regularly applied patient symptoms, case history, visual function results and signs from traditional testing, when queried about their management of patients with age-related macular degeneration. Over half (63 per cent) also considered advanced imaging, while 31 per cent additionally considered all of these as well as the disease stage and clinical guidelines. Contrary to the evidence base, 68 and 34 per cent rated nutritional supplements as highly relevant or relevant in early age-related macular degeneration and normal aging changes, respectively. These results highlight the emergence of multimodal and advanced imaging (especially optical coherence tomography) in the assessment of age-related macular degeneration

  19. [Depression in Patients with Age-Related Macular Degeneration].

    PubMed

    Narváez, Yamile Reveiz; Gómez-Restrepo, Carlos

    2012-09-01

    Age-related macular degeneration is a cause for disability in the elderly since it greatly affects their quality of life and increases depression likelihood. This article discusses the negative effect depression has on patients with age-related macular degeneration and summarizes the interventions available for decreasing their depression index. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  20. Degenerated uterine fibroid mimicking hydrometra: fallacy in CT

    PubMed Central

    Tok, CH; Bux, SI; Mohamed, SI; Lim, BK

    2006-01-01

    Fibroids are the commonest uterine neoplasms, occurring in 20% - 30% of women of reproductive age. In women who have pelvic masses of unknown cause, unusual manifestations of fibroids such as necrosis or degeneration may simulate a carcinoma or hydrometra resulting in problems with image interpretation. We report a case of an unsuspected large degenerated uterine fibroid in a lady mistakenly diagnosed as hydrometra on computed tomography scanning. PMID:21614328

  1. Age-Related Macular Degeneration.

    PubMed

    Mehta, Sonia

    2015-09-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly. AMD is diagnosed based on characteristic retinal findings in individuals older than 50. Early detection and treatment are critical in increasing the likelihood of retaining good and functional vision. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Degeneration of Bethe subalgebras in the Yangian of gl_n

    NASA Astrophysics Data System (ADS)

    Ilin, Aleksei; Rybnikov, Leonid

    2018-04-01

    We study degenerations of Bethe subalgebras B( C) in the Yangian Y(gl_n), where C is a regular diagonal matrix. We show that closure of the parameter space of the family of Bethe subalgebras, which parameterizes all possible degenerations, is the Deligne-Mumford moduli space of stable rational curves \\overline{M_{0,n+2}}. All subalgebras corresponding to the points of \\overline{M_{0,n+2}} are free and maximal commutative. We describe explicitly the "simplest" degenerations and show that every degeneration is the composition of the simplest ones. The Deligne-Mumford space \\overline{M_{0,n+2}} generalizes to other root systems as some De Concini-Procesi resolution of some toric variety. We state a conjecture generalizing our results to Bethe subalgebras in the Yangian of arbitrary simple Lie algebra in terms of this De Concini-Procesi resolution.

  3. Parainflammation, chronic inflammation, and age-related macular degeneration.

    PubMed

    Chen, Mei; Xu, Heping

    2015-11-01

    Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune-privileged tissue as a result of its unique anatomic and physiologic properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate-immune system, particularly microglia and the complement system, undergoes low levels of activation (parainflammation). In many cases, this parainflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration, this parainflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal parainflammation include genetic predisposition, environmental risk factors, and old age. Dysregulated parainflammation (chronic inflammation) in age-related macular degeneration damages the blood retina barrier, resulting in the breach of retinal-immune privilege, leading to the development of retinal lesions. This review discusses the basic principles of retinal innate-immune responses to endogenous chronic insults in normal aging and in age-related macular degeneration and explores the difference between beneficial parainflammation and the detrimental chronic inflammation in the context of age-related macular degeneration. © Society for Leukocyte Biology.

  4. PATTERNS OF FUNDUS AUTOFLUORESCENCE DEFECTS IN NEOVASCULAR AGE-RELATED MACULAR DEGENERATION SUBTYPES.

    PubMed

    Ozkok, Ahmet; Sigford, Douglas K; Tezel, Tongalp H

    2016-11-01

    To test define characteristic fundus autofluorescence patterns of different exudative age-related macular degeneration subtypes. Cross-sectional study. Fifty-two patients with choroidal neovascularization because of three different neovascular age-related macular degeneration subtypes were included in the study. Macular and peripheral fundus autofluorescence patterns of study subjects were compared in a masked fashion. Fundus autofluorescence patterns of all three neovascular age-related macular degeneration subtypes revealed similar patterns. However, peripapillary hypo-autofluorescence was more common among patients with polypoidal choroidal vasculopathy (88.2%) compared with patients with retinal angiomatous proliferation (12.5%) and patients without retinal angiomatous proliferation and polypoidal choroidal vasculopathy (21.1%) (P < 0.0001). Presence of peripapillary fundus autofluorescence defects in neovascular age-related macular degeneration maybe suggestive of polypoidal choroidal vasculopathy as a variant of neovascular age-related macular degeneration.

  5. Biological treatment strategies for disc degeneration: potentials and shortcomings

    PubMed Central

    Nerlich, Andreas G.; Boos, Norbert

    2006-01-01

    Recent advances in molecular biology, cell biology and material sciences have opened a new emerging field of techniques for the treatment of musculoskeletal disorders. These new treatment modalities aim for biological repair of the affected tissues by introducing cell-based tissue replacements, genetic modifications of resident cells or a combination thereof. So far, these techniques have been successfully applied to various tissues such as bone and cartilage. However, application of these treatment modalities to cure intervertebral disc degeneration is in its very early stages and mostly limited to experimental studies in vitro or in animal studies. We will discuss the potential and possible shortcomings of current approaches to biologically cure disc degeneration by gene therapy or tissue engineering. Despite the increasing number of studies examining the therapeutic potential of biological treatment strategies, a practicable solution to routinely cure disc degeneration might not be available in the near future. However, knowledge gained from these attempts might be applied in a foreseeable future to cure the low back pain that often accompanies disc degeneration and therefore be beneficial for the patient. PMID:16983559

  6. Dystonia and Cerebellar Degeneration in the Leaner Mouse Mutant

    PubMed Central

    Raike, Robert S.; Hess, Ellen J.; Jinnah, H.A.

    2015-01-01

    Cerebellar degeneration is traditionally associated with ataxia. Yet, there are examples of both ataxia and dystonia occurring in individuals with cerebellar degeneration. There is also substantial evidence suggesting that cerebellar dysfunction alone may cause dystonia. The types of cerebellar defects that may cause ataxia, dystonia, or both have not been delineated. In the current study, we explored the relationship between cerebellar degeneration and dystonia using the leaner mouse mutant. Leaner mice have severe dystonia that is associated with dysfunctional and degenerating cerebellar Purkinje cells. Whereas the density of Purkinje cells was not significantly reduced in 4 week-old leaner mice, approximately 50% of the neurons were lost by 34 weeks of age. On the other hand, the dystonia and associated functional disability became significantly less severe during this same interval. In other words, dystonia improved as Purkinje cells were lost, suggesting that dysfunctional Purkinje cells, rather than Purkinje cell loss, contribute to the dystonia. These results provide evidence that distorted cerebellar function may cause dystonia and support the concept that different types of cerebellar defects can have different functional consequences. PMID:25791619

  7. Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!

    NASA Astrophysics Data System (ADS)

    Nutku, Yavuz

    2003-07-01

    Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems.

  8. Subretinally transplanted embryonic stem cells rescue photoreceptor cells from degeneration in the RCS rats.

    PubMed

    Schraermeyer, U; Thumann, G; Luther, T; Kociok, N; Armhold, S; Kruttwig, K; Andressen, C; Addicks, K; Bartz-Schmidt, K U

    2001-01-01

    The Royal College of Surgeons (RCS) rat is an animal model for retinal degeneration such as the age-related macular degeneration. The RCS rat undergoes a progressive retinal degeneration during the early postnatal period. A potential treatment to prevent this retinal degeneration is the transplantation into the subretinal space of cells that would replace functions of the degenerating retinal pigment epithelium (RPE) cells or may form neurotrophic factors. In this study we have investigated the potential of subretinally transplanted embryonic stem cells to prevent the genetically determined photoreceptor cell degeneration in the RCS rat. Embryonic stem cells from the inner cell mass of the mouse blastocyst were allowed to differentiate to neural precursor cells in vitro and were then transplanted into the subretinal space of 20-day-old RCS rats. Transplanted and sham-operated rats were sacrificed 2 months following cell transplantation. The eyes were enucleated and photoreceptor degeneration was quantified by analyzing and determining the thickness of the outer nuclear layer by light and electron microscopy. In the eyes transplanted with embryonic cells up to 8 rows of photoreceptor cell nuclei were observed, whereas in nontreated control eyes the outer nuclear layer had degenerated completely. Transplantation of embryonic stem cells appears to delay photoreceptor cell degeneration in RCS rats.

  9. Expression and regulation of neurotrophins in the nondegenerate and degenerate human intervertebral disc

    PubMed Central

    Purmessur, Devina; Freemont, Anthony J; Hoyland, Judith A

    2008-01-01

    Introduction The neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) have been identified in the human intervertebral disc (IVD) and have been implicated in the mechanisms associated with nerve ingrowth and nociception in degeneration of the IVD. The aim of the current study was to investigate an association between neurotrophin expression in the IVD and the severity of disc degeneration, including the effect of disc-related proinflammatory cytokines on neurotrophin and neuropeptide expression in cells derived from the human IVD. Methods Immunohistochemical analysis was performed to examine the expression of NGF, BDNF and their high-affinity receptors Trk-A and Trk-B in human IVD samples, divided into three categories: non-degenerate, moderate degeneration and severe degeneration. In order to study the effect of disc-related cytokines on neurotrophin/neuropeptide gene expression, nucleus pulposus cells derived from non-degenerate and degenerate IVD samples were seeded in alginate and were stimulated with either IL-1β or TNFα for 48 hours. RNA was extracted, cDNA was synthesised and quantitative real-time PCR was performed to examine the expression of NGF, BDNF and substance P. Results Immunohistochemistry showed expression of NGF and BDNF in the native chondrocyte-like cells in all regions of the IVD and in all grades of degeneration. Interestingly only BDNF significantly increased with the severity of degeneration (P < 0.05). Similar expression was observed for Trk-A and Trk-B, although no association with disease severity was demonstrated. In cultured human nucleus pulposus cells, stimulation with IL-1β led to significant increases in NGF and BDNF gene expression (P < 0.05). Treatment with TNFα was associated with an upregulation of substance P expression only. Conclusion Our findings show that both the annulus fibrosus and nucleus pulposus cells of the IVD express the neurotrophins NGF and BDNF, factors that may influence and

  10. Some Remarks on Space-Time Decompositions, and Degenerate Metrics, in General Relativity

    NASA Astrophysics Data System (ADS)

    Bengtsson, Ingemar

    Space-time decomposition of the Hilbert-Palatini action, written in a form which admits degenerate metrics, is considered. Simple numerology shows why D = 3 and 4 are singled out as admitting a simple phase space. The canonical structure of the degenerate sector turns out to be awkward. However, the real degenerate metrics obtained as solutions are the same as those that occur in Ashtekar's formulation of complex general relativity. An exact solution of Ashtekar's equations, with degenerate metric, shows that the manifestly four-dimensional form of the action, and its 3 + 1 form, are not quite equivalent.

  11. The role of microglia in synaptic stripping and synaptic degeneration: a revised perspective

    PubMed Central

    Hugh Perry, V; O'Connor, Vincent

    2010-01-01

    Chronic neurodegenerative diseases of the CNS (central nervous system) are characterized by the loss of neurons. There is, however, growing evidence to show that an early stage of this process involves degeneration of presynaptic terminals prior to the loss of the cell body. Synaptic plasticity in CNS pathology has been associated with microglia and the phenomenon of synaptic stripping. We review here the evidence for the involvement of microglia in synaptic stripping and synapse degeneration and we conclude that this is a case of guilt by association. In disease models of chronic neurodegeneration, there is no evidence that microglia play an active role in either synaptic stripping or synapse degeneration, but the degeneration of the synapse and the envelopment of a degenerating terminal appears to be a neuron autonomous event. We highlight here some of the gaps in our understanding of synapse degeneration in chronic neurodegenerative disease. PMID:20967131

  12. Rapid Y degeneration and dosage compensation in plant sex chromosomes

    PubMed Central

    Papadopulos, Alexander S. T.; Chester, Michael; Ridout, Kate; Filatov, Dmitry A.

    2015-01-01

    The nonrecombining regions of animal Y chromosomes are known to undergo genetic degeneration, but previous work has failed to reveal large-scale gene degeneration on plant Y chromosomes. Here, we uncover rapid and extensive degeneration of Y-linked genes in a plant species, Silene latifolia, that evolved sex chromosomes de novo in the last 10 million years. Previous transcriptome-based studies of this species missed unexpressed, degenerate Y-linked genes. To identify sex-linked genes, regardless of their expression, we sequenced male and female genomes of S. latifolia and integrated the genomic contigs with a high-density genetic map. This revealed that 45% of Y-linked genes are not expressed, and 23% are interrupted by premature stop codons. This contrasts with X-linked genes, in which only 1.3% of genes contained stop codons and 4.3% of genes were not expressed in males. Loss of functional Y-linked genes is partly compensated for by gene-specific up-regulation of X-linked genes. Our results demonstrate that the rate of genetic degeneration of Y-linked genes in S. latifolia is as fast as in animals, and that the evolutionary trajectories of sex chromosomes are similar in the two kingdoms. PMID:26438872

  13. MRI histogram analysis enables objective and continuous classification of intervertebral disc degeneration.

    PubMed

    Waldenberg, Christian; Hebelka, Hanna; Brisby, Helena; Lagerstrand, Kerstin Magdalena

    2018-05-01

    Magnetic resonance imaging (MRI) is the best diagnostic imaging method for low back pain. However, the technique is currently not utilized in its full capacity, often failing to depict painful intervertebral discs (IVDs), potentially due to the rough degeneration classification system used clinically today. MR image histograms, which reflect the IVD heterogeneity, may offer sensitive imaging biomarkers for IVD degeneration classification. This study investigates the feasibility of using histogram analysis as means of objective and continuous grading of IVD degeneration. Forty-nine IVDs in ten low back pain patients (six males, 25-69 years) were examined with MRI (T2-weighted images and T2-maps). Each IVD was semi-automatically segmented on three mid-sagittal slices. Histogram features of the IVD were extracted from the defined regions of interest and correlated to Pfirrmann grade. Both T2-weighted images and T2-maps displayed similar histogram features. Histograms of well-hydrated IVDs displayed two separate peaks, representing annulus fibrosus and nucleus pulposus. Degenerated IVDs displayed decreased peak separation, where the separation was shown to correlate strongly with Pfirrmann grade (P < 0.05). In addition, some degenerated IVDs within the same Pfirrmann grade displayed diametrically different histogram appearances. Histogram features correlated well with IVD degeneration, suggesting that IVD histogram analysis is a suitable tool for objective and continuous IVD degeneration classification. As histogram analysis revealed IVD heterogeneity, it may be a clinical tool for characterization of regional IVD degeneration effects. To elucidate the usefulness of histogram analysis in patient management, IVD histogram features between asymptomatic and symptomatic individuals needs to be compared.

  14. Associations between Rs4244285 and Rs762551 gene polymorphisms and age-related macular degeneration.

    PubMed

    Stasiukonyte, Neringa; Liutkeviciene, Rasa; Vilkeviciute, Alvita; Banevicius, Mantas; Kriauciuniene, Loresa

    2017-01-01

    Age-related macular degeneration is the leading cause of blindness in elderly individuals in developed countries. The etiology and pathophysiology of age-related macular degeneration have not been elucidated yet. Knowing that the main pathological change of age-related macular degeneration is formation of drusen containing about 40% of lipids, there have been attempts to find associations between age-related macular degeneration and genes controlling lipid metabolism. To determine the frequency of CYP2C19 (G681A) Rs4244285 and CYP1A2 (-163C>A) Rs762551 genotypes in patients with age-related macular degeneration. The study enrolled 150 patients with early age-related macular degeneration and 296 age- and gender-matched healthy controls. The genotyping of Rs4244285 and Rs762551 was carried out by using the real-time polymerase chain reaction method. The CYP1A2 (-163C>A) Rs762551 C/C genotype was more frequently detected in patients with age-related macular degeneration than in the control group (32.7% vs. 21.6%, p = 0.011) and was associated with an increased risk of developing early age-related macular degeneration (OR = 1.759, 95% CI: 1.133-2.729; p = 0.012). The CYP1A2 (-163C>A) Rs762551 C/A genotype was more frequently documented in the control group compared with patients with age-related macular degeneration (46.3% vs. 30.7%, p = 0.002) and was associated with a decreased risk of having age-related macular degeneration (OR = 0.580. 95% CI: 0.362-0.929, p = 0.023) in the co-dominant model. The study showed that the CYP1A2 (-163C>A) Rs762551 C/C genotype was associated with an increased risk of age-related macular degeneration.

  15. Relativistic many-body XMCD theory including core degenerate effects

    NASA Astrophysics Data System (ADS)

    Fujikawa, Takashi

    2009-11-01

    A many-body relativistic theory to analyze X-ray Magnetic Circular Dichroism (XMCD) spectra has been developed on the basis of relativistic quantum electrodynamic (QED) Keldysh Green's function approach. This theoretical framework enables us to handle relativistic many-body effects in terms of correlated nonrelativistic Green's function and relativistic correction operator Q, which naturally incorporates radiation field screening and other optical field effects in addition to electron-electron interactions. The former can describe the intensity ratio of L2/L3 which deviates from the statistical weight (branching ratio) 1/2. In addition to these effects, we consider the degenerate or nearly degenerate effects of core levels from which photoelectrons are excited. In XPS spectra, for example in Rh 3d sub level excitations, their peak shapes are quite different: This interesting behavior is explained by core-hole moving after the core excitation. We discuss similar problems in X-ray absorption spectra in particular excitation from deep 2p sub levels which are degenerate in each sub levels and nearly degenerate to each other in light elements: The hole left behind is not frozen there. We derive practical multiple scattering formulas which incorporate all those effects.

  16. Identification of Age-Related Macular Degeneration Using OCT Images

    NASA Astrophysics Data System (ADS)

    Arabi, Punal M., Dr; Krishna, Nanditha; Ashwini, V.; Prathibha, H. M.

    2018-02-01

    Age-related Macular Degeneration is the most leading retinal disease in the recent years. Macular degeneration occurs when the central portion of the retina, called macula deteriorates. As the deterioration occurs with the age, it is commonly referred as Age-related Macular Degeneration. This disease can be visualized by several imaging modalities such as Fundus imaging technique, Optical Coherence Tomography (OCT) technique and many other. Optical Coherence Tomography is the widely used technique for screening the Age-related Macular Degeneration disease, because it has an ability to detect the very minute changes in the retina. The Healthy and AMD affected OCT images are classified by extracting the Retinal Pigmented Epithelium (RPE) layer of the images using the image processing technique. The extracted layer is sampled, the no. of white pixels in each of the sample is counted and the mean value of the no. of pixels is calculated. The average mean value is calculated for both the Healthy and the AMD affected images and a threshold value is fixed and a decision rule is framed to classify the images of interest. The proposed method showed an accuracy of 75%.

  17. Comparative and quantitative proteomic analysis of normal and degenerated human annulus fibrosus cells.

    PubMed

    Ye, Dongping; Liang, Weiguo; Dai, Libing; Zhou, Longqiang; Yao, Yicun; Zhong, Xin; Chen, Honghui; Xu, Jiake

    2015-05-01

    Degeneration of the intervertebral disc (IVD) is a major chronic medical condition associated with back pain. To better understand the pathogenesis of IVD degeneration, we performed comparative and quantitative proteomic analyses of normal and degenerated human annulus fibrosus (AF) cells and identified proteins that are differentially expressed between them. Annulus fibrosus cells were isolated and cultured from patients with lumbar disc herniation (the experimental group, degenerated AF cells) and scoliosis patients who underwent orthopaedic surgery (the control group, normal AF cells). Comparative proteomic analyses of normal and degenerated cultured AF cells were carried out using 2-D electrophoresis, mass spectrometric analyses, and database searching. Quantitative analyses of silver-stained 2-D electrophoresis gels of normal and degenerated cultured AF cells identified 10 protein spots that showed the most altered differential expression levels between the two groups. Among these, three proteins were decreased, including heat shock cognate 71-kDa protein, glucose-6-phosphate 1-dehydrogenase, and protocadherin-23, whereas seven proteins were increased, including guanine nucleotide-binding protein G(i) subunit α-2, superoxide dismutase, transmembrane protein 51, adenosine receptor A3, 26S protease regulatory subunit 8, lipid phosphate phosphatase-related protein, and fatty acyl-crotonic acid reductase 1. These differentially expressed proteins might be involved in the pathophysiological process of IVD degeneration and have potential values as biomarkers of the degeneration of IVD. © 2015 Wiley Publishing Asia Pty Ltd.

  18. Degree of tendon degeneration and stage of rotator cuff disease.

    PubMed

    Jo, Chris Hyunchul; Shin, Won Hyoung; Park, Ji Wan; Shin, Ji Sun; Kim, Ji Eun

    2017-07-01

    While tendon degeneration has been known to be an important cause of rotator cuff disease, few studies have objectively proven the association of tendon degeneration and rotator cuff disease. The purpose of this study was to investigate changes of tendon degeneration with respect to the stage of rotator cuff disease. A total of 48 patients were included in the study: 12 with tendinopathy, 12 with a partial-thickness tear (pRCT), 12 with a full-thickness tear (fRCT), and 12 as the control. A full-thickness supraspinatus tendon sample was harvested en bloc from the middle portion between the lateral edge and the musculotendinous junction of the tendon using a biopsy punch with a diameter of 3 mm. Harvested samples were evaluated using a semi-quantitative grading scale with 7 parameters after haematoxylin and eosin staining. There was no significant difference in age, gender, symptom duration, and Kellgren-Lawrence grade between the groups except for the global fatty degeneration index. All of the seven parameters were significantly different between the groups and could be categorized as follows: early responders (fibre structure and arrangement), gradual responder (rounding of the nuclei), after-tear responders (cellularity, vascularity, and stainability), and late responder (hyalinization). The total degeneration scores were not significantly different between the control (6.08 ± 1.16) and tendinopathy (6.67 ± 1.83) (n.s.). However, the score of pRCT group (10.42 ± 1.31) was greater than that of tendinopathy (P < 0.001), and so was the score of fRCT (12.33 ± 1.15) than that of pRCT (p = 0.009). This study showed that the degeneration of supraspinatus tendon increases as the stage of rotator cuff disease progresses from tendinopathy to pRCT, and then to fRCT. The degree of degeneration of tendinopathy was not different from that of normal but aged tendons, and significant tendon degeneration began from the stage of pRCT. The clinical relevance of

  19. On the existence of solutions to a one-dimensional degenerate nonlinear wave equation

    NASA Astrophysics Data System (ADS)

    Hu, Yanbo

    2018-07-01

    This paper is concerned with the degenerate initial-boundary value problem to the one-dimensional nonlinear wave equation utt =((1 + u) aux) x which arises in a number of various physical contexts. The global existence of smooth solutions to the degenerate problem was established under relaxed conditions on the initial-boundary data by the characteristic decomposition method. Moreover, we show that the solution is uniformly C 1 , α continuous up to the degenerate boundary and the degenerate curve is C 1 , α continuous for α ∈ (0 , min ⁡ a/1+a, 1/1+a).

  20. Sequential involvement of the nervous system in subacute combined degeneration.

    PubMed

    Minn, Yang-Ki; Kim, Seung-Min; Kim, Se-Hoon; Kwon, Ki-Han; Sunwoo, Il-Nam

    2012-03-01

    Subacute combined degeneration (SCD) involves progressive degeneration of the spinal cord, optic nerve, and peripheral nerves. Vitamin B12 (VB12) is a co-factor in myelin synthesis. Because each cell that constitutes the myelin component in the central nervous system and peripheral nervous system is different, it is improbable that these cells undergo simultaneous degeneration. However, the sequence of degeneration in SCD has not been established. In this study, we analysed medical records and electrophysiological data of patients who showed neurological symptoms and whose serum VB12 levels were lower than 200 pg/mL. We enrolled 49 patients in this study. Their mean VB12 level was 68.3 pg/mL. Somatosensory evoked potential (SEP) study showed abnormal findings in 38 patients. Of the 40 patients who underwent visual evoked potential (VEP) study, 14 showed abnormal responses. Eighteen patients showed abnormal findings on a nerve conduction study (NCS). In this study, abnormal posterior tibial nerve SEPs only were seen in 16 patients, median nerve SEPs only were seen in 3 patients, abnormal VEPs only in two, and abnormal NCS responses in one patient. No patient complained of cognitive symptoms. In SCD, degeneration appears to progress in the following order: lower spinal cord, cervical spinal cord, peripheral nerve/optic nerve, and finally, the brain.

  1. Sequential Involvement of the Nervous System in Subacute Combined Degeneration

    PubMed Central

    Minn, Yang-Ki; Kim, Seung-Min; Kim, Se-Hoon; Kwon, Ki-Han

    2012-01-01

    Purpose Subacute combined degeneration (SCD) involves progressive degeneration of the spinal cord, optic nerve, and peripheral nerves. Vitamin B12 (VB12) is a co-factor in myelin synthesis. Because each cell that constitutes the myelin component in the central nervous system and peripheral nervous system is different, it is improbable that these cells undergo simultaneous degeneration. However, the sequence of degeneration in SCD has not been established. Materials and Methods In this study, we analysed medical records and electrophysiological data of patients who showed neurological symptoms and whose serum VB12 levels were lower than 200 pg/mL. Results We enrolled 49 patients in this study. Their mean VB12 level was 68.3 pg/mL. Somatosensory evoked potential (SEP) study showed abnormal findings in 38 patients. Of the 40 patients who underwent visual evoked potential (VEP) study, 14 showed abnormal responses. Eighteen patients showed abnormal findings on a nerve conduction study (NCS). In this study, abnormal posterior tibial nerve SEPs only were seen in 16 patients, median nerve SEPs only were seen in 3 patients, abnormal VEPs only in two, and abnormal NCS responses in one patient. No patient complained of cognitive symptoms. Conclusion In SCD, degeneration appears to progress in the following order: lower spinal cord, cervical spinal cord, peripheral nerve/optic nerve, and finally, the brain. PMID:22318813

  2. Magnetic resonance imaging of hypertrophic olivary degeneration.

    PubMed

    Blanco Ulla, M; López Carballeira, A; Pumar Cebreiro, J M

    2015-01-01

    To review the pathophysiologic mechanisms involved in hypertrophic olivary degeneration, with attention to epidemiologic and clinical aspects and especially to imaging findings. We reviewed 5 patients diagnosed with hypertrophic olivary degeneration at our center from 2010 through 2013, analyzing relevant clinical, epidemiologic, and radiologic findings. In all cases, a hyperintensity was seen in the inferior olivary nuclei in FLAIR and T2-weighted sequences. No signal alterations were seen on T1-weighted sequences, and no enhancement was seen after intravenous injection of contrast material. In the cases studied by diffusion-weighted imaging, no significant alterations were seen in these sequences. Olivary hypertrophy was seen in all patients except in one, in whom presumably not enough time had elapsed for hypertrophy to occur. The alterations were bilateral in two of the five cases. Only one case exhibited the typical clinical manifestations. Given that patients may not present clinical manifestations that can be attributed to hypertrophic olivary degeneration, it is important to recognize the characteristic radiologic signs of this entity. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  3. Extended Hellmann-Feynman theorem for degenerate eigenstates

    NASA Astrophysics Data System (ADS)

    Zhang, G. P.; George, Thomas F.

    2004-04-01

    In a previous paper, we reported a failure of the traditional Hellmann-Feynman theorem (HFT) for degenerate eigenstates. This has generated enormous interest among different groups. In four independent papers by Fernandez, by Balawender, Hola, and March, by Vatsya, and by Alon and Cederbaum, an elegant method to solve the problem was devised. The main idea is that one has to construct and diagonalize the force matrix for the degenerate case, and only the eigenforces are well defined. We believe this is an important extension to HFT. Using our previous example for an energy level of fivefold degeneracy, we find that those eigenforces correctly reflect the symmetry of the molecule.

  4. Kinematic control of robot with degenerate wrist

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Moore, M. C.

    1984-01-01

    Kinematic resolved rate equations allow an operator with visual feedback to dynamically control a robot hand. When the robot wrist is degenerate, the computed joint angle rates exceed operational limits, and unwanted hand movements can result. The generalized matrix inverse solution can also produce unwanted responses. A method is introduced to control the robot hand in the region of the degenerate robot wrist. The method uses a coordinated movement of the first and third joints of the robot wrist to locate the second wrist joint axis for movement of the robot hand in the commanded direction. The method does not entail infinite joint angle rates.

  5. Managing abnormal eating behaviours in frontotemporal lobar degeneration patients with topiramate.

    PubMed

    Shinagawa, Shunichiro; Tsuno, Norifumi; Nakayama, Kazuhiko

    2013-03-01

    Abnormal eating behaviours are specific to frontotemporal lobar degeneration and increase caregiver burden. Topiramate, an anticonvulsant, suppresses cravings for alcohol and other substances and is a potential treatment for binge eating. However, there are few reports on topiramate efficacy for abnormal eating behaviours in frontotemporal lobar degeneration patients. We present three Japanese frontotemporal lobar degeneration patients with abnormal eating behaviours. Topiramate was effective, especially for compulsive eating, in cases with distinct lobar atrophy, but not for all abnormal eating behaviours. © 2013 The Authors. Psychogeriatrics © 2013 Japanese Psychogeriatric Society.

  6. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models.

    PubMed

    Schur, Rebecca M; Gao, Songqi; Yu, Guanping; Chen, Yu; Maeda, Akiko; Palczewski, Krzysztof; Lu, Zheng-Rong

    2018-01-24

    No clinically approved therapies are currently available that prevent the onset of photoreceptor death in retinal degeneration. Signaling between retinal neurons is regulated by the release and uptake of neurotransmitters, wherein GABA is the main inhibitory neurotransmitter. In this work, novel 3-chloropropiophenone derivatives and the clinical anticonvulsants tiagabine and vigabatrin were tested to modulate GABA signaling and protect against light-induced retinal degeneration. Abca4 -/- Rdh8 -/- mice, an accelerated model of retinal degeneration, were exposed to intense light after prophylactic injections of one of these compounds. Imaging and functional assessments of the retina indicated that these compounds successfully protected photoreceptor cells from degeneration to maintain a full-visual-field response. Furthermore, these compounds demonstrated a strong safety profile in wild-type mice and did not compromise visual function or damage the retina, despite repeated administration. These results indicate that modulating inhibitory GABA signaling can offer prophylactic protection against light-induced retinal degeneration.-Schur, R. M., Gao, S., Yu, G., Chen, Y., Maeda, A., Palczewski, K., Lu, Z.-R. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models.

  7. Changes in ganglion cell physiology during retinal degeneration influence excitability by prosthetic electrodes

    NASA Astrophysics Data System (ADS)

    Cho, Alice; Ratliff, Charles; Sampath, Alapakkam; Weiland, James

    2016-04-01

    Objective. Here we investigate ganglion cell physiology in healthy and degenerating retina to test its influence on threshold to electrical stimulation. Approach. Age-related Macular Degeneration and Retinitis Pigmentosa cause blindness via outer retinal degeneration. Inner retinal pathways that transmit visual information to the central brain remain intact, so direct electrical stimulation from prosthetic devices offers the possibility for visual restoration. Since inner retinal physiology changes during degeneration, we characterize physiological properties and responses to electrical stimulation in retinal ganglion cells (RGCs) of both wild type mice and the rd10 mouse model of retinal degeneration. Main results. Our aggregate results support previous observations that elevated thresholds characterize diseased retinas. However, a physiology-driven classification scheme reveals distinct sub-populations of ganglion cells with thresholds either normal or strongly elevated compared to wild-type. When these populations are combined, only a weakly elevated threshold with large variance is observed. The cells with normal threshold are more depolarized at rest and exhibit periodic oscillations. Significance. During degeneration, physiological changes in RGCs affect the threshold stimulation currents required to evoke action potentials.

  8. Articular cartilage degeneration classification by means of high-frequency ultrasound.

    PubMed

    Männicke, N; Schöne, M; Oelze, M; Raum, K

    2014-10-01

    To date only single ultrasound parameters were regarded in statistical analyses to characterize osteoarthritic changes in articular cartilage and the potential benefit of using parameter combinations for characterization remains unclear. Therefore, the aim of this work was to utilize feature selection and classification of a Mankin subset score (i.e., cartilage surface and cell sub-scores) using ultrasound-based parameter pairs and investigate both classification accuracy and the sensitivity towards different degeneration stages. 40 punch biopsies of human cartilage were previously scanned ex vivo with a 40-MHz transducer. Ultrasound-based surface parameters, as well as backscatter and envelope statistics parameters were available. Logistic regression was performed with each unique US parameter pair as predictor and different degeneration stages as response variables. The best ultrasound-based parameter pair for each Mankin subset score value was assessed by highest classification accuracy and utilized in receiver operating characteristics (ROC) analysis. The classifications discriminating between early degenerations yielded area under the ROC curve (AUC) values of 0.94-0.99 (mean ± SD: 0.97 ± 0.03). In contrast, classifications among higher Mankin subset scores resulted in lower AUC values: 0.75-0.91 (mean ± SD: 0.84 ± 0.08). Variable sensitivities of the different ultrasound features were observed with respect to different degeneration stages. Our results strongly suggest that combinations of high-frequency ultrasound-based parameters exhibit potential to characterize different, particularly very early, degeneration stages of hyaline cartilage. Variable sensitivities towards different degeneration stages suggest that a concurrent estimation of multiple ultrasound-based parameters is diagnostically valuable. In-vivo application of the present findings is conceivable in both minimally invasive arthroscopic ultrasound and high-frequency transcutaneous ultrasound

  9. [In situ analysis of pathomechanisms of human intervertebral disc degeneration].

    PubMed

    Weiler, C

    2013-11-01

    Low back pain is one of the major causes of pain and disability in the western world, with a constantly rising life-time prevalence of approximately 60-85 %. Degeneration of the intervertebral disc is believed to be a major cause of low back pain. Semiquantitative macroscopic and microscopic changes of the intervertebral disc were assessed and classified. Furthermore additional methods, such as immunohistochemistry, in situ hybridization and in situ zymography were used to analyze phenotypic cellular and matrix changes. We have developed and tested a practicable, valid and reliable histological classification system for lumbar discs which can serve as a morphological reference framework to allow more sophisticated molecular biological studies on the pathogenesis of ageing and degeneration of discs. Secondly, we were able to demonstrate that intrinsic (genetic) and extrinsic (e.g. overweight) factors have a profound effect on the process of disc degeneration. Cells with a notochord-like phenotype are present in a considerable fraction of adult lumbar intervertebral discs. The presence of these cells is associated with distinct features of (early) age-related disc degeneration. During the process of disc degeneration, the intervertebral disc shows a progressive and significant reduction in height due to tissue resorption. This matrix loss is related to an imbalance between matrix synthesis and degradation. During this process an inflammatory reaction takes place and resident disc cells are causatively involved. In summary, disc degeneration is a multifactorial disease with a strong intrinsic (hereditary) and extrinsic (e.g. mechanical factors) background. The process starts as early as in the second decade of life and shows high interindividual differences. The loss of regenerative capacity in the intervertebral disc is probably related to the loss of stem cells, e.g. notochord-like cells. Resident disc cells are involved in the inflammatory reaction with increased

  10. T1ρ MRI Quantification of Arthroscopically-Confirmed Cartilage Degeneration

    PubMed Central

    Witschey, Walter RT; Borthakur, Arijitt; Fenty, Matt; Kneeland, J Bruce; Lonner, Jess H; McArdle, Erin L.; Sochor, Matt; Reddy, Ravinder

    2010-01-01

    9 asymptomatic subjects and 6 patients underwent T1ρ MRI to determine whether Outerbridge grade 1 or 2 cartilage degeneration observed during arthroscopy could be detected noninvasively. MRI was performed 2–3 months post-arthroscopy using sagittal T1-weighted and axial and coronal T1ρ MRI from which spatial T1ρ relaxation maps were calculated from segmented T1-weighted images. Median T1ρ relaxation times of patients with arthroscopically documented cartilage degeneration and asymptomatic subjects were significantly different (p < 0.001) and median T1ρ exceeded asymptomatic articular cartilage median T1ρ by 2.5 to 9.2 ms. In 8 observations of mild cartilage degeneration at arthroscopy (Outerbridge grades 1 and 2), mean compartment T1ρ was elevated in 5, but in all observations, large foci of increased T1ρ were observed. It was determined that T1ρ could detect some, but not all, Outerbridge grade 1 and 2 cartilage degeneration but that a larger patient population is needed to determine the sensitivity to these changes. PMID:20432308

  11. Influence of Alendronate and Endplate Degeneration to Single Level Posterior Lumbar Spinal Interbody Fusion

    PubMed Central

    Rhee, Wootack; Ha, Seongil; Lim, Jae Hyeon; Jang, Il Tae

    2014-01-01

    Objective Using alendronate after spinal fusion is a controversial issue due to the inhibition of osteoclast mediated bone resorption. In addition, there are an increasing number of reports that the endplate degeneration influences the lumbar spinal fusion. The object of this retrospective controlled study was to evaluate how the endplate degeneration and the bisphosphonate medication influence the spinal fusion through radiographic evaluation. Methods In this study, 44 patients who underwent single-level posterior lumbar interbody fusion (PLIF) using cage were examined from April 2007 to March 2009. All patients had been diagnosed as osteoporosis and would be recommended for alendronate medication. Endplate degeneration is categorized by the Modic changes. The solid fusion is defined if there was bridging bone between the vertebral bodies, either within or external to the cage on the plain X-ray and if there is less than 5° of angular difference in dynamic X-ray. Results In alendronate group, fusion was achieved in 66.7% compared to 73.9% in control group (no medication). Alendronate did not influence the fusion rate of PLIF. However, there was the statistical difference of fusion rate between the endplate degeneration group and the group without endplate degeneration. A total of 52.4% of fusion rate was seen in the endplate degeneration group compared to 91.3% in the group without endplate degeneration. The endplate degeneration suppresses the fusion process of PLIF. Conclusion Alendronate does not influence the fusion process in osteoporotic patients. The endplate degeneration decreases the fusion rate. PMID:25620981

  12. Isomonodromy for the Degenerate Fifth Painlevé Equation

    NASA Astrophysics Data System (ADS)

    Acosta-Humánez, Primitivo B.; van der Put, Marius; Top, Jaap

    2017-05-01

    This is a sequel to papers by the last two authors making the Riemann-Hilbert correspondence and isomonodromy explicit. For the degenerate fifth Painlevé equation, the moduli spaces for connections and for monodromy are explicitly computed. It is proven that the extended Riemann-Hilbert morphism is an isomorphism. As a consequence these equations have the Painlevé property and the Okamoto-Painlevé space is identified with a moduli space of connections. Using MAPLE computations, one obtains formulas for the degenerate fifth Painlevé equation, for the Bäcklund transformations.

  13. The Rate of Vitamin A Dimerization in Lipofuscinogenesis, Fundus Autofluorescence, Retinal Senescence and Degeneration.

    PubMed

    Washington, Ilyas; Saad, Leonide

    2016-01-01

    One of the earliest events preceding several forms of retinal degeneration is the formation and accumulation of vitamin A dimers in the retinal pigment epithelium (RPE) and underlying Bruch's membrane (BM). Such degenerations include Stargardt disease, Best disease, forms of retinitis pigmentosa, and age-related macular degeneration (AMD). Since their discovery in the 1990's, dimers of vitamin A, have been postulated as chemical triggers driving retinal senescence and degeneration. There is evidence to suggest that the rate at which vitamin A dimerizes and the eye's response to the dimerization products may dictate the retina's lifespan. Here, we present outstanding questions, finding the answers to which may help to elucidate the role of vitamin A dimerization in retinal degeneration.

  14. Identification of Degenerate Nuclei and Development of a SCAR Marker for Flammulina velutipes

    PubMed Central

    Kim, Sun Young; Kim, Kyung-Hee; Im, Chak Han; Ali, Asjad; Lee, Chang Yun; Kong, Won-Sik; Ryu, Jae-San

    2014-01-01

    Flammulina velutipes is one of the major edible mushrooms in the world. Recently, abnormalities that have a negative impact on crop production have been reported in this mushroom. These symptoms include slow vegetative growth, a compact mycelial mat, and few or even no fruiting bodies. The morphologies and fruiting capabilities of monokaryons of wild-type and degenerate strains that arose through arthrospore formation were investigated through test crossing. Only one monokaryotic group of the degenerate strains and its hybrid strains showed abnormal phenotypes. Because the monokaryotic arthrospore has the same nucleus as the parent strain, these results indicated that only one aberrant nucleus of the two nuclei in the degenerate strain was responsible for the degeneracy. A sequence-characterized amplified region marker that is linked to the degenerate monokaryon was identified based on a polymorphic sequence that was generated using random primers. Comparative analyses revealed the presence of a degenerate-specific genomic region in a telomere, which arose via the transfer of a genomic fragment harboring a putative helicase gene. Our findings have narrowed down the potential molecular targets responsible for this phenotype for future studies and have provided a marker for the detection of degenerate strains. PMID:25221949

  15. Association of age-related macular degeneration and reticular macular disease with cardiovascular disease.

    PubMed

    Rastogi, Neelesh; Smith, R Theodore

    2016-01-01

    Age-related macular degeneration is the leading cause of adult blindness in the developed world. Thus, major endeavors to understand the risk factors and pathogenesis of this disease have been undertaken. Reticular macular disease is a proposed subtype of age-related macular degeneration correlating histologically with subretinal drusenoid deposits located between the retinal pigment epithelium and the inner segment ellipsoid zone. Reticular lesions are more prevalent in females and in older age groups and are associated with a higher mortality rate. Risk factors for developing age-related macular degeneration include hypertension, smoking, and angina. Several genes related to increased risk for age-related macular degeneration and reticular macular disease are also associated with cardiovascular disease. Better understanding of the clinical and genetic risk factors for age-related macular degeneration and reticular macular disease has led to the hypothesis that these eye diseases are systemic. A systemic origin may help to explain why reticular disease is diagnosed more frequently in females as males suffer cardiovascular mortality at an earlier age, before the age of diagnosis of reticular macular disease and age-related macular degeneration. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1β and TNFα expression profile

    PubMed Central

    Le Maitre, Christine Lyn; Hoyland, Judith Alison; Freemont, Anthony J

    2007-01-01

    Low back pain is a common and debilitating disorder. Current evidence implicates intervertebral disc (IVD) degeneration and herniation as major causes, although the pathogenesis is poorly understood. While several cytokines have been implicated in the process of IVD degeneration and herniation, investigations have predominately focused on Interleukin 1 (IL-1) and tumor necrosis factor alpha (TNFα). However, to date no studies have investigated the expression of these cytokines simultaneously in IVD degeneration or herniation, or determined which may be the predominant cytokine associated with these disease states. Using quantitative real time PCR and immunohistochemistry we investigated gene and protein expression for IL-1β, TNFα and their receptors in non-degenerate, degenerate and herniated human IVDs. IL-1β gene expression was observed in a greater proportion of IVDs than TNFα (79% versus 59%). Degenerate and herniated IVDs displayed higher levels of both cytokines than non-degenerate IVDs, although in degenerate IVDs higher levels of IL-1β gene expression (1,300 copies/100 ng cDNA) were observed compared to those of TNFα (250 copies of TNFα/100 ng cDNA). Degenerate IVDs showed ten-fold higher IL-1 receptor gene expression compared to non-degenerate IVDs. In addition, 80% of degenerate IVD cells displayed IL-1 receptor immunopositivity compared to only 30% of cells in non-degenerate IVDs. However, no increase in TNF receptor I gene or protein expression was observed in degenerate or herniated IVDs compared to non-degenerate IVDs. We have demonstrated that although both cytokines are produced by human IVD cells, IL-1β is expressed at higher levels and in more IVDs, particularly in more degenerate IVDs (grades 4 to 12). Importantly, this study has highlighted an increase in gene and protein production for the IL-1 receptor type I but not the TNF receptor type I in degenerate IVDs. The data thus suggest that although both cytokines may be involved in the

  17. Strategies to Improve Efficiency and Specificity of Degenerate Primers in PCR.

    PubMed

    Campos, Maria Jorge; Quesada, Alberto

    2017-01-01

    PCR with degenerate primers can be used to identify the coding sequence of an unknown protein or to detect a genetic variant within a gene family. These primers, which are complex mixtures of slightly different oligonucleotide sequences, can be optimized to increase the efficiency and/or specificity of PCR in the amplification of a sequence of interest by the introduction of mismatches with the target sequence and balancing their position toward the primers 5'- or 3'-ends. In this work, we explain in detail examples of rational design of primers in two different applications, including the use of specific determinants at the 3'-end, to: (1) improve PCR efficiency with coding sequences for members of a protein family by fully degeneration at a core box of conserved genetic information, with the reduction of degeneration at the 5'-end, and (2) optimize specificity of allelic discrimination of closely related orthologous by 5'-end degenerate primers.

  18. Quantitative OCT and MRI biomarkers for the differentiation of cartilage degeneration.

    PubMed

    Nebelung, Sven; Brill, Nicolai; Tingart, Markus; Pufe, Thomas; Kuhl, Christiane; Jahr, Holger; Truhn, Daniel

    2016-04-01

    To evaluate the usefulness of quantitative parameters obtained by optical coherence tomography (OCT) and magnetic resonance imaging (MRI) in the comprehensive assessment of human articular cartilage degeneration. Human osteochondral samples of variable degeneration (n = 45) were obtained from total knee replacements and assessed by MRI sequences measuring T1, T1ρ, T2 and T2* relaxivity and by OCT-based quantification of irregularity (OII, optical irregularity index), homogeneity (OHI, optical homogeneity index]) and attenuation (OAI, optical attenuation index]). Samples were also assessed macroscopically (Outerbridge classification) and histologically (Mankin classification) as grade-0 (Mankin scores 0-4)/grade-I (scores 5-8)/grade-II (scores 9-10)/grade-III (score 11-14). After data normalisation, differences between Mankin grades and correlations between imaging parameters were assessed using ANOVA and Tukey's post-hoc test and Spearman's correlation coefficients, respectively. Sensitivities and specificities in the detection of Mankin grade-0 were calculated. Significant degeneration-related increases were found for T2 and OII and decreases for OAI, while T1, T1ρ, T2* or OHI did not reveal significant changes in relation to degeneration. A number of significant correlations between imaging parameters and histological (sub)scores were found, in particular for T2 and OII. Sensitivities and specificities in the detection of Mankin grade-0 were highest for OHI/T1 and OII/T1ρ, respectively. Quantitative OCT and MRI techniques seem to complement each other in the comprehensive assessment of cartilage degeneration. Sufficiently large structural and compositional changes in the extracellular matrix may thus be parameterized and quantified, while the detection of early degeneration remains challenging.

  19. Degeneration of serotonergic neurons in amyotrophic lateral sclerosis: a link to spasticity.

    PubMed

    Dentel, Christel; Palamiuc, Lavinia; Henriques, Alexandre; Lannes, Béatrice; Spreux-Varoquaux, Odile; Gutknecht, Lise; René, Frédérique; Echaniz-Laguna, Andoni; Gonzalez de Aguilar, Jose-Luis; Lesch, Klaus Peter; Meininger, Vincent; Loeffler, Jean-Philippe; Dupuis, Luc

    2013-02-01

    Spasticity is a common and disabling symptom observed in patients with central nervous system diseases, including amyotrophic lateral sclerosis, a disease affecting both upper and lower motor neurons. In amyotrophic lateral sclerosis, spasticity is traditionally thought to be the result of degeneration of the upper motor neurons in the cerebral cortex, although degeneration of other neuronal types, in particular serotonergic neurons, might also represent a cause of spasticity. We performed a pathology study in seven patients with amyotrophic lateral sclerosis and six control subjects and observed that central serotonergic neurons suffer from a degenerative process with prominent neuritic degeneration, and sometimes loss of cell bodies in patients with amyotrophic lateral sclerosis. Moreover, distal serotonergic projections to spinal cord motor neurons and hippocampus systematically degenerated in patients with amyotrophic lateral sclerosis. In SOD1 (G86R) mice, a transgenic model of amyotrophic lateral sclerosis, serotonin levels were decreased in brainstem and spinal cord before onset of motor symptoms. Furthermore, there was noticeable atrophy of serotonin neuronal cell bodies along with neuritic degeneration at disease onset. We hypothesized that degeneration of serotonergic neurons could underlie spasticity in amyotrophic lateral sclerosis and investigated this hypothesis in vivo using tail muscle spastic-like contractions in response to mechanical stimulation as a measure of spasticity. In SOD1 (G86R) mice, tail muscle spastic-like contractions were observed at end-stage. Importantly, they were abolished by 5-hydroxytryptamine-2b/c receptors inverse agonists. In line with this, 5-hydroxytryptamine-2b receptor expression was strongly increased at disease onset. In all, we show that serotonergic neurons degenerate during amyotrophic lateral sclerosis, and that this might underlie spasticity in mice. Further research is needed to determine whether inverse

  20. Glial degeneration with oxidative damage drives neuronal demise in MPSII disease

    PubMed Central

    Zalfa, Cristina; Verpelli, Chiara; D'Avanzo, Francesca; Tomanin, Rosella; Vicidomini, Cinzia; Cajola, Laura; Manara, Renzo; Sala, Carlo; Scarpa, Maurizio; Vescovi, Angelo Luigi; De Filippis, Lidia

    2016-01-01

    Mucopolysaccharidosis type II (MPSII) is a lysosomal storage disorder due to the deficit of the iduronate 2-sulfatase (IDS) enzyme, causing progressive neurodegeneration in patients. Neural stem cells (NSCs) derived from the IDS-ko mouse can recapitulate MPSII pathogenesis in vitro. In differentiating IDS-ko NSCs and in the aging IDS-ko mouse brain, glial degeneration precedes neuronal degeneration. Here we show that pure IDS-ko NSC-derived astrocytes are selectively able to drive neuronal degeneration when cocultured with healthy neurons. This phenotype suggests concurrent oxidative damage with metabolic dysfunction. Similar patterns were observed in murine IDS-ko animals and in human MPSII brains. Most importantly, the mutant phenotype of IDS-ko astrocytes was reversed by low oxygen conditions and treatment with vitamin E, which also reversed the toxic effect on cocultured neurons. Moreover, at very early stages of disease we detected in vivo the development of a neuroinflammatory background that precedes astroglial degeneration, thus suggesting a novel model of MPSII pathogenesis, with neuroinflammation preceding glial degeneration, which is finally followed by neuronal death. This hypothesis is also consistent with the progression of white matter abnormalities in MPSII patients. Our study represents a novel breakthrough in the elucidation of MPSII brain pathogenesis and suggests the antioxidant molecules as potential therapeutic tools to delay MPSII onset and progression. PMID:27512952

  1. Glial degeneration with oxidative damage drives neuronal demise in MPSII disease.

    PubMed

    Zalfa, Cristina; Verpelli, Chiara; D'Avanzo, Francesca; Tomanin, Rosella; Vicidomini, Cinzia; Cajola, Laura; Manara, Renzo; Sala, Carlo; Scarpa, Maurizio; Vescovi, Angelo Luigi; De Filippis, Lidia

    2016-08-11

    Mucopolysaccharidosis type II (MPSII) is a lysosomal storage disorder due to the deficit of the iduronate 2-sulfatase (IDS) enzyme, causing progressive neurodegeneration in patients. Neural stem cells (NSCs) derived from the IDS-ko mouse can recapitulate MPSII pathogenesis in vitro. In differentiating IDS-ko NSCs and in the aging IDS-ko mouse brain, glial degeneration precedes neuronal degeneration. Here we show that pure IDS-ko NSC-derived astrocytes are selectively able to drive neuronal degeneration when cocultured with healthy neurons. This phenotype suggests concurrent oxidative damage with metabolic dysfunction. Similar patterns were observed in murine IDS-ko animals and in human MPSII brains. Most importantly, the mutant phenotype of IDS-ko astrocytes was reversed by low oxygen conditions and treatment with vitamin E, which also reversed the toxic effect on cocultured neurons. Moreover, at very early stages of disease we detected in vivo the development of a neuroinflammatory background that precedes astroglial degeneration, thus suggesting a novel model of MPSII pathogenesis, with neuroinflammation preceding glial degeneration, which is finally followed by neuronal death. This hypothesis is also consistent with the progression of white matter abnormalities in MPSII patients. Our study represents a novel breakthrough in the elucidation of MPSII brain pathogenesis and suggests the antioxidant molecules as potential therapeutic tools to delay MPSII onset and progression.

  2. Automated design of degenerate codon libraries.

    PubMed

    Mena, Marco A; Daugherty, Patrick S

    2005-12-01

    Degenerate codon libraries are frequently used in protein engineering and evolution studies but are often limited to targeting a small number of positions to adequately limit the search space. To mitigate this, codon degeneracy can be limited using heuristics or previous knowledge of the targeted positions. To automate design of libraries given a set of amino acid sequences, an algorithm (LibDesign) was developed that generates a set of possible degenerate codon libraries, their resulting size, and their score relative to a user-defined scoring function. A gene library of a specified size can then be constructed that is representative of the given amino acid distribution or that includes specific sequences or combinations thereof. LibDesign provides a new tool for automated design of high-quality protein libraries that more effectively harness existing sequence-structure information derived from multiple sequence alignment or computational protein design data.

  3. Observation of a Degenerate Fermi Gas Trapped by a Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    DeSalvo, B. J.; Patel, Krutik; Johansen, Jacob; Chin, Cheng

    2017-12-01

    We report on the formation of a stable quantum degenerate mixture of fermionic 6Li and bosonic 133Cs in an optical trap by sympathetic cooling near an interspecies Feshbach resonance. New regimes of quantum degenerate Bose-Fermi mixtures are identified. With moderate attractive interspecies interactions, we show that a degenerate Fermi gas of Li can be fully confined in a Cs Bose-Einstein condensate without external potentials. For stronger attraction where mean-field collapse is expected, no such instability is observed. Potential mechanisms to explain this phenomenon are discussed.

  4. Juvenile Macular Degenerations

    PubMed Central

    Altschwager, Pablo; Ambrosio, Lucia; Swanson, Emily A.; Moskowitz, Anne; Fulton, Anne B.

    2017-01-01

    In this paper we review three common juvenile macular degenerations: Stargardt disease, X-linked retinoschisis, and Best vitelliform macular dystrophy. These are inherited disorders that typically present during childhood, when vision is still developing. They are sufficiently common that they should be included in the differential diagnosis of visual loss in pediatric patients. Diagnosis is secured by a combination of clinical findings, optical coherence tomography (OCT) imaging, and genetic testing. Early diagnosis promotes optimal management. While there is currently no definitive cure for these conditions, therapeutic modalities under investigation include pharmacologic treatment, gene therapy, and stem cell transplantation. PMID:28941524

  5. Planar and non-planar nucleus-acoustic shock structures in self-gravitating degenerate quantum plasma systems

    NASA Astrophysics Data System (ADS)

    Zaman, D. M. S.; Amina, M.; Dip, P. R.; Mamun, A. A.

    2017-11-01

    The basic properties of planar and non-planar (spherical and cylindrical) nucleus-acoustic (NA) shock structures (SSs) in a strongly coupled self-gravitating degenerate quantum plasma system (containing strongly coupled non-relativistically degenerate heavy nuclear species, weakly coupled non-relativistically degenerate light nuclear species, and inertialess non-/ultra-relativistically degenerate electrons) have been investigated. The generalized quantum hydrodynamic model and the reductive perturbation method have been used to derive the modified Burgers equation. It is shown that the strong correlation among heavy nuclear species acts as the source of dissipation and is responsible for the formation of the NA SSs with positive (negative) electrostatic (self-gravitational) potential. It is also observed that the effects of non-/ultra-relativistically degenerate electron pressure, dynamics of non-relativistically degenerate light nuclear species, spherical geometry, etc., significantly modify the basic features of the NA SSs. The applications of our results in astrophysical compact objects like white dwarfs and neutron stars are briefly discussed.

  6. FOXP2 Expression in Frontotemporal Lobar Degeneration-Tau.

    PubMed

    López-González, Irene; Palmeira, Andre; Aso, Ester; Carmona, Margarita; Fernandez, Liana; Ferrer, Isidro

    2016-09-06

    FOXP2 is altered in a variety of language disorders. We found reduced mRNA and protein expression of FOXP2 in frontal cortex area 8 in Pick's disease, and frontotemporal lobar degeneration-tau linked to P301L mutation presenting with language impairment in comparison with age-matched controls and cases with parkinsonian variant progressive supranuclear palsy. Foxp2 mRNA and protein are also reduced with disease progression in the somatosensory cortex in transgenic mice bearing the P301S mutation in MAPT when compared with wild-type littermates. Our findings support the presence of FOXP2 expression abnormalities in sporadic and familial frontotemporal degeneration tauopathies.

  7. The macular degeneration and aging study: Design and research protocol of a randomized trial for a psychosocial intervention with macular degeneration patients.

    PubMed

    Sörensen, Silvia; White, Katherine; Mak, Wingyun; Zanibbi, Katherine; Tang, Wan; O'Hearn, Amanda; Hegel, Mark T

    2015-05-01

    Age-related Macular Degeneration (AMD) is the leading cause of irreversible and predictable blindness among older adults with serious physical and mental health consequences. Visual impairment is associated with negative future outlook and depression and has serious consequences for older adults' quality of life and, by way of depression, on long-term survival. Psychosocial interventions have the potential to alleviate and prevent depression symptoms among older AMD patients. We describe the protocol of the Macular Degeneration and Aging Study, a randomized clinical trial of a psychosocial Preventive Problem-Solving Intervention. The intervention is aimed at enhancing well-being and future planning among older adults with macular degeneration by increasing preparation for future care. Adequate randomization and therapeutic fidelity were achieved. Current retention rates were acceptable, given the vulnerability of the population. Acceptability (adherence and satisfaction) was high. Given the high public health significance and impact on quality of life among older adults with vision loss, this protocol contributes a valid test of a promising intervention for maintaining mental and physical health in this population. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A mouse model for degeneration of the spiral ligament.

    PubMed

    Kada, Shinpei; Nakagawa, Takayuki; Ito, Juichi

    2009-06-01

    Previous studies have indicated the importance of the spiral ligament (SL) in the pathogenesis of sensorineural hearing loss. The aim of this study was to establish a mouse model for SL degeneration as the basis for the development of new strategies for SL regeneration. We injected 3-nitropropionic acid (3-NP), an inhibitor of succinate dehydrogenase, at various concentrations into the posterior semicircular canal of adult C57BL/6 mice. Saline-injected animals were used as controls. Auditory function was monitored by measurements of auditory brain stem responses (ABRs). On postoperative day 14, cochlear specimens were obtained after the measurement of the endocochlear potential (EP). Animals that were injected with 5 or 10 mM 3-NP showed a massive elevation of ABR thresholds along with extensive degeneration of the cochleae. Cochleae injected with 1 mM 3-NP exhibited selective degeneration of the SL fibrocytes but alterations in EP levels and ABR thresholds were not of sufficient magnitude to allow for testing functional recovery after therapeutic interventions. Animals injected with 3 mM 3-NP showed a reduction of around 50% in the EP along with a significant loss of SL fibrocytes, although degeneration of spiral ganglion neurons and hair cells was still present in certain regions. These findings indicate that cochleae injected with 3 mM 3-NP may be useful in investigations designed to test the feasibility of new therapeutic manipulations for functional SL regeneration.

  9. Asymptomatic snowflake degeneration in a polymethyl methacrylate (PMMA) intraocular lens implant.

    PubMed

    Tan, Lee T; Shuttleworth, Garry N

    2008-01-01

    Snowflake degeneration is a late complication of polymethyl methacrylate (PMMA) intraocular lens implants. We report a case of asymptomatic advanced snowflake opacification presenting 13 years after implantation who maintained a visual acuity of 6/6. This report serves to illustrate the variability of the clinical effects of snowflake degeneration, which do not necessarily correlate with slit-lamp appearances.

  10. Exploring Nonconvex, Crossed and Degenerate Polygons

    ERIC Educational Resources Information Center

    Contreras, Jose N.

    2004-01-01

    An exploration of nonconvex, crossed, and degenerate polygons (NCCDPs) are described with the help of examples with pedagogical tips and recommendations that are found useful when teaching the mathematical process of extending geometric patterns to NCCDPs. The study concludes that investigating such extensions with interactive geometry software…

  11. [Disease perception in patients with wet age-related macular degeneration].

    PubMed

    Kostadinov, F; Valmaggia, C

    2015-04-01

    The disease perception of the patients treated with intravitreal injections of anti-vascular endothelial growth factor due to wet age-related macular degeneration was investigated. 177 questionnaires focusing on the development of the perceived visual acuity and the quality of life were evaluated. The subgroup 1 included 125 patients (70.6%) with a unilateral wet age-related macular degeneration. The subgroup 2 included 52 patients (29.4%) with a bilateral wet age-related macular degeneration. Patients would almost always recommend the therapy to a friend (97.2%). The critical remarks are related to the uncertain course of the disease (22.8%) and the uncertain duration of the treatment (19%). There was a discrepancy between the measured visual outcome and the perceived one in 5.6% in the subgroup 1, and in 38.5% in the subgroup 2. This difference was statistically significant (chi-square test with p<0.01). The treatment of wet age-related macular degeneration with intravitreal injections of anti-vascular endothelial growth factor is judged positively. Binocular affected patients have a higher disease perception and therefore a poorer self-assessment of their visual acuity and their quality of life compared with monocular affected patients. Georg Thieme Verlag KG Stuttgart · New York.

  12. A Transcriptional Program for Arbuscule Degeneration during AM Symbiosis Is Regulated by MYB1.

    PubMed

    Floss, Daniela S; Gomez, S Karen; Park, Hee-Jin; MacLean, Allyson M; Müller, Lena M; Bhattarai, Kishor K; Lévesque-Tremblay, Veronique; Maldonado-Mendoza, Ignacio E; Harrison, Maria J

    2017-04-24

    During the endosymbiosis formed between plants and arbuscular mycorrhizal (AM) fungi, the root cortical cells are colonized by branched hyphae called arbuscules, which function in nutrient exchange with the plant [1]. Despite their positive function, arbuscules are ephemeral structures, and their development is followed by a degeneration phase, in which the arbuscule and surrounding periarbuscular membrane and matrix gradually disappear from the root cell [2, 3]. Currently, the root cell's role in this process and the underlying regulatory mechanisms are unknown. Here, by using a Medicago truncatula pt4 mutant in which arbuscules degenerate prematurely [4], we identified arbuscule degeneration-associated genes, of which 38% are predicted to encode secreted hydrolases, suggesting a role in disassembly of the arbuscule and interface. Through RNAi and analysis of an insertion mutant, we identified a symbiosis-specific MYB-like transcription factor (MYB1) that suppresses arbuscule degeneration in mtpt4. In myb1, expression of several degeneration-associated genes is reduced. Conversely, in roots constitutively overexpressing MYB1, expression of degeneration-associated genes is increased and subsequent development of symbiosis is impaired. MYB1-regulated gene expression is enhanced by DELLA proteins and is dependent on NSP1 [5], but not NSP2 [6]. Furthermore, MYB1 interacts with DELLA and NSP1. Our data identify a transcriptional program for arbuscule degeneration and reveal that its regulators include MYB1 in association with two transcriptional regulators, NSP1 and DELLA, both of which function in preceding phases of the symbiosis. We propose that the combinatorial use of transcription factors enables the sequential expression of transcriptional programs for arbuscule development and degeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Degenerate band edge laser

    NASA Astrophysics Data System (ADS)

    Veysi, Mehdi; Othman, Mohamed A. K.; Figotin, Alexander; Capolino, Filippo

    2018-05-01

    We propose a class of lasers based on a fourth-order exceptional point of degeneracy (EPD) referred to as the degenerate band edge (DBE). EPDs have been found in parity-time-symmetric photonic structures that require loss and/or gain; here we show that the DBE is a different kind of EPD since it occurs in periodic structures that are lossless and gainless. Because of this property, a small level of gain is sufficient to induce single-frequency lasing based on a synchronous operation of four degenerate Floquet-Bloch eigenwaves. This lasing scheme constitutes a light-matter interaction mechanism that leads also to a unique scaling law of the laser threshold with the inverse of the fifth power of the laser-cavity length. The DBE laser has the lowest lasing threshold in comparison to a regular band edge laser and to a conventional laser in cavities with the same loaded quality (Q ) factor and length. In particular, even without mirror reflectors the DBE laser exhibits a lasing threshold which is an order of magnitude lower than that of a uniform cavity laser of the same length and with very high mirror reflectivity. Importantly, this novel DBE lasing regime enforces mode selectivity and coherent single-frequency operation even for pumping rates well beyond the lasing threshold, in contrast to the multifrequency nature of conventional uniform cavity lasers.

  14. Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langlois, David; Noui, Karim, E-mail: langlois@apc.univ-paris7.fr, E-mail: karim.noui@lmpt.univ-tours.fr

    2016-02-01

    Theories with higher order time derivatives generically suffer from ghost-like instabilities, known as Ostrogradski instabilities. This fate can be avoided by considering ''degenerate'' Lagrangians, whose kinetic matrix cannot be inverted, thus leading to constraints between canonical variables and a reduced number of physical degrees of freedom. In this work, we derive in a systematic way the degeneracy conditions for scalar-tensor theories that depend quadratically on second order derivatives of a scalar field. We thus obtain a classification of all degenerate theories within this class of scalar-tensor theories. The quartic Horndeski Lagrangian and its extension beyond Horndeski belong to these degeneratemore » cases. We also identify new families of scalar-tensor theories with the property that they are degenerate despite the nondegeneracy of the purely scalar part of their Lagrangian.« less

  15. Acquired hepatocerebral degeneration: A case report

    PubMed Central

    Chen, Wei-Xing; Wang, Ping; Yan, Sen-Xiang; Li, You-Ming; Yu, Chao-Hui; Jiang, Ling-Ling

    2005-01-01

    AIM: Acquired hepatocerebral degeneration (AHD) is an exceptional type of hepatic encephalopathies (HE). It is characterized by neuropsychiatric and extrapyramidal symptomathology similar to that seen in hepatolenticular degeneration (Wilson’s disease). In this paper, we report a case of AHD with unusual presenting features. METHODS: A 28-year-old man with AHD was described and the literature was reviewed. RESULTS: The man had a history of HBV-related liver cirrhosis. He was admitted to our hospital with apathy, dysarthria, mild consciousness impairment and extrapyramidal symptoms after hematemesis. By review of the literature, cases with AHD often did not present consciousness impairment. So our case was once diagnosed incorrectly as Wilson’s disease. CONCLUSION: AHD is a rare syndrome and its variable clinical manifestations make it difficult to be diagnosed. But we believe that extensive examination and thorough understanding of the disease are beneficial to a correct diagnosis. Moreover, biocoene is effective in treating the case. PMID:15655841

  16. Adolescent disc degeneration--no headache association.

    PubMed

    Laimi, K; Erkintalo, M; Metsähonkala, L; Vahlberg, T; Mikkelsson, M; Sonninen, P; Parkkola, R; Aromaa, M; Sillanpäa, M; Rautava, P; Anttila, P; Salminen, J

    2007-01-01

    The objective of the study was to determine whether adolescents with headache have more disc degeneration in the cervical spine than headache-free controls. This study is part of a population-based follow-up study of adolescents with and without headache. At the age of 17 years, adolescents with headache at least three times a month (N = 47) and adolescents with no headache (N = 22) participated in a magnetic resonance imaging (MRI) study of the cervical spine. Of the 47 headache sufferers, 17 also had weekly neck pain and 30 had neck pain less than once a month. MRI scans were interpreted independently by three neuroradiologists. Disc degeneration was found in 67% of participants, with no difference between adolescents with and without headache. Most of the degenerative changes were located in the lower cervical spine. In adolescence, mild degenerative changes of the cervical spine are surprisingly common but do not contribute to headache.

  17. Atomic rate coefficients in a degenerate plasma

    NASA Astrophysics Data System (ADS)

    Aslanyan, Valentin; Tallents, Greg

    2015-11-01

    The electrons in a dense, degenerate plasma follow Fermi-Dirac statistics, which deviate significantly in this regime from the usual Maxwell-Boltzmann approach used by many models. We present methods to calculate the atomic rate coefficients for the Fermi-Dirac distribution and present a comparison of the ionization fraction of carbon calculated using both models. We have found that for densities close to solid, although the discrepancy is small for LTE conditions, there is a large divergence from the ionization fraction by using classical rate coefficients in the presence of strong photoionizing radiation. We have found that using these modified rates and the degenerate heat capacity may affect the time evolution of a plasma subject to extreme ultraviolet and x-ray radiation such as produced in free electron laser irradiation of solid targets.

  18. Human cartilage endplate permeability varies with degeneration and intervertebral disc site.

    PubMed

    DeLucca, John F; Cortes, Daniel H; Jacobs, Nathan T; Vresilovic, Edward J; Duncan, Randall L; Elliott, Dawn M

    2016-02-29

    Despite the critical functions the human cartilage endplate (CEP) plays in the intervertebral disc, little is known about its structural and mechanical properties and their changes with degeneration. Quantifying these changes with degeneration is important for understanding how the CEP contributes to the function and pathology of the disc. Therefore the objectives of this study were to quantify the effect of disc degeneration on human CEP mechanical properties, determine the influence of superior and inferior disc site on mechanics and composition, and simulate the role of collagen fibers in CEP and disc mechanics using a validated finite element model. Confined compression data and biochemical composition data were used in a biphasic-swelling model to calculate compressive extrafibrillar elastic and permeability properties. Tensile properties were obtained by applying published tensile test data to an ellipsoidal fiber distribution. Results showed that with degeneration CEP permeability decreased 50-60% suggesting that transport is inhibited in the degenerate disc. CEP fibers are organized parallel to the vertebrae and nucleus pulposus and may contribute to large shear strains (0.1-0.2) and delamination failure of the CEP commonly seen in herniated disc tissue. Fiber-reinforcement also reduces CEP axial strains thereby enhancing fluid flux by a factor of 1.8. Collectively, these results suggest that the structure and mechanics of the CEP may play critical roles in the solute transport and disc mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Human Cartilage Endplate Permeability Varies with Degeneration and Intervertebral Disc Site

    PubMed Central

    DeLucca, John F.; Cortes, Daniel H.; Jacobs, Nathan T.; Vresilovic, Edward J.; Duncan, Randall L.; Elliott, Dawn M.

    2016-01-01

    Despite the critical functions the human cartilage endplate (CEP) plays in the intervertebral disc, little is known about its structural and mechanical properties and their changes with degeneration. Quantifying these changes with degeneration is important for understanding how the CEP contributes to the function and pathology of the disc. Therefore the objectives of this study were to quantify the effect of disc degeneration on human CEP mechanical properties, determine the influence of superior and inferior disc site on mechanics and composition, and simulate the role of collagen fibers in CEP and disc mechanics using a validated finite element model. Confined compression data and biochemical composition data were used in a biphasic-swelling model to calculate compressive extrafibrillar elastic and permeability properties. Tensile properties were obtained by applying published tensile test data to an ellipsoidal fiber distribution. Results showed that with degeneration CEP permeability decreased 50–60% suggesting that transport is inhibited in the degenerate disc. CEP fibers are organized parallel to the vertebrae and nucleus pulposus and may contribute to large shear strains (0.1–0.2) and delamination failure of the CEP commonly seen in herniated disc tissue. Fiber-reinforcement also reduces CEP axial strains thereby enhancing fluid flux by a factor of 1.8. Collectively, these results suggest that the structure and mechanics of the CEP may play critical roles in the solute transport and disc mechanics. PMID:26874969

  20. [Vitreomacular adhesion in HD-OCT images in the age-related macular degeneration].

    PubMed

    Latalska, Małgorzata; Swiech-Zubilewicz, Anna; Mackiewicz, Jerzy

    2013-01-01

    The aim of this study was to evaluate an incidence of the vitreomacular adhesion in patients with age-related macular degeneration. We examined 472 eyes in 241 patients (136 W/ 105 M) in age of 54-92 years (mean 62.6 years +/- 8.5) with dry or wet age-related macular degeneration using Cirrus HD-OCT (Zeiss) macular cube 512x128 program or 5-line pro-gram. Vitreomacular adhesion was observed in 139 eyes with dry age-related macular degeneration (29.4%, p=0.000*), in 101 eyes with drusen (21.4%, p=0.000*), in 38 eyes with retinal pigment epithelium alterations (8%, p=0.202), in 278 eyes with wet age-related macular degeneration (58.9%, p=0.001*), in 21 eyes with pigment epithelial detachment (4.4%, p=0.303), in 161 eyes with choroidal neovascularzation (34. 1%, p=0.031*/ and in 96 eyes with scar (20.4%, p=0.040*). Probably, vitreomacular adhesion alone is not able to induce age-related macular degeneration, but it may be associated with choroidal neovascularization development, it can contribute to exudate formation and choroidal neovascularization, it may induces or sustains a chronic low-grade inflammation in the macula region.

  1. Impact of age-related macular degeneration in patients with glaucoma: understanding the patients' perspective.

    PubMed

    Skalicky, Simon E; Fenwick, Eva; Martin, Keith R; Crowston, Jonathan; Goldberg, Ivan; McCluskey, Peter

    2016-07-01

    The aim of the study is to measure the impact of age-related macular degeneration on vision-related activity limitation and preference-based status for glaucoma patients. This was a cross-sectional study. Two-hundred glaucoma patients of whom 73 had age-related macular degeneration were included in the research. Sociodemographic information, visual field parameters and visual acuity were collected. Age-related macular degeneration was scored using the Age-Related Eye Disease Study system. The Rasch-analysed Glaucoma Activity Limitation-9 and the Visual Function Questionnaire Utility Index measured vision-related activity limitation and preference-based status, respectively. Regression models determined factors predictive of vision-related activity limitation and preference-based status. Differential item functioning compared Glaucoma Activity Limitation-9 item difficulty for those with and without age-related macular degeneration. Mean age was 73.7 (±10.1) years. Lower better eye mean deviation (β: 1.42, 95% confidence interval: 1.24-1.63, P < 0.001) and age-related macular degeneration (β: 1.26 95% confidence interval: 1.10-1.44, P = 0.001) were independently associated with worse vision-related activity limitation. Worse eye visual acuity (β: 0.978, 95% confidence interval: 0.961-0.996, P = 0.018), high risk age-related macular degeneration (β: 0.981, 95% confidence interval: 0.965-0.998, P = 0.028) and severe glaucoma (β: 0.982, 95% confidence interval: 0.966-0.998, P = 0.032) were independently associated with worse preference-based status. Glaucoma patients with age-related macular degeneration found using stairs, walking on uneven ground and judging distances of foot to step/curb significantly more difficult than those without age-related macular degeneration. Vision-related activity limitation and preference-based status are negatively impacted by severe glaucoma and age-related macular degeneration. Patients with both conditions

  2. Degeneration modulates retinal response to transient exogenous oxidative injury.

    PubMed

    Lederman, Michal; Hagbi-Levi, Shira; Grunin, Michelle; Obolensky, Alexey; Berenshtein, Eduard; Banin, Eyal; Chevion, Mordechai; Chowers, Itay

    2014-01-01

    Oxidative injury is involved in retinal and macular degeneration. We aim to assess if retinal degeneration associated with genetic defect modulates the retinal threshold for encountering additional oxidative challenges. Retinal oxidative injury was induced in degenerating retinas (rd10) and in control mice (WT) by intravitreal injections of paraquat (PQ). Retinal function and structure was evaluated by electroretinogram (ERG) and histology, respectively. Oxidative injury was assessed by immunohistochemistry for 4-Hydroxy-2-nonenal (HNE), and by Thiobarbituric Acid Reactive Substances (TBARS) and protein carbonyl content (PCC) assays. Anti-oxidant mechanism was assessed by quantitative real time PCR (QPCR) for mRNA of antioxidant genes and genes related to iron metabolism, and by catalase activity assay. Three days following PQ injections (1 µl of 0.25, 0.75, and 2 mM) the average ERG amplitudes decreased more in the WT mice compared with the rd10 mice. For example, following 2 mM PQ injection, ERG amplitudes reduced 1.84-fold more in WT compared with rd10 mice (p = 0.02). Injection of 4 mM PQ resulted in retinal destruction. Altered retina morphology associated with PQ was substantially more severe in WT eyes compared with rd10 eyes. Oxidative injury according to HNE staining and TBARS assay increased 1.3-fold and 2.1-fold more, respectively, in WT compared with rd10 mice. At baseline, prior to PQ injection, mRNA levels of antioxidant genes (Superoxide Dismutase1, Glutathione Peroxidase1, Catalase) and of Transferrin measured by quantitative PCR were 2.1-7.8-fold higher in rd10 compared with WT mice (p<0.01 each), and catalase activity was 1.7-fold higher in rd10 (p = 0.0006). This data suggests that degenerating rd10 retinas encounter a relatively lower degree of damage in response to oxidative injury compared with normal retinas. Constitutive up-regulation of the oxidative defense mechanism in degenerating retinas may confer such relative protection from

  3. Degeneration Modulates Retinal Response to Transient Exogenous Oxidative Injury

    PubMed Central

    Lederman, Michal; Hagbi-Levi, Shira; Grunin, Michelle; Obolensky, Alexey; Berenshtein, Eduard; Banin, Eyal; Chevion, Mordechai; Chowers, Itay

    2014-01-01

    Purpose Oxidative injury is involved in retinal and macular degeneration. We aim to assess if retinal degeneration associated with genetic defect modulates the retinal threshold for encountering additional oxidative challenges. Methods Retinal oxidative injury was induced in degenerating retinas (rd10) and in control mice (WT) by intravitreal injections of paraquat (PQ). Retinal function and structure was evaluated by electroretinogram (ERG) and histology, respectively. Oxidative injury was assessed by immunohistochemistry for 4-Hydroxy-2-nonenal (HNE), and by Thiobarbituric Acid Reactive Substances (TBARS) and protein carbonyl content (PCC) assays. Anti-oxidant mechanism was assessed by quantitative real time PCR (QPCR) for mRNA of antioxidant genes and genes related to iron metabolism, and by catalase activity assay. Results Three days following PQ injections (1 µl of 0.25, 0.75, and 2 mM) the average ERG amplitudes decreased more in the WT mice compared with the rd10 mice. For example, following 2 mM PQ injection, ERG amplitudes reduced 1.84-fold more in WT compared with rd10 mice (p = 0.02). Injection of 4 mM PQ resulted in retinal destruction. Altered retina morphology associated with PQ was substantially more severe in WT eyes compared with rd10 eyes. Oxidative injury according to HNE staining and TBARS assay increased 1.3-fold and 2.1-fold more, respectively, in WT compared with rd10 mice. At baseline, prior to PQ injection, mRNA levels of antioxidant genes (Superoxide Dismutase1, Glutathione Peroxidase1, Catalase) and of Transferrin measured by quantitative PCR were 2.1–7.8-fold higher in rd10 compared with WT mice (p<0.01 each), and catalase activity was 1.7-fold higher in rd10 (p = 0.0006). Conclusions This data suggests that degenerating rd10 retinas encounter a relatively lower degree of damage in response to oxidative injury compared with normal retinas. Constitutive up-regulation of the oxidative defense mechanism in degenerating retinas

  4. dnc-1/dynactin 1 Knockdown Disrupts Transport of Autophagosomes and Induces Motor Neuron Degeneration

    PubMed Central

    Ikenaka, Kensuke; Kawai, Kaori; Katsuno, Masahisa; Huang, Zhe; Jiang, Yue-Mei; Iguchi, Yohei; Kobayashi, Kyogo; Kimata, Tsubasa; Waza, Masahiro; Tanaka, Fumiaki; Mori, Ikue; Sobue, Gen

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. We previously showed that the expression of dynactin 1, an axon motor protein regulating retrograde transport, is markedly reduced in spinal motor neurons of sporadic ALS patients, although the mechanisms by which decreased dynactin 1 levels cause neurodegeneration have yet to be elucidated. The accumulation of autophagosomes in degenerated motor neurons is another key pathological feature of sporadic ALS. Since autophagosomes are cargo of dynein/dynactin complexes and play a crucial role in the turnover of several organelles and proteins, we hypothesized that the quantitative loss of dynactin 1 disrupts the transport of autophagosomes and induces the degeneration of motor neuron. In the present study, we generated a Caenorhabditis elegans model in which the expression of DNC-1, the homolog of dynactin 1, is specifically knocked down in motor neurons. This model exhibited severe motor defects together with axonal and neuronal degeneration. We also observed impaired movement and increased number of autophagosomes in the degenerated neurons. Furthermore, the combination of rapamycin, an activator of autophagy, and trichostatin which facilitates axonal transport dramatically ameliorated the motor phenotype and axonal degeneration of this model. Thus, our results suggest that decreased expression of dynactin 1 induces motor neuron degeneration and that the transport of autophagosomes is a novel and substantial therapeutic target for motor neuron degeneration. PMID:23408943

  5. Treatment of Macular Degeneration with Sildenafil: Results of a Two-Year Trial.

    PubMed

    Coleman, D Jackson; Lee, Winston; Chang, Stanley; Silverman, Ronald H; Lloyd, Harriet O; Daly, Suzanne; Tsang, Stephen H

    2018-04-25

    To evaluate PDE5/6 inhibition with sildenafil to reduce choroidal ischemia and treat age-related macular degeneration. Sildenafil was prescribed to treat participants with macular degenerations or macular dystrophies measured by spectral-domain optical coherence tomography, color fundus photography, enhanced depth imaging, and best-corrected visual acuity. No change in calcified drusen was noted. Vitelliform-type soft drusen were not substantially changed. A participant with Best vitelliform macular dystrophy had a significant improvement in vision as well as in photoreceptor and ellipsoid layers. Our research supports sildenafil as a safe treatment for age-related and vitelliform macular degenerations. Thickened Bruch's membrane reduces the beneficial effect of perfusion increase, but all eyes appear to benefit from PDE6. Notably, maintenance or improvement in the photoreceptor layer may be the most significant result of sildenafil and is consistent with PDE6 inhibition. Thus, sil-denafil treatment of macular degeneration offers significant potential for vision retention and recovery. © 2018 S. Karger AG, Basel.

  6. Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice.

    PubMed

    Dysli, Chantal; Dysli, Muriel; Zinkernagel, Martin S; Enzmann, Volker

    2016-12-01

    Fluorescence lifetime imaging ophthalmoscopy (FLIO) was used to investigate retinal autofluorescence lifetimes in mouse models of pharmacologically induced retinal degeneration over time. Sodium iodate (NaIO 3 , 35 mg/kg intravenously) was used to induce retinal pigment epithelium (RPE) degeneration with subsequent loss of photoreceptors (PR) whereas N-methyl-N-nitrosourea (MNU, 45 mg/kg intraperitoneally) was employed for degeneration of the photoreceptor cell layer alone. All mice were measured at day 3, 7, 14, and 28 after the respective injection of NaIO 3 , MNU or NaCl (control). Fluorescence lifetime imaging was performed using a fluorescence lifetime imaging ophthalmoscope (Heidelberg Engineering, Heidelberg, Germany). Fluorescence was excited at 473 nm and fluorescence lifetimes were measured in a short and a long spectral channel (498-560 nm and 560-720 nm). Corresponding optical coherence tomography (OCT) images were consecutively acquired and histology was performed at the end of the experiments. Segmentation of OCT images and histology verified the cell type-specific degeneration process over time. Retinal autofluorescence lifetimes increased from day 3 to day 28 in mice after NaIO 3 treatment. Finally, at day 28, fluorescence lifetimes were prolonged by 8% in the short and 61% in the long spectral channel compared to control animals (p = 0.21 and p = 0.004, respectively). In mice after MNU treatment, the mean retinal autofluorescence lifetimes were already decreased at day 3 and retinal lifetimes were finally shortened by 27% in the short and 51% in the long spectral channel at day 28 (p = 0.0028). In conclusion, degeneration of the RPE with subsequent photoreceptor degeneration by NaIO 3 lead to longer mean fluorescence lifetimes of the retina compared to control mice, whereas during specific degeneration of the photoreceptor layer induced by MNU shorter lifetimes were measured. Therefore, short retinal fluorescence lifetimes may originate

  7. An Unconventional Approach to Reducing Retinal Degeneration After Traumatic Ocular Injury

    DTIC Science & Technology

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0138 TITLE: An Unconventional Approach to Reducing Retinal Degeneration After Traumatic Ocular Injury PRINCIPAL...2015 - 30 Jun 2017 4. TITLE AND SUBTITLE An Unconventional Approach to Reducing Retinal Degeneration After Traumatic Ocular Injury 5 a . CONTRACT...optic confocal microscope system , test it, and establish protocols for the first successful in vivo retinal microvessel and pericyte advanced

  8. Asymptotic coincidence of the statistics for degenerate and non-degenerate correlated real Wishart ensembles

    NASA Astrophysics Data System (ADS)

    Wirtz, Tim; Kieburg, Mario; Guhr, Thomas

    2017-06-01

    The correlated Wishart model provides the standard benchmark when analyzing time series of any kind. Unfortunately, the real case, which is the most relevant one in applications, poses serious challenges for analytical calculations. Often these challenges are due to square root singularities which cannot be handled using common random matrix techniques. We present a new way to tackle this issue. Using supersymmetry, we carry out an anlaytical study which we support by numerical simulations. For large but finite matrix dimensions, we show that statistical properties of the fully correlated real Wishart model generically approach those of a correlated real Wishart model with doubled matrix dimensions and doubly degenerate empirical eigenvalues. This holds for the local and global spectral statistics. With Monte Carlo simulations we show that this is even approximately true for small matrix dimensions. We explicitly investigate the k-point correlation function as well as the distribution of the largest eigenvalue for which we find a surprisingly compact formula in the doubly degenerate case. Moreover we show that on the local scale the k-point correlation function exhibits the sine and the Airy kernel in the bulk and at the soft edges, respectively. We also address the positions and the fluctuations of the possible outliers in the data.

  9. Ernest Borgnine Lays it on the Line Hollywood Hero Focuses on Macular Degeneration

    MedlinePlus

    ... it on the Line Hollywood Hero Focuses on Macular Degeneration Past Issues / Summer 2008 Table of Contents For ... going strong at 91, and speaking out on macular degeneration for the National Eye Institute. Photo courtesy of ...

  10. Juvenile Macular Degenerations.

    PubMed

    Altschwager, Pablo; Ambrosio, Lucia; Swanson, Emily A; Moskowitz, Anne; Fulton, Anne B

    2017-05-01

    In this article, we review the following 3 common juvenile macular degenerations: Stargardt disease, X-linked retinoschisis, and Best vitelliform macular dystrophy. These are inherited disorders that typically present during childhood, when vision is still developing. They are sufficiently common that they should be included in the differential diagnosis of visual loss in pediatric patients. Diagnosis is secured by a combination of clinical findings, optical coherence tomography imaging, and genetic testing. Early diagnosis promotes optimal management. Although there is currently no definitive cure for these conditions, therapeutic modalities under investigation include pharmacologic treatment, gene therapy, and stem cell transplantation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Correlations between the feature of sagittal spinopelvic alignment and facet joint degeneration: a retrospective study.

    PubMed

    Lv, Xin; Liu, Yuan; Zhou, Song; Wang, Qiang; Gu, Houyun; Fu, Xiaoxing; Ding, Yi; Zhang, Bin; Dai, Min

    2016-08-15

    Sagittal spinopelvic alignment changes associated with degenerative facet joint arthritis have been assessed in a few studies. It has been documented that patients with facet joint degeneration have higher pelvic incidence, but the relationship between facet joint degeneration and other sagittal spinopelvic alignment parameters is still disputed. Our purpose was to evaluate the correlation between the features of sagittal spinopelvic alignment and facet joint degeneration. Imaging data of 140 individuals were retrospectively analysed. Lumbar lordosis, pelvic tilt (PT), pelvic incidence (PI), sacral slope, and height of the lumbar intervertebral disc were measured on lumbar X-ray plates. Grades of facet joint degeneration were evaluated from the L2 to S1 on CT scans. Spearman's rank correlation coefficient and Student's t-test were used for statistical analyses, and a P-value <0.05 was considered statistically significant. PI was positively associated with degeneration of the facet joint at lower lumbar levels (p < 0.001 r = 0.50 at L5/S1 and P = 0.002 r = 0.25 at L4/5). A significant increase of PT was found in the severe degeneration group compared with the mild degeneration group: 22.0° vs 15.7°, P = 0.034 at L2/3;21.4°vs 15.1°, P = 0.006 at L3/4; 21.0° vs 13.5°, P = 0.000 at L4/5; 20.8° vs 12.1°, P = 0.000 at L5/S1. Our results indicate that a high PI is a predisposing factor for facet joint degeneration at the lower lumbar spine, and that severe facet joint degeneration may accompany with greater PT at lumbar spine.

  12. CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design

    PubMed Central

    Rose, Timothy M.; Henikoff, Jorja G.; Henikoff, Steven

    2003-01-01

    We have developed a new primer design strategy for PCR amplification of distantly related gene sequences based on consensus-degenerate hybrid oligonucleotide primers (CODEHOPs). An interactive program has been written to design CODEHOP PCR primers from conserved blocks of amino acids within multiply-aligned protein sequences. Each CODEHOP consists of a pool of related primers containing all possible nucleotide sequences encoding 3–4 highly conserved amino acids within a 3′ degenerate core. A longer 5′ non-degenerate clamp region contains the most probable nucleotide predicted for each flanking codon. CODEHOPs are used in PCR amplification to isolate distantly related sequences encoding the conserved amino acid sequence. The primer design software and the CODEHOP PCR strategy have been utilized for the identification and characterization of new gene orthologs and paralogs in different plant, animal and bacterial species. In addition, this approach has been successful in identifying new pathogen species. The CODEHOP designer (http://blocks.fhcrc.org/codehop.html) is linked to BlockMaker and the Multiple Alignment Processor within the Blocks Database World Wide Web (http://blocks.fhcrc.org). PMID:12824413

  13. Characterization of an Early-Onset, Autosomal Recessive, Progressive Retinal Degeneration in Bengal Cats.

    PubMed

    Ofri, Ron; Reilly, Christopher M; Maggs, David J; Fitzgerald, Paul G; Shilo-Benjamini, Yael; Good, Kathryn L; Grahn, Robert A; Splawski, Danielle D; Lyons, Leslie A

    2015-08-01

    A form of retinal degeneration suspected to be hereditary was discovered in a family of Bengal cats. A breeding colony was established to characterize disease progression clinically, electrophysiologically, and morphologically, and to investigate the mode of inheritance. Affected and related cats were donated by owners for breeding trials and pedigree analysis. Kittens from test and complementation breedings underwent ophthalmic and neuro-ophthalmic examinations and ERG, and globes were evaluated using light microscopy. Pedigree analysis, along with test and complementation breedings, indicated autosomal recessive inheritance and suggested that this disease is nonallelic to a retinal degeneration found in Persian cats. Mutation analysis confirmed the disease is not caused by CEP290 or CRX variants found predominantly in Abyssinian and Siamese cats. Ophthalmoscopic signs of retinal degeneration were noted at 9 weeks of age and became more noticeable over the next 4 months. Visual deficits were behaviorally evident by 1 year of age. Electroretinogram demonstrated reduced rod and cone function at 7 and 9 weeks of age, respectively. Rod responses were mostly extinguished at 14 weeks of age; cone responses were minimal by 26 weeks. Histologic degeneration was first observed at 8 weeks, evidenced by reduced photoreceptor numbers, then rapid deterioration of the photoreceptor layer and, subsequently, severe outer retinal degeneration. A recessively inherited primary photoreceptor degeneration was characterized in the Bengal cat. The disease is characterized by early onset, with histologic, ophthalmoscopic, and electrophysiological signs evident by 2 months of age, and rapid progression to blindness.

  14. A Layered Approach to Raising Public Awareness of Macular Degeneration in Australia

    PubMed Central

    Heraghty, Julie; Cummins, Robert

    2012-01-01

    Between 2007 and 2011, the Australian Macular Degeneration Foundation conducted a multifaceted campaign to increase public awareness of macular degeneration. Regular national polls conducted by an independent social research company have shown that awareness of macular degeneration increased from 47% to 80% in Australians aged 16 years or older and from 58% to 92% in those aged 50 years or older. The percentage of people aged 50 years or older who reported having had their macula checked in the 2 years prior to the survey increased from 33% to 70% from 2007 to 2011. Other measures, including analysis of Medicare data, have confirmed the success of the campaign. PMID:22813341

  15. Age-related macular degeneration

    PubMed Central

    Querques, Giuseppe; Avellis, Fernando Onofrio; Querques, Lea; Bandello, Francesco; Souied, Eric H

    2011-01-01

    Clinical question: Is there any new knowledge about the pathogenesis and treatment of age-related macular degeneration (AMD)? Results: We now understand better the biochemical and pathological pathways involved in the genesis of AMD. Treatment of exudative AMD is based on intravitreal injection of new antivascular endothelial growth factor drugs for which there does not yet exist a unique recognized strategy of administration. No therapies are actually available for atrophic AMD, despite some experimental new pharmacological approaches. Implementation: strategy of administration, safety of intravitreal injection PMID:21654887

  16. SARM1-specific motifs in the TIR domain enable NAD+ loss and regulate injury-induced SARM1 activation.

    PubMed

    Summers, Daniel W; Gibson, Daniel A; DiAntonio, Aaron; Milbrandt, Jeffrey

    2016-10-11

    Axon injury in response to trauma or disease stimulates a self-destruction program that promotes the localized clearance of damaged axon segments. Sterile alpha and Toll/interleukin receptor (TIR) motif-containing protein 1 (SARM1) is an evolutionarily conserved executioner of this degeneration cascade, also known as Wallerian degeneration; however, the mechanism of SARM1-dependent neuronal destruction is still obscure. SARM1 possesses a TIR domain that is necessary for SARM1 activity. In other proteins, dimerized TIR domains serve as scaffolds for innate immune signaling. In contrast, dimerization of the SARM1 TIR domain promotes consumption of the essential metabolite NAD + and induces neuronal destruction. This activity is unique to the SARM1 TIR domain, yet the structural elements that enable this activity are unknown. In this study, we identify fundamental properties of the SARM1 TIR domain that promote NAD + loss and axon degeneration. Dimerization of the TIR domain from the Caenorhabditis elegans SARM1 ortholog TIR-1 leads to NAD + loss and neuronal death, indicating these activities are an evolutionarily conserved feature of SARM1 function. Detailed analysis of sequence homology identifies canonical TIR motifs as well as a SARM1-specific (SS) loop that are required for NAD + loss and axon degeneration. Furthermore, we identify a residue in the SARM1 BB loop that is dispensable for TIR activity yet required for injury-induced activation of full-length SARM1, suggesting that SARM1 function requires multidomain interactions. Indeed, we identify a physical interaction between the autoinhibitory N terminus and the TIR domain of SARM1, revealing a previously unrecognized direct connection between these domains that we propose mediates autoinhibition and activation upon injury.

  17. Acidic pH promotes intervertebral disc degeneration: Acid-sensing ion channel -3 as a potential therapeutic target.

    PubMed

    Gilbert, Hamish T J; Hodson, Nathan; Baird, Pauline; Richardson, Stephen M; Hoyland, Judith A

    2016-11-17

    The aetiology of intervertebral disc (IVD) degeneration remains poorly understood. Painful IVD degeneration is associated with an acidic intradiscal pH but the response of NP cells to this aberrant microenvironmental factor remains to be fully characterised. The aim here was to address the hypothesis that acidic pH, similar to that found in degenerate IVDs, leads to the altered cell/functional phenotype observed during IVD degeneration, and to investigate the involvement of acid-sensing ion channel (ASIC) -3 in the response. Human NP cells were treated with a range of pH, from that of a non-degenerate (pH 7.4 and 7.1) through to mildly degenerate (pH 6.8) and severely degenerate IVD (pH 6.5 and 6.2). Increasing acidity of pH caused a decrease in cell proliferation and viability, a shift towards matrix catabolism and increased expression of proinflammatory cytokines and pain-related factors. Acidic pH resulted in an increase in ASIC-3 expression. Importantly, inhibition of ASIC-3 prevented the acidic pH induced proinflammatory and pain-related phenotype in NP cells. Acidic pH causes a catabolic and degenerate phenotype in NP cells which is inhibited by blocking ASIC-3 activity, suggesting that this may be a useful therapeutic target for treatment of IVD degeneration.

  18. Congenital Head Nodding and Nystagmus with Cerebrocerebellar Degeneration

    ERIC Educational Resources Information Center

    Kalyanaraman, K.; And Others

    1973-01-01

    Reported are three case histories of children with congenital head nodding and nystagmus (rhytmic oscillation of the eyeballs) associated with brain degeneration and motor and mental retardation. (DB)

  19. Driving and Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Owsley, Cynthia; McGwin, Gerald, Jr.

    2008-01-01

    This article reviews the research literature on driving and age-related macular degeneration, which is motivated by the link between driving and the quality of life of older adults and their increased collision rate. It addresses the risk of crashes, driving performance, driving difficulty, self-regulation, and interventions to enhance, safety,…

  20. Advances in repairing the degenerate retina by rod photoreceptor transplantation☆

    PubMed Central

    Pearson, Rachael A.

    2014-01-01

    Despite very different aetiologies, age-related macular degeneration (AMD) and most inherited retinal disorders culminate in the same final common pathway, loss of the light-sensitive photoreceptors. There are few clinical treatments and none can reverse the loss of vision. Photoreceptor replacement by transplantation is proposed as a broad treatment strategy applicable to all degenerations. The past decade has seen a number of landmark achievements in this field, which together provide strong justification for continuing investigation into photoreceptor replacement strategies. These include proof of principle for restoring vision by rod-photoreceptor transplantation in mice with congenital stationary night blindness and advances in stem cell biology, which have led to the generation of complete optic structures in vitro from embryonic stem cells. The latter represents enormous potential for generating suitable and renewable donor cells with which to achieve the former. However, there are still challenges presented by the degenerating recipient retinal environment that must be addressed as we move to translating these technologies towards clinical application. PMID:24412415

  1. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement.

    PubMed

    Cideciyan, Artur V; Jacobson, Samuel G; Beltran, William A; Sumaroka, Alexander; Swider, Malgorzata; Iwabe, Simone; Roman, Alejandro J; Olivares, Melani B; Schwartz, Sharon B; Komáromy, András M; Hauswirth, William W; Aguirre, Gustavo D

    2013-02-05

    Leber congenital amaurosis (LCA) associated with retinal pigment epithelium-specific protein 65 kDa (RPE65) mutations is a severe hereditary blindness resulting from both dysfunction and degeneration of photoreceptors. Clinical trials with gene augmentation therapy have shown partial reversal of the dysfunction, but the effects on the degeneration are not known. We evaluated the consequences of gene therapy on retinal degeneration in patients with RPE65-LCA and its canine model. In untreated RPE65-LCA patients, there was dysfunction and degeneration of photoreceptors, even at the earliest ages. Examined serially over years, the outer photoreceptor nuclear layer showed progressive thinning. Treated RPE65-LCA showed substantial visual improvement in the short term and no detectable decline from this new level over the long term. However, retinal degeneration continued to progress unabated. In RPE65-mutant dogs, the first one-quarter of their lifespan showed only dysfunction, and there was normal outer photoreceptor nuclear layer thickness retina-wide. Dogs treated during the earlier dysfunction-only stage showed improved visual function and dramatic protection of treated photoreceptors from degeneration when measured 5-11 y later. Dogs treated later during the combined dysfunction and degeneration stage also showed visual function improvement, but photoreceptor loss continued unabated, the same as in human RPE65-LCA. The results suggest that, in RPE65 disease treatment, protection from visual function deterioration cannot be assumed to imply protection from degeneration. The effects of gene augmentation therapy are complex and suggest a need for a combinatorial strategy in RPE65-LCA to not only improve function in the short term but also slow retinal degeneration in the long term.

  2. Increased expression of matrix metalloproteinase-10, nerve growth factor and substance P in the painful degenerate intervertebral disc

    PubMed Central

    Richardson, Stephen M; Doyle, Paul; Minogue, Ben M; Gnanalingham, Kanna; Hoyland, Judith A

    2009-01-01

    Introduction Matrix metalloproteinases (MMPs) are known to be involved in the degradation of the nucleus pulposus (NP) during intervertebral disc (IVD) degeneration. This study investigated MMP-10 (stromelysin-2) expression in the NP during IVD degeneration and correlated its expression with pro-inflammatory cytokines and molecules involved in innervation and nociception during degeneration which results in low back pain (LBP). Methods Human NP tissue was obtained at postmortem (PM) from patients without a history of back pain and graded as histologically normal or degenerate. Symptomatic degenerate NP samples were also obtained at surgery for LBP. Expression of MMP-10 mRNA and protein was analysed using real-time polymerase chain reaction and immunohistochemistry. Gene expression for pro-inflammatory cytokines interleukin-1 (IL-1) and tumour necrosis factor-alpha (TNF-α), nerve growth factor (NGF) and the pain-associated neuropeptide substance P were also analysed. Correlations between MMP-10 and IL-1, TNF-α and NGF were assessed along with NGF with substance P. Results MMP-10 mRNA was significantly increased in surgical degenerate NP when compared to PM normal and PM degenerate samples. MMP-10 protein was also significantly higher in degenerate surgical NP samples compared to PM normal. IL-1 and MMP-10 mRNA demonstrated a significant correlation in surgical degenerate samples, while TNF-α was not correlated with MMP-10 mRNA. NGF was significantly correlated with both MMP-10 and substance P mRNA in surgical degenerate NP samples. Conclusions MMP-10 expression is increased in the symptomatic degenerate IVD, where it may contribute to matrix degradation and initiation of nociception. Importantly, this study suggests differences in the pathways involved in matrix degradation between painful and pain-free IVD degeneration. PMID:19695094

  3. Increased expression of matrix metalloproteinase-10, nerve growth factor and substance P in the painful degenerate intervertebral disc.

    PubMed

    Richardson, Stephen M; Doyle, Paul; Minogue, Ben M; Gnanalingham, Kanna; Hoyland, Judith A

    2009-01-01

    Matrix metalloproteinases (MMPs) are known to be involved in the degradation of the nucleus pulposus (NP) during intervertebral disc (IVD) degeneration. This study investigated MMP-10 (stromelysin-2) expression in the NP during IVD degeneration and correlated its expression with pro-inflammatory cytokines and molecules involved in innervation and nociception during degeneration which results in low back pain (LBP). Human NP tissue was obtained at postmortem (PM) from patients without a history of back pain and graded as histologically normal or degenerate. Symptomatic degenerate NP samples were also obtained at surgery for LBP. Expression of MMP-10 mRNA and protein was analysed using real-time polymerase chain reaction and immunohistochemistry. Gene expression for pro-inflammatory cytokines interleukin-1 (IL-1) and tumour necrosis factor-alpha (TNF-alpha), nerve growth factor (NGF) and the pain-associated neuropeptide substance P were also analysed. Correlations between MMP-10 and IL-1, TNF-alpha and NGF were assessed along with NGF with substance P. MMP-10 mRNA was significantly increased in surgical degenerate NP when compared to PM normal and PM degenerate samples. MMP-10 protein was also significantly higher in degenerate surgical NP samples compared to PM normal. IL-1 and MMP-10 mRNA demonstrated a significant correlation in surgical degenerate samples, while TNF-alpha was not correlated with MMP-10 mRNA. NGF was significantly correlated with both MMP-10 and substance P mRNA in surgical degenerate NP samples. MMP-10 expression is increased in the symptomatic degenerate IVD, where it may contribute to matrix degradation and initiation of nociception. Importantly, this study suggests differences in the pathways involved in matrix degradation between painful and pain-free IVD degeneration.

  4. STUDIES UPON CALCAREOUS DEGENERATION

    PubMed Central

    Klotz, Oskar

    1905-01-01

    It will be seen from the above that we have studied the conditions associated with the deposit of calcareous salts: (I) in connection with normal and pathological ossification, and (2) in pathological calcification as exhibited in (a) atheroma of the vessels; (b) calcification of caseating tubercular lesions; (c) calcification of inflammatory new growth, and (d) degenerating tumors; and we have induced experimentally deposits of calcareous salts in the lower animals: (a) within celloidin capsules containing fats and soaps; (b) in the kidney, and (c) in connection with fat necrosis. I. We have found that bone formation and pathological calcareous infiltration are wholly distinct processes. In the former there is no evidence of associated fatty change, and the cells associated with the process of deposition of calcium are functionally active. In the latter there is an antecedent fatty change in the affected areas, and the cells involved present constant evidences of degeneration. The view that would seem to account best for the changes observed in the latter case is that with lowered vitality the cells are unable to utilize the products brought to them by the blood, or which they continue to absorb, so that the normal series of decompositions associated with their metabolism fails to take place and hence they interact among themselves in the cytoplasm with the result that insoluble compounds replace soluble ones. II. Besides the fact that calcification is always preceded by fatty change within the cells, another fact should be emphasized. namely: that combination of the fats present with calcium salts to form calcium soaps tends to occur. The stages immediately preceding these are difficult to follow with anything approaching certainty, perhaps because the earlier stages vary under different conditions. In fat necrosis, for instance, the cells affected are normally storehouses for neutral fats, and as long as they remain healthy neutral fats alone are present in them

  5. [Age-related macular degeneration as a local manifestation of atherosclerosis - a novel insight into pathogenesis].

    PubMed

    Machalińska, Anna

    2013-01-01

    Age-related macular degeneration is the leading cause of irreversible visual impairment and disability among the elderly in developed countries. There is compelling evidence that atherosclerosis and age-related macular degeneration share a similar pathogenic process. The association between atherosclerosis and age-related macular degeneration has been inferred from histological, biochemical and epidemiological studies. Many published data indicate that drusen are similar in molecular composition to plaques in atherosclerosis. Furthermore, a great body of evidence has emerged over the past decade that implicates the chronic inflammatory processes in the pathogenesis and progression of both disorders. We speculate that vascular atherosclerosis and age-related macular degeneration may represent different manifestations of the same disease induced by a pathologic tissue response to the damage caused by oxidative stress and local ischemia. In this review, we characterise in detail a strong association between age-related macular degeneration and atherosclerosis development, and we postulate the hypothesis that age-related macular degeneration is a local manifestation of a systemic disease. This provides a new approach for understanding the aspects of pathogenesis and might improve the prevention and treatment of both diseases which both result from ageing of the human body.

  6. Fully nonlinear heavy ion-acoustic solitary waves in astrophysical degenerate relativistic quantum plasmas

    NASA Astrophysics Data System (ADS)

    Sultana, S.; Schlickeiser, R.

    2018-05-01

    Fully nonlinear features of heavy ion-acoustic solitary waves (HIASWs) have been investigated in an astrophysical degenerate relativistic quantum plasma (ADRQP) containing relativistically degenerate electrons and non-relativistically degenerate light ion species, and non-degenerate heavy ion species. The pseudo-energy balance equation is derived from the fluid dynamical equations by adopting the well-known Sagdeev-potential approach, and the properties of arbitrary amplitude HIASWs are examined. The small amplitude limit for the propagation of HIASWs is also recovered. The basic features (width, amplitude, polarity, critical Mach number, speed, etc.) of HIASWs are found to be significantly modified by the relativistic effect of the electron species, and also by the variation of the number density of electron, light ion, and heavy ion species. The basic properties of HIASWs, that may propagated in some realistic astrophysical plasma systems (e.g., in white dwarfs), are briefly discussed.

  7. AlphaB-crystallin regulates remyelination after peripheral nerve injury

    PubMed Central

    Lim, Erin-Mai F.; Nakanishi, Stan T.; Hoghooghi, Vahid; Eaton, Shane E. A.; Palmer, Alexandra L.; Frederick, Ariana; Stratton, Jo A.; Stykel, Morgan G.; Zochodne, Douglas W.; Biernaskie, Jeffrey; Ousman, Shalina S.

    2017-01-01

    AlphaB-crystallin (αBC) is a small heat shock protein that is constitutively expressed by peripheral nervous system (PNS) axons and Schwann cells. To determine what role this crystallin plays after peripheral nerve damage, we found that loss of αBC impaired remyelination, which correlated with a reduced presence of myelinating Schwann cells and increased numbers of nonmyelinating Schwann cells. The heat shock protein also seems to regulate the cross-talk between Schwann cells and axons, because expected changes in neuregulin levels and ErbB2 receptor expression after PNS injury were disrupted in the absence of αBC. Such dysregulations led to defects in conduction velocity and motor and sensory functions that could be rescued with therapeutic application of the heat shock protein in vivo. Altogether, these findings show that αBC plays an important role in regulating Wallerian degeneration and remyelination after PNS injury. PMID:28137843

  8. Characterization of an Early-Onset, Autosomal Recessive, Progressive Retinal Degeneration in Bengal Cats

    PubMed Central

    Ofri, Ron; Reilly, Christopher M.; Maggs, David J.; Fitzgerald, Paul G.; Shilo-Benjamini, Yael; Good, Kathryn L.; Grahn, Robert A.; Splawski, Danielle D.; Lyons, Leslie A.

    2015-01-01

    Purpose A form of retinal degeneration suspected to be hereditary was discovered in a family of Bengal cats. A breeding colony was established to characterize disease progression clinically, electrophysiologically, and morphologically, and to investigate the mode of inheritance. Methods Affected and related cats were donated by owners for breeding trials and pedigree analysis. Kittens from test and complementation breedings underwent ophthalmic and neuro-ophthalmic examinations and ERG, and globes were evaluated using light microscopy. Results Pedigree analysis, along with test and complementation breedings, indicated autosomal recessive inheritance and suggested that this disease is nonallelic to a retinal degeneration found in Persian cats. Mutation analysis confirmed the disease is not caused by CEP290 or CRX variants found predominantly in Abyssinian and Siamese cats. Ophthalmoscopic signs of retinal degeneration were noted at 9 weeks of age and became more noticeable over the next 4 months. Visual deficits were behaviorally evident by 1 year of age. Electroretinogram demonstrated reduced rod and cone function at 7 and 9 weeks of age, respectively. Rod responses were mostly extinguished at 14 weeks of age; cone responses were minimal by 26 weeks. Histologic degeneration was first observed at 8 weeks, evidenced by reduced photoreceptor numbers, then rapid deterioration of the photoreceptor layer and, subsequently, severe outer retinal degeneration. Conclusions A recessively inherited primary photoreceptor degeneration was characterized in the Bengal cat. The disease is characterized by early onset, with histologic, ophthalmoscopic, and electrophysiological signs evident by 2 months of age, and rapid progression to blindness. PMID:26258614

  9. Spinogenesis in spinal cord motor neurons following pharmacological lesions to the rat motor cortex.

    PubMed

    Martínez-Torres, N I; González-Tapia, D; Flores-Soto, M; Vázquez-Hernández, N; Salgado-Ceballos, H; González-Burgos, I

    2018-03-16

    Motor function is impaired in multiple neurological diseases associated with corticospinal tract degeneration. Motor impairment has been linked to plastic changes at both the presynaptic and postsynaptic levels. However, there is no evidence of changes in information transmission from the cortex to spinal motor neurons. We used kainic acid to induce stereotactic lesions to the primary motor cortex of female adult rats. Fifteen days later, we evaluated motor function with the BBB scale and the rotarod and determined the density of thin, stubby, and mushroom spines of motor neurons from a thoracolumbar segment of the spinal cord. Spinophilin, synaptophysin, and β iii-tubulin expression was also measured. Pharmacological lesions resulted in poor motor performance. Spine density and the proportion of thin and stubby spines were greater. We also observed increased expression of the 3 proteins analysed. The clinical symptoms of neurological damage secondary to Wallerian degeneration of the corticospinal tract are associated with spontaneous, compensatory plastic changes at the synaptic level. Based on these findings, spontaneous plasticity is a factor to consider when designing more efficient strategies in the early phase of rehabilitation. Copyright © 2018 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Degenerative myelopathy and vitamin A deficiency in a young black-maned lion (Panthera leo).

    PubMed

    Maratea, Kimberly A; Hooser, Stephen B; Ramos-Vara, José A

    2006-11-01

    Degenerative myelopathy and vitamin A deficiency were diagnosed in a 1-year-old, female, black-maned lion (Panthera leo). Diffuse white matter degeneration characterized by dilated myelin sheaths, Wallerian degeneration, and reactive astrocytosis was present at all levels of the spinal cord. With luxol fast blue-resyl echt violet stain, bilaterally symmetrical demyelination was observed in the fasciculus cuneatus of the cervical spinal cord and in peripheral white matter of cervical, thoracic, and lumbar segments. Additionally, the ventral gray columns and brain stem nuclei contained rare chromatolytic neurons with abnormal neurofilament accumulation. Leptomeninges of the cervical spinal cord were focally adhered to the dura and thickened by fibrosis and osseous metaplasia. Vitamin A deficiency was diagnosed based on hepatic vitamin A concentration of 1.71 microg/g dry weight. Adequate hepatic vitamin A concentration for yearling to adult domestic animals ranges between 150 and 1000 microg/g dry weight. Lesions were distinct from those previously described in young captive lions with vitamin A deficiency, which had thickened skull bones and cerebellar herniation. The pathogenesis of vitamin A-associated myelopathy in this lion may be similar to that described in adult cattle, which is believed to result from spinal cord compression secondary to elevated pressure of cerebrospinal fluid.

  11. Integrin – Dependent Mechanotransduction in Mechanically Stimulated Human Annulus Fibrosus Cells: Evidence for an Alternative Mechanotransduction Pathway Operating with Degeneration

    PubMed Central

    Gilbert, Hamish T. J.; Nagra, Navraj S.; Freemont, Anthony J.; Millward-Sadler, Sarah J.; Hoyland, Judith A.

    2013-01-01

    Intervertebral disc (IVD) cells derived from degenerate tissue respond aberrantly to mechanical stimuli, potentially due to altered mechanotransduction pathways. Elucidation of the altered, or alternative, mechanotransduction pathways operating with degeneration could yield novel targets for the treatment of IVD disease. Our aim here was to investigate the involvement of RGD-recognising integrins and associated signalling molecules in the response to cyclic tensile strain (CTS) of human annulus fibrosus (AF) cells derived from non-degenerate and degenerate IVDs. AF cells from non-degenerate and degenerate human IVDs were cyclically strained with and without function blocking RGD – peptides with 10% strain, 1.0 Hz for 20 minutes using a Flexercell® strain device. QRT-PCR and Western blotting were performed to analyse gene expression of type I collagen and ADAMTS -4, and phosphorylation of focal adhesion kinase (FAK), respectively. The response to 1.0 Hz CTS differed between the two groups of AF cells, with decreased ADAMTS -4 gene expression and decreased type I collagen gene expression post load in AF cells derived from non-degenerate and degenerate IVDs, respectively. Pre-treatment of non-degenerate AF cells with RGD peptides prevented the CTS-induced decrease in ADAMTS -4 gene expression, but caused an increase in expression at 24 hours, a response not observed in degenerate AF cells where RGD pre-treatment failed to inhibit the mechano-response. In addition, FAK phosphorylation increased in CTS stimulated AF cells derived from non-degenerate, but not degenerate IVDs, with RGD pre-treatment inhibiting the CTS – dependent increase in phosphorylated FAK. Our findings suggest that RGD -integrins are involved in the 1.0 Hz CTS – induced mechano-response observed in AF cells derived from non-degenerate, but not degenerate IVDs. This data supports our previous work, suggesting an alternative mechanotransduction pathway may be operating in degenerate AF cells

  12. The human first carpometacarpal joint: osteoarthritic degeneration and 3-dimensional modeling.

    PubMed

    Kovler, Maksim; Lundon, Katie; McKee, Nancy; Agur, Anne

    2004-01-01

    The purpose of this study was to gain insight into potential mechanical factors contributing to osteoarthritis of the human first carpometacarpal joint (CMC). This was accomplished by creating three-dimensional (3-D) computer models of the articular surfaces of CMC joints of older humans and by determining their locus of cartilage degeneration. The research questions of this study were: 1) What is the articular wear pattern of cartilage degeneration in CMC osteoarthritis?, (2) Are there significant topographic differences in joint area and contour between the joints of males and females?, and 3) Are there measurable bony joint recesses consistently found within the joint? The articular surfaces of 25 embalmed cadaveric joints (from 13 cadavers) were graded for degree of osteoarthritis, and the location of degeneration was mapped using a dissection microscope. The surfaces of 14 mildly degenerated joints were digitized and reconstructed as 3-D computer models using the Microscribe 3D-X Digitizer and the Rhinoceros 2.0 NURBS Modeling Software. This technology provided accurate and reproducible information on joint area and topography. The dorsoradial trapezial region was found to be significantly more degenerated than other quadrants in both males and females. Mean trapezial articular surface area was 197 mm 2 in males and 160 mm(2) in females; the respective mean areas for the metacarpal were 239 mm(2) in males and 184 mm(2) in females. Joints of females were found to be significantly more concave in radioulnar profile than those of males. Three bony joint recesses were consistently found, two in the radial and ulnar aspects of the trapezium and the third in the palmar surface of the metacarpal.

  13. Depression in Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Casten, Robin; Rovner, Barry

    2008-01-01

    Age-related macular degeneration (AMD) is a major cause of disability in the elderly, substantially degrades the quality of their lives, and is a risk factor for depression. Rates of depression in AMD are substantially greater than those found in the general population of older people, and are on par with those of other chronic and disabling…

  14. Multi-Disciplinary, Multi-Fidelity Discrete Data Transfer Using Degenerate Geometry Forms

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.

    2016-01-01

    In a typical multi-fidelity design process, different levels of geometric abstraction are used for different analysis methods, and transitioning from one phase of design to the next often requires a complete re-creation of the geometry. To maintain consistency between lower-order and higher-order analysis results, Vehicle Sketch Pad (OpenVSP) recently introduced the ability to generate and export several degenerate forms of the geometry, representing the type of abstraction required to perform low- to medium-order analysis for a range of aeronautical disciplines. In this research, the functionality of these degenerate models was extended, so that in addition to serving as repositories for the geometric information that is required as input to an analysis, the degenerate models can also store the results of that analysis mapped back onto the geometric nodes. At the same time, the results are also mapped indirectly onto the nodes of lower-order degenerate models using a process called aggregation, and onto higher-order models using a process called disaggregation. The mapped analysis results are available for use by any subsequent analysis in an integrated design and analysis process. A simple multi-fidelity analysis process for a single-aisle subsonic transport aircraft is used as an example case to demonstrate the value of the approach.

  15. Mitofusin2 mutations disrupt axonal mitochondrial positioning and promote axon degeneration

    PubMed Central

    Misko, Albert; Sasaki, Yo; Tuck, Elizabeth; Milbrandt, Jeffrey; Baloh, Robert H.

    2012-01-01

    Summary Alterations in mitochondrial dynamics (fission, fusion and movement) are implicated in many neurodegenerative diseases, from rare genetic disorders such as Charcot-Marie-Tooth disease, to common conditions including Alzheimer’s disease. However, the relationship between altered mitochondrial dynamics and neurodegeneration is incompletely understood. Here we show that disease associated MFN2 proteins suppressed both mitochondrial fusion and transport, and produced classic features of segmental axonal degeneration without cell body death, including neurofilament filled swellings, loss of calcium homeostasis, and accumulation of reactive oxygen species. By contrast, depletion of Opa1 suppressed mitochondrial fusion while sparing transport, and did not induce axonal degeneration. Axon degeneration induced by mutant MFN2 proteins correlated with the disruption of the proper mitochondrial positioning within axons, rather than loss of overall mitochondrial movement, or global mitochondrial dysfunction. We also found that augmenting expression of MFN1 rescued the axonal degeneration caused by MFN2 mutants, suggesting a possible therapeutic strategy for Charcot-Marie-Tooth disease. These experiments provide evidence that the ability of mitochondria to sense energy requirements and localize properly within axons is key to maintaining axonal integrity, and may be a common pathway by which disruptions in axonal transport contribute to neurodegeneration. PMID:22442078

  16. Degeneration of the Y chromosome in evolutionary aging models

    NASA Astrophysics Data System (ADS)

    Lobo, M. P.; Onody, R. N.

    2005-06-01

    The Y chromosomes are genetically degenerated and do not recombine with their matching partners X. Recombination of XX pairs is pointed out as the key factor for the Y chromosome degeneration. However, there is an additional evolutionary force driving sex-chromosomes evolution. Here we show this mechanism by means of two different evolutionary models, in which sex chromosomes with non-recombining XX and XY pairs of chromosomes is considered. Our results show three curious effects. First, we observed that even when both XX and XY pairs of chromosomes do not recombine, the Y chromosomes still degenerate. Second, the accumulation of mutations on Y chromosomes followed a completely different pattern then those accumulated on X chromosomes. And third, the models may differ with respect to sexual proportion. These findings suggest that a more primeval mechanism rules the evolution of Y chromosomes due exclusively to the sex-chromosomes asymmetry itself, i.e., the fact that Y chromosomes never experience female bodies. Over aeons, natural selection favored X chromosomes spontaneously, even if at the very beginning of evolution, both XX and XY pairs of chromosomes did not recombine.

  17. High-Resolution Laser Spectroscopy of Free Radicals in Nearly Degenerate Electronic States

    NASA Astrophysics Data System (ADS)

    Liu, Jinjun

    2017-06-01

    Rovibronic structure of molecules in orbitally degenerate electronic states including Renner-Teller (RT) and Jahn-Teller (JT) active molecules has been extensively studied. Less is known about rotational structure of polyatomic molecules in nearly degenerate states, especially those with low (e.g., C_s) symmetry that are subject to the pseudo-Jahn-Teller (pJT) effect. In the case of free radicals, the unpaired electron further complicates energy levels by inducing spin-orbit (SO) and spin-rotation (SR) splittings. Asymmetric deuteration or methyl substitution of C_{3v} free radicals such as CH_3O, CaCH_3, and CaOCH_3 lowers the molecular symmetry, lifts the vibronic degeneracy, and reduces the JT effect to the pJT effect. New spectroscopic models are required to reproduce the rovibronic structure and simulate the experimentally obtained spectra of pJT-active free radicals. It has been found that rotational and fine-structure analysis of spectra involving nearly degenerate states may aid in vibronic analysis and interpretation of effective molecular constants. Especially, SO and Coriolis interactions that couple the two states can be determined accurately from fitting the experimental spectra. Coupling between the two electronic states also affects the intensities of rotational and vibronic transitions. The study on free radicals in nearly degenerate states provides a promising avenue of research which may bridge the gap between symmetry-induced degenerate states and the Born-Oppenheimer (BO) limit of unperturbed electronic states.

  18. Ubiquitin–Synaptobrevin Fusion Protein Causes Degeneration of Presynaptic Motor Terminals in Mice

    PubMed Central

    Liu, Yun; Li, Hongqiao; Sugiura, Yoshie; Han, Weiping; Gallardo, Gilbert; Khvotchev, Mikhail; Zhang, Yinan; Kavalali, Ege T.; Südhof, Thomas C.

    2015-01-01

    Protein aggregates containing ubiquitin (Ub) are commonly observed in neurodegenerative disorders, implicating the involvement of the ubiquitin proteasome system (UPS) in their pathogenesis. Here, we aimed to generate a mouse model for monitoring UPS function using a green fluorescent protein (GFP)-based substrate that carries a “noncleavable” N-terminal ubiquitin moiety (UbG76V). We engineered transgenic mice expressing a fusion protein, consisting of the following: (1) UbG76V, GFP, and a synaptic vesicle protein synaptobrevin-2 (UbG76V-GFP-Syb2); (2) GFP-Syb2; or (3) UbG76V-GFP-Syntaxin1, all under the control of a neuron-specific Thy-1 promoter. As expected, UbG76V-GFP-Syb2, GFP-Syb2, and UbG76V-GFP-Sytaxin1 were highly expressed in neurons, such as motoneurons and motor nerve terminals of the neuromuscular junction (NMJ). Surprisingly, UbG76V-GFP-Syb2 mice developed progressive adult-onset degeneration of motor nerve terminals, whereas GFP-Syb2 and UbG76V-GFP-Syntaxin1 mice were normal. The degeneration of nerve terminals in UbG76V-GFP-Syb2 mice was preceded by a progressive impairment of synaptic transmission at the NMJs. Biochemical analyses demonstrated that UbG76V-GFP-Syb2 interacted with SNAP-25 and Syntaxin1, the SNARE partners of synaptobrevin. Ultrastructural analyses revealed a marked reduction in synaptic vesicle density, accompanying an accumulation of tubulovesicular structures at presynaptic nerve terminals. These morphological defects were largely restricted to motor nerve terminals, as the ultrastructure of motoneuron somata appeared to be normal at the stages when synaptic nerve terminals degenerated. Furthermore, synaptic vesicle endocytosis and membrane trafficking were impaired in UbG76V-GFP-Syb2 mice. These findings indicate that UbG76V-GFP-Syb2 may compete with endogenous synaptobrevin, acting as a gain-of-function mutation that impedes SNARE function, resulting in the depletion of synaptic vesicles and degeneration of the nerve

  19. Radiative and Auger recombination of degenerate carriers in InN

    NASA Astrophysics Data System (ADS)

    McAllister, Andrew; Bayerl, Dylan; Kioupakis, Emmanouil

    Group-III nitrides find applications in many fields - energy conversion, sensors, and solid-state lighting. The band gaps of InN, GaN and AlN alloys span the infrared to ultraviolet spectral range. However, nitride optoelectronic devices suffer from a drop in efficiency as carrier density increases. A major component of this decrease is Auger recombination, but its influence is not fully understood, particularly for degenerate carriers. For nondegenerate carriers the radiative rate scales as the carrier density squared, while the Auger rate scales as the density cubed. However, it is unclear how these power laws decrease as carriers become degenerate. Using first-principles calculations we studied the dependence of the radiative and Auger recombination rates on carrier density in InN. We found a more complex dependence on the Auger rate than expected. The power law of the Auger rate changes at different densities depending on the type of Auger process involved and the type of carriers that have become degenerate. In contrast, the power law of the radiative rate changes when either carrier type becomes degenerate. This creates problems in designing devices, as Auger remains a major contributor to carrier recombination at densities for which radiative recombination is suppressed by phase-space filling. This work was supported by NSF (GRFP DGE 1256260 and CAREER DMR-1254314). Computational resources provided by the DOE NERSC facility (DE-AC02-05CH11231).

  20. Longitudinal Structural changes in Late-onset Retinal Degeneration

    PubMed Central

    Cukras, Catherine; Flamendorf, Jason; Wong, Wai T; Ayyagari, Radha; Cunningham, Denise; Sieving, Paul A.

    2016-01-01

    Purpose To characterize longitudinal structural changes in early stages of late-onset retinal degeneration (L-ORD) to investigate pathogenic mechanisms. Methods Two affected siblings, both with a S163R missense mutation in the causative gene C1QTNF5, were followed for 8+ years. Color fundus photos, fundus autofluorescence (FAF) images, near infrared reflectance (NIR-R) fundus images, and spectral domain optical coherence tomography (SD-OCT) scans were acquired during follow-up. Results Both patients, aged 45 and 50 years, had good visual acuities (> 20/20 OU) in the context of prolonged dark adaptation. Baseline color fundus photography demonstrated yellow-white, punctate lesions in the temporal macula that correlated with a reticular pattern on FAF and NIR-R imaging. Baseline SD-OCT imaging revealed subretinal deposits that resemble reticular pseudodrusen (RPD) described in age-related macular degeneration (AMD). During follow-up, these affected areas developed confluent thickening of the retinal pigment epithelial (RPE) layer and disruption of the ellipsoid zone of photoreceptors before progressing to overt RPE and outer retinal atrophy. Conclusions Structural changes in early stage L-ORD revealed by multimodal imaging resemble those of RPD observed in AMD and other retinal diseases. Longitudinal follow-up of these lesions helps elucidate their progression to frank atrophy and may lend insight into the pathogenic mechanisms underlying diverse retinal degenerations. PMID:27388725

  1. Morphological Asymmetry of the Superior Cervical Facets from C3 through C7 due to Degeneration.

    PubMed

    Van Vlasselaer, Nicolas; Van Roy, Peter; Cattrysse, Erik

    2017-01-01

    Knowledge about facet morphology has already been discussed extensively in literature but is limited regarding asymmetry and its relation to facet degeneration. Facet dimensions, surface area, curvature, and degeneration of the superior facets were measured in 85 dried human vertebrae from the anatomical collection of the Vrije Universiteit Brussel. The vertebrae were analysed using the Microscribe G2X digitizer (Immersion Co., San Jose, CA) and a grading system for the evaluation of cervical facet degeneration. Coordinates were processed mathematically to evaluate articular tropism. The statistical analysis includes the paired t -test and the Pearson correlation. On average, no systematic differences between the left and right facets were found concerning morphology and degeneration. However, there were significant differences regardless of the side-occurrence. There was a significant correlation between the dimensions of the total facet surface and the degree of degeneration but not for the recognizable joint surface. Facet tropism of the upper joint facets occurred often in the cervical spine but without side preference. A bigger difference in degeneration asymmetry was associated with a bigger difference in facet joint dimension asymmetry.

  2. Nonexistence of degenerate horizons in static vacua and black hole uniqueness

    NASA Astrophysics Data System (ADS)

    Khuri, Marcus; Woolgar, Eric

    2018-02-01

    We show that in any spacetime dimension D ≥ 4, degenerate components of the event horizon do not exist in static vacuum configurations with positive cosmological constant. We also show that without a cosmological constant asymptotically flat solutions cannot possess a degenerate horizon component. Several independent proofs are presented. One proof follows easily from differential geometry in the near-horizon limit, while others use Bakry-Émery-Ricci bounds for static Einstein manifolds.

  3. Monitoring peripheral nerve degeneration in ALS by label-free stimulated Raman scattering imaging

    NASA Astrophysics Data System (ADS)

    Tian, Feng; Yang, Wenlong; Mordes, Daniel A.; Wang, Jin-Yuan; Salameh, Johnny S.; Mok, Joanie; Chew, Jeannie; Sharma, Aarti; Leno-Duran, Ester; Suzuki-Uematsu, Satomi; Suzuki, Naoki; Han, Steve S.; Lu, Fa-Ke; Ji, Minbiao; Zhang, Rosanna; Liu, Yue; Strominger, Jack; Shneider, Neil A.; Petrucelli, Leonard; Xie, X. Sunney; Eggan, Kevin

    2016-10-01

    The study of amyotrophic lateral sclerosis (ALS) and potential interventions would be facilitated if motor axon degeneration could be more readily visualized. Here we demonstrate that stimulated Raman scattering (SRS) microscopy could be used to sensitively monitor peripheral nerve degeneration in ALS mouse models and ALS autopsy materials. Three-dimensional imaging of pre-symptomatic SOD1 mouse models and data processing by a correlation-based algorithm revealed that significant degeneration of peripheral nerves could be detected coincidentally with the earliest detectable signs of muscle denervation and preceded physiologically measurable motor function decline. We also found that peripheral degeneration was an early event in FUS as well as C9ORF72 repeat expansion models of ALS, and that serial imaging allowed long-term observation of disease progression and drug effects in living animals. Our study demonstrates that SRS imaging is a sensitive and quantitative means of measuring disease progression, greatly facilitating future studies of disease mechanisms and candidate therapeutics.

  4. Role of Mitochondrial Oxidative Stress in Spaceflight-Induced Tissue Degeneration

    NASA Technical Reports Server (NTRS)

    Torres, Samantha M.; Schreurs, Ann-Sofie; Truong, Tiffany A.; Tahimic, Candice; Globus, Ruth

    2017-01-01

    Microgravity and ionizing radiation in the spaceflight environment poses multiple challenges to homeostasis and may contribute to cellular stress. Effects may include increased generation of reactive oxygen species (ROS), DNA damage and repair error, cell cycle arrest, cell senescence or death. Our central hypothesis is that prolonged exposure to the spaceflight environment leads to the excess production of ROS and oxidative damage, culminating in accelerated tissue degeneration. The main goal of this project is to determine the importance of cellular redox defense for physiological adaptations and tissue degeneration in the space environment.

  5. Time course of organ of Corti degeneration after noise exposure.

    PubMed

    Bohne, Barbara A; Kimlinger, Melissa; Harding, Gary W

    2017-02-01

    From our permanent collection of plastic-embedded flat preparations of chinchilla cochleae, 22 controls and 199 ears from noise-exposed animals were used to determine when, postexposure, hair cell (HC) and supporting cell (SC) degeneration were completed. The exposed ears were divided into four groups based on exposure parameters: 0.5- or 4-kHz octave band of noise at moderate (M) or high (H) intensities. Postexposure survival ranged from <1 h to 2.5 y. Ears fixed ≤ 0-12 h postexposure were called 'acute'. For 'chronic' ears, postexposure survival was ≥7 d for groups 0.5M and 4M, ≥ 1 mo for the 4H group and ≥7 mo for the 0.5H group. The time course of inner-ear degeneration after noise exposure was determined from data in the 0.5H and 4H groups because these groups contained ears with intermediate survival times. Outer hair cells (OHCs) began dying during the exposure. OHC loss slowed down beyond 1 mo but was still present. Conversely, much inner hair cell loss was delayed until 1-3 wk postexposure. Outer pillar and inner pillar losses were present at a low level in acute ears but increased exponentially thereafter. These results are the first to demonstrate quantitatively that hair cells (HCs) and supporting cells (SCs) may continue to degenerate for months postexposure. With short postexposure survivals, the remaining SCs often had pathological changes, including: buckled pillar bodies, shifted Deiters' cell (DC) nuclei, detachment of DCs from the basilar membrane and/or splitting of the reticular lamina. These pathological changes appeared to allow endolymph and perilymph to intermix in the fluid spaces of the organ of Corti, damaging additional HCs, SCs and nerve fibers. This mechanism may account for some postexposure degeneration. In ears exposed to moderate noise, some of these SC changes appeared to be reversible. In ears exposed to high-level noise, these changes appeared to indicate impending degeneration. Copyright © 2016 Elsevier B

  6. Quantitative muscle ultrasound is useful for evaluating secondary axonal degeneration in chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Hokkoku, Keiichi; Matsukura, Kiyoshi; Uchida, Yudai; Kuwabara, Midori; Furukawa, Yuichi; Tsukamoto, Hiroshi; Hatanaka, Yuki; Sonoo, Masahiro

    2017-10-01

    In chronic inflammatory demyelinating polyneuropathy (CIDP), exclusion of secondary axonal degeneration is challenging with conventional methods such as nerve conduction study (NCS), needle electromyography, and nerve biopsy. Increased echo intensity (EI) and decreased muscle thickness (MT) identified on muscle ultrasound (MUS) examination represent muscle denervation due to axonal degeneration in neurogenic disorders, suggesting MUS as a new tool to detect secondary axonal degeneration in patients with CIDP. EI and MT of abductor pollicis brevis, abductor digiti minimi, and first dorsal interosseous muscles were measured in 16 CIDP patients. Raw values were converted into z -scores using data from 60 normal controls (NCs). Six of 45 muscles showed abnormally high EI and low MT, suggesting denervation following secondary axonal degeneration. These six muscles belonged to two patients with long disease history, unresponsiveness to treatment, and long interval from onset to initial therapy. There were no significant differences in EI and MT ( p  = .23 and .67, respectively) between the CIDP and NC groups, although NCS results revealed obvious demyelinating abnormalities in all CIDP patients, suggesting the fact that muscle structures will be preserved, and EI and MT will not change unless secondary axonal degeneration occurs in CIDP. MUS is a promising tool for evaluating secondary axonal degeneration in patients with CIDP.

  7. Cartilage Degeneration, Subchondral Mineral and Meniscal Mineral Densities in Hartley and Strain 13 Guinea Pigs

    PubMed Central

    Sun, Yubo; Scannell, Brian P; Honeycutt, Patrick R; Mauerhan, David R; H, James Norton; Hanley Jr, Edward N

    2015-01-01

    Osteoarthritis is a joint disease involved in articular cartilage, subchondral bone, meniscus and synovial membrane. This study sought to examine cartilage degeneration, subchondral bone mineral density (BMD) and meniscal mineral density (MD) in male Hartley, female Hartley and female strain 13 guinea pigs to determine the association of cartilage degeneration with subchondral BMD and meniscal MD. Cartilage degeneration, subchondral BMD and meniscal MD in 12 months old guinea pigs were examined with histochemistry, X-ray densitometry and calcium analysis. We found that male Hartley guinea pigs had more severe cartilage degeneration, subchondral BMD and meniscal MD than female Hartley guinea pigs, but not female strain 13 guinea pigs. Female strain 13 guinea pigs had more severe cartilage degeneration and higher subchondral BMD, but not meniscal MD, than female Hartley guinea pigs. These findings indicate that higher subchondral BMD, not meniscal MD, is associated with more severe cartilage degeneration in the guinea pigs and suggest that abnormal subchondral BMD may be a therapeutic target for OA treatment. These findings also indicate that the pathogenesis of OA in the male guinea pigs and female guinea pigs are different. Female strain 13 guinea pig may be used to study female gender-specific pathogenesis of OA. PMID:26401159

  8. Retinal degeneration increases susceptibility to myopia in mice

    PubMed Central

    Park, Hanna; Tan, Christopher C.; Faulkner, Amanda; Jabbar, Seema B.; Schmid, Gregor; Abey, Jane; Iuvone, P. Michael

    2013-01-01

    Purpose Retinal diseases are often associated with refractive errors, suggesting the importance of normal retinal signaling during emmetropization. For instance, retinitis pigmentosa, a disease characterized by severe photoreceptor degeneration, is associated with myopia; however, the underlying link between these conditions is not known. This study examines the influence of photoreceptor degeneration on refractive development by testing two mouse models of retinitis pigmentosa under normal and form deprivation visual conditions. Dopamine, a potential stop signal for refractive eye growth, was assessed as a potential underlying mechanism. Methods Refractive eye growth in mice that were homozygous for a mutation in Pde6b, Pde6brd1/rd1 (rd1), or Pde6brd10/rd10 (rd10) was measured weekly from 4 to 12 weeks of age and compared to age-matched wild-type (WT) mice. Refractive error was measured using an eccentric infrared photorefractor, and axial length was measured with partial coherence interferometry or spectral domain ocular coherence tomography. A cohort of mice received head-mounted diffuser goggles to induce form deprivation from 4 to 6 weeks of age. Dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels were measured with high-performance liquid chromatography in each strain after exposure to normal or form deprivation conditions. Results The rd1 and rd10 mice had significantly greater hyperopia relative to the WT controls throughout normal development; however, axial length became significantly longer only in WT mice starting at 7 weeks of age. After 2 weeks of form deprivation, the rd1 and rd10 mice demonstrated a faster and larger myopic shift (−6.14±0.62 and −7.38±1.46 diopter, respectively) compared to the WT mice (−2.41±0.47 diopter). Under normal visual conditions, the DOPAC levels and DOPAC/dopamine ratios, a measure of dopamine turnover, were significantly lower in the rd1 and rd10 mice compared to the WT mice, while the dopamine levels were

  9. Axonal degeneration in Alzheimer’s disease: When signaling abnormalities meet the axonal transport system

    PubMed Central

    Kanaan, Nicholas M.; Pigino, Gustavo F.; Brady, Scott T.; Lazarov, Orly; Binder, Lester I.; Morfini, Gerardo A.

    2012-01-01

    Alzheimer’s disease (AD) is characterized by progressive, age-dependent degeneration of neurons in the central nervous system. A large body of evidence indicates that neurons affected in AD follow a dying-back pattern of degeneration, where abnormalities in synaptic function and axonal connectivity long precede somatic cell death. Mechanisms underlying dying-back degeneration of neurons in AD remain elusive but several have been proposed, including deficits in fast axonal transport (FAT). Accordingly, genetic evidence linked alterations in FAT to dying-back degeneration of neurons, and FAT defects have been widely documented in various AD models. In light of these findings, we discuss experimental evidence linking several AD-related pathogenic polypeptides to aberrant activation of signaling pathways involved in the phosphoregulation of microtubule-based motor proteins. While each pathway appears to affect FAT in a unique manner, in the context of AD, many of these pathways might work synergistically to compromise the delivery of molecular components critical for the maintenance and function of synapses and axons. Therapeutic approaches aimed at preventing FAT deficits by normalizing the activity of specific protein kinases may help prevent degeneration of vulnerable neurons in AD. PMID:22721767

  10. Association of HTRA1 rs11200638 with age-related macular degeneration (AMD) in Brazilian patients.

    PubMed

    Lana, Tamires Prates; da Silva Costa, Sueli Matilde; Ananina, Galina; Hirata, Fábio Endo; Rim, Priscila Hae Hyun; Medina, Flávio MacCord; de Vasconcellos, José Paulo Cabral; de Melo, Mônica Barbosa

    2018-01-01

    Age-related macular degeneration is a multifactorial disease that can lead to vision impairment in older individuals. Although the etiology of age-related macular degeneration remains unknown, risk factors include age, ethnicity, smoking, hypertension, obesity, and genetic factors. Two main loci have been identified through genome-wide association studies, on chromosomes 1 and 10. Among the variants located at the 10q26 region, rs11200638, located at the HTRA1 gene promoter, has been associated with age-related macular degeneration in several populations and is considered the main polymorphism. We conducted a replication case-control study to analyze the frequency and participation of rs11200638 in the etiology of age-related macular degeneration in a sample of patients and controls from the State of São Paulo, Brazil, through polymerase chain reaction and enzymatic digestion. The frequency of the A allele was 57.60% in patients with age-related macular degeneration and 36.45% in controls (p value < 1e-07), representing a 2.369-fold higher risk factor for the disease. Both the AA and AG genotypes were observed more frequently in the age-related macular degeneration group compared to the control group (p = 1.21 e-07 and 0.0357, respectively). No statistically significant results were observed after stratification in dry versus wet types or advanced versus non-advanced forms. To our knowledge, this is the first time the association between rs11200638 and overall age-related macular degeneration has been reported in South America.

  11. Advances in repairing the degenerate retina by rod photoreceptor transplantation.

    PubMed

    Pearson, Rachael A

    2014-01-01

    Despite very different aetiologies, age-related macular degeneration (AMD) and most inherited retinal disorders culminate in the same final common pathway, loss of the light-sensitive photoreceptors. There are few clinical treatments and none can reverse the loss of vision. Photoreceptor replacement by transplantation is proposed as a broad treatment strategy applicable to all degenerations. The past decade has seen a number of landmark achievements in this field, which together provide strong justification for continuing investigation into photoreceptor replacement strategies. These include proof of principle for restoring vision by rod-photoreceptor transplantation in mice with congenital stationary night blindness and advances in stem cell biology, which have led to the generation of complete optic structures in vitro from embryonic stem cells. The latter represents enormous potential for generating suitable and renewable donor cells with which to achieve the former. However, there are still challenges presented by the degenerating recipient retinal environment that must be addressed as we move to translating these technologies towards clinical application. Copyright © 2014 The Author. Published by Elsevier Inc. All rights reserved.

  12. Comparison of Spectral Linewidths for Quantum Degenerate Bosons and Fermions

    NASA Astrophysics Data System (ADS)

    Notermans, R. P. M. J. W.; Rengelink, R. J.; Vassen, W.

    2016-11-01

    We observe a dramatic difference in optical line shapes of a 4He Bose-Einstein condensate and a 3He degenerate Fermi gas by measuring the 1557-nm 2 3S -2 1S magnetic dipole transition (8 Hz natural linewidth) in an optical dipole trap. The 15 kHz FWHM condensate line shape is only broadened by mean field interactions, whereas the degenerate Fermi gas line shape is broadened to 75 kHz FWHM due to the effect of Pauli exclusion on the spatial and momentum distributions. The asymmetric optical line shapes are observed in excellent agreement with line shape models for the quantum degenerate gases. For 4He a triplet-singlet s -wave scattering length a =+50 (10 )stat(43 )systa0 is extracted. The high spectral resolution reveals a doublet in the absorption spectrum of the BEC, and this effect is understood by the presence of a weak optical lattice in which a degeneracy of the lattice recoil and the spectroscopy photon recoil leads to Bragg-like scattering.

  13. Comparison of Spectral Linewidths for Quantum Degenerate Bosons and Fermions.

    PubMed

    Notermans, R P M J W; Rengelink, R J; Vassen, W

    2016-11-18

    We observe a dramatic difference in optical line shapes of a ^{4}He Bose-Einstein condensate and a ^{3}He degenerate Fermi gas by measuring the 1557-nm 2 ^{3}S-2 ^{1}S magnetic dipole transition (8 Hz natural linewidth) in an optical dipole trap. The 15 kHz FWHM condensate line shape is only broadened by mean field interactions, whereas the degenerate Fermi gas line shape is broadened to 75 kHz FWHM due to the effect of Pauli exclusion on the spatial and momentum distributions. The asymmetric optical line shapes are observed in excellent agreement with line shape models for the quantum degenerate gases. For ^{4}He a triplet-singlet s-wave scattering length a=+50(10)_{stat}(43)_{syst}a_{0} is extracted. The high spectral resolution reveals a doublet in the absorption spectrum of the BEC, and this effect is understood by the presence of a weak optical lattice in which a degeneracy of the lattice recoil and the spectroscopy photon recoil leads to Bragg-like scattering.

  14. Are animal models useful for studying human disc disorders/degeneration?

    PubMed Central

    Eisenstein, Stephen M.; Ito, Keita; Little, Christopher; Kettler, A. Annette; Masuda, Koichi; Melrose, James; Ralphs, Jim; Stokes, Ian; Wilke, Hans Joachim

    2007-01-01

    Intervertebral disc (IVD) degeneration is an often investigated pathophysiological condition because of its implication in causing low back pain. As human material for such studies is difficult to obtain because of ethical and government regulatory restriction, animal tissue, organs and in vivo models have often been used for this purpose. However, there are many differences in cell population, tissue composition, disc and spine anatomy, development, physiology and mechanical properties, between animal species and human. Both naturally occurring and induced degenerative changes may differ significantly from those seen in humans. This paper reviews the many animal models developed for the study of IVD degeneration aetiopathogenesis and treatments thereof. In particular, the limitations and relevance of these models to the human condition are examined, and some general consensus guidelines are presented. Although animal models are invaluable to increase our understanding of disc biology, because of the differences between species, care must be taken when used to study human disc degeneration and much more effort is needed to facilitate research on human disc material. PMID:17632738

  15. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration.

    PubMed

    Iezzi, Raymond; Guru, Bharath R; Glybina, Inna V; Mishra, Manoj K; Kennedy, Alexander; Kannan, Rangaramanujam M

    2012-01-01

    Retinal neuroinflammation, mediated by activated microglia, plays a key role in the pathogenesis of photoreceptor and retinal pigment epithelial cell loss in age-related macular degeneration and retinitis pigmentosa. Targeted drug therapy for attenuation of neuroinflammation in the retina was explored using hydroxyl-terminated polyamidoamine (PAMAM) dendrimer-drug conjugate nanodevices. We show that, upon intravitreal administration, PAMAM dendrimers selectively localize within activated outer retinal microglia in two rat models of retinal degeneration, but not in the retina of healthy controls. This pathology-dependent biodistribution was exploited for drug delivery, by covalently conjugating fluocinolone acetonide to the dendrimer. The conjugate released the drug in a sustained manner over 90 days. In vivo efficacy was assessed using the Royal College of Surgeons (RCS) rat retinal degeneration model over a four-week period when peak retinal degeneration occurs. One intravitreal injection of 1 μg of FA conjugated to 7 μg of the dendrimer was able to arrest retinal degeneration, preserve photoreceptor outer nuclear cell counts, and attenuate activated microglia, for an entire month. These studies suggest that PAMAM dendrimers (with no targeting ligands) have an intrinsic ability to selectively localize in activated microglia, and can deliver drugs inside these cells for a sustained period for the treatment of retinal neuroinflammation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Permissive role for mGlu1 metabotropic glutamate receptors in excitotoxic retinal degeneration.

    PubMed

    Liberatore, Francesca; Bucci, Domenico; Mascio, Giada; Madonna, Michele; Di Pietro, Paola; Beneventano, Martina; Puliti, Alda Maria; Battaglia, Giuseppe; Bruno, Valeria; Nicoletti, Ferdinando; Romano, Maria Rosaria

    2017-11-05

    Neuroprotection is an unmet need in eye disorders characterized by retinal ganglion cell (RGC) death, such as prematurity-induced retinal degeneration, glaucoma, and age-related macular degeneration. In all these disorders excitotoxicity is a prominent component of neuronal damage, but clinical data discourage the development of NMDA receptor antagonists as neuroprotectants. Here, we show that activation of mGlu1 metabotropic glutamate receptors largely contributes to excitotoxic degeneration of RGCs. Mice at postnatal day 9 were challenged with a toxic dose of monosodium glutamate (MSG, 3g/kg), which caused the death of >70% of Brn-3a + RGCs. Systemic administration of the mGlu1 receptor negative allosteric modulator (NAM), JNJ16259685 (2.5mg/kg, s.c.), was largely protective against MSG-induced RGC death. This treatment did not cause changes in motor behavior in the pups. We also injected MSG to crv4 mice, which lack mGlu1 receptors because of a recessive mutation of the gene encoding the mGlu1 receptor. MSG did not cause retinal degeneration in crv4 mice, whereas it retained its toxic activity in their wild-type littermates. These findings demonstrate that mGlu1 receptors play a key role in excitotoxic degeneration of RGCs, and encourage the study of mGlu1 receptor NAMs in models of retinal neurodegeneration. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy.

    PubMed

    Sasaki, Yo; Araki, Toshiyuki; Milbrandt, Jeffrey

    2006-08-16

    Axonal degeneration occurs in many neurodegenerative diseases and after traumatic injury and is a self-destructive program independent from programmed cell death. Previous studies demonstrated that overexpression of nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1) or exogenous application of nicotinamide adenine dinucleotide (NAD) can protect axons of cultured dorsal root ganglion (DRG) neurons from degeneration caused by mechanical or neurotoxic injury. In mammalian cells, NAD can be synthesized from multiple precursors, including tryptophan, nicotinic acid, nicotinamide, and nicotinamide riboside (NmR), via multiple enzymatic steps. To determine whether other components of these NAD biosynthetic pathways are capable of delaying axonal degeneration, we overexpressed each of the enzymes involved in each pathway and/or exogenously administered their respective substrates in DRG cultures and assessed their capacity to protect axons after axotomy. Among the enzymes tested, Nmnat1 had the strongest protective effects, whereas nicotinamide phosphoribosyl transferase and nicotinic acid phosphoribosyl transferase showed moderate protective activity in the presence of their substrates. Strong axonal protection was also provided by Nmnat3, which is predominantly located in mitochondria, and an Nmnat1 mutant localized to the cytoplasm, indicating that the subcellular location of NAD production is not crucial for protective activity. In addition, we showed that exogenous application of the NAD precursors that are the substrates of these enzymes, including nicotinic acid mononucleotide, nicotinamide mononucleotide, and NmR, can also delay axonal degeneration. These results indicate that stimulation of NAD biosynthetic pathways via a variety of interventions may be useful in preventing or delaying axonal degeneration.

  18. Lumbar Disc Degenerative Disease: Disc Degeneration Symptoms and Magnetic Resonance Image Findings

    PubMed Central

    Saleem, Shafaq; Rehmani, Muhammad Asim Khan; Raees, Aisha; Alvi, Arsalan Ahmad; Ashraf, Junaid

    2013-01-01

    Study Design Cross sectional and observational. Purpose To evaluate the different aspects of lumbar disc degenerative disc disease and relate them with magnetic resonance image (MRI) findings and symptoms. Overview of Literature Lumbar disc degenerative disease has now been proven as the most common cause of low back pain throughout the world. It may present as disc herniation, lumbar spinal stenosis, facet joint arthropathy or any combination. Presenting symptoms of lumbar disc degeneration are lower back pain and sciatica which may be aggravated by standing, walking, bending, straining and coughing. Methods This study was conducted from January 2012 to June 2012. Study was conducted on the diagnosed patients of lumbar disc degeneration. Diagnostic criteria were based upon abnormal findings in MRI. Patients with prior back surgery, spine fractures, sacroiliac arthritis, metabolic bone disease, spinal infection, rheumatoid arthritis, active malignancy, and pregnancy were excluded. Results During the targeted months, 163 patients of lumbar disc degeneration with mean age of 43.92±11.76 years, came into Neurosurgery department. Disc degeneration was most commonly present at the level of L4/L5 105 (64.4%).Commonest types of disc degeneration were disc herniation 109 (66.9%) and lumbar spinal stenosis 37 (22.7%). Spondylolisthesis was commonly present at L5/S1 10 (6.1%) and associated mostly with lumbar spinal stenosis 7 (18.9%). Conclusions Results reported the frequent occurrence of lumbar disc degenerative disease in advance age. Research efforts should endeavor to reduce risk factors and improve the quality of life. PMID:24353850

  19. Effect of Interbody Fusion on the Remaining Discs of the Lumbar Spine in Subjects with Disc Degeneration.

    PubMed

    Ryu, Robert; Techy, Fernando; Varadarajan, Ravikumar; Amirouche, Farid

    2016-02-01

    To study effects (stress loads) of lumbar fusion on the remaining segments (adjacent or not) of the lumbar spine in the setting of degenerated adjacent discs. A lumbar spine finite element model was built and validated. The full model of the lumbar spine was a parametric finite element model of segments L 1-5 . Numerous hypothetical combinations of one-level lumbar spine fusion and one-level disc degeneration were created. These models were subjected to 10 Nm flexion and extension moments and the stresses on the endplates and consequently on the intervertebral lumbar discs measured. These values were compared to the stresses on healthy lumbar spine discs under the same load and fusion scenarios. Increased stress at endplates was observed only in the settings of L4-5 fusion and L3-4 disc degeneration (8% stress elevation at L2,3 in flexion or extension, and 25% elevation at L3,4 in flexion only). All other combinations showed less endplate stress than did the control model. For fusion at L3-4 and degeneration at L4-5 , the stresses in the endplates at the adjacent level inferior to the fused disc decreased for both loading disc height reductions. Stresses in flexion decreased after fusion by 29.5% and 25.8% for degeneration I and II, respectively. Results for extension were similar. For fusion at L2-3 and degeneration at L4-5 , stresses in the endplates decreased more markedly at the degenerated (30%), than at the fused level (14%) in the presence of 25% disc height reduction and 10 Nm flexion, whereas in extension stresses decreased more at the fused (24.3%) than the degenerated level (5.86%). For fusion at L3-4 and degeneration at L2-3 , there were no increases in endplate stress in any scenario. For fusion at L4-5 and degeneration at L3-4 , progression of degeneration from I to II had a significant effect only in flexion. A dramatic increase in stress was noted in the endplates of the degenerated disc (L3-4 ) in flexion for degeneration II. Stresses are greater

  20. Tocotrienol prevents AAPH-induced neurite degeneration in neuro2a cells.

    PubMed

    Fukui, Koji; Sekiguchi, Hidekazu; Takatsu, Hirokatsu; Koike, Taisuke; Koike, Tatsuro; Urano, Shiro

    2013-01-01

    Reactive oxygen species induce neurite degeneration before inducing cell death. However, the degenerative mechanisms have not yet been elucidated. While tocotrienols have a known neuroprotective function, the underlying mechanism remains unclear and may or may not involve antioxidant action. In this study, we hypothesize that free radical-derived membrane injury is one possible mechanism for inducing neurite degeneration. Therefore, we examined the potential neuroprotective effect of tocotrienols mediated through its antioxidant activity. Mouse neuroblastoma neuro2a cells were used to examine the effect of the water-soluble free radical generator 2,2'-azobis(2-methylpropionamide) dihydrochloride (AAPH) on neurite dynamics. After 24 hours of AAPH treatment, cell viability, neurite number, and the number of altered neurites were measured in the presence or absence of α-tocotrienol. Treatment of neuro2a cells with a low concentration of AAPH induces neurite degeneration, but not cell death. Treatment with 5 µM α-tocotrienol significantly inhibited neurite degeneration in AAPH-treated neuro2a cells. Furthermore, morphological changes in AAPH-treated neuro2a cells were similar to those observed with colchicine treatment. α-Tocotrienol may scavenge AAPH-derived free radicals and alkoxyl radicals that are generated from AAPH-derived peroxyl radicals on cell membranes. Therefore, α-tocotrienol may have a neuroprotective effect mediated by its antioxidant activity.

  1. Degenerate mixing of plasma waves on cold, magnetized single-species plasmas

    NASA Astrophysics Data System (ADS)

    Anderson, M. W.; O'Neil, T. M.; Dubin, D. H. E.; Gould, R. W.

    2011-10-01

    In the cold-fluid dispersion relation ω =ωp/[1+(k⊥/kz)2]1/2 for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k⊥/kz. As a result, for any frequency ω <ωp, there are infinitely many degenerate waves, all having the same value of k⊥/kz. On a cold finite-length plasma column, these degenerate waves reflect into one another at the ends; thus, each standing-wave normal mode of the bounded plasma is a mixture of many degenerate waves, not a single standing wave as is often assumed. A striking feature of the many-wave modes is that the short-wavelength waves often add constructively along resonance cones given by dz /dr=±(ωp2/ω2-1)1/2. Also, the presence of short wavelengths in the admixture for a predominantly long-wavelength mode enhances the viscous damping beyond what the single-wave approximation would predict. Here, numerical solutions are obtained for modes of a cylindrical plasma column with rounded ends. Exploiting the fact that the modes of a spheroidal plasma are known analytically (the Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid.

  2. Development of Multistep and Degenerate Variational Integrators for Applications in Plasma Physics

    NASA Astrophysics Data System (ADS)

    Ellison, Charles Leland

    Geometric integrators yield high-fidelity numerical results by retaining conservation laws in the time advance. A particularly powerful class of geometric integrators is symplectic integrators, which are widely used in orbital mechanics and accelerator physics. An important application presently lacking symplectic integrators is the guiding center motion of magnetized particles represented by non-canonical coordinates. Because guiding center trajectories are foundational to many simulations of magnetically confined plasmas, geometric guiding center algorithms have high potential for impact. The motivation is compounded by the need to simulate long-pulse fusion devices, including ITER, and opportunities in high performance computing, including the use of petascale resources and beyond. This dissertation uses a systematic procedure for constructing geometric integrators --- known as variational integration --- to deliver new algorithms for guiding center trajectories and other plasma-relevant dynamical systems. These variational integrators are non-trivial because the Lagrangians of interest are degenerate - the Euler-Lagrange equations are first-order differential equations and the Legendre transform is not invertible. The first contribution of this dissertation is that variational integrators for degenerate Lagrangian systems are typically multistep methods. Multistep methods admit parasitic mode instabilities that can ruin the numerical results. These instabilities motivate the second major contribution: degenerate variational integrators. By replicating the degeneracy of the continuous system, degenerate variational integrators avoid parasitic mode instabilities. The new methods are therefore robust geometric integrators for degenerate Lagrangian systems. These developments in variational integration theory culminate in one-step degenerate variational integrators for non-canonical magnetic field line flow and guiding center dynamics. The guiding center integrator

  3. Morphological Asymmetry of the Superior Cervical Facets from C3 through C7 due to Degeneration

    PubMed Central

    Van Roy, Peter

    2017-01-01

    Introduction Knowledge about facet morphology has already been discussed extensively in literature but is limited regarding asymmetry and its relation to facet degeneration. Method Facet dimensions, surface area, curvature, and degeneration of the superior facets were measured in 85 dried human vertebrae from the anatomical collection of the Vrije Universiteit Brussel. The vertebrae were analysed using the Microscribe G2X digitizer (Immersion Co., San Jose, CA) and a grading system for the evaluation of cervical facet degeneration. Coordinates were processed mathematically to evaluate articular tropism. The statistical analysis includes the paired t-test and the Pearson correlation. Results On average, no systematic differences between the left and right facets were found concerning morphology and degeneration. However, there were significant differences regardless of the side-occurrence. There was a significant correlation between the dimensions of the total facet surface and the degree of degeneration but not for the recognizable joint surface. Conclusions Facet tropism of the upper joint facets occurred often in the cervical spine but without side preference. A bigger difference in degeneration asymmetry was associated with a bigger difference in facet joint dimension asymmetry. PMID:29359153

  4. Assessment of Intervertebral Disc Degeneration Based on Quantitative MRI Analysis: an in vivo study

    PubMed Central

    Grunert, Peter; Hudson, Katherine D.; Macielak, Michael R.; Aronowitz, Eric; Borde, Brandon H.; Alimi, Marjan; Njoku, Innocent; Ballon, Douglas; Tsiouris, Apostolos John; Bonassar, Lawrence J.; Härtl, Roger

    2015-01-01

    Study design Animal experimental study Objective To evaluate a novel quantitative imaging technique for assessing disc degeneration. Summary of Background Data T2-relaxation time (T2-RT) measurements have been used to quantitatively assess disc degeneration. T2 values correlate with the water content of inter vertebral disc tissue and thereby allow for the indirect measurement of nucleus pulposus (NP) hydration. Methods We developed an algorithm to subtract out MRI voxels not representing NP tissue based on T2-RT values. Filtered NP voxels were used to measure nuclear size by their amount and nuclear hydration by their mean T2-RT. This technique was applied to 24 rat-tail intervertebral discs’ (IVDs), which had been punctured with an 18-gauge needle according to different techniques to induce varying degrees of degeneration. NP voxel count and average T2-RT were used as parameters to assess the degeneration process at 1 and 3 months post puncture. NP voxel counts were evaluated against X-ray disc height measurements and qualitative MRI studies based on the Pfirrmann grading system. Tails were collected for histology to correlate NP voxel counts to histological disc degeneration grades and to NP cross-sectional area measurements. Results NP voxel count measurements showed strong correlations to qualitative MRI analyses (R2=0.79, p<0.0001), histological degeneration grades (R2=0.902, p<0.0001) and histological NP cross-sectional area measurements (R2=0.887, p<0.0001). In contrast to NP voxel counts, the mean T2-RT for each punctured group remained constant between months 1 and 3. The mean T2-RTs for the punctured groups did not show a statistically significant difference from those of healthy IVDs (63.55ms ±5.88ms month 1 and 62.61ms ±5.02ms) at either time point. Conclusion The NP voxel count proved to be a valid parameter to quantitatively assess disc degeneration in a needle puncture model. The mean NP T2-RT does not change significantly in needle

  5. N=2 gauge theories and degenerate fields of Toda theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanno, Shoichi; Matsuo, Yutaka; Shiba, Shotaro

    We discuss the correspondence between degenerate fields of the W{sub N} algebra and punctures of Gaiotto's description of the Seiberg-Witten curve of N=2 superconformal gauge theories. Namely, we find that the type of degenerate fields of the W{sub N} algebra, with null states at level one, is classified by Young diagrams with N boxes, and that the singular behavior of the Seiberg-Witten curve near the puncture agrees with that of W{sub N} generators. We also find how to translate mass parameters of the gauge theory to the momenta of the Toda theory.

  6. Humor and laughter in patients with cerebellar degeneration.

    PubMed

    Frank, B; Propson, B; Göricke, S; Jacobi, H; Wild, B; Timmann, D

    2012-06-01

    Humor is a complex behavior which includes cognitive, affective and motor responses. Based on observations of affective changes in patients with cerebellar lesions, the cerebellum may support cerebral and brainstem areas involved in understanding and appreciation of humorous stimuli and expression of laughter. The aim of the present study was to examine if humor appreciation, perception of humorous stimuli, and the succeeding facial reaction differ between patients with cerebellar degeneration and healthy controls. Twenty-three adults with pure cerebellar degeneration were compared with 23 age-, gender-, and education-matched healthy control subjects. No significant difference in humor appreciation and perception of humorous stimuli could be found between groups using the 3 Witz-Dimensionen Test, a validated test asking for funniness and aversiveness of jokes and cartoons. Furthermore, while observing jokes, humorous cartoons, and video sketches, facial expressions of subjects were videotaped and afterwards analysed using the Facial Action Coding System. Using depression as a covariate, the number, and to a lesser degree, the duration of facial expressions during laughter were reduced in cerebellar patients compared to healthy controls. In sum, appreciation of humor appears to be largely preserved in patients with chronic cerebellar degeneration. Cerebellar circuits may contribute to the expression of laughter. Findings add to the literature that non-motor disorders in patients with chronic cerebellar disease are generally mild, but do not exclude that more marked disorders may show up in acute cerebellar disease and/or in more specific tests of humor appreciation.

  7. Degeneration of the long biceps tendon: comparison of MRI with gross anatomy and histology.

    PubMed

    Buck, Florian M; Grehn, Holger; Hilbe, Monika; Pfirrmann, Christian W A; Manzanell, Silvana; Hodler, Jürg

    2009-11-01

    The objective of our study was to relate alterations in biceps tendon diameter and signal on MR images to gross anatomy and histology. T1-weighted, T2-weighted fat-saturated, and proton density-weighted fat-saturated spin-echo sequences were acquired in 15 cadaveric shoulders. Biceps tendon diameter (normal, flattened, thickened, and partially or completely torn) and signal intensity (compared with bone, fat, muscle, and joint fluid) were graded by two readers independently and in a blinded fashion. The distance of tendon abnormalities from the attachment at the glenoid were noted in millimeters. MRI findings were related to gross anatomic and histologic findings. On the basis of gross anatomy, there were six normal, five flattened, two thickened, and two partially torn tendons. Reader 1 graded nine diameter changes correctly, missed two, and incorrectly graded four. The corresponding values for reader 2 were seven, one, and five, respectively, with kappa = 0.75. Histology showed mucoid degeneration (n = 13), lipoid degeneration (n = 7), and fatty infiltration (n = 6). At least one type of abnormality was found in each single tendon. Mucoid degeneration was hyperintense compared with fatty infiltration on T2-weighted fat-saturated images and hyperintense compared with magic-angle artifacts on proton density-weighted fat-saturated images. MRI-based localization of degeneration agreed well with histologic findings. Diameter changes are specific but not sensitive in diagnosing tendinopathy of the biceps tendon. Increased tendon signal is most typical for mucoid degeneration but should be used with care as a sign of tendon degeneration.

  8. Why do some intervertebral discs degenerate, when others (in the same spine) do not?

    PubMed

    Adams, Michael A; Lama, Polly; Zehra, Uruj; Dolan, Patricia

    2015-03-01

    This review suggests why some discs degenerate rather than age normally. Intervertebral discs are avascular pads of fibrocartilage that allow movement between vertebral bodies. Human discs have a low cell density and a limited ability to adapt to mechanical demands. With increasing age, the matrix becomes yellowed, fibrous, and brittle, but if disc structure remains intact, there is little impairment in function, and minimal ingrowth of blood vessels or nerves. Approximately half of old lumbar discs degenerate in the sense of becoming physically disrupted. The posterior annulus and lower lumbar discs are most affected, presumably because they are most heavily loaded. Age and genetic inheritance can weaken discs to such an extent that they are physically disrupted during everyday activities. Damage to the endplate or annulus typically decompresses the nucleus, concentrates stress within the annulus, and allows ingrowth of nerves and blood vessels. Matrix disruption progresses by mechanical and biological means. The site of initial damage leads to two disc degeneration "phenotypes": endplate-driven degeneration is common in the upper lumbar and thoracic spine, and annulus-driven degeneration is common at L4-S1. Discogenic back pain can be initiated by tissue disruption, and amplified by inflammation and infection. Healing is possible in the outer annulus only, where cell density is highest. We conclude that some discs degenerate because they are disrupted by excessive mechanical loading. This can occur without trauma if tissues are weakened by age and genetic inheritance. Moderate mechanical loading, in contrast, strengthens all spinal tissues, including discs. © 2014 Wiley Periodicals, Inc.

  9. Nutritional modulation of age-related macular degeneration

    USDA-ARS?s Scientific Manuscript database

    Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly worldwide. It affects 30-50 million individuals and clinical hallmarks of AMD are observed in at least one third of persons over the age of 75 in industrialized countries (Gehrs et al., 2006). Costs associated wi...

  10. MRI Quantification of Human Spine Cartilage Endplate Geometry: Comparison With Age, Degeneration, Level, and Disc Geometry

    PubMed Central

    DeLucca, John F.; Peloquin, John M.; Smith, Lachlan J.; Wright, Alexander C.; Vresilovic, Edward J.; Elliott, Dawn M.

    2017-01-01

    Geometry is an important indicator of disc mechanical function and degeneration. While the geometry and associated degenerative changes in the nucleus pulposus and the annulus fibrosus are well-defined, the geometry of the cartilage endplate (CEP) and its relationship to disc degeneration are unknown. The objectives of this study were to quantify CEP geometry in three dimensions using an MRI FLASH imaging sequence and evaluate relationships between CEP geometry and age, degeneration, spinal level, and overall disc geometry. To do so, we assessed the MRI-based measurements for accuracy and repeatability. Next, we measured CEP geometry across a larger sample set and correlated CEP geometric parameters to age, disc degeneration, level, and disc geometry. The MRI-based measures resulted in thicknesses (0.3–1 mm) that are comparable to prior measurements of CEP thickness. CEP thickness was greatest at the anterior/posterior (A/P) margins and smallest in the center. The CEP A/P thickness, axial area, and lateral width decreased with age but were not related to disc degeneration. Age-related, but not degeneration-related, changes in geometry suggest that the CEP may not follow the progression of disc degeneration. Ultimately, if the CEP undergoes significant geometric changes with aging and if these can be related to low back pain, a clinically feasible translation of the FLASH MRI-based measurement of CEP geometry presented in this study may prove a useful diagnostic tool. PMID:27232974

  11. Qualitative assessment of online information about age-related macular degeneration available in Portuguese.

    PubMed

    Agi, Jorge; Kasahara, Niro; Lottenberg, Claudio Luiz

    2018-06-07

    To evaluate the quality of online information on age-related macular degeneration available in Portuguese. The search term "age-related macular degeneration" was used to browse the web using four different search engines. The first 40 websites appearing on match lists provided by each search engine were recorded and those listed in at least three tab pages selected. The Sandvik Severity Index was used as to assess website quality. Quality of information available on selected websites was rated average (mean Sandvik Score 7.08±2.23). Most websites disseminating information about age-related macular degeneration were of average quality. The need to readjust web-based information to target lay public and promote increased understanding was emphasized.

  12. The Effect of Single-Level Disc Degeneration on Dynamic Response of the Whole Lumbar Spine to Vertical Vibration.

    PubMed

    Guo, Li-Xin; Fan, Wei

    2017-09-01

    The objective of this study was to investigate the effect of single-level disc degeneration on dynamic response of the whole lumbar spine to vertical whole body vibration that is typically present when driving vehicles. Ligamentous finite element models of the lumbar L1-S1 motion segment in different grades of degeneration (healthy, mild, and moderate) at the L4-L5 level were developed with consideration of changing disc height and material properties of the nucleus pulpous. All models were loaded with a compressive follower preload of 400 N and a sinusoidal vertical vibration load of ±40 N. After transient dynamic analyses, computational results for the 3 models in terms of disc bulge, von-Mises stress in annulus ground substance, and nucleus pressure were plotted as a function of time and compared. All the predicted results showed a cyclic response with time. At the degenerated L4-L5 disc level, as degeneration progressed, maximum value of the predicted response showed a decrease in disc bulge and von-Mises stress in annulus ground substance but a slight increase in nucleus pressure, and their vibration amplitudes were all decreased. At the adjacent levels of the degenerated disc, there was a slight decrease in maximum value and vibration amplitude of these predicted responses with the degeneration. The results indicated that single-level disc degeneration can alter vibration characteristics of the whole lumbar spine especially for the degenerated disc level, and increasing the degeneration did not deteriorate the effect of vertical vibration on the spine. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Menopause is associated with articular cartilage degeneration: a clinical study of knee joint in 860 women.

    PubMed

    Lou, Chao; Xiang, Guangheng; Weng, Qiaoyou; Chen, Zhaojie; Chen, Deheng; Wang, Qingqing; Zhang, Di; Zhou, Bin; He, Dengwei; Chen, Hongliang

    2016-11-01

    The purpose of this study was to investigate the association between menopause and severity of knee joint cartilage degeneration using a magnetic resonance imaging-based six-level grading system, with six cartilage surfaces, the medial and lateral femoral condyle, the femoral trochlea, the medial and lateral tibia plateau, and the patella. The study cohort comprised 860 healthy women (age 36-83 y), and 5,160 cartilage surfaces were analyzed. Age, weight, height, age at natural menopause, and years since menopause (YSM) were obtained. Cartilage degeneration was assessed using a magnetic resonance imaging-based six-level grading system. After removing the age, height, and weight effects, postmenopausal women had more severe cartilage degeneration than pre- and perimenopausal women (P < 0.001). A positive trend was observed between YSM and severity of cartilage degeneration (P < 0.05). Postmenopausal women were divided into seven subgroups by every five YSM. When YSM was less than 25 years, the analysis of covariance indicated a significant difference in medial tibia plateau, medial femoral condyle, trochlea, patella, and total surfaces (P < 0.05 or 0.01) between every two groups. When YSM was more than 25 years, the significant difference, however, disappeared in these four surfaces (P > 0.05). No significant difference was observed in lateral tibia plateau and lateral femoral condyle in postmenopausal women. Menopause is associated with cartilage degeneration of knee joint. After menopause, cartilage showed progressive severe degeneration that occurred in the first 25 YSM, suggesting estrogen deficiency might be a risk factor of cartilage degeneration of the knee joint. Further studies are needed to investigate whether age or menopause plays a more important role in the progression of cartilage degeneration in the knee joint.

  14. Progressive Retinal Degeneration and Accumulation of Autofluorescent Lipopigments in Progranulin Deficient Mice

    PubMed Central

    Hafler, Brian P.; Klein, Zoe A.; Zhou, Z. Jimmy; Strittmatter, Stephen M.

    2014-01-01

    Prior investigations have shown that patients with neuronal ceroid lipofuscinosis (NCL) develop neurodegeneration characterized by vision loss, motor dysfunction, seizures, and often early death. Neuropathological analysis of patients with NCL shows accumulation of intracellular autofluorescent storage material, lipopigment, throughout neurons in the central nervous system including in the retina. A recent study of a sibling pair with adult onset NCL and retinal degeneration showed linkage to the region of the progranulin (GRN) locus and a homozygous mutation was demonstrated in GRN. In particular, the sibling pair with a mutation in GRN developed retinal degeneration and optic atrophy. This locus for this form of adult onset neuronal ceroid lipofuscinosis was designated neuronal ceroid lipofuscinosis-11 (CLN11). Based on these clinical observations, we wished to determine whether Grn-null mice develop accumulation of autofluorescent particles and retinal degeneration. Retinas of both wild-type and Progranulin deficient mice were examined by immunostaining and autofluorescence. Accumulation of autofluorescent material was present in Progranulin deficient mice at 12 months. Degeneration of multiple classes of neurons including photoreceptors and retinal ganglion cells was noted in mice at 12 and 18 months. Our data shows that Grn−/− mice develop degenerative pathology similar to features of human CLN11. PMID:25234724

  15. Bending response of cross-ply laminated composite plates with diagonally perturbed localized interfacial degeneration.

    PubMed

    Kam, Chee Zhou; Kueh, Ahmad Beng Hong

    2013-01-01

    A laminated composite plate element with an interface description is developed using the finite element approach to investigate the bending performance of two-layer cross-ply laminated composite plates in presence of a diagonally perturbed localized interfacial degeneration between laminae. The stiffness of the laminate is expressed through the assembly of the stiffnesses of lamina sub-elements and interface element, the latter of which is formulated adopting the well-defined virtually zero-thickness concept. To account for the extent of both shear and axial weak bonding, a degeneration ratio is introduced in the interface formulation. The model has the advantage of simulating a localized weak bonding at arbitrary locations, with various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. Numerical results show that the bending behavior of laminate is significantly affected by the aforementioned parameters, the greatest effect of which is experienced by those with a localized total interface degeneration, representing the case of local delamination.

  16. On the Behavior of Eisenstein Series Through Elliptic Degeneration

    NASA Astrophysics Data System (ADS)

    Garbin, D.; Pippich, A.-M. V.

    2009-12-01

    Let Γ be a Fuchsian group of the first kind acting on the hyperbolic upper half plane {mathbb{H}}, and let {M = Γbackslash mathbb{H}} be the associated finite volume hyperbolic Riemann surface. If γ is a primitive parabolic, hyperbolic, resp. elliptic element of Γ, there is an associated parabolic, hyperbolic, resp. elliptic Eisenstein series. In this article, we study the limiting behavior of these Eisenstein series on an elliptically degenerating family of finite volume hyperbolic Riemann surfaces. In particular, we prove the following result. The elliptic Eisenstein series associated to a degenerating elliptic element converges up to a factor to the parabolic Eisenstein series associated to the parabolic element which fixes the newly developed cusp on the limit surface.

  17. Relationship between meniscal integrity and risk factors for cartilage degeneration.

    PubMed

    Arno, Sally; Bell, Christopher P; Xia, Ding; Regatte, Ravinder R; Krasnokutsky, Svetlana; Samuels, Jonathan; Oh, Cheongeun; Abramson, Steven; Walker, Peter S

    2016-08-01

    The purpose of this study was to use MRI to determine if a loss of meniscal intra-substance integrity, as determined by T2* relaxation time, is associated with an increase of Kellgren-Lawrence (KL) grade, and if this was correlated with risk factors for cartilage degeneration, namely meniscal extrusion, contact area and anterior-posterior (AP) displacement. Eleven symptomatic knees with a KL 2 to 4 and 11 control knees with a KL 0 to 1 were studied. A 3 Tesla MRI scanner was used to scan all knees at 15° of flexion. With a 222N compression applied, a 3D SPACE sequence was obtained, followed by a spin echo 3D T2* mapping sequence. Next, an internal tibial torque of 5Nm was added and a second 3D SPACE sequence obtained. The MRI scans were post-processed to evaluate meniscal extrusion, contact area, AP displacement and T2* relaxation time. KL grade was correlated with T2* relaxation time for both the anterior medial meniscus (r=0.79, p<0.001) and the posterior lateral meniscus (r=0.55, p=0.009). In addition, T2* relaxation time was found to be correlated with risk factors for cartilage degeneration. The largest increases in meniscal extrusion and decreases in contact area were noted for those with meniscal tears (KL 3 to 4). All patients with KL 3 to 4 indicated evidence of meniscal tears. This suggests that a loss of meniscal integrity, in the form of intra-substance degeneration, is correlated with risk factors for cartilage degeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. [Influence of patellofemoral joint degeneration on outcome of medial unicompartmental knee arthroplasty].

    PubMed

    Xu, B Y; Ji, B C; Guo, W T; Mu, W B; Cao, L

    2017-06-01

    Objective: To evaluate the influence of patellofemoral joint degeneration and pre-operative pain location on the outcome of medial Oxford unicompartmental knee arthroplasty (UKA). Methods: A total of 58 patients (58 knees) with medial Oxford UKA had been performed for medial osteoarthritis from March 2013 to July 2014 in Department of Orthopaedic Surgery at First Teaching Hospital of Xinjiang Medical University were retrospective reviewed. There were 24 males and 34 females, the age from 43 to 87 years with the mean age was 68.5 years. The mean body mass index was 25.2 kg/m(2) ranging from 19.7 to 31.5 kg/m(2). Patients were divided into anterior-medial pain group (35 knees), anterior knee pain group (17 knees) and general knee pain group (6 knees) according to pre-operative pain location. Pre-operative radiological statuses of the patellefemoral joint were defined by Ahlback system and divided into patellofemoral joint degeneration group (16 knees) and normal group (42 knees). Patients were also divided into medial patellofemoral degeneration group (20 knees), lateral patellofemoral degeneration group (12 knees) and normal group (26 knees) according to Altman scoring system. Outerbridge system was used intraoperatively and the patients were divided into patellofemoral joint degeneration group (21 knees) and normal group (37 knees). Pre- and post-operative outcomes were evaluated with Oxford Knee Score (OKS), Western Ontario and MacMaster (WOMAC) and patellofemoral score system of Lonner. T test and ANOVA were used to analyze the data. Results: The average duration of follow-up was 33 months (from 26 to 42 months). There were no patients had complications of infection, deep vein thrombosis, dislocation or loosing at the last follow-up. Compared to pre-operation, OKS (18.9±3.5 vs . 38.9±4.7, 19.3±4.2 vs . 39.6±4.6, 18.1±3.2 vs . 38.1±3.7)( t =5.64 to 7.08, all P <0.01) and WOMAC (10.9±2.3 vs .53.2±4.5, 10.4±2.1 vs .54.6±3.4, 11.7±1.8 vs .52.8±3.7)( t =14

  19. PGC-1α Regulation of Mitochondrial Degeneration in Experimental Diabetic Neuropathy

    PubMed Central

    Choi, Joungil; Chandrasekaran, Krish; Inoue, Tatsuya; Muragundla, Anjaneyulu; Russell, James W.

    2014-01-01

    Mitochondrial degeneration is considered to play an important role in the development of diabetic peripheral neuropathy in humans. Mitochondrial degeneration and the corresponding protein regulation associated with the degeneration were studied in an animal model of diabetic neuropathy. PGC-1α and its-regulated transcription factors including TFAM and NRF1, which are master regulators of mitochondrial biogenesis, are significantly downregulated in streptozotocin diabetic dorsal root ganglion (DRG) neurons. Diabetic mice develop peripheral neuropathy, loss of mitochondria, decreased mitochondrial DNA content and increased protein oxidation. Importantly, this phenotype is exacerbated in PGC-1α (−/−) diabetic mice, which develop a more severe neuropathy with reduced mitochondrial DNA and a further increase in protein oxidation. PGC-1α (−/−) diabetic mice develop an increase in total cholesterol and triglycerides, and a decrease in TFAM and NRF1 protein levels. Loss of PGC-1α causes severe mitochondrial degeneration with vacuolization in DRG neurons, coupled with reduced state 3 and 4 respiration, reduced expression of oxidative stress response genes and an increase in protein oxidation. In contrast, overexpression of PGC-1α in cultured adult mouse neurons prevents oxidative stress associated with increased glucose levels. The study provides new insights into the role of PGC-1α in mitochondrial regeneration in peripheral neurons and suggests that therapeutic modulation of PGC-1α function may be an attractive approach for treatment of diabetic neuropathy. PMID:24423644

  20. HIF-1α stabilization reduces retinal degeneration in a mouse model of retinitis pigmentosa.

    PubMed

    Olivares-González, Lorena; Martínez-Fernández de la Cámara, Cristina; Hervás, David; Millán, José María; Rodrigo, Regina

    2018-05-01

    Retinitis pigmentosa (RP) is a group of inherited retinal dystrophies characterized by progressive and irreversible loss of vision due to rod and cone degeneration. Evidence suggests that an inappropriate oxygen level could contribute to its pathogenesis. Rod cell death could increase oxygen concentration, reduce hypoxia-inducible factor 1 (HIF-1α) and contribute to cone cell death. The purposes of this study were: 1) to analyze the temporal profile of HIF-1α, its downstream effectors VEGF, endothelin-1 (ET-1), iNOS, and glucose transporter 1 (GLUT1), and neuroinflammation in retinas of the murine model of rd10 ( retinal degeneration 10) mice with RP; 2) to study oxygen bioavailability in these retinas; and 3) to investigate how stabilizing HIF-1α proteins with dimethyloxaloglycine (DMOG), a prolyl hydroxylase inhibitor, affects retinal degeneration, neuroinflammation, and antioxidant response in rd10 mice. A generalized down-regulation of HIF-1α and its downstream targets was detected in parallel with reactive gliosis, suggesting high oxygen levels during retinal degeneration. At postnatal d 18, DMOG treatment reduced photoreceptor cell death and glial activation. In summary, retinas of rd10 mice seem to be exposed to a hyperoxic environment even at early stages of degeneration. HIF-1α stabilization could have a temporal neuroprotective effect on photoreceptor cell survival, glial activation, and antioxidant response at early stages of RP.-Olivares-González, L., Martínez-Fernández de la Cámara, C., Hervás, D., Millán, J. M., Rodrigo, R. HIF-1α stabilization reduces retinal degeneration in a mouse model of retinitis pigmentosa.

  1. The Experience of Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Wong, Elaine Y. H.; Guymer, Robyn H.; Hassell, Jennifer B.; Keeffe, Jill E.

    2004-01-01

    This qualitative article describes the impact of age-related macular degeneration (ARMD) among 15 participants: how a person makes sense of ARMD, the effect of ARMD on the person's quality of life, the psychological disturbances associated with the limitations of ARMD, and the influence of ARMD on social interactions. Such in-depth appreciation of…

  2. Gene-diet interactions in age-related macular degeneration

    USDA-ARS?s Scientific Manuscript database

    Age-related macular degeneration (AMD) is a prevalent blinding disease, accounting for roughly 50% of blindness in developed nations. Very significant advances have been made in terms of discovering genetic susceptibilities to AMD as well as dietary risk factors. To date, nutritional supplementation...

  3. Clinical Characteristics and Current Treatment of Age-Related Macular Degeneration

    PubMed Central

    Yonekawa, Yoshihiro; Kim, Ivana K.

    2015-01-01

    Age-related macular degeneration (AMD) is a multifactorial degeneration of photoreceptors and retinal pigment epithelium. The societal impact is significant, with more than 2 million individuals in the United States alone affected by advanced stages of AMD. Recent progress in our understanding of this complex disease and parallel developments in therapeutics and imaging have translated into new management paradigms in recent years. However, there are many unanswered questions, and diagnostic and prognostic precision and treatment outcomes can still be improved. In this article, we discuss the clinical features of AMD, provide correlations with modern imaging and histopathology, and present an overview of treatment strategies. PMID:25280900

  4. Coherent frequency division with a degenerate synchronously pumped optical parametric oscillator.

    PubMed

    Wan, Chenchen; Li, Peng; Ruehl, Axel; Hartl, Ingmar

    2018-03-01

    Synchronously pumped optical parametric oscillators (OPOs) are important tools for frequency comb (FC) generation in the mid-IR spectral range, where few suitable laser gain materials exist. For degenerate OPOs, self-phase-locking to the pump FC has been demonstrated. Here, we present a phase noise study of the carrier envelope offset frequency, revealing a -6  dB reduction compared to the pump FC over a wide Fourier frequency range. These results demonstrate that a degenerate OPO can be an ideal coherent frequency divider without any excess noise.

  5. Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration

    NASA Astrophysics Data System (ADS)

    Brill, Nicolai; Wirtz, Mathias; Merhof, Dorit; Tingart, Markus; Jahr, Holger; Truhn, Daniel; Schmitt, Robert; Nebelung, Sven

    2016-07-01

    Polarization-sensitive optical coherence tomography (PS-OCT) is a light-based, high-resolution, real-time, noninvasive, and nondestructive imaging modality yielding quasimicroscopic cross-sectional images of cartilage. As yet, comprehensive parameterization and quantification of birefringence and tissue properties have not been performed on human cartilage. PS-OCT and algorithm-based image analysis were used to objectively grade human cartilage degeneration in terms of surface irregularity, tissue homogeneity, signal attenuation, as well as birefringence coefficient and band width, height, depth, and number. Degeneration-dependent changes were noted for the former three parameters exclusively, thereby questioning the diagnostic value of PS-OCT in the assessment of human cartilage degeneration.

  6. Inpatient rehabilitation performance of patients with paraneoplastic cerebellar degeneration.

    PubMed

    Fu, Jack B; Raj, Vishwa S; Asher, Arash; Lee, Jay; Guo, Ying; Konzen, Benedict S; Bruera, Eduardo

    2014-12-01

    To evaluate the functional improvement of rehabilitation inpatients with paraneoplastic cerebellar degeneration. Retrospective review. Referral-based hospitals. Cancer rehabilitation inpatients (N=7) admitted to 3 different cancer centers with a diagnosis of paraneoplastic cerebellar degeneration. Medical records were retrospectively analyzed for demographic, laboratory, medical, and functional data. FIM. All 7 patients were white women (median age, 62y). Primary cancers included ovarian carcinoma (n=2), small cell lung cancer (n=2), uterine carcinoma (n=2), and invasive ductal breast carcinoma (n=1). Mean admission total FIM score was 61±23.97. Mean discharge total FIM score was 73.6±29.35. The mean change in total FIM score was 12.6 (P=.0018). The mean length of rehabilitation stay was 17.1 days. The mean total FIM efficiency was .73. Of the 7 patients, 5 (71%) were discharged home, 1 (14%) was discharged to a nursing home, and 1 (14%) was transferred to the primary acute care service. To our knowledge, this is the first study to demonstrate the functional performance of a group of rehabilitation inpatients with paraneoplastic cerebellar degeneration. Despite the poor neurologic prognosis associated with this syndrome, these patients made significant functional improvements in inpatient rehabilitation. When appropriate, inpatient rehabilitation should be considered. Further studies with larger sample sizes are needed. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. Inpatient Rehabilitation Performance of Patients with Paraneoplastic Cerebellar Degeneration

    PubMed Central

    Fu, Jack B.; Raj, Vishwa S.; Asher, Arash; Lee, Jay; Guo, Ying; Konzen, Benedict S.; Bruera, Eduardo

    2014-01-01

    Objective To evaluate the functional improvement of rehabilitation inpatients with paraneoplastic cerebellar degeneration. Design Retrospective Review Setting Three tertiary referral based hospitals. Interventions Medical records were retrospectively analyzed for demographic, laboratory, medical and functional data. Main Outcome Measure Functional Independence Measure (FIM) Participants Cancer rehabilitation inpatients admitted to three different cancer centers with a diagnosis of paraneoplastic cerebellar degeneration (n=7). Results All 7 patients were white females. Median age was 62. Primary cancers included ovarian carcinoma (2), small cell lung cancer (2), uterine carcinoma (2), and invasive ductal breast carcinoma. Mean admission total FIM score was 61.0 (SD=23.97). Mean discharge total FIM score was 73.6 (SD=29.35). The mean change in total FIM score was 12.6 (p=.0018). The mean length of rehabilitation stay was 17.1 days. The mean total FIM efficiency was 0.73. 5/7 (71%) patients were discharged home. 1/7 (14%) was discharged to a nursing home. 1/7 (14%) transferred to the primary acute care service. Conclusions This is the first study to demonstrate the functional performance of a group of rehabilitation inpatients with paraneoplastic cerebellar degeneration. Despite the poor neurologic prognosis associated with this syndrome, these patients made significant functional improvements on inpatient rehabilitation. When appropriate, inpatient rehabilitation should be considered. Further studies with larger sample sizes are needed. PMID:25051460

  8. Costs of newly diagnosed neovascular age-related macular degeneration among medicare beneficiaries, 2004-2008.

    PubMed

    Qualls, Laura G; Hammill, Bradley G; Wang, Fang; Lad, Eleonora M; Schulman, Kevin A; Cousins, Scott W; Curtis, Lesley H

    2013-04-01

    To examine associations between newly diagnosed neovascular age-related macular degeneration and direct medical costs. This retrospective observational study matched 23,133 Medicare beneficiaries diagnosed with neovascular age-related macular degeneration between 2004 and 2008 with a control group of 92,532 beneficiaries on the basis of age, sex, and race. The index date for each case-control set corresponded to the first diagnosis for the case. Main outcome measures were total costs per patient and age-related macular degeneration-related costs per case 1 year before and after the index date. Mean cost per case in the year after diagnosis was $12,422, $4,884 higher than the year before diagnosis. Postindex costs were 41% higher for cases than controls after adjustment for preindex costs and comorbid conditions. Age-related macular degeneration-related costs represented 27% of total costs among cases in the postindex period and were 50% higher for patients diagnosed in 2008 than in 2004. This increase was attributable primarily to the introduction of intravitreous injections of vascular endothelial growth factor antagonists. Intravitreous injections averaged $203 for patients diagnosed in 2004 and $2,749 for patients diagnosed in 2008. Newly diagnosed neovascular age-related macular degeneration was associated with a substantial increase in total medical costs. Costs increased over time, reflecting growing use of anti-vascular endothelial growth factor therapies.

  9. Quantitative neurohistological features of frontotemporal degeneration.

    PubMed

    Arnold, S E; Han, L Y; Clark, C M; Grossman, M; Trojanowski, J Q

    2000-01-01

    Frontotemporal degeneration (FTD) is a neurodegenerative condition that has been principally associated with frontal lobe dementia. In this study, we compared neuropathological abnormalities in frontal, hippocampal, and calcarine cortices from patients assigned a diagnosis of FTD, normal elderly and Alzheimer's disease (AD). Densities of Nissl-stained neurons and lesions which were immunolabeled for tau, beta-amyloid (Abeta), alpha- and beta-synuclein, ubiquitin, glial fibrillary acidic protein (GFAP) and CD68 antigen were determined using computer-assisted, non-biased quantitative microscopy. We found that FTD frontal and hippocampal regions exhibited marked neuron loss, abundant ubiquitin-immunoreactive (ir) dystrophic neurites, GFAP-ir astrocytes, and CD68-ir microglia, while calcarine cortex was spared. No alpha- or beta-synuclein-ir lesions were observed, and neither the density of tau-ir neurofibrillary tangles nor that of Abeta-ir plaques in FTD exceeded normal controls. In addition, there were no neuropathological differences between FTD subjects who presented clinically with a frontal lobe dementia versus an AD-like dementia. These findings indicate that FTD is a category of neurodegnerative dementias with varying clinical presentations that is characterized by the progressive degeneration of select populations of cortical neurons. The molecular neurodegenerative mechanisms that lead to FTD remain to be elucidated.

  10. Symmetrical infantile thalamic degeneration in two sibs

    PubMed Central

    Abuelo, Dianne N; Barsel-Bowers, Gail; Tutschka, Barbara G; Ambler, Mary; Singer, Don B

    1981-01-01

    This is the first observation of two cases of symmetrical infantile thalamic degeneration with cell mineralisation in a family. Although it cannot be established at present, autosomal recessive inheritance of a metabolic error causing or predisposing to damage to specific areas of the central nervous system is a possible aetiology for this condition. Images PMID:7334503

  11. Early Microglia Activation Precedes Photoreceptor Degeneration in a Mouse Model of CNGB1-Linked Retinitis Pigmentosa.

    PubMed

    Blank, Thomas; Goldmann, Tobias; Koch, Mirja; Amann, Lukas; Schön, Christian; Bonin, Michael; Pang, Shengru; Prinz, Marco; Burnet, Michael; Wagner, Johanna E; Biel, Martin; Michalakis, Stylianos

    2017-01-01

    Retinitis pigmentosa (RP) denotes a family of inherited blinding eye diseases characterized by progressive degeneration of rod and cone photoreceptors in the retina. In most cases, a rod-specific genetic defect results in early functional loss and degeneration of rods, which is followed by degeneration of cones and loss of daylight vision at later stages. Microglial cells, the immune cells of the central nervous system, are activated in retinas of RP patients and in several RP mouse models. However, it is still a matter of debate whether activated microglial cells may be responsible for the amplification of the typical degenerative processes. Here, we used Cngb1 -/- mice, which represent a slow degenerative mouse model of RP, to investigate the extent of microglia activation in retinal degeneration. With a combination of FACS analysis, immunohistochemistry and gene expression analysis we established that microglia in the Cngb1 -/- retina were already activated in an early, predegenerative stage of the disease. The evidence available so far suggests that early retinal microglia activation represents a first step in RP, which might initiate or accelerate photoreceptor degeneration.

  12. Superior cervical gangliectomy induces non-exudative age-related macular degeneration in mice.

    PubMed

    Dieguez, Hernán H; Romeo, Horacio E; González Fleitas, María F; Aranda, Marcos L; Milne, Georgia A; Rosenstein, Ruth E; Dorfman, Damián

    2018-02-07

    Non-exudative age-related macular degeneration, a prevalent cause of blindness, is a progressive and degenerative disease characterized by alterations in Bruch's membrane, retinal pigment epithelium, and photoreceptors exclusively localized in the macula. Although experimental murine models exist, the vast majority take a long time to develop retinal alterations and, in general, these alterations are ubiquitous, with many resulting from non-eye-specific genetic manipulations; additionally, most do not always reproduce the hallmarks of human age-related macular degeneration. Choroid vessels receive sympathetic innervation from the superior cervical ganglion, which, together with the parasympathetic system, regulates blood flow into the choroid. Choroid blood flow changes have been involved in age-related macular degeneration development and progression. At present, no experimental models take this factor into account. The aim of this work was to analyze the effect of superior cervical gangliectomy (also known as ganglionectomy) on the choroid, Bruch's membrane, retinal pigment epithelium and retina. Adult male C57BL/6J mice underwent unilateral superior cervical gangliectomy and a contralateral sham procedure. Although superior cervical gangliectomy induced ubiquitous choroid and choriocapillaris changes, it induced Bruch's membrane thickening, loss of retinal pigment epithelium melanin content and retinoid isomerohydrolase, the appearance of drusen-like deposits, and retinal pigment epithelium and photoreceptor atrophy, exclusively localized in the temporal side. Moreover, superior cervical gangliectomy provoked a localized increase in retinal pigment epithelium and photoreceptor apoptosis, and a decline in photoreceptor electroretinographic function. Therefore, superior cervical gangliectomy recapitulated the main features of human non-exudative age-related macular degeneration, and could become a new experimental model of dry age-related macular degeneration, and

  13. Melatonin delays photoreceptor degeneration in a mouse model of autosomal recessive retinitis pigmentosa.

    PubMed

    Xu, Xiao-Jian; Wang, Shu-Min; Jin, Ying; Hu, Yun-Tao; Feng, Kang; Ma, Zhi-Zhong

    2017-10-01

    Retinitis pigmentosa (RP) comprises a group of incurable inherited retinal degenerations. Targeting common processes, instead of mutation-specific treatment, has proven to be an innovative strategy to combat debilitating retinal degeneration. Growing evidence indicates that melatonin possesses a potent activity against neurodegenerative disorders by mitigating cell damage associated with apoptosis and inflammation. Given the pleiotropic role of melatonin in central nervous system, the aim of the present study was to investigate whether melatonin would afford protection against retinal degeneration in autosomal recessive RP (arRP). Rd10, a well-characterized murine model of human arRP, received daily intraperitoneal injection of melatonin (15 mg/kg) between postnatal day (P) 13 and P30. Retinas treated with melatonin or vehicle were harvested for analysis at P30 and P45, respectively. The findings showed that melatonin could dampen the photoreceptors death and delay consequent retinal degeneration. We also observed that melatonin weakened the expression of glial fibrillary acidic protein (GFAP) in Müller cells. Additionally, melatonin could alleviate retinal inflammatory response visualized by IBA1 staining, which was further corroborated by downregulation of inflammation-related genes, such as tumor necrosis factor alpha (Tnf-α), chemokine (C-C motif) ligand 2 (Ccl2), and chemokine (C-X-C motif) ligand 10 (Cxcl10). These data revealed that melatonin could ameliorate retinal degeneration through potentially attenuating apoptosis, reactive gliosis, and microglial activation in rd10 mice. Moreover, these results suggest melatonin as a promising agent improving photoreceptors survival in human RP. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Small heat shock proteins mediate cell-autonomous and -nonautonomous protection in a Drosophila model for environmental-stress-induced degeneration.

    PubMed

    Kawasaki, Fumiko; Koonce, Noelle L; Guo, Linda; Fatima, Shahroz; Qiu, Catherine; Moon, Mackenzie T; Zheng, Yunzhen; Ordway, Richard W

    2016-09-01

    Cell and tissue degeneration, and the development of degenerative diseases, are influenced by genetic and environmental factors that affect protein misfolding and proteotoxicity. To better understand the role of the environment in degeneration, we developed a genetic model for heat shock (HS)-stress-induced degeneration in Drosophila This model exhibits a unique combination of features that enhance genetic analysis of degeneration and protection mechanisms involving environmental stress. These include cell-type-specific failure of proteostasis and degeneration in response to global stress, cell-nonautonomous interactions within a simple and accessible network of susceptible cell types, and precise temporal control over the induction of degeneration. In wild-type flies, HS stress causes selective loss of the flight ability and degeneration of three susceptible cell types comprising the flight motor: muscle, motor neurons and associated glia. Other motor behaviors persist and, accordingly, the corresponding cell types controlling leg motor function are resistant to degeneration. Flight motor degeneration was preceded by a failure of muscle proteostasis characterized by diffuse ubiquitinated protein aggregates. Moreover, muscle-specific overexpression of a small heat shock protein (HSP), HSP23, promoted proteostasis and protected muscle from HS stress. Notably, neurons and glia were protected as well, indicating that a small HSP can mediate cell-nonautonomous protection. Cell-autonomous protection of muscle was characterized by a distinct distribution of ubiquitinated proteins, including perinuclear localization and clearance of protein aggregates associated with the perinuclear microtubule network. This network was severely disrupted in wild-type preparations prior to degeneration, suggesting that it serves an important role in muscle proteostasis and protection. Finally, studies of resistant leg muscles revealed that they sustain proteostasis and the microtubule

  15. Constitutive Overexpression of Human Erythropoietin Protects the Mouse Retina against Induced But Not Inherited Retinal Degeneration

    PubMed Central

    Grimm, Christian; Wenzel, Andreas; Stanescu, Dinu; Samardzija, Marijana; Hotop, Svenja; Groszer, Mathias; Naash, Muna; Gassmann, Max; Remé, Charlotte

    2010-01-01

    Elevation of erythropoietin (Epo) concentrations by hypoxic preconditioning or application of recombinant human Epo (huEpo) protects the mouse retina against light-induced degeneration by inhibiting photoreceptor cell apoptosis. Because photoreceptor apoptosis is also the common path to cell loss in retinal dystrophies such as retinitis pigmentosa (RP), we tested whether high levels of huEpo would reduce apoptotic cell death in two mouse models of human RP. We combined the two respective mutant mouse lines with a transgenic line (tg6) that constitutively overexpresses huEpo mainly in neural tissues. Transgenic expression of huEpo caused constitutively high levels of Epo in the retina and protected photoreceptors against light-induced degeneration; however, the presence of high levels of huEpo did not affect the course or the extent of retinal degeneration in a light-independent (rd1) and a light-accelerated (VPP) mouse model of RP. Similarly, repetitive intraperitoneal injections of recombinant huEpo did not protect the retina in the rd1 and the VPP mouse. Lack of neuroprotection by Epo in the two models of inherited retinal degeneration was not caused by adaptational downregulation of Epo receptor. Our results suggest that apoptotic mechanisms during acute, light-induced photoreceptor cell death differ from those in genetically based retinal degeneration. Therapeutic intervention with cell death in inherited retinal degeneration may therefore require different drugs and treatments. PMID:15215287

  16. Nonlinear ion-acoustic cnoidal waves in a dense relativistic degenerate magnetoplasma.

    PubMed

    El-Shamy, E F

    2015-03-01

    The complex pattern and propagation characteristics of nonlinear periodic ion-acoustic waves, namely, ion-acoustic cnoidal waves, in a dense relativistic degenerate magnetoplasma consisting of relativistic degenerate electrons and nondegenerate cold ions are investigated. By means of the reductive perturbation method and appropriate boundary conditions for nonlinear periodic waves, a nonlinear modified Korteweg-de Vries (KdV) equation is derived and its cnoidal wave is analyzed. The various solutions of nonlinear ion-acoustic cnoidal and solitary waves are presented numerically with the Sagdeev potential approach. The analytical solution and numerical simulation of nonlinear ion-acoustic cnoidal waves of the nonlinear modified KdV equation are studied. Clearly, it is found that the features (amplitude and width) of nonlinear ion-acoustic cnoidal waves are proportional to plasma number density, ion cyclotron frequency, and direction cosines. The numerical results are applied to high density astrophysical situations, such as in superdense white dwarfs. This research will be helpful in understanding the properties of compact astrophysical objects containing cold ions with relativistic degenerate electrons.

  17. Primary amines protect against retinal degeneration in mouse models of retinopathies

    PubMed Central

    Maeda, Akiko; Golczak, Marcin; Chen, Yu; Okano, Kiichiro; Kohno, Hideo; Shiose, Satomi; Ishikawa, Kaede; Harte, William; Palczewska, Grazyna; Maeda, Tadao; Palczewski, Krzysztof

    2011-01-01

    Vertebrate vision is initiated by photoisomerization of the visual pigment chromophore, 11-cis-retinal, and is maintained by continuous regeneration of this retinoid through a series of reactions termed the retinoid cycle. However, toxic side reaction products, especially those involving reactive aldehyde groups of the photoisomered product, all-trans-retinal, can cause severe retinal pathology. Here we lowered peak concentrations of free all-trans-retinal with primary amine-containing FDA-approved drugs that did not inhibit chromophore regeneration in mouse models of retinal degeneration. Schiff base adducts between all-trans-retinal and these amines were identified by mass spectrometry. Adducts were observed in mouse eyes only when an experimental drug protected the retina from degeneration in both short-term and long-term treatment experiments. This study demonstrates a molecular basis of all-trans-retinal-induced retinal pathology and identifies an assemblage of FDA-approved compounds with protective effects against this pathology in a mouse model that displays features of Stargardt’s and age-related retinal degeneration. PMID:22198730

  18. Bilateral rhegmatogenous retinal detachment due to unusual retinal degeneration in Down syndrome: A case report.

    PubMed

    Yonemoto, Yumiko; Morishita, Seita; Fukumoto, Masanori; Mimura, Masashi; Sato, Takaki; Kida, Teruyo; Kojima, Shota; Oku, Hidehiro; Sugasawa, Jun; Ikeda, Tsunehiko

    2018-06-01

    The aim of this study was to report a case of Down syndrome (DS) complicated with bilateral retinal detachment (RD) due to unusual retinal degeneration. A 9-year-old girl complained of bilateral visual disturbance during a follow-up examination for myopia and strabismus. Slit-lamp examination revealed moderate posterior subcapsular cataract in both eyes. B-mode echography showed bilateral bullous RD; however, it was difficult to detect the causal retinal breaks due to poor mydriasis. For treatment, the patient underwent bilateral lensectomy, vitrectomy, and silicone oil tamponade. Intraoperative findings revealed symmetrical retinal breaks and unusual caterpillar-like retinal degeneration on the upper temporal side of both eyes. Three months later, the patient underwent bilateral silicone oil removal and intraocular lens implantation. In this case, the retinal degeneration was morphologically different from retinal lattice degeneration, thus suggesting that it might be involved in the onset of DS-related bilateral RD.

  19. Recombination-generation currents in degenerate semiconductors

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1978-01-01

    The classical Shockley-Read-Hall theory of free carrier recombination and generation via traps is extended to degenerate semiconductors. A concise and simple expression is found which avoids completely the concept of a Fermi level, a concept which is alien to nonequilibrium situations. Assumptions made in deriving the recombination generation current are carefully delineated and are found to be basically identical to those made in the original theory applicable to nondegenerate semiconductors.

  20. Cartilage degeneration and not age influences the health-related quality of life outcome after partial meniscectomy.

    PubMed

    Liebensteiner, Michael C; Nogler, Michael; Giesinger, Johannes M; Lechner, Ricarda; Lenze, Florian; Thaler, Martin

    2015-01-01

    The purpose of this study is to investigate whether inconsistently reported factors influence the health-related quality of life (HRQOL) outcome of partial meniscectomy. Short Form 36 (SF-36) data on 216 patients were retrospectively analysed for the influence of the factors age, gender and degree of cartilage degeneration. Mixed linear models were applied for univariate and multivariate analyses. All SF-36 scales, including the psychosocial scales, showed a significant improvement from pre- to post-operative (p < 0.001). The factor 'degree of cartilage degeneration' was found to significantly influence post-surgical improvement of the SF-36 'physical component summary' score. Patients with mild cartilage degeneration benefited significantly more from surgery than did patients with advanced cartilage degeneration (p = 0.011). Older patients had significantly lower scores on each subscale, but showed no significant age-time interaction, that is, no association was seen between age and the degree of improvement. No effect was determined for the variable gender. The findings of the current study can be interpreted to show that arthroscopic partial meniscectomy significantly improves HRQOL, even in mental or psychosocial dimensions of HRQOL. Not age but the degree of cartilage degeneration influences the HRQOL gain that can be expected. The factor gender has no effect on HRQOL. The findings of our study influence our daily routine, in that we take the degree of cartilage degeneration and not age as predictive value for the success to be anticipated from the procedure. Concerning the preoperative consenting, it is important to mention that advanced cartilage degeneration is a predictor of a less favourable outcome. IV.

  1. [Non-pharmacologic therapy of age-related macular degeneration, based on the etiopathogenesis of the disease].

    PubMed

    Fischer, Tamás

    2015-07-12

    It has a great therapeutic significance that the disorder of the vascular endothelium, which supplies the affected ocular structures, plays a major role in the development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfuncition and age-related macular degeneration is accompanied by a general inflammatory response. The vascular wall including those in chorioids may be activated by several repeated and/or prolonged mechanical, physical, chemical, microbiological, immunologic and genetic factors causing a protracted host defence response with a consequent vascular damage, which leads to age-related macular degeneration. Based on this concept, age-related macular degeneration is a local manifestation of the systemic vascular disease. This recognition should have therapeutic implications because restoration of endothelial dysfunction can stabilize the condition of chronic vascular disease including age-related macular degeneration, as well. Restoration of endothelial dysfunction by non-pharmacological or pharmacological interventions may prevent the development or improve endothelial dysfunction resulting in prevention or improvement of age-related macular degeneration. Non-pharmacological interventions which may have beneficial effect in endothelial dysfunction include (1) smoking cessation; (2) reduction of increased body weight; (3) adequate physical activity; (4) appropriate diet (a) proper dose of flavonoids, polyphenols and kurcumin; (b) omega-3 long-chain polyunsaturated fatty acids: docosahexaenoic acid and eicosapentaenoic acid; (c) carotenoids, lutein and zeaxanthins), (d) management of dietary glycemic index, (e) caloric restriction, and (5) elimination of stressful lifestyle. Non-pharmacological interventions should be preferable even if medicaments are also used for the treatment of endothelial dysfunction.

  2. Dwarfism and age-associated spinal degeneration of heterozygote cmd mice defective in aggrecan

    PubMed Central

    Watanabe, Hideto; Nakata, Ken; Kimata, Koji; Nakanishi, Isao; Yamada, Yoshihiko

    1997-01-01

    Mouse cartilage matrix deficiency (cmd) is an autosomal recessive disorder caused by a genetic defect of aggrecan, a large chondroitin sulfate proteoglycan in cartilage. The homozygotes (−/−) are characterized by cleft palate and short limbs, tail, and snout. They die just after birth because of respiratory failure, and the heterozygotes (+/−) appear normal at birth. Here we report that the heterozygotes show dwarfism and develop spinal misalignment with age. Within 19 months of age, they exhibit spastic gait caused by misalignment of the cervical spine and die because of starvation. Histological examination revealed a high incidence of herniation and degeneration of vertebral discs. Electron microscopy showed a degeneration of disc chondrocytes in the heterozygotes. These findings may facilitate the identification of mutations in humans predisposed to spinal degeneration. PMID:9192671

  3. Existence and Stability of Traveling Waves for Degenerate Reaction-Diffusion Equation with Time Delay

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue

    2018-01-01

    This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0 . Furthermore, we prove the global existence and uniqueness of C^{α ,β } -solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1 -space. The exponential convergence rate is also derived.

  4. Existence and Stability of Traveling Waves for Degenerate Reaction-Diffusion Equation with Time Delay

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue

    2018-06-01

    This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0. Furthermore, we prove the global existence and uniqueness of C^{α ,β }-solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1-space. The exponential convergence rate is also derived.

  5. Gestural Imitation and Limb Apraxia in Corticobasal Degeneration

    ERIC Educational Resources Information Center

    Salter, Jennifer E.; Roy, Eric A.; Black, Sandra E.; Joshi, Anish; Almeida, Quincy

    2004-01-01

    Limb apraxia is a common symptom of corticobasal degeneration (CBD). While previous research has shown that individuals with CBD have difficulty imitating transitive (tool-use actions) and intransitive non-representational gestures (nonsense actions), intransitive representational gestures (actions without a tool) have not been examined. In the…

  6. Helicoid peripapillary chorioretinal degeneration complicated by choroidal neovascularization.

    PubMed

    Triantafylla, Magdalini; Panos, Georgios D; Dardabounis, Doukas; Nanos, Panagiotis; Konstantinidis, Aristeidis

    2016-02-15

    Helicoid peripapillary chorioretinal degeneration (HPCD) is a hereditary disease of the fundus that is characterized by atrophic chorioretinal areas that appear early in life and expand gradually from the optic disc towards the macula and the periphery. We describe the case of an elderly man with a known diagnosis of HPCD who developed choroidal neovascular membrane (CNV) in both eyes during the course of the disease. The patient was treated with intravitreal injection of ranibizumab, to which he had excellent response. The CNV subsided with 2 injections in the right eye and 1 in the left. Two years after the initial diagnosis of CNV in the right eye, visual acuity was 5/10 OD and 9/10 OS. Helicoid peripapillary chorioretinal degeneration is rarely complicated by CNV as the fundus lacks the trigger factors that would sustain this process. Although rare, HPCD complicated by CNV can be seen bilaterally, but responds well to few ranibizumab injections.

  7. Cygnus X-2 - Neutron star or degenerate dwarf?

    NASA Technical Reports Server (NTRS)

    Mcclintock, J. E.; Remillard, R. A.; Petro, L. D.; Hammerschlag-Hensberge, G.; Proffitt, C. R.

    1984-01-01

    Some conflicting models have been proposed for Cyg X-2: a degenerate dwarf model which predicts a distance of 250 + or 50 pc; and a neutron star model which implies a distance of about 8000 pc. Based on a reddening study, it is found that the distance to Cyg X-2 is greater than 1100 pc, which rules strongly against the degenerate dwarf model. This conclusion is based on observations of the 2200 A feature in the spectrum of Cyg X-2 made with the International Ultraviolet Explorer (IUE), and UBV and spectroscopic observations of 38 field stars. For the reddening of Cyg X-2 values of E(B-V) = 0.40 + or - 0.07 (1 sigma) are found and are consistent with the reddening to infinity in that direction inferred from radio data. Consequently, Cyg X-2 may be located in the halo at about 8 kpc as proposed in 1979 by Cowley, Crampton, and Hutchings.

  8. Diagnosis of non-exudative (DRY) age related macular degeneration by non-invasive photon-correlation spectroscopy.

    PubMed

    Fankhauser, Franz Ii; Ott, Maria; Munteanu, Mihnea

    2016-01-01

    Photon-correlation spectroscopy (PCS) (quasi-elastic light scattering spectroscopy, dynamic light scattering spectroscopy) allows the non-invasively reveal of local dynamics and local heterogeneities of macromolecular systems. The capability of this technique to diagnose the retinal pathologies by in-vivo investigations of spatial anomalies of retinas displaying non-exudative senile macular degeneration was evaluated. Further, the potential use of the technique for the diagnosis of the macular degeneration was analyzed and displayed by the Receiver Operating Curve (ROC). The maculae and the peripheral retina of 73 normal eyes and of 26 eyes afflicted by an early stage of non-exudative senile macular degeneration were characterized by time-correlation functions and analyzed in terms of characteristic decay times and apparent size distributions. The characteristics of the obtained time-correlation functions of the eyes afflicted with nonexudative macular degeneration and of normal eyes differed significantly, which could be referred to a significant change of the nano- and microstructure of the investigated pathologic maculas. Photon-correlation spectroscopy is able to assess the macromolecular and microstructural aberrations in the macula afflicted by non-exudative, senile macular degeneration. It has been demonstrated that macromolecules of this disease show a characteristic abnormal behavior in the macula.

  9. Activation of Müller cells occurs during retinal degeneration in RCS rats.

    PubMed

    Zhao, Tong Tao; Tian, Chun Yu; Yin, Zheng Qin

    2010-01-01

    Müller cells can be activated and included in different functions under many kinds of pathological conditions, however, the status of Müller cells in retinitis pigmentosa are still unknown. Using immunohistochemisty, Western blots and co-culture, we found that Müller cells RCS rats, a classic model of RP, could be activated during the progression of retinal degeneration. After being activated at early stage, Müller cells began to proliferate and hypertrophy, while at later stages, they formed a local 'glial seal' in the subretinal space. As markers of Müller cells activation, the expression of GFAP and ERK increased significantly with progression of retinal degeneration. Co-cultures of normal rat Müller cells and mixed RCS rat retinal cells show that Müller cells significantly increase GFAP and ERK in response to diffusable factors from the degenerting retina, which implies that Müller cells activation is a secondary response to retinal degeneration.

  10. A selective inhibition of c-Fos/activator protein-1 as a potential therapeutic target for intervertebral disc degeneration and associated pain.

    PubMed

    Makino, Hiroto; Seki, Shoji; Yahara, Yasuhito; Shiozawa, Shunichi; Aikawa, Yukihiko; Motomura, Hiraku; Nogami, Makiko; Watanabe, Kenta; Sainoh, Takeshi; Ito, Hisakatsu; Tsumaki, Noriyuki; Kawaguchi, Yoshiharu; Yamazaki, Mitsuaki; Kimura, Tomoatsu

    2017-12-05

    Intervertebral disc (IVD) degeneration is a major cause of low back pain. The transcription factor c-Fos/Activator Protein-1 (AP-1) controls the expression of inflammatory cytokines and matrix metalloproteinases (MMPs) that contribute to the pathogenesis IVD degeneration. We investigated the effects of inhibition of c-Fos/AP-1 on IVD degeneration and associated pain. A selective inhibitor, T-5224, significantly suppressed the interleukin-1β-induced up-regulation of Mmp-3, Mmp-13 and Adamts-5 transcription in human nucleus pulposus cells and in a mouse explant culture model of IVD degeneration. We used a tail disc percutaneous needle puncture method to further assess the effects of oral administration of T-5224 on IVD degeneration. Analysis of disc height, T2-magnetic resonance imaging (MRI) findings, and histology revealed that IVD degeneration was significantly mitigated by T-5224. Further, oral administration of T-5224 ameliorated pain as indicated by the extended tail-flick latency in response to heat stimulation of rats with needle-puncture-induced IVD degeneration. These findings suggest that the inhibition of c-Fos/AP-1 prevents disc degeneration and its associated pain and that T-5224 may serve as a drug for the prevention of IVD degeneration.

  11. Temporal and spatial characteristics of cone degeneration in RCS rats.

    PubMed

    Huang, Yan Ming; Yin, Zheng Qin; Liu, Kang; Huo, Shu Jia

    2011-03-01

    The temporal and spatial characteristics of cone degeneration in the Royal College of Surgeons (RCS) rat were studied to provide information for treatment strategies of retinitis pigmentosa. Nonpigmented dystrophic RCS rats (RCS) and pigmented nondystrophic RCS rats (controls) were used. Cone processes were visualized with peanut agglutinin (PNA). Cone development appears to have been completed by postnatal day 21 (P21) in both the RCS and control rats. Signs of cone degeneration were obvious by P30, with shorter outer segments (OSs) and enlarged inner segments (ISs). At that time, 81.7% of the cones retained stained ISs. The rate of IS density decline was slower in the peripheral, nasal, and superior retina, and only 43.6% of the cones with ISs were present at P45. By P60, PNA-labeled cone ISs were distorted and restricted to the peripheral retina, and by P90, few cone pedicles were detected. Our findings indicate that therapeutic strategies aimed at rescuing cones in the degenerating retina should be applied before P21 and no later than P45 while substantial numbers of cones retain their ISs. Either the middle or peripheral regions of the nasal and superior retina are the best locations for transplantation strategies.

  12. Lycium Barbarum (Wolfberry) Reduces Secondary Degeneration and Oxidative Stress, and Inhibits JNK Pathway in Retina after Partial Optic Nerve Transection

    PubMed Central

    Li, Hongying; Liang, Yuxiang; Chiu, Kin; Yuan, Qiuju; Lin, Bin; Chang, Raymond Chuen-Chung; So, Kwok-Fai

    2013-01-01

    Our group has shown that the polysaccharides extracted from Lycium barbarum (LBP) are neuroprotective for retinal ganglion cells (RGCs) in different animal models. Protecting RGCs from secondary degeneration is a promising direction for therapy in glaucoma management. The complete optic nerve transection (CONT) model can be used to study primary degeneration of RGCs, while the partial optic nerve transection (PONT) model can be used to study secondary degeneration of RGCs because primary degeneration of RGCs and secondary degeneration can be separated in location in the same retina in this model; in other situations, these types of degeneration can be difficult to distinguish. In order to examine which kind of degeneration LBP could delay, both CONT and PONT models were used in this study. Rats were fed with LBP or vehicle daily from 7 days before surgery until sacrifice at different time-points and the surviving numbers of RGCs were evaluated. The expression of several proteins related to inflammation, oxidative stress, and the c-jun N-terminal kinase (JNK) pathways were detected with Western-blot analysis. LBP did not delay primary degeneration of RGCs after either CONT or PONT, but it did delay secondary degeneration of RGCs after PONT. We found that LBP appeared to exert these protective effects by inhibiting oxidative stress and the JNK/c-jun pathway and by transiently increasing production of insulin-like growth factor-1 (IGF-1). This study suggests that LBP can delay secondary degeneration of RGCs and this effect may be linked to inhibition of oxidative stress and the JNK/c-jun pathway in the retina. PMID:23894366

  13. Abdominal adipose tissue thickness measured using magnetic resonance imaging is associated with lumbar disc degeneration in a Chinese patient population.

    PubMed

    Yang, Lili; Mu, Liangshan; Huang, Kaiyu; Zhang, Tianyi; Mei, Zihan; Zeng, Wenrong; He, Jiawei; Chen, Wei; Liu, Xiaozheng; Ye, Xinjian; Yan, Zhihan

    2016-12-13

    The relationship between abdominal adiposity and disc degeneration remains largely uninvestigated. Here, we investigated the association between abdominal adipose tissue thickness and lumbar disc degeneration in a cross-sectional study of 2415 participants from The Second Affiliated Hospital of Wenzhou Medical University. All subjects were scanned with a 3T Magnetic Resonance Imaging system to evaluate the degree of lumbar disc degeneration. Multiple logistic regression analysis revealed that men in the highest quartiles for abdominal diameter (AD), sagittal diameter (SAD), and ventral subcutaneous thickness (VST) were at higher odds ratio for severe lumbar disc degeneration than men in the lowest quartiles. The adjusted model revealed that women in the highest quartiles for AD and SAD were also at higher odds ratio for severe lumbar disc degeneration than women in the lowest quartiles. Our results suggest that abdominal obesity might be one of underlying mechanisms of lumbar disc degeneration, and preventive strategies including weight control could be useful to reduce the incidence of lumbar disc degeneration. Prospective studies are needed to this confirm these results and to identify more deeper underlying mechanisms.

  14. Immunology of age-related macular degeneration.

    PubMed

    Ambati, Jayakrishna; Atkinson, John P; Gelfand, Bradley D

    2013-06-01

    Age-related macular degeneration (AMD) is a leading cause of blindness in aged individuals. Recent advances have highlighted the essential role of immune processes in the development, progression and treatment of AMD. In this Review we discuss recent discoveries related to the immunological aspects of AMD pathogenesis. We outline the diverse immune cell types, inflammatory activators and pathways that are involved. Finally, we discuss the future of inflammation-directed therapeutics to treat AMD in the growing aged population.

  15. A Large Animal Model that Recapitulates the Spectrum of Human Intervertebral Disc Degeneration

    PubMed Central

    Gullbrand, Sarah E.; Malhotra, Neil R.; Schaer, Thomas P.; Zawacki, Zosia; Martin, John T.; Bendigo, Justin R.; Milby, Andrew H.; Dodge, George R.; Vresilovic, Edward J.; Elliott, Dawn M.; Mauck, Robert L.; Smith, Lachlan J.

    2016-01-01

    Objective The objective of this study was to establish a large animal model that recapitulates the spectrum of intervertebral disc degeneration that occurs in humans and which is suitable for pre-clinical evaluation of a wide range of experimental therapeutics. Design Degeneration was induced in the lumbar intervertebral discs of large frame goats by either intradiscal injection of chondroitinase ABC (ChABC) over a range of dosages (0.1U, 1U or 5U) or subtotal nucleotomy. Radiographs were used to assess disc height changes over 12 weeks. Degenerative changes to the discs and endplates were assessed via magnetic resonance imaging (MRI), semi-quantitative histological grading, micro-computed tomography (µCT), and measurement of disc biomechanical properties. Results Degenerative changes were observed for all interventions that ranged from mild (0.1U ChABC) to moderate (1U ChABC and nucleotomy) to severe (5U ChABC). All groups showed progressive reductions in disc height over 12 weeks. Histological scores were significantly increased in the 1U and 5U ChABC groups. Reductions in T2 and T1ρ, and increased Pfirrmann grade were observed on MRI. Resorption and remodeling of the cortical boney endplate adjacent to ChABC injected discs also occurred. Spine segment range of motion was greater and compressive modulus was lower in 1U ChABC and nucleotomy discs compared to intact. Conclusions A large animal model of disc degeneration was established that recapitulates the spectrum of structural, compositional and biomechanical features of human disc degeneration. This model may serve as a robust platform for evaluating the efficacy of therapeutics targeted towards varying degrees of disc degeneration. PMID:27568573

  16. Pathophysiology, diagnosis and treatment of intermittent claudication in patients with lumbar canal stenosis

    PubMed Central

    Kobayashi, Shigeru

    2014-01-01

    Spinal nerve roots have a peculiar structure, different from the arrangements in the peripheral nerve. The nerve roots are devoid of lymphatic vessels but are immersed in the cerebrospinal fluid (CSF) within the subarachnoid space. The blood supply of nerve roots depends on the blood flow from both peripheral direction (ascending) and the spinal cord direction (descending). There is no hypovascular region in the nerve root, although there exists a so-called water-shed of the bloodstream in the radicular artery itself. Increased mechanical compression promotes the disturbance of CSF flow, circulatory disturbance starting from the venous congestion and intraradicular edema formation resulting from the breakdown of the blood-nerve barrier. Although this edema may diffuse into CSF when the subarachnoid space is preserved, the endoneurial fluid pressure may increase when the area is closed by increased compression. On the other hand, the nerve root tissue has already degenerated under the compression and the numerous macrophages releasing various chemical mediators, aggravating radicular symptoms that appear in the area of Wallerian degeneration. Prostaglandin E1 (PGE1) is a potent vasodilator as well as an inhibitor of platelet aggregation and has therefore attracted interest as a therapeutic drug for lumbar canal stenosis. However, investigations in the clinical setting have shown that PGE1 is effective in some patients but not in others, although the reason for this is unclear. PMID:24829876

  17. Critical Ischemia Times and the Effect of Novel Preservation Solutions HTK-N and TiProtec on Tissues of a Vascularized Tissue Isograft.

    PubMed

    Messner, Franka; Hautz, Theresa; Blumer, Michael J F; Bitsche, Mario; Pechriggl, Elisabeth J; Hermann, Martin; Zelger, Bettina; Zelger, Bernhard; Öfner, Dietmar; Schneeberger, Stefan

    2017-09-01

    We herein investigate critical ischemia times and the effect of novel preservation solutions such as new histidine-tryptophan-ketoglutarate (HTK-N) and TiProtec on the individual tissues of a rat limb isograft. Orthotopic hind-limb transplantations were performed in male Lewis rats after 2 hours, 6 hours, or 10 hours of cold ischemia (CI). Limbs were flushed and stored in HTK-N, TiProtec, HTK, or saline solution. Muscle, nerve, vessel, skin, and bone samples were procured on day 10 for histology, immunohistochemistry, confocal and electron microscopy, and quantitative real-time polymerase chain reaction analysis. Histomorphology of the muscle showed a mainly perivascular inflammatory infiltrate, fibrotic degeneration, and neovascularization after 6 hours and 10 hours of CI. However, centrally aligned nuclei observed in muscle fibers suggest for muscle regeneration in these samples. In addition to Wallerian degeneration, nerve injury was significantly aggravated (P = 0.032) after prolonged CI. Proinflammatory and regulatory cytokines were most significantly upregulated after 2-hour CI. Our data suggest no superiority of novel perfusates HTK-N and TiProtec in terms of tissue preservation, compared with HTK and saline. Limiting CI time for less than 6 hours is the most significant factor to reduce tissue damage in vascularized tissue transplantation. Signs of muscle regeneration give rise that ischemic muscle damage in limb transplantation might be reversible to a certain extent.

  18. Pathophysiology, diagnosis and treatment of intermittent claudication in patients with lumbar canal stenosis.

    PubMed

    Kobayashi, Shigeru

    2014-04-18

    Spinal nerve roots have a peculiar structure, different from the arrangements in the peripheral nerve. The nerve roots are devoid of lymphatic vessels but are immersed in the cerebrospinal fluid (CSF) within the subarachnoid space. The blood supply of nerve roots depends on the blood flow from both peripheral direction (ascending) and the spinal cord direction (descending). There is no hypovascular region in the nerve root, although there exists a so-called water-shed of the bloodstream in the radicular artery itself. Increased mechanical compression promotes the disturbance of CSF flow, circulatory disturbance starting from the venous congestion and intraradicular edema formation resulting from the breakdown of the blood-nerve barrier. Although this edema may diffuse into CSF when the subarachnoid space is preserved, the endoneurial fluid pressure may increase when the area is closed by increased compression. On the other hand, the nerve root tissue has already degenerated under the compression and the numerous macrophages releasing various chemical mediators, aggravating radicular symptoms that appear in the area of Wallerian degeneration. Prostaglandin E1 (PGE1) is a potent vasodilator as well as an inhibitor of platelet aggregation and has therefore attracted interest as a therapeutic drug for lumbar canal stenosis. However, investigations in the clinical setting have shown that PGE1 is effective in some patients but not in others, although the reason for this is unclear.

  19. Mild (not severe) disc degeneration is implicated in the progression of bilateral L5 spondylolysis to spondylolisthesis.

    PubMed

    Ramakrishna, Vivek A S; Chamoli, Uphar; Viglione, Luke L; Tsafnat, Naomi; Diwan, Ashish D

    2018-04-02

    Spondylolytic (or lytic) spondylolisthesis is often associated with disc degeneration at the index-level; however, it is not clear if disc degeneration is the cause or the consequence of lytic spondylolisthesis. The main objective of this computed tomography based finite element modelling study was to examine the role of different grades of disc degeneration in the progression of a bilateral L5-lytic defect to spondylolisthesis. High-resolution computed tomography data of the lumbosacral spine from an anonymised healthy male subject (26 years old) were segmented to build a 3D-computational model of an INTACT L1-S1 spine. The INTACT model was manipulated to generate four more models representing a bilateral L5-lytic defect and the following states of the L5-S1 disc: nil degeneration (NOR LYTIC), mild degeneration (M-DEG LYTIC), mild degeneration with 50% disc height collapse (M-DEG-COL LYTIC), and severe degeneration with 50% disc height collapse(S-COL LYTIC). The models were imported into a finite element modelling software for pre-processing, running nonlinear-static solves, and post-processing of the results. Compared with the baseline INTACT model, M-DEG LYTIC model experienced the greatest increase in kinematics (Fx range of motion: 73% ↑, Fx intervertebral translation: 53%↑), shear stresses in the annulus (Fx anteroposterior: 163%↑, Fx posteroanterior: 31%↑), and strain in the iliolumbar ligament (Fx: 90%↑). The S-COL LYTIC model experienced a decrease in mobility (Fx range of motion: 48%↓, Fx intervertebral translation: 69%↓) and an increase in normal stresses in the annulus (Fx Tensile: 170%↑; Fx Compressive: 397%↑). No significant difference in results was noted between M-DEG-COL LYTIC and S-COL LYTIC models. In the presence of a bilateral L5 spondylolytic defect, a mildly degenerate index-level disc experienced greater intervertebral motions and shear stresses compared with a severely degenerate index-level disc in flexion and extension

  20. Subacute combined degeneration of the cord due to folate deficiency: response to methyl folate treatment.

    PubMed Central

    Lever, E G; Elwes, R D; Williams, A; Reynolds, E H

    1986-01-01

    Subacute combined degeneration of the cord is a rare complication of folate deficiency. Disturbance of methylation reactions in nervous tissue probably underlie subacute combined degeneration of the cord arising from folate as well as vitamin B12 deficiency. Methyl tetrahydrofolate is the form in which folic acid is transported into the CNS. Therefore methyl tetrahydrofolate treatment of the neurological and psychiatric manifestations of folate deficiency would seem to be theoretically advantageous. A case of subacute combined degeneration of the cord due to dietary folate deficiency and associated with an organic brain syndrome is reported. There was striking haematological, neurological and psychiatric response to methyl folate treatment. PMID:3783183

  1. Boosting NAD to spare hearing.

    PubMed

    Brenner, Charles

    2014-12-02

    Ex vivo experiments have strangely shown that inhibition or stimulation of NAD metabolism can be neuroprotective. In this issue of Cell Metabolism, Brown et al. (2014) demonstrate that cochlear NAD is diminished by deafening noise but protected by nicotinamide riboside or WldS mutation. Hearing protection by nicotinamide riboside depends on Sirt3. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Estrogen signalling in the pathogenesis of age-related macular degeneration.

    PubMed

    Kaarniranta, Kai; Machalińska, Anna; Veréb, Zoltán; Salminen, Antero; Petrovski, Goran; Kauppinen, Anu

    2015-02-01

    Age-related macular degeneration (AMD) is a multifactorial eye disease that is associated with aging, family history, smoking, obesity, cataract surgery, arteriosclerosis, hypertension, hypercholesterolemia and unhealthy diet. Gender has commonly been classified as a weak or inconsistent risk factor for AMD. This disease is characterized by degeneration of retinal pigment epithelial (RPE) cells, Bruch's membrane, and choriocapillaris, which secondarily lead to damage and death of photoreceptor cells and central visual loss. Pathogenesis of AMD involves constant oxidative stress, chronic inflammation, and increased accumulation of lipofuscin and drusen. Estrogen has both anti-oxidative and anti-inflammatory capacity and it regulates signaling pathways that are involved in the pathogenesis of AMD. In this review, we discuss potential cellular signaling targets of estrogen in retinal cells and AMD pathology.

  3. Arbitrary amplitude nucleus-acoustic solitons in multi-ion quantum plasmas with relativistically degenerate electrons

    NASA Astrophysics Data System (ADS)

    Sultana, S.; Schlickeiser, R.

    2018-02-01

    A three component degenerate relativistic quantum plasma (consisting of relativistically degenerate electrons, nondegenerate inertial light nuclei, and stationary heavy nuclei) is considered to model the linear wave and also the electrostatic solitary waves in the light nuclei-scale length. A well-known normal mode analysis is employed to investigate the linear wave properties. A mechanical-motion analog (Sagdeev-type) pseudo-potential approach, which reveals the existence of large amplitude solitary excitations, is adopted to study the nonlinear wave properties. Only the positive potential solitary excitations are found to exist in the plasma medium under consideration. The basic properties of the arbitrary amplitude electrostatic acoustic modes in the light nuclei-scale length and their existence domain in terms of soliton speed (Mach number) are examined. The modifications of solitary wave characteristics and their existence domain with the variation of different key plasma configuration parameters (e.g., electrons degeneracy parameter, inertial light nuclei number density, and degenerate electron number density) are also analyzed. Our results, which may be helpful to explain the basic features of the nonlinear wave propagation in multi-component degenerate quantum plasmas, in connection with astrophysical compact objects (e.g., white dwarfs) are briefly discussed.

  4. Immunology of age-related macular degeneration

    PubMed Central

    Ambati, Jayakrishna; Atkinson, John P.; Gelfand, Bradley D.

    2014-01-01

    Age-related macular degeneration (AMD) is a leading cause of blindness in aged individuals. Recent advances have highlighted the essential role of immune processes in the development, progression and treatment of AMD. In this Review we discuss recent discoveries related to the immunological aspects of AMD pathogenesis. We outline the diverse immune cell types, inflammatory activators and pathways that are involved. Finally, we discuss the future of inflammation-directed therapeutics to treat AMD in the growing aged population. PMID:23702979

  5. Qualitative grading of disc degeneration by magnetic resonance in the lumbar and cervical spine: lack of correlation with histology in surgical cases.

    PubMed

    Davies, B M; Atkinson, R A; Ludwinski, F; Freemont, A J; Hoyland, J A; Gnanalingham, K K

    2016-08-01

    Clinically, magnetic resonance (MR) imaging is the most effective non-invasive tool for assessing IVD degeneration. Histological examination of the IVD provides a more detailed assessment of the pathological changes at a tissue level. However, very few reports have studied the relationship between these techniques. Identifying a relationship may allow more detailed staging of IVD degeneration, of importance in targeting future regenerative therapies. To investigate the relationship between MR and histological grading of IVD degeneration in the cervical and lumbar spine in patients undergoing discectomy. Lumbar (N = 99) and cervical (N = 106) IVD samples were obtained from adult patients undergoing discectomy surgery for symptomatic IVD herniation and graded to ascertain a histological grade of degeneration. The pre-operative MR images from these patients were graded for the degree of IVD (MR grade) and vertebral end-plate degeneration (Modic Changes, MC). The relationship between histological and MR grades of degeneration were studied. In lumbar and cervical IVD the majority of samples (93%) exhibited moderate levels of degeneration (ie MR grades 3-4) on pre-operative MR scans. Histologically, most specimens displayed moderate to severe grades of degeneration in lumbar (99%) and cervical spine (93%). MR grade was weakly correlated with patient age in lumbar and cervical study groups. MR and histological grades of IVD degeneration did not correlate in lumbar or cervical study groups. MC were more common in the lumbar than cervical spine (e.g. 39 versus 20% grade 2 changes; p < 0.05), but failed to correlate with MR or histological grades for degeneration. In this surgical series, the resected IVD tissue displayed moderate to severe degeneration, but there is no correlation between MR and histological grades using a qualitative classification system. There remains a need for a quantitative, non-invasive, pre-clinical measure of IVD degeneration that

  6. Cervical Lordosis Actually Increases With Aging and Progressive Degeneration in Spinal Deformity Patients.

    PubMed

    Kim, Han Jo; Lenke, Lawrence G; Oshima, Yasushi; Chuntarapas, Tapanut; Mesfin, Addisu; Hershman, Stuart; Fogelson, Jeremy L; Riew, K Daniel

    2014-09-01

    Retrospective. The authors hypothesized that cervical lordosis (CL) would decrease with aging and increasing degeneration. It is theorized that with age and degeneration, the cervical spine loses lordosis and becomes progressively more kyphotic; however, no studies support these conclusions in patients with various spinal deformities. The authors performed a radiographic analysis of asymptomatic adults (referring to their cervical spine) of varying ages, with differing forms of spinal deformity to the thoracic/lumbar spine to see how cervical lordosis changes with increasing age. A total of 104 total spine EOS X-rays of adult (aged >18 years) spinal deformity patients without documented neck pain, prior neck surgery, or cervical deformity were reviewed. The researchers only reviewed EOS X-rays because they allow complete visualization from occiput to feet. Cervical lordosis, standard Cobb measurements, sagittal balance parameters, and cervical degeneration were quantified radiographically by the method previously described by Gore et al. Statistical analysis was performed with 1-way analysis of variance to compare significant differences between groups aged <40, 40-60 and >60 years as well as changes in sagittal balance. A p-value < .05 was considered significant. Average CL actually increased with increasing age (10.3 ± 14.7, 15.4 ± 15.1, and 23.3 ± 1.6.7 for age < 40, 40-60, and > 60 years, respectively; p < .05). Average cervical degeneration score increased at all disc space levels from C2 to C7 across age groups (0.7 ± 1.2, 9.9 ± 69, and 16.3 ± 8.9 for age <40, 40-60, and >60 years, respectively; p < .01), with the highest degeneration at the C5-6 and C6-7 disc spaces (3.7 ± 3.3 and 3.2 ± 2.9, respectively; p < .01). This increase did not correlate with the increase in CL seen with aging (r = 0.02; p = .84). Cervical lordosis increased with aging in adult spinal deformity patients. There was no relationship between cervical degeneration and lordosis

  7. Response solutions and quasi-periodic degenerate bifurcations for quasi-periodically forced systems

    NASA Astrophysics Data System (ADS)

    Si, Wen; Si, Jianguo

    2018-06-01

    This paper includes two parts. In the first part, we first focus on quasi-periodic time dependent perturbations of one-dimensional quasi-periodically forced systems with degenerate equilibrium. We study the system in two cases, for one of which system admits a response solution under a non-resonant condition on the frequency vector weaker than Brjuno–Rüssmann’s and for another of which system also admits a response solution without any non-resonant conditions. Next, we investigate the existence of response solutions of a quasi-periodic perturbed system with degenerate (including completely degenerate) equilibrium under Brjuno–Rüssmann’s non-resonant condition by using the Herman method. In the second part, we consider, firstly, the quasi-periodic perturbation of a universal unfolding of one-dimensional degenerate vector field . Secondly, we consider the perturbation of a universal unfolding of normal two-dimensional Hamiltonian system with completely degenerate equilibrium. With KAM theory and singularity theory, we show that these two classes of universal unfolding can persist on large Cantor sets under Brjuno–Rüssmann’s non-resonant condition, which implies all the invariant tori in the integrable part and all the bifurcation scenario can survive on large Cantor sets. The result for Hamiltonian system can apply directly to the response context for quasi-periodically forced systems. Our results in this paper can be regarded as an improvement with respect to several results in various literature (Broer et al 2005 Nonlinearity 18 1735–69 Broer et al 2006 J. Differ. Equ. 222 233–62 Wagener 2005 J. Differ. Equ. 216 216–81 Xu 2010 J. Differ. Equ. 250 551–71 Xu and Jiang 2010 Ergod. Theor. Dynam. Syst. 31 599–611 Lu and Xu 2014 Nonlinear Differ. Equ. Appl. 21 361–70). This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 11171185, 11571201).

  8. Early markers of retinal degeneration in rd/rd mice.

    PubMed

    Acosta, Monica L; Fletcher, Erica L; Azizoglu, Serap; Foster, Lisa E; Farber, Debora B; Kalloniatis, Michael

    2005-09-06

    In the rd/rd mouse, the cell death of rod photoreceptors has been correlated to abnormal levels of the cyclic nucleotide cGMP within photoreceptors. Given that cGMP is required for opening of the cationic channels, there is the possibility that a high cGMP concentration would maintain these channels open, at a high energy cost for the retina. We investigated whether cation channels were maintained in an open state in the rd/rd mouse retina by determining the labeling pattern of an organic cationic probe (agmatine, AGB) which selectively enters cells through open cationic channels. The metabolic activity of the rd/rd mice was measured by assaying lactate dehydrogenase (LDH) activity in several tissues and Na+/K+ ATPase activity was measured as a function of development and degeneration of the retina. AGB neuronal labeling showed a systematic increase consistent with the known neuronal functional maturation in the normal retina. There was a significant higher AGB labeling of photoreceptors in the rd/rd mouse retina from P6 supporting the possibility of open cationic channels from an early age. There were no changes in the LDH activity of tissues that contain PDE6 or that have a similar LDH distribution as the retina. However, LDH activity was significantly higher in the rd/rd mouse retina than in those of control mice from birth to P6, and it dramatically decreased from P9 as the photoreceptors degenerated. The predominant LDH isoenzyme changes and loss after degeneration appeared to be LDH5. ATPase activity increased with age, reaching adult levels by P16. Unlike LDH activity, there was no significant difference in Na+/K+ ATPase activity between control and rd/rd mice at any age examined. We conclude that AGB is a useful marker of photoreceptors destined to degenerate. We discard the possibility of a generalized metabolic effect in the rd/rd mice. However, the elevated LDH activity present before photoreceptor differentiation indicated altered retinal metabolic

  9. Computational fluid dynamics simulation of transcatheter aortic valve degeneration.

    PubMed

    Dwyer, Harry A; Matthews, Peter B; Azadani, Ali; Jaussaud, Nicolas; Ge, Liang; Guy, T Sloane; Tseng, Elaine E

    2009-08-01

    Studied under clinical trials, transcatheter aortic valves (TAV) have demonstrated good short-term feasibility and results in high-risk surgical patients with severe aortic stenosis. However, their long-term safety and durability are unknown. The objective of this study is to evaluate hemodynamic changes within TAV created by bioprosthetic leaflet degeneration. Computational fluid dynamics (CFD) simulations were performed to evaluate the hemodynamics through TAV sclerosis (35% orifice reduction) and stenosis (78% orifice reduction). A three-dimensional surface mesh of the TAV within the aortic root was generated for each simulation. Leaflets were contained within an open, cylindrical body without attachment to the sinus commissures representing the stent. A continuous surface between the annulus and TAV excluded the geometry of the native calcified leaflets and prevented paravalvular leak. Unsteady control volume analysis throughout systole was used to calculate leaflet shear stress and total force on the TAV. Sclerosis increased total force on the TAV by 63% (0.602-0.98 N). Advancement of degeneration from sclerosis to stenosis was accompanied by an 86% increase in total force (1.82 N) but only a 32% increase in peak wall shear stress on the leaflets. Of the total force exerted on the TAV, 99% was in the direction of axial flow. Shear stresses on the TAV were greatest during peak systolic flow with stress concentrations on the tips of the leaflets. In the normal TAV, the aortic root geometry and physiologic flow dominate location and magnitude of shear stress. Following leaflet degeneration, the specific geometry of the stenosis dictates the profile of axial velocity leaving the TAV and shear stress on the leaflets. A dramatic increase in peak leaflet shear stress was observed (115 Pa stenosis vs. 87 Pa sclerosis and 29 Pa normal). CFD simulations in this study provide the first of its kind data quantifying hemodynamics within stenosed TAV. Stenosis leads to

  10. Indices of Paraspinal Muscles Degeneration: Reliability and Association With Facet Joint Osteoarthritis: Feasibility Study.

    PubMed

    Kalichman, Leonid; Klindukhov, Alexander; Li, Ling; Linov, Lina

    2016-11-01

    A reliability and cross-sectional observational study. To introduce a scoring system for visible fat infiltration in paraspinal muscles; to evaluate intertester and intratester reliability of this system and its relationship with indices of muscle density; to evaluate the association between indices of paraspinal muscle degeneration and facet joint osteoarthritis. Current evidence suggests that the paraspinal muscles degeneration is associated with low back pain, facet joint osteoarthritis, spondylolisthesis, and degenerative disc disease. However, the evaluation of paraspinal muscles on computed tomography is not radiological routine, probably because of absence of simple and reliable indices of paraspinal degeneration. One hundred fifty consecutive computed tomography scans of the lower back (N=75) or abdomen (N=75) were evaluated. Mean radiographic density (in Hounsfield units) and SD of the density of multifidus and erector spinae were evaluated at the L4-L5 spinal level. A new index of muscle degeneration, radiographic density ratio=muscle density/SD of density, was calculated. To evaluate the visible fat infiltration in paraspinal muscles, we proposed a 3-graded scoring system. The prevalence of facet joint osteoarthritis was also evaluated. Intraclass correlation and κ statistics were used to evaluate inter-rater and intra-rater reliability. Logistic regression examined the association between paraspinal muscle indices and facet joint osteoarthritis. Intra-rater reliability for fat infiltration score (κ) ranged between 0.87 and 0.92; inter-rater reliability between 0.70 and 0.81. Intra-rater reliability (intraclass correlation) for mean density of paraspinal muscles ranged between 0.96 and 0.99, inter-rater reliability between 0.95 and 0.99; SD intra-rater reliability ranged between 0.82 and 0.91, inter-rater reliability between 0.80 and 0.89. Significant associations (P<0.01) were found between facet joint osteoarthritis, fat infiltration score, and

  11. C1,1 regularity for degenerate elliptic obstacle problems

    NASA Astrophysics Data System (ADS)

    Daskalopoulos, Panagiota; Feehan, Paul M. N.

    2016-03-01

    The Heston stochastic volatility process is a degenerate diffusion process where the degeneracy in the diffusion coefficient is proportional to the square root of the distance to the boundary of the half-plane. The generator of this process with killing, called the elliptic Heston operator, is a second-order, degenerate-elliptic partial differential operator, where the degeneracy in the operator symbol is proportional to the distance to the boundary of the half-plane. In mathematical finance, solutions to the obstacle problem for the elliptic Heston operator correspond to value functions for perpetual American-style options on the underlying asset. With the aid of weighted Sobolev spaces and weighted Hölder spaces, we establish the optimal C 1 , 1 regularity (up to the boundary of the half-plane) for solutions to obstacle problems for the elliptic Heston operator when the obstacle functions are sufficiently smooth.

  12. Degenerate stars and gravitational collapse in AdS/CFT

    NASA Astrophysics Data System (ADS)

    Arsiwalla, Xerxes; de Boer, Jan; Papadodimas, Kyriakos; Verlinde, Erik

    2011-01-01

    We construct composite CFT operators from a large number of fermionic primary fields corresponding to states that are holographically dual to a zero temperature Fermi gas in AdS space. We identify a large N regime in which the fermions behave as free particles. In the hydrodynamic limit the Fermi gas forms a degenerate star with a radius determined by the Fermi level, and a mass and angular momentum that exactly matches the boundary calculations. Next we consider an interacting regime, and calculate the effect of the gravitational back-reaction on the radius and the mass of the star using the Tolman-Oppenheimer-Volkoff equations. Ignoring other interactions, we determine the "Chandrasekhar limit" beyond which the degenerate star (presumably) undergoes gravitational collapse towards a black hole. This is interpreted on the boundary as a high density phase transition from a cold baryonic phase to a hot deconfined phase.

  13. Characterizing depth-dependent refractive index of articular cartilage subjected to mechanical wear or enzymic degeneration

    NASA Astrophysics Data System (ADS)

    Wang, Kuyu; Wu, Jianping; Day, Robert; Kirk, Thomas Brett; Hu, Xiaozhi

    2016-09-01

    Utilizing a laser scanning confocal microscope system, the refractive indices of articular cartilage (AC) with mechanical or biochemical degenerations were characterized to investigate whether potential correlations exist between refractive index (RI) and cartilage degeneration. The cartilage samples collected from the medial femoral condyles of kangaroo knees were mechanically degenerated under different loading patterns or digested in trypsin solution with different concentrations. The sequences of RI were then measured from cartilage surface to deep region and the fluctuations of RI were quantified considering combined effects of fluctuating frequency and amplitude. The compositional and microstructural alterations of cartilage samples were assessed with histological methods. Along with the loss of proteoglycans, the average RI of cartilage increased and the local fluctuation of RI became stronger. Short-term high-speed test induced little influence to both the depth fluctuation and overall level of RI. Long-term low-speed test increased the fluctuation of RI but the average RI was barely changed. The results substantially demonstrate that RI of AC varies with both compositional and structural alterations and is potentially an indicator for the degeneration of AC.

  14. Finite-time blow-up for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type

    NASA Astrophysics Data System (ADS)

    Hashira, Takahiro; Ishida, Sachiko; Yokota, Tomomi

    2018-05-01

    This paper deals with the quasilinear degenerate Keller-Segel systems of parabolic-parabolic type in a ball of RN (N ≥ 2). In the case of non-degenerate diffusion, Cieślak-Stinner [3,4] proved that if q > m + 2/N, where m denotes the intensity of diffusion and q denotes the nonlinearity, then there exist initial data such that the corresponding solution blows up in finite time. As to the case of degenerate diffusion, it is known that a solution blows up if q > m + 2/N (see Ishida-Yokota [13]); however, whether the blow-up time is finite or infinite has been unknown. This paper gives an answer to the unsolved problem. Indeed, the finite-time blow-up of energy solutions is established when q > m + 2/N.

  15. Locus coeruleus degeneration exacerbates olfactory deficits in APP/PS1 transgenic mice.

    PubMed

    Rey, Nolwen L; Jardanhazi-Kurutz, Daniel; Terwel, Dick; Kummer, Markus P; Jourdan, Francois; Didier, Anne; Heneka, Michael T

    2012-02-01

    Neuronal loss in the locus coeruleus (LC) is 1 of the early pathological events in Alzheimer's disease (AD). Projections of noradrenergic neurons of the LC innervate the olfactory bulb (OB). Because olfactory deficits have been reported in early AD, we investigated the effect of induced LC degeneration on olfactory memory and discrimination in an AD mouse model. LC degeneration was induced by treating APP/PS1 mice with N-(2-chloroethyl)-N-ethyl-bromo-benzylamine (DSP4) repeatedly between 3 and 12 months of age. Short term odor retention, ability for spontaneous habituation to an odor, and spontaneous odor discrimination were assessed by behavioral tests. DSP4 treatment in APP/PS1 mice resulted in an exacerbation of short term olfactory memory deficits and more discrete weakening of olfactory discrimination abilities, suggesting that LC degeneration contributes to olfactory deficits observed in AD. Importantly, DSP4 treatment also increased amyloid β (Aβ) deposition in the olfactory bulb of APP/PS1 mice, which correlated with olfactory memory, not with discrimination deficits. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. HIGH-DOSE HIGH-FREQUENCY AFLIBERCEPT FOR RECALCITRANT NEOVASCULAR AGE-RELATED MACULAR DEGENERATION.

    PubMed

    You, Qi Sheng; Gaber, Raouf; Meshi, Amit; Ramkumar, Hema L; Alam, Mostafa; Muftuoglu, Ilkay Kilic; Freeman, William R

    2018-06-01

    To determine the efficacy of monthly (0.1 mL/4 mg) aflibercept for refractory neovascular age-related macular degeneration (wet age-related macular degeneration). This was a retrospective interventional case series in which patients with wet age-related macular degeneration were treated with stepwise dose escalation. Nonvitrectomized patients resistant to monthly (Q4W) ranibizumab/bevacizumab were switched to 2 mg aflibercept every 8 weeks. With resistance, they were escalated to Q4W 2 mg aflibercept, then Q4W 4 mg (high dose high frequency, 4Q4W) aflibercept. Resistance was defined as ≥2 recurrences after being dry following ≥3 injections or persistent exudation on treatment of ≥5 injections. Thirty-three eyes of 28 patients were treated with 4Q4W aflibercept and followed for a mean of 16 months. A dry retina (no intraretinal or subretinal fluid) was achieved after initiating 4Q4W aflibercept treatment at a mean of 3.8 months. Central foveal thickness, maximum foveal thickness, intraretinal fluid, subretinal fluid, and retinal pigment detachment height decreased significantly at 1 month after initiating the 4Q4W aflibercept, and the morphologic therapeutic effect was sustained until the last visit. Forty-five percent of eyes had one or more lines of vision improvement. New geographic atrophy developed in 9% of eyes during follow-up. No ocular or systemic adverse events occurred after initiating 4Q4W aflibercept. Intravitreal high-dose high-frequency aflibercept is an effective treatment for patients with refractory wet age-related macular degeneration.

  17. Combining comparative proteomics and molecular genetics uncovers regulators of synaptic and axonal stability and degeneration in vivo.

    PubMed

    Wishart, Thomas M; Rooney, Timothy M; Lamont, Douglas J; Wright, Ann K; Morton, A Jennifer; Jackson, Mandy; Freeman, Marc R; Gillingwater, Thomas H

    2012-01-01

    Degeneration of synaptic and axonal compartments of neurons is an early event contributing to the pathogenesis of many neurodegenerative diseases, but the underlying molecular mechanisms remain unclear. Here, we demonstrate the effectiveness of a novel "top-down" approach for identifying proteins and functional pathways regulating neurodegeneration in distal compartments of neurons. A series of comparative quantitative proteomic screens on synapse-enriched fractions isolated from the mouse brain following injury identified dynamic perturbations occurring within the proteome during both initiation and onset phases of degeneration. In silico analyses highlighted significant clustering of proteins contributing to functional pathways regulating synaptic transmission and neurite development. Molecular markers of degeneration were conserved in injury and disease, with comparable responses observed in synapse-enriched fractions isolated from mouse models of Huntington's disease (HD) and spinocerebellar ataxia type 5. An initial screen targeting thirteen degeneration-associated proteins using mutant Drosophila lines revealed six potential regulators of synaptic and axonal degeneration in vivo. Mutations in CALB2, ROCK2, DNAJC5/CSP, and HIBCH partially delayed injury-induced neurodegeneration. Conversely, mutations in DNAJC6 and ALDHA1 led to spontaneous degeneration of distal axons and synapses. A more detailed genetic analysis of DNAJC5/CSP mutants confirmed that loss of DNAJC5/CSP was neuroprotective, robustly delaying degeneration in axonal and synaptic compartments. Our study has identified conserved molecular responses occurring within synapse-enriched fractions of the mouse brain during the early stages of neurodegeneration, focused on functional networks modulating synaptic transmission and incorporating molecular chaperones, cytoskeletal modifiers, and calcium-binding proteins. We propose that the proteins and functional pathways identified in the current study

  18. Study of degenerate four-quark states with SU(2) lattice Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Green, A. M.; Lukkarinen, J.; Pennanen, P.; Michael, C.

    1996-01-01

    The energies of four-quark states are calculated for geometries in which the quarks are situated on the corners of a series of tetrahedra and also for geometries that correspond to gradually distorting these tetrahedra into a plane. The interest in tetrahedra arises because they are composed of three degenerate partitions of the four quarks into two two-quark color singlets. This is an extension of earlier work showing that geometries with two degenerate partitions (e.g., squares) experience a large binding energy. It is now found that even larger binding energies do not result, but that for the tetrahedra the ground and first excited states become degenerate in energy. The calculation is carried out using SU(2) for static quarks in the quenched approximation with β=2.4 on a 163×32 lattice. The results are analyzed using the correlation matrix between different Euclidean times and the implications of these results are discussed for a model based on two-quark potentials.

  19. On degenerate coupled transport processes in porous media with memory phenomena

    NASA Astrophysics Data System (ADS)

    Beneš, Michal; Pažanin, Igor

    2018-06-01

    In this paper we prove the existence of weak solutions to degenerate parabolic systems arising from the fully coupled moisture movement, solute transport of dissolved species and heat transfer through porous materials. Physically relevant mixed Dirichlet-Neumann boundary conditions and initial conditions are considered. Existence of a global weak solution of the problem is proved by means of semidiscretization in time, proving necessary uniform estimates and by passing to the limit from discrete approximations. Degeneration occurs in the nonlinear transport coefficients which are not assumed to be bounded below and above by positive constants. Degeneracies in transport coefficients are overcome by proving suitable a-priori $L^{\\infty}$-estimates based on De Giorgi and Moser iteration technique.

  20. Hyaline cartilage degenerates after autologous osteochondral transplantation.

    PubMed

    Tibesku, C O; Szuwart, T; Kleffner, T O; Schlegel, P M; Jahn, U R; Van Aken, H; Fuchs, S

    2004-11-01

    Autologous osteochondral grafting is a well-established clinical procedure to treat focal cartilage defects in patients, although basic research on this topic remains sparse. The aim of the current study was to evaluate (1) histological changes of transplanted hyaline cartilage of osteochondral grafts and (2) the tissue that connects the transplanted cartilage with the adjacent cartilage in a sheep model. Both knee joints of four sheep were opened surgically and osteochondral grafts were harvested and simultaneously transplanted to the contralateral femoral condyle. The animals were sacrificed after three months and the received knee joints were evaluated histologically. Histological evaluation showed a complete ingrowth of the osseous part of the osteochondral grafts. A healing or ingrowth at the level of the cartilage could not be observed. Histological evaluation of the transplanted grafts according to Mankin revealed significantly more and more severe signs of degeneration than the adjacent cartilage, such as cloning of chondrocytes and irregularities of the articular surface. We found no connecting tissue between the transplanted and the adjacent cartilage and histological signs of degeneration of the transplanted hyaline cartilage. In the light of these findings, long-term results of autologous osteochondral grafts in human beings have to be followed critically.

  1. Age-related memory decline is associated with vascular and microglial degeneration in aged rats.

    PubMed

    Zhang, Rong; Kadar, Tamar; Sirimanne, Ernest; MacGibbon, Alastair; Guan, Jian

    2012-12-01

    The hippocampus processes memory is an early target of aging-related biological and structural lesions, leading to memory decline. With absent neurodegeneration in the hippocampus, which identified in rodent model of normal aging the pathology underlying age-related memory impairment is not complete. The effective glial-vascular networks are the key for maintaining neuronal functions. The changes of glial cells and cerebral capillaries with age may contribute to memory decline. Thus we examined age associated changes in neurons, glial phenotypes and microvasculature in the hippocampus of aged rats with memory decline. Young adult (6 months) and aged (35 months) male rats (Fisher/Norway-Brown) were used. To evaluate memory, four days of acquisition phase of Morris water maze tasks were carried out in both age groups and followed by a probe trial 2 h after the acquisition. The brains were then collected for analysis using immunochemistry. The aged rats showed a delayed latency (p<0.001) and longer swimming path (p<0.001) to locate a hidden platform. They also spent less time in and made delayed and fewer entries into the correct quadrant during the probe trial. Without seen neuronal degeneration, the aged rats with memory impairments have displayed dopamine depletion, profound vascular and microglial degeneration with reduced vascular endothelial growth factor and elevated GFAP expression in the hippocampus. The data indicate the memory decline with age is associated with neuronal dysfunction, possibly due to impaired glial-vascular-neuronal networks, but not neuronal degeneration. Glial and vascular degeneration found in aged rats may represent early event of aging pathology prior to neuronal degeneration. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Speech and Language Findings Associated with Paraneoplastic Cerebellar Degeneration

    ERIC Educational Resources Information Center

    Paslawski, Teresa; Duffy, Joseph R.; Vernino, Steven

    2005-01-01

    Paraneoplastic cerebellar degeneration (PCD) is an autoimmune disease that can be associated with cancer of the breast, lung, and ovary. The clinical presentation of PCD commonly includes ataxia, visual disturbances, and dysarthria. The speech disturbances associated with PCD have not been well characterized, despite general acceptance that…

  3. ANT: Software for Generating and Evaluating Degenerate Codons for Natural and Expanded Genetic Codes.

    PubMed

    Engqvist, Martin K M; Nielsen, Jens

    2015-08-21

    The Ambiguous Nucleotide Tool (ANT) is a desktop application that generates and evaluates degenerate codons. Degenerate codons are used to represent DNA positions that have multiple possible nucleotide alternatives. This is useful for protein engineering and directed evolution, where primers specified with degenerate codons are used as a basis for generating libraries of protein sequences. ANT is intuitive and can be used in a graphical user interface or by interacting with the code through a defined application programming interface. ANT comes with full support for nonstandard, user-defined, or expanded genetic codes (translation tables), which is important because synthetic biology is being applied to an ever widening range of natural and engineered organisms. The Python source code for ANT is freely distributed so that it may be used without restriction, modified, and incorporated in other software or custom data pipelines.

  4. The role of orthodontics in the regeneration of the degenerated dentition.

    PubMed

    Melsen, B

    2016-03-01

    The demand for regeneration of a degenerated dentition has been increasing as a result of the development of societies, where the life expectancy is increasing and fighting age-related changes is in focus. Whereas removable dentures were acceptable and considered a norm earlier, patients do, to an increasing degree,demand fixed prosthetics; consequently, the development of implants has had an important impact. The balance in the chewing organ will change with time, due to age-related changes within the bone and the loss of teeth due to caries or periodontal disease, and malocclusions may develop or aggravate. The re-establishment of an aesthetical and functional satisfactory solution cannot be reached by replacing teeth by fixed prosthodontics and implants. The aim of this update was threefold: firstly, to demonstrate that age-related changes, often unnoticed by both the patient and the general dentist, can lead to degeneration of the dentition; secondly, to explain how an interdisciplinary approach can make regeneration of even severe degeneration possible; and finally, to show the importance of the general dentist in the maintenance of the obtained results. Treatments should not aim for short-term results but focus on maintainable results. © 2015 John Wiley & Sons Ltd.

  5. Role of the vitreous in age-related macular degeneration.

    PubMed

    Ondeş, F; Yilmaz, G; Acar, M A; Unlü, N; Kocaoğlan, H; Arsan, A K

    2000-01-01

    To investigate the relationship between posterior vitreous detachment (PVD) and age-related macular degeneration (AMD). The condition of the vitreous was examined by slit-lamp funduscopy and ultrasonography in 93 eyes of 50 patients with AMD (exudative or dry) and 100 eyes of 50 controls. There was complete PVD in 31 of the 93 eyes (33.3%) of 50 patients with AMD and the posterior vitreous was attached in 62 of these eyes (66.6%). In the control group, in 50 eyes (50%) of 50 subjects there was posterior vitreous detachment. The prevalence of PVD in eyes with macular degeneration was significantly lower (P < .05). There was no statistically significant difference between the exudative and the nonexudative groups in respect to PVD. PVD may have a protective role against the development of AMD. Chronic vitreomacular traction and/or continuous exposure to free radicals and cytokines may possibly be one of the causes of AMD in eyes with attached vitreous.

  6. Drosophila melanogaster White Mutant w 1118 Undergo Retinal Degeneration.

    PubMed

    Ferreiro, María José; Pérez, Coralia; Marchesano, Mariana; Ruiz, Santiago; Caputi, Angel; Aguilera, Pedro; Barrio, Rosa; Cantera, Rafael

    2017-01-01

    Key scientific discoveries have resulted from genetic studies of Drosophila melanogaster , using a multitude of transgenic fly strains, the majority of which are constructed in a genetic background containing mutations in the white gene. Here we report that white mutant flies from w 1118 strain undergo retinal degeneration. We observed also that w 1118 mutants have progressive loss of climbing ability, shortened life span, as well as impaired resistance to various forms of stress. Retinal degeneration was abolished by transgenic expression of mini-white + in the white null background w 1118 . We conclude that beyond the classical eye-color phenotype, mutations in Drosophila white gene could impair several biological functions affecting parameters like mobility, life span and stress tolerance. Consequently, we suggest caution and attentiveness during the interpretation of old experiments employing white mutant flies and when planning new ones, especially within the research field of neurodegeneration and neuroprotection. We also encourage that the use of w 1118 strain as a wild-type control should be avoided.

  7. Accreting neutron stars, black holes, and degenerate dwarf stars.

    PubMed

    Pines, D

    1980-02-08

    During the past 8 years, extended temporal and broadband spectroscopic studies carried out by x-ray astronomical satellites have led to the identification of specific compact x-ray sources as accreting neutron stars, black holes, and degenerate dwarf stars in close binary systems. Such sources provide a unique opportunity to study matter under extreme conditions not accessible in the terrestrial laboratory. Quantitative theoretical models have been developed which demonstrate that detailed studies of these sources will lead to a greatly increased understanding of dense and superdense hadron matter, hadron superfluidity, high-temperature plasma in superstrong magnetic fields, and physical processes in strong gravitational fields. Through a combination of theory and observation such studies will make possible the determination of the mass, radius, magnetic field, and structure of neutron stars and degenerate dwarf stars and the identification of further candidate black holes, and will contribute appreciably to our understanding of the physics of accretion by compact astronomical objects.

  8. Arbitrary amplitude electrostatic wave propagation in a magnetized dense plasma containing helium ions and degenerate electrons

    NASA Astrophysics Data System (ADS)

    Mahmood, S.; Sadiq, Safeer; Haque, Q.; Ali, Munazza Z.

    2016-06-01

    The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found which depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.

  9. Expression Profiling Analysis Reveals Key MicroRNA-mRNA Interactions in Early Retinal Degeneration in Retinitis Pigmentosa.

    PubMed

    Anasagasti, Ander; Ezquerra-Inchausti, Maitane; Barandika, Olatz; Muñoz-Culla, Maider; Caffarel, María M; Otaegui, David; López de Munain, Adolfo; Ruiz-Ederra, Javier

    2018-05-01

    The aim of this study was to identify differentially expressed microRNAs (miRNAs) that might play an important role in the etiology of retinal degeneration in a genetic mouse model of retinitis pigmentosa (rd10 mice) at initial stages of the disease. miRNAs-mRNA interaction networks were generated for analysis of biological pathways involved in retinal degeneration. Of more than 1900 miRNAs analyzed, we selected 19 miRNAs on the basis of (1) a significant differential expression in rd10 retinas compared with control samples and (2) an inverse expression relationship with predicted mRNA targets involved in biological pathways relevant to retinal biology and/or degeneration. Seven of the selected miRNAs have been associated with retinal dystrophies, whereas, to our knowledge, nine have not been previously linked to any disease. This study contributes to our understanding of the etiology and progression of retinal degeneration.

  10. Evaluation of cartilage degeneration in a rat model of rotator cuff tear arthropathy

    PubMed Central

    Kramer, Erik J.; Bodendorfer, Blake M.; Laron, Dominique; Wong, Jason; Kim, Hubert T.; Liu, Xuhui; Feeley, Brian T.

    2013-01-01

    Introduction Rotator cuff tears are the most common injury seen by shoulder surgeons. Many late stage rotator cuff tear patients develop glenohumeral osteoarthritis as a result of torn cuff tendons, termed cuff tear arthropathy. However, the mechanisms of cuff tear arthropathy have not been fully established. It has been hypothesized that a combination of synovial and mechanical factors contribute equally to the development of cuff tear arthropathy. The goal of this study was to assess the utility of this model in investigating cuff-tear arthropathy. Methods We utilized a rat model which accurately reflects rotator cuff muscle degradation after massive rotator cuff tears through either infraspinatus and supraspinatus tenotomy or suprascapular nerve transection. Using a Modified-Mankin Scoring System (MMS), we found significant glenohumeral cartilage damage following both rotator cuff tenotomy and suprascapular nerve transection after only 12 weeks. Results Cartilage degeneration was similar between groups, and was present on both the humeral head and the glenoid. Denervation of the supraspinatus and infraspinatus muscles without opening the joint capsule caused cartilage degeneration similar to that found in the tendon transection group. Conclusions These results suggest that altered mechanical loading after rotator cuff tears is the primary factor in cartilage degeneration after rotator cuff tears. Clinically, understanding the process of cartilage degeneration after rotator cuff injury will help guide treatment decisions in the setting of rotator cuff tears. Level of evidence Basic Science Study, Animal Model PMID:23664745

  11. Patterns of lumbar disc degeneration are different in degenerative disc disease and disc prolapse magnetic resonance imaging analysis of 224 patients.

    PubMed

    Kanna, Rishi M; Shetty, Ajoy Prasad; Rajasekaran, S

    2014-02-01

    Existing research on lumbar disc degeneration has remained inconclusive regarding its etiology, pathogenesis, symptomatology, prevention, and management. Degenerative disc disease (DDD) and disc prolapse (DP) are common diseases affecting the lumbar discs. Although they manifest clinically differently, existing studies on disc degeneration have included patients with both these features, leading to wide variations in observations. The possible relationship or disaffect between DDD and DP is not fully evaluated. To analyze the patterns of lumbar disc degeneration in patients with chronic back pain and DDD and those with acute DP. Prospective, magnetic resonance imaging-based radiological study. Two groups of patients (aged 20-50 years) were prospectively studied. Group 1 included patients requiring a single level microdiscectomy for acute DP. Group 2 included patients with chronic low back pain and DDD. Discs were assessed by magnetic resonance imaging through Pfirmann grading, Schmorl nodes, Modic changes, and the total end-plate damage score for all the five lumbar discs. Group 1 (DP) had 91 patients and group 2 (DDD) had 133 patients. DP and DDD patients differed significantly in the number, extent, and severity of degeneration. DDD patients had a significantly higher number of degenerated discs than DP patients (p<.000). The incidence of multilevel and pan-lumbar degeneration was also significantly higher in DDD group. The pattern of degeneration also differed in both the groups. DDD patients had predominant upper lumbar involvement, whereas DP patients had mainly lower lumbar degeneration. Modic changes were more common in DP patients, especially at the prolapsed level. Modic changes were present in 37% of prolapsed levels compared with 9.9% of normal discs (p<.00). The total end-plate damage score had a positive correlation with disc degeneration in both the groups. Further the mean total end-plate damage score at prolapsed level was also significantly higher

  12. The consequences of neural degeneration regarding optimal cochlear implant position in scala tympani: a model approach.

    PubMed

    Briaire, Jeroen J; Frijns, Johan H M

    2006-04-01

    Cochlear implant research endeavors to optimize the spatial selectivity, threshold and dynamic range with the objective of improving the speech perception performance of the implant user. One of the ways to achieve some of these goals is by electrode design. New cochlear implant electrode designs strive to bring the electrode contacts into close proximity to the nerve fibers in the modiolus: this is done by placing the contacts on the medial side of the array and positioning the implant against the medial wall of scala tympani. The question remains whether this is the optimal position for a cochlea with intact neural fibers and, if so, whether it is also true for a cochlea with degenerated neural fibers. In this study a computational model of the implanted human cochlea is used to investigate the optimal position of the array with respect to threshold, dynamic range and spatial selectivity for a cochlea with intact nerve fibers and for degenerated nerve fibers. In addition, the model is used to evaluate the predictive value of eCAP measurements for obtaining peri-operative information on the neural status. The model predicts improved threshold, dynamic range and spatial selectivity for the peri-modiolar position at the basal end of the cochlea, with minimal influence of neural degeneration. At the apical end of the array (1.5 cochlear turns), the dynamic range and the spatial selectivity are limited due to the occurrence of cross-turn stimulation, with the exception of the condition without neural degeneration and with the electrode array along the lateral wall of scala tympani. The eCAP simulations indicate that a large P(0) peak occurs before the N(1)P(1) complex when the fibers are not degenerated. The absence of this peak might be used as an indicator for neural degeneration.

  13. Early Events in Retinal Degeneration Caused by Rhodopsin Mutation or Pigment Epithelium Malfunction: Differences and Similarities

    PubMed Central

    Di Pierdomenico, Johnny; García-Ayuso, Diego; Pinilla, Isabel; Cuenca, Nicolás; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta; Villegas-Pérez, María P.

    2017-01-01

    To study the course of photoreceptor cell death and macro and microglial reactivity in two rat models of retinal degeneration with different etiologies. Retinas from P23H-1 (rhodopsin mutation) and Royal College of Surgeon (RCS, pigment epithelium malfunction) rats and age-matched control animals (Sprague-Dawley and Pievald Viro Glaxo, respectively) were cross-sectioned at different postnatal ages (from P10 to P60) and rhodopsin, L/M- and S-opsin, ionized calcium-binding adapter molecule 1 (Iba1), glial fibrillary acid protein (GFAP), and proliferating cell nuclear antigen (PCNA) proteins were immunodetected. Photoreceptor nuclei rows and microglial cells in the different retinal layers were quantified. Photoreceptor degeneration starts earlier and progresses quicker in P23H-1 than in RCS rats. In both models, microglial cell activation occurs simultaneously with the initiation of photoreceptor death while GFAP over-expression starts later. As degeneration progresses, the numbers of microglial cells increase in the retina, but decreasing in the inner retina and increasing in the outer retina, more markedly in RCS rats. Interestingly, and in contrast with healthy animals, microglial cells reach the outer nuclei and outer segment layers. The higher number of microglial cells in dystrophic retinas cannot be fully accounted by intraretinal migration and PCNA immunodetection revealed microglial proliferation in both models but more importantly in RCS rats. The etiology of retinal degeneration determines the initiation and pattern of photoreceptor cell death and simultaneously there is microglial activation and migration, while the macroglial response is delayed. The actions of microglial cells in the degeneration cannot be explained only in the basis of photoreceptor death because they participate more actively in the RCS model. Thus, the retinal degeneration caused by pigment epithelium malfunction is more inflammatory and would probably respond better to interventions

  14. Inhibition of Cathepsin B Alleviates Secondary Degeneration in Ipsilateral Thalamus After Focal Cerebral Infarction in Adult Rats.

    PubMed

    Zuo, Xialin; Hou, Qinghua; Jin, Jizi; Zhan, Lixuan; Li, Xinyu; Sun, Weiwen; Lin, Kunqin; Xu, En

    2016-09-01

    Secondary degeneration in areas beyond ischemic foci can inhibit poststroke recovery. The cysteine protease Cathepsin B (CathB) regulates cell death and intracellular protein catabolism. To investigate the roles of CathB in the development of secondary degeneration in the ventroposterior nucleus (VPN) of the ipsilateral thalamus after focal cerebral infarction, infarct volumes, immunohistochemistry and immunofluorescence, and Western blotting analyses were conducted in a distal middle cerebral artery occlusion (dMCAO) stroke model in adult rats. We observed marked neuron loss and gliosis in the ipsilateral thalamus after dMCAO, and the expression of CathB and cleaved caspase-3 in the VPN was significantly upregulated; glial cells were the major source of CathB. Although it had no effect on infarct volume, delayed intracerebroventricular treatment with the membrane-permeable CathB inhibitor CA-074Me suppressed the expression of CathB and cleaved caspase-3 in ipsilateral VPN and accordingly alleviated the secondary degeneration. These data indicate that CathB mediates a novel mechanism of secondary degeneration in the VPN of the ipsilateral thalamus after focal cortical infarction and suggest that CathB might be a therapeutic target for the prevention of secondary degeneration in patients after stroke. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  15. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function

    PubMed Central

    Sharma, Aarti; Lyashchenko, Alexander K.; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z.; Shneider, Neil A.

    2016-01-01

    Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations. PMID:26842965

  16. Prophylactic laser in age-related macular degeneration: the past, the present and the future.

    PubMed

    Findlay, Quan; Jobling, Andrew I; Vessey, Kirstan A; Greferath, Ursula; Phipps, Joanna A; Guymer, Robyn H; Fletcher, Erica L

    2018-05-01

    The presence of drusen in the posterior eye is a hallmark feature of the early stages of age-related macular degeneration and their size is an indicator of risk of progression to vision-threatening forms of the disease. Since the initial observations that laser treatment can resolve drusen, there has been great interest in whether laser treatment can be used to reduce the progression of age-related macular degeneration. In this article, we review the development of lasers for the treatment of those with age-related macular degeneration. We provide an overview of the clinical trial results that demonstrated drusen resolution but that had mixed effects on progression of disease. In addition, we provide a summary of the recent developments in pulsed lasers that are designed to reduce the energy applied to the posterior eye to provide the therapeutic effects of conventional continuous wave lasers while reducing the secondary tissue effects.

  17. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function.

    PubMed

    Sharma, Aarti; Lyashchenko, Alexander K; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z; Shneider, Neil A

    2016-02-04

    Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations.

  18. Retinal Remodeling in the Tg P347L Rabbit, a Large-Eye Model of Retinal Degeneration

    PubMed Central

    Jones, Bryan William; Kondo, Mineo; Terasaki, Hiroko; Watt, Carl Brock; Rapp, Kevin; Anderson, James; Lin, Yanhua; Shaw, Marguerite Victoria; Yang, Jia-Hui; Marc, Robert Edward

    2013-01-01

    Retinitis pigmentosa (RP) is an inherited blinding disease characterized by progressive loss of retinal photo-receptors. There are numerous rodent models of retinal degeneration, but most are poor platforms for interventions that will translate into clinical practice. The rabbit possesses a number of desirable qualities for a model of retinal disease including a large eye and an existing and substantial knowledge base in retinal circuitry, anatomy, and ophthalmology. We have analyzed degeneration, remodeling, and reprogramming in a rabbit model of retinal degeneration, expressing a rhodopsin proline 347 to leucine transgene in a TgP347L rabbit as a powerful model to study the pathophysiology and treatment of retinal degeneration. We show that disease progression in the TgP347L rabbit closely tracks human cone-sparing RP, including the cone-associated preservation of bipolar cell signaling and triggering of reprogramming. The relatively fast disease progression makes the TgP347L rabbit an excellent model for gene therapy, cell biological intervention, progenitor cell transplantation, surgical interventions, and bionic prosthetic studies. PMID:21681749

  19. Differential Modulation of Retinal Degeneration by Ccl2 and Cx3cr1 Chemokine Signalling

    PubMed Central

    Luhmann, Ulrich F. O.; Lange, Clemens A.; Robbie, Scott; Munro, Peter M. G.; Cowing, Jill A.; Armer, Hannah E. J.; Luong, Vy; Carvalho, Livia S.; MacLaren, Robert E.; Fitzke, Frederick W.; Bainbridge, James W. B.; Ali, Robin R.

    2012-01-01

    Microglia and macrophages are recruited to sites of retinal degeneration where local cytokines and chemokines determine protective or neurotoxic microglia responses. Defining the role of Ccl2-Ccr2 and Cx3cl1-Cx3cr1 signalling for retinal pathology is of particular interest because of its potential role in age-related macular degeneration (AMD). Ccl2, Ccr2, and Cx3cr1 signalling defects impair macrophage trafficking, but have, in several conflicting studies, been reported to show different degrees of age-related retinal degeneration. Ccl2/Cx3cr1 double knockout (CCDKO) mice show an early onset retinal degeneration and have been suggested as a model for AMD. In order to understand phenotypic discrepancies in different chemokine knockout lines and to study how defects in Ccl2 and/or Cx3cr1 signalling contribute to the described early onset retinal degeneration, we defined primary and secondary pathological events in CCDKO mice. To control for genetic background variability, we compared the original phenotype with that of single Ccl2, Cx3cr1 and Ccl2/Cx3cr1 double knockout mice obtained from backcrosses of CCDKO with C57Bl/6 mice. We found that the primary pathological event in CCDKO mice develops in the inferior outer nuclear layer independently of light around postnatal day P14. RPE and vascular lesions develop secondarily with increasing penetrance with age and are clinically similar to retinal telangiectasia not to choroidal neovascularisation. Furthermore, we provide evidence that a third autosomal recessive gene causes the degeneration in CCDKO mice and in all affected re-derived lines and subsequently demonstrated co-segregation of the naturally occurring RD8 mutation in the Crb1 gene. By comparing CCDKO mice with re-derived CCl2−/−/Crb1Rd8/RD8, Cx3cr1−/−/Crb1Rd8/RD8 and CCl2−/−/Cx3cr1−/−/Crb1Rd8/RD8 mice, we observed a differential modulation of the retinal phenotype by genetic background and both chemokine signalling pathways. These findings

  20. Advancing Research and Treatment for Frontotemporal Lobar Degeneration (ARTFL)

    ClinicalTrials.gov

    2018-05-01

    FTLD; Progressive Supranuclear Palsy (PSP); Frontotemporal Dementia (FTD); Corticobasal Degeneration (CBD); PPA Syndrome; Behavioral Variant Frontotemporal Dementia (bvFTD); Semantic Variant Primary Progressive Aphasia (svPPA); Nonfluent Variant Primary Progressive Aphasia (nfvPPA); FTD With Amyotrophic Lateral Sclerosis (FTD/ALS); Amyotrophic Lateral Sclerosis (ALS); Oligosymptomatic PSP (oPSP); Corticobasal Syndrome (CBS)

  1. Awareness, Knowledge, and Concern about Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Cimarolli, Verena R.; Laban-Baker, Allie; Hamilton, Wanda S.; Stuen, Cynthia

    2012-01-01

    Age-related macular degeneration (AMD)--a common eye disease causing vision loss--can be detected early through regular eye-health examinations, and measures can be taken to prevent visual decline. Getting eye examinations requires certain levels of awareness, knowledge, and concern related to AMD. However, little is known about AMD-related…

  2. Dichromatic Langmuir waves in degenerate quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubinov, A. E., E-mail: dubinov-ae@yandex.ru; Kitayev, I. N.

    2015-06-15

    Langmuir waves in fully degenerate quantum plasma are considered. It is shown that, in the linear approximation, Langmuir waves are always dichromatic. The low-frequency component of the waves corresponds to classical Langmuir waves, while the high-frequency component, to free-electron quantum oscillations. The nonlinear problem on the profile of dichromatic Langmuir waves is solved. Solutions in the form of a superposition of waves and in the form of beatings of its components are obtained.

  3. Independent degeneration of photoreceptors and retinal pigment epithelium in conditional knockout mouse models of choroideremia

    PubMed Central

    Tolmachova, Tanya; Anders, Ross; Abrink, Magnus; Bugeon, Laurence; Dallman, Margaret J.; Futter, Clare E.; Ramalho, José S.; Tonagel, Felix; Tanimoto, Naoyuki; Seeliger, Mathias W.; Huxley, Clare; Seabra, Miguel C.

    2006-01-01

    Choroideremia (CHM) is an X-linked degeneration of the retinal pigment epithelium (RPE), photoreceptors, and choroid, caused by loss of function of the CHM/REP1 gene. REP1 is involved in lipid modification (prenylation) of Rab GTPases, key regulators of intracellular vesicular transport and organelle dynamics. To study the pathogenesis of CHM and to develop a model for assessing gene therapy, we have created a conditional mouse knockout of the Chm gene. Heterozygous-null females exhibit characteristic hallmarks of CHM: progressive degeneration of the photoreceptors, patchy depigmentation of the RPE, and Rab prenylation defects. Using tamoxifen-inducible and tissue-specific Cre expression in combination with floxed Chm alleles, we show that CHM pathogenesis involves independently triggered degeneration of photoreceptors and the RPE, associated with different subsets of defective Rabs. PMID:16410831

  4. Lumbar disc degeneration was not related to spine and hip bone mineral densities in Chinese: facet joint osteoarthritis may confound the association.

    PubMed

    Pan, Jianjiang; Lu, Xuan; Yang, Ge; Han, Yongmei; Tong, Xiang; Wang, Yue

    2017-12-01

    A sample of 512 Chinese was studied and we observed that greater disc degeneration on MRI was associated with greater spine DXA BMD. Yet, this association may be confounded by facet joint osteoarthritis. BMD may not be a risk factor for lumbar disc degeneration in Chinese. Evidence suggested that lumbar vertebral bone and intervertebral disc interact with each other in multiple ways. The current paper aims to determine the association between bone mineral density (BMD) and lumbar disc degeneration using a sample of Chinese. We studied 165 patients with back disorders and 347 general subjects from China. All subjects had lumbar spine magnetic resonance (MR) imaging and dual- energy X-ray absorptiometry (DXA) spine BMD studies, and a subset of general subjects had additional hip BMD measurements. On T2-weighted MR images, Pfirrmann score was used to evaluate the degree of lumbar disc degeneration and facet joint osteoarthritis was assessed as none, slight-moderate, and severe. Regression analyses were used to examine the associations between lumbar and hip BMD and disc degeneration, adjusting for age, gender, body mass index (BMI), lumbar region, and facet joint osteoarthritis. Greater facet joint osteoarthritis was associated with greater spine BMD (P < 0.01) in both patients and general subjects. For general subjects, greater spine BMD was associated with severe disc degeneration, controlling for age, gender, BMI, and lumbar region. When facet joint osteoarthritis entered the regression model, however, greater spine BMD was associated with greater facet joint osteoarthritis (P < 0.01) but not greater disc degeneration (P > 0.05). No statistical association was observed between spine BMD and lumbar disc degeneration in patients with back disorders (P > 0.05), and between hip BMD and disc degeneration in general subjects (P > 0.05). BMD may not be a risk factor for lumbar disc degeneration in Chinese. Facet joint osteoarthritis inflates DXA spine BMD

  5. Value-based medicine and interventions for macular degeneration.

    PubMed

    Brown, Melissa M; Brown, Gary C; Brown, Heidi

    2007-05-01

    The aim of this article is to review the patient value conferred by interventions for neovascular macular degeneration. Value-based medicine is the practice of medicine based upon the patient value (improvement in quality of life and length of life) conferred by an intervention. For ophthalmologic interventions, in which length-of-life is generally unaffected, the value gain is equivalent to the improvement in quality of life. Photodynamic therapy delivers a value gain (improvement in quality of life) of 8.1% for the average person with classic subfoveal choroidal neovascularization, while laser photocoagulation for the same entity confers a 4.4% improvement in quality of life. Preliminary data suggest the value gain for the treatment of occult/minimally classic choroidal neovascularization with ranibizumab is greater than 15%. The average value gain for statins for the treatment of hyperlipidemia is 3.9%, while that for the use of biphosphonates for the treatment of osteoporosis is 1.1% and that for drugs to treat benign prostatic hyperplasia is 1-2%. Interventions, especially ranibizumab therapy, for neovascular macular degeneration appear to deliver an extraordinary degree of value compared with many other interventions across healthcare.

  6. Quasi-degenerate perturbation theory using matrix product states

    NASA Astrophysics Data System (ADS)

    Sharma, Sandeep; Jeanmairet, Guillaume; Alavi, Ali

    2016-01-01

    In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner's 2n + 1 rule. Further, our formulation satisfies Granovsky's requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost.

  7. Symmetry, stability, and computation of degenerate lasing modes

    NASA Astrophysics Data System (ADS)

    Liu, David; Zhen, Bo; Ge, Li; Hernandez, Felipe; Pick, Adi; Burkhardt, Stephan; Liertzer, Matthias; Rotter, Stefan; Johnson, Steven G.

    2017-02-01

    We present a general method to obtain the stable lasing solutions for the steady-state ab initio lasing theory (SALT) for the case of a degenerate symmetric laser in two dimensions (2D). We find that under most regimes (with one pathological exception), the stable solutions are clockwise and counterclockwise circulating modes, generalizing previously known results of ring lasers to all 2D rotational symmetry groups. Our method uses a combination of semianalytical solutions close to lasing threshold and numerical solvers to track the lasing modes far above threshold. Near threshold, we find closed-form expressions for both circulating modes and other types of lasing solutions as well as for their linearized Maxwell-Bloch eigenvalues, providing a simple way to determine their stability without having to do a full nonlinear numerical calculation. Above threshold, we show that a key feature of the circulating mode is its "chiral" intensity pattern, which arises from spontaneous symmetry breaking of mirror symmetry, and whose symmetry group requires that the degeneracy persists even when nonlinear effects become important. Finally, we introduce a numerical technique to solve the degenerate SALT equations far above threshold even when spatial discretization artificially breaks the degeneracy.

  8. Heat capacity of free electrons at the degenerate-nondegenerate transition

    NASA Astrophysics Data System (ADS)

    Nimtz, G.; Stadler, J. P.

    1985-04-01

    In this Brief Report the heat capacity of an electron gas at the degenerate-nondegenerate transition is presented. The values are deduced from hot-carrier data of InSb with ~=1014 electrons/cm3 determined by Maneval, Zylberstejn, and Budd.

  9. Expression Profiling Analysis Reveals Key MicroRNA–mRNA Interactions in Early Retinal Degeneration in Retinitis Pigmentosa

    PubMed Central

    Anasagasti, Ander; Ezquerra-Inchausti, Maitane; Barandika, Olatz; Muñoz-Culla, Maider; Caffarel, María M.; Otaegui, David; López de Munain, Adolfo

    2018-01-01

    Purpose The aim of this study was to identify differentially expressed microRNAs (miRNAs) that might play an important role in the etiology of retinal degeneration in a genetic mouse model of retinitis pigmentosa (rd10 mice) at initial stages of the disease. Methods miRNAs–mRNA interaction networks were generated for analysis of biological pathways involved in retinal degeneration. Results Of more than 1900 miRNAs analyzed, we selected 19 miRNAs on the basis of (1) a significant differential expression in rd10 retinas compared with control samples and (2) an inverse expression relationship with predicted mRNA targets involved in biological pathways relevant to retinal biology and/or degeneration. Seven of the selected miRNAs have been associated with retinal dystrophies, whereas, to our knowledge, nine have not been previously linked to any disease. Conclusions This study contributes to our understanding of the etiology and progression of retinal degeneration. PMID:29847644

  10. ANTERIOR CHAMBER FLARE DURING BEVACIZUMAB TREATMENT IN EYES WITH EXUDATIVE AGE-RELATED MACULAR DEGENERATION.

    PubMed

    Hautamäki, Asta; Luoma, Arto; Immonen, Ilkka

    2016-11-01

    To study the anterior chamber flare during bevacizumab treatment of exudative age-related macular degeneration. During a 2-year prospective follow-up, 50 patients recently diagnosed with exudative age-related macular degeneration were treated at once-a-month visits if subretinal or intraretinal fluid or a new hemorrhage was present in the lesion area. Flare was measured weekly during the first month and then monthly in both eyes. Higher flare was associated with older age (P = 0.007, Linear Mixed Model), higher number of smoking pack-years (P = 0.019), macular cysts (P = 0.041), and pseudophakia (P = 0.003). The levels gradually increased during the follow-up (P < 0.0001) but less in the eyes with classic CNV (P = 0.011). Flare decreased during treatment-free periods lasting for at least two consecutive visits (P = 0.005). A peak in flare was observed 1 week after the first injection (P = 0.034, Wilcoxon signed rank test). In the fellow eyes, higher flare values in the beginning of the follow-up were associated with later conversion into exudative age-related macular degeneration (P = 0.015, Mann-Whitney U test). Anterior chamber flare correlated poorly with the CNV activity. Higher levels may, however, precede or exist early in the process that leads to the development of exudative age-related macular degeneration.

  11. Auditory analysis of xeroderma pigmentosum 1971-2012: hearing function, sun sensitivity and DNA repair predict neurological degeneration.

    PubMed

    Totonchy, Mariam B; Tamura, Deborah; Pantell, Matthew S; Zalewski, Christopher; Bradford, Porcia T; Merchant, Saumil N; Nadol, Joseph; Khan, Sikandar G; Schiffmann, Raphael; Pierson, Tyler Mark; Wiggs, Edythe; Griffith, Andrew J; DiGiovanna, John J; Kraemer, Kenneth H; Brewer, Carmen C

    2013-01-01

    To assess the role of DNA repair in maintenance of hearing function and neurological integrity, we examined hearing status, neurological function, DNA repair complementation group and history of acute burning on minimal sun exposure in all patients with xeroderma pigmentosum, who had at least one complete audiogram, examined at the National Institutes of Health from 1971 to 2012. Seventy-nine patients, aged 1-61 years, were diagnosed with xeroderma pigmentosum (n = 77) or xeroderma pigmentosum/Cockayne syndrome (n = 2). A total of 178 audiograms were included. Clinically significant hearing loss (>20 dB) was present in 23 (29%) of 79 patients. Of the 17 patients with xeroderma pigmentosum-type neurological degeneration, 13 (76%) developed hearing loss, and all 17 were in complementation groups xeroderma pigmentosum type A or type D and reported acute burning on minimal sun exposure. Acute burning on minimal sun exposure without xeroderma pigmentosum-type neurological degeneration was present in 18% of the patients (10/55). Temporal bone histology in a patient with severe xeroderma pigmentosum-type neurological degeneration revealed marked atrophy of the cochlear sensory epithelium and neurons. The 19-year mean age of detection of clinically significant hearing loss in the patients with xeroderma pigmentosum with xeroderma pigmentosum-type neurological degeneration was 54 years younger than that predicted by international norms. The four frequency (0.5/1/2/4 kHz) pure-tone average correlated with degree of neurodegeneration (P < 0.001). In patients with xeroderma pigmentosum, aged 4-30 years, a four-frequency pure-tone average ≥10 dB hearing loss was associated with a 39-fold increased risk (P = 0.002) of having xeroderma pigmentosum-type neurological degeneration. Severity of hearing loss parallels neurological decline in patients with xeroderma pigmentosum-type neurological degeneration. Audiometric findings, complementation group, acute burning on minimal sun

  12. Current knowledge and trends in age-related macular degeneration: genetics, epidemiology, and prevention.

    PubMed

    Velez-Montoya, Raul; Oliver, Scott C N; Olson, Jeffrey L; Fine, Stuart L; Quiroz-Mercado, Hugo; Mandava, Naresh

    2014-03-01

    To address the most dynamic and current issues concerning human genetics, risk factors, pharmacoeconomics, and prevention regarding age-related macular degeneration. An online review of the database Pubmed and Ovid was performed, searching for the key words: age-related macular degeneration, AMD, pharmacoeconomics, risk factors, VEGF, prevention, genetics and their compound phrases. The search was limited to articles published since 1985 to date. All returned articles were carefully screened and their references were manually reviewed for additional relevant data. The webpage www.clinicaltrials.gov was also accessed in search of relevant research trials. A total of 366 articles were reviewed, including 64 additional articles extracted from the references and 25 webpages and online databases from different institutions. At the end, only 244 references were included in this review. Age-related macular degeneration is a complex multifactorial disease that has an uneven manifestation around the world but with one common denominator, it is increasing and spreading. The economic burden that this disease poses in developed nations will increase in the coming years. Effective preventive therapies need to be developed in the near future.

  13. Quantitative metabolomics of photoreceptor degeneration and the effects of stem cell-derived retinal pigment epithelium transplantation

    PubMed Central

    Wang, Junhua; Westenskow, Peter D.; Fang, Mingliang; Friedlander, Martin

    2016-01-01

    Photoreceptor degeneration is characteristic of vision-threatening diseases including age-related macular degeneration. Photoreceptors are metabolically demanding cells in the retina, but specific details about their metabolic behaviours are unresolved. The quantitative metabolomics of retinal degeneration could provide valuable insights and inform future therapies. Here, we determined the metabolomic ‘fingerprint’ of healthy and dystrophic retinas in rat models using optimized metabolite extraction techniques. A number of classes of metabolites were consistently dysregulated during degeneration: vitamin A analogues, fatty acid amides, long-chain polyunsaturated fatty acids, acyl carnitines and several phospholipid species. For the first time, a distinct temporal trend of several important metabolites including DHA (4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoic acid), all-trans-retinal and its toxic end-product N-retinyl-N-retinylidene-ethanolamine were observed between healthy and dystrophic retinas. In this study, metabolomics was further used to determine the temporal effects of the therapeutic intervention of grafting stem cell-derived retinal pigment epithelium (RPE) in dystrophic retinas, which significantly prevented photoreceptor atrophy in our previous studies. The result revealed that lipid levels such as phosphatidylethanolamine in eyes were restored in those animals receiving the RPE grafts. In conclusion, this study provides insight into the metabolomics of retinal degeneration, and further understanding of the efficacy of RPE transplantation. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644974

  14. Arbitrary amplitude electrostatic wave propagation in a magnetized dense plasma containing helium ions and degenerate electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmood, S., E-mail: shahzadm100@gmail.com; Sadiq, Safeer; Haque, Q.

    2016-06-15

    The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found whichmore » depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.« less

  15. Voltage-gated calcium channel autoimmune cerebellar degeneration

    PubMed Central

    McKasson, Marilyn; Clawson, Susan A.; Hill, Kenneth E.; Wood, Blair; Carlson, Noel; Bromberg, Mark; Greenlee, John E.

    2016-01-01

    Objectives: To describe response to treatment in a patient with autoantibodies against voltage-gated calcium channels (VGCCs) who presented with autoimmune cerebellar degeneration and subsequently developed Lambert-Eaton myasthenic syndrome (LEMS), and to study the effect of the patient's autoantibodies on Purkinje cells in rat cerebellar slice cultures. Methods: Case report and study of rat cerebellar slice cultures incubated with patient VGCC autoantibodies. Results: A 53-year-old man developed progressive incoordination with ataxic speech. Laboratory evaluation revealed VGCC autoantibodies without other antineuronal autoantibodies. Whole-body PET scans 6 and 12 months after presentation detected no malignancy. The patient improved significantly with IV immunoglobulin G (IgG), prednisone, and mycophenolate mofetil, but worsened after IV IgG was halted secondary to aseptic meningitis. He subsequently developed weakness with electrodiagnostic evidence of LEMS. The patient's IgG bound to Purkinje cells in rat cerebellar slice cultures, followed by neuronal death. Reactivity of the patient's autoantibodies with VGCCs was confirmed by blocking studies with defined VGCC antibodies. Conclusions: Autoimmune cerebellar degeneration associated with VGCC autoantibodies may precede onset of LEMS and may improve with immunosuppressive treatment. Binding of anti-VGCC antibodies to Purkinje cells in cerebellar slice cultures may be followed by cell death. Patients with anti-VGCC autoantibodies may be at risk of irreversible neurologic injury over time, and treatment should be initiated early. PMID:27088118

  16. Retinopathy of prematurity: inflammation, choroidal degeneration, and novel promising therapeutic strategies.

    PubMed

    Rivera, José Carlos; Holm, Mari; Austeng, Dordi; Morken, Tora Sund; Zhou, Tianwei Ellen; Beaudry-Richard, Alexandra; Sierra, Estefania Marin; Dammann, Olaf; Chemtob, Sylvain

    2017-08-22

    Retinopathy of prematurity (ROP) is an important cause of childhood blindness globally, and the incidence is rising. The disease is characterized by initial arrested retinal vascularization followed by neovascularization and ensuing retinal detachment causing permanent visual loss. Although neovascularization can be effectively treated via retinal laser ablation, it is unknown which children are at risk of entering this vision-threatening phase of the disease. Laser ablation may itself induce visual field deficits, and there is therefore a need to identify targets for novel and less destructive treatments of ROP. Inflammation is considered a key contributor to the pathogenesis of ROP. A large proportion of preterm infants with ROP will have residual visual loss linked to loss of photoreceptor (PR) and the integrity of the retinal pigment epithelium (RPE) in the macular region. Recent studies using animal models of ROP suggest that choroidal degeneration may be associated with a loss of integrity of the outer retina, a phenomenon so far largely undescribed in ROP pathogenesis. In this review, we highlight inflammatory and neuron-derived factors related to ROP progression, as well, potential targets for new treatment strategies. We also introduce choroidal degeneration as a significant cause of residual visual loss following ROP. We propose that ROP should no longer be considered an inner retinal vasculopathy only, but also a disease of choroidal degeneration affecting both retinal pigment epithelium and photoreceptor integrity.

  17. Knee degeneration in concrete reinforcement workers.

    PubMed Central

    Wickström, G; Hänninen, K; Mattsson, T; Niskanen, T; Riihimäki, H; Waris, P; Zitting, A

    1983-01-01

    The loads on the knees in concrete reinforcement work and maintenance painting were analysed on eight construction work sites. A total of 352 reinforcement workers and 231 painters. Finnish men aged 20-64, were clinically and radiologically examined to determine the condition of the knee joints in active workers. The loads on the knees and the occurrence of minor injuries and accidents were higher in reinforcement work than in painting, but the occurrence of symptoms, clinical signs, and radiological findings was equally common in both groups. Reinforcement work seemed to provoke more symptoms from degenerated knees than painting. PMID:6830721

  18. Asymptotic behavior of degenerate logistic equations

    NASA Astrophysics Data System (ADS)

    Arrieta, José M.; Pardo, Rosa; Rodríguez-Bernal, Aníbal

    2015-12-01

    We analyze the asymptotic behavior of positive solutions of parabolic equations with a class of degenerate logistic nonlinearities of the type λu - n (x)uρ. An important characteristic of this work is that the region where the logistic term n (ṡ) vanishes, that is K0 = { x : n (x) = 0 }, may be non-smooth. We analyze conditions on λ, ρ, n (ṡ) and K0 guaranteeing that the solution starting at a positive initial condition remains bounded or blows up as time goes to infinity. The asymptotic behavior may not be the same in different parts of K0.

  19. Intacs for early pellucid marginal degeneration.

    PubMed

    Kymionis, George D; Aslanides, Ioannis M; Siganos, Charalambos S; Pallikaris, Ioannis G

    2004-01-01

    A 42-year-old man had Intacs (Addition Technology Inc.) implantation for early pellucid marginal degeneration (PMD). Two Intacs segments (0.45 mm thickness) were inserted uneventfully in the fashion typically used for low myopia correction (nasal-temporal). Eleven months after the procedure, the uncorrected visual acuity was 20/200, compared with counting fingers preoperatively, while the best spectacle-corrected visual acuity improved to 20/25 from 20/50. Corneal topographic pattern also improved. Although the results are encouraging, concern still exists regarding the long-term effect of this approach for the management of patients with PMD.

  20. SOCIETAL COSTS ASSOCIATED WITH NEOVASCULAR AGE-RELATED MACULAR DEGENERATION IN THE UNITED STATES.

    PubMed

    Brown, Melissa M; Brown, Gary C; Lieske, Heidi B; Tran, Irwin; Turpcu, Adam; Colman, Shoshana

    2016-02-01

    The purpose of this study was to use a cross-sectional prevalence-based health care economic survey to ascertain the annual, incremental, societal ophthalmic costs associated with neovascular age-related macular degeneration. Consecutive patients (n = 200) with neovascular age-related macular degeneration were studied. A Control Cohort included patients with good (20/20-20/25) vision, while Study Cohort vision levels included Subcohort 1: 20/30 to 20/50, Subcohort 2: 20/60 to 20/100, Subcohort 3: 20/200 to 20/400, and Subcohort 4: 20/800 to no light perception. An interviewer-administered, standardized, written survey assessed 1) direct ophthalmic medical, 2) direct nonophthalmic medical, 3) direct nonmedical, and 4) indirect medical costs accrued due solely to neovascular age-related macular degeneration. The mean annual societal cost for the Control Cohort was $6,116 and for the Study Cohort averaged $39,910 (P < 0.001). Study Subcohort 1 costs averaged $20,339, while Subcohort 4 costs averaged $82,984. Direct ophthalmic medical costs comprised 17.9% of Study Cohort societal ophthalmic costs, versus 74.1% of Control Cohort societal ophthalmic costs (P < 0.001) and 10.4% of 20/800 to no light perception subcohort costs. Direct nonmedical costs, primarily caregiver, comprised 67.1% of Study Cohort societal ophthalmic costs, versus 21.3% ($1,302/$6,116) of Control Cohort costs (P < 0.001) and 74.1% of 20/800 to no light perception subcohort costs. Total societal ophthalmic costs associated with neovascular age-related macular degeneration dramatically increase as vision in the better-seeing eye decreases.

  1. Magnetic resonance imaging of degeneration of uterine adenomyosis during pregnancy and post-partum period.

    PubMed

    Hirashima, Hiroto; Ohkuchi, Akihide; Usui, Rie; Kijima, Shigeyoshi; Matsubara, Shigeki

    2018-03-08

    Degeneration of adenomyosis during pregnancy and the post-partum period is very rare. A 42-year-old Japanese parous woman with four normal-term deliveries, who presented with abdominal pain and fever at 22 weeks of gestation with transient increases of the white blood cell count and C-reactive protein, demonstrated sustained inflammation after cesarean section at 29 weeks of gestation due to the occurrence of gestational hypertension with late deceleration. The noncontrast-enhanced magnetic resonance imaging (MRI) at 22 weeks demonstrated a poorly demarcated hypointense area at the posterior uterine wall on T1- and T2-weighted imaging. The 2nd MRI 2 weeks after the cesarean section showed hypointensity on a T1-weighted image and hyperintensity on a T2-weighted image, allowing confirmation of the diagnosis of degeneration of adenomyosis. Repeated MRIs were clinically useful to diagnose the degeneration of adenomyosis. © 2018 Japan Society of Obstetrics and Gynecology.

  2. Incompressible limit of the degenerate quantum compressible Navier-Stokes equations with general initial data

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Sam; Li, Fucai

    2018-03-01

    In this paper we study the incompressible limit of the degenerate quantum compressible Navier-Stokes equations in a periodic domain T3 and the whole space R3 with general initial data. In the periodic case, by applying the refined relative entropy method and carrying out the detailed analysis on the oscillations of velocity, we prove rigorously that the gradient part of the weak solutions (velocity) of the degenerate quantum compressible Navier-Stokes equations converge to the strong solution of the incompressible Navier-Stokes equations. Our results improve considerably the ones obtained by Yang, Ju and Yang [25] where only the well-prepared initial data case is considered. While for the whole space case, thanks to the Strichartz's estimates of linear wave equations, we can obtain the convergence of the weak solutions of the degenerate quantum compressible Navier-Stokes equations to the strong solution of the incompressible Navier-Stokes/Euler equations with a linear damping term. Moreover, the convergence rates are also given.

  3. Optomechanical entanglement via non-degenerate parametric interactions

    NASA Astrophysics Data System (ADS)

    Ahmed, Rizwan; Qamar, Shahid

    2017-10-01

    We present a scheme for the optomechanical entanglement between a micro-mechanical mirror and the field inside a bimodal cavity system using a non-degenerate optical parametric amplifier (NOPA). Our results show that the introduction of NOPA makes the entanglement stronger or more robust against the mean number of average thermal phonons and cavity decay. Interestingly, macroscopic entanglement depends upon the choice of the phase associated with classical field driving NOPA. We also consider the effects of input laser power on optomechanical entanglement.

  4. Approach of Turkish ophthalmologists to micronutrition in age-related macular degeneration.

    PubMed

    Muhammed, Şahin; Yüksel, Harun; Şahin, Alparslan; Cingü, Abdullah Kürşat; Türkcü, Fatih Mehmet; Özkurt, Zeynep Gürsel; Çaça, İhsan

    2015-01-01

    To evaluate the knowledge and behaviors of ophthalmologists in Turkey concerning micronutrition support in patients with age related macular degeneration (ARMD). This study involved 1,845 ophthalmologists. A scientific poll was sent to all participants by email. The survey covered the following: demographic features, subspecialty knowledge about micronutrition preference for prescribing micronutrition to age related macular degeneration patients, and the reason for this preference. If a participant indicated that he or she prescribed micronutrition, the participant was also asked to indicate the source of the treatment and supplemental treatments. Of 1,845 ophthalmologists, 249 responded to the survey. Of the respondents, 9% (22) never, 43% (107) sometimes, 37% (92) frequently, and 11% (27) always used micronutrition. The most frequent prescribing subgroup was general ophthalmology (22%), followed by the retina-uvea subspecialty (13.9%). The micronutrition prescribing ratio was 54.8% in retina-uvea specialists when the "frequent" and "always" responses were combined. There was no statistically significant difference between subgroups with respect to prescribing micronutrition. Among the ophthalmologists prescribing micronutrition, 57.1% of them did not use the Age-Related Eye Disease Study-1 (AREDS) criteria, and only 31.3% prescribe micronutrition according to AREDS criteria. The results for the general ophthalmologist and retina-uvea specialist subgroups were similar, 56.3% vs 20.2%, and 54.1% vs 36.1%, respectively. Micronutrition was not recommended for the following reasons: expensive (55.4%), low patient expectancy (40%), no effect (30%), and low patient drug compliance (25.4%). Moreover, 55.2% of the clinicians recommended physical activities, dietary changes, and smoking cessation; 7.3% did not recommend these behavioral changes. This survey demonstrated that micronutrition preference in age related macular degeneration was low in ophthalmologists in Turkey

  5. Characterization of cytochrome c as marker for retinal cell degeneration by uv/vis spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Hollmach, Julia; Schweizer, Julia; Steiner, Gerald; Knels, Lilla; Funk, Richard H. W.; Thalheim, Silko; Koch, Edmund

    2011-07-01

    Retinal diseases like age-related macular degeneration have become an important cause of visual loss depending on increasing life expectancy and lifestyle habits. Due to the fact that no satisfying treatment exists, early diagnosis and prevention are the only possibilities to stop the degeneration. The protein cytochrome c (cyt c) is a suitable marker for degeneration processes and apoptosis because it is a part of the respiratory chain and involved in the apoptotic pathway. The determination of the local distribution and oxidative state of cyt c in living cells allows the characterization of cell degeneration processes. Since cyt c exhibits characteristic absorption bands between 400 and 650 nm wavelength, uv/vis in situ spectroscopic imaging was used for its characterization in retinal ganglion cells. The large amount of data, consisting of spatial and spectral information, was processed by multivariate data analysis. The challenge consists in the identification of the molecular information of cyt c. Baseline correction, principle component analysis (PCA) and cluster analysis (CA) were performed in order to identify cyt c within the spectral dataset. The combination of PCA and CA reveals cyt c and its oxidative state. The results demonstrate that uv/vis spectroscopic imaging in conjunction with sophisticated multivariate methods is a suitable tool to characterize cyt c under in situ conditions.

  6. Lipocalin 2 Plays an Important Role in Regulating Inflammation in Retinal Degeneration.

    PubMed

    Parmar, Tanu; Parmar, Vipul M; Perusek, Lindsay; Georges, Anouk; Takahashi, Masayo; Crabb, John W; Maeda, Akiko

    2018-05-01

    It has become increasingly important to understand how retinal inflammation is regulated because inflammation plays a role in retinal degenerative diseases. Lipocalin 2 (LCN2), an acute stress response protein with multiple innate immune functions, is increased in ATP-binding cassette subfamily A member 4 ( Abca4 ) -/- retinol dehydrogenase 8 ( Rdh8 ) -/- double-knockout mice, an animal model for Stargardt disease and age-related macular degeneration (AMD). To examine roles of LCN2 in retinal inflammation and degeneration, Lcn2 -/- Abca4 -/- Rdh8 -/- triple-knockout mice were generated. Exacerbated inflammation following light exposure was observed in Lcn2 -/- Abca4 -/- Rdh8 -/- mice as compared with Abca4 -/- Rdh8 -/- mice, with upregulation of proinflammatory genes and microglial activation. RNA array analyses revealed an increase in immune response molecules such as Ccl8 , Ccl2 , and Cxcl10 To further probe a possible regulatory role for LCN2 in retinal inflammation, we examined the in vitro effects of LCN2 on NF-κB signaling in human retinal pigmented epithelial (RPE) cells differentiated from induced pluripotent stem cells derived from healthy donors. We found that LCN2 induced expression of antioxidant enzymes heme oxygenase 1 and superoxide dismutase 2 in these RPE cells and could inhibit the cytotoxic effects of H 2 O 2 and LPS. ELISA revealed increased LCN2 levels in plasma of patients with Stargardt disease, retinitis pigmentosa, and age-related macular degeneration as compared with healthy controls. Finally, overexpression of LCN2 in RPE cells displayed protection from cell death. Overall these results suggest that LCN2 is involved in prosurvival responses during cell stress and plays an important role in regulating inflammation during retinal degeneration. Copyright © 2018 by The American Association of Immunologists, Inc.

  7. Spectropathology-corroborated multimodal quantitative imaging biomarkers for neuroretinal degeneration in diabetic retinopathy

    PubMed Central

    Guha Mazumder, Arpan; Chatterjee, Swarnadip; Chatterjee, Saunak; Gonzalez, Juan Jose; Bag, Swarnendu; Ghosh, Sambuddha; Mukherjee, Anirban; Chatterjee, Jyotirmoy

    2017-01-01

    Introduction Image-based early detection for diabetic retinopathy (DR) needs value addition due to lack of well-defined disease-specific quantitative imaging biomarkers (QIBs) for neuroretinal degeneration and spectropathological information at the systemic level. Retinal neurodegeneration is an early event in the pathogenesis of DR. Therefore, development of an integrated assessment method for detecting neuroretinal degeneration using spectropathology and QIBs is necessary for the early diagnosis of DR. Methods The present work explored the efficacy of intensity and textural features extracted from optical coherence tomography (OCT) images after selecting a specific subset of features for the precise classification of retinal layers using variants of support vector machine (SVM). Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy were also performed to confirm the spectropathological attributes of serum for further value addition to the OCT, fundoscopy, and fluorescein angiography (FA) findings. The serum metabolomic findings were also incorporated for characterizing retinal layer thickness alterations and vascular asymmetries. Results Results suggested that OCT features could differentiate the retinal lesions indicating retinal neurodegeneration with high sensitivity and specificity. OCT, fundoscopy, and FA provided geometrical as well as optical features. NMR revealed elevated levels of ribitol, glycerophosphocholine, and uridine diphosphate N-acetyl glucosamine, while the FTIR of serum samples confirmed the higher expressions of lipids and β-sheet-containing proteins responsible for neoangiogenesis, vascular fragility, vascular asymmetry, and subsequent neuroretinal degeneration in DR. Conclusion Our data indicated that disease-specific spectropathological alterations could be the major phenomena behind the vascular attenuations observed through fundoscopy and FA, as well as the variations in the intensity and

  8. Analysis of the RPE sheet in the rd10 retinal degeneration model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yi

    2011-01-04

    The normal RPE sheet in the C57Bl/6J mouse is subclassified into two major tiling patterns: A regular generally hexagonal array covering most of the surface and a 'soft network' near the ciliary body made of irregularly shaped cells. Physics models predict these two patterns based on contractility and elasticity of the RPE cell, and strength of cellular adhesion between cells. We hypothesized and identified major changes in RPE regular hexagonal tiling pattern in rdl0 compared to C57BL/6J mice. RPE sheet damage was extensive but occurred in rd10 later than expected, after most retinal degeneration. RPE sheet changes occur in zonesmore » with a bullseye pattern. In the posterior zone around the optic nerve RPE cells take on larger irregular and varied shapes to form an intact monolayer. In mid periphery, there is a higher than normal density of cells that progress into involuted layers of RPE under the retina. The periphery remains mostly normal until late stages of degeneration. The number of neighboring cells varies widely depending on zone and progression. RPE morphology continues to deteriorate long after the photoreceptors have degenerated. The RPE cells are bystanders to the rd10 degeneration within photo receptors, and the collateral damage to the RPE sheet resembles stimulation of migration or chemotaxis. Quantitative measures of the tiling patterns and histopathology detected here, scripted in a pipeline written in Perl and Cell Profiler (an open source Matlab plugin), are directly applicable to RPE sheet images from noninvasive fundus autofluorescence (FAF), adaptive optics confocal scanning laser ophthalmoscope (AO-cSLO), and spectral domain optical coherence tomography (SD-OCT) of patients with early stage AMD or RP.« less

  9. Cellular regeneration strategies for macular degeneration: past, present and future.

    PubMed

    Chichagova, Valeria; Hallam, Dean; Collin, Joseph; Zerti, Darin; Dorgau, Birthe; Felemban, Majed; Lako, Majlinda; Steel, David H

    2018-05-01

    Despite considerable effort and significant therapeutic advances, age-related macular degeneration (AMD) remains the commonest cause of blindness in the developed world. Progressive late-stage AMD with outer retinal degeneration currently has no proven treatment. There has been significant interest in the possibility that cellular treatments may slow or reverse visual loss in AMD. A number of modes of action have been suggested, including cell replacement and rescue, as well as immune modulation to delay the neurodegenerative process. Their appeal in this enigmatic disease relate to their generic, non-pathway-specific effects. The outer retina in particular has been at the forefront of developments in cellular regenerative therapies being surgically accessible, easily observable, as well as having a relatively simple architecture. Both the retinal pigment epithelium (RPE) and photoreceptors have been considered for replacement therapies as both sheets and cell suspensions. Studies using autologous RPE, and to a lesser extent, foetal retina, have shown proof of principle. A wide variety of cell sources have been proposed with pluripotent stem cell-derived cells currently holding the centre stage. Recent early-phase trials using these cells for RPE replacement have met safety endpoints and hinted at possible efficacy. Animal studies have confirmed the promise that photoreceptor replacement, even in a completely degenerated outer retina may restore some vision. Many challenges, however, remain, not least of which include avoiding immune rejection, ensuring long-term cellular survival and maximising effect. This review provides an overview of progress made, ongoing studies and challenges ahead.

  10. Treatment of dry age-related macular degeneration with dobesilate

    PubMed Central

    Cuevas, P; Outeiriño, L A; Angulo, J; Giménez-Gallego, G

    2012-01-01

    The authors present anatomical and functional evidences of dry age-macular degeneration improvement, after intravitreal treatment with dobesilate. Main outcomes measures were normalisation of retinal structure and function, assessed by optical coherence tomography, fundus-monitored microperimetry, electrophysiology and visual acuity. The effect might be related to the normalisation of the outer retinal architecture. PMID:22729337

  11. Association between menopause and lumbar disc degeneration: an MRI study of 1,566 women and 1,382 men.

    PubMed

    Lou, Chao; Chen, Hongliang; Mei, Liangwei; Yu, Weiyang; Zhu, Kejun; Liu, Feijun; Chen, Zhenzhong; Xiang, Guangheng; Chen, Minjiang; Weng, Qiaoyou; He, Dengwei

    2017-10-01

    The aim of this study was to revisit and further investigate the association between menopause and disc degeneration in the lumbar spine using a magnetic resonance imaging-based eight-level grading system. This study cohort comprised of 1,566 women and 1,382 age-matched men who were admitted for low back pain from June 2013 to October 2016. Data on age, weight, height, body mass index, age at natural menopause, and years since menopause (YSM) were obtained. Lumbar disc degeneration was assessed using a magnetic resonance imaging-based eight-level grading system. After adjustment for the confounding factors of age, height, and weight, young age-matched men were more susceptible to disc degeneration than premenopausal women (P < 0.05). However, after menopause, postmenopausal women had a significant tendency to develop more severe disc degeneration than their age-matched men (P < 0.05), and also compared with premenopausal and perimenopausal women (P < 0.01). Postmenopausal women were divided into nine subgroups by every 5 YSM. When YSM was less than 15 years, a positive trend was observed between YSM and severity of disc degeneration, respectively, at L1/L2 (r = 0.241), L2/L3 (r = 0.193), L3/L4 (r = 0.191), L4/L5 (r = 0.165), L5/S1 (r = 0.153), and all lumbar discs (r = 0.237) (P < 0.05 or 0.01). The analysis of covariance indicated a significant difference in each disc level (P < 0.05 or 0.01) between every two groups. When YSM was more than 15 years, the significant difference, however, disappeared in each disc level (P > 0.05). Menopause is associated with lumbar disc degeneration. The association occurred in the first 15 YSM, suggesting estrogen deficiency might be a risk factor of disc degeneration of the lumbar spine. Further studies need to be carried out for deciding whether age or menopause plays a more important role in the progression of disc degeneration in the lumbar spine.

  12. Drosophila melanogaster White Mutant w1118 Undergo Retinal Degeneration

    PubMed Central

    Ferreiro, María José; Pérez, Coralia; Marchesano, Mariana; Ruiz, Santiago; Caputi, Angel; Aguilera, Pedro; Barrio, Rosa; Cantera, Rafael

    2018-01-01

    Key scientific discoveries have resulted from genetic studies of Drosophila melanogaster, using a multitude of transgenic fly strains, the majority of which are constructed in a genetic background containing mutations in the white gene. Here we report that white mutant flies from w1118 strain undergo retinal degeneration. We observed also that w1118 mutants have progressive loss of climbing ability, shortened life span, as well as impaired resistance to various forms of stress. Retinal degeneration was abolished by transgenic expression of mini-white+ in the white null background w1118. We conclude that beyond the classical eye-color phenotype, mutations in Drosophila white gene could impair several biological functions affecting parameters like mobility, life span and stress tolerance. Consequently, we suggest caution and attentiveness during the interpretation of old experiments employing white mutant flies and when planning new ones, especially within the research field of neurodegeneration and neuroprotection. We also encourage that the use of w1118 strain as a wild-type control should be avoided. PMID:29354028

  13. Genetic control of an epigenetic cell degeneration syndrome in Podospora anserina.

    PubMed

    Haedens, Vicki; Malagnac, Fabienne; Silar, Philippe

    2005-06-01

    Filamentous fungi frequently present degenerative processes, whose molecular basis is very often unknown. Here, we present three mutant screens that result in the identification of 29 genes that directly or indirectly control Crippled Growth (CG), an epigenetic cell degeneration of the filamentous ascomycete Podospora anserina. Two of these genes were previously shown to encode a MAP kinase kinase kinase and an NADPH oxidase involved in a signal transduction cascade that participates in stationary phase differentiations, fruiting body development and defence against fungal competitors. The numerous genes identified can be incorporated in a model in which CG results from the sustained activation of the MAP kinase cascade. Our data also emphasize the complex regulatory network underlying three interconnected processes in P. anserina: sexual reproduction, defence against competitors, and cell degeneration.

  14. On the dispersion characteristics of extraordinary mode in a relativistic fully degenerate electron plasma

    NASA Astrophysics Data System (ADS)

    Noureen, S.; Abbas, G.; Sarfraz, M.

    2018-01-01

    The study of relativistic degenerate plasmas is important in many astrophysical and laboratory environments. Using linearized relativistic Vlasov-Maxwell equations, a generalized expression for the plasma conductivity tensor is derived. Employing Fermi-Dirac distribution at zero temperature, the dispersion relation of the extraordinary mode in a relativistic degenerate electron plasma is investigated. The propagation characteristics are examined in different relativistic density ranges. The shifting of cutoff points due to relativistic effects is observed analytically and graphically. Non-relativistic and ultra-relativistic limiting cases are also presented.

  15. [The misery of degeneration: Buffon's materialism and the 'limitations' of his transformism].

    PubMed

    Caponi, Gustavo

    2009-01-01

    In "Of the degeneration of animals" (1766), Buffon espoused a kind of limited transformism. Yet twelve years later, in Epochs of Nature, he supplemented this with a materialist theory on the origin of life that left no room for this alternative: the conditions under which living beings develop could explain how the different species within each animal genus had formed through the degeneration of an originating species. But the formation of these multiple, originating varieties could only be explained by a sudden process of spontaneous generation. A limitation inherent to the very system of ideas that had taken Buffon to limited transformism the underlying theory of generation and reproduction -preempted the possibility of its radicalization.

  16. A Novel Method to Simulate the Progression of Collagen Degeneration of Cartilage in the Knee: Data from the Osteoarthritis Initiative

    NASA Astrophysics Data System (ADS)

    Mononen, Mika E.; Tanska, Petri; Isaksson, Hanna; Korhonen, Rami K.

    2016-02-01

    We present a novel algorithm combined with computational modeling to simulate the development of knee osteoarthritis. The degeneration algorithm was based on excessive and cumulatively accumulated stresses within knee joint cartilage during physiological gait loading. In the algorithm, the collagen network stiffness of cartilage was reduced iteratively if excessive maximum principal stresses were observed. The developed algorithm was tested and validated against experimental baseline and 4-year follow-up Kellgren-Lawrence grades, indicating different levels of cartilage degeneration at the tibiofemoral contact region. Test groups consisted of normal weight and obese subjects with the same gender and similar age and height without osteoarthritic changes. The algorithm accurately simulated cartilage degeneration as compared to the Kellgren-Lawrence findings in the subject group with excess weight, while the healthy subject group’s joint remained intact. Furthermore, the developed algorithm followed the experimentally found trend of cartilage degeneration in the obese group (R2 = 0.95, p < 0.05 experiments vs. model), in which the rapid degeneration immediately after initiation of osteoarthritis (0-2 years, p < 0.001) was followed by a slow or negligible degeneration (2-4 years, p > 0.05). The proposed algorithm revealed a great potential to objectively simulate the progression of knee osteoarthritis.

  17. A Novel Method to Simulate the Progression of Collagen Degeneration of Cartilage in the Knee: Data from the Osteoarthritis Initiative

    PubMed Central

    Mononen, Mika E.; Tanska, Petri; Isaksson, Hanna; Korhonen, Rami K.

    2016-01-01

    We present a novel algorithm combined with computational modeling to simulate the development of knee osteoarthritis. The degeneration algorithm was based on excessive and cumulatively accumulated stresses within knee joint cartilage during physiological gait loading. In the algorithm, the collagen network stiffness of cartilage was reduced iteratively if excessive maximum principal stresses were observed. The developed algorithm was tested and validated against experimental baseline and 4-year follow-up Kellgren-Lawrence grades, indicating different levels of cartilage degeneration at the tibiofemoral contact region. Test groups consisted of normal weight and obese subjects with the same gender and similar age and height without osteoarthritic changes. The algorithm accurately simulated cartilage degeneration as compared to the Kellgren-Lawrence findings in the subject group with excess weight, while the healthy subject group’s joint remained intact. Furthermore, the developed algorithm followed the experimentally found trend of cartilage degeneration in the obese group (R2 = 0.95, p < 0.05; experiments vs. model), in which the rapid degeneration immediately after initiation of osteoarthritis (0–2 years, p < 0.001) was followed by a slow or negligible degeneration (2–4 years, p > 0.05). The proposed algorithm revealed a great potential to objectively simulate the progression of knee osteoarthritis. PMID:26906749

  18. Complement pathway biomarkers and age-related macular degeneration

    PubMed Central

    Gemenetzi, M; Lotery, A J

    2016-01-01

    In the age-related macular degeneration (AMD) ‘inflammation model', local inflammation plus complement activation contributes to the pathogenesis and progression of the disease. Multiple genetic associations have now been established correlating the risk of development or progression of AMD. Stratifying patients by their AMD genetic profile may facilitate future AMD therapeutic trials resulting in meaningful clinical trial end points with smaller sample sizes and study duration. PMID:26493033

  19. Degenerate doping of metallic anodes

    DOEpatents

    Friesen, Cody A; Zeller, Robert A; Johnson, Paul B; Switzer, Elise E

    2015-05-12

    Embodiments of the invention relate to an electrochemical cell comprising: (i) a fuel electrode comprising a metal fuel, (ii) a positive electrode, (iii) an ionically conductive medium, and (iv) a dopant; the electrodes being operable in a discharge mode wherein the metal fuel is oxidized at the fuel electrode and the dopant increases the conductivity of the metal fuel oxidation product. In an embodiment, the oxidation product comprises an oxide of the metal fuel which is doped degenerately. In an embodiment, the positive electrode is an air electrode that absorbs gaseous oxygen, wherein during discharge mode, oxygen is reduced at the air electrode. Embodiments of the invention also relate to methods of producing an electrode comprising a metal and a doped metal oxidation product.

  20. Fertility depression among cheese‐making Penicillium roqueforti strains suggests degeneration during domestication

    PubMed Central

    Ropars, Jeanne; Lo, Ying‐Chu; Dumas, Emilie; Snirc, Alodie; Begerow, Dominik; Rollnik, Tanja; Lacoste, Sandrine; Dupont, Joëlle; Giraud, Tatiana; López‐Villavicencio, Manuela

    2016-01-01

    Genetic differentiation occurs when gene flow is prevented, due to reproductive barriers or asexuality. Investigating the early barriers to gene flow is important for understanding the process of speciation. Here, we therefore investigated reproductive isolation between different genetic clusters of the fungus Penicillium roqueforti, used for maturing blue cheeses, and also occurring as food spoiler or in silage. We investigated premating and postmating fertility between and within three genetic clusters (two from cheese and one from other substrates), and we observed sexual structures under scanning electron microscopy. All intercluster types of crosses showed some fertility, suggesting that no intersterility has evolved between domesticated and wild populations despite adaptation to different environments and lack of gene flow. However, much lower fertility was found in crosses within the cheese clusters than within the noncheese cluster, suggesting reduced fertility of cheese strains, which may constitute a barrier to gene flow. Such degeneration may be due to bottlenecks during domestication and/or to the exclusive clonal replication of the strains in industry. This study shows that degeneration has occurred rapidly and independently in two lineages of a domesticated species. Altogether, these results inform on the processes and tempo of degeneration and speciation. PMID:27470007

  1. Changes in morphology of retinal ganglion cells with eccentricity in retinal degeneration.

    PubMed

    Anderson, E E; Greferath, U; Fletcher, E L

    2016-05-01

    Ganglion cells are the output neurons of the retina and are known to remodel during the subtle plasticity changes that occur following the death of photoreceptors in inherited retinal degeneration. We examine the influence of retinal eccentricity on anatomical remodelling and ganglion cell morphology well after photoreceptor loss. Rd1 mice that have a mutation in the β subunit of phosphodiesterase 6 were used as a model of retinal degeneration and gross remodelling events were examined by processing serial sections for immunocytochemistry. Retinal wholemounts from rd1-Thy1 and control Thy1 mice that contained a fluorescent protein labelling a subset of ganglion cells were processed for immunohistochemistry at 11 months of age. Ganglion cells were classified based on their soma size, dendritic field size and dendritic branching pattern and their dendritic fields were analysed for their length, area and quantity of branching points. Overall, more remodelling was found in the central compared with the peripheral retina. In addition, the size and complexity of A2, B1, C1 and D type ganglion cells located in the central region of the retina decreased. We propose that the changes in ganglion cell morphology are correlated with remodelling events in these regions and impact the function of retinal circuitry in the degenerated retina.

  2. Optical coherence tomography angiography in age-related macular degeneration: The game changer.

    PubMed

    Lupidi, Marco; Cerquaglia, Alessio; Chhablani, Jay; Fiore, Tito; Singh, Sumit Randhir; Cardillo Piccolino, Felice; Corbucci, Roberta; Coscas, Florence; Coscas, Gabriel; Cagini, Carlo

    2018-04-01

    Optical coherence tomography angiography is one of the biggest advances in ophthalmic imaging. It enables a depth-resolved assessment of the retinal and choroidal blood flow, far exceeding the levels of detail commonly obtained with dye angiographies. One of the first applications of optical coherence tomography angiography was in detecting the presence of choroidal neovascularization in age-related macular degeneration and establishing its position in relation to the retinal pigmented epithelium and Bruch's membrane, and thereby classifying the CNV as type 1, type 2, type 3, or mixed lesions. Optical coherence tomography angiograms, due to the longer wavelength used by optical coherence tomography, showed a more distinct choroidal neovascularization vascular pattern than fluorescein angiography, since there is less suffering from light scattering or is less obscured by overlying subretinal hemorrhages or exudation. Qualitative and quantitative assessments of optical coherence tomography angiography findings in exudative and nonexudative age-related macular degeneration have been largely investigated within the past 3 years both in clinical and experimental settings. This review constitutes an up-to-date of all the potential applications of optical coherence tomography angiography in age-related macular degeneration in order to better understand how to translate its theoretical usefulness into the current clinical practice.

  3. Time-series Spectroscopy of Two Candidate Double Degenerates in the Open Cluster NGC 6633

    NASA Astrophysics Data System (ADS)

    Williams, Kurtis A.; Serna-Grey, Donald; Chakraborty, Subho; Gianninas, A.; Canton, Paul A.

    2015-12-01

    SNe Ia are heavily used tools in precision cosmology, yet we still are not certain what the progenitor systems are. General plausibility arguments suggest there is potential for identifying double degenerate SN Ia progenitors in intermediate-age open star clusters. We present time-resolved high-resolution spectroscopy of two white dwarfs (WDs) in the field of the open cluster NGC 6633 that had previously been identified as candidate double degenerates in the cluster. However, three hours of continuous observations of each candidate failed to detect any significant radial velocity variations at the ≳10 km s-1 level, making it highly unlikely that either WD is a double degenerate that will merge within a Hubble Time. The WD LAWDS NGC 6633 4 has a radial velocity inconsistent with cluster membership at the 2.5σ level, while the radial velocity of LAWDS NGC 6633 7 is consistent with cluster membership. We conservatively conclude that LAWDS 7 is a viable massive double degenerate candidate, though unlikely to be a Type Ia progenitor. Astrometric data from GAIA will likely be needed to determine if either WD is truly a cluster member. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  4. RISK FACTORS AND CLINICAL SIGNIFICANCE OF PRECHOROIDAL CLEFT IN NEOVASCULAR AGE-RELATED MACULAR DEGENERATION.

    PubMed

    Kim, Jong Min; Kang, Se Woong; Son, Dae Yong; Bae, Kunho

    2017-11-01

    To investigate the risk factors associated with prechoroidal cleft occurrence after treatment for neovascular age-related macular degeneration (nAMD) and to elucidate its clinical significance. Two hundred thirty-four subjects who were treated for neovascular age-related macular degeneration were assessed to identify prechoroidal cleft on optical coherence tomography. Clinical variables were compared between patients manifesting a cleft (cleft group) and patients who did not (control group). Prechoroidal cleft was detected in 29 of 234 patients (8.1%). Although the baseline visual acuity was not different between the 2 groups, logMAR visual acuity at final visit was 0.89 ± 0.74 (with approximate Snellen equivalent of 20/160) in the cleft group and 0.65 ± 0.69 (with approximate Snellen equivalent of 20/100) in controls (P < 0.05). Within cleft group, the early-onset (<6 months) subgroup had even worse visual outcomes than the late-onset subgroup (P < 0.05). Multiple logistic regression analyses revealed that the incidence of prechoroidal cleft was positively correlated with having received intravitreal gas injection to displace a submacular hemorrhage and a diagnosis of retinal angiomatous proliferation and typical neovascular age-related macular degeneration (P < 0.05). Diagnosis of retinal angiomatous proliferation and typical neovascular age-related macular degeneration, and a submacular hemorrhage treated by pneumatic displacement were the independent risk factors for development of prechoroidal cleft. Eyes with a cleft, especially clefts that develop early, generally had worse prognoses than eyes without clefts.

  5. Inhibition of the Rho/ROCK pathway prevents neuronal degeneration in vitro and in vivo following methylmercury exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp; Usuki, Fusako; Kawamura, Miwako

    Methylmercury (MeHg) is an environmental neurotoxicant which induces neuropathological changes in both the central nervous and peripheral sensory nervous systems. Our recent study demonstrated that down-regulation of Ras-related C3 botulinum toxin substrate 1 (Rac1), which is known to promote neuritic extension, preceded MeHg-induced damage in cultured cortical neurons, suggesting that MeHg-mediated axonal degeneration is due to the disturbance of neuritic extension. Therefore we hypothesized that MeHg-induced axonal degeneration might be caused by neuritic extension/retraction incoordination. This idea brought our attention to the Ras homolog gene (Rho)/Rho-associated coiled coil-forming protein kinase (ROCK) pathway because it has been known to be associatedmore » with the development of axon and apoptotic neuronal cell death. Here we show that inhibition of the Rho/ROCK pathway prevents MeHg-intoxication both in vitro and in vivo. A Rho inhibitor, C3 toxin, and 2 ROCK inhibitors, Fasudil and Y-27632, significantly protected against MeHg-induced axonal degeneration and apoptotic neuronal cell death in cultured cortical neuronal cells exposed to 100 nM MeHg for 3 days. Furthermore, Fasudil partially prevented the loss of large pale neurons in dorsal root ganglia, axonal degeneration in dorsal spinal root nerves, and vacuolar degeneration in the dorsal columns of the spinal cord in MeHg-intoxicated model rats (20 ppm MeHg in drinking water for 28 days). Hind limb crossing sign, a characteristic MeHg-intoxicated sign, was significantly suppressed in this model. The results suggest that inhibition of the Rho/ROCK pathway rescues MeHg-mediated neuritic extension/retraction incoordination and is effective for the prevention of MeHg-induced axonal degeneration and apoptotic neuronal cell death.« less

  6. Degenerate SDEs with singular drift and applications to Heisenberg groups

    NASA Astrophysics Data System (ADS)

    Huang, Xing; Wang, Feng-Yu

    2018-09-01

    By using the ultracontractivity of a reference diffusion semigroup, Krylov's estimate is established for a class of degenerate SDEs with singular drifts, which leads to existence and pathwise uniqueness by means of Zvonkin's transformation. The main result is applied to singular SDEs on generalized Heisenberg groups.

  7. Infectious agents is a risk factor for myxomatous mitral valve degeneration: A case control study.

    PubMed

    Tiveron, Marcos Gradim; Pomerantzeff, Pablo Maria Alberto; de Lourdes Higuchi, Maria; Reis, Marcia Martins; de Jesus Pereira, Jaqueline; Kawakami, Joyce Tieko; Ikegami, Renata Nishiyama; de Almeida Brandao, Carlos Manuel; Jatene, Fabio Biscegli

    2017-04-21

    The etiology of myxomatous mitral valve degeneration (MVD) is not fully understood and may depend on time or environmental factors for which the interaction of infectious agents has not been documented. The purpose of the study is to analyze the effect of Mycoplasma pneumoniae (Mp), Chlamydophila pneumoniae (Cp) and Borrelia burgdorferi (Bb) on myxomatous mitral valve degeneration pathogenesis and establish whether increased in inflammation and collagen degradation in myxomatous mitral valve degeneration etiopathogenesis. An immunohistochemical test was performed to detect the inflammatory cells (CD20, CD45, CD68) and Mp, Bb and MMP9 antigens in two groups. The in situ hybridization was performed to detect Chlamydophila pneumoniae and the bacteria study was performed using transmission electron microscopy. Group 1 (n = 20), surgical specimen composed by myxomatous mitral valve degeneration, and group 2 (n = 20), autopsy specimen composed by normal mitral valve. The data were analyzed using SigmaStat version 20 (SPSS Inc., Chicago, IL, USA). The groups were compared using Student's t test, Mann-Whitney test. A correlation analysis was performed using Spearman's correlation test. P values lower than 0.05 were considered statistically significant. By immunohistochemistry, there was a higher inflammatory cells/mm2 for CD20 and CD45 in group 1, and CD68 in group 2. Higher number of Mp and Cp antigens was observed in group 1 and more Bb antigens was detected in group 2. The group 1 exhibited a positive correlation between the Bb and MVD percentage, between CD45 and Mp, and between MMP9 with Mp. These correlations were not observed in the group 2. Electron microscopy revealed the presence of structures compatible with microorganisms that feature Borrelia and Mycoplasma characteristics. The presence of infectious agents, inflammatory cells and collagenases in mitral valves appear to contribute to the pathogenesis of MVD. Mycoplasma pneumoniae was strongly related with

  8. Sudden acquired retinal degeneration syndrome in western Canada: 93 cases.

    PubMed

    Leis, Marina L; Lucyshyn, Danica; Bauer, Bianca S; Grahn, Bruce H; Sandmeyer, Lynne S

    2017-11-01

    This study reviewed clinical data from dogs diagnosed with sudden acquired retinal degeneration syndrome (SARDS) in western Canada. Medical records from the Western College of Veterinary Medicine from 2002 to 2016 showed that 93 cases of SARDS were diagnosed based on presentation for sudden blindness and a bilaterally extinguished electroretinogram. The most common pure breeds were the miniature schnauzer, dachshund, and pug. The mean age at diagnosis was 8.1 years and males and females were equally affected. Most of the dogs were presented with normal non-chromatic, but abnormal chromatic pupillary light reflexes. The incidence of retinal degeneration as detected via ophthalmoscopy increased over time after SARDS diagnosis. Polyuria, polydipsia, polyphagia, weight gain, elevated liver enzyme values, isosthenuria, and proteinuria were common clinical and laboratory findings. Chromatic pupillary light reflex testing may be more valuable than non-chromatic pupillary light testing in detecting pupil response abnormalities in dogs with SARDS, although electroretinography remains the definitive diagnostic test.

  9. Modulation of Mcl-1 expression reduces age-related cochlear degeneration

    PubMed Central

    Yang, Wei Ping; Xu, Yang; Guo, Wei Wei; Liu, Hui Zhan; Hu, Bo Hua

    2013-01-01

    Mcl-1 is an anti-apoptotic member of the Bcl-2 family that modulates apoptosis-related signaling pathways and promotes cell survival. We have previously demonstrated a reduction of Mcl-1 expression in aging cochleae. To investigate whether restoring Mcl-1 expression would reduce aging-related cochlear degeneration, we developed a rat model of Mcl-1 overexpression. A plasmid encoding human Mcl-1/enhanced green fluorescent protein was applied to the round window of the cochlea. This in vivo treatment transfected both the sensory and supporting cells of the cochlear sensory epithelium and enhanced Mcl-1 expression at both the mRNA and the protein level. The upregulation of Mcl-1 expression reduced the progression of age-related cochlear dysfunction and sensory cell death. Furthermore, the transfection of Mcl-1 exerted its protective effect by suppressing cochlear apoptosis at the mitochondrial level. This study demonstrates that the genetic modulation of Mcl-1 expression reduces the progression of age-related cochlear degeneration. PMID:23790646

  10. Sudden acquired retinal degeneration syndrome in western Canada: 93 cases

    PubMed Central

    Leis, Marina L.; Lucyshyn, Danica; Bauer, Bianca S.; Grahn, Bruce H.; Sandmeyer, Lynne S.

    2017-01-01

    This study reviewed clinical data from dogs diagnosed with sudden acquired retinal degeneration syndrome (SARDS) in western Canada. Medical records from the Western College of Veterinary Medicine from 2002 to 2016 showed that 93 cases of SARDS were diagnosed based on presentation for sudden blindness and a bilaterally extinguished electroretinogram. The most common pure breeds were the miniature schnauzer, dachshund, and pug. The mean age at diagnosis was 8.1 years and males and females were equally affected. Most of the dogs were presented with normal non-chromatic, but abnormal chromatic pupillary light reflexes. The incidence of retinal degeneration as detected via ophthalmoscopy increased over time after SARDS diagnosis. Polyuria, polydipsia, polyphagia, weight gain, elevated liver enzyme values, isosthenuria, and proteinuria were common clinical and laboratory findings. Chromatic pupillary light reflex testing may be more valuable than non-chromatic pupillary light testing in detecting pupil response abnormalities in dogs with SARDS, although electroretinography remains the definitive diagnostic test. PMID:29089658

  11. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides:

    NASA Astrophysics Data System (ADS)

    Chen, Junping; Patil, Swanand; Seal, Sudipta; McGinnis, James F.

    2006-11-01

    Photoreceptor cells are incessantly bombarded with photons of light, which, along with the cells' high rate of oxygen metabolism, continuously exposes them to elevated levels of toxic reactive oxygen intermediates (ROIs). Vacancy-engineered mixed-valence-state cerium oxide nanoparticles (nanoceria particles) scavenge ROIs. Our data show that nanoceria particles prevent increases in the intracellular concentrations of ROIs in primary cell cultures of rat retina and, in vivo, prevent loss of vision due to light-induced degeneration of photoreceptor cells. These data indicate that the nanoceria particles may be effective in inhibiting the progression of ROI-induced cell death, which is thought to be involved in macular degeneration, retinitis pigmentosa and other blinding diseases, as well as the ROI-induced death of other cell types in diabetes, Alzheimer's disease, atherosclerosis, stroke and so on. The use of nanoceria particles as a direct therapy for multiple diseases represents a novel strategy and suggests that they may represent a unique platform technology.

  12. Fin degeneration of young-of-the-year Alosa pseudoharengus (Clupeidae) in southern Lake Michigan

    USGS Publications Warehouse

    Brown, Edward H.; Norden, Carroll R.

    1970-01-01

    Young-of-the-year alewives, Alosa pseudoharengus, with extremely shortened caudal fins were observed at four locations in southern Lake Michigan between 1964 and 1968. Some of the fins appeared stunted or underdeveloped, but microscopic examination revealed a deterioration of the fins and not an ontogenetic abnormality. Deterioration of the caudal fin was frequently accompanied by degeneration of the dorsal and anal fins. Degenerate fins were not found on other species nor on older alewives, with the exception of one known yearling alewife at Waukegan and possibly a few of the larger fish at Milwaukee.

  13. Density matrix renormalization group for a highly degenerate quantum system: Sliding environment block approach

    NASA Astrophysics Data System (ADS)

    Schmitteckert, Peter

    2018-04-01

    We present an infinite lattice density matrix renormalization group sweeping procedure which can be used as a replacement for the standard infinite lattice blocking schemes. Although the scheme is generally applicable to any system, its main advantages are the correct representation of commensurability issues and the treatment of degenerate systems. As an example we apply the method to a spin chain featuring a highly degenerate ground-state space where the new sweeping scheme provides an increase in performance as well as accuracy by many orders of magnitude compared to a recently published work.

  14. Present and future treatment possibilities in macular degeneration

    NASA Astrophysics Data System (ADS)

    Fisher, E.; Wegner, A.; Pfeiler, T.; Mertz, M.

    2005-11-01

    Purpose: To discuss present and future treatment possibilities in different types of choroidal neovascularisation. Methods: Presented are angiographic- and OCT-findings in patients with macular degeneration of different origin. Choroidal neovascularisations, which are not likely to respond positively to established procedures like thermal laser coagulation or photodynamic therapy will be discussed. Results and conclusions: Present study-guidelines and new methods of pharmacological intervention are analysed in different patterns of macular degeneration. Conventional laser coagulation in the treatment of classic, extrafoveal CNV and photodynamic therapy of predominantly classic subfoveal CNV still represent a gold standard. There are new recommendations, loosening the tight criteria of the TAP and VIP-guidelines, which cover, for instance, wider visual acuity ranges and the treatment of juxtafoveally located choroidal neovascularisations. Positive findings in literature confirm the role of PDT in pathologic myopia and other non-AMD CNV. Studies about surgical procedures, like macula- or RPE-translocation after surgical removal or thermal laser destruction of the CNV are in progress and are expected to show promising results. Phase II/III studies will soon point out the effect of anti-VEGF agents. The application of intravitreal (triamcinolone) or peribulbar (anecortave acetat) steroids could be useful. The combination with surgical or laser techniques could bring further benefit to the patient.

  15. Modulated heavy nucleus-acoustic waves and associated rogue waves in a degenerate relativistic quantum plasma system

    NASA Astrophysics Data System (ADS)

    Sultana, S.; Islam, S.; Mamun, A. A.; Schlickeiser, R.

    2018-01-01

    A theoretical and numerical investigation has been carried out on amplitude modulated heavy nucleus-acoustic envelope solitons (HNAESs) in a degenerate relativistic quantum plasma (DRQP) system containing relativistically degenerate electrons and light nuclei, and non-degenerate mobile heavy nuclei. The cubic nonlinear Schrödinger equation, describing the nonlinear dynamics of the heavy nucleus-acoustic waves (HNAWs), is derived by employing a multi-scale perturbation technique. The dispersion relation for the HNAWs is derived, and the criteria for the occurrence of modulational instability of the HNAESs are analyzed. The localized structures (viz., envelope solitons and associated rogue waves) are found to be formed in the DRQP system under consideration. The basic features of the amplitude modulated HNAESs and associated rogue waves formed in realistic DRQP systems are briefly discussed.

  16. Auditory analysis of xeroderma pigmentosum 1971–2012: hearing function, sun sensitivity and DNA repair predict neurological degeneration

    PubMed Central

    Totonchy, Mariam B.; Tamura, Deborah; Pantell, Matthew S.; Zalewski, Christopher; Bradford, Porcia T.; Merchant, Saumil N.; Nadol, Joseph; Khan, Sikandar G.; Schiffmann, Raphael; Pierson, Tyler Mark; Wiggs, Edythe; Griffith, Andrew J.; DiGiovanna, John J.; Brewer, Carmen C.

    2013-01-01

    To assess the role of DNA repair in maintenance of hearing function and neurological integrity, we examined hearing status, neurological function, DNA repair complementation group and history of acute burning on minimal sun exposure in all patients with xeroderma pigmentosum, who had at least one complete audiogram, examined at the National Institutes of Health from 1971 to 2012. Seventy-nine patients, aged 1–61 years, were diagnosed with xeroderma pigmentosum (n = 77) or xeroderma pigmentosum/Cockayne syndrome (n = 2). A total of 178 audiograms were included. Clinically significant hearing loss (>20 dB) was present in 23 (29%) of 79 patients. Of the 17 patients with xeroderma pigmentosum-type neurological degeneration, 13 (76%) developed hearing loss, and all 17 were in complementation groups xeroderma pigmentosum type A or type D and reported acute burning on minimal sun exposure. Acute burning on minimal sun exposure without xeroderma pigmentosum-type neurological degeneration was present in 18% of the patients (10/55). Temporal bone histology in a patient with severe xeroderma pigmentosum-type neurological degeneration revealed marked atrophy of the cochlear sensory epithelium and neurons. The 19-year mean age of detection of clinically significant hearing loss in the patients with xeroderma pigmentosum with xeroderma pigmentosum-type neurological degeneration was 54 years younger than that predicted by international norms. The four frequency (0.5/1/2/4 kHz) pure-tone average correlated with degree of neurodegeneration (P < 0.001). In patients with xeroderma pigmentosum, aged 4–30 years, a four-frequency pure-tone average ≥10 dB hearing loss was associated with a 39-fold increased risk (P = 0.002) of having xeroderma pigmentosum-type neurological degeneration. Severity of hearing loss parallels neurological decline in patients with xeroderma pigmentosum-type neurological degeneration. Audiometric findings, complementation group, acute burning on minimal

  17. Corneal and Retinal Neuronal Degeneration in Early Stages of Diabetic Retinopathy.

    PubMed

    Srinivasan, Sangeetha; Dehghani, Cirous; Pritchard, Nicola; Edwards, Katie; Russell, Anthony W; Malik, Rayaz A; Efron, Nathan

    2017-12-01

    To examine the neuronal structural integrity of cornea and retina as markers for neuronal degeneration in nonproliferative diabetic retinopathy (NPDR). Participants were recruited from the broader Brisbane community, Queensland, Australia. Two hundred forty-one participants (187 with diabetes and 54 nondiabetic controls) were examined. Diabetic retinopathy (DR) was graded according to the Early Treatment Diabetic Retinopathy Study (ETDRS) scale. Corneal nerve fiber length (CNFL), corneal nerve branch density (CNBD), corneal nerve fiber tortuosity (CNFT), full retinal thickness, retinal nerve fiber layer (RNFL), ganglion cell complex (GCC), focal (FLV) and global loss volumes (GLV), hemoglobin A1c (HbA1c), nephropathy, neuropathy, and cardiovascular measures were examined. The central zone (P = 0.174), parafoveal thickness (P = 0.090), perifovea (P = 0.592), RNFL (P = 0.866), GCC (P = 0.798), and GCC GLV (P = 0.338) did not differ significantly between the groups. In comparison to the control group, those with very mild NPDR and those with mild NPDR had significantly higher focal loss in GCC volume (P = 0.036). CNFL was significantly lower in those with mild NPDR (P = 0.004) in comparison to the control group and those with no DR. The CNBD (P = 0.094) and CNFT (P = 0.458) did not differ between the groups. Both corneal and retinal neuronal degeneration may occur in early stages of diabetic retinopathy. Further studies are required to examine these potential markers for neuronal degeneration in the absence of clinical signs of DR.

  18. Optical imaging of articular cartilage degeneration using near-infrared dipicolylamine probes.

    PubMed

    Hu, Xiang; Wang, Qian; Liu, Yang; Liu, Hongguang; Qin, Chunxia; Cheng, Kai; Robinson, William; Gray, Brian D; Pak, Koon Y; Yu, Aixi; Cheng, Zhen

    2014-08-01

    Articular cartilage is the hydrated tissue that lines the ends of long bones in load bearing joints and provides joints with a smooth, nearly frictionless gliding surface. However, the deterioration of articular cartilage occurs in the early stages of osteoarthritis (OA) and is clinically and radiographically silent. Here two cationic near infrared fluorescent (NIRF) dipicolylamine (DPA) probes, Cy5-DPA-Zn and Cy7-DPA-Zn, were prepared for cartilage degeneration imaging and OA early detection through binding to the anionic glycosaminoglycans (GAGs). The feasibility of NIRF dye labeled DPA-Zn probes for cartilage degeneration imaging was examined ex vivo and in vivo. The ex vivo studies showed that Cy5-DPA-Zn and Cy7-DPA-Zn not only showed the high uptake and electrostatic attractive binding to cartilage, but also sensitively reflected the change of GAGs contents. In vivo imaging study further indicated that Cy5-DPA-Zn demonstrated higher uptake and retention in young mice (high GAGs) than old mice (low GAGs) when administrated via local injection in mouse knee joints. More importantly, Cy5-DPA-Zn showed dramatic higher signals in sham joint (high GAGs) than OA side (low GAGs), through sensitive reflecting the change of GAGs in the surgical induced OA models. In summary, Cy5-DPA-Zn provides promising visual detection for early cartilage pathological degeneration in living subjects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Changes in intrinsic excitability of ganglion cells in degenerated retinas of RCS rats

    PubMed Central

    Ren, Yi-Ming; Weng, Chuan-Huang; Zhao, Cong-Jian; Yin, Zheng-Qin

    2018-01-01

    AIM To evaluate the intrinsic excitability of retinal ganglion cells (RGCs) in degenerated retinas. METHODS The intrinsic excitability of various morphologically defined RGC types using a combination of patch-clamp recording and the Lucifer yellow tracer in retinal whole-mount preparations harvested from Royal College of Surgeons (RCS) rats, a common retinitis pigmentosa (RP) model, in a relatively late stage of retinal degeneration (P90) were investigated. Several parameters of RGC morphologies and action potentials (APs) were measured and compared to those of non-dystrophic control rats, including dendritic stratification, dendritic field diameter, peak amplitude, half width, resting membrane potential, AP threshold, depolarization to threshold, and firing rates. RESULTS Compared with non-dystrophic control RGCs, more depolarizations were required to reach the AP threshold in RCS RGCs with low spontaneous spike rates and in RCS OFF cells (especially A2o cells), and RCS RGCs maintained their dendritic morphologies, resting membrane potentials and capabilities to generate APs. CONCLUSION RGCs are relatively well preserved morphologically and functionally, and some cells are more susceptible to decreased excitability during retinal degeneration. These findings provide valuable considerations for optimizing RP therapeutic strategies. PMID:29862172

  20. Changes in intrinsic excitability of ganglion cells in degenerated retinas of RCS rats.

    PubMed

    Ren, Yi-Ming; Weng, Chuan-Huang; Zhao, Cong-Jian; Yin, Zheng-Qin

    2018-01-01

    To evaluate the intrinsic excitability of retinal ganglion cells (RGCs) in degenerated retinas. The intrinsic excitability of various morphologically defined RGC types using a combination of patch-clamp recording and the Lucifer yellow tracer in retinal whole-mount preparations harvested from Royal College of Surgeons (RCS) rats, a common retinitis pigmentosa (RP) model, in a relatively late stage of retinal degeneration (P90) were investigated. Several parameters of RGC morphologies and action potentials (APs) were measured and compared to those of non-dystrophic control rats, including dendritic stratification, dendritic field diameter, peak amplitude, half width, resting membrane potential, AP threshold, depolarization to threshold, and firing rates. Compared with non-dystrophic control RGCs, more depolarizations were required to reach the AP threshold in RCS RGCs with low spontaneous spike rates and in RCS OFF cells (especially A2o cells), and RCS RGCs maintained their dendritic morphologies, resting membrane potentials and capabilities to generate APs. RGCs are relatively well preserved morphologically and functionally, and some cells are more susceptible to decreased excitability during retinal degeneration. These findings provide valuable considerations for optimizing RP therapeutic strategies.

  1. Current knowledge and trends in age-related macular degeneration: today's and future treatments.

    PubMed

    Velez-Montoya, Raul; Oliver, Scott C N; Olson, Jeffrey L; Fine, Stuart L; Mandava, Naresh; Quiroz-Mercado, Hugo

    2013-09-01

    To address the most dynamic and current issues concerning today's treatment options and promising research efforts regarding treatment for age-related macular degeneration. This review is aimed to serve as a practical reference for more in-depth reviews on the subject. An online review of the database PubMed and Ovid were performed, searching for the key words age-related macular degeneration, AMD, VEGF, treatment, PDT, steroids, bevacizumab, ranibizumab, VEGF-trap, radiation, combined therapy, as well as their compound phrases. The search was limited to articles published since 1985. All returned articles were carefully screened, and their references were manually reviewed for additional relevant data. The web page www.clinicaltrials.gov was also accessed in search of relevant research trials. A total of 363 articles were reviewed, including 64 additional articles extracted from the references. At the end, only 160 references were included in this review. Treatment for age-related macular degeneration is a very dynamic research field. While current treatments are mainly aimed at blocking vascular endothelial growth factor, future treatments seek to prevent vision loss because of scarring. Promising efforts have been made to address the dry form of the disease, which has lacked effective treatment.

  2. Psychosocial Intervention for Age-Related Macular Degeneration: A Pilot Project

    ERIC Educational Resources Information Center

    Wahl, Hans-Werner; Kammerer, Annette; Holz, Frank; Miller, Daniel; Becker, Stefanie; Kaspar, Roman; Himmelsbach, Ines

    2006-01-01

    This study evaluated an emotion-focused and a problem-focused intervention designed for patients with age-related macular degeneration. It found a limited decrease in depression in the emotion-focused group and an increase in active problem orientation and in adaptation to vision loss in the problem-focused group.

  3. Correlation between radiographic findings of osteoarthritis and arthroscopic findings of articular cartilage degeneration within the patellofemoral joint.

    PubMed

    Kijowski, Richard; Blankenbaker, Donna; Stanton, Paul; Fine, Jason; De Smet, Arthur

    2006-12-01

    To correlate radiographic findings of osteoarthritis on axial knee radiographs with arthroscopic findings of articular cartilage degeneration within the patellofemoral joint in patients with chronic knee pain. The study group consisted of 104 patients with osteoarthritis of the patellofemoral joint and 30 patients of similar age with no osteoarthritis of the patellofemoral joint. All patients in the study group had an axial radiograph of the knee performed prior to arthroscopic knee surgery. At the time of arthroscopy, each articular surface of the patellofemoral joint was graded using the Noyes classification system. Two radiologists retrospectively reviewed the knee radiographs to determine the presence of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts. The sensitivity and specificity of the various radiographic features of osteoarthritis for the detection of articular cartilage degeneration within the patellofemoral joint were determined. The sensitivity of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts for the detection of articular cartilage degeneration within the patellofemoral joint was 73%, 37%, 4%, and 0% respectively. The specificity of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts for the detection of articular cartilage degeneration within the patellofemoral joint was 67%, 90%, 100%, and 100% respectively. Marginal osteophytes were the most sensitive radiographic feature for the detection of articular cartilage degeneration within the patellofemoral joint. Joint-space narrowing, subchondral sclerosis, and subchondral cysts were insensitive radiographic features of osteoarthritis, and rarely occurred in the absence of associated osteophyte formation.

  4. An autopsy case of minamata disease (methylmercury poisoning)--pathological viewpoints of peripheral nerves.

    PubMed

    Eto, Komyo; Tokunaga, Hidehiro; Nagashima, Kazuo; Takeuchi, Tadao

    2002-01-01

    The outbreak of methylmercury poisoning in the geographic areas around Minamata Bay, Kumamoto, Japan in the 1950s has become known as Minamata disease. Based on earlier reports and extensive pathological studies on autopsied cases at the Kumamoto University School of Medicine, destructive lesions in the anterior portion of the calcarine cortex and depletion predominantly of granular cells in the cerebellar cortex came to be recognized as the hallmark and diagnostic yardstick of methylmercury poisoning in humans. As the number of autopsy cases of Minamata disease increased, it became apparent that the cerebral lesion was not restricted to the calcarine cortex but was relatively widespread. Less severe lesions, believed to be responsible for the motor symptoms of Minamata patients, were often found in the precentral, postcentral, and lateral temporal cortices. These patients also frequently presented with signs of sensory neuropathy affecting the distal extremities. Because of few sufficiently comprehensive studies, peripheral nerve degeneration has not been universally accepted as a cause of the sensory disturbances in Minamata patients. The present paper describes both biopsy and autopsy findings of the peripheral nerves in a male fisherman who died at the age of 64 years and showed the characteristic central nervous system lesions of Minamata disease at autopsy. A sural nerve biopsy with electron microscopy performed 1 month prior to his death showed endoneurial fibrosis and regenerated myelin sheaths. At autopsy the dorsal roots and sural nerve showed endoneurial fibrosis, loss of nerve fibers, and presence of Büngner's bands. The spinal cord showed Wallerian degeneration of the fasciculus gracilis (Goll's tract) with relative preservation of neurons in sensory ganglia. These findings support the contention that there is peripheral nerve degeneration in Minamata patients due to toxic injury from methylmercury.

  5. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1.

    PubMed

    Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H

    2016-04-01

    Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. The influence of velocity-changing collisions on resonant degenerate four-wave mixing

    NASA Technical Reports Server (NTRS)

    Richardson, W. H.; Maleki, L.; Garmire, Elsa

    1989-01-01

    The phase-conjugate signal observed in resonant degenerate four-wave mixing on the 6 3P2 to 7 3S1 transition of atomic Hg in an Hg-Ar discharge is investigated. At a fixed Ar pressure the variation of the signal with pump powers is explained by a model that includes the effects of velocity-changing collisions (VCCs). As the Ar pressure was varied from 0 to 1 torr, an increase in the phase-conjugate signal was observed and is ascribed to a change in the discharge dynamics with Ar pressure and to the influence of VCCs. To further clarify the role of collisions and optical pumping, degenerate four-wave mixing spectra are examined as a function of pump power. Line shapes are briefly discussed.

  7. Frontotemporal Degeneration in a Child.

    PubMed

    Terrill, Tyler; Pascual, Juan M

    2017-07-01

    There is a predilection for the frontal and temporal lobes in certain cases of dementia in the adult, leading to the syndrome of frontotemporal dementia. However, this syndrome has seemed to elude the developing brain until now. We describe an example of apparently selective neurodegeneration of the frontal and temporal regions during development associated with some of the clinical, magnetic resonance imaging, and fludeoxyglucose positron emission tomography (FDG PET) scan features of canonical frontotemporal dementia in the adult. This patient does not have any of the common frontotemporal dementia-causing mutations or known progressive brain disorders of children. This patient illustrates that symptomatic, selective, and progressive vulnerability of the frontal and temporal lobes is not restricted to adulthood, expanding the phenotype of frontotemporal degeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Eigenstate Thermalization for Degenerate Observables

    NASA Astrophysics Data System (ADS)

    Anza, Fabio; Gogolin, Christian; Huber, Marcus

    2018-04-01

    Under unitary time evolution, expectation values of physically reasonable observables often evolve towards the predictions of equilibrium statistical mechanics. The eigenstate thermalization hypothesis (ETH) states that this is also true already for individual energy eigenstates. Here we aim at elucidating the emergence of the ETH for observables that can realistically be measured due to their high degeneracy, such as local, extensive, or macroscopic observables. We bisect this problem into two parts, a condition on the relative overlaps and one on the relative phases between the eigenbases of the observable and Hamiltonian. We show that the relative overlaps are unbiased for highly degenerate observables and demonstrate that unless relative phases conspire to cumulative effects, this makes such observables verify the ETH. Through this we elucidate potential pathways towards proofs of thermalization.

  9. Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration.

    PubMed

    Bernard-Marissal, Nathalie; Médard, Jean-Jacques; Azzedine, Hamid; Chrast, Roman

    2015-04-01

    Mutations in Sigma 1 receptor (SIGMAR1) have been previously identified in patients with amyotrophic lateral sclerosis and disruption of Sigmar1 in mouse leads to locomotor deficits. However, cellular mechanisms underlying motor phenotypes in human and mouse with disturbed SIGMAR1 function have not been described so far. Here we used a combination of in vivo and in vitro approaches to investigate the role of SIGMAR1 in motor neuron biology. Characterization of Sigmar1(-/-) mice revealed that affected animals display locomotor deficits associated with muscle weakness, axonal degeneration and motor neuron loss. Using primary motor neuron cultures, we observed that pharmacological or genetic inactivation of SIGMAR1 led to motor neuron axonal degeneration followed by cell death. Disruption of SIGMAR1 function in motor neurons disturbed endoplasmic reticulum-mitochondria contacts, affected intracellular calcium signalling and was accompanied by activation of endoplasmic reticulum stress and defects in mitochondrial dynamics and transport. These defects were not observed in cultured sensory neurons, highlighting the exacerbated sensitivity of motor neurons to SIGMAR1 function. Interestingly, the inhibition of mitochondrial fission was sufficient to induce mitochondria axonal transport defects as well as axonal degeneration similar to the changes observed after SIGMAR1 inactivation or loss. Intracellular calcium scavenging and endoplasmic reticulum stress inhibition were able to restore mitochondrial function and consequently prevent motor neuron degeneration. These results uncover the cellular mechanisms underlying motor neuron degeneration mediated by loss of SIGMAR1 function and provide therapeutically relevant insight into motor neuronal diseases. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Mutations in PNPLA6 are linked to photoreceptor degeneration and various forms of childhood blindness

    PubMed Central

    Kmoch, S.; Majewski, J.; Ramamurthy, V.; Cao, S.; Fahiminiya, S.; Ren, H.; MacDonald, I.M.; Lopez, I.; Sun, V.; Keser, V.; Khan, A.; Stránecký, V.; Hartmannová, H.; Přistoupilová, A.; Hodaňová, K.; Piherová, L.; Kuchař, L.; Baxová, A.; Chen, R.; Barsottini, O.G.P.; Pyle, A.; Griffin, H.; Splitt, M.; Sallum, J.; Tolmie, J.L.; Sampson, J.R.; Chinnery, P.; Canada, Care4Rare; Banin, E.; Sharon, D.; Dutta, S.; Grebler, R.; Helfrich-Foerster, C.; Pedroso, J.L.; Kretzschmar, D.; Cayouette, M.; Koenekoop, R.K.

    2015-01-01

    Blindness due to retinal degeneration affects millions of people worldwide, but many disease-causing mutations remain unknown. PNPLA6 encodes the patatin-like phospholipase domain containing protein 6, also known as neuropathy target esterase (NTE), which is the target of toxic organophosphates that induce human paralysis due to severe axonopathy of large neurons. Mutations in PNPLA6 also cause human spastic paraplegia characterized by motor neuron degeneration. Here we identify PNPLA6 mutations in childhood blindness in seven families with retinal degeneration, including Leber congenital amaurosis and Oliver McFarlane syndrome. PNPLA6 localizes mostly at the inner segment plasma membrane in photo-receptors and mutations in Drosophila PNPLA6 lead to photoreceptor cell death. We also report that lysophosphatidylcholine and lysophosphatidic acid levels are elevated in mutant Drosophila. These findings show a role for PNPLA6 in photoreceptor survival and identify phospholipid metabolism as a potential therapeutic target for some forms of blindness. PMID:25574898

  11. Pathological findings of uterine tumors preoperatively diagnosed as red degeneration of leiomyoma by MRI.

    PubMed

    Nakai, Go; Yamada, Takashi; Hamada, Takamitsu; Atsukawa, Natsuko; Tanaka, Yoshikazu; Yamamoto, Kiyohito; Higashiyama, Akira; Juri, Hiroshi; Nakamoto, Atsushi; Yamamoto, Kazuhiro; Hirose, Yoshinobu; Ohmichi, Masahide; Narumi, Yoshifumi

    2017-07-01

    Venous infarction of a leiomyoma is known as red degeneration of leiomyoma (RDL) and can be a cause of acute abdomen. Although magnetic resonance imaging (MRI) is the only modality that can depict the inner condition of a leiomyoma, the typical MR findings of RDL are sometimes identified incidentally even in asymptomatic patients. The purpose of this study is to clarify common pathological findings of uterine tumors preoperatively diagnosed as RDL by MRI. We diagnosed 28 cases of RDL by MRI from March 2007 to April 2015. The ten lesions subjected to pathological analysis after resection were included in the study and reviewed by a gynecological pathologist. The average time from MRI to operation was 4.7 months. The typical beefy-red color was not observed on the cut surface of the tumor except in one tumor resected during the acute phase. All lesions diagnosed as RDL by MRI had common pathological findings consistent with red degeneration of leiomyoma, including coagulative necrosis. Other common pathological features of RDL besides extensive coagulative necrosis appear to be a lack of inflammatory cell infiltrate or hemorrhage in the entire lesion. Although RDL is known to cause acute abdomen, its typical MR findings can be observed even in asymptomatic patients in a condition that manifests long after red degeneration. The characteristic pathological findings in both the acute phase and the chronic phase that we found in this study, along with radiology reports, will be helpful references for gynecologists and pathologists in suspecting a history of red degeneration and confirming the diagnosis.

  12. Relationship between patellar mobility and patellofemoral joint cartilage degeneration after anterior cruciate ligament reconstruction.

    PubMed

    Ota, Susumu; Kurokouchi, Kazutoshi; Takahashi, Shigeo; Yoda, Masaki; Yamamoto, Ryuichiro; Sakai, Tadahiro

    2017-11-01

    Patellofemoral cartilage degeneration is a potential complication of anterior cruciate ligament reconstruction (ACLR) surgery. Hypomobility of the patella in the coronal plane is often observed after ACLR. Few studies, however, have examined the relationship between cartilage degeneration in the patellofemoral joint and mobility after ACLR. The present study investigated 1) the coronal mobility of the patella after ACLR, 2) the relationship between patellar mobility and cartilage degeneration of the patellofemoral joint, and 3) the relationship between patellar mobility and knee joint function after ACLR. Forty patients who underwent medial hamstring-based ACLR participated in the study. Lateral and medial patellar displacements were assessed with a modified patellofemoral arthrometer, and the absolute values of the displacements were normalized to patient height. The International Cartilage Repair Society (ICRS) cartilage injury classification of the patellar and femoral (trochlear) surfaces, and the Lysholm Knee Scoring Scale were used to evaluate knee function. Lateral and medial patellar displacements were reduced compared with the non-operated knee at the second-look arthroscopy and bone staple extraction operation (second operation; 24.4 ± 7.9 months after ACLR, P<0.01). The ICRS grades of the patellofemoral joint (patella and trochlea) were significantly worse than those pre-ACLR. Neither lateral nor medial patellar mobility, however, were significantly correlated with the ICRS grade or the Lysholm score. Although patellar mobility at approximately 2 years after ACLR was decreased compared to the non-operated knee, small displacement of the patella was not related to cartilage degeneration or knee joint function at the time of the second operation.

  13. Coordinate and synergistic effects of extensive treadmill exercise and ovariectomy on articular cartilage degeneration.

    PubMed

    Miyatake, Kazumasa; Muneta, Takeshi; Ojima, Miyoko; Yamada, Jun; Matsukura, Yu; Abula, Kahaer; Sekiya, Ichiro; Tsuji, Kunikazu

    2016-05-31

    Although osteoarthritis (OA) is a multifactorial disease, little has been reported regarding the cooperative interaction among these factors on cartilage metabolism. Here we examined the synergistic effect of ovariectomy (OVX) and excessive mechanical stress (forced running) on articular cartilage homeostasis in a mouse model resembling a human postmenopausal condition. Mice were randomly divided into four groups, I: Sham, II: OVX, III: Sham and forced running (60 km in 6 weeks), and IV: OVX and forced running. Histological and immunohistochemical analyses were performed to evaluate the degeneration of articular cartilage and synovitis in the knee joint. Morphological changes of subchondral bone were analyzed by micro-CT. Micro-CT analyses showed significant loss of metaphyseal trabecular bone volume/tissue volume (BV/TV) after OVX as described previously. Forced running increased the trabecular BV/TV in all mice. In the epiphyseal region, no visible alteration in bone morphology or osteophyte formation was observed in any of the four groups. Histological analysis revealed that OVX or forced running respectively had subtle effects on cartilage degeneration. However, the combination of OVX and forced running synergistically enhanced synovitis and articular cartilage degeneration. Although morphological changes in chondrocytes were observed during OA initiation, no signs of bone marrow edema were observed in any of the four experimental groups. We report the coordinate and synergistic effects of extensive treadmill exercise and ovariectomy on articular cartilage degeneration. Since no surgical procedure was performed on the knee joint directly in this model, this model is useful in addressing the molecular pathogenesis of naturally occurring OA.

  14. Development of Choroidal Neovascularization in rats with Advanced Intense Cyclic Light-induced Retinal Degeneration

    PubMed Central

    Albert, Daniel M.; Neekhra, Aneesh; Wang, Shoujian; Darjatmoko, Soesiawati R.; Sorenson, Christine M.; Dubielzig, Richard R.; Sheibani, Nader

    2010-01-01

    Objective To study the progressive changes of intense cyclic light-induced retinal degeneration and determine whether it results in choroidal neovascularization (CNV). Methods Albino rats were exposed to 12 h of 3000 lux cyclic light for 1, 3, or 6 months. Prior to euthanization, fundus examination, fundus photographs, fluorescein and indocyanine green angiography, and Optical Coherence Tomography (OCT) evaluations were performed. Light exposed animals were euthanized after 1, 3, or 6 months for histopathological evaluation. Retinas were examined for the presence of 4-hydroxy-2-nonenal (HNE) and nitrotyrosine modified proteins by immunofluorescence staining. Results Chronic intense cyclic light exposure resulted in retinal degeneration with loss of the outer segments of photoreceptors and approximately two-thirds of the outer nuclear layer (ONL) and development of sub-retinal pigment epithelium (RPE) neovascularization after 1 month. Almost the entire ONL was absent with the presence of CNV, which penetrated Bruch’s membrane and extended into the outer retina after 3 months. Absence of the ONL, multiple foci of CNV, RPE fibrous metaplasia, and connective tissue bands containing blood vessels extending into the retina were observed after 6 months. All intense light exposed animals showed an increased presence of HNE and nitrotyrosine staining. OCT and angiographic studies confirmed retinal thinning and leakiness of the newly fromed blood vessels. Conclusions Our results suggest albino rats develop progressive stages of retinal degeneration and CNV after chronic intense cyclic light exposure allowing the detailed study of the pathogenesis and treatment of age-related macular degeneration. PMID:20142545

  15. Protective effects of a grape-supplemented diet in a mouse model of retinal degeneration.

    PubMed

    Patel, Amit K; Davis, Ashley; Rodriguez, Maria Esperanza; Agron, Samantha; Hackam, Abigail S

    2016-03-01

    Retinal degenerations are a class of devastating blinding diseases that are characterized by photoreceptor dysfunction and death. In this study, we tested whether grape consumption, in the form of freeze-dried grape powder (FDGP), improves photoreceptor survival in a mouse model of retinal degeneration. Retinal degeneration was induced in mice by acute oxidative stress using subretinal injection of paraquat. The grape-supplemented diet was made by formulating base mouse chow with FDGP, corresponding to three daily human servings of grapes, and a control diet was formulated with equivalent sugar composition as FDGP (0.68% glucose-0.68% fructose mixture). Mice were placed on the diets at weaning for 5 wk before oxidative stress injury until analysis at 2 wk post-injection. Retinal function was measured using electroretinography, thickness of the photoreceptor layer was measured using optical coherence tomography, and rows of photoreceptor nuclei were counted on histologic sections. In mice fed the control diet, oxidative stress significantly reduced photoreceptor layer thickness and photoreceptor numbers. In contrast, retinal thickness and photoreceptor numbers were not reduced by oxidative stress in mice on the grape-supplemented diet, indicating significantly higher photoreceptor survival after injury than mice on the control diet. Furthermore, mice on the grape diet showed preservation of retinal function after oxidative stress injury compared with mice on the control diet. A diet supplemented with grapes rescued retinal structure and function in an oxidative stress-induced mouse model of retinal degeneration, which demonstrates the beneficial effect of grapes on photoreceptors. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. ATR localizes to the photoreceptor connecting cilium and deficiency leads to severe photoreceptor degeneration in mice.

    PubMed

    Valdés-Sánchez, Lourdes; De la Cerda, Berta; Diaz-Corrales, Francisco J; Massalini, Simone; Chakarova, Christina F; Wright, Alan F; Bhattacharya, Shomi S

    2013-04-15

    Ataxia-telangiectasia and Rad3 (ATR), a sensor of DNA damage, is associated with the regulation and control of cell division. ATR deficit is known to cause Seckel syndrome, characterized by severe proportionate short stature and microcephaly. We used a mouse model for Seckel disease to study the effect of ATR deficit on retinal development and function and we have found a new role for ATR, which is critical for the postnatal development of the photoreceptor (PR) layer in mouse retina. The structural and functional characterization of the ATR(+/s) mouse retinas displayed a specific, severe and early degeneration of rod and cone cells resembling some characteristics of human retinal degenerations. A new localization of ATR in the cilia of PRs and the fact that mutant mice have shorter cilia suggests that the PR degeneration here described results from a ciliary defect.

  17. A note on the relative rates of degeneration in the crossed and the uncrossed retinofugal fibres in the opossum Didelphis marsupialis.

    PubMed

    Guillery, R W; Cavalcante, L A

    1995-03-01

    The rates at which the crossed and the uncrossed components of the retinofugal pathway degenerate in Didelphis has been studied by light and electron microscopical methods. We have found that in Didelphis, as in Monodelphis the two components can be clearly distinguished at the level of the chiasm. However, in contrast to the situation previously described for Monodelphis, where the uncrossed component degenerates more rapidly than the crossed, both components degenerate at the same rate.

  18. Short-interfering RNAs Induce Retinal Degeneration via TLR3 and IRF3

    PubMed Central

    Kleinman, Mark E; Kaneko, Hiroki; Cho, Won Gil; Dridi, Sami; Fowler, Benjamin J; Blandford, Alexander D; Albuquerque, Romulo JC; Hirano, Yoshio; Terasaki, Hiroko; Kondo, Mineo; Fujita, Takashi; Ambati, Balamurali K; Tarallo, Valeria; Gelfand, Bradley D; Bogdanovich, Sasha; Baffi, Judit Z; Ambati, Jayakrishna

    2012-01-01

    The discovery of sequence-specific gene silencing by endogenous double-stranded RNAs (dsRNA) has propelled synthetic short-interfering RNAs (siRNAs) to the forefront of targeted pharmaceutical engineering. The first clinical trials utilized 21-nucleotide (nt) siRNAs for the treatment of neovascular age-related macular degeneration (AMD). Surprisingly, these compounds were not formulated for cell permeation, which is required for bona fide RNA interference (RNAi). We showed that these “naked” siRNAs suppress neovascularization in mice not via RNAi but via sequence-independent activation of cell surface Toll-like receptor-3 (TLR3). Here, we demonstrate that noninternalized siRNAs induce retinal degeneration in mice by activating surface TLR3 on retinal pigmented epithelial cells. Cholesterol conjugated siRNAs capable of cell permeation and triggering RNAi also induce the same phenotype. Retinal degeneration was not observed after treatment with siRNAs shorter than 21-nts. Other cytosolic dsRNA sensors are not critical to this response. TLR3 activation triggers caspase-3-mediated apoptotic death of the retinal pigment epithelium (RPE) via nuclear translocation of interferon regulatory factor-3. While this unexpected adverse effect of siRNAs has implications for future clinical trials, these findings also introduce a new preclinical model of geographic atrophy (GA), a late stage of dry AMD that causes blindness in millions worldwide. PMID:21988875

  19. Generation of squeezed microwave states by a dc-pumped degenerate parametric Josephson junction oscillator

    NASA Astrophysics Data System (ADS)

    Kaertner, Franz X.; Russer, Peter

    1990-11-01

    The master equation for a dc-pumped degenerate Josephson parametric amplifier is derived. It is shown that the Wigner distribution representation of this master equation can be approximated by a Fokker-Planck equation. By using this equation, the dynamical behavior of this degenerate Josephson amplifier with respect to squeezing of the radiation field is investigated. It is shown that below threshold of parametric oscillation, a squeezed vacuum state can be generated, and above threshold a second bifurcation point exists, where the device generates amplitude squeezed radiation. Basic relations between the achievable amplitude squeezing, the output power, and the operation frequency are derived.

  20. The Cerebellum and Language: Evidence from Patients with Cerebellar Degeneration

    ERIC Educational Resources Information Center

    Stoodley, Catherine J.; Schmahmann, Jeremy D.

    2009-01-01

    Clinical and imaging studies suggest that the cerebellum is involved in language tasks, but the extent to which slowed language production in cerebellar patients contributes to their poor performance on these tasks is not clear. We explored this relationship in 18 patients with cerebellar degeneration and 16 healthy controls who completed measures…

  1. Foveal-Sparing Scotomas in Advanced Dry Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Sunness, Janet S.; Rubin, Gary S.; Zuckerbrod, Abraham; Applegate, Carol A.

    2008-01-01

    Foveal-sparing scotomas are common in advanced dry macular degeneration (geographic atrophy). Foveal preservation may be present for a number of years. Despite good visual acuity, these patients have reduced reading rates. Magnification may not be effective if the text becomes too large to "fit" within the central spared area. (Contains 2 tables…

  2. miR126-5p Downregulation Facilitates Axon Degeneration and NMJ Disruption via a Non-Cell-Autonomous Mechanism in ALS.

    PubMed

    Maimon, Roy; Ionescu, Ariel; Bonnie, Avichai; Sweetat, Sahar; Wald-Altman, Shane; Inbar, Shani; Gradus, Tal; Trotti, Davide; Weil, Miguel; Behar, Oded; Perlson, Eran

    2018-06-13

    Axon degeneration and disruption of neuromuscular junctions (NMJs) are key events in amyotrophic lateral sclerosis (ALS) pathology. Although the disease's etiology is not fully understood, it is thought to involve a non-cell-autonomous mechanism and alterations in RNA metabolism. Here, we identified reduced levels of miR126-5p in presymptomatic ALS male mice models, and an increase in its targets: axon destabilizing Type 3 Semaphorins and their coreceptor Neuropilins. Using compartmentalized in vitro cocultures, we demonstrated that myocytes expressing diverse ALS-causing mutations promote axon degeneration and NMJ dysfunction, which were inhibited by applying Neuropilin1 blocking antibody. Finally, overexpressing miR126-5p is sufficient to transiently rescue axon degeneration and NMJ disruption both in vitro and in vivo Thus, we demonstrate a novel mechanism underlying ALS pathology, in which alterations in miR126-5p facilitate a non-cell-autonomous mechanism of motor neuron degeneration in ALS. SIGNIFICANCE STATEMENT Despite some progress, currently no effective treatment is available for amyotrophic lateral sclerosis (ALS). We suggest a novel regulatory role for miR126-5p in ALS and demonstrate, for the first time, a mechanism by which alterations in miR126-5p contribute to axon degeneration and NMJ disruption observed in ALS. We show that miR126-5p is altered in ALS models and that it can modulate Sema3 and NRP protein expression. Furthermore, NRP1 elevations in motor neurons and muscle secretion of Sema3A contribute to axon degeneration and NMJ disruption in ALS. Finally, overexpressing miR126-5p is sufficient to transiently rescue NMJ disruption and axon degeneration both in vitro and in vivo . Copyright © 2018 Maimon et al.

  3. Infantile onset progressive cerebellar atrophy and anterior horn cell degeneration--a late onset variant of PCH-1?

    PubMed

    Lev, Dorit; Michelson-Kerman, Marina; Vinkler, Chana; Blumkin, Lubov; Shalev, Stavit A; Lerman-Sagie, Tally

    2008-03-01

    Despite major recent advances in our understanding of developmental cerebellar disorders, classification and delineation of these disorders remains difficult. The term pontocerebellar hypoplasia is used when there is a structural defect, originating in utero of both pons and cerebellar hemispheres. The term olivopontocerebellar atrophy is used when the disorder starts later in life and the process is a primary degeneration of cerebellar neurons. Pontocerebellar hypoplasia type 1 is associated with spinal anterior horn cell degeneration, congenital contractures, microcephaly, polyhydramnion and respiratory insufficiency leading to early death. However, anterior horn cell degeneration has also been described in cases with later onset pontocerebellar atrophy and recently the spectrum has even been further extended to include the association of anterior horn cell degeneration and cerebellar atrophy without pontine involvement. We describe two siblings from a consanguineous Moslem Arabic family who presented with progressive degeneration of both the cerebellum and the anterior horn cells. The patients presented after 1 year of age with a slow neurodegenerative course that included both cognitive and motor functions. There is considerable phenotypic variability; the sister shows a much milder course. Both children are still alive at 6 and 9 years. The sister could still crawl and speak two word sentences at the age of 3 years while the brother was bedridden and only uttered guttural sounds at the same age. Our cases further extend the phenotype of the cerebellar syndromes with anterior horn cell involvement to include a childhood onset and protracted course and further prove that this neurodegenerative disorder may start in utero or later in life.

  4. [The age-related macular degeneration as a vascular disease/part of systemic vasculopathy: contributions to its pathogenesis].

    PubMed

    Fischer, Tamás

    2015-03-01

    The wall of blood vessels including those in choroids may be harmed by several repeated and/or prolonged mechanical, physical, chemical, microbiological, immunologic, and genetic impacts (risk factors), which may trigger a protracted response, the so-called host defense response. As a consequence, pathological changes resulting in vascular injury (e. g. atherosclerosis, age-related macular degeneration) may be evolved. Risk factors can also act directly on the endothelium through an increased production of reactive oxygen species promoting an endothelial activation, which leads to endothelial dysfunction, the onset of vascular disease. Thus, endothelial dysfunction is a link between the harmful stimulus and vascular injury; any kind of harmful stimuli may trigger the defensive chain that results in inflammation that may lead to vascular injury. It has been shown that even early age-related macular degeneration is associated with the presence of diffuse arterial disease and patients with early age-related macular degeneration demonstrate signs of systemic and retinal vascular alterations. Chronic inflammation, a feature of AMD, is tightly linked to diseases associated with ED: AMD is accompanied by a general inflammatory response, in the form of complement system activation, similar to that observed in degenerative vascular diseases such as atherosclerosis. All these facts indicate that age-related macular degeneration may be a vascular disease (or part of a systemic vasculopathy). This recognition could have therapeutic implications because restoration of endothelial dysfunction may prevent the development or improve vascular disease resulting in prevention or improvement of age-related macular degeneration as well.

  5. Improvements in Limb Kinetic Apraxia by Repetition of a Newly Designed Facilitation Exercise in a Patient with Corticobasal Degeneration

    ERIC Educational Resources Information Center

    Kawahira, Kazumi; Noma, Tomokazu; Iiyama, Junichi; Etoh, Seiji; Ogata, Atsuko; Shimodozono, Megumi

    2009-01-01

    Corticobasal degeneration is a progressive neurological disorder characterized by a combination of parkinsonism and cortical dysfunction such as limb kinetic apraxia, alien limb phenomenon, and dementia. To study the effect of repetitive facilitation exercise (RFE) in a patient with corticobasal degeneration, we used a newly designed facilitation…

  6. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain

    PubMed Central

    Kisler, Kassandra; Nelson, Amy R.; Rege, Sanket V.; Ramanathan, Anita; Wang, Yaoming; Ahuja, Ashim; Lazic, Divna; Tsai, Philbert S.; Zhao, Zhen; Zhou, Yi; Boas, David A.; Sakadžić, Sava; Zlokovic, Berislav V.

    2017-01-01

    Pericytes are perivascular mural cells of brain capillaries that are positioned centrally within the neurovascular unit between endothelial cells, astrocytes and neurons. This unique position allows them to play a major role in regulating key neurovascular functions of the brain. The role of pericytes in the regulation of cerebral blood flow (CBF) and neurovascular coupling remains, however, debatable. Using loss-of-function pericyte-deficient mice, here we show that pericyte degeneration diminishes global and individual capillary CBF responses to neuronal stimulus resulting in neurovascular uncoupling, reduced oxygen supply to brain and metabolic stress. We show that these neurovascular deficits lead over time to impaired neuronal excitability and neurodegenerative changes. Thus, pericyte degeneration as seen in neurological disorders such as Alzheimer’s disease may contribute to neurovascular dysfunction and neurodegeneration associated with human disease. PMID:28135240

  7. Irreducible normalizer operators and thresholds for degenerate quantum codes with sublinear distances

    NASA Astrophysics Data System (ADS)

    Pryadko, Leonid P.; Dumer, Ilya; Kovalev, Alexey A.

    2015-03-01

    We construct a lower (existence) bound for the threshold of scalable quantum computation which is applicable to all stabilizer codes, including degenerate quantum codes with sublinear distance scaling. The threshold is based on enumerating irreducible operators in the normalizer of the code, i.e., those that cannot be decomposed into a product of two such operators with non-overlapping support. For quantum LDPC codes with logarithmic or power-law distances, we get threshold values which are parametrically better than the existing analytical bound based on percolation. The new bound also gives a finite threshold when applied to other families of degenerate quantum codes, e.g., the concatenated codes. This research was supported in part by the NSF Grant PHY-1416578 and by the ARO Grant W911NF-11-1-0027.

  8. Striatal degeneration impairs language learning: evidence from Huntington's disease.

    PubMed

    De Diego-Balaguer, R; Couette, M; Dolbeau, G; Dürr, A; Youssov, K; Bachoud-Lévi, A-C

    2008-11-01

    Although the role of the striatum in language processing is still largely unclear, a number of recent proposals have outlined its specific contribution. Different studies report evidence converging to a picture where the striatum may be involved in those aspects of rule-application requiring non-automatized behaviour. This is the main characteristic of the earliest phases of language acquisition that require the online detection of distant dependencies and the creation of syntactic categories by means of rule learning. Learning of sequences and categorization processes in non-language domains has been known to require striatal recruitment. Thus, we hypothesized that the striatum should play a prominent role in the extraction of rules in learning a language. We studied 13 pre-symptomatic gene-carriers and 22 early stage patients of Huntington's disease (pre-HD), both characterized by a progressive degeneration of the striatum and 21 late stage patients Huntington's disease (18 stage II, two stage III and one stage IV) where cortical degeneration accompanies striatal degeneration. When presented with a simplified artificial language where words and rules could be extracted, early stage Huntington's disease patients (stage I) were impaired in the learning test, demonstrating a greater impairment in rule than word learning compared to the 20 age- and education-matched controls. Huntington's disease patients at later stages were impaired both on word and rule learning. While spared in their overall performance, gene-carriers having learned a set of abstract artificial language rules were then impaired in the transfer of those rules to similar artificial language structures. The correlation analyses among several neuropsychological tests assessing executive function showed that rule learning correlated with tests requiring working memory and attentional control, while word learning correlated with a test involving episodic memory. These learning impairments significantly

  9. Compromised Integrity of Central Visual Pathways in Patients With Macular Degeneration.

    PubMed

    Malania, Maka; Konrad, Julia; Jägle, Herbert; Werner, John S; Greenlee, Mark W

    2017-06-01

    Macular degeneration (MD) affects the central retina and leads to gradual loss of foveal vision. Although, photoreceptors are primarily affected in MD, the retinal nerve fiber layer (RNFL) and central visual pathways may also be altered subsequent to photoreceptor degeneration. Here we investigate whether retinal damage caused by MD alters microstructural properties of visual pathways using diffusion-weighted magnetic resonance imaging. Six MD patients and six healthy control subjects participated in the study. Retinal images were obtained by spectral-domain optical coherence tomography (SD-OCT). Diffusion tensor images (DTI) and high-resolution T1-weighted structural images were collected for each subject. We used diffusion-based tensor modeling and probabilistic fiber tractography to identify the optic tract (OT) and optic radiations (OR), as well as nonvisual pathways (corticospinal tract and anterior fibers of corpus callosum). Fractional anisotropy (FA) and axial and radial diffusivity values (AD, RD) were calculated along the nonvisual and visual pathways. Measurement of RNFL thickness reveals that the temporal circumpapillary retinal nerve fiber layer was significantly thinner in eyes with macular degeneration than normal. While we did not find significant differences in diffusion properties in nonvisual pathways, patients showed significant changes in diffusion scalars (FA, RD, and AD) both in OT and OR. The results indicate that the RNFL and the white matter of the visual pathways are significantly altered in MD patients. Damage to the photoreceptors in MD leads to atrophy of the ganglion cell axons and to corresponding changes in microstructural properties of central visual pathways.

  10. The double-degenerate, super-Chandrasekhar nucleus of the planetary nebula Henize 2-428.

    PubMed

    Santander-García, M; Rodríguez-Gil, P; Corradi, R L M; Jones, D; Miszalski, B; Boffin, H M J; Rubio-Díez, M M; Kotze, M M

    2015-03-05

    The planetary nebula stage is the ultimate fate of stars with masses one to eight times that of the Sun (M(⊙)). The origin of their complex morphologies is poorly understood, although several mechanisms involving binary interaction have been proposed. In close binary systems, the orbital separation is short enough for the primary star to overfill its Roche lobe as the star expands during the asymptotic giant branch phase. The excess gas eventually forms a common envelope surrounding both stars. Drag forces then result in the envelope being ejected into a bipolar planetary nebula whose equator is coincident with the orbital plane of the system. Systems in which both stars have ejected their envelopes and are evolving towards the white dwarf stage are said to be double degenerate. Here we report that Henize 2-428 has a double-degenerate core with a combined mass of ∼1.76M(⊙), which is above the Chandrasekhar limit (the maximum mass of a stable white dwarf) of 1.4M(⊙). This, together with its short orbital period (4.2 hours), suggests that the system should merge in 700 million years, triggering a type Ia supernova event. This supports the hypothesis of the double-degenerate, super-Chandrasekhar evolutionary pathway for the formation of type Ia supernovae.

  11. Characteristics of solitary waves in a relativistic degenerate ion beam driven magneto plasma

    NASA Astrophysics Data System (ADS)

    Deka, Manoj Kr.; Dev, Apul N.; Misra, Amar P.; Adhikary, Nirab C.

    2018-01-01

    The nonlinear propagation of a small amplitude ion acoustic solitary wave in a relativistic degenerate magneto plasma in the presence of an ion beam is investigated in detail. The nonlinear equations describing the evolution of a solitary wave in the presence of relativistic non-degenerate magnetized positive ions and ion beams including magnetized degenerate relativistic electrons are derived in terms of Zakharov-Kuznetsov (Z-K) equation for such plasma systems. The ion beams which are a ubiquitous ingredient in such plasma systems are found to have a decisive role in the propagation of a solitary wave in such a highly dense plasma system. The conditions of a wave, propagating with typical solitonic characteristics, are examined and discussed in detail under suitable conditions of different physical parameters. Both a subsonic and supersonic wave can propagate in such plasmas bearing different characteristics under different physical situations. A detailed analysis of waves propagating in subsonic and/or supersonic regime is carried out. The ion beam concentrations, magnetic field, as well as ion beam streaming velocity are found to play a momentous role on the control of the amplitude and width of small amplitude perturbation in both weakly (or non-relativistic) and relativistic plasmas.

  12. Gaze holding deficits discriminate early from late onset cerebellar degeneration.

    PubMed

    Tarnutzer, Alexander A; Weber, K P; Schuknecht, B; Straumann, D; Marti, S; Bertolini, G

    2015-08-01

    The vestibulo-cerebellum calibrates the output of the inherently leaky brainstem neural velocity-to-position integrator to provide stable gaze holding. In healthy humans small-amplitude centrifugal nystagmus is present at extreme gaze-angles, with a non-linear relationship between eye-drift velocity and eye eccentricity. In cerebellar degeneration this calibration is impaired, resulting in pathological gaze-evoked nystagmus (GEN). For cerebellar dysfunction, increased eye drift may be present at any gaze angle (reflecting pure scaling of eye drift found in controls) or restricted to far-lateral gaze (reflecting changes in shape of the non-linear relationship) and resulting eyed-drift patterns could be related to specific disorders. We recorded horizontal eye positions in 21 patients with cerebellar neurodegeneration (gaze-angle = ±40°) and clinically confirmed GEN. Eye-drift velocity, linearity and symmetry of drift were determined. MR-images were assessed for cerebellar atrophy. In our patients, the relation between eye-drift velocity and gaze eccentricity was non-linear, yielding (compared to controls) significant GEN at gaze-eccentricities ≥20°. Pure scaling was most frequently observed (n = 10/18), followed by pure shape-changing (n = 4/18) and a mixed pattern (n = 4/18). Pure shape-changing patients were significantly (p = 0.001) younger at disease-onset compared to pure scaling patients. Atrophy centered around the superior/dorsal vermis, flocculus/paraflocculus and dentate nucleus and did not correlate with the specific drift behaviors observed. Eye drift in cerebellar degeneration varies in magnitude; however, it retains its non-linear properties. With different drift patterns being linked to age at disease-onset, we propose that the gaze-holding pattern (scaling vs. shape-changing) may discriminate early- from late-onset cerebellar degeneration. Whether this allows a distinction among specific cerebellar disorders remains to be determined.

  13. Oculomotor Function in Frontotemporal Lobar Degeneration, Related Disorders and Alzheimer's Disease

    ERIC Educational Resources Information Center

    Garbutt, Siobhan; Matlin, Alisa; Hellmuth, Joanna; Schenk, Ana K.; Johnson, Julene K.; Rosen, Howard; Dean, David; Kramer, Joel; Neuhaus, John; Miller, Bruce L.; Lisberger, Stephen G.; Boxer, Adam L.

    2008-01-01

    Frontotemporal lobar degeneration (FTLD) often overlaps clinically with corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP), both of which have prominent eye movement abnormalities. To investigate the ability of oculomotor performance to differentiate between FTLD, Alzheimer's disease, CBS and PSP, saccades and smooth pursuit were…

  14. Large Polyglutamine Repeats Cause Muscle Degeneration in SCA17 Mice

    PubMed Central

    Huang, Shanshan; Yang, Su; Guo, Jifeng; Yan, Sen; Gaertig, Marta A.; Li, Shihua; Li, Xiao-Jiang

    2015-01-01

    SUMMARY In polyglutamine (polyQ) diseases, large polyQ repeats cause juvenile cases with different symptoms than adult-onset patients, who carry smaller expanded polyQ repeats. The mechanisms behind the differential pathology mediated by different polyQ repeat lengths remain unknown. By studying knock-in mouse models of spinal cerebellar ataxia-17 (SCA17), we found that a large polyQ (105 glutamines) in the TATA box-binding protein (TBP) preferentially causes muscle degeneration and reduces the expression of muscle-specific genes. Direct expression of TBP with different polyQ repeats in mouse muscle revealed that muscle degeneration is mediated only by the large polyQ repeats. Different polyQ repeats differentially alter TBP’s interaction with neuronal and muscle-specific transcription factors. As a result, the large polyQ repeat decreases the association of MyoD with TBP and DNA promoters. Our findings suggest that specific alterations in protein interactions by large polyQ repeats may account for the unique pathology in juvenile polyQ diseases. PMID:26387956

  15. Level-dependent coronal and axial moment-rotation corridors of degeneration-free cervical spines in lateral flexion.

    PubMed

    Yoganandan, Narayan; Pintar, Frank A; Stemper, Brian D; Wolfla, Christopher E; Shender, Barry S; Paskoff, Glenn

    2007-05-01

    Aging, trauma, or degeneration can affect intervertebral kinematics. While in vivo studies can determine motions, moments are not easily quantified. Previous in vitro studies on the cervical spine have largely used specimens from older individuals with varying levels of degeneration and have shown that moment-rotation responses under lateral bending do not vary significantly by spinal level. The objective of the present in vitro biomechanical study was, therefore, to determine the coronal and axial moment-rotation responses of degeneration-free, normal, intact human cadaveric cervicothoracic spinal columns under the lateral bending mode. Nine human cadaveric cervical columns from C2 to T1 were fixed at both ends. The donors had ranged from twenty-three to forty-four years old (mean, thirty-four years) at the time of death. Retroreflective targets were inserted into each vertebra to obtain rotational kinematics in the coronal and axial planes. The specimens were subjected to pure lateral bending moment with use of established techniques. The range-of-motion and neutral zone metrics for the coronal and axial rotation components were determined at each level of the spinal column and were evaluated statistically. Statistical analysis indicated that the two metrics were level-dependent (p < 0.05). Coronal motions were significantly greater (p < 0.05) than axial motions. Moment-rotation responses were nonlinear for both coronal and axial rotation components under lateral bending moments. Each segmental curve for both rotation components was well represented by a logarithmic function (R(2) > 0.95). Range-of-motion metrics compared favorably with those of in vivo investigations. Coronal and axial motions of degeneration-free cervical spinal columns under lateral bending showed substantially different level-dependent responses. The presentation of moment-rotation corridors for both metrics forms a normative dataset for the degeneration-free cervical spines.

  16. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues

    PubMed Central

    Toh, Wei Seong; Gomoll, Andreas H.; Olsen, Bjørn Reino; Spector, Myron

    2014-01-01

    Objective: The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Design: Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti–collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. Results: When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. Conclusions: We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional

  17. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues.

    PubMed

    Foldager, Casper Bindzus; Toh, Wei Seong; Gomoll, Andreas H; Olsen, Bjørn Reino; Spector, Myron

    2014-04-01

    The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti-collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional roles of these 2 extracellular matrix proteins

  18. Astigmatism inducing the degenerate effect in nearly hemispherical cavities: generation of three-dimensional structured light

    NASA Astrophysics Data System (ADS)

    Tung, J. C.; Hsieh, Y. H.; Liang, H. C.; Su, K. W.; Huang, K. F.; Chen, Y. F.

    2017-04-01

    We originally perform an analytical form to explore the influence of the astigmatism on the degenerate effect in nearly hemispherical cavities. The frequency spectrum near hemispherical cavities clearly reveals that not only the difference of cavity lengths between each degeneracies but also frequency gaps have significant difference from non-hemispherical cavities. We further thoroughly demonstrate the laser experiment under the condition of nearly hemispherical cavities to confirm the theoretical exploration that the transverse topology of three-dimensional (3D) structured light in the degenerate cavities is well localized on the Lissajous curves.

  19. Photopic ERG negative response from amacrine cell signaling in RCS rat retinal degeneration.

    PubMed

    Machida, Shigeki; Raz-Prag, Dorit; Fariss, Robert N; Sieving, Paul A; Bush, Ronald A

    2008-01-01

    The authors investigated photopic electroretinographic changes during degeneration in the Royal College of Surgeons (RCS) and transgenic P23H rhodopsin rat models, including the cellular origins of a large corneal-negative component that persists in the RCS rat. Photopic and scotopic electroretinograms (ERGs) were recorded from dystrophic RCS (RCS-p(+)/Lav) rats (4-18 weeks old) and transgenic rhodopsin Pro23His line 1 (P23H) rats (4-30 weeks old). Age-matched congenic (RCS-rdy(+)p(+)/Lav) and Sprague-Dawley rats were used as controls. N-methyl-DL-aspartic acid (NMA), dopamine, and gamma-aminobutyric acid (GABA) were injected intravitreally, and optic nerve sectioning (ONS) was performed to suppress or remove inner retinal neuron activity. Retinal morphology for cone cell counts and immunohistochemistry for quantification of Kir4.1 channels were performed at various stages of degeneration. As degeneration progressed, the photopic ERG of RCS dystrophic rats was distinctly different from that of P23H rats, primarily because of the growth of a corneal-negative response (RCS-NPR) after the b-wave in RCS rats. This response had a peak time similar to the photopic negative response (PhNR) in controls but with a more gradual recovery phase, and it was not affected by ONS. The PhNR in P23H rats declined linearly with the b-wave. NMA and GABA eliminated the RCS-NPR and uncovered a larger b-wave in RCS rats at late stages of degeneration, but NMA had little effect on the ERG in P23H rats. The NMA-sensitive negative response in RCS rats declined with age more slowly than did the NMA-isolated b-wave. The density of Kir4.1 channels at the endfeet of Müller cells and in the proximal retina increased significantly between 6 to 10 weeks and 14 weeks of age in the RCS rat retina but not in the P23H rat retina. The photopic ERG of the dystrophic RCS rat retina becomes increasingly electronegative because of an aberrant negative response, originating from amacrine cell activity

  20. Do the disc degeneration and osteophyte contribute to the curve rigidity of degenerative scoliosis?

    PubMed

    Zhu, Feng; Bao, Hongda; Yan, Peng; Liu, Shunan; Bao, Mike; Zhu, Zezhang; Liu, Zhen; Qiu, Yong

    2017-03-29

    The factors associated with lateral curve flexibility in degenerative scoliosis have not been well documented. Disc degeneration could result in significant change in stiffness and range of motion in lateral bending films. The osteophytes could be commonly observed in degenerative spine but the relationship between osteophyte formation and curve flexibility remains controversial. The aim of the current study is to clarify if the disc degeneration and osteophyte formation were both associated with curve flexibility of degenerative scoliosis. A total of 85 patients were retrospectively analyzed. The inclusion criteria were as follow: age greater than 45 years, diagnosed as degenerative scoliosis and coronal Cobb angle greater than 20°. Curve flexibility was calculated based on Cobb angle, and range of motion (ROM) was based on disc angle evaluation. Regional disc degeneration score (RDS) was obtained according to Pfirrmann classification and osteophyte formation score (OFS) was based on Nanthan classification. Spearman correlation was performed to analyze the relationship between curve flexibility and RDS as well as OFS. Moderate correlation was found between RDS and curve flexibility with a Spearman coefficient of -0.487 (P = 0.009). Similarly, moderate correlation was observed between curve flexibility and OFS with a Spearman coefficient of -0.429 (P = 0.012). Strong correlation was found between apical ROM and OFS compared to the relationship between curve flexibility and OFS with a Spearman coefficient of -0.627 (P < 0.001). Both disc degeneration and osteophytes formation correlated with curve rigidity. The pre-operative evaluation of both features may aid in the surgical decision-making in degenerative scoliosis patients.

  1. Correlation of Cytokine Levels and Microglial Cell Infiltration during Retinal Degeneration in RCS Rats

    PubMed Central

    Liu, Yong; Yang, Xuesen; Utheim, Tor Paaaske; Guo, Chenying; Xiao, Mingchun; Liu, Yan; Yin, Zhengqin; Ma, Jie

    2013-01-01

    Microglial cells, which are immunocompetent cells, are involved in all diseases of the central nervous system. During their activation in various diseases, a variety of soluble factors are released. In the present study, the correlation between cytokine levels and microglial cell migration in the course of retinal degeneration of Royal College of Surgeons (RCS) rats was evaluated. MFG-E8 and CD11b were used to confirm the microglial cells. In the retina of RCS rats, the mRNA expression of seven genes (MFG-E8 and its integrins αυ and ß5, CD11b and the cytokines TNF-α, IL-1ß, and MCP-1) formed almost similar bimodal peak distributions, which were centred at P7 and P45 to P60. In contrast, in rdy rats, which comprised the control group, a unimodal peak distribution centred at P14 was observed. The gene expression accompanied the activation and migration of microglial cells from the inner to the outer layer of the retina during the process of degeneration. Principal component analysis and discriminant function analysis revealed that the expression of these seven genes, especially TNF-α and CD11b, positively correlated with retinal degeneration and microglial activity during retinal degeneration in RCS rats, but not in the control rats. Furthermore, linear regression analysis demonstrated a significant correlation between the expression of these genes and the activation of microglial cells in the dystrophic retina. Our findings suggest that the suppression of microglial cells and the blockade of their cytotoxic effects may constitute a novel therapeutic strategy for treating photoreceptor death in various retinal disorders. PMID:24349184

  2. Correlation of cytokine levels and microglial cell infiltration during retinal degeneration in RCS rats.

    PubMed

    Liu, Yong; Yang, Xuesen; Utheim, Tor Paaaske; Guo, Chenying; Xiao, Mingchun; Liu, Yan; Yin, Zhengqin; Ma, Jie

    2013-01-01

    Microglial cells, which are immunocompetent cells, are involved in all diseases of the central nervous system. During their activation in various diseases, a variety of soluble factors are released. In the present study, the correlation between cytokine levels and microglial cell migration in the course of retinal degeneration of Royal College of Surgeons (RCS) rats was evaluated. MFG-E8 and CD11b were used to confirm the microglial cells. In the retina of RCS rats, the mRNA expression of seven genes (MFG-E8 and its integrins αυ and ß5, CD11b and the cytokines TNF-α, IL-1ß, and MCP-1) formed almost similar bimodal peak distributions, which were centred at P7 and P45 to P60. In contrast, in rdy rats, which comprised the control group, a unimodal peak distribution centred at P14 was observed. The gene expression accompanied the activation and migration of microglial cells from the inner to the outer layer of the retina during the process of degeneration. Principal component analysis and discriminant function analysis revealed that the expression of these seven genes, especially TNF-α and CD11b, positively correlated with retinal degeneration and microglial activity during retinal degeneration in RCS rats, but not in the control rats. Furthermore, linear regression analysis demonstrated a significant correlation between the expression of these genes and the activation of microglial cells in the dystrophic retina. Our findings suggest that the suppression of microglial cells and the blockade of their cytotoxic effects may constitute a novel therapeutic strategy for treating photoreceptor death in various retinal disorders.

  3. Selective neuronal degeneration in the retrosplenial cortex impairs the recall of contextual fear memory.

    PubMed

    Sigwald, Eric L; Genoud, Manuel E; Giachero, Marcelo; de Olmos, Soledad; Molina, Víctor A; Lorenzo, Alfredo

    2016-05-01

    The retrosplenial cortex (RSC) is one of the largest cortical areas in rodents, and is subdivided in two main regions, A29 and A30, according to their cytoarchitectural organization and connectivities. However, very little is known about the functional activity of each RSC subdivision during the execution of complex cognitive tasks. Here, we used a well-established fear learning protocol that induced long-lasting contextual fear memory and showed that during evocation of the fear memory, the expression of early growth response gene 1 was up-regulated in A30, and in other brain areas implicated in fear and spatial memory, however, was down-regulated in A29, including layers IV and V. To search for the participation of A29 on fear memory, we triggered selective degeneration of neurons within cortical layers IV and V of A29 by using a non-invasive protocol that takes advantage of the vulnerability that these neurons have MK801-toxicity and the modulation of this neurodegeneration by testosterone. Application of 5 mg/kg MK801 in intact males induced negligible neuronal degeneration of A29 neurons and had no impact on fear memory retrieval. However, in orchiectomized rats, 5 mg/kg MK801 induced overt degeneration of layers IV-V neurons of A29, significantly impairing fear memory recall. Degeneration of A29 neurons did not affect exploratory or anxiety-related behavior nor altered unconditioned freezing. Importantly, protecting A29 neurons from MK801-toxicity by testosterone preserved fear memory recall in orchiectomized rats. Thus, neurons within cortical layers IV-V of A29 are critically required for efficient retrieval of contextual fear memory.

  4. Dendrobium nobile Lindl alkaloid, a novel autophagy inducer, protects against axonal degeneration induced by Aβ25-35 in hippocampus neurons in vitro.

    PubMed

    Li, Li-Sheng; Lu, Yan-Liu; Nie, Jing; Xu, Yun-Yan; Zhang, Wei; Yang, Wen-Jin; Gong, Qi-Hai; Lu, Yuan-Fu; Lu, Yang; Shi, Jing-Shan

    2017-04-01

    Axonal degeneration is a pathological symbol in the early stage of Alzheimer's disease (AD), which can be triggered by amyloid-β (Aβ) peptide deposition. Growing evidence indicates that deficit of autophagy eventually leads to the axonal degeneration. Our previous studies have shown that Dendrobium nobile Lindl alkaloid (DNLA) had protective effect on neuron impairment in vivo and in vitro; however, the underlying mechanisms is still unclear. We exposed cultured hippocampus neurons to Aβ 25-35 to investigate the effect of DNLA in vitro. Axonal degeneration was evaluated by immunofluorescence staining and MTT assay. Neurons overexpressing GFP-LC3B were used to measure the formation of autophagosome. Autophagosome-lysosome fusion, the lysosomal pH, and cathepsin activity were assessed to reflect autophagy process. Proteins of interest were analyzed by Western blot. DNLA pretreatment significantly inhibited axonal degeneration induced by Aβ 25-35 peptide in vitro. Further studies revealed DNLA treatment increased autophagic flux through promoting formation and degradation of autophagosome in hippocampus neurons. Moreover, enhancement of autophagic flux was responsible for the protective effects of DNLA on axonal degeneration. DNLA prevents Aβ 25-35 -induced axonal degeneration via activation of autophagy process and could be a novel therapeutic target. © 2017 John Wiley & Sons Ltd.

  5. Autoimmune Responses against Photoreceptor Antigens during Retinal Degeneration and their Role in Macrophage Recruitment into Retinas of RCS Rats

    PubMed Central

    Kyger, Madison; Worley, Aneta; Adamus, Grazyna

    2012-01-01

    Autoimmunity may contribute to retinal degeneration. The studies examined the evolution of autoimmune responses against retina in naïve dystrophic RCS rats over the course of retinal degeneration. We showed that anti-retinal autoantibodies and T cells are generated in response to the availability of antigenic material released from dying photoreceptor cells during retinal degeneration but with distinctive activation trends. Passive transfer of anti-retinal antibodies enhanced disease progression by disrupting the BRB, upregulating MCP-1, attracting blood macrophages into retina, and augmenting apoptotic photoreceptor cell death. Our findings directly link anti-retinal autoantibodies to activated macrophage entry and their possible role in neurodegeneration. PMID:23110938

  6. Callosal degeneration topographically correlated with cognitive function in amnestic mild cognitive impairment and Alzheimer's disease dementia.

    PubMed

    Wang, Pei-Ning; Chou, Kun-Hsien; Chang, Ni-Jung; Lin, Ker-Neng; Chen, Wei-Ta; Lan, Gong-Yau; Lin, Ching-Po; Lirng, Jiing-Feng

    2014-04-01

    Degeneration of the corpus callosum (CC) is evident in the pathogenesis of Alzheimer's disease (AD). However, the correlation of microstructural damage in the CC on the cognitive performance of patients with amnestic mild cognitive impairment (aMCI) and AD dementia is undetermined. We enrolled 26 normal controls, 24 patients with AD dementia, and 40 single-domain aMCI patients with at least grade 1 hippocampal atrophy and isolated memory impairment. Diffusion tensor imaging (DTI) with fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (DA), and radial diffusivity (DR) were measured. The entire CC was parcellated based on fiber trajectories to specific cortical Brodmann areas using a probabilistic tractography method. The relationship between the DTI measures in the subregions of the CC and cognitive performance was examined. Although the callosal degeneration in the patients with aMCI was less extended than in the patients with AD dementia, degeneration was already exhibited in several subregions of the CC at the aMCI stage. Scores of various neuropsychological tests were correlated to the severity of microstructural changes in the subregional CC connecting to functionally corresponding cortical regions. Our results confirm that CC degeneration is noticeable as early as the aMCI stage of AD and the disconnection of the CC subregional fibers to the corresponding Brodmann areas has an apparent impact on the related cognitive performance. Copyright © 2013 Wiley Periodicals, Inc.

  7. Maximally random discrete-spin systems with symmetric and asymmetric interactions and maximally degenerate ordering

    NASA Astrophysics Data System (ADS)

    Atalay, Bora; Berker, A. Nihat

    2018-05-01

    Discrete-spin systems with maximally random nearest-neighbor interactions that can be symmetric or asymmetric, ferromagnetic or antiferromagnetic, including off-diagonal disorder, are studied, for the number of states q =3 ,4 in d dimensions. We use renormalization-group theory that is exact for hierarchical lattices and approximate (Migdal-Kadanoff) for hypercubic lattices. For all d >1 and all noninfinite temperatures, the system eventually renormalizes to a random single state, thus signaling q ×q degenerate ordering. Note that this is the maximally degenerate ordering. For high-temperature initial conditions, the system crosses over to this highly degenerate ordering only after spending many renormalization-group iterations near the disordered (infinite-temperature) fixed point. Thus, a temperature range of short-range disorder in the presence of long-range order is identified, as previously seen in underfrustrated Ising spin-glass systems. The entropy is calculated for all temperatures, behaves similarly for ferromagnetic and antiferromagnetic interactions, and shows a derivative maximum at the short-range disordering temperature. With a sharp immediate contrast of infinitesimally higher dimension 1 +ɛ , the system is as expected disordered at all temperatures for d =1 .

  8. Occupation Attributes Relate to Location of Atrophy in Frontotemporal Lobar Degeneration

    ERIC Educational Resources Information Center

    Spreng, R. N.; Rosen, H. J.; Strother, S.; Chow, T. W.; Diehl-Schmid, J.; Freedman, M.; Graff-Radford, N. R.; Hodges, J. R.; Lipton, A. M.; Mendez, M. F.; Morelli, S. A.; Black, S. E.; Miller, B. L.; Levine, Brian

    2010-01-01

    Frontotemporal lobar degeneration (FTLD) often presents with asymmetric atrophy. We assessed whether premorbid occupations in FTLD patients were associated with these hemispheric asymmetries. In a multi-center chart review of 588 patients, occupation information was related to location of tissue loss or dysfunction. Patients with atrophy…

  9. Introduction to the issue regarding research regarding age related macular degeneration

    USDA-ARS?s Scientific Manuscript database

    Blindness is the second greatest fear among the elderly. Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly in most industrialized nations. AMD first compromises central high acuity vision. Subsequently, all vision may be lost. AMD is a progressive retinal d...

  10. Magnetosonic waves interactions in a spin-1/2 degenerate quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sheng-Chang, E-mail: lsc1128lsc@126.com; Han, Jiu-Ning

    2014-03-15

    We investigate the magnetosonic waves and their interactions in a spin-1/2 degenerate quantum plasma. With the help of the extended Poincaré-Lighthill-Kuo perturbation method, we derive two Korteweg-de Vries-Burgers equations to describe the magnetosonic waves. The parameter region where exists magnetosonic waves and the phase diagram of the compressive and rarefactive solitary waves with different plasma parameters are shown. We further explore the effects of quantum diffraction, quantum statistics, and electron spin magnetization on the head-on collisions of magnetosonic solitary waves. We obtain the collision-induced phase shifts (trajectory changes) analytically. Both for the compressive and rarefactive solitary waves, it is foundmore » that the collisions only lead to negative phase shifts. Our present study should be useful to understand the collective phenomena related to the magnetosonic wave collisions in degenerate plasmas like those in the outer shell of massive white dwarfs as well as to the potential applications of plasmas.« less

  11. Interleukin-17 retinotoxicity is prevented by gene transfer of a soluble interleukin-17 receptor acting as a cytokine blocker: implications for age-related macular degeneration.

    PubMed

    Ardeljan, Daniel; Wang, Yujuan; Park, Stanley; Shen, Defen; Chu, Xi Kathy; Yu, Cheng-Rong; Abu-Asab, Mones; Tuo, Jingsheng; Eberhart, Charles G; Olsen, Timothy W; Mullins, Robert F; White, Gary; Wadsworth, Sam; Scaria, Abraham; Chan, Chi-Chao

    2014-01-01

    Age-related macular degeneration (AMD) is a common yet complex retinal degeneration that causes irreversible central blindness in the elderly. Pathology is widely believed to follow loss of retinal pigment epithelium (RPE) and photoreceptor degeneration. Here we report aberrant expression of interleukin-17A (IL17A) and the receptor IL17RC in the macula of AMD patients. In vitro, IL17A induces RPE cell death characterized by the accumulation of cytoplasmic lipids and autophagosomes with subsequent activation of pro-apoptotic Caspase-3 and Caspase-9. This pathology is reduced by siRNA knockdown of IL17RC. IL17-dependent retinal degeneration in a mouse model of focal retinal degeneration can be prevented by gene therapy with adeno-associated virus vector encoding soluble IL17 receptor. This intervention rescues RPE and photoreceptors in a MAPK-dependent process. The IL17 pathway plays a key role in RPE and photoreceptor degeneration and could hold therapeutic potential in AMD.

  12. Curcumin Delays Retinal Degeneration by Regulating Microglia Activation in the Retina of rd1 Mice.

    PubMed

    Wang, Yanhe; Yin, Zhiyuan; Gao, Lixiong; Sun, Dayu; Hu, Xisu; Xue, Langyue; Dai, Jiaman; Zeng, YuXiao; Chen, Siyu; Pan, Boju; Chen, Min; Xie, Jing; Xu, Haiwei

    2017-01-01

    Retinitis pigmentosa (RP) is characterized by degeneration of photoreceptors, and there are currently no effective treatments for this disease. However, curcumin has shown neuroprotectant efficacy in a RP rat and swine model, and thus, may have neuroprotective effects in this disease. Immunofluorescence staining, electroretinogram recordings, and behavioral tests were used to analyze the effects of curcumin and the underlying mechanism in retinal degeneration 1 (rd1) mice. The number of apoptotic cells in the retina of rd1 mice at postnatal day 14 significantly decreased with curcumin treatment and visual function was improved. The activation of microglia and secretion of chemokines and matrix metalloproteinases in the retina were inhibited by curcumin. These effects were also observed in a co-culture of BV2 microglial cells and retina-derived 661W cells. Curcumin delayed retinal degeneration by suppressing microglia activation in the retina of rd1 mice. Thus, it may be an effective treatment for neurodegenerative disorders such as RP. © 2017 The Author(s). Published by S. Karger AG, Basel.

  13. Feasibility of telemedicine in detecting diabetic retinopathy and age-related macular degeneration.

    PubMed

    Vaziri, Kamyar; Moshfeghi, Darius M; Moshfeghi, Andrew A

    2015-03-01

    Age-related macular degeneration and diabetic retinopathy are important causes of visual impairment and blindness in the world. Because of recent advances and newly available treatment modalities along with the devastating consequences associated with late stages of these diseases, much attention has been paid to the importance of early detection and improving patient access to specialist care. Telemedicine or, more specifically, digital retinal imaging utilizing telemedical technology has been proposed as an important alternative screening and management strategy to help meet this demand. In this paper, we perform a literature review and analysis that evaluates the validity and feasibility of telemedicine in detecting diabetic retinopathy and age-related macular degeneration. Understanding both the progress and barriers to progress that have been demonstrated in these two areas is important for future telemedicine research projects and innovations in telemedicine technology.

  14. Classification of wet aged related macular degeneration using optical coherence tomographic images

    NASA Astrophysics Data System (ADS)

    Haq, Anam; Mir, Fouwad Jamil; Yasin, Ubaid Ullah; Khan, Shoab A.

    2013-12-01

    Wet Age related macular degeneration (AMD) is a type of age related macular degeneration. In order to detect Wet AMD we look for Pigment Epithelium detachment (PED) and fluid filled region caused by choroidal neovascularization (CNV). This form of AMD can cause vision loss if not treated in time. In this article we have proposed an automated system for detection of Wet AMD in Optical coherence tomographic (OCT) images. The proposed system extracts PED and CNV from OCT images using segmentation and morphological operations and then detailed feature set are extracted. These features are then passed on to the classifier for classification. Finally performance measures like accuracy, sensitivity and specificity are calculated and the classifier delivering the maximum performance is selected as a comparison measure. Our system gives higher performance using SVM as compared to other methods.

  15. Damped Kadomtsev-Petviashvili Equation for Weakly Dissipative Solitons in Dense Relativistic Degenerate Plasmas

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Ata-ur-Rahman; Khan, S. A.; Hadi, F.

    2017-12-01

    We have investigated the properties of three-dimensional electrostatic ion solitary structures in highly dense collisional plasma composed of ultra-relativistically degenerate electrons and non-relativistic degenerate ions. In the limit of low ion-neutral collision rate, we have derived a damped Kadomtsev-Petviashvili (KP) equation using perturbation analysis. Supplemented by vanishing boundary conditions, the time varying solution of damped KP equation leads to a weakly dissipative compressive soliton. The real frequency behavior and linear damping of solitary pulse due to ion-neutral collisions is discussed. In the presence of weak transverse perturbations, soliton evolution with damping parameter and plasma density is delineated pointing out the extent of propagation using typical parameters of dense plasma in the interior of white dwarfs.

  16. Qualitative assessment of online information about age-related macular degeneration available in Portuguese

    PubMed Central

    Agi, Jorge; Kasahara, Niro; Lottenberg, Claudio Luiz

    2018-01-01

    ABSTRACT Objective: To evaluate the quality of online information on age-related macular degeneration available in Portuguese. Methods: The search term “age-related macular degeneration” was used to browse the web using four different search engines. The first 40 websites appearing on match lists provided by each search engine were recorded and those listed in at least three tab pages selected. The Sandvik Severity Index was used as to assess website quality. Results: Quality of information available on selected websites was rated average (mean Sandvik Score 7.08±2.23). Conclusion: Most websites disseminating information about age-related macular degeneration were of average quality. The need to readjust web-based information to target lay public and promote increased understanding was emphasized. PMID:29898089

  17. Differential expression of extracellular-signal-regulated kinase 5 (ERK5) in normal and degenerated human nucleus pulposus tissues and cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Weiguo, E-mail: liangweiguo@tom.com; Fang, Dejian; Ye, Dongping

    2014-07-11

    Highlights: • ERK5 involved in NP cells. • ERK5 involved in NP tissue. • It was important modulator. - Abstract: Extracellular-signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and regulates a wide variety of cellular processes such as proliferation, differentiation, necrosis, apoptosis and degeneration. However, the expression of ERK5 and its role in degenerated human nucleus pulposus (NP) is hitherto unknown. In this study, we observed the differential expression of ERK5 in normal and degenerated human nucleus pulposus tissues by using immunohistochemical staining and Western blot. Treatment of NP cells with Pro-inflammatory cytokine, TNF-αmore » decreased ERK5 gene expression as well as NP marker gene expression; including the type II collagen and aggrecan. Suppression of ERK5 gene expression in NP cells by ERK5 siRNA resulted in decreased gene expression of type II collagen and aggrecan. Furthermore, inhibition of ERK5 activation by BIX02188 (5 μM) decreased the gene expression of type II collagen and aggrecan in NP cells. Our results document the expression of ERK5 in degenerated nucleus pulposus tissues, and suggest a potential involvement of ERK5 in human degenerated nucleus pulposus.« less

  18. An Unconventional Approach To Reducing Retinal Degeneration After Traumatic Ocular Injury

    DTIC Science & Technology

    2016-07-01

    regulating drugs – currently not purposed to treat retinal damage – may serve to ameliorate retinal degeneration in mice who have experienced blast...to buy a set for for our experiments going forward). A parallel experiments of SNR experiments with red vs green dye (data not shown), moreover

  19. Degenerate quantum codes and the quantum Hamming bound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarvepalli, Pradeep; Klappenecker, Andreas

    2010-03-15

    The parameters of a nondegenerate quantum code must obey the Hamming bound. An important open problem in quantum coding theory is whether the parameters of a degenerate quantum code can violate this bound for nondegenerate quantum codes. In this article we show that Calderbank-Shor-Steane (CSS) codes, over a prime power alphabet q{>=}5, cannot beat the quantum Hamming bound. We prove a quantum version of the Griesmer bound for the CSS codes, which allows us to strengthen the Rains' bound that an [[n,k,d

  20. Identification of degenerate neuronal systems based on intersubject variability.

    PubMed

    Noppeney, Uta; Penny, Will D; Price, Cathy J; Flandin, Guillaume; Friston, Karl J

    2006-04-15

    Group studies implicitly assume that all subjects activate one common system to sustain a particular cognitive task. Intersubject variability is generally treated as well-behaved and uninteresting noise. However, intersubject variability might result from subjects engaging different degenerate neuronal systems that are each sufficient for task performance. This would produce a multimodal distribution of intersubject variability. We have explored this idea with the help of Gaussian Mixture Modeling and Bayesian model comparison procedures. We illustrate our approach using a crossmodal priming paradigm, in which subjects perform a semantic decision on environmental sounds or their spoken names that were preceded by a semantically congruent or incongruent picture or written name. All subjects consistently activated the superior temporal gyri bilaterally, the left fusiform gyrus and the inferior frontal sulcus. Comparing a One and Two Gaussian Mixture Model of the unexplained residuals provided very strong evidence for two groups with distinct activation patterns: 6 subjects exhibited additional activations in the superior temporal sulci bilaterally, the right superior frontal and central sulcus. 11 subjects showed increased activation in the striate and the right inferior parietal cortex. These results suggest that semantic decisions on auditory-visual compound stimuli might be accomplished by two overlapping degenerate neuronal systems.

  1. Exploring the nearly degenerate stop region with sbottom decays

    DOE PAGES

    An, Haipeng; Gu, Jiayin; Wang, Lian-Tao

    2017-04-13

    A light stop with mass almost degenerate with the lightest neutralino has important connections with both naturalness and dark matter relic abundance. This region is also very hard to probe at colliders. In this paper, we demonstrate the potential of searching for such stop particles at the LHC from sbottom decays, focusing on two channels with final states 2ℓ+EmissT2ℓ+ETmiss and 1b1ℓ+Emore » $$miss\\atop{T}$$1b1ℓ+E$$miss\\atop{T}$$. We also found that, if the lightest sbottom has mass around or below 1 TeV and has a significant branching ratio to decay to stop and W($$\\tilde{b}$$→$$\\tilde{t}$$W), a stop almost degenerate with neutralino can be excluded up to about 500-600 GeV at the 13 TeV LHC with 300 fb -1 data. The searches we propose are complementary to other SUSY searches at the LHC and could have the best sensitivity to the stop-bino coannihilation region. Finally, since they involve final states which have already been used in LHC searches, a reinterpretation of the search results already has sensitivity. Further optimization could deliver the full potential of these channels.« less

  2. Bose-Einstein condensate & degenerate Fermi cored dark matter halos

    NASA Astrophysics Data System (ADS)

    Chung, W.-J.; Nelson, L. A.

    2018-06-01

    There has been considerable interest in the last several years in support of the idea that galaxies and clusters could have highly condensed cores of dark matter (DM) within their central regions. In particular, it has been suggested that dark matter could form Bose-Einstein condensates (BECs) or degenerate Fermi cores. We examine these possibilities under the assumption that the core consists of highly condensed DM (either bosons or fermions) that is embedded in a diffuse envelope (e.g., isothermal sphere). The novelty of our approach is that we invoke composite polytropes to model spherical collisionless structures in a way that is physically intuitive and can be generalized to include other equations of state (EOSs). Our model is very amenable to the analysis of BEC cores (composed of ultra-light bosons) that have been proposed to resolve small-scale CDM anomalies. We show that the analysis can readily be applied to bosons with or without small repulsive self-interactions. With respect to degenerate Fermi cores, we confirm that fermionic particle masses between 1—1000 keV are not excluded by the observations. Finally, we note that this approach can be extended to include a wide range of EOSs in addition to multi-component collisionless systems.

  3. The condition of regular degeneration for singularly perturbed systems of linear differential-difference equations.

    NASA Technical Reports Server (NTRS)

    Cooke, K. L.; Meyer, K. R.

    1966-01-01

    Extension of problem of singular perturbation for linear scalar constant coefficient differential- difference equation with single retardation to several retardations, noting degenerate equation solution

  4. A preliminary in vitro study into the use of IL-1Ra gene therapy for the inhibition of intervertebral disc degeneration

    PubMed Central

    Le Maitre, Christine L; Freemont, Anthony J; Hoyland, Judith A

    2006-01-01

    Conventional therapies for low back pain (LBP) are purely symptomatic and do not target the cause of LBP, which in approximately 40% of cases is caused by degeneration of the intervertebral disc (DIVD). Targeting therapies to inhibit the process of degeneration would be a potentially valuable treatment for LBP. There is increasing evidence for a role for IL-1 in DIVD. A natural inhibitor of IL-1 exists, IL-1Ra, which would be an ideal molecular target for inhibiting IL-1-mediated effects involved in DIVD and LBP. In this study, the feasibility of ex vivo gene transfer of IL-1Ra to the IVD was investigated. Monolayer and alginate cultures of normal and degenerate human intervertebral disc (IVD) cells were infected with an adenoviral vector carrying the IL-1Ra gene (Ad-IL-1Ra) and protein production measured using an enzyme-linked immunosorbent assay. The ability of these infected cells to inhibit the effects of IL-1 was also investigated. In addition, normal and degenerate IVD cells infected with Ad-IL-1Ra were injected into degenerate disc tissue explants and IL-1Ra production in these discs was assessed. This demonstrated that both nucleus pulposus and annulus fibrosus cells infected with Ad-IL-1Ra produced elevated levels of IL-1Ra for prolonged time periods, and these infected cells were resistant to IL-1. When the infected cells were injected into disc explants, IL-1Ra protein expression was increased which was maintained for 2 weeks of investigation. This in vitro study has shown that the use of ex vivo gene transfer to degenerate disc tissue is a feasible therapy for the inhibition of IL-1-mediated events during disc degeneration. PMID:16436110

  5. Inhibition of non-NMDA ionotropic glutamate receptors delays the retinal degeneration in rd10 mouse.

    PubMed

    Xiang, Zongqin; Bao, Yiqin; Zhang, Jia; Liu, Chao; Xu, Di; Liu, Feng; Chen, Hui; He, Liumin; Ramakrishna, Seeram; Zhang, Zaijun; Vardi, Noga; Xu, Ying

    2018-06-22

    Retinitis pigmentosa (RP) is a hereditary blinding disease characterized by neurodegeneration of photoreceptors. Retinal ganglion cells (RGCs) in animal models of RP exhibit an abnormally high spontaneous activity that interferes with signal processing. Blocking AMPA/Kainate receptors by bath application of CNQX decreases the spontaneous firing, suggesting that inhibiting these receptors in vivo may help maintain the function of inner retinal neurons in rd10 mice experiencing photoreceptor degeneration. To test this, rd10 mice were i.p. injected with CNQX or GYKI 52466 (an AMPA receptor antagonist) for 1-2 weeks, and examined for their retinal morphology (by immunocytochemistry), function (by MEA recordings) and visual behaviors (using a black/white box). Our data show that iGluRs were up-regulated in the inner plexiform layer (IPL) of rd10 retinas. Application of CNQX at low doses both in vitro and in vivo, attenuated the abnormal spontaneous spiking in RGCs, and increased the light-evoked response of ON RGCs, whereas GYKI 52466 had little effect. CNQX application also improved the behavioral performance. Interestingly, in vivo administration of CNQX delayed photoreceptor degeneration, evidenced by the increased cell number and restored structure. CNQX also improved the structure of bipolar cells. Together, we demonstrated that during photoreceptor degeneration, blockade of the non-NMDA iGluRs decelerates the progression of RGCs dysfunction, possibly by dual mechanisms including slowing photoreceptor degeneration and modulating signal processing within the IPL. Accordingly, this strategy may effectively extend the time window for treating RP. Copyright © 2018. Published by Elsevier Ltd.

  6. Valsartan ameliorates ageing-induced aorta degeneration via angiotensin II type 1 receptor-mediated ERK activity

    PubMed Central

    Shan, HaiYan; Zhang, Siyang; Li, Xuelian; yu, Kai; Zhao, Xin; Chen, Xinyue; Jin, Bo; Bai, XiaoJuan

    2014-01-01

    Angiotensin II (Ang II) plays important roles in ageing-related disorders through its type 1 receptor (AT1R). However, the role and underlying mechanisms of AT1R in ageing-related vascular degeneration are not well understood. In this study, 40 ageing rats were randomly divided into two groups: ageing group which received no treatment (ageing control), and valsartan group which took valsartan (selective AT1R blocker) daily for 6 months. 20 young rats were used as adult control. The aorta structure were analysed by histological staining and electron microscopy. Bcl-2/Bax expression in aorta was analysed by immunohistochemical staining, RT-PCR and Western blotting. The expressions of AT1R, AT2R and mitogen-activated protein kinases (MAPKs) were detected. Significant structural degeneration of aorta in the ageing rats was observed, and the degeneration was remarkably ameliorated by long-term administration of valsartan. With ageing, the expression of AT1R was elevated, the ratio of Bcl-2/Bax was decreased and meanwhile, an important subgroup of MAPKs, extracellular signal-regulated kinase (ERK) activity was elevated. However, these changes in ageing rats could be reversed to some extent by valsartan. In vitro experiments observed consistent results as in vivo study. Furthermore, ERK inhibitor could also acquire partial effects as valsartan without affecting AT1R expression. The results indicated that AT1R involved in the ageing-related degeneration of aorta and AT1R-mediated ERK activity was an important mechanism underlying the process. PMID:24548645

  7. VITRECTOMY FOR INTERMEDIATE AGE-RELATED MACULAR DEGENERATION ASSOCIATED WITH TANGENTIAL VITREOMACULAR TRACTION: A CLINICOPATHOLOGIC CORRELATION.

    PubMed

    Ziada, Jean; Hagenau, Felix; Compera, Denise; Wolf, Armin; Scheler, Renate; Schaumberger, Markus M; Priglinger, Siegfried G; Schumann, Ricarda G

    2018-03-01

    To describe the morphologic characteristics of the vitreomacular interface in intermediate age-related macular degeneration associated with tangential traction due to premacular membrane formation and to correlate with optical coherence tomography (OCT) findings and clinical data. Premacular membrane specimens were removed sequentially with the internal limiting membrane from 27 eyes of 26 patients with intermediate age-related macular degeneration during standard vitrectomy. Specimens were processed for immunocytochemical staining of epiretinal cells and extracellular matrix components. Ultrastructural analysis was performed using transmission electron microscopy. Spectral domain optical coherence tomography images and patient charts were evaluated in retrospect. Immunocytochemistry revealed hyalocytes and myofibroblasts as predominant cell types. Ultrastructural analysis demonstrated evidence of vitreoschisis in all eyes. Myofibroblasts with contractile properties were observed to span between folds of the internal limiting membrane and vitreous cortex collagen. Retinal pigment epithelial cells or inflammatory cells were not detected. Mean visual acuity (Snellen) showed significant improvement from 20/72 ± 20/36 to 20/41 ± 20/32 (P < 0.001) after a mean follow-up period of 19 months (median, 17 months). During this period, none of the eyes required anti-vascular endothelial growth factor therapy. Fibrocellular premacular proliferation in intermediate age-related macular degeneration predominantly consists of vitreous collagen, hyalocytes, and myofibroblasts with contractile properties. Vitreoschisis and vitreous-derived cells appear to play an important role in traction formation of this subgroup of eyes. In patients with intermediate age-related macular degeneration and contractile premacular membrane, release of traction by vitrectomy with internal limiting membrane peeling results in significantly functional and anatomical improvement.

  8. In Vitro Analysis of the Role of Schwann Cells on Axonal Degeneration and Regeneration Using Sensory Neurons from Dorsal Root Ganglia.

    PubMed

    López-Leal, Rodrigo; Diaz, Paula; Court, Felipe A

    2018-01-01

    Sensory neurons from dorsal root ganglion efficiently regenerate after peripheral nerve injuries. These neurons are widely used as a model system to study degenerative mechanisms of the soma and axons, as well as regenerative axonal growth in the peripheral nervous system. This chapter describes techniques associated to the study of axonal degeneration and regeneration using explant cultures of dorsal root ganglion sensory neurons in vitro in the presence or absence of Schwann cells. Schwann cells are extremely important due to their involvement in tissue clearance during axonal degeneration as well as their known pro-regenerative effect during regeneration in the peripheral nervous system. We describe methods to induce and study axonal degeneration triggered by axotomy (mechanical separation of the axon from its soma) and treatment with vinblastine (which blocks axonal transport), which constitute clinically relevant mechanical and toxic models of axonal degeneration. In addition, we describe three different methods to evaluate axonal regeneration using quantitative methods. These protocols constitute a valuable tool to analyze in vitro mechanisms associated to axonal degeneration and regeneration of sensory neurons and the role of Schwann cells in these processes.

  9. Odour Identification in Frontotemporal Lobar Degeneration

    PubMed Central

    Rami, Lorena; Loy, Clement T.; Hailstone, Julia; Warren, Jason D.

    2008-01-01

    Little information is available concerning olfactory processing in frontotemporal lobar degeneration (FTLD). We undertook a case-control study of olfactory processing in three male patients fulfilling clinical criteria for FTLD. Odour identification (semantic analysis) and odour discrimination (perceptual analysis) were investigated using tests adapted from the University of Pennsylvania Smell Identification Test. General neuropsychometry and structural volumetric brain magnetic resonance imaging (MRI) were also performed. The three patients with FTLD exhibited a disorder of olfactory processing with the characteristics of a predominantly semantic (odour identification) deficit. This olfactory deficit was more prominent in patients with greater involvement of the temporal lobes on MRI. Central deficits of odour identification may be more common in FTLD than previously recognised, and these deficits may assist in clinical characterisation. PMID:17380245

  10. Three very cool degenerate stars in Luyten common proper motion binaries - Implications for the age of the galactic disk

    NASA Technical Reports Server (NTRS)

    Hintzen, Paul; Oswalt, Terry D.; Liebert, James; Sion, Edward M.

    1989-01-01

    During the course of a spectroscopic study of Luyten common proper motion (CPM) stars, spectrophotometric observations have been obtained of three binaries containing degenerate stars with estimated absolute magnitudes M(V) of about 16. Each of the three pairs consists of a yellow degenerate star primary and a DC 13 + secondary 1.4-2.3 mag fainter. One of the primary stars is spectral class DC 7, another is a sharp-lined DA 8, and the third shows peculiar broad absorption features which we interpret as pressure-shifted C2 Swan bands. The LP 701 - 69/70 system has survived for over 8 billion years without disruption by passing stars, despite its 1500 a.u. orbital major axis. The three cool degenerate companions nearly double the available sample of stars at the low-luminosity terminus of the white dwarf cooling sequence. These findings appear consistent with the conclusion that degenerate stars in the old disk population have not had time to evolve to a luminosity fainter than M(V) about 16.2.

  11. Protect Your Eyes: Age-Related Macular Degeneration (AMD) Facts and Prevention Tips

    MedlinePlus

    PROTECT YOUR EYES Age-Related Macular Degeneration ( AMD ) FACTS & PREVENTION TIPS A LEADING CAUSE OF VISION LOSS IN THE U.S . AMD is a ... Black 2% Other 89% White As the population ages, the number of cases is expected to increase ...

  12. Polygalae Radix Extract Prevents Axonal Degeneration and Memory Deficits in a Transgenic Mouse Model of Alzheimer’s Disease

    PubMed Central

    Kuboyama, Tomoharu; Hirotsu, Keisuke; Arai, Tetsuya; Yamasaki, Hiroo; Tohda, Chihiro

    2017-01-01

    Memory impairments in Alzheimer’s disease (AD) occur due to degenerated axons and disrupted neural networks. Since only limited recovery is possible after the destruction of neural networks, preventing axonal degeneration during the early stages of disease progression is necessary to prevent AD. Polygalae Radix (roots of Polygala tenuifolia; PR) is a traditional herbal medicine used for sedation and amnesia. In this study, we aimed to clarify and analyze the preventive effects of PR against memory deficits in a transgenic AD mouse model, 5XFAD. 5XFAD mice demonstrated memory deficits at the age of 5 months. Thus, the water extract of Polygalae Radix (PR extract) was orally administered to 4-month-old 5XFAD mice that did not show signs of memory impairment. After consecutive administrations for 56 days, the PR extract prevented cognitive deficit and axon degeneration associated with the accumulation of amyloid β (Aβ) plaques in the perirhinal cortex of the 5XFAD mice. PR extract did not influence the formation of Aβ plaques in the brain of the 5XFAD mice. In cultured neurons, the PR extract prevented axonal growth cone collapse and axonal atrophy induced by Aβ. Additionally, it prevented Aβ-induced endocytosis at the growth cone of cultured neurons. Our previous study reported that endocytosis inhibition was enough to prevent Aβ-induced growth cone collapse, axonal degeneration, and memory impairments. Therefore, the PR extract possibly prevented axonal degeneration and memory impairment by inhibiting endocytosis. PR is the first preventive drug candidate for AD that inhibits endocytosis in neurons. PMID:29184495

  13. Lack of NF-kappaB p50 exacerbates degeneration of hippocampal neurons after chemical exposure and impairs learning.

    PubMed

    Kassed, C A; Willing, A E; Garbuzova-Davis, S; Sanberg, P R; Pennypacker, K R

    2002-08-01

    The roles of activated NF-kappaB subunits in the CNS remain to be discerned. Members of this family of transcription factors are essential to diverse physiological processes and can be activated by pathogens, stress, pharmacological agents, and trauma. We are particularly interested in long-term NF-kappaB activation and its involvement in neuroplastic changes in the brain resulting from acquisition of memory as well as injury. Here, we use lesioning by the limbic-specific neurotoxicant trimethyltin (TMT) as a model in which to examine activation of the NF-kappaB p50 subunit before, during, and after neuronal degeneration. Neurons in wild-type mice that survived TMT-induced injury contained activated p50 and did not label with Fluoro-Jade, a histochemical marker of degenerating neurons. Granule cells of the wild-type dentate gyrus subregion, an area particularly vulnerable to TMT-induced degeneration, contained less activated p50 protein than CA regions. We compared the extent of degeneration in wild-type and p50-null mice and found a fivefold increase in death of hippocampal neurons in mice lacking p50. The hippocampus is key to processes of learning and memory, and NF-kappaB has reported involvement in these processes. The enhanced hippocampal degeneration in p50-null mice prompted us to evaluate their basal learning abilities, and we discovered that difficulties in task acquisition were an additional consequence of p50 ablation. These results indicate that absence of p50 negatively modulates learning ability as well as hippocampal responsiveness to brain injury after a chemical-induced lesion.

  14. Spiral ganglion degeneration and hearing loss as a consequence of satellite cell death in saposin B-deficient mice.

    PubMed

    Akil, Omar; Sun, Ying; Vijayakumar, Sarath; Zhang, Wujuan; Ku, Tiffany; Lee, Chi-Kyou; Jones, Sherri; Grabowski, Gregory A; Lustig, Lawrence R

    2015-02-18

    Saposin B (Sap B) is an essential activator protein for arylsulfatase A in the hydrolysis of sulfatide, a lipid component of myelin. To study Sap B's role in hearing and balance, a Sap B-deficient (B(-/-)) mouse was evaluated. At both light and electron microscopy (EM) levels, inclusion body accumulation was seen in satellite cells surrounding spiral ganglion (SG) neurons from postnatal month 1 onward, progressing into large vacuoles preceding satellite cell degeneration, and followed by SG degeneration. EM also revealed reduced or absent myelin sheaths in SG neurons from postnatal month 8 onwards. Hearing loss was initially seen at postnatal month 6 and progressed thereafter for frequency-specific stimuli, whereas click responses became abnormal from postnatal month 13 onward. The progressive hearing loss correlated with the accumulation of inclusion bodies in the satellite cells and their subsequent degeneration. Outer hair cell numbers and efferent function measures (distortion product otoacoustic emissions and contralateral suppression) were normal in the B(-/-) mice throughout this period. Alcian blue staining of SGs demonstrated that these inclusion bodies corresponded to sulfatide accumulation. In contrast, changes in the vestibular system were much milder, but caused severe physiologic deficits. These results demonstrate that loss of Sap B function leads to progressive sulfatide accumulation in satellite cells surrounding the SG neurons, leading to satellite cell degeneration and subsequent SG degeneration with a resultant loss of hearing. Relative sparing of the efferent auditory and vestibular neurons suggests that alternate glycosphingolipid metabolic pathways predominate in these other systems. Copyright © 2015 the authors 0270-6474/15/353263-13$15.00/0.

  15. Autoimmune responses against photoreceptor antigens during retinal degeneration and their role in macrophage recruitment into retinas of RCS rats.

    PubMed

    Kyger, Madison; Worley, Aneta; Adamus, Grazyna

    2013-01-15

    Autoimmunity may contribute to retinal degeneration. The studies examined the evolution of autoimmune responses against retina in naïve dystrophic RCS rats over the course of retinal degeneration. We showed that anti-retinal autoantibodies and T cells are generated in response to the availability of antigenic material released from dying photoreceptor cells during retinal degeneration but with distinctive activation trends. Passive transfer of anti-retinal antibodies enhanced disease progression by disrupting the BRB, upregulating MCP-1, attracting blood macrophages into retina, and augmenting apoptotic photoreceptor cell death. Our findings directly link anti-retinal autoantibodies to activated macrophage entry and their possible role in neurodegeneration. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. The synaptic maintenance problem: membrane recycling, Ca2+ homeostasis and late onset degeneration

    PubMed Central

    2013-01-01

    Most neurons are born with the potential to live for the entire lifespan of the organism. In addition, neurons are highly polarized cells with often long axons, extensively branched dendritic trees and many synaptic contacts. Longevity together with morphological complexity results in a formidable challenge to maintain synapses healthy and functional. This challenge is often evoked to explain adult-onset degeneration in numerous neurodegenerative disorders that result from otherwise divergent causes. However, comparably little is known about the basic cell biological mechanisms that keep normal synapses alive and functional in the first place. How the basic maintenance mechanisms are related to slow adult-onset degeneration in different diseasesis largely unclear. In this review we focus on two basic and interconnected cell biological mechanisms that are required for synaptic maintenance: endomembrane recycling and calcium (Ca2+) homeostasis. We propose that subtle defects in these homeostatic processes can lead to late onset synaptic degeneration. Moreover, the same basic mechanisms are hijacked, impaired or overstimulated in numerous neurodegenerative disorders. Understanding the pathogenesis of these disorders requires an understanding of both the initial cause of the disease and the on-going changes in basic maintenance mechanisms. Here we discuss the mechanisms that keep synapses functional over long periods of time with the emphasis on their role in slow adult-onset neurodegeneration. PMID:23829673

  17. Redox proteomic identification of visual arrestin dimerization in photoreceptor degeneration after photic injury.

    PubMed

    Lieven, Christopher J; Ribich, Jonathan D; Crowe, Megan E; Levin, Leonard A

    2012-06-26

    Light-induced oxidative stress is an important risk factor for age-related macular degeneration, but the downstream mediators of photoreceptor and retinal pigment epithelium cell death after photic injury are unknown. Given our previous identification of sulfhydryl/disulfide redox status as a factor in photoreceptor survival, we hypothesized that formation of one or more disulfide-linked homo- or hetero-dimeric proteins might signal photoreceptor death after light-induced injury. Two-dimensional (non-reducing/reducing) gel electrophoresis of Wistar rat retinal homogenates after 10 hours of 10,000 lux (4200°K) light in vivo, followed by mass spectrometry identification of differentially oxidized proteins. The redox proteomic screen identified homodimers of visual arrestin (Arr1; S antigen) after toxic levels of light injury. Immunoblot analysis revealed a light duration-dependent formation of Arr1 homodimers, as well as other Arr1 oligomers. Immunoprecipitation studies revealed that the dimerization of Arr1 due to photic injury was distinct from association with its physiological binding partners, rhodopsin and enolase1. Systemic delivery of tris(2-carboxyethyl)phosphine, a specific disulfide reductant, both decreased Arr1 dimer formation and protected photoreceptors from light-induced degeneration in vivo. These findings suggest a novel arrestin-associated pathway by which oxidative stress could result in cell death, and identify disulfide-dependent dimerization as a potential therapeutic target in retinal degeneration.

  18. AAV-mediated Gene Therapy Halts Retinal Degeneration in PDE6β-deficient Dogs

    PubMed Central

    Pichard, Virginie; Provost, Nathalie; Mendes-Madeira, Alexandra; Libeau, Lyse; Hulin, Philippe; Tshilenge, Kizito-Tshitoko; Biget, Marine; Ameline, Baptiste; Deschamps, Jack-Yves; Weber, Michel; Le Meur, Guylène; Colle, Marie-Anne; Moullier, Philippe; Rolling, Fabienne

    2016-01-01

    We previously reported that subretinal injection of AAV2/5 RK.cpde6β allowed long-term preservation of photoreceptor function and vision in the rod-cone dysplasia type 1 (rcd1) dog, a large animal model of naturally occurring PDE6β deficiency. The present study builds on these earlier findings to provide a detailed assessment of the long-term effects of gene therapy on the spatiotemporal pattern of retinal degeneration in rcd1 dogs treated at 20 days of age. We analyzed the density distribution of the retinal layers and of particular photoreceptor cells in 3.5-year-old treated and untreated rcd1 dogs. Whereas no rods were observed outside the bleb or in untreated eyes, gene transfer halted rod degeneration in all vector-exposed regions. Moreover, while gene therapy resulted in the preservation of cones, glial cells and both the inner nuclear and ganglion cell layers, no cells remained in vector-unexposed retinas, except in the visual streak. Finally, the retinal structure of treated 3.5-year-old rcd1 dogs was identical to that of unaffected 4-month-old rcd1 dogs, indicating near complete preservation. Our findings indicate that gene therapy arrests the degenerative process even if intervention is initiated after the onset of photoreceptor degeneration, and point to significant potential of this therapeutic approach in future clinical trials. PMID:26857842

  19. AAV-mediated Gene Therapy Halts Retinal Degeneration in PDE6β-deficient Dogs.

    PubMed

    Pichard, Virginie; Provost, Nathalie; Mendes-Madeira, Alexandra; Libeau, Lyse; Hulin, Philippe; Tshilenge, Kizito-Tshitoko; Biget, Marine; Ameline, Baptiste; Deschamps, Jack-Yves; Weber, Michel; Le Meur, Guylène; Colle, Marie-Anne; Moullier, Philippe; Rolling, Fabienne

    2016-05-01

    We previously reported that subretinal injection of AAV2/5 RK.cpde6β allowed long-term preservation of photoreceptor function and vision in the rod-cone dysplasia type 1 (rcd1) dog, a large animal model of naturally occurring PDE6β deficiency. The present study builds on these earlier findings to provide a detailed assessment of the long-term effects of gene therapy on the spatiotemporal pattern of retinal degeneration in rcd1 dogs treated at 20 days of age. We analyzed the density distribution of the retinal layers and of particular photoreceptor cells in 3.5-year-old treated and untreated rcd1 dogs. Whereas no rods were observed outside the bleb or in untreated eyes, gene transfer halted rod degeneration in all vector-exposed regions. Moreover, while gene therapy resulted in the preservation of cones, glial cells and both the inner nuclear and ganglion cell layers, no cells remained in vector-unexposed retinas, except in the visual streak. Finally, the retinal structure of treated 3.5-year-old rcd1 dogs was identical to that of unaffected 4-month-old rcd1 dogs, indicating near complete preservation. Our findings indicate that gene therapy arrests the degenerative process even if intervention is initiated after the onset of photoreceptor degeneration, and point to significant potential of this therapeutic approach in future clinical trials.

  20. Anti-inflammatory Chitosan/Poly-γ-glutamic acid nanoparticles control inflammation while remodeling extracellular matrix in degenerated intervertebral disc.

    PubMed

    Teixeira, Graciosa Q; Leite Pereira, Catarina; Castro, Flávia; Ferreira, Joana R; Gomez-Lazaro, Maria; Aguiar, Paulo; Barbosa, Mário A; Neidlinger-Wilke, Cornelia; Goncalves, Raquel M

    2016-09-15

    Intervertebral disc (IVD) degeneration is one of the most common causes of low back pain (LBP), the leading disorder in terms of years lived with disability. Inflammation can play a role in LPB, while impairs IVD regeneration. In spite of this, different inflammatory targets have been purposed in the context of IVD regeneration. Anti-inflammatory nanoparticles (NPs) of Chitosan and Poly-(γ-glutamic acid) with a non-steroidal anti-inflammatory drug, diclofenac (Df), were previously shown to counteract a pro-inflammatory response of human macrophages. Here, the effect of intradiscal injection of Df-NPs in degenerated IVD was evaluated. For that, Df-NPs were injected in a bovine IVD organ culture in pro-inflammatory/degenerative conditions, upon stimulation with needle-puncture and interleukin (IL)-1β. Df-NPs were internalized by IVD cells, down-regulating IL-6, IL-8, MMP1 and MMP3, and decreasing PGE2 production, compared with IL-1β-stimulated IVD punches. Interestingly, at the same time, Df-NPs promoted an up-regulation of extracellular matrix (ECM) proteins, namely collagen type II and aggrecan. Allover, this study suggests that IVD treatment with Df-NPs not only reduces inflammation, but also delays and/or decreases ECM degradation, opening perspectives to new intradiscal therapies for IVD degeneration, based on the modulation of inflammation. Degeneration of the IVD is an age-related progressive process considered to be the major cause of spine disorders. The pro-inflammatory environment and biomechanics of the degenerated IVD is a challenge for regenerative therapies. The novelty of this work is the intradiscal injection of an anti-inflammatory therapy based on Chitosan (Ch)/Poly-(γ-glutamic acid) (γ-PGA) nanoparticles (NPs) with an anti-inflammatory drug (diclofenac, Df), previously developed by us. This drug delivery system was tested in a pro-inflammatory/degenerative intervertebral disc ex vivo model. The main findings support the success of an anti

  1. Imaging of cartilage degeneration progression in vivo using ultrahigh-resolution OCT

    NASA Astrophysics Data System (ADS)

    Herz, Paul R.; Bourquin, Stephane; Hsiung, Pei-lin; Ko, Tony H.; Schneider, Karl; Fujimoto, James G.; Adams, Samuel, Jr.; Roberts, Mark; Patel, Nirlep; Brezinski, Mark

    2003-10-01

    Ultrahigh resolution OCT is used to visualize experimentally induced osteoarthritis in a rat knee model. Using a Cr4+:Forsterite laser, ultrahigh image resolutions of 5um are achieved. Progression of osteoarthritic remodeling and cartilage degeneration are quantified. The utility of OCT for the assessment of cartilage integrity is demonstrated.

  2. Molecular and cell-based therapies for muscle degenerations: a road under construction.

    PubMed

    Berardi, Emanuele; Annibali, Daniela; Cassano, Marco; Crippa, Stefania; Sampaolesi, Maurilio

    2014-01-01

    Despite the advances achieved in understanding the molecular biology of muscle cells in the past decades, there is still need for effective treatments of muscular degeneration caused by muscular dystrophies and for counteracting the muscle wasting caused by cachexia or sarcopenia. The corticosteroid medications currently in use for dystrophic patients merely help to control the inflammatory state and only slightly delay the progression of the disease. Unfortunately, walkers and wheel chairs are the only options for such patients to maintain independence and walking capabilities until the respiratory muscles become weak and the mechanical ventilation is needed. On the other hand, myostatin inhibition, IL-6 antagonism and synthetic ghrelin administration are examples of promising treatments in cachexia animal models. In both dystrophies and cachectic syndrome the muscular degeneration is extremely relevant and the translational therapeutic attempts to find a possible cure are well defined. In particular, molecular-based therapies are common options to be explored in order to exploit beneficial treatments for cachexia, while gene/cell therapies are mostly used in the attempt to induce a substantial improvement of the dystrophic muscular phenotype. This review focuses on the description of the use of molecular administrations and gene/stem cell therapy to treat muscular degenerations. It reviews previous trials using cell delivery protocols in mice and patients starting with the use of donor myoblasts, outlining the likely causes for their poor results and briefly focusing on satellite cell studies that raise new hope. Then it proceeds to describe recently identified stem/progenitor cells, including pluripotent stem cells and in relationship to their ability to home within a dystrophic muscle and to differentiate into skeletal muscle cells. Different known features of various stem cells are compared in this perspective, and the few available examples of their use in

  3. Comment on "Continuum Lowering and Fermi-Surface Rising in Stromgly Coupled and Degenerate Plasmas"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iglesias, C. A.; Sterne, P. A.

    In a recent Letter, Hu [1] reported photon absorption cross sections in strongly coupled, degenerate plasmas from quantum molecular dynamics (QMD). The Letter claims that the K-edge shift as a function of plasma density computed with simple ionization potential depression (IPD) models are in violent disagreement with the QMD results. The QMD calculations displayed an increase in Kedge shift with increasing density while the simpler models yielded a decrease. Here, this Comment shows that the claimed large errors reported by Hu for the widely used Stewart- Pyatt (SP) model [2] stem from an invalid comparison of disparate physical quantities andmore » is largely resolved by including well-known corrections for degenerate systems.« less

  4. Comment on "Continuum Lowering and Fermi-Surface Rising in Stromgly Coupled and Degenerate Plasmas"

    DOE PAGES

    Iglesias, C. A.; Sterne, P. A.

    2018-03-16

    In a recent Letter, Hu [1] reported photon absorption cross sections in strongly coupled, degenerate plasmas from quantum molecular dynamics (QMD). The Letter claims that the K-edge shift as a function of plasma density computed with simple ionization potential depression (IPD) models are in violent disagreement with the QMD results. The QMD calculations displayed an increase in Kedge shift with increasing density while the simpler models yielded a decrease. Here, this Comment shows that the claimed large errors reported by Hu for the widely used Stewart- Pyatt (SP) model [2] stem from an invalid comparison of disparate physical quantities andmore » is largely resolved by including well-known corrections for degenerate systems.« less

  5. Genome instability: Linking ageing and brain degeneration.

    PubMed

    Barzilai, Ari; Schumacher, Björn; Shiloh, Yosef

    2017-01-01

    Ageing is a multifactorial process affected by cumulative physiological changes resulting from stochastic processes combined with genetic factors, which together alter metabolic homeostasis. Genetic variation in maintenance of genome stability is emerging as an important determinant of ageing pace. Genome instability is also closely associated with a broad spectrum of conditions involving brain degeneration. Similarities and differences can be found between ageing-associated decline of brain functionality and the detrimental effect of genome instability on brain functionality and development. This review discusses these similarities and differences and highlights cell classes whose role in these processes might have been underestimated-glia and microglia. Copyright © 2016. Published by Elsevier B.V.

  6. Triple therapy for age-related macular degeneration.

    PubMed

    Augustin, Albert

    2009-06-01

    Choroidal neovascularization is a hallmark sign of wet age-related macular degeneration (AMD) but it is not an isolated feature. Several processes are likely to contribute to the fibrotic scarring and vision loss that accompanies progressive disease. In a case series, a triple therapy approach to wet AMD was based on the goals of halting choroidal neovascularization, controlling the inflammatory response, and modifying proliferative factors. To address each of these goals, respectively, patients received photodynamic therapy, bevacizumab, and the steroid dexamethasone. The encouraging rate of response, including significant improvements in visual acuity, is consistent with the combined activities of these agents and provides the basis for more definitive studies.

  7. Diminishing risk for age related macular degeneration with nutrition: A current view

    USDA-ARS?s Scientific Manuscript database

    Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. Clinical hallmarks of AMD are observed in one third of the elderly in industrialized countries. Preventative interventions through dietary modification are attractive strategies because they are more affordable...

  8. Glucosamine Supplementation Demonstrates a Negative Effect On Intervertebral Disc Matrix in an Animal Model of Disc Degeneration

    PubMed Central

    Jacobs, Lloydine; Vo, Nam; Coehlo, J. Paulo; Dong, Qing; Bechara, Bernard; Woods, Barrett; Hempen, Eric; Hartman, Robert; Preuss, Harry; Balk, Judith; Kang, James; Sowa, Gwendolyn

    2013-01-01

    Study Design Laboratory based controlled in vivo study Objective To determine the in vivo effects of oral glucosamine sulfate on intervertebral disc degeneration Summary of Background Data Although glucosamine has demonstrated beneficial effect in articular cartilage, clinical benefit is uncertain. A CDC report from 2009 reported that many patients are using glucosamine supplementation for low back pain (LBP), without significant evidence to support its use. Because disc degeneration is a major contributor of LBP, we explored the effects of glucosamine on disc matrix homeostasis in an animal model of disc degeneration. Methods Eighteen skeletally mature New Zealand White rabbits were divided into four groups: control, annular puncture, glucosamine, and annular puncture+glucosamine. Glucosamine treated rabbits received daily oral supplementation with 107mg/day (weight based equivalent to human 1500mg/day). Annular puncture surgery involved puncturing the annulus fibrosus (AF) of 3 lumbar discs with a 16G needle to induce degeneration. Serial MRIs were obtained at 0, 4, 8, 12, and 20 weeks. Discs were harvested at 20 weeks for determination of glycosaminoglycan(GAG) content, relative gene expression measured by RT-PCR, and histological analyses. Results The MRI index and NP area of injured discs of glucosamine treated animals with annular puncture was found to be lower than that of degenerated discs from rabbits not supplemented with glucosamine. Consistent with this, decreased glycosaminoglycan was demonstrated in glucosamine fed animals, as determined by both histological and GAG content. Gene expression was consistent with a detrimental effect on matrix. Conclusions These data demonstrate that the net effect on matrix in an animal model in vivo, as measured by gene expression, MRI, histology, and total proteoglycan is anti-anabolic. This raises concern over this commonly used supplement, and future research is needed to establish the clinical relevance of these

  9. Quadrature demultiplexing using a degenerate vector parametric amplifier.

    PubMed

    Lorences-Riesgo, Abel; Liu, Lan; Olsson, Samuel L I; Malik, Rohit; Kumpera, Aleš; Lundström, Carl; Radic, Stojan; Karlsson, Magnus; Andrekson, Peter A

    2014-12-01

    We report on quadrature demultiplexing of a quadrature phase-shift keying (QPSK) signal into two cross-polarized binary phase-shift keying (BPSK) signals with negligible penalty at bit-error rate (BER) equal to 10(-9). The all-optical quadrature demultiplexing is achieved using a degenerate vector parametric amplifier operating in phase-insensitive mode. We also propose and demonstrate the use of a novel and simple phase-locked loop (PLL) scheme based on detecting the envelope of one of the signals after demultiplexing in order to achieve stable quadrature decomposition.

  10. Weighted Inequalities and Degenerate Elliptic Partial Differential Equations.

    DTIC Science & Technology

    1984-05-01

    The analysis also applies to higher order equations. The basic method is due to N. Meyers and A. blcrat ( HYE ] (U-l). The equations considered are...220 14. MONITORING aGENCY NAME A AODRESS(lldI1n.Mhnt &m COnt* won * 011066) 1S. SECURITY CLASS. (of h1 rpMRt) UNCLASSIFIED I1. DECL ASSI FICATION...20550 Research Triangle Park North Carolina 27709 ,B. KEY WORDS (C@Wth mu Mgo, *do it Ma0oMr O IdMf& y Nok ftwb.) degenerate equation, elliptic partial

  11. Biomechanical influence of disk properties on the load transfer of healthy and degenerated disks using a poroelastic finite element model.

    PubMed

    Chagnon, Amélie; Aubin, Carl-Eric; Villemure, Isabelle

    2010-11-01

    Spine degeneration is a pathology that will affect 80% of the population. Since the intervertebral disks play an important role in transmitting loads through the spine, the aim of this study was to evaluate the biomechanical impact of disk properties on the load carried by healthy (Thompson grade I) and degenerated (Thompson grades III and IV) disks. A three-dimensional parametric poroelastic finite element model of the L4/L5 motion segment was developed. Grade I, grade II, and grade IV disks were modeled by altering the biomechanical properties of both the annulus and nucleus. Models were validated using published creep experiments, in which a constant compressive axial stress of 0.35 MPa was applied for 4 h. Pore pressure (PP) and effective stress (S(E)) were analyzed as a function of time following loading application (1 min, 5 min, 45 min, 125 min, and 245 min) and discal region along the midsagittal profile for each disk grade. A design of experiments was further implemented to analyze the influence of six disk parameters (disk height (H), fiber proportion (%F), drained Young's modulus (E(a),E(n)), and initial permeability (k(a),k(n)) of both the annulus and nucleus) on load-sharing for disk grades I and IV. Simulations of grade I, grade III, and grade IV disks agreed well with the available published experimental data. Disk height (H) had a significant influence (p<0.05) on the PP and S(E) during the entire loading history for both healthy and degenerated disk models. Young's modulus of the annulus (E(a)) significantly affected not only S(E) in the annular region for both disk grades in the initial creep response but also S(E) in the nucleus zone for degenerated disks with further creep response. The nucleus and annulus permeabilities had a significant influence on the PP distribution for both disk grades, but this effect occurred at earlier stages of loading for degenerated than for healthy disk models. This is the first study that investigates the

  12. Anti-Hu Antibody Associated Paraneoplastic Cerebellar Degeneration in Head and Neck Cancer.

    PubMed

    Huemer, Florian; Melchardt, Thomas; Tränkenschuh, Wolfgang; Neureiter, Daniel; Moser, Gerhard; Magnes, Teresa; Weiss, Lukas; Schlattau, Alexander; Hufnagl, Clemens; Ricken, Gerda; Höftberger, Romana; Greil, Richard; Egle, Alexander

    2015-12-22

    Paraneoplastic syndromes are most frequently associated with small cell lung carcinoma, hematologic and gynecologic malignancies while reports in head and neck cancer are rare. We present the case of a 60-year old female patient who developed paraneoplastic cerebellar degeneration upon locoregional recurrence of a poorly differentiated spindle cell carcinoma of the nasal cavity and paranasal sinus. The neurological symptoms, especially ataxia, stabilized after resection of tumor recurrence and concomitant chemoradiotherapy whereas anti-Hu-antibodies remained positive. Despite the unfavorable prognosis of paraneoplastic neurological disorders associated with onconeural antibodies, the patient achieved long-standing stabilization of neurological symptoms. We report the first patient with anti-Hu antibodies and paraneoplastic cerebellar degeneration associated with a spindle cell carcinoma of the head and neck. We recommend that evaluation of neurological symptoms in patients with this tumor entity should also include paraneoplastic syndromes as differential diagnoses and suggest early extensive screening for onconeural antibodies.

  13. From polariton condensates to highly photonic quantum degenerate states of bosonic matter

    PubMed Central

    Aßmann, Marc; Tempel, Jean-Sebastian; Veit, Franziska; Bayer, Manfred; Rahimi-Iman, Arash; Löffler, Andreas; Höfling, Sven; Reitzenstein, Stephan; Worschech, Lukas; Forchel, Alfred

    2011-01-01

    Bose–Einstein condensation (BEC) is a thermodynamic phase transition of an interacting Bose gas. Its key signatures are remarkable quantum effects like superfluidity and a phonon-like Bogoliubov excitation spectrum, which have been verified for atomic BECs. In the solid state, BEC of exciton–polaritons has been reported. Polaritons are strongly coupled light-matter quasiparticles in semiconductor microcavities and composite bosons. However, they are subject to dephasing and decay and need external pumping to reach a steady state. Accordingly the polariton BEC is a nonequilibrium process of a degenerate polariton gas in self-equilibrium, but out of equilibrium with the baths it is coupled to and therefore deviates from the thermodynamic phase transition seen in atomic BECs. Here we show that key signatures of BEC can even be observed without fulfilling the self-equilibrium condition in a highly photonic quantum degenerate nonequilibrium system. PMID:21245353

  14. Musculoskeletal simulation can help explain selective muscle degeneration in Duchenne muscular dystrophy.

    PubMed

    Hu, Xiao; Blemker, Silvia S

    2015-08-01

    Duchenne muscular dystrophy (DMD) is a genetic disease that occurs due to the deficiency of the dystrophin protein. Although dystrophin is deficient in all muscles, it is unclear why degeneration progresses differently across muscles in DMD. We hypothesized that each muscle undergoes a different degree of eccentric contraction during gait, which could contribute to the selective degeneration in lower limb muscle, as indicated by various amounts of fatty infiltration. By comparing eccentric contractions quantified from a previous multibody dynamic musculoskeletal gait simulation and fat fractions quantified in a recent imaging study, our preliminary analyses show a strong correlation between eccentric contractions during gait and lower limb muscle fat fractions, supporting our hypothesis. This knowledge is critical for developing safe exercise regimens for the DMD population. This study also provides supportive evidence for using multiscale modeling and simulation of the musculoskeletal system in future DMD research. © 2015 Wiley Periodicals, Inc.

  15. Remodelling of the pinna in myxoid degeneration of the ear.

    PubMed

    Kean, J; Stewart, K J

    2010-07-01

    Idiopathic deformation of the pinna is not widely reported in the current literature. We present a series of cases in which patients have required surgery for spontaneous thickening and deformation of the auricular cartilage, and a description of a technique for surgical correction. Four cases of idiopathic deformation of the pinna are reported. Our preferred technique of scaphoid rim incision and anterior carving of the cartilage is described, with intra-operative photographs. Each patient reported spontaneous swelling of the upper poles of the ears beginning in the second or third decade of life. In 3 cases the deformity was bilateral, although in each of these cases one side was more severely affected than the other. Histology for these cases was reported as myxoid degeneration of the ear. All of the reported patients were pleased with the aesthetic outcome of their auricular remodelling. Currently, there are no typical patient demographics for idiopathic myxoid degeneration of the ear. We have achieved good aesthetic results by hand carving the anterior aspect of the deformed cartilage via scaphoid rim incisions. Copyright 2009 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Low Intensity Pulsed Ultrasound (LIPUS) for the treatment of intervertebral disc degeneration

    NASA Astrophysics Data System (ADS)

    Horne, Devante; Jones, Peter; Salgaonkar, Vasant; Adams, Matt; Ozilgen, B. Arda; Zahos, Peter; Tang, Xinyan; Liebenberg, Ellen; Coughlin, Dezba; Lotz, Jeffrey; Diederich, Chris

    2017-02-01

    Discogenic back pain presents a major public health issue, with current therapeutic interventions limited to short-term symptom relief without providing regenerative remedies for diseased intervertebral discs (IVD). Many of these interventions are invasive and can diminish the biomechanical integrity of the IVDs. Low intensity pulsed ultrasound (LIPUS) is a potential treatment option that is both non-invasive and regenerative. LIPUS has been shown to be a clinically effective method for the enhancement of wound and fracture healing. Recent in vitro studies have shown that LIPUS stimulation induces an upregulation functional matrix proteins and downregulation of inflammatory factors in cultured IVD cells. However, we do not know the effects of LIPUS on an in vivo model for intervertebral disc degeneration. The objective of this study was to show technical feasibility of building a LIPUS system that can target the rat tail IVD and apply this setup to a model for acute IVD degeneration. A LIPUS exposimetry system was built using a 1.0 MHz planar transducer and custom housing. Ex vivo intensity measurements demonstrated LIPUS delivery to the center of the rat tail IVD. Using an established stab-incision model for disc degeneration, LIPUS was applied for 20 minutes daily for five days. For rats that displayed a significant injury response, LIPUS treatment caused significant upregulation of Collagen II and downregulation of Tumor Necrosis Factor - α gene expression. Our preliminary studies indicate technical feasibility of targeted delivery of ultrasound to a rat tail IVD for studies of LIPUS biological effects.

  17. Interactions of Prosthetic and Natural Vision in Animals With Local Retinal Degeneration

    PubMed Central

    Lorach, Henri; Lei, Xin; Galambos, Ludwig; Kamins, Theodore; Mathieson, Keith; Dalal, Roopa; Huie, Philip; Harris, James; Palanker, Daniel

    2015-01-01

    Purpose Prosthetic restoration of partial sensory loss leads to interactions between artificial and natural inputs. Ideally, the rehabilitation should allow perceptual fusion of the two modalities. Here we studied the interactions between normal and prosthetic vision in a rodent model of local retinal degeneration. Methods Implantation of a photovoltaic array in the subretinal space of normally sighted rats induced local degeneration of the photoreceptors above the chip, and the inner retinal neurons in this area were electrically stimulated by the photovoltaic implant powered by near-infrared (NIR) light. We studied prosthetic and natural visually evoked potentials (VEP) in response to simultaneous stimulation by NIR and visible light patterns. Results We demonstrate that electrical and natural VEPs summed linearly in the visual cortex, and both responses decreased under brighter ambient light. Responses to visible light flashes increased over 3 orders of magnitude of contrast (flash/background), while for electrical stimulation the contrast range was limited to 1 order of magnitude. The maximum amplitude of the prosthetic VEP was three times lower than the maximum response to a visible flash over the same area on the retina. Conclusions Ambient light affects prosthetic responses, albeit much less than responses to visible stimuli. Prosthetic representation of contrast in the visual scene can be encoded, to a limited extent, by the appropriately calibrated stimulus intensity, which also depends on the ambient light conditions. Such calibration will be important for patients combining central prosthetic vision with natural peripheral sight, such as in age-related macular degeneration. PMID:26618643

  18. Bcl-2 expression during the development and degeneration of RCS rat retinae.

    PubMed

    Sharma, R K

    2001-12-14

    In various hereditary retinal degenerations, including that in Royal College of Surgeons (RCS) rats, the photoreceptors ultimately die by apoptosis. Bcl-2 is one of the genes, which regulates apoptosis and is thought to promote survival of cells. This study has investigated the developmental expression of Bcl-2 in RCS rat, which is a well-studied animal model for hereditary retinal degeneration. An antibody against Bcl-2 was used for its immunohistochemical localization in dystrophic RCS rat retinae from postnatal (PN) days 4, 7, 13, 35, 45, 70, 202 and 14 months. Results were compared with Bcl-2 localization in congenic non-dystrophic rats from PN 4, 7, 13, 44, 202 and 14 months. Bcl-2 immunoreactivity in non-dystrophic retinae was already present in PN 4 retinae in the nerve fiber layer (presumably in the endfeet of immature Müller cells) and in the proximal parts of certain radially aligned neuroepithelial cells/immature Müller cell radial processes. With increasing age the immunoreactivity in relatively more mature Müller cell radial processes spread distally towards the outer retina and between PN 13 and 44 it reached the adult distribution. No cell bodies in the ganglion cell layer were found to be immunoreactive. Expression of Bcl-2 immunoreactivity in dystrophic RCS rat retinae closely resembled that of non-dystrophic retinae. No immunoreactivity was seen in photoreceptors or retinal pigment epithelium in dystrophic or non-dystrophic retinae. In conclusion, Bcl-2 expression is not altered, either in terms of its chronology or the cell type expressing it, during retinal degeneration in RCS rats.

  19. Dendritic Degeneration, Neurovascular Defects, and Inflammation Precede Neuronal Loss in a Mouse Model for Tau-Mediated Neurodegeneration

    PubMed Central

    Jaworski, Tomasz; Lechat, Benoit; Demedts, David; Gielis, Lies; Devijver, Herman; Borghgraef, Peter; Duimel, Hans; Verheyen, Fons; Kügler, Sebastian; Van Leuven, Fred

    2011-01-01

    Adeno-associated virus (AAV)–mediated expression of wild-type or mutant P301L protein tau produces massive degeneration of pyramidal neurons without protein tau aggregation. We probed this novel model for genetic and structural factors and early parameters of pyramidal neurodegeneration. In yellow fluorescent protein–expressing transgenic mice, intracerebral injection of AAV-tauP301L revealed early damage to apical dendrites of CA1 pyramidal neurons, whereas their somata remained normal. Ultrastructurally, more and enlarged autophagic vacuoles were contained in degenerating dendrites and manifested as dark, discontinuous, vacuolated processes surrounded by activated astrocytes. Dendritic spines were lost in AAV-tauP301L–injected yellow fluorescent protein–expressing transgenic mice, and ultrastructurally, spines appeared dark and degenerating. In CX3CR1EGFP/EGFP-deficient mice, microglia were recruited early to neurons expressing human tau. The inflammatory response was accompanied by extravasation of plasma immunoglobulins. α2-Macroglobulin, but neither albumin nor transferrin, became lodged in the brain parenchyma. Large proteins, but not Evans blue, entered the brain of mice injected with AAV-tauP301L. Ultrastructurally, brain capillaries were constricted and surrounded by swollen astrocytes with extensions that contacted degenerating dendrites and axons. Together, these data corroborate the hypothesis that neuroinflammation participates essentially in tau-mediated neurodegeneration, and the model recapitulates early dendritic defects reminiscent of “dendritic amputation” in Alzheimer's disease. PMID:21839061

  20. Lies, damn lies, and Manchester's recruiting statistics: degeneration as an "urban legend" in Victorian and Edwardian Britain.

    PubMed

    Heggie, Vanessa

    2008-04-01

    Few historians have attempted to discuss British medicine, health and welfare policies, or the biological sciences around 1900 without due reference to the concept of degeneration. Most tie public concern with degeneration to a specific set of military recruiting figures, which stated that of 11,000 would-be volunteers in Manchester, 8,000 had to be turned away due to physical defects. Further, most histories point out that these figures had a direct influence on the formation of the Inter-Departmental Committee on Physical Deterioration in 1904. With its absolute denial of hereditary decline, the 1904 Report acts as a dénouement of degenerationist fears in Britain. No historian has sought to contextualize these recruiting figures: Where did they come from? How did Manchester react? What role did that city play in the subsequent 1904 Report? Far from being the epitome of urban decay, the 1904 Report repeatedly hails Manchester as a glowing example of innovative urban reform. This article contextualizes the recruiting figures and explores how Manchester had been tackling the three key problems of Physical Deterioration-diet, exercise, and alcohol-for thirty years prior to the 1904 Report. By discussing Manchester, a new understanding of degeneration is outlined; as slogan, rhetorical tool, and urban legend, degeneration was largely feminized and domesticated. Military/masculine problems such as the recruiting figures were the exception, not the rule.