Sample records for wano

  1. The Hatch-Smolensk exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sproles, A.

    1993-03-01

    During summer 1992, the World Association of Nuclear Operators (WANO) sponsored an exchange visit between Georgia Power Company's Edwin I. Hatch nuclear plant, a two-unit boiling water reactor site, and the Smolensk atomic energy station, a three-unit RBMK (graphite-moderated and light-water-cooled) plant located 350 km west of Moscow, in Desnogorsk, Russia. The Plant Hatch team included Glenn Goode, manager of engineering support; Curtis Coggin, manager of training and emergency preparedness; Wayne Kirkley, manager of health physics and chemistry; John Lewis, manager of operations; Ray Baker, coordinator of nuclear fuels and contracts; and Bruce McLeod, manager of nuclear maintenance support. Alsomore » traveling with the team was Jerald Towgood, of WANO's Atlanta Centre. The Hatch team visited the Smolensk plant during the week of July 27, 1992.« less

  2. Progress report on the management of the NEA ISOE system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazo, E.

    1995-03-01

    The Information System on Occupational Exposure (ISOE) was launched by the Organization for Economic Cooperation and Development (OECD), Nuclear Energy Agency (NEA) on 1 January, 1992, to facilitate the communication of dosimetric and ALARA implementation data among nuclear utilities around the world. After two years of operation the System has become a mature interactive network for transfer of data and experience. Currently, 37 utilities from 12 countries, representing 289 power plants, and 12 national regulatory authorities participate in ISOE. Agreements for cooperation also exist between the NEA and the Commission of the European Communities (CEC), and the Paris Center ofmore » the WOrld Association of Nuclear Operators (WANO-PC). In addition, the International Atomic Energy Agency (IAEA) is acting as a co-sponsor of ISOE for the participation of non-NEA member countries. Three Regional Technical Centres, Europe, Asia, and Non-NEA member countries, serve to administer the system. The ISOE Network is comprised of three data bases and a communications network at several levels. The three ISOE data bases include the following types of information: NEA1 - annual plant dosimetric information; NEA2 - plant operational characteristics for dose and dose rate reduction; and NEA3 - job specific ALARA practices and experiences. The ISOE communications network has matured greatly during 1992 and 1993. In addition to having access to the above mentioned data bases, participants may now solicit information on new subjects, through the Technical Centres, from all other participants on a real-time basis. Information Sheets on these studies are produced for distribution to all participants. In addition, Topical Reports on areas of interest are produced, and Topical Meetings are held annually.« less

  3. Flow-accelerated corrosion 2016 international conference

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2017-05-01

    The paper discusses materials and results of the most representative world forum on the problems of flow-accelerated metal corrosion in power engineering—Flow-Accelerated Corrosion (FAC) 2016, the international conference, which was held in Lille (France) from May 23 through May 27, 2016, sponsored by EdF-DTG with the support of the International Atomic Energy Agency (IAEA) and the World Association of Nuclear Operators (WANO). The information on major themes of reports and materials of the exhibition arranged within the framework of the congress is presented. The statistics on operation time and intensity of FAC wall thinning of NPP pipelines and equipment in the world is set out. The paper describes typical examples of flow-accelerated corrosion damage of condensate-feed and wet-steam pipeline components of nuclear and thermal power plants that caused forced shutdowns or accidents. The importance of research projects on the problem of flow-accelerated metal corrosion of nuclear power units coordinated by the IAEA with the participation of leading experts in this field from around the world is considered. The reports presented at the conference considered issues of implementation of an FAC mechanism in single- and two-phase flows, the impact of hydrodynamic and water-chemical factors, the chemical composition of the metal, and other parameters on the intensity and location of FAC wall thinning localized areas in pipeline components and power equipment. Features and patterns of local and general FAC leading to local metal thinning and contamination of the working environment with ferriferous compounds are considered. Main trends of modern practices preventing FAC wear of NPP pipelines and equipment are defined. An increasing role of computer codes for the assessment and prediction of FAC rate, as well as software systems of support of the NPP personnel for the inspection planning and prevention of FAC wall thinning of equipment operating in singleand two

  4. The Accident at Fukushima: What Happened?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujie, Takao

    At 2:46 PM, on the coast of the Pacific Ocean in eastern Japan, people were spending an ordinary afternoon. The earthquake had a magnitude of 9.0, the fourth largest ever recorded in the world. Avery large number of aftershocks were felt after the initial earthquake. More than 100 of them had a magnitude of over 6.0. There were very few injured or dead at this point. The large earthquake caused by this enormous crustal deformation spawned a rare and enormous tsunami that crashed down 30-40 minutes later. It easily cleared the high levees, washing away cars and houses and swallowingmore » buildings of up to three stories in height. The largest tsunami reading taken from all regions was 40 meters in height. This tsunami reached the West Coast of the United States and the Pacific coast of South America, with wave heights of over two meters. It was due to this tsunami that the disaster became one of a not imaginable scale, which saw the number of dead or missing reach about 20,000 persons. The enormous tsunami headed for 15 nuclear power plants on the Pacific coast, but 11 power plants withstood the tsunami and attained cold shutdown. The flood height of the tsunami that struck each power station ranged to a maximum of 15 meters. The Fukushima Daiichi Nuclear Power Plant Units experienced the largest and the cores of three reactors suffered meltdown. As a result, more than 160,000 residents were forced to evacuate, and are still living in temporary accommodation. The main focus of this presentation is on what happened at the Fukushima Daiichi, and how station personnel responded to the accident, with considerable international support. A year after the Fukushima Daiichi accident, Japan is in the process of leveraging the lessons learned from the accident to further improve the safety of nuclear power facilities and regain the trust of society. In this connection, not only international organizations, including IAEA, and WANO, but also governmental organizations and