Science.gov

Sample records for warm climatic conditions

  1. Why were Past North Atlantic Warming Conditions Associated with Drier Climate in the Western United States?

    NASA Astrophysics Data System (ADS)

    Wong, C. I.; Potter, G. L.; Montanez, I. P.; Otto-Bliesner, B. L.; Behling, P.; Oster, J. L.

    2014-12-01

    Investigating climate dynamics governing rainfall over the western US during past warmings and coolings of the last glacial and deglaciation is pertinent to understanding how precipitation patterns might change with future global warming, especially as the processes driving the global hydrological reorganization affecting this drought-prone region during these rapid temperature changes remain unresolved. We present model climates of the Bølling warm event (14,500 years ago) and Younger Dryas cool event (12,200 years ago) that i) uniquely enable the assessment of dueling hypothesis about the atmospheric teleconnections responsible for abrupt temperature shifts in the North Atlantic region to variations in moisture conditions across the western US, and ii) show that existing hypotheses about these teleconnections are unsupported. Modeling results show no evidence for a north-south shift of the Pacific winter storm track, and we argue that a tropical moisture source with evolving trajectory cannot explain alternation between wet/dry conditions, which have been reconstructed from the proxy record. Alternatively, model results support a new hypothesis that variations in the intensity of the winter storm track, corresponding to its expansion/contraction, can account for regional moisture differences between warm and cool intervals of the last deglaciation. Furthermore, we demonstrate that the mechanism forcing the teleconnection between the North Atlantic and western US is the same across different boundary conditions. In our simulation, during the last deglaciation, and in simulations of future warming, perturbation of the Rossby wave structure reconfigures the atmospheric state. This reconfiguration affects the Aleutian Low and high-pressure ridge over and off of the northern North American coastline driving variability in the storm track. Similarity between the processes governing the climate response during these distinct time intervals illustrates the robust nature

  2. Should flood regimes change in a warming climate? The role of antecedent moisture conditions

    NASA Astrophysics Data System (ADS)

    Woldemeskel, Fitsum; Sharma, Ashish

    2016-07-01

    Assessing changes to flooding is important for designing new and redesigning existing infrastructure to withstand future climates. While there is speculation that floods are likely to intensify in the future, this question is often difficult to assess due to inadequate records on streamflow extremes. An alternate way of determining possible extreme flooding is through assessment of the two key factors that lead to the intensification of floods: the intensification of causative rainfall and changes in the wetness conditions prior to rainfall. This study assesses global changes in the antecedent wetness prior to extreme rainfall. Our results indicate a significant increase in the antecedent moisture in Australia and Africa over the last century; however, there was also a decrease in Eurasia and insignificant change in North America. Given the nature of changes found in this study, any future flood assessment for global warming conditions should take into account antecedent moisture conditions.

  3. Computations on frost damage to Scots pine under climatic warming in boreal conditions

    SciTech Connect

    Kellomaeki, S.; Haenninen, H.; Kolstroem, M.

    1995-02-01

    To investigate the risk of frost damage to Scots pine (Pinus sylvestris L.) in northern regions under climatic warming, a submodel for such damage to trees was included in a forest ecosystem model of the gap type. An annual growth multiplier describing the effects of frost was calculated with the help of simulated daily frost hardiness and daily minimum temperature. The annual growth multiplier was used in the main ecosystem model when simulating the development of a tree stand using a time step of one year. Simulations of the growth and development of Scots pine stands in southern Finland (61{degrees} N) under an elevating temperature indicated that climatic warming could increase the risk of frost damage due to premature onset of growth during warm spells in the late winter and early spring. Risk of frost damage implies uncertainty in yield expectations from boreal forest ecosystems in the event of climatic warming. 38 refs., 9 figs., 4 tabs.

  4. Sea-ice and North Atlantic climate response to CO2-induced warming and cooling conditions

    NASA Astrophysics Data System (ADS)

    Nazarenko, Larissa; Tausnev, Nickolai; Hansen, James

    Using a global climate model coupled with an ocean and a sea-ice model, we compare the effects of doubling CO2 and halving CO2 on sea-ice cover and connections with the atmosphere and ocean. An overall warming in the 2 × CO2 experiment causes reduction of sea-ice extent by 15%, with maximum decrease in summer and autumn, consistent with observed seasonal sea-ice changes. The intensification of the Northern Hemisphere circulation is reflected in the positive phase of the Arctic Oscillation (AO), associated with higher-than-normal surface pressure south of about 50° N and lower-than-normal surface pressure over the high northern latitudes. Strengthening the polar cell causes enhancement of westerlies around the Arctic perimeter during winter. Cooling, in the 0.5 × CO2 experiment, leads to thicker and more extensive sea ice. In the Southern Hemisphere, the increase in ice-covered area (28%) dominates the ice-thickness increase (5%) due to open ocean to the north. In the Northern Hemisphere, sea-ice cover increases by only 8% due to the enclosed land/sea configuration, but sea ice becomes much thicker (108%). Substantial weakening of the polar cell due to increase in sea-level pressure over polar latitudes leads to a negative trend of the winter AO index. The model reproduces large year-to-year variability under both cooling and warming conditions.

  5. Assessment of permafrost conditions under Northern Quebec's airports: an integrative approach for the development of adaptation strategies to climate warming

    NASA Astrophysics Data System (ADS)

    L'Hérault, E.; Allard, M.; Doré, G.; Barrette, C.; Verreault, J.; Sarrazin, D.; Doyon, J.; Guimond, A.

    2011-12-01

    Community airports in Nunavik were built between 1984 and 1992 and were designed by using a thick embankment of rock fill placed on undisturbed ground surface to prevent the thawing of the underlying permafrost. However, since around 2000, many of the runways show signs of permafrost disturbance as some localized differential settlements have begun to take place. With the anticipated rise of air temperature, the vulnerability of transportation infrastructures to permafrost degradation raises concerns. Several studies initiated by MTQ were undertaken by CEN to evaluate the permafrost conditions underneath airports. These studies provide valuable baseline information but also reveal the needs for a better understanding of the spatial variability of the surficial deposits, their geotechnical properties and permafrost conditions underneath embankments to assess its sensibility to thawing and to plan adaptation strategies in face of climate warming. A geomorphological and geotechnical investigation campaign, including surficial geology mapping using pre-construction air photographs and recovery of drilled frozen cores, was carried out in the summers 2008 and 2009 at eight airports. The impact of the runway embankments on surface drainage, snow drift accumulation and permafrost thawing was also determined. Stratigraphic information from drilling was used to reinterpret CCR and GPR surveys done in previous studies. High resolution cross-sections of the stratigraphy and permafrost conditions could then be drawn. Lab testing over undisturbed frozen samples was performed to determine the geotechnical properties of the different stratigraphic units encountered, particularly thaw consolidation ratios. Field measurements of ground temperatures and numerical modeling of the thermal regime of the embankment and subgrade were also performed to assess the potential impacts on permafrost stability alongside and beneath embankments under different climate change scenarios. Thermistor

  6. Even warm climates get the shivers

    SciTech Connect

    Kerr, R.A.

    1993-07-16

    Researchers in the Greenland Ice-Core Project (GRIP) have found evidence of sharp climate shifts during the last two intergalcials. The Greenland ice sheet evidence shows that Greenland, over and over for decades to thousands of years, cooled drastically from temperatures equal to or higher than today's, often to virtual ice age conditions. The researchers believe that disruptions in the flow of warm water from the southern Atlantic to the North Atlantic, and the return flow of cold water to the south, may be linked to these climatic fluctuations. The present climate appears relatively stable, but that may change if temperatures warm due to increases in atmospheric greenhouse gases.

  7. State-dependent climate sensitivity in past warm climates and its implications for future climate projections

    PubMed Central

    Caballero, Rodrigo; Huber, Matthew

    2013-01-01

    Projections of future climate depend critically on refined estimates of climate sensitivity. Recent progress in temperature proxies dramatically increases the magnitude of warming reconstructed from early Paleogene greenhouse climates and demands a close examination of the forcing and feedback mechanisms that maintained this warmth and the broad dynamic range that these paleoclimate records attest to. Here, we show that several complementary resolutions to these questions are possible in the context of model simulations using modern and early Paleogene configurations. We find that (i) changes in boundary conditions representative of slow “Earth system” feedbacks play an important role in maintaining elevated early Paleogene temperatures, (ii) radiative forcing by carbon dioxide deviates significantly from pure logarithmic behavior at concentrations relevant for simulation of the early Paleogene, and (iii) fast or “Charney” climate sensitivity in this model increases sharply as the climate warms. Thus, increased forcing and increased slow and fast sensitivity can all play a substantial role in maintaining early Paleogene warmth. This poses an equifinality problem: The same climate can be maintained by a different mix of these ingredients; however, at present, the mix cannot be constrained directly from climate proxy data. The implications of strongly state-dependent fast sensitivity reach far beyond the early Paleogene. The study of past warm climates may not narrow uncertainty in future climate projections in coming centuries because fast climate sensitivity may itself be state-dependent, but proxies and models are both consistent with significant increases in fast sensitivity with increasing temperature. PMID:23918397

  8. Climatic warming destabilizes forest ant communities

    PubMed Central

    Diamond, Sarah E.; Nichols, Lauren M.; Pelini, Shannon L.; Penick, Clint A.; Barber, Grace W.; Cahan, Sara Helms; Dunn, Robert R.; Ellison, Aaron M.; Sanders, Nathan J.; Gotelli, Nicholas J.

    2016-01-01

    How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable.

  9. Global metabolic impacts of recent climate warming.

    PubMed

    Dillon, Michael E; Wang, George; Huey, Raymond B

    2010-10-01

    Documented shifts in geographical ranges, seasonal phenology, community interactions, genetics and extinctions have been attributed to recent global warming. Many such biotic shifts have been detected at mid- to high latitudes in the Northern Hemisphere-a latitudinal pattern that is expected because warming is fastest in these regions. In contrast, shifts in tropical regions are expected to be less marked because warming is less pronounced there. However, biotic impacts of warming are mediated through physiology, and metabolic rate, which is a fundamental measure of physiological activity and ecological impact, increases exponentially rather than linearly with temperature in ectotherms. Therefore, tropical ectotherms (with warm baseline temperatures) should experience larger absolute shifts in metabolic rate than the magnitude of tropical temperature change itself would suggest, but the impact of climate warming on metabolic rate has never been quantified on a global scale. Here we show that estimated changes in terrestrial metabolic rates in the tropics are large, are equivalent in magnitude to those in the north temperate-zone regions, and are in fact far greater than those in the Arctic, even though tropical temperature change has been relatively small. Because of temperature's nonlinear effects on metabolism, tropical organisms, which constitute much of Earth's biodiversity, should be profoundly affected by recent and projected climate warming.

  10. Indian Ocean warming modulates Pacific climate change

    PubMed Central

    Luo, Jing-Jia; Sasaki, Wataru; Masumoto, Yukio

    2012-01-01

    It has been widely believed that the tropical Pacific trade winds weakened in the last century and would further decrease under a warmer climate in the 21st century. Recent high-quality observations, however, suggest that the tropical Pacific winds have actually strengthened in the past two decades. Precise causes of the recent Pacific climate shift are uncertain. Here we explore how the enhanced tropical Indian Ocean warming in recent decades favors stronger trade winds in the western Pacific via the atmosphere and hence is likely to have contributed to the La Niña-like state (with enhanced east–west Walker circulation) through the Pacific ocean–atmosphere interactions. Further analysis, based on 163 climate model simulations with centennial historical and projected external radiative forcing, suggests that the Indian Ocean warming relative to the Pacific’s could play an important role in modulating the Pacific climate changes in the 20th and 21st centuries. PMID:23112174

  11. Indian Ocean warming modulates Pacific climate change.

    PubMed

    Luo, Jing-Jia; Sasaki, Wataru; Masumoto, Yukio

    2012-11-13

    It has been widely believed that the tropical Pacific trade winds weakened in the last century and would further decrease under a warmer climate in the 21st century. Recent high-quality observations, however, suggest that the tropical Pacific winds have actually strengthened in the past two decades. Precise causes of the recent Pacific climate shift are uncertain. Here we explore how the enhanced tropical Indian Ocean warming in recent decades favors stronger trade winds in the western Pacific via the atmosphere and hence is likely to have contributed to the La Niña-like state (with enhanced east-west Walker circulation) through the Pacific ocean-atmosphere interactions. Further analysis, based on 163 climate model simulations with centennial historical and projected external radiative forcing, suggests that the Indian Ocean warming relative to the Pacific's could play an important role in modulating the Pacific climate changes in the 20th and 21st centuries.

  12. Influence of free-stall flooring on comfort and hygiene of dairy cows during warm climatic conditions.

    PubMed

    De Palo, P; Tateo, A; Zezza, F; Corrente, M; Centoducati, P

    2006-12-01

    An evaluation of behavioral and hygienic conditions was carried out with 4 materials used as free-stall flooring for dairy cows: polyethylene vinyl acetate (EVA) and polypropylene vinyl acetate (PVA) mats, wood shavings, and solid manure. The free-stall type selected by cows was evaluated in response to changes in environmental temperature and humidity. Two tests were used: 1) a preference test, in which 8 cows were housed in a pen with 32 free stalls and 4 types of flooring; and 2) an aversion test, in which 32 cows were placed in 4 pens, each with 8 free stalls. The free stalls in each pen had a single type of bedding material. These tests showed that the comfort of dairy cows was predominantly influenced by environmental conditions. The preference test for lying showed that cows preferred free-stall floors with EVA mats over those with PVA mats, wood shavings, and solid manure (332.4 +/- 24.0 vs. 130.8 +/- 6.2, 160.9 +/- 23.7, and 102.6 +/- 23.2 min/d, respectively), but under conditions of heat stress, with a temperature-humidity index > 80, they chose wood shavings and solid manure lying areas. These results were confirmed by the aversion test. In all experimental and environmental conditions, the PVA mats were the least suitable. The mats contaminated with organic manure and the free stalls bedded with wood shavings and organic solids did not differ in either the coliform load on the lying surfaces (EVA mats: 290 +/- 25; PVA mats: 306 +/- 33; wood shavings: 290 +/- 39; and solid manure: 305 +/- 23 log(10) cfu/mL) or the total bacterial count in the raw milk (EVA mats: 232 +/- 22; PVA mats: 233 + 24; wood shavings: 221 +/- 24; and solid manure: 220 +/- 25 log(10) cfu/mL). These results demonstrate that the comfort of dairy cows housed in barns with free stalls as resting areas does not depend only on the material used, but also on the value of the material in microenvironmental conditions. PMID:17106090

  13. Trophic amplification of climate warming

    PubMed Central

    Kirby, Richard R.; Beaugrand, Gregory

    2009-01-01

    Ecosystems can alternate suddenly between contrasting persistent states due to internal processes or external drivers. It is important to understand the mechanisms by which these shifts occur, especially in exploited ecosystems. There have been several abrupt marine ecosystem shifts attributed either to fishing, recent climate change or a combination of these two drivers. We show that temperature has been an important driver of the trophodynamics of the North Sea, a heavily fished marine ecosystem, for nearly 50 years and that a recent pronounced change in temperature established a new ecosystem dynamic regime through a series of internal mechanisms. Using an end-to-end ecosystem approach that included primary producers, primary, secondary and tertiary consumers, and detritivores, we found that temperature modified the relationships among species through nonlinearities in the ecosystem involving ecological thresholds and trophic amplifications. Trophic amplification provides an alternative mechanism to positive feedback to drive an ecosystem towards a new dynamic regime, which in this case favours jellyfish in the plankton and decapods and detritivores in the benthos. Although overfishing is often held responsible for marine ecosystem degeneration, temperature can clearly bring about similar effects. Our results are relevant to ecosystem-based fisheries management (EBFM), seen as the way forward to manage exploited marine ecosystems. PMID:19740882

  14. Trophic amplification of climate warming.

    PubMed

    Kirby, Richard R; Beaugrand, Gregory

    2009-12-01

    Ecosystems can alternate suddenly between contrasting persistent states due to internal processes or external drivers. It is important to understand the mechanisms by which these shifts occur, especially in exploited ecosystems. There have been several abrupt marine ecosystem shifts attributed either to fishing, recent climate change or a combination of these two drivers. We show that temperature has been an important driver of the trophodynamics of the North Sea, a heavily fished marine ecosystem, for nearly 50 years and that a recent pronounced change in temperature established a new ecosystem dynamic regime through a series of internal mechanisms. Using an end-to-end ecosystem approach that included primary producers, primary, secondary and tertiary consumers, and detritivores, we found that temperature modified the relationships among species through nonlinearities in the ecosystem involving ecological thresholds and trophic amplifications. Trophic amplification provides an alternative mechanism to positive feedback to drive an ecosystem towards a new dynamic regime, which in this case favours jellyfish in the plankton and decapods and detritivores in the benthos. Although overfishing is often held responsible for marine ecosystem degeneration, temperature can clearly bring about similar effects. Our results are relevant to ecosystem-based fisheries management (EBFM), seen as the way forward to manage exploited marine ecosystems.

  15. Projected changes of snow conditions and avalanche activity in a warming climate: the French Alps over the 2020-2050 and 2070-2100 periods

    NASA Astrophysics Data System (ADS)

    Castebrunet, H.; Eckert, N.; Giraud, G.; Durand, Y.; Morin, S.

    2014-09-01

    Projecting changes in snow cover due to climate warming is important for many societal issues, including the adaptation of avalanche risk mitigation strategies. Efficient modelling of future snow cover requires high resolution to properly resolve the topography. Here, we introduce results obtained through statistical downscaling techniques allowing simulations of future snowpack conditions including mechanical stability estimates for the mid and late 21st century in the French Alps under three climate change scenarios. Refined statistical descriptions of snowpack characteristics are provided in comparison to a 1960-1990 reference period, including latitudinal, altitudinal and seasonal gradients. These results are then used to feed a statistical model relating avalanche activity to snow and meteorological conditions, so as to produce the first projection on annual/seasonal timescales of future natural avalanche activity based on past observations. The resulting statistical indicators are fundamental for the mountain economy in terms of anticipation of changes. Whereas precipitation is expected to remain quite stationary, temperature increase interacting with topography will constrain the evolution of snow-related variables on all considered spatio-temporal scales and will, in particular, lead to a reduction of the dry snowpack and an increase of the wet snowpack. Overall, compared to the reference period, changes are strong for the end of the 21st century, but already significant for the mid century. Changes in winter are less important than in spring, but wet-snow conditions are projected to appear at high elevations earlier in the season. At the same altitude, the southern French Alps will not be significantly more affected than the northern French Alps, which means that the snowpack will be preserved for longer in the southern massifs which are higher on average. Regarding avalanche activity, a general decrease in mean (20-30%) and interannual variability is

  16. Effects of in situ climate warming on monarch caterpillar (Danaus plexippus) development.

    PubMed

    Lemoine, Nathan P; Capdevielle, Jillian N; Parker, John D

    2015-01-01

    Climate warming will fundamentally alter basic life history strategies of many ectothermic insects. In the lab, rising temperatures increase growth rates of lepidopteran larvae but also reduce final pupal mass and increase mortality. Using in situ field warming experiments on their natural host plants, we assessed the impact of climate warming on development of monarch (Danaus plexippus) larvae. Monarchs were reared on Asclepias tuberosa grown under 'Ambient' and 'Warmed' conditions. We quantified time to pupation, final pupal mass, and survivorship. Warming significantly decreased time to pupation, such that an increase of 1 °C corresponded to a 0.5 day decrease in pupation time. In contrast, survivorship and pupal mass were not affected by warming. Our results indicate that climate warming will speed the developmental rate of monarchs, influencing their ecological and evolutionary dynamics. However, the effects of climate warming on larval development in other monarch populations and at different times of year should be investigated. PMID:26528403

  17. Desert Amplification in a Warming Climate.

    PubMed

    Zhou, Liming

    2016-01-01

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950-2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor. PMID:27538725

  18. Desert Amplification in a Warming Climate.

    PubMed

    Zhou, Liming

    2016-08-19

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950-2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor.

  19. Desert Amplification in a Warming Climate

    PubMed Central

    Zhou, Liming

    2016-01-01

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950–2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor. PMID:27538725

  20. Desert Amplification in a Warming Climate

    NASA Astrophysics Data System (ADS)

    Zhou, Liming

    2016-08-01

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950–2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor.

  1. Evaluating the Dominant Components of Warming in Pliocene Climate Simulations

    NASA Technical Reports Server (NTRS)

    Hill, D. J.; Haywood, A. M.; Lunt, D. J.; Hunter, S. J.; Bragg, F. J.; Contoux, C.; Stepanek, C.; Sohl, L.; Rosenbloom, N. A.; Chan, W.-L.; Kamae, Y.; Zhang, Z.; Abe-Ouchi, A.; Chandler, M. A.; Jost, A.; Lohmann, G.; Otto-Bliesner, B. L.; Ramstein, G.; Ueda, H.

    2014-01-01

    The Pliocene Model Intercomparison Project (PlioMIP) is the first coordinated climate model comparison for a warmer palaeoclimate with atmospheric CO2 significantly higher than pre-industrial concentrations. The simulations of the mid-Pliocene warm period show global warming of between 1.8 and 3.6 C above pre-industrial surface air temperatures, with significant polar amplification. Here we perform energy balance calculations on all eight of the coupled ocean-atmosphere simulations within PlioMIP Experiment 2 to evaluate the causes of the increased temperatures and differences between the models. In the tropics simulated warming is dominated by greenhouse gas increases, with the cloud component of planetary albedo enhancing the warming in most of the models, but by widely varying amounts. The responses to mid-Pliocene climate forcing in the Northern Hemisphere midlatitudes are substantially different between the climate models, with the only consistent response being a warming due to increased greenhouse gases. In the high latitudes all the energy balance components become important, but the dominant warming influence comes from the clear sky albedo, only partially offset by the increases in the cooling impact of cloud albedo. This demonstrates the importance of specified ice sheet and high latitude vegetation boundary conditions and simulated sea ice and snow albedo feedbacks. The largest components in the overall uncertainty are associated with clouds in the tropics and polar clear sky albedo, particularly in sea ice regions. These simulations show that albedo feedbacks, particularly those of sea ice and ice sheets, provide the most significant enhancements to high latitude warming in the Pliocene.

  2. Climate warming threatens semi-arid forests in Inner Asia

    NASA Astrophysics Data System (ADS)

    WU, X.

    2015-12-01

    A line of evidences reveal an increasing tree growth decline and tree mortality mainly attributable to climate warming and the warming-mediated changes in drought and other processes in many parts of world tropical, temperate and boreal forests. However, the growth responses to climate change of the widely distributed semi-arid forests are unclear. Here, we synthetically investigate the tree growth patterns during past decades and its interannual response to climate variations in Inner Asia combining the ground truth field survey and samplings, remote sensing observations and climate data. We identified a pervasive tree growth decline since mid-1990s in semi-arid forests in Inner Asia. The widely observed tree growth decline is dominantly attributable to warming-induced water stress during pre- and early growing season. Tree growth of semi-arid forests in Inner Asia is particularly susceptible to spring warming and has been suffering a prolonged growth limitation in recent decades due to spring warming-mediated water conditions. Additionally, we identified a much slower growth rate in younger trees and a lack of tree regeneration in these semi-arid forests. The widely observed forest growth reduction and lack of tree regeneration over semi-arid forests in Inner Asia could predictably exert great effects on forest structure, regionally/globally biophysical and biochemical processes and the feedbacks between biosphere and atmosphere. Notably, further increases in forest stress and tree mortality could be reasonably expected, especially in context of the increase frequency and severity of high temperature and heat waves and changes in forest disturbances, potentially driving the eventual regional loss of current semi-arid forests. Given the potential risks of climate induced forest dieback, increased management attention to adaptation options for enhancing forest resistance and resilience to projected climate stress can be expected. However, the functionally realistic

  3. Climate Warming Threatens Semi-arid Forests in Inner Asia

    NASA Astrophysics Data System (ADS)

    WU, X.; Liu, H.; Qi, Z.; Li, X.

    2014-12-01

    A line of evidences reveal an increasing tree growth decline and tree mortality mainly attributable to climate warming and the warming-mediated changes in drought and other processes (such as fire and insect dynamics) in many parts of world tropical, temperate and boreal forests. However, the growth responses to climate change of the widely distributed semi-arid forests are unclear. Here, we synthetically investigate the tree growth patterns during past decades and its interannual response to climate variations in Inner Asia combining the ground truth field survey and samplings, remote sensing observations and climate data. We identified a pervasive tree growth decline since mid-1990s in semi-arid forests in Inner Asia. The widely observed tree growth decline is dominantly attributable to warming-induced water stress during pre- and early growing season. Tree growth of semi-arid forests in Inner Asia is particularly susceptible to spring warming and has been suffering a prolonged growth limitation in recent decades due to spring warming-mediated water conditions. Additionally, we identified a much slower growth rate in younger trees and a lack of tree regeneration in these semi-arid forests. The widely observed forest growth reduction and lack of tree regeneration over semi-arid forests in Inner Asia could predictably exert great effects on forest structure, regionally/globally biophysical and biochemical processes and the feedbacks between biosphere and atmosphere. Notably, further increases in forest stress and tree mortality could be reasonably expected, especially in context of the increase frequency and severity of high temperature and heat waves and changes in forest disturbances, potentially driving the eventual regional loss of current semi-arid forests. Given the potential risks of climate induced forest dieback, increased management attention to adaptation options for enhancing forest resistance and resilience to projected climate stress can be expected

  4. Deep time evidence for climate sensitivity increase with warming

    NASA Astrophysics Data System (ADS)

    Shaffer, Gary; Huber, Matthew; Rondanelli, Roberto; Pepke Pedersen, Jens Olaf

    2016-06-01

    Future global warming from anthropogenic greenhouse gas emissions will depend on climate feedbacks, the effect of which is expressed by climate sensitivity, the warming for a doubling of atmospheric CO2 content. It is not clear how feedbacks, sensitivity, and temperature will evolve in our warming world, but past warming events may provide insight. Here we employ paleoreconstructions and new climate-carbon model simulations in a novel framework to explore a wide scenario range for the Paleocene-Eocene Thermal Maximum (PETM) carbon release and global warming event 55.8 Ma ago, a possible future warming analogue. We obtain constrained estimates of CO2 and climate sensitivity before and during the PETM and of the PETM carbon input amount and nature. Sensitivity increased from 3.3-5.6 to 3.7-6.5 K (Kelvin) into the PETM. When taken together with Last Glacial Maximum and modern estimates, this result indicates climate sensitivity increase with global warming.

  5. Climate warming and predation risk during herbivore ontogeny.

    PubMed

    Barton, Brandon T

    2010-10-01

    Phenological effects of climate change are expected to differ among species, altering interactions within ecological communities. However, the nature and strength of these effects can vary during ontogeny, so the net community-level effects will be the result of integration over an individual's lifetime. I resolved the mechanism driving the effects of warming and spider predation risk on a generalist grasshopper herbivore at each ontogenetic stage and quantified the treatment effects on a measure of reproductive fitness. Spiders caused nymphal grasshoppers to increase the proportion of herbs in their diet, thus having a positive indirect effect on grasses and a negative indirect effect on herbs. Warming strengthened the top-down effect by affecting spiders and grasshoppers differently. In cooler, ambient conditions, grasshoppers and spiders had a high degree of spatial overlap within the plant canopy. Grasshopper position was unaffected by temperature, but spiders moved lower in the canopy in response to warming. This decreased the spatial overlap between predator and prey, allowing nymphal grasshoppers to increase daily feeding time. While spiders decreased grasshopper growth and reproductive fitness in ambient conditions, spiders had no effect on grasshopper fitness in warmed treatments. The study demonstrates the importance of considering the ontogeny of behavior when examining the effects of climate change on trophic interactions. PMID:21058542

  6. Climate warming and predation risk during herbivore ontogeny.

    PubMed

    Barton, Brandon T

    2010-10-01

    Phenological effects of climate change are expected to differ among species, altering interactions within ecological communities. However, the nature and strength of these effects can vary during ontogeny, so the net community-level effects will be the result of integration over an individual's lifetime. I resolved the mechanism driving the effects of warming and spider predation risk on a generalist grasshopper herbivore at each ontogenetic stage and quantified the treatment effects on a measure of reproductive fitness. Spiders caused nymphal grasshoppers to increase the proportion of herbs in their diet, thus having a positive indirect effect on grasses and a negative indirect effect on herbs. Warming strengthened the top-down effect by affecting spiders and grasshoppers differently. In cooler, ambient conditions, grasshoppers and spiders had a high degree of spatial overlap within the plant canopy. Grasshopper position was unaffected by temperature, but spiders moved lower in the canopy in response to warming. This decreased the spatial overlap between predator and prey, allowing nymphal grasshoppers to increase daily feeding time. While spiders decreased grasshopper growth and reproductive fitness in ambient conditions, spiders had no effect on grasshopper fitness in warmed treatments. The study demonstrates the importance of considering the ontogeny of behavior when examining the effects of climate change on trophic interactions.

  7. Lagging adaptation to warming climate in Arabidopsis thaliana.

    PubMed

    Wilczek, Amity M; Cooper, Martha D; Korves, Tonia M; Schmitt, Johanna

    2014-06-01

    If climate change outpaces the rate of adaptive evolution within a site, populations previously well adapted to local conditions may decline or disappear, and banked seeds from those populations will be unsuitable for restoring them. However, if such adaptational lag has occurred, immigrants from historically warmer climates will outperform natives and may provide genetic potential for evolutionary rescue. We tested for lagging adaptation to warming climate using banked seeds of the annual weed Arabidopsis thaliana in common garden experiments in four sites across the species' native European range: Valencia, Spain; Norwich, United Kingdom; Halle, Germany; and Oulu, Finland. Genotypes originating from geographic regions near the planting site had high relative fitness in each site, direct evidence for broad-scale geographic adaptation in this model species. However, genotypes originating in sites historically warmer than the planting site had higher average relative fitness than local genotypes in every site, especially at the northern range limit in Finland. This result suggests that local adaptive optima have shifted rapidly with recent warming across the species' native range. Climatic optima also differed among seasonal germination cohorts within the Norwich site, suggesting that populations occurring where summer germination is common may have greater evolutionary potential to persist under future warming. If adaptational lag has occurred over just a few decades in banked seeds of an annual species, it may be an important consideration for managing longer-lived species, as well as for attempts to conserve threatened populations through ex situ preservation.

  8. Lagging adaptation to warming climate in Arabidopsis thaliana.

    PubMed

    Wilczek, Amity M; Cooper, Martha D; Korves, Tonia M; Schmitt, Johanna

    2014-06-01

    If climate change outpaces the rate of adaptive evolution within a site, populations previously well adapted to local conditions may decline or disappear, and banked seeds from those populations will be unsuitable for restoring them. However, if such adaptational lag has occurred, immigrants from historically warmer climates will outperform natives and may provide genetic potential for evolutionary rescue. We tested for lagging adaptation to warming climate using banked seeds of the annual weed Arabidopsis thaliana in common garden experiments in four sites across the species' native European range: Valencia, Spain; Norwich, United Kingdom; Halle, Germany; and Oulu, Finland. Genotypes originating from geographic regions near the planting site had high relative fitness in each site, direct evidence for broad-scale geographic adaptation in this model species. However, genotypes originating in sites historically warmer than the planting site had higher average relative fitness than local genotypes in every site, especially at the northern range limit in Finland. This result suggests that local adaptive optima have shifted rapidly with recent warming across the species' native range. Climatic optima also differed among seasonal germination cohorts within the Norwich site, suggesting that populations occurring where summer germination is common may have greater evolutionary potential to persist under future warming. If adaptational lag has occurred over just a few decades in banked seeds of an annual species, it may be an important consideration for managing longer-lived species, as well as for attempts to conserve threatened populations through ex situ preservation. PMID:24843140

  9. Fast-slow climate dynamics and peak global warming

    NASA Astrophysics Data System (ADS)

    Seshadri, Ashwin K.

    2016-06-01

    The dynamics of a linear two-box energy balance climate model is analyzed as a fast-slow system, where the atmosphere, land, and near-surface ocean taken together respond within few years to external forcing whereas the deep-ocean responds much more slowly. Solutions to this system are approximated by estimating the system's time-constants using a first-order expansion of the system's eigenvalue problem in a perturbation parameter, which is the ratio of heat capacities of upper and lower boxes. The solution naturally admits an interpretation in terms of a fast response that depends approximately on radiative forcing and a slow response depending on integrals of radiative forcing with respect to time. The slow response is inversely proportional to the "damping-timescale", the timescale with which deep-ocean warming influences global warming. Applications of approximate solutions are discussed: conditions for a warming peak, effects of an individual pulse emission of carbon dioxide (CO2 ), and metrics for estimating and comparing contributions of different climate forcers to maximum global warming.

  10. Radiative forcing and feedback by forests in warm climates - a sensitivity study

    NASA Astrophysics Data System (ADS)

    Port, Ulrike; Claussen, Martin; Brovkin, Victor

    2016-07-01

    We evaluate the radiative forcing of forests and the feedbacks triggered by forests in a warm, basically ice-free climate and in a cool climate with permanent high-latitude ice cover using the Max Planck Institute for Meteorology Earth System Model. As a paradigm for a warm climate, we choose the early Eocene, some 54 to 52 million years ago, and for the cool climate, the pre-industrial climate, respectively. To isolate first-order effects, we compare idealised simulations in which all continents are covered either by dense forests or by deserts with either bright or dark soil. In comparison with desert continents covered by bright soil, forested continents warm the planet for the early Eocene climate and for pre-industrial conditions. The warming can be attributed to different feedback processes, though. The lapse-rate and water-vapour feedback is stronger for the early Eocene climate than for the pre-industrial climate, but strong and negative cloud-related feedbacks nearly outweigh the positive lapse-rate and water-vapour feedback for the early Eocene climate. Subsequently, global mean warming by forests is weaker for the early Eocene climate than for pre-industrial conditions. Sea-ice related feedbacks are weak for the almost ice-free climate of the early Eocene, thereby leading to a weaker high-latitude warming by forests than for pre-industrial conditions. When the land is covered with dark soils, and hence, albedo differences between forests and soil are small, forests cool the early Eocene climate more than the pre-industrial climate because the lapse-rate and water-vapour feedbacks are stronger for the early Eocene climate. Cloud-related feedbacks are equally strong in both climates. We conclude that radiative forcing by forests varies little with the climate state, while most subsequent feedbacks depend on the climate state.

  11. Polar bears in a warming climate.

    PubMed

    Derocher, Andrew E; Lunn, Nicholas J; Stirling, Ian

    2004-04-01

    Polar bears (Ursus maritimus) live throughout the ice-covered waters of the circumpolar Arctic, particularly in near shore annual ice over the continental shelf where biological productivity is highest. However, to a large degree under scenarios predicted by climate change models, these preferred sea ice habitats will be substantially altered. Spatial and temporal sea ice changes will lead to shifts in trophic interactions involving polar bears through reduced availability and abundance of their main prey: seals. In the short term, climatic warming may improve bear and seal habitats in higher latitudes over continental shelves if currently thick multiyear ice is replaced by annual ice with more leads, making it more suitable for seals. A cascade of impacts beginning with reduced sea ice will be manifested in reduced adipose stores leading to lowered reproductive rates because females will have less fat to invest in cubs during the winter fast. Non-pregnant bears may have to fast on land or offshore on the remaining multiyear ice through progressively longer periods of open water while they await freeze-up and a return to hunting seals. As sea ice thins, and becomes more fractured and labile, it is likely to move more in response to winds and currents so that polar bears will need to walk or swim more and thus use greater amounts of energy to maintain contact with the remaining preferred habitats. The effects of climate change are likely to show large geographic, temporal and even individual differences and be highly variable, making it difficult to develop adequate monitoring and research programs. All ursids show behavioural plasticity but given the rapid pace of ecological change in the Arctic, the long generation time, and the highly specialised nature of polar bears, it is unlikely that polar bears will survive as a species if the sea ice disappears completely as has been predicted by some. PMID:21680496

  12. Polar bears in a warming climate.

    PubMed

    Derocher, Andrew E; Lunn, Nicholas J; Stirling, Ian

    2004-04-01

    Polar bears (Ursus maritimus) live throughout the ice-covered waters of the circumpolar Arctic, particularly in near shore annual ice over the continental shelf where biological productivity is highest. However, to a large degree under scenarios predicted by climate change models, these preferred sea ice habitats will be substantially altered. Spatial and temporal sea ice changes will lead to shifts in trophic interactions involving polar bears through reduced availability and abundance of their main prey: seals. In the short term, climatic warming may improve bear and seal habitats in higher latitudes over continental shelves if currently thick multiyear ice is replaced by annual ice with more leads, making it more suitable for seals. A cascade of impacts beginning with reduced sea ice will be manifested in reduced adipose stores leading to lowered reproductive rates because females will have less fat to invest in cubs during the winter fast. Non-pregnant bears may have to fast on land or offshore on the remaining multiyear ice through progressively longer periods of open water while they await freeze-up and a return to hunting seals. As sea ice thins, and becomes more fractured and labile, it is likely to move more in response to winds and currents so that polar bears will need to walk or swim more and thus use greater amounts of energy to maintain contact with the remaining preferred habitats. The effects of climate change are likely to show large geographic, temporal and even individual differences and be highly variable, making it difficult to develop adequate monitoring and research programs. All ursids show behavioural plasticity but given the rapid pace of ecological change in the Arctic, the long generation time, and the highly specialised nature of polar bears, it is unlikely that polar bears will survive as a species if the sea ice disappears completely as has been predicted by some.

  13. The Understanding of Elevation Dependent Warming from Climate Models

    NASA Astrophysics Data System (ADS)

    Rangwala, I.; Miller, J. R.; Naud, C. M.; Sinsky, E.; Ghatak, D.; Chen, Y.

    2015-12-01

    Climate models, both global (GCMs) and regional (RCMs) climate models, provide useful insights into elevation dependent climate response under the increasing anthropogenic greenhouse forcing. They simulate variable response in climate as a function of elevation, including an amplified warming signal at higher elevations, under specific conditions. Moreover, they have been critical in elucidating some of the physical processes that cause elevation dependent warming (EDW). The models have also helped us to quantify sensitivities of those processes and feedbacks, and how these sensitivities vary as a function of elevation and other criteria. This has provided motivation within the scientific community to validate these insights in the selectively available high-elevation observations, as well as informed future needs for new observations and modeling experiments to understand the EDW phenomena. This presentation will provide a selective review of the issues discussed above as well as show results from the analysis of CMIP5 models on EDW in northern hemisphere mid-latitudes, and findings from high elevation observations in the Colorado Rocky Mountains.

  14. How to preserve the tundra in a warming climate?

    NASA Astrophysics Data System (ADS)

    Käyhkö, Jukka

    2014-05-01

    The warming climate of the polar regions may change much of the current arctic-alpine tundra to forest or dense scrubland. This modification requires adaptation by traditional livelihoods such as reindeer herding, which relies on diverse, seasonal pasturelands. Vegetation change may also trigger positive warming feedbacks, where more abundant forest-scrub vegetation will decrease the global albedo. NCoE Tundra team investigates the complex climate-animal-plant interaction of the tundra ecosystem and aim to unravel the capability of herbivorous mammals to control the expansion of woody vegetation. Our interdisciplinary approach involves several work packages, whose results will be summarised in the presentation. In the ecological WPs, we study the dynamics of the natural food chains involving small herbivorous and the impacts of reindeer on the vegetation and the population dynamics of those arctic-alpine plants, which are most likely to become threatened in a warmer climate. Our study demonstrates the potential of a relatively sparse reindeer stocks (2-5 heads per km2) together with natural populations of arvicoline rodents to prevent the expansion of erect woody plants at the arctic-alpine timberline. In the climatic WPs we study the impact of grazing-dependent vegetation differences on the fraction of solar energy converted to heat. In the socio-economic WPs, we study the conditions for maintaining the economic and cultural viability of reindeer herding while managing the land use so that the arctic-alpine biota would be preserved.

  15. Global genetic change tracks global climate warming in Drosophila subobscura.

    PubMed

    Balanyá, Joan; Oller, Josep M; Huey, Raymond B; Gilchrist, George W; Serra, Luis

    2006-09-22

    Comparisons of recent with historical samples of chromosome inversion frequencies provide opportunities to determine whether genetic change is tracking climate change in natural populations. We determined the magnitude and direction of shifts over time (24 years between samples on average) in chromosome inversion frequencies and in ambient temperature for populations of the fly Drosophila subobscura on three continents. In 22 of 26 populations, climates warmed over the intervals, and genotypes characteristic of low latitudes (warm climates) increased in frequency in 21 of those 22 populations. Thus, genetic change in this fly is tracking climate warming and is doing so globally.

  16. Modelling middle pliocene warm climates of the USA

    USGS Publications Warehouse

    Haywood, A.M.; Valdes, P.J.; Sellwood, B.W.; Kaplan, J.O.; Dowsett, H.J.

    2001-01-01

    The middle Pliocene warm period represents a unique time slice in which to model and understand climatic processes operating under a warm climatic regime. Palaeoclimatic model simulations, focussed on the United States of America (USA), for the middle Pliocene (ca 3 Ma) were generated using the USGS PRISM2 2?? ?? 2?? data set of boundary conditions and the UK Meteorological Office's HadAMS General Circulation Model (GCM). Model results suggest that conditions in the USA during the middle Pliocene can be characterised as annually warmer (by 2?? to 4??C), less seasonal, wetter (by a maximum of 4 to 8 mm/day) and with an absence of freezing winters over the central and southern Great Plains. A sensitivity experiment suggests that the main forcing mechanisms for surface temperature changes in near coastal areas are the imposed Pliocene sea surface temperatures (SST's). In interior regions, reduced Northern Hemisphere terrestrial ice, combined with less snow cover and a reduction in the elevation of the western cordillera of North America, generate atmospheric circulation changes and positive albedo feedbacks that raise surface temperatures. A complex set of climatic feedback mechanisms cause an enhancement of the hydrological cycle magnifying the moisture bearing westerly wind belt during the winter season (Dec., Jan., Feb.). Predictions produced by the model are in broad agreement with available geological evidence. However, the GCM appears to underestimate precipitation levels in the interior and central regions of the southern USA. Copyright: Palaeontological Association, 22 June 2001.

  17. Arctic climate change: Greenhouse warming unleashed

    NASA Astrophysics Data System (ADS)

    Mauritsen, Thorsten

    2016-04-01

    Human activity alters the atmospheric composition, which leads to global warming. Model simulations suggest that reductions in emission of sulfur dioxide from Europe since the 1970s could have unveiled rapid Arctic greenhouse gas warming.

  18. The case for a wet, warm climate on early Mars

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.; Kasting, J. F.; Richardson, S. M.; Poliakoff, K.

    1987-01-01

    The conditions under which Mars could have had a warm wet climate during its early evolution are explored by means of numerical simulations, incorporating more accurate data on the opacity of gaseous CO2 and H2O in the solar and thermal spectral regions (McClatchey et al., 1971) into the one-dimensional radiative-convective greenhouse model of Kasting and Ackerman (1986). The results are presented in extensive graphs and characterized in detail, with consideration of atmospheric CO2 loss rates, sources of atmospheric CO2, CO2 partitioning between atmosphere and hydrosphere, the Mars volatile inventory, the CO2 geochemical cycle, climate evolution, and observational tests. It is concluded that greenhouse conditions (requiring atmospheric CO2 of 1-5 bar) could have existed for a period of about 1 Gyr if the total surficial inventory of CO2 was 2-10 bar.

  19. Talking about Climate Change and Global Warming.

    PubMed

    Lineman, Maurice; Do, Yuno; Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined. PMID:26418127

  20. Talking about Climate Change and Global Warming.

    PubMed

    Lineman, Maurice; Do, Yuno; Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined.

  1. Talking about Climate Change and Global Warming

    PubMed Central

    Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined. PMID:26418127

  2. Climate Modeling and Projections of Global Warming

    NASA Astrophysics Data System (ADS)

    Fung, Inez

    2008-04-01

    Physics of the climate system is captured, with varying degrees of success, in climate models used to hindcast paleoclimates and project future climate change. This talk reviews the formulation of climate models, validation/falsification of processes included, and presents research challenges for advancing projections of future climate change.

  3. The Climate Policy Narrative for a Dangerously Warming World

    SciTech Connect

    Sanford, Todd; Frumhoff, Peter; Luers, Amy; Gulledge, Jay

    2014-01-01

    It is time to acknowledge that global average temperatures will likely rise above the 2 C policy target and consider how that deeply troubling prospect should affect priorities for communicating and managing the risks of a dangerously warming climate.

  4. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration.

    PubMed

    Wang, Xin; Liu, Lingli; Piao, Shilong; Janssens, Ivan A; Tang, Jianwu; Liu, Weixing; Chi, Yonggang; Wang, Jing; Xu, Shan

    2014-10-01

    Despite decades of research, how climate warming alters the global flux of soil respiration is still poorly characterized. Here, we use meta-analysis to synthesize 202 soil respiration datasets from 50 ecosystem warming experiments across multiple terrestrial ecosystems. We found that, on average, warming by 2 °C increased soil respiration by 12% during the early warming years, but warming-induced drought partially offset this effect. More significantly, the two components of soil respiration, heterotrophic respiration and autotrophic respiration showed distinct responses. The warming effect on autotrophic respiration was not statistically detectable during the early warming years, but nonetheless decreased with treatment duration. In contrast, warming by 2 °C increased heterotrophic respiration by an average of 21%, and this stimulation remained stable over the warming duration. This result challenged the assumption that microbial activity would acclimate to the rising temperature. Together, our findings demonstrate that distinguishing heterotrophic respiration and autotrophic respiration would allow us better understand and predict the long-term response of soil respiration to warming. The dependence of soil respiration on soil moisture condition also underscores the importance of incorporating warming-induced soil hydrological changes when modeling soil respiration under climate change.

  5. Susceptibility of Permafrost Soil Organic Carbon under Warming Climate

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Wullschleger, S. D.; Liang, L.; Graham, D. E.; Gu, B.

    2015-12-01

    Degradation of soil organic carbon (SOC) that has been stored in permafrost is a key concern under warming climate because it could provide a positive feedback. Studies and conceptual models suggest that SOC degradation is largely controlled by the decomposability of SOC, but it is unclear exactly what portions of SOC are susceptible to rapid breakdown and what mechanisms may be involved in SOC degradation. Using a suite of analytical techniques, we examined the dynamic consumption and production of labile SOC compounds, including sugars, alcohols, and small molecular weight organic acids in incubation experiments (up to 240 days at either -2 or 8 °C) with a tundra soil under anoxic conditions, where SOC respiration and iron(III) reduction were monitored. We observe that sugars and alcohols are main components in SOC accounting for initial rapid release of CO2 and CH4 through anaerobic fermentation, whereas the fermentation products such as acetate and formate are subsequently utilized as primary substrates for methanogenesis. Iron(III) reduction is correlated to acetate production and methanogenesis, suggesting its important roles as an electron acceptor in tundra SOC respiration. These observations corroborate strongly with the glucose addition during incubation, in which rapid CO2 and CH4 production is observed concurrently with rapid production and consumption of organics such as acetate. Thus, the biogeochemical processes we document here are pertinent to understanding the accelerated SOC decomposition with temperature and could provide basis for model predicting feedbacks to climate warming in the Arctic.

  6. Climate warming and precipitation redistribution modify tree-grass interactions and tree species establishment in a warm-temperate savanna.

    PubMed

    Volder, Astrid; Briske, David D; Tjoelker, Mark G

    2013-03-01

    Savanna tree-grass interactions may be particularly sensitive to climate change. Establishment of two tree canopy dominants, post oak (Quercus stellata) and eastern redcedar (Juniperus virginiana), grown with the dominant C4 perennial grass (Schizachyrium scoparium) in southern oak savanna of the United States were evaluated under four climatic scenarios for 6 years. Tree-grass interactions were examined with and without warming (+1.5 °C) in combination with a long-term mean rainfall treatment and a modified rainfall regime that redistributed 40% of summer rainfall to spring and fall, intensifying summer drought. The aim was to determine: (1) the relative growth response of these species, (2) potential shifts in the balance of tree-grass interactions, and (3) the trajectory of juniper encroachment into savannas, under these anticipated climatic conditions. Precipitation redistribution reduced relative growth rate (RGR) of trees grown with grass. Warming increased growth of J. virginiana and strongly reduced Q. stellata survival. Tiller numbers of S. scoparium plants were unaffected by warming, but the number of reproductive tillers was increasingly suppressed by intensified drought each year. Growth rates of J. virginiana and Q. stellata were suppressed by grass presence early, but in subsequent years were higher when grown with grass. Quercus stellata had overall reduced RGR, but enhanced survival when grown with grass, while survival of J. virginiana remained near 100% in all treatments. Once trees surpassed a threshold height of 1.1 m, both tiller number and survival of S. scoparium plants were drastically reduced by the presence of J. virginiana, but not Q. stellata. Juniperus virginiana was the only savanna dominant in which neither survival nor final aboveground mass were adversely affected by the climate scenario of warming and intensified summer drought. These responses indicate that climate warming and altered precipitation patterns will further

  7. Transitivity of the climate-vegetation system in a warm climate

    NASA Astrophysics Data System (ADS)

    Port, U.; Claussen, M.

    2015-11-01

    To date, the transitivity of the global system has been analysed for late Quaternary (glacial, interglacial, and present-day) climate. Here, we extend this analysis to a warm, almost ice-free climate with a different configuration of continents. We use the Earth system model of the Max Planck Institute for Meteorology to analyse the stability of the climate system under early Eocene and pre-industrial conditions. We initialize the simulations by prescribing either dense forests or bare deserts on all continents. Starting with desert continents, an extended desert remains in central Asia in the early Eocene climate. Starting with dense forest coverage, the Asian desert is much smaller, while coastal deserts develop in the Americas which appear to be larger than in the simulations with initially bare continents. These differences can be attributed to differences in the large-scale tropical circulation. With initially forested continents, a stronger dipole in the 200 hPa velocity potential develops than in the simulation with initially bare continents. This difference prevails when vegetation is allowed to adjust to and interact with climate. Further simulations with initial surface conditions that differ in the region of the Asian desert only indicate that local feedback processes are less important in the development of multiple states. In the interglacial, pre-industrial climate, multiple states develop only in the Sahel region. There, local climate-vegetation interaction seems to dominate.

  8. Using Updated Climate Accounting to Slow Global Warming Before 2035

    NASA Astrophysics Data System (ADS)

    Schultz, T.

    2015-12-01

    The current and projected worsening of climate impacts make clear the urgency of limiting the global mean temperature to 2°C over preindustrial levels. But while mitigation policy today may slow global warming at the end of the century, it will not keep global warming within these limits. This failure arises in large part from the climate accounting system used to inform this policy, which does not factor in several scientific findings from the last two decades, including: The urgent need to slow global warming before 2035. This can postpone the time the +1.5°C limit is passed, and is the only way to avoid the most serious long-term climate disruptions. That while it may mitigate warming by the end of the century, reducing emissions of CO2 alone, according to UNEP/WMO[1], will do "little to mitigate warming over the next 20-30 years," and "may temporarily enhance near-term warming as sulfate [cooling] is reduced." That the only emissions reductions that can slow warming before 2035 are focused on short-lived climate pollutants. A small increase in current mitigation funding could fund these projects, the most promising of which target emissions in regional climate "hot spots" like the Arctic and India.[2] To ensure policies can effectively slow global warming before 2035, a new climate accounting system is needed. Such an updated system is being standardized in the USA,[3] and has been proposed for use in ISO standards. The key features of this updated system are: consideration of all climate pollutants and their multi-faceted climate effects; use of time horizons which prioritize mitigation of near-term warming; a consistent and accurate accounting for "biogenic" CO2; protocols ensuring that new scientific findings are incorporated; and a distinct accounting for emissions affecting regional "hot spots". This accounting system also considers environmental impacts outside of climate change, a feature necessary to identify "win-win" projects with climate benefits

  9. Peatland Carbon Dynamics in Alaska During Past Warm Climates

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Cleary, K.; Massa, C.; Hunt, S. J.; Klein, E. S.; Loisel, J.

    2013-12-01

    Peatlands represent a large belowground carbon (C) pool in the biosphere. However, how peatland C sequestration capacity varies with changes in climate and climate-induced disturbance is still poorly understood and debated. Here we summarize results from Alaskan peatlands to document how peat C accumulation has responded to past warm climate intervals. We find that the greatest C accumulation rates at sites from the Kenai Peninsula to the North Slope occurred during the Holocene thermal maximum (HTM) in the early Holocene. This time period also corresponds with explosive formation and expansion of new peatlands on the landscape across Alaska. In addition, we note that many peatlands that existed during the earlier Holocene on the North Slope have disappeared and are presently covered by mineral soils under tundra or sandy deposits. During the Medieval Climate Anomaly (MCA) around 1000-500 years ago, several peatlands in Alaska show high rates of C accumulation when compared to the period before the MCA during the Neoglacial or the following Little Ice Age period. Altogether, our results indicate that the Alaskan landscape was very different during the last 10,000 years and that peatlands can rapidly accumulate C under warm climatic conditions. We speculate that warmth-stimulated increase in plant production surpasses increase in peat decomposition during the early Holocene, and potentially also during the MCA. Other factors that might have contributed to rapid peat accumulation during the early Holocene include increased summer sunlight, lowered sea levels, and decreased sea-ice cover/duration. Summer insolation was ca. 8% higher than today during the early Holocene due to orbital variations, which likely promoted plant productivity by increasing growing seasons sunlight. Furthermore, lower sea levels and exposed shallow continental shelves in the Beaufort Sea (Arctic Ocean) would have made the present-day Arctic Coastal Plain more continental, with warmer summers

  10. Robust cloud feedback over tropical land in a warming climate

    NASA Astrophysics Data System (ADS)

    Kamae, Youichi; Ogura, Tomoo; Watanabe, Masahiro; Xie, Shang-Ping; Ueda, Hiroaki

    2016-03-01

    Cloud-related radiative perturbations over land in a warming climate are of importance for human health, ecosystem, agriculture, and industry via solar radiation availability and local warming amplification. However, robustness and physical mechanisms responsible for the land cloud feedback were not examined sufficiently because of the limited contribution to uncertainty in global climate sensitivity. Here we show that cloud feedback in general circulation models over tropical land is robust, positive, and is relevant to atmospheric circulation change and thermodynamic constraint associated with water vapor availability. In a warming climate, spatial variations in tropospheric warming associated with climatological circulation pattern result in a general weakening of tropical circulation and a dynamic reduction of land cloud during summer monsoon season. Limited increase in availability of water vapor also reduces the land cloud. The reduction of land cloud depends on global-scale oceanic warming and is not sensitive to regional warming patterns. The robust positive feedback can contribute to the warming amplification and drying over tropical land in the future.

  11. The capacity to cope with climate warming declines from temperate to tropical latitudes in two widely distributed Eucalyptus species.

    PubMed

    Drake, John E; Aspinwall, Michael J; Pfautsch, Sebastian; Rymer, Paul D; Reich, Peter B; Smith, Renee A; Crous, Kristine Y; Tissue, David T; Ghannoum, Oula; Tjoelker, Mark G

    2015-01-01

    As rapid climate warming creates a mismatch between forest trees and their home environment, the ability of trees to cope with warming depends on their capacity to physiologically adjust to higher temperatures. In widespread species, individual trees in cooler home climates are hypothesized to more successfully acclimate to warming than their counterparts in warmer climates that may approach thermal limits. We tested this prediction with a climate-shift experiment in widely distributed Eucalyptus tereticornis and E. grandis using provenances originating along a ~2500 km latitudinal transect (15.5-38.0°S) in eastern Australia. We grew 21 provenances in conditions approximating summer temperatures at seed origin and warmed temperatures (+3.5 °C) using a series of climate-controlled glasshouse bays. The effects of +3.5 °C warming strongly depended on home climate. Cool-origin provenances responded to warming through an increase in photosynthetic capacity and total leaf area, leading to enhanced growth of 20-60%. Warm-origin provenances, however, responded to warming through a reduction in photosynthetic capacity and total leaf area, leading to reduced growth of approximately 10%. These results suggest that there is predictable intraspecific variation in the capacity of trees to respond to warming; cool-origin taxa are likely to benefit from warming, while warm-origin taxa may be negatively affected.

  12. Climate response: Strong warming at high emissions

    NASA Astrophysics Data System (ADS)

    Frölicher, Thomas L.

    2016-09-01

    The ratio of global temperature change to cumulative emissions is relatively constant up to two trillion tonnes of carbon emissions. Now a new modelling study suggests that the concept of a constant ratio is even applicable to higher cumulative carbon emissions, with important implications for future warming.

  13. Geoengineering: Direct Mitigation of Climate Warming

    EPA Science Inventory

    For Frank Princiotta’s book, Global Climate Change—The Technology Challenge With the concentrations of atmospheric greenhouse gases (GHGs) rising to levels unprecedented in the current glacial epoch, the earth’s climate system appears to be rapidly shifting into a warmer regime....

  14. Simulated increase of hurricane intensities in a CO2-warmed climate

    PubMed

    Knutson; Tuleya; Kurihara

    1998-02-13

    Hurricanes can inflict catastrophic property damage and loss of human life. Thus, it is important to determine how the character of these powerful storms could change in response to greenhouse gas-induced global warming. The impact of climate warming on hurricane intensities was investigated with a regional, high-resolution, hurricane prediction model. In a case study, 51 western Pacific storm cases under present-day climate conditions were compared with 51 storm cases under high-CO2 conditions. More idealized experiments were also performed. The large-scale initial conditions were derived from a global climate model. For a sea surface temperature warming of about 2.2 degrees C, the simulations yielded hurricanes that were more intense by 3 to 7 meters per second (5 to 12 percent) for wind speed and 7 to 20 millibars for central surface pressure.

  15. Effects of in situ climate warming on monarch caterpillar (Danaus plexippus) development

    PubMed Central

    Capdevielle, Jillian N.; Parker, John D.

    2015-01-01

    Climate warming will fundamentally alter basic life history strategies of many ectothermic insects. In the lab, rising temperatures increase growth rates of lepidopteran larvae but also reduce final pupal mass and increase mortality. Using in situ field warming experiments on their natural host plants, we assessed the impact of climate warming on development of monarch (Danaus plexippus) larvae. Monarchs were reared on Asclepias tuberosa grown under ‘Ambient’ and ‘Warmed’ conditions. We quantified time to pupation, final pupal mass, and survivorship. Warming significantly decreased time to pupation, such that an increase of 1 °C corresponded to a 0.5 day decrease in pupation time. In contrast, survivorship and pupal mass were not affected by warming. Our results indicate that climate warming will speed the developmental rate of monarchs, influencing their ecological and evolutionary dynamics. However, the effects of climate warming on larval development in other monarch populations and at different times of year should be investigated. PMID:26528403

  16. Future warming patterns linked to today’s climate variability

    DOE PAGESBeta

    Dai, Aiguo

    2016-01-11

    The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations during 1950–1979more » having more GHG-induced warming in the 21st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21st century in models and in the real world. Furthermore, they support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.« less

  17. Future Warming Patterns Linked to Today's Climate Variability.

    PubMed

    Dai, Aiguo

    2016-01-01

    The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models' ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21(st) century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today's climate, with areas of larger variations during 1950-1979 having more GHG-induced warming in the 21(st) century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950-2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21(st) century in models and in the real world. They support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.

  18. Impacts of a Warming Arctic - Arctic Climate Impact Assessment

    NASA Astrophysics Data System (ADS)

    Arctic Climate Impact Assessment

    2004-12-01

    The Arctic is now experiencing some of the most rapid and severe climate change on earth. Over the next 100 years, climate change is expected to accelerate, contributing to major physical, ecological, social, and economic changes, many of which have already begun. Changes in arctic climate will also affect the rest of the world through increased global warming and rising sea levels. Impacts of a Warming Arctic is a plain language synthesis of the key findings of the Arctic Climate Impact Assessment (ACIA), designed to be accessible to policymakers and the broader public. The ACIA is a comprehensively researched, fully referenced, and independently reviewed evaluation of arctic climate change. It has involved an international effort by hundreds of scientists. This report provides vital information to society as it contemplates its responses to one of the greatest challenges of our time. It is illustrated in full color throughout.

  19. Climate warming could increase recruitment success in glacier foreland plants

    PubMed Central

    Mondoni, Andrea; Pedrini, Simone; Bernareggi, Giulietta; Rossi, Graziano; Abeli, Thomas; Probert, Robin J.; Ghitti, Michele; Bonomi, Costantino; Orsenigo, Simone

    2015-01-01

    Background and Aims Glacier foreland plants are highly threatened by global warming. Regeneration from seeds on deglaciated terrain will be crucial for successful migration and survival of these species, and hence a better understanding of the impacts of climate change on seedling recruitment is urgently needed to predict future plant persistence in these environments. This study presents the first field evidence of the impact of climate change on recruitment success of glacier foreland plants. Methods Seeds of eight foreland species were sown on a foreland site at 2500 m a.s.l., and at a site 400 m lower in altitude to simulate a 2·7 °C increase in mean annual temperature. Soil from the site of origin was used to reproduce the natural germination substrate. Recruitment success, temperature and water potential were monitored for 2 years. The response of seed germination to warming was further investigated in the laboratory. Key Results At the glacier foreland site, seedling emergence was low (0 to approx. 40 %) and occurred in summer in all species after seeds had experienced autumn and winter seasons. However, at the warmer site there was a shift from summer to autumn emergence in two species and a significant increase of summer emergence (13–35 % higher) in all species except two. Survival and establishment was possible for 60–75 % of autumn-emerged seedlings and was generally greater under warmer conditions. Early snowmelt in spring caused the main ecological factors enhancing the recruitment success. Conclusions The results suggest that warming will influence the recruitment of glacier foreland species primarily via the extension of the snow-free period in spring, which increases seedling establishment and results in a greater resistance to summer drought and winter extremes. The changes in recruitment success observed here imply that range shifts or changes in abundance are possible in a future warmer climate, but overall success may be dependent

  20. Climatic bisection of the last interglacial warm period in the Polar North Atlantic

    NASA Astrophysics Data System (ADS)

    Bauch, Henning A.; Kandiano, Evguenia S.; Helmke, Jan; Andersen, Nils; Rosell-Mele, Antoni; Erlenkeuser, Helmut

    2011-07-01

    New multiproxy marine data of the Eemian interglacial (MIS5e) from the Norwegian Sea manifest a cold event with near-glacial surface ocean summer temperatures (3-4 °C). This mid-Eemian cooling divided the otherwise relatively warm interglacial climate and was associated with widespread expansions of winter sea-ice and polar water masses due to changes in atmospheric circulation and ocean stability. While the data also verify a late rather than early last interglacial warm peak, which is in general disharmony with northern hemisphere insolation maximum and the regional climatic progression of the early Holocene, the cold event itself was likely instrumental for delaying the last interglacial climate development in the Polar North when compared with regions farther south. Such a 'climatic decoupling' of the Polar region may bear profound implications for the employment of Eemian conditions to help evaluate the present and future state of the Arctic cryosphere during a warming interglacial.

  1. Invited review: Are adaptations present to support dairy cattle productivity in warm climates?

    PubMed

    Berman, A

    2011-05-01

    Environmental heat stress, present during warm seasons and warm episodes, severely impairs dairy cattle performance, particularly in warmer climates. It is widely viewed that warm climate breeds (Zebu and Sanga cattle) are adapted to the climate in which they evolved. Such adaptations might be exploited for increasing cattle productivity in warm climates and decrease the effect of warm periods in cooler climates. The literature was reviewed for presence of such adaptations. Evidence is clear for resistance to ticks and tick-transmitted diseases in Zebu and Sanga breeds as well as for a possible development of resistance to ticks in additional breeds. Development of resistance to ticks demands time; hence, it needs to be balanced with potential use of insecticides or vaccination. The presumption of higher sweating rates in Zebu-derived breeds, based upon morphological differences in sweat glands between breeds, has not been substantiated. Relatively few studies have examined hair coat characteristics and their responses to seasonal heat, particularly in temperate climate breeds. Recently, a gene for slick hair coat has been observed that improved heat tolerance when introduced into temperate climate breeds. No solid evidence exists that hair coat in these lines is lighter than in well-fed warm climate-adapted Holsteins. Warm climate breeds and their F1 crosses share as dominant characteristics lower maintenance requirements and milk yields, and limited response to improved feeding and management. These characteristics are not adaptations to a feed-limited environment but are constitutive and useful in serving survival when feed is scarce and seasonal and high temperatures prevail. The negative relationship between milk yield and fertility present in temperate climates breeds also prevails in Zebu cattle. Fertility impairment by warm conditions might be counteracted in advanced farming systems by extra corporeal early embryo culture. In general, adaptations found in

  2. The case for a wet, warm climate on early Mars.

    PubMed

    Pollack, J B; Kasting, J F; Richardson, S M; Poliakoff, K

    1987-01-01

    Theoretical arguments are presented in support of the idea that Mars possessed a dense CO2 atmosphere and a wet, warm climate early in its history. Calculations with a one-dimensional radiative-convective climate model indicate that CO2 pressures between 1 and 5 bars would have been required to keep the surface temperature above the freezing point of water early in the planet's history. The higher value corresponds to globally and orbitally averaged conditions and a 30% reduction in solar luminosity; the lower value corresponds to conditions at the equator during perihelion at times of high orbital eccentricity and the same reduced solar luminosity. The plausibility of such a CO2 greenhouse is tested by formulating a simple model of the CO2 geochemical cycle on early Mars. By appropriately scaling the rate of silicate weathering on present Earth, we estimate a weathering time constant of the order of several times 10(7) years for early Mars. Thus, a dense atmosphere could have persisted for a geologically significant time period (approximately 10(9) years) only if atmospheric CO2 was being continuously resupplied. The most likely mechanism by which this might have been accomplished is the thermal decomposition of carbonate rocks induced directly and indirectly (through burial) by intense, global-scale volcanism. For plausible values of the early heat flux, the recycling time constant is also of the order of several times 10(7) years. The amount of CO2 dissolved in standing bodies of water was probably small; thus, the total surficial CO2 inventory required to maintain these conditions was approximately 2 to 10 bars. The amount of CO2 in Mars' atmosphere would eventually have dwindled, and the climate cooled, as the planet's internal heat engine ran down. A test for this theory will be provided by spectroscopic searches for carbonates in Mars' crust.

  3. The case for a wet, warm climate on early Mars.

    PubMed

    Pollack, J B; Kasting, J F; Richardson, S M; Poliakoff, K

    1987-01-01

    Theoretical arguments are presented in support of the idea that Mars possessed a dense CO2 atmosphere and a wet, warm climate early in its history. Calculations with a one-dimensional radiative-convective climate model indicate that CO2 pressures between 1 and 5 bars would have been required to keep the surface temperature above the freezing point of water early in the planet's history. The higher value corresponds to globally and orbitally averaged conditions and a 30% reduction in solar luminosity; the lower value corresponds to conditions at the equator during perihelion at times of high orbital eccentricity and the same reduced solar luminosity. The plausibility of such a CO2 greenhouse is tested by formulating a simple model of the CO2 geochemical cycle on early Mars. By appropriately scaling the rate of silicate weathering on present Earth, we estimate a weathering time constant of the order of several times 10(7) years for early Mars. Thus, a dense atmosphere could have persisted for a geologically significant time period (approximately 10(9) years) only if atmospheric CO2 was being continuously resupplied. The most likely mechanism by which this might have been accomplished is the thermal decomposition of carbonate rocks induced directly and indirectly (through burial) by intense, global-scale volcanism. For plausible values of the early heat flux, the recycling time constant is also of the order of several times 10(7) years. The amount of CO2 dissolved in standing bodies of water was probably small; thus, the total surficial CO2 inventory required to maintain these conditions was approximately 2 to 10 bars. The amount of CO2 in Mars' atmosphere would eventually have dwindled, and the climate cooled, as the planet's internal heat engine ran down. A test for this theory will be provided by spectroscopic searches for carbonates in Mars' crust. PMID:11539035

  4. CLIMATE CHANGE: The Causes of 20th Century Warming.

    PubMed

    Zwiers, F W; Weaver, A J

    2000-12-15

    Global air surface temperatures increased by about 0.6 degrees C during the 20th century, but as Zwiers and Weaver discuss in their Perspective, the warming was not continuous. Two distinct periods of warming, from 1910 to 1945 and since 1976, were separated by a period of very gradual cooling. The authors highlight the work by Stott et al., who have performed the most comprehensive simulation of 20th century climate to date. The agreement between observed and simulated temperature variations strongly suggests that forcing from anthropogenic activities, moderated by variations in solar and volcanic forcing, has been the main driver of climate change during the past century.

  5. Lungs in a warming world: climate change and respiratory health.

    PubMed

    Bernstein, Aaron S; Rice, Mary B

    2013-05-01

    Climate change is a health threat no less consequential than cigarette smoking. Increased concentrations of greenhouse gases, and especially CO₂, in the earth's atmosphere have already warmed the planet substantially, causing more severe and prolonged heat waves, temperature variability, air pollution, forest fires, droughts, and floods, all of which put respiratory health at risk. These changes in climate and air quality substantially increase respiratory morbidity and mortality for patients with common chronic lung diseases such as asthma and COPD and other serious lung diseases. Physicians have a vital role in addressing climate change, just as they did with tobacco, by communicating how climate change is a serious, but remediable, hazard to their patients.

  6. Climatic warming and the future of bison as grazers.

    PubMed

    Craine, Joseph M; Towne, E Gene; Miller, Mary; Fierer, Noah

    2015-01-01

    Climatic warming is likely to exacerbate nutritional stress and reduce weight gain in large mammalian herbivores by reducing plant nutritional quality. Yet accurate predictions of the effects of climatic warming on herbivores are limited by a poor understanding of how herbivore diet varies along climate gradients. We utilized DNA metabarcoding to reconstruct seasonal variation in the diet of North American bison (Bison bison) in two grasslands that differ in mean annual temperature by 6 °C. Here, we show that associated with greater nutritional stress in warmer climates, bison consistently consumed fewer graminoids and more shrubs and forbs, i.e. eudicots. Bison in the warmer grassland consumed a lower proportion of C3 grass, but not a greater proportion of C4 grass. Instead, bison diet in the warmer grassland had a greater proportion of N2-fixing eudicots, regularly comprising >60% of their protein intake in spring and fall. Although bison have been considered strict grazers, as climatic warming reduces grass protein concentrations, bison may have to attempt to compensate by grazing less and browsing more. Promotion of high-protein, palatable eudicots or increasing the protein concentrations of grasses will be critical to minimizing warming-imposed nutritional stress for bison and perhaps other large mammalian herbivores. PMID:26567987

  7. Climatic warming and the future of bison as grazers

    NASA Astrophysics Data System (ADS)

    Craine, Joseph M.; Towne, E. Gene; Miller, Mary; Fierer, Noah

    2015-11-01

    Climatic warming is likely to exacerbate nutritional stress and reduce weight gain in large mammalian herbivores by reducing plant nutritional quality. Yet accurate predictions of the effects of climatic warming on herbivores are limited by a poor understanding of how herbivore diet varies along climate gradients. We utilized DNA metabarcoding to reconstruct seasonal variation in the diet of North American bison (Bison bison) in two grasslands that differ in mean annual temperature by 6 °C. Here, we show that associated with greater nutritional stress in warmer climates, bison consistently consumed fewer graminoids and more shrubs and forbs, i.e. eudicots. Bison in the warmer grassland consumed a lower proportion of C3 grass, but not a greater proportion of C4 grass. Instead, bison diet in the warmer grassland had a greater proportion of N2-fixing eudicots, regularly comprising >60% of their protein intake in spring and fall. Although bison have been considered strict grazers, as climatic warming reduces grass protein concentrations, bison may have to attempt to compensate by grazing less and browsing more. Promotion of high-protein, palatable eudicots or increasing the protein concentrations of grasses will be critical to minimizing warming-imposed nutritional stress for bison and perhaps other large mammalian herbivores.

  8. Climatic warming and the future of bison as grazers.

    PubMed

    Craine, Joseph M; Towne, E Gene; Miller, Mary; Fierer, Noah

    2015-11-16

    Climatic warming is likely to exacerbate nutritional stress and reduce weight gain in large mammalian herbivores by reducing plant nutritional quality. Yet accurate predictions of the effects of climatic warming on herbivores are limited by a poor understanding of how herbivore diet varies along climate gradients. We utilized DNA metabarcoding to reconstruct seasonal variation in the diet of North American bison (Bison bison) in two grasslands that differ in mean annual temperature by 6 °C. Here, we show that associated with greater nutritional stress in warmer climates, bison consistently consumed fewer graminoids and more shrubs and forbs, i.e. eudicots. Bison in the warmer grassland consumed a lower proportion of C3 grass, but not a greater proportion of C4 grass. Instead, bison diet in the warmer grassland had a greater proportion of N2-fixing eudicots, regularly comprising >60% of their protein intake in spring and fall. Although bison have been considered strict grazers, as climatic warming reduces grass protein concentrations, bison may have to attempt to compensate by grazing less and browsing more. Promotion of high-protein, palatable eudicots or increasing the protein concentrations of grasses will be critical to minimizing warming-imposed nutritional stress for bison and perhaps other large mammalian herbivores.

  9. The long-term fate of permafrost peatlands under rapid climate warming.

    PubMed

    Swindles, Graeme T; Morris, Paul J; Mullan, Donal; Watson, Elizabeth J; Turner, T Edward; Roland, Thomas P; Amesbury, Matthew J; Kokfelt, Ulla; Schoning, Kristian; Pratte, Steve; Gallego-Sala, Angela; Charman, Dan J; Sanderson, Nicole; Garneau, Michelle; Carrivick, Jonathan L; Woulds, Clare; Holden, Joseph; Parry, Lauren; Galloway, Jennifer M

    2015-01-01

    Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. Commonalities between study sites lead us to propose a five-phase model for permafrost peatland response to climatic warming. This model suggests a shared ecohydrological trajectory towards a common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, saturated soil conditions are likely to cause elevated methane emissions that have implications for climate-feedback mechanisms. PMID:26647837

  10. The long-term fate of permafrost peatlands under rapid climate warming

    PubMed Central

    Swindles, Graeme T.; Morris, Paul J.; Mullan, Donal; Watson, Elizabeth J.; Turner, T. Edward; Roland, Thomas P.; Amesbury, Matthew J.; Kokfelt, Ulla; Schoning, Kristian; Pratte, Steve; Gallego-Sala, Angela; Charman, Dan J.; Sanderson, Nicole; Garneau, Michelle; Carrivick, Jonathan L.; Woulds, Clare; Holden, Joseph; Parry, Lauren; Galloway, Jennifer M.

    2015-01-01

    Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. Commonalities between study sites lead us to propose a five-phase model for permafrost peatland response to climatic warming. This model suggests a shared ecohydrological trajectory towards a common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, saturated soil conditions are likely to cause elevated methane emissions that have implications for climate-feedback mechanisms. PMID:26647837

  11. Enhanced warming of the Northwest Atlantic Ocean under climate change

    NASA Astrophysics Data System (ADS)

    Saba, Vincent S.; Griffies, Stephen M.; Anderson, Whit G.; Winton, Michael; Alexander, Michael A.; Delworth, Thomas L.; Hare, Jonathan A.; Harrison, Matthew J.; Rosati, Anthony; Vecchi, Gabriel A.; Zhang, Rong

    2016-01-01

    The Intergovernmental Panel on Climate Change (IPCC) fifth assessment of projected global and regional ocean temperature change is based on global climate models that have coarse (˜100 km) ocean and atmosphere resolutions. In the Northwest Atlantic, the ensemble of global climate models has a warm bias in sea surface temperature due to a misrepresentation of the Gulf Stream position; thus, existing climate change projections are based on unrealistic regional ocean circulation. Here we compare simulations and an atmospheric CO2 doubling response from four global climate models of varying ocean and atmosphere resolution. We find that the highest resolution climate model (˜10 km ocean, ˜50 km atmosphere) resolves Northwest Atlantic circulation and water mass distribution most accurately. The CO2 doubling response from this model shows that upper-ocean (0-300 m) temperature in the Northwest Atlantic Shelf warms at a rate nearly twice as fast as the coarser models and nearly three times faster than the global average. This enhanced warming is accompanied by an increase in salinity due to a change in water mass distribution that is related to a retreat of the Labrador Current and a northerly shift of the Gulf Stream. Both observations and the climate model demonstrate a robust relationship between a weakening Atlantic Meridional Overturning Circulation (AMOC) and an increase in the proportion of Warm-Temperate Slope Water entering the Northwest Atlantic Shelf. Therefore, prior climate change projections for the Northwest Atlantic may be far too conservative. These results point to the need to improve simulations of basin and regional-scale ocean circulation.

  12. Hydrologic Response and Watershed Sensitivity to Climate Warming in California's Sierra Nevada

    PubMed Central

    Null, Sarah E.; Viers, Joshua H.; Mount, Jeffrey F.

    2010-01-01

    This study focuses on the differential hydrologic response of individual watersheds to climate warming within the Sierra Nevada mountain region of California. We describe climate warming models for 15 west-slope Sierra Nevada watersheds in California under unimpaired conditions using WEAP21, a weekly one-dimensional rainfall-runoff model. Incremental climate warming alternatives increase air temperature uniformly by 2°, 4°, and 6°C, but leave other climatic variables unchanged from observed values. Results are analyzed for changes in mean annual flow, peak runoff timing, and duration of low flow conditions to highlight which watersheds are most resilient to climate warming within a region, and how individual watersheds may be affected by changes to runoff quantity and timing. Results are compared with current water resources development and ecosystem services in each watershed to gain insight into how regional climate warming may affect water supply, hydropower generation, and montane ecosystems. Overall, watersheds in the northern Sierra Nevada are most vulnerable to decreased mean annual flow, southern-central watersheds are most susceptible to runoff timing changes, and the central portion of the range is most affected by longer periods with low flow conditions. Modeling results suggest the American and Mokelumne Rivers are most vulnerable to all three metrics, and the Kern River is the most resilient, in part from the high elevations of the watershed. Our research seeks to bridge information gaps between climate change modeling and regional management planning, helping to incorporate climate change into the development of regional adaptation strategies for Sierra Nevada watersheds. PMID:20368984

  13. Impacts of climate warming on terrestrial ectotherms across latitude.

    PubMed

    Deutsch, Curtis A; Tewksbury, Joshua J; Huey, Raymond B; Sheldon, Kimberly S; Ghalambor, Cameron K; Haak, David C; Martin, Paul R

    2008-05-01

    The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest.

  14. Climate Warming and Disease Risks for Terrestrial and Marine Biota

    NASA Astrophysics Data System (ADS)

    Harvell, C. Drew; Mitchell, Charles E.; Ward, Jessica R.; Altizer, Sonia; Dobson, Andrew P.; Ostfeld, Richard S.; Samuel, Michael D.

    2002-06-01

    Infectious diseases can cause rapid population declines or species extinctions. Many pathogens of terrestrial and marine taxa are sensitive to temperature, rainfall, and humidity, creating synergisms that could affect biodiversity. Climate warming can increase pathogen development and survival rates, disease transmission, and host susceptibility. Although most host-parasite systems are predicted to experience more frequent or severe disease impacts with warming, a subset of pathogens might decline with warming, releasing hosts from disease. Recently, changes in El Niño-Southern Oscillation events have had a detectable influence on marine and terrestrial pathogens, including coral diseases, oyster pathogens, crop pathogens, Rift Valley fever, and human cholera. To improve our ability to predict epidemics in wild populations, it will be necessary to separate the independent and interactive effects of multiple climate drivers on disease impact.

  15. Climate warming and disease risks for terrestrial and marine biota

    USGS Publications Warehouse

    Harvell, C.D.; Mitchell, C.E.; Ward, J.R.; Altizer, S.; Dobson, A.P.; Ostfeld, R.S.; Samuel, M.D.

    2002-01-01

    Infectious diseases can cause rapid population declines or species extinctions. Many pathogens of terrestrial and marine taxa are sensitive to temperature, rainfall, and humidity, creating synergisms that could affect biodiversity. Climate warming can increase pathogen development and survival rates, disease transmission, and host susceptibility. Although most host-parasite systems are predicted to experience more frequent or severe disease impacts with warming, a subset of pathogens might decline with warming, releasing hosts from disease. Recently, changes in El Niño–Southern Oscillation events have had a detectable influence on marine and terrestrial pathogens, including coral diseases, oyster pathogens, crop pathogens, Rift Valley fever, and human cholera. To improve our ability to predict epidemics in wild populations, it will be necessary to separate the independent and interactive effects of multiple climate drivers on disease impact.

  16. Seventh Grade Students' Conceptions of Global Warming and Climate Change

    ERIC Educational Resources Information Center

    Shepardson, Daniel P.; Niyogi, Dev; Choi, Soyoung; Charusombat, Umarporn

    2009-01-01

    The purpose of this study was to investigate seventh grade students' conceptions of global warming and climate change. The study was descriptive in nature and involved the collection of qualitative data from 91 seventh grade students from three different schools in the Midwest, USA. An open response and draw and explain assessment instrument was…

  17. Non-climatic thermal adaptation: implications for species' responses to climate warming.

    PubMed

    Marshall, David J; McQuaid, Christopher D; Williams, Gray A

    2010-10-23

    There is considerable interest in understanding how ectothermic animals may physiologically and behaviourally buffer the effects of climate warming. Much less consideration is being given to how organisms might adapt to non-climatic heat sources in ways that could confound predictions for responses of species and communities to climate warming. Although adaptation to non-climatic heat sources (solar and geothermal) seems likely in some marine species, climate warming predictions for marine ectotherms are largely based on adaptation to climatically relevant heat sources (air or surface sea water temperature). Here, we show that non-climatic solar heating underlies thermal resistance adaptation in a rocky-eulittoral-fringe snail. Comparisons of the maximum temperatures of the air, the snail's body and the rock substratum with solar irradiance and physiological performance show that the highest body temperature is primarily controlled by solar heating and re-radiation, and that the snail's upper lethal temperature exceeds the highest climatically relevant regional air temperature by approximately 22°C. Non-climatic thermal adaptation probably features widely among marine and terrestrial ectotherms and because it could enable species to tolerate climatic rises in air temperature, it deserves more consideration in general and for inclusion into climate warming models.

  18. Climatic irregular staircases: generalized acceleration of global warming.

    PubMed

    De Saedeleer, Bernard

    2016-01-27

    Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr - not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth's climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates - except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature.

  19. Past and future warming of a deep European lake (Lake Lugano): What are the climatic drivers?

    USGS Publications Warehouse

    Lepori, Fabio; Roberts, James J.

    2015-01-01

    We used four decades (1972–2013) of temperature data from Lake Lugano, Switzerland and Italy, to address the hypotheses that: [i] the lake has been warming; [ii] part of the warming reflects global trends and is independent from climatic oscillations and [iii] the lake will continue to warm until the end of the 21st century. During the time spanned by our data, the surface waters of the lake (0–5 m) warmed at rates of 0.2–0.9 °C per decade, depending on season. The temperature of the deep waters (50-m bottom) displayed a rising trend in a meromictic basin of the lake and a sawtooth pattern in the other basin, which is holomictic. Long-term variation in surfacewater temperature correlated to global warming and multidecadal variation in two climatic oscillations, the Atlantic Multidecadal Oscillation (AMO) and the East Atlantic Pattern (EA).However, we did not detect an influence of the EA on the lake's temperature (as separate from the effect of global warming). Moreover, the effect of the AMO, estimated to a maximum of +1 °C, was not sufficient to explain the observed temperature increase (+2–3 °C in summer). Based on regional climate projections, we predicted that the lake will continue to warm at least until the end of the 21st century. Our results strongly suggest that the warming of Lake Lugano is tied to globalclimate change. To sustain current ecosystem conditions in Lake Lugano, we suggest that manage- ment plans that curtail eutrophication and (or) mitigation of global warming be pursued.

  20. Insects overshoot the expected upslope shift caused by climate warming.

    PubMed

    Bässler, Claus; Hothorn, Torsten; Brandl, Roland; Müller, Jörg

    2013-01-01

    Along elevational gradients, climate warming may lead to an upslope shift of the lower and upper range margin of organisms. A recent meta-analysis concluded that these shifts are species specific and considerably differ among taxonomic lineages. We used the opportunity to compare upper range margins of five lineages (plants, beetles, flies, hymenoptera, and birds) between 1902-1904 and 2006-2007 within one region (Bavarian Forest, Central Europe). Based on the increase in the regional mean annual temperature during this period and the regional lapse rate, the upslope shift is expected to be between 51 and 201 m. Averaged across species within lineages, the range margin of all animal lineages shifted upslope, but that of plants did not. For animals, the observed shifts were probably due to shifts in temperature and not to changes in habitat conditions. The range margin of plants is therefore apparently not constrained by temperature, a result contrasting recent findings. The mean shift of birds (165 m) was within the predicted range and consistent with a recent global meta-analysis. However, the upslope shift of the three insect lineages (>260 m) exceeded the expected shift even after considering several sources of uncertainty, which indicated a non-linear response to temperature. Our analysis demonstrated broad differences among lineages in their response to climate change even within one region. Furthermore, on the considered scale, the response of ectothermic animals was not consistent with expectations based on shifts in the mean annual temperature. Irrespective of the reasons for the overshooting of the response of the insects, these shifts lead to reorganizations in the composition of assemblages with consequences for ecosystem processes.

  1. Conservation Planning for Coral Reefs Accounting for Climate Warming Disturbances.

    PubMed

    Magris, Rafael A; Heron, Scott F; Pressey, Robert L

    2015-01-01

    Incorporating warming disturbances into the design of marine protected areas (MPAs) is fundamental to developing appropriate conservation actions that confer coral reef resilience. We propose an MPA design approach that includes spatially- and temporally-varying sea-surface temperature (SST) data, integrating both observed (1985-2009) and projected (2010-2099) time-series. We derived indices of acute (time under reduced ecosystem function following short-term events) and chronic thermal stress (rate of warming) and combined them to delineate thermal-stress regimes. Coral reefs located on the Brazilian coast were used as a case study because they are considered a conservation priority in the southwestern Atlantic Ocean. We show that all coral reef areas in Brazil have experienced and are projected to continue to experience chronic warming, while acute events are expected to increase in frequency and intensity. We formulated quantitative conservation objectives for regimes of thermal stress. Based on these objectives, we then evaluated if/how they are achieved in existing Brazilian MPAs and identified priority areas where additional protection would reinforce resilience. Our results show that, although the current system of MPAs incorporates locations within some of our thermal-stress regimes, historical and future thermal refugia along the central coast are completely unprotected. Our approach is applicable to other marine ecosystems and adds to previous marine planning for climate change in two ways: (i) by demonstrating how to spatially configure MPAs that meet conservation objectives for warming disturbance using spatially- and temporally-explicit data; and (ii) by strategically allocating different forms of spatial management (MPA types) intended to mitigate warming impacts and also enhance future resistance to climate warming. PMID:26535586

  2. Warming experiments underpredict plant phenological responses to climate change

    USGS Publications Warehouse

    Wolkovich, Elizabeth M.; Cook, Benjamin I.; Allen, Jenica M.; Crimmins, Theresa M.; Betancourt, Julio L.; Travers, Steven E.; Pau, Stephanie; Regetz, James; Davies, T. Jonathan; Kraft, Nathan J.B.; Ault, Toby R.; Bolmgren, Kjell; Mazer, Susan J.; McCabe, Gregory J.; McGill, Brian J.; Parmesan, Camille; Salamin, Nicolas; Schwartz, Mark D.; Cleland, Elsa E.

    2012-01-01

    Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

  3. Warming experiments underpredict plant phenological responses to climate change.

    PubMed

    Wolkovich, E M; Cook, B I; Allen, J M; Crimmins, T M; Betancourt, J L; Travers, S E; Pau, S; Regetz, J; Davies, T J; Kraft, N J B; Ault, T R; Bolmgren, K; Mazer, S J; McCabe, G J; McGill, B J; Parmesan, C; Salamin, N; Schwartz, M D; Cleland, E E

    2012-05-02

    Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

  4. Warming Experiments Underpredict Plant Phenological Responses to Climate Change

    NASA Technical Reports Server (NTRS)

    Wolkovich, E. M.; Cook, B. I.; Allen, J. M.; Crimmins, T. M.; Betancourt, J. L.; Travers, S. E.; Pau, S.; Regetz, J.; Davies, T. J.; Kraft, N. J. B.; Ault, T. R.; Bolmgren, K.; Mazer, S. J.; McCabe, G. J.; McGill, B. J.; Parmesan, C.; Salamin, N.; Schwartz, M. D.; Cleland, E. E.

    2012-01-01

    Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

  5. Conservation Planning for Coral Reefs Accounting for Climate Warming Disturbances.

    PubMed

    Magris, Rafael A; Heron, Scott F; Pressey, Robert L

    2015-01-01

    Incorporating warming disturbances into the design of marine protected areas (MPAs) is fundamental to developing appropriate conservation actions that confer coral reef resilience. We propose an MPA design approach that includes spatially- and temporally-varying sea-surface temperature (SST) data, integrating both observed (1985-2009) and projected (2010-2099) time-series. We derived indices of acute (time under reduced ecosystem function following short-term events) and chronic thermal stress (rate of warming) and combined them to delineate thermal-stress regimes. Coral reefs located on the Brazilian coast were used as a case study because they are considered a conservation priority in the southwestern Atlantic Ocean. We show that all coral reef areas in Brazil have experienced and are projected to continue to experience chronic warming, while acute events are expected to increase in frequency and intensity. We formulated quantitative conservation objectives for regimes of thermal stress. Based on these objectives, we then evaluated if/how they are achieved in existing Brazilian MPAs and identified priority areas where additional protection would reinforce resilience. Our results show that, although the current system of MPAs incorporates locations within some of our thermal-stress regimes, historical and future thermal refugia along the central coast are completely unprotected. Our approach is applicable to other marine ecosystems and adds to previous marine planning for climate change in two ways: (i) by demonstrating how to spatially configure MPAs that meet conservation objectives for warming disturbance using spatially- and temporally-explicit data; and (ii) by strategically allocating different forms of spatial management (MPA types) intended to mitigate warming impacts and also enhance future resistance to climate warming.

  6. Conservation Planning for Coral Reefs Accounting for Climate Warming Disturbances

    PubMed Central

    Magris, Rafael A.; Heron, Scott F.; Pressey, Robert L.

    2015-01-01

    Incorporating warming disturbances into the design of marine protected areas (MPAs) is fundamental to developing appropriate conservation actions that confer coral reef resilience. We propose an MPA design approach that includes spatially- and temporally-varying sea-surface temperature (SST) data, integrating both observed (1985–2009) and projected (2010–2099) time-series. We derived indices of acute (time under reduced ecosystem function following short-term events) and chronic thermal stress (rate of warming) and combined them to delineate thermal-stress regimes. Coral reefs located on the Brazilian coast were used as a case study because they are considered a conservation priority in the southwestern Atlantic Ocean. We show that all coral reef areas in Brazil have experienced and are projected to continue to experience chronic warming, while acute events are expected to increase in frequency and intensity. We formulated quantitative conservation objectives for regimes of thermal stress. Based on these objectives, we then evaluated if/how they are achieved in existing Brazilian MPAs and identified priority areas where additional protection would reinforce resilience. Our results show that, although the current system of MPAs incorporates locations within some of our thermal-stress regimes, historical and future thermal refugia along the central coast are completely unprotected. Our approach is applicable to other marine ecosystems and adds to previous marine planning for climate change in two ways: (i) by demonstrating how to spatially configure MPAs that meet conservation objectives for warming disturbance using spatially- and temporally-explicit data; and (ii) by strategically allocating different forms of spatial management (MPA types) intended to mitigate warming impacts and also enhance future resistance to climate warming. PMID:26535586

  7. Changes in South Pacific rainfall bands in a warming climate

    NASA Astrophysics Data System (ADS)

    Widlansky, M. J.; Timmermann, A.; Stein, K.; McGregor, S.; Schneider, N.; England, M. H.; Lengaigne, M.; Cai, W.

    2012-12-01

    The South Pacific Convergence Zone (SPCZ) is the largest rainband in the Southern Hemisphere and provides most of the rainfall to Southwest Pacific island nations. In spite of various modeling efforts, it remains uncertain how the SPCZ will respond to greenhouse warming. A multi-model ensemble average of 21st century climate change projections from the current-generation of Coupled General Circulation Models (CGCMs) suggests a slightly wetter Southwest Pacific; however, inter-model uncertainty is greater than projected rainfall changes in the SPCZ region. Using a hierarchy of climate models we show that the uncertainty of SPCZ rainfall projections in the Southwest Pacific can be explained as a result of two competing mechanisms. Higher tropical sea surface temperatures (SST) lead to an overall increase of atmospheric moisture and rainfall while weaker SST gradients dynamically shift the SPCZ northeastward (see illustration) and promote summer drying in areas of the Southwest Pacific, similar to the response to strong El Niño events. Based on a multi-model ensemble of 55 greenhouse warming experiments and for moderate tropical warming of 2-3°C we estimate a 5% decrease of SPCZ rainfall, although uncertainty exceeds ±30% among CGCMs. For stronger tropical warming, a tendency for a wetter SPCZ region is identified.; Illustration of the "warmest gets wetter" response to projected 21st century greenhouse warming. Green shading depicts observed (1982-2009) rainfall during DJF (contour interval: 2 mm/day; starting at 1 mm/day). Blue (red) contours depict warming less (more) than the tropical mean (42.5°N/S) 21st century multi-model trend (contour interval: 0.2°C; starting at ±0.1°C).

  8. Low Elevation Riparian Environments: Warm-Climate Refugia for Conifers in the Great Basin, USA?

    NASA Astrophysics Data System (ADS)

    Millar, C.; Charlet, D. A.; Westfall, R. D.; Delany, D.

    2015-12-01

    The Great Basin, USA, contains hundreds of small to large mountain ranges. Many reach alpine elevations, which are separated from each other by low-elevation basins currently inhospitable to conifer growth. Many of these ranges support montane and subalpine conifer species that have affinities to the Sierra Nevada or Rocky Mountains, and from which these conifers migrated during cool periods of the Pleistocene. Under Holocene climates, the Great Basin geography became a terrestrial island-archipelago, wherein conifer populations are isolated among ranges, and inter-range migration is highly limited. During warm intervals of the Holocene, conifers would be expected to have migrated upslope following favorable conditions, and extirpation would be assumed to result from continued warming. Independent patterns, repeating across multiple species' distributions, however, suggest that refugia were present in these ranges during warm periods, and that low elevation environments below the current main distributions acted as climatic refugia. We hypothesize that cool, narrow, and north-aspect ravines, which during cool climates support persistent or seasonal creeks and deciduous riparian communities, become available as conifer habitat when warming climates desiccate creeks and deplete riparian species. We further speculate that cold-air drainage, reduced solar insolation, lower wind exposure, and higher water tables in these topographic positions support populations of montane and subalpine conifers even during warm climate intervals when high elevations are unfavorable for conifer persistence. On return to cool climates, low elevation refugia become sources for recolonizing higher slopes, and/or continue to persist as relictual populations. We present several lines of evidence supporting this hypothesis, and speculate that low-elevation, extramarginal riparian environments might act as climate refugia for Great Basin conifers in the future as well.

  9. Climatic Conditions in Classrooms.

    ERIC Educational Resources Information Center

    Kevan, Simon M.; Howes, John D.

    1980-01-01

    Presents an overview of research on the ways in which classroom thermal environment, lighting conditions, ion state, and electromagnetic and air pollution affect learning and the performance of students and teachers. (SJL)

  10. Reductions in labour capacity from heat stress under climate warming

    NASA Astrophysics Data System (ADS)

    Dunne, John P.; Stouffer, Ronald J.; John, Jasmin G.

    2013-06-01

    A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in tropical and mid-latitudes during peak months of heat stress. One heat-stress metric with broad occupational health applications is wet-bulb globe temperature. We combine wet-bulb globe temperatures from global climate historical reanalysis and Earth System Model (ESM2M) projections with industrial and military guidelines for an acclimated individual's occupational capacity to safely perform sustained labour under environmental heat stress (labour capacity)--here defined as a global population-weighted metric temporally fixed at the 2010 distribution. We estimate that environmental heat stress has reduced labour capacity to 90% in peak months over the past few decades. ESM2M projects labour capacity reduction to 80% in peak months by 2050. Under the highest scenario considered (Representative Concentration Pathway 8.5), ESM2M projects labour capacity reduction to less than 40% by 2200 in peak months, with most tropical and mid-latitudes experiencing extreme climatological heat stress. Uncertainties and caveats associated with these projections include climate sensitivity, climate warming patterns, CO2 emissions, future population distributions, and technological and societal change.

  11. Biomass production in experimental grasslands of different species richness during three years of climate warming

    NASA Astrophysics Data System (ADS)

    de Boeck, H. J.; Lemmens, C. M. H. M.; Zavalloni, C.; Gielen, B.; Malchair, S.; Carnol, M.; Merckx, R.; van den Berge, J.; Ceulemans, R.; Nijs, I.

    2008-04-01

    Here we report on the single and combined impacts of climate warming and species richness on the biomass production in experimental grassland communities. Projections of a future warmer climate have stimulated studies on the response of terrestrial ecosystems to this global change. Experiments have likewise addressed the importance of species numbers for ecosystem functioning. There is, however, little knowledge on the interplay between warming and species richness. During three years, we grew experimental plant communities containing one, three or nine grassland species in 12 sunlit, climate-controlled chambers in Wilrijk, Belgium. Half of these chambers were exposed to ambient air temperatures (unheated), while the other half were warmed by 3°C (heated). Equal amounts of water were added to heated and unheated communities, so that warming would imply drier soils if evapotranspiration was higher. Biomass production was decreased due to warming, both aboveground (-29%) and belowground (-25%), as negative impacts of increased heat and drought stress in summer prevailed. Complementarity effects, likely mostly through both increased aboveground spatial complementarity and facilitative effects of legumes, led to higher shoot and root biomass in multi-species communities, regardless of the induced warming. Surprisingly, warming suppressed productivity the most in 9-species communities, which may be attributed to negative impacts of intense interspecific competition for resources under conditions of high abiotic stress. Our results suggest that warming and the associated soil drying could reduce primary production in many temperate grasslands, and that this will not necessarily be mitigated by efforts to maintain or increase species richness.

  12. Potential Distribution Predicted for Rhynchophorus ferrugineus in China under Different Climate Warming Scenarios.

    PubMed

    Ge, Xuezhen; He, Shanyong; Wang, Tao; Yan, Wei; Zong, Shixiang

    2015-01-01

    As the primary pest of palm trees, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) has caused serious harm to palms since it first invaded China. The present study used CLIMEX 1.1 to predict the potential distribution of R. ferrugineus in China according to both current climate data (1981-2010) and future climate warming estimates based on simulated climate data for the 2020s (2011-2040) provided by the Tyndall Center for Climate Change Research (TYN SC 2.0). Additionally, the Ecoclimatic Index (EI) values calculated for different climatic conditions (current and future, as simulated by the B2 scenario) were compared. Areas with a suitable climate for R. ferrugineus distribution were located primarily in central China according to the current climate data, with the northern boundary of the distribution reaching to 40.1°N and including Tibet, north Sichuan, central Shaanxi, south Shanxi, and east Hebei. There was little difference in the potential distribution predicted by the four emission scenarios according to future climate warming estimates. The primary prediction under future climate warming models was that, compared with the current climate model, the number of highly favorable habitats would increase significantly and expand into northern China, whereas the number of both favorable and marginally favorable habitats would decrease. Contrast analysis of EI values suggested that climate change and the density of site distribution were the main effectors of the changes in EI values. These results will help to improve control measures, prevent the spread of this pest, and revise the targeted quarantine areas.

  13. Potential Distribution Predicted for Rhynchophorus ferrugineus in China under Different Climate Warming Scenarios.

    PubMed

    Ge, Xuezhen; He, Shanyong; Wang, Tao; Yan, Wei; Zong, Shixiang

    2015-01-01

    As the primary pest of palm trees, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) has caused serious harm to palms since it first invaded China. The present study used CLIMEX 1.1 to predict the potential distribution of R. ferrugineus in China according to both current climate data (1981-2010) and future climate warming estimates based on simulated climate data for the 2020s (2011-2040) provided by the Tyndall Center for Climate Change Research (TYN SC 2.0). Additionally, the Ecoclimatic Index (EI) values calculated for different climatic conditions (current and future, as simulated by the B2 scenario) were compared. Areas with a suitable climate for R. ferrugineus distribution were located primarily in central China according to the current climate data, with the northern boundary of the distribution reaching to 40.1°N and including Tibet, north Sichuan, central Shaanxi, south Shanxi, and east Hebei. There was little difference in the potential distribution predicted by the four emission scenarios according to future climate warming estimates. The primary prediction under future climate warming models was that, compared with the current climate model, the number of highly favorable habitats would increase significantly and expand into northern China, whereas the number of both favorable and marginally favorable habitats would decrease. Contrast analysis of EI values suggested that climate change and the density of site distribution were the main effectors of the changes in EI values. These results will help to improve control measures, prevent the spread of this pest, and revise the targeted quarantine areas. PMID:26496438

  14. Potential Distribution Predicted for Rhynchophorus ferrugineus in China under Different Climate Warming Scenarios

    PubMed Central

    Ge, Xuezhen; He, Shanyong; Wang, Tao; Yan, Wei; Zong, Shixiang

    2015-01-01

    As the primary pest of palm trees, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) has caused serious harm to palms since it first invaded China. The present study used CLIMEX 1.1 to predict the potential distribution of R. ferrugineus in China according to both current climate data (1981–2010) and future climate warming estimates based on simulated climate data for the 2020s (2011–2040) provided by the Tyndall Center for Climate Change Research (TYN SC 2.0). Additionally, the Ecoclimatic Index (EI) values calculated for different climatic conditions (current and future, as simulated by the B2 scenario) were compared. Areas with a suitable climate for R. ferrugineus distribution were located primarily in central China according to the current climate data, with the northern boundary of the distribution reaching to 40.1°N and including Tibet, north Sichuan, central Shaanxi, south Shanxi, and east Hebei. There was little difference in the potential distribution predicted by the four emission scenarios according to future climate warming estimates. The primary prediction under future climate warming models was that, compared with the current climate model, the number of highly favorable habitats would increase significantly and expand into northern China, whereas the number of both favorable and marginally favorable habitats would decrease. Contrast analysis of EI values suggested that climate change and the density of site distribution were the main effectors of the changes in EI values. These results will help to improve control measures, prevent the spread of this pest, and revise the targeted quarantine areas. PMID:26496438

  15. Atlantic Warm Pool Trigger for the Younger Dryas Climate Event

    NASA Astrophysics Data System (ADS)

    Abdul, N. A.; Mortlock, R. A.; Wright, J. D.; Fairbanks, R. G.; Teneva, L. T.

    2011-12-01

    There is growing evidence that variability in the size and heat content of the tropical Atlantic Warm Pool impacts circum-North Atlantic climate via the Atlantic Multi-decadal Oscillation mode (Wang et al., 2008). The Atlantic Warm Pool spans the Gulf of Mexico, Caribbean Sea and the western tropical North Atlantic. Barbados is located near the center of the tropical Atlantic Warm Pool and coupled ocean models suggest that Barbados remains near the center of the tropical Atlantic Warm Pool under varying wind stress simulations. Measurements of the oxygen isotope paleothermometer in Acropora palmata coral species recovered from cores offshore Barbados, show a 3oC monotonic decrease in sea surface temperature from 13106 ± 83 to 12744 ± 61 years before present (errors given as 2 sigma). This interval corresponds to a sea level rise from 71.4 meters to 67.1 meters below present levels at Barbados. The 3oC temperature decrease is captured in eight A. palmata specimens that are in stratigraphic sequence, 230Th/234U dated, and analyzed for oxygen isotopes. All measurements are replicated. We are confident that this is the warm pool equivalent of the Younger Dryas climate event. The initiation of this temperature drop in the Atlantic Warm Pool predates the Younger Dryas start in Greenland ice cores, reported to start at 12896 ± 138 years (relative to AD 2000) (Rasmussen et al., 2006), while few other Younger Dryas climate records are dated with similar accuracy to make the comparison. Rasmussen, S.O., Andersen, K.K., Svensson, A.M., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Siggaard-Andersen, M.L., Johnsen, S.J., Larsen, L.B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M.E., and Ruth, U., 2006, A new Greenland ice core chronology for the last glacial termination: J. Geophys. Res., v. 111, p. D06102. Wang, C., Lee, S.-K., and Enfield, D.B., 2008, Atlantic Warm Pool acting as a link between Atlantic Multidecadal

  16. New Metrics for Characterizing Snowpacks in a Warming Climate

    NASA Astrophysics Data System (ADS)

    Nolin, A. W.; Dello, K.; Sproles, E.

    2013-12-01

    Snow is a primary contributor to water resources in the western United States. For decades, water resource managers have used April 1 snow water equivalent (SWE) as an indicator of the total water stored in the seasonal snowpack. However, in areas with temperature-sensitive snowpacks (climates with maritime snow and lower elevation watersheds), mid-winter melt events are common and April 1 SWE grossly underestimates total snow contributions. Future climate scenarios project warmer winter temperatures, increasing the potential frequency of mid-winter melt events. Moreover, late spring snow events can make significant contributions to water storage. In such cases, April 1 SWE is unlikely to be representative of seasonal snowpack water storage. We examine new and existing snowpack metrics for temperature-sensitive snowpacks to better characterize snowpack characteristics for water resources throughout a snow season. These metrics include: * Monthly SWE:P - the ratio of monthly snow water equivalent to monthly cumulative precipitation. We note that this is a good indicator of temperature sensitivity for snow accumulation but it does not provide a measure of SWE magnitude; * Cumulative SWE - this is a useful measure of total snow water equivalent over the winter season but requires continuous measurements of SWE, not just a single date; * Snowcover frequency - the frequency with which a pixel is snow-covered during winter. This can be readily derived from remote sensing but can be difficult to relate to SWE. Snowcover can be difficult to detect in regions with dense forest canopy; * Snowstorm temperature - this is useful as a measure of temperature sensitivity of snowfall and can be related to storm type; * Exceedance probability of SWE - the probability that a value of SWE at a given magnitude or greater will occur in a given year. February 1 is a good indicator of midwinter snowpack conditions and is useful for reservoir operators; April 1 and May 1 values can provide

  17. Permafrost carbon-climate feedbacks accelerate global warming.

    PubMed

    Koven, Charles D; Ringeval, Bruno; Friedlingstein, Pierre; Ciais, Philippe; Cadule, Patricia; Khvorostyanov, Dmitry; Krinner, Gerhard; Tarnocai, Charles

    2011-09-01

    Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH(4) emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO(2) by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO(2) fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH(4)/y to 41-70 Tg CH(4)/y, with increases due to CO(2) fertilization, permafrost thaw, and warming-induced increased CH(4) flux densities partially offset by a reduction in wetland extent.

  18. Climate and tourism in the Black Forest during the warm season.

    PubMed

    Endler, Christina; Matzarakis, Andreas

    2011-03-01

    Climate, climate change and tourism all interact. Part of the public discussion about climate change focusses on the tourism sector, with direct and indirect impacts being of equally high relevance. Climate and tourism are closely linked. Thus, climate is a very decisive factor in choices both of destination and of type of journey (active holidays, wellness, and city tours) in the tourism sector. However, whether choices about destinations or types of trip will alter with climate change is difficult to predict. Future climates can be simulated and projected, and the tendencies of climate parameters can be estimated using global and regional climate models. In this paper, the focus is on climate change in the mountainous regions of southwest Germany - the Black Forest. The Black Forest is one of the low mountain ranges where both winter and summer tourism are vulnerable to climate change due to its southern location; the strongest climatic changes are expected in areas covering the south and southwest of Germany. Moreover, as the choice of destination is highly dependent on good weather, a climatic assessment for tourism is essential. Thus, the aim of this study was to estimate climatic changes in mountainous regions during summer, especially for tourism and recreation. The assessment method was based on human-biometeorology as well as tourism-climatologic approaches. Regional climate simulations based on the regional climate model REMO were used for tourism-related climatic analyses. Emission scenarios A1B and B1 were considered for the time period 2021 to 2050, compared to the 30-year base period of 1971-2000, particularly for the warm period of the year, defined here as the months of March-November. In this study, we quantified the frequency, but not the means, of climate parameters. The study results show that global and regional warming is reflected in an increase in annual mean air temperature, especially in autumn. Changes in the spring show a slight negative

  19. Climate and tourism in the Black Forest during the warm season

    NASA Astrophysics Data System (ADS)

    Endler, Christina; Matzarakis, Andreas

    2011-03-01

    Climate, climate change and tourism all interact. Part of the public discussion about climate change focusses on the tourism sector, with direct and indirect impacts being of equally high relevance. Climate and tourism are closely linked. Thus, climate is a very decisive factor in choices both of destination and of type of journey (active holidays, wellness, and city tours) in the tourism sector. However, whether choices about destinations or types of trip will alter with climate change is difficult to predict. Future climates can be simulated and projected, and the tendencies of climate parameters can be estimated using global and regional climate models. In this paper, the focus is on climate change in the mountainous regions of southwest Germany - the Black Forest. The Black Forest is one of the low mountain ranges where both winter and summer tourism are vulnerable to climate change due to its southern location; the strongest climatic changes are expected in areas covering the south and southwest of Germany. Moreover, as the choice of destination is highly dependent on good weather, a climatic assessment for tourism is essential. Thus, the aim of this study was to estimate climatic changes in mountainous regions during summer, especially for tourism and recreation. The assessment method was based on human-biometeorology as well as tourism-climatologic approaches. Regional climate simulations based on the regional climate model REMO were used for tourism-related climatic analyses. Emission scenarios A1B and B1 were considered for the time period 2021 to 2050, compared to the 30-year base period of 1971-2000, particularly for the warm period of the year, defined here as the months of March-November. In this study, we quantified the frequency, but not the means, of climate parameters. The study results show that global and regional warming is reflected in an increase in annual mean air temperature, especially in autumn. Changes in the spring show a slight negative

  20. Climate and tourism in the Black Forest during the warm season.

    PubMed

    Endler, Christina; Matzarakis, Andreas

    2011-03-01

    Climate, climate change and tourism all interact. Part of the public discussion about climate change focusses on the tourism sector, with direct and indirect impacts being of equally high relevance. Climate and tourism are closely linked. Thus, climate is a very decisive factor in choices both of destination and of type of journey (active holidays, wellness, and city tours) in the tourism sector. However, whether choices about destinations or types of trip will alter with climate change is difficult to predict. Future climates can be simulated and projected, and the tendencies of climate parameters can be estimated using global and regional climate models. In this paper, the focus is on climate change in the mountainous regions of southwest Germany - the Black Forest. The Black Forest is one of the low mountain ranges where both winter and summer tourism are vulnerable to climate change due to its southern location; the strongest climatic changes are expected in areas covering the south and southwest of Germany. Moreover, as the choice of destination is highly dependent on good weather, a climatic assessment for tourism is essential. Thus, the aim of this study was to estimate climatic changes in mountainous regions during summer, especially for tourism and recreation. The assessment method was based on human-biometeorology as well as tourism-climatologic approaches. Regional climate simulations based on the regional climate model REMO were used for tourism-related climatic analyses. Emission scenarios A1B and B1 were considered for the time period 2021 to 2050, compared to the 30-year base period of 1971-2000, particularly for the warm period of the year, defined here as the months of March-November. In this study, we quantified the frequency, but not the means, of climate parameters. The study results show that global and regional warming is reflected in an increase in annual mean air temperature, especially in autumn. Changes in the spring show a slight negative

  1. Divergent Responses of Canadian Boreal Forests to Recent Climate Warming

    NASA Astrophysics Data System (ADS)

    Sulla-menashe, D. J.; Friedl, M. A.; Woodcock, C. E.

    2015-12-01

    Climate warming at high latitudes is changing the productivity and function of Canadian boreal forests. Several recent studies have implicated drought stress as the major cause of declining photosynthetic rates and increasing tree mortality in these regions. To investigate the effects of a changing climate on Canadian boreal forests, we analyzed Landsat Thematic Mapper time series (1984-2011) at 46 sites. The study sites ranged in size from 3,500 to 15,000 square kilometers and spanned the entire range of ecoregions and disturbance regimes in the Canadian boreal forest east of the Rocky Mountains. Our results suggest a divergent response of these forests to recent climate warming, with declines in peak-summer vegetation indices (VIs) observed in the dry regions of western and central Canada and increasing VI trends observed in more humid eastern regions. Further, we show a strong relationship between the timing of disturbance and the magnitude and direction of VI trends in disturbed forests. Positive trends are associated with disturbances that happened at the beginning of (or prior to) the Landsat time series and negative trends are associated with disturbances that occurred in the latter part of the time series. Taken together, these two effects explain the major modes of variability in VI trends in Canadian boreal forests. Future decreases in springtime water availability related to climate change and associated changes to fire regimes have potentially large implications for carbon and water budgets in this geographically extensive and important biome.

  2. Foraging by forest ants under experimental climatic warming: a test at two sites

    PubMed Central

    Stuble, Katharine L; Pelini, Shannon L; Diamond, Sarah E; Fowler, David A; Dunn, Robert R; Sanders, Nathan J

    2013-01-01

    Climatic warming is altering the behavior of individuals and the composition of communities. However, recent studies have shown that the impact of warming on ectotherms varies geographically: species at warmer sites where environmental temperatures are closer to their upper critical thermal limits are more likely to be negatively impacted by warming than are species inhabiting relatively cooler sites. We used a large-scale experimental temperature manipulation to warm intact forest ant assemblages in the field and examine the impacts of chronic warming on foraging at a southern (North Carolina) and northern (Massachusetts) site in eastern North America. We examined the influence of temperature on the abundance and recruitment of foragers as well as the number of different species observed foraging. Finally, we examined the relationship between the mean temperature at which a species was found foraging and the critical thermal maximum temperature of that species, relating functional traits to behavior. We found that forager abundance and richness were related to the experimental increase in temperature at the southern site, but not the northern site. Additionally, individual species responded differently to temperature: some species foraged more under warmer conditions, whereas others foraged less. Importantly, these species-specific responses were related to functional traits of species (at least at the Duke Forest site). Species with higher critical thermal maxima had greater forager densities at higher temperatures than did species with lower critical thermal maxima. Our results indicate that while climatic warming may alter patterns of foraging activity in predictable ways, these shifts vary among species and between sites. More southerly sites and species with lower critical thermal maxima are likely to be at greater risk to ongoing climatic warming. PMID:23531642

  3. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history.

    PubMed

    Mulvaney, Robert; Abram, Nerilie J; Hindmarsh, Richard C A; Arrowsmith, Carol; Fleet, Louise; Triest, Jack; Sime, Louise C; Alemany, Olivier; Foord, Susan

    2012-09-01

    Rapid warming over the past 50 years on the Antarctic Peninsula is associated with the collapse of a number of ice shelves and accelerating glacier mass loss. In contrast, warming has been comparatively modest over West Antarctica and significant changes have not been observed over most of East Antarctica, suggesting that the ice-core palaeoclimate records available from these areas may not be representative of the climate history of the Antarctic Peninsula. Here we show that the Antarctic Peninsula experienced an early-Holocene warm period followed by stable temperatures, from about 9,200 to 2,500 years ago, that were similar to modern-day levels. Our temperature estimates are based on an ice-core record of deuterium variations from James Ross Island, off the northeastern tip of the Antarctic Peninsula. We find that the late-Holocene development of ice shelves near James Ross Island was coincident with pronounced cooling from 2,500 to 600 years ago. This cooling was part of a millennial-scale climate excursion with opposing anomalies on the eastern and western sides of the Antarctic Peninsula. Although warming of the northeastern Antarctic Peninsula began around 600 years ago, the high rate of warming over the past century is unusual (but not unprecedented) in the context of natural climate variability over the past two millennia. The connection shown here between past temperature and ice-shelf stability suggests that warming for several centuries rendered ice shelves on the northeastern Antarctic Peninsula vulnerable to collapse. Continued warming to temperatures that now exceed the stable conditions of most of the Holocene epoch is likely to cause ice-shelf instability to encroach farther southward along the Antarctic Peninsula.

  4. Potential change in forest types and stand heights in central Siberia in a warming climate

    NASA Astrophysics Data System (ADS)

    Tchebakova, N. M.; Parfenova, E. I.; Korets, M. A.; Conard, S. G.

    2016-03-01

    Previous regional studies in Siberia have demonstrated climate warming and associated changes in distribution of vegetation and forest types, starting at the end of the 20th century. In this study we used two regional bioclimatic envelope models to simulate potential changes in forest types distribution and developed new regression models to simulate changes in stand height in tablelands and southern mountains of central Siberia under warming 21st century climate. Stand height models were based on forest inventory data (2850 plots). The forest type and stand height maps were superimposed to identify how heights would change in different forest types in future climates. Climate projections from the general circulation model Hadley HadCM3 for emission scenarios B1 and A2 for 2080s were paired with the regional bioclimatic models. Under the harsh A2 scenario, simulated changes included: a 80%-90% decrease in forest-tundra and tundra, a 30% decrease in forest area, a ˜400% increase in forest-steppe, and a 2200% increase in steppe, forest-steppe and steppe would cover 55% of central Siberia. Under sufficiently moist conditions, the southern and middle taiga were simulated to benefit from 21st century climate warming. Habitats suitable for highly-productive forests (≥30-40 m stand height) were simulated to increase at the expense of less productive forests (10-20 m). In response to the more extreme A2 climate the area of these highly-productive forests would increase 10%-25%. Stand height increases of 10 m were simulated over 35%-50% of the current forest area in central Siberia. In the extremely warm A2 climate scenario, the tall trees (25-30 m) would occur over 8%-12% of area in all forest types except forest-tundra by the end of the century. In forest-steppe, trees of 30-40 m may cover some 15% of the area under sufficient moisture.

  5. Climate variability and dengue fever in warm and humid Mexico.

    PubMed

    Colón-González, Felipe J; Lake, Iain R; Bentham, Graham

    2011-05-01

    Multiple linear regression models were fitted to look for associations between changes in the incidence rate of dengue fever and climate variability in the warm and humid region of Mexico. Data were collected for 12 Mexican provinces over a 23-year period (January 1985 to December 2007). Our results show that the incidence rate or risk of infection is higher during El Niño events and in the warm and wet season. We provide evidence to show that dengue fever incidence was positively associated with the strength of El Niño and the minimum temperature, especially during the cool and dry season. Our study complements the understanding of dengue fever dynamics in the region and may be useful for the development of early warning systems.

  6. Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, U.S.A.

    USGS Publications Warehouse

    Lyons, J.; Stewart, J.S.; Mitro, M.

    2010-01-01

    Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56.0-93.5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1?? C and water 0.8?? C), moderate warming (air 3?? C and water 2.4?? C) and major warming (air 5?? C and water 4?? C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin. ?? 2010 The Authors. Journal of Fish Biology ?? 2010 The Fisheries Society of the British Isles.

  7. Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, U.S.A.

    USGS Publications Warehouse

    Stewart, Jana S.; Lyons, John D.; Matt Mitro,

    2010-01-01

    Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56·0–93·5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1° C and water 0·8° C), moderate warming (air 3° C and water 2·4° C) and major warming (air 5° C and water 4° C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin.

  8. The hydroclimatological response to global warming based on the dynamically downscaled climate change scenario

    NASA Astrophysics Data System (ADS)

    Im, Eun-Soon; Coppola, Erika; Giorgi, Felippo

    2010-05-01

    Given the discernable evidences of climate changes due to human activity, there is a growing demand for the reliable climate change scenario in response to future emission forcing. One of the most significant impacts of climate changes can be that on the hydrological process. Changes in the seasonality and increase in the low and high rainfall extremes can severely influence the water balance of river basin, with serious consequences for societies and ecosystems. In fact, recent studies have reported that East Asia including the Korean peninsula is regarded to be a highly vulnerability region under global warming, in particular for water resources. As an attempt accurately assess the impact of climate change over Korea, we performed a downscaling of the ECAHM5-MPI/OM global projection under the A1B emission scenario for the period 1971-2100 using the RegCM3 one-way double-nested system. Physically based long-term (130 years) fine-scale (20 km) climate information is appropriate for analyzing the detailed structure of the hydroclimatological response to climate change. Changes in temperature and precipitation are translated to the hydrological condition in a direct or indirect way. The change in precipitation shows a distinct seasonal variations and a complicated spatial pattern. While changes in total precipitation do not show any relevant trend, the change patterns in daily precipitation clearly show an enhancement of high intensity precipitation and a reduction of weak intensity precipitation. The increase of temperature enhances the evapotranspiration, and hence the actual water stress becomes more pronounced in the future climate. Precipitation, snow, and runoff changes show the relevant topographical modulation under global warming. This study clearly demonstrates the importance of a refined topography for improving the accuracy of the local climatology. Improved accuracy of regional climate projection could lead to an enhanced reliability of the

  9. Vascular plants promote ancient peatland carbon loss with climate warming.

    PubMed

    Walker, Tom N; Garnett, Mark H; Ward, Susan E; Oakley, Simon; Bardgett, Richard D; Ostle, Nicholas J

    2016-05-01

    Northern peatlands have accumulated one third of the Earth's soil carbon stock since the last Ice Age. Rapid warming across northern biomes threatens to accelerate rates of peatland ecosystem respiration. Despite compensatory increases in net primary production, greater ecosystem respiration could signal the release of ancient, century- to millennia-old carbon from the peatland organic matter stock. Warming has already been shown to promote ancient peatland carbon release, but, despite the key role of vegetation in carbon dynamics, little is known about how plants influence the source of peatland ecosystem respiration. Here, we address this issue using in situ (14)C measurements of ecosystem respiration on an established peatland warming and vegetation manipulation experiment. Results show that warming of approximately 1 °C promotes respiration of ancient peatland carbon (up to 2100 years old) when dwarf-shrubs or graminoids are present, an effect not observed when only bryophytes are present. We demonstrate that warming likely promotes ancient peatland carbon release via its control over organic inputs from vascular plants. Our findings suggest that dwarf-shrubs and graminoids prime microbial decomposition of previously 'locked-up' organic matter from potentially deep in the peat profile, facilitating liberation of ancient carbon as CO2. Furthermore, such plant-induced peat respiration could contribute up to 40% of ecosystem CO2 emissions. If consistent across other subarctic and arctic ecosystems, this represents a considerable fraction of ecosystem respiration that is currently not acknowledged by global carbon cycle models. Ultimately, greater contribution of ancient carbon to ecosystem respiration may signal the loss of a previously stable peatland carbon pool, creating potential feedbacks to future climate change.

  10. Vascular plants promote ancient peatland carbon loss with climate warming.

    PubMed

    Walker, Tom N; Garnett, Mark H; Ward, Susan E; Oakley, Simon; Bardgett, Richard D; Ostle, Nicholas J

    2016-05-01

    Northern peatlands have accumulated one third of the Earth's soil carbon stock since the last Ice Age. Rapid warming across northern biomes threatens to accelerate rates of peatland ecosystem respiration. Despite compensatory increases in net primary production, greater ecosystem respiration could signal the release of ancient, century- to millennia-old carbon from the peatland organic matter stock. Warming has already been shown to promote ancient peatland carbon release, but, despite the key role of vegetation in carbon dynamics, little is known about how plants influence the source of peatland ecosystem respiration. Here, we address this issue using in situ (14)C measurements of ecosystem respiration on an established peatland warming and vegetation manipulation experiment. Results show that warming of approximately 1 °C promotes respiration of ancient peatland carbon (up to 2100 years old) when dwarf-shrubs or graminoids are present, an effect not observed when only bryophytes are present. We demonstrate that warming likely promotes ancient peatland carbon release via its control over organic inputs from vascular plants. Our findings suggest that dwarf-shrubs and graminoids prime microbial decomposition of previously 'locked-up' organic matter from potentially deep in the peat profile, facilitating liberation of ancient carbon as CO2. Furthermore, such plant-induced peat respiration could contribute up to 40% of ecosystem CO2 emissions. If consistent across other subarctic and arctic ecosystems, this represents a considerable fraction of ecosystem respiration that is currently not acknowledged by global carbon cycle models. Ultimately, greater contribution of ancient carbon to ecosystem respiration may signal the loss of a previously stable peatland carbon pool, creating potential feedbacks to future climate change. PMID:26730448

  11. Measure Guideline: Supplemental Dehumidification in Warm-Humid Climates

    SciTech Connect

    Rudd, A.

    2014-10-01

    This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. In older homes in warm-humid climates, cooling loads are typically high and cooling equipment runs a lot to cool the air. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisture being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and some winter days. In warm-humid climates, those long off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and avoids adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.

  12. Measure Guideline: Supplemental Dehumidification in Warm-Humid Climates

    SciTech Connect

    Rudd, Armin

    2014-10-01

    This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. Cooling loads are typically high and cooling equipment runs a lot to cool the air in older homes in warm-humid climates. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisture being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and winter days. In warm-humid climates, those long-off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.

  13. Trophic level responses differ as climate warms in Ireland

    NASA Astrophysics Data System (ADS)

    Donnelly, Alison; Yu, Rong; Liu, Lingling

    2015-08-01

    Effective ecosystem functioning relies on successful species interaction. However, this delicate balance may be disrupted if species do not respond to environmental change at a similar rate. Here we examine trends in the timing of spring phenophases of groups of species occupying three trophic levels as a potential indicator of ecosystem response to climate warming in Ireland. The data sets were of varying length (1976-2009) and from varying locations: (1) timing of leaf unfolding and May Shoot of a range of broadleaf and conifer tree species, (2) first appearance dates of a range of moth species, and (3) first arrival dates of a range of spring migrant birds. All three groups revealed a statistically significant ( P<0.01 and P<0.001) advance in spring phenology that was driven by rising spring temperature ( P<0.05; 0.45 °C /decade). However, the rate of advance was greater for moths (1.8 days/year), followed by birds (0.37 days/year) and trees (0.29 days/year). In addition, the length of time between (1) moth emergence and leaf unfolding and (2) moth emergence and bird arrival decreased significantly ( P<0.05 and P<0.001, respectively), indicating a decrease in the timing between food supply and demand. These differing trophic level response rates demonstrate the potential for a mismatch in the timing of interdependent phenophases as temperatures rise. Even though these data were not specifically collected to examine climate warming impacts, we conclude that such data may be used as an early warning indicator and as a means to monitor the potential for future ecosystem disruption to occur as climate warms.

  14. Elevated CO2 further lengthens growing season under warming conditions.

    PubMed

    Reyes-Fox, Melissa; Steltzer, Heidi; Trlica, M J; McMaster, Gregory S; Andales, Allan A; LeCain, Dan R; Morgan, Jack A

    2014-06-12

    Observations of a longer growing season through earlier plant growth in temperate to polar regions have been thought to be a response to climate warming. However, data from experimental warming studies indicate that many species that initiate leaf growth and flowering earlier also reach seed maturation and senesce earlier, shortening their active and reproductive periods. A conceptual model to explain this apparent contradiction, and an analysis of the effect of elevated CO2--which can delay annual life cycle events--on changing season length, have not been tested. Here we show that experimental warming in a temperate grassland led to a longer growing season through earlier leaf emergence by the first species to leaf, often a grass, and constant or delayed senescence by other species that were the last to senesce, supporting the conceptual model. Elevated CO2 further extended growing, but not reproductive, season length in the warmed grassland by conserving water, which enabled most species to remain active longer. Our results suggest that a longer growing season, especially in years or biomes where water is a limiting factor, is not due to warming alone, but also to higher atmospheric CO2 concentrations that extend the active period of plant annual life cycles.

  15. Warm-water coral reefs and climate change.

    PubMed

    Spalding, Mark D; Brown, Barbara E

    2015-11-13

    Coral reefs are highly dynamic ecosystems that are regularly exposed to natural perturbations. Human activities have increased the range, intensity, and frequency of disturbance to reefs. Threats such as overfishing and pollution are being compounded by climate change, notably warming and ocean acidification. Elevated temperatures are driving increasingly frequent bleaching events that can lead to the loss of both coral cover and reef structural complexity. There remains considerable variability in the distribution of threats and in the ability of reefs to survive or recover from such disturbances. Without significant emissions reductions, however, the future of coral reefs is increasingly bleak. PMID:26564846

  16. Warm-water coral reefs and climate change.

    PubMed

    Spalding, Mark D; Brown, Barbara E

    2015-11-13

    Coral reefs are highly dynamic ecosystems that are regularly exposed to natural perturbations. Human activities have increased the range, intensity, and frequency of disturbance to reefs. Threats such as overfishing and pollution are being compounded by climate change, notably warming and ocean acidification. Elevated temperatures are driving increasingly frequent bleaching events that can lead to the loss of both coral cover and reef structural complexity. There remains considerable variability in the distribution of threats and in the ability of reefs to survive or recover from such disturbances. Without significant emissions reductions, however, the future of coral reefs is increasingly bleak.

  17. Warm-water coral reefs and climate change

    NASA Astrophysics Data System (ADS)

    Spalding, Mark D.; Brown, Barbara E.

    2015-11-01

    Coral reefs are highly dynamic ecosystems that are regularly exposed to natural perturbations. Human activities have increased the range, intensity, and frequency of disturbance to reefs. Threats such as overfishing and pollution are being compounded by climate change, notably warming and ocean acidification. Elevated temperatures are driving increasingly frequent bleaching events that can lead to the loss of both coral cover and reef structural complexity. There remains considerable variability in the distribution of threats and in the ability of reefs to survive or recover from such disturbances. Without significant emissions reductions, however, the future of coral reefs is increasingly bleak.

  18. The impact of boreal forest fire on climate warming.

    PubMed

    Randerson, J T; Liu, H; Flanner, M G; Chambers, S D; Jin, Y; Hess, P G; Pfister, G; Mack, M C; Treseder, K K; Welp, L R; Chapin, F S; Harden, J W; Goulden, M L; Lyons, E; Neff, J C; Schuur, E A G; Zender, C S

    2006-11-17

    We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 +/- 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (-2.3 +/- 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.

  19. The impact of boreal forest fire on climate warming

    USGS Publications Warehouse

    Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G.; Pfister, G.; Mack, M.C.; Treseder, K.K.; Welp, L.R.; Chapin, F.S.; Harden, J.W.; Goulden, M.L.; Lyons, E.; Neff, J.C.; Schuur, E.A.G.; Zender, C.S.

    2006-01-01

    We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 ?? 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (-2.3 ?? 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.

  20. A field facility to simulate climate warming and increased nutrient supply in shallow aquatic ecosystems.

    PubMed

    Hines, Jes; Hammrich, Arne; Steiner, Daniel; Gessner, Mark O

    2013-12-01

    Global warming and excess nitrogen deposition can exert strong impacts on aquatic populations, communities, and ecosystems. However, experimental data to establish clear cause-and-effect relationships in naturally complex field conditions are scarce in aquatic environments. Here, we describe the design and performance of a unique outdoor enclosure facility used to simulate warming, increased nitrogen supply, and both factors combined in a littoral freshwater wetland dominated by common reed, Phragmites australis. The experimental system effectively simulated a 2.8 °C climate warming scenario over an extended period, capturing the natural temperature variations in the wetland at diel and seasonal scales with only small deviations. Excess nitrogen supply enhanced nitrate concentrations especially in winter when it was associated with increased concentration of ammonium and dissolved organic carbon. Nitrogen also reduced dissolved oxygen concentrations, particularly in the summer. Importantly, by stimulating biological activity, warming enhanced the nitrogen uptake capacity of the wetland during the winter, emphasizing the need for multifactorial global change experiments that examine both warming and nitrogen loading in concert. Establishing similar experiments across broad environmental gradients holds great potential to provide robust assessments of the impacts of climate change on shallow aquatic ecosystems.

  1. Climate Model Dependency in Understanding the Antarctic Ice Sheet during the Warm Late Pliocene

    NASA Astrophysics Data System (ADS)

    Dolan, A. M.; de Boer, B.; Bernales, J.; Hunter, S. J.; Haywood, A.

    2015-12-01

    In the context of future climate change, understanding the nature and behaviour of ice sheets during warm intervals of Earth history is fundamentally important. A warm period in the Late Pliocene (3.264 to 3.025 million years before present) can serve as a potential analogue for projected future climates. Although Pliocene ice locations and extents are still poorly constrained, a significant contribution to sea-level rise should be expected from both the Greenland ice sheet and the West and East Antarctic ice sheets based on palaeo sea-level reconstructions and geological evidence Following a five year international project PLISMIP (Pliocene Ice Sheet Modeling Intercomparison Project) we present the final set of results which quantify uncertainty in climate model-based predictions of the Antarctic ice sheet. In this study we use an ensemble of climate model forcings within a multi-ice sheet model framework to assess the climate (model) dependency of large scale features of the Antarctic ice sheet. Seven coupled atmosphere-ocean climate models are used to derive surface temperature, precipitation and oceanic forcing that drive three ice sheet models (over the grounded and floating domain). Similar to results presented over Greenland, we show that the reconstruction of the Antarctic ice sheet is sensitive to which climate model is used to provide the forcing field. Key areas of uncertainty include West Antarctica, the large subglacial basins of East Antarctica and the overall thickness of the continental interior of East Antarctica. We relate the results back to geological proxy data, such as those relating to exposure rates which provide information on potential ice sheet thickness. Finally we discuss as to whether the choice of modelling framework (i.e. climate model and ice sheet model used) or the choice of boundary conditions causes the greatest uncertainty in ice sheet reconstructions of the warm Pliocene.

  2. Climate Model Dependency and Understanding the Antarctic Ice Sheet during the Warm Late Pliocene

    NASA Astrophysics Data System (ADS)

    Dolan, Aisling; de Boer, Bas; Bernales, Jorge; Hunter, Stephen; Haywood, Alan

    2016-04-01

    In the context of future climate change, understanding the nature and behaviour of ice sheets during warm intervals of Earth history is fundamentally important. A warm period in the Late Pliocene (3.264 to 3.025 million years before present) can serve as a potential analogue for projected future climates. Although Pliocene ice locations and extents are still poorly constrained, a significant contribution to sea-level rise should be expected from both the Greenland ice sheet and the West and East Antarctic ice sheets based on palaeo sea-level reconstructions and geological evidence. Following a five year international project PLISMIP (Pliocene Ice Sheet Modeling Intercomparison Project) we present the final set of results which quantify uncertainty in climate model-based predictions of the Antarctic ice sheet. In this study we use an ensemble of climate model forcings within a multi-ice sheet model framework to assess the climate (model) dependency of large scale features of the Antarctic ice sheet. Seven coupled atmosphere-ocean climate models are used to derive surface temperature, precipitation and oceanic forcing that drive three ice sheet models (over the grounded and floating domain). Similar to results presented over Greenland, we show that the reconstruction of the Antarctic ice sheet is sensitive to which climate model is used to provide the forcing field. Key areas of uncertainty include West Antarctica, the large subglacial basins of East Antarctica and the overall thickness of the continental interior of East Antarctica. We relate the results back to geological proxy data, such as those relating to exposure rates which provide information on potential ice sheet thickness. Finally we discuss as to whether the choice of modelling framework (i.e. climate model and ice sheet model used) or the choice of boundary conditions causes the greatest uncertainty in ice sheet reconstructions of the warm Pliocene.

  3. The impact of global warming on the range distribution of different climatic groups of Aspidoscelis costata costata.

    PubMed

    Güizado-Rodríguez, Martha Anahí; Ballesteros-Barrera, Claudia; Casas-Andreu, Gustavo; Barradas-Miranda, Victor Luis; Téllez-Valdés, Oswaldo; Salgado-Ugarte, Isaías Hazarmabeth

    2012-12-01

    The ectothermic nature of reptiles makes them especially sensitive to global warming. Although climate change and its implications are a frequent topic of detailed studies, most of these studies are carried out without making a distinction between populations. Here we present the first study of an Aspidoscelis species that evaluates the effects of global warming on its distribution using ecological niche modeling. The aims of our study were (1) to understand whether predicted warmer climatic conditions affect the geographic potential distribution of different climatic groups of Aspidoscelis costata costata and (2) to identify potential altitudinal changes of these groups under global warming. We used the maximum entropy species distribution model (MaxEnt) to project the potential distributions expected for the years 2020, 2050, and 2080 under a single simulated climatic scenario. Our analysis suggests that some climatic groups of Aspidoscelis costata costata will exhibit reductions and in others expansions in their distribution, with potential upward shifts toward higher elevation in response to climate warming. Different climatic groups were revealed in our analysis that subsequently showed heterogeneous responses to climatic change illustrating the complex nature of species geographic responses to environmental change and the importance of modeling climatic or geographic groups and/or populations instead of the entire species' range treated as a homogeneous entity.

  4. Implications of global warming for the climate of African rainforests.

    PubMed

    James, Rachel; Washington, Richard; Rowell, David P

    2013-01-01

    African rainforests are likely to be vulnerable to changes in temperature and precipitation, yet there has been relatively little research to suggest how the regional climate might respond to global warming. This study presents projections of temperature and precipitation indices of relevance to African rainforests, using global climate model experiments to identify local change as a function of global temperature increase. A multi-model ensemble and two perturbed physics ensembles are used, one with over 100 members. In the east of the Congo Basin, most models (92%) show a wet signal, whereas in west equatorial Africa, the majority (73%) project an increase in dry season water deficits. This drying is amplified as global temperature increases, and in over half of coupled models by greater than 3% per °C of global warming. Analysis of atmospheric dynamics in a subset of models suggests that this could be partly because of a rearrangement of zonal circulation, with enhanced convection in the Indian Ocean and anomalous subsidence over west equatorial Africa, the Atlantic Ocean and, in some seasons, the Amazon Basin. Further research to assess the plausibility of this and other mechanisms is important, given the potential implications of drying in these rainforest regions.

  5. Implications of global warming for the climate of African rainforests.

    PubMed

    James, Rachel; Washington, Richard; Rowell, David P

    2013-01-01

    African rainforests are likely to be vulnerable to changes in temperature and precipitation, yet there has been relatively little research to suggest how the regional climate might respond to global warming. This study presents projections of temperature and precipitation indices of relevance to African rainforests, using global climate model experiments to identify local change as a function of global temperature increase. A multi-model ensemble and two perturbed physics ensembles are used, one with over 100 members. In the east of the Congo Basin, most models (92%) show a wet signal, whereas in west equatorial Africa, the majority (73%) project an increase in dry season water deficits. This drying is amplified as global temperature increases, and in over half of coupled models by greater than 3% per °C of global warming. Analysis of atmospheric dynamics in a subset of models suggests that this could be partly because of a rearrangement of zonal circulation, with enhanced convection in the Indian Ocean and anomalous subsidence over west equatorial Africa, the Atlantic Ocean and, in some seasons, the Amazon Basin. Further research to assess the plausibility of this and other mechanisms is important, given the potential implications of drying in these rainforest regions. PMID:23878329

  6. Climate warming and agricultural stressors interact to determine stream periphyton community composition.

    PubMed

    Piggott, Jeremy J; Salis, Romana K; Lear, Gavin; Townsend, Colin R; Matthaei, Christoph D

    2015-01-01

    Lack of knowledge about how the various drivers of global climate change will interact with multiple stressors already affecting ecosystems is the basis for great uncertainty in projections of future biological change. Despite concerns about the impacts of changes in land use, eutrophication and climate warming in running waters, the interactive effects of these stressors on stream periphyton are largely unknown. We manipulated nutrients (simulating agricultural runoff), deposited fine sediment (simulating agricultural erosion) (two levels each) and water temperature (eight levels, 0-6 °C above ambient) simultaneously in 128 streamside mesocosms. Our aim was to determine the individual and combined effects of the three stressors on the algal and bacterial constituents of the periphyton. All three stressors had pervasive individual effects, but in combination frequently produced synergisms at the population level and antagonisms at the community level. Depending on sediment and nutrient conditions, the effect of raised temperature frequently produced contrasting response patterns, with stronger or opposing effects when one or both stressors were augmented. Thus, warming tended to interact negatively with nutrients or sediment by weakening or reversing positive temperature effects or strengthening negative ones. Five classes of algal growth morphology were all affected in complex ways by raised temperature, suggesting that these measures may prove unreliable in biomonitoring programs in a warming climate. The evenness and diversity of the most abundant bacterial taxa increased with temperature at ambient but not with enriched nutrient levels, indicating that warming coupled with nutrient limitation may lead to a more evenly distributed bacterial community as temperatures rise. Freshwater management decisions that seek to avoid or mitigate the negative effects of agricultural land use on stream periphyton should be informed by knowledge of the interactive effects of

  7. Climate warming and agricultural stressors interact to determine stream periphyton community composition.

    PubMed

    Piggott, Jeremy J; Salis, Romana K; Lear, Gavin; Townsend, Colin R; Matthaei, Christoph D

    2015-01-01

    Lack of knowledge about how the various drivers of global climate change will interact with multiple stressors already affecting ecosystems is the basis for great uncertainty in projections of future biological change. Despite concerns about the impacts of changes in land use, eutrophication and climate warming in running waters, the interactive effects of these stressors on stream periphyton are largely unknown. We manipulated nutrients (simulating agricultural runoff), deposited fine sediment (simulating agricultural erosion) (two levels each) and water temperature (eight levels, 0-6 °C above ambient) simultaneously in 128 streamside mesocosms. Our aim was to determine the individual and combined effects of the three stressors on the algal and bacterial constituents of the periphyton. All three stressors had pervasive individual effects, but in combination frequently produced synergisms at the population level and antagonisms at the community level. Depending on sediment and nutrient conditions, the effect of raised temperature frequently produced contrasting response patterns, with stronger or opposing effects when one or both stressors were augmented. Thus, warming tended to interact negatively with nutrients or sediment by weakening or reversing positive temperature effects or strengthening negative ones. Five classes of algal growth morphology were all affected in complex ways by raised temperature, suggesting that these measures may prove unreliable in biomonitoring programs in a warming climate. The evenness and diversity of the most abundant bacterial taxa increased with temperature at ambient but not with enriched nutrient levels, indicating that warming coupled with nutrient limitation may lead to a more evenly distributed bacterial community as temperatures rise. Freshwater management decisions that seek to avoid or mitigate the negative effects of agricultural land use on stream periphyton should be informed by knowledge of the interactive effects of

  8. Climatic warming and increased malaria incidence in Rwanda.

    PubMed

    Loevinsohn, M E

    1994-03-19

    Global climatic change is expected to increase the incidence of vector-borne diseases, especially malaria. This study assessed the contribution of climate to a malaria epidemic in Rwanda, focusing on the catchment area of one health centre where diagnosis was consistent and non-climatic variables well monitored. In late 1987 malaria incidence in the area increased by 337% over the 3 previous years. The increase was greatest in groups with little acquired immunity--children under 2 years (564%) and people in high-altitude areas (501%). Case-fatality rose significantly (relative risk = 4.85, p < 0.001). 1987 also saw record high temperatures and rainfall. An autoregressive equation including lagged effects of these two variables explained 80% of the variance in monthly malaria incidence. Temperature (especially mean minimum) predicted incidence best at higher altitudes where malaria had increased most. Empirically derived relations were consistent with the estimated generation time of the disease and with the known sensitivity of the plasmodium parasite to temperature. The patterns of climatic warming between day and night and among seasons will be critical to the effect on malaria. These findings are most relevant to regions near the altitude or latitude limits of the disease, where several epidemics have lately been reported.

  9. Estimating the potential for adaptation of corals to climate warming.

    PubMed

    Császár, Nikolaus B M; Ralph, Peter J; Frankham, Richard; Berkelmans, Ray; van Oppen, Madeleine J H

    2010-03-18

    The persistence of tropical coral reefs is threatened by rapidly increasing climate warming, causing a functional breakdown of the obligate symbiosis between corals and their algal photosymbionts (Symbiodinium) through a process known as coral bleaching. Yet the potential of the coral-algal symbiosis to genetically adapt in an evolutionary sense to warming oceans is unknown. Using a quantitative genetics approach, we estimated the proportion of the variance in thermal tolerance traits that has a genetic basis (i.e. heritability) as a proxy for their adaptive potential in the widespread Indo-Pacific reef-building coral Acropora millepora. We chose two physiologically different populations that associate respectively with one thermo-tolerant (Symbiodinium clade D) and one less tolerant symbiont type (Symbiodinium C2). In both symbiont types, pulse amplitude modulated (PAM) fluorometry and high performance liquid chromatography (HPLC) analysis revealed significant heritabilities for traits related to both photosynthesis and photoprotective pigment profile. However, quantitative real-time polymerase chain reaction (qRT-PCR) assays showed a lack of heritability in both coral host populations for their own expression of fundamental stress genes. Coral colony growth, contributed to by both symbiotic partners, displayed heritability. High heritabilities for functional key traits of algal symbionts, along with their short clonal generation time and high population sizes allow for their rapid thermal adaptation. However, the low overall heritability of coral host traits, along with the corals' long generation time, raise concern about the timely adaptation of the coral-algal symbiosis in the face of continued rapid climate warming.

  10. The long-term fate of permafrost peatlands under rapid climate warming

    NASA Astrophysics Data System (ADS)

    Swindles, Graeme T.; Morris, Paul J.

    2016-04-01

    High-latitude permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, there is much concern that climate warming and subsequent permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Unfortunately, field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to rapid warming in the twentieth century. Here we use a high-resolution palaeoecological approach to understand the longer-term response of peatlands in Subarctic Sweden in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. Commonalities between study sites lead us to propose a five-phase model for permafrost peatland response to climatic warming. This model suggests a shared ecohydrological trajectory towards a common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, and thus peatland ecosystem services are resumed, saturated soil conditions are likely to cause elevated methane emissions that have implications for climate-feedback mechanisms. We outline our plans to test the model published in Swindles et al. (2015) using the same methodological approach in other high-latitude locations, including zones of continuous and discontinuous permafrost. Reference: Swindles, G.T., Morris, P.J., Mullan, D., Watson, E.J., Turner, T.E., Roland, T., Amesbury, M.J., Kokfelt, U., Schoning, K., Pratte, S., Gallego-Sala, A., Charman, D.J., Sanderson, N., Garneau, M., Carrivick, J.L., Woulds, C

  11. A farm-level analysis of economic and agronomic impacts of gradual climate warming

    SciTech Connect

    Kaiser, H.M.; Sampath, R.; Riha, S.J.; Wilks, D.S.; Rossiter, D.G.

    1993-05-01

    The potential economic and agronomic impacts of gradual climate warming are examined at the farm level. Three models of the relevant climatic, agronomic, and economic processes are developed and linked to address climate change impacts and agricultural adaptability. Several climate warming severity. The results indicate that grain farmers in southern Minnesota can effectively adapt to a gradually changing climate (warmer and either wetter or drier) by adopting later maturing cultivars, changing crop mix, and altering the timing of field operations to take advantage of a longer growing season resulting from climate warming.

  12. River Runoff Sensitivity in Eastern Siberia to Global Climate Warming

    NASA Astrophysics Data System (ADS)

    Georgiadi, A. G.; Milyukova, I. P.; Kashutina, E.

    2008-12-01

    During several last decades significant climate warming is observed in permafrost regions of Eastern Siberia. These changes include rise of air temperature as well as precipitation. Changes in regional climate are accompanied with river runoff changes. The analysis of the data shows that in the past 25 years, the largest contribution to the annual river runoff increase in the lower reaches of the Lena (Kyusyur) is made (in descending order) by the Lena river watershed (above Tabaga), the Aldan river (Okhotsky Perevoz), and the Vilyui river (Khatyryk-Khomo). The similar relation is also retained in the case of flood, with the seasonal river runoff of the Vilyui river being slightly decreased. Completely different relations are noted in winter, when a substantial river runoff increase is recorded in the lower reaches of the Lena river. In this case the major contribution to the winter river runoff increase in the Lena outlet is made by the winter river runoff increase on the Vilyui river. Unlike the above cases, the summer-fall river runoff in the lower reaches of the Lena river tends to decrease, which is similar to the trend exhibited by the Vilyui river. At the same time, the river runoff of the Lena (Tabaga) and Aldan (Verkhoyansky Perevoz) rivers increase. According to the results of hydrological modeling the expected anthropogenic climate warming in XXI century can bring more significant river runoff increase in the Lena river basin as compared with the recent one. Hydrological responses to climate warming have been evaluated for the plain part of the Lena river basin basing on a macroscale hydrological model featuring simplified description of processes developed in Institute of Geography of the Russian Academy of Sciences. Two atmosphere-ocean global circulation models included in the IPCC (ECHAM4/OPY3 and GFDL-R30) were used as scenarios of future global climate. According to the results of hydrological modeling the expected anthropogenic climate warming in

  13. Aridity changes in the Tibetan Plateau in a warming climate

    DOE PAGESBeta

    Gao, Yanhong; Li, Xia; Leung, Lai-Yung R.; Chen, Deliang; Xu, Jianwei

    2015-03-10

    Desertification in the Tibetan Plateau (TP) has drawn increasing attention in the recent decades. It has been postulated as a consequence of climate aridity due to the observed warming. This study quantifies the aridity changes in the TP and attributes the changes to different climatic factors. Using the ratio of P/PET (precipitation to potential evapotranspiration) as an aridity index to indicate changes in dryness and wetness in a given area, P/PET was calculated using observed records at 83 stations in the TP, with PET calculated using the Penman–Monteith (PM) algorithm. Spatial and temporal changes of P/PET in 1979-2011 are analyzed.more » Results show that stations located in the arid and semi-arid northwestern TP are becoming significantly wetter and stations in the semi-humid southeastern TP are becoming drier, though not significantly, in the recent three decades. The aridity change patterns are significantly correlated with precipitation, sunshine duration and diurnal temperature range changes at confidence level of 99.9% from two-tail t-test. Temporal correlations also confirm the significant correlation between aridity changes with the three variables, with precipitation being the most dominant driver of P/PET changes at interannual time scale. PET changes are insignificant but negatively correlated with P/PET in the cold season. In the warm season, however, correlation between PET changes and P/PET changes are significant at confidence level of 99.9% when the cryosphere melts near the surface. Significant correlation between wind speed changes and aridity changes occurs in limited locations and months. Consistency in the climatology pattern and linear trends in surface air temperature and precipitation calculated using station data, gridded data, and nearest grid-to-stations for the TP average and across sub-basins indicate the robustness of the trends despite the large spatial heterogeneity in the TP that challenge climate monitoring.« less

  14. Multisectoral climate impact hotspots in a warming world

    PubMed Central

    Piontek, Franziska; Müller, Christoph; Pugh, Thomas A. M.; Clark, Douglas B.; Deryng, Delphine; Elliott, Joshua; Colón González, Felipe de Jesus; Flörke, Martina; Folberth, Christian; Franssen, Wietse; Frieler, Katja; Friend, Andrew D.; Gosling, Simon N.; Hemming, Deborah; Khabarov, Nikolay; Kim, Hyungjun; Lomas, Mark R.; Masaki, Yoshimitsu; Mengel, Matthias; Morse, Andrew; Neumann, Kathleen; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Ruane, Alex C.; Schewe, Jacob; Schmid, Erwin; Stacke, Tobias; Tang, Qiuhong; Tessler, Zachary D.; Tompkins, Adrian M.; Warszawski, Lila; Wisser, Dominik; Schellnhuber, Hans Joachim

    2014-01-01

    The impacts of global climate change on different aspects of humanity’s diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3 °C above the 1980–2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4 °C. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty. PMID:24344270

  15. Aridity changes in the Tibetan Plateau in a warming climate

    SciTech Connect

    Gao, Yanhong; Li, Xia; Leung, Lai-Yung R.; Chen, Deliang; Xu, Jianwei

    2015-03-10

    Desertification in the Tibetan Plateau (TP) has drawn increasing attention in the recent decades. It has been postulated as a consequence of climate aridity due to the observed warming. This study quantifies the aridity changes in the TP and attributes the changes to different climatic factors. Using the ratio of P/PET (precipitation to potential evapotranspiration) as an aridity index to indicate changes in dryness and wetness in a given area, P/PET was calculated using observed records at 83 stations in the TP, with PET calculated using the Penman–Monteith (PM) algorithm. Spatial and temporal changes of P/PET in 1979-2011 are analyzed. Results show that stations located in the arid and semi-arid northwestern TP are becoming significantly wetter and stations in the semi-humid southeastern TP are becoming drier, though not significantly, in the recent three decades. The aridity change patterns are significantly correlated with precipitation, sunshine duration and diurnal temperature range changes at confidence level of 99.9% from two-tail t-test. Temporal correlations also confirm the significant correlation between aridity changes with the three variables, with precipitation being the most dominant driver of P/PET changes at interannual time scale. PET changes are insignificant but negatively correlated with P/PET in the cold season. In the warm season, however, correlation between PET changes and P/PET changes are significant at confidence level of 99.9% when the cryosphere melts near the surface. Significant correlation between wind speed changes and aridity changes occurs in limited locations and months. Consistency in the climatology pattern and linear trends in surface air temperature and precipitation calculated using station data, gridded data, and nearest grid-to-stations for the TP average and across sub-basins indicate the robustness of the trends despite the large spatial heterogeneity in the TP that challenge climate monitoring.

  16. Multisectoral climate impact hotspots in a warming world.

    PubMed

    Piontek, Franziska; Müller, Christoph; Pugh, Thomas A M; Clark, Douglas B; Deryng, Delphine; Elliott, Joshua; Colón González, Felipe de Jesus; Flörke, Martina; Folberth, Christian; Franssen, Wietse; Frieler, Katja; Friend, Andrew D; Gosling, Simon N; Hemming, Deborah; Khabarov, Nikolay; Kim, Hyungjun; Lomas, Mark R; Masaki, Yoshimitsu; Mengel, Matthias; Morse, Andrew; Neumann, Kathleen; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Ruane, Alex C; Schewe, Jacob; Schmid, Erwin; Stacke, Tobias; Tang, Qiuhong; Tessler, Zachary D; Tompkins, Adrian M; Warszawski, Lila; Wisser, Dominik; Schellnhuber, Hans Joachim

    2014-03-01

    The impacts of global climate change on different aspects of humanity's diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3 °C above the 1980-2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4 °C. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty.

  17. Multisectoral Climate Impact Hotspots in a Warming World

    NASA Technical Reports Server (NTRS)

    Piontek, Franziska; Mueller, Christoph; Pugh, Thomas A. M.; Clark, Douglas B.; Deryng, Delphine; Elliott, Joshua; deJesusColonGonzalez, Felipe; Floerke, Martina; Folberth, Christian; Franssen, Wietse; Frieler, Katja; Friend, Andrew D.; Gosling, Simon N.; Hemming, Deborah; Khabarov, Nikolay; Kim, Hyungjun; Lomas, Mark R.; Masaki, Yoshimitsu; Mengel, Matthias; Morse, Andrew; Neumann, Kathleen; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Ruane, Alex C.

    2014-01-01

    The impacts of global climate change on different aspects of humanity's diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3 degC above the 1980-2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4 degC. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty.

  18. Multisectoral climate impact hotspots in a warming world.

    PubMed

    Piontek, Franziska; Müller, Christoph; Pugh, Thomas A M; Clark, Douglas B; Deryng, Delphine; Elliott, Joshua; Colón González, Felipe de Jesus; Flörke, Martina; Folberth, Christian; Franssen, Wietse; Frieler, Katja; Friend, Andrew D; Gosling, Simon N; Hemming, Deborah; Khabarov, Nikolay; Kim, Hyungjun; Lomas, Mark R; Masaki, Yoshimitsu; Mengel, Matthias; Morse, Andrew; Neumann, Kathleen; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Ruane, Alex C; Schewe, Jacob; Schmid, Erwin; Stacke, Tobias; Tang, Qiuhong; Tessler, Zachary D; Tompkins, Adrian M; Warszawski, Lila; Wisser, Dominik; Schellnhuber, Hans Joachim

    2014-03-01

    The impacts of global climate change on different aspects of humanity's diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3 °C above the 1980-2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4 °C. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty. PMID:24344270

  19. Stable warm tropical climate through the Eocene Epoch

    NASA Astrophysics Data System (ADS)

    Pearson, Paul N.; van Dongen, Bart E.; Nicholas, Christopher J.; Pancost, Richard D.; Schouten, Stefan; Singano, Joyce M.; Wade, Bridget S.

    2007-03-01

    Earth's climate cooled from a period of extreme warmth in the early Eocene Epoch (ca. 50 Ma) to the early Oligocene (ca. 33 Ma), when a large ice cap first appeared on Antarctica. Evidence from the planktonic foraminifer oxygen isotope record in deep-sea cores has suggested that tropical sea-surface temperatures declined by 5-10 degrees over this interval, eventually becoming much cooler than modern temperatures. Here we present paleotemperature estimates from foraminifer isotopes and the membrane lipids of marine Crenarcheota from new drill cores in Tanzania that indicate a warm and generally stable tropical climate over this period. We reinterpret the previously published isotope records in the light of comparative textural analysis of the deep-sea foraminifer shells, which shows that in contrast to the Tanzanian material, they have been diagenetically recrystallized. We suggest that increasingly severe alteration of the deep-sea plankton shells through the Eocene produced a diagenetic overprint on their oxygen isotope ratios that imparts the false appearance of a tropical sea-surface cooling trend. This implies that the long-term Eocene climatic cooling trend occurred mainly at the poles and had little effect at lower latitudes.

  20. NorTropical Warm Pool variability and its effects on the climate of Colombia

    NASA Astrophysics Data System (ADS)

    Ricaurte Villota, Constanza; Romero-Rodriguez, Deisy; Coca-Domínguez, Oswaldo

    2015-04-01

    Much has been said about the effects of El Niño Southern Oscillation (ENSO) on oceanographic and climatic conditions in Colombia, but little is known about the influence of the Atlantic Warm Pool (AWP), which includes the gulf of Mexico, the Caribbean and the western tropical North Atlantic. The AWP has been identified by some authors as an area that influences the Earth's climate, associated with anomalous summer rainfall and hurricane activity in the Atlantic. The aim of this study was to understand the variation in the AWP and its effects on the climate of Colombia. An annual average of sea surface temperature (SST) was obtained from the composition of monthly images of the Spectroradiometer Moderate Resolution Imaging Spectroradiometer (MODIS), with resolution of 4 km, for one area that comprises the marine territory of Colombia, Panama, Costa Rica both the Pacific and the Caribbean, and parts of the Caribbean coast of Nicaragua, for the period between 2007 and 2013. The results suggest that warm pool is not restricted to the Caribbean, but it also covers a strip Pacific bordering Central America and the northern part of the Colombian coast, so it should be called the Nor-Tropical Warm pool (NTWP). Within the NTWP higher SST correspond to a marine area extending about 1 degree north and south of Central and out of the Colombian Caribbean coast. The NTWP also showed large interannual variability, with the years 2008 and 2009 with lower SST in average, while 2010, 2011 and 2013 years with warmer conditions, matching with greater precipitation. It was also noted that during warmer conditions (high amplitude NTWP) the cold tongue from the south Pacific has less penetration on Colombian coast. Finally, the results suggest a strong influence of NTWP in climatic conditions in Colombia.

  1. Different sensitivity of snowpack to climate warming in Mediterranean mountain areas

    NASA Astrophysics Data System (ADS)

    López, J. I.; Herrero, J.; Gascoin, S.; Sproles, E. A.; Hanich, L.; Boudhar, A.; Pomeroy, J. W.; Pons, M.

    2015-12-01

    This work analyses the differences in climate and snowpack characteristics in different Mediterranean mountain areas. Differences in latitude and specific climate conditions lead to strong contrasts in snowpack duration and accumulation, but also in the contribution of the various components of energy and mass balance of the snowpacks. Such differences lead also to different sensitivities to increasing temperature when snowpack is simulated for different warming scenarios. Mountain areas located at lower elevation and southernmost latitude are noticeably more sensitive to climate warming than others where currently accumulates a thicker and long lasting snowpack. Results clearly inform that projected changes on snowpack and hydrology of mountain areas for the future are not only dependent on the magnitude of simulated climate under different emission scenarios, but also on the differences of snowpack characteristics that is currently found when different mountains are compared. Thus, results highlight the need of more intercomparison exercises across mountainous regions of the world to better understand climate change impacts on mountain hydrology.

  2. Geoengineering the Climate: Approaches to Counterbalancing Global Warming

    NASA Astrophysics Data System (ADS)

    MacCracken, M. C.

    2005-12-01

    For the past two hundred years, the inadvertent release of carbon dioxide and other radiatively active gases and aerosols, particularly as a result of combustion of fossil fuels and changes in land cover, have been contributing to global climate change. Global warming to date is approaching 1°C, and this is being accompanied by reduced sea ice, rising sea level, shifting ecosystems and more. Rather than sharply curtailing use of fossil fuels in order to reduce CO2 emissions and eventually eliminate the net human influence on global climate, a number of approaches have been suggested that are intended to advertently modify the climate in a manner to counter-balance the warming influence of greenhouse gas emissions. One general type of approach is carbon sequestration, which focuses on capturing the CO2 and then sequestering it underground or in the ocean. This can be done at the source of emission, by pulling the CO2 out of the atmosphere through some chemical process, or by enhancing the natural processes that remove CO2 from the atmosphere, for example by fertilizing the oceans with iron. A second general approach to geoengineering the climate is to lower the warming influence of the incoming solar radiation by an amount equivalent to the energy captured by the CO2-induced enhancement of the greenhouse effect. Proposals have been made to do this by locating a deflector at the Earth-Sun Lagrange point, lofting many thousands of near-Earth mirrors, injecting aerosols into the stratosphere, or by increasing the surface albedo. A third general approach is to alter natural Earth system processes in ways that would counterbalance the effects of the warming. Among suggested approaches are constructing dams to block various ocean passages, oceanic films to limit evaporation and water vapor feedback, and even, at small scale, to insulate mountain glaciers to prevent melting. Each of these approaches has its advantages, ranging from simplicity to reversibility, and

  3. Unexpected response of high Alpine Lake waters to climate warming.

    PubMed

    Thies, Hansjörg; Nickus, Ulrike; Mair, Volkmar; Tessadri, Richard; Tait, Danilo; Thaler, Bertha; Psenner, Roland

    2007-11-01

    Over the past two decades, we have observed a substantial rise in solute concentration at two remote high mountain lakes in catchments of metamorphic rocks in the European Alps. At Rasass See, the electrical conductivity increased 18-fold. Unexpectedly high nickel concentrations at Rasass See, which exceeded the limit in drinking water by more than 1 order of magnitude, cannot be related to catchment geology. We attribute these changes in lake water quality to solute release from the ice of an active rock glacier in the catchment as a response to climate warming. Similar processes occurred at the higher elevation lake Schwarzsee ob Sölden, where electrical conductivity has risen 3-fold during the past two decades. PMID:18044521

  4. Unexpected response of high Alpine Lake waters to climate warming.

    PubMed

    Thies, Hansjörg; Nickus, Ulrike; Mair, Volkmar; Tessadri, Richard; Tait, Danilo; Thaler, Bertha; Psenner, Roland

    2007-11-01

    Over the past two decades, we have observed a substantial rise in solute concentration at two remote high mountain lakes in catchments of metamorphic rocks in the European Alps. At Rasass See, the electrical conductivity increased 18-fold. Unexpectedly high nickel concentrations at Rasass See, which exceeded the limit in drinking water by more than 1 order of magnitude, cannot be related to catchment geology. We attribute these changes in lake water quality to solute release from the ice of an active rock glacier in the catchment as a response to climate warming. Similar processes occurred at the higher elevation lake Schwarzsee ob Sölden, where electrical conductivity has risen 3-fold during the past two decades.

  5. The case for a wet, warm climate on early Mars

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.; Kasting, J. F.; Richardson, S. M.; Poliakoff, K.

    1987-01-01

    Arguments are presented in support of the idea that Mars possessed a dense CO2 atmosphere and a wet, warm climate early in its history. The plausibility of a CO2 greenhouse is tested by formulating a simple model of the CO2 geochemical cycle on early Mars. By scaling the rate of silicate weathering on Earth, researchers estimated a weathering time constant of the order of several times 10 to the 7th power years for early Mars. Thus, a dense atmosphere could have existed for a geologically significant time period (approx. 10 to the 9th power years) only if atmospheric CO2 was being continuously resupplied. The most likely mechanism by which this could have been accomplished is the thermal decomposition of carbonate rocks induced directly or indirectly by intense, global scale volcanism.

  6. Vertical gradient of climate change and climate tourism conditions in the Black Forest.

    PubMed

    Endler, Christina; Oehler, Karoline; Matzarakis, Andreas

    2010-01-01

    Due to the public discussion about global and regional warming, the regional climate and the modified climate conditions are analyzed exemplarily for three different regions in the southern Black Forest (southwest Germany). The driving question behind the present study was how can tourism adapt to modified climate conditions and associated changes to the tourism potential in low mountain ranges. The tourism potential is predominately based on the attractiveness of natural resources being climate-sensitive. In this study, regional climate simulations (A1B) are analyzed by using the REMO model. To analyze the climatic tourism potential, the following thermal, physical and aesthetic parameters are considered for the time span 1961-2050: thermal comfort, heat and cold stress, sunshine, humid-warm conditions (sultriness), fog, precipitation, storm, and ski potential (snow cover). Frequency classes of these parameters expressed as a percentage are processed on a monthly scale. The results are presented in form of the Climate-Tourism-Information-Scheme (CTIS). Due to warmer temperatures, winters might shorten while summers might lengthen. The lowland might be more affected by heat and sultriness (e.g., Freiburg due to the effects of urban climate). To adapt to a changing climate and tourism, the awareness of both stakeholders and tourists as well as the adaptive capability are essential.

  7. [Air conditioning units and warm air blankets in the operating room].

    PubMed

    Kerwat, Klaus; Piechowiak, Karolin; Wulf, Hinnerk

    2013-01-01

    Nowadays almost all operating rooms are equipped with air conditioning (AC units). Their main purpose is climatization, like ventilation, moisturizing, cooling and also the warming of the room in large buildings. In operating rooms they have an additional function in the prevention of infections, especially the avoidance of postoperative wound infections. This is achieved by special filtration systems and by the creation of specific air currents. Since hypothermia is known to be an unambiguous factor for the development of postoperative wound infections, patients are often actively warmed intraoperatively using warm air blankets (forced-air warming units). In such cases it is frequently discussed whether such warm air blankets affect the performance of AC units by changing the air currents or whether, in contrast, have exactly the opposite effect. However, it has been demonstrated in numerous studies that warm air blankets do not have any relevant effect on the functioning of AC units. Also there are no indications that their use increases the rate of postoperative wound infections. By preventing the patient from experiencing hypothermia, the rate of postoperative wound infections can even be decreased thereby.

  8. Thermal tolerance and climate warming sensitivity in tropical snails.

    PubMed

    Marshall, David J; Rezende, Enrico L; Baharuddin, Nursalwa; Choi, Francis; Helmuth, Brian

    2015-12-01

    Tropical ectotherms are predicted to be especially vulnerable to climate change because their thermal tolerance limits generally lie close to current maximum air temperatures. This prediction derives primarily from studies on insects and lizards and remains untested for other taxa with contrasting ecologies. We studied the HCT (heat coma temperatures) and ULT (upper lethal temperatures) of 40 species of tropical eulittoral snails (Littorinidae and Neritidae) inhabiting exposed rocky shores and shaded mangrove forests in Oceania, Africa, Asia and North America. We also estimated extremes in animal body temperature at each site using a simple heat budget model and historical (20 years) air temperature and solar radiation data. Phylogenetic analyses suggest that HCT and ULT exhibit limited adaptive variation across habitats (mangroves vs. rocky shores) or geographic locations despite their contrasting thermal regimes. Instead, the elevated heat tolerance of these species (HCT = 44.5 ± 1.8°C and ULT = 52.1 ± 2.2°C) seems to reflect the extreme temperature variability of intertidal systems. Sensitivity to climate warming, which was quantified as the difference between HCT or ULT and maximum body temperature, differed greatly between snails from sunny (rocky shore; Thermal Safety Margin, TSM = -14.8 ± 3.3°C and -6.2 ± 4.4°C for HCT and ULT, respectively) and shaded (mangrove) habitats (TSM = 5.1 ± 3.6°C and 12.5 ± 3.6°C). Negative TSMs in rocky shore animals suggest that mortality is likely ameliorated during extreme climatic events by behavioral thermoregulation. Given the low variability in heat tolerance across species, habitat and geographic location account for most of the variation in TSM and may adequately predict the vulnerability to climate change. These findings caution against generalizations on the impact of global warming across ectothermic taxa and highlight how the consideration of nonmodel animals, ecological transitions

  9. Thermal tolerance and climate warming sensitivity in tropical snails.

    PubMed

    Marshall, David J; Rezende, Enrico L; Baharuddin, Nursalwa; Choi, Francis; Helmuth, Brian

    2015-12-01

    Tropical ectotherms are predicted to be especially vulnerable to climate change because their thermal tolerance limits generally lie close to current maximum air temperatures. This prediction derives primarily from studies on insects and lizards and remains untested for other taxa with contrasting ecologies. We studied the HCT (heat coma temperatures) and ULT (upper lethal temperatures) of 40 species of tropical eulittoral snails (Littorinidae and Neritidae) inhabiting exposed rocky shores and shaded mangrove forests in Oceania, Africa, Asia and North America. We also estimated extremes in animal body temperature at each site using a simple heat budget model and historical (20 years) air temperature and solar radiation data. Phylogenetic analyses suggest that HCT and ULT exhibit limited adaptive variation across habitats (mangroves vs. rocky shores) or geographic locations despite their contrasting thermal regimes. Instead, the elevated heat tolerance of these species (HCT = 44.5 ± 1.8°C and ULT = 52.1 ± 2.2°C) seems to reflect the extreme temperature variability of intertidal systems. Sensitivity to climate warming, which was quantified as the difference between HCT or ULT and maximum body temperature, differed greatly between snails from sunny (rocky shore; Thermal Safety Margin, TSM = -14.8 ± 3.3°C and -6.2 ± 4.4°C for HCT and ULT, respectively) and shaded (mangrove) habitats (TSM = 5.1 ± 3.6°C and 12.5 ± 3.6°C). Negative TSMs in rocky shore animals suggest that mortality is likely ameliorated during extreme climatic events by behavioral thermoregulation. Given the low variability in heat tolerance across species, habitat and geographic location account for most of the variation in TSM and may adequately predict the vulnerability to climate change. These findings caution against generalizations on the impact of global warming across ectothermic taxa and highlight how the consideration of nonmodel animals, ecological transitions

  10. Inconsistent Range Shifts within Species Highlight Idiosyncratic Responses to Climate Warming

    PubMed Central

    Gibson-Reinemer, Daniel K.; Rahel, Frank J.

    2015-01-01

    Climate in part determines species’ distributions, and species’ distributions are shifting in response to climate change. Strong correlations between the magnitude of temperature changes and the extent of range shifts point to warming temperatures as the single most influential factor causing shifts in species’ distributions species. However, other abiotic and biotic factors may alter or even reverse these patterns. The importance of temperature relative to these other factors can be evaluated by examining range shifts of the same species in different geographic areas. When the same species experience warming in different geographic areas, the extent to which they show range shifts that are similar in direction and magnitude is a measure of temperature’s importance. We analyzed published studies to identify species that have documented range shifts in separate areas. For 273 species of plants, birds, mammals, and marine invertebrates with range shifts measured in multiple geographic areas, 42-50% show inconsistency in the direction of their range shifts, despite experiencing similar warming trends. Inconsistency of within-species range shifts highlights how biotic interactions and local, non-thermal abiotic conditions may often supersede the direct physiological effects of temperature. Assemblages show consistent responses to climate change, but this predictability does not appear to extend to species considered individually. PMID:26162013

  11. Water yield and sediment export in small, partially glaciated Alpine watersheds in a warming climate

    NASA Astrophysics Data System (ADS)

    Micheletti, Natan; Lane, Stuart N.

    2016-06-01

    Climate change is expected to modify the hydrological and geomorphological dynamics of mountain watersheds significantly, so impacting on downstream water yield and sediment supply. However, such watersheds are often poorly instrumented, making it difficult to link recent and rapid climate change to landscape response. Here we combine unique records of river flow and sediment export, with historical archival imagery to test the hypothesis that climate warming has substantially increased both water yield and sediment export from small Alpine watersheds (<3 km2) characterized by small (<0.5 km2 surface) glaciers. To examine ice and landform response to climate change, we apply archival digital photogrammetry to historical aerial imagery available from 1967 to present. We use the resulting data on ice loss, in combination with reliable records of stream flow from hydroelectric power intakes and climate data to approximate a water budget and to determine the evolution of different contributions to river flow. We use the stream flow records to estimate volumetric sediment transport capacity and compare this with the volumes of sand and gravel exported from the watersheds, quantified from records of intake flushing. The data show clearly that climate forcing since the early 1980s has been accompanied by a net increase in both water yield and sediment transport capacity, and we attribute these as signals of reduced snow accumulation and glacier recession. However, sediment export has not responded in the same way and we attribute this to limits on sediment delivery to streams because of poor rockwall-hillslope-channel connectivity. However, we do find that extreme climate conditions can be seen in sediment export data suggesting that these, rather than mean climate warming, may dominate watershed response.

  12. Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought

    NASA Astrophysics Data System (ADS)

    AghaKouchak, Amir; Cheng, Linyin; Mazdiyasni, Omid; Farahmand, Alireza

    2014-12-01

    Global warming and the associated rise in extreme temperatures substantially increase the chance of concurrent droughts and heat waves. The 2014 California drought is an archetype of an event characterized by not only low precipitation but also extreme high temperatures. From the raging wildfires, to record low storage levels and snowpack conditions, the impacts of this event can be felt throughout California. Wintertime water shortages worry decision-makers the most because it is the season to build up water supplies for the rest of the year. Here we show that the traditional univariate risk assessment methods based on precipitation condition may substantially underestimate the risk of extreme events such as the 2014 California drought because of ignoring the effects of temperature. We argue that a multivariate viewpoint is necessary for assessing risk of extreme events, especially in a warming climate. This study discusses a methodology for assessing the risk of concurrent extremes such as droughts and extreme temperatures.

  13. Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina.

    PubMed

    Kubisch, Erika Leticia; Fernández, Jimena Beatriz; Ibargüengoytía, Nora Ruth

    2016-02-01

    The vulnerability of populations and species to global warming depends not only on the environmental temperatures, but also on the behavioral and physiological abilities to respond to these changes. In this sense, the knowledge of an organism's sensitivity to temperature variation is essential to predict potential responses to climate warming. In particular, it is interesting to know how close species are to their thermal limits in nature and whether physiological plasticity is a potential short-term response to warming climates. We exposed Liolaemus pictus lizards, from northern Patagonia, to either 21 or 31 °C for 30 days to compare the effects of these treatments on thermal sensitivity in 1 and 0.2 m runs, preferred body temperature (T pref), panting threshold (T pant), and critical minimum temperature (CTMin). Furthermore, we measured the availability of thermal microenvironments (operative temperatures; T e) to measure how close L. pictus is, in nature, to its optimal locomotor performance (T o) and thermal limits. L. pictus showed limited physiological plasticity, since the acclimation temperature (21 and 31 °C) did not affect the locomotor performance nor did it affect T pref, the T pant, or the CTMin. The mean T e was close to T o and was 17 °C lower than the CTMax. The results suggest that L. pictus, in a climate change scenario, could be vulnerable to the predicted temperature increment, as this species currently lives in an environment with temperatures close to their highest locomotor temperature threshold, and because they showed limited acclimation capacity to adjust to new thermal conditions by physiological plasticity. Nevertheless, L. pictus can run at 80 % or faster of its maximum speed across a wide range of temperatures near T o, an ability which would attenuate the impact of global warming.

  14. Darcy's law predicts widespread forest mortality under climate warming

    NASA Astrophysics Data System (ADS)

    McDowell, Nathan G.; Allen, Craig D.

    2015-07-01

    Drought and heat-induced tree mortality is accelerating in many forest biomes as a consequence of a warming climate, resulting in a threat to global forests unlike any in recorded history. Forests store the majority of terrestrial carbon, thus their loss may have significant and sustained impacts on the global carbon cycle. We use a hydraulic corollary to Darcy’s law, a core principle of vascular plant physiology, to predict characteristics of plants that will survive and die during drought under warmer future climates. Plants that are tall with isohydric stomatal regulation, low hydraulic conductance, and high leaf area are most likely to die from future drought stress. Thus, tall trees of old-growth forests are at the greatest risk of loss, which has ominous implications for terrestrial carbon storage. This application of Darcy’s law indicates today’s forests generally should be replaced by shorter and more xeric plants, owing to future warmer droughts and associated wildfires and pest attacks. The Darcy’s corollary also provides a simple, robust framework for informing forest management interventions needed to promote the survival of current forests. Given the robustness of Darcy’s law for predictions of vascular plant function, we conclude with high certainty that today’s forests are going to be subject to continued increases in mortality rates that will result in substantial reorganization of their structure and carbon storage.

  15. Darcy's law predicts widespread forest mortalityunder climate warming

    NASA Astrophysics Data System (ADS)

    Allen, C. D.; McDowell, N. G.

    2015-12-01

    Drought and heat-induced tree mortality is accelerating in many forest biomes as a consequence of a warming climate, resulting in a threat to global forests unlike any in recorded history. Forests store the majority of terrestrial carbon, thus their loss may have significant and sustained impacts on the global carbon cycle. We used a hydraulic corollary to Darcy's law, a core principle of vascular plant physiology, to predict characteristics of plants that will survive and die during drought under warmer future climates. Plants that are tall with isohydric stomatal regulation, low hydraulic conductance, and high leaf area are most likely to die from future drought stress. Thus, tall trees of old-growth forests are at the greatest risk of loss, which has ominous implications for terrestrial carbon storage. This application of Darcy's law indicates today's forests generally should be replaced by shorter and more xeric plants, owing to future warmer droughts and associated wildfires and pest attacks. The Darcy's corollary also provides a simple, robust framework for informing forest management interventions needed to promote the survival of current forests. There are assumptions and omissions in this theoretical prediction, as well as new evidence supporting its predictions, both of which I will review. Given the robustness of Darcy's law for predictions of vascular plant function, we conclude with high certainty that today's forests are going to be subject to continued increases in mortality rates that will result in substantial reorganization of their structure and carbon storage.

  16. Climate warming and estuarine and marine coastal ecosystems

    SciTech Connect

    Kennedy, V.S.

    1994-12-31

    Estuaries are physically controlled, resilient coastal ecosystems harboring environmentally tolerant species in diluted seawater. Marine coastal systems are less stressed physically and contain some environmentally less tolerant species. Both systems are biologically productive and economically significant. Because of their complex structure and function, it is difficult to predict accurately the effects of climate change, but some broad generalizations can be made. If climate warming occurs, it will raise sea-level, heat shallow waters, and modify precipitation, wind, and water circulation patterns. Rapid sea-level rise could cause the loss of salt marshes, mangrove swamps, and coral reefs, thus diminishing the ecological roles of these highly productive systems. Warmer waters could eliminate heat-sensitive species from part of their geographical range while allowing heat-tolerant species to expand their range, depending on their ability to disperse. Most thermally influenced losses of species will probably only be local, but changed distributions may lead to changed community function. It is more difficult to predict the effects of modified precipitation, wind, and water circulation patterns, but changes could affect organisms dependent on such patterns for food production (e.g., in upwelling regions) or for retention in estuaries. Aquacultural and fishery-related enterprises would be affected negatively in some regions and positively in others. 73 refs.

  17. Plant movements and climate warming: intraspecific variation in growth responses to nonlocal soils.

    PubMed

    De Frenne, Pieter; Coomes, David A; De Schrijver, An; Staelens, Jeroen; Alexander, Jake M; Bernhardt-Römermann, Markus; Brunet, Jörg; Chabrerie, Olivier; Chiarucci, Alessandro; den Ouden, Jan; Eckstein, R Lutz; Graae, Bente J; Gruwez, Robert; Hédl, Radim; Hermy, Martin; Kolb, Annette; Mårell, Anders; Mullender, Samantha M; Olsen, Siri L; Orczewska, Anna; Peterken, George; Petřík, Petr; Plue, Jan; Simonson, William D; Tomescu, Cezar V; Vangansbeke, Pieter; Verstraeten, Gorik; Vesterdal, Lars; Wulf, Monika; Verheyen, Kris

    2014-04-01

    Most range shift predictions focus on the dispersal phase of the colonization process. Because moving populations experience increasingly dissimilar nonclimatic environmental conditions as they track climate warming, it is also critical to test how individuals originating from contrasting thermal environments can establish in nonlocal sites. We assess the intraspecific variation in growth responses to nonlocal soils by planting a widespread grass of deciduous forests (Milium effusum) into an experimental common garden using combinations of seeds and soil sampled in 22 sites across its distributional range, and reflecting movement scenarios of up to 1600 km. Furthermore, to determine temperature and forest-structural effects, the plants and soils were experimentally warmed and shaded. We found significantly positive effects of the difference between the temperature of the sites of seed and soil collection on growth and seedling emergence rates. Migrant plants might thus encounter increasingly favourable soil conditions while tracking the isotherms towards currently 'colder' soils. These effects persisted under experimental warming. Rising temperatures and light availability generally enhanced plant performance. Our results suggest that abiotic and biotic soil characteristics can shape climate change-driven plant movements by affecting growth of nonlocal migrants, a mechanism which should be integrated into predictions of future range shifts.

  18. How much would five trillion tonnes of carbon warm the climate?

    NASA Astrophysics Data System (ADS)

    Tokarska, Katarzyna Kasia; Gillett, Nathan P.; Weaver, Andrew J.; Arora, Vivek K.

    2016-04-01

    While estimates of fossil fuel reserves and resources are very uncertain, and the amount which could ultimately be burnt under a business as usual scenario would depend on prevailing economic and technological conditions, an amount of five trillion tonnes of carbon (5 EgC), corresponding to the lower end of the range of estimates of the total fossil fuel resource, is often cited as an estimate of total cumulative emissions in the absence of mitigation actions. The IPCC Fifth Assessment Report indicates that an approximately linear relationship between warming and cumulative carbon emissions holds only up to around 2 EgC emissions. It is typically assumed that at higher cumulative emissions the warming would tend to be less than that predicted by such a linear relationship, with the radiative saturation effect dominating the effects of positive carbon-climate feedbacks at high emissions, as predicted by simple carbon-climate models. We analyze simulations from four state-of-the-art Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and seven Earth System Models of Intermediate Complexity (EMICs), driven by the Representative Concentration Pathway 8.5 Extension scenario (RCP 8.5 Ext), which represents a very high emission scenario of increasing greenhouse gas concentrations in absence of climate mitigation policies. Our results demonstrate that while terrestrial and ocean carbon storage varies between the models, the CO2-induced warming continues to increase approximately linearly with cumulative carbon emissions even for higher levels of cumulative emissions, in all four ESMs. Five of the seven EMICs considered simulate a similarly linear response, while two exhibit less warming at higher cumulative emissions for reasons we discuss. The ESMs simulate global mean warming of 6.6-11.0°C, mean Arctic warming of 15.3-19.7°C, and mean regional precipitation increases and decreases by more than a factor of four, in response to 5Eg

  19. Disruption of the European climate seasonal clock in a warming world

    NASA Astrophysics Data System (ADS)

    Cassou, Christophe; Cattiaux, Julien

    2016-04-01

    Temperatures over Europe are largely driven by the strength and inland penetration of the oceanic westerly flow. The wind influence depends on season: blocked westerlies, linked to high-pressure anomalies over Scandinavia, induce cold episodes in winter but warm conditions in summer. Here we propose to define the onset of the two seasons as the calendar day where the daily circulation/temperature relationship switches sign. We have assessed this meteorologically-based metric using several observational datasets and we provide evidence for an earlier summer onset by ~10 days between the 1960s and 2000s. Results from a climate model show that internal variability alone cannot explain this calendar advance. Rather, the earlier onset can be partly attributed to anthropogenic climate change. The modification of the zonal advection due to the earlier disappearance of winter snow over Eastern Europe, which reduces the degree to which climate has continental properties, is mainly responsible for the present-day and near-future advance of the summer date in Western Europe. Our findings are in line with with phenological-based trends (earlier spring events) reported for many living species over Europe, for which we provide an alternative interpretation to the traditionally evoked local warming effect. Based on the Representative Concentration Pathway 8.5 scenario, which assumes that greenhouse gas emissions continue to rise throughout the twenty-first century, a summer advance of ~20 days compared to preindustrial climate is expected by 2100, while no clear signal arises for winter onset.

  20. Radiative forcing and feedback by forests in warm climates - a sensitivity study

    NASA Astrophysics Data System (ADS)

    Port, U.; Claussen, M.; Brovkin, V.

    2015-12-01

    The biogeophysical effect of forests in a climate with permanent high-latitude ice cover has already been investigated. We extend this analysis to warm, basically ice-free climates, and we choose the early Eocene, some 54 to 52 million years ago, as paradigm for such type of climate. We use the Max Planck Institute for Meteorology Earth System Model to evaluate the radiative forcing of forests and the feedbacks triggered by forests in early Eocene and pre-industrial climate, respectively. To isolate first-order effects, we compare idealised simulations in which all continents are covered either by dense forests or by deserts with either bright or dark soil. In comparison with desert continents covered by bright soil, forested continents warm the planet in the early Eocene climate and in the pre-industrial climate. The warming can be attributed to different feedback processes, though. The lapse-rate - water-vapour feedback is stronger in early Eocene climate than in pre-industrial climate, but strong and negative cloud-related feedbacks nearly outweigh the positive lapse-rate - water-vapour feedback in the early Eocene climate. Subsequently, global mean warming by forests is weaker in the early Eocene climate than in the pre-industrial climate. Sea-ice related feedbacks are weak in the almost ice-free climate of the early Eocene, thereby leading to a weaker high-latitude warming by forests than in the pre-industrial climate. When the land is covered with dark soils, forests cool the early Eocene climate stronger than the pre-industrial climate because the lapse-rate and water-vapour feedbacks are stronger in the early Eocene climate. Cloud-related feedbacks are equally strong in both climates. We conclude that radiative forcing by forests varies little with the climate state, while most subsequent feedbacks depend on the climate state.

  1. An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming

    PubMed Central

    Jassey, Vincent E. J.; Signarbieux, Constant; Hättenschwiler, Stephan; Bragazza, Luca; Buttler, Alexandre; Delarue, Frédéric; Fournier, Bertrand; Gilbert, Daniel; Laggoun-Défarge, Fatima; Lara, Enrique; T. E. Mills, Robert; Mitchell, Edward A. D.; Payne, Richard J.; Robroek, Bjorn J. M.

    2015-01-01

    Mixotrophic protists are increasingly recognized for their significant contribution to carbon (C) cycling. As phototrophs they contribute to photosynthetic C fixation, whilst as predators of decomposers, they indirectly influence organic matter decomposition. Despite these direct and indirect effects on the C cycle, little is known about the responses of peatland mixotrophs to climate change and the potential consequences for the peatland C cycle. With a combination of field and microcosm experiments, we show that mixotrophs in the Sphagnum bryosphere play an important role in modulating peatland C cycle responses to experimental warming. We found that five years of consecutive summer warming with peaks of +2 to +8°C led to a 50% reduction in the biomass of the dominant mixotrophs, the mixotrophic testate amoebae (MTA). The biomass of other microbial groups (including decomposers) did not change, suggesting MTA to be particularly sensitive to temperature. In a microcosm experiment under controlled conditions, we then manipulated the abundance of MTA, and showed that the reported 50% reduction of MTA biomass in the field was linked to a significant reduction of net C uptake (-13%) of the entire Sphagnum bryosphere. Our findings suggest that reduced abundance of MTA with climate warming could lead to reduced peatland C fixation. PMID:26603894

  2. An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming.

    PubMed

    Jassey, Vincent E J; Signarbieux, Constant; Hättenschwiler, Stephan; Bragazza, Luca; Buttler, Alexandre; Delarue, Frédéric; Fournier, Bertrand; Gilbert, Daniel; Laggoun-Défarge, Fatima; Lara, Enrique; Mills, Robert T E; Mitchell, Edward A D; Payne, Richard J; Robroek, Bjorn J M

    2015-11-25

    Mixotrophic protists are increasingly recognized for their significant contribution to carbon (C) cycling. As phototrophs they contribute to photosynthetic C fixation, whilst as predators of decomposers, they indirectly influence organic matter decomposition. Despite these direct and indirect effects on the C cycle, little is known about the responses of peatland mixotrophs to climate change and the potential consequences for the peatland C cycle. With a combination of field and microcosm experiments, we show that mixotrophs in the Sphagnum bryosphere play an important role in modulating peatland C cycle responses to experimental warming. We found that five years of consecutive summer warming with peaks of +2 to +8°C led to a 50% reduction in the biomass of the dominant mixotrophs, the mixotrophic testate amoebae (MTA). The biomass of other microbial groups (including decomposers) did not change, suggesting MTA to be particularly sensitive to temperature. In a microcosm experiment under controlled conditions, we then manipulated the abundance of MTA, and showed that the reported 50% reduction of MTA biomass in the field was linked to a significant reduction of net C uptake (-13%) of the entire Sphagnum bryosphere. Our findings suggest that reduced abundance of MTA with climate warming could lead to reduced peatland C fixation.

  3. An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming.

    PubMed

    Jassey, Vincent E J; Signarbieux, Constant; Hättenschwiler, Stephan; Bragazza, Luca; Buttler, Alexandre; Delarue, Frédéric; Fournier, Bertrand; Gilbert, Daniel; Laggoun-Défarge, Fatima; Lara, Enrique; Mills, Robert T E; Mitchell, Edward A D; Payne, Richard J; Robroek, Bjorn J M

    2015-01-01

    Mixotrophic protists are increasingly recognized for their significant contribution to carbon (C) cycling. As phototrophs they contribute to photosynthetic C fixation, whilst as predators of decomposers, they indirectly influence organic matter decomposition. Despite these direct and indirect effects on the C cycle, little is known about the responses of peatland mixotrophs to climate change and the potential consequences for the peatland C cycle. With a combination of field and microcosm experiments, we show that mixotrophs in the Sphagnum bryosphere play an important role in modulating peatland C cycle responses to experimental warming. We found that five years of consecutive summer warming with peaks of +2 to +8°C led to a 50% reduction in the biomass of the dominant mixotrophs, the mixotrophic testate amoebae (MTA). The biomass of other microbial groups (including decomposers) did not change, suggesting MTA to be particularly sensitive to temperature. In a microcosm experiment under controlled conditions, we then manipulated the abundance of MTA, and showed that the reported 50% reduction of MTA biomass in the field was linked to a significant reduction of net C uptake (-13%) of the entire Sphagnum bryosphere. Our findings suggest that reduced abundance of MTA with climate warming could lead to reduced peatland C fixation. PMID:26603894

  4. An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming

    NASA Astrophysics Data System (ADS)

    Jassey, Vincent E. J.; Signarbieux, Constant; Hättenschwiler, Stephan; Bragazza, Luca; Buttler, Alexandre; Delarue, Frédéric; Fournier, Bertrand; Gilbert, Daniel; Laggoun-Défarge, Fatima; Lara, Enrique; T. E. Mills, Robert; Mitchell, Edward A. D.; Payne, Richard J.; Robroek, Bjorn J. M.

    2015-11-01

    Mixotrophic protists are increasingly recognized for their significant contribution to carbon (C) cycling. As phototrophs they contribute to photosynthetic C fixation, whilst as predators of decomposers, they indirectly influence organic matter decomposition. Despite these direct and indirect effects on the C cycle, little is known about the responses of peatland mixotrophs to climate change and the potential consequences for the peatland C cycle. With a combination of field and microcosm experiments, we show that mixotrophs in the Sphagnum bryosphere play an important role in modulating peatland C cycle responses to experimental warming. We found that five years of consecutive summer warming with peaks of +2 to +8°C led to a 50% reduction in the biomass of the dominant mixotrophs, the mixotrophic testate amoebae (MTA). The biomass of other microbial groups (including decomposers) did not change, suggesting MTA to be particularly sensitive to temperature. In a microcosm experiment under controlled conditions, we then manipulated the abundance of MTA, and showed that the reported 50% reduction of MTA biomass in the field was linked to a significant reduction of net C uptake (-13%) of the entire Sphagnum bryosphere. Our findings suggest that reduced abundance of MTA with climate warming could lead to reduced peatland C fixation.

  5. Activity restriction and the mechanistic basis for extinctions under climate warming.

    PubMed

    R Kearney, Michael

    2013-12-01

    Correlative analyses predict that anthropogenic climate warming will cause widespread extinction but the nature and generality of the underlying mechanisms is unclear. Warming-induced activity restriction has been proposed as a general explanatory mechanism for recent population extinctions in lizards, and has been used to forecast future extinction. Here, I test this hypothesis using globally applied biophysical calculations of the effects of warming and shade reduction on potential activity time and whole-life-cycle energy budgets. These 'thermodynamic niche' analyses show that activity restriction from climate warming is unlikely to provide a general explanation of recent extinctions, and that loss of shade is viable alternative explanation. Climate warming could cause population declines, even under increased activity potential, through joint impacts on fecundity and mortality rates. However, such responses depend strongly on behaviour, habitat (shade, food) and life history, all of which should be explicitly incorporated in mechanistic forecasts of extinction risk under climate change.

  6. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Warm Weather

    SciTech Connect

    Jeffers, M. A.; Chaney, L.; Rugh, J. P.

    2015-04-30

    Passenger compartment climate control is one of the largest auxiliary loads on a vehicle. Like conventional vehicles, electric vehicles (EVs) require climate control to maintain occupant comfort and safety, but cabin heating and air conditioning have a negative impact on driving range for all electric vehicles. Range reduction caused by climate control and other factors is a barrier to widespread adoption of EVs. Reducing the thermal loads on the climate control system will extend driving range, thereby reducing consumer range anxiety and increasing the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have investigated strategies for vehicle climate control load reduction, with special attention toward EVs. Outdoor vehicle thermal testing was conducted on two 2012 Ford Focus Electric vehicles to evaluate thermal management strategies for warm weather, including solar load reduction and cabin pre-ventilation. An advanced thermal test manikin was used to assess a zonal approach to climate control. In addition, vehicle thermal analysis was used to support testing by exploring thermal load reduction strategies, evaluating occupant thermal comfort, and calculating EV range impacts. Through stationary cooling tests and vehicle simulations, a zonal cooling configuration demonstrated range improvement of 6%-15%, depending on the drive cycle. A combined cooling configuration that incorporated thermal load reduction and zonal cooling strategies showed up to 33% improvement in EV range.

  7. Climate Warming and Seasonal Precipitation Change Interact to Limit Species Distribution Shifts across Western North America.

    PubMed

    Harsch, Melanie A; HilleRisLambers, Janneke

    2016-01-01

    Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations)-despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region- to region- variation in responses (i.e. from as many as 73% to as few as 32% of species shifting upward). To understand the factors that might be controlling region-specific distributional shifts of plant species, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction that distribution limits shifted was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species were more likely to shift upward at their upper elevational limit when minimum temperatures increased and snowfall was unchanging or declined at slower rates (<0.5 mm/year). This suggests that both low temperature and water availability limit upward shifts at upper elevation limits. By contrast, species were more likely to shift upwards at their lower elevation limit when maximum temperatures increased, but also shifted upwards under conditions of cooling temperatures when precipitation decreased. This suggests increased water stress may drive upward shifts at lower elevation limits. Our results suggest that species' elevational distribution shifts are not predictable by climate warming alone but depend on the interaction between seasonal temperature and precipitation change. PMID:27447834

  8. Climate Warming and Seasonal Precipitation Change Interact to Limit Species Distribution Shifts across Western North America

    PubMed Central

    Harsch, Melanie A.; HilleRisLambers, Janneke

    2016-01-01

    Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations)–despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region- to region- variation in responses (i.e. from as many as 73% to as few as 32% of species shifting upward). To understand the factors that might be controlling region-specific distributional shifts of plant species, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction that distribution limits shifted was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species were more likely to shift upward at their upper elevational limit when minimum temperatures increased and snowfall was unchanging or declined at slower rates (<0.5 mm/year). This suggests that both low temperature and water availability limit upward shifts at upper elevation limits. By contrast, species were more likely to shift upwards at their lower elevation limit when maximum temperatures increased, but also shifted upwards under conditions of cooling temperatures when precipitation decreased. This suggests increased water stress may drive upward shifts at lower elevation limits. Our results suggest that species’ elevational distribution shifts are not predictable by climate warming alone but depend on the interaction between seasonal temperature and precipitation change. PMID:27447834

  9. Climate Warming and Seasonal Precipitation Change Interact to Limit Species Distribution Shifts across Western North America.

    PubMed

    Harsch, Melanie A; HilleRisLambers, Janneke

    2016-01-01

    Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations)-despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region- to region- variation in responses (i.e. from as many as 73% to as few as 32% of species shifting upward). To understand the factors that might be controlling region-specific distributional shifts of plant species, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction that distribution limits shifted was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species were more likely to shift upward at their upper elevational limit when minimum temperatures increased and snowfall was unchanging or declined at slower rates (<0.5 mm/year). This suggests that both low temperature and water availability limit upward shifts at upper elevation limits. By contrast, species were more likely to shift upwards at their lower elevation limit when maximum temperatures increased, but also shifted upwards under conditions of cooling temperatures when precipitation decreased. This suggests increased water stress may drive upward shifts at lower elevation limits. Our results suggest that species' elevational distribution shifts are not predictable by climate warming alone but depend on the interaction between seasonal temperature and precipitation change.

  10. Modeling Multi-Reservoir Hydropower Systems in the Sierra Nevada with Environmental Requirements and Climate Warming

    NASA Astrophysics Data System (ADS)

    Rheinheimer, David Emmanuel

    Hydropower systems and other river regulation often harm instream ecosystems, partly by altering the natural flow and temperature regimes that ecosystems have historically depended on. These effects are compounded at regional scales. As hydropower and ecosystems are increasingly valued globally due to growing values for clean energy and native species as well as and new threats from climate warming, it is important to understand how climate warming might affect these systems, to identify tradeoffs between different water uses for different climate conditions, and to identify promising water management solutions. This research uses traditional simulation and optimization to explore these issues in California's upper west slope Sierra Nevada mountains. The Sierra Nevada provides most of the water for California's vast water supply system, supporting high-elevation hydropower generation, ecosystems, recreation, and some local municipal and agricultural water supply along the way. However, regional climate warming is expected to reduce snowmelt and shift runoff to earlier in the year, affecting all water uses. This dissertation begins by reviewing important literature related to the broader motivations of this study, including river regulation, freshwater conservation, and climate change. It then describes three substantial studies. First, a weekly time step water resources management model spanning the Feather River watershed in the north to the Kern River watershed in the south is developed. The model, which uses the Water Evaluation And Planning System (WEAP), includes reservoirs, run-of-river hydropower, variable head hydropower, water supply demand, and instream flow requirements. The model is applied with a runoff dataset that considers regional air temperature increases of 0, 2, 4 and 6 °C to represent historical, near-term, mid-term and far-term (end-of-century) warming. Most major hydropower turbine flows are simulated well. Reservoir storage is also

  11. Total environmental warming impact (TEWI) calculations for alternative automative air-conditioning systems

    SciTech Connect

    Sand, J.R.; Fischer, S.K.

    1997-01-01

    The Montreal Protocol phase-out of chlorofluorocarbons (CFCs) has required manufacturers to develop refrigeration and air-conditioning systems that use refrigerants that can not damage stratospheric ozone. Most refrigeration industries have adapted their designs to use hydrochlorofluorocarbon (HCFC) or hydrofluorocarbon (HFC) refrigerants; new automobile air- conditioning systems use HFC-134a. These industries are now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants on global warming. Automobile air-conditioning has three separate impacts on global warming; (1) the effects of refrigerant inadvertently released to the atmosphere from accidents, servicing, and leakage; (2) the efficiency of the cooling equipment (due to the emission of C0{sub 2} from burning fuel to power the system); and (3) the emission of C0{sub 2} from burning fuel to transport the system. The Total Equivalent Warming Impact (TEWI) is an index that should be used to compare the global warming effects of alternative air-conditioning systems because it includes these contributions from the refrigerant, cooling efficiency, and weight. This paper compares the TEWI of current air-conditioning systems using HFC-134a with that of transcritical vapor compression system using carbon dioxide and systems using flammable refrigerants with secondary heat transfer loops. Results are found to depend on both climate and projected efficiency of C0{sub 2}systems. Performance data on manufacturing prototype systems are needed to verify the potential reductions in TEWI. Extensive field testing is also required to determine the performance, reliability, and ``serviceability`` of each alternative to HFC-134a to establish whether the potential reduction of TEWI can be achieved in a viable consumer product.

  12. Micro-climatic controls and warming effects on flowering time in alpine snowbeds.

    PubMed

    Carbognani, Michele; Bernareggi, Giulietta; Perucco, Francesco; Tomaselli, Marcello; Petraglia, Alessandro

    2016-10-01

    Alpine snowbed communities are among the habitats most threatened by climate change. The warmer temperature predicted, coupled with advanced snowmelt time, will influence flowering phenology, which is a key process in species adaptation to changing environmental conditions and plant population dynamics. However, we know little about the effects of changing micro-climate on flowering time in snowbeds and the mechanisms underlying such phenological responses. The flowering phenology of species inhabiting alpine snowbeds was assessed with weekly observations over five growing seasons. We analysed flowering time in relation to micro-climatic variation in snowmelt date, soil and air temperature, and experimental warming during the snow-free period. This approach allowed us to test hypotheses concerning the processes driving flowering phenology. The plants were finely tuned with inter-annual and intra-seasonal variations of their micro-climate, but species did not track the same micro-climatic feature to flower. At the growing-season time-scale, the air surrounding the plants was the most common trigger of the blooming period. However, at the annual time-scale, the snowmelt date was the main controlling factor for flowering time, even in warmer climate. Moreover, spatial patterns of the snowmelt influenced the developmental rate of the species because in later snowmelt sites the plants needed a lower level of heat accumulation to enter anthesis. Phenological responses to experimental warming differed among species, were proportional to the pre-flowering time-span of plants, and did not show consistent trends of change over time. Finally, warmer temperature produced an overall increase of flowering synchrony both within and among plant species.

  13. Micro-climatic controls and warming effects on flowering time in alpine snowbeds.

    PubMed

    Carbognani, Michele; Bernareggi, Giulietta; Perucco, Francesco; Tomaselli, Marcello; Petraglia, Alessandro

    2016-10-01

    Alpine snowbed communities are among the habitats most threatened by climate change. The warmer temperature predicted, coupled with advanced snowmelt time, will influence flowering phenology, which is a key process in species adaptation to changing environmental conditions and plant population dynamics. However, we know little about the effects of changing micro-climate on flowering time in snowbeds and the mechanisms underlying such phenological responses. The flowering phenology of species inhabiting alpine snowbeds was assessed with weekly observations over five growing seasons. We analysed flowering time in relation to micro-climatic variation in snowmelt date, soil and air temperature, and experimental warming during the snow-free period. This approach allowed us to test hypotheses concerning the processes driving flowering phenology. The plants were finely tuned with inter-annual and intra-seasonal variations of their micro-climate, but species did not track the same micro-climatic feature to flower. At the growing-season time-scale, the air surrounding the plants was the most common trigger of the blooming period. However, at the annual time-scale, the snowmelt date was the main controlling factor for flowering time, even in warmer climate. Moreover, spatial patterns of the snowmelt influenced the developmental rate of the species because in later snowmelt sites the plants needed a lower level of heat accumulation to enter anthesis. Phenological responses to experimental warming differed among species, were proportional to the pre-flowering time-span of plants, and did not show consistent trends of change over time. Finally, warmer temperature produced an overall increase of flowering synchrony both within and among plant species. PMID:27299914

  14. Ocean Global Warming Impacts on the South America Climate

    NASA Astrophysics Data System (ADS)

    Ramos-Da-Silva, Renato

    2016-03-01

    The global Ocean-Land-Atmosphere Model (OLAM) model was used to estimate the impacts of the global oceanic warming on the climate projections for the 21st Century focusing on the South America region. This new model is able to represent simultaneously the global and regional scales using a refining grid approach for the region of interest. First, the model was run for a 31-year control period consisting on the years 1960-1990 using the monthly Sea Surface Temperature (SST) from the Atmospheric Model Intercomparison Project (AMIP) data as a driver for the ocean fluxes. Then, the model was run for the period 2010-2100 using the monthly projected SST from the Hadley Center model (HadCM3) as a driver for the oceanic changes. The model was set up with an icosahedral triangular global grid having about 250 km of grid spacing and with a refining grid resolution with the cells reaching about 32 km over the South America region. The results show an overall temperature increase mainly over the center of the Amazon basin caused by the increase of the greenhouse effect of the water vapor; a decrease on precipitation mainly over the northeast Brazil and an increase in the south and over the western Amazon region; and a major increase on the near surface wind speed. These results are similar to the global coupled models; however, OLAM has a novel type of grid that can provide the interaction between the global and regional scales simultaneously.

  15. Greenland soil bacteria & biogeochemistry: a vegetation cover proxy for climate warming effects

    NASA Astrophysics Data System (ADS)

    Dowdy, K. L.; Sistla, S.; Buckeridge, K. M.; Schimel, J.; Schaeffer, S. M.

    2013-12-01

    decomposers in more vegetated soils do not readily use available carbon. Our results suggest that despite an increase in available substrate in high vegetation cover soils, the insulating properties of vegetation ultimately limit decomposer activity. We hypothesize that as plant cover in the high Arctic increases with climate warming, nutrient mineralization - initially heightened by higher temperatures - will ultimately be curtailed by the insulating properties of vegetation, leading to decreased nutrient availability to plants and a decline in plant cover until soils warm and dry to reach conditions more optimal for microbial processing. Following oscillations between higher and lower vegetation cover, soils may ultimately return to a 'baseline' moderate vegetation cover.

  16. Warm Eocene climate enhanced petroleum generation from Cretaceous source rocks: A potential climate feedback mechanism?

    NASA Astrophysics Data System (ADS)

    Kroeger, K. F.; Funnell, R. H.

    2012-02-01

    Earth surface temperatures, including in the deep sea increased by 5-10°C from the late Paleocene ca. 58 Myr ago to the Early Eocene Climatic Optimum (EECO) centered at about 51 Myr ago. A large (˜2.5‰) drop in δ13C of carbonate spans much of this interval. This suggests a long-term increase in the net flux of 13C-depleted carbon to the ocean and atmosphere that is difficult to explain by changes in surficial carbon cycling alone. We reveal a relationship between surface temperature increase and increased petroleum generation in sedimentary basins operating on 100 kyr to Myr time scales. We propose that early Eocene warming has led to a synchronization of periods of maximum petroleum generation and enhanced generation in otherwise unproductive basins through extension of the volume of source rock within the oil and gas window across hundreds of sedimentary basins globally. Modelling the thermal evolution of four sedimentary basins in the southwest Pacific predicted an up to 50% increase in petroleum generation that would have significantly increased leakage of light hydrocarbons and oil degeneration products into the atmosphere. Extrapolating our modelling results to hundreds of sedimentary basins worldwide suggests that globally increased leakage could have caused a climate feedback effect, driving or enhancing early Eocene climate warming.

  17. Increasing drought trend in China under climate warming

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Yuan, W.

    2015-12-01

    Several recently published studies have researched how drought is changing under climate change. We use the Palmer Drought Severity Index (PDSI) and water balance (precipitation minus evapotranspiration, P-ET) through 1982 to 2009 to study the drought conditions in China. The results showed that the anomaly PDSI and P-ET values all showed significant decreased trend. The areas of drought in China have increased from 1982 to 2009. Almost 75% of China showed decreased trend especially in southern China and the northwest China become wetter. The precipitation, evapotranspiration and temperature led to this condition comprehensively. Temperature exerts a growing influence on drought and the effects of precipitation become weaker. The drought may cause the positive feedback for the decreased precipitation, increased evapotranspiration and increased temperature. We should make policy based on this condition to enhance the sustainable use of water resources, particularly for agricultural development and slow down this feedback.

  18. Using Long-Term Experimental Warming To Distinguish Vegetation Responses To Warming From Other Environmental Drivers Related To Climate Change

    NASA Astrophysics Data System (ADS)

    Gould, W. A.; Welker, J. M.; Mercado-Díaz, J. A.; Anderson, A.; Menken, M.

    2010-12-01

    Long term studies of vegetation change throughout the tundra biome show increases in the height, canopy extent and dominance of vascular vegetation versus bryophytes and lichens, with mixed responses of the dominant shrub and graminoid growth forms. Increases in vascular vegetation are recorded for sites with and without measurable climatic warming over recent decades, but with other potential drivers, i.e., increased summer precipitation. Experimental warming of tundra vegetation at Toolik Lake, Alaska shows a clear increase in shrub abundance relative to graminoids, with correlated higher NDVI values, increasing canopy heights, and thaw depths. Responses were similar between moist and dry tundra vegetation, with greater responses in moist vegetation. NDVI, with its ability to distinguish shrub from graminoid vegetation, may be a tool to distinguish fine scale differences in the response of tundra vegetation to climatic change, i.e., shifting balances of shrub and graminoid relative abundances that may be related to distinct climatic change drivers.

  19. Enhanced Climatic Warming Over the Tibetan Plateau Due to Doubling CO2: A Model Study

    NASA Technical Reports Server (NTRS)

    Chen, Baode; Chao, Winston C.; Liu, Xiaodong; Lau, William K. M. (Technical Monitor)

    2001-01-01

    A number of studies have presented the evidences that surface climate change associated with global warming at high elevation sites shows more pronounced warming than at low elevations, i.e. an elevation dependency of climatic warming pointed out that snow-albedo feedback may be responsible for the excessive warming in the Swiss Alps. From an ensemble of climate change experiments of increasing greenhouse gases and aerosols using an air-sea coupled climate model, Eyre and Raw (1999) found a marked elevation dependency of the simulated surface screen temperature increase over the Rocky Mountains. Using almost all available instrumental records, Liu and Chen (2000) showed that the main portion of the Tibetan Plateau (TP) has experienced significant ground temperature warming since the middlebrows, especially in winter, and that there is a tendency for the warming trend to increase with elevation in the TP as well as its surrounding areas. In this paper, we will investigate the mechanism of elevation dependency of climatic warming in the TP by using a high-resolution regional climate model.

  20. Climatic warming and accompanying changes in the ecological regime of the Black Sea during 1990s

    NASA Astrophysics Data System (ADS)

    Oguz, Temel; Cokacar, Tulay; Malanotte-Rizzoli, Paola; Ducklow, Hugh W.

    2003-09-01

    The Black Sea ecosystem is shown to experience abrupt shifts in its all trophic levels from primary producers to apex predators in 1995-1996. It arises as a manifestation of concurrent changes in its physical climate introduced by intensive warming of its surface waters as well as abrupt increases in the mean sea level and the net annual mean fresh water flux. The warming is evident in the annual-mean sea surface temperature (SST) data by a continuous rise at a rate of ˜0.25°C per year, following a strong cooling phase in 1991-1993. The most intense warming event with ˜2°C increase in the SST took place during winters of the 1994-1996 period. It also coincides with 4 cm yr-1 net sea level rise in the basin, and substantial change in the annual mean net fresh water flux from 150 km3 yr-1 in 1993 to 420 km3 yr-1 in 1997. The subsurface signature of warming is marked by a gradual depletion of the Cold Intermediate Layer (characterized by T < 8°C) throughout the basin during the same period. Winters of the warming phase are characterized by weaker vertical turbulent mixing and upwelling velocity, stronger stratification and, subsequently, reduced upward nutrient supply from the nutricline. From 1996 onward, the major late winter-early spring peak of the classical annual phytoplankton biomass structure observed prior to mid-90s was, therefore, either weakened or disappeared altogether depending on local meteorological and oceanographic conditions during each of these years. The effect of bottom-up limited unfavorable phytoplankton growth is reflected at higher trophic levels (e.g., mesozooplankton, gelatinous macrozooplankton, and pelagic fishes) in the form of their reduced stocks after 1995.

  1. Testing paradigms of ecosystem change under climate warming in Antarctica.

    PubMed

    Melbourne-Thomas, Jessica; Constable, Andrew; Wotherspoon, Simon; Raymond, Ben

    2013-01-01

    Antarctic marine ecosystems have undergone significant changes as a result of human activities in the past and are now responding in varied and often complicated ways to climate change impacts. Recent years have seen the emergence of large-scale mechanistic explanations-or "paradigms of change"-that attempt to synthesize our understanding of past and current changes. In many cases, these paradigms are based on observations that are spatially and temporally patchy. The West Antarctic Peninsula (WAP), one of Earth's most rapidly changing regions, has been an area of particular research focus. A recently proposed mechanistic explanation for observed changes in the WAP region relates changes in penguin populations to variability in krill biomass and regional warming. While this scheme is attractive for its simplicity and chronology, it may not account for complex spatio-temporal processes that drive ecosystem dynamics in the region. It might also be difficult to apply to other Antarctic regions that are experiencing some, though not all, of the changes documented for the WAP. We use qualitative network models of differing levels of complexity to test paradigms of change for the WAP ecosystem. Importantly, our approach captures the emergent effects of feedback processes in complex ecological networks and provides a means to identify and incorporate uncertain linkages between network elements. Our findings highlight key areas of uncertainty in the drivers of documented trends, and suggest that a greater level of model complexity is needed in devising explanations for ecosystem change in the Southern Ocean. We suggest that our network approach to evaluating a recent and widely cited paradigm of change for the Antarctic region could be broadly applied in hypothesis testing for other regions and research fields.

  2. Testing Paradigms of Ecosystem Change under Climate Warming in Antarctica

    PubMed Central

    Melbourne-Thomas, Jessica; Constable, Andrew; Wotherspoon, Simon; Raymond, Ben

    2013-01-01

    Antarctic marine ecosystems have undergone significant changes as a result of human activities in the past and are now responding in varied and often complicated ways to climate change impacts. Recent years have seen the emergence of large-scale mechanistic explanations–or “paradigms of change”–that attempt to synthesize our understanding of past and current changes. In many cases, these paradigms are based on observations that are spatially and temporally patchy. The West Antarctic Peninsula (WAP), one of Earth’s most rapidly changing regions, has been an area of particular research focus. A recently proposed mechanistic explanation for observed changes in the WAP region relates changes in penguin populations to variability in krill biomass and regional warming. While this scheme is attractive for its simplicity and chronology, it may not account for complex spatio-temporal processes that drive ecosystem dynamics in the region. It might also be difficult to apply to other Antarctic regions that are experiencing some, though not all, of the changes documented for the WAP. We use qualitative network models of differing levels of complexity to test paradigms of change for the WAP ecosystem. Importantly, our approach captures the emergent effects of feedback processes in complex ecological networks and provides a means to identify and incorporate uncertain linkages between network elements. Our findings highlight key areas of uncertainty in the drivers of documented trends, and suggest that a greater level of model complexity is needed in devising explanations for ecosystem change in the Southern Ocean. We suggest that our network approach to evaluating a recent and widely cited paradigm of change for the Antarctic region could be broadly applied in hypothesis testing for other regions and research fields. PMID:23405116

  3. Increasing climate extremes under global warming - What is the driving force?

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Wang, S. Y.; Gillies, R. R.; Hipps, L.; Kravitz, B.; Rasch, P. J.

    2015-12-01

    More climate extreme events have occurred in recent years, including the continual development of extreme drought in California, the severe cold winters in the eastern U.S. since 2014, 2015 Washington drought, and excessive wildfire events over Alaska in 2015. These have been casually attributed to global warming. However, a need for further understanding of mechanisms responsible for climate extremes is growing. In this presentation, we'll use sets of climate model simulation that designed to identify the role of the oceanic feedback in increasing climate extremes under global warming. One is with a fully coupled climate model forced by 1% ramping CO2, and the other is with an atmosphere only model forced by the same CO2 forcing. By contrasting these two, an importance of the oceanic feedback in increasing climate extremes under global warming can be diagnosed.

  4. Present weather and climate: evolving conditions

    USGS Publications Warehouse

    Hoerling, Martin P; Dettinger, Michael; Wolter, Klaus; Lukas, Jeff; Eischeid, Jon K.; Nemani, Rama; Liebmann, Brant; Kunkel, Kenneth E.

    2013-01-01

    This chapter assesses weather and climate variability and trends in the Southwest, using observed climate and paleoclimate records. It analyzes the last 100 years of climate variability in comparison to the last 1,000 years, and links the important features of evolving climate conditions to river flow variability in four of the region’s major drainage basins. The chapter closes with an assessment of the monitoring and scientific research needed to increase confidence in understanding when climate episodes, events, and phenomena are attributable to human-caused climate change.

  5. Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance.

    PubMed

    Garzke, Jessica; Ismar, Stefanie M H; Sommer, Ulrich

    2015-03-01

    Concern about climate change has re-ignited interest in universal ecological responses to temperature variations: (1) biogeographical shifts, (2) phenology changes, and (3) size shifts. In this study we used copepods as model organisms to study size responses to temperature because of their central role in the pelagic food web and because of the ontogenetic length constancy between molts, which facilitates the definition of size of distinct developmental stages. In order to test the expected temperature-induced shifts towards smaller body size and lower abundances under warming conditions, a mesocosm experiment using plankton from the Baltic Sea at three temperature levels (ambient, ambient +4 °C, ambient -4 °C) was performed in summer 2010. Overall copepod and copepodit abundances, copepod size at all life stages, and adult copepod size in particular, showed significant temperature effects. As expected, zooplankton peak abundance was lower in warm than in ambient treatments. Copepod size-at-immature stage significantly increased in cold treatments, while adult size significantly decreased in warm treatments.

  6. Does the climate warming hiatus exist over the Tibetan Plateau?

    PubMed Central

    Duan, Anmin; Xiao, Zhixiang

    2015-01-01

    The surface air temperature change over the Tibetan Plateau is determined based on historical observations from 1980 to 2013. In contrast to the cooling trend in the rest of China, and the global warming hiatus post-1990s, an accelerated warming trend has appeared over the Tibetan Plateau during 1998–2013 (0.25 °C decade−1), compared with that during 1980–1997 (0.21 °C decade−1). Further results indicate that, to some degree, such an accelerated warming trend might be attributable to cloud–radiation feedback. The increased nocturnal cloud over the northern Tibetan Plateau would warm the nighttime temperature via enhanced atmospheric back-radiation, while the decreased daytime cloud over the southern Tibetan Plateau would induce the daytime sunshine duration to increase, resulting in surface air temperature warming. Meanwhile, the in situ surface wind speed has recovered gradually since 1998, and thus the energy concentration cannot explain the accelerated warming trend over the Tibetan Plateau after the 1990s. It is suggested that cloud–radiation feedback may play an important role in modulating the recent accelerated warming trend over the Tibetan Plateau. PMID:26329678

  7. Does the climate warming hiatus exist over the Tibetan Plateau?

    PubMed

    Duan, Anmin; Xiao, Zhixiang

    2015-01-01

    The surface air temperature change over the Tibetan Plateau is determined based on historical observations from 1980 to 2013. In contrast to the cooling trend in the rest of China, and the global warming hiatus post-1990s, an accelerated warming trend has appeared over the Tibetan Plateau during 1998-2013 (0.25 °C decade(-1)), compared with that during 1980-1997 (0.21 °C decade(-1)). Further results indicate that, to some degree, such an accelerated warming trend might be attributable to cloud-radiation feedback. The increased nocturnal cloud over the northern Tibetan Plateau would warm the nighttime temperature via enhanced atmospheric back-radiation, while the decreased daytime cloud over the southern Tibetan Plateau would induce the daytime sunshine duration to increase, resulting in surface air temperature warming. Meanwhile, the in situ surface wind speed has recovered gradually since 1998, and thus the energy concentration cannot explain the accelerated warming trend over the Tibetan Plateau after the 1990s. It is suggested that cloud-radiation feedback may play an important role in modulating the recent accelerated warming trend over the Tibetan Plateau. PMID:26329678

  8. Arctic climate and its interaction with lower latitudes under different levels of anthropogenic warming in a global coupled climate model

    NASA Astrophysics Data System (ADS)

    Koenigk, Torben; Brodeau, Laurent

    2016-09-01

    Three quasi-equilibrium simulations using constant greenhouse gas forcing corresponding to years 2000, 2015 and 2030 have been performed with the global coupled model EC-Earth in order to analyze the Arctic climate and interactions with lower latitudes under different levels of anthropogenic warming. The model simulations indicate an accelerated warming and ice extent reduction in the Arctic between the year-2030 and year-2015 simulations compared to the change between the year-2015 and year-2000 simulations. Both Arctic warming and sea ice reduction are closely linked to the increase of ocean heat transport into the Arctic, particularly through the Barents Sea Opening. Decadal variations of Arctic sea ice extent and ice volume are of the same order of magnitude as the observed ice extent reductions in the last 30 years and are dominated by the variability of the ocean heat transports through the Barents Sea Opening and the Bering Strait. Despite a general warming of mid and high northern latitudes, a substantial cooling is found in the subpolar gyre of the North Atlantic under year-2015 and year-2030 conditions. This cooling is related to a strong reduction in the AMOC, itself due to reduced deep water formation in the Labrador Sea. The observed trend towards a more negative phase of the North Atlantic Oscillation (NAO) and the observed linkage between autumn Arctic ice variations and NAO are reproduced in our model simulations for selected 30-year periods but are not robust over longer time periods. This indicates that the observed linkages between ice and NAO might not be robust in reality either, and that the observational time period is still too short to reliably separate the trend from the natural variability.

  9. Implications for the creation of warm saline deep water: Late Paleocene reconstructions and global climate model simulations

    SciTech Connect

    O`Connell, S.; Chandler, M.A. |; Ruedy, R.

    1996-03-01

    A global warming trend began during the late Paleocene that culminated in the early Eocene with the highest global temperatures of the Cenozoic. We have reconstructed late Paleocene surfacial boundary conditions and modeled atmospheric conditions using the Goddard Institute for Space Studies general circulation model version II (GISS GCM II). These experiments were conducted to test the hypothesis that warm saline deep water formed during the late paleocene and to understand atmospheric circulation near the beginning of a period of global warming. The warming is attributed primarily to increased sea surface temperatures at high latitudes. The sensitivity of the climate to ocean temperature was tested using two sea surface temperature distributions, each delimited latitudinally by oxygen isotope values, but with different east-west gradients. The simulations discussed here contain several features unique among warm climate experiments. The first experiment (P-1) used latitudinally constant (zonal) sea surface temperatures. The zonally distributed sea surface temperatures strengthen the general circulation of the atmosphere. In particular, Hadley Cell circulation is intensified, leading to extremes of precipitation in the equatorial region and extreme evaporation across subtropical oceans. The unusual results prompted a second experiment with modern east-west sea surface temperature gradients superimposed and referred to as P-Gradient (P-Grad). 84 refs., 10 figs., 4 tabs.

  10. Enhanced Brewer Dobson circulation reduces N2O warming potential under climate change

    NASA Astrophysics Data System (ADS)

    Kracher, Daniela; Reick, Christian; Manzini, Elisa; Schultz, Martin; Stein, Olaf

    2016-04-01

    One implication of climate change is an enhancement of the Brewer Dobson circulation (BDC) triggering the exchange between troposphere and stratosphere. This change in atmospheric dynamics will have effects on atmospheric constituents, especially those with stratospheric sinks such as ozone depleting substances (ODS) including nitrous oxide (N2O). N2O is the most important currently emitted ODS, and the third most important anthropogenic greenhouse gas. Under enhanced BDC, more N2O is transported from the troposphere into the stratosphere, reaching higher altitudes, resulting in an increased N2O sink and a decrease in N2O lifetime. Some aspects of the effect of an enhanced BDC on lifetimes of ODS have already been examined with focus on its implications for ozone. In this study, we examine the effect of a decreasing N2O lifetime in light of climate change. To this end we conduct idealized transient global warming simulations with ECHAM, the atmosphere component of the MPI Earth System Model. As we prescribe surface flux boundary conditions for N2O, we are able to examine further implications of an enhanced N2O sink on atmospheric abundance, which is an important factor for e.g. generating concentration scenarios. Due the idealized simulation setup, we derive findings that are scenario-independent and can easily be extended to other global warming scenarios.

  11. Effects of climate warming on polar bears: a review of the evidence.

    PubMed

    Stirling, Ian; Derocher, Andrew E

    2012-09-01

    Climate warming is causing unidirectional changes to annual patterns of sea ice distribution, structure, and freeze-up. We summarize evidence that documents how loss of sea ice, the primary habitat of polar bears (Ursus maritimus), negatively affects their long-term survival. To maintain viable subpopulations, polar bears depend on sea ice as a platform from which to hunt seals for long enough each year to accumulate sufficient energy (fat) to survive periods when seals are unavailable. Less time to access to prey, because of progressively earlier breakup in spring, when newly weaned ringed seal (Pusa hispida) young are available, results in longer periods of fasting, lower body condition, decreased access to denning areas, fewer and smaller cubs, lower survival of cubs as well as bears of other age classes and, finally, subpopulation decline toward eventual extirpation. The chronology of climate-driven changes will vary between subpopulations, with quantifiable negative effects being documented first in the more southerly subpopulations, such as those in Hudson Bay or the southern Beaufort Sea. As the bears' body condition declines, more seek alternate food resources so the frequency of conflicts between bears and humans increases. In the most northerly areas, thick multiyear ice, through which little light penetrates to stimulate biological growth on the underside, will be replaced by annual ice, which facilitates greater productivity and may create habitat more favorable to polar bears over continental shelf areas in the short term. If the climate continues to warm and eliminate sea ice as predicted, polar bears will largely disappear from the southern portions of their range by mid-century. They may persist in the northern Canadian Arctic Islands and northern Greenland for the foreseeable future, but their long-term viability, with a much reduced global population size in a remnant of their former range, is uncertain.

  12. Allocation trade-off under climate warming in experimental amphibian populations

    PubMed Central

    Gao, Xu; Jin, Changnan; Camargo, Arley

    2015-01-01

    Climate change could either directly or indirectly cause population declines via altered temperature, rainfall regimes, food availability or phenological responses. However few studies have focused on allocation trade-offs between growth and reproduction under marginal resources, such as food scarce that may be caused by climate warming. Such critical changes may have an unpredicted impact on amphibian life-history parameters and even population dynamics. Here, we report an allocation strategy of adult anuran individuals involving a reproductive stage under experimental warming. Using outdoor mesocosm experiments we simulated a warming scenario likely to occur at the end of this century. We examined the effects of temperature (ambient vs. pre-/post-hibernation warming) and food availability (normal vs. low) on reproduction and growth parameters of pond frogs (Pelophylax nigromaculatus). We found that temperature was the major factor influencing reproductive time of female pond frogs, which showed a significant advancing under post-hibernation warming treatment. While feeding rate was the major factor influencing reproductive status of females, clutch size, and variation of body size for females, showed significant positive correlations between feeding rate and reproductive status, clutch size, or variation of body size. Our results suggested that reproduction and body size of amphibians might be modulated by climate warming or food availability variation. We believe this study provides some new evidence on allocation strategies suggesting that amphibians could adjust their reproductive output to cope with climate warming. PMID:26500832

  13. Allocation trade-off under climate warming in experimental amphibian populations.

    PubMed

    Gao, Xu; Jin, Changnan; Camargo, Arley; Li, Yiming

    2015-01-01

    Climate change could either directly or indirectly cause population declines via altered temperature, rainfall regimes, food availability or phenological responses. However few studies have focused on allocation trade-offs between growth and reproduction under marginal resources, such as food scarce that may be caused by climate warming. Such critical changes may have an unpredicted impact on amphibian life-history parameters and even population dynamics. Here, we report an allocation strategy of adult anuran individuals involving a reproductive stage under experimental warming. Using outdoor mesocosm experiments we simulated a warming scenario likely to occur at the end of this century. We examined the effects of temperature (ambient vs. pre-/post-hibernation warming) and food availability (normal vs. low) on reproduction and growth parameters of pond frogs (Pelophylax nigromaculatus). We found that temperature was the major factor influencing reproductive time of female pond frogs, which showed a significant advancing under post-hibernation warming treatment. While feeding rate was the major factor influencing reproductive status of females, clutch size, and variation of body size for females, showed significant positive correlations between feeding rate and reproductive status, clutch size, or variation of body size. Our results suggested that reproduction and body size of amphibians might be modulated by climate warming or food availability variation. We believe this study provides some new evidence on allocation strategies suggesting that amphibians could adjust their reproductive output to cope with climate warming. PMID:26500832

  14. Association of joint occurrence of warm and dry conditions over Greece with anticyclonic activity during summer

    NASA Astrophysics Data System (ADS)

    Hatzaki, Maria; Nastos, Panagiotis; Polychroni, Iliana; Flocas, Helena A.; Kouroutzoglou, John; Dalezios, Nicolas R.

    2016-04-01

    Anticyclones are often associated with extreme phenomena, like prolonged droughts or heatwaves and, thus, they can significantly impact fauna and flora, water resources and public health. In this study, the association of the summer anticyclonic activity with the joint occurrence of extreme warm and dry conditions over Greece is explored. The warm and dry extreme conditions are defined by utilizing the Warm/Dry (WD) index for representative meteorological stations from sub-regions of Greece with different climatic features. The WD index is the number of days over a period (here summer) having at the same time mean air temperature > 75th percentile of daily mean temperature and precipitation < 25th percentile of daily precipitation amounts. The anticyclonic activity is determined by the density of the anticyclonic systems over the greater Mediterranean region, which, during summer, is maximized over the Balkans and the northern African coast. The anticyclonic system density has resulted from the comprehensive climatology of Mediterranean anticyclones that was assembled with the aid of the finding and tracking scheme of the University of Melbourne (MS scheme), using the ERA-Interim mean sea-level pressure fields for 1979-2012. The examination of inter-annual and spatial variations of the WD index in association with shifts of the anticyclonic maxima shows that the different sub-regions of Greece are not affected evenly, stressing the role of the complex topography of the region and the variations in the subtropical jet position.

  15. Climatic unpredictability and parasitism of caterpillars: implications of global warming.

    PubMed

    Stireman, J O; Dyer, L A; Janzen, D H; Singer, M S; Lill, J T; Marquis, R J; Ricklefs, R E; Gentry, G L; Hallwachs, W; Coley, P D; Barone, J A; Greeney, H F; Connahs, H; Barbosa, P; Morais, H C; Diniz, I R

    2005-11-29

    Insect outbreaks are expected to increase in frequency and intensity with projected changes in global climate through direct effects of climate change on insect populations and through disruption of community interactions. Although there is much concern about mean changes in global climate, the impact of climatic variability itself on species interactions has been little explored. Here, we compare caterpillar-parasitoid interactions across a broad gradient of climatic variability and find that the combined data in 15 geographically dispersed databases show a decrease in levels of parasitism as climatic variability increases. The dominant contribution to this pattern by relatively specialized parasitoid wasps suggests that climatic variability impairs the ability of parasitoids to track host populations. Given the important role of parasitoids in regulating insect herbivore populations in natural and managed systems, we predict an increase in the frequency and intensity of herbivore outbreaks through a disruption of enemy-herbivore dynamics as climates become more variable.

  16. Key constraints on Earth's climate during the mid-Pliocene Warm Period

    NASA Astrophysics Data System (ADS)

    Haywood, A. M.; Dowsett, H. J.; Otto-Bliesner, B. L.; Chandler, M. A.; Naish, T.; Lunt, D. J.

    2011-12-01

    The study of warm intervals of the Pliocene Epoch (Pliocene 'interglacials') is important for understanding the long-term response of the Earth System to current or near future concentrations of atmospheric CO2; as well as global mean temperatures that will be attained during this century. The Pliocene can yield constraints on Earth System Sensitivity which would help identify a target CO2 threshold that must not be crossed if humankind is to avoid dangerous levels of climate change in the long-term. For this endeavour to succeed it requires the merger of globally distributed geological records of Pliocene environments with state-of-the-art climate and Earth System Models. These processes/products provide an extraordinary scientific resource for studying global and regional Pliocene environments and climate dynamics. However, from the perspective of the 5th Intergovernmental Panel on Climate Change Assessment Report, arguably some of most pressing questions to ask Pliocene climate researchers are (a) how much did global mean temperatures increase, (b) how is this increase expressed in reconstructions of meridional sea-surface and surface temperature gradients, and (c) how well can current climate models reproduce the observed trends in meridional temperature gradients. For the mid-Pliocene Warm Period (mPWP ~3.3 to 3.0 Ma BP) we present a comprehensive review of geologically-constrained climate model estimates of global temperature change available within the published literature. We also include data from recent simulations completed as part of international Pliocene Model Intercomparison Project. Our analysis focuses on the range in model estimated global temperature change as well as consistent differences in global temperature change observed between models which use prescribed sea surface and sea-ice boundary conditions from geological estimates, versus simulations in which these parameters are predicted by the models themselves. We present a new

  17. Is "Warm Arctic, Cold Continent" A Fingerprint Pattern of Climate Change?

    NASA Astrophysics Data System (ADS)

    Hoerling, M. P.; Sun, L.; Perlwitz, J.

    2015-12-01

    Cold winters and cold waves have recently occurred in Europe, central Asia and the Midwest to eastern United States, even as global mean temperatures set record highs and Arctic amplification of surface warming continued. Since 1979, Central Asia winter temperatures have in fact declined. Conjecture has it that more cold extremes over the mid-latitude continents should occur due to global warming and the impacts of Arctic sea ice loss. A Northern Hemisphere temperature signal termed the "Warm Arctic, Cold Continent" pattern has thus been surmised. Here we use a multi-model approach to test the hypothesis that such a pattern is indeed symptomatic of climate change. Diagnosis of a large model ensemble of historical climate simulations shows some individual realizations to yield cooling trends over Central Asia, but importantly the vast majority show warming. The observed cooling has thus likely been a low probability state of internal variability, not a fingerprint of forced climate change. We show that daily temperature variations over continents decline in winter due to global warming, and cold waves become less likely. This is partly related to diminution of Arctic cold air reservoirs due to warming-induced sea ice loss. Nonetheless, we find some evidence and present a physical basis that Arctic sea ice loss alone can induce a winter cooling over Central Asia, though with a magnitude that is appreciably smaller than the overall radiative-forced warming signal. Our results support the argument that recent cooling trends over central Asia, and cold extreme events over the winter continents, have principally resulted from atmospheric internal variability and have been neither a forced response to Arctic seas ice loss nor a symptom of global warming. The paradigm of climate change is thus better expressed as "Warm Arctic, Warm Continent" for the NH winter.

  18. A method to measure winter precipitation and sublimation under global warming conditions

    NASA Astrophysics Data System (ADS)

    Herndl, Markus; Slawitsch, Veronika; von Unold, Georg

    2016-04-01

    Winter precipitation and snow sublimation are fundamental components of the alpine moisture budget. Much work has been done in the study of these processes and its important contribution to the annual water balance. Due to the above-average sensitivity of the alpine region to climate change, a change in the importance and magnitude of these water balance parameters can be expected. To determine these effects, a lysimeter-facility enclosed in an open-field climate manipulation experiment was established in 2015 at AREC Raumberg-Gumpenstein which is able to measure winter precipitation and sublimation under global warming conditions. In this facility, six monolithic lysimeters are equipped with a snow cover monitoring system, which separates the snow cover above the lysimeter automatically from the surrounding snow cover. Three of those lysimeters were exposed to a +3°C scenario and three lysimeters to ambient conditions. Weight data are recorded every minute and therefore it is possible to get high-resolution information about the water balance parameter in winter. First results over two snow event periods showed that the system can measure very accurately winter precipitation and sublimation especially in comparison with other measurement systems and usually used models. Also first trends confirm that higher winter temperatures may affect snow water equivalent and snow cover duration. With more data during the next years using this method, it is possible to quantify the influence of global warming on water balance parameters during the winter periods.

  19. Medical Providers as Global Warming and Climate Change Health Educators: A Health Literacy Approach

    ERIC Educational Resources Information Center

    Villagran, Melinda; Weathers, Melinda; Keefe, Brian; Sparks, Lisa

    2010-01-01

    Climate change is a threat to wildlife and the environment, but it also one of the most pervasive threats to human health. The goal of this study was to examine the relationships among dimensions of health literacy, patient education about global warming and climate change (GWCC), and health behaviors. Results reveal that patients who have higher…

  20. Increased evapotranspiration demand in a Mediterranean climate might cause a decline in fungal yields under global warming.

    PubMed

    Ágreda, Teresa; Águeda, Beatriz; Olano, José M; Vicente-Serrano, Sergio M; Fernández-Toirán, Marina

    2015-09-01

    Wild fungi play a critical role in forest ecosystems, and its recollection is a relevant economic activity. Understanding fungal response to climate is necessary in order to predict future fungal production in Mediterranean forests under climate change scenarios. We used a 15-year data set to model the relationship between climate and epigeous fungal abundance and productivity, for mycorrhizal and saprotrophic guilds in a Mediterranean pine forest. The obtained models were used to predict fungal productivity for the 2021-2080 period by means of regional climate change models. Simple models based on early spring temperature and summer-autumn rainfall could provide accurate estimates for fungal abundance and productivity. Models including rainfall and climatic water balance showed similar results and explanatory power for the analyzed 15-year period. However, their predictions for the 2021-2080 period diverged. Rainfall-based models predicted a maintenance of fungal yield, whereas water balance-based models predicted a steady decrease of fungal productivity under a global warming scenario. Under Mediterranean conditions fungi responded to weather conditions in two distinct periods: early spring and late summer-autumn, suggesting a bimodal pattern of growth. Saprotrophic and mycorrhizal fungi showed differences in the climatic control. Increased atmospheric evaporative demand due to global warming might lead to a drop in fungal yields during the 21st century.

  1. Climate change drives warming in the Hudson River Estuary, New York (USA).

    PubMed

    Seekell, David A; Pace, Michael L

    2011-08-01

    Estuaries may be subject to warming due to global climate change but few studies have considered the drivers or seasonality of warming empirically. We analyzed temperature trends and rates of temperature change over time for the Hudson River estuary using long-term data, mainly from daily measures taken at the Poughkeepsie Water Treatment Facility. This temperature record is among the longest in the world for a river or estuary. The Hudson River has warmed 0.945 °C since 1946. Many of the warmest years in the record occurred in the last 16 years. A seasonal analysis of trends indicated significant warming for the months of April through August. The warming of the Hudson is primarily related to increasing air temperature. Increasing freshwater discharge into the estuary has not mitigated the warming trend.

  2. Responses of alpine grassland on Qinghai-Tibetan plateau to climate warming and permafrost degradation: a modeling perspective

    NASA Astrophysics Data System (ADS)

    Yi, Shuhua; Wang, Xiaoyun; Qin, Yu; Xiang, Bo; Ding, Yongjian

    2014-07-01

    Permafrost plays a critical role in soil hydrology. Thus, the degradation of permafrost under warming climate conditions may affect the alpine grassland ecosystem on the Qinghai-Tibetan Plateau. Previous space-for-time studies using plot and basin scales have reached contradictory conclusions. In this study, we applied a process-based ecosystem model (DOS-TEM) with a state-of-the-art permafrost hydrology scheme to examine this issue. Our results showed that 1) the DOS-TEM model could properly simulate the responses of soil thermal and hydrological dynamics and of ecosystem dynamics to climate warming and spatial differences in precipitation; 2) the simulated results were consistent with plot-scale studies showing that warming caused an increase in maximum unfrozen thickness, a reduction in vegetation and soil carbon pools as a whole, and decreases in soil water content, net primary production, and heterotrophic respiration; and 3) the simulated results were also consistent with basin-scale studies showing that the ecosystem responses to warming were different in regions with different combinations of water and energy constraints. Permafrost prevents water from draining into water reservoirs. However, the degradation of permafrost in response to warming is a long-term process that also enhances evapotranspiration. Thus, the degradation of the alpine grassland ecosystem on the Qinghai-Tibetan Plateau (releasing carbon) cannot be mainly attributed to the disappearing waterproofing function of permafrost.

  3. Areas of potential suitability and survival of Dendroctonus valens in China under extreme climate warming scenario.

    PubMed

    He, S Y; Ge, X Z; Wang, T; Wen, J B; Zong, S X

    2015-08-01

    The areas in China with climates suitable for the potential distribution of the pest species red turpentine beetle (RTB) Dendroctonus valens LeConte (Coleoptera: Scolytidae) were predicted by CLIMEX based on historical climate data and future climate data with warming estimated. The model used a historical climate data set (1971-2000) and a simulated climate data set (2010-2039) provided by the Tyndall Centre for Climate Change (TYN SC 2.0). Based on the historical climate data, a wide area was available in China with a suitable climate for the beetle in which every province might contain suitable habitats for this pest, particularly all of the southern provinces. The northern limit of the distribution of the beetle was predicted to reach Yakeshi and Elunchun in Inner Mongolia, and the western boundary would reach to Keerkezi in Xinjiang Province. Based on a global-warming scenario, the area with a potential climate suited to RTB in the next 30 years (2010-2039) may extend further to the northeast. The northern limit of the distribution could reach most parts of south Heilongjiang Province, whereas the western limit would remain unchanged. Combined with the tendency for RTB to spread, the variation in suitable habitats within the scenario of extreme climate warming and the multiple geographical elements of China led us to assume that, within the next 30 years, RTB would spread towards the northeast, northwest, and central regions of China and could be a potentially serious problem for the forests of China.

  4. Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events.

    PubMed

    Heijmans, Monique M P D; van der Knaap, Yasmijn A M; Holmgren, Milena; Limpens, Juul

    2013-07-01

    Peatlands store approximately 30% of global soil carbon, most in moss-dominated bogs. Future climatic changes, such as changes in precipitation patterns and warming, are expected to affect peat bog vegetation composition and thereby its long-term carbon sequestration capacity. Theoretical work suggests that an episode of rapid environmental change is more likely to trigger transitions to alternative ecosystem states than a gradual, but equally large, change in conditions. We used a dynamic vegetation model to explore the impacts of drought events and increased temperature on vegetation composition of temperate peat bogs. We analyzed the consequences of six patterns of summer drought events combined with five temperature scenarios to test whether an open peat bog dominated by moss (Sphagnum) could shift to a tree-dominated state. Unexpectedly, neither a gradual decrease in the amount of summer precipitation nor the occurrence of a number of extremely dry summers in a row could shift the moss-dominated peat bog permanently into a tree-dominated peat bog. The increase in tree biomass during drought events was unable to trigger positive feedbacks that keep the ecosystem in a tree-dominated state after a return to previous 'normal' rainfall conditions. In contrast, temperature increases from 1 °C onward already shifted peat bogs into tree-dominated ecosystems. In our simulations, drought events facilitated tree establishment, but temperature determined how much tree biomass could develop. Our results suggest that under current climatic conditions, peat bog vegetation is rather resilient to drought events, but very sensitive to temperature increases, indicating that future warming is likely to trigger persistent vegetation shifts.

  5. Topography and age mediate the growth responses of Smith fir to climate warming in the southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, B.; Wang, Y.; Zhu, H.; Liang, E.; Camarero, J. J.

    2016-03-01

    The Tibetan Plateau holds some of the world's highest undisturbed natural treelines and timberlines. Such extreme environments constitute potentially valuable monitoring sites of the effects of climate warming on high-elevation forests. Here, we analyze a network of 21 Smith fir forests situated in the Sygera Mountains, southeastern Tibetan Plateau, using tree-ring width (TRW) and basal area increment (BAI) chronologies. Sampled sites encompassed a wide elevation gradient, from 3600 to 4400 m, including some treeline sites and diverse aspects and tree ages. In comparison with TRW series, BAI series better capture the long-term warming signal. Previous November and current April and summer temperatures are the dominant climatic factors controlling Smith fir radial growth. The mean inter-series correlations of TRW increased upwards, but the forest limit presented the highest potential to reconstruct past temperature variability. Moreover, the growth responses of young trees were less stable than those of trees older than 100 years. Climate warming is accelerating radial growth of Smith fir forest subjected to mesic conditions. Collectively, these findings confirm that the effects of site elevation and tree age should be considered when quantifying climate-growth relationships. The type of tree-ring data (BAI vs. TRW) is also relevant since BAI indices seem to be a better climatic proxy of low-frequency temperature signals than TRW indices. Therefore, site (e.g., elevation) and tree (e.g., age) features should be considered to properly evaluate the effects of climate warming on growth of high-elevation forests.

  6. Topography and age mediate the growth responses of Smith fir to climate warming in the southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, B.; Wang, Y.; Zhu, H.; Liang, E.; Camarero, J. J.

    2016-10-01

    The Tibetan Plateau holds some of the world's highest undisturbed natural treelines and timberlines. Such extreme environments constitute potentially valuable monitoring sites of the effects of climate warming on high-elevation forests. Here, we analyze a network of 21 Smith fir forests situated in the Sygera Mountains, southeastern Tibetan Plateau, using tree-ring width (TRW) and basal area increment (BAI) chronologies. Sampled sites encompassed a wide elevation gradient, from 3600 to 4400 m, including some treeline sites and diverse aspects and tree ages. In comparison with TRW series, BAI series better capture the long-term warming signal. Previous November and current April and summer temperatures are the dominant climatic factors controlling Smith fir radial growth. The mean inter-series correlations of TRW increased upwards, but the forest limit presented the highest potential to reconstruct past temperature variability. Moreover, the growth responses of young trees were less stable than those of trees older than 100 years. Climate warming is accelerating radial growth of Smith fir forest subjected to mesic conditions. Collectively, these findings confirm that the effects of site elevation and tree age should be considered when quantifying climate-growth relationships. The type of tree-ring data (BAI vs. TRW) is also relevant since BAI indices seem to be a better climatic proxy of low-frequency temperature signals than TRW indices. Therefore, site (e.g., elevation) and tree (e.g., age) features should be considered to properly evaluate the effects of climate warming on growth of high-elevation forests.

  7. Contribution of air conditioning adoption to future energy use under global warming.

    PubMed

    Davis, Lucas W; Gertler, Paul J

    2015-05-12

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change.

  8. Contribution of air conditioning adoption to future energy use under global warming.

    PubMed

    Davis, Lucas W; Gertler, Paul J

    2015-05-12

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change. PMID:25918391

  9. Disruption of the European climate seasonal clock in a warming world

    NASA Astrophysics Data System (ADS)

    Cattiaux, J.; Cassou, C.

    2015-12-01

    Strength and inland penetration of the oceanic westerly flow over Europe control a large part of the temperature variability over most of the continent. Reduced westerlies, linked to high-pressure anomalies over Scandinavia, induce cold conditions in winter and warm conditions in summer. Here we propose to define the onset of these two seasons as the calendar day where the daily circulation/temperature relationship over Western Europe switches sign. According to this meteorologically-based metrics assessed from several observational datasets, we provide robust evidence for an earlier summer onset by ~10 days between the 1960s and 2000s. Results from model ensemble simulations dedicated to detection-attribution show that this calendar advance is incompatible with the sole internal climate variability and can be attributed to anthropogenic forcings. Late winter snow disappearance over Eastern Europe affects cold air intrusion to the West when easterlies blow, and is mainly responsible for the observed present-day and near-future summer advance. Our findings agree with phenological-based trends (earlier spring events) reported for many living species over Europe, for which they provide a novel dynamical interpretation beyond the traditionally evoked global warming effect. Based on business-as-usual scenario, a seasonal shift of ~25 days is expected by 2100 for summer onset, while no clear signal arises for winter onset.

  10. Climate warming and agricultural stressors interact to determine stream macroinvertebrate community dynamics.

    PubMed

    Piggott, Jeremy J; Townsend, Colin R; Matthaei, Christoph D

    2015-05-01

    impacted by high sediment loads may be further degraded under a warming climate. However, the degree to which this will occur may also depend on in-stream nutrient conditions. PMID:25581853

  11. Disruption of the European climate seasonal clock in a warming world

    NASA Astrophysics Data System (ADS)

    Cassou, Christophe; Cattiaux, Julien

    2016-06-01

    Temperatures over Europe are largely driven by the strength and inland penetration of the oceanic westerly flow. The wind influence depends on season: blocked westerlies, linked to high-pressure anomalies over Scandinavia, induce cold episodes in winter but warm conditions in summer. Here, we propose to define the onset of the two seasons as the calendar day on which the daily circulation/temperature relationship switches sign. We have assessed this meteorologically based metric using several observational data sets and we provide evidence for an earlier onset of the summer date by ~10 days between the 1960s and 2000s. Results from a climate model show that internal variability alone cannot explain this calendar advance. Rather, the earlier onset can be partly attributed to anthropogenic forcings. The modification of the zonal advection due to earlier disappearance of winter snow over Eastern Europe, which reduces the degree to which climate has continental properties, is mainly responsible for the present-day and near-future advance of the summer date in Western Europe. Our findings are in line with phenological-based trends (earlier spring events) reported for many living species over Europe, for which we provide an alternative interpretation to the traditionally evoked local warming effect. Based on the Representative Concentration Pathway (RCP) 8.5 scenario, which assumes that greenhouse gas emissions continue to rise throughout the twenty-first century, a summer advance of ~20 days compared with pre-industrial climate is expected by 2100, whereas no clear signal arises for winter onset.

  12. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time.

    PubMed

    Elmendorf, Sarah C; Henry, Gregory H R; Hollister, Robert D; Björk, Robert G; Bjorkman, Anne D; Callaghan, Terry V; Collier, Laura Siegwart; Cooper, Elisabeth J; Cornelissen, Johannes H C; Day, Thomas A; Fosaa, Anna Maria; Gould, William A; Grétarsdóttir, Járngerður; Harte, John; Hermanutz, Luise; Hik, David S; Hofgaard, Annika; Jarrad, Frith; Jónsdóttir, Ingibjörg Svala; Keuper, Frida; Klanderud, Kari; Klein, Julia A; Koh, Saewan; Kudo, Gaku; Lang, Simone I; Loewen, Val; May, Jeremy L; Mercado, Joel; Michelsen, Anders; Molau, Ulf; Myers-Smith, Isla H; Oberbauer, Steven F; Pieper, Sara; Post, Eric; Rixen, Christian; Robinson, Clare H; Schmidt, Niels Martin; Shaver, Gaius R; Stenström, Anna; Tolvanen, Anne; Totland, Orjan; Troxler, Tiffany; Wahren, Carl-Henrik; Webber, Patrick J; Welker, Jeffery M; Wookey, Philip A

    2012-02-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date. PMID:22136670

  13. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time.

    PubMed

    Elmendorf, Sarah C; Henry, Gregory H R; Hollister, Robert D; Björk, Robert G; Bjorkman, Anne D; Callaghan, Terry V; Collier, Laura Siegwart; Cooper, Elisabeth J; Cornelissen, Johannes H C; Day, Thomas A; Fosaa, Anna Maria; Gould, William A; Grétarsdóttir, Járngerður; Harte, John; Hermanutz, Luise; Hik, David S; Hofgaard, Annika; Jarrad, Frith; Jónsdóttir, Ingibjörg Svala; Keuper, Frida; Klanderud, Kari; Klein, Julia A; Koh, Saewan; Kudo, Gaku; Lang, Simone I; Loewen, Val; May, Jeremy L; Mercado, Joel; Michelsen, Anders; Molau, Ulf; Myers-Smith, Isla H; Oberbauer, Steven F; Pieper, Sara; Post, Eric; Rixen, Christian; Robinson, Clare H; Schmidt, Niels Martin; Shaver, Gaius R; Stenström, Anna; Tolvanen, Anne; Totland, Orjan; Troxler, Tiffany; Wahren, Carl-Henrik; Webber, Patrick J; Welker, Jeffery M; Wookey, Philip A

    2012-02-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date.

  14. Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming.

    PubMed

    Faubert, Patrick; Tiiva, Päivi; Rinnan, Asmund; Michelsen, Anders; Holopainen, Jarmo K; Rinnan, Riikka

    2010-07-01

    *Biogenic volatile organic compound (BVOC) emissions from arctic ecosystems are important in view of their role in global atmospheric chemistry and unknown feedbacks to global warming. These cold ecosystems are hotspots of climate warming, which will be more severe here than averaged over the globe. We assess the effects of climatic warming on non-methane BVOC emissions from a subarctic heath. *We performed ecosystem-based chamber measurements and gas chromatography-mass spectrometry (GC-MS) analyses of the BVOCs collected on adsorbent over two growing seasons at a wet subarctic tundra heath hosting a long-term warming and mountain birch (Betula pubescens ssp. czerepanovii) litter addition experiment. *The relatively low emissions of monoterpenes and sesquiterpenes were doubled in response to an air temperature increment of only 1.9-2.5 degrees C, while litter addition had a minor influence. BVOC emissions were seasonal, and warming combined with litter addition triggered emissions of specific compounds. *The unexpectedly high rate of release of BVOCs measured in this conservative warming scenario is far above the estimates produced by the current models, which underlines the importance of a focus on BVOC emissions during climate change. The observed changes have implications for ecological interactions and feedback effects on climate change via impacts on aerosol formation and indirect greenhouse effects.

  15. Climate-change impact potentials as an alternative to global warming potentials

    NASA Astrophysics Data System (ADS)

    Kirschbaum, Miko U. F.

    2014-03-01

    For policy applications, such as for the Kyoto Protocol, the climate-change contributions of different greenhouse gases are usually quantified through their global warming potentials. They are calculated based on the cumulative radiative forcing resulting from a pulse emission of a gas over a specified time period. However, these calculations are not explicitly linked to an assessment of ultimate climate-change impacts. A new metric, the climate-change impact potential (CCIP), is presented here that is based on explicitly defining the climate-change perturbations that lead to three different kinds of climate-change impacts. These kinds of impacts are: (1) those related directly to temperature increases; (2) those related to the rate of warming; and (3) those related to cumulative warming. From those definitions, a quantitative assessment of the importance of pulse emissions of each gas is developed, with each kind of impact assigned equal weight for an overall impact assessment. Total impacts are calculated under the RCP6 concentration pathway as a base case. The relevant climate-change impact potentials are then calculated as the marginal increase of those impacts over 100 years through the emission of an additional unit of each gas in 2010. These calculations are demonstrated for CO2, methane and nitrous oxide. Compared with global warming potentials, climate-change impact potentials would increase the importance of pulse emissions of long-lived nitrous oxide and reduce the importance of short-lived methane.

  16. Climate Conditioning for the Learning Environment.

    ERIC Educational Resources Information Center

    Perkins and Will, Architects, Chicago, IL.

    Discusses heating, cooling, and ventilation for the classroom in relationship to students' learning abilities. It is designed to assist school boards, administrators, architects and engineers in understanding the beneficial effects of total climate control, and in evaluating the climate conditioning systems available for schools. Discussion…

  17. Linking global warming to amphibian declines through its effects on female body condition and survivorship.

    PubMed

    Reading, C J

    2007-02-01

    There is general consensus that climate change has contributed to the observed decline, and extinction, of many amphibian species throughout the world. However, the mechanisms of its effects remain unclear. A laboratory study in 1980-1981 in which temperate zone amphibians that were prevented from hibernating had decreased growth rates, matured at a smaller size and had increased mortality compared with those that hibernated suggested one possible mechanism. I used data from a field study of common toads (Bufo bufo) in the UK, between 1983 and 2005, to determine whether this also occurs in the field. The results demonstrated two pathways by which global warming may cause amphibian declines. First, there was a clear relationship between a decline in the body condition of female common toads and the occurrence of warmer than average years since 1983. This was paralleled by a decline in their annual survival rates with the relationship between these two declines being highly correlated. Second, there was a significant relationship between the occurrence of mild winters and a reduction in female body size, resulting in fewer eggs being laid annually. Climate warming can, therefore, act on wild temperate zone amphibians by deleteriously affecting their physiology, during and after hibernation, causing increased female mortality rates and decreased fecundity in survivors.

  18. Linking global warming to amphibian declines through its effects on female body condition and survivorship.

    PubMed

    Reading, C J

    2007-02-01

    There is general consensus that climate change has contributed to the observed decline, and extinction, of many amphibian species throughout the world. However, the mechanisms of its effects remain unclear. A laboratory study in 1980-1981 in which temperate zone amphibians that were prevented from hibernating had decreased growth rates, matured at a smaller size and had increased mortality compared with those that hibernated suggested one possible mechanism. I used data from a field study of common toads (Bufo bufo) in the UK, between 1983 and 2005, to determine whether this also occurs in the field. The results demonstrated two pathways by which global warming may cause amphibian declines. First, there was a clear relationship between a decline in the body condition of female common toads and the occurrence of warmer than average years since 1983. This was paralleled by a decline in their annual survival rates with the relationship between these two declines being highly correlated. Second, there was a significant relationship between the occurrence of mild winters and a reduction in female body size, resulting in fewer eggs being laid annually. Climate warming can, therefore, act on wild temperate zone amphibians by deleteriously affecting their physiology, during and after hibernation, causing increased female mortality rates and decreased fecundity in survivors. PMID:17024381

  19. Global warming: fly populations are responding rapidly to climate change.

    PubMed

    van Heerwaarden, Belinda; Hoffmann, Ary A

    2007-01-01

    New studies on chromosome inversion polymorphisms in Drosophila species show that the genetic constitution of populations is responding to recent climate change and that widespread species may have the potential to undergo adaptive shifts. Genetic markers in widespread species can act as indicators of climate change on natural populations.

  20. Teaching about Climate Change: Cool Schools Tackle Global Warming.

    ERIC Educational Resources Information Center

    Grant, Tim, Ed.; Littlejohn, Gail, Ed.

    Within the last couple of decades, the concentration of greenhouse gases in the atmosphere has increased significantly due to human activities. Today climate change is an important issue for humankind. This book provides a starting point for educators to teach about climate change, although there are obstacles caused by the industrialized…

  1. Will the Arctic Land Surface become Wetter or Drier in Response to a Warming Climate

    NASA Astrophysics Data System (ADS)

    Hinzman, L. D.; Rawlins, M.; Serreze, M.; Vorosmarty, C. J.; Walsh, J. E.

    2015-12-01

    There is much concern about a potentially "accelerated" hydrologic cycle, with associated extremes in weather and climate-related phenomena. Whether this translates into wetter or drier conditions across arctic landscapes remains an open question. Arctic ecosystems differ substantially from those in temperate regions, largely due to the interactions of extremes in climate and land surface characteristics. Ice-rich permafrost prevents percolation of rainfall or snowmelt water, often maintaining a moist to saturated active layer where the permafrost table is shallow. Permafrost may also block the lateral movement of groundwater, and act as a confining unit for water in sub- or intra-permafrost aquifers. However, as permafrost degrades, profound changes in interactions between groundwater and surface water occur that affect the partitioning among the water balance components with subsequent impacts to the surface energy balance and essential ecosystem processes. Most simulations of arctic climate project sustained increases in temperature and gradual increases in precipitation over the 21st century. However, most climatic models do not correctly represent the essential controls that permafrost exerts on hydrological, ecological, and climatological processes. If warming continues as projected, we expect large-scale changes in surface hydrology as permafrost degrades. Where groundwater gradients are downward (i.e. surface water will infiltrate to subsurface groundwater), as in most cases, we may expect improved drainage and drier soils, which would result in reduced evaporation and transpiration (ET). In some special cases, where the groundwater gradient is upward (as in many wetlands or springs) surface soils may become wetter or inundated as permafrost degrades. Further, since soil moisture is a primary factor controlling ecosystem processes, interactions between ecosystems, GHG emissions, and high-latitude climate must also be considered highly uncertain. These inter

  2. Expanding Peatlands in Alaska Caused by Accelerated Glacier Melting Under a Warming Climate

    NASA Astrophysics Data System (ADS)

    Loisel, J.; Yu, Z.; Jones, M. C.

    2009-05-01

    Most mountain glaciers worldwide have been retreating over the last century due to global warming. This is particularly true around the Gulf of Alaska, where glacier recession has further accelerated since 1988. It is well known that glacier meltwater plays a critical role in the global sea level rise, but its effects on structure and functioning of peatland ecosystems remain poorly understood. We have observed in the field that many peatlands in the Susitna Basin, south-central Alaska, are expanding. As high moisture conditions are needed to promote peatland development and expansion, a regional change toward wetter conditions is likely responsible for the ongoing paludification of these peatlands. However, instrumental climatic data from this region show no increase in precipitation but an increase in temperature (and presumably evaporation) over the last decades. We hypothesize that climatically-induced glacier melting is modifying the local/regional climate, especially air humidity during the growing season, promoting the expansion of peatlands. To document recent peatland vertical growth and lateral expansion, we collected two long peat cores and twelve 30-cm-long monoliths in 2008 along a 110-m transect from an expanding peatland margin toward the peatland center. Ecohydrologic changes were reconstructed from testate amoebae and plant macrofossils assemblages. Preliminary results from both long cores revealed a change in the vegetation assemblages from a mesotrophic fen dominated by sedges and brown mosses to a Sphagnum-dominated peat bog at 11 cm, suggesting a very recent modification of the local hydrologic regime. A simultaneous increase in moisture was reconstructed from testate amoebae records. These unusual shifts in peatland development and hydrology (e.g., wet conditions triggering the fen-bog transition) imply a recent increase of atmospheric water to these peatlands. Our ongoing lead-210 dating and additional proxy analysis will help us resolve the

  3. Short term response of a peatland to warming and drought - climate manipulation experiment in W Poland

    NASA Astrophysics Data System (ADS)

    Juszczak, Radosław; Chojnicki, Bogdan; Urbaniak, Marek; Leśny, Jacek; Silvennoinen, Hanna; Lamentowicz, Mariusz; Basińska, Anna; Gąbka, Maciej; Stróżecki, Marcin; Samson, Mateusz; Łuców, Dominika; Józefczyk, Damian; Hoffmann, Mathias; Olejnik, Janusz

    2016-04-01

    conditions led to increases in NDVI and LAI, whilst the site exposed to only drought exhibited the lowest LAI. Warming shifted the vegetation species composition by promoting vascular plants (mainly Carex rostrata and C. limosa), which result also correlates positively with nutrient (Ptot, Mn, F, Na, Zn) availability in the peat water. Here, we report short-term responses to increased temperature and diminished precipitation, showing that the combination of these to stressors leads to very different scenario than their individual impacts. Our results further emphasize the need for long term records from field manipulation site on peatland response to climate changes. The Research was co-founded by the Polish National Centre for Research and Development within the Polish-Norwegian Research Programme within the WETMAN project (Central European Wetland Ecosystem Feedbacks to Changing Climate - Field Scale Manipulation, Project ID: 203258, contract No. Pol-Nor/203258/31/2013 (www.wetman.pl). References Fenner N., Freeman Ch. (2011). Nature Geoscience, 4, 895-900 Hoffmann M., et al. (2015). Agricultural and Forest Meteorology, 200, 30-45 Kimball BA. (2005). Global Change Biology, 11, 2041-2056

  4. Short term response of a peatland to warming and drought - climate manipulation experiment in W Poland

    NASA Astrophysics Data System (ADS)

    Juszczak, Radosław; Chojnicki, Bogdan; Urbaniak, Marek; Leśny, Jacek; Silvennoinen, Hanna; Lamentowicz, Mariusz; Basińska, Anna; Gąbka, Maciej; Stróżecki, Marcin; Samson, Mateusz; Łuców, Dominika; Józefczyk, Damian; Hoffmann, Mathias; Olejnik, Janusz

    2016-04-01

    . Generally, warmer conditions led to increases in NDVI and LAI, whilst the site exposed to only drought exhibited the lowest LAI. Warming shifted the vegetation species composition by promoting vascular plants (mainly Carex rostrata and C. limosa), which result also correlates positively with nutrient (Ptot, Mn, F, Na, Zn) availability in the peat water. Here, we report short-term responses to increased temperature and diminished precipitation, showing that the combination of these to stressors leads to very different scenario than their individual impacts. Our results further emphasize the need for long term records from field manipulation site on peatland response to climate changes. The Research was co-founded by the Polish National Centre for Research and Development within the Polish-Norwegian Research Programme within the WETMAN project (Central European Wetland Ecosystem Feedbacks to Changing Climate - Field Scale Manipulation, Project ID: 203258, contract No. Pol-Nor/203258/31/2013 (www.wetman.pl). References Fenner N., Freeman Ch. (2011). Nature Geoscience, 4, 895-900 Hoffmann M., et al. (2015). Agricultural and Forest Meteorology, 200, 30-45 Kimball BA. (2005). Global Change Biology, 11, 2041-2056

  5. Constant diurnal temperature regime alters the impact of simulated climate warming on a tropical pseudoscorpion

    PubMed Central

    Zeh, Jeanne A.; Bonilla, Melvin M.; Su, Eleanor J.; Padua, Michael V.; Anderson, Rachel V.; Zeh, David W.

    2014-01-01

    Recent theory suggests that global warming may be catastrophic for tropical ectotherms. Although most studies addressing temperature effects in ectotherms utilize constant temperatures, Jensen's inequality and thermal stress considerations predict that this approach will underestimate warming effects on species experiencing daily temperature fluctuations in nature. Here, we tested this prediction in a neotropical pseudoscorpion. Nymphs were reared in control and high-temperature treatments under a constant daily temperature regime, and results compared to a companion fluctuating-temperature study. At constant temperature, pseudoscorpions outperformed their fluctuating-temperature counterparts. Individuals were larger, developed faster, and males produced more sperm, and females more embryos. The greatest impact of temperature regime involved short-term, adult exposure, with constant temperature mitigating high-temperature effects on reproductive traits. Our findings demonstrate the importance of realistic temperature regimes in climate warming studies, and suggest that exploitation of microhabitats that dampen temperature oscillations may be critical in avoiding extinction as tropical climates warm. PMID:24424082

  6. Constant diurnal temperature regime alters the impact of simulated climate warming on a tropical pseudoscorpion

    NASA Astrophysics Data System (ADS)

    Zeh, Jeanne A.; Bonilla, Melvin M.; Su, Eleanor J.; Padua, Michael V.; Anderson, Rachel V.; Zeh, David W.

    2014-01-01

    Recent theory suggests that global warming may be catastrophic for tropical ectotherms. Although most studies addressing temperature effects in ectotherms utilize constant temperatures, Jensen's inequality and thermal stress considerations predict that this approach will underestimate warming effects on species experiencing daily temperature fluctuations in nature. Here, we tested this prediction in a neotropical pseudoscorpion. Nymphs were reared in control and high-temperature treatments under a constant daily temperature regime, and results compared to a companion fluctuating-temperature study. At constant temperature, pseudoscorpions outperformed their fluctuating-temperature counterparts. Individuals were larger, developed faster, and males produced more sperm, and females more embryos. The greatest impact of temperature regime involved short-term, adult exposure, with constant temperature mitigating high-temperature effects on reproductive traits. Our findings demonstrate the importance of realistic temperature regimes in climate warming studies, and suggest that exploitation of microhabitats that dampen temperature oscillations may be critical in avoiding extinction as tropical climates warm.

  7. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings.

    PubMed

    Sandblom, Erik; Clark, Timothy D; Gräns, Albin; Ekström, Andreas; Brijs, Jeroen; Sundström, L Fredrik; Odelström, Anne; Adill, Anders; Aho, Teija; Jutfelt, Fredrik

    2016-01-01

    Understanding the resilience of aquatic ectothermic animals to climate warming has been hindered by the absence of experimental systems experiencing warming across relevant timescales (for example, decades). Here, we examine European perch (Perca fluviatilis, L.) from the Biotest enclosure, a unique coastal ecosystem that maintains natural thermal fluctuations but has been warmed by 5-10 °C by a nuclear power plant for over three decades. We show that Biotest perch grow faster and display thermally compensated resting cardiorespiratory functions compared with reference perch living at natural temperatures in adjacent waters. However, maximum cardiorespiratory capacities and heat tolerance limits exhibit limited or no thermal compensation when compared with acutely heated reference perch. We propose that while basal energy requirements and resting cardiorespiratory functions (floors) are thermally plastic, maximum capacities and upper critical heat limits (ceilings) are much less flexible and thus will limit the adaptive capacity of fishes in a warming climate. PMID:27186890

  8. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings

    PubMed Central

    Sandblom, Erik; Clark, Timothy D.; Gräns, Albin; Ekström, Andreas; Brijs, Jeroen; Sundström, L. Fredrik; Odelström, Anne; Adill, Anders; Aho, Teija; Jutfelt, Fredrik

    2016-01-01

    Understanding the resilience of aquatic ectothermic animals to climate warming has been hindered by the absence of experimental systems experiencing warming across relevant timescales (for example, decades). Here, we examine European perch (Perca fluviatilis, L.) from the Biotest enclosure, a unique coastal ecosystem that maintains natural thermal fluctuations but has been warmed by 5–10 °C by a nuclear power plant for over three decades. We show that Biotest perch grow faster and display thermally compensated resting cardiorespiratory functions compared with reference perch living at natural temperatures in adjacent waters. However, maximum cardiorespiratory capacities and heat tolerance limits exhibit limited or no thermal compensation when compared with acutely heated reference perch. We propose that while basal energy requirements and resting cardiorespiratory functions (floors) are thermally plastic, maximum capacities and upper critical heat limits (ceilings) are much less flexible and thus will limit the adaptive capacity of fishes in a warming climate. PMID:27186890

  9. Are treelines advancing? A global meta-analysis of treeline response to climate warming.

    PubMed

    Harsch, Melanie A; Hulme, Philip E; McGlone, Matt S; Duncan, Richard P

    2009-10-01

    Treelines are temperature sensitive transition zones that are expected to respond to climate warming by advancing beyond their current position. Response to climate warming over the last century, however, has been mixed, with some treelines showing evidence of recruitment at higher altitudes and/or latitudes (advance) whereas others reveal no marked change in the upper limit of tree establishment. To explore this variation, we analysed a global dataset of 166 sites for which treeline dynamics had been recorded since 1900 AD. Advance was recorded at 52% of sites with only 1% reporting treeline recession. Treelines that experienced strong winter warming were more likely to have advanced, and treelines with a diffuse form were more likely to have advanced than those with an abrupt or krummholz form. Diffuse treelines may be more responsive to warming because they are more strongly growth limited, whereas other treeline forms may be subject to additional constraints.

  10. Soil Moisture and Sea Surface Temperatures equally important for Land Climate in the Warm Season

    NASA Astrophysics Data System (ADS)

    Orth, R.; Seneviratne, S. I.

    2015-12-01

    Both sea surface temperatures (SSTs) and soil moisture (SM) are important drivers of climate variability over land. In this study we present a comprehensive comparison of SM versus SST impacts on land climate in the warm season. We perform ensemble experiments with the Community Earth System Model (CESM) where we set SM or SSTs to median conditions, respectively, to remove their inter-annual variability, whereby the other component - SST or SM - is still interactively computed. In contrast to earlier experiments performed with prescribed SSTs, our experiments suggest that SM is overall as important as SSTs for land climate, not only in the midlatitudes but also in the tropics and subtropics. Mean temperature and precipitation are reduced by 0.1-0.5 K and 0-0.2 mm, respectively, whereas their variability at different time scales decreases by 10-40% (temperature) and 0-10% (precipitation) when either SM or SSTs are prescribed. Also drought occurrence is affected, with mean changes in the maximum number of cumulative dry days of 0-0.75 days. Both SM and SST-induced changes are strongest for hot temperatures (up to 0.7 K, and 50%), extreme precipitation (up to 0.4 mm, and 20%), and strong droughts (up to 2 days). Local climate changes in response to removed SM variability are controlled - to first order - by the land-atmosphere coupling and the natural SM variability. SST-related changes are partly controlled by the relation of local temperature or precipitation with the El Niño-Southern Oscillation. Moreover removed SM or SST variabilities both induce remote effects by impacting the atmospheric circulation. Our results are similar for the present day and the end of the century. We investigate the inter-dependency between SM and SST and find a sufficient degree of independence for the purpose of this study. The robustness of our findings is shown by comparing the response of CESM to removed SM variability with four other global climate models. In summary, SM and SSTs

  11. New use of global warming potentials to compare cumulative and short-lived climate pollutants

    NASA Astrophysics Data System (ADS)

    Allen, Myles R.; Fuglestvedt, Jan S.; Shine, Keith P.; Reisinger, Andy; Pierrehumbert, Raymond T.; Forster, Piers M.

    2016-08-01

    Parties to the United Nations Framework Convention on Climate Change (UNFCCC) have requested guidance on common greenhouse gas metrics in accounting for Nationally determined contributions (NDCs) to emission reductions. Metric choice can affect the relative emphasis placed on reductions of `cumulative climate pollutants' such as carbon dioxide versus `short-lived climate pollutants' (SLCPs), including methane and black carbon. Here we show that the widely used 100-year global warming potential (GWP100) effectively measures the relative impact of both cumulative pollutants and SLCPs on realized warming 20-40 years after the time of emission. If the overall goal of climate policy is to limit peak warming, GWP100 therefore overstates the importance of current SLCP emissions unless stringent and immediate reductions of all climate pollutants result in temperatures nearing their peak soon after mid-century, which may be necessary to limit warming to ``well below 2 °C'' (ref. ). The GWP100 can be used to approximately equate a one-off pulse emission of a cumulative pollutant and an indefinitely sustained change in the rate of emission of an SLCP. The climate implications of traditional CO2-equivalent targets are ambiguous unless contributions from cumulative pollutants and SLCPs are specified separately.

  12. Metagenomics-Enabled Understanding of Soil Microbial Feedbacks to Climate Warming

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Wu, L.; Zhili, H.; Kostas, K.; Luo, Y.; Schuur, E. A. G.; Cole, J. R.; Tiedje, J. M.

    2014-12-01

    Understanding the response of biological communities to climate warming is a central issue in ecology and global change biology, but it is poorly understood microbial communities. To advance system-level predictive understanding of the feedbacks of belowground microbial communities to multiple climate change factors and their impacts on soil carbon (C) and nitrogen (N) cycling processes, we have used integrated metagenomic technologies (e.g., target gene and shotgun metagenome sequencing, GeoChip, and isotope) to analyze soil microbial communities from experimental warming sites in Alaska (AK) and Oklahoma (OK), and long-term laboratory incubation. Rapid feedbacks of microbial communities to warming were observed in the AK site. Consistent with the changes in soil temperature, moisture and ecosystem respiration, microbial functional community structure was shifted after only 1.5-year warming, indicating rapid responses and high sensitivity of this permafrost ecosystem to climate warming. Also, warming stimulated not only functional genes involved in aerobic respiration of both labile and recalcitrant C, contributing to an observed 24% increase in 2010 growing season and 56% increase of decomposition of a standard substrate, but also functional genes for anaerobic processes (e.g., denitrification, sulfate reduction, methanogenesis). Further comparisons by shotgun sequencing showed significant differences of microbial community structure between AK and OK sites. The OK site was enriched in genes annotated for cellulose degradation, CO2 production, denitrification, sporulation, heat shock response, and cellular surface structures (e.g., trans-membrane transporters for glucosides), while the AK warmed plots were enriched in metabolic pathways related to labile C decomposition. Together, our results demonstrate the vulnerability of permafrost ecosystem C to climate warming and the importance of microbial feedbacks in mediating such vulnerability.

  13. Future of West African Monsoon in A Warming Climate

    NASA Astrophysics Data System (ADS)

    Raj, Jerry; Kunhu Bangalath, Hamza; Stenchikov, Georgiy

    2016-04-01

    West Africa is the home of more than 300 million people whose agriculture based economy highly relies on West African Monsoon (WAM), which produces a mean annual rainfall of 150 - 2,500 mm and variability and change of which have devastating impact on the local population. The observed widespread drought in West Africa during the 1970s and 1980s was the most significant drought at regional scale during the twentieth century. In this study, a high resolution AGCM, High Resolution Atmospheric Model (HiRAM), is used to study the effects of anthropogenic greenhouse warming on WAM. HiRAM is developed at GFDL based on AM2 and employs a cubed-sphere finite volume dynamical core and uses shallow convective scheme (for moist convection and stratiform cloudiness) instead of deep convective parameterization. Future projections are done using two representative concentration pathways, RCP 4.5 and RCP 8.5 from 2007 to 2050 at C360 (~25 km) resolution. Both RCP 4.5 and RCP 8.5 scenarios predict warming over West Africa during boreal summer, especially over Western Sahara. Also, both scenarios predict southward shift in WAM rainfall pattern and drying over Southern Sahara, while RCP 8.5 predicts enhanced rainfall over Gulf of Guinea. The intensification of rainfall over tropical latitudes is caused by increased low level winds due to warm SST over Gulf of Guinea.

  14. Nutritional requirements of sheep, goats and cattle in warm climates: a meta-analysis.

    PubMed

    Salah, N; Sauvant, D; Archimède, H

    2014-09-01

    The objective of the study was to update energy and protein requirements of growing sheep, goats and cattle in warm areas through a meta-analysis study of 590 publications. Requirements were expressed on metabolic live weight (MLW=LW0.75) and LW1 basis. The maintenance requirements for energy were 542.64 and 631.26 kJ ME/kg LW0.75 for small ruminants and cattle, respectively, and the difference was significant (P<0.01). The corresponding requirement for 1 g gain was 24.3 kJ ME without any significant effect of species. Relative to LW0.75, there was no difference among genotypes intra-species in terms of ME requirement for maintenance and gain. However, small ruminants of warm and tropical climate appeared to have higher ME requirements for maintenance relative to live weight (LW) compared with temperate climate ones and cattle. Maintenance requirements for protein were estimated via two approaches. For these two methods, the data in which retained nitrogen (RN) was used cover the same range of variability of observations. The regression of digestible CP intake (DCPI, g/kg LW0.75) against RN (g/kg LW0.75) indicated that DCP requirements are significantly higher in sheep (3.36 g/kg LW0.75) than in goats (2.38 g/kg LW0.75), with cattle intermediate (2.81 g/kg LW0.75), without any significant difference in the quantity of DCPI/g retained CP (RCP) (40.43). Regressing metabolisable protein (MP) or minimal digestible protein in the intestine (PDImin) against RCP showed that there was no difference between species and genotypes, neither for the intercept (maintenance=3.51 g/kg LW0.75 for sheep and goat v. 4.35 for cattle) nor for the slope (growth=0.60 g MP/g RCP). The regression of DCP against ADG showed that DCP requirements did not differ among species or genotypes. These new feeding standards are derived from a wider range of nutritional conditions compared with existing feeding standards as they are based on a larger database. The standards seem to be more appropriate

  15. Effects of Atlantic warm pool variability over climate of South America tropical transition zone

    NASA Astrophysics Data System (ADS)

    Ricaurte Villota, Constanza; Romero-Rodríguez, Deisy; Andrés Ordoñez-Zuñiga, Silvio; Murcia-Riaño, Magnolia; Coca-Domínguez, Oswaldo

    2016-04-01

    Colombia is located in the northwestern corner of South America in a climatically complex region due to the influence processes modulators of climate both the Pacific and Atlantic region, becoming in a transition zone between phenomena of northern and southern hemisphere. Variations in the climatic conditions of this region, especially rainfall, have been attributed to the influence of the El Nino Southern Oscillation (ENSO), but little is known about the interaction within Atlantic Ocean and specifically Caribbean Sea with the environmental conditions of this region. In this work We studied the influence of the Atlantic Warm Pool (AWP) on the Colombian Caribbean (CC) climate using data of Sea Surface Temperature (SST) between 1900 - 2014 from ERSST V4, compared with in situ data SIMAC (National System for Coral Reef Monitoring in Colombia - INVEMAR), rainfall between 1953-2013 of meteorological stations located at main airports in the Colombian Caribbean zone, administered by IDEAM, and winds data between 2003 - 2014 from WindSat sensor. The parameters analyzed showed spatial differences throughout the study area. SST anomalies, representing the variability of the AWP, showed to be associated with Multidecadal Atlantic Oscillation (AMO) and with the index of sea surface temperature of the North-tropical Atlantic (NTA), the variations was on 3 to 5 years on the ENSO scale and of approximately 11 years possibly related to solar cycles. Rainfall anomalies in the central and northern CC respond to changes in SST, while in the south zone these are not fully engage and show a high relationship with the ENSO. Finally, the winds also respond to changes in SST and showed a signal approximately 90 days possibly related to the Madden-Julian Oscillation, whose intensity depends on the CC region being analyzed. The results confirm that region is a transition zone in which operate several forcing, the variability of climate conditions is difficult to attribute only one, as ENSO

  16. Europe's forest management did not mitigate climate warming.

    PubMed

    Naudts, Kim; Chen, Yiying; McGrath, Matthew J; Ryder, James; Valade, Aude; Otto, Juliane; Luyssaert, Sebastiaan

    2016-02-01

    Afforestation and forest management are considered to be key instruments in mitigating climate change. Here we show that since 1750, in spite of considerable afforestation, wood extraction has led to Europe's forests accumulating a carbon debt of 3.1 petagrams of carbon. We found that afforestation is responsible for an increase of 0.12 watts per square meter in the radiative imbalance at the top of the atmosphere, whereas an increase of 0.12 kelvin in summertime atmospheric boundary layer temperature was mainly caused by species conversion. Thus, two and a half centuries of forest management in Europe have not cooled the climate. The political imperative to mitigate climate change through afforestation and forest management therefore risks failure, unless it is recognized that not all forestry contributes to climate change mitigation. PMID:26912701

  17. Europe's forest management did not mitigate climate warming.

    PubMed

    Naudts, Kim; Chen, Yiying; McGrath, Matthew J; Ryder, James; Valade, Aude; Otto, Juliane; Luyssaert, Sebastiaan

    2016-02-01

    Afforestation and forest management are considered to be key instruments in mitigating climate change. Here we show that since 1750, in spite of considerable afforestation, wood extraction has led to Europe's forests accumulating a carbon debt of 3.1 petagrams of carbon. We found that afforestation is responsible for an increase of 0.12 watts per square meter in the radiative imbalance at the top of the atmosphere, whereas an increase of 0.12 kelvin in summertime atmospheric boundary layer temperature was mainly caused by species conversion. Thus, two and a half centuries of forest management in Europe have not cooled the climate. The political imperative to mitigate climate change through afforestation and forest management therefore risks failure, unless it is recognized that not all forestry contributes to climate change mitigation.

  18. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China.

    PubMed

    Tian, Yunlu; Zheng, Chengyan; Chen, Jin; Chen, Changqing; Deng, Aixing; Song, Zhenwei; Zhang, Baoming; Zhang, Weijian

    2014-01-01

    Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI) facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming) were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05), respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05) higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.

  19. Climatic Warming Increases Winter Wheat Yield but Reduces Grain Nitrogen Concentration in East China

    PubMed Central

    Deng, Aixing; Song, Zhenwei; Zhang, Baoming; Zhang, Weijian

    2014-01-01

    Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI) facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming) were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05), respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05) higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat. PMID:24736557

  20. A new climate dataset for systematic assessments of climate change impacts as a function of global warming

    NASA Astrophysics Data System (ADS)

    Heinke, J.; Ostberg, S.; Schaphoff, S.; Frieler, K.; Müller, C.; Gerten, D.; Meinshausen, M.; Lucht, W.

    2013-10-01

    In the ongoing political debate on climate change, global mean temperature change (ΔTglob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalised patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 Atmosphere-Ocean General Circulation Models (AOGCMs). The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilise a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  1. The Early Climate History of Mars: "Warm and Wet" or "Cold and Icy"?

    NASA Astrophysics Data System (ADS)

    Head, James

    2013-04-01

    The Amazonian climate (last ~66% of history) was much like today, a cold and dry climate regime, characterized by the latitudinal migration of surface ice in response to variations in spin-axis/orbital parameters. But what characterized the Noachian climate (first ~20% of history)? Some data support a "warm and wet" early Mars, but this evidence has been challenged. New models of early Mars climate (Forget, Wordsworth et al.) find that for atmospheric pressures greater than a few hundred millibars, surface temperatures vary with altitude due to atmosphere-surface thermal coupling: an adiabatic cooling effect (ACE) results in deposition of snow and ice at high altitudes, in contrast to Amazonian conditions. Without other warming mechanisms, no combination of parameters lead to mean annual surface temperatures (MAT) consistent with widespread liquid water anywhere on the planet. The ACE causes southern highland region temperatures to fall significantly below the global average leading to a "Noachian Icy Highlands" scenario: Water is transported to the highlands from low-lying regions due to the ACE and snows out to form an extended H2O ice cap at the southern pole, and altitude-dependent snow and ice deposits down to lower southern latitudes. Could the predictions of this "Noachian Icy Highlands" model be consistent with the many lines of evidence traditionally cited for a "warm, wet" early Mars? Perturbing this predominant Noachian environment with punctuated impacts and volcanism/greenhouse gases would lead to raising of global surface temperatures toward the melting point of water, with the following consequences: 1) ice above the surface ice stability line undergoes rapid altitude/latitude dependent warming during each Mars summer; 2) meltwater runoff from the continuous ice sheet drains and flows downslope to the edge of the ice sheet, where meltwater channels encounter cratered terrain, forming closed-basin and open-basin lakes; 3) seasonal top-down heating and

  2. Climate warming mediates negative impacts of rapid pond drying for three amphibian species.

    PubMed

    O'Regan, Sacha M; Palen, Wendy J; Anderson, Sean C

    2014-04-01

    Anthropogenic climate change will present both opportunities and challenges for pool-breeding amphibians. Increased water temperature and accelerated drying may directly affect larval growth, development, and survival, yet the combined effects of these processes on larvae with future climate change remain poorly understood. Increased surface temperatures are projected to warm water and decrease water inputs, leading to earlier and faster wetland drying. So it is often assumed that larvae will experience negative synergistic impacts with combined warming and drying. However, an alternative hypothesis is that warming-induced increases in metabolic rate and aquatic resource availability might compensate for faster drying rates, generating antagonistic larval responses. We conducted a mesocosm experiment to test the individual and interactive effects of pool permanency (permanent vs. temporary) and water temperature (ambient vs. (+) -3 degrees C) on three anurans with fast-to-slow larval development rates (Great Basin spadefoot [Spea intermontana], Pacific chorus frog [Pseudacris regilla], and northern red-legged frog [Rana aurora]). We found that although tadpoles in warmed pools reached metamorphosis 15-17 days earlier, they did so with little cost (< 2 mm) to size, likely due to greater periphyton growth in warmed pools easing drying-induced resource competition. Warming and drying combined to act antagonistically on early growth (P = 0.06) and survival (P = 0.06), meaning the combined impact was less than the sum of the individual impacts. Warming and drying acted additively on time to and size at metamorphosis. These nonsynergistic impacts may result from cotolerance of larvae to warming and drying, as well as warming helping to offset negative impacts of drying. Our results indicate that combined pool warming and drying may not always be harmful for larval amphibians. However, they also demonstrate that antagonistic responses are difficult to predict, which poses

  3. Warm Rain Processes Over the Tropical Oceans and Implications on Climate Change

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, H. T.

    2004-01-01

    In this talk, we will first show results from TRMM regarding the characteristics of warm rains over the tropical oceans, and the dependence of rate of warm rain production on sea surface temperature. Results lead to the hypothesis that warm rain production efficiency, i.e., autoconversion, may be increased in a warm climate. We use the GEOS-II GCM to test this hypothesis. Our modeling results show that in a climate with increased rate of autoconversion, the total rain amount is increased, with warm rain contributing to a larger portion of the increase. The abundant rainout of warm precipitation at middle to low levels causes a reduction of high cloud cover due to the depletion of water available for ice-phase rain production. As a result, more isolated, but more intense penetrative convection develops. Results also show that increased autoconversion reduces the convective adjustment time scale tends, implying a faster recycling of atmospheric water. Most interestingly, the increased low level heating associated with warm rain leads to more energetic Madden and Julian oscillations in the tropics, with well-defined eastward propagation. While reducing the autoconversion leads to an abundant mix of westward and eastward tropical disturbance on daily to weekly time scales. The causes of the sensitivity of the dynamical regimes to the microphysics parameterization in the GCM will be discussed.

  4. Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region

    USGS Publications Warehouse

    Werner, B.A.; Johnson, W. Carter; Guntenspergen, Glenn R.

    2013-01-01

    The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability. Here, we compare wetland conditions between two 30-year periods (1946–1975; 1976–2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR's western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland-dependent species.

  5. Enhanced marine productivity off western North America during warm climate intervals of the past 52 k.y

    USGS Publications Warehouse

    Ortiz, J.D.; O'Connell, S. B.; DelViscio, J.; Dean, W.; Carriquiry, J.D.; Marchitto, T.; Zheng, Yen; VanGeen, A.

    2004-01-01

    Studies of the Santa Barbara Basin off the coast of California have linked changes in its bottom-water oxygen content to millennial-scale climate changes as recorded by the oxygen isotope composition of Greenland ice. Through the use of detailed records from a sediment core collected off the Magdalena Margin of Baja California, Mexico, we demonstrate that this teleconnection predominantly arose from changes in marine productivity, rather than changes in ventilation of the North Pacific, as was originally proposed. One possible interpretation is that the modern balance of El Nin??o-La Nin??a conditions that favors a shallow nutricline and high productivity today and during warm climate intervals of the past 52 k.y. was altered toward more frequent, deep nutricline, low productivity, El Nin??o-like conditions during cool climate intervals. ?? 2004 Geological Society of America.

  6. Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region

    PubMed Central

    Werner, Brett A; Johnson, W Carter; Guntenspergen, Glenn R

    2013-01-01

    The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability. Here, we compare wetland conditions between two 30-year periods (1946–1975; 1976–2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR's western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland-dependent species. PMID:24223283

  7. Evaporation variability under climate warming in five reanalyses and its association with pan evaporation over China

    NASA Astrophysics Data System (ADS)

    Su, Tao; Feng, Taichen; Feng, Guolin

    2015-08-01

    With the motivation to identify actual evapotranspiration (AE) variability under climate warming over China, an assessment is made from five sets of reanalysis data sets [National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR), NCEP-Department of Energy (NCEP-DOE), Modern-Era Retrospective Analysis for Research and Applications (MERRA), Interim Reanalysis, and Japanese 55-year Reanalysis (JRA-55)]. Based on comparison with AE estimates calculated using the Budyko equation, all five reanalysis data sets reasonably reproduce the spatial patterns of AE over China, with a clearly southeast-northwest gradient. Overall, JRA-55 (NCEP-DOE) gives the lowest (highest) reanalysis evaporation (RE) values. From 1979 to 2013, dominant modes of RE among five reanalyses are extracted using multivariate empirical orthogonal function analysis. Accordingly, the interdecadal variation of RE is likely driven by the change of temperature, and the interannual variation is constrained by the water supply conditions. Under climate warming, RE increase in the Northwest China, Yangtze-Huaihe river basin, and South China, while they decrease in Qinghai-Tibet Plateau, and northern and Northeast China. Moreover, the relationship between RE and pan evaporation (PE) are comprehensively evaluated in space-time. Negative correlations are generally confirmed in nonhumid environments, while positive correlations exist in the humid regions. Our analysis supports the interpretation that the relationship between PE and AE was complementary with water control and proportional with energy control. In view of data availability, important differences in spatial variability and the amount of RE can be found in Northwest China, the Qinghai-Tibet Plateau, and the Yangtze River Basin. Generally speaking, NCEP-NCAR and MERRA have substantial problems on describing the long-term change of RE; however, there are some inaccuracies in the JRA-55 estimates when focusing on

  8. Reconstruction of spatial patterns of climatic anomalies during the medieval warm period (AD 900-1300)

    SciTech Connect

    Diaz, H.F.; Hughes, M.K.

    1992-12-31

    The workshop will focus on climatic variations during the Medieval Warm Period or Little Climatic Optimum. The nominal time interval assigned to this period is AD 900--1300, but climate information available during the century or two preceding and following this episode is welcome. The aims of the workshop will be to: examine the available evidence for the existence of this episode; assess the spatial and temporal synchronicity of the climatic signals; discuss possible forcing mechanisms; and identify areas and paleoenvironmental records where additional research efforts are needed to improve our knowledge of this period. This document consists of abstracts of eighteen papers presented at the meeting.

  9. Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California.

    PubMed

    Rapacciuolo, Giovanni; Maher, Sean P; Schneider, Adam C; Hammond, Talisin T; Jabis, Meredith D; Walsh, Rachel E; Iknayan, Kelly J; Walden, Genevieve K; Oldfather, Meagan F; Ackerly, David D; Beissinger, Steven R

    2014-09-01

    Understanding recent biogeographic responses to climate change is fundamental for improving our predictions of likely future responses and guiding conservation planning at both local and global scales. Studies of observed biogeographic responses to 20th century climate change have principally examined effects related to ubiquitous increases in temperature - collectively termed a warming fingerprint. Although the importance of changes in other aspects of climate - particularly precipitation and water availability - is widely acknowledged from a theoretical standpoint and supported by paleontological evidence, we lack a practical understanding of how these changes interact with temperature to drive biogeographic responses. Further complicating matters, differences in life history and ecological attributes may lead species to respond differently to the same changes in climate. Here, we examine whether recent biogeographic patterns across California are consistent with a warming fingerprint. We describe how various components of climate have changed regionally in California during the 20th century and review empirical evidence of biogeographic responses to these changes, particularly elevational range shifts. Many responses to climate change do not appear to be consistent with a warming fingerprint, with downslope shifts in elevation being as common as upslope shifts across a number of taxa and many demographic and community responses being inconsistent with upslope shifts. We identify a number of potential direct and indirect mechanisms for these responses, including the influence of aspects of climate change other than temperature (e.g., the shifting seasonal balance of energy and water availability), differences in each taxon's sensitivity to climate change, trophic interactions, and land-use change. Finally, we highlight the need to move beyond a warming fingerprint in studies of biogeographic responses by considering a more multifaceted view of climate

  10. Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California

    PubMed Central

    Rapacciuolo, Giovanni; Maher, Sean P; Schneider, Adam C; Hammond, Talisin T; Jabis, Meredith D; Walsh, Rachel E; Iknayan, Kelly J; Walden, Genevieve K; Oldfather, Meagan F; Ackerly, David D; Beissinger, Steven R

    2014-01-01

    Understanding recent biogeographic responses to climate change is fundamental for improving our predictions of likely future responses and guiding conservation planning at both local and global scales. Studies of observed biogeographic responses to 20th century climate change have principally examined effects related to ubiquitous increases in temperature – collectively termed a warming fingerprint. Although the importance of changes in other aspects of climate – particularly precipitation and water availability – is widely acknowledged from a theoretical standpoint and supported by paleontological evidence, we lack a practical understanding of how these changes interact with temperature to drive biogeographic responses. Further complicating matters, differences in life history and ecological attributes may lead species to respond differently to the same changes in climate. Here, we examine whether recent biogeographic patterns across California are consistent with a warming fingerprint. We describe how various components of climate have changed regionally in California during the 20th century and review empirical evidence of biogeographic responses to these changes, particularly elevational range shifts. Many responses to climate change do not appear to be consistent with a warming fingerprint, with downslope shifts in elevation being as common as upslope shifts across a number of taxa and many demographic and community responses being inconsistent with upslope shifts. We identify a number of potential direct and indirect mechanisms for these responses, including the influence of aspects of climate change other than temperature (e.g., the shifting seasonal balance of energy and water availability), differences in each taxon's sensitivity to climate change, trophic interactions, and land-use change. Finally, we highlight the need to move beyond a warming fingerprint in studies of biogeographic responses by considering a more multifaceted view of climate

  11. Experimental warming decreases arbuscular mycorrhizal fungal colonization in prairie plants along a Mediterranean climate gradient

    PubMed Central

    Johnson, Bart R.; Bohannan, Brendan; Pfeifer-Meister, Laurel; Mueller, Rebecca; Bridgham, Scott D.

    2016-01-01

    Background: Arbuscular mycorrhizal fungi (AMF) provide numerous services to their plant symbionts. Understanding climate change effects on AMF, and the resulting plant responses, is crucial for predicting ecosystem responses at regional and global scales. We investigated how the effects of climate change on AMF-plant symbioses are mediated by soil water availability, soil nutrient availability, and vegetation dynamics. Methods: We used a combination of a greenhouse experiment and a manipulative climate change experiment embedded within a Mediterranean climate gradient in the Pacific Northwest, USA to examine this question. Structural equation modeling (SEM) was used to determine the direct and indirect effects of experimental warming on AMF colonization. Results: Warming directly decreased AMF colonization across plant species and across the climate gradient of the study region. Other positive and negative indirect effects of warming, mediated by soil water availability, soil nutrient availability, and vegetation dynamics, canceled each other out. Discussion: A warming-induced decrease in AMF colonization would likely have substantial consequences for plant communities and ecosystem function. Moreover, predicted increases in more intense droughts and heavier rains for this region could shift the balance among indirect causal pathways, and either exacerbate or mitigate the negative, direct effect of increased temperature on AMF colonization. PMID:27280074

  12. Non-linear responses of glaciated prairie wetlands to climate warming

    USGS Publications Warehouse

    Johnson, W. Carter; Werner, Brett; Guntenspergen, Glenn R.

    2016-01-01

    The response of ecosystems to climate warming is likely to include threshold events when small changes in key environmental drivers produce large changes in an ecosystem. Wetlands of the Prairie Pothole Region (PPR) are especially sensitive to climate variability, yet the possibility that functional changes may occur more rapidly with warming than expected has not been examined or modeled. The productivity and biodiversity of these wetlands are strongly controlled by the speed and completeness of a vegetation cover cycle driven by the wet and dry extremes of climate. Two thresholds involving duration and depth of standing water must be exceeded every few decades or so to complete the cycle and to produce highly functional wetlands. Model experiments at 19 weather stations employing incremental warming scenarios determined that wetland function across most of the PPR would be diminished beyond a climate warming of about 1.5–2.0 °C, a critical temperature threshold range identified in other climate change studies.

  13. Impacts of climate warming on atmospheric phase transition mechanisms

    NASA Astrophysics Data System (ADS)

    Varotsos, Costas A.; Ghosh, Satyajit

    2016-09-01

    Nowadays, climate change is a fact, and its impacts on heterogeneous chemistry mechanisms that take place in various atmospheric layers are of great interest. As an example, the uptake of atmospheric species on solid and liquid surfaces induces qualitative and quantitative changes from climatic alterations of the atmospheric thermal regime. We hereby present the experience gained on this subject by analysing real measurements of various atmospheric species and parameters conducted in Athens, Greece, exploring the atmospheric height region from the Earth's surface up to the lower stratosphere.

  14. The integrated hydrologic and societal impacts of a warming climate in interior Alaska

    NASA Astrophysics Data System (ADS)

    Jones, Charles E., Jr.

    In this dissertation, interdisciplinary research methods were used to examine how changes in hydrology associated with climate affect Alaskans. Partnerships were established with residents of Fairbanks and Tanana to develop scientific investigations relevant to rural Alaskans. In chapter 2, local knowledge was incorporated into scientific models to identify a social-ecological threshold used to model potential driftwood harvest from the Yukon River. Anecdotal evidence and subsistence calendar records were combined with scientific data to model the harvest rates of driftwood. Modeling results estimate that between 1980 and 2010 hydrologic factors alone were responsible for a 29% decrease in the annual wood harvest, which approximately balanced a 23% reduction in wood demand due to a decline in number of households. The community's installation of wood-fired boilers in 2007 created a threshold increase (76%) in wood demand that is not met by driftwood harvest. Modeling of climatic scenarios illustrates that increased hydrologic variability decreases driftwood harvest and increases the financial or temporal costs for subsistence users. In chapter 3, increased groundwater flow related to permafrost degradation was hypothesized to be affect river ice thickness in sloughs of the Tanana River. A physically-based, numerical model was developed to examine the importance of permafrost degradation in explaining unfrozen river conditions in the winter. Results indicated that ice melt is amplified by increasing groundwater upwelling rates, groundwater temperatures, and snowfall. Modeling results also suggest that permafrost degradation could be a valid explanation of the phenomenon, but does not address the potential drivers (e.g. warming climate, forest fire, etc.) of the permafrost warming. In chapter 4, remote sensing techniques were hypothesized to be useful for mapping dangerous ice conditions on the Tanana River in interior Alaska. Unsupervised classification of high

  15. Using physiology to predict the responses of ants to climatic warming.

    PubMed

    Diamond, Sarah E; Penick, Clint A; Pelini, Shannon L; Ellison, Aaron M; Gotelli, Nicholas J; Sanders, Nathan J; Dunn, Robert R

    2013-12-01

    Physiological intolerance of high temperatures places limits on organismal responses to the temperature increases associated with global climatic change. Because ants are geographically widespread, ecologically diverse, and thermophilic, they are an ideal system for exploring the extent to which physiological tolerance can predict responses to environmental change. Here, we expand on simple models that use thermal tolerance to predict the responses of ants to climatic warming. We investigated the degree to which changes in the abundance of ants under warming reflect reductions in the thermal niche space for their foraging. In an eastern deciduous forest system in the United States with approximately 40 ant species, we found that for some species, the loss of thermal niche space for foraging was related to decreases in abundance with increasing experimental climatic warming. However, many ant species exhibited no loss of thermal niche space. For one well-studied species, Temnothorax curvispinosus, we examined both survival of workers and growth of colonies (a correlate of reproductive output) as functions of temperature in the laboratory, and found that the range of thermal tolerances for colony growth was much narrower than for survival of workers. We evaluated these functions in the context of experimental climatic warming and found that the difference in the responses of these two attributes to temperature generates differences in the means and especially the variances of expected fitness under warming. The expected mean growth of colonies was optimized at intermediate levels of warming (2-4°C above ambient); yet, the expected variance monotonically increased with warming. In contrast, the expected mean and variance of the survival of workers decreased when warming exceeded 4°C above ambient. Together, these results for T. curvispinosus emphasize the importance of measuring reproduction (colony growth) in the context of climatic change: indeed, our examination

  16. Modelling high latitude climates and ice sheets during the mid-Pliocene warm period

    NASA Astrophysics Data System (ADS)

    Hill, D. J.; Haywood, A. M.; Hindmarsh, R. C.; Valdes, P. J.; Lunt, D. J.

    2007-12-01

    Reduction in the polar ice caps and associated climate feedbacks are implicated in the warming of pre- Quaternary palaeoclimates. General Circulation Model (GCM) simulations of the last such warm period, the mid- Pliocene (3.29-2.97 Ma), suggests global surface temperatures were between 1.4°C and 3.6°C warmer than today. However, the changes are amplified in the high latitudes, where the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) palaeoenvironmental reconstruction specifies a 50% reduction in the Greenland Ice Sheet (GrIS) and a 33% reduction in the Antarctic Ice Sheet. These ice sheets configurations are largely based on poorly constrained sea level estimates and are one of the least well-known boundary conditions for the mid-Pliocene. Utilizing a suite of mid-Pliocene GCM experiments, evaluated against available palaeoenvironmental information, and a 3-D thermomechanically coupled ice sheet model, the state of the GrIS and East Antarctic Ice Sheet (EAIS) during this interval has been reconstructed. Ensemble models of Greenland, which compare favourably to evidence of ice-rafted debris and mid-Pliocene vegetation, suggest a reduction in the ice sheet to 30 - 40% of the modern ice volume. In East Antarctica increased surface temperatures during the mid-Pliocene lead to significant melt over the Wilkes and Aurora Subglacial Basins and a reduction in the extent of the ice sheet. These ice losses are partially offset by an increase in snowfall over the Antarctic plateau. Marine diatoms in the Transantarctic Mountains have been used as evidence of major East Antarctic deglaciations during the Pliocene. However, our EAIS predictions show that the modelled mid-Pliocene climate is insufficient to cause the hypothesized magnitude of ice sheet retreat. Finally, the mid-Pliocene has been suggested as a possible palaeoclimate analogue for the climate of the late 21st century. Here we compare predictions of mid-Pliocene ice sheets with observations of

  17. The impact of warming climate on late summer snow cover in northwestern Finland

    NASA Astrophysics Data System (ADS)

    Kivinen, S.; Kaarlejärvi, E.; Jylhä, K.; Räisänen, J.

    2012-04-01

    Snowbeds and snow patches are characteristic features of arctic and alpine regions and are classified as endangered habitats due to the warming climate. We studied interannual variation of late summer snow cover and the factors affecting it in sub-arctic Enontekiö Lapland, northwestern Finland in years 2000, 2004, 2006, and 2009. Snow cover at 30 m resolution was derived from Landsat TM and ETM+ images obtained between 27 July and 4 August using a normalized difference snow index (NDSI). A generalized linear model (GLM) was constructed for the number (0 - 4) of snow occurrence years in 1-km grid squares. Explanatory variables in the model were elevation, terrain ruggedness, insolation and aspect. Variation in climatic conditions in the study region was examined using temperature and precipitation data from 1995 to 2009 (Finnish Meteorological Institute) and climate scenarios derived from the ENSEMBLES and PRUDENCE simulations extending to the period of 2070-2099. Late summer snow covered 23.0 km2 in 2000, 2.7 km2 in 2004, 1.5 km2 in 2006, and 5.0 km2 in 2009 of the 3176.5 km2 study area (mean altitude 727 m, maximum altitude 1310 m). The decline of snow cover was most prominent below 900 meters and on southern and western slopes. In year 2000, approximately a half of the snow cover was found above 900 meters (where 7% of the total study area is located) compared to circa 75% in 2004 and 2006, and 62% in 2009. Analyses at the 1-km resolution showed that in 19 % of the study squares there was late summer snow at least in one of the four years. Elevation and terrain ruggedness were the strongest explanatory variables for the number of snow occurrence year in a univariate GLM model. The GLM model including all variables explained 73% of the variation in the number of snow occurrence years. The interannual variation in late summer snow cover reflects the climatic variation in the study region. The mean annual temperature increased on average by 0.16°C per year during

  18. Communicating Climate Uncertainties: Challenges and Opportunities Related to Spatial Scales, Extreme Events, and the Warming 'Hiatus'

    NASA Astrophysics Data System (ADS)

    Casola, J. H.; Huber, D.

    2013-12-01

    Many media, academic, government, and advocacy organizations have achieved sophistication in developing effective messages based on scientific information, and can quickly translate salient aspects of emerging climate research and evolving observations. However, there are several ways in which valid messages can be misconstrued by decision makers, leading them to inaccurate conclusions about the risks associated with climate impacts. Three cases will be discussed: 1) Issues of spatial scale in interpreting climate observations: Local climate observations may contradict summary statements about the effects of climate change on larger regional or global spatial scales. Effectively addressing these differences often requires communicators to understand local and regional climate drivers, and the distinction between a 'signal' associated with climate change and local climate 'noise.' Hydrological statistics in Missouri and California are shown to illustrate this case. 2) Issues of complexity related to extreme events: Climate change is typically invoked following a wide range of damaging meteorological events (e.g., heat waves, landfalling hurricanes, tornadoes), regardless of the strength of the relationship between anthropogenic climate change and the frequency or severity of that type of event. Examples are drawn from media coverage of several recent events, contrasting useful and potentially confusing word choices and frames. 3) Issues revolving around climate sensitivity: The so-called 'pause' or 'hiatus' in global warming has reverberated strongly through political and business discussions of climate change. Addressing the recent slowdown in warming yields an important opportunity to raise climate literacy in these communities. Attempts to use recent observations as a wedge between climate 'believers' and 'deniers' is likely to be counterproductive. Examples are drawn from Congressional testimony and media stories. All three cases illustrate ways that decision

  19. Global and regional surface cooling in a warming climate: a multi-model analysis

    NASA Astrophysics Data System (ADS)

    Medhaug, Iselin; Drange, Helge

    2016-06-01

    Instrumental temperature records show that the global climate may experience decadal-scale periods without warming despite a long-term warming trend. We analysed 17 global climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5), identifying the likelihood and duration of periods without warming in the four Representative Concentration Pathway (RCP) scenarios RCP2.6, RCP4.5, RCP6.0 and RCP8.5, together with the preindustrial control and historical simulations. We find that non-warming periods may last 10, 15 and 30 years for RCP8.5, RCP6.0 and RCP4.5, respectively. In the models, anomalous ocean heat uptake and storage are the main factors explaining the decadal-scale surface temperature hiatus periods. The low-latitude East Pacific Ocean is a key region for these variations, acting in tandem with basin-scale anomalies in the sea level pressure. During anomalously cold decades, roughly 35-50 % of the heat anomalies in the upper 700 m of the ocean are located in the Pacific Ocean, and 25 % in the Atlantic Ocean. Decadal-scale ocean heat anomalies, integrated over the upper 700 m, have a magnitude of about 7.5 × 1021 J. This is comparable to the ocean heat uptake needed to maintain a 10 year period without increasing surface temperature under global warming. On sub-decadal time scales the Atlantic, Pacific and Southern Oceans all have the ability to store large amounts of heat, contributing to variations in global surface temperature. The likelihood of decadal-scale non-warming periods decrease with global warming, firstly at the low latitude region stretching eastward from the tropical Atlantic towards the western Pacific. The North Atlantic and Southern Oceans have largest likelihood of non-warming decades in a warming world.

  20. Temperature during egg formation and the effect of climate warming on egg size in a small songbird

    NASA Astrophysics Data System (ADS)

    Potti, Jaime

    2008-05-01

    The predicted effects of recent climate warming on egg size in birds are controversial, as only two long-term studies have been reported, with contrasting results. Long-term data on egg size variation are analyzed in relation to ambient temperatures in a southern European population of pied flycatchers where breeding phenology has not matched the spring advancement in the last decades. Cross-sectional, population analyses indicated that egg breadth, but not egg length, has decreased significantly along the 16-year period, leading to marginally non-significant decreases in egg volume. Longitudinal, individual analyses revealed that despite females consistently laying larger eggs when they experienced warmer temperatures during the prelaying and laying periods, there was an overall negative response - i.e. decreasing egg volume and breadth with increasing spring (May) average temperatures - across individuals. This trend is hypothesised to be caused by the mismatched breeding phenology, in relation to climate warming, of this population. Except in the unlikely cases of populations capable of perfectly synchronising their phenology to changes in their environment, maladjustments are likely for traits such as egg size, which depend strongly on female condition. Slight changes or absence thereof in breeding dates may be followed by mismatched dates, in terms of food abundance, for optimal egg formation, which would be reflected in smaller average egg size, contrary to early predictions on the effects of climate warming on bird egg size.

  1. Humidity critical for grass growth in warming climates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant growth responses to climate change might be confounded by multi-factor changes such as temperature and vapor pressure deficit (VPD). The growth and water loss of tall fescue (Festuca arundinaccea Schreb.), a cool season grass, was measured over 6 weeks with independent control of temperature a...

  2. Links between plant species' spatial and temporal responses to a warming climate.

    PubMed

    Amano, Tatsuya; Freckleton, Robert P; Queenborough, Simon A; Doxford, Simon W; Smithers, Richard J; Sparks, Tim H; Sutherland, William J

    2014-03-22

    To generate realistic projections of species' responses to climate change, we need to understand the factors that limit their ability to respond. Although climatic niche conservatism, the maintenance of a species's climatic niche over time, is a critical assumption in niche-based species distribution models, little is known about how universal it is and how it operates. In particular, few studies have tested the role of climatic niche conservatism via phenological changes in explaining the reported wide variance in the extent of range shifts among species. Using historical records of the phenology and spatial distribution of British plants under a warming climate, we revealed that: (i) perennial species, as well as those with weaker or lagged phenological responses to temperature, experienced a greater increase in temperature during flowering (i.e. failed to maintain climatic niche via phenological changes); (ii) species that failed to maintain climatic niche via phenological changes showed greater northward range shifts; and (iii) there was a complementary relationship between the levels of climatic niche conservatism via phenological changes and range shifts. These results indicate that even species with high climatic niche conservatism might not show range shifts as instead they track warming temperatures during flowering by advancing their phenology.

  3. Winter survival and deacclimation of perennials under warming climate: physiological perspectives.

    PubMed

    Pagter, Majken; Arora, Rajeev

    2013-01-01

    Appropriate timing and rate of cold deacclimation and the ability to reacclimate are important components of winter survival of perennials in temperate and boreal zones. In association with the progressive increase in atmospheric CO₂, temperate and boreal winters are becoming progressively milder, and temperature patterns are becoming irregular with increasing risk of unseasonable warm spells during the colder periods of plants' annual cycle. Because deacclimation is mainly driven by temperature, these changes pose a risk for untimely/premature deacclimation, thereby rendering plant tissue vulnerable to freeze-injury by a subsequent frost. Research also indicates that elevated CO₂ may directly impact deacclimation. Hence, understanding the underlying cellular mechanisms of how deacclimation and reacclimation capacity are affected by changes in environmental conditions is important to ensure winter survival and the sustainability of plant sources under changing climate. Relative to cold acclimation, deacclimation is a little studied process, but the limited evidence points to specific changes occurring in the transcriptome and proteome during deacclimation. Loss of freezing tolerance is additionally associated with substantial changes in cell/tissue-water relations and carbohydrate metabolism; the latter also impacted by temperature-driven, altered respiratory metabolism. This review summarizes recent progress in understanding the physiological mechanisms of deacclimation and how they may be impacted by climate change. PMID:22583023

  4. Winter survival and deacclimation of perennials under warming climate: physiological perspectives.

    PubMed

    Pagter, Majken; Arora, Rajeev

    2013-01-01

    Appropriate timing and rate of cold deacclimation and the ability to reacclimate are important components of winter survival of perennials in temperate and boreal zones. In association with the progressive increase in atmospheric CO₂, temperate and boreal winters are becoming progressively milder, and temperature patterns are becoming irregular with increasing risk of unseasonable warm spells during the colder periods of plants' annual cycle. Because deacclimation is mainly driven by temperature, these changes pose a risk for untimely/premature deacclimation, thereby rendering plant tissue vulnerable to freeze-injury by a subsequent frost. Research also indicates that elevated CO₂ may directly impact deacclimation. Hence, understanding the underlying cellular mechanisms of how deacclimation and reacclimation capacity are affected by changes in environmental conditions is important to ensure winter survival and the sustainability of plant sources under changing climate. Relative to cold acclimation, deacclimation is a little studied process, but the limited evidence points to specific changes occurring in the transcriptome and proteome during deacclimation. Loss of freezing tolerance is additionally associated with substantial changes in cell/tissue-water relations and carbohydrate metabolism; the latter also impacted by temperature-driven, altered respiratory metabolism. This review summarizes recent progress in understanding the physiological mechanisms of deacclimation and how they may be impacted by climate change.

  5. Collaborative Research. Quantifying Climate Feedbacks of the Terrestrial Biosphere under Thawing Permafrost Conditions in the Arctic

    SciTech Connect

    Zhuang, Qianlai; Schlosser, Courtney; Melillo, Jerry; Walter, Katey

    2015-09-15

    Our overall goal is to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically-forced climate warming, and the conditions under which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes to the landscape of wetlands and lakes, especially thermokarst (thaw) lakes, across the Arctic. Through a suite of numerical experiments that encapsulate the fundamental processes governing methane emissions and carbon exchanges – as well as their coupling to the global climate system - we intend to test the following hypothesis in the proposed research: There exists a climate warming threshold beyond which permafrost degradation becomes widespread and stimulates large increases in methane emissions (via thermokarst lakes and poorly-drained wetland areas upon thawing permafrost along with microbial metabolic responses to higher temperatures) and increases in carbon dioxide emissions from well-drained areas. Besides changes in biogeochemistry, this threshold will also influence global energy dynamics through effects on surface albedo, evapotranspiration and water vapor. These changes would outweigh any increased uptake of carbon (e.g. from peatlands and higher plant photosynthesis) and would result in a strong, positive feedback to global climate warming.

  6. Climate warming affects biological invasions by shifting interactions of plants and herbivores.

    PubMed

    Lu, Xinmin; Siemann, Evan; Shao, Xu; Wei, Hui; Ding, Jianqing

    2013-08-01

    Plants and herbivorous insects can each be dramatically affected by temperature. Climate warming may impact plant invasion success directly but also indirectly through changes in their natural enemies. To date, however, there are no tests of how climate warming shifts the interactions among invasive plants and their natural enemies to affect invasion success. Field surveys covering the full latitudinal range of invasive Alternanthera philoxeroides in China showed that a beetle introduced for biocontrol was rare or absent at higher latitudes. In contrast, plant cover and mass increased with latitude. In a 2-year field experiment near the northern limit of beetle distribution, we found the beetle sustained populations across years under elevated temperature, dramatically decreasing A. philoxeroides growth, but it failed to overwinter in ambient temperature. Together, these results suggest that warming will allow the natural enemy to expand its range, potentially benefiting biocontrol in regions that are currently too cold for the natural enemy. However, the invader may also expand its range further north in response to warming. In such cases where plants tolerate cold better than their natural enemies, the geographical gap between plant and herbivorous insect ranges may not disappear but will shift to higher latitudes, leading to a new zone of enemy release. Therefore, warming will not only affect plant invasions directly but also drive either enemy release or increase that will result in contrasting effects on invasive plants. The findings are also critical for future management of invasive species under climate change.

  7. Responses of community-level plant-insect interactions to climate warming in a meadow steppe

    PubMed Central

    Zhu, Hui; Zou, Xuehui; Wang, Deli; Wan, Shiqiang; Wang, Ling; Guo, Jixun

    2015-01-01

    Climate warming may disrupt trophic interactions, consequently influencing ecosystem functioning. Most studies have concentrated on the temperature-effects on plant-insect interactions at individual and population levels, with a particular emphasis on changes in phenology and distribution. Nevertheless, the available evidence from the community level is limited. A 3-year field manipulative experiment was performed to test potential responses of plant and insect communities, and plant-insect interactions, to elevated temperature in a meadow steppe. Warming increased the biomass of plant community and forbs, and decreased grass biomass, indicating a shift from grass-dominant to grass-forb mixed plant community. Reduced abundance of the insect community under warming, particularly the herbivorous insects, was attributed to lower abundance of Euchorthippus unicolor and a Cicadellidae species resulting from lower food availability and higher defensive herbivory. Lower herbivore abundance caused lower predator species richness because of reduced prey resources and contributed to an overall decrease in insect species richness. Interestingly, warming enhanced the positive relationship between insect and plant species richness, implying that the strength of the plant-insect interactions was altered by warming. Our results suggest that alterations to plant-insect interactions at a community level under climate warming in grasslands may be more important and complex than previously thought. PMID:26686758

  8. Innovative empirical approaches for inferring climate-warming impacts on plants in remote areas.

    PubMed

    De Frenne, Pieter

    2015-02-01

    The prediction of the effects of climate warming on plant communities across the globe has become a major focus of ecology, evolution and biodiversity conservation. However, many of the frequently used empirical approaches for inferring how warming affects vegetation have been criticized for decades. In addition, methods that require no electricity may be preferred because of constraints of active warming, e.g. in remote areas. Efforts to overcome the limitations of earlier methods are currently under development, but these approaches have yet to be systematically evaluated side by side. Here, an overview of the benefits and limitations of a selection of innovative empirical techniques to study temperature effects on plants is presented, with a focus on practicality in relatively remote areas without an electric power supply. I focus on methods for: ecosystem aboveground and belowground warming; a fuller exploitation of spatial temperature variation; and long-term monitoring of plant ecological and microevolutionary changes in response to warming. An evaluation of the described methodological set-ups in a synthetic framework along six axes (associated with the consistency of temperature differences, disturbance, costs, confounding factors, spatial scale and versatility) highlights their potential usefulness and power. Hence, further developments of new approaches to empirically assess warming effects on plants can critically stimulate progress in climate-change biology.

  9. Sensitivity of the hydrologic cycle to cloud changes in warm climates

    NASA Astrophysics Data System (ADS)

    Carlson, Henrik; Caballero, Rodrigo

    2016-04-01

    Climates of the deep past have posed the longstanding challenge to understand which mechanisms maintained very warm climates. Warm climates have been hard to simulate without very high CO2 concentrations compared to estimates from proxy data. Large climate sensitivity implies a route to warm temperatures without very high concentrations of CO2. In at least one model cloud feedbacks play a central role in increasing climate sensitivity with temperature. However, it is hard to evaluate cloud feedbacks using proxies. On the other hand, there are proxies that provide information about the hydrologic cycle for example through estimating aridity and isotope analysis of leaf wax. Cloud feedbacks could influence the hydrologic cycle through a change in the shortwave radiative flux at the surface that causes a change in latent heat flux and thereby a change in precipitation. We study the impact of clouds in a general circulation model for a broad range of temperatures. One set of simulations with variable clouds is compared to a set of simulations where clouds are represented by a climatology. Our aim to provide a constraint for cloud feedbacks based on hydrology proves elusive. Precipitation change with temperature is very similar regardless of cloud treatment and there is no saturation effect in precipitation as seen in idealized models. However, there is a large change in shortwave absorption by atmospheric water vapor. Our results indicate that the hydrologic cycle is not sensitive to cloud representation in Eocene-like climates but correct representation of shortwave absorption is essential.

  10. Effect of wearing an ice cooling jacket on repeat sprint performance in warm/humid conditions

    PubMed Central

    Duffield, R; Dawson, B; Bishop, D; Fitzsimons, M; Lawrence, S

    2003-01-01

    Objective: To examine the effect of cooling the skin with an ice jacket before and between exercise bouts (to simulate quarter and half time breaks) on prolonged repeat sprint exercise performance in warm/humid conditions. Methods: After an initial familiarisation session, seven trained male hockey players performed two testing sessions (seven days apart), comprising an 80 minute intermittent, repeat sprint cycling exercise protocol inside a climate chamber set at 30°C and 60% relative humidity. On one occasion a skin cooling procedure was implemented (in random counterbalanced order), with subjects wearing an ice cooling jacket both before (for five minutes) and in the recovery periods (2 x 5 min and 1 x 10 min) during the test. Measures of performance (work done and power output on each sprint), heart rates, blood lactate concentrations, core (rectal) and skin temperatures, sweat loss, perceived exertion, and ratings of thirst, thermal discomfort, and fatigue were obtained in both trials. Results: In the cooling condition, chest (torso) skin temperature, thermal discomfort, and rating of thirst were all significantly lower (p<0.05), but no significant difference (p>0.05) was observed between conditions for measures of work done, power output, heart rate, blood lactate concentration, core or mean skin temperature, perceived exertion, sweat loss, or ratings of fatigue. However, high effect sizes indicated trends to lowered lactate concentrations, sweat loss, and mean skin temperatures in the cooling condition. Conclusions: The intermittent use of an ice cooling jacket, both before and during a repeat sprint cycling protocol in warm/humid conditions, did not improve physical performance, although the perception of thermal load was reduced. Longer periods of cooling both before and during exercise (to lower mean skin temperature by a greater degree than observed here) may be necessary to produce such a change. PMID:12663361

  11. Increases in flood magnitudes in California under warming climates

    USGS Publications Warehouse

    Das, Tapash; Maurer, Edwin P.; Pierce, David W.; Dettinger, Michael D.; Cayah, Daniel R.

    2013-01-01

    Downscaled and hydrologically modeled projections from an ensemble of 16 Global Climate Models suggest that flooding may become more intense on the western slopes of the Sierra Nevada mountains, the primary source for California’s managed water system. By the end of the 21st century, all 16 climate projections for the high greenhouse-gas emission SRES A2 scenario yield larger floods with return periods ranging 2–50 years for both the Northern Sierra Nevada and Southern Sierra Nevada, regardless of the direction of change in mean precipitation. By end of century, discharges from the Northern Sierra Nevada with 50-year return periods increase by 30–90% depending on climate model, compared to historical values. Corresponding flood flows from the Southern Sierra increase by 50–100%. The increases in simulated 50 year flood flows are larger (at 95% confidence level) than would be expected due to natural variability by as early as 2035 for the SRES A2 scenario.

  12. Dusting the climate for fingerprints. Has greenhouse warming arrived? Will we ever know?

    SciTech Connect

    Monastersy, R.

    1995-06-10

    The topic of global warming is front page news again. Although the annual average global temperature has risen by about 0.5 C since the late 19th century, investigators have had difficulty determining whether natural forces or human actions are to blame. This article summarizes the arguments pro and con and the search for a diffinative `human fingerprint` on global warming. For example, Max-Lanck researchers find it highly imporbable (1 in 20 chance) that natural forcers have caused the temperature rise. However other scientists acknowledge that uncertainties continue to plague studies aimed at detecting the human influence in climatic change. Computer climate models are the major approach, but distiguishing between recent abnormal warming due to greenhouse gases or to other causes is elusive.

  13. Overestimating climate warming-induced methane gas escape from the seafloor by neglecting multiphase flow dynamics

    NASA Astrophysics Data System (ADS)

    Stranne, C.; O'Regan, M.; Jakobsson, M.

    2016-08-01

    Continental margins host large quantities of methane stored partly as hydrates in sediments. Release of methane through hydrate dissociation is implicated as a possible feedback mechanism to climate change. Large-scale estimates of future warming-induced methane release are commonly based on a hydrate stability approach that omits dynamic processes. Here we use the multiphase flow model TOUGH + hydrate (T + H) to quantitatively investigate how dynamic processes affect dissociation rates and methane release. The simulations involve shallow, 20-100 m thick hydrate deposits, forced by a bottom water temperature increase of 0.03°C yr-1 over 100 years. We show that on a centennial time scale, the hydrate stability approach can overestimate gas escape quantities by orders of magnitude. Our results indicate a time lag of > 40 years between the onset of warming and gas escape, meaning that recent climate warming may soon be manifested as widespread gas seepages along the world's continental margins.

  14. An Alternative View of the Climate Warming Mitigation Potential of U.S. Temperate Forests

    EPA Science Inventory

    Many U.S. federal and non-governmental agencies promote forestation as a means to mitigate climate warming because of the carbon sequestration potential of forests. This biogeochemical-oriented carbon sequestration policy is somewhat inconsistent with a decade or more of researc...

  15. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes.

    PubMed

    Cornelissen, Johannes H C; van Bodegom, Peter M; Aerts, Rien; Callaghan, Terry V; van Logtestijn, Richard S P; Alatalo, Juha; Chapin, F Stuart; Gerdol, Renato; Gudmundsson, Jon; Gwynn-Jones, Dylan; Hartley, Anne E; Hik, David S; Hofgaard, Annika; Jónsdóttir, Ingibjörg S; Karlsson, Staffan; Klein, Julia A; Laundre, Jim; Magnusson, Borgthor; Michelsen, Anders; Molau, Ulf; Onipchenko, Vladimir G; Quested, Helen M; Sandvik, Sylvi M; Schmidt, Inger K; Shaver, Gus R; Solheim, Bjørn; Soudzilovskaia, Nadejda A; Stenström, Anna; Tolvanen, Anne; Totland, Ørjan; Wada, Naoya; Welker, Jeffrey M; Zhao, Xinquan

    2007-07-01

    Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide. Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.

  16. Experimental climate warming decreases photosynthetic efficiency of lichens in an arid South African ecosystem.

    PubMed

    Maphangwa, Khumbudzo Walter; Musil, Charles F; Raitt, Lincoln; Zedda, Luciana

    2012-05-01

    Elevated temperatures and diminished precipitation amounts accompanying climate warming in arid ecosystems are expected to have adverse effects on the photosynthesis of lichen species sensitive to elevated temperature and/or water limitation. This premise was tested by artificially elevating temperatures (increase 2.1-3.8°C) and reducing the amounts of fog and dew precipitation (decrease 30.1-31.9%), in an approximation of future climate warming scenarios, using transparent hexagonal open-top warming chambers placed around natural populations of four lichen species (Xanthoparmelia austroafricana, X. hyporhytida , Xanthoparmelia. sp., Xanthomaculina hottentotta) at a dry inland site and two lichen species (Teloschistes capensis and Ramalina sp.) at a humid coastal site in the arid South African Succulent Karoo Biome. Effective photosynthetic quantum yields ([Formula: see text]) were measured hourly throughout the day at monthly intervals in pre-hydrated lichens present in the open-top warming chambers and in controls which comprised demarcated plots of equivalent open-top warming chamber dimensions constructed from 5-cm-diameter mesh steel fencing. The cumulative effects of the elevated temperatures and diminished precipitation amounts in the open-top warming chambers resulted in significant decreases in lichen [Formula: see text]. The decreases were more pronounced in lichens from the dry inland site (decline 34.1-46.1%) than in those from the humid coastal site (decline 11.3-13.7%), most frequent and prominent in lichens at both sites during the dry summer season, and generally of greatest magnitude at or after the solar noon in all seasons. Based on these results, we conclude that climate warming interacting with reduced precipitation will negatively affect carbon balances in endemic lichens by increasing desiccation damage and reducing photosynthetic activity time, leading to increased incidences of mortality.

  17. Simulated climate warming alters phenological synchrony between an outbreak insect herbivore and host trees.

    PubMed

    Schwartzberg, Ezra G; Jamieson, Mary A; Raffa, Kenneth F; Reich, Peter B; Montgomery, Rebecca A; Lindroth, Richard L

    2014-07-01

    As the world's climate warms, the phenologies of interacting organisms in seasonally cold environments may advance at differing rates, leading to alterations in phenological synchrony that can have important ecological consequences. For temperate and boreal species, the timing of early spring development plays a key role in plant-herbivore interactions and can influence insect performance, outbreak dynamics, and plant damage. We used a field-based, meso-scale free-air forest warming experiment (B4WarmED) to examine the effects of elevated temperature on the phenology and performance of forest tent caterpillar (Malacosoma disstria) in relation to the phenology of two host trees, aspen (Populus tremuloides) and birch (Betula papyrifera). Results of our 2-year study demonstrated that spring phenology advanced for both insects and trees, with experimentally manipulated increases in temperature of 1.7 and 3.4 °C. However, tree phenology advanced more than insect phenology, resulting in altered phenological synchrony. Specifically, we observed a decrease in the time interval between herbivore egg hatch and budbreak of aspen in both years and birch in one year. Moreover, warming decreased larval development time from egg hatch to pupation, but did not affect pupal mass. Larvae developed more quickly on aspen than birch, but pupal mass was not affected by host species. Our study reveals that warming-induced phenological shifts can alter the timing of ecological interactions across trophic levels. These findings illustrate one mechanism by which climate warming could mediate insect herbivore outbreaks, and also highlights the importance of climate change effects on trophic interactions.

  18. Simulated climate warming alters phenological synchrony between an outbreak insect herbivore and host trees.

    PubMed

    Schwartzberg, Ezra G; Jamieson, Mary A; Raffa, Kenneth F; Reich, Peter B; Montgomery, Rebecca A; Lindroth, Richard L

    2014-07-01

    As the world's climate warms, the phenologies of interacting organisms in seasonally cold environments may advance at differing rates, leading to alterations in phenological synchrony that can have important ecological consequences. For temperate and boreal species, the timing of early spring development plays a key role in plant-herbivore interactions and can influence insect performance, outbreak dynamics, and plant damage. We used a field-based, meso-scale free-air forest warming experiment (B4WarmED) to examine the effects of elevated temperature on the phenology and performance of forest tent caterpillar (Malacosoma disstria) in relation to the phenology of two host trees, aspen (Populus tremuloides) and birch (Betula papyrifera). Results of our 2-year study demonstrated that spring phenology advanced for both insects and trees, with experimentally manipulated increases in temperature of 1.7 and 3.4 °C. However, tree phenology advanced more than insect phenology, resulting in altered phenological synchrony. Specifically, we observed a decrease in the time interval between herbivore egg hatch and budbreak of aspen in both years and birch in one year. Moreover, warming decreased larval development time from egg hatch to pupation, but did not affect pupal mass. Larvae developed more quickly on aspen than birch, but pupal mass was not affected by host species. Our study reveals that warming-induced phenological shifts can alter the timing of ecological interactions across trophic levels. These findings illustrate one mechanism by which climate warming could mediate insect herbivore outbreaks, and also highlights the importance of climate change effects on trophic interactions. PMID:24889969

  19. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    SciTech Connect

    Shah, Nihar K.; Wei, Max; Letschert, Virginie; Phadke, Amol A.

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.

  20. Quantifying the influence of observed global warming on the probability of unprecedented extreme climate events

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, N. S.; Rajaratnam, B.; Charland, A.; Haugen, M.; Horton, D. E.; Singh, D.; Swain, D. L.; Tsiang, M.

    2014-12-01

    Now that observed global warming has been clearly attributed to human activities, there has been increasing interest in the extent to which that warming has influenced the occurrence and severity of individual extreme climate events. However, although trends in the extremes of the seasonal- and daily-scale distributions of climate records have been analyzed for many years, quantifying the contribution of observed global warming to individual events that are unprecedented in the observed record presents a particular scientific challenge. We will describe a modified method for leveraging observations and large climate model ensembles to quantify the influence of observed global warming on the probability of unprecedented extreme events. In this approach, we first diagnose the causes of the individual event in order to understand which climate processes to target in the probability quantification. We then use advanced statistical techniques to quantify the uncertainty in the return period of the event in the observed record. We then use large ensembles of climate model simulations to quantify the distribution of return period ratios between the current level of climate forcing and the pre-industrial climate forcing. We will compare the structure of this approach to other approaches that exist in the literature. We will then examine a set of individual extreme events that have been analyzed in the literature, and compare the results of our approach with those that have been previously published. We will conclude with a discussion of the observed agreement and disagreement between the different approaches, including implications for interpretation of the role of human forcing in shaping unprecedented extreme events.

  1. Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake.

    PubMed

    de Wit, Heleen A; Bryn, Anders; Hofgaard, Annika; Karstensen, Jonas; Kvalevåg, Maria M; Peters, Glen P

    2014-07-01

    Expanding high-elevation and high-latitude forest has contrasting climate feedbacks through carbon sequestration (cooling) and reduced surface reflectance (warming), which are yet poorly quantified. Here, we present an empirically based projection of mountain birch forest expansion in south-central Norway under climate change and absence of land use. Climate effects of carbon sequestration and albedo change are compared using four emission metrics. Forest expansion was modeled for a projected 2.6 °C increase in summer temperature in 2100, with associated reduced snow cover. We find that the current (year 2000) forest line of the region is circa 100 m lower than its climatic potential due to land-use history. In the future scenarios, forest cover increased from 12% to 27% between 2000 and 2100, resulting in a 59% increase in biomass carbon storage and an albedo change from 0.46 to 0.30. Forest expansion in 2100 was behind its climatic potential, forest migration rates being the primary limiting factor. In 2100, the warming caused by lower albedo from expanding forest was 10 to 17 times stronger than the cooling effect from carbon sequestration for all emission metrics considered. Reduced snow cover further exacerbated the net warming feedback. The warming effect is considerably stronger than previously reported for boreal forest cover, because of the typically low biomass density in mountain forests and the large changes in albedo of snow-covered tundra areas. The positive climate feedback of high-latitude and high-elevation expanding forests with seasonal snow cover exceeds those of afforestation at lower elevation, and calls for further attention of both modelers and empiricists. The inclusion and upscaling of these climate feedbacks from mountain forests into global models is warranted to assess the potential global impacts.

  2. Ecosystem resilience despite large-scale altered hydro climatic conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological paradigm for many regions. Large-scale, warm droughts have recently impacted North America, Africa, Europe, Amazonia, and Australia result...

  3. Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic

    PubMed Central

    Zhang, Qian-Qian; Smith, Thierry; Yang, Jian; Li, Cheng-Sen

    2016-01-01

    The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800–1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years. PMID:27196048

  4. Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic.

    PubMed

    Zhang, Qian-Qian; Smith, Thierry; Yang, Jian; Li, Cheng-Sen

    2016-01-01

    The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800-1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years.

  5. Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic.

    PubMed

    Zhang, Qian-Qian; Smith, Thierry; Yang, Jian; Li, Cheng-Sen

    2016-01-01

    The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800-1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years. PMID:27196048

  6. Global warming impacts of ozone-safe refrigerants and refrigeration, heating, and air-conditioning technologies

    SciTech Connect

    Fischer, S.; Sand, J.; Baxter, V.

    1997-12-01

    International agreements mandate the phase-out of many chlorine containing compounds that are used as the working fluid in refrigeration, air-conditioning, and heating equipment. Many of the chemical compounds that have been proposed, and are being used in place of the class of refrigerants eliminated by the Montreal Protocol are now being questioned because of their possible contributions to global warming. Natural refrigerants are put forth as inherently superior to manufactured refrigerants because they have very low or zero global warming potentials (GWPs). Questions are being raised about whether or not these manufactured refrigerants, primarily hydrofluorocarbons (HFCs), should be regulated and perhaps phased out in much the same manner as CFCs and HCFCs. Several of the major applications of refrigerants are examined in this paper and the results of an analysis of their contributions to greenhouse warming are presented. Supermarket refrigeration is shown to be an application where alternative technologies have the potential to reduce emissions of greenhouse gases (GHG) significantly with no clear advantage to either natural or HFC refrigerants. Mixed results are presented for automobile air conditioners with opportunities to reduce GHG emissions dependent on climate and comfort criteria. GHG emissions for hermetic and factory built systems (i.e. household refrigerators/freezers, unitary equipment, chillers) are shown to be dominated by energy use with much greater potential for reduction through efficiency improvements than by selection of refrigerant. The results for refrigerators also illustrate that hydrocarbon and carbon dioxide blown foam insulation have lower overall effects on GHG emissions than HFC blown foams at the cost of increased energy use.

  7. [Effects of climate warming and drying on millet yield in Gansu Province and related countermeasures].

    PubMed

    Cao, Ling; Wang, Qiang; Deng, Zhen-yong; Guo, Xiao-qin; Ma, Xing-xiang; Ning, Hui-fang

    2010-11-01

    Based on the data of air temperature, precipitation, and millet yield from Ganzhou, Anding, and Xifeng, the representative stations in Hexi moderate arid oasis irrigation area, moderate sub-arid dry area in middle Gansu, and moderate sub-humid dry area in eastern Gansu, respectively, this paper calculated the regional active accumulated temperature of > or = 0 degrees C, > or =5 degrees C, > or =10 degrees C, > or =15 degrees C, and > or =20 degrees C in millet growth period, and the average temperature and precipitation in millet key growth stages. The millet climatic yield was isolated by orthogonal polynomial, and the change characteristics of climate and millet climatic yield as well as the effects of climate change on millet yield were analyzed by statistical methods of linear tendency, cumulative anomaly, and Mann-Kendall. The results showed that warming and drying were the main regional features in the modern climatic change of Gansu. The regional temperature had a significant upward trend since the early 1990s, while the precipitation was significantly reduced from the late 1980s. There were significant correlations between millet yield and climatic factors. The millet yield in dry areas increased with the increasing temperature and precipitation in millet key growth stages, and that in Hexi Corridor area increased with increasing temperature. Warming and drying affected millet yield prominently. The weather fluctuation index of regional millet yield in Xifeng, Anding, and Ganzhou accounted for 73%, 72%, and 54% of real output coefficient variation, respectively, and the percentages increased significantly after warming. Warming was conducive to the increase of millet production, and the annual increment of millet climatic yield in Xifeng, Anding, and Ganzhou after warming was 30.6, 43.1, and 121.1 kg x hm(-2), respectively. Aiming at the warming and drying trend in Gansu Province in the future, the millet planting area in the Province should be further

  8. Climatic water deficit and wildfire: predicting spatial patterns in forest ecosystem sensitivity to warming and earlier spring snowmelt. (Invited)

    NASA Astrophysics Data System (ADS)

    Westerling, A. L.; Keyser, A.; Milostan, J.

    2013-12-01

    Western U.S. forest wildfire area burned increased significantly in recent decades, with much of the increase in the US Rocky Mountains (Westerling et al 2006). While Westerling et al (2006) noted that interannual variability in aggregate regional forest wildfire has been highly correlated with regional indices of warming and spring snowmelt, our analysis of the hydroclimatic conditions coincident with the occurrence of large forest wildfires in recent decades reveals that sensitivity of wildfire in specific forest areas has been characterized by a narrow range of climatic conditions: long-term average snow-free season of ~2-4 months and relatively high cumulative water-year actual evapotranspiration (AET). These forests have shown large increases in cumulative water year moisture deficit concomitant with large increases in wildfire in recent years with warmer than average temperatures and earlier spring snowmelt. Forests with high AET and snow-free seasons between 4 and 5 months have exhibited significant but more moderate increases in wildfire activity. Mean snow-free season length and cumulative AET may also be predictive of forest wildfire sensitivity to projected warming. Recent climate change impact studies indicate that the same forests where wildfire activity has exhibited the most sensitivity to observed warming in recent decades may continue to exhibit large increases in the next few decades, until reductions in fuel availability and continuity become dominant constraints on the growth of large wildfires (e.g., Westerling et al 2011a, Litschert et al 2012, Westerling et al unpublished data). We also find that similar forests that may have been buffered from recent climate change by elevation or latitude may also show very large increases in wildfire under projected warming. Conversely, warmer, drier forests where recent changes in moisture deficit and fire activity have been more moderate (particularly those with snow-free seasons ~4-5 months), are

  9. Climatic water deficit and wildfire: predicting spatial patterns in forest ecosystem sensitivity to warming and earlier spring snowmelt. (Invited)

    NASA Astrophysics Data System (ADS)

    Westerling, A. L.; Keyser, A.; Milostan, J.

    2011-12-01

    Western U.S. forest wildfire area burned increased significantly in recent decades, with much of the increase in the US Rocky Mountains (Westerling et al 2006). While Westerling et al (2006) noted that interannual variability in aggregate regional forest wildfire has been highly correlated with regional indices of warming and spring snowmelt, our analysis of the hydroclimatic conditions coincident with the occurrence of large forest wildfires in recent decades reveals that sensitivity of wildfire in specific forest areas has been characterized by a narrow range of climatic conditions: long-term average snow-free season of ~2-4 months and relatively high cumulative water-year actual evapotranspiration (AET). These forests have shown large increases in cumulative water year moisture deficit concomitant with large increases in wildfire in recent years with warmer than average temperatures and earlier spring snowmelt. Forests with high AET and snow-free seasons between 4 and 5 months have exhibited significant but more moderate increases in wildfire activity. Mean snow-free season length and cumulative AET may also be predictive of forest wildfire sensitivity to projected warming. Recent climate change impact studies indicate that the same forests where wildfire activity has exhibited the most sensitivity to observed warming in recent decades may continue to exhibit large increases in the next few decades, until reductions in fuel availability and continuity become dominant constraints on the growth of large wildfires (e.g., Westerling et al 2011a, Litschert et al 2012, Westerling et al unpublished data). We also find that similar forests that may have been buffered from recent climate change by elevation or latitude may also show very large increases in wildfire under projected warming. Conversely, warmer, drier forests where recent changes in moisture deficit and fire activity have been more moderate (particularly those with snow-free seasons ~4-5 months), are

  10. Climate warming increases biological control agent impact on a non-target species.

    PubMed

    Lu, Xinmin; Siemann, Evan; He, Minyan; Wei, Hui; Shao, Xu; Ding, Jianqing

    2015-01-01

    Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species.

  11. Simulated austral winter response of the Hadley circulation and stationary Rossby wave propagation to a warming climate

    NASA Astrophysics Data System (ADS)

    Freitas, Ana C. V.; Frederiksen, Jorgen S.; O'Kane, Terence J.; Ambrizzi, Tércio

    2016-09-01

    Ensemble simulations, using both coupled ocean-atmosphere (AOGCM) and atmosphere only (AGCM) general circulation models, are employed to examine the austral winter response of the Hadley circulation (HC) and stationary Rossby wave propagation (SRW) to a warming climate. Changes in the strength and width of the HC are firstly examined in a set of runs with idealized sea surface temperature (SST) perturbations as boundary conditions in the AGCM. Strong and weak SST gradient experiments (SG and WG, respectively) simulate changes in the HC intensity, whereas narrow (5°S-5°N) and wide (30°S-30°N) SST warming experiments simulate changes in the HC width. To examine the combined impact of changes in the strength and width of the HC upon SRW propagation two AOGCM simulations using different scenarios of increasing carbon dioxide (CO2) concentrations are employed. We show that, in contrast to a wide SST warming, the atmospheric simulations with a narrow SST warming produce stronger and very zonally extended Rossby wave sources, leading to stronger and eastward shifted troughs and ridges. Simulations with SST anomalies, either in narrow or wide latitude bands only modify the intensity of the troughs and ridges. SST anomalies outside the narrow latitude band of 5°S-5°N do not significantly affect the spatial pattern of SRW propagation. AOGCM simulations with 1 %/year increasing CO2 concentrations or 4 times preindustrial CO2 levels reveal very similar SRW responses to the atmospheric only simulations with anomalously wider SST warming. Our results suggest that in a warmer climate, the changes in the strength and width of the HC act in concert to significantly alter SRW sources and propagation characteristics.

  12. The effects of climate uncertainty on the stability of the Antarctic ice sheet during the mid-Pliocene warm period

    NASA Astrophysics Data System (ADS)

    Bernales, Jorge; Häfliger, Tonio; Rogozhina, Irina; Thomas, Maik

    2015-04-01

    The mid-Pliocene (3.15 to 2.85 million years before present) is the most recent period in Earth's history when temperatures and CO2 concentrations were sustainedly higher than pre-industrial values [1], representing an ideal interval for studying the climate system under conditions similar to those projected for the end of this century. In these projections, the response of the Antarctic ice sheet (AIS) remains uncertain, including areas generally considered stable under a warming climate. Therefore, a better understanding of AIS's behaviour during periods like the mid-Pliocene will provide valuable information on the potential vulnerability of the composite parts of the AIS in the future. For this purpose, we have designed numerical experiments of the AIS dynamics during the mid-Pliocene warm period using the continental-scale ice sheet-shelf model SICOPOLIS [2]. To account for the uncertainties in the configuration of the AIS and climate conditions prior to this period, we employ a wide range of initial ice sheet configurations and climatologies, including modern observations, the results from the Pliocene Model Intercomparison Project (PlioMIP) climate experiments [3], and perturbations to single climatic fields, allowing us to assess the vulnerability of different AIS sectors to specific forcing mechanisms. Our simulations show that the West Antarctic ice sheet remains largely ice-free under the chosen range of climate conditions, except for small portions grounded above sea level. On the contrary, the East Antarctic ice sheet (EAIS) shows no signs of potential collapse, with an ice loss over a few peripheral sectors largely compensated by an increase in ice volume over the interior due to increased precipitation rates and surface temperatures remaining well below the freezing point. Furthermore, our results contrast with existing hypotheses that cast doubt on the stability of the EAIS during the mid-Pliocene warm period. References [1] Cook, C. P., et al

  13. Photosynthesis of temperate Eucalyptus globulus trees outside their native range has limited adjustment to elevated CO2 and climate warming.

    PubMed

    Crous, Kristine Y; Quentin, Audrey G; Lin, Yan-Shih; Medlyn, Belinda E; Williams, David G; Barton, Craig V M; Ellsworth, David S

    2013-12-01

    Eucalyptus species are grown widely outside of their native ranges in plantations on all vegetated continents of the world. We predicted that such a plantation species would show high potential for acclimation of photosynthetic traits across a wide range of growth conditions, including elevated [CO2] and climate warming. To test this prediction, we planted temperate Eucalyptus globulus Labill. seedlings in climate-controlled chambers in the field located >700 km closer to the equator than the nearest natural occurrence of this species. Trees were grown in a complete factorial combination of elevated CO2 concentration (eC; ambient [CO2] +240 ppm) and air warming treatments (eT; ambient +3 °C) for 15 months until they reached ca. 10 m height. There was little acclimation of photosynthetic capacity to eC and hence the CO2-induced photosynthetic enhancement was large (ca. 50%) in this treatment during summer. The warming treatment significantly increased rates of both carboxylation capacity (V(cmax)) and electron transport (Jmax) (measured at a common temperature of 25 °C) during winter, but decreased them significantly by 20-30% in summer. The photosynthetic CO2 compensation point in the absence of dark respiration (Γ*) was relatively less sensitive to temperature in this temperate eucalypt species than for warm-season tobacco. The temperature optima for photosynthesis and Jmax significantly changed by about 6 °C between winter and summer, but without further adjustment from early to late summer. These results suggest that there is an upper limit for the photosynthetic capacity of E. globulus ssp. globulus outside its native range to acclimate to growth temperatures above 25 °C. Limitations to temperature acclimation of photosynthesis in summer may be one factor that defines climate zones where E. globulus plantation productivity can be sustained under anticipated global environmental change.

  14. Cold hands, warm hearth?: Climate, net takeback, household comfort

    SciTech Connect

    Schwarz, P.M.; Taylor, T.N.

    1995-12-31

    Insulation reduces marginal heating costs and may lead to a takeback effect of higher wintertime thermostat settings, with a consequent dilution of energy savings. Alternatively, additional insulation could permit a lower thermostat setting by reducing drafts and radiation while increasing moisture retention, thereby enhancing comfort. This paper evaluates thermostat net takeback, the difference between takeback and enhanced comfort. Evidence supports the existence of both effects, with net takeback at the low end of literature estimates. Net thermostat takeback is on the order of 0.05{degrees}F, leading to an energy takeback that ranges from 1-3% of potential energy savings, depending on climate and house size. Other significant determinants of thermostat are heating energy price and the presence of elderly or young occupants. 19 refs., 4 tabs.

  15. Climate warming could reduce runoff significantly in New England, USA

    USGS Publications Warehouse

    Huntington, T.G.

    2003-01-01

    The relation between mean annual temperature (MAT), mean annual precipitation (MAP) and evapotranspiration (ET) for 38 forested watersheds was determined to evaluate the potential increase in ET and resulting decrease in stream runoff that could occur following climate change and lengthening of the growing season. The watersheds were all predominantly forested and were located in eastern North America, along a gradient in MAT from 3.5??C in New Brunswick, CA, to 19.8??C in northern Florida. Regression analysis for MAT versus ET indicated that along this gradient ET increased at a rate of 2.85 cm??C-1 increase in MAT (??0.96 cm??C-1, 95% confidence limits). General circulation models (GCM) using current mid-range emission scenarios project global MAT to increase by about 3??C during the 21st century. The inferred, potential, reduction in annual runoff associated with a 3??C increase in MAT for a representative small coastal basin and an inland mountainous basin in New England would be 11-13%. Percentage reductions in average daily runoff could be substantially larger during the months of lowest flows (July-September). The largest absolute reductions in runoff are likely to be during April and May with smaller reduction in the fall. This seasonal pattern of reduction in runoff is consistent with lengthening of the growing season and an increase in the ratio of rain to snow. Future increases in water use efficiency (WUE), precipitation, and cloudiness could mitigate part or all of this reduction in runoff but the full effects of changing climate on WUE remain quite uncertain as do future trends in precipitation and cloudiness.

  16. Adaptive strategies and life history characteristics in a warming climate: salmon in the Arctic?

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Ruggerone, Gregory T.; Zimmerman, Christian E.

    2013-01-01

    In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.

  17. Vegetation exerts a greater control on litter decomposition than climate warming in peatlands.

    PubMed

    Ward, Susan E; Orwin, Kate H; Ostle, Nicholas J; Briones, J I; Thomson, Bruce C; Griffiths, Robert I; Oakley, Simon; Quirk, Helen; Bardget, Richard D

    2015-01-01

    Historically, slow decomposition rates have resulted in the accumulation of large amounts of carbon in northern peatlands. Both climate warming and vegetation change can alter rates of decomposition, and hence affect rates of atmospheric CO2 exchange, with consequences for climate change feedbacks. Although warming and vegetation change are happening concurrently, little is known about their relative and interactive effects on decomposition processes. To test the effects of warming and vegetation change on decomposition rates, we placed litter of three dominant species (Calluna vulgaris, Eriophorum vaginatum, Hypnum jutlandicum) into a peatland field experiment that combined warming.with plant functional group removals, and measured mass loss over two years. To identify potential mechanisms behind effects, we also measured nutrient cycling and soil biota. We found that plant functional group removals exerted a stronger control over short-term litter decomposition than did approximately 1 degrees C warming, and that the plant removal effect depended on litter species identity. Specifically, rates of litter decomposition were faster when shrubs were removed from the plant community, and these effects were strongest for graminoid and bryophyte litter. Plant functional group removals also had strong effects on soil biota and nutrient cycling associated with decomposition, whereby shrub removal had cascading effects on soil fungal community composition, increased enchytraeid abundance, and increased rates of N mineralization. Our findings demonstrate that, in addition to litter quality, changes in vegetation composition play a significant role in regulating short-term litter decomposition and belowground communities in peatland, and that these impacts can be greater than moderate warming effects. Our findings, albeit from a relatively short-term study, highlight the need to consider both vegetation change and its impacts below ground alongside climatic effects when

  18. Vegetation exerts a greater control on litter decomposition than climate warming in peatlands.

    PubMed

    Ward, Susan E; Orwin, Kate H; Ostle, Nicholas J; Briones, J I; Thomson, Bruce C; Griffiths, Robert I; Oakley, Simon; Quirk, Helen; Bardget, Richard D

    2015-01-01

    Historically, slow decomposition rates have resulted in the accumulation of large amounts of carbon in northern peatlands. Both climate warming and vegetation change can alter rates of decomposition, and hence affect rates of atmospheric CO2 exchange, with consequences for climate change feedbacks. Although warming and vegetation change are happening concurrently, little is known about their relative and interactive effects on decomposition processes. To test the effects of warming and vegetation change on decomposition rates, we placed litter of three dominant species (Calluna vulgaris, Eriophorum vaginatum, Hypnum jutlandicum) into a peatland field experiment that combined warming.with plant functional group removals, and measured mass loss over two years. To identify potential mechanisms behind effects, we also measured nutrient cycling and soil biota. We found that plant functional group removals exerted a stronger control over short-term litter decomposition than did approximately 1 degrees C warming, and that the plant removal effect depended on litter species identity. Specifically, rates of litter decomposition were faster when shrubs were removed from the plant community, and these effects were strongest for graminoid and bryophyte litter. Plant functional group removals also had strong effects on soil biota and nutrient cycling associated with decomposition, whereby shrub removal had cascading effects on soil fungal community composition, increased enchytraeid abundance, and increased rates of N mineralization. Our findings demonstrate that, in addition to litter quality, changes in vegetation composition play a significant role in regulating short-term litter decomposition and belowground communities in peatland, and that these impacts can be greater than moderate warming effects. Our findings, albeit from a relatively short-term study, highlight the need to consider both vegetation change and its impacts below ground alongside climatic effects when

  19. Inductive analysis about the impact of climate warming on regional geomorphic evolution in arid area

    NASA Astrophysics Data System (ADS)

    Anayit, Mattohti; Abulizi, Mailiya

    2016-04-01

    Climate change on the surface of earth will produce a chain reaction among so many global natural environmental elements. Namely, all the issues will be affected by the climate change, just like the regional water environment, formation and development of landscape, plants and animals living environment, the survival of microorganisms, the human economic environment and health, and the whole social environment changes at well. But because of slow frequency of climate change and it is volatility change, its influence on other factors and the overall environmental performance is not obvious, and its reflection performs slowly. Using regional weather data, we calculated qualitatively and quantitatively and did analysis the impact of climate warming on Xinjiang (a province of China) geomorphic evolution elements, including the ground weather, erosion rate, collapse change, landslide occurrences changes and impact debris flow, combining the field survey and indoor test methods. Key words: climate change; the geomorphic induction; landscape change in river basin; Xinjiang

  20. Abrupt climate change in West Antarctica and Greenland during the last deglacial warming

    NASA Astrophysics Data System (ADS)

    Fudge, T. J.; Steig, E. J.; Brook, E.; Buizert, C.; Conway, H.; Ding, Q.; Markle, B. R.; McConnell, J. R.; Pedro, J. B.; Schoenemann, S. W.; Severinghaus, J. P.; Sigl, M.; Sowers, T. A.; Taylor, K.; Waddington, E. D.

    2013-12-01

    The WAIS Divide ice core is the first Southern Hemisphere record with precision similar to ice cores from Greenland. The annually resolved timescale and small gas-age ice-age difference allow the phasing of climate change in the two hemispheres to be compared with unprecedented precision. We focus on the three abrupt climate changes in Greenland during the deglacial transition and the corresponding changes at WAIS Divide. The onset of the Antarctic Cold Reversal (ACR) is clearly defined in the WAIS Divide record and lagged the Bolling-Allerod (BA) warming by 150×50 years. The phasing of the other two abrupt climate changes cannot be distinguished from synchronous with an uncertainty of ~200 years because the transitions from warming to cooling (or cooling to warming) are not distinct in the WAIS Divide record. The lead-lag relationships of no more than a couple centuries confirm the tight coupling between hemispheres during the deglaciation. The independent timescale of WAIS Divide confirms that meltwater Pulse 1a began near-coincident with the BA and ACR although the lack of direct synchronization between the annually dated ice-core imescales and the radiometrically dated coral timescale prevents the phasing from being known to better than a couple of centuries. A new observation from WAIS Divide is that accumulation increased ~40% between 12.0 and 11.6 ka, with the accumulation increase ending approximately coincident with the warming at the end of the Younger Dryas in Greenland. Other Antarctic ice cores lack timescales with sufficient resolution to identify such abrupt changes so it is unclear how much of Antarctica was affected by the increased accumulation rates. The inter-hemispheric relationships are often limited to a discussion of warming, but the WAIS Divide records suggests that the moisture transport may be another important constraint on the mechanisms that drive abrupt climate change.

  1. Climate warming, euxinia and carbon isotope perturbations during the Carnian (Triassic) Crisis in South China

    NASA Astrophysics Data System (ADS)

    Sun, Y. D.; Wignall, P. B.; Joachimski, M. M.; Bond, D. P. G.; Grasby, S. E.; Lai, X. L.; Wang, L. N.; Zhang, Z. T.; Sun, S.

    2016-06-01

    The Carnian Humid Episode (CHE), also known as the Carnian Pluvial Event, and associated biotic changes are major enigmas of the Mesozoic record in western Tethys. We show that the CHE also occurred in eastern Tethys (South China), suggestive of a much more widespread and probably global climate perturbation. Oxygen isotope records from conodont apatite indicate a double-pulse warming event. The CHE coincided with an initial warming of 4 °C. This was followed by a transient cooling period and then a prolonged ∼7 °C warming in the later Carnian (Tuvalian 2). Carbon isotope perturbations associated with the CHE of western Tethys occurred contemporaneously in South China, and mark the start of a prolonged period of carbon cycle instability that persisted until the late Carnian. The dry-wet transition during the CHE coincides with the negative carbon isotope excursion and the temperature rise, pointing to an intensification of hydrologic cycle activities due to climatic warming. While carbonate platform shutdown in western Tethys is associated with an influx of siliciclastic sediment, the eastern Tethyan carbonate platforms are overlain by deep-water anoxic facies. The transition from oxygenated to euxinic facies was via a condensed, manganiferous carbonate (MnO content up to 15.1 wt%), that records an intense Mn shuttle operating in the basin. Significant siliciclastic influx in South China only occurred after the CHE climatic changes and was probably due to foreland basin development at the onset of the Indosinian Orogeny. The mid-Carnian biotic crisis thus coincided with several phenomena associated with major extinction events: a carbonate production crisis, climate warming, δ13 C oscillations, marine anoxia, biotic turnover and flood basalt eruptions (of the Wrangellia Large Igneous Province).

  2. High-Resolution Climate Change Projections Capture the Elevation Dependence of Warming and Snow Cover Loss in California's Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Walton, D.; Hall, A. D.; Berg, N.; Schwartz, M. A.; Sun, F.

    2015-12-01

    High-resolution projections of warming and snow cover change are made for California's Sierra Nevada mountain range for the period 2081-2100 using hybrid dynamical-statistical downscaling. First, future climate change projections from five global climate models (GCMs) are downscaled dynamically. The warming signal exhibits a strong elevation dependence that is not captured by common statistical downscaling methods. Variations in the warming are attributed to snow albedo feedback and the blocking effect of the Sierra Nevada, which creates a sharp warming gradient between marine and continental air masses. These two physical processes are incorporated into a simple statistical model that mimics the dynamical model's warming patterns given GCM input. This statistical model is used to produce warming and snow cover loss projections for an ensemble of 35 GCMs. Capturing the elevation dependence is important for many applications of climate change, including surface hydrology, water resources, and ecosystems.

  3. Making sense of global warming: Norwegians appropriating knowledge of anthropogenic climate change.

    PubMed

    Ryghaug, Marianne; Sørensen, Knut Holtan; Naess, Robert

    2011-11-01

    This paper studies how people reason about and make sense of human-made global warming, based on ten focus group interviews with Norwegian citizens. It shows that the domestication of climate science knowledge was shaped through five sense-making devices: news media coverage of changes in nature, particularly the weather, the coverage of presumed experts' disagreement about global warming, critical attitudes towards media, observations of political inaction, and considerations with respect to everyday life. These sense-making devices allowed for ambiguous outcomes, and the paper argues four main outcomes with respect to the domestication processes: the acceptors, the tempered acceptors, the uncertain and the sceptics.

  4. Climate Warming and 21st-Century Drought in Southwestern North America

    NASA Astrophysics Data System (ADS)

    MacDonald, Glen M.; Stahle, David W.; Diaz, Jose Villanueva; Beer, Nicholas; Busby, Simon J.; Cerano-Paredes, Julian; Cole, Julie E.; Cook, Edward R.; Endfield, Georgina; Gutierrez-Garcia, Genaro; Hall, Beth; Magana, Victor; Meko, David M.; Méndez-Pérez, Matias; Sauchyn, David J.; Watson, Emma; Woodhouse, Connie A.

    2008-02-01

    Since 2000, southwestern North America has experienced widespread drought. Lakes Powell and Mead are now at less than 50% of their reservoir capacity, and drought or fire-related states of emergency were declared this past summer by governors in six western states. As with other prolonged droughts, such as the Dust Bowl during the 1930s, aridity has at times extended from northern Mexico to the southern Canadian prairies. A synthesis of climatological and paleoclimatological studies suggests that a transition to a more arid climate may be occurring due to global warming, with the prospect of sustained droughts being exacerbated by the potential reaction of the Pacific Ocean to warming.

  5. Personal efficacy, the information environment, and attitudes toward global warming and climate change in the United States.

    PubMed

    Kellstedt, Paul M; Zahran, Sammy; Vedlitz, Arnold

    2008-02-01

    Despite the growing scientific consensus about the risks of global warming and climate change, the mass media frequently portray the subject as one of great scientific controversy and debate. And yet previous studies of the mass public's subjective assessments of the risks of global warming and climate change have not sufficiently examined public informedness, public confidence in climate scientists, and the role of personal efficacy in affecting global warming outcomes. By examining the results of a survey on an original and representative sample of Americans, we find that these three forces-informedness, confidence in scientists, and personal efficacy-are related in interesting and unexpected ways, and exert significant influence on risk assessments of global warming and climate change. In particular, more informed respondents both feel less personally responsible for global warming, and also show less concern for global warming. We also find that confidence in scientists has unexpected effects: respondents with high confidence in scientists feel less responsible for global warming, and also show less concern for global warming. These results have substantial implications for the interaction between scientists and the public in general, and for the public discussion of global warming and climate change in particular.

  6. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming

    NASA Astrophysics Data System (ADS)

    Xue, Kai; M. Yuan, Mengting; J. Shi, Zhou; Qin, Yujia; Deng, Ye; Cheng, Lei; Wu, Liyou; He, Zhili; van Nostrand, Joy D.; Bracho, Rosvel; Natali, Susan; Schuur, Edward. A. G.; Luo, Chengwei; Konstantinidis, Konstantinos T.; Wang, Qiong; Cole, James R.; Tiedje, James M.; Luo, Yiqi; Zhou, Jizhong

    2016-06-01

    Microbial decomposition of soil carbon in high-latitude tundra underlain with permafrost is one of the most important, but poorly understood, potential positive feedbacks of greenhouse gas emissions from terrestrial ecosystems into the atmosphere in a warmer world. Using integrated metagenomic technologies, we showed that the microbial functional community structure in the active layer of tundra soil was significantly altered after only 1.5 years of warming, a rapid response demonstrating the high sensitivity of this ecosystem to warming. The abundances of microbial functional genes involved in both aerobic and anaerobic carbon decomposition were also markedly increased by this short-term warming. Consistent with this, ecosystem respiration (Reco) increased up to 38%. In addition, warming enhanced genes involved in nutrient cycling, which very likely contributed to an observed increase (30%) in gross primary productivity (GPP). However, the GPP increase did not offset the extra Reco, resulting in significantly more net carbon loss in warmed plots compared with control plots. Altogether, our results demonstrate the vulnerability of active-layer soil carbon in this permafrost-based tundra ecosystem to climate warming and the importance of microbial communities in mediating such vulnerability.

  7. Thermal state of permafrost in urban environment under changing climatic conditions

    NASA Astrophysics Data System (ADS)

    Grebenets, V. I.; Kerimov, A. G.; Shiklomanov, N. I.; Streletskiy, D. A.; Shkoda, V. S.; Anduschenko, F. D.

    2014-12-01

    Large industrial centers on permafrost are characterized by a set of geocryological conditions different from natural environment. Thermal state of foundations on permafrost in areas of economic development depends on climate trends and upon technogenic impacts, such as type of impact, area of facility, permafrost temperature and duration of the technogenic pressure. Technogenic degradation of permafrost is evident in most urban centers on permafrost leading to deterioration of geotechnical environment and particularly foundations of buildings and structures. This situation is exacerbated by climate warming in such cities as Vorkuta, Chita, Nerungry, Salekhard and others where temperature rises at a rate of 0.4 - 1.2 oC/decade over the last 40 years. To evaluate impact of climate warming and technogenic factors on permafrost temperature regime and foundation bearing capacity we compared five facilities in Norilsk, the largest city on permafrost. The facilities were selected to represent different parts of the town, different ages of built-up environment and were located in different permafrost and lithological conditions. We found a leading role of technogenic factors relative to climatic ones in dynamics of thermal state of permafrost in urban environment. Climate warming in Norilsk (0.15 oC/decade) was a small contributor, but gave an additional input to deterioration of geotechnical environment on permafrost. At the same time, implementation of engineering solutions of permafrost temperature cooling (such as crawl spaces) result in lowering of permafrost temperature. Field surveys in Yamburg showed that under some facilities permafrost temperature decreased by 1-1.5 C oC over the last 15 years despite pronounced in the region climate warming of 0.5 oC/decade. This shows that despite deterioration of permafrost conditions in the most Arctic regions due to technogenic pressure and climate warming, implementation of adequate engineering solutions allows

  8. Metal-mediated climate susceptibility in a warming world: Larval and latent effects on a model amphibian.

    PubMed

    Hallman, Tyler A; Brooks, Marjorie L

    2016-07-01

    Although sophisticated models predict the effects of future temperatures on ectotherms, few also address how ubiquitous sublethal contaminants alter an organism's response to thermal stress. In ectotherms, higher metabolic rates from warming temperatures can beneficially speed metabolism and development. If compounded by chronic, sublethal pollution, additional resource demands for elimination or detoxification may limit their ability to cope with rising temperatures-the toxicant-induced climate susceptibility hypothesis. In outdoor bioassays, using natural lake water as the background, the authors investigated the development of a model ectotherm in 6 levels of Cd, Cu, and Pb mixtures and 3 thermal regimes of diel temperature fluctuations: ambient, +1.5 °C, and +2.5 °C. Warming had no effect on wild-caught Cope's gray tree frog (Hyla chrysoscelis) until metals concentrations were approximately 10-fold of their bioavailable chronic criterion unit (sums of bioavailable fractions of chronic criteria concentrations). In treatments with ≥10 bioavailable chronic criterion units and +1.5 °C, growth increased. Conversely, in treatments with 28 bioavailable chronic criterion units and maximal +2.5 °C warming, growth declined and the body condition of postmetamorphic juveniles at 20 d was 34% lower than that of juveniles from background conditions (lake water at ambient temperatures). These findings suggest toxicant-induced climate susceptibility with long-term latent effects on the juvenile life stage. Sublethal contaminants can intensify the impact on aquatic ectotherms at the most conservative levels of predicted global warming over the next century. Environ Toxicol Chem 2016;35:1872-1882. © 2015 SETAC.

  9. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming.

    PubMed

    Girardin, Martin P; Hogg, Edward H; Bernier, Pierre Y; Kurz, Werner A; Guo, Xiao Jing; Cyr, Guillaume

    2016-02-01

    An increasing number of studies conclude that water limitations and heat stress may hinder the capacity of black spruce (Picea mariana (Mill.) B.S.P.) trees, a dominant species of Canada's boreal forests, to grow and assimilate atmospheric carbon. However, there is currently no scientific consensus on the future of these forests over the next century in the context of widespread climate warming. The large spatial extent of black spruce forests across the Canadian boreal forest and associated variability in climate, demography, and site conditions pose challenges for projecting future climate change responses. Here we provide an evaluation of the impacts of climate warming and drying, as well as increasing [CO2 ], on the aboveground productivity of black spruce forests across Canada south of 60°N for the period 1971 to 2100. We use a new extensive network of tree-ring data obtained from Canada's National Forest Inventory, spatially explicit simulations of net primary productivity (NPP) and its drivers, and multivariate statistical modeling. We found that soil water availability is a significant driver of black spruce interannual variability in productivity across broad areas of the western to eastern Canadian boreal forest. Interannual variability in productivity was also found to be driven by autotrophic respiration in the warmest regions. In most regions, the impacts of soil water availability and respiration on interannual variability in productivity occurred during the phase of carbohydrate accumulation the year preceding tree-ring formation. Results from projections suggest an increase in the importance of soil water availability and respiration as limiting factors on NPP over the next century due to warming, but this response may vary to the extent that other factors such as carbon dioxide fertilization, and respiration acclimation to high temperature, contribute to dampening these limitations. PMID:26507106

  10. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming.

    PubMed

    Girardin, Martin P; Hogg, Edward H; Bernier, Pierre Y; Kurz, Werner A; Guo, Xiao Jing; Cyr, Guillaume

    2016-02-01

    An increasing number of studies conclude that water limitations and heat stress may hinder the capacity of black spruce (Picea mariana (Mill.) B.S.P.) trees, a dominant species of Canada's boreal forests, to grow and assimilate atmospheric carbon. However, there is currently no scientific consensus on the future of these forests over the next century in the context of widespread climate warming. The large spatial extent of black spruce forests across the Canadian boreal forest and associated variability in climate, demography, and site conditions pose challenges for projecting future climate change responses. Here we provide an evaluation of the impacts of climate warming and drying, as well as increasing [CO2 ], on the aboveground productivity of black spruce forests across Canada south of 60°N for the period 1971 to 2100. We use a new extensive network of tree-ring data obtained from Canada's National Forest Inventory, spatially explicit simulations of net primary productivity (NPP) and its drivers, and multivariate statistical modeling. We found that soil water availability is a significant driver of black spruce interannual variability in productivity across broad areas of the western to eastern Canadian boreal forest. Interannual variability in productivity was also found to be driven by autotrophic respiration in the warmest regions. In most regions, the impacts of soil water availability and respiration on interannual variability in productivity occurred during the phase of carbohydrate accumulation the year preceding tree-ring formation. Results from projections suggest an increase in the importance of soil water availability and respiration as limiting factors on NPP over the next century due to warming, but this response may vary to the extent that other factors such as carbon dioxide fertilization, and respiration acclimation to high temperature, contribute to dampening these limitations.

  11. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming

    NASA Astrophysics Data System (ADS)

    Girardin, M. P.; Hogg, T.; Kurz, W.; Bernier, P. Y.; Guo, X. J.; Cyr, G.

    2015-12-01

    An increasing number of studies conclude that water limitations and heat stress may hinder the capacity of black spruce (Picea mariana (Mill.) B.S.P.) trees, a dominant species of Canada's boreal forests, to grow and assimilate atmospheric carbon. However, there is currently no scientific consensus on the future of these forests over the next century in the context of widespread climate warming. The large spatial extent of black spruce forests across the Canadian boreal forest and associated variability in climate, demography and site conditions pose challenges for projecting future climate change responses. Here we provide an evaluation of the impacts of climate warming and drying, as well as increasing [CO2], on the aboveground productivity of black spruce forests across Canada south of 60ºN for the period 1971 to 2100. We use a new extensive network of tree-ring data obtained from Canada's National Forest Inventory, spatially-explicit simulations of Net Primary Productivity (NPP) and its drivers, and multivariate statistical modelling. We found that soil water availability is a significant driver of black spruce inter-annual variability in productivity across broad areas of the western to eastern Canadian boreal forest. Inter-annual variability in productivity was also found to be driven by autotrophic respiration in the warmest regions. In most regions, the impacts of soil water availability and respiration on inter-annual variability in productivity occurred during the phase of carbohydrate accumulation the year preceding tree ring formation. Results from projections suggest an increase in the importance of soil water availability and respiration as limiting factors on NPP over the next century due to warming, but this response may vary to the extent that other factors such as carbon dioxide fertilization, and respiration acclimation to high temperature, contribute to dampening these limitations.

  12. Forests synchronize their growth in contrasting Eurasian regions in response to climate warming.

    PubMed

    Shestakova, Tatiana A; Gutiérrez, Emilia; Kirdyanov, Alexander V; Camarero, Jesús Julio; Génova, Mar; Knorre, Anastasia A; Linares, Juan Carlos; Resco de Dios, Víctor; Sánchez-Salguero, Raúl; Voltas, Jordi

    2016-01-19

    Forests play a key role in the carbon balance of terrestrial ecosystems. One of the main uncertainties in global change predictions lies in how the spatiotemporal dynamics of forest productivity will be affected by climate warming. Here we show an increasing influence of climate on the spatial variability of tree growth during the last 120 y, ultimately leading to unprecedented temporal coherence in ring-width records over wide geographical scales (spatial synchrony). Synchrony in growth patterns across cold-constrained (central Siberia) and drought-constrained (Spain) Eurasian conifer forests have peaked in the early 21st century at subcontinental scales (∼ 1,000 km). Such enhanced synchrony is similar to that observed in trees co-occurring within a stand. In boreal forests, the combined effects of recent warming and increasing intensity of climate extremes are enhancing synchrony through an earlier start of wood formation and a stronger impact of year-to-year fluctuations of growing-season temperatures on growth. In Mediterranean forests, the impact of warming on synchrony is related mainly to an advanced onset of growth and the strengthening of drought-induced growth limitations. Spatial patterns of enhanced synchrony represent early warning signals of climate change impacts on forest ecosystems at subcontinental scales.

  13. Forests synchronize their growth in contrasting Eurasian regions in response to climate warming

    PubMed Central

    Shestakova, Tatiana A.; Gutiérrez, Emilia; Kirdyanov, Alexander V.; Camarero, Jesús Julio; Génova, Mar; Knorre, Anastasia A.; Linares, Juan Carlos; Sánchez-Salguero, Raúl; Voltas, Jordi

    2016-01-01

    Forests play a key role in the carbon balance of terrestrial ecosystems. One of the main uncertainties in global change predictions lies in how the spatiotemporal dynamics of forest productivity will be affected by climate warming. Here we show an increasing influence of climate on the spatial variability of tree growth during the last 120 y, ultimately leading to unprecedented temporal coherence in ring-width records over wide geographical scales (spatial synchrony). Synchrony in growth patterns across cold-constrained (central Siberia) and drought-constrained (Spain) Eurasian conifer forests have peaked in the early 21st century at subcontinental scales (∼1,000 km). Such enhanced synchrony is similar to that observed in trees co-occurring within a stand. In boreal forests, the combined effects of recent warming and increasing intensity of climate extremes are enhancing synchrony through an earlier start of wood formation and a stronger impact of year-to-year fluctuations of growing-season temperatures on growth. In Mediterranean forests, the impact of warming on synchrony is related mainly to an advanced onset of growth and the strengthening of drought-induced growth limitations. Spatial patterns of enhanced synchrony represent early warning signals of climate change impacts on forest ecosystems at subcontinental scales. PMID:26729860

  14. Arctic sea ice response to atmospheric forcings with varying levels of anthropogenic warming and climate variability

    NASA Astrophysics Data System (ADS)

    Zhang, Jinlun; Steele, Michael; Schweiger, Axel

    2010-10-01

    Numerical experiments are conducted to project arctic sea ice responses to varying levels of future anthropogenic warming and climate variability over 2010-2050. A summer ice-free Arctic Ocean is likely by the mid-2040s if arctic surface air temperature (SAT) increases 4°C by 2050 and climate variability is similar to the past relatively warm two decades. If such a SAT increase is reduced by one-half or if a future Arctic experiences a range of SAT fluctuation similar to the past five decades, a summer ice-free Arctic Ocean would be unlikely before 2050. If SAT increases 4°C by 2050, summer ice volume decreases to very low levels (10-37% of the 1978-2009 summer mean) as early as 2025 and remains low in the following years, while summer ice extent continues to fluctuate annually. Summer ice volume may be more sensitive to warming while summer ice extent more sensitive to climate variability. The rate of annual mean ice volume decrease relaxes approaching 2050. This is because, while increasing SAT increases summer ice melt, a thinner ice cover increases winter ice growth. A thinner ice cover also results in a reduced ice export, which helps to further slow ice volume loss. Because of enhanced winter ice growth, arctic winter ice extent remains nearly stable and therefore appears to be a less sensitive climate indicator.

  15. Forests synchronize their growth in contrasting Eurasian regions in response to climate warming.

    PubMed

    Shestakova, Tatiana A; Gutiérrez, Emilia; Kirdyanov, Alexander V; Camarero, Jesús Julio; Génova, Mar; Knorre, Anastasia A; Linares, Juan Carlos; Resco de Dios, Víctor; Sánchez-Salguero, Raúl; Voltas, Jordi

    2016-01-19

    Forests play a key role in the carbon balance of terrestrial ecosystems. One of the main uncertainties in global change predictions lies in how the spatiotemporal dynamics of forest productivity will be affected by climate warming. Here we show an increasing influence of climate on the spatial variability of tree growth during the last 120 y, ultimately leading to unprecedented temporal coherence in ring-width records over wide geographical scales (spatial synchrony). Synchrony in growth patterns across cold-constrained (central Siberia) and drought-constrained (Spain) Eurasian conifer forests have peaked in the early 21st century at subcontinental scales (∼ 1,000 km). Such enhanced synchrony is similar to that observed in trees co-occurring within a stand. In boreal forests, the combined effects of recent warming and increasing intensity of climate extremes are enhancing synchrony through an earlier start of wood formation and a stronger impact of year-to-year fluctuations of growing-season temperatures on growth. In Mediterranean forests, the impact of warming on synchrony is related mainly to an advanced onset of growth and the strengthening of drought-induced growth limitations. Spatial patterns of enhanced synchrony represent early warning signals of climate change impacts on forest ecosystems at subcontinental scales. PMID:26729860

  16. The link between convective organization and extreme precipitation in a warming climate

    NASA Astrophysics Data System (ADS)

    Pendergrass, Angeline

    2016-04-01

    The rate of increase of extreme precipitation in response to global warming varies dramatically across simulations of warming with different climate models, particularly over the tropical oceans, for reasons that have yet to be established. Here, we propose one possible mechanism: changing organization of convection with climate. Recently, self-organization of convection has been studied in global radiative-convective equilibrium climate model simulations. We analyze a set of 20 simulations forced by fixed SSTs at 2 degree increments from 287 to 307 K with the Community Atmosphere Model version 5 (CAM5). In these simulations, a transition from unorganized to organized convection occurs at just over 300 K. Precipitation extremes increase steadily with warming before and after the transition from unorganized to organized states, but at the transition the change in extreme precipitation is much larger. We develop a metric for convective organization in conjunction with the characteristics of extreme precipitation events (defined as events with precipitation over a percentile threshold of daily rainfall accumulation): the number of events, their area, their lifetime, and their mean rainfall, and use this to explore the connection between extreme precipitation and organization. We also apply this metric to CMIP5 simulations to evaluate whether our mechanism has bearing on the range of tropical ocean extreme precipitation response across this set of comprehensive climate models.

  17. Long-term effects of warming and ocean acidification are modified by seasonal variation in species responses and environmental conditions.

    PubMed

    Godbold, Jasmin A; Solan, Martin

    2013-01-01

    Warming of sea surface temperatures and alteration of ocean chemistry associated with anthropogenic increases in atmospheric carbon dioxide will have profound consequences for a broad range of species, but the potential for seasonal variation to modify species and ecosystem responses to these stressors has received little attention. Here, using the longest experiment to date (542 days), we investigate how the interactive effects of warming and ocean acidification affect the growth, behaviour and associated levels of ecosystem functioning (nutrient release) for a functionally important non-calcifying intertidal polychaete (Alitta virens) under seasonally changing conditions. We find that the effects of warming, ocean acidification and their interactions are not detectable in the short term, but manifest over time through changes in growth, bioturbation and bioirrigation behaviour that, in turn, affect nutrient generation. These changes are intimately linked to species responses to seasonal variations in environmental conditions (temperature and photoperiod) that, depending upon timing, can either exacerbate or buffer the long-term directional effects of climatic forcing. Taken together, our observations caution against over emphasizing the conclusions from short-term experiments and highlight the necessity to consider the temporal expression of complex system dynamics established over appropriate timescales when forecasting the likely ecological consequences of climatic forcing.

  18. Long-term effects of warming and ocean acidification are modified by seasonal variation in species responses and environmental conditions

    PubMed Central

    Godbold, Jasmin A.; Solan, Martin

    2013-01-01

    Warming of sea surface temperatures and alteration of ocean chemistry associated with anthropogenic increases in atmospheric carbon dioxide will have profound consequences for a broad range of species, but the potential for seasonal variation to modify species and ecosystem responses to these stressors has received little attention. Here, using the longest experiment to date (542 days), we investigate how the interactive effects of warming and ocean acidification affect the growth, behaviour and associated levels of ecosystem functioning (nutrient release) for a functionally important non-calcifying intertidal polychaete (Alitta virens) under seasonally changing conditions. We find that the effects of warming, ocean acidification and their interactions are not detectable in the short term, but manifest over time through changes in growth, bioturbation and bioirrigation behaviour that, in turn, affect nutrient generation. These changes are intimately linked to species responses to seasonal variations in environmental conditions (temperature and photoperiod) that, depending upon timing, can either exacerbate or buffer the long-term directional effects of climatic forcing. Taken together, our observations caution against over emphasizing the conclusions from short-term experiments and highlight the necessity to consider the temporal expression of complex system dynamics established over appropriate timescales when forecasting the likely ecological consequences of climatic forcing. PMID:23980249

  19. Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions.

    PubMed

    Jassey, Vincent E J; Chiapusio, Geneviève; Binet, Philippe; Buttler, Alexandre; Laggoun-Défarge, Fatima; Delarue, Frédéric; Bernard, Nadine; Mitchell, Edward A D; Toussaint, Marie-Laure; Francez, André-Jean; Gilbert, Daniel

    2013-03-01

    Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above- and belowground linkages that regulate soil organic carbon dynamics and C-balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top-predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum-polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above- and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatlands.

  20. Ocean cleaning stations under a changing climate: biological responses of tropical and temperate fish-cleaner shrimp to global warming.

    PubMed

    Rosa, Rui; Lopes, Ana Rita; Pimentel, Marta; Faleiro, Filipa; Baptista, Miguel; Trübenbach, Katja; Narciso, Luis; Dionísio, Gisela; Pegado, Maria Rita; Repolho, Tiago; Calado, Ricardo; Diniz, Mário

    2014-10-01

    Cleaning symbioses play an important role in the health of certain coastal marine communities. These interspecific associations often occur at specific sites (cleaning stations) where a cleaner organism (commonly a fish or shrimp) removes ectoparasites/damaged tissue from a 'client' (a larger cooperating fish). At present, the potential impact of climate change on the fitness of cleaner organisms remains unknown. This study investigated the physiological and biochemical responses of tropical (Lysmata amboinensis) and temperate (L. seticaudata) cleaner shrimp to global warming. Specifically, thermal limits (CTMax), metabolic rates, thermal sensitivity, heat shock response (HSR), lipid peroxidation [malondialdehyde (MDA) concentration], lactate levels, antioxidant (GST, SOD and catalase) and digestive enzyme activities (trypsin and alkaline phosphatase) at current and warming (+3 °C) temperature conditions. In contrast to the temperate species, CTMax values decreased significantly from current (24-27 °C) to warming temperature conditions (30 °C) for the tropical shrimp, where metabolic thermal sensitivity was affected and the HSR was significantly reduced. MDA levels in tropical shrimp increased dramatically, indicating extreme cellular lipid peroxidation, which was not observed in the temperate shrimp. Lactate levels, GST and SOD activities were significantly enhanced within the muscle tissue of the tropical species. Digestive enzyme activities in the hepatopancreas of both species were significantly decreased by warmer temperatures. Our data suggest that the tropical cleaner shrimp will be more vulnerable to global warming than the temperate Lysmata seticaudata; the latter evolved in a relatively unstable environment with seasonal thermal variations that may have conferred greater adaptive plasticity. Thus, tropical cleaning symbioses may be challenged at a greater degree by warming-related anthropogenic forcing, with potential cascading effects on the health

  1. Ocean cleaning stations under a changing climate: biological responses of tropical and temperate fish-cleaner shrimp to global warming.

    PubMed

    Rosa, Rui; Lopes, Ana Rita; Pimentel, Marta; Faleiro, Filipa; Baptista, Miguel; Trübenbach, Katja; Narciso, Luis; Dionísio, Gisela; Pegado, Maria Rita; Repolho, Tiago; Calado, Ricardo; Diniz, Mário

    2014-10-01

    Cleaning symbioses play an important role in the health of certain coastal marine communities. These interspecific associations often occur at specific sites (cleaning stations) where a cleaner organism (commonly a fish or shrimp) removes ectoparasites/damaged tissue from a 'client' (a larger cooperating fish). At present, the potential impact of climate change on the fitness of cleaner organisms remains unknown. This study investigated the physiological and biochemical responses of tropical (Lysmata amboinensis) and temperate (L. seticaudata) cleaner shrimp to global warming. Specifically, thermal limits (CTMax), metabolic rates, thermal sensitivity, heat shock response (HSR), lipid peroxidation [malondialdehyde (MDA) concentration], lactate levels, antioxidant (GST, SOD and catalase) and digestive enzyme activities (trypsin and alkaline phosphatase) at current and warming (+3 °C) temperature conditions. In contrast to the temperate species, CTMax values decreased significantly from current (24-27 °C) to warming temperature conditions (30 °C) for the tropical shrimp, where metabolic thermal sensitivity was affected and the HSR was significantly reduced. MDA levels in tropical shrimp increased dramatically, indicating extreme cellular lipid peroxidation, which was not observed in the temperate shrimp. Lactate levels, GST and SOD activities were significantly enhanced within the muscle tissue of the tropical species. Digestive enzyme activities in the hepatopancreas of both species were significantly decreased by warmer temperatures. Our data suggest that the tropical cleaner shrimp will be more vulnerable to global warming than the temperate Lysmata seticaudata; the latter evolved in a relatively unstable environment with seasonal thermal variations that may have conferred greater adaptive plasticity. Thus, tropical cleaning symbioses may be challenged at a greater degree by warming-related anthropogenic forcing, with potential cascading effects on the health

  2. Formability analysis of austenitic stainless steel-304 under warm conditions

    NASA Astrophysics Data System (ADS)

    Lade, Jayahari; Singh, Swadesh Kumar; Banoth, Balu Naik; Gupta, Amit Kumar

    2013-12-01

    A warm deep drawing process of austenitic stainless steel-304 (ASS-304) of circular blanks with coupled ther mal analysis is studied in this article. 65 mm blanks were deep drawn at different temperatures and thickness distribution is experimentally measured after cutting the drawn component into two halves. The process is simulated using explicit fin ite element code LS-DYNA. A Barlat 3 parameter model is used in the simulation, as the material is anisotropic up to 30 0°C. Material properties for the simulation are determined at different temperatures using a 5 T UTM coupled with a furn ace. In this analysis constant punch speed and variable blank holder force (BHF) is applied to draw cups without wrinkle.

  3. Climate. Varying planetary heat sink led to global-warming slowdown and acceleration.

    PubMed

    Chen, Xianyao; Tung, Ka-Kit

    2014-08-22

    A vacillating global heat sink at intermediate ocean depths is associated with different climate regimes of surface warming under anthropogenic forcing: The latter part of the 20th century saw rapid global warming as more heat stayed near the surface. In the 21st century, surface warming slowed as more heat moved into deeper oceans. In situ and reanalyzed data are used to trace the pathways of ocean heat uptake. In addition to the shallow La Niña-like patterns in the Pacific that were the previous focus, we found that the slowdown is mainly caused by heat transported to deeper layers in the Atlantic and the Southern oceans, initiated by a recurrent salinity anomaly in the subpolar North Atlantic. Cooling periods associated with the latter deeper heat-sequestration mechanism historically lasted 20 to 35 years.

  4. The influence of climate change and the timing of stratospheric warmings on Arctic ozone depletion

    SciTech Connect

    Austin, J.; Butchart, N.

    1994-01-20

    A three-dimensional model is presented to evaluate the influence of climatic change and increased carbon dioxide concentrations on ozone depletion in the Arctic region. Satellite data showing the time of stratospheric warmings during the winters of 1979-1992 is used in a series of idealized experiments where the timing of the warmings is varied by using different geopotential wave amplitudes. Results of the experiments indicate that for doubled atmospheric carbon dioxide levels, an ozone hole in the Arctic is more likely to develop during years where late stratospheric warming has occurred after a relatively quiescent winter. The validity of this model is dependent on the future composition and temperature of the stratosphere. 43 refs., 21 figs.

  5. Cold ecosystems in a warmer climate: carbon fluxes at the alpine treeline under experimental soil warming

    NASA Astrophysics Data System (ADS)

    Wipf, Sonja; Hagedorn, Frank; Martin, Melissa

    2010-05-01

    The impact of climatic warming on the C balance of terrestrial ecosystems is uncertain because rising temperature increases both C gains through net primary production, but also respiratory C losses. 'Cold' ecosystems such as treeline ecotones will respond particularly sensitive to climatic changes because many processes are limited by temperature and soils store particular large amounts of labile soil organic matter. In our study, we investigate ecosystem responses to 9 years of elevated atmospheric CO2 and to 3 years of experimental soil warming by 4° C. The added CO2 contains another δ13C signature than normal air, which allows the tracing of new carbon through the plant and soil system. This provides new insight into carbon cycling at the treeline and it shows which C flux respond most sensitive to climatic changes. Results showed that soil warming increased soil CO2 effluxes instantaneously and persisted for at least three vegetation periods (+35-45%; +80 to 120 g C m y-1). In contrast, DOC leaching showed a negligible response of less than 5% increase. Annual C uptake of new shoots was not significantly affected by elevated soil temperatures, with a 10 to 20% increase for larch, pine, and dwarf shrubs, respectively, resulting in an overall increase in net C uptake by plants of 20 to 40 g C m-2y-1. The Q10 of 3.0 measured for soil respiration did not change compared to a three-year period before the warming treatment started, suggesting little impact of warming-induced lower soil moisture (-15% relative decrease) or a depletion in labile soil C. The fraction of recent plant-derived C in soil respired CO2 from warmed soils was smaller than that from control soils (25 vs. 40% of total C respired), which implies that the warming-induced increase in soil CO2 efflux resulted mainly from mineralization of older SOM rather than from stimulated root respiration. In summary, the 4 ° C soil warming led to C losses from the studied alpine treeline ecosystem by

  6. Possible climate warming effects on vegetation, forests, biotic (insect, pathogene) disturbances and agriculture in Central Siberia for 1960- 2050

    NASA Astrophysics Data System (ADS)

    Tchebakova, N. M.; Parfenova, E. I.; Soja, A. J.; Lysanova, G. I.; Baranchikov, Y. N.; Kuzmina, N. A.

    2012-04-01

    Regional Siberian studies have already registered climate warming over the last half a century (1960-2010). Our analysis showed that winters are already 2-3°C warmer in the north and 1-2°C warmer in the south by 2010. Summer temperatures increased by 1°C in the north and by 1-2°C in the south. Change in precipitation is more complicated, increasing on average 10% in middle latitudes and decreasing 10-20% in the south, promoting local drying in already dry landscapes. Our goal was to summarize results of research we have done for the last decade in the context of climate warming and its consequences for biosystems in Central Siberia. We modeled climate change effects on vegetation shifts, on forest composition and agriculture change, on the insect Siberian moth (Dendrolimus suprans sibiricus Tschetv) and pathogene (Lophodermium pinastri Chev) ranges in Central Siberia for a century (1960-2050) based on historical climate data and GCM-predicted data. Principal results are: In the warmer and drier climate projected by these scenarios, Siberian forests are predicted to decrease and shift northwards and forest-steppe and steppe ecosystems are predicted to dominate over 50% of central Siberia due to the dryer climate by 2080. Permafrost is not predicted to thaw deep enough to sustain dark (Pinus sibirica, Abies sibirica, and Picea obovata) taiga. Over eastern Siberia, larch (Larix dahurica) taiga is predicted to continue to be the dominant zonobiome because of its ability to withstand continuous permafrost. The model also predicts new temperate broadleaf forest and forest-steppe habitats; At least half of central Siberia is predicted to be climatically suitable for agriculture at the end of the century although potential croplands would be limited by the availability of suitable soils agriculture in central Siberia would likely benefit from climate warming Crop production may twofold increase as climate warms during the century; traditional crops (grain, potato

  7. How Will Climate Warming Affect Non-Native Pumpkinseed Lepomis gibbosus Populations in the U.K.?

    PubMed Central

    Zięba, Grzegorz; Fox, Michael G.; Copp, Gordon H.

    2015-01-01

    Of the non-native fishes introduced to the U.K., the pumpkinseed is one of six species predicted to benefit from the forecasted climate warming conditions. To demonstrate the potential response of adults and their progeny to a water temperature increase, investigations of parental pumpkinseed acclimatization, reproduction and YOY over-wintering were carried out in outdoor experimental ponds under ambient and elevated water temperature regimes. No temperature effects were observed on either adult survivorship and growth, and none of the assessed reproductive activity variables (total spawning time, spawning season length, number of spawning bouts) appeared to be responsible for the large differences observed in progeny number and biomass. However, it was demonstrated in a previous study [Zięba G. et al., 2010] that adults in the heated ponds began spawning earlier than those of the ambient ponds. Ambient ponds produced 2.8× more progeny than the heated ponds, but these progeny were significantly smaller, probably due to their late hatching date, and subsequently suffered very high mortality over the first winter. Pumpkinseed in the U.K. will clearly benefit from climate warming through earlier seasonal reproduction, resulting in larger progeny going into winter, and as a result, higher over-winter survivorship would be expected relative to that which occurs under the present climatic regime. PMID:26302021

  8. Enhanced Climatic Warming in the Tibetan Plateau Due to Double CO2: A Model Study

    NASA Technical Reports Server (NTRS)

    Chen, Baode; Chao, Winston C.; Liu, Xiao-Dong; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The NCAR (National Center for Atmospheric Research) regional climate model (RegCM2) with time-dependent lateral meteorological fields provided by a 130-year transient increasing CO2 simulation of the NCAR Climate System Model (CSM) has been used to investigate the mechanism of enhanced ground temperature warming over the TP (Tibetan Plateau). From our model results, a remarkable tendency of warming increasing with elevation is found for the winter season, and elevation dependency of warming is not clearly recognized in the summer season. This simulated feature of elevation dependency of ground temperature is consistent with observations. Based on an analysis of surface energy budget, the short wave solar radiation absorbed at the surface plus downward long wave flux reaching the surface shows a strong elevation dependency, and is mostly responsible for enhanced surface warming over the TP. At lower elevations, the precipitation forced by topography is enhanced due to an increase in water vapor supply resulted from a warming in the atmosphere induced by doubling CO2. This precipitation enhancement must be associated with an increase in clouds, which results in a decline in solar flux reaching surface. At higher elevations, large snow depletion is detected in the 2xCO2run. It leads to a decrease in albedo, therefore more solar flux is absorbed at the surface. On the other hand, much more uniform increase in downward long wave flux reaching the surface is found. The combination of these effects (i.e. decrease in solar flux at lower elevations, increase in solar flux at higher elevation and more uniform increase in downward long wave flux) results in elevation dependency of enhanced ground temperature warming over the TP.

  9. Response of the Arabian Sea to global warming and associated regional climate shift.

    PubMed

    Kumar, S Prasanna; Roshin, Raj P; Narvekar, Jayu; Kumar, P K Dinesh; Vivekanandan, E

    2009-12-01

    The response of the Arabian Sea to global warming is the disruption in the natural decadal cycle in the sea surface temperature (SST) after 1995, followed by a secular warming. The Arabian Sea is experiencing a regional climate-shift after 1995, which is accompanied by a five fold increase in the occurrence of "most intense cyclones". Signatures of this climate-shift are also perceptible over the adjacent landmass of India as: (1) progressively warmer winters, and (2) decreased decadal monsoon rainfall. The warmer winters are associated with a 16-fold decrease in the decadal wheat production after 1995, while the decreased decadal rainfall was accompanied by a decline of vegetation cover and increased occurrence of heat spells. We propose that in addition to the oceanic thermal inertia, the upwelling-driven cooling provided a mechanism that offset the CO(2)-driven SST increase in the Arabian Sea until 1995.

  10. Impact of a global warming on biospheric sources of methane and its climatic consequences

    NASA Technical Reports Server (NTRS)

    Hameed, S.; Cess, R. D.

    1980-01-01

    Most of atmospheric methane originates by bacterial processes in anaerobic environments within the soil which are found to become more productive with increases in ambient temperature. A warming of climate, due to increasing levels of industrial gases resulting from fossil fuel burning, is thus likely to increase methane abundance within the atmosphere. This may lead to further heating of the atmosphere, since both methane and ozone (which is generated in the troposphere from reactions of methane) have greenhouse effects. This feedback mechanism has been explored with the use of a coupled climate-chemical model of the troposphere, by the calculation of the impact of the predicted global warming due to increased emissions of carbon dioxide and other industrial gases on the biospheric sources of methane.

  11. Climate change, global warming and coral reefs: modelling the effects of temperature.

    PubMed

    Crabbe, M James C

    2008-10-01

    Climate change and global warming have severe consequences for the survival of scleractinian (reef-building) corals and their associated ecosystems. This review summarizes recent literature on the influence of temperature on coral growth, coral bleaching, and modelling the effects of high temperature on corals. Satellite-based sea surface temperature (SST) and coral bleaching information available on the internet is an important tool in monitoring and modelling coral responses to temperature. Within the narrow temperature range for coral growth, corals can respond to rate of temperature change as well as to temperature per se. We need to continue to develop models of how non-steady-state processes such as global warming and climate change will affect coral reefs.

  12. Climate change reduces warming potential of nitrous oxide by an enhanced Brewer-Dobson circulation

    NASA Astrophysics Data System (ADS)

    Kracher, Daniela; Reick, Christian H.; Manzini, Elisa; Schultz, Martin G.; Stein, Olaf

    2016-06-01

    The Brewer-Dobson circulation (BDC), which is an important driver of the stratosphere-troposphere exchange, is expected to accelerate with climate change. One particular consequence of this acceleration is the enhanced transport of nitrous oxide (N2O) from its sources at the Earth's surface toward its main sink region in the stratosphere, thus inducing a reduction in its lifetime. N2O is a potent greenhouse gas and the most relevant currently emitted ozone-depleting substance. Here we examine the implications of a reduced N2O lifetime in the context of climate change. We find a decrease in its global warming potential (GWP) and, due to a decline in the atmospheric N2O burden, also a reduction in its total radiative forcing. From the idealized transient global warming simulation we can identify linear regressions for N2O sink, lifetime, and GWP with temperature rise. Our findings are thus not restricted to a particular scenario.

  13. Warming climate extends dryness-controlled areas of terrestrial carbon sequestration

    PubMed Central

    Yi, Chuixiang; Wei, Suhua; Hendrey, George

    2014-01-01

    At biome-scale, terrestrial carbon uptake is controlled mainly by weather variability. Observational data from a global monitoring network indicate that the sensitivity of terrestrial carbon sequestration to mean annual temperature (T) breaks down at a threshold value of 16°C, above which terrestrial CO2 fluxes are controlled by dryness rather than temperature. Here we show that since 1948 warming climate has moved the 16°C T latitudinal belt poleward. Land surface area with T > 16°C and now subject to dryness control rather than temperature as the regulator of carbon uptake has increased by 6% and is expected to increase by at least another 8% by 2050. Most of the land area subjected to this warming is arid or semiarid with ecosystems that are highly vulnerable to drought and land degradation. In areas now dryness-controlled, net carbon uptake is ~27% lower than in areas in which both temperature and dryness (T < 16°C) regulate plant productivity. This warming-induced extension of dryness-controlled areas may be triggering a positive feedback accelerating global warming. Continued increases in land area with T > 16°C has implications not only for positive feedback on climate change, but also for ecosystem integrity and land cover, particularly for pastoral populations in marginal lands. PMID:24980649

  14. Arctic Spring Transition in Warming Climate: A Study Using Reanalysis Dataset

    NASA Astrophysics Data System (ADS)

    De, B.; Zhang, X.

    2014-12-01

    An increased warming trend over the Arctic in recent years has been documented using observations, and is expected to continue by climate model projections. This increase may shift the springtime transition time, resulting in a longer sea-ice melt and vegetation growing period over the Arctic. In this study, we investigated variability of and changes in the spring transition in a warming climate and examined attributions of various dynamic and thermodynamic processes. The results demonstrate a dramatic increase in springtime surface air temperature (SAT) over the Arctic since 1979. Physical analysis reveals the importance of large-scale poleward moisture and energy advection accompanied by an enhancement in net downward radiation flux, which result in the surface warming. The cloudiness could impact the surface radiation budget and retreat of sea ice cover reduces surface albedo, making an additional contribution to the surface warming. In addition to the overall evaluation of these physical processes, composite analysis suggests that relative contributions from these processes to the increased springtime SAT vary across different geographic sub-regions.

  15. Integrating geological archives and climate models for the mid-Pliocene warm period.

    PubMed

    Haywood, Alan M; Dowsett, Harry J; Dolan, Aisling M

    2016-01-01

    The mid-Pliocene Warm Period (mPWP) offers an opportunity to understand a warmer-than-present world and assess the predictive ability of numerical climate models. Environmental reconstruction and climate modelling are crucial for understanding the mPWP, and the synergy of these two, often disparate, fields has proven essential in confirming features of the past and in turn building confidence in projections of the future. The continual development of methodologies to better facilitate environmental synthesis and data/model comparison is essential, with recent work demonstrating that time-specific (time-slice) syntheses represent the next logical step in exploring climate change during the mPWP and realizing its potential as a test bed for understanding future climate change. PMID:26879640

  16. Integrating geological archives and climate models for the mid-Pliocene warm period

    PubMed Central

    Haywood, Alan M.; Dowsett, Harry J.; Dolan, Aisling M.

    2016-01-01

    The mid-Pliocene Warm Period (mPWP) offers an opportunity to understand a warmer-than-present world and assess the predictive ability of numerical climate models. Environmental reconstruction and climate modelling are crucial for understanding the mPWP, and the synergy of these two, often disparate, fields has proven essential in confirming features of the past and in turn building confidence in projections of the future. The continual development of methodologies to better facilitate environmental synthesis and data/model comparison is essential, with recent work demonstrating that time-specific (time-slice) syntheses represent the next logical step in exploring climate change during the mPWP and realizing its potential as a test bed for understanding future climate change. PMID:26879640

  17. Cold-Air Pools and Regional Warming in the Lake Tahoe Region, Central Sierra Nevada of California—Observations and Considerations regarding the Future of Climate-Change Refugia

    NASA Astrophysics Data System (ADS)

    Dettinger, M. D.

    2015-12-01

    Naturally occurring climate refugia, specifically in the form of cold-air pools (CAPs) in mountain basins, are increasingly discussed as potential safe havens against some impacts of global warming on western ecosystems and cold-adapted species. A key concern in these discussions should be: How will CAPs react to regional warming? Several broad possibilities exist: CAPs may "resist" regional warming, remaining as cool as ever despite warming of their surroundings. CAPs may "reflect" regional warming, experiencing temperature increases that are roughly equal to the warming of their surroundings but that leave the CAP as cool relative to their surroundings as ever. Or CAPs might "disintegrate" in the face of regional warming, losing their special cool status relative to surroundings and in the process warming much more than their surroundings. An evaluation of historical observations of wintertime cold-air pooling in the Lake Tahoe basin and adjacent Truckee drainage offers examples of CAPs that have resisted regional warming (Tahoe) and that have reflected regional warming (Truckee). These two CAP responses to warming suggest that no single fate awaits all CAPs in the Sierra Nevada. Rather, different CAPs will likely evolve in different ways, depending on their topographic configurations (e.g., closed vs draining basins), topographic depths, CAP areas, and even (in the case of the Tahoe basin) thermal conditions at the base of the CAP. These CAP examples also suggest a need for research on the possibility of equivalent future responses by other, non-CAP climate refugia in a warming world.

  18. Warming Ocean Conditions Relate to Increased Trophic Requirements of Threatened and Endangered Salmon.

    PubMed

    Daly, Elizabeth A; Brodeur, Richard D

    2015-01-01

    The trophic habits, size and condition of yearling Chinook salmon (Oncorhynchus tshawytscha) caught early in their marine residence were examined during 19 survey years (1981-1985; 1998-2011). Juvenile salmon consumed distinct highly piscivorous diets in cold and warm ocean regimes with major differences between ocean regimes driven by changes in consumption of juvenile rockfishes, followed by several other fish prey, adult euphausiids and decapod larvae. Notable, Chinook salmon consumed 30% more food in the warm versus cold ocean regime in both May and June. Additionally, there were about 30% fewer empty stomachs in the warm ocean regime in May, and 10% fewer in warm June periods. The total prey energy density consumed during the warmer ocean regime was also significantly higher than in cold. Chinook salmon had lower condition factor and were smaller in fork length during the warm ocean regime, and were longer and heavier for their size during the cold ocean regime. The significant increase in foraging during the warm ocean regime occurred concurrently with lower available prey biomass. Adult return rates of juvenile Chinook salmon that entered the ocean during a warm ocean regime were lower. Notably, our long term data set contradicts the long held assertion that juvenile salmon eat less in a warm ocean regime when low growth and survival is observed, and when available prey are reduced. Comparing diet changes between decades under variable ocean conditions may assist us in understanding the effects of projected warming ocean regimes on juvenile Chinook salmon and their survival in the ocean environment. Bioenergetically, the salmon appear to require more food resources during warm ocean regimes. PMID:26675673

  19. Warming Ocean Conditions Relate to Increased Trophic Requirements of Threatened and Endangered Salmon.

    PubMed

    Daly, Elizabeth A; Brodeur, Richard D

    2015-01-01

    The trophic habits, size and condition of yearling Chinook salmon (Oncorhynchus tshawytscha) caught early in their marine residence were examined during 19 survey years (1981-1985; 1998-2011). Juvenile salmon consumed distinct highly piscivorous diets in cold and warm ocean regimes with major differences between ocean regimes driven by changes in consumption of juvenile rockfishes, followed by several other fish prey, adult euphausiids and decapod larvae. Notable, Chinook salmon consumed 30% more food in the warm versus cold ocean regime in both May and June. Additionally, there were about 30% fewer empty stomachs in the warm ocean regime in May, and 10% fewer in warm June periods. The total prey energy density consumed during the warmer ocean regime was also significantly higher than in cold. Chinook salmon had lower condition factor and were smaller in fork length during the warm ocean regime, and were longer and heavier for their size during the cold ocean regime. The significant increase in foraging during the warm ocean regime occurred concurrently with lower available prey biomass. Adult return rates of juvenile Chinook salmon that entered the ocean during a warm ocean regime were lower. Notably, our long term data set contradicts the long held assertion that juvenile salmon eat less in a warm ocean regime when low growth and survival is observed, and when available prey are reduced. Comparing diet changes between decades under variable ocean conditions may assist us in understanding the effects of projected warming ocean regimes on juvenile Chinook salmon and their survival in the ocean environment. Bioenergetically, the salmon appear to require more food resources during warm ocean regimes.

  20. Warming Ocean Conditions Relate to Increased Trophic Requirements of Threatened and Endangered Salmon

    PubMed Central

    Daly, Elizabeth A.; Brodeur, Richard D.

    2015-01-01

    The trophic habits, size and condition of yearling Chinook salmon (Oncorhynchus tshawytscha) caught early in their marine residence were examined during 19 survey years (1981–1985; 1998–2011). Juvenile salmon consumed distinct highly piscivorous diets in cold and warm ocean regimes with major differences between ocean regimes driven by changes in consumption of juvenile rockfishes, followed by several other fish prey, adult euphausiids and decapod larvae. Notable, Chinook salmon consumed 30% more food in the warm versus cold ocean regime in both May and June. Additionally, there were about 30% fewer empty stomachs in the warm ocean regime in May, and 10% fewer in warm June periods. The total prey energy density consumed during the warmer ocean regime was also significantly higher than in cold. Chinook salmon had lower condition factor and were smaller in fork length during the warm ocean regime, and were longer and heavier for their size during the cold ocean regime. The significant increase in foraging during the warm ocean regime occurred concurrently with lower available prey biomass. Adult return rates of juvenile Chinook salmon that entered the ocean during a warm ocean regime were lower. Notably, our long term data set contradicts the long held assertion that juvenile salmon eat less in a warm ocean regime when low growth and survival is observed, and when available prey are reduced. Comparing diet changes between decades under variable ocean conditions may assist us in understanding the effects of projected warming ocean regimes on juvenile Chinook salmon and their survival in the ocean environment. Bioenergetically, the salmon appear to require more food resources during warm ocean regimes. PMID:26675673

  1. The ice-core record - Climate sensitivity and future greenhouse warming

    NASA Technical Reports Server (NTRS)

    Lorius, C.; Raynaud, D.; Jouzel, J.; Hansen, J.; Le Treut, H.

    1990-01-01

    The prediction of future greenhouse-gas-warming depends critically on the sensitivity of earth's climate to increasing atmospheric concentrations of these gases. Data from cores drilled in polar ice sheets show a remarkable correlation between past glacial-interglacial temperature changes and the inferred atmospheric concentration of gases such as carbon dioxide and methane. These and other palaeoclimate data are used to assess the role of greenhouse gases in explaining past global climate change, and the validity of models predicting the effect of increasing concentrations of such gases in the atmosphere.

  2. The ice-core record - Climate sensitivity and future greenhouse warming

    NASA Astrophysics Data System (ADS)

    Lorius, C.; Raynaud, D.; Jouzel, J.; Hansen, J.; Le Treut, H.

    1990-09-01

    The prediction of future greenhouse-gas-warming depends critically on the sensitivity of earth's climate to increasing atmospheric concentrations of these gases. Data from cores drilled in polar ice sheets show a remarkable correlation between past glacial-interglacial temperature changes and the inferred atmospheric concentration of gases such as carbon dioxide and methane. These and other palaeoclimate data are used to assess the role of greenhouse gases in explaining past global climate change, and the validity of models predicting the effect of increasing concentrations of such gases in the atmosphere.

  3. Climate of fear: Why we shouldn`t worry about global warming

    SciTech Connect

    Moore, T.G.

    1998-04-01

    Most climate experts agree that industrial emissions of carbon dioxide either already have led or will soon lead to an increase in global temperatures. While many consider that reason enough to undertake dramatic political action, economist Thomas Gale Moore asks, `So what.` Both historical and economic analysis suggests, he argues, that a warmer climate would be, on balance, beneficial to both mankind and the environment. The book calls into question the entire campaign led by Vice President Al Gore and others to ratify the proposed treaty on global warming scheduled to be debated in the U.S. Senate early in 1998.

  4. Climate warming causes life-history evolution in a model for Atlantic cod (Gadus morhua)

    PubMed Central

    Holt, Rebecca E.; Jørgensen, Christian

    2014-01-01

    Climate change influences the marine environment, with ocean warming being the foremost driving factor governing changes in the physiology and ecology of fish. At the individual level, increasing temperature influences bioenergetics and numerous physiological and life-history processes, which have consequences for the population level and beyond. We provide a state-dependent energy allocation model that predicts temperature-induced adaptations for life histories and behaviour for the North-East Arctic stock (NEA) of Atlantic cod (Gadus morhua) in response to climate warming. The key constraint is temperature-dependent respiratory physiology, and the model includes a number of trade-offs that reflect key physiological and ecological processes. Dynamic programming is used to find an evolutionarily optimal strategy of foraging and energy allocation that maximizes expected lifetime reproductive output given constraints from physiology and ecology. The optimal strategy is then simulated in a population, where survival, foraging behaviour, growth, maturation and reproduction emerge. Using current forcing, the model reproduces patterns of growth, size-at-age, maturation, gonad production and natural mortality for NEA cod. The predicted climate responses are positive for this stock; under a 2°C warming, the model predicted increased growth rates and a larger asymptotic size. Maturation age was unaffected, but gonad weight was predicted to more than double. Predictions for a wider range of temperatures, from 2 to 7°C, show that temperature responses were gradual; fish were predicted to grow faster and increase reproductive investment at higher temperatures. An emergent pattern of higher risk acceptance and increased foraging behaviour was also predicted. Our results provide important insight into the effects of climate warming on NEA cod by revealing the underlying mechanisms and drivers of change. We show how temperature-induced adaptations of behaviour and several life

  5. Fungal decomposition of terrestrial organic matter accelerated Early Jurassic climate warming

    PubMed Central

    Pieńkowski, Grzegorz; Hodbod, Marta; Ullmann, Clemens V.

    2016-01-01

    Soils – constituting the largest terrestrial carbon pool - are vulnerable to climatic warming. Currently existing uncertainties regarding carbon fluxes within terrestrial systems can be addressed by studies of past carbon cycle dynamics and related climate change recorded in sedimentary successions. Here we show an example from the Early Jurassic (early Toarcian, c. 183 mya) marginal-marine strata from Poland, tracking the hinterland response to climatic changes through a super-greenhouse event. In contrast to anoxia-related enhanced carbon storage in coeval open marine environments, Total Organic Carbon (TOC) concentrations in the Polish successions are substantially reduced during this event. Increasing temperature favoured fungal-mediated decomposition of plant litter – specifically of normally resistant woody tissues. The associated injection of oxidized organic matter into the atmosphere corresponds to abrupt changes in standing vegetation and may have contributed significantly to the amplified greenhouse climate on Earth. The characteristic Toarcian signature of multiple warm pulses coinciding with rapidly decreasing carbon isotope ratios may in part be the result of a radical reduction of the terrestrial carbon pool as a response to climate change. PMID:27554210

  6. Fungal decomposition of terrestrial organic matter accelerated Early Jurassic climate warming

    NASA Astrophysics Data System (ADS)

    Pieńkowski, Grzegorz; Hodbod, Marta; Ullmann, Clemens V.

    2016-08-01

    Soils – constituting the largest terrestrial carbon pool - are vulnerable to climatic warming. Currently existing uncertainties regarding carbon fluxes within terrestrial systems can be addressed by studies of past carbon cycle dynamics and related climate change recorded in sedimentary successions. Here we show an example from the Early Jurassic (early Toarcian, c. 183 mya) marginal-marine strata from Poland, tracking the hinterland response to climatic changes through a super-greenhouse event. In contrast to anoxia-related enhanced carbon storage in coeval open marine environments, Total Organic Carbon (TOC) concentrations in the Polish successions are substantially reduced during this event. Increasing temperature favoured fungal-mediated decomposition of plant litter – specifically of normally resistant woody tissues. The associated injection of oxidized organic matter into the atmosphere corresponds to abrupt changes in standing vegetation and may have contributed significantly to the amplified greenhouse climate on Earth. The characteristic Toarcian signature of multiple warm pulses coinciding with rapidly decreasing carbon isotope ratios may in part be the result of a radical reduction of the terrestrial carbon pool as a response to climate change.

  7. Fungal decomposition of terrestrial organic matter accelerated Early Jurassic climate warming.

    PubMed

    Pieńkowski, Grzegorz; Hodbod, Marta; Ullmann, Clemens V

    2016-01-01

    Soils - constituting the largest terrestrial carbon pool - are vulnerable to climatic warming. Currently existing uncertainties regarding carbon fluxes within terrestrial systems can be addressed by studies of past carbon cycle dynamics and related climate change recorded in sedimentary successions. Here we show an example from the Early Jurassic (early Toarcian, c. 183 mya) marginal-marine strata from Poland, tracking the hinterland response to climatic changes through a super-greenhouse event. In contrast to anoxia-related enhanced carbon storage in coeval open marine environments, Total Organic Carbon (TOC) concentrations in the Polish successions are substantially reduced during this event. Increasing temperature favoured fungal-mediated decomposition of plant litter - specifically of normally resistant woody tissues. The associated injection of oxidized organic matter into the atmosphere corresponds to abrupt changes in standing vegetation and may have contributed significantly to the amplified greenhouse climate on Earth. The characteristic Toarcian signature of multiple warm pulses coinciding with rapidly decreasing carbon isotope ratios may in part be the result of a radical reduction of the terrestrial carbon pool as a response to climate change. PMID:27554210

  8. Simulation of the tropical Pacific warm pool with the NCAR Climate System Model

    SciTech Connect

    Kiehl, J.T.

    1998-06-01

    The simulation of the tropical western Pacific warm pool is explored with the NCAR Climate System Model (CSM). The simulated sea surface temperatures in the Pacific basin have biases that are similar to other coupled model simulations in this region. In particular, an excessive cold tongue of water extends across the Pacific basin, with warm water on either side of this cold tongue. The warm pool region is also too cold. This cold bias exists in spite of an overestimate in surface net energy flux into this region. To understand the source of this bias in SST, simulations from the uncoupled and fully coupled models are analyzed in terms of biases in surface energy budget. These analyses suggest that the strong constraint of little ocean heat transport out of the warm pool region forces a change in SST gradient that leads to an increase in the atmospheric zonal wind. This increase in zonal wind causes an increase in latent heat flux in the warm pool region. The increase in latent heat flux is required to offset a significant bias in net surface solar flux. The bias in surface solar flux is due to an underestimate of model cloud shortwave absorption.

  9. Biophysical feedbacks between the Pleistocene megafauna extinction and climate: The first human-induced global warming?

    NASA Astrophysics Data System (ADS)

    Doughty, Christopher E.; Wolf, Adam; Field, Christopher B.

    2010-08-01

    A large increase in Betula during a narrow 1000 year window, ˜13,800 years before present (YBP) in Alaska and Yukon corresponded in time with the extinction of mammoths and the arrival of humans. Pollen data indicate the increase in Betula during this time was widespread across Siberia and Beringia. We hypothesize that Betula increased due to a combination of a warming climate and reduced herbivory following the extinction of the Pleistocene mega herbivores. The rapid increase in Betula modified land surface albedo which climate-model simulations indicate would cause an average net warming of ˜0.021°C per percent increase in high latitude (53-73°N) Betula cover. We hypothesize that the extinction of mammoths increased Betula cover, which would have warmed Siberia and Beringia by on average 0.2°C, but regionally by up to 1°C. If humans were partially responsible for the extinction of the mammoths, then human influences on global climate predate the origin of agriculture.

  10. Biophysical feedbacks between the Pleistocene megafauna extinction and climate: The first human induced global warming?

    NASA Astrophysics Data System (ADS)

    Doughty, C.; Field, C.; Wolf, A.

    2010-12-01

    A large increase in Betula during a narrow 1000 year window, ˜13,800 years before present (YBP) in Alaska and Yukon corresponded in time with the extinction of mammoths and the arrival of humans. Pollen data indicate the increase in Betula during this time was widespread across Siberia and Beringia. We hypothesize that Betula increased due to a combination of a warming climate and reduced herbivory following the extinction of the Pleistocene mega herbivores. The rapid increase in Betula modified land surface albedo which climate model simulations indicate would cause an average net warming of ˜0.021°C per percent increase in high latitude (53-73°N) Betula cover. We hypothesize that the extinction of mammoths increased Betula cover, which would have warmed Siberia and Beringia by on average 0.2°C, but regionally by up to 1°C. If humans were partially responsible for the extinction of the mammoths, then human influences on global climate predate the origin of agriculture.

  11. Soil Warming Alters the Nitrogen Cycle: Ecosystem Implications and Feedbacks to the Climate System

    NASA Astrophysics Data System (ADS)

    Butler, S. M.; Melillo, J. M.; Johnson, J. E.; Mohan, J. E.; Steudler, P. A.; Bowles, F. P.

    2008-12-01

    Increases in soil temperatures associated with global warming have the potential to accelerate nitrogen turnover in soils, which could alter other biogeochemical processes and eventually affect the structure of these forests. Over the past five years we have been studying soil and plant responses to soil warming in large plots in a deciduous stand at Harvard Forest in central Massachusetts. We have heated the soil 5°C above ambient and measured nitrogen cycling parameters including in situ net nitrogen mineralization and nitrification, nitrogen leaching and nitrous oxide (N2O) fluxes. We have also measured various aspects of the carbon cycle including soil respiration and carbon accumulation in vegetation. Over the first five years of the study, we observed a mean annual increase in the net nitrogen mineralized in the warmed plot of 23.8 kg N ha-1. While nitrification rates were low throughout the five years in the control plot, they increased in the warmed plot to account for over 25% of the total net nitrogen mineralized in year five. The increase in nitrogen mineralization stimulated tree growth and carbon storage in woody tissue in the warmed plot. The increased carbon storage in the trees compensated for more than half of the carbon lost from the soils due to accelerated decay of soil organic matter and so reduced the magnitude of the positive feedback to the climate system due to soil warming. We hypothesize that the increase in nitrification we observed will eventually "open" the nitrogen cycle and make gaseous and solution losses more likely. To date, however, we have measured no major losses of nitrous oxide or solution losses of nitrate in response to soil warming. Trees with the capacity to use nitrate may have a competitive advantage in a warmer world. Nitrate-using plants have an inducible enzyme that transforms nitrate to ammonium, a key building block for producing essential amino acids and proteins. Studies by our research group and by others have

  12. Sensitivity of Pliocene climate simulations in MRI-CGCM2.3 to respective boundary conditions

    NASA Astrophysics Data System (ADS)

    Kamae, Youichi; Yoshida, Kohei; Ueda, Hiroaki

    2016-08-01

    Accumulations of global proxy data are essential steps for improving reliability of climate model simulations for the Pliocene warming climate. In the Pliocene Model Intercomparison Project phase 2 (PlioMIP2), a part project of the Paleoclimate Modelling Intercomparison Project phase 4, boundary forcing data have been updated from the PlioMIP phase 1 due to recent advances in understanding of oceanic, terrestrial and cryospheric aspects of the Pliocene palaeoenvironment. In this study, sensitivities of Pliocene climate simulations to the newly archived boundary conditions are evaluated by a set of simulations using an atmosphere-ocean coupled general circulation model, MRI-CGCM2.3. The simulated Pliocene climate is warmer than pre-industrial conditions for 2.4 °C in global mean, corresponding to 0.6 °C warmer than the PlioMIP1 simulation by the identical climate model. Revised orography, lakes, and shrunk ice sheets compared with the PlioMIP1 lead to local and remote influences including snow and sea ice albedo feedback, and poleward heat transport due to the atmosphere and ocean that result in additional warming over middle and high latitudes. The amplified higher-latitude warming is supported qualitatively by the proxy evidences, but is still underestimated quantitatively. Physical processes responsible for the global and regional climate changes should be further addressed in future studies under systematic intermodel and data-model comparison frameworks.

  13. Floodplains, permafrost, cottonwood trees, and peat: What happened the last time climate warmed suddenly in arctic Alaska?

    NASA Astrophysics Data System (ADS)

    Mann, Daniel H.; Groves, Pamela; Reanier, Richard E.; Kunz, Michael L.

    2010-12-01

    We use the stratigraphy of floodplains on Alaska's North Slope to describe how tundra watersheds responded to climate changes over the last 15,000 calibrated years BP (15 cal ka BP). Two episodes of extremely rapid floodplain alluviation occurred during the Pleistocene-Holocene transition, one between 14 and 12.8 cal ka BP and the other between 11.5 and 9.5 cal ka BP. These aggradation episodes coincided with periods of warming in summer when cottonwood ( Populus balsamifera L.) expanded its range, peatlands became established, and widespread thermokarst occurred. The two aggradation episodes were separated by a period of floodplain incision during the Younger Dryas under cooler and possibly drier conditions. At times of increasing summer warmth, melting permafrost and enhanced precipitation probably triggered widespread mass wasting on hillslopes that overwhelmed the capacity of streams to transport sediment downstream, and rapid floodplain aggradation resulted. After peatlands became widespread in the early Holocene, rivers slowly incised their valley fills. Because major pulses of sediment input were limited to times of rapid thaw and increasing moisture, many floodplains on the North Slope have been effectively decoupled from upstream hillslopes for much of the past 15,000 years. Our findings: (a) confirm the sensitivity of arctic watersheds to rapid warming in summer, (b) emphasize the importance of hillslope mass wasting in landscape-scale responses to climate change, and (c) suggest that the presence of peatland on this arctic landscape today has raised its geomorphic response threshold to climate warming compared to what it was 14,000 years ago.

  14. Changing hydrological conditions in the Po basin under global warming.

    PubMed

    Coppola, Erika; Verdecchia, Marco; Giorgi, Filippo; Colaiuda, Valentina; Tomassetti, Barbara; Lombardi, Annalina

    2014-09-15

    The Po River is a crucial resource for the Italian economy, since 40% of the gross domestic product comes from this area. It is thus crucial to quantify the impact of climate change on this water resource in order to plan for future water use. In this paper a mini ensemble of 8 hydrological simulations is completed from 1960 to 2050 under the A1B emission scenario, by using the output of two regional climate models as input (REMO and RegCM) at two different resolutions (25 km-10 km and 25 km-3 km). The river discharge at the outlet point of the basin shows a change in the spring peak of the annual cycle, with a one month shift from May to April. This shift is entirely due to the change in snowmelt timing which drives most of the discharge during this period. Two other important changes are an increase of discharge in the wintertime and a decrease in the fall from September to November. The uncertainty associated with the winter change is larger compared to that in the fall. The spring shift and the fall decrease of discharge imply an extension of the hydrological dry season and thus an increase in water stress over the basin. The spatial distributions of the discharge changes are in agreement with what is observed at the outlet point and the uncertainty associated with these changes is proportional to the amplitude of the signal. The analysis of the changes in the anomaly distribution of discharge shows that both the increases and decreases in seasonal discharge are tied to the changes in the tails of the distribution, i.e. to the increase or decrease of extreme events.

  15. Warm-dry collocation of recent drought in southwestern China tied to moisture transport and climate warming

    NASA Astrophysics Data System (ADS)

    Dai, Xin-Gang; Liu, Ye; Wang, Ping

    2015-04-01

    This study aims to investigate the recent drought in southwestern China and its association with environmental changes in moisture transport (MT) and atmospheric circulation. Climatic Research Unit grid data, in situ observations in China, and ERA-interim reanalysis are used to study the characteristics of the drought and the associated mechanism. Recent precipitation trends show a pattern of “Northern wetting and Southern drying”, similar to the anti-phase of the climate pattern prevailing during 1980-2000 in mainland China; southwestern China incurred a severe drought during 2009-2013. Wavelet analysis reveals that the drought coincides with a warm-dry phase of temperature and precipitation on a period of about 20 years and beyond 100 years, where contributions account for 43% and 57% of the deficiency of the precipitation, averaged for 2003-2012, respectively. A further investigation reveals that the drought results chiefly from the decline of the southwestern monsoon MT toward southwestern China, in addition to mid-latitude circulation changes, which leads to more blockings near the Ural Mountains and the Sea of Okhotsk in the rainy season and negative anomalies around Lake Baikal and northeast China in the dry season. These anomalies are likely to be correlated with global sea surface temperature changes and need to be studied further. Project supported by the National Basic Research and Development Program of China (Grant No. 2013CB430201), the National Natural Science Foundation of China (Grant Nos. 41075058 and 41475075), and the China Meteorological Administration Special Public Welfare Research Fund (Grant No. GYHY201106016).

  16. The Simulated Influence of Anthropogenic Climate Warming on the Oceanic Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Cao, L.; Caldeira, K.; Kheshgi, H.

    2001-12-01

    Prediction of the redistribution of anthropogenic CO2 in the atmosphere-ocean-land biosphere system is complicated by our limited understanding of the mechanisms driving carbon sequestration by the ocean and the terrestrial biosphere. Furthermore, the rates of carbon sequestration are sensitive to climate change projected to result from increases in CO2 and other greenhouse gas and changes in aerosol concentrations. This sensitivity creates feedback loops; an understanding of these feedbacks is prerequisite to forecasting future atmospheric CO2 concentrations and climate change. For instance, climate affects the oceanic carbon reservoir through the temperature-dependent relationship between total dissolved carbon and the partial pressure of CO2, and through potential climate-induced changes in ocean transport and ocean biological activity. A two-dimensional (latitude-depth) coupled atmosphere-ocean climate-carbon cycle model is developed and used to examine possible feedbacks between global climate change and the ocean carbon cycle system. The model has surface-air, land-sea, and latitudinal resolution, and is forced with diurnally averaged but seasonally varying insolation. The ocean component consists of the zonal mean balance equations of horizontal momentum, mass, temperature and salinity. The momentum balance is diagnostic, and time dependence enters through the advection-diffusion equations for temperature and salinity. The density field is calculated using a nonlinear, pressure-dependent equation of state. In this study the model is used to project future atmospheric CO2 concentrations and temperature change due to greenhouse gas and aerosol scenarios recently developed by IPCC (Nakicenovic et al., 2000), and evaluated the climate change feedback contribution to spatial and temporal changes in ocean carbon uptake. Globally, projected warming over the next century can decrease the strength of oceanic uptake of CO2 resulting in a positive feedback on CO2

  17. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration.

    PubMed

    Boyero, Luz; Pearson, Richard G; Gessner, Mark O; Barmuta, Leon A; Ferreira, Verónica; Graça, Manuel A S; Dudgeon, David; Boulton, Andrew J; Callisto, Marcos; Chauvet, Eric; Helson, Julie E; Bruder, Andreas; Albariño, Ricardo J; Yule, Catherine M; Arunachalam, Muthukumarasamy; Davies, Judy N; Figueroa, Ricardo; Flecker, Alexander S; Ramírez, Alonso; Death, Russell G; Iwata, Tomoya; Mathooko, Jude M; Mathuriau, Catherine; Gonçalves, José F; Moretti, Marcelo S; Jinggut, Tajang; Lamothe, Sylvain; M'Erimba, Charles; Ratnarajah, Lavenia; Schindler, Markus H; Castela, José; Buria, Leonardo M; Cornejo, Aydeé; Villanueva, Verónica D; West, Derek C

    2011-03-01

    The decomposition of plant litter is one of the most important ecosystem processes in the biosphere and is particularly sensitive to climate warming. Aquatic ecosystems are well suited to studying warming effects on decomposition because the otherwise confounding influence of moisture is constant. By using a latitudinal temperature gradient in an unprecedented global experiment in streams, we found that climate warming will likely hasten microbial litter decomposition and produce an equivalent decline in detritivore-mediated decomposition rates. As a result, overall decomposition rates should remain unchanged. Nevertheless, the process would be profoundly altered, because the shift in importance from detritivores to microbes in warm climates would likely increase CO(2) production and decrease the generation and sequestration of recalcitrant organic particles. In view of recent estimates showing that inland waters are a significant component of the global carbon cycle, this implies consequences for global biogeochemistry and a possible positive climate feedback. PMID:21299824

  18. Heat-Related Mortality in a Warming Climate: Projections for 12 U.S. Cities

    NASA Technical Reports Server (NTRS)

    Petkova, Elisaveta P.; Bader, Daniel A.; Anderson, G. Brooke; Horton, Radley M.; Knowlton, Kim; Kinney, Patrick L.

    2014-01-01

    Heat is among the deadliest weather-related phenomena in the United States, and the number of heat-related deaths may increase under a changing climate, particularly in urban areas. Regional adaptation planning is unfortunately often limited by the lack of quantitative information on potential future health responses. This study presents an assessment of the future impacts of climate change on heat-related mortality in 12 cities using 16 global climate models, driven by two scenarios of greenhouse gas emissions. Although the magnitude of the projected heat effects was found to differ across time, cities, climate models and greenhouse pollution emissions scenarios, climate change was projected to result in increases in heat-related fatalities over time throughout the 21st century in all of the 12 cities included in this study. The increase was more substantial under the high emission pathway, highlighting the potential benefits to public health of reducing greenhouse gas emissions. Nearly 200,000 heat-related deaths are projected to occur in the 12 cities by the end of the century due to climate warming, over 22,000 of which could be avoided if we follow a low GHG emission pathway. The presented estimates can be of value to local decision makers and stakeholders interested in developing strategies to reduce these impacts and building climate change resilience.

  19. Heat-related mortality in a warming climate: projections for 12 U.S. cities.

    PubMed

    Petkova, Elisaveta P; Bader, Daniel A; Anderson, G Brooke; Horton, Radley M; Knowlton, Kim; Kinney, Patrick L

    2014-10-31

    Heat is among the deadliest weather-related phenomena in the United States, and the number of heat-related deaths may increase under a changing climate, particularly in urban areas. Regional adaptation planning is unfortunately often limited by the lack of quantitative information on potential future health responses. This study presents an assessment of the future impacts of climate change on heat-related mortality in 12 cities using 16 global climate models, driven by two scenarios of greenhouse gas emissions. Although the magnitude of the projected heat effects was found to differ across time, cities, climate models and greenhouse pollution emissions scenarios, climate change was projected to result in increases in heat-related fatalities over time throughout the 21st century in all of the 12 cities included in this study. The increase was more substantial under the high emission pathway, highlighting the potential benefits to public health of reducing greenhouse gas emissions. Nearly 200,000 heat-related deaths are projected to occur in the 12 cities by the end of the century due to climate warming, over 22,000 of which could be avoided if we follow a low GHG emission pathway. The presented estimates can be of value to local decision makers and stakeholders interested in developing strategies to reduce these impacts and building climate change resilience.

  20. Heat-related mortality in a warming climate: projections for 12 U.S. cities.

    PubMed

    Petkova, Elisaveta P; Bader, Daniel A; Anderson, G Brooke; Horton, Radley M; Knowlton, Kim; Kinney, Patrick L

    2014-11-01

    Heat is among the deadliest weather-related phenomena in the United States, and the number of heat-related deaths may increase under a changing climate, particularly in urban areas. Regional adaptation planning is unfortunately often limited by the lack of quantitative information on potential future health responses. This study presents an assessment of the future impacts of climate change on heat-related mortality in 12 cities using 16 global climate models, driven by two scenarios of greenhouse gas emissions. Although the magnitude of the projected heat effects was found to differ across time, cities, climate models and greenhouse pollution emissions scenarios, climate change was projected to result in increases in heat-related fatalities over time throughout the 21st century in all of the 12 cities included in this study. The increase was more substantial under the high emission pathway, highlighting the potential benefits to public health of reducing greenhouse gas emissions. Nearly 200,000 heat-related deaths are projected to occur in the 12 cities by the end of the century due to climate warming, over 22,000 of which could be avoided if we follow a low GHG emission pathway. The presented estimates can be of value to local decision makers and stakeholders interested in developing strategies to reduce these impacts and building climate change resilience. PMID:25365060

  1. Does Climate Literacy Matter? A Case Study of U.S. Students' Level of Concern about Anthropogenic Global Warming

    ERIC Educational Resources Information Center

    Bedford, Daniel

    2016-01-01

    Educators seeking to address global warming in their classrooms face numerous challenges, including the question of whether student opinions about anthropogenic global warming (AGW) can change in response to increased knowledge about the climate system. This article analyzes survey responses from 458 students at a primarily undergraduate…

  2. Change in abundance of pacific brant wintering in alaska: evidence of a climate warming effect?

    USGS Publications Warehouse

    Ward, D.H.; Dau, C.P.; Lee, T.; Sedinger, J.S.; Anderson, B.A.; Hines, J.E.

    2009-01-01

    Winter distribution of Pacific Flyway brant (Branta bernicla nigricans) has shifted northward from lowtemperate areas to sub-Arctic areas over the last 42 years. We assessed the winter abundance and distribution of brant in Alaska to evaluate whether climate warming may be contributing to positive trends in the most northern of the wintering populations. Mean surface air temperatures during winter at the end of the Alaska Peninsula increased about 1??C between 1963 and 2004, resulting in a 23% reduction in freezing degree days and a 34% decline in the number of days when ice cover prevents birds from accessing food resources. Trends in the wintering population fluctuated with states of the Pacific Decadal Oscillation, increasing during positive (warm) phases and decreasing during negative (cold) phases, and this correlation provides support for the hypothesis that growth in the wintering population of brant in Alaska is linked to climate warming. The size of the wintering population was negatively correlated with the number of days of strong northwesterly winds in November, which suggests that the occurrence of tailwinds favorable for migration before the onset of winter was a key factor in whether brant migrated from Alaska or remained there during winter. Winter distribution of brant on the Alaska Peninsula was highly variable and influenced by ice cover, particularly at the heavily used Izembek Lagoon. Observations of previously marked brant indicated that the Alaska wintering population was composed primarily of birds originating from Arctic breeding colonies that appear to be growing. Numbers of brant in Alaska during winter will likely increase as temperatures rise and ice cover decreases at high latitudes in response to climate warming. ?? The Arctic Institute of North America.

  3. Shallowness of tropical low clouds as a predictor of climate models' response to warming

    NASA Astrophysics Data System (ADS)

    Brient, Florent; Schneider, Tapio; Tan, Zhihong; Bony, Sandrine; Qu, Xin; Hall, Alex

    2016-07-01

    How tropical low clouds change with climate remains the dominant source of uncertainty in global warming projections. An analysis of an ensemble of CMIP5 climate models reveals that a significant part of the spread in the models' climate sensitivity can be accounted by differences in the climatological shallowness of tropical low clouds in weak-subsidence regimes: models with shallower low clouds in weak-subsidence regimes tend to have a higher climate sensitivity than models with deeper low clouds. The dynamical mechanisms responsible for the model differences are analyzed. Competing effects of parameterized boundary-layer turbulence and shallow convection are found to be essential. Boundary-layer turbulence and shallow convection are typically represented by distinct parameterization schemes in current models—parameterization schemes that often produce opposing effects on low clouds. Convective drying of the boundary layer tends to deepen low clouds and reduce the cloud fraction at the lowest levels; turbulent moistening tends to make low clouds more shallow but affects the low-cloud fraction less. The relative importance different models assign to these opposing mechanisms contributes to the spread of the climatological shallowness of low clouds and thus to the spread of low-cloud changes under global warming.

  4. Synergistic roles of climate warming and human occupation in Patagonian megafaunal extinctions during the Last Deglaciation.

    PubMed

    Metcalf, Jessica L; Turney, Chris; Barnett, Ross; Martin, Fabiana; Bray, Sarah C; Vilstrup, Julia T; Orlando, Ludovic; Salas-Gismondi, Rodolfo; Loponte, Daniel; Medina, Matías; De Nigris, Mariana; Civalero, Teresa; Fernández, Pablo Marcelo; Gasco, Alejandra; Duran, Victor; Seymour, Kevin L; Otaola, Clara; Gil, Adolfo; Paunero, Rafael; Prevosti, Francisco J; Bradshaw, Corey J A; Wheeler, Jane C; Borrero, Luis; Austin, Jeremy J; Cooper, Alan

    2016-06-01

    The causes of Late Pleistocene megafaunal extinctions (60,000 to 11,650 years ago, hereafter 60 to 11.65 ka) remain contentious, with major phases coinciding with both human arrival and climate change around the world. The Americas provide a unique opportunity to disentangle these factors as human colonization took place over a narrow time frame (~15 to 14.6 ka) but during contrasting temperature trends across each continent. Unfortunately, limited data sets in South America have so far precluded detailed comparison. We analyze genetic and radiocarbon data from 89 and 71 Patagonian megafaunal bones, respectively, more than doubling the high-quality Pleistocene megafaunal radiocarbon data sets from the region. We identify a narrow megafaunal extinction phase 12,280 ± 110 years ago, some 1 to 3 thousand years after initial human presence in the area. Although humans arrived immediately prior to a cold phase, the Antarctic Cold Reversal stadial, megafaunal extinctions did not occur until the stadial finished and the subsequent warming phase commenced some 1 to 3 thousand years later. The increased resolution provided by the Patagonian material reveals that the sequence of climate and extinction events in North and South America were temporally inverted, but in both cases, megafaunal extinctions did not occur until human presence and climate warming coincided. Overall, metapopulation processes involving subpopulation connectivity on a continental scale appear to have been critical for megafaunal species survival of both climate change and human impacts. PMID:27386563

  5. Synergistic roles of climate warming and human occupation in Patagonian megafaunal extinctions during the Last Deglaciation

    PubMed Central

    Metcalf, Jessica L.; Turney, Chris; Barnett, Ross; Martin, Fabiana; Bray, Sarah C.; Vilstrup, Julia T.; Orlando, Ludovic; Salas-Gismondi, Rodolfo; Loponte, Daniel; Medina, Matías; De Nigris, Mariana; Civalero, Teresa; Fernández, Pablo Marcelo; Gasco, Alejandra; Duran, Victor; Seymour, Kevin L.; Otaola, Clara; Gil, Adolfo; Paunero, Rafael; Prevosti, Francisco J.; Bradshaw, Corey J. A.; Wheeler, Jane C.; Borrero, Luis; Austin, Jeremy J.; Cooper, Alan

    2016-01-01

    The causes of Late Pleistocene megafaunal extinctions (60,000 to 11,650 years ago, hereafter 60 to 11.65 ka) remain contentious, with major phases coinciding with both human arrival and climate change around the world. The Americas provide a unique opportunity to disentangle these factors as human colonization took place over a narrow time frame (~15 to 14.6 ka) but during contrasting temperature trends across each continent. Unfortunately, limited data sets in South America have so far precluded detailed comparison. We analyze genetic and radiocarbon data from 89 and 71 Patagonian megafaunal bones, respectively, more than doubling the high-quality Pleistocene megafaunal radiocarbon data sets from the region. We identify a narrow megafaunal extinction phase 12,280 ± 110 years ago, some 1 to 3 thousand years after initial human presence in the area. Although humans arrived immediately prior to a cold phase, the Antarctic Cold Reversal stadial, megafaunal extinctions did not occur until the stadial finished and the subsequent warming phase commenced some 1 to 3 thousand years later. The increased resolution provided by the Patagonian material reveals that the sequence of climate and extinction events in North and South America were temporally inverted, but in both cases, megafaunal extinctions did not occur until human presence and climate warming coincided. Overall, metapopulation processes involving subpopulation connectivity on a continental scale appear to have been critical for megafaunal species survival of both climate change and human impacts. PMID:27386563

  6. Synergistic roles of climate warming and human occupation in Patagonian megafaunal extinctions during the Last Deglaciation.

    PubMed

    Metcalf, Jessica L; Turney, Chris; Barnett, Ross; Martin, Fabiana; Bray, Sarah C; Vilstrup, Julia T; Orlando, Ludovic; Salas-Gismondi, Rodolfo; Loponte, Daniel; Medina, Matías; De Nigris, Mariana; Civalero, Teresa; Fernández, Pablo Marcelo; Gasco, Alejandra; Duran, Victor; Seymour, Kevin L; Otaola, Clara; Gil, Adolfo; Paunero, Rafael; Prevosti, Francisco J; Bradshaw, Corey J A; Wheeler, Jane C; Borrero, Luis; Austin, Jeremy J; Cooper, Alan

    2016-06-01

    The causes of Late Pleistocene megafaunal extinctions (60,000 to 11,650 years ago, hereafter 60 to 11.65 ka) remain contentious, with major phases coinciding with both human arrival and climate change around the world. The Americas provide a unique opportunity to disentangle these factors as human colonization took place over a narrow time frame (~15 to 14.6 ka) but during contrasting temperature trends across each continent. Unfortunately, limited data sets in South America have so far precluded detailed comparison. We analyze genetic and radiocarbon data from 89 and 71 Patagonian megafaunal bones, respectively, more than doubling the high-quality Pleistocene megafaunal radiocarbon data sets from the region. We identify a narrow megafaunal extinction phase 12,280 ± 110 years ago, some 1 to 3 thousand years after initial human presence in the area. Although humans arrived immediately prior to a cold phase, the Antarctic Cold Reversal stadial, megafaunal extinctions did not occur until the stadial finished and the subsequent warming phase commenced some 1 to 3 thousand years later. The increased resolution provided by the Patagonian material reveals that the sequence of climate and extinction events in North and South America were temporally inverted, but in both cases, megafaunal extinctions did not occur until human presence and climate warming coincided. Overall, metapopulation processes involving subpopulation connectivity on a continental scale appear to have been critical for megafaunal species survival of both climate change and human impacts.

  7. Prolonged California aridity linked to climate warming and Pacific sea surface temperature

    PubMed Central

    MacDonald, Glen M.; Moser, Katrina A.; Bloom, Amy M.; Potito, Aaron P.; Porinchu, David F.; Holmquist, James R.; Hughes, Julia; Kremenetski, Konstantine V.

    2016-01-01

    California has experienced a dry 21st century capped by severe drought from 2012 through 2015 prompting questions about hydroclimatic sensitivity to anthropogenic climate change and implications for the future. We address these questions using a Holocene lake sediment record of hydrologic change from the Sierra Nevada Mountains coupled with marine sediment records from the Pacific. These data provide evidence of a persistent relationship between past climate warming, Pacific sea surface temperature (SST) shifts and centennial to millennial episodes of California aridity. The link is most evident during the thermal-maximum of the mid-Holocene (~8 to 3 ka; ka = 1,000 calendar years before present) and during the Medieval Climate Anomaly (MCA) (~1 ka to 0.7 ka). In both cases, climate warming corresponded with cooling of the eastern tropical Pacific despite differences in the factors producing increased radiative forcing. The magnitude of prolonged eastern Pacific cooling was modest, similar to observed La Niña excursions of 1o to 2 °C. Given differences with current radiative forcing it remains uncertain if the Pacific will react in a similar manner in the 21st century, but should it follow apparent past behavior more intense and prolonged aridity in California would result. PMID:27629520

  8. Prolonged California aridity linked to climate warming and Pacific sea surface temperature.

    PubMed

    MacDonald, Glen M; Moser, Katrina A; Bloom, Amy M; Potito, Aaron P; Porinchu, David F; Holmquist, James R; Hughes, Julia; Kremenetski, Konstantine V

    2016-09-15

    California has experienced a dry 21(st) century capped by severe drought from 2012 through 2015 prompting questions about hydroclimatic sensitivity to anthropogenic climate change and implications for the future. We address these questions using a Holocene lake sediment record of hydrologic change from the Sierra Nevada Mountains coupled with marine sediment records from the Pacific. These data provide evidence of a persistent relationship between past climate warming, Pacific sea surface temperature (SST) shifts and centennial to millennial episodes of California aridity. The link is most evident during the thermal-maximum of the mid-Holocene (~8 to 3 ka; ka = 1,000 calendar years before present) and during the Medieval Climate Anomaly (MCA) (~1 ka to 0.7 ka). In both cases, climate warming corresponded with cooling of the eastern tropical Pacific despite differences in the factors producing increased radiative forcing. The magnitude of prolonged eastern Pacific cooling was modest, similar to observed La Niña excursions of 1(o) to 2 °C. Given differences with current radiative forcing it remains uncertain if the Pacific will react in a similar manner in the 21st century, but should it follow apparent past behavior more intense and prolonged aridity in California would result.

  9. Prolonged California aridity linked to climate warming and Pacific sea surface temperature

    NASA Astrophysics Data System (ADS)

    MacDonald, Glen M.; Moser, Katrina A.; Bloom, Amy M.; Potito, Aaron P.; Porinchu, David F.; Holmquist, James R.; Hughes, Julia; Kremenetski, Konstantine V.

    2016-09-01

    California has experienced a dry 21st century capped by severe drought from 2012 through 2015 prompting questions about hydroclimatic sensitivity to anthropogenic climate change and implications for the future. We address these questions using a Holocene lake sediment record of hydrologic change from the Sierra Nevada Mountains coupled with marine sediment records from the Pacific. These data provide evidence of a persistent relationship between past climate warming, Pacific sea surface temperature (SST) shifts and centennial to millennial episodes of California aridity. The link is most evident during the thermal-maximum of the mid-Holocene (~8 to 3 ka ka = 1,000 calendar years before present) and during the Medieval Climate Anomaly (MCA) (~1 ka to 0.7 ka). In both cases, climate warming corresponded with cooling of the eastern tropical Pacific despite differences in the factors producing increased radiative forcing. The magnitude of prolonged eastern Pacific cooling was modest, similar to observed La Niña excursions of 1o to 2 °C. Given differences with current radiative forcing it remains uncertain if the Pacific will react in a similar manner in the 21st century, but should it follow apparent past behavior more intense and prolonged aridity in California would result.

  10. Thermal Plasticity of Photosynthesis: the Role of Acclimation in Forest Responses to a Warming Climate

    SciTech Connect

    Gunderson, Carla A; O'Hara, Keiran H; Campion, Christina M; Walker, Ashley V; Edwards, Nelson T

    2010-01-01

    The increasing air temperatures central to climate change predictions have the potential to alter forest ecosystem function and structure by exceeding temperatures optimal for carbon gain. Such changes are projected to threaten survival of sensitive species, leading to local extinctions, range migrations, and altered forest composition. This study investigated photosynthetic sensitivity to temperature and the potential for acclimation in relation to the climatic provenance of five species of deciduous trees, Liquidambar styraciflua, Quercus rubra, Quercus falcata, Betula alleghaniensis, and Populus grandidentata. Open-top chambers supplied three levels of warming (+0, +2, and +4 C above ambient) over 3 years, tracking natural temperature variability. Optimal temperature for CO2 assimilation was strongly correlated with daytime temperature in all treatments, but assimilation rates at those optima were comparable. Adjustment of thermal optima was confirmed in all species, whether temperatures varied with season or treatment, and regardless of climate in the species' range or provenance of the plant material. Temperature optima from 17 to 34 were observed. Across species, acclimation potentials varied from 0.55 C to 1.07 C per degree change in daytime temperature. Responses to the temperature manipulation were not different from the seasonal acclimation observed in mature indigenous trees, suggesting that photosynthetic responses should not be modeled using static temperature functions, but should incorporate an adjustment to account for acclimation. The high degree of homeostasis observed indicates that direct impacts of climatic warming on forest productivity, species survival, and range limits may be less than predicted by existing models.

  11. Prolonged California aridity linked to climate warming and Pacific sea surface temperature.

    PubMed

    MacDonald, Glen M; Moser, Katrina A; Bloom, Amy M; Potito, Aaron P; Porinchu, David F; Holmquist, James R; Hughes, Julia; Kremenetski, Konstantine V

    2016-01-01

    California has experienced a dry 21(st) century capped by severe drought from 2012 through 2015 prompting questions about hydroclimatic sensitivity to anthropogenic climate change and implications for the future. We address these questions using a Holocene lake sediment record of hydrologic change from the Sierra Nevada Mountains coupled with marine sediment records from the Pacific. These data provide evidence of a persistent relationship between past climate warming, Pacific sea surface temperature (SST) shifts and centennial to millennial episodes of California aridity. The link is most evident during the thermal-maximum of the mid-Holocene (~8 to 3 ka; ka = 1,000 calendar years before present) and during the Medieval Climate Anomaly (MCA) (~1 ka to 0.7 ka). In both cases, climate warming corresponded with cooling of the eastern tropical Pacific despite differences in the factors producing increased radiative forcing. The magnitude of prolonged eastern Pacific cooling was modest, similar to observed La Niña excursions of 1(o) to 2 °C. Given differences with current radiative forcing it remains uncertain if the Pacific will react in a similar manner in the 21st century, but should it follow apparent past behavior more intense and prolonged aridity in California would result. PMID:27629520

  12. Warm climates of the past—a lesson for the future?

    PubMed Central

    Lunt, D. J.; Elderfield, H.; Pancost, R.; Ridgwell, A.; Foster, G. L.; Haywood, A.; Kiehl, J.; Sagoo, N.; Shields, C.; Stone, E. J.; Valdes, P.

    2013-01-01

    This Discussion Meeting Issue of the Philosophical Transactions A had its genesis in a Discussion Meeting of the Royal Society which took place on 10–11 October 2011. The Discussion Meeting, entitled ‘Warm climates of the past: a lesson for the future?’, brought together 16 eminent international speakers from the field of palaeoclimate, and was attended by over 280 scientists and members of the public. Many of the speakers have contributed to the papers compiled in this Discussion Meeting Issue. The papers summarize the talks at the meeting, and present further or related work. This Discussion Meeting Issue asks to what extent information gleaned from the study of past climates can aid our understanding of future climate change. Climate change is currently an issue at the forefront of environmental science, and also has important sociological and political implications. Most future predictions are carried out by complex numerical models; however, these models cannot be rigorously tested for scenarios outside of the modern, without making use of past climate data. Furthermore, past climate data can inform our understanding of how the Earth system operates, and can provide important contextual information related to environmental change. All past time periods can be useful in this context; here, we focus on past climates that were warmer than the modern climate, as these are likely to be the most similar to the future. This introductory paper is not meant as a comprehensive overview of all work in this field. Instead, it gives an introduction to the important issues therein, using the papers in this Discussion Meeting Issue, and other works from all the Discussion Meeting speakers, as exemplars of the various ways in which past climates can inform projections of future climate. Furthermore, we present new work that uses a palaeo constraint to quantitatively inform projections of future equilibrium ice sheet change. PMID:24043873

  13. Warm & wet or warm & dry? - A tree-ring based drought reconstruction from the European lowlands with emphasis on the medieval climate anomaly

    NASA Astrophysics Data System (ADS)

    Scharnweber, Tobias; Heinrich, Ingo; van der Maaten, Ernst; Heußner, Karl-Uwe; Wilmking, Martin

    2016-04-01

    Recent advances in reconstructing natural drought variability in Europe, such as the 'Old world drought atlas' (Cook et al., 2015), have sharpened our picture of historical hydroclimatic variability. However, our knowledge lacks high spatial resolution, especially for the northern non-arid regions. For example, it is still under debate if the so called medieval climate anomaly (MCA; ~950-1300 AD), a period of warm temperatures comparable to the contemporary warm phase, was likewise accompanied by increased drought occurrence, or, on the contrary, was rather wet (e.g. Kress et al., 2014). Here, we present a new millennial long drought reconstruction based on a unique dataset of tree rings from historical and modern beech wood from the northeastern European lowlands. Beech has a stable and strong regional summer drought signal over the calibration period of instrumental data (r>0.7 with drought index PDSI over 1900-2010) which, in contrast to other species such as oak, is consistent irrespective of the site/soil conditions the trees grew in. It can be assumed that during medieval times beech wood was available locally and not traded long distances. This strongly reduces the possibility that the new reconstruction mixes different signals of the possibly high spatial variability of precipitation. The extremely high replication of our chronology for the period 1000-1300 AD (peak in town foundations in NE-Germany) with more than 600 series enables a direct comparison with the well replicated recent period 1800-2010. In contrast to the results of Kress et al. (2014) for the Swiss Alps, but in accordance with the 'Old world drought atlas', our first results point at a rather dry and warm MCA in NE-Germany. In addition they support the observation that the hydroclimate of the twentieth century was highly variable compared with the last millennium. References Cook ER, Seager R, Kushnir Y, et al. (2015) Old World megadroughts and pluvials during the Common Era. Science

  14. Elevational differences in developmental plasticity determine phenological responses of grasshoppers to recent climate warming.

    PubMed

    Buckley, Lauren B; Nufio, César R; Kirk, Evan M; Kingsolver, Joel G

    2015-06-22

    Annual species may increase reproduction by increasing adult body size through extended development, but risk being unable to complete development in seasonally limited environments. Synthetic reviews indicate that most, but not all, species have responded to recent climate warming by advancing the seasonal timing of adult emergence or reproduction. Here, we show that 50 years of climate change have delayed development in high-elevation, season-limited grasshopper populations, but advanced development in populations at lower elevations. Developmental delays are most pronounced for early-season species, which might benefit most from delaying development when released from seasonal time constraints. Rearing experiments confirm that population, elevation and temperature interact to determine development time. Population differences in developmental plasticity may account for variability in phenological shifts among adults. An integrated consideration of the full life cycle that considers local adaptation and plasticity may be essential for understanding and predicting responses to climate change.

  15. Predicting changes in alluvial channel patterns in North-European Russia under conditions of global warming

    NASA Astrophysics Data System (ADS)

    Anisimov, Oleg; Vandenberghe, Jef; Lobanov, Vladimir; Kondratiev, Alexander

    2008-06-01

    Global climate change may have a noticeable impact on the northern environment, leading to changes in permafrost, vegetation and fluvial morphology. In this paper we compare the results from three geomorphological models and study the potential effects of changing climatic factors on the river channel types in North-European Russia. Two of the selected models by Romashin [Romashin, V.V., 1968. Variations of the river channel types under governing factors, Annals of the Hydrological Institute, vol. 155. Hydrometeoizdat, Leningrad, pp. 56-63.] and Leopold and Wolman [Leopold, L.B., Wolman, M.G., 1957. River channel pattern: braided, meandering and straight, Physiographic and hydraulic studies of rivers. USA Geological Survey Professional Paper 252, pp. 85-98.] are conventional QS-type models, which predict the existence of either multi-thread or single-tread channel types using data on discharge and channel slope. The more advanced model by Van den Berg [Van den Berg, J.H., 1995. Prediction of alluvial channel pattern of perennial rivers. Geomorphology 12, 259-270.] takes into account the size of the sediment material. We used data from 16 runoff gauges to validate the models and predict the channel types at selected locations under modern and predicted for the future climatic conditions. Two of the three models successfully replicated the currently existing channel types in all but one of the studied sites. Predictive calculations under the hypothetical scenarios of 10%, 15%, 20% and 35% runoff increase gave different results. Van den Berg's model predicted potential transformation of the channel types, from single- to multi-thread, at 4 of 16 selected locations in the next few decades, and at 5 locations by the middle of the 21st century. Each of the QS-type models predicted such transformation at one site only. Results of the study indicate that climatic warming in combination with other environmental changes may lead to transformation of the river channel types

  16. Plant responses to elevated temperatures: a field study on phenological sensitivity and fitness responses to simulated climate warming.

    PubMed

    Springate, David A; Kover, Paula X

    2014-02-01

    Significant changes in plant phenology have been observed in response to increases in mean global temperatures. There are concerns that accelerated phenologies can negatively impact plant populations. However, the fitness consequence of changes in phenology in response to elevated temperature is not well understood, particularly under field conditions. We address this issue by exposing a set of recombinant inbred lines of Arabidopsis thaliana to a simulated global warming treatment in the field. We find that plants exposed to elevated temperatures flower earlier, as predicted by photothermal models. However, contrary to life-history trade-off expectations, they also flower at a larger vegetative size, suggesting that warming probably causes acceleration in vegetative development. Although warming increases mean fitness (fruit production) by ca. 25%, there is a significant genotype-by-environment interaction. Changes in fitness rank indicate that imminent climate change can cause populations to be maladapted in their new environment, if adaptive evolution is limited. Thus, changes in the genetic composition of populations are likely, depending on the species' generation time and the speed of temperature change. Interestingly, genotypes that show stronger phenological responses have higher fitness under elevated temperatures, suggesting that phenological sensitivity might be a good indicator of success under elevated temperature at the genotypic level as well as at the species level.

  17. Climate-induced warming imposes a threat to north European spring ecosystems.

    PubMed

    Jyväsjärvi, Jussi; Marttila, Hannu; Rossi, Pekka M; Ala-Aho, Pertti; Olofsson, Bo; Nisell, Jakob; Backman, Birgitta; Ilmonen, Jari; Virtanen, Risto; Paasivirta, Lauri; Britschgi, Ritva; Kløve, Bjørn; Muotka, Timo

    2015-12-01

    Interest in climate change effects on groundwater has increased dramatically during the last decade. The mechanisms of climate-related groundwater depletion have been thoroughly reviewed, but the influence of global warming on groundwater-dependent ecosystems (GDEs) remains poorly known. Here we report long-term water temperature trends in 66 northern European cold-water springs. A vast majority of the springs (82%) exhibited a significant increase in water temperature during 1968-2012. Mean spring water temperatures were closely related to regional air temperature and global radiative forcing of the corresponding year. Based on three alternative climate scenarios representing low (RCP2.6), intermediate (RCP6) and high-emission scenarios (RCP8.5), we estimate that increase in mean spring water temperature in the region is likely to range from 0.67 °C (RCP2.6) to 5.94 °C (RCP8.5) by 2086. According to the worst-case scenario, water temperature of these originally cold-water ecosystems (regional mean in the late 1970s: 4.7 °C) may exceed 12 °C by the end of this century. We used bryophyte and macroinvertebrate species data from Finnish springs and spring-fed streams to assess ecological impacts of the predicted warming. An increase in spring water temperature by several degrees will likely have substantial biodiversity impacts, causing regional extinction of native, cold-stenothermal spring specialists, whereas species diversity of headwater generalists is likely to increase. Even a slight (by 1 °C) increase in water temperature may eliminate endemic spring species, thus altering bryophyte and macroinvertebrate assemblages of spring-fed streams. Climate change-induced warming of northern regions may thus alter species composition of the spring biota and cause regional homogenization of biodiversity in headwater ecosystems.

  18. Persistent cold air outbreaks over North America in a warming climate

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Leung, L. Ruby; Lu, Jian; Masato, Giacomo

    2015-04-01

    This study examines future changes of cold air outbreaks (CAOs) using a multi-model ensemble of global climate simulations from the Coupled Model Intercomparison Project Phase 5 and high resolution regional climate simulations. Overall, climate models agree on a dip in CAO duration across North America, but the percentage change is consistently smaller from western Canada to the upper mid-western US with historically more frequent CAO. By decomposing the changes of the probability density function of daily surface temperature into changes due to mean warming and changes in standard deviation (std) and skewness/higher order moments, the contributions of each factor to CAO changes are quantified. Results show that CAO changes can be explained largely by the mean warming, but the decrease in temperature std contributes to about 20% reduction of CAO from Alaska to northeastern US and eastern Canada possibly due to the Arctic amplification and weakening of storm track. A thermodynamical modulation of the skewness called the ‘0 °C mode’ effect is found to operate prominently along the 0 °C isotherm hemispherically and reduce CAO in western and northeastern US with winter snow cover by up to 10%. This effect also produces a manifold increase in CAO events over the Arctic sea ice. An increased frequency in atmospheric blocking also contributes to increases in CAO duration over Alaska and the Arctic region. Regional simulations revealed more contributions of existing snowpack to CAO in the near future over the Rocky Mountain, southwestern US, and Great Lakes areas through surface albedo effects. Overall, the multi-model projections emphasize that cold extremes do not completely disappear in a warming climate. Concomitant with the relatively smaller reduction in CAO events in northwestern US, the top five most extreme CAO events may still occur, and wind chill will continue to have societal impacts in that region.

  19. Climate-induced warming imposes a threat to north European spring ecosystems.

    PubMed

    Jyväsjärvi, Jussi; Marttila, Hannu; Rossi, Pekka M; Ala-Aho, Pertti; Olofsson, Bo; Nisell, Jakob; Backman, Birgitta; Ilmonen, Jari; Virtanen, Risto; Paasivirta, Lauri; Britschgi, Ritva; Kløve, Bjørn; Muotka, Timo

    2015-12-01

    Interest in climate change effects on groundwater has increased dramatically during the last decade. The mechanisms of climate-related groundwater depletion have been thoroughly reviewed, but the influence of global warming on groundwater-dependent ecosystems (GDEs) remains poorly known. Here we report long-term water temperature trends in 66 northern European cold-water springs. A vast majority of the springs (82%) exhibited a significant increase in water temperature during 1968-2012. Mean spring water temperatures were closely related to regional air temperature and global radiative forcing of the corresponding year. Based on three alternative climate scenarios representing low (RCP2.6), intermediate (RCP6) and high-emission scenarios (RCP8.5), we estimate that increase in mean spring water temperature in the region is likely to range from 0.67 °C (RCP2.6) to 5.94 °C (RCP8.5) by 2086. According to the worst-case scenario, water temperature of these originally cold-water ecosystems (regional mean in the late 1970s: 4.7 °C) may exceed 12 °C by the end of this century. We used bryophyte and macroinvertebrate species data from Finnish springs and spring-fed streams to assess ecological impacts of the predicted warming. An increase in spring water temperature by several degrees will likely have substantial biodiversity impacts, causing regional extinction of native, cold-stenothermal spring specialists, whereas species diversity of headwater generalists is likely to increase. Even a slight (by 1 °C) increase in water temperature may eliminate endemic spring species, thus altering bryophyte and macroinvertebrate assemblages of spring-fed streams. Climate change-induced warming of northern regions may thus alter species composition of the spring biota and cause regional homogenization of biodiversity in headwater ecosystems. PMID:26300476

  20. The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China.

    PubMed

    Huang, Qunfang; Lu, Yuqi

    2015-07-27

    The Yangtze River Delta (YRD) has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA) has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI) effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime) and maximal (daytime) air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 ± 0.030, 0.282 ± 0.042, 0.225 ± 0.044 and 0.179 ± 0.046 °C/decade during the period of 1957-2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05). Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001). The average warming rate of average air temperature attributable to urbanization is 0.124 ± 0.074 °C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming.

  1. The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China

    PubMed Central

    Huang, Qunfang; Lu, Yuqi

    2015-01-01

    The Yangtze River Delta (YRD) has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA) has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI) effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime) and maximal (daytime) air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 ± 0.030, 0.282 ± 0.042, 0.225 ± 0.044 and 0.179 ± 0.046 °C/decade during the period of 1957–2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05). Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001). The average warming rate of average air temperature attributable to urbanization is 0.124 ± 0.074 °C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming. PMID:26225986

  2. The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China.

    PubMed

    Huang, Qunfang; Lu, Yuqi

    2015-08-01

    The Yangtze River Delta (YRD) has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA) has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI) effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime) and maximal (daytime) air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 ± 0.030, 0.282 ± 0.042, 0.225 ± 0.044 and 0.179 ± 0.046 °C/decade during the period of 1957-2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05). Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001). The average warming rate of average air temperature attributable to urbanization is 0.124 ± 0.074 °C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming. PMID:26225986

  3. The intrinsic growth rate as a predictor of population viability under climate warming.

    PubMed

    Amarasekare, Priyanga; Coutinho, Renato M

    2013-11-01

    1. Lately, there has been interest in using the intrinsic growth rate (rm) to predict the effects of climate warming on ectotherm population viability. However, because rm is calculated using the Euler-Lotka equation, its reliability in predicting population persistence depends on whether ectotherm populations can achieve a stable age/stage distribution in thermally variable environments. Here, we investigate this issue using a mathematical framework that incorporates mechanistic descriptions of temperature effects on vital rates into a stage-structured population model that realistically captures the temperature-induced variability in developmental delays that characterize ectotherm life cycles. 2. We find that populations experiencing seasonal temperature variation converge to a stage distribution whose intra-annual pattern remains invariant across years. As a result, the mean annual per capita growth rate also remains constant between years. The key insight is the mechanism that allows populations converge to a stationary stage distribution. Temperature effects on the biochemical processes (e.g. enzyme kinetics, hormonal regulation) that underlie life-history traits (reproduction, development and mortality) exhibit well-defined thermodynamical properties (e.g. changes in entropy and enthalpy) that lead to predictable outcomes (e.g. reduction in reaction rates or hormonal action at temperature extremes). As a result, life-history traits exhibit a systematic and predictable response to seasonal temperature variation. This in turn leads to temporally predictable temperature responses of the stage distribution and the per capita growth rate. 3. When climate warming causes an increase in the mean annual temperature and/or the amplitude of seasonal fluctuations, the population model predicts the mean annual per capita growth rate to decline to zero within 100 years when warming is slow relative to the developmental period of the organism (0.03-0.05°C per year) and to

  4. Responses of spring phenology to climate warming reduced over the past decades

    NASA Astrophysics Data System (ADS)

    Fu, Yongshuo. H.; Zhao, hongfang; piao, Shilong; Peaucelle, Marc; Peng, Shushi; Zhou, Guiyun; Ciais, Philippe; Huang, Mengtian; Menzel, Annette; Penuelas, Josep; Song, Yang; Vitasse, Yann; Zeng, Zhenzhong; Janssens, Ivan. A.

    2016-04-01

    The phenology of spring leaf unfolding is one of the key indicators of the climate change on ecosystems, and influences regional and hemispheric-scale carbon balances and plant-animal interactions. Changes in the phenology of spring leaf unfolding can also exert biophysical feedbacks on climate by modifying the surface albedo and energy budget. Recent studies have reported significant advances in spring phenology as a result of warming in most northern hemisphere regions. Climate warming is projected to further increase, but the future evolution of the phenology of spring leaf unfolding remains uncertain - in view of the imperfect understanding of how the underlying mechanisms respond to environmental stimuli. In addition, the relative contributions of each environmental stimulus, which together define the apparent temperature sensitivity of the phenology of spring leaf unfolding (advances in days per degree Celsius warming, ST), may also change over time. An improved characterization of the variation in phenological responses to spring temperature is thus valuable, provided that it addresses temporal and spatial scales relevant for regional projections. Using long-term in situ observations of leaf unfolding for seven dominant European tree species at 1,245 sites, we show here that the apparent response of leaf unfolding to climate warming (ST, expressed in days advance per ° C) has significantly decreased from 1980 to 2013 in all monitored tree species. Averaged across all species and sites, ST decreased by 40% from 4.0 ± 1.8 days ° C-1 during 1980-1994 to 2.3 ± 1.6 days ° C-1 during 1999-2013. The declining ST was also simulated by chilling-based phenology models, albeit with a weaker decline (24%-30%) than observed in situ. The reduction in ST is likely to be partly attributable to reduced chilling. Nonetheless, other mechanisms may also play a role, such as 'photoperiod limitation' mechanisms that may become ultimately limiting when leaf unfolding dates

  5. Responses of spring phenology to climate warming reduced over the past decades

    NASA Astrophysics Data System (ADS)

    Fu, Yongshuo. H.; Zhao, hongfang; piao, Shilong; Peaucelle, Marc; Peng, Shushi; Zhou, Guiyun; Ciais, Philippe; Huang, Mengtian; Menzel, Annette; Penuelas, Josep; Song, Yang; Vitasse, Yann; Zeng, Zhenzhong; Janssens, Ivan. A.

    2016-04-01

    The phenology of spring leaf unfolding is one of the key indicators of the climate change on ecosystems, and influences regional and hemispheric-scale carbon balances and plant-animal interactions. Changes in the phenology of spring leaf unfolding can also exert biophysical feedbacks on climate by modifying the surface albedo and energy budget. Recent studies have reported significant advances in spring phenology as a result of warming in most northern hemisphere regions. Climate warming is projected to further increase, but the future evolution of the phenology of spring leaf unfolding remains uncertain - in view of the imperfect understanding of how the underlying mechanisms respond to environmental stimuli. In addition, the relative contributions of each environmental stimulus, which together define the apparent temperature sensitivity of the phenology of spring leaf unfolding (advances in days per degree Celsius warming, ST), may also change over time. An improved characterization of the variation in phenological responses to spring temperature is thus valuable, provided that it addresses temporal and spatial scales relevant for regional projections. Using long-term in situ observations of leaf unfolding for seven dominant European tree species at 1,245 sites, we show here that the apparent response of leaf unfolding to climate warming (ST, expressed in days advance per ° C) has significantly decreased from 1980 to 2013 in all monitored tree species. Averaged across all species and sites, ST decreased by 40% from 4.0 ± 1.8 days ° C‑1 during 1980-1994 to 2.3 ± 1.6 days ° C‑1 during 1999-2013. The declining ST was also simulated by chilling-based phenology models, albeit with a weaker decline (24%-30%) than observed in situ. The reduction in ST is likely to be partly attributable to reduced chilling. Nonetheless, other mechanisms may also play a role, such as 'photoperiod limitation' mechanisms that may become ultimately limiting when leaf unfolding

  6. Sensitivity of spring phenology to warming across temporal and spatial climate gradients in two independent databases

    USGS Publications Warehouse

    Cook, Benjamin I.; Wolkovich, Elizabeth M.; Davies, T. Jonathan; Ault, Toby R.; Betancourt, Julio L.; Allen, Jenica M.; Bolmgren, Kjell; Cleland, Elsa E.; Crimmins, Theresa M.; Kraft, Nathan J.B.; Lancaster, Lesley T.; Mazer, Susan J.; McCabe, Gregory J.; McGill, Brian J.; Parmesan, Camille; Pau, Stephanie; Regetz, James; Salamin, Nicolas; Schwartz, Mark D.; Travers, Steven E.

    2012-01-01

    Disparate ecological datasets are often organized into databases post hoc and then analyzed and interpreted in ways that may diverge from the purposes of the original data collections. Few studies, however, have attempted to quantify how biases inherent in these data (for example, species richness, replication, climate) affect their suitability for addressing broad scientific questions, especially in under-represented systems (for example, deserts, tropical forests) and wild communities. Here, we quantitatively compare the sensitivity of species first flowering and leafing dates to spring warmth in two phenological databases from the Northern Hemisphere. One—PEP725—has high replication within and across sites, but has low species diversity and spans a limited climate gradient. The other—NECTAR—includes many more species and a wider range of climates, but has fewer sites and low replication of species across sites. PEP725, despite low species diversity and relatively low seasonality, accurately captures the magnitude and seasonality of warming responses at climatically similar NECTAR sites, with most species showing earlier phenological events in response to warming. In NECTAR, the prevalence of temperature responders significantly declines with increasing mean annual temperature, a pattern that cannot be detected across the limited climate gradient spanned by the PEP725 flowering and leafing data. Our results showcase broad areas of agreement between the two databases, despite significant differences in species richness and geographic coverage, while also noting areas where including data across broader climate gradients may provide added value. Such comparisons help to identify gaps in our observations and knowledge base that can be addressed by ongoing monitoring and research efforts. Resolving these issues will be critical for improving predictions in understudied and under-sampled systems outside of the temperature seasonal mid-latitudes.

  7. Carbon and nutrient responses to fire and climate warming in Alaskan arctic tundra

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Rastetter, E. B.; Shaver, G. R.; Rocha, A. V.; Kwiatkowski, B.; Pearce, A.; Zhuang, Q.; Mishra, U.

    2015-12-01

    Fire frequency has dramatically increased in the tundra of northern Alaska, which has major implications for the carbon budget of the region and the functioning of these ecosystems that support important wildlife species. We applied the Multiple Element Limitation (MEL) model to investigate both the short- and long-term post-fire succession of plant and soil carbon, nitrogen, and phosphorus fluxes and stocks along a burn severity gradient in the 2007 Anaktuvuk River Fire scar in northern Alaska. We compared the patterns of biomass and soil carbon, nitrogen and phosphorus recoveries with different burn severities and warming intensities. Modeling results indicated that the early regrowth of post-fire tundra vegetation was limited primarily by its canopy photosynthetic potential, rather than nutrient availability. The long-term recovery of C balance from fire disturbance is mainly determined by the internal redistribution of nutrients among ecosystem components, rather than the supply of nutrients from external sources (e.g., nitrogen deposition and fixation, phosphorus weathering). Soil organic matter is the principal source of plant-available nutrients and determines the spatial variation of vegetation biomass across the North Slope of Alaska. Across the North Slope of Alaska, we examined the effects of changes in N and P cycles on tundra C budgets under climate warming. Our results indicate that the ongoing climate warming in Arctic enhances mineralization and leads to a net transfer of nutrient from soil organic matter to vegetation, thereby stimulating tundra plant growth and increased C sequestration in the tundra ecosystems.

  8. Using Observations and Climate Models to Investigate Recent Variability in Upper Ocean Warming

    NASA Astrophysics Data System (ADS)

    Durack, P. J.; Gleckler, P. J.; Guilyardi, E.; Landerer, F. W.

    2015-12-01

    The global ocean is responsible for storing more than 90% of the heat associated with observed greenhouse-gas-attributed warming. Our previous work used multiple in-situ estimates as well as altimetry in conjunction with a large suite of climate models to quantify how estimates of global upper-ocean warming since 1970 are likely biased low. This apparent underestimation, consistent with earlier studies, was attributed to poor observational coverage of the Southern Hemisphere. Recent 2006-2013 Argo ocean heat content (OHC) change estimates have placed 67-98% of increased heat in the Southern Hemisphere. The new estimates contrast markedly to long-term evaluations that place only 35-49% of the warming since 1970 in the Southern Hemisphere - even though the Southern Hemisphere contains more than 60% of the upper ocean volume. Although unforced variability is likely to play a larger role on resolved trends over this shorter time period, results from climate models provide one mechanism for investigating the role of variability across time scales. Extending our previous work, we investigate the hemispheric distribution of OHC using a number of observed change estimates along with a large suite of CMIP5 model simulations. We consider changes over decadal (Argo) to multi-decadal (multi-platform) time scales and contrast the observation-based hemispheric partitioning of OHC changes to a distribution of results from individual model simulations.

  9. Climatic warming and basal melting of large ice sheets: possible implications for East Antarctica

    SciTech Connect

    Saari, M.R.; Yuen, D.A.; Schubert, G.

    1987-01-01

    Climatic warming is shown to be capable of inducing shear heating instability and basal melting in a model ice sheet that is creeping slowly downslope. Growth times of the instability are calculated from a nonlinear analysis of temperature and flow in the model ice sheet whose surface undergoes a prescribed increase of temperature. The source of instability lies in the decrease of maximum ice thickness for steady downslope creep with increasing surface temperature. A surface temperature increase of 5 to 10 k can cause instability on a 10/sup 4/ year time scale for realistic ice rheology. The instability occurs suddenly after a prolonged period of dormancy. The instability might be relevant to the East Antarctic ice sheet. Warming associated with the Holocene interglacial epoch that heralded the end of the last ice age may have set the East Antarctic ice sheet on a course toward wide-spread instability some 10/sup 4/ years later. The present CO/sub 2/-induced climate warming is also a potential trigger for instability and basal melting of the East Antarctic ice sheet.

  10. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America

    PubMed Central

    Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia

    2014-01-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period – a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI – high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to

  11. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America.

    PubMed

    Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia

    2014-10-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period - a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI - high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to

  12. Estimating thermal regimes of bull trout and assessing the potential effects of climate warming on critical habitats

    USGS Publications Warehouse

    Jones, Leslie A.; Muhlfeld, Clint C.; Marshall, Lucy A.; McGlynn, Brian L.; Kershner, Jeffrey L.

    2013-01-01

    Understanding the vulnerability of aquatic species and habitats under climate change is critical for conservation and management of freshwater systems. Climate warming is predicted to increase water temperatures in freshwater ecosystems worldwide, yet few studies have developed spatially explicit modelling tools for understanding the potential impacts. We parameterized a nonspatial model, a spatial flow-routed model, and a spatial hierarchical model to predict August stream temperatures (22-m resolution) throughout the Flathead River Basin, USA and Canada. Model comparisons showed that the spatial models performed significantly better than the nonspatial model, explaining the spatial autocorrelation found between sites. The spatial hierarchical model explained 82% of the variation in summer mean (August) stream temperatures and was used to estimate thermal regimes for threatened bull trout (Salvelinus confluentus) habitats, one of the most thermally sensitive coldwater species in western North America. The model estimated summer thermal regimes of spawning and rearing habitats at <13 C° and foraging, migrating, and overwintering habitats at <14 C°. To illustrate the useful application of such a model, we simulated climate warming scenarios to quantify potential loss of critical habitats under forecasted climatic conditions. As air and water temperatures continue to increase, our model simulations show that lower portions of the Flathead River Basin drainage (foraging, migrating, and overwintering habitat) may become thermally unsuitable and headwater streams (spawning and rearing) may become isolated because of increasing thermal fragmentation during summer. Model results can be used to focus conservation and management efforts on populations of concern, by identifying critical habitats and assessing thermal changes at a local scale.

  13. Past and future climatic changes in the Mediterranean area under various global warming scenarios

    NASA Astrophysics Data System (ADS)

    Guiot, Joel

    2016-04-01

    Past climatic changes and their impacts on the natural vegetation can be used as a reference for the climatic changes projected by ensembles of climate models for the 21st century. The study of the Holocene shows that he Mediterranean has known several precipitation falls equivalent to what is projected for the end of the 21st century. These droughts were often correlated with the decline or collapse of Mediterranean civilisations, particularly in the eastern Basin. Nevertheless, while the past droughts were not characterized by particularly high temperature, future temperature increase will more or less significant according to the scenario. This will much intensify the water deficit for natural and artificial ecosystems. As a consequence, the projected climatic change can be considered as unprecedented during the last 10,000 years. We explore how they compare with the various scenarios corresponding to a 1.5°C, 2°C and 3°C global warming according to the pre-industrial mean temperature, and we will determine the degree of dissimilarity of the Mediterranean climate under these global thresholds according to the long term climate variability.

  14. Climate Warming and Soil Carbon in Tropical Forests: Insights from an Elevation Gradient in the Peruvian Andes

    PubMed Central

    Nottingham, Andrew T.; Whitaker, Jeanette; Turner, Benjamin L.; Salinas, Norma; Zimmermann, Michael; Malhi, Yadvinder; Meir, Patrick

    2015-01-01

    The temperature sensitivity of soil organic matter (SOM) decomposition in tropical forests will influence future climate. Studies of a 3.5-kilometer elevation gradient in the Peruvian Andes, including short-term translocation experiments and the examination of the long-term adaptation of biota to local thermal and edaphic conditions, have revealed several factors that may regulate this sensitivity. Collectively this work suggests that, in the absence of a moisture constraint, the temperature sensitivity of decomposition is regulated by the chemical composition of plant debris (litter) and both the physical and chemical composition of preexisting SOM: higher temperature sensitivities are found in litter or SOM that is more chemically complex and in SOM that is less occluded within aggregates. In addition, the temperature sensitivity of SOM in tropical montane forests may be larger than previously recognized because of the presence of “cold-adapted” and nitrogen-limited microbial decomposers and the possible future alterations in plant and microbial communities associated with warming. Studies along elevation transects, such as those reviewed here, can reveal factors that will regulate the temperature sensitivity of SOM. They can also complement and guide in situ soil-warming experiments, which will be needed to understand how this vulnerability to temperature may be mediated by altered plant productivity under future climatic change. PMID:26955086

  15. Potential effect of atmospheric warming on grapevine phenology and post-harvest heat accumulation across a range of climates

    NASA Astrophysics Data System (ADS)

    Hall, Andrew; Mathews, Adam J.; Holzapfel, Bruno P.

    2016-09-01

    Carbohydrates are accumulated within the perennial structure of grapevines when their production exceeds the requirements of reproduction and growth. The period between harvest and leaf-fall (the post-harvest period) is a key period for carbohydrate accumulation in relatively warmer grape-growing regions. The level of carbohydrate reserves available for utilisation in the following season has an important effect on canopy growth and yield potential and is therefore an important consideration in vineyard management. In a warming climate, the post-harvest period is lengthening and becoming warmer, evidenced through studies in wine regions worldwide that have correlated recent air temperature increases with changing grapevine phenology. Budbreak, flowering, veraison, and harvest have all been observed to be occurring earlier than in previous decades. Additionally, the final stage of the grapevine phenological cycle, leaf-fall, occurs later. This study explored the potential for increased post-harvest carbohydrate accumulation by modelling heat accumulation following harvest dates for the recent climate (1975-2004) and two warmer climate projections with mean temperature anomalies of +1.26 and +2.61 °C. Summaries of post-harvest heat accumulation between harvest and leaf-fall were produced for each of Australia's Geographical Indications (wine regions) to provide comparisons from the base temperatures to projected warmer conditions across a range of climates. The results indicate that for warmer conditions, all regions observe earlier occurring budbreak and harvest as well as increasing post-harvest growing degree days accumulation before leaf-fall. The level of increase varies depending upon starting climatic condition, with cooler regions experiencing the greatest change.

  16. Potential effect of atmospheric warming on grapevine phenology and post-harvest heat accumulation across a range of climates

    NASA Astrophysics Data System (ADS)

    Hall, Andrew; Mathews, Adam J.; Holzapfel, Bruno P.

    2016-01-01

    Carbohydrates are accumulated within the perennial structure of grapevines when their production exceeds the requirements of reproduction and growth. The period between harvest and leaf-fall (the post-harvest period) is a key period for carbohydrate accumulation in relatively warmer grape-growing regions. The level of carbohydrate reserves available for utilisation in the following season has an important effect on canopy growth and yield potential and is therefore an important consideration in vineyard management. In a warming climate, the post-harvest period is lengthening and becoming warmer, evidenced through studies in wine regions worldwide that have correlated recent air temperature increases with changing grapevine phenology. Budbreak, flowering, veraison, and harvest have all been observed to be occurring earlier than in previous decades. Additionally, the final stage of the grapevine phenological cycle, leaf-fall, occurs later. This study explored the potential for increased post-harvest carbohydrate accumulation by modelling heat accumulation following harvest dates for the recent climate (1975-2004) and two warmer climate projections with mean temperature anomalies of +1.26 and +2.61 °C. Summaries of post-harvest heat accumulation between harvest and leaf-fall were produced for each of Australia's Geographical Indications (wine regions) to provide comparisons from the base temperatures to projected warmer conditions across a range of climates. The results indicate that for warmer conditions, all regions observe earlier occurring budbreak and harvest as well as increasing post-harvest growing degree days accumulation before leaf-fall. The level of increase varies depending upon starting climatic condition, with cooler regions experiencing the greatest change.

  17. Variability of terrestrial carbon cycle and its interaction with climate under global warming

    NASA Astrophysics Data System (ADS)

    Qian, Haifeng

    Land-atmosphere carbon exchange makes a significant contribution to the variability of atmospheric CO2 concentration on time scales of seasons to centuries. In this thesis, a terrestrial vegetation and carbon model, VEgetation-Global-Atmosphere-Soil (VEGAS), is used to study the interactions between the terrestrial carbon cycle and climate over a wide-range of temporal and spatial scales. The VEGAS model was first evaluated by comparison with FLUXNET observations. One primary focus of the thesis was to investigate the interannual variability of terrestrial carbon cycle related to climate variations, in particular to El Nino-Southern Oscillation (ENSO). Our analysis indicates that VEGAS can properly capture the response of terrestrial carbon cycle to ENSO: suppression of vegetative activity coupled with enhancement of soil decomposition, due to predominant warmer and drier climate patterns over tropical land associated with El Nino. The combined affect of these forcings causes substantial carbon flux into the atmosphere. A unique aspect of this work is to quantify the direct and indirect effects of soil wetness vegetation activities and consequently on land-atmosphere carbon fluxes. Besides this canonic dominance of the tropical response to ENSO, our modeling study simulated a large carbon flux from the northern mid-latitudes, triggered by the 1998-2002 drought and warming in the region. Our modeling indicates that this drought could be responsible for the abnormally high increase in atmospheric CO2 growth rate (2 ppm/yr) during 2002-2003. We then investigated the carbon cycle-climate feedback in the 21 st century. A modest feedback was identified, and the result was incorporated into the Coupled Carbon Cycle Climate Model Inter-comparison Project (C4MIP). Using the fully coupled carbon cycle-climate simulations from C4MIP, we examined the carbon uptake in the Northern High Latitudes poleward of 60°N (NHL) in the 21st century. C4MIP model results project that the

  18. CLIMATE CHANGE. Possible artifacts of data biases in the recent global surface warming hiatus.

    PubMed

    Karl, Thomas R; Arguez, Anthony; Huang, Boyin; Lawrimore, Jay H; McMahon, James R; Menne, Matthew J; Peterson, Thomas C; Vose, Russell S; Zhang, Huai-Min

    2015-06-26

    Much study has been devoted to the possible causes of an apparent decrease in the upward trend of global surface temperatures since 1998, a phenomenon that has been dubbed the global warming "hiatus." Here, we present an updated global surface temperature analysis that reveals that global trends are higher than those reported by the Intergovernmental Panel on Climate Change, especially in recent decades, and that the central estimate for the rate of warming during the first 15 years of the 21st century is at least as great as the last half of the 20th century. These results do not support the notion of a "slowdown" in the increase of global surface temperature.

  19. Climate change. Projected increase in lightning strikes in the United States due to global warming.

    PubMed

    Romps, David M; Seeley, Jacob T; Vollaro, David; Molinari, John

    2014-11-14

    Lightning plays an important role in atmospheric chemistry and in the initiation of wildfires, but the impact of global warming on lightning rates is poorly constrained. Here we propose that the lightning flash rate is proportional to the convective available potential energy (CAPE) times the precipitation rate. Using observations, the product of CAPE and precipitation explains 77% of the variance in the time series of total cloud-to-ground lightning flashes over the contiguous United States (CONUS). Storms convert CAPE times precipitated water mass to discharged lightning energy with an efficiency of 1%. When this proxy is applied to 11 climate models, CONUS lightning strikes are predicted to increase 12 ± 5% per degree Celsius of global warming and about 50% over this century.

  20. Climate change. Projected increase in lightning strikes in the United States due to global warming.

    PubMed

    Romps, David M; Seeley, Jacob T; Vollaro, David; Molinari, John

    2014-11-14

    Lightning plays an important role in atmospheric chemistry and in the initiation of wildfires, but the impact of global warming on lightning rates is poorly constrained. Here we propose that the lightning flash rate is proportional to the convective available potential energy (CAPE) times the precipitation rate. Using observations, the product of CAPE and precipitation explains 77% of the variance in the time series of total cloud-to-ground lightning flashes over the contiguous United States (CONUS). Storms convert CAPE times precipitated water mass to discharged lightning energy with an efficiency of 1%. When this proxy is applied to 11 climate models, CONUS lightning strikes are predicted to increase 12 ± 5% per degree Celsius of global warming and about 50% over this century. PMID:25395536

  1. North Atlantic warming during Dansgaard-Oeschger events synchronous with Antarctic warming and out-of-phase with Greenland climate.

    PubMed

    Rasmussen, Tine L; Thomsen, Erik; Moros, Matthias

    2016-01-01

    The precise reason for the differences and out-of-phase relationship between the abrupt Dansgaard-Oeschger warmings in the Nordic seas and Greenland ice cores and the gradual warmings in the south-central Atlantic and Antarctic ice cores is poorly understood. Termed the bipolar seesaw, the differences are apparently linked to perturbations in the ocean circulation pattern. Here we show that surface and intermediate-depth water south of Iceland warmed gradually synchronously with the Antarctic warming and out of phase with the abrupt warming of the Nordic seas and over Greenland. The hinge line between areas showing abrupt and gradual warming was close to the Greenland-Scotland Ridge and the marine system appears to be a 'push-and-pull' system rather than a seesaw system. 'Pull' during the warm interstadials, when convection in the Nordic seas was active; 'push' during the cold stadials, when convection stopped and warm water from the south-central Atlantic pushed northward gradually warming the North Atlantic and Nordic seas. PMID:26847384

  2. North Atlantic warming during Dansgaard-Oeschger events synchronous with Antarctic warming and out-of-phase with Greenland climate

    PubMed Central

    Rasmussen, Tine L.; Thomsen, Erik; Moros, Matthias

    2016-01-01

    The precise reason for the differences and out-of-phase relationship between the abrupt Dansgaard-Oeschger warmings in the Nordic seas and Greenland ice cores and the gradual warmings in the south-central Atlantic and Antarctic ice cores is poorly understood. Termed the bipolar seesaw, the differences are apparently linked to perturbations in the ocean circulation pattern. Here we show that surface and intermediate-depth water south of Iceland warmed gradually synchronously with the Antarctic warming and out of phase with the abrupt warming of the Nordic seas and over Greenland. The hinge line between areas showing abrupt and gradual warming was close to the Greenland-Scotland Ridge and the marine system appears to be a ‘push-and-pull’ system rather than a seesaw system. ‘Pull’ during the warm interstadials, when convection in the Nordic seas was active; ‘push’ during the cold stadials, when convection stopped and warm water from the south-central Atlantic pushed northward gradually warming the North Atlantic and Nordic seas. PMID:26847384

  3. North Atlantic warming during Dansgaard-Oeschger events synchronous with Antarctic warming and out-of-phase with Greenland climate

    NASA Astrophysics Data System (ADS)

    Rasmussen, Tine L.; Thomsen, Erik; Moros, Matthias

    2016-02-01

    The precise reason for the differences and out-of-phase relationship between the abrupt Dansgaard-Oeschger warmings in the Nordic seas and Greenland ice cores and the gradual warmings in the south-central Atlantic and Antarctic ice cores is poorly understood. Termed the bipolar seesaw, the differences are apparently linked to perturbations in the ocean circulation pattern. Here we show that surface and intermediate-depth water south of Iceland warmed gradually synchronously with the Antarctic warming and out of phase with the abrupt warming of the Nordic seas and over Greenland. The hinge line between areas showing abrupt and gradual warming was close to the Greenland-Scotland Ridge and the marine system appears to be a ‘push-and-pull’ system rather than a seesaw system. ‘Pull’ during the warm interstadials, when convection in the Nordic seas was active; ‘push’ during the cold stadials, when convection stopped and warm water from the south-central Atlantic pushed northward gradually warming the North Atlantic and Nordic seas.

  4. Do cities simulate climate change? A comparison of herbivore response to urban and global warming.

    PubMed

    Youngsteadt, Elsa; Dale, Adam G; Terando, Adam J; Dunn, Robert R; Frank, Steven D

    2015-01-01

    Cities experience elevated temperature, CO2 , and nitrogen deposition decades ahead of the global average, such that biological response to urbanization may predict response to future climate change. This hypothesis remains untested due to a lack of complementary urban and long-term observations. Here, we examine the response of an herbivore, the scale insect Melanaspis tenebricosa, to temperature in the context of an urban heat island, a series of historical temperature fluctuations, and recent climate warming. We survey M. tenebricosa on 55 urban street trees in Raleigh, NC, 342 herbarium specimens collected in the rural southeastern United States from 1895 to 2011, and at 20 rural forest sites represented by both modern (2013) and historical samples. We relate scale insect abundance to August temperatures and find that M. tenebricosa is most common in the hottest parts of the city, on historical specimens collected during warm time periods, and in present-day rural forests compared to the same sites when they were cooler. Scale insects reached their highest densities in the city, but abundance peaked at similar temperatures in urban and historical datasets and tracked temperature on a decadal scale. Although urban habitats are highly modified, species response to a key abiotic factor, temperature, was consistent across urban and rural-forest ecosystems. Cities may be an appropriate but underused system for developing and testing hypotheses about biological effects of climate change. Future work should test the applicability of this model to other groups of organisms.

  5. Do cities simulate climate change? A comparison of herbivore response to urban and global warming

    USGS Publications Warehouse

    Youngsteadt, Elsa; Dale, Adam G.; Terando, Adam; Dunn, Robert R.; Frank, Steven D.

    2014-01-01

    Cities experience elevated temperature, CO2, and nitrogen deposition decades ahead of the global average, such that biological response to urbanization may predict response to future climate change. This hypothesis remains untested due to a lack of complementary urban and long-term observations. Here, we examine the response of an herbivore, the scale insect Melanaspis tenebricosa, to temperature in the context of an urban heat island, a series of historical temperature fluctuations, and recent climate warming. We survey M. tenebricosa on 55 urban street trees in Raleigh, NC, 342 herbarium specimens collected in the rural southeastern United States from 1895 to 2011, and at 20 rural forest sites represented by both modern (2013) and historical samples. We relate scale insect abundance to August temperatures and find that M. tenebricosa is most common in the hottest parts of the city, on historical specimens collected during warm time periods, and in present-day rural forests compared to the same sites when they were cooler. Scale insects reached their highest densities in the city, but abundance peaked at similar temperatures in urban and historical datasets and tracked temperature on a decadal scale. Although urban habitats are highly modified, species response to a key abiotic factor, temperature, was consistent across urban and rural-forest ecosystems. Cities may be an appropriate but underused system for developing and testing hypotheses about biological effects of climate change. Future work should test the applicability of this model to other groups of organisms.

  6. Climate warming may facilitate invasion of the exotic shrub Lantana camara.

    PubMed

    Zhang, Qiaoying; Zhang, Yunchun; Peng, Shaolin; Zobel, Kristjan

    2014-01-01

    Plant species show different responses to the elevated temperatures that are resulting from global climate change, depending on their ecological and physiological characteristics. The highly invasive shrub Lantana camara occurs between the latitudes of 35 °N and 35 °S. According to current and future climate scenarios predicted by the CLIMEX model, climatically suitable areas for L. camara are projected to contract globally, despite expansions in some areas. The objective of this study was to test those predictions, using a pot experiment in which branch cuttings were grown at three different temperatures (22 °C, 26 °C and 30 °C). We hypothesized that warming would facilitate the invasiveness of L. camara. In response to rising temperatures, the total biomass of L. camara did increase. Plants allocated more biomass to stems and enlarged their leaves more at 26 °C and 30 °C, which promoted light capture and assimilation. They did not appear to be stressed by higher temperatures, in fact photosynthesis and assimilation were enhanced. Using lettuce (Lactuca sativa) as a receptor plant in a bioassay experiment, we also tested the phytotoxicity of L. camara leachate at different temperatures. All aqueous extracts from fresh leaves significantly inhibited the germination and seedling growth of lettuce, and the allelopathic effects became stronger with increasing temperature. Our results provide key evidence that elevated temperature led to significant increases in growth along with physiological and allelopathic effects, which together indicate that global warming facilitates the invasion of L. camara.

  7. Assessing Climate Change Impacts for Military Installations in the Southwest United States During the Warm Season

    NASA Astrophysics Data System (ADS)

    Castro, C.

    2013-05-01

    Arid and semi-arid regions are experiencing some of the most adverse impacts of climate change with increased heat waves, droughts, and extreme weather. These events will likely exacerbate socioeconomic and political instabilities in regions where the United States has vital strategic interests and ongoing military operations. The Southwest U.S. is strategically important in that it houses some of the most spatially expansive and important military installations in the country. The majority of severe weather events in the Southwest occur in association with the North American monsoon system (NAMS), and current observational record has shown a 'wet gets wetter and dry gets drier' global monsoon precipitation trend. We seek to evaluate the warm season extreme weather projection in the Southwest U.S., and how the extremes can affect Department of Defense (DoD) military facilities in that region. A baseline methodology is being developed to select extreme warm season weather events based on historical sounding data and moisture surge observations from Gulf of California. Numerical Weather Prediction (NWP)-type high resolution simulations will be performed for the extreme events identified from Weather Research and Forecast (WRF) model simulations initiated from IPCC GCM and NCAR Reanalysis data in both climate control and climate change periods. The magnitude in extreme event changes will be analyzed, and the synoptic forcing patterns of the future severe thunderstorms will provide a guide line to assess if the military installations in the Southwest will become more or less susceptible to severe weather in the future.

  8. Do cities simulate climate change? A comparison of herbivore response to urban and global warming.

    PubMed

    Youngsteadt, Elsa; Dale, Adam G; Terando, Adam J; Dunn, Robert R; Frank, Steven D

    2015-01-01

    Cities experience elevated temperature, CO2 , and nitrogen deposition decades ahead of the global average, such that biological response to urbanization may predict response to future climate change. This hypothesis remains untested due to a lack of complementary urban and long-term observations. Here, we examine the response of an herbivore, the scale insect Melanaspis tenebricosa, to temperature in the context of an urban heat island, a series of historical temperature fluctuations, and recent climate warming. We survey M. tenebricosa on 55 urban street trees in Raleigh, NC, 342 herbarium specimens collected in the rural southeastern United States from 1895 to 2011, and at 20 rural forest sites represented by both modern (2013) and historical samples. We relate scale insect abundance to August temperatures and find that M. tenebricosa is most common in the hottest parts of the city, on historical specimens collected during warm time periods, and in present-day rural forests compared to the same sites when they were cooler. Scale insects reached their highest densities in the city, but abundance peaked at similar temperatures in urban and historical datasets and tracked temperature on a decadal scale. Although urban habitats are highly modified, species response to a key abiotic factor, temperature, was consistent across urban and rural-forest ecosystems. Cities may be an appropriate but underused system for developing and testing hypotheses about biological effects of climate change. Future work should test the applicability of this model to other groups of organisms. PMID:25163424

  9. Enhancing Primary School Students' Knowledge about Global Warming and Environmental Attitude Using Climate Change Activities

    NASA Astrophysics Data System (ADS)

    Karpudewan, Mageswary; Roth, Wolff-Michael; Abdullah, Mohd Nor Syahrir Bin

    2015-01-01

    Climate change generally and global warming specifically have become a common feature of the daily news. Due to widespread recognition of the adverse consequences of climate change on human lives, concerted societal effort has been taken to address it (e.g. by means of the science curriculum). This study was designed to test the effect that child-centred, 5E learning cycle-based climate change activities would have over more traditional teacher-centred activities on Malaysian Year 5 primary students (11 years). A quasi-experimental design involving a treatment (n = 55) and a group representing typical teaching method (n = 60) was used to measure the effectiveness of these activities on (a) increasing children's knowledge about global warming; (b) changing their attitudes to be more favourable towards the environment and (c) identify the relationship between knowledge and attitude that exist in this study. Statistically significant differences in favour of the treatment group were detected for both knowledge and environmental attitudes. Non-significant relationship was identified between knowledge and attitude in this study. Interviews with randomly selected students from treatment and comparison groups further underscore these findings. Implications are discussed.

  10. Potential vulnerability of southeast Alaskan wetland soil carbon stocks to climate warming

    NASA Astrophysics Data System (ADS)

    Fellman, J.; D'Amore, D. V.; Hood, E. W.

    2015-12-01

    Carbon cycling along the high latitude coastal margins of Alaska is poorly understood relative to boreal and arctic ecosystems. The perhumid coastal temperate rainforest (PCTR) of southeast Alaska has some of the densest carbon stocks (>300 Mg C ha-1) in the world but the fate of these stocks with continued warming will balance on the poorly constrained rates of carbon accumulation and loss. We quantified the rate of dissolved organic carbon (DOC) and carbon dioxide (CO2) production from four different wetland types (rich fen, poor fen, forested wetland and cedar wetland) using controlled laboratory incubations of surface (10 cm) and subsurface (25 cm) soils incubated at 8 ºC and 15 ºC for 37 weeks. This design allowed us to determine the potential vulnerability of wetland soil carbon stocks to climate warming and partition organic matter mineralization into DOC and CO2 fluxes and its controls (e.g., wetland type and temperature). Furthermore, we used fluorescence characterization of DOC and laboratory bioassays to assess how climate warming may impact the quality and bioavailability of DOC delivered to fluvial systems. Soil depth and temperature strongly influenced carbon loss in all four wetland types with the greatest CO2 fluxes observed in the rich fen and greatest DOC fluxes observed in the poor fen. Of the fluxes, CO2 was the most sensitive to incubation temperature but DOC showed more variation with wetland type. Fluxes of DOC and CO2 were positively correlated only during the last few months of the incubation suggesting strong biotic control of DOC production developed as soil organic matter decomposition progressed. Moreover, bioavailable DOC and protein-like fluorescence were greatest in the initial soil extractions but dramatically decreased over the length of the incubations. Our findings suggest that soil organic matter decomposition will increase as the PCTR continues to warm, but this response will also will vary with wetland type.

  11. Differentiated Responses of Apple Tree Floral Phenology to Global Warming in Contrasting Climatic Regions.

    PubMed

    Legave, Jean-Michel; Guédon, Yann; Malagi, Gustavo; El Yaacoubi, Adnane; Bonhomme, Marc

    2015-01-01

    The responses of flowering phenology to temperature increases in temperate fruit trees have rarely been investigated in contrasting climatic regions. This is an appropriate framework for highlighting varying responses to diverse warming contexts, which would potentially combine chill accumulation (CA) declines and heat accumulation (HA) increases. To examine this issue, a data set was constituted in apple tree from flowering dates collected for two phenological stages of three cultivars in seven climate-contrasting temperate regions of Western Europe and in three mild regions, one in Northern Morocco and two in Southern Brazil. Multiple change-point models were applied to flowering date series, as well as to corresponding series of mean temperature during two successive periods, respectively determining for the fulfillment of chill and heat requirements. A new overview in space and time of flowering date changes was provided in apple tree highlighting not only flowering date advances as in previous studies but also stationary flowering date series. At global scale, differentiated flowering time patterns result from varying interactions between contrasting thermal determinisms of flowering dates and contrasting warming contexts. This may explain flowering date advances in most of European regions and in Morocco vs. stationary flowering date series in the Brazilian regions. A notable exception in Europe was found in the French Mediterranean region where the flowering date series was stationary. While the flowering duration series were stationary whatever the region, the flowering durations were far longer in mild regions compared to temperate regions. Our findings suggest a new warming vulnerability in temperate Mediterranean regions, which could shift toward responding more to chill decline and consequently experience late and extended flowering under future warming scenarios.

  12. Differentiated Responses of Apple Tree Floral Phenology to Global Warming in Contrasting Climatic Regions

    PubMed Central

    Legave, Jean-Michel; Guédon, Yann; Malagi, Gustavo; El Yaacoubi, Adnane; Bonhomme, Marc

    2015-01-01

    The responses of flowering phenology to temperature increases in temperate fruit trees have rarely been investigated in contrasting climatic regions. This is an appropriate framework for highlighting varying responses to diverse warming contexts, which would potentially combine chill accumulation (CA) declines and heat accumulation (HA) increases. To examine this issue, a data set was constituted in apple tree from flowering dates collected for two phenological stages of three cultivars in seven climate-contrasting temperate regions of Western Europe and in three mild regions, one in Northern Morocco and two in Southern Brazil. Multiple change-point models were applied to flowering date series, as well as to corresponding series of mean temperature during two successive periods, respectively determining for the fulfillment of chill and heat requirements. A new overview in space and time of flowering date changes was provided in apple tree highlighting not only flowering date advances as in previous studies but also stationary flowering date series. At global scale, differentiated flowering time patterns result from varying interactions between contrasting thermal determinisms of flowering dates and contrasting warming contexts. This may explain flowering date advances in most of European regions and in Morocco vs. stationary flowering date series in the Brazilian regions. A notable exception in Europe was found in the French Mediterranean region where the flowering date series was stationary. While the flowering duration series were stationary whatever the region, the flowering durations were far longer in mild regions compared to temperate regions. Our findings suggest a new warming vulnerability in temperate Mediterranean regions, which could shift toward responding more to chill decline and consequently experience late and extended flowering under future warming scenarios. PMID:26697028

  13. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton.

    PubMed

    Hixson, Stefanie M; Arts, Michael T

    2016-08-01

    Phytoplankton are the main source of energy and omega-3 (n-3) long-chain essential fatty acids (EFA) in aquatic ecosystems. Their growth and biochemical composition are affected by surrounding environmental conditions, including temperature, which continues to increase as a result of climate warming. Increasing water temperatures may negatively impact the production of EFA by phytoplankton through the process of homeoviscous adaptation. To investigate this, we conducted an exploratory data synthesis with 952 fatty acid (FA) profiles from six major groups of marine and freshwater phytoplankton. Temperature was strongly correlated with a decrease in the proportion of n-3 long-chain polyunsaturated FA (LC-PUFA) and an increase in omega-6 FA and saturated FA. Based on linear regression models, we predict that global n-3 LC-PUFA production will be reduced by 8.2% for eicosapentaenoic acid (EPA) and 27.8% for docosahexaenoic acid (DHA) with an increase in water temperature of 2.5 °C. Using a previously published estimate of the global production of EPA by diatoms, which contribute to most of the world's supply of EPA, we predict a loss of 14.2 Mt of EPA annually as a result of ocean warming. The n-3 LC-PUFA are vitally important for an array of key physiological functions in aquatic and terrestrial organisms, and these FA are mainly produced by phytoplankton. Therefore, reduced production of these EFA, as a consequence of climate warming, is predicted to negatively affect species that depend on these compounds for optimum physiological function. Such profound changes in the biochemical composition of phytoplankton cell membranes can lead to cascading effects throughout the world's ecosystems.

  14. Uncertainties in the attribution of greenhouse gas warming and implications for climate prediction

    NASA Astrophysics Data System (ADS)

    Jones, Gareth S.; Stott, Peter A.; Mitchell, John F. B.

    2016-06-01

    Using optimal detection techniques with climate model simulations, most of the observed increase of near-surface temperatures over the second half of the twentieth century is attributed to anthropogenic influences. However, the partitioning of the anthropogenic influence to individual factors, such as greenhouse gases and aerosols, is much less robust. Differences in how forcing factors are applied, in their radiative influence and in models' climate sensitivities, substantially influence the response patterns. We find that standard optimal detection methodologies cannot fully reconcile this response diversity. By selecting a set of experiments to enable the diagnosing of greenhouse gases and the combined influence of other anthropogenic and natural factors, we find robust detections of well-mixed greenhouse gases across a large ensemble of models. Of the observed warming over the twentieth century of 0.65 K/century we find, using a multimodel mean not incorporating pattern uncertainty, a well-mixed greenhouse gas warming of 0.87 to 1.22 K/century. This is partially offset by cooling from other anthropogenic and natural influences of -0.54 to -0.22 K/century. Although better constrained than recent studies, the attributable trends across climate models are still wide, with implications for observational constrained estimates of transient climate response. Some of the uncertainties could be reduced in future by having more model data to better quantify the simulated estimates of the signals and natural variability, by designing model experiments more effectively and better quantification of the climate model radiative influences. Most importantly, how model pattern uncertainties are incorporated into the optimal detection methodology should be improved.

  15. Troposphere-Stratosphere Coupled Chemistry-Climate Interactions: From Global Warming Projections to Air Quality

    NASA Astrophysics Data System (ADS)

    Nowack, P. J.; Abraham, N. L.; Maycock, A. C.; Braesicke, P.; Pyle, J. A.

    2015-12-01

    Changes in stratospheric composition can affect tropospheric composition and vice versa. Of particular interest are trace gas concentrations at the interface between these two atmospheric layers in the tropical upper troposphere and lower stratosphere (UTLS). This is due to the crucial importance of composition changes in the UTLS for the global energy budget. In a recent study (Nowack et al., 2015), we provided further evidence that composition changes in the tropical UTLS can significantly affect global warming projections. Using a state-of-the-art atmosphere-ocean chemistry-climate model, we found a ~20% smaller global warming in response to an abrupt 4xCO2 forcing if composition feedbacks were included in the calculations as compared to simulations in which composition feedbacks were not considered. We attributed this large difference in surface warming mainly to circulation-driven decreases in tropical UTLS ozone and related changes in stratospheric water vapor, partly counteracted by simultaneous changes in ice clouds. Here, we explain why this result is expected to differ between models and how, inter alia, tropospheric chemical mechanisms can contribute to this uncertainty. We highlight that improving our understanding of processes in the tropical UTLS and their representation in Earth system models remains a key challenge in climate research.Finally, taking geoengineering as a new example, we show that changes in the stratosphere can have an impact on air quality in the troposphere. In particular, we explain for a simple solar radiation management scenario how changes in surface ozone can be linked to changes in meteorology and composition in the troposphere and stratosphere. In conclusion, we highlight the importance of considering air quality impacts when evaluating a variety of geoengineering scenarios. Reference: Nowack, P.J., Abraham, N.L., Maycock, A.C., Braesicke, P., Gregory, J.M., Joshi, M.M., Osprey, A., and Pyle, J.A. Nature Climate Change 5, 41

  16. Is climate warming more consequential towards poles? The phenology of Lepidoptera in Finland.

    PubMed

    Valtonen, Anu; Leinonen, Reima; Pöyry, Juha; Roininen, Heikki; Tuomela, Jukka; Ayres, Matthew P

    2014-01-01

    The magnitude and direction of phenological shifts from climate warming could be predictably variable across the planet depending upon the nature of physiological controls on phenology, the thermal sensitivity of the developmental processes and global patterns in the climate warming. We tested this with respect to the flight phenology of adult nocturnal moths (3.33 million captures of 334 species) that were sampled at sites in southern and northern Finland during 1993-2012 (with years 2005-2012 treated as an independent model validation data set). We compared eight competing models of physiological controls on flight phenology to each species and found strong support for thermal controls of phenology in 66% of the species generations. Among species with strong thermal control of phenology in both the south and north, the average development rate was higher in northern vs. southern populations at 10 °C, but about the same at 15 and 20 °C. With a 3 °C increase in temperature (approximating A2 scenario of IPPC for 2090-2099 relative to 1980-1999) these species were predicted to advance their phenology on average by 17 (SE ± 0.3) days in the south vs. 13 (±0.4) days in the north. The higher development rates at low temperatures of poleward populations makes them less sensitive to climate warming, which opposes the tendency for stronger phenological advances in the north from greater increases in temperature. PMID:24115266

  17. Potential changes in the distribution of dengue transmission under climate warming.

    PubMed

    Jetten, T H; Focks, D A

    1997-09-01

    The purpose of the present paper is to document an initial attempt to quantify the influence of warming temperatures on the intensity and distribution of dengue transmission throughout the world using an expression of vectorial capacity modified to reflect the role of temperature on development and survival of the vector and virus. We rearranged the traditional vectorial capacity expression (the mean number of potentially infective contacts made by a mosquito population per infectious person per unit time) to develop an equation for the critical density threshold, an estimate of the number of adult female vectors required to just maintain the virus in a susceptible human population. In this expression, temperature influences adult survival, the lengths of the gonotrophic cycle and the extrinsic incubation period of the virus in the vector, and vector size, a factor that indirectly influences the biting rate. Before making projections for warming scenarios of current climate plus 2 or 4 degrees C, we validate our technique by successfully comparing model projections and the observed spatial, temporal, and altitudinal distribution of dengue using current climate in five cities that are endemic or have had epidemics in the past. Our results indicate that the current warming projection of the International Council of Scientific Unions and the Intergovernmental Panel on Climate Change of 2 degrees C by the end of the next century can be expected to result in a potential increase in the latitudinal and altitudinal range of dengue; the potential duration of the transmission season will also increase in temperate locations as well. We discuss how an increase in temperature-related transmission intensity can be expected to lower the average ages of primary and secondary infections and thereby significantly increase the proportion of secondary infections occurring among infants and adolescents, the ages especially susceptible to dengue hemorrhagic fever and shock syndrome.

  18. Enhancing Primary School Students' Knowledge about Global Warming and Environmental Attitude Using Climate Change Activities

    ERIC Educational Resources Information Center

    Karpudewan, Mageswary; Roth, Wolff-Michael; Bin Abdullah, Mohd Nor Syahrir

    2015-01-01

    Climate change generally and global warming specifically have become a common feature of the daily news. Due to widespread recognition of the adverse consequences of climate change on human lives, concerted societal effort has been taken to address it (e.g. by means of the science curriculum). This study was designed to test the effect that…

  19. Science blogging: RealClimate.org and the Global Warming debate

    NASA Astrophysics Data System (ADS)

    Schmidt, G. A.

    2006-12-01

    The media and public policy debate suffer from an extreme form of Attention Deficit Disorder. Compared to the daily news cycle, the progress of scientific debate within the peer-reviewed literature is extremely slow. This puts serious scientists who work in relatively politicised fields (global warming, evolution, stem cell research and the like) at a huge disadvantage when it comes to having their voices heard above the noise. Since Dec 2004, RealClimate.org has been operating as a group blog (a web-based journal) run by climate scientists for interested members of the public and the media. The aim has been to provide the context for climate-related news stories that is often missing in the mainstream media and to explain the basics of our field to the often confused, but curious, members of the public. In particular, it has provided rapid reaction to mis-uses and abuses of scientific results by policy advocates across the spectrum. Reactions to the blog have been overwhelmingly (but not uniformly) positive from both professionals in the media, the scientific community and the public. It has been described as the 'go-to site' for climate science in the New York Times, and received a Scientific American Science and Technology Web award in 2005. I will discuss what impacts RealClimate may have had and the pluses and minuses of trying to reach the public through this kind of outlet.

  20. Disentangling greenhouse warming and aerosol cooling to reveal Earth’s climate sensitivity

    NASA Astrophysics Data System (ADS)

    Storelvmo, T.; Leirvik, T.; Lohmann, U.; Phillips, P. C. B.; Wild, M.

    2016-04-01

    Earth’s climate sensitivity has long been subject to heated debate and has spurred renewed interest after the latest IPCC assessment report suggested a downward adjustment of its most likely range. Recent observational studies have produced estimates of transient climate sensitivity, that is, the global mean surface temperature increase at the time of CO2 doubling, as low as 1.3 K (refs ,), well below the best estimate produced by global climate models (1.8 K). Here, we present an observation-based study of the time period 1964 to 2010, which does not rely on climate models. The method incorporates observations of greenhouse gas concentrations, temperature and radiation from approximately 1,300 surface sites into an energy balance framework. Statistical methods commonly applied to economic time series are then used to decompose observed temperature trends into components attributable to changes in greenhouse gas concentrations and surface radiation. We find that surface radiation trends, which have been largely explained by changes in atmospheric aerosol loading, caused a cooling that masked approximately one-third of the continental warming due to increasing greenhouse gas concentrations over the past half-century. In consequence, the method yields a higher transient climate sensitivity (2.0 +/- 0.8 K) than other observational studies.

  1. The response of climatic jump in summer in north china to global warming

    NASA Astrophysics Data System (ADS)

    Huang, Jiayou

    2000-06-01

    To reveal climatic variation over North China, the climatic jumps in summer in Beijing are analyzed using the data of precipitation of summer (June, July, August) during the period of 1841-1993, in which those missed before 1950 were reconstructed by the stepwise regression method with minimum forecast error. The climatic jumps at different scales are analyzed using different diagnostic methods with different decade (10-100 years) windows. Some new methods and ideas are proposed. The variance difference, the linear tendency difference, and the difference of power spectral distribution between the samples before and after the period at the moving point in the center of the series are compared with other methods (for example, Mann—Kendall test, t— test, and accumulative anomaly etc.). Considering the differences among the statistics above, a synthetic jump index is also proposed in order to get the definite jump points in the moving series. The results show that the climatic jumps in the area occurred in the 1890s, the 1910s and the 1920s, and mostly in the 1920s, which suggests that the local climatic jumps in North China have a simultaneous response to the global warming in the hundred-year scales.

  2. Competitive and demographic leverage points of community shifts under climate warming.

    PubMed

    Sorte, Cascade J B; White, J Wilson

    2013-07-01

    Accelerating rates of climate change and a paucity of whole-community studies of climate impacts limit our ability to forecast shifts in ecosystem structure and dynamics, particularly because climate change can lead to idiosyncratic responses via both demographic effects and altered species interactions. We used a multispecies model to predict which processes and species' responses are likely to drive shifts in the composition of a space-limited benthic marine community. Our model was parametrized from experimental manipulations of the community. Model simulations indicated shifts in species dominance patterns as temperatures increase, with projected shifts in composition primarily owing to the temperature dependence of growth, mortality and competition for three critical species. By contrast, warming impacts on two other species (rendering them weaker competitors for space) and recruitment rates of all species were of lesser importance in determining projected community changes. Our analysis reveals the importance of temperature-dependent competitive interactions for predicting effects of changing climate on such communities. Furthermore, by identifying processes and species that could disproportionately leverage shifts in community composition, our results contribute to a mechanistic understanding of climate change impacts, thereby allowing more insightful predictions of future biodiversity patterns.

  3. Constraining cloud responses to CO2 and warming in climate models: physical and statistical approaches

    NASA Astrophysics Data System (ADS)

    Sherwood, S. C.; Fuchs, D.; Bony, S.; Jean-Louis, D.

    2014-12-01

    Earth's climate sensitivity has been the subject of heated debate for decades, and recently spurred renewed interest after the latest IPCC assessment report suggested a downward adjustment of the most likely range of climate sensitivities. Here, we present an observation-based study based on the time period 1964 to 2010, which is unique in that it does not rely on global climate models (GCMs) in any way. The study uses surface observations of temperature and incoming solar radiation from approximately 1300 surface sites, along with observations of the equivalent CO2 concentration (CO2,eq) in the atmosphere, to produce a new best estimate for the transient climate sensitivity of 1.9K (95% confidence interval 1.2K - 2.7K). This is higher than other recent observation-based estimates, and is better aligned with the estimate of 1.8K and range (1.1K - 2.5K) derived from the latest generation of GCMs. The new estimate is produced by incorporating the observations in an energy balance framework, and by applying statistical methods that are standard in the field of Econometrics, but less common in climate studies. The study further suggests that about a third of the continental warming due to increasing CO2,eq was masked by aerosol cooling during the time period studied.

  4. Disentangling Greenhouse Warming and Aerosol Cooling to Reveal Earth's Transient Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Storelvmo, T.

    2015-12-01

    Earth's climate sensitivity has been the subject of heated debate for decades, and recently spurred renewed interest after the latest IPCC assessment report suggested a downward adjustment of the most likely range of climate sensitivities. Here, we present an observation-based study based on the time period 1964 to 2010, which is unique in that it does not rely on global climate models (GCMs) in any way. The study uses surface observations of temperature and incoming solar radiation from approximately 1300 surface sites, along with observations of the equivalent CO2 concentration (CO2,eq) in the atmosphere, to produce a new best estimate for the transient climate sensitivity of 1.9K (95% confidence interval 1.2K - 2.7K). This is higher than other recent observation-based estimates, and is better aligned with the estimate of 1.8K and range (1.1K - 2.5K) derived from the latest generation of GCMs. The new estimate is produced by incorporating the observations in an energy balance framework, and by applying statistical methods that are standard in the field of Econometrics, but less common in climate studies. The study further suggests that about a third of the continental warming due to increasing CO2,eq was masked by aerosol cooling during the time period studied.

  5. Competitive and demographic leverage points of community shifts under climate warming

    PubMed Central

    Sorte, Cascade J. B.; White, J. Wilson

    2013-01-01

    Accelerating rates of climate change and a paucity of whole-community studies of climate impacts limit our ability to forecast shifts in ecosystem structure and dynamics, particularly because climate change can lead to idiosyncratic responses via both demographic effects and altered species interactions. We used a multispecies model to predict which processes and species' responses are likely to drive shifts in the composition of a space-limited benthic marine community. Our model was parametrized from experimental manipulations of the community. Model simulations indicated shifts in species dominance patterns as temperatures increase, with projected shifts in composition primarily owing to the temperature dependence of growth, mortality and competition for three critical species. By contrast, warming impacts on two other species (rendering them weaker competitors for space) and recruitment rates of all species were of lesser importance in determining projected community changes. Our analysis reveals the importance of temperature-dependent competitive interactions for predicting effects of changing climate on such communities. Furthermore, by identifying processes and species that could disproportionately leverage shifts in community composition, our results contribute to a mechanistic understanding of climate change impacts, thereby allowing more insightful predictions of future biodiversity patterns. PMID:23658199

  6. Elevation and connectivity define genetic refugia for mountain sheep as climate warms.

    PubMed

    Epps, Clinton W; Palsbøll, Per J; Wehausen, John D; Roderick, George K; McCullough, Dale R

    2006-12-01

    Global warming is predicted to affect the evolutionary potential of natural populations. We assessed genetic diversity of 25 populations of desert bighorn sheep (Ovis canadensis nelsoni) in southeastern California, where temperatures have increased and precipitation has decreased during the 20th century. Populations in low-elevation habitats had lower genetic diversity, presumably reflecting more fluctuations in population sizes and founder effects. Higher-elevation habitats acted as reservoirs of genetic diversity. However, genetic diversity was also affected by population connectivity, which has been disrupted by human development. Restoring population connectivity may be necessary to buffer the effects of climate change on this desert-adapted ungulate.

  7. Data of cost-optimality and technical solutions for high energy performance buildings in warm climate

    PubMed Central

    Zacà, Ilaria; D’Agostino, Delia; Maria Congedo, Paolo; Baglivo, Cristina

    2015-01-01

    The data reported in this article refers to input and output information related to the research articles entitled Assessment of cost-optimality and technical solutions in high performance multi-residential buildings in the Mediterranean area by Zacà et al. (Assessment of cost-optimality and technical solutions in high performance multi-residential buildings in the Mediterranean area, in press.) and related to the research article Cost-optimal analysis and technical comparison between standard and high efficient mono residential buildings in a warm climate by Baglivo et al. (Energy, 2015, 10.1016/j.energy.2015.02.062, in press). PMID:26217793

  8. The toxicology of climate change: environmental contaminants in a warming world.

    PubMed

    Noyes, Pamela D; McElwee, Matthew K; Miller, Hilary D; Clark, Bryan W; Van Tiem, Lindsey A; Walcott, Kia C; Erwin, Kyle N; Levin, Edward D

    2009-08-01

    Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem. This review examines one of the consequences of climate change that has only recently attracted attention: namely, the effects of climate change on the environmental distribution and toxicity of chemical pollutants. A review was undertaken of the scientific literature (original research articles, reviews, government and intergovernmental reports) focusing on the interactions of toxicants with the environmental parameters, temperature, precipitation, and salinity, as altered by climate change. Three broad classes of chemical toxicants of global significance were the focus: air pollutants, persistent organic pollutants (POPs), including some organochlorine pesticides, and other classes of pesticides. Generally, increases in temperature will enhance the toxicity of contaminants and increase concentrations of tropospheric ozone regionally, but will also likely increase rates of chemical degradation. While further research is needed, climate change coupled with air pollutant exposures may have potentially serious adverse consequences for human health in urban and polluted regions. Climate change producing alterations in: food webs, lipid dynamics, ice and snow melt, and organic carbon cycling could result in increased POP levels in water, soil, and biota. There is also compelling evidence that increasing temperatures could be deleterious to pollutant-exposed wildlife. For example, elevated water temperatures may alter the biotransformation of contaminants to more bioactive metabolites and impair homeostasis. The complex interactions between climate change and pollutants may be particularly problematic for species living at the edge of their physiological tolerance range where acclimation capacity may be limited. In addition to temperature increases, regional precipitation patterns are projected to be altered with climate change. Regions subject to decreases in precipitation

  9. A probabilistic assessment of the likelihood of vegetation drought under varying climate conditions across China

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyong; Li, Chao; Zhou, Ping; Chen, Xiuzhi

    2016-10-01

    Climate change significantly impacts the vegetation growth and terrestrial ecosystems. Using satellite remote sensing observations, here we focus on investigating vegetation dynamics and the likelihood of vegetation-related drought under varying climate conditions across China. We first compare temporal trends of Normalized Difference Vegetation Index (NDVI) and climatic variables over China. We find that in fact there is no significant change in vegetation over the cold regions where warming is significant. Then, we propose a joint probability model to estimate the likelihood of vegetation-related drought conditioned on different precipitation/temperature scenarios in growing season across China. To the best of our knowledge, this study is the first to examine the vegetation-related drought risk over China from a perspective based on joint probability. Our results demonstrate risk patterns of vegetation-related drought under both low and high precipitation/temperature conditions. We further identify the variations in vegetation-related drought risk under different climate conditions and the sensitivity of drought risk to climate variability. These findings provide insights for decision makers to evaluate drought risk and vegetation-related develop drought mitigation strategies over China in a warming world. The proposed methodology also has a great potential to be applied for vegetation-related drought risk assessment in other regions worldwide.

  10. A probabilistic assessment of the likelihood of vegetation drought under varying climate conditions across China

    PubMed Central

    Liu, Zhiyong; Li, Chao; Zhou, Ping; Chen, Xiuzhi

    2016-01-01

    Climate change significantly impacts the vegetation growth and terrestrial ecosystems. Using satellite remote sensing observations, here we focus on investigating vegetation dynamics and the likelihood of vegetation-related drought under varying climate conditions across China. We first compare temporal trends of Normalized Difference Vegetation Index (NDVI) and climatic variables over China. We find that in fact there is no significant change in vegetation over the cold regions where warming is significant. Then, we propose a joint probability model to estimate the likelihood of vegetation-related drought conditioned on different precipitation/temperature scenarios in growing season across China. To the best of our knowledge, this study is the first to examine the vegetation-related drought risk over China from a perspective based on joint probability. Our results demonstrate risk patterns of vegetation-related drought under both low and high precipitation/temperature conditions. We further identify the variations in vegetation-related drought risk under different climate conditions and the sensitivity of drought risk to climate variability. These findings provide insights for decision makers to evaluate drought risk and vegetation-related develop drought mitigation strategies over China in a warming world. The proposed methodology also has a great potential to be applied for vegetation-related drought risk assessment in other regions worldwide. PMID:27713530

  11. Global Farm Animal Production and Global Warming: Impacting and Mitigating Climate Change

    PubMed Central

    Koneswaran, Gowri; Nierenberg, Danielle

    2008-01-01

    Background The farm animal sector is the single largest anthropogenic user of land, contributing to many environmental problems, including global warming and climate change. Objectives The aim of this study was to synthesize and expand upon existing data on the contribution of farm animal production to climate change. Methods We analyzed the scientific literature on farm animal production and documented greenhouse gas (GHG) emissions, as well as various mitigation strategies. Discussions An analysis of meat, egg, and milk production encompasses not only the direct rearing and slaughtering of animals, but also grain and fertilizer production for animal feed, waste storage and disposal, water use, and energy expenditures on farms and in transporting feed and finished animal products, among other key impacts of the production process as a whole. Conclusions Immediate and far-reaching changes in current animal agriculture practices and consumption patterns are both critical and timely if GHGs from the farm animal sector are to be mitigated. PMID:18470284

  12. How is climate warming altering the carbon cycle of a tundra ecosystem in the Siberian Arctic?

    NASA Astrophysics Data System (ADS)

    Belelli Marchesini, Luca; (Ko) van Huissteden, Jacobus; van der Molen, Michiel; Parmentier, Frans-Jan W.; Maximov, Trofim; Budishchev, Artem; Gallagher, Angela; (Han) Dolman, Albertus J.

    2015-04-01

    Climate has been warming over the the Arctic region with the strongest anomalies taking place in autumn and winter for the period 2000-2010, particularly in northern Eurasia. The quantification of the impact on climate warming on the degradation of permafrost and the associated potential release to the atmosphere of carbon stocked in the soil under the form of greenhouse gases, thus further increasing the radiative forcing of the atmosphere, is currently a matter of scientific debate. The positive trend in primary productivity in the last decades inferred by vegetation indexes (NDVI) and confirmed by observations on the enhanced growth of shrub vegetation represents indeed a contrasting process that, if prevalent could offset GHG emissions or even strengthen the carbon sink over the Arctic tundra. At the site of Kytalyk, in north-eastern Siberia, net fluxes of CO2 at ecosystem scale (NEE) have been monitored by eddy covariance technique since 2003. While presenting the results of the seasonal (snow free period) and inter-annual variability of NEE, conceived as the interplay between meteorological drivers and ecosystem responses, we test the role of climate as the main source of NEE variability in the last decade using a data oriented statistical approach. The impact of the timing and duration of the snow free period on the seasonal carbon budget is also considered. Finally, by including the results of continuous micrometeorological observations of methane fluxes taken during summer 2012, corroborated with seasonal CH4 budgets from two previous shorter campaigns (2008, 2009), as well as an experimentally determined estimate of dissolved organic carbon (DOC) flux, we provide an assessment of the carbon budget and its stability over time. The examined tundra ecosystem was found to sequester CO2 during the snow free season with relatively small inter-annual variability (-97.9±12.1gC m-2) during the last decade and without any evident trend despite the carbon uptake

  13. Potential Impacts of Climate Warming on Water Supply Reliability in the Tuolumne and Merced River Basins, California

    PubMed Central

    Kiparsky, Michael; Joyce, Brian; Purkey, David; Young, Charles

    2014-01-01

    We present an integrated hydrology/water operations simulation model of the Tuolumne and Merced River Basins, California, using the Water Evaluation and Planning (WEAP) platform. The model represents hydrology as well as water operations, which together influence water supplied for agricultural, urban, and environmental uses. The model is developed for impacts assessment using scenarios for climate change and other drivers of water system behavior. In this paper, we describe the model structure, its representation of historical streamflow, agricultural and urban water demands, and water operations. We describe projected impacts of climate change on hydrology and water supply to the major irrigation districts in the area, using uniform 2°C, 4°C, and 6°C increases applied to climate inputs from the calibration period. Consistent with other studies, we find that the timing of hydrology shifts earlier in the water year in response to temperature warming (5–21 days). The integrated agricultural model responds with increased water demands 2°C (1.4–2.0%), 4°C (2.8–3.9%), and 6°C (4.2–5.8%). In this sensitivity analysis, the combination of altered hydrology and increased demands results in decreased reliability of surface water supplied for agricultural purposes, with modeled quantity-based reliability metrics decreasing from a range of 0.84–0.90 under historical conditions to 0.75–0.79 under 6°C warming scenario. PMID:24465455

  14. Warm Rain Processes over the Tropical Oceans and Implications on Climate Change: Results from TRMM and GEOS GCM

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, H. T.

    2004-01-01

    In this talk, we will first show results from TRMM data regarding the characteristics of warm rains over the tropical oceans, and the dependence of rate of warm rain production on sea surface temperature. Results lead to the hypothesis that warm rain production efficiency, i.e., autoconversion, may be increased in a warm climate. We use the GEOS-II GCM to test this hypothesis. Our modeling results show that in a climate with increased rate of autoconversion, the total rain amount is increased, with warm rain contributing to larger portion of the increase. The abundant rainout of warm precipitation causes a reduction of low and middle cloud amount due to rainout, and reduced high clouds due to less water vapor available for ice-phase convection. However, clod radiation feedback caused by the increased rainfall efficiency, leads to differential vertical heating/cooling producing a more unstable atmosphere, allowing, more intense, but isolated penetrative co