Sample records for warm cold enso

  1. Response of Global Lightning Activity Observed by the TRMM/LIS During Warm and Cold ENSO Phases

    NASA Technical Reports Server (NTRS)

    Chronis, Themis G.; Cecil, Dan; Goodman, Steven J.; Buechler, Dennis

    2007-01-01

    This paper investigates the response of global lightning activity to the transition from the warm (January February March-JFM 1998) to the cold (JFM 1999) ENSO phase. The nine-year global lightning climatology for these months from the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) provides the observational baseline. Flash rate density is computed on a 5.0x5.0 degree lat/lon grid within the LIS coverage area (between approx.37.5 N and S) for each three month period. The flash rate density anomalies from this climatology are examined for these months in 1998 and 1999. The observed lightning anomalies spatially match the documented general circulation features that accompany the warm and cold ENSO events. During the warm ENSO phase the dominant positive lightning anomalies are located mostly over the Western Hemisphere and more specifically over Gulf of Mexico, Caribbean and Northern Mid-Atlantic. We further investigate specifically the Northern Mid-Atlantic related anomaly features since these show strong relation to the North Atlantic Oscillation (NAO). Furthermore these observed anomaly patterns show strong spatial agreement with anomalous upper level (200 mb) cold core cyclonic circulations. Positive sea surface temperature anomalies during the warm ENSO phase also affect the lightning activity, but this is mostly observed near coastal environments. Over the open tropical oceans, there is climatologically less lightning and the anomalies are less pronounced. Warm ENSO related anomalies over the Eastern Hemisphere are most prominent over the South China coast. The transition to the cold ENSO phase illustrates the detected lightning anomalies to be more pronounced over East and West Pacific. A comparison of total global lightning between warm and cold ENSO phase reveals no significant difference, although prominent regional anomalies are located over mostly oceanic environments. All three tropical "chimneys" (Maritime Continent, Central

  2. Change of ENSO characteristics in response to global warming

    NASA Astrophysics Data System (ADS)

    Sun, X.; Xia, Y.; Yan, Y.; Feng, W.; Huang, F.; Yang, X. Q.

    2017-12-01

    By using datasets of HadISST monthly SST from 1895 to 2014 and 600-year simulations of two CESM model experiments with/without doubling of CO2 concentration, ENSO characteristics are compared pre- and post- global warming. The main results are as follows. Due to global warming, the maximum climatological SST warming occurs in the tropical western Pacific (La Niña-like background warming) and the tropical eastern Pacific (El Niño-like background warming) for observations and model, respectively, resulting in opposite zonal SST gradient anomalies in the tropical Pacific. The La Niña-like background warming induces intense surface divergence in the tropical central Pacific, which enhances the easterly trade winds in the tropical central-western Pacific and shifts the strongest ocean-atmosphere coupling westward, correspondingly. On the contrary, the El Niño-like background warming causes westerly winds in the whole tropical Pacific and moves the strongest ocean-atmosphere coupling eastward. Under the La Niña-like background warming, ENSO tends to develop and mature in the tropical central Pacific, because the background easterly wind anomaly weakens the ENSO-induced westerly wind anomaly in the tropical western Pacific, leading to the so-called "Central Pacific ENSO (CP ENSO)". However, the so-called "Eastern Pacific ENSO (EP ENSO)" is likely formed due to increased westerly wind anomaly by the El Niño-like background warming. ENSO lifetime is significantly extended under both the El Niño-like and the La Niña-like background warmings, and especially, it can be prolonged by up to 3 months in the situation of El Niño-like background warming. The prolonged El Nino lifetime mainly applies to extreme El Niño events, which is caused by earlier outbreak of the westerly wind bursts, shallower climatological thermocline depth and weaker "discharge" rate of the ENSO warm signal in response to global warming. Results from both observations and the model also show that

  3. Increasing ENSO-Driven Drought and Wildfire Risks in a Warming Climate

    NASA Astrophysics Data System (ADS)

    Fasullo, J.; Otto-Bliesner, B. L.; Stevenson, S.

    2015-12-01

    ENSO-related teleconnections occurring in the transient climate states of the 20th and 21st centuries are examined using the NCAR CESM1-CAM5 Large Ensemble (LE). A focus is given to quantifying the changing nature of related variability in a warming climate, the statistical robustness of which is enhanced by the numerous members of the LE (presently ~40). It is found that while the dynamical components of ENSO's teleconnections weaken considerably in a warming world, associated variability over land is in many cases sustained by changes in the background state, such as for rainfall due to the background rise in specific humidity. In some fields, particularly those associated with associated with thermal stress (e.g. drought and wildfire), ENSO-related variance increases dramatically. This, combined with the fact that ENSO variance itself increases in a warming climate in the LE, contributes to dramatic projected increases in ENSO-driven drought and wildfire risks in a warming world.

  4. Changes in ENSO amplitude under climate warming and cooling

    NASA Astrophysics Data System (ADS)

    Wang, Yingying; Luo, Yiyong; Lu, Jian; Liu, Fukai

    2018-05-01

    The response of ENSO amplitude to climate warming and cooling is investigated using the Community Earth System Model (CESM), in which the warming and cooling scenarios are designed by adding heat fluxes of equal amplitude but opposite sign onto the ocean surface, respectively. Results show that the warming induces an increase of the ENSO amplitude but the cooling gives rise to a decrease of the ENSO amplitude, and these changes are robust in statistics. A mixed layer heat budget analysis finds that the increasing (decreasing) SST tendency under climate warming (cooling) is mainly due to an enhancement (weakening) of dynamical feedback processes over the equatorial Pacific, including zonal advective (ZA) feedback, meridional advective (MA) feedback, thermocline (TH) feedback, and Ekman (EK) feedback. As the climate warms, a wind anomaly of the same magnitude across the equatorial Pacific can induce a stronger zonal current change in the east (i.e., a stronger ZA feedback), which in turn produces a greater weakening of upwelling (i.e., a stronger EK feedback) and thus a larger thermocline change (i.e., a stronger TH feedback). In response to the climate warming, in addition, the MA feedback is also strengthened due to an enhancement of the meridional SST gradient around the equator resulting from a weakening of the subtropical cells (STCs). It should be noted that the weakened STCs itself has a negative contribution to the change of the MA feedback which, however, appears to be secondary. And vice versa for the cooling case. Bjerknes linear stability (BJ) index is also evaluated for the linear stability of ENSO, with remarkably larger (smaller) BJ index found for the warming (cooling) case.

  5. Mean-state SST Response to global warming caused by the ENSO Nonlinearity

    NASA Astrophysics Data System (ADS)

    Kohyama, T.; Hartmann, D. L.

    2017-12-01

    The majority of the models that participated in the Coupled Model Intercomparison Project phase 5 (CMIP5) exhibit El Niño-like trends under global warming. GFDL-ESM2M, however, is an exception that exhibits a La Niña-like response with strengthened trade winds. Our previous studies have shown that this La Niña-like trend could be a physically consistent warming response, and we proposed the Nonlinear ENSO Warming Suppression (NEWS) mechanism to explain this La Niña-like response to global warming. The most important necessary condition of NEWS is the ENSO skewness (El Niños are stronger than La Niñas). Most CMIP5 models do not reproduce the observed ENSO skewness, while GFDL-ESM2M exhibits the realistic ENSO skewness, which suggests that, despite being in the minority, the La Niña-like trend of GFDL-ESM2M could be a plausible equatorial Pacific response to warming. In this study, we introduce another interesting outlier, MIROC5, which reproduces the observed skewness, yet exhibits an El Niño-like response. By decomposing the source of the ENSO nonlinearity into the following three components: "SST anomalies modulate winds", "winds excite oceanic waves", and "oceanic waves modulate the subsurface temperature", we show that the large inter-model spread of the third component appears to explain the most important cause of the poor reproducibility of the ENSO nonlinearity in CMIP5 models. It is concluded that the change in the response of subsurface temperature to oceanic waves is the primary explanation for the different warming response of GFDL-ESM2M and MIROC5. Our analyses suggest that the difference of the warming response are caused by difference in the climatological thermal stratification. This study may shed new light on the fundamental question of why observed ENSO has a strong skewness and on the implications of this skewed ENSO for the mean-state sea surface temperature response to global warming.

  6. The ENSO Effect on the Temporal and Spatial Distribution of Global Lightning Activity

    NASA Technical Reports Server (NTRS)

    Chronis, Themis G.; Goodman, Steven J.; Cecil, Dan; Buechler, Dennis; Pittman, Jasna; Robertson, Franklin R.; Blakeslee, Richard J.

    2007-01-01

    The recently reprocessed (1997-2006) OTD/LIS database is used to investigate the global lightning climatology in response to the ENSO cycle. A linear correlation map between lightning anomalies and ENSO (NINO3.4) identifies areas that generally follow patterns similar to precipitation anomalies. We also observed areas where significant lightning/ENSO correlations are found and are not accompanied of significant precipitation/ENSO correlations. An extreme case of the strong decoupling between lightning and precipitation is observed over the Indonesian peninsula (Sumatra) where positive lightning/NINO3.4 correlations are collocated with negative precipitation/NINO3.4 correlations. Evidence of linear relationships between the spatial extent of thunderstorm distribution and the respective NINO3.4 magnitude are presented for different regions on the Earth. Strong coupling is found over areas remote to the main ENSO axis of influence and both during warm and cold ENSO phases. Most of the resulted relationships agree with the tendencies of precipitation related to ENSO empirical maps or documented teleconnection patterns. Over the Australian continent, opposite behavior in terms of thunderstorm activity is noted for warm ENSO phases with NINO3.4 magnitudes with NINO3.4>+l.08 and 0warm/cold (El Nino/La Nina) ENSO episodes of the past decade. The observed patterns show no spatial overlapping and identify areas that in their majority are in agreement with empirical precipitation/ENSO maps. The areas that appear during the warm ENSO phase are found over regions that have been identified as anomalous Hadley circulation ENSO-related patterns. The areas that appear during the cold ENSO phase are found predominantly around the west hemisphere equatorial belt and are in their majority identified by anomalous Walker circulation.

  7. Late Miocene - Pliocene Evolution of the Pacific Warm Pool and Cold Tongue: Implications for El Niño

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Pagani, M.

    2011-12-01

    The Western Pacific Warm Pool of the tropical Pacific Ocean retains the largest and warmest sea surface water body on Earth, while the eastern equatorial Pacific is characterized by strong upwelling of cold, nutrient-rich deep waters, termed the Pacific cold tongue. Evolution of the Pacific warm pool and cold tongue are important because they control the circum-Pacific climate and impact the globe via El Niño - Southern Oscillation (ENSO) teleconnections. Sea surface temperature (SST) reconstructions using a single site from the warm pool (ODP 806) and two sites from the cold tongue (ODP 846, 847) suggest that the temperature of the warm pool was "stable" throughout the Plio-Pleistocene, whereas the cold tongue was much warmer in the Pliocene and subsequently cooled. The absence of an east-west Pacific temperature gradient during the early Pliocene is the basis for the "permanent El Niño" hypothesis. However, annually-resolved fossil coral and evaporite records found 3-7 years climate variability during the Pliocene warm period and late Miocene, challenging a "permanent" or invariant climate state. Here we present a multi-proxy (TEX86, UK37, Mg/Ca), multi-site reconstruction of the late Miocene - Pliocene (ca. 12 Ma - 3 Ma) SST in the Pacific warm pool (ODP 806, ODP 769 in the Sulu Sea, ODP 1143 in the South China Sea) and the cold tongue (ODP 850, 849, 846). Our results show that the cold tongue was even warmer in the late Miocene than the Pliocene, and that the warm pool cooled 2-3°C from the late Miocene into the Pliocene - in contrast to the invariant character previously assumed. Temperature comparison between different sites suggests that the warm pool may have expanded in size in the late Miocene. Although eastern and western ends of the tropical Pacific were warmer, a persistent, but low east-west temperature gradient (~3°C) is apparent. This agrees with recent studies which have shown ENSO-related frequency of climate change in the late Miocene and

  8. Competing Influences of Anthropogenic Warming, ENSO, and Plant Physiology on Future Terrestrial Aridity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonfils, Céline; Anderson, Gemma; Santer, Benjamin D.

    The 2011–16 California drought illustrates that drought-prone areas do not always experience relief once a favorable phase of El Niño–Southern Oscillation (ENSO) returns. In the twenty-first century, such an expectation is unrealistic in regions where global warming induces an increase in terrestrial aridity larger than the changes in aridity driven by ENSO variability. This premise is also flawed in areas where precipitation supply cannot offset the global warming–induced increase in evaporative demand. Here, atmosphere-only experiments are analyzed to identify land regions where aridity is currently sensitive to ENSO and where projected future changes in mean aridity exceed the range causedmore » by ENSO variability. Insights into the drivers of these changes in aridity are obtained using simulations with the incremental addition of three different factors to the current climate: ocean warming, vegetation response to elevated CO 2 levels, and intensified CO 2 radiative forcing. The effect of ocean warming overwhelms the range of ENSO-driven temperature variability worldwide, increasing potential evapotranspiration (PET) in most ENSO-sensitive regions. Additionally, about 39% of the regions currently sensitive to ENSO will likely receive less precipitation in the future, independent of the ENSO phase. Consequently aridity increases in 67%–72% of the ENSO-sensitive area. When both radiative and physiological effects are considered, the area affected by arid conditions rises to 75%–79% when using PET-derived measures of aridity, but declines to 41% when an aridity indicator for total soil moisture is employed. This reduction mainly occurs because plant stomatal resistance increases under enhanced CO 2 concentrations, resulting in improved plant water-use efficiency, and hence reduced evapotranspiration and soil desiccation. Imposing CO 2-invariant stomatal resistance may overestimate future drying in PET-derived indices.« less

  9. Competing Influences of Anthropogenic Warming, ENSO, and Plant Physiology on Future Terrestrial Aridity

    DOE PAGES

    Bonfils, Céline; Anderson, Gemma; Santer, Benjamin D.; ...

    2017-07-27

    The 2011–16 California drought illustrates that drought-prone areas do not always experience relief once a favorable phase of El Niño–Southern Oscillation (ENSO) returns. In the twenty-first century, such an expectation is unrealistic in regions where global warming induces an increase in terrestrial aridity larger than the changes in aridity driven by ENSO variability. This premise is also flawed in areas where precipitation supply cannot offset the global warming–induced increase in evaporative demand. Here, atmosphere-only experiments are analyzed to identify land regions where aridity is currently sensitive to ENSO and where projected future changes in mean aridity exceed the range causedmore » by ENSO variability. Insights into the drivers of these changes in aridity are obtained using simulations with the incremental addition of three different factors to the current climate: ocean warming, vegetation response to elevated CO 2 levels, and intensified CO 2 radiative forcing. The effect of ocean warming overwhelms the range of ENSO-driven temperature variability worldwide, increasing potential evapotranspiration (PET) in most ENSO-sensitive regions. Additionally, about 39% of the regions currently sensitive to ENSO will likely receive less precipitation in the future, independent of the ENSO phase. Consequently aridity increases in 67%–72% of the ENSO-sensitive area. When both radiative and physiological effects are considered, the area affected by arid conditions rises to 75%–79% when using PET-derived measures of aridity, but declines to 41% when an aridity indicator for total soil moisture is employed. This reduction mainly occurs because plant stomatal resistance increases under enhanced CO 2 concentrations, resulting in improved plant water-use efficiency, and hence reduced evapotranspiration and soil desiccation. Imposing CO 2-invariant stomatal resistance may overestimate future drying in PET-derived indices.« less

  10. Increased frequency of ENSO-related hydroclimate extremes in a warming climate

    NASA Astrophysics Data System (ADS)

    Sun, Q.; Miao, C.; AghaKouchak, A.

    2017-12-01

    Global warming will likely alter surface warming in tropical Pacific regions, leading to changes in the characteristics of the El Niño Southern Oscillation (ENSO) characteristics and an incresed frequency of extreme ENSO events. The ENSO-related climatic variation and associated impacts will likely be modified in a warmer climatic state. However, little is known about the effect of changes in ENSO teleconnections with regard to future dry and wet conditions over land around the globe, especially outside tropical regions. We used the model simulations of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) for different twenty-first-century emission scenarios (RCP 4.5 and RCP 8.5) to investigate the changes in the ENSO' teleconnection on dry/wet condition over global land. Our results show that 64.64% and 38.12% of 181 river basins studied are expected to experience an increase in the frequency of unusually wet/dry events forced by both ENSO phases under the RCP 4.5 and 8.5, respectively. The anomalous precipitation variability forced by ENSO events will be intensified through a "wet-get-wetter, dry-get-drier" mechanism over west North America, South America, central Asia, and west Asia. More than 850 million people are at risk of exposure to unusually dry/wet events. There is a potential increased risk of high-intensity dry/wet events, with an increase/decrease in the 50-year return level of SPI value for drying/wetting regions. These results have important implications for disaster evaluation and related policies and for appropriate engineering design.

  11. Future Changes to ENSO Temperature and Precipitation Teleconnections Under Warming

    NASA Astrophysics Data System (ADS)

    Perry, S.; McGregor, S.; Sen Gupta, A.; England, M. H.

    2016-12-01

    As the dominant mode of interannual climate variability, the El Niño-Southern Oscillation (ENSO) modulates temperature and rainfall globally, additionally contributing to weather extremes. Anthropogenic climate change has the potential to alter the strength and frequency of ENSO and may also alter ENSO-driven atmospheric teleconnections, affecting ecosystems and human activity in regions far removed from the tropical Pacific. State-of-art climate models exhibit considerable disagreement in projections of future changes in ENSO sea surface temperature variability. Despite this uncertainty, recent model studies suggest that the precipitation response to ENSO will be enhanced in the tropical Pacific under future warming, and as such the societal impacts of ENSO will increase. Here we use temperature and precipitation data from an ensemble of 41 CMIP5 models to show where ENSO teleconnections are being enhanced and dampened in a high-emission future scenario (RCP8.5) focusing on the changes that are occurring over land areas globally. Although there is some spread between the model projections, robust changes with strong ensemble agreement are found in certain locations, including amplification of teleconnections in southeast Australia, South America and the Maritime Continent. Our results suggest that in these regions future ENSO events will lead to more extreme temperature and rainfall responses.

  12. Influence of ENSO Modoki on Colombia Precipitation

    NASA Astrophysics Data System (ADS)

    Rojo Hernandez, J. D.; Mesa, O. J.; Gómez Ríos, S.; Martinez Pérez, K.

    2015-12-01

    In recent years, multiple observations reported contrasting effects in climate patterns around the world, due to differential warming patterns in tropical regions of Pacific Ocean during ENSO warm and cold events. Several authors have proposedthe concept that these variations are part of a new type of El Niño-Southern Oscillation (ENSO) named as "Modoki". Using the classification of periods as Canonical or Modoki ENSO proposed by Tedeschi et al. (2013) we discriminatedthe quarterly mean values of precipitation in Colombia since 1975 to 2006 in order to analyze the rainfall behavior during El Niño Modoki (ENM) and La Nina Modoki (LNM), and contrast them with Canonical El Niño and La Niña (ENC-LNC) effects. The observations show that for the precipitation in Colombia, ENSO Modoki effects are different from Canonical ENSO effects, producing in general opposite climatic conditions between ENC and ENM, as well as between LNC and LNM. In other regions, the ENSO Modoki produces anomalies with the same sign that ENC, but with lower intensity. R. G. Tedeschi, I. F. Cavalcanti, and A. M. Grimm. Influences of two types of ENSO on Southamerican precipitation. International Journal of Climatology, 33(6):1382-1400, 2013.

  13. Role of 20th tropical precipitation on ENSO amplitude changes due to greenhouse warming in CMIP5

    NASA Astrophysics Data System (ADS)

    Ham, Yoo-Geun; Kug, Jong-Seong

    2016-04-01

    This study examines the relationship between the intermodel diversities of the present-climate climatology and those of ENSO amplitude change under global warming in the Coupled Model Intercomparison Project phase 5 (CMIP5) models. The models with increased ENSO amplitude under greenhouse warming (i.e., 'ENSO-amplified models') tend to simulate a 20th century stronger climatological ITCZ and SPCZ over the central-eastern Pacific that are located further away from the equator during boreal spring. Moisture budget analysis indicates that those climatological differences lead to stronger positive climatological precipitation change over the off-equatorial central-eastern Pacific under greenhouse warming. The stronger positive climatological precipitation change enhances the air-sea coupling strength over the central-eastern Pacific, which leads to increase the ENSO amplitude.

  14. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming.

    PubMed

    Yoon, Jin-Ho; Wang, S-Y Simon; Gillies, Robert R; Kravitz, Ben; Hipps, Lawrence; Rasch, Philip J

    2015-10-21

    Since the winter of 2013-2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those associations that pertain to changing climate oscillations under global warming. Both intense drought and excessive flooding are projected to increase by at least 50% towards the end of the twenty-first century; this projected increase in water cycle extremes is associated with a strengthened relation to El Niño and the Southern Oscillation (ENSO)--in particular, extreme El Niño and La Niña events that modulate California's climate not only through its warm and cold phases but also its precursor patterns.

  15. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming

    PubMed Central

    Yoon, Jin-Ho; Wang, S-Y Simon; Gillies, Robert R.; Kravitz, Ben; Hipps, Lawrence; Rasch, Philip J.

    2015-01-01

    Since the winter of 2013–2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those associations that pertain to changing climate oscillations under global warming. Both intense drought and excessive flooding are projected to increase by at least 50% towards the end of the twenty-first century; this projected increase in water cycle extremes is associated with a strengthened relation to El Niño and the Southern Oscillation (ENSO)—in particular, extreme El Niño and La Niña events that modulate California's climate not only through its warm and cold phases but also its precursor patterns. PMID:26487088

  16. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming

    NASA Astrophysics Data System (ADS)

    Yoon, Jin-Ho; Wang, S.-Y. Simon; Gillies, Robert R.; Kravitz, Ben; Hipps, Lawrence; Rasch, Philip J.

    2015-10-01

    Since the winter of 2013-2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those associations that pertain to changing climate oscillations under global warming. Both intense drought and excessive flooding are projected to increase by at least 50% towards the end of the twenty-first century; this projected increase in water cycle extremes is associated with a strengthened relation to El Niño and the Southern Oscillation (ENSO)--in particular, extreme El Niño and La Niña events that modulate California's climate not only through its warm and cold phases but also its precursor patterns.

  17. How are warm and cool years in the California Current related to ENSO?

    NASA Astrophysics Data System (ADS)

    Fiedler, Paul C.; Mantua, Nathan J.

    2017-07-01

    The tropical El Niño-Southern Oscillation (ENSO) is a dominant mode of interannual variability that impacts climate throughout the Pacific. The California Current System (CCS) in the northeast Pacific warms and cools from year to year, with or without a corresponding tropical El Niño or La Niña event. We update the record of warm and cool events in the CCS for 1950-2016 and use composite sea level pressure (SLP) and surface wind anomalies to explore the atmospheric forcing mechanisms associated with tropical and CCS warm and cold events. CCS warm events are associated with negative SLP anomalies in the NE Pacific—a strong and southeastward displacement of the wintertime Aleutian Low, a weak North Pacific High, and a regional pattern of cyclonic wind anomalies that are poleward over the CCS. We use a first-order autoregressive model to show that regional North Pacific forcing is predominant in SST variations throughout most of the CCS, while remote tropical forcing is more important in the far southern portion of the CCS. In our analysis, cool events in the CCS tend to be more closely associated with tropical La Niña than are warm events in the CCS with tropical El Niño; the forcing of co-occurring cool events is analogous, but nearly opposite, to that of warm events.

  18. The preconditioning role of Tropical Atlantic Variability in the development of the ENSO teleconnection: implications for the prediction of Nordeste rainfall

    NASA Astrophysics Data System (ADS)

    Giannini, A.; Saravanan, R.; Chang, P.

    A comparison of rainfall variability in the semi-arid Brazilian Nordeste in observations and in two sets of model simulations leads to the conclusion that the evolving interaction between Tropical Atlantic Variability (TAV) and the El Niño-Southern Oscillation (ENSO) phenomenon can explain two puzzling features of ENSO's impact on the Nordeste: (1) the event-to-event unpredictability of ENSO's impact; (2) the greater impact of cold rather than warm ENSO events during the past 50 years. The explanation is in the `preconditioning' role of Tropical Atlantic Variability. When, in seasons prior to the mature phase of ENSO, the tropical Atlantic happens to be evolving consistently with the development expected of the ENSO teleconnection, ENSO and TAV add up to force large anomalies in Nordeste rainfall. When it happens to be evolving in opposition to the canonical development of ENSO, then the net outcome is less obvious, but also less anomalous. The more frequent occurrence of tropical Atlantic conditions consistent with those that develop during a cold ENSO event, i.e. of a negative meridional sea surface temperature gradient, explains the weaker warm ENSO and stronger cold ENSO anomalies in Nordeste rainfall of the latter part of the twentieth century. Close monitoring of the evolution of the tropical Atlantic in seasons prior to the mature phase of ENSO should lead to an enhanced forecast potential.

  19. Interactions between marine biota and ENSO: a conceptual model analysis

    NASA Astrophysics Data System (ADS)

    Heinemann, M.; Timmermann, A.; Feudel, U.

    2011-01-01

    We develop a conceptual coupled atmosphere-ocean-ecosystem model for the tropical Pacific to investigate the interaction between marine biota and the El Niño-Southern Oscillation (ENSO). Ocean and atmosphere are represented by a two-box model for the equatorial Pacific cold tongue and the warm pool, including a simplified mixed layer scheme. Marine biota are represented by a three-component (nutrient, phytoplankton, and zooplankton) ecosystem model. The atmosphere-ocean model exhibits an oscillatory state which qualitatively captures the main physics of ENSO. During an ENSO cycle, the variation of nutrient upwelling, and, to a small extent, the variation of photosynthetically available radiation force an ecosystem oscillation. The simplified ecosystem in turn, due to the effect of phytoplankton on the absorption of shortwave radiation in the water column, leads to (1) a warming of the tropical Pacific, (2) a reduction of the ENSO amplitude, and (3) a prolongation of the ENSO period. We qualitatively investigate these bio-physical coupling mechanisms using continuation methods. It is demonstrated that bio-physical coupling may play a considerable role in modulating ENSO variability.

  20. Coupling between strong warm ENSO events and the phase of the stratospheric QBO.

    NASA Astrophysics Data System (ADS)

    Christiansen, Bo

    2017-04-01

    Although there in general are no significant long-term correlations between the QBO and the ENSO in observations we find that the QBO and the ENSO were aligned in the 3 to 4 years after the three strong warm ENSO events in 1982, 1997, and 2015. We study this possible connection between the QBO and the ENSO with a new version of the EC-Earth model which includes non-orographic gravity waves and a well modeled QBO. We analyze the modeled QBO in ensembles consisting of 10 AMIP-type experiments with climatological SSTs and 10 experiments with observed daily SSTs. The model experiments cover the period 1982-2013. For the ENSO we use the multivariate index (MEI). As expected the coherence is strong and statistically significant in the equatorial troposphere in the ensemble with observed SSTs. Here the coherence is a measure of the alignment of the ensemble members. In the ensemble with observed SSTs we find a strong and significant alignment of the ensemble members in the equatorial stratospheric winds in the 2 to 4 years after the strong ENSO event in 1997. This alignment also includes the observed QBO. No such alignment is found in the ensemble with climatological SSTs. These results indicate that strong warm ENSO events can directly influence the phase of the QBO. An open and maybe related question is what caused the anomalous QBO in 2016. This behaviour, which is unprecedented in the 50-60 years with data, has been described as a hiccup or a death-spiral. At least it is clear that in the last 18 months the QBO has been stuck in the same corner of the phase-space spanned by its two leading principal components. The possible connection to the ENSO will be investigated.

  1. ENSO relationship to Summer Rainfall Variability and its Potential Predictability over Arabian Peninsula Region

    NASA Astrophysics Data System (ADS)

    Adnan Abid, Mohammad; Almazroui, Mansour; Kucharski, Fred

    2017-04-01

    Summer seasonal rainfall falls mainly over the south and southwestern parts of the Arabian Peninsula (AP). The relationship between this mean summer seasonal rainfall pattern and El Niño Southern Oscillation (ENSO) is analyzed with the aid of a 15-member ensemble of simulations using the King Abdulaziz University (KAU) Atmospheric Global Climate Model (AGCM). Each simulation is forced with Hadley Sea Surface Temperature (SST) for the period 1980-2015. The southwestern peninsula rainfall is linked towith the SST anomalies in the central-eastern pacific region. This relation is established through an atmospheric teleconnection which shows an upper-level convergence (divergence) anomalies over the southern Arabian Peninsula compensating the central-eastern Pacific region upper-level divergence (convergence) anomalies for the warm (cold) El Niño Southern Oscillaton (ENSO) phase. The upper-level convergence (divergence) over the southern Arabian Peninsula leads to sinking (rising) motion, low-level divergence (convergence) and consequently to reduced (enhanced) rainfall. The correlation coefficient between the observed area-averged Niño3.4 index and athe South Arabian Rainfall Index (SARI) is -0.54. This indicates that AP receives less rainfall during the warm (El Niño) phase, while the opposite happens in the cold (La Niña) El Niño Southern Oscillaton (ENSO) phase. The lower tropospheric cyclonic circulation anomalies strongly modulate the ENSO-related rainfall in the region. Overall, the model shows a 43% potential predictability (PP) for the Southern Arabian Peninsula Rainfall Index (SARI). Further, the predictability during the warm ENSO (El Niño) events is higher than during cold ENSO (La Niña) events. This is not only because of a stronger signal, but also noise reduction contributes to the increase of the regional PP in El Niño compared to that of La Niña years.

  2. ENSO's far reaching connection to Indian cold waves.

    PubMed

    Ratnam, J V; Behera, Swadhin K; Annamalai, H; Ratna, Satyaban B; Rajeevan, M; Yamagata, Toshio

    2016-11-23

    During boreal winters, cold waves over India are primarily due to transport of cold air from higher latitudes. However, the processes associated with these cold waves are not yet clearly understood. Here by diagnosing a suite of datasets, we explore the mechanisms leading to the development and maintenance of these cold waves. Two types of cold waves are identified based on observed minimum surface temperature and statistical analysis. The first type (TYPE1), also the dominant one, depicts colder than normal temperatures covering most parts of the country while the second type (TYPE2) is more regional, with significant cold temperatures only noticeable over northwest India. Quite interestingly the first (second) type is associated with La Niña (El Niño) like conditions, suggesting that both phases of ENSO provide a favorable background for the occurrence of cold waves over India. During TYPE1 cold wave events, a low-level cyclonic anomaly generated over the Indian region as an atmospheric response to the equatorial convective anomalies is seen advecting cold temperatures into India and maintaining the cold waves. In TYPE2 cold waves, a cyclonic anomaly generated over west India anomalously brings cold winds to northwest India causing cold waves only in those parts.

  3. ENSO Diversity Changes Due To Global Warming In CESM-LE

    NASA Astrophysics Data System (ADS)

    Carreric, A.; Dewitte, B.; Guemas, V.

    2017-12-01

    The El Niño Southern Oscillation (ENSO) is predicted to be modified due to global warming based on the CMIP3 and CMIP5 data bases. In particular the frequency of occurrence of extreme Eastern Pacific El Niño events is to double in the future in response to the increase in green-house gazes. Such forecast relies however on state-of-the-art models that still present mean state biases and do not simulate realistically key features of El Niño events such as its diversity which is related to the existence of at least two types of El Niño events, the Eastern Pacific (EP) El Nino and the Central Pacific (CP) El Niño events. Here we take advantage of the Community Earth System Model (CESM) Large Ensemble (LE) that provides 35 realizations of the climate of the 1920-2100 period with a combination of both natural and anthropogenic climate forcing factors, to explore on the one hand methods to detect changes in ENSO statistics and on the other hand to investigate changes in thermodynamical processes associated to the increase oceanic stratification owed to global warming. The CESM simulates realistically many aspects of the ENSO diversity, in particular the non-linear evolution of the phase space of the first two EOF modes of Sea Surface Temperature (SST) anomalies in the tropical Pacific. Based on indices accounting for the two ENSO regimes used in the literature, we show that, although there is no statistically significant (i.e. confidence level > 95%) changes in the occurrence of El Niño types from the present to the future climate, the estimate of the changes is sensitive to the definition of ENSO indices that is used. CESM simulates in particular an increase occurrence of extreme El Niño events that can vary by 28% from one method to the other. It is shown that the seasonal evolution of EP El Niño events is modified from the present to the future climate, with in particular a larger occurrence of events taking place in Austral summer in the warmer climate

  4. Precipitation response to the current ENSO variability in a warming world

    NASA Astrophysics Data System (ADS)

    Bonfils, C.; Santer, B. D.; Phillips, T. J.; Marvel, K.; Leung, L.

    2013-12-01

    The major triggers of past and recent droughts include large modes of variability, such as ENSO, as well as specific and persistent patterns of sea surface temperature anomalies (SSTAs; Hoerling and Kumar, 2003, Shin et al. 2010, Schubert et al. 2009). However, alternative drought initiators are also anticipated in response to increasing greenhouse gases, potentially changing the relative contribution of ocean variability as drought initiator. They include the intensification of the current zonal wet-dry patterns (the thermodynamic mechanism, Held and Soden, 2006), a latitudinal redistribution of global precipitation (the dynamical mechanism, Seager et al. 2007, Seidel et al. 2008, Scheff and Frierson 2008) and a reduction of local soil moisture and precipitation recycling (the land-atmosphere argument). Our ultimate goal is to investigate whether the relative contribution of those mechanisms change over time in response to global warming. In this study, we first perform an EOF analysis of the 1900-1999 time series of observed global SST field and identify a simple ENSO-like (ENSOL) mode of SST variability. We show that this mode is well spatially and temporally correlated with observed worldwide regional precipitation and drought variability. We then develop concise metrics to examine the fidelity with which the CMIP5 coupled global climate models (CGCMs) capture this particular ENSO-like mode in the current climate, and their ability to replicate the observed teleconnections with precipitation. Based on the CMIP5 model projections of future climate change, we finally analyze the potential temporal variations in ENSOL to be anticipated under further global warming, as well as their associated teleconnections with precipitation (pattern, amplitude, and total response). Overall, our approach allows us to determine what will be the effect of the current ENSO-like variability (i.e., as measured with instrumental observations) on precipitation in a warming world. This

  5. Using multi-resolution proxies to assess ENSO impacts on the mean state of the tropical Pacific.

    NASA Astrophysics Data System (ADS)

    Karamperidou, C.; Conroy, J. L.

    2016-12-01

    Observations and model simulations indicate that the relationship between ENSO and the mean state of the tropical Pacific is a two-way interaction. On one hand, a strong zonal SST gradient (dSST) in the Pacific (colder cold tongue) increases the potential intensity of upcoming ENSO events and may lead to increased ENSO variance. On the other hand, in a period of increased ENSO activity, large events can warm the cold tongue at decadal scales via residual heating, and thus lead to reduced zonal SST gradient (ENSO rectification mechanism). The short length of the observational record hinders our ability to confidently evaluate which mechanism dominates in each period, and whether it is sensitive to external climate forcing. This question is effectively a question of interaction between two timescales: interannual and decadal. Paleoclimate proxies of different resolutions can help elucidate this question, since they can be independent records of variability in these separate timescales. Here, we use coral proxies of ENSO variability from across the Pacific and multi-proxy records of dSST at longer timescales. Proxies, models, and observations indicate that in periods of increased ENSO activity, dSST is negatively correlated with ENSO variance at decadal timescales, indicating that strong ENSO events may affect the decadal mean state via warming the cold tongue. Using climate model simulations we attribute this effect to residual nonlinear dynamical heating, thus supporting the ENSO rectification mechanism. On the contrary, in periods without strong events, ENSO variance and dSST are positively correlated, which indicates that the primary mechanism at work is the effect of the mean state on ENSO. Our analysis also quantitatively identifies the regions where paleoclimate proxies are needed in order to reduce the existing uncertainties in ENSO-mean state interactions. Hence, this study is a synthesis of observations, model simulations and paleoclimate proxy evidence

  6. Air-temperature variations and ENSO effects in Indonesia, the Philippines and El Salvador. ENSO patterns and changes from 1866-1993

    NASA Astrophysics Data System (ADS)

    Harger, J. R. E.

    The major features in development of the "El Nino-Southern Oscillation" (ENSO) involve oscillation of the Pacific ocean-atmosphere in an essentially unpredictable (chaotic) fashion. The system moves between extremes of the so-called "warm events" lasting one or two years and involving movement of warm sea water from the western Pacific along the equator to impact on the west coast of the American continent and "cold-events" associated with easterly trade-wind-induced flows of colder water from the eastern Pacific towards the west. Historical data indicate that ENSO years as experienced by the Island of Java are either much warmer than non-ENSO years or only slightly, if at all, warmer than normal (non-ENSO) years. Hot-dry years within the ENSO warm event cycle are almost always followed by cooler wet years and vice versa. This pattern also extends to include the year immediately following the terminal year of an ENSO warm event set. The initial year of an ENSO warm event set may be either hot with a long dry season or relatively cool (nearer to the temperature of a non-ENSO year) and having a short dry season. In recent years, since 1950, of the 9 ENSO warm events, the initial year tends to have been hot and dry for 6 (1951, 1957, 1963, 1972, 1982, 1991) and neutral or cool and wet for 3 (1968, 1976, 1986). An area of 88,000 ha burned in 1991 (Jakarta Post 30 November 1991) largely in Kalimantan in association with the 1991-1992 ENSO event, an extensive pall of smoke developed over Kalimantan, Singapore and Malaysia during September-October of 1991. Surface vegetation-based fires continued to burn in East Kalimantan as of 29 April 1992 and extended into the 1992 dry season, in response to the ENSO conditions carrying forward from 1991. The increasing annual trend in air-temperature exhibited by the mean monthly values over the period 1866-1993, for the Jakarta and the Semarang data taken together is 1.64°C (0.0132°C per year from 25.771 to 27.409°C). The major

  7. Is ENSO part of an Indo-Pacific phenomenon?

    NASA Astrophysics Data System (ADS)

    Wieners, Claudia; de Ruijter, Wilhelmus; Dijkstra, Henk

    2015-04-01

    The Seychelles Dome (SD) - a thermocline ridge in the West Indian Ocean - is a dynamically active region with a strong Sea Surface Temperature (SST)-atmosphere coupling and located at the origin of the Madden-Julian Oscillation. Analysis of observational data suggests that it might influence El Niño occurrence and evolution at a lead time of 1.5 years. We find a negative correlation between SD SST in boreal summer and Nino3.4 SST about 18 months later. Such a correlation might be a mere side-effect of the fact that ENSO has influence on the SD - El Niño (La Niña) is followed by a warm (cool) SD after about 3-6 months - and of the cyclicity of ENSO with a preferred period of about 4 years. However, we find the correlation to be significantly stronger than one would expect in that case, implying that the SD contains information linearly independent from ENSO. A Multi-channel Singular Spectrum analysis (MSSA) on tropical SST, zonal wind and zonal wind variability reveals three significant oscillations. All of these show ENSO-like behaviour in the Pacific Ocean, with East Pacific SST anomalies being followed by anomalies of the same sign in the SD region after 3-5 months. Wind patterns propagate from the Indian to the Pacific Ocean. These findings suggest that the Indian and Pacific Oceans act as a unified system. The slower two oscillations, with periods around 4 years, have the strongest ENSO signal in the East Pacific (like a `Cold Tongue El Niño'). Compared to them, the fastest oscillation, with a period of 2.5 years, has a stronger signal in the Central Pacific (more resembling a `Warm Pool El Niño'). Because of the short period of the fastest mode, the time elapsed between an SD anomaly and the following ENSO anomaly (of opposite sign) is only 11 months - much less than the 18 months lag at which the correlation between SD and ENSO is minimal. This suggests that while the Cold Tongue El Niño's tend to be preceded by a cool SD event at a lead time suitable

  8. A possible explanation for the divergent projection of ENSO amplitude change under global warming

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Li, Tim; Yu, Yongqiang; Behera, Swadhin K.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) is the greatest climate variability on interannual time scale, yet what controls ENSO amplitude changes under global warming (GW) is uncertain. Here we show that the fundamental factor that controls the divergent projections of ENSO amplitude change within 20 coupled general circulation models that participated in the Coupled Model Intercomparison Project phase-5 is the change of climatologic mean Pacific subtropical cell (STC), whose strength determines the meridional structure of ENSO perturbations and thus the anomalous thermocline response to the wind forcing. The change of the thermocline response is a key factor regulating the strength of Bjerknes thermocline and zonal advective feedbacks, which ultimately lead to the divergent changes in ENSO amplitude. Furthermore, by forcing an ocean general circulation mode with the change of zonal mean zonal wind stress estimated by a simple theoretical model, a weakening of the STC in future is obtained. Such a change implies that ENSO variability might strengthen under GW, which could have a profound socio-economic consequence.

  9. ENSO amplitude changes due to greenhouse warming in CMIP5: Role of mean tropical precipitation in the 20th centur

    NASA Astrophysics Data System (ADS)

    Ham, Yoo-Geun; Kug, Jong-Seong

    2017-04-01

    The relationship between the present-climate climatology and those of ENSO amplitude change under global warming in the CMIP5 models is examined. The models with increased ENSO amplitude under greenhouse warming tend to simulate a 20th century stronger climatological ITCZ and SPCZ over the central-eastern Pacific that are located further away from the equator during boreal spring. The budget analysis using moisture equation indicates that those climatological differences lead to stronger positive climatological precipitation change over the off-equatorial central-eastern Pacific under greenhouse warming. The stronger positive climatological precipitation change enhances the air-sea coupling strength over the central-eastern Pacific, which results in the increase of the ENSO amplitude.

  10. Increasing water cycle extremes in California and relation to ENSO cycle under global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Jin -Ho; Wang, S. -Y. Simon; Gillies, Robert R.

    California has experienced its most severe drought in recorded history since the winter of 2013-2014. The long duration of drought has stressed statewide water resources and the economy, while fueling an extraordinary increase in wildfires. The effects of global warming on the regional climate include a hotter and drier climate, as well as earlier snowmelt, both of which exacerbate drought conditions. However, connections between a changing climate and how climate oscillations modulate regional water cycle extremes are not well understood. Here we analyze large-ensemble simulations of future climate change in California using the Community Earth System Model version 1 (CESM1)more » and multiple climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Both intense drought and excessive flooding are projected to increase by at least 50% toward the end of the 21st century. Furthermore, the projected increase in water cycle extremes is associated with tighter relation to El Niño and Southern Oscillation (ENSO), particularly extreme El Niño and La Niña events, which modulates California’s climate not only through its warm and cold phases, but also ENSO’s precursor patterns.« less

  11. Increasing water cycle extremes in California and relation to ENSO cycle under global warming

    DOE PAGES

    Yoon, Jin -Ho; Wang, S. -Y. Simon; Gillies, Robert R.; ...

    2015-10-21

    California has experienced its most severe drought in recorded history since the winter of 2013-2014. The long duration of drought has stressed statewide water resources and the economy, while fueling an extraordinary increase in wildfires. The effects of global warming on the regional climate include a hotter and drier climate, as well as earlier snowmelt, both of which exacerbate drought conditions. However, connections between a changing climate and how climate oscillations modulate regional water cycle extremes are not well understood. Here we analyze large-ensemble simulations of future climate change in California using the Community Earth System Model version 1 (CESM1)more » and multiple climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Both intense drought and excessive flooding are projected to increase by at least 50% toward the end of the 21st century. Furthermore, the projected increase in water cycle extremes is associated with tighter relation to El Niño and Southern Oscillation (ENSO), particularly extreme El Niño and La Niña events, which modulates California’s climate not only through its warm and cold phases, but also ENSO’s precursor patterns.« less

  12. HadCM3 Simulations of ENSO behaviour during the Mid-Pliocene Warm Period

    NASA Astrophysics Data System (ADS)

    Bonham, S. G.; Haywood, A. M.; Lunt, D. J.

    2009-04-01

    It has been suggested that a permanent El Niño state existed during the mid-Pliocene (ca. 3.3 - 3.0 Ma BP), with a west-to-east temperature gradient in the tropical Pacific considerably weaker than today. This is based upon a number of palaeoceanographic studies which have examined the development of the thermocline and SST gradient in the tropical Pacific over the last five million years. This state is now being referred to as El Padre in recognition of the fact that a mean state warming in EEP SSTs does not necessarily imply the presence of a permanent El Niño. Recent results from mid-Pliocene coupled ocean-atmosphere model simulations have shown clear ENSO variability whilst maintaining the warming in the EEP. This research expands on this study, using the UK Met Office GCM (HadCM3), to examine the behaviour and characteristics of ENSO in two mid-Pliocene simulations (with an open and closed Central American Seaway, CAS) compared with a control pre-industrial run, as well as produce a detailed profile of the mean state climates. The results shown include timescales of ENSO variability across four regions in the Pacific, as well as frequency, EOF and wavelet analysis. We have also looked at the interaction of ENSO with the annual cycle and the onset of ENSO events, and the interdecadal variability in the simulations. The initial timeseries produced have shown a greater variability of ENSO during the closed CAS mid-Pliocene simulation where the system oscillates between events much more frequently than seen in the pre-industrial run. The EOF and wavelet analyses quantify this behaviour, showing that the variability is approximately 15% higher over the central and eastern equatorial Pacific, with a period of oscillation of 2-5 years compared with 4-8 years for the pre-industrial simulation. These results will be compared with those obtained from the second mid-Pliocene simulation (open CAS).

  13. Effects of ENSO-induced extremes on terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Xu, M.; Hoffman, F. M.

    2017-12-01

    The El Niño Southern Oscillation (ENSO) with its warm (El Niño) and cold phase (La Niña) has well-known global impacts on the Earth system through the mechanism of teleconnections. Not only the global mean temperature and precipitation distributions will be changed but also the climate extremes will be enhanced during ENSO events. In this study, the advanced Earth System Model ACME version 0.3 was used to simulate terrestrial biogeochemistry and global climate from 1982 to 2020 with prescribed Sea Surface Temperature (SST) from data fusions of the NOAA high resolution daily Optimum Interpolation SST (OISST), CFS v2 9-month seasonal forecast and data reconstructions. We investigated how ENSO-induced climate extremes affect land carbon dynamics both regionally and globally and the implications for the functioning of different vegetated ecosystems under the influence of climate extremes. The results show that the ENSO-induced climate extremes, especially drought and heat waves, have significant impacts on the terrestrial carbon cycle. The responses to ENSO-induced climate extremes are divergent among different vegetation types.

  14. Salinity anomaly as a trigger for ENSO events

    PubMed Central

    Zhu, Jieshun; Huang, Bohua; Zhang, Rong-Hua; Hu, Zeng-Zhen; Kumar, Arun; Balmaseda, Magdalena A.; Marx, Lawrence; Kinter III, James L.

    2014-01-01

    According to the classical theories of ENSO, subsurface anomalies in ocean thermal structure are precursors for ENSO events and their initial specification is essential for skillful ENSO forecast. Although ocean salinity in the tropical Pacific (particularly in the western Pacific warm pool) can vary in response to El Niño events, its effect on ENSO evolution and forecasts of ENSO has been less explored. Here we present evidence that, in addition to the passive response, salinity variability may also play an active role in ENSO evolution, and thus important in forecasting El Niño events. By comparing two forecast experiments in which the interannually variability of salinity in the ocean initial states is either included or excluded, the salinity variability is shown to be essential to correctly forecast the 2007/08 La Niña starting from April 2007. With realistic salinity initial states, the tendency to decay of the subsurface cold condition during the spring and early summer 2007 was interrupted by positive salinity anomalies in the upper central Pacific, which working together with the Bjerknes positive feedback, contributed to the development of the La Niña event. Our study suggests that ENSO forecasts will benefit from more accurate salinity observations with large-scale spatial coverage. PMID:25352285

  15. Salinity anomaly as a trigger for ENSO events.

    PubMed

    Zhu, Jieshun; Huang, Bohua; Zhang, Rong-Hua; Hu, Zeng-Zhen; Kumar, Arun; Balmaseda, Magdalena A; Marx, Lawrence; Kinter, James L

    2014-10-29

    According to the classical theories of ENSO, subsurface anomalies in ocean thermal structure are precursors for ENSO events and their initial specification is essential for skillful ENSO forecast. Although ocean salinity in the tropical Pacific (particularly in the western Pacific warm pool) can vary in response to El Niño events, its effect on ENSO evolution and forecasts of ENSO has been less explored. Here we present evidence that, in addition to the passive response, salinity variability may also play an active role in ENSO evolution, and thus important in forecasting El Niño events. By comparing two forecast experiments in which the interannually variability of salinity in the ocean initial states is either included or excluded, the salinity variability is shown to be essential to correctly forecast the 2007/08 La Niña starting from April 2007. With realistic salinity initial states, the tendency to decay of the subsurface cold condition during the spring and early summer 2007 was interrupted by positive salinity anomalies in the upper central Pacific, which working together with the Bjerknes positive feedback, contributed to the development of the La Niña event. Our study suggests that ENSO forecasts will benefit from more accurate salinity observations with large-scale spatial coverage.

  16. Tracking the delayed response of the northern winter stratosphere to ENSO using multi reanalyses and model simulations

    NASA Astrophysics Data System (ADS)

    Ren, Rongcai; Rao, Jian; Wu, Guoxiong; Cai, Ming

    2017-05-01

    The concurrent effects of the El Niño-Southern Oscillation (ENSO) on the northern winter stratosphere have been widely recognized; however, the delayed effects of ENSO in the next winter after mature ENSO have yet to be confirmed in multi reanalyses and model simulations. This study uses three reanalysis datasets, a long-term fully coupled model simulation, and a high-top general circulation model to examine ENSO's delayed effects in the stratosphere. The warm-minus-cold composite analyses consistently showed that, except those quick-decaying quasi-biennial ENSO events that reverse signs during July-August-September (JAS) in their decay years, ENSO events particularly those quasi-quadrennial (QQ) that persist through JAS, always have a significant effect on the extratropical stratosphere in both the concurrent winter and the next winter following mature ENSO. During the concurrent winter, the QQ ENSO-induced Pacific-North American (PNA) pattern corresponds to an anomalous wavenumber-1 from the upper troposphere to the stratosphere, which acts to intensify/weaken the climatological wave pattern during warm/cold ENSO. Associated with the zonally quasi-homogeneous tropical forcing in spring of the QQ ENSO decay years, there appear persistent and zonally quasi-homogeneous temperature anomalies in the midlatitudes from the upper troposphere to the lower stratosphere until summer. With the reduction in ENSO forcing and the PNA responses in the following winter, an anomalous wavenumber-2 prevails in the extratropics. Although the anomalous wave flux divergence in the upper stratospheric layer is still dominated by wavenumber-1, it is mainly caused by wavenumber-2 in the lower stratosphere. However, the wavenumber-2 activity in the next winter is always underestimated in the model simulations, and wavenumber-1 activity dominates in both winters.

  17. The seasonality and geographic dependence of ENSO impacts on U.S. surface ozone variability

    NASA Astrophysics Data System (ADS)

    Xu, Li; Yu, Jin-Yi; Schnell, Jordan L.; Prather, Michael J.

    2017-04-01

    We examine the impact of El Niño-Southern Oscillation (ENSO) on surface ozone abundance observed over the continental United States (U.S.) during 1993-2013. The monthly ozone decreases (increases) during El Niño (La Niña) years with amplitude up to 1.8 ppb per standard deviation of Niño 3.4 index. The largest ENSO influences occur over two southern U.S. regions during fall when the ENSO develops and over two western U.S. regions during the winter to spring after the ENSO decays. ENSO affects surface ozone via chemical processes during warm seasons in southern regions, where favorable meteorological conditions occur, but via dynamic transport during cold seasons in western regions, where the ENSO-induced circulation variations are large. The geographic dependence and seasonality of the ENSO impacts imply that regulations regarding air quality and its exceedance need to be adjusted for different seasons and U.S. regions to account for the ENSO-driven patterns in surface ozone.

  18. ENSO Related Inter-Annual Lightning Variability from the Full TRMM LIS Lightning Climatology

    NASA Technical Reports Server (NTRS)

    Clark, Austin; Cecil, Daniel

    2018-01-01

    The El Nino/Southern Oscillation (ENSO) contributes to inter-annual variability of lightning production more than any other atmospheric oscillation. This study further investigated how ENSO phase affects lightning production in the tropics and subtropics using the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS). Lightning data were averaged into mean annual warm, cold, and neutral 'years' for analysis of the different phases and compared to model reanalysis data. An examination of the regional sensitivities and preliminary analysis of three locations was conducted using model reanalysis data to determine the leading convective mechanisms in these areas and how they might respond to the ENSO phases

  19. Modification of ENSO and ENSO-related atmospheric characteristics due to future climate change

    NASA Astrophysics Data System (ADS)

    Matveeva, Tatiana; Gushchina, Daria

    2017-04-01

    -defined relation between the amplitude change and the "rigidity" of scenarios. Whereas at the end of XXI century the ratio between EP and CP El Niño may decrease, i.e. the number of CP El Niño in RCP 8.5 will increase. The study was supported by the Russian Foundation for Basic Research (grants No.15-05-06693 and No.16-35-00394 mol_a). References: 1. Ashok, K., Behera, S. K., Rao, S. A.,Weng, H., Yamagata, T., 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res. 112, C11007. 2. Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499-1515. 3. Matveeva T., Gushchina D., 2016: The Role of Intraseasonal Atmosphere Variability in ENSO Generation in Future Climate. European Geosciences Union General Assembly 2016. Geophysical Research Abstracts, 18, EGU2016-235-2. 4. Takahashi, K., Montecinos, A., Goubanova, K., Dewitte, B., 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett. 38, L10704. 5. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc., 93, 485-498.

  20. ENSO Related Interannual Lightning Variability from the Full TRMM LIS Lightning Climatology

    NASA Technical Reports Server (NTRS)

    Clark, Austin; Cecil, Daniel J.

    2018-01-01

    It has been shown that the El Nino/Southern Oscillation (ENSO) contributes to inter-annual variability of lightning production in the tropics and subtropics more than any other atmospheric oscillation. This study further investigated how ENSO phase affects lightning production in the tropics and subtropics. Using the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) and the Oceanic Nino Index (ONI) for ENSO phase, lightning data were averaged into corresponding mean annual warm, cold, and neutral 'years' for analysis of the different phases. An examination of the regional sensitivities and preliminary analysis of three locations was conducted using model reanalysis data to determine the leading convective mechanisms in these areas and how they might respond to the ENSO phases. These processes were then studied for inter-annual variance and subsequent correlation to ENSO during the study period to best describe the observed lightning deviations from year to year at each location.

  1. Oceanic Channel of the IOD-ENSO teleconnection over the Indo-Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Yuan, Dongliang; Wang, Jing; Zhao, Xia; Zhou, Hui; Xu, Tengfei; Xu, Peng

    2017-04-01

    The lag correlations of observations and model simulated data that participate the Coupled Model Intercomparison Project phase-5 (CMIP5) are used to study the precursory teleconnection between the Indian Ocean Dipole (IOD) and the Pacific ENSO one year later through the Indonesian seas. The results suggest that Indonesian Throughflow (ITF) play an important role in the IOD-ENSO teleconnection. Numerical simulations using a hierarchy of ocean models and climate coupled models have shown that the interannual sea level depressions in the southeastern Indian Ocean during IOD force enhanced ITF to transport warm water of the Pacific warm pool to the Indian Ocean, producing cold subsurface temperature anomalies, which propagate to the eastern equatorial Pacific and induce significant coupled ocean-atmosphere evolution. The teleconnection is found to have decadal variability. Similar decadal variability has also been identified in the historical simulations of the CMIP5 models. The dynamics of the inter-basin teleconnection during the positive phases of the decadal variability are diagnosed to be the interannual variations of the ITF associated with the Indian Ocean Dipole (IOD). During the negative phases, the thermocline in the eastern equatorial Pacific is anomalously deeper so that the sea surface temperature anomalies in the cold tongue are not sensitive to the thermocline depth changes. The IOD-ENSO teleconnection is found not affected significantly by the anthropogenic forcing.

  2. On the role of ozone feedback in the ENSO amplitude response under global warming

    NASA Astrophysics Data System (ADS)

    Nowack, P. J.; Braesicke, P.; Abraham, N. L.; Pyle, J. A.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) in the tropical Pacific is of key importance to global climate and weather. However, climate models still disagree on the ENSO's response under climate change. Here we show that typical model representations of ozone can have a first-order impact on ENSO amplitude projections in climate sensitivity simulations (i.e. standard abrupt 4xCO2). We mainly explain this effect by the lapse rate adjustment of the tropical troposphere to ozone changes in the upper troposphere and lower stratosphere (UTLS) under 4xCO2. The ozone-induced lapse rate changes modify the Walker circulation response to the CO2 forcing and consequently tropical Pacific surface temperature gradients. Therefore, not including ozone feedbacks increases the number of extreme ENSO events in our model. In addition, we demonstrate that even if ozone changes in the tropical UTLS are included in the simulations, the neglect of the ozone response in the middle-upper stratosphere still leads to significantly larger ENSO amplitudes (compared to simulations run with a fully interactive atmospheric chemistry scheme). Climate modeling studies of the ENSO often neglect changes in ozone. Our results imply that this could affect the inter-model spread found in ENSO projections and, more generally, surface climate change simulations. We discuss the additional complexity in quantifying such ozone-related effects that arises from the apparent model dependency of chemistry-climate feedbacks and, possibly, their range of surface climate impacts. In conclusion, we highlight the need to understand better the coupling between ozone, the tropospheric circulation, and climate variability. Reference: Nowack PJ, Braesicke P, Abraham NL, and Pyle JA (2017), On the role of ozone feedback in the ENSO amplitude response under global warming, Geophys. Res. Lett. 44, 3858-3866, doi:10.1002/2016GL072418.

  3. Global Precipitation Patterns Associated with ENSO and Tropical Circulations

    NASA Technical Reports Server (NTRS)

    Curtis, Scott; Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric

    1999-01-01

    Tropical precipitation and the accompanying latent heat release is the engine that drives the global circulation. An increase or decrease in rainfall in the tropics not only leads to the local effects of flooding or drought, but contributes to changes in the large scale circulation and global climate system. Rainfall in the tropics is highly variable, both seasonally (monsoons) and interannually (ENSO). Two experimental observational data sets, developed under the auspices of the Global Precipitation Climatology Project (GPCP), are used in this study to examine the relationships between global precipitation and ENSO and extreme monsoon events over the past 20 years. The V2x79 monthly product is a globally complete, 2.5 deg x 2.5 deg, satellite-gauge merged data set that covers the period 1979 to the present. Indices based on patterns of satellite-derived rainfall anomalies in the Pacific are used to analyze the teleconnections between ENSO and global precipitation, with emphasis on the monsoon systems. It has been well documented that dry (wet) Asian monsoons accompany warm (cold) ENSO events. However, during the summer seasons of the 1997/98 ENSO the precipitation anomalies were mostly positive over India and the Bay of Bengal, which may be related to an epoch-scale variability in the Asian monsoon circulation. The North American monsoon may be less well linked to ENSO, but a positive precipitation anomaly was observed over Mexico around the September following the 1997/98 event. For the twenty-year record, precipitation and SST patterns in the tropics are analyzed during wet and dry monsoons. For the Asian summer monsoon, positive rainfall anomalies accompany two distinct patterns of tropical precipitation and a warm Indian Ocean. Negative anomalies coincide with a wet Maritime Continent.

  4. A reduction in the asymmetry of ENSO amplitude due to global warming: The role of atmospheric feedback

    NASA Astrophysics Data System (ADS)

    Ham, Yoo-Geun

    2017-08-01

    This study analyzes a reduction in the asymmetry of El Niño Southern-Oscillation (ENSO) amplitude due to global warming in Coupled Model Intercomparison Project Phase 5 models. The multimodel-averaged Niño3 skewness during December-February season decreased approximately 40% in the RCP4.5 scenario compared to that in the historical simulation. The change in the nonlinear relationship between sea surface temperature (SST) and precipitation is a key factor for understanding the reduction in ENSO asymmetry due to global warming. In the historical simulations, the background SST leading to the greatest precipitation sensitivity (SST for Maximum Precipitation Sensitivity, SST_MPS) occurs when the positive SST anomaly is located over the equatorial central Pacific. Therefore, an increase in climatological SST due to global warming weakens the atmospheric response during El Niño over the central Pacific. However, the climatological SST over this region in the historical simulation is still lower than the SST_MPS for the negative SST anomaly; therefore, a background SST increase due to global warming can further increase precipitation sensitivity. The atmospheric feedbacks during La Niña are enhanced and increase the La Niña amplitude due to global warming.

  5. Possible shift in the ENSO-Indian monsoon rainfall relationship under future global warming

    PubMed Central

    Azad, Sarita; Rajeevan, M.

    2016-01-01

    EI Nino-Southern Oscillation (ENSO) and Indian monsoon rainfall are known to have an inverse relationship, which we have observed in the rainfall spectrum exhibiting a spectral dip in 3–5 y period band. It is well documented that El Nino events are known to be associated with deficit rainfall. Our analysis reveals that this spectral dip (3–5 y) is likely to shift to shorter periods (2.5–3 y) in future, suggesting a possible shift in the relationship between ENSO and monsoon rainfall. Spectral analysis of future climate projections by 20 Coupled Model Intercomparison project 5 (CMIP5) models are employed in order to corroborate our findings. Change in spectral dip speculates early occurrence of drought events in future due to multiple factors of global warming. PMID:26837459

  6. Recent climate extremes associated with the West Pacific Warming Mode

    USGS Publications Warehouse

    Funk, Chris; Hoell, Andrew

    2017-01-01

    Here we analyze empirical orthogonal functions (EOFs) of observations and a 30 member ensemble of Community Earth System Model version 1 (CESM1) simulations, and suggest that precipitation declines in the Greater Horn of Africa (GHA) and the northern Middle East/Southwestern Asia (NME/SWE: Iran, Iraq, Kuwait, Syria, Saudi Arabia north of 25°N, Israel, Jordan, and Lebanon) may be interpreted as an interaction between La Niña-like decadal variability and the West Pacific Warming Mode (WPWM). While they exhibit different SST patterns, warming of the Pacific cold tongue (ENSO) and warming of the western Pacific (WPWM) produce similar warm pool diabatic forcing, Walker circulation anomalies, and terrestrial teleconnections. CESM1 SST EOFs indicate that both La Niña-like WPWM warming and El Niño-like east Pacific warming will be produced by climate change. The temporal frequency of these changes, however, are distinct. WPWM varies decadally, while ENSO is dominated by interannual variability. Future WPWM and ENSO warming may manifest as a tendency toward warm West Pacific SST, punctuated by extreme warm East Pacific events. WPWM EOFs from Global Precipitation Climatology Project (GPCP) precipitation also identify dramatic WPWM-related declines in the Greater Horn of Africa and NME/SWE.

  7. Suppression of ENSO in a coupled model without water vapor feedback

    NASA Astrophysics Data System (ADS)

    Hall, A.; Manabe, S.

    We examine 800-year time series of internally generated variability in both a coupled ocean-atmosphere model where water vapor anomalies are not allowed to interact with longwave radiation and one where they are. The ENSO-like phenomenon in the experiment without water vapor feedback is drastically suppressed both in amplitude and geographic extent relative to the experiment with water vapor feedback. Surprisingly, the reduced amplitude of ENSO-related sea surface temperature anomalies in the model without water vapor feedback cannot be attributed to greater longwave damping of sea surface temperature. (Differences between the two experiments in radiative feedback due to clouds counterbalance almost perfectly the differences in radiative feedback due to water vapor.) Rather, the interaction between water vapor anomalies and longwave radiation affects the ENSO-like phenomenon through its influence on the vertical structure of radiative heating: Because of the changes in water vapor associated with it, a given warm equatorial Pacific sea surface temperature anomaly is associated with a radiative heating profile that is much more gravitationally unstable when water vapor feedback is present. The warm sea surface temperature anomaly therefore results in more convection in the experiment with water vapor feedback. The increased convection, in turn, is related to a larger westerly wind-stress anomaly, which creates a larger decrease in upwelling of cold water, thereby enhancing the magnitude of the original warm sea surface temperature anomaly. In this manner, the interaction between water vapor anomalies and longwave radiation magnifies the air-sea interactions at the heart of the ENSO phenomenon; without this interaction, the coupling between sea surface temperature and wind stress is effectively reduced, resulting in smaller amplitude ENSO episodes with a more limited geographical extent.

  8. Response of ENSO amplitude to global warming in CESM large ensemble: uncertainty due to internal variability

    NASA Astrophysics Data System (ADS)

    Zheng, Xiao-Tong; Hui, Chang; Yeh, Sang-Wook

    2018-06-01

    El Niño-Southern Oscillation (ENSO) is the dominant mode of variability in the coupled ocean-atmospheric system. Future projections of ENSO change under global warming are highly uncertain among models. In this study, the effect of internal variability on ENSO amplitude change in future climate projections is investigated based on a 40-member ensemble from the Community Earth System Model Large Ensemble (CESM-LE) project. A large uncertainty is identified among ensemble members due to internal variability. The inter-member diversity is associated with a zonal dipole pattern of sea surface temperature (SST) change in the mean along the equator, which is similar to the second empirical orthogonal function (EOF) mode of tropical Pacific decadal variability (TPDV) in the unforced control simulation. The uncertainty in CESM-LE is comparable in magnitude to that among models of the Coupled Model Intercomparison Project phase 5 (CMIP5), suggesting the contribution of internal variability to the intermodel uncertainty in ENSO amplitude change. However, the causations between changes in ENSO amplitude and the mean state are distinct between CESM-LE and CMIP5 ensemble. The CESM-LE results indicate that a large ensemble of 15 members is needed to separate the relative contributions to ENSO amplitude change over the twenty-first century between forced response and internal variability.

  9. Interdecadal variations of ENSO around 1999/2000

    NASA Astrophysics Data System (ADS)

    Hu, Zeng-Zhen; Kumar, Arun; Huang, Bohua; Zhu, Jieshun; Ren, Hong-Li

    2017-02-01

    This paper discusses the interdecadal changes of the climate in the tropical Pacific with a focus on the corresponding changes in the characteristics of the El Niño-Southern Oscillation (ENSO). Compared with 1979-1999, the whole tropical Pacific climate system, including both the ocean and atmosphere, shifted to a lower variability regime after 1999/2000. Meanwhile, the frequency of ENSO became less regular and was closer to a white noise process. The lead time of the equatorial Pacific's subsurface ocean heat content in preceding ENSO decreased remarkably, in addition to a reduction in the maximum correlation between them. The weakening of the correlation and the shortening of the lead time pose more challenges for ENSO prediction, and is the likely reason behind the decrease in skill with respect to ENSO prediction after 2000. Coincident with the changes in tropical Pacific climate variability, the mean states of the atmospheric and oceanic components also experienced physically coherent changes. The warm anomaly of SST in the western Pacific and cold anomaly in the eastern Pacific resulted in an increased zonal SST gradient, linked to an enhancement in surface wind stress and strengthening of the Walker circulation, as well as an increase in the slope of the thermocline. These changes were consistent with an increase (a decrease) in precipitation and an enhancement (a suppression) of the deep convection in the western (eastern) equatorial Pacific. Possible connections between the mean state and ENSO variability and frequency changes in the tropical Pacific are also discussed.

  10. ENSO Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing

    NASA Astrophysics Data System (ADS)

    Yeh, Sang-Wook; Cai, Wenju; Min, Seung-Ki; McPhaden, Michael J.; Dommenget, Dietmar; Dewitte, Boris; Collins, Matthew; Ashok, Karumuri; An, Soon-Il; Yim, Bo-Young; Kug, Jong-Seong

    2018-03-01

    El Niño and Southern Oscillation (ENSO) is the most prominent year-to-year climate fluctuation on Earth, alternating between anomalously warm (El Niño) and cold (La Niña) sea surface temperature (SST) conditions in the tropical Pacific. ENSO exerts its impacts on remote regions of the globe through atmospheric teleconnections, affecting extreme weather events worldwide. However, these teleconnections are inherently nonlinear and sensitive to ENSO SST anomaly patterns and amplitudes. In addition, teleconnections are modulated by variability in the oceanic and atmopsheric mean state outside the tropics and by land and sea ice extent. The character of ENSO as well as the ocean mean state have changed since the 1990s, which might be due to either natural variability or anthropogenic forcing, or their combined influences. This has resulted in changes in ENSO atmospheric teleconnections in terms of precipitation and temperature in various parts of the globe. In addition, changes in ENSO teleconnection patterns have affected their predictability and the statistics of extreme events. However, the short observational record does not allow us to clearly distinguish which changes are robust and which are not. Climate models suggest that ENSO teleconnections will change because the mean atmospheric circulation will change due to anthropogenic forcing in the 21st century, which is independent of whether ENSO properties change or not. However, future ENSO teleconnection changes do not currently show strong intermodel agreement from region to region, highlighting the importance of identifying factors that affect uncertainty in future model projections.

  11. ENSO Dynamics and Trends, AN Alternate View

    NASA Astrophysics Data System (ADS)

    Rojo Hernandez, J. D.; Lall, U.; Mesa, O. J.

    2017-12-01

    El Niño - Southern Oscillation (ENSO) is the most important inter-annual climate fluctuation on a planetary level with great effects on the hydrological cycle, agriculture, ecosystems, health and society. This work demonstrates the use of the Non-Homogeneus hidden Markov Models (NHMM) to characterize ENSO using a set of discrete states with variable transition probabilities matrix using the data of sea surface temperature anomalies (SSTA) of the Kaplan Extended SST v2 between 120E -90W, 15N-15S from Jan-1856 to Dec-2016. ENSO spatial patterns, their temporal distribution, the transition probabilities between patterns and their temporal evolution are the main results of the NHHMM applied to ENSO. The five "hidden" states found appear to represent the different "Flavors" described in the literature: the Canonical El Niño, Central El Niño, a Neutral state, Central La Niña and the Canonical Niña. Using the whole record length of the SSTA it was possible to identify trends in the dynamic system, with a decrease in the probability of occurrence of the cold events and a significant increase of the warm events, in particular of Central El Niño events whose probability of occurrence has increased Dramatically since 1960 coupled with increases in global temperature.

  12. Tropical Pacific Mean State and ENSO Variability across Marine Isotope Stage 3

    NASA Astrophysics Data System (ADS)

    Hertzberg, J. E.; Schmidt, M. W.; Marcantonio, F.; Bianchi, T. S.

    2017-12-01

    The El Niño/Southern Oscillation (ENSO) phenomenon is the largest natural interannual signal in the Earth's climate system and has widespread effects on global climate that impact millions of people worldwide. A series of recent research studies predict an increase in the frequency of extreme El Niño and La Niña events as Earth's climate continues to warm. In order for climate scientists to forecast how ENSO will evolve in response to global warming, it is necessary to have accurate, comprehensive records of how the system has naturally changed in the past, especially across past abrupt warming events. Nevertheless, there remains significant uncertainty about past changes in tropical Pacific climate and how ENSO variability relates to the millennial-scale warming events of the last ice age. This study aims to reconstruct changes in the tropical Pacific mean state and ENSO variability across Marine Isotope Stage 3 from a sediment core recovered from the Eastern Equatorial Pacific cold tongue (MV1014-02-17JC, 0°10.8' S, 85°52.0' W, 2846 m water depth). In this region, thermocline temperatures are significantly correlated to ENSO variability - thus, we analyzed Mg/Ca ratios in the thermocline dwelling foraminifera Neogloboquadrina dutertrei as a proxy for thermocline temperatures in the past. Bulk ( 50 tests/sample) foraminifera Mg/Ca temperatures are used to reconstruct long-term variability in the mean state, while single shell ( 1 test/sample, 60 samples) Mg/Ca analyses are used to assess thermocline temperature variance. Based on our refined age model, we find that thermocline temperature increases of up to 3.5°C occur in-step with interstadial warming events recorded in Greenland ice cores. Cooler thermocline temperatures prevail during stadial intervals and Heinrich Events. This suggests that interstadials were more El-Niño like, while stadials and Heinrich Events were more La-Niña like. These temperature changes are compared to new records of dust flux

  13. ENSO's non-stationary and non-Gaussian character: the role of climate shifts

    NASA Astrophysics Data System (ADS)

    Boucharel, J.; Dewitte, B.; Garel, B.; Du Penhoat, Y.

    2009-07-01

    El Niño Southern Oscillation (ENSO) is the dominant mode of climate variability in the Pacific, having socio-economic impacts on surrounding regions. ENSO exhibits significant modulation on decadal to inter-decadal time scales which is related to changes in its characteristics (onset, amplitude, frequency, propagation, and predictability). Some of these characteristics tend to be overlooked in ENSO studies, such as its asymmetry (the number and amplitude of warm and cold events are not equal) and the deviation of its statistics from those of the Gaussian distribution. These properties could be related to the ability of the current generation of coupled models to predict ENSO and its modulation. Here, ENSO's non-Gaussian nature and asymmetry are diagnosed from in situ data and a variety of models (from intermediate complexity models to full-physics coupled general circulation models (CGCMs)) using robust statistical tools initially designed for financial mathematics studies. In particular α-stable laws are used as theoretical background material to measure (and quantify) the non-Gaussian character of ENSO time series and to estimate the skill of ``naïve'' statistical models in producing deviation from Gaussian laws and asymmetry. The former are based on non-stationary processes dominated by abrupt changes in mean state and empirical variance. It is shown that the α-stable character of ENSO may result from the presence of climate shifts in the time series. Also, cool (warm) periods are associated with ENSO statistics having a stronger (weaker) tendency towards Gaussianity and lower (greater) asymmetry. This supports the hypothesis of ENSO being rectified by changes in mean state through nonlinear processes. The relationship between changes in mean state and nonlinearity (skewness) is further investigated both in the Zebiak and Cane (1987)'s model and the models of the Intergovernmental Panel for Climate Change (IPCC). Whereas there is a clear relationship in all

  14. Seasonal warming of the Middle Atlantic Bight Cold Pool

    NASA Astrophysics Data System (ADS)

    Lentz, S. J.

    2017-02-01

    The Cold Pool is a 20-60 m thick band of cold, near-bottom water that persists from spring to fall over the midshelf and outer shelf of the Middle Atlantic Bight (MAB) and Southern Flank of Georges Bank. The Cold Pool is remnant winter water bounded above by the seasonal thermocline and offshore by warmer slope water. Historical temperature profiles are used to characterize the average annual evolution and spatial structure of the Cold Pool. The Cold Pool gradually warms from spring to summer at a rate of order 1°C month-1. The warming rate is faster in shallower water where the Cold Pool is thinner, consistent with a vertical turbulent heat flux from the thermocline to the Cold Pool. The Cold Pool warming rate also varies along the shelf; it is larger over Georges Bank and smaller in the southern MAB. The mean turbulent diffusivities at the top of the Cold Pool, estimated from the spring to summer mean heat balance, are an order of magnitude larger over Georges Bank than in the southern MAB, consistent with much stronger tidal mixing over Georges Bank than in the southern MAB. The stronger tidal mixing causes the Cold Pool to warm more rapidly over Georges Bank and the eastern New England shelf than in the New York Bight or southern MAB. Consequently, the coldest Cold Pool water is located in the New York Bight from late spring to summer.

  15. Tridacna Derived ENSO Records From The Philippines During The Last Interglacial Show Similar ENSO Activity To The Present Day

    NASA Astrophysics Data System (ADS)

    Welsh, K.; Morgan, Z.; Suzuki, A.

    2016-12-01

    Although modeled predictions for the relative strength and frequency of ENSO under mean warming conditions suggest an increase in the number and strength of ENSO event, however there are limited seasonally resolved records of ENSO variability during previous warm periods for example the last interglacial to test these models as reliable archives such as corals are not generally well preserved over these time periods. Presented here are two multi decadal Tridacna gigas derived stable isotopic time series from a coral terrace on the island of Cebu in the Philippines that formed during MIS5e based upon geomorphology and open-system corrected U/Th dating of corals. The ENSO activity observed in these time well preserved records indicate a similar level of ENSO activity during the last interglacial period as the present day based upon comparisons with recent coral derived stable isotopic records. Though these are relatively short records they provide further windows into ENSO activity from this important time period and demonstrate this area may be provide more opportunities to gather these archives.

  16. Increasing occurrence of cold and warm extremes during the recent global warming slowdown.

    PubMed

    Johnson, Nathaniel C; Xie, Shang-Ping; Kosaka, Yu; Li, Xichen

    2018-04-30

    The recent levelling of global mean temperatures after the late 1990s, the so-called global warming hiatus or slowdown, ignited a surge of scientific interest into natural global mean surface temperature variability, observed temperature biases, and climate communication, but many questions remain about how these findings relate to variations in more societally relevant temperature extremes. Here we show that both summertime warm and wintertime cold extreme occurrences increased over land during the so-called hiatus period, and that these increases occurred for distinct reasons. The increase in cold extremes is associated with an atmospheric circulation pattern resembling the warm Arctic-cold continents pattern, whereas the increase in warm extremes is tied to a pattern of sea surface temperatures resembling the Atlantic Multidecadal Oscillation. These findings indicate that large-scale factors responsible for the most societally relevant temperature variations over continents are distinct from those of global mean surface temperature.

  17. The role of South Pacific atmospheric variability in the development of different types of ENSO

    NASA Astrophysics Data System (ADS)

    You, Yujia; Furtado, Jason C.

    2017-07-01

    Recent advances in tropical Pacific climate variability have focused on understanding the development of El Niño-Southern Oscillation (ENSO) events, specifically the types or "flavors" of ENSO (i.e., central versus eastern Pacific events). While precursors to ENSO events exist, distinguishing the particular flavor of the expected ENSO event remains unresolved. This study offers a new look at ENSO predictability using South Pacific atmospheric variability during austral winter as an indicator. The positive phase of the leading mode of South Pacific sea level pressure variability, which we term the South Pacific Oscillation (SPO), exhibits a meridional dipole with with a(n) (anti)cyclonic anomaly dominating the subtropics (extratropics/high latitudes). Once energized, the cyclonic anomalies in the subtropical node of the SPO weaken the southeasterly trade winds and promote the charging of the eastern equatorial Pacific Ocean, giving rise to eastern Pacific ENSO events. Indeed, the type of ENSO event can be determined accurately using only the magnitude and phase of the SPO during austral winter as a predictor (17 out of 23 cases). The SPO may also play a role in explaining the asymmetry of warm and cold events. Collectively, our findings present a new perspective on ENSO-South Pacific interactions that can advance overall understanding of the ENSO system and enhance its predictability across multiple timescales.

  18. Is "Warm Arctic, Cold Continent" A Fingerprint Pattern of Climate Change?

    NASA Astrophysics Data System (ADS)

    Hoerling, M. P.; Sun, L.; Perlwitz, J.

    2015-12-01

    Cold winters and cold waves have recently occurred in Europe, central Asia and the Midwest to eastern United States, even as global mean temperatures set record highs and Arctic amplification of surface warming continued. Since 1979, Central Asia winter temperatures have in fact declined. Conjecture has it that more cold extremes over the mid-latitude continents should occur due to global warming and the impacts of Arctic sea ice loss. A Northern Hemisphere temperature signal termed the "Warm Arctic, Cold Continent" pattern has thus been surmised. Here we use a multi-model approach to test the hypothesis that such a pattern is indeed symptomatic of climate change. Diagnosis of a large model ensemble of historical climate simulations shows some individual realizations to yield cooling trends over Central Asia, but importantly the vast majority show warming. The observed cooling has thus likely been a low probability state of internal variability, not a fingerprint of forced climate change. We show that daily temperature variations over continents decline in winter due to global warming, and cold waves become less likely. This is partly related to diminution of Arctic cold air reservoirs due to warming-induced sea ice loss. Nonetheless, we find some evidence and present a physical basis that Arctic sea ice loss alone can induce a winter cooling over Central Asia, though with a magnitude that is appreciably smaller than the overall radiative-forced warming signal. Our results support the argument that recent cooling trends over central Asia, and cold extreme events over the winter continents, have principally resulted from atmospheric internal variability and have been neither a forced response to Arctic seas ice loss nor a symptom of global warming. The paradigm of climate change is thus better expressed as "Warm Arctic, Warm Continent" for the NH winter.

  19. Changes in Sea Salt Emissions Enhance ENSO Variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yang; Russell, Lynn M.; Lou, Sijia

    Two 150-year pre-industrial simulations with and without interactive sea salt emissions from the Community Earth System Model (CESM) are performed to quantify the interactions between sea salt emissions and El Niño–Southern Oscillation (ENSO). Variations in sea salt emissions over the tropical Pacific Ocean are affected by changing wind speed associated with ENSO variability. ENSO-induced interannual variations in sea salt emissions result in decreasing (increasing) aerosol optical depth (AOD) by 0.03 over the equatorial central-eastern (western) Pacific Ocean during El Niño events compared to those during La Niña events. These changes in AOD further increase (decrease) radiative fluxes into the atmospheremore » by +0.2 W m -2 (-0.4 W m -2) over the tropical eastern (western) Pacific. Thereby, sea surface temperature increases (decreases) by 0.2–0.4 K over the tropical eastern (western) Pacific Ocean during El Niño compared to La Niña events and enhances ENSO variability by 10%. The increase in ENSO amplitude is a result of systematic heating (cooling) during the warm (cold) phase, of ENSO in the eastern Pacific. Interannual variations in sea salt emissions then produce the anomalous ascent (subsidence) over the equatorial eastern (western) Pacific between El Niño and La Niña events, which is a result of heating anomalies. Due to variations in sea salt emissions, the convective precipitation is enhanced by 0.6–1.2 mm day -1 over the tropical central-eastern Pacific Ocean and weakened by 0.9–1.5 mm day -1 over the Maritime Continent during El Niño compared to La Niña events, enhancing the precipitation variability over the tropical Pacific.« less

  20. Probable Causes of the Abnormal Ridge Accompanying the 2013-2014 California Drought: ENSO Precursor and Anthropogenic Warming Footprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S-Y; Hipps, Lawrence; Gillies, Robert R.

    2014-05-16

    The 2013-14 California drought was accompanied by an anomalous high-amplitude ridge system. The anomalous ridge was investigated using reanalysis data and the Community Earth System Model (CESM). It was found that the ridge emerged from continual sources of Rossby wave energy in the western North Pacific starting in late summer, and subsequently intensified into winter. The ridge generated a surge of wave energy downwind and deepened further the trough over the northeast U.S., forming a dipole. The dipole and associated circulation pattern is not linked directly with either ENSO or Pacific Decadal Oscillation; instead it is correlated with a typemore » of ENSO precursor. The connection between the dipole and ENSO precursor has become stronger since the 1970s, and this is attributed to increased GHG loading as simulated by the CESM. Therefore, there is a traceable anthropogenic warming footprint in the enormous intensity of the anomalous ridge during winter 2013-14, the associated drought and its intensity.« less

  1. Probable causes of the abnormal ridge accompanying the 2013-2014 California drought: ENSO precursor and anthropogenic warming footprint

    NASA Astrophysics Data System (ADS)

    Wang, S.-Y.; Hipps, Lawrence; Gillies, Robert R.; Yoon, Jin-Ho

    2014-05-01

    The 2013-2014 California drought was initiated by an anomalous high-amplitude ridge system. The anomalous ridge was investigated using reanalysis data and the Community Earth System Model (CESM). It was found that the ridge emerged from continual sources of Rossby wave energy in the western North Pacific starting in late summer and subsequently intensified into winter. The ridge generated a surge of wave energy downwind and deepened further the trough over the northeast U.S., forming a dipole. The dipole and associated circulation pattern is not linked directly with either El Niño-Southern Oscillation (ENSO) or Pacific Decadal Oscillation; instead, it is correlated with a type of ENSO precursor. The connection between the dipole and ENSO precursor has become stronger since the 1970s, and this is attributed to increased greenhouse gas loading as simulated by the CESM. Therefore, there is a traceable anthropogenic warming footprint in the enormous intensity of the anomalous ridge during winter 2013-2014 and the associated drought.

  2. Characteristics of the East Asian Winter Climate Associated with the Westerly Jet Stream and ENSO

    NASA Technical Reports Server (NTRS)

    Yang, Song; Lau, K.-M.; Kim, K.-M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    In this study, the influences of the East Asian jet stream (EAJS) and El Nino/Southern Oscillation (ENSO) on the interannual variability of the East Asian winter climate are examined with a focus on the relative climate impacts of the two phenomena. Although the variations of the East Asian winter monsoon and the temperature and precipitation of China, Japan, and Korea are emphasized, the associated changes in the broad-scale atmospheric circulation patterns over Asia and the Pacific and in the extratropical North Pacific sea surface temperature (SST) are also investigated. It is demonstrated that there is no apparent relationship between ENSO and the interannual variability of EAJS core. The EAJS and ENSO are associated with distinctly different patterns of atmospheric circulation and SST in the Asian-Pacific regions. While ENSO causes major climate signals in the Tropics and over the North Pacific east of the dateline, the EAJS produces significant changes in the atmospheric circulation over East Asia and western Pacific. In particular, the EAJS explains larger variance of the interannual signals of the East Asian trough, the Asian continental high, the Aleutian low, and the East Asian winter monsoon. When the EAJS is strong, all these atmospheric systems intensify significantly. The response of surface temperature and precipitation to EAJS variability and ENSO is more complex. In general, the East Asian winter climate is cold (warm) and dry (wet) when the EAJS is strong (weak) and it is warm during El Nino years. However, different climate signals are found during different La Nina years. In terms of linear correlation, both the temperature and precipitation of northern China, Korea, and central Japan are more significantly associated with the EAJS than with ENSO.

  3. Can solar cycle modulate the ENSO effect on the Pacific/North American pattern?

    NASA Astrophysics Data System (ADS)

    Li, Delin; Xiao, Ziniu

    2018-01-01

    The ENSO effect on the Pacific/North American pattern (PNA) is well-known robust. Recent studies from observations and model simulations have reported that some important atmospheric circulation systems of extratropics are markedly modulated by the 11-year solar cycle. But less effort has been devoted to revealing the solar influence on the PNA. We thus hypothesize that the instability and uncertainty in the relationship between solar activity and PNA could be due to the ENSO impacts. In this study, solar cycle modulation of the ENSO effect on the PNA has been statistically examined by the observations from NOAA and NCEP/NCAR for the period of 1950-2014. Results indicate that during the high solar activity (HS) years, the PNA has stronger relevance to the ENSO, and the response of tropospheric geopotential height to ENSO variability is broadly similar to the typical positive PNA pattern. However, in the case of low solar activity (LS) years, the correlation between ENSO and PNA decreases relatively and the response has some resemblance to the negative phase of Arctic Oscillation (AO). Also, we find the impacts of solar activity on the middle troposphere are asymmetric during the different solar cycle phases, and the weak PNA-like response to solar activity only presents in the HS years. Closer inspection suggests that the higher solar activity has a much more remarkable modulation on the PNA-like response to the warm ENSO (WE) than that to the cold ENSO (CE), particularly over the Northeast Pacific region. The possible cause of the different responses might be the solar influence on the subtropical westerlies of upper troposphere. When the sea surface temperature (SST) of east-central tropical Pacific is anomalously warm, the upper tropospheric westerlies are significantly modulated by the higher solar activity, resulting in the acceleration and eastward shift of the North Pacific subtropical jet, which favors the propagation of WE signal from the tropical Pacific

  4. ENSO/PDO-Like Variability of Tropical Ocean Surface Energy Fluxes Over the Satellite Era

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Miller, Tim L.

    2008-01-01

    Recent variations of tropical climate on interannual to near-decadal scales have provided a useful target for studying the nature of climate feedback processes. A strong warm / cold ENSO couplet (e.g. 1997-2000) along with several subsequent weaker events are prominent interannual signals that are part of an apparent longer term strengthening of the Walker circulation during the mid to late 1990's with some weakening thereafter. Decadal scale changes in tropical SST structure during the 1990s are accompanied by focusing of precipitation over the Indo-Pacific warm pool and an increase in tropical ocean evaporation of order 1.0 % /decade. Associated with ENSO and PDO-like tropical SST changes are surface freshwater and radiative fluxes which have important implications for heat and energy transport variations. In this study we examine how surface fluxes attending interannual to decadal SST fluctuations, e.g. precipitation (GPCP, TRMM), turbulent fluxes (OAFlux), and radiative fluxes (ERBE/CERES, SRB) are coupled. Using these data we analyze vertically-integrated divergence of moist static energy, divMSE, and its dry static energy and latent energy components. We examine consistency between these data sets and explore relationships between SST variations, flux changes and modulation of tropical Walker and Hadley circulations. Strong signatures ofMSE flux transport linking ascending and descending regions of tropical circulations are found. Relative strengths of these fluxes and transports are interpreted as a measure of efficiency in the overall process of tropical heat balance during episodes of warm or cold tropical SST.

  5. MJO influence on ENSO effects in precipitation and temperature over South America

    NASA Astrophysics Data System (ADS)

    Shimizu, M. H.; Bombardi, R. J.; Ambrizzi, T.

    2013-12-01

    Researches on the effects of the El Niño Southern Oscillation (ENSO) over precipitation and temperature, such as drought, flood, and anomalous high or cold temperatures, have great importance because of the impact of ENSO on the environment, society, and economy. Several studies have reported the influences of ENSO over South American precipitation and temperature climatological patterns, such as drier than normal conditions over northeast Brazil during the warm phase (El Niño) and wetter than normal conditions over northeast Brazil in the cold phase (La Niña). However, some recent studies focusing on the Northern Hemisphere have indicated that the basic response of ENSO is dependent on the phase of the Madden-Julian Oscillation (MJO). The MJO is characterized by the eastward propagation of the convection from Indian to Central Pacific Ocean and is related to variations in the position and intensity of the South Atlantic Convergence Zone (SACZ). The present work investigates the combined response of the phases of these two distinct phenomena, ENSO and MJO, over South America. Our goal is to explore the relative importance of the MJO to precipitation and temperature anomalies during ENSO events. MJO events were defined using the MJO index created by Jones and Carvalho (2012) based on empirical orthogonal functions analysis. ENSO phases were defined according to the Oceanic Niño Index provided by the National Oceanic and Atmospheric Administration (NOAA). A composite analysis with each combination of the phases of ENSO and MJO was performed to obtain the mean patterns of temperature and precipitation over South America for the months of November to March (austral summer). The results showed that the precipitation and temperature anomalies patterns observed during ENSO events, without the concurrent occurrence of the MJO, can be strengthened or weakened during events where ENSO and MJO occur simultaneously. Moreover, the effect on the anomalies patterns in these

  6. Seasonal ENSO phase locking in the Kiel Climate Model: The importance of the equatorial cold sea surface temperature bias

    NASA Astrophysics Data System (ADS)

    Wengel, C.; Latif, M.; Park, W.; Harlaß, J.; Bayr, T.

    2018-02-01

    The El Niño/Southern Oscillation (ENSO) is characterized by a seasonal phase locking, with strongest eastern and central equatorial Pacific sea surface temperature (SST) anomalies during boreal winter and weakest SST anomalies during boreal spring. In this study, key feedbacks controlling seasonal ENSO phase locking in the Kiel Climate Model (KCM) are identified by employing Bjerknes index stability analysis. A large ensemble of simulations with the KCM is analyzed, where the individual runs differ in either the number of vertical atmospheric levels or coefficients used in selected atmospheric parameterizations. All integrations use the identical ocean model. The ensemble-mean features realistic seasonal ENSO phase locking. ENSO phase locking is very sensitive to changes in the mean-state realized by the modifications described above. An excessive equatorial cold tongue leads to weak phase locking by reducing the Ekman feedback and thermocline feedback in late boreal fall and early boreal winter. Seasonal ENSO phase locking also is sensitive to the shortwave feedback as part of the thermal damping in early boreal spring, which strongly depends on eastern and central equatorial Pacific SST. The results obtained from the KCM are consistent with those from models participating in the Coupled Model Intercomparison Project phase 5 (CMIP5).

  7. The 'warm' side of coldness: Cold promotes interpersonal warmth in negative contexts.

    PubMed

    Wei, Wenqi; Ma, Jingjing; Wang, Lei

    2015-12-01

    The concrete experience of physical warmth has been demonstrated to promote interpersonal warmth. This well-documented link, however, tells only half of the story. In the current study, we thus examined whether physical coldness can also increase interpersonal warmth under certain circumstances. We conducted three experiments to demonstrate that the relationship between the experience of physical temperature and interpersonal outcomes is context dependent. Experiment 1 showed that participants touching cold (vs. warm) objects were more willing to forgive a peer's dishonest behaviour. Experiment 2 demonstrated the fully interactive effect of temperature and context on interpersonal warmth: Participants touching cold (vs. warm) objects were less likely to assist an individual who had provided them with good service (positive social context), but more likely to assist an individual who had provided them with poor service (negative social context). Experiment 3 replicated the results of Experiment 2 using the likelihood to complain, a hostility-related indicator, as the dependent variable: In a pleasant queue (positive social context), participants touching cold objects were more likely to complain and those touching warm objects were less likely to complain compared with the control group. This pattern was reversed in an annoying queue (negative social context). © 2015 The Authors. British Journal of Social Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.

  8. Sensitivity of ENSO teleconnections to a warming background state.

    NASA Astrophysics Data System (ADS)

    Drouard, Marie; Cassou, Christophe

    2016-04-01

    The sensitivity of ENSO teleconnections to the background state is investigated using two ensembles of coupled model experiments, one representative of the pre-industrial climate and the other one expected of the end of the 21st century based on the high emission RCP85 scenario. A 30-year period of representative ENSO events bearing resemblance to observed ones is a priori selected from a 850-year pre-industrial simulation of the CNRM-CM5 model. Following the so-called pacemaker protocol, new coupled experiments are carried with the model SST being restored in the eastern tropical Pacific towards the selected anomalies, the rest of the globe being fully coupled. In the first set of experiments, the anomalous restoring is applied on top of pre-industrial mean ocean state and in the second, on top of RCP85 mean state. Two sets of 10-member of 30-year long integrations are then generated. By construction, they share the exact same ENSO and thus make it possible to strictly isolate the dependence of the ENSO teleconnections to a warmer background state. Results confirm the eastward shift of the ENSO-induced deepening Aleutian low as documented in the literature for the winter season. They also show changes in the wintertime teleconnection over the North Atlantic. Several diagnostic tools (such as E-vectors) are used to investigate the dynamics of the teleconnection between the tropical Pacific, the North Pacific and dowstream towards the North Atlantic along the jet wave guide. A more indirect route based on the change in the Walker cell and associated signals in the tropical Atlantic leading to the excitation of forced Rossby wave is also analysed.

  9. ENSO events in the northern Gulf of Alaska, and effects on selected marine fisheries

    USGS Publications Warehouse

    Bailey, K.M.; Macklin, S.A.; Reed, R.K.; Brodeur, R.D.; Ingraham, W.J.; Piatt, John F.; Shima, M.; Francis, R.C.; Anderson, P.J.; Royer, T.C.; Hollowed, A.; Somerton, D.A.; Wooster, W.S.

    1995-01-01

    The 1991-93 El Nino-Southern Oscillation (ENSO) event first appeared in the northern Gulf of Alaska in autumn 1991 with warm sea-surface temperatures. In winter 1992, there were pulses of increased sea level and anomalous circulation. El Nino conditions persisted at least through summer 1993. The effects of this ENSO event on major groundfish species and Pacific herring in the northern Gulf of Alaska were examined and compared with the effects of previous ENSO events. There is little evidence that the 1991-93 or 1982-83 ENSO events affected landings of walleye pollock, Pacific cod, Pacific halibut, or arrowtooth flounder. Some changes in distribution of groundfish species were observed in 1993, but the effect was similar to changes observed in non-ENSO warm years. In general, warm ocean conditions have a positive effect on recruitment of northern stocks, but ENSO events appear to have an inconsistent effect on year-class strength within species and among different species. For example, strong year classes of halibut and arrowtooth flounder sometimes, but not always, coincide with ENSO events; ENSO events are associated with moderate to weak year classes of cod and pollock. However, post-ENSO warm years often are associated with strong recruitment of many groundfish species. Major changes have occurred in the Gulf of Alaska ecosystem since 1977. The influence of the 1976 ENSO event in precipitating these changes and the role of the frequency or strength of subsequent El Nino events is presently unknown. Herring and other stocks of small pelagic fishes may be more affected by ENSO events. In particular, decreased catches, recruitment, and weight-at-age of herring are sometimes associated with ENSO events. Furthermore, a variety of seabirds which feed mostly on pelagic forage fishes or the pelagic juvenile stages of groundfish suffered widespread mortalities and breeding failures in the Gulf of Alaska during the ENSO years of 1983 and 1993. These effects on seabirds

  10. Is cold or warm blood cardioplegia superior for myocardial protection?

    PubMed Central

    Abah, Udo; Roberts, Patrick Garfjeld; Ishaq, Muhammad; De Silva, Ravi

    2012-01-01

    A best evidence topic in cardiac surgery was written according to a structured protocol. The question addressed was whether the use of warm or cold blood cardioplegia has superior myocardial protection. More than 192 papers were found using the reported search, of which 20 represented the best evidence to answer the clinical question. The authors, journal, date, country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. A good breadth of high-level evidence addressing this clinical dilemma is available, including a recent meta-analysis and multiple large randomized clinical trials. Yet despite this level of evidence, no clear significant clinical benefit has been demonstrated by warm or cold blood cardioplegia. This suggests that neither method is significantly superior and that both provide similar efficacy of myocardial protection. The meta-analysis, including 41 randomized control trials (5879 patients in total), concluded that although a lower cardiac enzyme release and improved postoperative cardiac index was demonstrated in the warm cardioplegia group, this benefit was not reflected in clinical outcomes, which were similar in both groups. This theme of benefit in biochemical markers, physiological metrics and non-fatal postoperative events in the warm cardioplegia group ran throughout the literature, in particular the ‘Warm Heart investigators’ who conducted a randomized trial of 1732 patients, demonstrated a reduction in postoperative low output syndrome (6.1 versus 9.3%, P = 0.01) in the warm cardioplegia group, but no significant drop in 30-day all-cause mortality (1.4 versus 2.5%, P = 0.12). However, their later follow-up indicates non-fatal postoperative events predict reduced late survival, independent of cardioplegia. A minority of studies suggested a benefit of cold cardioplegia over warm in particular patient subgroups: One group conducted a retrospective study of 520 patients who

  11. Warm summers during the Younger Dryas cold reversal.

    PubMed

    Schenk, Frederik; Väliranta, Minna; Muschitiello, Francesco; Tarasov, Lev; Heikkilä, Maija; Björck, Svante; Brandefelt, Jenny; Johansson, Arne V; Näslund, Jens-Ove; Wohlfarth, Barbara

    2018-04-24

    The Younger Dryas (YD) cold reversal interrupts the warming climate of the deglaciation with global climatic impacts. The sudden cooling is typically linked to an abrupt slowdown of the Atlantic Meridional Overturning Circulation (AMOC) in response to meltwater discharges from ice sheets. However, inconsistencies regarding the YD-response of European summer temperatures have cast doubt whether the concept provides a sufficient explanation. Here we present results from a high-resolution global climate simulation together with a new July temperature compilation based on plant indicator species and show that European summers remain warm during the YD. Our climate simulation provides robust physical evidence that atmospheric blocking of cold westerly winds over Fennoscandia is a key mechanism counteracting the cooling impact of an AMOC-slowdown during summer. Despite the persistence of short warm summers, the YD is dominated by a shift to a continental climate with extreme winter to spring cooling and short growing seasons.

  12. ENSO and East Asian winter monsoon relationship modulation associated with the anomalous northwest Pacific anticyclone

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Won; An, Soon-Il; Jun, Sang-Yoon; Park, Hey-Jin; Yeh, Sang-Wook

    2017-08-01

    Using observational datasets and numerical model experiments, the mechanism on the slowly varying change in the relationship between the El Niño-Southern Oscillation (ENSO) and the East Asian winter monsoon (EAWM) is investigated. The decadal-window (11-, 15-, and 21-year) moving correlations show a significant change in the boreal wintertime ENSO-EAWM relationship between two sub-periods of 1976‒1992 and 1997‒2013. Such recent change in ENSO-EAWM relationship is mainly attributed to the changes in the intensity and zonal location of the anomalous lower-tropospheric northwest Pacific anticyclone (NWP-AC). NWP-AC commonly develops near the region of the Philippine Sea during the ENSO's peak phase and plays an important role of bridging the tropical convection and mid-latitude teleconnection. On one hand, the intensity of the NWP-AC is influenced by the interdecadal variation in a linkage between ENSO and the Indian Ocean sea surface temperature (SST) variability, referring that a strong connection between the Pacific and Indian Oceans results in the strengthening of NWP-AC response to ENSO. On the other hand, the zonal displacement of the NWP-AC is associated with the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). That is, the tropical Pacific mean state (i.e., zonal SST gradient between climatologically warm western Pacific and cold eastern Pacific)—strengthened by either the negative PDO phase or the positive AMO phase—drives the anomalous ENSO-induced convection to be shifted to the west. With this westward shift, the zonal center of the NWP-AC also migrates westward over the Philippine Islands and exerts stronger connection between ENSO and EAWM. In contrast, the relaxed zonal SST contrast associated with either the positive PDO phase or the negative AMO phase tends to exhibit weaker ENSO-EAWM relationship via both of eastward shifted zonal centers of the anomalous ENSO-induced convection and the NWP-AC. Finally, a

  13. ENSO in a warming world: interannual climate variability in the early Miocene Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Fox, Bethany; Wilson, Gary; Lee, Daphne

    2016-04-01

    The El Niño - Southern Oscillation (ENSO) is the dominant source of interannual variability in the modern-day climate system. ENSO is a quasi-periodic cycle with a recurrence interval of 2-8 years. A major question in modern climatology is how ENSO will respond to increased climatic warmth. ENSO-like (2-8 year) cycles have been detected in many palaeoclimate records for the Holocene. However, the temporal resolution of pre-Quaternary palaeoclimate archives is generally too coarse to investigate ENSO-scale variability. We present a 100-kyr record of ENSO-like variability during the second half of the Oligocene/Miocene Mi-1 event, a period of increasing global temperatures and Antarctic deglaciation (~23.032-2.93 Ma). This record is drawn from an annually laminated lacustrine diatomite from southern New Zealand, a region strongly affected by ENSO in the present day. The diatomite consists of seasonal alternations of light (diatom bloom) and dark (low diatom productivity) layers. Each light-dark couplet represents one year's sedimentation. Light-dark couplet thickness is characterised by ENSO-scale variability. We use high-resolution (sub-annual) measurements of colour spectra to detect couplet thickness variability. Wavelet analysis indicates that absolute values are modulated by orbital cycles. However, when orbital effects are taken into account, ENSO-like variability occurs throughout the entire depositional period, with no clear increase or reduction in relation to Antarctic deglaciation and increasing global warmth.

  14. Numerical Study on Interdecadal Modulations of ENSO-related Spring Rainfall over South China by the Pacific Decadal Oscillation

    NASA Astrophysics Data System (ADS)

    MAO, J.; WU, X.

    2017-12-01

    The spatio-temporal variations of eastern China spring rainfall are identified via empirical orthogonal function (EOF) analysis of rain-gauge (gridded) precipitation datasets for the period 1958-2013 (1920-2013). The interannual variations of the first two leading EOF modes are linked with the El Niño-Southern Oscillation (ENSO), with this linkage being modulated by the Pacific Decadal Oscillation (PDO). The EOF1 mode, characterized by predominant rainfall anomalies from the Yangtze River to North China (YNC), is more likely associated with out-of-phase PDO-ENSO events [i.e., El Niño during cold PDO (EN_CPDO) and La Niña during warm PDO (LN_WPDO)]. The sea surface temperature anomaly (SSTA) distributions of EN_CPDO (LN_WPDO) events induce a significant anomalous anticyclone (cyclone) over the western North Pacific stretching northwards to the Korean Peninsula and southern Japan, resulting in anomalous southwesterlies (northeasterlies) prevailing over eastern China and above-normal (below-normal) rainfall over YNC. In contrast, EOF2 exhibits a dipole pattern with predominantly positive rainfall anomalies over southern China along with negative anomalies over YNC, which is more likely connected to in-phase PDO-ENSO events [i.e., El Niño during warm PDO (EN_WPDO) and La Niña during cold PDO (LN_CPDO)]. EN_WPDO (LN_CPDO) events force a southwest-northeast oriented dipole-like circulation pattern leading to significant anomalous southwesterlies (northeasterlies) and above-normal (below-normal) rainfall over southern China. Numerical experiments with the CAM5 model forced by the SSTA patterns of EN_WPDO and EN_CPDO events reproduce reasonably well the corresponding anomalous atmospheric circulation patterns and spring rainfall modes over eastern China, validating the related mechanisms.

  15. Decadal modulation of the ENSO-East Asian winter monsoon relationship by the Atlantic Multidecadal Oscillation

    NASA Astrophysics Data System (ADS)

    Geng, Xin; Zhang, Wenjun; Stuecker, Malte F.; Liu, Peng; Jin, Fei-Fei; Tan, Guirong

    2017-10-01

    This work investigates the decadal modulation of the El Niño-Southern Oscillation (ENSO)-East Asian winter monsoon (EAWM) relationship by the Atlantic Multidecadal Oscillation (AMO). A stable ENSO-EAWM relationship is found during the positive AMO phase but not during the negative phase. While the impact of El Niño events on the EAWM does not depend on the AMO phase, a different picture is observed for La Niña events. The La Niña boreal winter season coincides with a strengthened EAWM during a positive AMO phase and a weakened EAWM during a negative AMO phase. We suggest that the AMO's modulating effect mainly comprises two pathways that influence ENSO's impact on the EAWM. On one hand, when La Niña coincides with a positive AMO, the warm SST anomalies over the western North Pacific (WNP) are amplified both in intensity and spatial extent, which favors strengthened WNP cyclonic anomalies and an enhanced EAWM. During La Niña with a negative AMO, only very weak SST anomalies occur over the WNP with reduced WNP cyclonic anomalies that are confined to the tropics, thus having little effect on the EAWM. On the other hand, an eastward-propagating Rossby wavetrain across the mid-high latitudes of Eurasia during a warm AMO phase strengthens the Siberian high and thus leads to a strengthened EAWM, while during a cold AMO phase the Siberian high is weakened, leading to a reduced EAWM. In contrast, El Niño and its associated atmospheric responses are relatively strong and stable, independent of the AMO phase. These results carry important implications to the seasonal-to-interannual predictability associated with ENSO.

  16. Potential role of salinity in ENSO and MJO predictions

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Kumar, A.; Murtugudde, R. G.; Xie, P.

    2017-12-01

    Studies have suggested that ocean salinity can vary in response to ENSO and MJO. For example, during an El Niño event, sea surface salinity decreases in the western and central equatorial Pacific, as a result of zonal advection of low salinity water by anomalous eastward surface currents, and to a lesser extent as a result of a rainfall excess associated with atmospheric convection and warm water displacements. However, the effect of salinity on ENSO and MJO evolutions and their forecasts has been less explored. In this analysis, we explored the potential role of salinity in ENSO and MJO predictions by conducting sensitivity experiments with NCEP CFSv2. Firstly, two forecasts experiments are conducted to explore its effect on ENSO predictions, in which the interannual variability of salinity in the ocean initial states is either included or excluded. Comparisons suggested that the salinity variability is essential to correctly forecast the 2007/08 La Niña starting from April 2007. With realistic salinity initial states, the tendency to decay of the subsurface cold condition during the spring and early summer 2007 was interrupted by positive salinity anomalies in the upper central Pacific, which working together with the Bjerknes positive feedback, contributed to the development of the La Niña event. Our study suggests that ENSO forecasts will benefit from more accurate sustained salinity observations having large-scale spatial coverage. We also assessed the potential role of salinity in MJO by evaluating a long coupled free run that has a relatively realistic MJO simulation and a set of predictability experiment, both based on CFSv2. Diagnostics of the free run suggest that, while the intraseasonal SST variations lead convections by a quarter cycle, they are almost in phase only with changes in barrier layer thickness, thereby suggesting an active role of salinity on SST. Its effect on MJO predictions is further explored by controlling the surface salinity

  17. [Comparative evaluation of heat state in workers exposed to heating microclimate during cold and warm seasons].

    PubMed

    Afanas'eva, R F; Prokopenko, L V; Kiladze, N A; Konstantinov, E I

    2009-01-01

    The authors demonstrated differences in heat state among workers exposed to heating microclimate during cold and warm seasons. Same external thermal load in cold season induces more humidity loss, lower weighted average skin temperature, higher pulse rate, increased systolic and diastolic blood pressure. With that, heat discomfort was more in cold season, than in warm one, this necessitates decrease of thermal load in cold season vs. the warm one.

  18. Warm Arctic-cold Siberia: comparing the recent and the early 20th-century Arctic warmings

    NASA Astrophysics Data System (ADS)

    Wegmann, Martin; Orsolini, Yvan; Zolina, Olga

    2018-02-01

    The Warm Arctic-cold Siberia surface temperature pattern during recent boreal winter is suggested to be triggered by the ongoing decrease of Arctic autumn sea ice concentration and has been observed together with an increase in mid-latitude extreme events and a meridionalization of tropospheric circulation. However, the exact mechanism behind this dipole temperature pattern is still under debate, since model experiments with reduced sea ice show conflicting results. We use the early twentieth-century Arctic warming (ETCAW) as a case study to investigate the link between September sea ice in the Barents-Kara Sea (BKS) and the Siberian temperature evolution. Analyzing a variety of long-term climate reanalyses, we find that the overall winter temperature and heat flux trend occurs with the reduction of September BKS sea ice. Tropospheric conditions show a strengthened atmospheric blocking over the BKS, strengthening the advection of cold air from the Arctic to central Siberia on its eastern flank, together with a reduction of warm air advection by the westerlies. This setup is valid for both the ETCAW and the current Arctic warming period.

  19. More Frequent Weak Stratospheric Polar Vortex States Linked to Cold Extremes

    NASA Astrophysics Data System (ADS)

    Kretschmer, M.; Coumou, D.; Agel, L. A.; Barlow, M. A.; Tziperman, E.; Cohen, J. L.

    2016-12-01

    The extra-tropical stratosphere in boreal winter is characterized by a strong circumpolar westerly jet, referred to as the stratospheric polar vortex (SPV) which confines cold temperatures at high latitudes. Previous studies showed that a weak SPV can lead to cold-air outbreaks in the mid-latitudes but the exact relationships and mechanisms are still unclear. Particularly, it is unclear whether stratospheric variability has contributed to the observed anomalous cooling trends in Central and eastern Asia. Using hierarchical clustering, we show that over the last 37 years, the frequency of weak vortex states in mid to late winter (January and February) has increased significantly accompanied by subsequent cold surface temperatures in the mid-latitudes. Furthermore, we show that stratospheric and El Niño/Southern Oscillation (ENSO) variability can explain most of the observed spatially heterogenic winter temperature trends in the era of Arctic amplification but the contribution of ENSO is less important. We show that the weakening of the SPV was related to a strengthening Siberian high and poleward heat flux. These findings support the hypothesis that a warming Arctic has weakened the SPV and thereby increased the frequency of cold-air outbreaks.

  20. Post-treatment with Ma-Huang-Tang ameliorates cold-warm-cycles induced rat lung injury.

    PubMed

    Xiao, Meng-Meng; Pan, Chun-Shui; Liu, Yu-Ying; Ma, Li-Qian; Yan, Li; Fan, Jing-Yu; Wang, Chuan-She; Huang, Rong; Han, Jing-Yan

    2017-03-22

    Frequent and drastic ambient temperature variation may cause respiratory diseases such as common cold and pneumonia, the mechanism for which is not fully understood, however, due to lack of appropriate animal models. Ma-Huang-Tang (MHT) is widely used in China for treatment of respiratory diseases. The present study aimed to investigate the effect of MHT on temperature alternation induced rat lung injury and explore underlying mechanisms. Male Sprague-Dawley rats were exposed to a cold environment for 1 h and then shifted to a warm environment for 30 min. This cold and warm alteration cycled 4 times. Rats were administrated with MHT (1.87 g/kg) by gavage 6 h after cold-warm-cycles. Cold-warm-cycles induced pulmonary microcirculatory disorders, lung edema and injury, decrease in the expression of tight junction proteins, increase in VE-cadherin activation, increase in the expression and activation of Caveolin-1, Src and NF-κB, and NADPH oxidase subunits p47 phox , p40 phox and p67 phox membrane translocation and inflammatory cytokines production. All alterations were significantly ameliorated by post-treatment with MHT. This study showed that rats subjected to cold-warm-cycles may be used as an animal model to investigate ambient temperature variation-induced lung injury, and suggested MHT as a potential strategy to combat lung injury induced by temperature variation.

  1. Complex regional pain syndrome: evidence for warm and cold subtypes in a large prospective clinical sample.

    PubMed

    Bruehl, Stephen; Maihöfner, Christian; Stanton-Hicks, Michael; Perez, Roberto S G M; Vatine, Jean-Jacques; Brunner, Florian; Birklein, Frank; Schlereth, Tanja; Mackey, Sean; Mailis-Gagnon, Angela; Livshitz, Anatoly; Harden, R Norman

    2016-08-01

    Limited research suggests that there may be Warm complex regional pain syndrome (CRPS) and Cold CRPS subtypes, with inflammatory mechanisms contributing most strongly to the former. This study for the first time used an unbiased statistical pattern recognition technique to evaluate whether distinct Warm vs Cold CRPS subtypes can be discerned in the clinical population. An international, multisite study was conducted using standardized procedures to evaluate signs and symptoms in 152 patients with clinical CRPS at baseline, with 3-month follow-up evaluations in 112 of these patients. Two-step cluster analysis using automated cluster selection identified a 2-cluster solution as optimal. Results revealed a Warm CRPS patient cluster characterized by a warm, red, edematous, and sweaty extremity and a Cold CRPS patient cluster characterized by a cold, blue, and less edematous extremity. Median pain duration was significantly (P < 0.001) shorter in the Warm CRPS (4.7 months) than in the Cold CRPS subtype (20 months), with pain intensity comparable. A derived total inflammatory score was significantly (P < 0.001) elevated in the Warm CRPS group (compared with Cold CRPS) at baseline but diminished significantly (P < 0.001) over the follow-up period, whereas this score did not diminish in the Cold CRPS group (time × subtype interaction: P < 0.001). Results support the existence of a Warm CRPS subtype common in patients with acute (<6 months) CRPS and a relatively distinct Cold CRPS subtype most common in chronic CRPS. The pattern of clinical features suggests that inflammatory mechanisms contribute most prominently to the Warm CRPS subtype but that these mechanisms diminish substantially during the first year postinjury.

  2. Interhemispheric temperature difference as a predictor of boreal winter ENSO

    NASA Astrophysics Data System (ADS)

    Piskozub, Jacek; Gutowska, Dorota

    2013-04-01

    We use statistical analysis to show statistically significant relationship between the boreal winter MEI index of ENSO and HadCRUT3 temperature difference between Northern and Southern hemispheres (NH - SH) during the preceding summer. Correlation values increase (in absolute terms) if the correlated time periods are increased from month to seasonal length. For example December and January (DJ) MEI values anticorrelate stronger with the preceding MJJA period than with any of the four months taken separately. We believe this is further evidence that the correlation is caused by a real physical process as increase of the averaging period tends to reduce statistical noise. The motivation for looking for such a relationship comes from review of literature on paleoclimatic ENSO behavior. We have noticed that in many cases relatively cold NH coincided with "strong ENSO" (frequent El Niños), for example the Ice Age periods and Little Ice Age. On the other hand periods of relatively warm NH (the Holocene climate optimum or Medieval Climate Anomaly) are coincident with frequent or even "permanent" La Niñas. This relationship suggest the influence of the position of Intertropical Convergence Zone (ITCZ) on the frequency of El Niños. The simplest physical mechanism of the relationship is that the positive (negative) NH-SH temperature difference causes a north (south) shift of ITCZ with a parallel shift of trade wind zones. The North-South orographic difference between the Panama Isthmus and the South America may cause stronger (weaker) trade winds in Eastern Tropical Pacific increasing (decreasing) the thermochemical tilt which, in turn, causes a more negative (positive) ENSO values. Of course this may be only a first approximation of the real mechanism of this "teleconnection". The correlations we have found are not strong even if statistically significant. For example, the MJJA NH-SH temperature vs. DJ MEI correlation has r = -0.28 implying it explains only 8% of boreal

  3. Contrasting ENSO types with novel satellite derived ocean phytoplankton biomass

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Singh, A. M.; Marinov, I.; Kostadinov, T. S.

    2016-12-01

    Observed variations in community structure and biogeochemical processes in the tropics and the North Atlantic have been linked, in the first order, to the El Niño Southern Oscillation phenomenon (e.g., Bates, 2001; Karl et al., 2001; Di Lorenzo et al., 2010; Di Lorenzo et al., 2013). Current significant technical advances have allowed for the retrieval of biological data from the optical properties of the water via satellite ocean color remote sensing, providing an opportunity for quantifying the relationships between biological and climate indices. Studies have focused in-depth on contrasting flavors of the ENSO types with various physical (e.g., Singh et al. 2011; Turk et al. 2011) and biological (e.g., Radenac et al. 2012) indices. Here, we analyze the impact of different ENSO types on biology via analysis of recently-derived backscattering-based biomass separated into size-groups (Kostadinov et al. 2010, 2016) over the 17-year (1997-2013). We further contrast the responses of biomass with those of chlorophyll (Chl) and particulate inorganic carbon (PIC). We analyze the complex spatial differences in both physical (SST, mixed layer depth, winds) and biological (Chl, total and size-partitioned biomass) variability across the Pacific warm pool and equatorial tongue via simple EOF, combined regression-EOF and Agglomerative Hierarchical Clustering (AHC) analysis. The interannual variability in the physical and biological fields show clear signatures of the Niño cold-tongue (NCT) and Niño warm pool (NWP). Possible mechanisms responsible for these signatures are discussed.

  4. ENSO and its modulations on annual and multidecadal timescales revealed by Nonlinear Laplacian Spectral Analysis

    NASA Astrophysics Data System (ADS)

    Giannakis, D.; Slawinska, J. M.

    2016-12-01

    The variability of the Indo-Pacific Ocean on interannual to multidecadal timescales is investigated in a millennial control run of CCSM4 and in observations using a recently introduced technique called Nonlinear Laplacian Spectral Analysis (NLSA). Through this technique, drawbacks associated with ad hoc pre-filtering of the input data are avoided, enabling recovery of low-frequency and intermittent modes not accessible previously via classical approaches. Here, a multiscale hierarchy of modes is identified for Indo-Pacific SST and numerous linkages between these patterns are revealed. On interannual timescales, a mode with spatiotemporal pattern corresponding to the fundamental component of ENSO emerges, along with modulations of the annual cycle by ENSO in agreement with ENSO combination mode theory. In spatiotemporal reconstructions, these patterns capture the seasonal southward migration of SST and zonal wind anomalies associated with termination of El Niño and La Niña events. Notably, this family of modes explains a significant portion of SST variance in Eastern Indian Ocean regions employed in the definition of Indian Ocean dipole (IOD) indices, suggesting that it should be useful for understanding the linkage of these indices with ENSO and the interaction of the Indian and Pacific Oceans. In model data, we find that the ENSO and ENSO combination modes are modulated on multidecadal timescales by a mode predominantly active in the western tropical Pacific - we call this mode West Pacific Multidecadal Oscillation (WPMO). Despite the relatively low variance explained by this mode, its dynamical role appears to be significant as it has clear sign-dependent modulating relationships with the interannual modes carrying most of the variance. In particular, cold WPMO events are associated with anomalous Central Pacific westerlies favoring stronger ENSO events, while warm WPMO events suppress ENSO activity. Moreover, the WPMO has significant climatic impacts as

  5. On the role of ozone feedback in the ENSO amplitude response under global warming.

    PubMed

    Nowack, Peer J; Braesicke, Peter; Luke Abraham, N; Pyle, John A

    2017-04-28

    The El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean is of key importance to global climate and weather. However, state-of-the-art climate models still disagree on the ENSO's response under climate change. The potential role of atmospheric ozone changes in this context has not been explored before. Here we show that differences between typical model representations of ozone can have a first-order impact on ENSO amplitude projections in climate sensitivity simulations. The vertical temperature gradient of the tropical middle-to-upper troposphere adjusts to ozone changes in the upper troposphere and lower stratosphere, modifying the Walker circulation and consequently tropical Pacific surface temperature gradients. We show that neglecting ozone changes thus results in a significant increase in the number of extreme ENSO events in our model. Climate modeling studies of the ENSO often neglect changes in ozone. We therefore highlight the need to understand better the coupling between ozone, the tropospheric circulation, and climate variability.

  6. Cold and warm electrons at comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Eriksson, A. I.; Engelhardt, I. A. D.; André, M.; Boström, R.; Edberg, N. J. T.; Johansson, F. L.; Odelstad, E.; Vigren, E.; Wahlund, J.-E.; Henri, P.; Lebreton, J.-P.; Miloch, W. J.; Paulsson, J. J. P.; Simon Wedlund, C.; Yang, L.; Karlsson, T.; Jarvinen, R.; Broiles, T.; Mandt, K.; Carr, C. M.; Galand, M.; Nilsson, H.; Norberg, C.

    2017-09-01

    Context. Strong electron cooling on the neutral gas in cometary comae has been predicted for a long time, but actual measurements of low electron temperature are scarce. Aims: Our aim is to demonstrate the existence of cold electrons in the inner coma of comet 67P/Churyumov-Gerasimenko and show filamentation of this plasma. Methods: In situ measurements of plasma density, electron temperature and spacecraft potential were carried out by the Rosetta Langmuir probe instrument, LAP. We also performed analytical modelling of the expanding two-temperature electron gas. Results: LAP data acquired within a few hundred km from the nucleus are dominated by a warm component with electron temperature typically 5-10 eV at all heliocentric distances covered (1.25 to 3.83 AU). A cold component, with temperature no higher than about 0.1 eV, appears in the data as short (few to few tens of seconds) pulses of high probe current, indicating local enhancement of plasma density as well as a decrease in electron temperature. These pulses first appeared around 3 AU and were seen for longer periods close to perihelion. The general pattern of pulse appearance follows that of neutral gas and plasma density. We have not identified any periods with only cold electrons present. The electron flux to Rosetta was always dominated by higher energies, driving the spacecraft potential to order - 10 V. Conclusions: The warm (5-10 eV) electron population observed throughout the mission is interpreted as electrons retaining the energy they obtained when released in the ionisation process. The sometimes observed cold populations with electron temperatures below 0.1 eV verify collisional cooling in the coma. The cold electrons were only observed together with the warm population. The general appearance of the cold population appears to be consistent with a Haser-like model, implicitly supporting also the coupling of ions to the neutral gas. The expanding cold plasma is unstable, forming filaments that

  7. Evaporation/SST Sensitivity Over the Tropical Oceans During ENSO Events as Estimated from the da Silva, Young, Levitus Surface Marine Data Set

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Fitzjarrald, D. E.; Sohn, B.-J.; Arnold, James E. (Technical Monitor)

    2001-01-01

    The da Silva, Young and Levitus Surface Marine Atlas, based on observations from the Comprehensive Ocean Atmosphere Data Set (COADS) Release 1, has been used to investigate the relationship between evaporation and sea-surface temperature (SST) over the global oceans. For the period 1950 to 1987 SST, surface latent heat flux, and other related variables have been filtered to minimize data uncertainties and to focus upon interannual variations associated with warm (El Nino) and cold (La Nina) ENSO events. Compositing procedures have enabled identification of systematic variations in latent heat fluxes accompanying these events and the relationship to spatial anomalies in ocean surface wind speed and humidity. The evaporation response associated with ENSO sea surface temperature (SST) variability is systematic in nature and composed of offsetting contributions from the surface wind and humidity variations. During warm events exceeding 1.0 S.D. delta SST, increases in the surface humidity deficit, delta(qs-qa), between the surface and 2m height dominate regions of positive SST anomalies and lead to increases in evaporation of almost 2 Wm (exp -2) at deltaSST = 0.23 K. Despite the increases in specific humidity, relative humidity decreases slightly in regions of elevated SSTs. For the most part, variations in wind speed are consistent with previous investigations. Weakening of the equatorial easterlies (and generation of westerlies) between 160 degrees E and 140 degrees W dominates during the early phases of warm events. Elevated wind speeds in adjacent subtropical regions and in the eastern equatorial Pacific subsequently develop too. The net contribution of these winds, which reflect adjustments in Hadley and Walker circulation components is toward reduced evaporation. Results for cold periods are approximately similar, but opposite in sign to warm events, though evidence of different temporal evolution is noted.

  8. Apoptotic cells subjected to cold/warming exposure disorganize apoptotic microtubule network and undergo secondary necrosis.

    PubMed

    Oropesa-Ávila, Manuel; Fernández-Vega, Alejandro; de la Mata, Mario; Garrido-Maraver, Juan; Cotán, David; Paz, Marina Villanueva; Pavón, Ana Delgado; Cordero, Mario D; Alcocer-Gómez, Elizabet; de Lavera, Isabel; Lema, Rafael; Zaderenko, Ana Paula; Sánchez-Alcázar, José A

    2014-09-01

    Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath the plasma membrane which plays a critical role in preserving cell morphology and plasma membrane integrity. The aim of this study was to examine the effect of cold/warming exposure on apoptotic microtubules and plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptotic H460 cells that cold/warming exposure disorganized apoptotic microtubules and allowed the access of active caspases to the cellular cortex and the cleavage of essential proteins in the preservation of plasma membrane permeability. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase and calcium ATPase pump (PMCA-4) involved in cell calcium extrusion resulted in increased plasma permeability and calcium overload leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the addition of the pan-caspase inhibitor z-VAD during cold/warming exposure that induces AMN depolymerization avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Likewise, apoptotic microtubules stabilization by taxol during cold/warming exposure also prevented cellular cortex and plasma membrane protein cleavage and secondary necrosis. Furthermore, microtubules stabilization or caspase inhibition during cold/warming exposure was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that cold/warming exposure of apoptotic cells induces secondary necrosis which can be prevented by both, microtubule stabilization or caspase inhibition.

  9. Influence of ENSO on coastal flood hazard and exposure at the global-scale

    NASA Astrophysics Data System (ADS)

    Muis, S.; Haigh, I. D.; Guimarães Nobre, G.; Aerts, J.; Ward, P.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) is the dominant signal of interannual climate variability. The unusually warm (El Niño) and cold (La Niña) oceanic and atmospheric conditions in the tropical Pacific drives interannual variability in both mean and extreme sea levels, which in turn may influence the probabilities and impacts of coastal flooding. We assess the influence of ENSO on coastal flood hazard and exposure using daily timeseries from the Global Time and Surge Reanalysis (GTSR) dataset (Muis et al., 2016). As the GTSR timeseries do not include steric effects (i.e. density differences), we improve the GTSR timeseries by adding steric sea levels. Evaluation against observed sea levels shows that the including steric sea levels leads to a much better representation of the seasonal and interannual variability. We show that sea level anomalies occur during ENSO years with higher sea levels during La Niña in the South-Atlantic, Indian Ocean and the West Pacific, whereas sea levels are lower in the east Pacific. The pattern is generally inversed for El Niño. We also find an effect of ENSO in the number of people exposed to coastal flooding. Although the effect is minor at the global-scale, it may be important for flood risk management to consider at the national or sub national levels. Previous studies at the global-scale have used tide gauge observation to assess the influence of ENSO on extreme sea levels. The advantage of our approach over observations is that GTSR provides a consistent dataset with a full global coverage for the period 1979-2014. This allows us to assess ENSO's influence on sea level extremes anywhere in the world. Furthermore, it enables us to also calculate the impacts of extreme sea levels in terms of coastal flooding and exposed population. ReferencesMuis et al (2016) A global reanalysis of storm surges and extreme sea levels. Nature Communications.7:11969. doi:10.1038/ncomms11969.

  10. Greening of the Sahara suppressed ENSO activity during the mid-Holocene.

    PubMed

    Pausata, Francesco S R; Zhang, Qiong; Muschitiello, Francesco; Lu, Zhengyao; Chafik, Léon; Niedermeyer, Eva M; Stager, J Curt; Cobb, Kim M; Liu, Zhengyu

    2017-07-07

    The evolution of the El Niño-Southern Oscillation (ENSO) during the Holocene remains uncertain. In particular, a host of new paleoclimate records suggest that ENSO internal variability or other external forcings may have dwarfed the fairly modest ENSO response to precessional insolation changes simulated in climate models. Here, using fully coupled ocean-atmosphere model simulations, we show that accounting for a vegetated and less dusty Sahara during the mid-Holocene relative to preindustrial climate can reduce ENSO variability by 25%, more than twice the decrease obtained using orbital forcing alone. We identify changes in tropical Atlantic mean state and variability caused by the momentous strengthening of the West Africa Monsoon (WAM) as critical factors in amplifying ENSO's response to insolation forcing through changes in the Walker circulation. Our results thus suggest that potential changes in the WAM due to anthropogenic warming may influence ENSO variability in the future as well.

  11. Molecular determinants of enzyme cold adaptation: comparative structural and computational studies of cold- and warm-adapted enzymes.

    PubMed

    Papaleo, Elena; Tiberti, Matteo; Invernizzi, Gaetano; Pasi, Marco; Ranzani, Valeria

    2011-11-01

    The identification of molecular mechanisms underlying enzyme cold adaptation is a hot-topic both for fundamental research and industrial applications. In the present contribution, we review the last decades of structural computational investigations on cold-adapted enzymes in comparison to their warm-adapted counterparts. Comparative sequence and structural studies allow the definition of a multitude of adaptation strategies. Different enzymes carried out diverse mechanisms to adapt to low temperatures, so that a general theory for enzyme cold adaptation cannot be formulated. However, some common features can be traced in dynamic and flexibility properties of these enzymes, as well as in their intra- and inter-molecular interaction networks. Interestingly, the current data suggest that a family-centered point of view is necessary in the comparative analyses of cold- and warm-adapted enzymes. In fact, enzymes belonging to the same family or superfamily, thus sharing at least the three-dimensional fold and common features of the functional sites, have evolved similar structural and dynamic patterns to overcome the detrimental effects of low temperatures.

  12. [Warm acupuncture for chronic atrophic gastritis with spleen-stomach deficiency cold].

    PubMed

    Wang, Lijun; Li, Guangqi

    2017-02-12

    To observe the clinical effect of warm acupuncture at Zhongwan(CV 12) for chronic atrophic gastritis(CAG) with spleen-stomach deficiency cold by the comparison with conventional acupuncture. Sixty-two patients were randomly assigned into a warm acupuncture group and a conventional acupuncture group,31 cases in each one. The acupoints in the two groups were Zhongwan(CV 12),Zusanli(ST 36),Neiguan(PC 6),Gongsun(SP 4),Qihai(CV 6),Pishu(BL 20) and Weishu(BL 21). Warm acupuncture was intervened at Zhongwan(CV 12) in the warm acupuncture group. Twirling reinforcing was applied at Zhongwan(CV 12) in the conventional acupuncture group. All the treatment was given for 3 courses continuously,5 days as one course,once a day. TCM syndrome score and symptom rating scale were observed before and after treatment in the two groups,and the effects were compared. The total effective rate was 93.5%(29/31) in the warm acupuncture group,which was better than 87.0%(27/31) in the conventional acupuncture group( P <0.05). The TCM syndrome score and symptom rating score were improved in the two groups after treatment( P <0.01, P <0.05),with more apparent improvement in the warm acupuncture group( P <0.01, P <0.05). Warm acupuncture at Zhongwan(CV 12) can improve gastrointestinal discomfort,which is better than twirling reinforcing at Zhongwan(CV 12) for CAG with spleen-stomach deficiency cold.

  13. Asian Summer Monsoon Rainfall associated with ENSO and its Predictability

    NASA Astrophysics Data System (ADS)

    Shin, C. S.; Huang, B.; Zhu, J.; Marx, L.; Kinter, J. L.; Shukla, J.

    2015-12-01

    The leading modes of the Asian summer monsoon (ASM) rainfall variability and their seasonal predictability are investigated using the CFSv2 hindcasts initialized from multiple ocean analyses over the period of 1979-2008 and observation-based analyses. It is shown that the two leading empirical orthogonal function (EOF) modes of the observed ASM rainfall anomalies, which together account for about 34% of total variance, largely correspond to the ASM responses to the ENSO influences during the summers of the developing and decaying years of a Pacific anomalous event, respectively. These two ASM modes are then designated as the contemporary and delayed ENSO responses, respectively. It is demonstrated that the CFSv2 is capable of predicting these two dominant ASM modes up to the lead of 5 months. More importantly, the predictability of the ASM rainfall are much higher with respect to the delayed ENSO mode than the contemporary one, with the predicted principal component time series of the former maintaining high correlation skill and small ensemble spread with all lead months whereas the latter shows significant degradation in both measures with lead-time. A composite analysis for the ASM rainfall anomalies of all warm ENSO events in this period substantiates the finding that the ASM is more predictable following an ENSO event. The enhanced predictability mainly comes from the evolution of the warm SST anomalies over the Indian Ocean in the spring of the ENSO maturing phases and the persistence of the anomalous high sea surface pressure over the western Pacific in the subsequent summer, which the hindcasts are able to capture reasonably well. The results also show that the ensemble initialization with multiple ocean analyses improves the CFSv2's prediction skill of both ENSO and ASM rainfall. In fact, the skills of the ensemble mean hindcasts initialized from the four different ocean analyses are always equivalent to the best ones initialized from any individual ocean

  14. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.

    PubMed

    Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick

    2016-01-07

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments.

  15. Greening of the Sahara suppressed ENSO activity during the mid-Holocene

    PubMed Central

    Pausata, Francesco S. R.; Zhang, Qiong; Muschitiello, Francesco; Lu, Zhengyao; Chafik, Léon; Niedermeyer, Eva M.; Stager, J. Curt; Cobb, Kim M.; Liu, Zhengyu

    2017-01-01

    The evolution of the El Niño-Southern Oscillation (ENSO) during the Holocene remains uncertain. In particular, a host of new paleoclimate records suggest that ENSO internal variability or other external forcings may have dwarfed the fairly modest ENSO response to precessional insolation changes simulated in climate models. Here, using fully coupled ocean-atmosphere model simulations, we show that accounting for a vegetated and less dusty Sahara during the mid-Holocene relative to preindustrial climate can reduce ENSO variability by 25%, more than twice the decrease obtained using orbital forcing alone. We identify changes in tropical Atlantic mean state and variability caused by the momentous strengthening of the West Africa Monsoon (WAM) as critical factors in amplifying ENSO’s response to insolation forcing through changes in the Walker circulation. Our results thus suggest that potential changes in the WAM due to anthropogenic warming may influence ENSO variability in the future as well. PMID:28685758

  16. Protection of pulmonary graft from thrombosis in donation after cardiac death: effect of warm ischaemia versus cold ischaemia.

    PubMed

    Pierre, Leif; Lindstedt, Sandra; Ingemansson, Richard

    2016-11-01

    The use of donation after cardiac death (DCD) to overcome organ shortage is slowly moving into the clinic. In this study, we compare the protective effect of warm ischaemia versus cold ischaemia on thrombotic formation in non-heparinized pulmonary grafts. Twelve Landrace pigs were randomized into two groups: warm ischaemia and cold ischaemia. Ventricular fibrillation without the administration of heparin was induced to mimick an uncontrolled DCD situation. The animals were then exposed to either 1 h of cold ischaemia (insertion of drain and installation of cold fluid in the pleuras) or warm ischaemia (body temperature). After 1 h, the pulmonary artery was opened and the pulmonary arterial branches were then macroscopically studied for thrombotic material. After 60 min, the temperature was 36.6 ± 0.0°C in the warm ischaemic group and 14.6 ± 0.1°C in the cold ischaemic group (P < 0.001). In the warm ischaemic group, no thrombotic material could be found in the pulmonary artery in the animals examined and in the cold ischaemic group 6.8 ± 0.2 ml thrombotic material was found in the pulmonary artery (P < 0.001). In the warm ischaemic group, no thrombotic material could be found in the arterial branches of the pulmonary artery and in the cold ischaemic group 2.3 ± 0.1 ml thrombotic material was found in the arterial branches of the pulmonary artery (P < 0.001). Warm ischaemia rather than cold ischaemia seems to protect the pulmonary graft from thrombosis in uncontrolled non-heparinized DCD pigs. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  17. Impact of ENSO longitudinal position on teleconnections to the NAO

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjun; Wang, Ziqi; Stuecker, Malte F.; Turner, Andrew G.; Jin, Fei-Fei; Geng, Xin

    2018-02-01

    While significant improvements have been made in understanding how the El Niño-Southern Oscillation (ENSO) impacts both North American and Asian climate, its relationship with the North Atlantic Oscillation (NAO) remains less clear. Observations indicate that ENSO exhibits a highly complex relationship with the NAO-associated atmospheric circulation. One critical contribution to this ambiguous ENSO/NAO relationship originates from ENSO's diversity in its spatial structure. In general, both eastern (EP) and central Pacific (CP) El Niño events tend to be accompanied by a negative NAO-like atmospheric response. However, for two different types of La Niña the NAO response is almost opposite. Thus, the NAO responses for the CP ENSO are mostly linear, while nonlinear NAO responses dominate for the EP ENSO. These contrasting extra-tropical atmospheric responses are mainly attributed to nonlinear air-sea interactions in the tropical eastern Pacific. The local atmospheric response to the CP ENSO sea surface temperature (SST) anomalies is highly linear since the air-sea action center is located within the Pacific warm pool, characterized by relatively high climatological SSTs. In contrast, the EP ENSO SST anomalies are located in an area of relatively low climatological SSTs in the eastern equatorial Pacific. Here only sufficiently high positive SST anomalies during EP El Niño events are able to overcome the SST threshold for deep convection, while hardly any anomalous convection is associated with EP La Niña SSTs that are below this threshold. This ENSO/NAO relationship has important implications for NAO seasonal prediction and places a higher requirement on models in reproducing the full diversity of ENSO.

  18. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems

    PubMed Central

    Rix, Laura; de Goeij, Jasper M.; Mueller, Christina E.; Struck, Ulrich; Middelburg, Jack J.; van Duyl, Fleur C.; Al-Horani, Fuad A.; Wild, Christian; Naumann, Malik S.; van Oevelen, Dick

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21–40% of the mucus carbon and 32–39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments. PMID:26740019

  19. The IOD-ENSO precursory teleconnection over the tropical Indo-Pacific Ocean: dynamics and long-term trends under global warming

    NASA Astrophysics Data System (ADS)

    Yuan, Dongliang; Hu, Xiaoyue; Xu, Peng; Zhao, Xia; Masumoto, Yukio; Han, Weiqing

    2018-01-01

    The dynamics of the teleconnection between the Indian Ocean Dipole (IOD) in the tropical Indian Ocean and El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean at the time lag of one year are investigated using lag correlations between the oceanic anomalies in the southeastern tropical Indian Ocean in fall and those in the tropical Indo-Pacific Ocean in the following winter-fall seasons in the observations and in high-resolution global ocean model simulations. The lag correlations suggest that the IOD-forced interannual transport anomalies of the Indonesian Throughflow generate thermocline anomalies in the western equatorial Pacific Ocean, which propagate to the east to induce ocean-atmosphere coupled evolution leading to ENSO. In comparison, lag correlations between the surface zonal wind anomalies over the western equatorial Pacific in fall and the Indo-Pacific oceanic anomalies at time lags longer than a season are all insignificant, suggesting the short memory of the atmospheric bridge. A linear continuously stratified model is used to investigate the dynamics of the oceanic connection between the tropical Indian and Pacific Oceans. The experiments suggest that interannual equatorial Kelvin waves from the Indian Ocean propagate into the equatorial Pacific Ocean through the Makassar Strait and the eastern Indonesian seas with a penetration rate of about 10%-15% depending on the baroclinic modes. The IOD-ENSO teleconnection is found to get stronger in the past century or so. Diagnoses of the CMIP5 model simulations suggest that the increased teleconnection is associated with decreased Indonesian Throughflow transports in the recent century, which is found sensitive to the global warming forcing.

  20. Holocene ITCZ and ENSO-driven climate variability from the Panama isthmus

    NASA Astrophysics Data System (ADS)

    Urrego, D. H.; Aronson, R. B.; Bush, M. B.

    2009-12-01

    Holocene climate has previously been considered relatively stable compared to Pleistocene fluctuations. Recent paleoclimatic reconstructions have shown, however, that Holocene climatic variability is large and that the key to understanding and predicting responses to current climate change could lie in Holocene climatic history. In tropical regions, one of the most important oceanic-atmospheric systems regulating present and past interannual climatic fluctuations is the InterTropical Convergence Zone (ITCZ). Several hypotheses have been postulated to explain Holocene climate oscillations and their impacts in Northern South America. One of these hypotheses is that reduced precipitation during the mid-Holocene in the Caribbean and off the coast of Venezuela resulted from a southward migration of the ITCZ’s mean annual position (1, 2). In turn, this southward movement was associated with changes in the location of warm pools and insolation maxima regions in the tropical Atlantic. However, oscillations in Pacific warm pools should be expected to influence the annual ITCZ cycle as well. The latitudinal positions of these warm pools in the Pacific are directly influenced by ENSO (El Niño Southern Oscillation), and are predicted to move south during El Niño (warm-ENSO) years. A mid-Holocene increase in the frequency of warm ENSO events is reported in the eastern Pacific after 6 ka (3, 4), and although this change occurred more than a thousand years earlier than the southward migrations of the ITCZ reconstructed from tropical Atlantic systems, we hypothesize that there must be a link between these two apparently separate events. Reconciling the roles of Atlantic versus Pacific ocean-atmosphere interactions, and the effect of Pacific phenomena like ENSO on the annual position of the ITCZ are therefore crucial to understand climatic variability in tropical America. Lago La Yeguada is located in the Isthmus of Panama and its climate is determined mainly by the ITCZ, ENSO

  1. Warming by immersion or exercise affects initial cooling rate during subsequent cold water immersion.

    PubMed

    Scott, Chris G; Ducharme, Michel B; Haman, François; Kenny, Glen P

    2004-11-01

    We examined the effect of prior heating, by exercise and warm-water immersion, on core cooling rates in individuals rendered mildly hypothermic by immersion in cold water. There were seven male subjects who were randomly assigned to one of three groups: 1) seated rest for 15 min (control); 2) cycling ergometry for 15 min at 70% Vo2 peak (active warming); or 3) immersion in a circulated bath at 40 degrees C to an esophageal temperature (Tes) similar to that at the end of exercise (passive warming). Subjects were then immersed in 7 degrees C water to a Tes of 34.5 degrees C. Initial Tes cooling rates (initial approximately 6 min cooling) differed significantly among the treatment conditions (0.074 +/- 0.045, 0.129 +/- 0.076, and 0.348 +/- 0.117 degrees C x min(-1) for control, active, and passive warming conditions, respectively); however, secondary cooling rates (rates following initial approximately 6 min cooling to the end of immersion) were not different between treatments (average of 0.102 +/- 0.085 degrees C x min(-1)). Overall Tes cooling rates during the full immersion period differed significantly and were 0.067 +/- 0.047, 0.085 +/- 0.045, and 0.209 +/- 0.131 degrees C x min(-1) for control, active, and passive warming, respectively. These results suggest that prior warming by both active and, to a greater extent, passive warming, may predispose a person to greater heat loss and to experience a larger decline in core temperature when subsequently exposed to cold water. Thus, functional time and possibly survival time could be reduced when cold water immersion is preceded by whole-body passive warming, and to a lesser degree by active warming.

  2. Winter cold of eastern continental boundaries induced by warm ocean waters.

    PubMed

    Kaspi, Yohai; Schneider, Tapio

    2011-03-31

    In winter, northeastern North America and northeastern Asia are both colder than other regions at similar latitudes. This has been attributed to the effects of stationary weather systems set by elevated terrain (orography), and to a lack of maritime influences from the prevailing westerly winds. However, the differences in extent and orography between the two continents suggest that further mechanisms are involved. Here we show that this anomalous winter cold can result in part from westward radiation of large-scale atmospheric waves--nearly stationary Rossby waves--generated by heating of the atmosphere over warm ocean waters. We demonstrate this mechanism using simulations with an idealized general circulation model, with which we show that the extent of the cold region is controlled by properties of Rossby waves, such as their group velocity and its dependence on the planetary rotation rate. Our results show that warm ocean waters contribute to the contrast in mid-latitude winter temperatures between eastern and western continental boundaries not only by warming western boundaries, but also by cooling eastern boundaries.

  3. Future Projections of ENSO and Drought (Invited)

    NASA Astrophysics Data System (ADS)

    Cane, M. A.

    2009-12-01

    Jule Charney, who was my advisor, worked very broadly - and profoundly - on climate dynamics. In this discussion of the present state of knowledge I will focus on two aspects of climate that I view as legacies of his work: our ability to project climate variability in the tropics and to project drought. (I have in mind his work with Shukla on predictability of monsoons, and Charney 1975, Dynamics of deserts and drought in the Sahel., Q. J. Roy. Meteor. Soc., 101, 193-202). First, I will consider the projections of ENSO (El Niño and Southern Oscillation) in a warming world. (My own interest in ENSO was piqued in discussions with Charney and others during the ENSO-influenced blocking events in the late 1970s; in good measure, the approach I took to understanding and modeling ENSO was based in my thesis work.) Current IPCC models differ markedly in their projections of the mean state of the equatorial Pacific, some favoring a more “El Niño- like”, some the opposite. Possible reasons for these disagreements will be considered in the light of our understanding of ENSO and tropical climate more generally. Observational data for the past century and a half will figure prominently. Droughts in the US Southwest have a strong ENSO signal, but IPCC models are fairly consistent in projecting enhanced drought there. The reasons for this will be discussed. Models are less consistent in their predictions of the future Sahel. I will discuss what is understood about causes of drought in the Sahel, which appear to point toward sea surface temperature as the controlling influence, in contrast to Charney’s albedo hypothesis.

  4. Effects of warm and cold climate conditions on capelin (Mallotus villosus) and Pacific herring (Clupea pallasii) in the eastern Bering Sea

    NASA Astrophysics Data System (ADS)

    Andrews, Alexander G.; Strasburger, Wesley W.; Farley, Edward V.; Murphy, James M.; Coyle, Kenneth O.

    2016-12-01

    Climate warming has impacted the southern extent of sea ice in the eastern Bering Sea (EBS) ecosystem, leading to many changes in ocean conditions and food webs there. We explore how these changes have affected two key forage fish species, capelin (Mallotus villosus) and Pacific herring (Clupea pallasii), examining the effects of climate change on this commercially important ecosystem in the EBS. Catch per unit effort (CPUE) data from surface trawls, size, and diet of capelin and Pacific herring were collected during a series of warm and cold years by fisheries oceanographic surveys conducted from mid-August to early October 2003 through 2011. Overall, mean CPUE for both species was higher in the northeastern Bering Sea [NEBS; capelin=1.2 kg/km2 (warm) and 40.0 kg/km2 (cold); herring=141.1 kg/km2 (warm) and 132.4 kg/km2 (cold)] relative to the southeastern Bering Sea [SEBS; capelin=0.2 kg/km2 (warm) and 5.8 kg/km2 (cold); herring=15.8 kg/km2 (warm) and 24.5 kg/km2 (cold)], irrespective of temperature conditions. Capelin mean CPUE was significantly lower during warm years than during cold years [p<0.001; 0.6 kg/km2 (warm), 19.0 kg/km2 (cold)]. Pacific herring mean CPUE was less variable between warm and cold years [p<0.001; 63.8 kg/km2 (warm), 66.2 kg/km2 (cold)], but was still significantly less during warm years than cold. Capelin and herring lengths remained relatively constant between climate periods. Capelin lengths were similar among oceanographic domains [104 mm (South Inner domain), 112 mm (South Middle domain), 107 mm (North Inner domain), and 104 mm (North Middle domain)], while herring were larger in domains further offshore [123 mm (South Inner domain), 232 mm (South Middle domain), 260 mm (South Outer domain), 129 mm (North Inner domain), and 198 mm (North Middle domain)]. Diets for both species were significantly different between climate periods. Large crustacean prey comprised a higher proportion of the diets in most regions during cold years. Age-0

  5. Temperature-difference-driven mass transfer through the vapor from a cold to a warm liquid.

    PubMed

    Struchtrup, Henning; Kjelstrup, Signe; Bedeaux, Dick

    2012-06-01

    Irreversible thermodynamics provides interface conditions that yield temperature and chemical potential jumps at phase boundaries. The interfacial jumps allow unexpected transport phenomena, such as the inverted temperature profile [Pao, Phys. Fluids 14, 306 (1971)] and mass transfer from a cold to a warm liquid driven by a temperature difference across the vapor phase [Mills and Phillips, Chem. Phys. Lett. 372, 615 (2002)]. Careful evaluation of the thermodynamic laws has shown [Bedeaux et al., Physica A 169, 263 (1990)] that the inverted temperature profile is observed for processes with a high heat of vaporization. In this paper, we show that cold to warm mass transfer through the vapor from a cold to a warm liquid is only possible when the heat of evaporation is sufficiently small. A necessary criterium for the size of the mass transfer coefficient is given.

  6. Relative contributions of mean-state shifts and ENSO-driven variability to precipitation changes in a warming climate

    DOE PAGES

    Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; ...

    2015-12-18

    The El Niño–Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change.more » Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. Lastly, by examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.« less

  7. Relative Contributions of Mean-State Shifts and ENSO-Driven Variability to Precipitation Changes in a Warming Climate

    NASA Technical Reports Server (NTRS)

    Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta

    2015-01-01

    El Niño-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.

  8. Relative Contributions of Mean-State Shifts and ENSO-Driven Variability to Precipitation Changes in a Warming Climate

    NASA Technical Reports Server (NTRS)

    Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta

    2015-01-01

    The El Nino-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with Coupled General Circulation Models (CGCMs) to investigate how regional precipitation in the 21st century may be affected by changes in both ENSO-driven precipitation variability and slowly-evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of 20th century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in 21st century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with 20th century observations and more stationary during the 21st century. Finally, the model-predicted 21st century rainfall response to cENSO is decomposed into the sum of three terms: 1) the 21st century change in the mean state of precipitation; 2) the historical precipitation response to the cENSO pattern; and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.

  9. Amplification of ENSO Effects on Indian Summer Monsoon by Absorbing Aerosols

    NASA Technical Reports Server (NTRS)

    Kim, Maeng-Ki; Lau, William K. M.; Kim, Kyu-Myong; Sang, Jeong; Kim, Yeon-Hee; Lee, Woo-Seop

    2015-01-01

    In this study, we present observational evidence, based on satellite aerosol measurements and MERRA reanalysis data for the period 1979-2011, indicating that absorbing aerosols can have strong influence on seasonal-to-interannual variability of the Indian summer monsoon rainfall, including amplification of ENSO effects. We find a significant correlation between ENSO (El Nino Southern Oscillation) and aerosol loading in April-May, with La Nina (El Nino) conditions favoring increased (decreased) aerosol accumulation over northern India, with maximum aerosol optical depth (AOD) over the Arabian Sea and Northwestern India, indicative of strong concentration of dust aerosols transported from West Asia and Middle East deserts. Composite analyses based on a normalized aerosol index (NAI) show that high concentration of aerosol over northern India in April-May is associated with increased moisture transport, enhanced dynamically induced warming of the upper troposphere over the Tibetan Plateau, and enhanced rainfall over northern India and the Himalayan foothills during May-June, followed by a subsequent suppressed monsoon rainfall over all India,consistent with the Elevated Heat Pump (EHP) hypothesis (Lau et al. 2006). Further analyses from sub-sampling of ENSO years, with normal (less than 1 sigma), and abnormal (greater than 1 sigma)) NAI over northern India respectively show that the EHP may lead to an amplification of the Indian summer monsoon response to ENSO forcing, particularly with respect to the increased rainfall over the Himalayan foothills, and the warming of the upper troposphere over the Tibetan Plateau. Our results suggest that absorbing aerosol, particular desert dusts can strongly modulate ENSO influence, and possibly play important roles as a feedback agent in climate change in Asian monsoon regions.

  10. Cold and warm swelling of hydrophobic polymers

    NASA Astrophysics Data System (ADS)

    de Los Rios, Paolo; Caldarelli, Guido

    2001-03-01

    We introduce a polymer model where the transition from swollen to compact configurations is due to interactions between the monomers and the solvent. These interactions are the origin of the effective attractive interactions between hydrophobic amino acids in proteins. We find that in the low and high temperature phases polymers are swollen, and there is an intermediate phase where the most favorable configurations are compact. We argue that such a model captures in a single framework both the cold and the warm denaturation experimentally detected for thermosensitive polymers and for proteins.

  11. Thermal niches are more conserved at cold than warm limits in arctic-alpine plant species

    PubMed Central

    Pellissier, Loïc; Bråthen, Kari Anne; Vittoz, Pascal; Yoccoz, Nigel G.; Dubuis, Anne; Meier, Eliane S.; Zimmermann, Niklaus E.; Randin, Christophe F.; Thuiller, Wilfried; Garraud, Luc; Van Es, Jérémie; Guisan, Antoine

    2014-01-01

    Aim Understanding the stability of realized niches is crucial for predicting the responses of species to climate change. One approach is to evaluate the niche differences of populations of the same species that occupy regions that are geographically disconnected. Here, we assess niche conservatism along thermal gradients for 26 plant species with a disjunct distribution between the Alps and the Arctic. Location European Alps and Norwegian Finnmark. Methods We collected a comprehensive dataset of 26 arctic-alpine plant occurrences in two regions. We assessed niche conservatism through a multispecies comparison and analysed species rankings at cold and warm thermal limits along two distinct gradients corresponding to (1) air temperatures at 2 m above ground level and (2) elevation distances to the tree line (TLD) for the two regions. We assessed whether observed relationships were close to those predicted under thermal limit conservatism. Results We found a weak similarity in species ranking at the warm thermal limits. The range of warm thermal limits for the 26 species was much larger in the Alps than in Finnmark. We found a stronger similarity in species ranking and correspondence at the cold thermal limit along the gradients of 2-m temperature and TLD. Yet along the 2-m temperature gradient the cold thermal limits of species in the Alps were lower on average than those in Finnmark. Main conclusion We found low conservatism of the warm thermal limits but a stronger conservatism of the cold thermal limits. We suggest that biotic interactions at the warm thermal limit are likely to modulate species responses more strongly than at the cold limit. The differing biotic context between the two regions is probably responsible for the observed differences in realized niches. PMID:24790524

  12. The Defining Characteristics of ENSO Extremes and the Strong 2015/2016 El Niño

    NASA Astrophysics Data System (ADS)

    Santoso, Agus; Mcphaden, Michael J.; Cai, Wenju

    2017-12-01

    The year 2015 was special for climate scientists, particularly for the El Niño Southern Oscillation (ENSO) research community, as a major El Niño finally materialized after a long pause since the 1997/1998 extreme El Niño. It was scientifically exciting since, due to the short observational record, our knowledge of an extreme El Niño has been based only on the 1982/1983 and 1997/1998 events. The 2015/2016 El Niño was marked by many environmental disasters that are consistent with what is expected for an extreme El Niño. Considering the dramatic impacts of extreme El Niño, and the risk of a potential increase in frequency of ENSO extremes under greenhouse warming, it is timely to evaluate how the recent event fits into our understanding of ENSO extremes. Here we provide a review of ENSO, its nature and dynamics, and through analysis of various observed key variables, we outline the processes that characterize its extremes. The 2015/2016 El Niño brings a useful perspective into the state of understanding of these events and highlights areas for future research. While the 2015/2016 El Niño is characteristically distinct from the 1982/1983 and 1997/1998 events, it still can be considered as the first extreme El Niño of the 21st century. Its extremity can be attributed in part to unusually warm condition in 2014 and to long-term background warming. In effect, this study provides a list of physically meaningful indices that are straightforward to compute for identifying and tracking extreme ENSO events in observations and climate models.

  13. PDO modulation of the ENSO impact on the summer South Asian high

    NASA Astrophysics Data System (ADS)

    Xue, Xu; Chen, Wen; Chen, Shangfeng; Feng, Juan

    2018-02-01

    This study investigates modulation effects of the Pacific decadal oscillation (PDO) on the impact of boreal winter El Niño-Southern Oscillation (ENSO) on the South Asian high (SAH) variability in the following summer. In the El Niño together with positive PDO (EL/+PDO) or the La Niña together with negative PDO (LA/-PDO) years, boreal winter ENSO can influence the following summer SAH activity significantly. The SAH tends to be obviously strengthened (weakened) and located further south (north) during EL/+PDO (LA/-PDO). However, in the El Niño together with negative PDO (EL/-PDO) or the La Niña together with positive PDO (LA/+PDO) years, the influence of ENSO on the SAH tends to be weak. The strength and location of SAH are close to those in the climatology of 1950-2011 during the EL/-PDO or the LA/+PDO. Further analysis indicates that the PDO could exert pronounced influence on the ENSO-SAH connection via modulating the anomalous Walker circulation and charge effect over the tropical Indian Ocean (TIO). During the EL/+PDO or LA/-PDO, the anomalous Walker circulation associated with El Niño or La Niña is stronger and lasts for a longer time than those during the EL/-PDO or LA/+PDO. This leads to stronger descending (ascending) motion over the Maritime Continent and easterly (westerly) wind anomalies over the eastern Indian Ocean in the EL/+PDO (LA/-PDO), which further exert larger effects on the surface heat fluxes and subsurface ocean dynamical heating process over the Indian Ocean. As such, the induced warm (cold) sea surface temperature anomalies over the Indian Ocean are more significant and larger in the EL/+PDO (LA/-PDO). These larger sea surface temperature anomalies over the TIO could exert a more significant influence on the tropospheric temperature via moisture adjustment, which subsequently results in stronger SAH variability in the EL/+PDO or the LA/-PDO.

  14. The dependence on atmospheric resolution of ENSO and related East Asian-western North Pacific summer climate variability in a coupled model

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Zhao, Guijie; Huang, Gang; Wang, Pengfei; Yan, Bangliang

    2017-08-01

    The authors present results for El Niño-Southern Oscillation (ENSO) and East Asian-western North Pacific climate variability simulated in a new version high-resolution coupled model (ICM.V2) developed at the Center for Monsoon System Research of the Institute of Atmospheric Physics (CMSR, IAP), Chinese Academy of Sciences. The analyses are based on the last 100-year output of a 1000-year simulation. Results are compared to an earlier version of the same coupled model (ICM.V1), reanalysis, and observations. The two versions of ICM have similar physics but different atmospheric resolution. The simulated climatological mean states show marked improvement over many regions, especially the tropics in ICM.V2 compared to those in ICM.V1. The common bias in the cold tongue has reduced, and the warm biases along the ocean boundaries have improved as well. With improved simulation of ENSO, including its period and strength, the ENSO-related western North Pacific summer climate variability becomes more realistic compared to the observations. The simulated East Asian summer monsoon anomalies in the El Niño decaying summer are substantially more realistic in ICM.V2, which might be related to a better simulation of the Indo-Pacific Ocean capacitor (IPOC) effect and Pacific decadal oscillation (PDO).

  15. El Nino/Southern Oscillation response to global warming.

    PubMed

    Latif, M; Keenlyside, N S

    2009-12-08

    The El Niño/Southern Oscillation (ENSO) phenomenon, originating in the Tropical Pacific, is the strongest natural interannual climate signal and has widespread effects on the global climate system and the ecology of the Tropical Pacific. Any strong change in ENSO statistics will therefore have serious climatic and ecological consequences. Most global climate models do simulate ENSO, although large biases exist with respect to its characteristics. The ENSO response to global warming differs strongly from model to model and is thus highly uncertain. Some models simulate an increase in ENSO amplitude, others a decrease, and others virtually no change. Extremely strong changes constituting tipping point behavior are not simulated by any of the models. Nevertheless, some interesting changes in ENSO dynamics can be inferred from observations and model integrations. Although no tipping point behavior is envisaged in the physical climate system, smooth transitions in it may give rise to tipping point behavior in the biological, chemical, and even socioeconomic systems. For example, the simulated weakening of the Pacific zonal sea surface temperature gradient in the Hadley Centre model (with dynamic vegetation included) caused rapid Amazon forest die-back in the mid-twenty-first century, which in turn drove a nonlinear increase in atmospheric CO(2), accelerating global warming.

  16. Indo-Pacific ENSO modes in a double-basin Zebiak-Cane model

    NASA Astrophysics Data System (ADS)

    Wieners, Claudia; de Ruijter, Will; Dijkstra, Henk

    2016-04-01

    We study Indo-Pacific interactions on ENSO timescales in a double-basin version of the Zebiak-Cane ENSO model, employing both time integrations and bifurcation analysis (continuation methods). The model contains two oceans (the Indian and Pacific Ocean) separated by a meridional wall. Interaction between the basins is possible via the atmosphere overlaying both basins. We focus on the effect of the Indian Ocean (both its mean state and its variability) on ENSO stability. In addition, inspired by analysis of observational data (Wieners et al, Coherent tropical Indo-Pacific interannual climate variability, in review), we investigate the effect of state-dependent atmospheric noise. Preliminary results include the following: 1) The background state of the Indian Ocean stabilises the Pacific ENSO (i.e. the Hopf bifurcation is shifted to higher values of the SST-atmosphere coupling), 2) the West Pacific cooling (warming) co-occurring with El Niño (La Niña) is essential to simulate the phase relations between Pacific and Indian SST anomalies, 3) a non-linear atmosphere is needed to simulate the effect of the Indian Ocean variability onto the Pacific ENSO that is suggested by observations.

  17. ENSO and cholera: a nonstationary link related to climate change?

    PubMed

    Rodo, Xavier; Pascual, Mercedes; Fuchs, George; Faruque, A S G

    2002-10-01

    We present here quantitative evidence for an increased role of interannual climate variability on the temporal dynamics of an infectious disease. The evidence is based on time-series analyses of the relationship between El Niño/Southern Oscillation (ENSO) and cholera prevalence in Bangladesh (formerly Bengal) during two different time periods. A strong and consistent signature of ENSO is apparent in the last two decades (1980-2001), while it is weaker and eventually uncorrelated during the first parts of the last century (1893-1920 and 1920-1940, respectively). Concomitant with these changes, the Southern Oscillation Index (SOI) undergoes shifts in its frequency spectrum. These changes include an intensification of the approximately 4-yr cycle during the recent interval as a response to the well documented Pacific basin regime shift of 1976. This change in remote ENSO modulation alone can only partially serve to substantiate the differences observed in cholera. Regional or basin-wide changes possibly linked to global warming must be invoked that seem to facilitate ENSO transmission. For the recent cholera series and during specific time intervals corresponding to local maxima in ENSO, this climate phenomenon accounts for over 70% of disease variance. This strong association is discontinuous in time and can only be captured with a technique designed to isolate transient couplings.

  18. The nonstationary impact of local temperature changes and ENSO on extreme precipitation at the global scale

    NASA Astrophysics Data System (ADS)

    Sun, Qiaohong; Miao, Chiyuan; Qiao, Yuanyuan; Duan, Qingyun

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) and local temperature are important drivers of extreme precipitation. Understanding the impact of ENSO and temperature on the risk of extreme precipitation over global land will provide a foundation for risk assessment and climate-adaptive design of infrastructure in a changing climate. In this study, nonstationary generalized extreme value distributions were used to model extreme precipitation over global land for the period 1979-2015, with ENSO indicator and temperature as covariates. Risk factors were estimated to quantify the contrast between the influence of different ENSO phases and temperature. The results show that extreme precipitation is dominated by ENSO over 22% of global land and by temperature over 26% of global land. With a warming climate, the risk of high-intensity daily extreme precipitation increases at high latitudes but decreases in tropical regions. For ENSO, large parts of North America, southern South America, and southeastern and northeastern China are shown to suffer greater risk in El Niño years, with more than double the chance of intense extreme precipitation in El Niño years compared with La Niña years. Moreover, regions with more intense precipitation are more sensitive to ENSO. Global climate models were used to investigate the changing relationship between extreme precipitation and the covariates. The risk of extreme, high-intensity precipitation increases across high latitudes of the Northern Hemisphere but decreases in middle and lower latitudes under a warming climate scenario, and will likely trigger increases in severe flooding and droughts across the globe. However, there is some uncertainties associated with the influence of ENSO on predictions of future extreme precipitation, with the spatial extent and risk varying among the different models.

  19. Mean state dependence of ENSO diversity resulting from an intermediate coupled model

    NASA Astrophysics Data System (ADS)

    Xie, Ruihuang; Jin, Fei-Fei; Mu, Mu

    2016-04-01

    ENSO diversity is referred to the event-to-event differences in the amplitude, longitudinal location of maximum sea surface temperature (SST) anomalies and evolutional mechanisms, as manifested in both observation data and climate model simulations. Previous studies argued that westerly wind burst (WWB) has strong influence on ENSO diversity. Here, we bring evidences, from a modified intermediate complexity Zebiak-Cane (ZC) coupled model, to illustrate that the ENSO diversity is also determined by the mean states. Stabilities of the linearized ZC model reveal that the mean state with weak (strong) wind stress and deep (shallow) thermocline prefers ENSO variation in the equitorial eastern (central) Pacific with a four-year (two-year) period. Weak wind stress and deep thermocline make the thermocline (TH) feedback the dominant contribution to the growth of ENSO SST anomalies, whereas the opposite mean state favors the zonal advective (ZA) feedback. Different leading dynamical SST-controller makes ENSO display its diversity. In a mean state that resembles the recent climate in the tropical Pacific, the four-year and two-year ENSO variations coexist with similar growth rate. Even without WWB forcing, the nonlinear integration results with adjusted parameters in this special mean state also present at least two types of El Niño, in which the maximum warming rates are contributed by either TH or ZA feedback. The consistency between linear and nonlinear model results indicates that the ENSO diversity is dependent on the mean states.

  20. Sensitivity of the Tropical Atmosphere Energy Balance to ENSO-Related SST Changes: How Well Can We Quantify Hydrologic and Radiative Responses?

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Fitzjarrald, Dan; Sohn, Byung-Ju; Arnold, James E. (Technical Monitor)

    2001-01-01

    The continuing debate over feedback mechanisms governing tropical sea surface temperatures (SSTs) and tropical climate in general has highlighted the diversity of potential checks and balances within the climate system. Competing feedbacks due to changes in surface evaporation, water vapor, and cloud long- and shortwave radiative properties each may serve critical roles in stabilizing or destabilizing the climate system. It is also intriguing that even those climate variations having origins internal to the climate system-- changes in ocean heat transport for example, apparently require complementary equilibrating effects by changes in atmospheric energy fluxes. Perhaps the best observational evidence of this is the relatively invariant nature of tropically averaged net radiation exiting the top-of-atmosphere (TOA) as measured by broadband satellite sensors over the past two decades. Thus, analyzing how these feedback mechanisms are operating within the context of current interannual variability may offer considerable insight for anticipating future climate change. In this paper we focus on how fresh water and radiative fluxes over the tropical oceans change during ENSO warm and cold events and how these changes affect the tropical energy balance. At present, ENSO remains the most prominent known mode of natural variability at interannual time scales. Although great advances have been made in understanding this phenomenon and realizing prediction skill over the past decade, our ability to document the coupled water and energy changes observationally and to represent them in climate models seems far from settled (Soden, 2000 J Climate). Our analysis makes use a number of data bases, principally those derived from space-based measurements, to explore systematic changes in rainfall, evaporation, and surface and top-of-atmosphere (TOA) radiative fluxes, A reexamination of the Langley 8-Year Surface Radiation Budget data set reveals errors in the surface longwave

  1. Behavioral buffering of global warming in a cold-adapted lizard.

    PubMed

    Ortega, Zaida; Mencía, Abraham; Pérez-Mellado, Valentín

    2016-07-01

    Alpine lizards living in restricted areas might be particularly sensitive to climate change. We studied thermal biology of Iberolacerta cyreni in high mountains of central Spain. Our results suggest that I. cyreni is a cold-adapted thermal specialist and an effective thermoregulator. Among ectotherms, thermal specialists are more threatened by global warming than generalists. Alpine lizards have no chance to disperse to new suitable habitats. In addition, physiological plasticity is unlikely to keep pace with the expected rates of environmental warming. Thus, lizards might rely on their behavior in order to deal with ongoing climate warming. Plasticity of thermoregulatory behavior has been proposed to buffer the rise of environmental temperatures. Therefore, we studied the change in body and environmental temperatures, as well as their relationships, for I. cyreni between the 1980s and 2012. Air temperatures have increased more than 3.5°C and substrate temperatures have increased by 6°C in the habitat of I. cyreni over the last 25 years. However, body temperatures of lizards have increased less than 2°C in the same period, and the linear relationship between body and environmental temperatures remains similar. These results show that alpine lizards are buffering the potential impact of the increase in their environmental temperatures, most probably by means of their behavior. Body temperatures of I. cyreni are still cold enough to avoid any drop in fitness. Nonetheless, if warming continues, behavioral buffering might eventually become useless, as it would imply spending too much time in shelter, losing feeding, and mating opportunities. Eventually, if body temperature exceeds the thermal optimum in the near future, fitness would decrease abruptly.

  2. Livers from fasted rats acquire resistance to warm and cold ischemia injury.

    PubMed

    Sumimoto, R; Southard, J H; Belzer, F O

    1993-04-01

    Successful liver transplantation is dependent upon many factors, one of which is the quality of the donor organ. Previous studies have suggested that the donor nutritional status may affect the outcome of liver transplantation and starvation, due to prolonged stay in the intensive care unit, may adversely affect the liver. In this study we have used the orthotopic rat liver transplant model to measure how fasting the donor affects the outcome of liver transplantation. Rat livers were preserved with UW solution either at 37 degrees C (warm ischemia for 45-60 min) or at 4 degrees C (cold ischemia for 30 or 44 hr). After preservation the livers were orthotopically transplanted and survival (for 7 days) was measured, as well as liver functions 6 hr after transplantation. After 45 min of warm ischemia 50% (3 of 6) animals survived when the liver was obtained from a fed donor about 80% (4 of 5) survived when the liver was obtained from a three-day-fasted donor. After 60 min warm ischemia no animal survived (0 of 8, fed group). However, if the donor was fasted for 3 days 89% (8 of 9) of the animals survived for 7 days. Livers cold-stored for 30 hr were 50% viable (3 of 6) and fasting for 1-3 days did not affect this outcome. However, if the donor was fasted for 4 days 100% (9 of 9) survival was obtained. After 44-hr preservation only 29% (2/7) of the recipients survived for 7 days. If the donor was fasted for 4 days, survival increased to 83% (5/6). Liver functions, bile production, and serum enzymes were better in livers from the fasted rats than from the fed rats. Fasting caused a 95% decrease in liver glycogen content. Even with this low concentration of glycogen, liver viability (animal survival) after warm or cold ischemia was not affected, and livers with a low glycogen content were fully viable. Thus liver glycogen does not appear to be important in liver preservation. This study shows that fasting the donor does not cause injury to the liver after warm or cold

  3. The role of Indonesian convection in the interaction between the Indian Ocean and ENSO

    NASA Astrophysics Data System (ADS)

    Wieners, Claudia; Dijkstra, Henk; de Ruijter, Will

    2017-04-01

    In recent years it has been discussed whether a cool West Indian Ocean (WIO) or negative Indian Ocean Dipole (IOD) in boreal autumn favours El Niño at a lead time of 15 months (Izumo et al, 2010; Wieners et al, 2016). Observational evidence suggests that a cool WIO or negative IOD might be accompanied by easterlies over the West Pacific, though it is hard to disentangle influences of the Indian Ocean and ENSO through data analysis. Such easterlies can enhance the West Pacific Warm Water Volume, thus favouring El Niño development from the following boreal spring onward. However, the Gill response to a cool WIO (negative IOD) forcing would lead to westerly (nearly zero) winds over the WPO. We hypothesise that a cool WIO or negative IOD leads to low-level air convergence and hence enhanced convectional heating over the Maritime Continent (MC), which in turn amplifies the wind convergence such as to cause easterly winds over the West Pacific. This hypothesis is tested by adding a simplified Indian Ocean and a simple convective feedback over the MC to a Zebiak-Cane model. We confirm that for a sufficiently strong convection feedback a cool WIO or negative IOD indeed leads to easterlies over the WPO. The response IO cooling over the whole zonal width of the basin (negative Indian Ocean Basinwide warming / IOB) is still westerly, with the direct Gill response dominating over convection-induced winds. Positive (negative) IOB events typically occur a few months after El Niño (La Niña) - observed correlations are about 0.9 - and cause easterlies (westerlies) over the Pacific, facilitating the switch to the opposite ENSO phase, hence IOB variability dampens the ENSO mode and reduces its period. The IOD, on the other hand, tends to be positive (negative) a few months prior to El Niño (La Niña) and trigger westerlies (easterlies) favouring ENSO development. However, the observed correlation between IOD and ENSO is only about 0.6, i.e. the IOD is less closely liked to the

  4. A Teleconnection between the West Siberian Plain and the ENSO Region

    NASA Astrophysics Data System (ADS)

    Liess, S.; Agrawal, S.; Chatterjee, S.; Kumar, V.

    2017-12-01

    This study presents a mechanism that links the El Niño/Southern Oscillation (ENSO) to extratropical waves that are deflected from the Northern Hemisphere polar regions and travel southeastward over Central Asia toward the west Pacific warm pool during northern winter. The initial wave pattern resembles the well-known East Atlantic-West Russia pattern. Here we show its influence on the ENSO region. We identify a tripole pattern between the West Siberian Plain and the two centers of action of ENSO with a graph-based approach. It indicates that the background state of ENSO with respect to global sea level pressure (SLP) has a significant negative correlation to the West Siberian Plain. The correlation with the background state, which is defined by the sum of the two centers of action of ENSO, is higher than each of the pairwise correlations with either of the ENSO centers alone. We define the centers with a clustering algorithm that detects regions with similar characteristics. The normalized monthly SLP time series for the two centers of ENSO (around Darwin, Australia and Tahiti) are area-averaged and the sum of both regions is considered as the background state of ENSO. This wave train can be detected throughout the troposphere and the lower stratosphere. Its origins can be traced back to atmospheric wave activity triggered by convection over the subtropical North Atlantic that emanates wave activity toward the West Siberian Plain. The same wave train also propagates to the central Pacific Ocean around Tahiti and can be used to predict the background state over the ENSO region. This background state also modifies the subtropical bridge between the tropical east Pacific and the subtropical North Atlantic, thus leading to a circumglobal wave train.

  5. Sensitivity of the Tropical Atmospheric Energy Balance to ENSO-Related SST Changes: Comparison of Climate Model Simulations to Observed Responses

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Fitzjarrald, Dan; Marshall, Susan; Oglesby, Robert; Roads, John; Arnold, James E. (Technical Monitor)

    2001-01-01

    This paper focuses on how fresh water and radiative fluxes over the tropical oceans change during ENSO warm and cold events and how these changes affect the tropical energy balance. At present, ENSO remains the most prominent known mode of natural variability at interannual time scales. While this natural perturbation to climate is quite distinct from possible anthropogenic changes in climate, adjustments in the tropical water and energy budgets during ENSO may give insight into feedback processes involving water vapor and cloud feedbacks. Although great advances have been made in understanding this phenomenon and realizing prediction skill over the past decade, our ability to document the coupled water and energy changes observationally and to represent them in climate models seems far from settled (Soden, 2000 J Climate). In a companion paper we have presented observational analyses, based principally on space-based measurements which document systematic changes in rainfall, evaporation, and surface and top-of-atmosphere (TOA) radiative fluxes. Here we analyze several contemporary climate models run with observed SSTs over recent decades and compare SST-induced changes in radiation, precipitation, evaporation, and energy transport to observational results. Among these are the NASA / NCAR Finite Volume Model, the NCAR Community Climate Model, the NCEP Global Spectral Model, and the NASA NSIPP Model. Key disagreements between model and observational results noted in the recent literature are shown to be due predominantly to observational shortcomings. A reexamination of the Langley 8-Year Surface Radiation Budget data reveals errors in the SST surface longwave emission due to biased SSTs. Subsequent correction allows use of this data set along with ERBE TOA fluxes to infer net atmospheric radiative heating. Further analysis of recent rainfall algorithms provides new estimates for precipitation variability in line with interannual evaporation changes inferred from

  6. Two Distinct Roles of Atlantic SSTs in ENSO Variability: North Tropical Atlantic SST and Atlantic Nino

    NASA Technical Reports Server (NTRS)

    Ham, Yoo-Geun; Kug, Jong-Seong; Park, Jong-Yeon

    2013-01-01

    Two distinct roles of the Atlantic sea surface temperatures (SSTs), namely, the North Tropical Atlantic (NTA) SST and the Atlantic Nino, on the El Nino-Southern Oscillation (ENSO) variability are investigated using the observational data from 1980 to 2010 and coupled model experiments. It appears that the NTA SST and the Atlantic Nino can be used as two independent predictors for predicting the development of ENSO events in the following season. Furthermore, they are likely to be linked to different types of El Nino events. Specifically, the NTA SST cooling during February, March, and April contributes to the central Pacific warming at the subsequent winter season, while the negative Atlantic Nino event during June, July, and August contributes to enhancing the eastern Pacific warming. The coupled model experiments support these results. With the aid of a lagged inverse relationship, the statistical forecast using two Atlantic indices can successfully predict various ENSO indices.

  7. Late-Holocene vegetation and climate change in Jeju Island, Korea and its implications for ENSO influences

    NASA Astrophysics Data System (ADS)

    Park, Jungjae; Shin, Young Ho; Byrne, Roger

    2016-12-01

    Several recent studies suggest the hypothesis that the El Niño-Southern Oscillation (ENSO) is an important factor controlling the Holocene East Asian Monsoon (EAM). However, the mechanism underlying this influence remains unclear due to the lack of high-resolution paleoclimate records from the coast of East Asia. Here, we provide a new record of late Holocene climate change in coastal East Asia based on multi-proxy evidence (pollen, organic content, magnetic susceptibility, grain size) obtained from a sediment core from Jeju Island, South Korea. As Jeju Island is strongly influenced by the Kuroshio flow, our sediment proxy records contain ENSO signals from the tropical Pacific. The study area was affected by dry/cool conditions in the western tropical Pacific (WTP) between 4350 and 1920 cal yr BP when El Niños were frequent, and by rapid warming/wetting and forestation since 1920 cal yr BP when La Niñas were more common. Jeju Island was relatively dry/cool between 2100 and 1600, 1300-1200, 1100-1000, 800-650, and 300-50 cal yr BP, as opposed to the Galápagos Islands, which were relatively wet/warm, reflecting the ENSO-related negative correlation between eastern and western margins of Pacific. Wet conditions may have prevailed during the early Little Ice Age (LIA) (620-280 cal yr BP) despite consistent cooling. This period of high precipitation may have been associated with the increased landfall of typhoons and with warmer Kuroshio currents under La Niña-like conditions. According to our results, EAM on the East Asian coastal margin was predominantly driven by ENSO activity, rather than by the precession effect. Paleoclimatic data from Jeju Island, with its insular position and closeness to warm Kuroshio currents, provide clear evidence of these ENSO influences.

  8. Are population dynamics of shorebirds affected by El Niño/Southern Oscillation (ENSO) while on their non-breeding grounds in Ecuador?

    NASA Astrophysics Data System (ADS)

    O'Hara, Patrick D.; Haase, Ben J. M.; Elner, Robert W.; Smith, Barry D.; Kenyon, Jamie K.

    2007-08-01

    Declines in avian populations are a global concern, particularly for species that migrate between Arctic-temperate and tropical locations. Long-term population studies offer opportunities to detect and document ecological effects attributable to long-term climatic cycles such as the El Niño/Southern Oscillation (ENSO). In this study, we report possible population-level effects of such climatic cycles on shorebird species that use two non-breeding season sites in Ecuador (Santa Elena peninsula area, near La Libertad). During our 9-year study period (1991/1992-1999/2000), there was a particularly strong ENSO warm phase event during 1997/1998. Population trend data for three species of shorebird, Western Sandpipers ( Calidris mauri), Semipalmated Sandpipers ( C. pusilla), and Least Sandpipers ( C. minutilla), indicated abundances generally declined during the 1990s, but there was an increase in the proportion of first-year birds and their abundance in the years following the 1997/1998 ENSO warm phase. There was some support for variation in apparent survivorship associated with the onset of the ENSO warm phase event in our population models, based on capture-mark-recapture data. Following the 1997/1998 ENSO event onset, individuals for all three species were significantly lighter during the non-breeding season ( F1,3789 = 6.6, p = 0.01). Least-squares mean mass (controlling for size, sex and day of capture) for first-year birds dropped significantly more than for adults following ENSO (first-year mass loss = 0.69 ± 0.12 g; adult mass loss = 0.34 ± 0.11 g, F1,3789 = 5.31, p = 0.021), and least-squares mean mass dropped most during the period when sandpipers prepare for northward migration by gaining mass and moulting into breeding plumage. Least Sandpipers may have declined the most in mean mass following ENSO (0.76 ± 0.19 g), whereas Semipalmated Sandpipers were 0.52 ± 0.12 g lighter, and Western Sandpipers 0.40 ± 0.13 g lighter, but overall variation among

  9. Spin temperature and density of cold and warm H I in the Galactic disk: Hidden H I

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki

    2018-05-01

    We present a method to determine the spin temperature TS and volume density n of H I gas simultaneously along the tangent-point circle of Galactic rotation in the Milky Way by using the χ2 method. The best-fit TS is shown to range either in TS ˜ 100-120 K or in 1000-3000 K, indicating that the gas is in the cold H I phase with high density and large optical depth, or in warm H I with low density and small optical depth. Averaged values at 3 ≤ R ≤ 8 kpc are obtained to be TS = 106.7 ± 16.0 K and n = 1.53 ± 0.86 H cm-3 for cold H I, and 1720 ± 1060 K and 0.38 ± 0.10 H cm-3 for warm H I, where R = 8 |sinl| kpc is the galacto-centric distance along the tangent-point circle. The cold H I appears in spiral arms and rings, whereas warm H I appears in the inter-arm regions. The cold H I is denser by a factor of ˜4 than warm H I. The present analysis has revealed the hidden H I mass in the cold and optically thick phase in the Galactic disk. The total H I mass inside the solar circle is shown to be greater by a factor of 2-2.5 than the current estimation by the optically thin assumption.

  10. Spin temperature and density of cold and warm H I in the Galactic disk: Hidden H I

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki

    2018-06-01

    We present a method to determine the spin temperature TS and volume density n of H I gas simultaneously along the tangent-point circle of Galactic rotation in the Milky Way by using the χ2 method. The best-fit TS is shown to range either in TS ˜ 100-120 K or in 1000-3000 K, indicating that the gas is in the cold H I phase with high density and large optical depth, or in warm H I with low density and small optical depth. Averaged values at 3 ≤ R ≤ 8 kpc are obtained to be TS = 106.7 ± 16.0 K and n = 1.53 ± 0.86 H cm-3 for cold H I, and 1720 ± 1060 K and 0.38 ± 0.10 H cm-3 for warm H I, where R = 8 |sinl| kpc is the galacto-centric distance along the tangent-point circle. The cold H I appears in spiral arms and rings, whereas warm H I appears in the inter-arm regions. The cold H I is denser by a factor of ˜4 than warm H I. The present analysis has revealed the hidden H I mass in the cold and optically thick phase in the Galactic disk. The total H I mass inside the solar circle is shown to be greater by a factor of 2-2.5 than the current estimation by the optically thin assumption.

  11. ENSO and cholera: A nonstationary link related to climate change?

    PubMed Central

    Rodó, Xavier; Pascual, Mercedes; Fuchs, George; Faruque, A. S. G.

    2002-01-01

    We present here quantitative evidence for an increased role of interannual climate variability on the temporal dynamics of an infectious disease. The evidence is based on time-series analyses of the relationship between El Niño/Southern Oscillation (ENSO) and cholera prevalence in Bangladesh (formerly Bengal) during two different time periods. A strong and consistent signature of ENSO is apparent in the last two decades (1980–2001), while it is weaker and eventually uncorrelated during the first parts of the last century (1893–1920 and 1920–1940, respectively). Concomitant with these changes, the Southern Oscillation Index (SOI) undergoes shifts in its frequency spectrum. These changes include an intensification of the approximately 4-yr cycle during the recent interval as a response to the well documented Pacific basin regime shift of 1976. This change in remote ENSO modulation alone can only partially serve to substantiate the differences observed in cholera. Regional or basin-wide changes possibly linked to global warming must be invoked that seem to facilitate ENSO transmission. For the recent cholera series and during specific time intervals corresponding to local maxima in ENSO, this climate phenomenon accounts for over 70% of disease variance. This strong association is discontinuous in time and can only be captured with a technique designed to isolate transient couplings. PMID:12228724

  12. Shifting patterns of ENSO variability from a 492-year South Pacific coral core

    NASA Astrophysics Data System (ADS)

    Tangri, N.; Linsley, B. K.; Mucciarone, D.; Dunbar, R. B.

    2017-12-01

    Anticipating the impacts of ENSO in a changing climate requires detailed reconstructions of changes in its timing, amplitude, and spatial pattern, as well as attempts to attribute those changes to external forcing or internal variability. A continuous coral δ18O record from American Samoa, in the tropical South Pacific, sheds light on almost five centuries of these changes. We find evidence of internally-driven 50-100 year cycles with broad peaks of high variability punctuated by short transitions of low variability. We see a long, slow trend towards more frequent ENSO events, punctuated by sharp decreases in frequency; the 20th century in particular shows a strong trend towards higher-frequency ENSO. Due to the unique location of American Samoa with respect to ENSO sea surface temperature (SST) anomalies, we infer changes in the spatial pattern of ENSO. American Samoa currently lies on the ENSO 3.4 nodal line - the boomerang shape that separates waters warmed by El Niño from those that cool. Closer examination reveals that SST around American Samoa displays opposing responses to Eastern and Central Pacific ENSO events. However, this has not always been the case; in the late 19th and early 20th century, SST responded similarly to both flavors of ENSO. We interpret this to mean a geographic narrowing towards the equator of the eastern Pacific El Niño SST anomaly pattern in the first half of the 20th century.

  13. Predicting the occurrence of cold water patches at intermittent and ephemeral tributary confluences with warm rivers

    EPA Science Inventory

    Small, cold tributary streams can provide important thermal refuge habitat for cold-water fishes such as Pacific salmon (Oncorhynchus spp.) residing in warm, downstream receiving waters. We investigated the potential function of small perennial and non-perennial tributary stream...

  14. Understanding the effect of an excessive cold tongue bias on projecting the tropical Pacific SST warming pattern in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Ying, Jun; Huang, Ping; Lian, Tao; Tan, Hongjian

    2018-05-01

    An excessive cold tongue is a common bias among current climate models, and considered an important source of bias in projections of tropical Pacific climate change under global warming. Specifically, the excessive cold tongue bias is closely related to the tropical Pacific SST warming (TPSW) pattern. In this study, we reveal that two processes are the critical mechanisms by which the excessive cold tongue bias influences the projection of the TPSW pattern, based on 32 models from phase 5 of Coupled Model Intercomparison Projection (CMIP5). On the one hand, by assuming that the shortwave (SW) radiation to SST feedback is linearly correlated to the cold tongue SST, the excessive cold tongue bias can induce an overly weak negative SW-SST feedback in the central Pacific, which can lead to a positive SST warming bias in the central to western Pacific (around 150°E-140°W). Moreover, the overly weak local atmospheric dynamics response to SST is a key process of the overly weak SW-SST feedback, compared with the cloud response to atmospheric dynamics and the SW radiation response to cloud. On the other hand, the overly strong ocean zonal overturning circulation associated with the excessive cold tongue bias results in an overestimation of the ocean dynamical thermostat effect, with enhanced ocean stratification under global warming, leading to a negative SST warming bias in the central and eastern Pacific (around 170°W-120°W). These two processes jointly form a positive SST warming bias in the western Pacific, contributing to a La Niña-like warming bias. Therefore, we suggest a more realistic climatological cold tongue SST is needed for a more reliable projection of the TPSW pattern.

  15. ENSO and PDO-related climate variability impacts on Midwestern United States crop yields.

    PubMed

    Henson, Chasity; Market, Patrick; Lupo, Anthony; Guinan, Patrick

    2017-05-01

    An analysis of crop yields for the state of Missouri was completed to determine if an interannual or multidecadal variability existed as a result of the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Corn and soybean yields were recorded in kilograms per hectare for each of the six climate regions of Missouri. An analysis using the Mokhov "method of cycles" demonstrated interannual, interdecadal, and multidecadal variations in crop yields. Cross-spectral analysis was used to determine which region was most impacted by ENSO and PDO influenced seasonal (April-September) temperature and precipitation. Interannual (multidecadal) variations found in the spectral analysis represent a relationship to ENSO (PDO) phase, while interdecadal variations represent a possible interaction between ENSO and PDO. Average crop yields were then calculated for each combination of ENSO and PDO phase, displaying a pronounced increase in corn and soybean yields when ENSO is warm and PDO is positive. Climate regions 1, 2, 4, and 6 displayed significant differences (p value of 0.10 or less) in yields between El Niño and La Niña years, representing 55-70 % of Missouri soybean and corn productivity, respectively. Final results give the opportunity to produce seasonal predictions of corn and soybean yields, specific to each climate region in Missouri, based on the combination of ENSO and PDO phases.

  16. El Niño/Southern Oscillation response to global warming

    PubMed Central

    Latif, M.; Keenlyside, N. S.

    2009-01-01

    The El Niño/Southern Oscillation (ENSO) phenomenon, originating in the Tropical Pacific, is the strongest natural interannual climate signal and has widespread effects on the global climate system and the ecology of the Tropical Pacific. Any strong change in ENSO statistics will therefore have serious climatic and ecological consequences. Most global climate models do simulate ENSO, although large biases exist with respect to its characteristics. The ENSO response to global warming differs strongly from model to model and is thus highly uncertain. Some models simulate an increase in ENSO amplitude, others a decrease, and others virtually no change. Extremely strong changes constituting tipping point behavior are not simulated by any of the models. Nevertheless, some interesting changes in ENSO dynamics can be inferred from observations and model integrations. Although no tipping point behavior is envisaged in the physical climate system, smooth transitions in it may give rise to tipping point behavior in the biological, chemical, and even socioeconomic systems. For example, the simulated weakening of the Pacific zonal sea surface temperature gradient in the Hadley Centre model (with dynamic vegetation included) caused rapid Amazon forest die-back in the mid-twenty-first century, which in turn drove a nonlinear increase in atmospheric CO2, accelerating global warming. PMID:19060210

  17. ENSO Transition Asymmetry: Internal and External Causes and Intermodel Diversity

    NASA Astrophysics Data System (ADS)

    An, Soon-Il; Kim, Ji-Won

    2018-05-01

    El Niño is frequently followed by La Niña, but the opposite case rarely happens. Here we explore a mechanism for such an asymmetrical transition and its future changes. Internally, the asymmetrical response of upper ocean waves against surface wind stress anomaly exerts a primary cause of El Niño-Southern Oscillation (ENSO) transition asymmetry. Externally, the asymmetrical capacitor effects of both Indian and Atlantic Oceans play some roles in driving the ENSO transition asymmetry via the interbasin interactions. The historical runs of Coupled Model Intercomparison Project Phase 5 show that the intermodel transition asymmetry is significantly correlated with the intermodel asymmetry in ocean wave response to surface wind forcing but not with that in the interbasin interactions. In addition, the El Niño-to-La Niña transition tendency was weaker in moderate global warming scenario runs (Representative Concentration Pathway 4.5) while slightly enhanced in strong warming scenario runs (Representative Concentration Pathway 8.5). Similar changes also appeared in the asymmetrical response of ocean waves against the surface wind forcing.

  18. Lessons: Science: "Sinkholes." Students Observe What Happens When Ice-Cold Water Mingles with Warm Water.

    ERIC Educational Resources Information Center

    VanCleave, Janice

    2000-01-01

    This intermediate-level science activity has students observe the effect of ice-cold water mingling with warm water. Water's behavior and movement alters with shifts in temperature. Students must try to determine how temperature affects the movement of water. Necessary materials include a pencil, cup, glass jar, masking tape, warm water, ice…

  19. Clinical assessment of the warming sensation accompanying flavor 316282 in a cold and cough syrup containing paracetamol, phenylephrine hydrochloride, and guaifenesin

    PubMed Central

    Monnet, Joëlle

    2014-01-01

    Objective: The primary objective was to assess the warming sensation caused by flavor 316282 in a cold and cough product in the target population. Methods: A single-cohort, single-treatment arm, open-label study. Subjects received one 30-mL dose of syrup containing flavor 316282, paracetamol, phenylephrine hydrochloride, and guaifenesin and recorded onset and disappearance of any warming sensation in the mouth/throat. Subjects’ assessment of strength and appeal of the sensation, taste, texture, and acceptability of the product as a cold and cough remedy was investigated using questionnaires. Results: A total of 51 subjects were included; 47 (92.1%) experienced a warming sensation. The median duration of the warming sensation was 100 s (95% confidence interval = 82 s, 112 s). The majority of subjects rated the syrup as excellent, good, or fair for treatment of cough and cold symptoms (96.1%), taste (80.4%), and texture (98.0%). There were no safety concerns, and the syrup was well tolerated. Most subjects liked the warming sensation. Conclusions: Flavor 316282 in a cold and cough syrup is associated with a warming sensation. The syrup is well tolerated, safe, and palatable. PMID:26770699

  20. ENSO-driven nutrient variability recorded by central equatorial Pacific corals

    NASA Astrophysics Data System (ADS)

    LaVigne, M.; Nurhati, I. S.; Cobb, K. M.; McGregor, H. V.; Sinclair, D. J.; Sherrell, R. M.

    2012-12-01

    Recent evidence for shifts in global ocean primary productivity suggests that surface ocean nutrient availability is a key link between global climate and ocean carbon cycling. Time-series records from satellite, in situ buoy sensors, and bottle sampling have documented the impact of the El Niño Southern Oscillation (ENSO) on equatorial Pacific hydrography and broad changes in biogeochemistry since the late 1990's, however, data are sparse prior to this. Here we use a new paleoceanographic nutrient proxy, coral P/Ca, to explore the impact of ENSO on nutrient availability in the central equatorial Pacific at higher-resolution than available from in situ nutrient data. Corals from Christmas (157°W 2°N) and Fanning (159°W 4°N) Islands recorded a well-documented decrease in equatorial upwelling as a ~40% decrease in P/Ca during the 1997-98 ENSO cycle, validating the application of this proxy to Pacific Porites corals. We compare the biogeochemical shifts observed through the 1997-98 event with two pre-TOGA-TAO ENSO cycles (1982-83 and 1986-87) reconstructed from a longer Christmas Island core. All three corals revealed ~30-40% P/Ca depletions during ENSO warming as a result of decreased regional wind stress, thermocline depth, and equatorial upwelling velocity. However, at the termination of each El Niño event, surface nutrients did not return to pre-ENSO levels for ~4-12 months after, SST as a result of increased biological draw down of surface nutrients. These records demonstrate the utility of high-resolution coral nutrient archives for understanding the impact of tropical Pacific climate on the nutrient and carbon cycling of this key region.

  1. Coral based-ENSO/IOD related climate variability in Indonesia: a review

    NASA Astrophysics Data System (ADS)

    Yudawati Cahyarini, Sri; Henrizan, Marfasran

    2018-02-01

    Indonesia is located in the prominent site to study climate variability as it lies between Pacific and Indian Ocean. It has consequences to the regional climate in Indonesia that its climate variability is influenced by the climate events in the Pacific oceans (e.g. ENSO) and in the Indian ocean (e.g. IOD), and monsoon as well as Indonesian Throughflow (ITF). Northwestern monsoon causes rainfall in the region of Indonesia, while reversely Southwestern monsoon causes dry season around Indonesia. The ENSO warm phase called El Nino causes several droughts in Indonesian region, reversely the La Nina causes flooding in some regions in Indonesia. However, the impact of ENSO in Indonesia is different from one place to the others. Having better understanding on the climate phenomenon and its impact to the region requires long time series climate data. Paleoclimate study which provides climate data back into hundreds to thousands even to million years overcome this requirement. Coral Sr/Ca can provide information on past sea surface temperature (SST) and paired Sr/Ca and δ18O may be used to reconstruct variations in the precipitation balance (salinity) at monthly to annual interannual resolution. Several climate studies based on coral geochemical records in Indonesia show that coral Sr/Ca and δ18O from Indonesian records SST and salinity respectively. Coral Sr/Ca from inshore Seribu islands complex shows more air temperature rather than SST. Modern coral from Timor shows the impact of ENSO and IOD to the saliniy and SST is different at Timor sea. This result should be taken into account when interpreting Paleoclimate records over Indonesia. Timor coral also shows more pronounced low frequency SST variability compared to the SST reanalysis (model). The longer data of low frequency variability will improve the understanding of warming trend in this climatically important region.

  2. Utilization of Screw Piles in High Seismicity Areas of Cold and Warm Permafrost

    DOT National Transportation Integrated Search

    2010-07-01

    This work was performed in support of the AUTC project Utilization of Screw Piles in : High Seismicity Areas of Cold and Warm Permafrost under the direction of PI Dr. Kenan : Hazirbaba. Surface wave testing was performed at 30 sites in the City...

  3. Invasion of shrublands by exotic grasses: Ecohydrological consequences in cold vs. warm deserts

    USDA-ARS?s Scientific Manuscript database

    Across the globe, native savannas and woodlands are undergoing conversion to exotic grasslands. Here we summarize the current state of knowledge concerning the ecohydrological consequences of this conversion for the cold deserts (Great Basin, Colorado Plateau) and the warm deserts (Mojave, Sonoran, ...

  4. Linkages between ENSO/PDO signals and precipitation, streamflow in China during the last 100 years

    NASA Astrophysics Data System (ADS)

    Ouyang, R.; Liu, W.; Fu, G.; Liu, C.; Hu, L.; Wang, H.

    2014-09-01

    This paper investigates the single and combined impacts of El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) on precipitation and streamflow in China over the last century. Results indicate that the precipitation and streamflow overall decrease during El Niño/PDO warm phase periods and increase during La Niña/PDO cool phase periods in the majority of China, although there are regional and seasonal differences. Precipitation and streamflow in the Yellow River basin, Yangtze River basin and Pearl River basin are more significantly influenced by El Niño and La Niña events than is precipitation and streamflow in the Songhua River basin, especially in October and November. Moreover, significant influence of ENSO on streamflow in the Yangtze River mainly occurs in summer and autumn while in the Pearl River influence primarily occurs in the winter and spring. The precipitation and streamflow are relatively greater in the warm PDO phase in the Songhua River basin and several parts of the Yellow River basin and relatively less in the Pearl River basin and most parts of Northwest China compared to those in the cool PDO phase, though there is little significance detected by Wilcoxon signed-rank test. When considering the combined influence of ENSO and PDO, the responses of precipitation/streamflow are shown to be opposite in northern China and southern China, with ENSO-related precipitation/streamflow enhanced in northern China and decreased in southern China during the warm PDO phases, and enhanced in southern China and decreased in northern China during the cool PDO phases. It is hoped that this study will be beneficial for understanding the precipitation/streamflow responses to the changing climate and will correspondingly provide valuable reference for water resources prediction and management across China.

  5. Changes in Indonesian Outflow in relation to East Asian Monsoon and ENSO Activities since the Last Glacial

    NASA Astrophysics Data System (ADS)

    Xu, J.

    2013-12-01

    mechanisms in controlling changes of the ITF outflow after the ITF recovered during ~16-11.5ka. It is speculated that intensified precipitation due to prevailed East Asian summer monsoon and possible ENSO-like cold phase during the early Holocene (11.5-6ka) significantly freshened surface waters over the Indonesian Seas, impeding ITF surface flow and in turn enhanced thermocline flow. Continuous cooling of ITF thermocline waters and shoaling of thermocline depth in the TS after 6ka were partially related to impedance of ITF surface flow, which is however very likely caused by fresh surface water plug driven by winter monsoon, as it operates today (Gordon, 2005). More frequent ENSO-like events during the mid-to-late Holocene may play an additional role, as eastward movement of the warm pool is concomitant with shoaling and cooling of thermocline in the WPWP during modern ENSO events.

  6. Assessment of the APCC Coupled MME Suite in Predicting the Distinctive Climate Impacts of Two Flavors of ENSO during Boreal Winter

    NASA Technical Reports Server (NTRS)

    Jeong, Hye-In; Lee, Doo Young; Karumuri, Ashok; Ahn, Joong-Bae; Lee, June-Yi; Luo, Jing-Jia; Schemm, Jae-Kyung E.; Hendon, Harry H.; Braganza, Karl; Ham, Yoo-Geun

    2012-01-01

    Forecast skill of the APEC Climate Center (APCC) Multi-Model Ensemble (MME) seasonal forecast system in predicting two main types of El Nino-Southern Oscillation (ENSO), namely canonical (or cold tongue) and Modoki ENSO, and their regional climate impacts is assessed for boreal winter. The APCC MME is constructed by simple composite of ensemble forecasts from five independent coupled ocean-atmosphere climate models. Based on a hindcast set targeting boreal winter prediction for the period 19822004, we show that the MME can predict and discern the important differences in the patterns of tropical Pacific sea surface temperature anomaly between the canonical and Modoki ENSO one and four month ahead. Importantly, the four month lead MME beats the persistent forecast. The MME reasonably predicts the distinct impacts of the canonical ENSO, including the strong winter monsoon rainfall over East Asia, the below normal rainfall and above normal temperature over Australia, the anomalously wet conditions across the south and cold conditions over the whole area of USA, and the anomalously dry conditions over South America. However, there are some limitations in capturing its regional impacts, especially, over Australasia and tropical South America at a lead time of one and four months. Nonetheless, forecast skills for rainfall and temperature over East Asia and North America during ENSO Modoki are comparable to or slightly higher than those during canonical ENSO events.

  7. Influence of Cold-Sprayed, Warm-Sprayed, and Plasma-Sprayed Layers Deposition on Fatigue Properties of Steel Specimens

    NASA Astrophysics Data System (ADS)

    Cizek, J.; Matejkova, M.; Dlouhy, I.; Siska, F.; Kay, C. M.; Karthikeyan, J.; Kuroda, S.; Kovarik, O.; Siegl, J.; Loke, K.; Khor, Khiam Aik

    2015-06-01

    Titanium powder was deposited onto steel specimens using four thermal spray technologies: plasma spray, low-pressure cold spray, portable cold spray, and warm spray. The specimens were then subjected to strain-controlled cyclic bending test in a dedicated in-house built device. The crack propagation was monitored by observing the changes in the resonance frequency of the samples. For each series, the number of cycles corresponding to a pre-defined specimen cross-section damage was used as a performance indicator. It was found that the grit-blasting procedure did not alter the fatigue properties of the steel specimens (1% increase as compared to as-received set), while the deposition of coatings via all four thermal spray technologies significantly increased the measured fatigue lives. The three high-velocity technologies led to an increase of relative lives to 234% (low-pressure cold spray), 210% (portable cold spray), and 355% (warm spray) and the deposition using plasma spray led to an increase of relative lives to 303%. The observed increase of high-velocity technologies (cold and warm spray) could be attributed to a combination of homogeneous fatigue-resistant coatings and induction of peening stresses into the substrates via the impingement of the high-kinetic energy particles. Given the intrinsic character of the plasma jet (low-velocity impact of semi/molten particles) and the mostly ceramic character of the coating (oxides, nitrides), a hypothesis based on non-linear coatings behavior is provided in the paper.

  8. Cold, warm, and composite (cool) cosmic string models

    NASA Astrophysics Data System (ADS)

    Carter, B.

    1994-01-01

    The dynamical behaviour of a cosmic string is strongly affected by any reduction of the effective string tension T below the constant value, T = m2 say, that typifies a simple, longitudinally Lorentz invariant Goto-Nambu type string model, where m is a fixed mass scale determined by the internal structure of an underlying Nielsen-Olesen type vacuum vortex. Such a reduction of tension occurs in the standard ``warm'' cosmic string model in which the effect of thermal perturbations of a simple Goto-Nambu model is represented by an effective tension T given in terms of the corresponding effective temperature, Θ say, by T2 = m2(m2 - 1/3πΘ2). A qualitatively similar though analytically more complicated tension reduction phenomenon occurs in ``cold'' conducting cosmic string models of the kind whose existence was first proposed by Witten, where the role of the temperature is played by an effective mass or chemical potential μ that is constructed as the scalar magnitude of the energy momentum covector obtained as the gradient of the phase ϕ of a bosonic condensate in the core of the vacuum vortex. The present article describes the construction and essential mechanical properties of a new category of composite ``cool'' cosmic string models that are intermediate between these ``warm'' and ``cold'' limit cases. These composite models are the string analogues of the standard Landau model for a two-constituent finite temperature superfluid, and as such involve two independent currents interpretable as that of the entropy on the one hand and that of the bosonic condensate on the other. It is surmised that the stationary (in particular ring) equilibrium states of such ``cool'' cosmic strings may be of cosmologicl significance.

  9. Contrasting Indian Ocean SST Variability With and Without ENSO Influence: A Coupled Atmosphere-Ocean GCM Study

    NASA Technical Reports Server (NTRS)

    Yu, Jin-Yi; Lau, K. M.

    2004-01-01

    In this study, we perform experiments with a coupled atmosphere-ocean general circulation model (CGCM) to examine ENSO's influence on the interannual sea surface temperature (SST) variability of the tropical Indian Ocean. The control experiment includes both the Indian and Pacific Oceans in the ocean model component of the CGCM (the Indo-Pacific Run). The anomaly experiment excludes ENSOs influence by including only the Indian Ocean while prescribing monthly-varying climatological SSTs for the Pacific Ocean (the Indian-Ocean Run). In the Indo-Pacific Run, an oscillatory mode of the Indian Ocean SST variability is identified by a multi-channel singular spectral analysis (MSSA). The oscillatory mode comprises two patterns that can be identified with the Indian Ocean Zonal Mode (IOZM) and a basin-wide warming/cooling mode respectively. In the model, the IOZM peaks about 3-5 months after ENSO reaches its maximum intensity. The basin mode peaks 8 months after the IOZM. The timing and associated SST patterns suggests that the IOZM is related to ENSO, and the basin- wide warming/cooling develops as a result of the decay of the IOZM spreading SST anomalies from western Indian Ocean to the eastern Indian Ocean. In contrast, in the Indian-Ocean Run, no oscillatory modes can be identified by the MSSA, even though the Indian Ocean SST variability is characterized by east-west SST contrast patterns similar to the IOZM. In both control and anomaly runs, IOZM-like SST variability appears to be associated with forcings from fluctuations of the Indian monsoon. Our modeling results suggest that the oscillatory feature of the IOZM is primarily forced by ENSO.

  10. Fossil Coral Records of ENSO during the Last Glacial Period

    NASA Astrophysics Data System (ADS)

    Partin, J. W.; Taylor, F. W.; Shen, C. C.; Edwards, R. L.; Quinn, T. M.; DiNezro, P.

    2017-12-01

    to climate model simulations in order to elucidate the mechanisms driving the changes in ENSO. The proposed research activities will shed light on the sensitivity of ENSO to external forcings, a highly critical issue given that climate model projections used for future climate projection do not agree if ENSO will strengthen or weaken as the Earth warms.

  11. El Niño suppresses Antarctic warming

    NASA Astrophysics Data System (ADS)

    Bertler, Nancy A. N.; Barrett, Peter J.; Mayewski, Paul A.; Fogt, Ryan L.; Kreutz, Karl J.; Shulmeister, James

    2004-08-01

    Here we present new isotope records derived from snow samples from the McMurdo Dry Valleys, Antarctica and re-analysis data of the European Centre for Medium-Range Weather Forecasts (ERA-40) to explain the connection between the warming of the Pacific sector of the Southern Ocean [Jacka and Budd, 1998; Jacobs et al., 2002] and the current cooling of the terrestrial Ross Sea region [Doran et al., 2002a]. Our analysis confirms previous findings that the warming is linked to the El Niño Southern Oscillation (ENSO) [Kwok and Comiso, 2002a, 2002b; Carleton, 2003; Ribera and Mann, 2003; Turner, 2004], and provides new evidence that the terrestrial cooling is caused by a simultaneous ENSO driven change in atmospheric circulation, sourced in the Amundsen Sea and West Antarctica.

  12. Distinct persistence barriers in two types of ENSO: PERSISTENCE BARRIERS OF TWO ENSO TYPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Hong-Li; Jin, Fei-Fei; Tian, Ben

    El Niño–Southern Oscillation (ENSO) is usually subject to a persistence barrier (PB) in boreal spring. This study quantifies the PB and then reveals its distinct features in the two types of ENSO, the eastern Pacific (EP) and central Pacific (CP) types. We suggest that the PB of ENSO can be measured by the maximum rate of autocorrelation decline of Niño sea surface temperature anomaly (SSTA) indices. Results show that the PB of ENSO generally occurs in boreal late spring to early summer in terms of Niño3.4 index, and the EP ENSO has the PB in late spring, while the CPmore » type has the PB in summer. By defining an index to quantify PB intensity of ENSO, we find that the CP ENSO type features a much weaker PB, compared to the EP type, and the PB intensity of equatorial SSTAs is larger over the EP than the western Pacific and the far EP.« less

  13. Distinct persistence barriers in two types of ENSO: PERSISTENCE BARRIERS OF TWO ENSO TYPES

    DOE PAGES

    Ren, Hong-Li; Jin, Fei-Fei; Tian, Ben; ...

    2016-10-30

    El Niño–Southern Oscillation (ENSO) is usually subject to a persistence barrier (PB) in boreal spring. This study quantifies the PB and then reveals its distinct features in the two types of ENSO, the eastern Pacific (EP) and central Pacific (CP) types. We suggest that the PB of ENSO can be measured by the maximum rate of autocorrelation decline of Niño sea surface temperature anomaly (SSTA) indices. Results show that the PB of ENSO generally occurs in boreal late spring to early summer in terms of Niño3.4 index, and the EP ENSO has the PB in late spring, while the CPmore » type has the PB in summer. By defining an index to quantify PB intensity of ENSO, we find that the CP ENSO type features a much weaker PB, compared to the EP type, and the PB intensity of equatorial SSTAs is larger over the EP than the western Pacific and the far EP.« less

  14. Different impacts of mega-ENSO and conventional ENSO on the Indian summer rainfall: developing phase

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wu, Zhiwei; Zhou, Yefan

    2016-04-01

    Mega-El Niño-Southern Oscillation (ENSO), a boarder version of conventional ENSO, is found to be a main driving force of Northern Hemisphere summer monsoon rainfall including the Indian summer rainfall (ISR). The simultaneous impacts of "pure" mega-ENSO and "pure" conventional ENSO events on the ISR in its developing summer remains unclear. This study examines the different linkages between mega-ENSO-ISR and conventional ENSO-ISR. During the developing summer of mega-El Niño, negative rainfall anomalies are seen over the northeastern Indian subcontinent, while the anomalous rainfall pattern is almost the opposite for mega-La Niña; as for the conventional ENSO, the approximate "linear opposite" phenomenon vanishes. Furthermore, the global zonal wave trains anomalous are found at mid-latitude zones, with a local triple circulation pattern over the central-east Eurasia during mega-ENSO events, which might be an explanation of corresponding rainfall response over the Indian Peninsula. Among 106-year historical run (1900-2005) of 9 state-of-the-art models from the Coupled Model Inter-comparison Project Phase 5 (CMIP5), HadGEM2-ES performs a promising skill in simulating the anomalous circulation pattern over mid-latitude and central-east Eurasia while CanESM2 cannot. Probably, it is the models' ability of capturing the mega-ENSO-ISR linkage and the characteristic of mega-ENSO that make the difference.

  15. Leaves of the Arabidopsis maltose exporter1 Mutant Exhibit a Metabolic Profile with Features of Cold Acclimation in the Warm

    PubMed Central

    Purdy, Sarah J.; Bussell, John D.; Nunn, Christopher P.; Smith, Steven M.

    2013-01-01

    Background Arabidopsis plants accumulate maltose from starch breakdown during cold acclimation. The Arabidopsis mutant, maltose excess1-1, accumulates large amounts of maltose in the plastid even in the warm, due to a deficient plastid envelope maltose transporter. We therefore investigated whether the elevated maltose level in mex1-1 in the warm could result in changes in metabolism and physiology typical of WT plants grown in the cold. Principal Findings Grown at 21 °C, mex1-1 plants were much smaller, with fewer leaves, and elevated carbohydrates and amino acids compared to WT. However, after transfer to 4 °C the total soluble sugar pool and amino acid concentration was in equal abundance in both genotypes, although the most abundant sugar in mex1-1 was still maltose whereas sucrose was in greatest abundance in WT. The chlorophyll a/b ratio in WT was much lower in the cold than in the warm, but in mex1-1 it was low in both warm and cold. After prolonged growth at 4 °C, the shoot biomass, rosette diameter and number of leaves at bolting were similar in mex1-1 and WT. Conclusions The mex1-1 mutation in warm-grown plants confers aspects of cold acclimation, including elevated levels of sugars and amino acids and low chlorophyll a/b ratio. This may in turn compromise growth of mex1-1 in the warm relative to WT. We suggest that elevated maltose in the plastid could be responsible for key aspects of cold acclimation. PMID:24223944

  16. Exploring impacts of El Niño Southern Oscillation on Meteorological Forcing within the Glaciated Llanganuco Valley, Peru

    NASA Astrophysics Data System (ADS)

    Covert, J. M.; Hellstrom, R. A.

    2015-12-01

    El Niño Southern Oscillation (ENSO) is known to be the primary modulator of inter-annual weather patterns in the Andes, but its impact in the Cordillera Blanca (White Range) is not fully understood. In 2004 an autonomous sensor network (ASN) was installed in the Llanganuco Valley in the Cordillera Blanca, Peru consisting of two automatic weather stations (AWS) located at the base and upper ridge of the valley connected by four air temperature/humidity micro-loggers at equal elevation intervals. The ASN permits high resolution evaluations of the micro-scale meteorology within the valley. Twenty-four hour composites and monthly averages of wind, solar insolation, air temperature profiles, and precipitation obtained from the ASN were analyzed for the historical wet and dry seasons between the years of 2005 and 2015. The evidence suggests that teleconnections exist between eastern equatorial Pacific Ocean sea surface temperatures and meteorological forcing within the Valley. Comparisons between the two AWS units reveal similar ENSO impacts during the wet season that are not replicated in the dry season. We found that warm and cold ENSO create anomalies that appear unique to this region of the outer Tropics. Warm ENSO phases promote wetter than normal dry seasons and dryer than normal wet seasons and visa versa for cold phases of ENSO. Air temperature is strongly positively correlated to warm ENSO phases during the wet season and depends on elevation during the dry season. Insolation is negatively correlated to warm ENSO phases at higher elevations with weak positive correlation at lower elevations. We attribute observed seasonality, in part, to interactions between channeling of synoptic flow and thermally driven winds. Although the sporadic availability of data prevents definitive conclusions at this time, recent improvements in the ASN infrastructure will facilitate deeper understanding of ENSO impacts on meteorological forcing within pro-glacial valleys of the

  17. When You're Hot, You're Hot! Warm-Cold Effects in First Impressions of Persons and Teaching Effectiveness.

    ERIC Educational Resources Information Center

    Widmeyer, W. Neil; Loy, John W.

    1988-01-01

    The warm/cold manipulation's effect on first impressions of persons and teaching ability was studied using 240 university students. The lecturer was perceived as more effective and less unpleasant when students were told in advance that he was a warm person. Neither academic discipline nor sex influenced student perceptions. (SLD)

  18. Holocene climatic variations in the Western Cordillera of Colombia: A multiproxy high-resolution record unravels the dual influence of ENSO and ITCZ

    NASA Astrophysics Data System (ADS)

    Muñoz, Paula; Gorin, Georges; Parra, Norberto; Velásquez, Cesar; Lemus, Diego; Monsalve-M., Carlos; Jojoa, Marcela

    2017-01-01

    The Páramo de Frontino (3460 m elevation) in Colombia is located approximately halfway between the Pacific and Atlantic oceans. It contains a 17 kyr long, stratigraphically continuous sedimentary sequence dated by 30 AMS 14C ages. Our study covers the last 11,500 cal yr and focuses on the biotic (pollen) and abiotic (microfluorescence-X or μXRF) components of this high mountain ecosystem. The pollen record provides a proxy for temperature and humidity with a resolution of 20-35 yr, and μXRF of Ti and Fe is a proxy for rainfall with a sub-annual (ca. 6-month) resolution. Temperature and humidity display rapid and significant changes over the Holocene. The rapid transition from a cold (mean annual temperature (MAT) 3.5 °C lower than today) and wet Younger Dryas to a warm and dry early Holocene is dated at 11,410 cal yr BP. During the Holocene, MAT varied from ca. 2.5 °C below to 3.5° above present-day temperature. Warm periods (11,410-10,700, 9700-6900, 4000-2400 cal yr BP) were separated by colder intervals. The last 2.4 kyr of the record is affected by human impact. The Holocene remained dry until 7500 cal yr BP. Then, precipitations increased to reach a maximum between 5000 and 4500 cal yr BP. A rapid decrease occurred until 3500 cal yr BP and the late Holocene was dry. Spectral analysis of μXRF data show rainfall cyclicity at millennial scale throughout the Holocene, and at centennial down to ENSO scale in more specific time intervals. The highest rainfall intervals correlate with the highest activity of ENSO. Variability in solar output is possibly the main cause for this millennial to decadal cyclicity. We interpret ENSO and ITCZ as the main climate change-driving mechanisms in Frontino. Comparison with high-resolution XRF data from the Caribbean Cariaco Basin (a proxy for rainfall in the coastal Venezuelian cordilleras) demonstrates that climate in Frontino was Pacific-driven (ENSO-dominated) during the YD and early Holocene, whereas it was Atlantic

  19. Evaluation of the impact of ENSO on precipitation extremes in southern Brazil considering the ODP phases

    NASA Astrophysics Data System (ADS)

    Firpo, M. A.; Sansigolo, C. A.

    2011-12-01

    extreme events in El Niño (La Niña) conditions. The impact of El Niño in the increase of rainfall quantities is higher than the impact of La Niña in its reduction. Furthermore, the El Niño impacts are more persistent. For La Niña analyses, the period of DJF (summer austral) showed bigger lag on this impact; for El Niño the impact starts simultaneously in all seasons and lasted more in JJA. Considering PDO phases, in warm (cold) phase there were more El Niño (La Niña) events. When PDO is positive, the impact of El Niño is stronger over the precipitation increase than in negative phase. The same occurs with La Niña, and the decrease of precipitation in the negative phase of PDO, but only for the DJF period. The Cross-Wavelets showed that PDO and ENSO interacts in both time scales, with ENSO leading PDO in the scale of 4-7 years, and PDO leading ENSO in 16-28 years. Both PDO and ENSO are coherent with the precipitation index in the scale of 2-7 years, but this coherence only appears in the periods of positive phase of PDO. Thus, only ENOS do not explain the climate variability in this region, and it is important to consider the PDO phases in studies of impacts of ENSO in the precipitation extremes in Southern Brazil.

  20. Ultraviolet-B radiation induced cross-linking improves physical properties of cold- and warm-water fish gelatin gels and films.

    PubMed

    Otoni, Caio G; Avena-Bustillos, Roberto J; Chiou, Bor-Sen; Bilbao-Sainz, Cristina; Bechtel, Peter J; McHugh, Tara H

    2012-09-01

    Cold- and warm-water fish gelatin granules were exposed to ultraviolet-B radiation for doses up to 29.7 J/cm(2). Solutions and films were prepared from the granules. Gel electrophoresis and refractive index were used to examine changes in molecular weight of the samples. Also, the gel strength and rheological properties of the solutions as well as the tensile and water vapor barrier properties of the films were characterized. SDS-PAGE and refractive index results indicated cross-linking of gelatin chains after exposure to radiation. Interestingly, UV-B treated samples displayed higher gel strengths, with cold- and warm-water fish gelatin having gel strength increases from 1.39 to 2.11 N and from 7.15 to 8.34 N, respectively. In addition, both gelatin samples exhibited an increase in viscosity for higher UV doses. For gelatin films, the cold-water fish gelatin samples made from irradiated granules showed greater tensile strength. In comparison, the warm-water gelatin films made from irradiated granules had lower tensile strength, but better water vapor barrier properties. This might be due to the UV induced cross-linking in warm-water gelatin that disrupted helical structures. Journal of Food Science copy; 2012 Institute of Food Technologists® No claim to original US government works.

  1. El Niño revisited: the influence of El Niño Southern Oscillation on the world's largest tuna fisheries.

    NASA Astrophysics Data System (ADS)

    Receveur, A.; Simon, N.; Menkes, C.; Tremblay-Boyer, L.; Senina, I.; Lehodey, P.

    2016-12-01

    El Niño Southern Oscillation (ENSO) drives global climate on inter-annual scales and impacts the ecosystem structure in the warm-pool and cold-tongue of the Pacific Ocean. During the El Niño phase of ENSO, the warm-pool can stretch from the western equatorial Pacific to the eastern Pacific allowing species associated with the warm-pool to correspondingly spread eastwards. Conversely, during the la Niña phase the warm-pool is pushed to the far western equatorial Pacific by the cold-tongue allowing species associated with this ecosystem to spread westwards. Consequently, ENSO dynamics are likely to be critical for understanding the ecological processes supporting fisheries in the equatorial Pacific Ocean. Surface inhabiting tuna, such as skipjack, are thought to track the convergence of the warm-pool and cold-tongue with fishing vessels tracking this tuna behavior. Given the reliance of Pacific Island economies on tuna fisheries, knowing when tunas are more likely to be present in high density in their territorial waters is beneficial for harvest control policies such as effort trading between nations. We use the SEAPODYM model to investigate the response of bigeye and skipjack tuna species to the phases of ENSO. SEAPODYM is an age structured model that integrates fisheries dependent and independent data with environmental data. We analyze the outputs of SEAPODYM using wavelets to assess the impact of environmental and biotic variables on the abundance and distribution of adult and juvenile age classes and to study time series cycle and temporal lags to ENSO. The main result for skipjack is the eastward or westward movement of the biomass pattern which is significantly lagged with the warm pool ENSO displacement. That lag ranges from 8 months for juvenile up to 18 months for adults. Such delayed response, can be traced in the model. Higher temperature in the central Pacific during El Niño leads to better recruitment which leads to lagged increase of juvenile

  2. A high-resolution speleothem record of western equatorial Pacific rainfall: Implications for Holocene ENSO evolution

    NASA Astrophysics Data System (ADS)

    Chen, Sang; Hoffmann, Sharon S.; Lund, David C.; Cobb, Kim M.; Emile-Geay, Julien; Adkins, Jess F.

    2016-05-01

    The El Niño-Southern Oscillation (ENSO) is the primary driver of interannual climate variability in the tropics and subtropics. Despite substantial progress in understanding ocean-atmosphere feedbacks that drive ENSO today, relatively little is known about its behavior on centennial and longer timescales. Paleoclimate records from lakes, corals, molluscs and deep-sea sediments generally suggest that ENSO variability was weaker during the mid-Holocene (4-6 kyr BP) than the late Holocene (0-4 kyr BP). However, discrepancies amongst the records preclude a clear timeline of Holocene ENSO evolution and therefore the attribution of ENSO variability to specific climate forcing mechanisms. Here we present δ18 O results from a U-Th dated speleothem in Malaysian Borneo sampled at sub-annual resolution. The δ18 O of Borneo rainfall is a robust proxy of regional convective intensity and precipitation amount, both of which are directly influenced by ENSO activity. Our estimates of stalagmite δ18 O variance at ENSO periods (2-7 yr) show a significant reduction in interannual variability during the mid-Holocene (3240-3380 and 5160-5230 yr BP) relative to both the late Holocene (2390-2590 yr BP) and early Holocene (6590-6730 yr BP). The Borneo results are therefore inconsistent with lacustrine records of ENSO from the eastern equatorial Pacific that show little or no ENSO variance during the early Holocene. Instead, our results support coral, mollusc and foraminiferal records from the central and eastern equatorial Pacific that show a mid-Holocene minimum in ENSO variance. Reduced mid-Holocene interannual δ18 O variability in Borneo coincides with an overall minimum in mean δ18 O from 3.5 to 5.5 kyr BP. Persistent warm pool convection would tend to enhance the Walker circulation during the mid-Holocene, which likely contributed to reduced ENSO variance during this period. This finding implies that both convective intensity and interannual variability in Borneo are driven by

  3. Reduced ENSO Variability at the LGM Revealed by an Isotope-enabled Earth System Model

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Liu, Z.; Otto-Bliesner, B. L.; Brady, E. C.; Noone, D.; Zhang, J.; Tomas, R. A.; Jahn, A.; Nusbaumer, J. M.; Wong, T. E.

    2016-12-01

    El Nino-Southern Oscillation (ENSO) is the most important climate variability at interannual timescale, greatly affecting the weather and climate worldwide. Studying the ENSO at the Last Glacial Maximum (LGM, 21 kyrs before present) can help us better understand its dynamics and improve its projections under anthropogenic global warming. However, both numerical simulations and paleoclimate reconstructions show contradicting results among themselves, e.g., using the Individual Foraminifera Analysis (IFA) approach, some paleo-records suggest an amplified ENSO at the LGM relative to present day; while others indicate a weakened ENSO. These contradictions are hard to explore using traditional climate models due to the indirect nature of model-data comparison: numerical models usually simulate variations in climate state variables (e.g., temperature); while reconstructions can only use proxies (e.g., water isotopes) to infer changes in these state variables. Here we employ the recently developed isotope-enabled Community Earth System Model (iCESM) to study the ENSO strength at the LGM and attempt to provide a consistent picture between climate model and different reconstructions. We find that ENSO at the LGM is about 30% weaker than that of the preindustrial in iCESM, primarily attributable to the weakened atmosphere-ocean coupled feedbacks in a colder climate with a deeper thermocline. With the capability of simulating water isotopes, our model demonstrates that total variance recorded by the IFA water-isotope records in the eastern equatorial Pacific (e.g., Core CD21-30) could actually increase because of an intensified annual cycle, instead of an amplified ENSO. Furthermore, our isotope-enabled simulations suggest that caution should be applied when interpreting the subsurface IFA water-isotope records (e.g., Cores CD38-17P and MD02-2529) due to the wide spread of habitat depth of thermocline-dwelling foraminifera and their possible migration with temporally varying

  4. Rapid drawdown of Antarctica's Wordie Ice Shelf glaciers in response to ENSO/Southern Annular Mode-driven warming in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Walker, C. C.; Gardner, A. S.

    2017-10-01

    Here we investigate the largest acceleration in ice flow across all of Antarctica between ∼2008 InSAR and 2014 Landsat velocity mappings. This occurred in glaciers that used to feed into the Wordie Ice Shelf on the west Antarctic Peninsula, which rapidly disintegrated in ∼1989. Between 2008 and 2014, these glaciers experienced at least a threefold increase in surface elevation drawdown relative to the 2002-2008 time period. After ∼20 yrs of relative stability, it is unlikely that the ice shelf collapse played a role in the large response. Instead, we find that the rapid acceleration and surface drawdown is linked to enhanced melting at the ice-ocean boundary, attributable to changes in winds driven by global atmospheric circulation patterns, namely the El Niño-Southern Oscillation (ENSO) and Southern Annular Mode (SAM), linking changes in grounded ice to atmospheric-driven ocean warming.

  5. ENSO shifts and their link to Southern Africa surface air temperature in summer

    NASA Astrophysics Data System (ADS)

    Manatsa, D.; Mukwada, G.; Makaba, L.

    2018-05-01

    ENSO has been known to influence the trends of summer warming over Southern Africa. In this work, we used observational and reanalysis data to analyze the relationship between ENSO and maximum surface air temperature (SATmax) trends during the three epochs created by the ENSO phase shifts around 1977 and 1997 for the period 1960 to 2014. We observed that while ENSO and cloud cover remains the dominant factor controlling SATmax variability, the first two epochs had the predominant La Niña (El Niño)-like events connected to robust positive (negative) trends in cloud fraction. However, this established relationship reversed in the post-1997 La Niña-like dominated epoch which coincided with a falling cloud cover trend. It is established that this deviation from the previously established link within the previous epochs could be due to the post-1998 era in which SATmin was suppressed while SATmax was enhanced. The resulting increase in diurnal temperature range (DTR) could have discouraged the formation of low-level clouds which have relatively more extensive areal coverage and hence allowing more solar energy to reach the surface to boost daytime SATmax. It is noted that these relationships are more pronounced from December to March.

  6. Higher climatological temperature sensitivity of soil carbon in cold than warm climates

    NASA Astrophysics Data System (ADS)

    Koven, Charles D.; Hugelius, Gustaf; Lawrence, David M.; Wieder, William R.

    2017-11-01

    The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models (ESMs). To assess the climatological temperature sensitivity of soil carbon, we calculate apparent soil carbon turnover times that reflect long-term and broad-scale rates of decomposition. Here, we show that the climatological temperature control on carbon turnover in the top metre of global soils is more sensitive in cold climates than in warm climates and argue that it is critical to capture this emergent ecosystem property in global-scale models. We present a simplified model that explains the observed high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Current ESMs fail to capture this pattern, except in an ESM that explicitly resolves vertical gradients in soil climate and carbon turnover. An observed weak tropical temperature sensitivity emerges in a different model that explicitly resolves mineralogical control on decomposition. These results support projections of strong carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behaviour.

  7. Dynamical excitation of the tropical Pacific Ocean and ENSO variability by Little Ice Age cooling.

    PubMed

    Rustic, Gerald T; Koutavas, Athanasios; Marchitto, Thomas M; Linsley, Braddock K

    2015-12-18

    Tropical Pacific Ocean dynamics during the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) are poorly characterized due to a lack of evidence from the eastern equatorial Pacific. We reconstructed sea surface temperature, El Niño-Southern Oscillation (ENSO) activity, and the tropical Pacific zonal gradient for the past millennium from Galápagos ocean sediments. We document a mid-millennium shift (MMS) in ocean-atmosphere circulation around 1500-1650 CE, from a state with dampened ENSO and strong zonal gradient to one with amplified ENSO and weak gradient. The MMS coincided with the deepest LIA cooling and was probably caused by a southward shift of the intertropical convergence zone. The peak of the MCA (900-1150 CE) was a warm period in the eastern Pacific, contradicting the paradigm of a persistent La Niña pattern. Copyright © 2015, American Association for the Advancement of Science.

  8. The increasing control of the Atlantic Ocean on ENSO after the early 1990s

    NASA Astrophysics Data System (ADS)

    Yu, J. Y.; Paek, H.; Wang, L.; Lyu, K.

    2016-12-01

    The El Niño-Southern Oscillation (ENSO) is the most powerful interannual variability in Earth's climate system. Previous studies have emphasized processes within the tropical Pacific or Indian Oceans for the generation of ENSO. Recent studies have increasingly suggested that the Atlantic Ocean may play an active role in forcing ENSO variability. In this talk, we will present evidence from observational analyses and modeling experiments to show that the Atlantic Ocean became more capable of influencing ENSO properties after the Atlantic Multidecadal Oscillation (AMO) changed to its positive phase in the early-1990s. A wave source mechanism is proposed to explain how the positive phase of the AMO can intensify the North Pacific Subtropical High (NPSH) to change the ENSO from the Eastern Pacific (EP) type to the Central Pacific (CP) type. A sequence of processes are identified to suggest that the AMO can displace the Pacific Walker circulation, induce a wave source in the tropical central Pacific, and excite a barotropic wave train toward higher-latitudes to enhance the NPSH, which then triggers subtropical Pacific atmospheric forcing and atmosphere-ocean coupling to increase the occurrence of the CP ENSO. An Atlantic capacitor mechanism is also proposed to explain how the positive phase of the AMO can intensify the quasi-biennial (QB) component of ENSO resulting in a more frequent occurrence of ENSO events. We will show that the capacitor mechanism works only after the AMO warmed up the Atlantic sea surface temperatures after the early-1990s. The increased feedback from the Atlantic to the Pacific has enabled the Atlantic capacitor mechanism to intensify the biennial variability in the Pacific during the past two decades. Our suggestion is very different from the previous prevailing views that have emphasized the Indo-Pacific Oceans as the pacemaker for the biennial variability in ENSO. The increasing control of the Atlantic has enabled the CP ENSO dynamics to

  9. Volcanic Tephra ejected in south eastern Asia is the sole cause of all historic ENSO events. This natural aerosol plume has been intensified by an anthropogenic plume in the same region in recent decades which has intensified some ENSO events and altered the Southern Oscillation Index characteristics

    NASA Astrophysics Data System (ADS)

    Potts, K. A.

    2017-12-01

    ENSO events are the most significant perturbation of the climate system. Previous attempts to link ENSO with volcanic eruptions typically failed because only large eruptions across the globe which eject tephra into the stratosphere were considered. I analyse all volcanic eruptions in South Eastern (SE) Asia (10ºS to 10ºN and from 90ºE to 160ºE) the most volcanically active area in the world with over 23% of all eruptions in the Global Volcanism Program database occurring here and with 5 volcanoes stated to have erupted nearly continuously for 30 years. SE Asia is also the region where the convective arm of the thermally direct Walker Circulation occurs driven by the intense equatorial solar radiation which creates the high surface temperature. The volcanic tephra plume intercepts some of the solar radiation by absorption/reflection which cools the surface and heats the atmosphere creating a temperature inversion compared to periods without the plume. This reduces convection and causes the Walker Cell and Trade Winds to weaken. This reduced wind speed causes the central Pacific Ocean to warm which creates convection there which further weakens the Walker Cell. With the reduced wind stress the western Pacific warm pool migrates east. This creates an ENSO event which continues until the tephra plume reduces, typically when the SE Asian monsoon commences, and convection is re-established over SE Asia and the Pacific warm pool migrates back to the west. Correlations of SE Asian tephra and the ENSO indices are typically over 0.80 at p < 0.01 In recent decades the anthropogenic SE Asian aerosol Plume (SEAP) has intensified the volcanic plume in some years from August to November. Using NASA satellite data from 1978 and the NASA MERRA 2 reanalysis dataset I show correlation coefficients typically over 0.70 and up to 0.97 at p < 0.01 between the aerosol optical depth or index and the ENSO indices. If two events A and B correlate 5 options are available: 1. A causes B; 2

  10. Biological effects of the 1997/98 ENSO in Cook Inlet, Alaska

    USGS Publications Warehouse

    Piatt, John F.; Drew, Gary S.; van Pelt, Thomas I.; Abookire, Alisa A.; Nielsen, April; Shultz, Michael T.; Kitaysky, Alexander S.

    1999-01-01

    We have been conducting detailed studies of the biology of seabirds in relation to oceanography and forage fish ecology in lower Cook Inlet, Alaska, since 1995. This fortuitously allowed us to document biological effects of the 1997/98 ENSO in this region. Anomalously warm sea surface temperatures (SSTs) were observed in the Gulf of Alaska (GOA) beginning in June of 1997, but not in Cook Inlet until September, 1997. Warm temperature anomalies at the surface and at depth persisted until May of 1998, when temperatures returned to average in the GOA and Cook Inlet. Thus, temperature anomalies occurred outside the core window of productivity (June–August) for forage fish and seabirds in both 1997 and 1998. Abundance or production of phytoplankton, zooplankton, fish, and seabirds in lower Cook Inlet varied among years, and overall appeared to be depressed in 1998. We observed a few biological anomalies that might be attributed to ENSO effects: (1) a significant die-off of Common Murres occurred in March–May of 1998, (2) murres and Black-legged Kittiwakes were physiologically stressed during the 1998 breeding season, (3) murres failed to reproduce at one colony in 1998, (4) kittiwake breeding success was lower than usual at colonies in 1998, and (5) phenology of breeding was later in 1998 for both murres and kittiwakes. We presume that seabird die-offs, reduced productivity and delayed phenology were linked to a reduction or delay in food availability, but the mechanism by which anomalously warm water temperatures in winter reduce forage fish availability during the summer breeding season for seabirds is not known.

  11. Impacts of winter NPO on subsequent winter ENSO: sensitivity to the definition of NPO index

    NASA Astrophysics Data System (ADS)

    Chen, Shangfeng; Wu, Renguang

    2018-01-01

    This study investigates the linkage between boreal winter North Pacific Oscillation (NPO) and subsequent winter El Niño-Southern Oscillation (ENSO) based on seven different NPO indices. Results show that the influence of winter NPO on the subsequent winter El Niño is sensitive to how the NPO is defined. A significant NPO-El Niño connection is obtained when the NPO-related anomalous cyclone over the subtropical North Pacific extends to near-equatorial regions. The anomalous cyclone induces warm sea surface temperature (SST) anomalies through modulating surface heat fluxes. These warm SST anomalies are able to maintain into the following spring and summer through an air-sea coupled process and in turn induce significant westerly wind anomalies over the tropical western Pacific. In contrast, the NPO-El Niño relationship is unclear when the NPO-related anomalous cyclone over the subtropical North Pacific is confined to off-equatorial regions and cannot induce significant warm SST anomalies over the subtropical North Pacific. The present study suggests that definitions of NPO should be taken into account when using NPO to predict ENSO. In particular, we recommend defining the NPO index based on the empirical orthogonal function technique over appropriate region that does not extend too far north.

  12. Changes in oxidative patterns during dormancy break by warm and cold stratification in seeds of an edible fruit tree

    PubMed Central

    Shalimu, Dilinuer; Sun, Jia; Baskin, Carol C.; Baskin, Jerry M.; Sun, Liwei; Liu, Yujun

    2016-01-01

    The transition from seed dormancy to germination is triggered by environmental factors, and in pomegranate (Punica granatum) seeds higher germination percentages are achieved by warm + cold stratification rather than by cold stratification alone. Our objective was to define the pattern of internal oxidative changes in pomegranate seeds as dormancy was being broken by warm + cold stratification and by cold stratification alone. Embryos isolated from seeds after 1–42 days of warm stratification, after 56 days of warm stratification + 7, 28 or 56 days of cold stratification, and after 1–84 days of cold stratification alone, were used in biochemical tests. Hydrogen peroxide (H2O2), nitric oxide (NO), proline, lipid peroxidation, protein carbonylation, and activities of the scavenging enzymes superoxide dismutase (SOD), hydrogen peroxide enzyme and peroxidase in the embryos were assessed by colorimetric methods. Our results indicated that warm + cold stratification had a stronger dormancy-breaking effect than cold stratification (85% versus 50% germination), which may be attributed to a higher yield of H2O2, NO, lipid peroxidation and protein carbonylation in warm + cold stratification. Furthermore, warm + cold stratification-induced H2O2 change led to greater changes (elevation followed by attenuation) in activities of the scavenging enzymes than that induced by cold stratification alone. These results indicated that restriction of the level of reactive oxygen species change within a positive and safe range by such enzymes promoted seed germination. In addition, a relatively strong elevation of proline during warm + cold stratification also contributed to dormancy breakage and subsequent germination. In conclusion, the strong dormancy alleviating effect of warm + cold stratification on pomegranate seeds may be attributed to the corresponding active oxidative change via H2O2, NO, proline, malondialdehyde, protein carbonylation and

  13. Where was ENSO strongest?

    NASA Astrophysics Data System (ADS)

    Cane, M. A.; Chen, D.; Kaplan, A.

    2008-12-01

    Mark A. Cane, Dake Chen, Alexey Kaplan The description of this session begins: "Historical SST records suggest that for the past three decades, ENSO has been anomalously strong" and goes on to ask why. In this talk we dispute this interpretation of the historical record from within the historical record. In particular, we suggest that the most "anomalously strong" period in the historical ENSO record is the late nineteenth century. This claim requires a discussion of how we measure "ENSO strength". We also speculate on possible reasons for the strength of ENSO in this earlier period. Finally, we consult the models, and in reiteration of the collective conclusion of all speakers at this session, find that the riddles the models provide are inelegant and disobliging, lacking the cryptic wisdom of the classical oracles.

  14. Verification of an ENSO-Based Long-Range Prediction of Anomalous Weather Conditions During the Vancouver 2010 Olympics and Paralympics

    NASA Astrophysics Data System (ADS)

    Mo, Ruping; Joe, Paul I.; Doyle, Chris; Whitfield, Paul H.

    2014-01-01

    A brief review of the anomalous weather conditions during the Vancouver 2010 Winter Olympic and Paralympic Games and the efforts to predict these anomalies based on some preceding El Niño-Southern Oscillation (ENSO) signals are presented. It is shown that the Olympic Games were held under extraordinarily warm conditions in February 2010, with monthly mean temperature anomalies of +2.2 °C in Vancouver and +2.8 °C in Whistler, ranking respectively as the highest and the second highest in the past 30 years (1981-2010). The warm conditions continued, but became less anomalous, in March 2010 for the Paralympic Games. While the precipitation amounts in the area remained near normal through this winter, the lack of snow due to warm conditions created numerous media headlines and practical problems for the alpine competitions. A statistical model was developed on the premise that February and March temperatures in the Vancouver area could be predicted using an ENSO signal with considerable lead time. This model successfully predicted the warmer-than-normal, lower-snowfall conditions for the Vancouver 2010 Winter Olympics and Paralympics.

  15. Connection between ENSO and Asian Summer Monsoon Precipitation Oxygen Isotope

    NASA Astrophysics Data System (ADS)

    Cai, Z.; Tian, L.

    2016-12-01

    In an effort to understand the connection between El Niño Southern Oscillation (ENSO) and Asian Summer Monsoon (ASM) precipitation oxygen isotope, this study investigates the spatial and interannual patterns in summer (JJAS) monsoon precipitation δ18O and satellite water vapor isotope retrievals, especially those patterns associated with convection and vapor transport. Both precipitation and vapor isotope values exhibit a "V" shaped longitudinal pattern in their spatial variations, reflecting the gradual rainout and increase in convective intensity along vapor transport routes. In order to understand interannual variations, an ASM precipitation δ18O index (ASMOI) is introduced to measure the temporal variations in regional precipitation δ18O; and these variations are consistent with central Indo-Pacific convection and cloud-top height. The counter variations in the ASMOI in El Niño and La Niña years confirm the existence of a positive isotope- ENSO response (e.g., high values corresponding to warm phases) over the eastern Indian Ocean and southeastern Asia (80°E-120°E/10°S-30°N) as a response to changes in convection. However, JJAS vapor δD over the western Pacific (roughly east of 120oE) varies in opposition, due to the influence of water vapor transport. This opposite variation does not support the interpretation of precipitation isotope-ENSO relationship as changing proportion of vapor transported from different regions, but rather condensation processes associated with convection. These findings are important for studying past ASM and ENSO activity from various isotopic archives and have implications for the study of the atmospheric water cycle.

  16. Improved predictability of droughts over southern Africa using the standardized precipitation evapotranspiration index and ENSO

    NASA Astrophysics Data System (ADS)

    Manatsa, Desmond; Mushore, Terrence; Lenouo, Andre

    2017-01-01

    The provision of timely and reliable climate information on which to base management decisions remains a critical component in drought planning for southern Africa. In this observational study, we have not only proposed a forecasting scheme which caters for timeliness and reliability but improved relevance of the climate information by using a novel drought index called the standardised precipitation evapotranspiration index (SPEI), instead of the traditional precipitation only based index, the standardised precipitation index (SPI). The SPEI which includes temperature and other climatic factors in its construction has a more robust connection to ENSO than the SPI. Consequently, the developed ENSO-SPEI prediction scheme can provide quantitative information about the spatial extent and severity of predicted drought conditions in a way that reflects more closely the level of risk in the global warming context of the sub region. However, it is established that the ENSO significant regional impact is restricted only to the period December-March, implying a revisit to the traditional ENSO-based forecast scheme which essentially divides the rainfall season into the two periods, October to December and January to March. Although the prediction of ENSO events has increased with the refinement of numerical models, this work has demonstrated that the prediction of drought impacts related to ENSO is also a reality based only on observations. A large temporal lag is observed between the development of ENSO phenomena (typically in May of the previous year) and the identification of regional SPEI defined drought conditions. It has been shown that using the Southern Africa Regional Climate Outlook Forum's (SARCOF) traditional 3-month averaged Nino 3.4 SST index (June to August) as a predictor does not have an added advantage over using only the May SST index values. In this regard, the extended lead time and improved skill demonstrated in this study could immensely benefit

  17. ENSO influences the onset of violent conflicts

    NASA Astrophysics Data System (ADS)

    Meng, K. C.; Hsiang, S. M.

    2009-12-01

    Climatic changes are frequently cited as a possible external driver of violent conflict in human societies. Qualitative studies suggest that climatic shifts may stress populations and be conducive to violent conflict. Statistical evidence has shown that anomalous local rainfall is correlated with the onset of conflict. This study finds that in addition to idiosyncratic weather events, climatic states also play a role in triggering violent conflict. El Niño Southern Oscillation (ENSO), the semi-periodic, oceanic Kelvin wave in the tropical Pacific, induces remote temperatures in the tropical free troposphere to rise. This ``ENSO teleconnection'' is not globally uniform and is felt most strongly in the tropical regions during the boreal winter. To determine the degree in which country-level climatic conditions are affected by ENSO, an absolute correlation measure between surface temperature and two ENSO indices was calculated for every country for the period 1949-2009. Countries with high levels of correlation are labeled “ENSO affected,” while countries with low correlation are labeled “ENSO unaffected”. Thus, historical variation in ENSO serves as a ``natural experiment'': if the state of ENSO influences conflict onset, it should be apparent for ENSO affected countries but not for unaffected countries. Using the UCDP/PRIO Armed Conflict Dataset, we find evidence of a large and statistically significant influence of ENSO on the onset of violent conflict. Between 1949-2009, the average probability of a conflict beginning in any country was 0.03. For the ENSO affected countries, we find that a 1°C rise in either NINO12 or NINO34 is associated with an increased probability of conflict onset by 0.015 (or 50% of the global country average). A relationship was not detected for the ENSO unaffected group of countries. This result is robust to a range of statistical models. Nonparametric methods (see figure) also indicate a marked difference in the response of ENSO

  18. Reforecasting the ENSO Events in the Past Fifty-Seven Years (1958-2014)

    NASA Astrophysics Data System (ADS)

    Huang, B.; Shin, C. S.; Shukla, J.; Marx, L.; Balmaseda, M.; Halder, S.; Dirmeyer, P.; Kinter, J. L.

    2016-12-01

    anomalies in strong El Niño events. Both facts imply that the model air-sea feedback is overly active in the eastern Pacific before ENSO termination, likely induced by the model warm bias in the eastern Pacific during boreal winter and spring.

  19. Simulated versus observed patterns of warming over the extratropical Northern Hemisphere continents during the cold season

    PubMed Central

    Wallace, John M.; Fu, Qiang; Smoliak, Brian V.; Lin, Pu; Johanson, Celeste M.

    2012-01-01

    A suite of the historical simulations run with the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) models forced by greenhouse gases, aerosols, stratospheric ozone depletion, and volcanic eruptions and a second suite of simulations forced by increasing CO2 concentrations alone are compared with observations for the reference interval 1965–2000. Surface air temperature trends are disaggregated by boreal cold (November-April) versus warm (May-October) seasons and by high latitude northern (N: 40°–90 °N) versus southern (S: 60 °S–40 °N) domains. A dynamical adjustment is applied to remove the component of the cold-season surface air temperature trends (over land areas poleward of 40 °N) that are attributable to changing atmospheric circulation patterns. The model simulations do not simulate the full extent of the wintertime warming over the high-latitude Northern Hemisphere continents during the later 20th century, much of which was dynamically induced. Expressed as fractions of the concurrent trend in global-mean sea surface temperature, the relative magnitude of the dynamically induced wintertime warming over domain N in the observations, the simulations with multiple forcings, and the runs forced by the buildup of greenhouse gases only is 7∶2∶1, and roughly comparable to the relative magnitude of the concurrent sea-level pressure trends. These results support the notion that the enhanced wintertime warming over high northern latitudes from 1965 to 2000 was mainly a reflection of unforced variability of the coupled climate system. Some of the simulations exhibit an enhancement of the warming along the Arctic coast, suggestive of exaggerated feedbacks. PMID:22847408

  20. In Situ Warming and Soil Venting to Enhance the Biodegradation of JP-4 in Cold Climates: A Critical Study and Analysis

    DTIC Science & Technology

    1995-12-01

    1178-1180 (1991). Atlas , Ronald M. and Richard Bartha . Microbial Ecology : Fundamentals and Applications. 3d ed. Redwood City CA: The Benjamin/Cummings...technique called bioventing. In cold climates, in situ bioremediation is limited to the summer when soil temperatures are sufficient to support microbial ...actively warmed the soil -- warm water circulation and heat tape; the other passively warmed the plot with insulatory covers. Microbial respiration (02

  1. Monsoon-Enso Relationships: A New Paradigm

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    This article is partly a review and partly a new research paper on monsoon-ENSO relationship. The paper begins with a discussion of the basic relationship between the Indian monsoon and ENSO dating back to the work of Sir Gilbert Walker up to research results in more recent years. Various factors that may affect the monsoon-ENSO, relationship, including regional coupled ocean-atmosphere processes, Eurasian snow cover, land-atmosphere hydrologic feedback, intraseasonal oscillation, biennial variability and inter-decadal variations, are discussed. The extreme complex and highly nonlinear nature of the monsoon-ENSO relationship is stressed. We find that for regional impacts on the monsoon, El Nino and La Nina are far from simply mirror images of each other. These two polarities of ENSO can have strong or no impacts on monsoon anomalies depending on the strength of the intraseasonal oscillations and the phases of the inter-decadal variations. For the Asian-Australian monsoon (AAM) as a whole, the ENSO impact is effected through a east-west shift in the Walker Circulation. For rainfall anomalies over specific monsoon areas, regional processes play important roles in addition to the shift in the Walker Circulation. One of the key regional processes identified for the boreal summer monsoon is the anomalous West Pacific Anticyclone (WPA). This regional feature has similar signatures in interannual and intraseasonal time scales and appears to determine whether the monsoon-ENSO relationship is strong or weak in a given year. Another important regional feature includes a rainfall and SST dipole across the Indian Ocean, which may have strong impact on the austral summer monsoon. Results are shown indicating that monsoon surface wind forcings may induce a strong biennial signal in ENSO and that strong monsoon-ENSO coupling may translate into pronounced biennial variability in ENSO. Finally, a new paradigm is proposed for the study of monsoon variability. This paradigm provides

  2. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming

    NASA Astrophysics Data System (ADS)

    Thirumalai, Kaustubh; Dinezio, Pedro N.; Okumura, Yuko; Deser, Clara

    2017-06-01

    In April 2016, southeast Asia experienced surface air temperatures (SATs) that surpassed national records, exacerbated energy consumption, disrupted agriculture and caused severe human discomfort. Here we show using observations and an ensemble of global warming simulations the combined impact of the El Niño/Southern Oscillation (ENSO) phenomenon and long-term warming on regional SAT extremes. We find a robust relationship between ENSO and southeast Asian SATs wherein virtually all April extremes occur during El Niño years. We then quantify the relative contributions of long-term warming and the 2015-16 El Niño to the extreme April 2016 SATs. The results indicate that global warming increases the likelihood of record-breaking April extremes where we estimate that 29% of the 2016 anomaly was caused by warming and 49% by El Niño. These post-Niño Aprils can potentially be anticipated a few months in advance, and thus, help societies prepare for the projected continued increases in extremes.

  3. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming.

    PubMed

    Thirumalai, Kaustubh; DiNezio, Pedro N; Okumura, Yuko; Deser, Clara

    2017-06-06

    In April 2016, southeast Asia experienced surface air temperatures (SATs) that surpassed national records, exacerbated energy consumption, disrupted agriculture and caused severe human discomfort. Here we show using observations and an ensemble of global warming simulations the combined impact of the El Niño/Southern Oscillation (ENSO) phenomenon and long-term warming on regional SAT extremes. We find a robust relationship between ENSO and southeast Asian SATs wherein virtually all April extremes occur during El Niño years. We then quantify the relative contributions of long-term warming and the 2015-16 El Niño to the extreme April 2016 SATs. The results indicate that global warming increases the likelihood of record-breaking April extremes where we estimate that 29% of the 2016 anomaly was caused by warming and 49% by El Niño. These post-Niño Aprils can potentially be anticipated a few months in advance, and thus, help societies prepare for the projected continued increases in extremes.

  4. ENSO Weather and Coral Bleaching on the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    McGowan, Hamish; Theobald, Alison

    2017-10-01

    The most devastating mass coral bleaching has occurred during El Niño events, with bleaching reported to be a direct result of increased sea surface temperatures (SSTs). However, El Niño itself does not cause SSTs to rise in all regions that experience bleaching. Nor is the upper ocean warming trend of 0.11°C per decade since 1971, attributed to global warming, sufficient alone to exceed the thermal tolerance of corals. Here we show that weather patterns during El Niño that result in reduced cloud cover, higher than average air temperatures and higher than average atmospheric pressures, play a crucial role in determining the extent and location of coral bleaching on the world's largest coral reef system, the World Heritage Great Barrier Reef (GBR), Australia. Accordingly, synoptic-scale weather patterns and local atmosphere-ocean feedbacks related to El Niño-Southern Oscillation (ENSO) and not large-scale SST warming due to El Niño alone and/or global warming are often the cause of coral bleaching on the GBR.

  5. Substantial Metabolic Activity of Human Brown Adipose Tissue during Warm Conditions and Cold-Induced Lipolysis of Local Triglycerides.

    PubMed

    Weir, Graeme; Ramage, Lynne E; Akyol, Murat; Rhodes, Jonathan K; Kyle, Catriona J; Fletcher, Alison M; Craven, Thomas H; Wakelin, Sonia J; Drake, Amanda J; Gregoriades, Maria-Lena; Ashton, Ceri; Weir, Nick; van Beek, Edwin J R; Karpe, Fredrik; Walker, Brian R; Stimson, Roland H

    2018-06-05

    Current understanding of in vivo human brown adipose tissue (BAT) physiology is limited by a reliance on positron emission tomography (PET)/computed tomography (CT) scanning, which has measured exogenous glucose and fatty acid uptake but not quantified endogenous substrate utilization by BAT. Six lean, healthy men underwent 18 fluorodeoxyglucose-PET/CT scanning to localize BAT so microdialysis catheters could be inserted in supraclavicular BAT under CT guidance and in abdominal subcutaneous white adipose tissue (WAT). Arterial and dialysate samples were collected during warm (∼25°C) and cold exposure (∼17°C), and blood flow was measured by 133 xenon washout. During warm conditions, there was increased glucose uptake and lactate release and decreased glycerol release by BAT compared with WAT. Cold exposure increased blood flow, glycerol release, and glucose and glutamate uptake only by BAT. This novel use of microdialysis reveals that human BAT is metabolically active during warm conditions. BAT activation substantially increases local lipolysis but also utilization of other substrates such as glutamate. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Calibrating a Method for Reconstructing ENSO Variance in the Eastern Tropical Pacific Using Mg/Ca in Individual Planktic Foraminifera

    NASA Astrophysics Data System (ADS)

    Rongstad, B.; Marchitto, T. M., Jr.; Koutavas, A.; Mekik, F.

    2017-12-01

    El Niño Southern Oscillation (ENSO) is Earth's dominant mode of interannual climate variability, and is responsible for widespread climatic, ecological and societal impacts, such as reduced upwelling and fishery collapse in the eastern equatorial Pacific during El Niño events. While corals offer high resolution records of paleo-ENSO, continuous and gap-free records for the tropical Pacific are rare. Individual foraminifera analyses provide an opportunity to create continuous down-core records of ENSO through the construction and comparison of species-specific sea surface temperature (SST) distributions at different time periods; however, there has been little focus on calibrating this technique to modern ENSO conditions. Here, we present data from a core-top calibration of individual Mg/Ca measurements in planktic foraminifera in the eastern tropical Pacific, using surface dweller G. ruber and thermocline dweller N. dutertrei. We convert the individual Mg/Ca measurements to inferred temperature distributions for each species, and then compare the distributions to modern day temperature characteristics including vertical structure, annual mean, seasonality, and interannual variability. ENSO variance is theoretically inferred from the tails of the distributions: El Niño events affect the warm tail and La Niña events affect the cool tail. Finally, we discuss the utility of individual measurements of Mg/Ca in planktic foraminifera to reconstruct ENSO in down-core sections.

  7. Changes in oxidative patterns during dormancy break by warm and cold stratification in seeds of an edible fruit tree.

    PubMed

    Shalimu, Dilinuer; Sun, Jia; Baskin, Carol C; Baskin, Jerry M; Sun, Liwei; Liu, Yujun

    2016-01-01

    The transition from seed dormancy to germination is triggered by environmental factors, and in pomegranate (Punica granatum) seeds higher germination percentages are achieved by warm + cold stratification rather than by cold stratification alone. Our objective was to define the pattern of internal oxidative changes in pomegranate seeds as dormancy was being broken by warm + cold stratification and by cold stratification alone. Embryos isolated from seeds after 1-42 days of warm stratification, after 56 days of warm stratification + 7, 28 or 56 days of cold stratification, and after 1-84 days of cold stratification alone, were used in biochemical tests. Hydrogen peroxide (H2O2), nitric oxide (NO), proline, lipid peroxidation, protein carbonylation, and activities of the scavenging enzymes superoxide dismutase (SOD), hydrogen peroxide enzyme and peroxidase in the embryos were assessed by colorimetric methods. Our results indicated that warm + cold stratification had a stronger dormancy-breaking effect than cold stratification (85% versus 50% germination), which may be attributed to a higher yield of H2O2, NO, lipid peroxidation and protein carbonylation in warm + cold stratification. Furthermore, warm + cold stratification-induced H2O2 change led to greater changes (elevation followed by attenuation) in activities of the scavenging enzymes than that induced by cold stratification alone. These results indicated that restriction of the level of reactive oxygen species change within a positive and safe range by such enzymes promoted seed germination. In addition, a relatively strong elevation of proline during warm + cold stratification also contributed to dormancy breakage and subsequent germination. In conclusion, the strong dormancy alleviating effect of warm + cold stratification on pomegranate seeds may be attributed to the corresponding active oxidative change via H2O2, NO, proline, malondialdehyde, protein carbonylation and

  8. Tropical warming and the dynamics of endangered primates.

    PubMed

    Wiederholt, Ruscena; Post, Eric

    2010-04-23

    Many primate species are severely threatened, but little is known about the effects of global warming and the associated intensification of El Niño events on primate populations. Here, we document the influences of the El Niño southern oscillation (ENSO) and hemispheric climatic variability on the population dynamics of four genera of ateline (neotropical, large-bodied) primates. All ateline genera experienced either an immediate or a lagged negative effect of El Niño events. ENSO events were also found to influence primate resource levels through neotropical arboreal phenology. Furthermore, frugivorous primates showed a high degree of interspecific population synchrony over large scales across Central and South America attributable to the recent trends in large-scale climate. These results highlight the role of large-scale climatic variation and trends in ateline primate population dynamics, and emphasize that global warming could pose additional threats to the persistence of multiple species of endangered primates.

  9. Assessment of long-term monthly and seasonal trends of warm (cold), wet (dry) spells in Kansas, USA

    NASA Astrophysics Data System (ADS)

    Dokoohaki, H.; Anandhi, A.

    2013-12-01

    A few recent studies have focused on trends in rainfall, temperature, and frost indicators at different temporal scales using centennial weather station data in Kansas; our study supplements this work by assessing the changes in spell indicators in Kansas. These indicators provide the duration between temperature-based (warm and cold) and precipitation-based (wet and dry) spells. For wet (dry) spell calculations, a wet day is defined as a day with precipitation ≥1 mm, and a dry day is defined as one with precipitation ≤1 mm. For warm (cold) spell calculations, a warm day is defined as a day with maximum temperature >90th percentile of daily maximum temperature, and a cold day is defined as a day with minimum temperature <10th percentile of daily minimum temperature. The percentiles are calculated for 1971-2000, and four spell indicators are calculated: Average Wet Spell Length (AWSL), Dry Spell Length (ADSL), Average Warm Spell Days (AWSD) and Average Cold Spell Days (ACSD) are calculated. Data were provided from 23 centennial weather stations across Kansas, and all calculations were done for four time periods (through 1919, 1920-1949, 1950-1979, and 1980-2009). The definitions and software provided by Expert Team on Climate Change Detection and Indices (ETCCDI) were adapted for application to Kansas. The long- and short-term trends in these indices were analyzed at monthly and seasonal timescales. Monthly results indicate that ADSL is decreasing and AWSL is increasing throughout the state. AWSD and ACSD both showed an overall decreasing trend, but AWSD trends were variable during the beginning of the Industrial Revolution. Results of seasonal analysis revealed that the fall season recorded the greatest increasing trend for ACSD and the greatest decreasing trend for AWSD across the whole state and during all time periods. Similarly, the greatest increasing and decreasing trends occurred in winter for AWSL and ADSL, respectively. These variations can be

  10. Managing ambivalent prejudices: The smart-but-cold, and the warm-butdumb sterotypes.

    PubMed

    Fiske, Susan T

    2012-01-01

    Not all biases are equivalent, and not all biases are uniformly negative. Two fundamental dimensions differentiate stereotyped groups in cultures across the globe: status predicts perceived competence, and cooperation predicts perceived warmth. Crossing the competence and warmth dimensions, two combinations produce ambivalent prejudices: pitied groups (often traditional women or older people) appear warm but incompetent, and envied groups (often nontraditional women or outsider entrepreneurs) appear competent but cold. Case studies in ambivalent sexism, heterosexism, racism, anti-immigrant biases, ageism, and classism illustrate both the dynamics and the management of these complex but knowable prejudices.

  11. South Asian Summer Monsoon and Its Relationship with ENSO in the IPCC AR4 Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annamalai, H; Hamilton, K; Sperber, K R

    , suggesting a lack of predictability of the decadal modulation of the monsoon-ENSO relationship. The analysis was repeated for each of the four models using results from integrations in which the atmospheric CO{sub 2} concentration was raised to twice pre-industrial values. From these ''best'' models in the double CO{sub 2} simulations there are increases in both the mean monsoon rainfall over the Indian sub-continent (by 5-25%) and in its interannual variability (5-10%). We find for each model that the ENSO-monsoon correlation in the global warming runs is very similar to that in the 20th century runs, suggesting that the ENSO-monsoon connection will not weaken as global climate warms. This result, though plausible, needs to be taken with some caution because of the diversity in the simulation of ENSO variability in the coupled models we have analyzed. The implication of the present results for monsoon prediction are discussed.« less

  12. The weakening of the ENSO-Indian Ocean Dipole (IOD) coupling strength in recent decades

    NASA Astrophysics Data System (ADS)

    Ham, Yoo-Geun; Choi, Jun-Young; Kug, Jong-Seong

    2017-07-01

    This study examines a recent weakening of the coupling between the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) mode after the 2000s and 2010s compared to the previous two decades (1980s and 1990s). The correlation between the IOD during the September-November season and the Nino3.4 index during the December-February season is 0.21 for 1999-2014, while for the previous two decades (1979-1998) it is 0.64. It is found that this weakening of the ENSO-IOD coupling during the 2000s and 2010s is associated with different spatial patterns in ENSO evolution during the boreal spring and summer seasons. During the boreal spring season of the El Nino developing phase, positive precipitation anomalies over the northern off-equatorial western Pacific is systematically weakened during the 2000s and 2010s. This also weakens the low-level cross-equatorial southerly flow, which can cause local negative precipitation anomalies over the maritime continent through increased evaporation and cold and dry moist energy advection. The weakened negative precipitation anomalies over the maritime continent reduces the amplitude of the equatorial easterly over the IO, therefore, suppresses a ENSO-related IOD variability. An analysis using climate models that participated in the Coupled Model Intercomparison Project phase 5 (CMIP5) supports this observational findings that the amplitude of the cross-equatorial southerly flow and associated suppressed convective activities over the maritime continent during the El Nino developing season are critical for determining the ENSO-IOD coupling strength in climate models.

  13. Persistent cold air outbreaks over North America in a warming climate

    DOE PAGES

    Gao, Yang; Leung, L. Ruby; Lu, Jian; ...

    2015-03-30

    This study examines future changes of cold air outbreaks (CAO) using a multi-model ensemble of global climate simulations from the Coupled Model Intercomparison Project Phase 5 as well as regional high resolution climate simulations. In the future, while robust decrease of CAO duration dominates in most regions, the magnitude of decrease over northwestern U.S. is much smaller than the surrounding regions. We identified statistically significant increases in sea level pressure during CAO events centering over Yukon, Alaska, and Gulf of Alaska that advects continental cold air to northwestern U.S., leading to blocking and CAO events. Changes in large scale circulationmore » contribute to about 50% of the enhanced sea level pressure anomaly conducive to CAO in northwestern U.S. in the future. High resolution regional simulations revealed potential contributions of increased existing snowpack to increased CAO in the near future over the Rocky Mountain, southwestern U.S., and Great Lakes areas through surface albedo effects, despite winter mean snow water equivalent decreases in the future. Overall, the multi-model projections emphasize that cold extremes do not completely disappear in a warming climate. Concomitant with the relatively smaller reduction in CAO events in northwestern U.S., the top 5 most extreme CAO events may still occur in the future, and wind chill warning will continue to have societal impacts in that region.« less

  14. Laboratory study on the kinetics of the warming of cold fluids-A hot topic.

    PubMed

    Mendibil, Alexandre; Jost, Daniel; Thiry, Aurélien; Garcia, Delphine; Trichereau, Julie; Frattini, Benoit; Dang-Minh, Pascal; Maurin, Olga; Margerin, Sylvie; Domanski, Laurent; Tourtier, Jean-Pierre

    2016-10-01

    In case of mild therapeutic hypothermia after an out-of-hospital cardiac arrest, several techniques could limit the cold fluid rewarming during its perfusion. We aimed to evaluate cold fluid temperature evolution and to identify the factors responsible for rewarming in order to suggest a prediction model of temperature evolution. This was a laboratory experimental study. We measured temperature at the end of the infusion line tubes (ILT). A 500ml saline bag at 4°C was administered at 15 and 30ml/min, with and without cold packs applied to the cold fluid bag or to the ILT. Cold fluid temperature was integrated in a linear mixed model. Then we performed a mathematical modelization of the thermal transfer across the ILT. The linear mixed model showed that the mean temperature of the cold fluid was 1°C higher (CI 95%: [0.8-1.2]) with an outflow rate of 15 versus 30ml/min (P<0.001). Similarly, the mean temperature of the cold fluid was 0.7°C higher (CI 95%: [0.53-0.9]) without cold pack versus with cold packs (P<0.001). Mathematical modelization of the thermal transfer across the ILT suggested that the cold fluid warming could be reduced by a shorter and a wider ILT. As expected, use of CP has also a noticeable influence on warning reduction. The combination of multiple parameters working against the rewarming of the solution should enable the infusion of a solute with retained caloric properties. By limiting this "ILT effect," the volume required for inducing mild therapeutic hypothermia could be reduced, leading to a safer and a more efficient treatment. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.

  15. Relationships of the symmetric and asymmetric components of ENSO to US extreme precipitation

    Treesearch

    Lejiang Yu; Warren E. Heilman; Shiyuan Zhong; Xindi Bian

    2017-01-01

    We used 35-year (1979–2013) hourly rainfall data from theNorth American LandData Assimilation System (NLDAS-2) to examine the relationships of the symmetric and asymmetric components of two types of El Niño-Southern Oscillation (ENSO) (El Niño and ElNiño Modoki) episodes with occurrences of extreme precipitation events across the United States. During the cold season,...

  16. Paleoclimate diagnostics: consistent large-scale temperature responses in warm and cold climates

    NASA Astrophysics Data System (ADS)

    Izumi, Kenji; Bartlein, Patrick; Harrison, Sandy

    2015-04-01

    The CMIP5 model simulations of the large-scale temperature responses to increased raditative forcing include enhanced land-ocean contrast, stronger response at higher latitudes than in the tropics, and differential responses in warm and cool season climates to uniform forcing. Here we show that these patterns are also characteristic of CMIP5 model simulations of past climates. The differences in the responses over land as opposed to over the ocean, between high and low latitudes, and between summer and winter are remarkably consistent (proportional and nearly linear) across simulations of both cold and warm climates. Similar patterns also appear in historical observations and paleoclimatic reconstructions, implying that such responses are characteristic features of the climate system and not simple model artifacts, thereby increasing our confidence in the ability of climate models to correctly simulate different climatic states. We also show the possibility that a small set of common mechanisms control these large-scale responses of the climate system across multiple states.

  17. The forcing of monthly precipitation variability over Southwest Asia during the Boreal cold season

    USGS Publications Warehouse

    Hoell, Andrew; Shukla, Shraddhanand; Barlow, Mathew; Cannon, Forest; Kelley, Colin; Funk, Christopher C.

    2015-01-01

    Southwest Asia, deemed as the region containing the countries of Afghanistan, Iran, Iraq and Pakistan, is water scarce and receives nearly 75% of its annual rainfall during8 the boreal cold season of November-April. The forcing of Southwest Asia precipitation has been previously examined for the entire boreal cold season from the perspective of climate variability originating over the Atlantic and tropical Indo-Pacific Oceans. Here, we examine the inter-monthly differences in precipitation variability over Southwest Asia and the atmospheric conditions directly responsible in forcing monthly November-April precipitation. Seasonally averaged November-April precipitation over Southwest Asia is significantly correlated with sea surface temperature (SST) patterns consistent with Pacific Decadal Variability (PDV), the El Nino-Southern Oscillation (ENSO) and the warming trend of SST (Trend). On the contrary, the precipitation variability during individual months of November-April are unrelated and are correlated with SST signatures that include PDV, ENSO and Trend in different combinations. Despite strong inter-monthly differences in precipitation variability during November- April over Southwest Asia, similar atmospheric circulations, highlighted by a stationary equivalent barotropic Rossby wave centered over Iraq, force the monthly spatial distributions of precipitation. Tropospheric waves on the eastern side of the equivalent barotropic Rossby wave modifies the flux of moisture and advects the mean temperature gradient, resulting in temperature advection that is balanced by vertical motions over Southwest Asia. The forcing of monthly Southwest Asia precipitation by equivalent barotropic Rossby waves is different than the forcing by baroclinic Rossby waves associated with tropically-forced-only modes of climate variability.

  18. Inter-decadal modulation of ENSO teleconnections to the Indian Ocean in a coupled model: Special emphasis on decay phase of El Niño

    NASA Astrophysics Data System (ADS)

    Chowdary, J. S.; Parekh, Anant; Gnanaseelan, C.; Sreenivas, P.

    2014-01-01

    Inter-decadal modulation of El Niño-Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) is investigated in the coupled general circulation model Climate Forecast System (CFS) using a hundred year integration. The model is able to capture the periodicity of El Niño variability, which is similar to that of the observations. The maximum TIO/north Indian Ocean (NIO) SST warming (during spring following the decay phase of El Niño) associated with El Niño is well captured by the model. Detailed analysis reveals that the surface heat flux variations mainly contribute to the El Niño forced TIO SST variations both in observations and model. However, spring warming is nearly stationary throughout the model integration period, indicating poor inter-decadal El Niño teleconnections. The observations on the other hand displayed maximum SST warming with strong seasonality from epoch to epoch. The model El Niño decay delayed by more than two seasons, results in persistent TIO/NIO SST warming through the following December unlike in the observations. The ocean wave adjustments and persistent westerly wind anomalies over the equatorial Pacific are responsible for late decay of El Niño in the model. Consistent late decay of El Niño, throughout the model integration period (low variance), is mainly responsible for the poor inter-decadal ENSO teleconnections to TIO/NIO. This study deciphers that the model needs to produce El Niño decay phase variability correctly to obtain decadal-modulations in ENSO teleconnection.

  19. Coral Cd/Ca and Mn/Ca records of ENSO variability in the Gulf of California

    NASA Astrophysics Data System (ADS)

    Carriquiry, J. D.; Villaescusa, J. A.

    2010-06-01

    We analyzed the trace element ratios Cd/Ca and Mn/Ca in three coral colonies (Porites panamensis (1967-1989), Pavona clivosa (1967-1989) and Pavona gigantea (1979-1989)) from Cabo Pulmo reef, Southern Gulf of California, Mexico, to assess the oceanographic changes caused by El Niño - Southern Oscillation (ENSO) events in the Eastern Tropical North Pacific (ETNP). Interannual variations in the coral Cd/Ca and Mn/Ca ratios showed clear evidence that incorporation of Cd and Mn in the coral skeleton was influenced by ENSO conditions, but the response for each metal was controlled by different processes. The Mn/Ca ratios were significantly higher during ENSO years (p<0.05) relative to non-ENSO years for the three species of coral. In contrast, the Cd/Ca was systematically lower during ENSO years, but the difference was significant (p<0.05) only in Pavona gigantea. A decrease in the incorporation of Cd and a marked increase in Mn indicated strongly reduced vertical mixing in the Gulf of California during the mature phase of El Niño. The oceanic warming during El Niño events produces a relaxation of upwelling and a stabilization of the thermocline, which may act as a physical barrier limiting the transport of Cd from deeper waters into the surface layer. In turn, this oceanic condition can increase the residence time of particulate-Mn in surface waters, allowing an increase in the photo-reduction of particulate-Mn and the release of available Mn into the dissolved phase. These results support the use of Mn/Ca and Cd/Ca ratios in biogenic carbonates as tracers of increases in ocean stratification and trade wind weakening and/or collapse in the ETNP during ENSO episodes.

  20. What Controls ENSO-Amplitude Diversity in Climate Models?

    NASA Astrophysics Data System (ADS)

    Wengel, C.; Dommenget, D.; Latif, M.; Bayr, T.; Vijayeta, A.

    2018-02-01

    Climate models depict large diversity in the strength of the El Niño/Southern Oscillation (ENSO) (ENSO amplitude). Here we investigate ENSO-amplitude diversity in the Coupled Model Intercomparison Project Phase 5 (CMIP5) by means of the linear recharge oscillator model, which reduces ENSO dynamics to a two-dimensional problem in terms of eastern equatorial Pacific sea surface temperature anomalies (T) and equatorial Pacific upper ocean heat content anomalies (h). We find that a large contribution to ENSO-amplitude diversity originates from stochastic forcing. Further, significant interactions exist between the stochastic forcing and the growth rates of T and h with competing effects on ENSO amplitude. The joint consideration of stochastic forcing and growth rates explains more than 80% of the ENSO-amplitude variance within CMIP5. Our results can readily explain the lack of correlation between the Bjerknes Stability index, a measure of the growth rate of T, and ENSO amplitude in a multimodel ensemble.

  1. Decline of cold-water fish species in the Bay of Somme (English Channel, France) in response to ocean warming

    NASA Astrophysics Data System (ADS)

    Auber, Arnaud; Gohin, Francis; Goascoz, Nicolas; Schlaich, Ivan

    2017-04-01

    A growing number of studies have documented increasing dominance of warm-water fish species ("tropicalisation") in response to ocean warming. Such reorganization of communities is starting to occur in a multitude of local ecosystems, implying that tropicalisation of marine communities could become a global phenomenon. Using 32 years of trawl surveys in the Bay of Somme (English Channel, France), we aimed to investigate the existence of a tropicalisation in the fish community at the local scale of the estuary during the mid-1990s, a period where an exceptional temperature rise occurred in Northeast Atlantic. A long-term response occurred (with a major transition over 6 years) that was characterized by a marked diminution in the abundance of cold-water species in parallel to a temperature rise generated by the ocean-scale phenomenon, the Atlantic Multidecadal Oscillation, which switched from a cool to a warm phase during the late 1990s. Despite finding no significant increase in the dominance of warm-water species, the long-term diminution of cold-water species suggests that the restructuring of the fish community was mainly influenced by global-scale environmental conditions rather than local ones and that indirect effects may also occurred through biological interactions.

  2. Understanding multidecadal variability in ENSO amplitude

    NASA Astrophysics Data System (ADS)

    Russell, A.; Gnanadesikan, A.

    2013-12-01

    Sea surface temperatures (SSTs) in the tropical Pacific vary as a result of the coupling between the ocean and atmosphere driven largely by the El Niño - Southern Oscillation (ENSO). ENSO has a large impact on the local climate and hydrology of the tropical Pacific, as well as broad-reaching effects on global climate. ENSO amplitude is known to vary on long timescales, which makes it very difficult to quantify its response to climate change and constrain the physical processes that drive it. In order to assess the extent of unforced multidecadal changes in ENSO variability, a linear regression of local SST changes is applied to the GFDL CM2.1 model 4000-yr pre-industrial control run. The resulting regression coefficient strengths, which represent the sensitivity of SST changes to thermocline depth and zonal wind stress, vary by up to a factor of 2 on multi-decadal time scales. This long-term modulation in ocean-atmosphere coupling is highly correlated with ENSO variability, but do not explain the reasons for such variability. Variation in the relationship between SST changes and wind stress points to a role for changing stratification in the central equatorial Pacific in modulating ENSO amplitudes with stronger stratification reducing the response to winds. The main driving mechanism we have identified for higher ENSO variance are changes in the response of zonal winds to SST anomalies. The shifting convection and precipitation patterns associated with the changing state of the atmosphere also contribute to the variability of the regression coefficients. These mechanisms drive much of the variability in ENSO amplitude and hence ocean-atmosphere coupling in the tropical Pacific.

  3. Influence of the preceding austral summer Southern Hemisphere annular mode on the amplitude of ENSO decay

    NASA Astrophysics Data System (ADS)

    Zheng, Fei; Li, Jianping; Ding, Ruiqiang

    2017-11-01

    There is increasing evidence of the possible role of extratropical forcing in the evolution of ENSO. The Southern Hemisphere Annular Mode (SAM) is the dominant mode of atmospheric circulation in the Southern Hemisphere extratropics. This study shows that the austral summer (December-January-February; DJF) SAM may also influence the amplitude of ENSO decay during austral autumn (March-April-May; MAM). The mechanisms associated with this SAM-ENSO relationship can be briefly summarized as follows: The SAM is positively (negatively) correlated with SST in the Southern Hemisphere middle (high) latitudes. This dipole-like SST anomaly pattern is referred to as the Southern Ocean Dipole (SOD). The DJF SOD, caused by the DJF SAM, could persist until MAM and then influence atmospheric circulation, including trade winds, over the Niño3.4 area. Anomalous trade winds and SST anomalies over the Niño3.4 area related to the DJF SAM are further developed through the Bjerkness feedback, which eventually results in a cooling (warming) over the Niño3.4 area followed by the positive (negative) DJF SAM.

  4. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming

    PubMed Central

    Thirumalai, Kaustubh; DiNezio, Pedro N.; Okumura, Yuko; Deser, Clara

    2017-01-01

    In April 2016, southeast Asia experienced surface air temperatures (SATs) that surpassed national records, exacerbated energy consumption, disrupted agriculture and caused severe human discomfort. Here we show using observations and an ensemble of global warming simulations the combined impact of the El Niño/Southern Oscillation (ENSO) phenomenon and long-term warming on regional SAT extremes. We find a robust relationship between ENSO and southeast Asian SATs wherein virtually all April extremes occur during El Niño years. We then quantify the relative contributions of long-term warming and the 2015–16 El Niño to the extreme April 2016 SATs. The results indicate that global warming increases the likelihood of record-breaking April extremes where we estimate that 29% of the 2016 anomaly was caused by warming and 49% by El Niño. These post-Niño Aprils can potentially be anticipated a few months in advance, and thus, help societies prepare for the projected continued increases in extremes. PMID:28585927

  5. Managing ambivalent prejudices: The smart-but-cold, and the warm-butdumb sterotypes

    PubMed Central

    FISkE, SUSAN T.

    2013-01-01

    Not all biases are equivalent, and not all biases are uniformly negative. Two fundamental dimensions differentiate stereotyped groups in cultures across the globe: status predicts perceived competence, and cooperation predicts perceived warmth. Crossing the competence and warmth dimensions, two combinations produce ambivalent prejudices: pitied groups (often traditional women or older people) appear warm but incompetent, and envied groups (often nontraditional women or outsider entrepreneurs) appear competent but cold. Case studies in ambivalent sexism, heterosexism, racism, anti-immigrant biases, ageism, and classism illustrate both the dynamics and the management of these complex but knowable prejudices. PMID:24115779

  6. Soil Minerals Affect Extracellular Enzyme Activities in Cold and Warm Environments

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Morin, M. M.; Graham, D. E.; Wullschleger, S. D.; Gu, B.

    2017-12-01

    Extracellular enzymes are mainly responsible for degrading and cycling soil organic matter (SOM) in both cold and warm terrestrial ecosystems. Minerals can play important roles in affecting soil enzyme activities, however, the interactions between enzyme and soil minerals remain poorly understood. In this study, we developed a model soil-enzyme system to examine the mineral effects on a hydrolytic enzyme (i.e., β-glucosidase) under both cold (4°C) and relatively warm (20 and 30°C) conditions. Minerals including iron oxides and clays (e.g., kaolinite and montmorillonite) were used to mimic different types of soils, and enzyme adsorption experiments were conducted to determine the enzyme interactions with different mineral surfaces. Time-series experiments were also carried out to measure enzymatic degradation of the organic substrates, such as cellobiose and indican. We observed that fractions of adsorbed enzyme and the hydrolytic activity were higher on iron oxides (e.g., hematite) compared to kaolinite and montmorillonite at given experimental conditions. The degradation of cellobiose was significantly faster than that of indican in the presence of minerals. We also found that the adsorption of enzyme was not dependent on the mineral surface areas, but was controlled by the mineral surface charge. In addition, temperature increase from 4 to 30°C enhanced mineral-assisted glucosidase hydrolysis by 2 to 4 fold, suggesting greater degradation under warmer environments. The present work demonstrates that the enzyme activity is influenced not only by the soil temperature but also by the surface chemistry of soil minerals. Our results highlight the need to consider the physical and chemical properties of minerals in biogeochemical models, which could provide a better prediction for enzyme-facilitated SOM transformations in terrestrial ecosystems.

  7. Statistical Relationships between the El Niño Southern Oscillation, the North Atlantic Oscillation, and Winter Tornado Outbreaks in the U.S

    NASA Astrophysics Data System (ADS)

    Robinson Cook, A. D.; Schaefer, J. T.

    2009-12-01

    Winter tornado activity (January-March) between 1950 and 2003 was analyzed to determine the possible effects of the El Niño Southern Oscillation and the North Atlantic Oscillation on the frequency, location, and strength of tornado outbreaks in the United States. Outbreaks were gauged through analyses of tornadoes occurring on tornado days (a calendar day featuring six or more tornadoes within the contiguous United States) and then stratified according to warm (37 tornado days), cold (51 tornado days), and neutral (74 tornado days) winter ENSO phase. Tornado days were also stratified according to NAO phase (positive, negative, and neutral) as well. Although significant changes in the frequency of tornado outbreaks were not observed, spatial shifts in tornado activity are observed, primarily as a function of ENSO phase. Historically, the neutral ENSO phase features tornado outbreaks from central Oklahoma and Kansas eastward through the Carolinas. During cold ENSO phases (La Niña), tornado outbreaks typically occur in a zone stretching from southeastern Texas northeastward into Illinois, Indiana, and Michigan. Winter tornado activity was mainly limited to areas near the Gulf Coast, including central Florida, during anomalously warm phases (El Niño). Shifts in the intensity of tornado activity were also found as a function of ENSO and particularly NAO phase. Stronger tornadoes with longer path lengths were observed during La Niña and Neutral ENSO events, as well as Positive and Neutral NAO events.

  8. Is Detrusor Contraction during Rapid Bladder Filling Caused by Cold or Warm Water? A Randomized, Controlled, Double-Blind Trial.

    PubMed

    Kozomara, Marko; Mehnert, Ulrich; Seifert, Burkhardt; Kessler, Thomas M

    2018-01-01

    We investigated whether detrusor contraction during rapid bladder filling is provoked by cold or warm water. Patients with neurogenic lower urinary tract dysfunction were included in this randomized, controlled, double-blind trial. At the end of a standard urodynamic investigation patients underwent 2 bladder fillings using a 4C ice water test or a 36C warm water test saline solution at a filling speed of 100 ml per minute. The order was randomly selected, and patients and investigators were blinded to the order. The primary outcome measure was detrusor overactivity, maximum detrusor pressure and maximum bladder filling volume during the ice and warm water tests. Nine women and 31 men were the subject of data analysis. Neurogenic lower urinary tract dysfunction was caused by spinal cord injury in 33 patients and by another neurological disorder in 7. Irrespective of test order detrusor overactivity occurred significantly more often during the ice water test than during the warm water test (30 of 40 patients or 75% vs 25 of 40 or 63%, p = 0.02). When comparing the ice water test to the warm water test, maximum detrusor pressure was significantly higher and maximum bladder filling volume was significantly lower during the ice water test (each p <0.001). The order of performing the tests (ice water first vs warm water first) had no effect on the parameters. Our findings imply that the more frequent detrusor overactivity, higher maximum detrusor pressure and lower bladder filling volume during the ice water test compared to the warm water test were caused by cold water. This underlies the theory of a C-fiber mediated bladder cooling reflex in humans. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  9. Interannual Variability in Amundsen Sea Ice-Shelf Height Change Linked to ENSO

    NASA Astrophysics Data System (ADS)

    Paolo, F. S.; Fricker, H. A.; Padman, L.

    2015-12-01

    Atmospheric and sea-ice conditions around Antarctica, particularly in the Amundsen and Bellingshausen seas, respond to climate dynamics in the tropical Pacific Ocean on interannual time scales including the El Nino-Southern Oscillation (ENSO). It has been hypothesized that the mass balance of the Antarctic Ice Sheet, including its floating ice shelves, also responds to this climate signal; however, this has not yet been unambiguously demonstrated. We apply multivariate singular spectrum analysis (MSSA) to our 18-year (1994-2012) time series of ice-shelf height in the Amundsen Sea (AS) region. This advanced spectral method distinguishes between regular deterministic behavior ("cycles") at sub-decadal time scale and irregular behavior ("noise") at shorter time scales. Although the long-term trends of AS ice-shelf height changes are much larger than the range of interannual variability, the short-term rate of change dh/dt can vary about the trend by more than 50%. The mode of interannual variability in the AS ice-shelf height is strongly correlated with the low-frequency mode of ENSO (periodicity of ~4.5 years) as represented by the Southern Oscillation Index. The ice-shelf height in the AS is expected to respond to changes in precipitation and inflows of warm subsurface Circumpolar Deep Water (CDW) into the ocean cavities under the ice shelves, altering basal melt rates. Since both of these processes affecting ice-shelf mass balance respond to changes in wind fields for different ENSO states, we expect some correlation between them. We will describe the spatial structure of AS ice-shelf height response to ENSO, and attempt to distinguish the precipitation signal from basal mass balance due to changing CDW inflows.

  10. ENSO controls interannual fire activity in southeast Australia

    NASA Astrophysics Data System (ADS)

    Mariani, M.; Fletcher, M.-S.; Holz, A.; Nyman, P.

    2016-10-01

    El Niño-Southern Oscillation (ENSO) is the main mode controlling the variability in the ocean-atmosphere system in the South Pacific. While the ENSO influence on rainfall regimes in the South Pacific is well documented, its role in driving spatiotemporal trends in fire activity in this region has not been rigorously investigated. This is particularly the case for the highly flammable and densely populated southeast Australian sector, where ENSO is a major control over climatic variability. Here we conduct the first region-wide analysis of how ENSO controls fire activity in southeast Australia. We identify a significant relationship between ENSO and both fire frequency and area burnt. Critically, wavelet analyses reveal that despite substantial temporal variability in the ENSO system, ENSO exerts a persistent and significant influence on southeast Australian fire activity. Our analysis has direct application for developing robust predictive capacity for the increasingly important efforts at fire management.

  11. [Analytic study of juices obtained by pressure, by cold extraction and warm extraction (the DDS system) of marc from apples of the Golden Delicious variety].

    PubMed

    Tanner, H

    1978-01-01

    The cold water extraction of apple press residues to increase the juice yield has found much interest in recent years. Such a process has been developed by a Swiss company, but the food legislation does not permit it yet. Juice yield is increased up to 91 p. 100 (w.). Therefore we investigated the chemical and sensorical properties of pressed juice, cold water extract of press residues and warm water extract (System DDS) of identical raw material. The water extract differs from the pressed juice mainly by an increased amount of non-sugar extract and changes of the pigment and polyphenole content. The cold water extract had more and the better aroma than the warm extract.

  12. Future changes in rainfall associated with ENSO, IOD and changes in the mean state over Eastern Africa

    NASA Astrophysics Data System (ADS)

    Endris, Hussen Seid; Lennard, Christopher; Hewitson, Bruce; Dosio, Alessandro; Nikulin, Grigory; Artan, Guleid A.

    2018-05-01

    This study examines the projected changes in the characteristics of the El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) in terms of mean state, intensity and frequency, and associated rainfall anomalies over eastern Africa. Two regional climate models driven by the same four global climate models (GCMs) and the corresponding GCM simulations are used to investigate projected changes in teleconnection patterns and East African rainfall. The period 1976-2005 is taken as the reference for present climate and the far-future climate (2070-2099) under Representative Concentration Pathway 8.5 (RCP8.5) is analyzed for projected change. Analyses of projections based on GCMs indicate an El Niño-like (positive IOD-like) warming pattern over the tropical Pacific (Indian) Ocean. However, large uncertainties remain in the projected future changes in ENSO/IOD frequency and intensity with some GCMs show increase of ENSO/IOD frequency and intensity, and others a decrease or no/small change. Projected changes in mean rainfall over eastern Africa based on the GCM and RCM data indicate a decrease in rainfall over most parts of the region during JJAS and MAM seasons, and an increase in rainfall over equatorial and southern part of the region during OND, with the greatest changes in equatorial region. During ENSO and IOD years, important changes in the strength of the teleconnections are found. During JJAS, when ENSO is an important driver of rainfall variability over the region, both GCM and RCM projections show an enhanced La Niña-related rainfall anomaly compared to the present period. Although the long rains (MAM) have little association with ENSO in the reference period, both GCMs and RCMs project stronger ENSO teleconnections in the future. On the other hand, during the short rains (OND), a dipole future change in rainfall teleconnection associated with ENSO and IOD is found, with a stronger ENSO/IOD related rainfall anomaly over the eastern part of the domain

  13. Abscisic Acid Content and Stomatal Sensitivity to CO(2) in Leaves of Xanthium strumarium L. after Pretreatments in Warm and Cold Growth Chambers.

    PubMed

    Raschke, K; Pierce, M; Popiela, C C

    1976-01-01

    The degree of stomatal sensitivity to CO(2) was positively correlated with the content of abscisic acid of leaves of Xanthium strumarium grown in a greenhouse and then transferred for 24 hours or more to a cold (5/10 C, night/day) or a warm growth chamber (20/23 C). This correlation did not exist in plants kept in the greehouse continuously (high abscisic acid, no CO(2) sensitivity), nor in plants transferred from the cold to the warm chamber (low abscisic acid, high CO(2) sensitivity). The abscisic acid content of leaves was correlated with water content only within narrow limits, if at all. At equal water contents, prechilled leaves contained more abscisic acid than leaves of plants pretreated in the warm chamber. There appear to be at least two compartments for abscisic acid in the leaf.

  14. On the relationship between ENSO and tropical cyclones in the western North Pacific during the boreal summer

    NASA Astrophysics Data System (ADS)

    Zhao, Haikun; Wang, Chunzai

    2018-02-01

    The present paper uses the satellite era data from 1979 to 2015 to examine the relationship between El Niño-Southern Oscillation (ENSO) and tropical cyclones (TCs) in the western North Pacific (WNP) during the boreal summer from June to August. It is found that WNP TC variability is characterized by two major feature changes: (1) a significant reduction of the TC number since 1998 and (2) a stronger interannual relationship between ENSO and TCs since 1998. Results suggested that such changes are largely due to the synergy effects of a shifting ENSO and the Pacific climate regime shift. Since 1998 with a cool Pacific decadal oscillation phase switching from a warm phase, more La Niña and central Pacific (CP) El Niño events occur. The decreased low-level relative vorticity and increased vertical wind shear during 1998-2015 compared to 1979-1997 are responsible for the TC reduction. The stronger interannual relationship between ENSO and TCs since 1998 is closely associated the change of CP sea surface temperature. It enhances the associations of environmental factors including vertical wind shear and mid-level relative humidity with TCs and thus increases the interannual relationship between ENSO and TCs. These two feature changes also manifest in the mean TC genesis location, with a northwestward shift of the TC genesis location during 1998-2015 and an increased relation to El Niño Modoki index since 1998. This study has an important implication for TC outlooks in the WNP based on climate predictions and projections.

  15. PDO and ENSO Sea Surface Temperature Anomalies Control Grassland Plant Production across the United States Great Plains

    NASA Astrophysics Data System (ADS)

    Parton, W. J.; Del Grosso, S. J.; Smith, W. K.; Chen, M.

    2017-12-01

    The El Nino Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) are multi-annual to multi-decadal climate patterns defined by ocean temperature anomalies that can strongly modulate climate variability. Here we evaluated the impacts of PDO and ENSO sea surface temperature (SST) anomalies on observed grassland above ground plant production (ANPP; 1940 to 2015), spring (April to July) cumulative actual evapotranspiration (iAET; 1900 to 2015) , and satellite-derived growing season (April to October) cumulative normalized difference vegetation index (iNDVI 1982 to 2015) across the United States Great Plains. The results showed that grassland ANPP is well correlated to iAET (r2=0.69) and iNDVI (r2=0.50 to 0.70) for the Cheyenne Wyoming and Northeastern Colorado long-term ANPP sites. At the site scale, during the negative phase of the PDO, we find ANPP is much lower (25%) and that variability of iAET, iNDVI, and ANPP are much higher (2 to 3 times) compared to the warm phase PDO. Further, we find there is a high frequency of below normal iAET when PDO and ENSO SST's are both negative, while there is a high frequency of above normal iAET when PDO and ENSO values are positive. At the regional scale, iAET, iNDVI, and modeled ANPP data sets show that plant production and iAET values are high in the southern Great Plains and low in the northern Great Plains when spring PDO and ENSO are both in the positive phase, while the opposite pattern is observed when both PDO and ENSO are both in the negative phase. Variability of iAET, iNDVI, and modeled ANPP are much higher in the central Great Plains during the negative phase PDO. We demonstrate clearly that the PDO and ENSO SST anomalies have large impacts on mean and variability of grassland plant production across the Great Plains.

  16. Reconstruction of the West Pacific ENSO precipitation anomaly using the compound-specific hydrogen isotopic record of marine lake sediments of Palau

    NASA Astrophysics Data System (ADS)

    Smittenberg, R. H.; Sachs, J. P.; Dawson, M. N.

    2004-12-01

    There is still much uncertainty whether the El Niño Southern Oscillation (ENSO) will become stronger or more frequent in a warming global climate. A principal reason for this uncertainty stems from a glaring lack of paleoclimate data in the equatorial Pacific, which hampers model validation. To partly resolve this data deficiency, sediments of three marine anoxic lakes were cored in Palau, an island group that lies in the heart of the West Pacific Warm Pool. The lakes contain seawater that seeps through fissures in the surrounding karst, and they are permanently stratified due to fresh water input provided by the year-round wet climate (map 1970-2000 = 3.7m). During ENSO events, however, the islands suffer from drought. The surface water hydrogen isotopic compositions in the lakes are sensitive to the relative proportions of D-depleted rainwater and D-enriched seawater, and are therefore sensitive to ENSO events. The lake surface water H/D values are recorded by algal and bacterial biomarkers that are preserved well in the highly organic and anoxic sediments, which accumulate relatively fast (mean 1 mm/yr). Ongoing down core measurement will eventually result in a precipitation proxy record of the islands. To obtain endmember D/H values, a comprehensive set of water samples from sea, lakes and rain water was obtained, as well as suspended particulate matter. Higher plant biomarker D/H values derived from the jungle vegetation surrounding the lakes may render supporting climatic proxy data, being influenced by evapotranspiration. Some lakes are inhabited by millions of jellyfish (Mastigias) that live in symbiosis with zooxanthellae. The jellyfish of one of the investigated lakes disappeared completely after the last large ENSO event in 1998 (returning in 2000-01), and a correlation is suggested. To reconstruct the history of jellyfish occurrence, jellyfish and sedimentary lipids were extracted and compared. In addition to a possible ENSO proxy record, this

  17. Summer monsoon circulation and precipitation over the tropical Indian Ocean during ENSO in the NCEP climate forecast system

    NASA Astrophysics Data System (ADS)

    Chowdary, J. S.; Chaudhari, H. S.; Gnanaseelan, C.; Parekh, Anant; Suryachandra Rao, A.; Sreenivas, P.; Pokhrel, S.; Singh, P.

    2014-04-01

    This study investigates the El Niño Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) and their relationship with the Indian summer monsoon in the coupled general circulation model climate forecast system (CFS). The model shows good skill in simulating the impact of El Niño over the Indian Oceanic rim during its decay phase (the summer following peak phase of El Niño). Summer surface circulation patterns during the developing phase of El Niño are more influenced by local Sea Surface Temperature (SST) anomalies in the model unlike in observations. Eastern TIO cooling similar to that of Indian Ocean Dipole (IOD) is a dominant model feature in summer. This anomalous SST pattern therefore is attributed to the tendency of the model to simulate more frequent IOD events. On the other hand, in the model baroclinic response to the diabatic heating anomalies induced by the El Niño related warm SSTs is weak, resulting in reduced zonal extension of the Rossby wave response. This is mostly due to weak eastern Pacific summer time SST anomalies in the model during the developing phase of El Niño as compared to observations. Both eastern TIO cooling and weak SST warming in El Niño region combined together undermine the ENSO teleconnections to the TIO and south Asia regions. The model is able to capture the spatial patterns of SST, circulation and precipitation well during the decay phase of El Niño over the Indo-western Pacific including the typical spring asymmetric mode and summer basin-wide warming in TIO. The model simulated El Niño decay one or two seasons later, resulting long persistent warm SST and circulation anomalies mainly over the southwest TIO. In response to the late decay of El Niño, Ekman pumping shows two maxima over the southern TIO. In conjunction with this unrealistic Ekman pumping, westward propagating Rossby waves display two peaks, which play key role in the long-persistence of the TIO warming in the model (for more than a

  18. A hierarchy of models for ENSO flavors in past climates.

    NASA Astrophysics Data System (ADS)

    Karamperidou, C.; Xie, R.; Di Nezio, P. N.

    2017-12-01

    The existence of two distinct ENSO flavors versus an ENSO continuum remains an open question. Investigating the response of ENSO diversity to past climate forcings provides a framework to approach this question. Previous work using GCMs has shown that ENSO flavors may respond differentially to mid-Holocene orbital forcing, with a significant suppression of Eastern Pacific ENSO as opposed to insensitivity of Central Pacific ENSO. Here, we employ a hierarchy of models to explore the robustness of ENSO-flavor response to orbital forcing. First, we use a modified version of the Zebiak-Cane model which simulates two ENSO modes reminiscent of ENSO flavors. We find a quasi-linear response of these two modes to orbital forcing corresponding to 6ka, 111ka, and 121ka BP in terms of growth rates, frequency and spatial pattern of SST anomalies. We then employ an Earth System Model subject only to orbital forcing to show the corresponding response in the three past climates. This investigation indicates that no extratropical influences may be required to produce such quasi-linear ENSO-flavor response to orbital forcing. Aided by paleoclimate proxies, the hierarchy of models employed here presents a paleoclimate perspective to the fundamental and elusive question of the nature and origins of ENSO diversity.

  19. Tree growth response to ENSO in Durango, Mexico

    NASA Astrophysics Data System (ADS)

    Pompa-García, Marin; Miranda-Aragón, Liliana; Aguirre-Salado, Carlos Arturo

    2015-01-01

    The dynamics of forest ecosystems worldwide have been driven largely by climatic teleconnections. El Niño-Southern Oscillation (ENSO) is the strongest interannual variation of the Earth's climate, affecting the regional climatic regime. These teleconnections may impact plant phenology, growth rate, forest extent, and other gradual changes in forest ecosystems. The objective of this study was to investigate how Pinus cooperi populations face the influence of ENSO and regional microclimates in five ecozones in northwestern Mexico. Using standard dendrochronological techniques, tree-ring chronologies (TRI) were generated. TRI, ENSO, and climate relationships were correlated from 1950-2010. Additionally, multiple regressions were conducted in order to detect those ENSO months with direct relations in TRI ( p < 0.1). The five chronologies showed similar trends during the period they overlapped, indicating that the P. cooperi populations shared an interannual growth variation. In general, ENSO index showed correspondences with tree-ring growth in synchronous periods. We concluded that ENSO had connectivity with regional climate in northern Mexico and radial growth of P. cooperi populations has been driven largely by positive ENSO values (El Niño episodes).

  20. Tree growth response to ENSO in Durango, Mexico.

    PubMed

    Pompa-García, Marin; Miranda-Aragón, Liliana; Aguirre-Salado, Carlos Arturo

    2015-01-01

    The dynamics of forest ecosystems worldwide have been driven largely by climatic teleconnections. El Niño-Southern Oscillation (ENSO) is the strongest interannual variation of the Earth's climate, affecting the regional climatic regime. These teleconnections may impact plant phenology, growth rate, forest extent, and other gradual changes in forest ecosystems. The objective of this study was to investigate how Pinus cooperi populations face the influence of ENSO and regional microclimates in five ecozones in northwestern Mexico. Using standard dendrochronological techniques, tree-ring chronologies (TRI) were generated. TRI, ENSO, and climate relationships were correlated from 1950-2010. Additionally, multiple regressions were conducted in order to detect those ENSO months with direct relations in TRI (p < 0.1). The five chronologies showed similar trends during the period they overlapped, indicating that the P. cooperi populations shared an interannual growth variation. In general, ENSO index showed correspondences with tree-ring growth in synchronous periods. We concluded that ENSO had connectivity with regional climate in northern Mexico and radial growth of P. cooperi populations has been driven largely by positive ENSO values (El Niño episodes).

  1. ENSO effects on stratospheric ozone: A nudged model perspective

    NASA Astrophysics Data System (ADS)

    Braesicke, Peter; Kirner, Oliver; Versick, Stefan; Joeckel, Patrick

    2015-04-01

    The El Niño/Southern Oscillation (ENSO) phenomenon is an important pacemaker for interannual variability in the Earth's atmosphere. ENSO impacts on ozone have been observed and modelled for the stratosphere and the troposphere. It is well recognized that attribution of ENSO variability is important for trend detection. ENSO impacts in low latitudes are easier to detect, because the response emerges close (temporally and spatially) to the forcing. Moving from low to high latitudes it becomes increasingly difficult to isolate ENSO driven variability, due to time-lags involved and many other modes of variability playing a role as well. Here, we use a nudged version of the EMAC chemistry-climate model to evaluate ENSO impacts on ozone over the last 35 years. In the nudged mode configuration EMAC is not entirely free running. The tropospheric meteorology is constrained using ERA-Interim data. Only the upper stratosphere and the composition (including ozone) are calculated without additional observational constraints. Using lagged correlations and supported by additional idealised modelling, we describe the ENSO impact on tropospheric and stratospheric ozone in the EMAC system. We trace the ENSO signal from the tropical lower troposphere to the polar lower and middle stratosphere. Instead of distinguishing tropospheric and stratospheric responses, we present a coherent approach detecting the ENSO signal as a function of altitude, latitude and time, and demonstrate how a concise characterisation of the ENSO impact aids improved trend detection.

  2. Heartbeat of the Southern Oscillation explains ENSO climatic resonances

    NASA Astrophysics Data System (ADS)

    Bruun, John T.; Allen, J. Icarus; Smyth, Timothy J.

    2017-08-01

    The El Niño-Southern Oscillation (ENSO) nonlinear oscillator phenomenon has a far reaching influence on the climate and human activities. The up to 10 year quasi-period cycle of the El Niño and subsequent La Niña is known to be dominated in the tropics by nonlinear physical interaction of wind with the equatorial waveguide in the Pacific. Long-term cyclic phenomena do not feature in the current theory of the ENSO process. We update the theory by assessing low (>10 years) and high (<10 years) frequency coupling using evidence across tropical, extratropical, and Pacific basin scales. We analyze observations and model simulations with a highly accurate method called Dominant Frequency State Analysis (DFSA) to provide evidence of stable ENSO features. The observational data sets of the Southern Oscillation Index (SOI), North Pacific Index Anomaly, and ENSO Sea Surface Temperature Anomaly, as well as a theoretical model all confirm the existence of long-term and short-term climatic cycles of the ENSO process with resonance frequencies of {2.5, 3.8, 5, 12-14, 61-75, 180} years. This fundamental result shows long-term and short-term signal coupling with mode locking across the dominant ENSO dynamics. These dominant oscillation frequency dynamics, defined as ENSO frequency states, contain a stable attractor with three frequencies in resonance allowing us to coin the term Heartbeat of the Southern Oscillation due to its characteristic shape. We predict future ENSO states based on a stable hysteresis scenario of short-term and long-term ENSO oscillations over the next century.Plain Language SummaryThe Pacific El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) nonlinear oscillator phenomenon has a far reaching influence on the climate and our human activities. This work can help predict both long-term and short-term future <span class="hlt">ENSO</span> events and to assess the risk of future climate hysteresis changes: is the elastic band that regulates the <span class="hlt">ENSO</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=283524','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=283524"><span>Ultraviolet-B radiation induced crosslinking improves physical properties of <span class="hlt">cold</span>- and <span class="hlt">warm</span>-water fish gelatin gels and films</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p><span class="hlt">Cold</span>- and <span class="hlt">warm</span>-water fish gelatin granules were exposed to ultraviolet-B radiation for doses up to 29.7 J/cm2. Solutions and films were prepared from the granules. Gel electrophoresis and refractive index were used to examine changes in molecular weight of the samples. Also, the gel strength and rhe...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.7366W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.7366W"><span>Impacts of <span class="hlt">ENSO</span> on global hydrology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ward, P. J.; Eisner, S.; Flörke, M.; Kummu, M.</p> <p>2012-04-01</p> <p>The economic consequences of flooding are huge, as exemplified by recent major floods in Thailand, Pakistan, and Australia. Moreover, research shows that economic losses due to flooding have increased dramatically in recent decades. Whilst much research is being carried out to assess how this may be related to socioeconomic development (increased exposure to floods) or climate change (increased hazard), the role of interannual climate variability is poorly understood at the global scale. We provide the first global assessment of the sensitivity of extreme global river discharge to the El Niño Southern Oscillation (<span class="hlt">ENSO</span>). Past studies have either: (a) assessed this at the local scale; or (b) assessed only global correlations between <span class="hlt">ENSO</span> and mean river discharge. Firstly, we used a daily observed discharge dataset for 622 gauging stations (from the GRDC database), and assessed and mapped correlations and sensitivities between these time-series and several indices of <span class="hlt">ENSO</span>. We found that, on average, for the stations studied <span class="hlt">ENSO</span> has a greater impact on annual high-flow events than on mean annual discharge, especially in the extra-tropics. However, the geographical coverage of the dataset is poor in some regions, and is highly skewed towards certain areas (e.g. North America, Europe, and eastern Australia). This renders a truly global assessment of <span class="hlt">ENSO</span> impacts impossible based on these observed time-series. Hence, we are also using a modelling approach to estimate correlations and sensitivities in all basins, gauged and ungauged. For this, we are using a gridded time-series of modelled daily discharge from the EU-WATCH project, and analysing relationships between these time-series (per grid-cell) and indices of <span class="hlt">ENSO</span>. This allows for the first truly global assessment of the impact of <span class="hlt">ENSO</span> variability on river discharge; these analyses are ongoing. Of course, this approach entails its own problems; the use of global hydrological models to derive daily discharge time</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=541974','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=541974"><span>Abscisic Acid Content and Stomatal Sensitivity to CO2 in Leaves of Xanthium strumarium L. after Pretreatments in <span class="hlt">Warm</span> and <span class="hlt">Cold</span> Growth Chambers 1</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Raschke, Klaus; Pierce, Margaret; Popiela, Chu Chen</p> <p>1976-01-01</p> <p>The degree of stomatal sensitivity to CO2 was positively correlated with the content of abscisic acid of leaves of Xanthium strumarium grown in a greenhouse and then transferred for 24 hours or more to a <span class="hlt">cold</span> (5/10 C, night/day) or a <span class="hlt">warm</span> growth chamber (20/23 C). This correlation did not exist in plants kept in the greehouse continuously (high abscisic acid, no CO2 sensitivity), nor in plants transferred from the <span class="hlt">cold</span> to the <span class="hlt">warm</span> chamber (low abscisic acid, high CO2 sensitivity). The abscisic acid content of leaves was correlated with water content only within narrow limits, if at all. At equal water contents, prechilled leaves contained more abscisic acid than leaves of plants pretreated in the <span class="hlt">warm</span> chamber. There appear to be at least two compartments for abscisic acid in the leaf. PMID:16659416</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GeoRL..3911704K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GeoRL..3911704K"><span>The two types of <span class="hlt">ENSO</span> in CMIP5 models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Seon Tae; Yu, Jin-Yi</p> <p>2012-06-01</p> <p>In this study, we evaluate the intensity of the Central-Pacific (CP) and Eastern-Pacific (EP) types of El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) simulated in the pre-industrial, historical, and the Representative Concentration Pathways (RCP) 4.5 experiments of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Compared to the CMIP3 models, the pre-industrial simulations of the CMIP5 models are found to (1) better simulate the observed spatial patterns of the two types of <span class="hlt">ENSO</span> and (2) have a significantly smaller inter-model diversity in <span class="hlt">ENSO</span> intensities. The decrease in the CMIP5 model discrepancies is particularly obvious in the simulation of the EP <span class="hlt">ENSO</span> intensity, although it is still more difficult for the models to reproduce the observed EP <span class="hlt">ENSO</span> intensity than the observed CP <span class="hlt">ENSO</span> intensity. Ensemble means of the CMIP5 models indicate that the intensity of the CP <span class="hlt">ENSO</span> increases steadily from the pre-industrial to the historical and the RCP4.5 simulations, but the intensity of the EP <span class="hlt">ENSO</span> increases from the pre-industrial to the historical simulations and then decreases in the RCP4.5 projections. The CP-to-EP <span class="hlt">ENSO</span> intensity ratio, as a result, is almost the same in the pre-industrial and historical simulations but increases in the RCP4.5 simulation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990094165&hterms=clear+pool&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dclear%2Bpool','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990094165&hterms=clear+pool&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dclear%2Bpool"><span>Tropical Intraseasonal Air-Sea Exchanges during the 1997 Pacific <span class="hlt">Warming</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sui, C.-H.; Lau, K.-M.; Chou, S.-H.; Wang, Zihou</p> <p>1999-01-01</p> <p>The Madden Julian Oscillations (MJO) and associated westerly wind (WW) events account for much of the tropical intraseasonal variability (TISV). The TISV has been suggested as an important stochastic forcing that may be one of the underlying causes for the observed irregularities of the El Nino-Southern Oscillation (<span class="hlt">ENSO</span>). Recent observational studies and theories of interannual to interdecadal-scale variability suggest that <span class="hlt">ENSO</span> may arise from different mechanisms depending on the basic states. The Pacific <span class="hlt">warming</span> event of 1997, being associated with a period of strong MJO and WW events, serves as a natural experiment for studying the possible role of TISV in triggering an <span class="hlt">ENSO</span> event. We have performed a combined statistical and composite analysis of surface WW events based on the assimilated surface wind and sea level pressure for the period of 1980-1993, the SSM/I wind for the period of 1988-1997, and OLR. Results indicates that extratropical forcing contribute significantly to the evolution of MJO and establishment of WW events over the Pacific <span class="hlt">warm</span> pool. Following the major WW events, there appeared an eastward extension of equatorial <span class="hlt">warm</span> SST anomalies from the western Pacific <span class="hlt">warm</span> pool. Such tropical-extratropical interaction is particularly clear in the winter of 96-97 that leads to the recent <span class="hlt">warming</span> event in 1997/98. From the above discussion, our current study on this subject is based on the hypothesis that 1) there is an enhanced air-sea interaction associated with TISV and the northerly surges from the extratropics in the initial phase of the 97/98 <span class="hlt">warming</span> event, and 2) the relevant mechanisms are functions of the basic state of the coupled system (in terms of SST distribution and atmospheric mean circulation) that varies at the interannual and interdecadal time scale. We are analyzing the space-time structure of the northerly surges, their association with air-sea fluxes and upper ocean responses during the period of September 1996 to June 1997. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThApC.131.1449J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThApC.131.1449J"><span>Mechanism of <span class="hlt">ENSO</span> influence on the South Asian monsoon rainfall in global model simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Joshi, Sneh; Kar, Sarat C.</p> <p>2018-02-01</p> <p>Coupled ocean atmosphere global climate models are increasingly being used for seasonal scale simulation of the South Asian monsoon. In these models, sea surface temperatures (SSTs) evolve as coupled air-sea interaction process. However, sensitivity experiments with various SST forcing can only be done in an atmosphere-only model. In this study, the Global Forecast System (GFS) model at T126 horizontal resolution has been used to examine the mechanism of El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) forcing on the monsoon circulation and rainfall. The model has been integrated (ensemble) with observed, climatological and <span class="hlt">ENSO</span> SST forcing to document the mechanism on how the South Asian monsoon responds to basin-wide SST variations in the Indian and Pacific Oceans. The model simulations indicate that the internal variability gets modulated by the SSTs with <span class="hlt">warming</span> in the Pacific enhancing the ensemble spread over the monsoon region as compared to cooling conditions. Anomalous easterly wind anomalies cover the Indian region both at 850 and 200 hPa levels during El Niño years. The locations and intensity of Walker and Hadley circulations are altered due to <span class="hlt">ENSO</span> SST forcing. These lead to reduction of monsoon rainfall over most parts of India during El Niño events compared to La Niña conditions. However, internally generated variability is a major source of uncertainty in the model-simulated climate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..MARY46002A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..MARY46002A"><span>Low resolution structures of <span class="hlt">cold</span>, <span class="hlt">warm</span>, and chemically denatured cytochrome-c via SAXS</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Asta, Christopher; Banks, Anthony; Elmer, Margaret; Grandpre, Trevor; Landahl, Eric</p> <p>2013-03-01</p> <p>The results of a small-angle x-ray scattering (SAXS) study of equine cytochrome-c protein under different unfolding conditions are discussed. Although the measured radius of gyration of this protein over a wide range of temperatures and GuHCl concentrations conform to a two-state model, we find different levels of residual structure present depending on whether the protein is <span class="hlt">cold</span>- or <span class="hlt">warm</span>- denatured. We present DAMMIF reconstructions of these different unfolded states using 1532 dummy atoms with a 1.5 Angstrom radius, and suggest ways that these different states may be described by the same folding free energy. To whom correspondence should be addressed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100031214','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100031214"><span>Response of the Antarctic Stratosphere to Two Types of El Nino Events</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hurwitz, M. M.; Newman, P. A.; Oman, L. D.; Molod, A. M.</p> <p>2010-01-01</p> <p>This study is the first to identify a robust El Nino/Southern Oscillation (<span class="hlt">ENSO</span>) signal in the Antarctic stratosphere. El Nino events are classified as either conventional "<span class="hlt">cold</span> tongue" events (positive SST anomalies in the Nino 3 region) or "<span class="hlt">warm</span> pool" events (positive SST anomalies in the Nino 4 region). The ERA-40, NCEP and MERRA meteorological reanalyses are used to show that the Southern Hemisphere stratosphere responds differently to these two types of El Nino events. Consistent with previous studies, "<span class="hlt">cold</span> tongue" events do not impact temperatures in the Antarctic stratosphere. During "<span class="hlt">warm</span> pool" El Nino events, the poleward extension and increased strength of the South Pacific Convergence Zone (SPCZ) favor an enhancement of planetary wave activity during the SON season. On average, these conditions lead to higher polar stratospheric temperatures and a weakening of the Antarctic polar jet in November and December, as compared with neutral <span class="hlt">ENSO</span> years. The phase of the quasi-biennial oscillation (QBO) modulates the stratospheric response to "<span class="hlt">warm</span> pool" El Nino events: the strongest planetary wave driving events are coincident with the easterly phase of the QBO.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..12210297L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..12210297L"><span>The Influence of Recurrent Modes of Climate Variability on the Occurrence of Monthly Temperature Extremes Over South America</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loikith, Paul C.; Detzer, Judah; Mechoso, Carlos R.; Lee, Huikyo; Barkhordarian, Armineh</p> <p>2017-10-01</p> <p>The associations between extreme temperature months and four prominent modes of recurrent climate variability are examined over South America. Associations are computed as the percent of extreme temperature months concurrent with the upper and lower quartiles of the El Niño-Southern Oscillation (<span class="hlt">ENSO</span>), the Atlantic Niño, the Pacific Decadal Oscillation (PDO), and the Southern Annular Mode (SAM) index distributions, stratified by season. The relationship is strongest for <span class="hlt">ENSO</span>, with nearly every extreme temperature month concurrent with the upper or lower quartiles of its distribution in portions of northwestern South America during some seasons. The likelihood of extreme <span class="hlt">warm</span> temperatures is enhanced over parts of northern South America when the Atlantic Niño index is in the upper quartile, while <span class="hlt">cold</span> extremes are often association with the lowest quartile. Concurrent precipitation anomalies may contribute to these relations. The PDO shows weak associations during December, January, and February, while in June, July, and August its relationship with extreme <span class="hlt">warm</span> temperatures closely matches that of <span class="hlt">ENSO</span>. This may be due to the positive relationship between the PDO and <span class="hlt">ENSO</span>, rather than the PDO acting as an independent physical mechanism. Over Patagonia, the SAM is highly influential during spring and fall, with <span class="hlt">warm</span> and <span class="hlt">cold</span> extremes being associated with positive and negative phases of the SAM, respectively. Composites of sea level pressure anomalies for extreme temperature months over Patagonia suggest an important role of local synoptic scale weather variability in addition to a favorable SAM for the occurrence of these extremes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.474...97C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.474...97C"><span>A <span class="hlt">warm</span> or a <span class="hlt">cold</span> early Earth? New insights from a 3-D climate-carbon model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Charnay, Benjamin; Le Hir, Guillaume; Fluteau, Frédéric; Forget, François; Catling, David C.</p> <p>2017-09-01</p> <p>Oxygen isotopes in marine cherts have been used to infer hot oceans during the Archean with temperatures between 60 °C (333 K) and 80 °C (353 K). Such climates are challenging for the early Earth <span class="hlt">warmed</span> by the faint young Sun. The interpretation of the data has therefore been controversial. 1D climate modeling inferred that such hot climates would require very high levels of CO2 (2-6 bars). Previous carbon cycle modeling concluded that such stable hot climates were impossible and that the carbon cycle should lead to <span class="hlt">cold</span> climates during the Hadean and the Archean. Here, we revisit the climate and carbon cycle of the early Earth at 3.8 Ga using a 3D climate-carbon model. We find that CO2 partial pressures of around 1 bar could have produced hot climates given a low land fraction and cloud feedback effects. However, such high CO2 partial pressures should not have been stable because of the weathering of terrestrial and oceanic basalts, producing an efficient stabilizing feedback. Moreover, the weathering of impact ejecta during the Late Heavy Bombardment (LHB) would have strongly reduced the CO2 partial pressure leading to <span class="hlt">cold</span> climates and potentially snowball Earth events after large impacts. Our results therefore favor <span class="hlt">cold</span> or temperate climates with global mean temperatures between around 8 °C (281 K) and 30 °C (303 K) and with 0.1-0.36 bar of CO2 for the late Hadean and early Archean. Finally, our model suggests that the carbon cycle was efficient for preserving clement conditions on the early Earth without necessarily requiring any other greenhouse gas or <span class="hlt">warming</span> process.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1610644V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1610644V"><span>Significant influences of global mean temperature and <span class="hlt">ENSO</span> on extreme rainfall over Southeast Asia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Villafuerte, Marcelino, II; Matsumoto, Jun</p> <p>2014-05-01</p> <p>Along with the increasing concerns on the consequences of global <span class="hlt">warming</span>, and the accumulating records of disaster related to heavy rainfall events in Southeast Asia, this study investigates whether a direct link can be detected between the rising global mean temperature, as well as the El Niño-Southern Oscillation (<span class="hlt">ENSO</span>), and extreme rainfall over the region. The maximum likelihood modeling that allows incorporating covariates on the location parameter of the generalized extreme value (GEV) distribution is employed. The GEV model is fitted to annual and seasonal rainfall extremes, which were taken from a high-resolution gauge-based gridded daily precipitation data covering a span of 57 years (1951-2007). Nonstationarities in extreme rainfall are detected over the central parts of Indochina Peninsula, eastern coasts of central Vietnam, northwest of the Sumatra Island, inland portions of Borneo Island, and on the northeastern and southwestern coasts of the Philippines. These nonstationarities in extreme rainfall are directly linked to near-surface global mean temperature and <span class="hlt">ENSO</span>. In particular, the study reveals that a kelvin increase in global mean temperature anomaly can lead to an increase of 30% to even greater than 45% in annual maximum 1-day rainfall, which were observed pronouncedly over central Vietnam, southern coast of Myanmar, northwestern sections of Thailand, northwestern tip of Sumatra, central portions of Malaysia, and the Visayas island in central Philippines. Furthermore, a pronounced <span class="hlt">ENSO</span> influence manifested on the seasonal maximum 1-day rainfall; a northward progression of 10%-15% drier condition over Southeast Asia as the El Niño develops from summer to winter is revealed. It is important therefore, to consider the results obtained here for water resources management as well as for adaptation planning to minimize the potential adverse impact of global <span class="hlt">warming</span>, particularly on extreme rainfall and its associated flood risk over the region</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29531820','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29531820"><span><span class="hlt">Warm</span> blood cardioplegia versus <span class="hlt">cold</span> crystalloid cardioplegia for myocardial protection during coronary artery bypass grafting surgery.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nardi, Paolo; Pisano, Calogera; Bertoldo, Fabio; Vacirca, Sara R; Saitto, Guglielmo; Costantino, Antonino; Bovio, Emanuele; Pellegrino, Antonio; Ruvolo, Giovanni</p> <p>2018-12-01</p> <p>We retrospectively analyzed early results of coronary artery bypass grafting (CABG) surgery using two different types of cardioplegia for myocardial protection: antegrade intermittent <span class="hlt">warm</span> blood or <span class="hlt">cold</span> crystalloid cardioplegia. From January 2015 to October 2016, 330 consecutive patients underwent isolated on-pump CABG. Cardiac arrest was obtained with use of <span class="hlt">warm</span> blood cardioplegia (WBC group, n  = 297) or <span class="hlt">cold</span> crystalloid cardioplegia (CCC group, n  = 33), according to the choice of the surgeon. Euroscore II and preoperative characteristics were similar in both groups, except for the creatinine clearance, slightly lower in WBC group (77.33 ± 27.86 mL/min versus 88.77 ± 51.02 mL/min) ( P  < 0.05). Complete revascularization was achieved in both groups. In-hospital mortality was 2.0% ( n  = 6) in WBC group, absent in CCC group. The required mean number of cardioplegia's doses per patient was higher in WBC group (2.3 ± 0.8) versus CCC group (2.0 ± 0.7) ( P  = 0.045), despite a lower number of distal coronary artery anastomoses (2.7 ± 0.8 versus 3.2 ± 0.9) ( P  = 0.0001). Cardiopulmonary and aortic cross-clamp times were similar in both groups. The incidence of perioperative myocardial infarction (WBC group 3.4% versus CCC group 3.0%) and low cardiac output syndrome (4.4% versus 3.0%) were similar in both groups. As compared with WBC group, in CCC group CK-MB/CK ratio >10% was lower during each time points of evaluation, with a statistical significant difference at time 0 (4% ± 1.6% versus 5% ± 2.5%) ( P  = 0.021). In presence of complete revascularization, despite the value of CK-MB/CK ratio >10% was less in the CCC group, clinical results were not affected by both types of cardioplegia adopted to myocardial protection. As compared with <span class="hlt">cold</span> crystalloid, <span class="hlt">warm</span> blood cardioplegia requires a shorter interval of administration to achieve better myocardial protection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://medlineplus.gov/commoncold.html','NIH-MEDLINEPLUS'); return false;" href="https://medlineplus.gov/commoncold.html"><span>Common <span class="hlt">Cold</span></span></a></p> <p><a target="_blank" href="http://medlineplus.gov/">MedlinePlus</a></p> <p></p> <p></p> <p>... cure for the common <span class="hlt">cold</span>. But there are treatments that can make you feel better while you wait for the <span class="hlt">cold</span> to go away on its own: Getting plenty of rest Drinking fluids Gargling with <span class="hlt">warm</span> salt water Using cough drops or throat sprays Taking over-the-counter pain ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/868026','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/868026"><span>Evaporative cooling enhanced <span class="hlt">cold</span> storage system</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Carr, Peter</p> <p>1991-01-01</p> <p>The invention provides an evaporatively enhanced <span class="hlt">cold</span> storage system wherein a <span class="hlt">warm</span> air stream is cooled and the cooled air stream is thereafter passed into contact with a <span class="hlt">cold</span> storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the <span class="hlt">cold</span> storage unit to effect enhanced cooling of the <span class="hlt">cold</span> storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the <span class="hlt">warm</span> air stream.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMPP33A2068T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMPP33A2068T"><span>A High-Resolution <span class="hlt">ENSO</span>-Driven Rainfall Record Derived From an Exceptionally Fast Growing Stalagmite From Niue Island (South Pacific)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Troy, S.; Aharon, P.; Lambert, W. J.</p> <p>2012-12-01</p> <p>El Niño-Southern Oscillation's (<span class="hlt">ENSO</span>) dominant control over the present global climate and its unpredictable response to a global <span class="hlt">warming</span> makes the study of paleo-<span class="hlt">ENSO</span> important. So far corals, spanning the Tropical Pacific Ocean, are the most commonly used geological archives of paleo-<span class="hlt">ENSO</span>. This is because corals typically exhibit high growth rates (>1 cm/yr), and reproduce reliably surface water temperatures at sub-annual resolution. However there are limitations to coral archives because their time span is relatively brief (in the order of centuries), thus far making a long and continuous <span class="hlt">ENSO</span> record difficult to achieve. On the other hand stalagmites from island settings can offer long and continuous records of <span class="hlt">ENSO</span>-driven rainfall. Niue Island caves offer an unusual opportunity to investigate <span class="hlt">ENSO</span>-driven paleo-rainfall because the island is isolated from other large land masses, making it untainted by continental climate artifacts, and its geographical location is within the Tropical Pacific "rain pool" (South Pacific Convergence Zone; SPCZ) that makes the rainfall variability particularly sensitive to the <span class="hlt">ENSO</span> phase switches. We present here a δ18O and δ13C time series from a stalagmite sampled on Niue Island (19°00' S, 169°50' W) that exhibits exceptionally high growth rates (~1.2 mm/yr) thus affording a resolution comparable to corals but for much longer time spans. A precise chronology, dating back to several millennia, was achieved by U/Th dating of the stalagmite. The stalagmite was sampled using a Computer Automated Mill (CAM) at 300 μm increments in order to receive sub-annual resolution (every 3 months) and calcite powders of 50-100 μg weight were analyzed for δ18O and δ13C using a Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS). The isotope time series contains variable shifts at seasonal, inter-annual, and inter-decadal periodicities. The δ13C and δ18O yield ranges of -3.0 to -13.0 (‰ VPDB) and -3.2 to -6.2 (‰ VPDB</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.2487W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.2487W"><span>Disentangling Global <span class="hlt">Warming</span>, Multidecadal Variability, and El Niño in Pacific Temperatures</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wills, Robert C.; Schneider, Tapio; Wallace, John M.; Battisti, David S.; Hartmann, Dennis L.</p> <p>2018-03-01</p> <p>A key challenge in climate science is to separate observed temperature changes into components due to internal variability and responses to external forcing. Extended integrations of forced and unforced climate models are often used for this purpose. Here we demonstrate a novel method to separate modes of internal variability from global <span class="hlt">warming</span> based on differences in time scale and spatial pattern, without relying on climate models. We identify uncorrelated components of Pacific sea surface temperature variability due to global <span class="hlt">warming</span>, the Pacific Decadal Oscillation (PDO), and the El Niño-Southern Oscillation (<span class="hlt">ENSO</span>). Our results give statistical representations of PDO and <span class="hlt">ENSO</span> that are consistent with their being separate processes, operating on different time scales, but are otherwise consistent with canonical definitions. We isolate the multidecadal variability of the PDO and find that it is confined to midlatitudes; tropical sea surface temperatures and their teleconnections mix in higher-frequency variability. This implies that midlatitude PDO anomalies are more persistent than previously thought.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatSR...742281Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatSR...742281Z"><span><span class="hlt">ENSO</span> elicits opposing responses of semi-arid vegetation between Hemispheres</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Anzhi; Jia, Gensuo; Epstein, Howard E.; Xia, Jiangjiang</p> <p>2017-02-01</p> <p>Semi-arid ecosystems are key contributors to the global carbon cycle and may even dominate the inter-annual variability (IAV) and trends of the land carbon sink, driven largely by the El Niño-Southern Oscillation (<span class="hlt">ENSO</span>). The linkages between dynamics of semi-arid ecosystems and climate at the hemispheric scale however are not well known. Here, we use satellite data and climate observations from 2000 to 2014 to explore the impacts of <span class="hlt">ENSO</span> on variability of semi-arid ecosystems, using the Ensemble Empirical Mode Decomposition method. We show that the responses of semi-arid vegetation to <span class="hlt">ENSO</span> occur in opposite directions, resulting from opposing controls of <span class="hlt">ENSO</span> on precipitation between the Northern Hemisphere (positively correlated to <span class="hlt">ENSO</span>) and the Southern Hemisphere (negatively correlated to <span class="hlt">ENSO</span>). Also, the Southern Hemisphere, with a robust negative coupling of temperature and precipitation anomalies, exhibits stronger and faster responses of semi-arid ecosystems to <span class="hlt">ENSO</span> than the Northern Hemisphere. Our findings suggest that natural coherent variability in semi-arid ecosystem productivity responded to <span class="hlt">ENSO</span> in opposite ways between two hemispheres, which may imply potential prediction of global semi-arid ecosystem variability, particularly based on variability in tropical Pacific Sea Surface Temperatures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001JCli...14..730C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001JCli...14..730C"><span>Influence of Mean State Changes on the Structure of <span class="hlt">ENSO</span> in a Tropical Coupled GCM.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Codron, Francis; Vintzileos, Augustin; Sadourny, Robert</p> <p>2001-03-01</p> <p>This study examines the response of the climate simulated by the Institut Pierre Simon Laplace tropical Pacific coupled general circulation model to two changes in parameterization: an improved coupling scheme at the coast, and the introduction of a saturation mixing ratio limiter in the water vapor advection scheme, which improves the rainfall distribution over and around orography. The main effect of these modifications is the suppression of spurious upwelling off the South American coast in Northern Hemisphere summer. Coupled feedbacks then extend this <span class="hlt">warming</span> over the whole basin in an El Niño-like structure, with a maximum at the equator and in the eastern part of the basin. The mean precipitation pattern widens and moves equatorward as the trade winds weaken.This warmer mean state leads to a doubling of the standard deviation of interannual SST anomalies, and to a longer <span class="hlt">ENSO</span> period. The structure of the <span class="hlt">ENSO</span> cycle also shifts from westward propagation in the original simulation to a standing oscillation. The simulation of El Niño thus improves when compared to recent observed events. The study of <span class="hlt">ENSO</span> spatial structure and lagged correlations shows that these changes of El Niño characteristics are caused by both the increase of amplitude and the modification of the spatial structure of the wind stress response to SST anomalies.These results show that both the mean state and variability of the tropical ocean can be very sensitive to biases or forcings, even geographically localized. They may also give some insight into the mechanisms responsible for the changes in <span class="hlt">ENSO</span> characteristics due to decadal variability or climate change.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26724549','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26724549"><span>The influence of sorghum grain decortication on bioethanol production and quality of the distillers' dried grains with solubles using <span class="hlt">cold</span> and conventional <span class="hlt">warm</span> starch processing.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nkomba, Edouard Y; van Rensburg, Eugéne; Chimphango, Annie F A; Görgens, Johann F</p> <p>2016-03-01</p> <p>Very high gravity hydrolysis-fermentation of whole and decorticated sorghum grains were compared using conventional and <span class="hlt">cold</span> hydrolysis methods to assess the extent by which decortication could minimize enzymes dosages and affect the quality of the distillers' dried grains with solubles (DDGS). All processing configurations achieved ethanol concentrations between 126 and 132 g/L (16.0-16.7%v/v), although decortication resulted in a decreased ethanol yield. Decortication resulted in a decreased volumetric productivity during <span class="hlt">warm</span> processing from 1.55 to 1.25 g L(-1)h(-1), whereas the required enzyme dosage for <span class="hlt">cold</span> processing was decreased from 250 to 221 μl/100 gstarch. <span class="hlt">Cold</span> processing decreased the average acid detergent fibre (ADF) from 35.59% to 29.32% and neutral detergent fibre (NDF) from 44.04% to 32.28% in the DDGS compared to the conventional (<span class="hlt">warm</span>) processing. Due to lower enzyme requirements, the use of decorticated grains combined with <span class="hlt">cold</span> processing presents a favourable process configuration and source of DDGS for non-ruminants. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=269692','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=269692"><span>Effect of <span class="hlt">ENSO</span> on Corn Aflatoxin in South Georgia</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The El Niño Southern Oscillation (<span class="hlt">ENSO</span>) is associated with climate variability around the world, and is known to adversely affect food production systems. In the Southeastern US, research has shown that <span class="hlt">ENSO</span> influences crop production. Two multivariate <span class="hlt">ENSO</span> Indices, MEI and Niño 3.4, are typical...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP31A1271W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP31A1271W"><span>Last Millennium <span class="hlt">ENSO</span>-Mean State Interactions in the Tropical Pacific</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wyman, D. A.; Conroy, J. L.; Karamperidou, C.</p> <p>2017-12-01</p> <p>The nature and degree of interaction between the mean state of the tropical Pacific and <span class="hlt">ENSO</span> remains an open question. Here we use high temporal resolution, tropical Pacific sea surface temperature (SST) records from the last millennium to investigate the relationship between <span class="hlt">ENSO</span> and the tropical Pacific zonal sea surface temperature gradient (hereafter dSST). A dSST time series was created by standardizing, interpolating, and compositing 7 SST records from the western and 3 SST records from the eastern tropical Pacific. Propagating the age uncertainty of each of these records was accomplished through a Monte Carlo Empirical Orthogonal Function analysis. We find last millennium dSST is strong from 700 to 1300 CE, begins to weaken at approximately 1300 CE, and decreases more rapidly at 1700 CE. dSST was compared to 14 different <span class="hlt">ENSO</span> reconstructions, independent of the records used to create dSST, to assess the nature of the <span class="hlt">ENSO</span>-mean state relationship. dSST correlations with 50-year standard deviations of <span class="hlt">ENSO</span> reconstructions are consistently negative, suggesting that more frequent, strong El Niño events on this timescale reduces dSST. To further assess the strength and direction of the <span class="hlt">ENSO</span>-dSST relationship, moving 100-year standard deviations of <span class="hlt">ENSO</span> reconstructions were compared to moving 100-year averages of dSST using Cohen's Kappa statistic, which measures categorical agreement. The Li et al. (2011) and Li et al. (2013) Nino 3.4 <span class="hlt">ENSO</span> reconstructions had the highest agreement with dSST (k=0.80 and 0.70, respectively), with greater <span class="hlt">ENSO</span> standard deviation coincident with periods of weak dSST. Other <span class="hlt">ENSO</span> reconstructions showed weaker agreement with dSST, which may be partly due to low sample size. The consistent directional agreement of dSST with <span class="hlt">ENSO</span>, coupled with the inability of strong <span class="hlt">ENSO</span> events to develop under a weak SST gradient, suggests periods of more frequent strong El Niño events reduced tropical Pacific dSST on centennial timescales over the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1295970-mechanisms-convective-cloud-organization-cold-pools-over-tropical-warm-ocean-during-amie-dynamo-field-campaign','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1295970-mechanisms-convective-cloud-organization-cold-pools-over-tropical-warm-ocean-during-amie-dynamo-field-campaign"><span>Mechanisms of convective cloud organization by <span class="hlt">cold</span> pools over tropical <span class="hlt">warm</span> ocean during the AMIE/DYNAMO field campaign</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Feng, Zhe; Hagos, Samson; Rowe, Angela K.; ...</p> <p>2015-04-03</p> <p>This paper investigates the mechanisms of convective cloud organization by precipitation-driven <span class="hlt">cold</span> pools over the <span class="hlt">warm</span> tropical Indian Ocean during the 2011 Atmospheric Radiation Measurement (ARM) Madden-Julian Oscillation (MJO) Investigation Experiment / Dynamics of the MJO (AMIE/DYNAMO) field campaign. A high-resolution regional model simulation is performed using the Weather Research and Forecasting model during the transition from suppressed to active phases of the November 2011 MJO. The simulated <span class="hlt">cold</span> pool lifetimes, spatial extent and thermodynamic properties agree well with the radar and ship-borne observations from the field campaign. The thermodynamic and dynamic structures of the outflow boundaries of isolated andmore » intersecting <span class="hlt">cold</span> pools in the simulation and the associated secondary cloud populations are examined. Intersecting <span class="hlt">cold</span> pools last more than twice as long, are twice as large, 41% more intense (measured by buoyancy), and 62% deeper than isolated <span class="hlt">cold</span> pools. Consequently, intersecting <span class="hlt">cold</span> pools trigger 73% more convective clouds than isolated ones. This is possibly due to stronger outflows that enhance secondary updraft velocities by up to 45%. However, <span class="hlt">cold</span> pool-triggered convective clouds grow into deep convection not because of the stronger secondary updrafts at cloud base, but rather due to closer spacing (aggregation) between clouds and larger cloud clusters that formed along the <span class="hlt">cold</span> pool boundaries when they intersect. The close spacing of large clouds moistens the local environment and reduces entrainment drying, allowing the clouds to further develop into deep convection. Implications to the design of future convective parameterization with <span class="hlt">cold</span> pool-modulated entrainment rates are discussed.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/20075726-el-nino-southern-oscillation-second-hadley-centre-coupled-model-its-response-greenhouse-warming','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20075726-el-nino-southern-oscillation-second-hadley-centre-coupled-model-its-response-greenhouse-warming"><span>The El Nino-Southern Oscillation in the second Hadley Centre coupled model and its response to greenhouse <span class="hlt">warming</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Collins, M.</p> <p></p> <p>This paper describes El Nino-Southern Oscillation (<span class="hlt">ENSO</span>) interannual variability simulated in the second Handley Centre coupled model under control and greenhouse <span class="hlt">warming</span> scenarios. The model produces a very reasonable simulation of <span class="hlt">ENSO</span> in the control experiment--reproducing the amplitude, spectral characteristics, and phase locking to the annual cycle that are observed in nature. The mechanism for the model <span class="hlt">ENSO</span> is shown to be a mixed SST-ocean dynamics mode that can be interpreted in terms of the ocean recharge paradigm of Jin. In experiments with increased levels of greenhouse gases, no statistically significant changes in <span class="hlt">ENSO</span> are seen until these levels approachmore » four times preindustrial values. In these experiments, the model <span class="hlt">ENSO</span> has an approximately 20% larger amplitude, a frequency that is approximately double that of the current <span class="hlt">ENSO</span> (implying more frequent El Ninos and La Ninas), and phase locks to the annual cycle at a different time of year. It is shown that the increase in the vertical gradient of temperature in the thermocline region, associated with the model's response to increased greenhouse gases, is responsible for the increase in the amplitude of <span class="hlt">ENSO</span>, while the increase in meridional temperature gradients on either side of the equator, again associated with the models response to increasing greenhouse gases, is responsible for the increased frequency of <span class="hlt">ENSO</span> events.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29707299','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29707299"><span><span class="hlt">Cold</span> crystalloid versus <span class="hlt">warm</span> blood cardioplegia in patients undergoing aortic valve replacement.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nardi, Paolo; Vacirca, Sara R; Russo, Marco; Colella, Dionisio F; Bassano, Carlo; Scafuri, Antonio; Pellegrino, Antonio; Melino, Gerry; Ruvolo, Giovanni</p> <p>2018-03-01</p> <p>Myocardial protection techniques during cardiac arrest have been extensively investigated in the clinical setting of coronary revascularization. Fewer studies have been carried out of patients affected by left ventricular hypertrophy, where the choice of type and temperature of cardioplegia remain controversial. We have retrospectively investigated myocardial injury and short-term outcome in patients undergoing aortic valve replacement plus or minus coronary artery bypass grafting with using <span class="hlt">cold</span> crystalloid cardioplegia (CCC) or <span class="hlt">warm</span> blood cardioplegia (WBC). From January 2015 to October 2016, 191 consecutive patients underwent aortic valve replacement plus or minus coronary artery bypass grafting in normothermic cardiopulmonary bypass. Cardiac arrest was obtained with use of intermittent antegrade CCC group (n=32) or WBC group (n=159), according with the choice of the surgeon. As compared with WBC group, in CCC group creatine-kinase-MB (CK-MB), cardiac troponin I (cTnI), aspartate aminotransferase (AST) release, and their peak levels, were lower during each time points of evaluation, with the greater statistically significant difference at time 0 (P<0.05, for all comparisons). A time 0, CK-MB/CK ratio >10% was 5.9% in CCC group versus 7.8% in WBC group (P<0.0001). At time 0 CK-MB/CK ratio >10% in patients undergoing isolated aortic valve replacement was 6.0% in CCC group versus 8.0% in WBC group (P<0.01). No any difference was found in perioperative myocardial infarction (0% versus 3.8%), postoperative (PO) major complications (15.6% versus 16.4%), in-hospital mortality (3.1% versus 1.3%). In aortic valve surgery a significant decrease of myocardial enzymes release is observed in favor of CCC, but this difference does not translate into different clinical outcome. However, this study suggests that in presence of cardiac surgical conditions associated with significant left ventricular hypertrophy, i.e., the aortic valve disease, a better myocardial protection can</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22369915-warm-cold-fermionic-dark-matter-via-freeze','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22369915-warm-cold-fermionic-dark-matter-via-freeze"><span><span class="hlt">Warm</span> and <span class="hlt">cold</span> fermionic dark matter via freeze-in</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Klasen, Michael; Yaguna, Carlos E., E-mail: michael.klasen@uni-muenster.de, E-mail: carlos.yaguna@uni-muenster.de</p> <p>2013-11-01</p> <p>The freeze-in mechanism of dark matter production provides a simple and intriguing alternative to the WIMP paradigm. In this paper, we analyze whether freeze-in can be used to account for the dark matter in the so-called singlet fermionic model. In it, the SM is extended with only two additional fields, a singlet scalar that mixes with the Higgs boson, and the dark matter particle, a fermion assumed to be odd under a Z{sub 2} symmetry. After numerically studying the generation of dark matter, we analyze the dependence of the relic density with respect to all the free parameters of themore » model. These results are then used to obtain the regions of the parameter space that are compatible with the dark matter constraint. We demonstrate that the observed dark matter abundance can be explained via freeze-in over a wide range of masses extending down to the keV range. As a result, <span class="hlt">warm</span> and <span class="hlt">cold</span> dark matter can be obtained in this model. It is also possible to have dark matter masses well above the unitarity bound for WIMPs.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1801g0001H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1801g0001H"><span>Seasonal <span class="hlt">ENSO</span> forecasting: Where does a simple model stand amongst other operational <span class="hlt">ENSO</span> models?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Halide, Halmar</p> <p>2017-01-01</p> <p>We apply a simple linear multiple regression model called IndOzy for predicting <span class="hlt">ENSO</span> up to 7 seasonal lead times. The model still used 5 (five) predictors of the past seasonal Niño 3.4 <span class="hlt">ENSO</span> indices derived from chaos theory and it was rolling-validated to give a one-step ahead forecast. The model skill was evaluated against data from the season of May-June-July (MJJ) 2003 to November-December-January (NDJ) 2015/2016. There were three skill measures such as: Pearson correlation, RMSE, and Euclidean distance were used for forecast verification. The skill of this simple model was than compared to those of combined Statistical and Dynamical models compiled at the IRI (International Research Institute) website. It was found that the simple model was only capable of producing a useful <span class="hlt">ENSO</span> prediction only up to 3 seasonal leads, while the IRI statistical and Dynamical model skill were still useful up to 4 and 6 seasonal leads, respectively. Even with its short-range seasonal prediction skills, however, the simple model still has a potential to give <span class="hlt">ENSO</span>-derived tailored products such as probabilistic measures of precipitation and air temperature. Both meteorological conditions affect the presence of wild-land fire hot-spots in Sumatera and Kalimantan. It is suggested that to improve its long-range skill, the simple INDOZY model needs to incorporate a nonlinear model such as an artificial neural network technique.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensocycle/enso_cycle.shtml','SCIGOVWS'); return false;" href="http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensocycle/enso_cycle.shtml"><span>Climate Prediction Center - The <span class="hlt">ENSO</span> Cycle</span></a></p> <p><a target="_blank" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Weather Service NWS logo - Click to go to the NWS home page <em>Climate</em> Prediction Center Home Site Map News Web resources and services. HOME > El Niño/La Niña > The <span class="hlt">ENSO</span> Cycle <span class="hlt">ENSO</span> Cycle Banner <em>Climate</em> for Weather and <em>Climate</em> Prediction <em>Climate</em> Prediction Center 5830 University Research Court College</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/7279717','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7279717"><span>Evaporative cooling enhanced <span class="hlt">cold</span> storage system</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Carr, P.</p> <p>1991-10-15</p> <p>The invention provides an evaporatively enhanced <span class="hlt">cold</span> storage system wherein a <span class="hlt">warm</span> air stream is cooled and the cooled air stream is thereafter passed into contact with a <span class="hlt">cold</span> storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the <span class="hlt">cold</span> storage unit to effect enhanced cooling of the <span class="hlt">cold</span> storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the <span class="hlt">warm</span> air stream. 3 figures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IAUGA..2254993K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IAUGA..2254993K"><span>Water in embedded low-mass protostars: <span class="hlt">cold</span> envelopes and <span class="hlt">warm</span> outflows</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kristensen, Lars E.; van Dishoeck, Ewine; Mottram, Joseph; Schmalzl, Markus; Visser, Ruud</p> <p>2015-08-01</p> <p>As stars form, gas from the parental cloud is transported through the molecular envelope to the protostellar disk from which planets eventually form. Water plays a crucial role in such systems: it forms the backbone of the oxygen chemistry, it is a unique probe of <span class="hlt">warm</span> and hot gas, and it provides a unique link between the grain surface and gas-phase chemistries. The distribution of water, both as ice and gas, is a fundamental question to our understanding of how planetary systems, such as the Solar System, form.The Herschel Space Observatory observed many tens of embedded low-mass protostars in a suite of gas-phase water transitions in several programs (e.g. Water in Star-forming regions with Herschel, WISH, and the William Herschel Line Legacy Survey, WILL), and related species (e.g. CO in Protostars with HIFI, COPS-HIFI). I will summarize what Herschel has revealed about the water distribution in the <span class="hlt">cold</span> outer molecular envelope of low-mass protostars, and the <span class="hlt">warm</span> gas in outflows, the two components predominantly traced by Herschel observations. I will present our current understanding of where the water vapor is in protostellar systems and the underlying physical and chemical processes leading to this distribution. Through these dedicated observational surveys and complementary modeling efforts, we are now at a stage where we can quantify where the water is during the early stages of star formation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008490','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008490"><span>Response of the Antarctic Stratosphere to <span class="hlt">Warm</span> Pool EI Nino Events in the GEOS CCM</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hurwitz, Margaret M.; Song, In-Sun; Oman, Luke D.; Newman, Paul A.; Molod, Andrea M.; Frith, Stacey M.; Nielsen, J. Eric</p> <p>2011-01-01</p> <p>A new type of EI Nino event has been identified in the last decade. During "<span class="hlt">warm</span> pool" EI Nino (WPEN) events, sea surface temperatures (SSTs) in the central equatorial Pacific are warmer than average. The EI Nino signal propagates poleward and upward as large-scale atmospheric waves, causing unusual weather patterns and <span class="hlt">warming</span> the polar stratosphere. In austral summer, observations show that the Antarctic lower stratosphere is several degrees (K) warmer during WPEN events than during the neutral phase of EI Nino/Southern Oscillation (<span class="hlt">ENSO</span>). Furthermore, the stratospheric response to WPEN events depends of the direction of tropical stratospheric winds: the Antarctic <span class="hlt">warming</span> is largest when WPEN events are coincident with westward winds in the tropical lower and middle stratosphere i.e., the westward phase of the quasi-biennial oscillation (QBO). Westward winds are associated with enhanced convection in the subtropics, and with increased poleward wave activity. In this paper, a new formulation of the Goddard Earth Observing System Chemistry-Climate Model, Version 2 (GEOS V2 CCM) is used to substantiate the observed stratospheric response to WPEN events. One simulation is driven by SSTs typical of a WPEN event, while another simulation is driven by <span class="hlt">ENSO</span> neutral SSTs; both represent a present-day climate. Differences between the two simulations can be directly attributed to the anomalous WPEN SSTs. During WPEN events, relative to <span class="hlt">ENSO</span> neutral, the model simulates the observed increase in poleward planetary wave activity in the South Pacific during austral spring, as well as the relative <span class="hlt">warming</span> of the Antarctic lower stratosphere in austral summer. However, the modeled response to WPEN does not depend on the phase of the QBO. The modeled tropical wind oscillation does not extend far enough into the lower stratosphere and upper troposphere, likely explaining the model's insensitivity to the phase of the QBO during WPEN events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3971398','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3971398"><span>Indo-Pacific <span class="hlt">Warm</span> Pool Area Expansion, Modoki Activity, and Tropical <span class="hlt">Cold</span>-Point Tropopause Temperature Variations</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Xie, Fei; Li, Jianping; Tian, Wenshou; Li, Yanjie; Feng, Juan</p> <p>2014-01-01</p> <p>The tropical <span class="hlt">cold</span>-point tropopause temperature (CPTT), a potentially important indicator of global climate change, is of particular importance for understanding changes in stratospheric water vapor levels. Since the 1980s, the tropical CPTT has shown not only interannual variations, but also a decreasing trend. However, the factors controlling the variations in the tropical CPTT since the 1980s remain elusive. The present study reveals that the continuous expansion of the area of the Indo-Pacific <span class="hlt">warm</span> pool (IPWP) since the 1980s represents an increase in the total heat energy of the IPWP available to heat the tropospheric air, which is likely to expand as a result. This process lifts the tropical <span class="hlt">cold</span>-point tropopause height (CPTH) and leads to the observed long-term cooling trend of the tropical CPTT. In addition, our analysis shows that Modoki activity is an important factor in modulating the interannual variations of the tropical CPTT through significant effects on overshooting convection. PMID:24686481</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PEPS....4....5B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PEPS....4....5B"><span>A 2700-year record of <span class="hlt">ENSO</span> and PDO variability from the Californian margin based on coccolithophore assemblages and calcification</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beaufort, Luc; Grelaud, Michaël</p> <p>2017-12-01</p> <p>The El Niño Southern Oscillation (<span class="hlt">ENSO</span>) and the Pacific Decadal Oscillation (PDO) account for a large part of modern climate variability. Over the last decades, understanding of these modes of climate variability has increased but prediction in the context of global <span class="hlt">warming</span> has proven difficult because of the lack of pertinent and reproducible paleodata. Here, we infer the dynamics of these oscillations from fossil assemblage and calcification state of coccolithophore in the Californian margin because El Niño has a strong impact on phytoplankton ecology and PDO on the upwelling intensity and hence on the ocean chemistry. Intense Californian upwelling brings water rich in CO2 and poor in carbonate ions and coccolithophores secrete lower calcified coccoliths. Seasonally laminated sediments of the Santa Barbara Basin are used to document <span class="hlt">ENSO</span> variability and PDO index for the last 2700 years at a temporal resolution of 3 years. The records present the same characteristics as other PDO or <span class="hlt">ENSO</span> records from the same area spanning the last centuries. We are therefore confident on the value produced here for the last 2.7 millennia. The records show important centennial variability that is equivalent to solar cycles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29544770','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29544770"><span>Acclimation to <span class="hlt">cold</span> and <span class="hlt">warm</span> temperatures is associated with differential expression of male carp blood proteins involved in acute phase and stress responses, and lipid metabolism.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dietrich, Mariola A; Hliwa, Piotr; Adamek, Mikołaj; Steinhagen, Dieter; Karol, Halina; Ciereszko, Andrzej</p> <p>2018-05-01</p> <p>The environmental temperature affects plasma biochemical indicators, antioxidant status and hematological and immunological parameters in fish. So far, only single blood proteins have been identified in response to temperature changes. The aim of this study was to compare the proteome of carp blood plasma from males acclimated to <span class="hlt">warm</span> (30 °C) and <span class="hlt">cold</span> (10 °C) temperatures by two-dimensional differential gel electrophoresis followed by MALDI-TOF/TOF mass spectrometry. A total of 47 spots were found to be differentially regulated by temperature (>1.2-fold change, p < 0.05): 25 protein spots were more abundant in <span class="hlt">warm</span>-acclimated males and 22 were enriched in <span class="hlt">cold</span>-acclimated males. The majority of differentially regulated proteins were associated with acute phase response signalling involved in: i) activation of the complement system (complement C3-H1), ii) neutralization of proteolytic enzymes (inter-alpha inhibitor H3, fetuin, serpinA1, antithrombin, alpha2-macroglobulin), iii) scavenging of free hemoglobin and radicals (haptoglobin, Wap65 kDa), iv) clot-formation (fibrinogen beta and alpha chain, T-kininogen) and v) the host's immune response modulation (ApoA1 and ApoA2). However, quite different sets of these proteins or proteoforms were involved in response to <span class="hlt">cold</span> and <span class="hlt">warm</span> temperatures. In addition, <span class="hlt">cold</span> acclimation seems to be related to the proteins involved in lipid metabolism (apolipoproteins A and 14 kDa) and stress response (corticosteroid binding globulin). We discovered a strongly regulated protein Cap31 upon <span class="hlt">cold</span> acclimation, which can serve as a potential blood biomarker of <span class="hlt">cold</span> response in carp. These studies significantly extend our knowledge concerning mechanisms underlying thermal adaptation in poikilotherms. Copyright © 2018. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9844248','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9844248"><span>Thermal responses from repeated exposures to severe <span class="hlt">cold</span> with intermittent warmer temperatures.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ozaki, H; Enomoto-Koshimizu, H; Tochihara, Y; Nakamura, K</p> <p>1998-09-01</p> <p>This study was conducted to evaluate physiological reaction and manual performance during exposure to <span class="hlt">warm</span> (30 degrees C) and cool (10 degrees C) environments after exposure to very low temperatures (-25 degrees C). Furthermore, this experiment was conducted to study whether it is desirable to remove <span class="hlt">cold</span>-protective jackets in warmer rooms after severe <span class="hlt">cold</span> exposure. Eight male students remained in an extremely <span class="hlt">cold</span> room for 20 min, after which they transferred into either the <span class="hlt">warm</span> room or the cool room for 20 min. This pattern was repeated three times, and the total <span class="hlt">cold</span> exposure time was 60 min. In the <span class="hlt">warm</span> and cool rooms, the subjects either removed their <span class="hlt">cold</span>-protective jackets (Condition A), or wore them continuously (Condition B). Rectal temperature, skin temperatures, manual performance, blood pressure, thermal, comfort and pain sensations were measured during the experiment. The effects of severe <span class="hlt">cold</span> on almost all measurements in the cool (10 degrees C) environment were greater than those in the <span class="hlt">warm</span> (30 degrees C) environment under both clothing conditions. The effects of severe <span class="hlt">cold</span> on all measurements under Condition A except rectal temperature and toe skin temperature were significantly greater than those under Condition B in the cool environment but, not at all differences between Condition A and Condition B in the <span class="hlt">warm</span> environments were significant. It was recognized that to remove <span class="hlt">cold</span>-protective jackets in the cool room (10 degrees C) after severe <span class="hlt">cold</span> exposure promoted the effects of severe <span class="hlt">cold</span>. When rewarming in the <span class="hlt">warm</span> resting room (30 degrees C), the physiological and psychological responses and manual performance were not influenced by the presence or absence of <span class="hlt">cold</span>-protective clothing. These results suggest that it is necessary for workers to make sure to rewarm in the <span class="hlt">warm</span> room outside of the <span class="hlt">cold</span> storage and continue to wear <span class="hlt">cold</span>-protective clothing in the cool room.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ThApC.122..271M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ThApC.122..271M"><span>Relationships between Rwandan seasonal rainfall anomalies and <span class="hlt">ENSO</span> events</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muhire, I.; Ahmed, F.; Abutaleb, K.</p> <p>2015-10-01</p> <p>This study aims primarily at investigating the relationships between Rwandan seasonal rainfall anomalies and El Niño-South Oscillation phenomenon (<span class="hlt">ENSO</span>) events. The study is useful for early warning of negative effects associated with extreme rainfall anomalies across the country. It covers the period 1935-1992, using long and short rains data from 28 weather stations in Rwanda and <span class="hlt">ENSO</span> events resourced from Glantz (2001). The mean standardized anomaly indices were calculated to investigate their associations with <span class="hlt">ENSO</span> events. One-way analysis of variance was applied on the mean standardized anomaly index values per <span class="hlt">ENSO</span> event to explore the spatial correlation of rainfall anomalies per <span class="hlt">ENSO</span> event. A geographical information system was used to present spatially the variations in mean standardized anomaly indices per <span class="hlt">ENSO</span> event. The results showed approximately three climatic periods, namely, dry period (1935-1960), semi-humid period (1961-1976) and wet period (1977-1992). Though positive and negative correlations were detected between extreme short rains anomalies and El Niño events, La Niña events were mostly linked to negative rainfall anomalies while El Niño events were associated with positive rainfall anomalies. The occurrence of El Niño and La Niña in the same year does not show any clear association with rainfall anomalies. However, the phenomenon was more linked with positive long rains anomalies and negative short rains anomalies. The normal years were largely linked with negative long rains anomalies and positive short rains anomalies, which is a pointer to the influence of other factors other than <span class="hlt">ENSO</span> events. This makes projection of seasonal rainfall anomalies in the country by merely predicting <span class="hlt">ENSO</span> events difficult.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A53K3344F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A53K3344F"><span>The Dominant Snow-forming Process in <span class="hlt">Warm</span> and <span class="hlt">Cold</span> Mixed-phase Orographic Clouds: Effects of Cloud Condensation Nuclei and Ice Nuclei</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fan, J.; Rosenfeld, D.; Leung, L. R.; DeMott, P. J.</p> <p>2014-12-01</p> <p>Mineral dust aerosols often observed over California in winter and spring from long-range transport can be efficient ice nuclei (IN) and enhance snow precipitation in mixed-phase orographic clouds. On the other hand, local pollution particles can serve as good CCN and suppress <span class="hlt">warm</span> rain, but their impacts on <span class="hlt">cold</span> rain processes are uncertain. The main snow-forming mechanism in <span class="hlt">warm</span> and <span class="hlt">cold</span> mixed-phase orographic clouds (refer to as WMOC and CMOC, respectively) could be very different, leading to different precipitation response to CCN and IN. We have conducted 1-km resolution model simulations using the Weather Research and Forecasting (WRF) model coupled with a spectral-bin cloud microphysical model for WMOC and CMOC cases from CalWater2011. We investigated the response of cloud microphysical processes and precipitation to CCN and IN with extremely low to extremely high concentrations using ice nucleation parameterizations that connect with dust and implemented based on observational evidences. We find that riming is the dominant process for producing snow in WMOC while deposition plays a more important role than riming in CMOC. Increasing IN leads to much more snow precipitation mainly due to an increase of deposition in CMOC and increased rimming in WMOC. Increasing CCN decreases precipitation in WMOC by efficiently suppressing <span class="hlt">warm</span> rain, although snow is increased. In CMOC where <span class="hlt">cold</span> rain dominates, increasing CCN significantly increases snow, leading to a net increase in precipitation. The sensitivity of supercooled liquid to CCN and IN has also been analyzed. The mechanism for the increased snow by CCN and caveats due to uncertainties in ice nucleation parameterizations will be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49..391C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49..391C"><span><span class="hlt">ENSO</span> related SST anomalies and relation with surface heat fluxes over south Pacific and Atlantic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chatterjee, S.; Nuncio, M.; Satheesan, K.</p> <p>2017-07-01</p> <p>The role of surface heat fluxes in Southern Pacific and Atlantic Ocean SST anomalies associated with El Nino Southern Oscillation (<span class="hlt">ENSO</span>) is studied using observation and ocean reanalysis products. A prominent dipole structure in SST anomaly is found with a positive (negative) anomaly center over south Pacific (65S-45S, 120W-70W) and negative (positive) one over south Atlantic (50S-30S, 30W-0E) during austral summer (DJF) of El Nino (LaNina). During late austral spring-early summer (OND) of El Nino (LaNina), anomalous northerly (southerly) meridional moisture transport and a positive (negative) sea level pressure anomaly induces a suppressed (enhanced) latent heat flux from the ocean surface over south Pacific. This in turn results in a shallower than normal mixed layer depth which further helps in development of the SST anomaly. Mixed layer thins further due to anomalous shortwave radiation during summer and a well developed SST anomaly evolves. The south Atlantic pole exhibits exactly opposite characteristics at the same time. The contribution from the surface heat fluxes to mixed layer temperature change is found to be dominant over the advective processes over both the basins. Net surface heat fluxes anomaly is also found to be maximum during late austral spring-early summer period, with latent heat flux having a major contribution to it. The anomalous latent heat fluxes between atmosphere and ocean surface play important role in the growth of observed summertime SST anomaly. Sea-surface height also shows similar out-of-phase signatures over the two basins and are well correlated with the <span class="hlt">ENSO</span> related SST anomalies. It is also observed that the magnitude of <span class="hlt">ENSO</span> related anomalies over the southern ocean are weaker in LaNina years than in El Nino years, suggesting an intensified tropics-high latitude tele-connection during <span class="hlt">warm</span> phases of <span class="hlt">ENSO</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1110520L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1110520L"><span>Assessing the effect of the relative atmospheric angular momentum (AAM) on length-of-day (LOD) variations under climate <span class="hlt">warming</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lehmann, E.; Hansen, F.; Ulbrich, U.; Nevir, P.; Leckebusch, G. C.</p> <p>2009-04-01</p> <p>While most studies on model-projected future climate <span class="hlt">warming</span> discuss climatological quantities, this study investigates the response of the relative atmospheric angular momentum (AAM) to climate <span class="hlt">warming</span> for the 21th century and discusses its possible effects on future length-of-day variations. Following the derivation of the dynamic relation between atmosphere and solid earth by Barnes et al. (Proc. Roy. Soc., 1985) this study relates the axial atmospheric excitation function X3 to changes in length-of-day that are proportional to variations in zonal winds. On interannual time scales changes in the relative AAM (ERA40 reanalyses) are well correlated with observed length-of-day (LOD, IERS EOP CO4) variability (r=0.75). The El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) is a prominent coupled ocean-atmosphere phenomenon to cause global climate variability on interannual time scales. Correspondingly, changes in observed LOD relate to <span class="hlt">ENSO</span> due to observed strong wind anomalies. This study investigates the varying effect of AAM anomalies on observed LOD by relating AAM to variations to <span class="hlt">ENSO</span> teleconnections (sea surface temperatures, SSTs) and the Pacific North America (PNA) oscillation for the 20th and 21st century. The differently strong effect of strong El Niño events (explained variance 71%-98%) on present time (1962-2000) observed LOD-AAM relation can be associated to variations in location and strength of jet streams in the upper troposphere. Correspondingly, the relation between AAM and SSTs in the NIÑO 3.4 region also varies between explained variances of 15% to 73%. Recent coupled ocean-atmosphere projections on future climate <span class="hlt">warming</span> suggest changes in frequency and amplitude of <span class="hlt">ENSO</span> events. Since changes in the relative AAM indicate shifts in large-scale atmospheric circulation patterns due to climate change, AAM - <span class="hlt">ENSO</span> relations are assessed in coupled atmosphere-ocean (ECHAM5-OM1) climate <span class="hlt">warming</span> projections (A1B) for the 21st century. A strong rise (+31%) in</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcDyn.tmp...56K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcDyn.tmp...56K"><span>Role of <span class="hlt">cold</span> water and beta-effect in the formation of the East Korean <span class="hlt">Warm</span> Current in the East/Japan Sea: a numerical experiment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Yong-Yub; Cho, Yang-Ki; Kim, Young Ho</p> <p>2018-06-01</p> <p>The contributions of bottom <span class="hlt">cold</span> water and planetary β-effect to the formation of the East Korean <span class="hlt">Warm</span> Current (EKWC), the western boundary current in the East/Japan Sea (EJS), were evaluated using an idealized three-dimensional numerical model. The model results suggest that the bottom <span class="hlt">cold</span> water and, to a lesser extent, the planetary β-effect both contribute to the formation of the EKWC. The <span class="hlt">cold</span> water functions as the bottom of the upper layer, to control the EKWC via conservation of potential vorticity. It is known that <span class="hlt">cold</span> waters, such as the North Korean <span class="hlt">Cold</span> Water and Korea Strait Bottom <span class="hlt">Cold</span> Water often observed during summer along the southwestern coast of the EJS, originate from the winter convection in the northern area. Observational studies consistently show that the EKWC strengthens in summer when the <span class="hlt">cold</span> water extends further south along the western boundary.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcSci..14...69T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcSci..14...69T"><span>Response of O2 and pH to <span class="hlt">ENSO</span> in the California Current System in a high-resolution global climate model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turi, Giuliana; Alexander, Michael; Lovenduski, Nicole S.; Capotondi, Antonietta; Scott, James; Stock, Charles; Dunne, John; John, Jasmin; Jacox, Michael</p> <p>2018-02-01</p> <p>Coastal upwelling systems, such as the California Current System (CalCS), naturally experience a wide range of O2 concentrations and pH values due to the seasonality of upwelling. Nonetheless, changes in the El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) have been shown to measurably affect the biogeochemical and physical properties of coastal upwelling regions. In this study, we use a novel, high-resolution global climate model (GFDL-ESM2.6) to investigate the influence of <span class="hlt">warm</span> and <span class="hlt">cold</span> <span class="hlt">ENSO</span> events on variations in the O2 concentration and the pH of the CalCS coastal waters. An assessment of the CalCS response to six El Niño and seven La Niña events in ESM2.6 reveals significant variations in the response between events. However, these variations overlay a consistent physical and biogeochemical (O2 and pH) response in the composite mean. Focusing on the mean response, our results demonstrate that O2 and pH are affected rather differently in the euphotic zone above ˜ 100 m. The strongest O2 response reaches up to several hundreds of kilometers offshore, whereas the pH signal occurs only within a ˜ 100 km wide band along the coast. By splitting the changes in O2 and pH into individual physical and biogeochemical components that are affected by <span class="hlt">ENSO</span> variability, we found that O2 variability in the surface ocean is primarily driven by changes in surface temperature that affect the O2 solubility. In contrast, surface pH changes are predominantly driven by changes in dissolved inorganic carbon (DIC), which in turn is affected by upwelling, explaining the confined nature of the pH signal close to the coast. Below ˜ 100 m, we find conditions with anomalously low O2 and pH, and by extension also anomalously low aragonite saturation, during La Niña. This result is consistent with findings from previous studies and highlights the stress that the CalCS ecosystem could periodically undergo in addition to impacts due to climate change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1425660-enso-driven-energy-budget-perturbations-observations-cmip-models','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1425660-enso-driven-energy-budget-perturbations-observations-cmip-models"><span><span class="hlt">ENSO</span>-driven energy budget perturbations in observations and CMIP models</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Mayer, Michael; Fasullo, John T.; Trenberth, Kevin E.; ...</p> <p>2016-03-19</p> <p>Various observation-based datasets are employed to robustly quantify changes in ocean heat content (OHC), anomalous ocean–atmosphere energy exchanges and atmospheric energy transports during El Niño-Southern Oscillation (<span class="hlt">ENSO</span>). These results are used as a benchmark to evaluate the energy pathways during <span class="hlt">ENSO</span> as simulated by coupled climate model runs from the CMIP3 and CMIP5 archives. The models are able to qualitatively reproduce observed patterns of <span class="hlt">ENSO</span>-related energy budget variability to some degree, but key aspects are seriously biased. Area-averaged tropical Pacific OHC variability associated with <span class="hlt">ENSO</span> is greatly underestimated by all models because of strongly biased responses of net radiation atmore » top-of-the-atmosphere to <span class="hlt">ENSO</span>. The latter are related to biases of mean convective activity in the models and project on surface energy fluxes in the eastern Pacific Intertropical Convergence Zone region. Moreover, models underestimate horizontal and vertical OHC redistribution in association with the generally too weak Bjerknes feedback, leading to a modeled <span class="hlt">ENSO</span> affecting a too shallow layer of the Pacific. Vertical links between SST and OHC variability are too weak even in models driven with observed winds, indicating shortcomings of the ocean models. Furthermore, modeled teleconnections as measured by tropical Atlantic OHC variability are too weak and the tropical zonal mean <span class="hlt">ENSO</span> signal is strongly underestimated or even completely missing in most of the considered models. In conclusion, results suggest that attempts to infer insight about climate sensitivity from <span class="hlt">ENSO</span>-related variability are likely to be hampered by biases in <span class="hlt">ENSO</span> in CMIP simulations that do not bear a clear link to future changes.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvD..97f3516L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvD..97f3516L"><span>Gravitational waves from <span class="hlt">warm</span> inflation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Xi-Bin; Wang, He; Zhu, Jian-Yang</p> <p>2018-03-01</p> <p>A fundamental prediction of inflation is a nearly scale-invariant spectrum of gravitational wave. The features of such a signal provide extremely important information about the physics of the early universe. In this paper, we focus on several topics about <span class="hlt">warm</span> inflation. First, we discuss the stability property about <span class="hlt">warm</span> inflation based on nonequilibrium statistical mechanics, which gives more fundamental physical illustrations to thermal property of such model. Then, we calculate the power spectrum of gravitational waves generated during <span class="hlt">warm</span> inflation, in which there are three components contributing to such spectrum: thermal term, quantum term, and cross term combining the both. We also discuss some interesting properties about these terms and illustrate them in different panels. As a model different from <span class="hlt">cold</span> inflation, <span class="hlt">warm</span> inflation model has its individual properties in observational practice, so we finally give a discussion about the observational effect to distinguish it from <span class="hlt">cold</span> inflation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC42A..09B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC42A..09B"><span>Intensified <span class="hlt">ENSO</span>-Driven Precipitation Teleconnections in the Future</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bonfils, C.; Santer, B. D.; Phillips, T. J.; Marvel, K.; Leung, L. R.; Doutriaux, C.</p> <p>2014-12-01</p> <p>The El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) is an important driver of regional hydroclimate variability through far-reaching teleconnections. Most climate models project an increase in the frequency of extreme El Niño events under increased greenhouse-gas (GHG) forcing. However, it is unclear how other aspects of <span class="hlt">ENSO</span> and <span class="hlt">ENSO</span>-driven teleconnections will evolve in the future. Here, we identify in 20th century sea-surface temperature (SST) observations a time-invariant <span class="hlt">ENSO</span>-like (ENSOL) pattern that is largely uncontaminated by GHG forcing. We use this pattern to investigate the future precipitation (P) response to <span class="hlt">ENSO</span>-like SST anomalies. Models that better capture observed ENSOL characteristics produce P teleconnection patterns that are in better accord with observations and more stationary in the 21st century. We decompose the future P response to ENSOL into the sum of three terms: (1) the change in P mean state, (2) the historical P response to ENSOL, and (3) a future enhancement in the P response to ENSOL. In many regions, this last term can aggravate the P extremes associated with <span class="hlt">ENSO</span> variability. This simple decomposition allows us to identify regions likely to experience ENSOL-induced P changes that are without precedent in the current climate. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1757082','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1757082"><span><span class="hlt">Cold</span> periods and coronary events: an analysis of populations worldwide</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Barnett, A.; Dobson, A.; McElduff, P.; Salomaa, V.; Kuulasmaa, K.; Sans, S.; t for</p> <p>2005-01-01</p> <p>Study objective: To investigate the association between <span class="hlt">cold</span> periods and coronary events, and the extent to which climate, sex, age, and previous cardiac history increase risk during <span class="hlt">cold</span> weather. Design: A hierarchical analyses of populations from the World Health Organisation's MONICA project. Setting: Twenty four populations from the WHO's MONICA project, a 21 country register made between 1980 and 1995. Patients: People aged 35–64 years who had a coronary event. Main results: Daily rates of coronary events were correlated with the average temperature over the current and previous three days. In <span class="hlt">cold</span> periods, coronary event rates increased more in populations living in <span class="hlt">warm</span> climates than in populations living in <span class="hlt">cold</span> climates, where the increases were slight. The increase was greater in women than in men, especially in <span class="hlt">warm</span> climates. On average, the odds for women having an event in the <span class="hlt">cold</span> periods were 1.07 higher than the odds for men (95% posterior interval: 1.03 to 1.11). The effects of <span class="hlt">cold</span> periods were similar in those with and without a history of a previous myocardial infarction. Conclusions: Rates of coronary events increased during comparatively <span class="hlt">cold</span> periods, especially in <span class="hlt">warm</span> climates. The smaller increases in colder climates suggest that some events in warmer climates are preventable. It is suggested that people living in <span class="hlt">warm</span> climates, particularly women, should keep <span class="hlt">warm</span> on <span class="hlt">cold</span> days. PMID:15965137</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...48..893I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...48..893I"><span>Simulation of different types of <span class="hlt">ENSO</span> impacts on South Asian Monsoon in CCSM4</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Islam, Siraj ul; Tang, Youmin</p> <p>2017-02-01</p> <p>It has been found in observation that there are different types of influences of El Nino Southern Oscillation (<span class="hlt">ENSO</span>) on the South Asian Monsoon (SAM). A correct description and representation of these teleconnections is critical for climate models to simulate and predict SAM. In this study, we examine these teleconnections in NCAR CAM4 and CCSM4 models, including the strength and weakness of these models in preserving different types of <span class="hlt">ENSO</span>-SAM relationships. By using observational and simulation dataset, the composite analysis, based on specific selection criteria, is performed for both SAM rainfall and the eastern equatorial Pacific sea surface temperature (SST) anomalies. Anomalous SAM rainfall is characterized in three different types i.e. the indirect influence of the SST anomalies of preceding winter (DJF-only), direct influence of the SST anomalies of concurrent summer (JJAS-only) and the combined influence of both preceding winter and concurrent summer (DJF&JJAS). The analysis reveals that CAM4 uncoupled simulation can reasonably well reproduce the anomalous SAM rainfall in DJF-only and DJF&JJAS types whereas the model fails to simulate the anomalous rainfall in the JJAS-only type. The better performance of CAM4, particularly in DJF&JJAS type, comes from its realistic simulation of moisture content and thermal contrast. Its failure to preserve the <span class="hlt">ENSO</span>-SAM relationship of JJAS-only type is due to the absence of <span class="hlt">ENSO</span> induced <span class="hlt">warming</span> in Northern Indian Ocean via atmospheric circulation which is indirectly linked to the lack of air-sea coupling. The role of Indian Ocean in controlling the <span class="hlt">ENSO</span>-SAM teleconnections of the DJF&JJAS type is further investigated using CAM4 sensitivity experiments. It is found that in absence of Indian Ocean SST, the anomalous SAM summer rainfall suppresses in the DJF&JJAS type, suggesting the important modulation by Indian Ocean SST probably through the preceding winter equatorial Pacific SST forcing and the atmospheric</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.4272A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.4272A"><span>Feedback process responsible for intermodel diversity of <span class="hlt">ENSO</span> variability</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>An, Soon-Il; Heo, Eun Sook; Kim, Seon Tae</p> <p>2017-05-01</p> <p>The origin of the intermodel diversity of the El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) variability is investigated by applying a singular value decomposition (SVD) analysis between the intermodel tropical Pacific sea surface temperature anomalies (SSTA) variance and the intermodel <span class="hlt">ENSO</span> stability index (BJ index). The first SVD mode features an <span class="hlt">ENSO</span>-like pattern for the intermodel SSTA variance (74% of total variance) and the dominant thermocline feedback (TH) for the BJ index (51%). Intermodel TH is mainly modified by the intermodel sensitivity of the zonal thermocline gradient response to zonal winds over the equatorial Pacific (βh), and the intermodel βh is correlated higher with the intermodel off-equatorial wind stress curl anomalies than the equatorial zonal wind stress anomalies. Finally, the intermodel off-equatorial wind stress curl is associated with the meridional shape and intensity of <span class="hlt">ENSO</span>-related wind patterns, which may cause a model-to-model difference in <span class="hlt">ENSO</span> variability by influencing the off-equatorial oceanic Rossby wave response.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhPro..67..195K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhPro..67..195K"><span>Evaluation of <span class="hlt">Warm</span> and <span class="hlt">Cold</span> Shaft Designs for Large Multi-megawatt Direct Drive Offshore Superconducting Wind Generators</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kulkarni, Devdatta; Chen, Edward; Ho, Mantak; Karmaker, Haran</p> <p></p> <p>For offshore large multi-megawatt direct drive wind generators, because of its ability to generate high flux fields, superconducting (SC) technology can offer significant size and mass reduction over traditional technologies. However, cryogenic cooling design remains as one of the major obstacles to overcome. Different cryogenic cooling designs, such as <span class="hlt">warm</span> shaft and <span class="hlt">cold</span> shaft rotor design, present different advantages and challenges technically and commercially. This paper presents the investigations on both designs for large SC generators from manufacturability and service perspectives.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12619593','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12619593"><span>[Effect of <span class="hlt">warm</span> and <span class="hlt">cold</span> honey solutions on acid-forming function of the stomach].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kas'ianenko, V I; Selezneva, E Ia; Markarova, N V</p> <p>2002-01-01</p> <p>Apitherapy is treatment of diseases with biologically active products of bee-keeping (BAPB), which is developing in an intensive way all over the world. The interest in apitherapy is explained, on the one hand, by a great number of natural compounds produced by bees as a result of their vital functions and having high physiological activity, and on the other hand, by the universal nature of bees occurrence and comparative simplicity of getting the bee-keeping products. In apitherapy literature many authors point to the fact that honey has an impact on gastric secretion: a <span class="hlt">cold</span> honey solution stimulates, and a <span class="hlt">warm</span> one inhibits acid excretion. Yet there are no results of studies confirming this action in all publications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29701037','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29701037"><span>[<span class="hlt">Warming</span> acupuncture combined with conventional acupuncture for diabetic peripheral neuropathy with syndrome of yang deficiency and <span class="hlt">cold</span> coagulation, obstruction of collaterals and blood stasis].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ma, Guoqing; Ye, Ting; Sun, Zhongren</p> <p>2018-03-12</p> <p>To compare the clinical efficacy differences between <span class="hlt">warming</span> acupuncture and conventional acupuncture for diabetic peripheral neuropathy (DPN) with syndrome of yang deficiency and <span class="hlt">cold</span> coagulation, obstruction of collaterals and blood stasis. A total of 64 patients were randomly divided into a <span class="hlt">warming</span> acupuncture group and a conventional acupuncture group, 32 cases in each one. Based on basic treatment of blood glucose regulation, <span class="hlt">warming</span> acupuncture was applied at Pishu (BL 20), Shenshu (BL 23), Guanyuanshu (BL 26), Zusanli (ST 36), Chongyang (ST 42), Quchi (LI 11) and Hegu (LI 4) in the <span class="hlt">warming</span> acupuncture group, while acupuncture was applied at the identical acupoints in the conventional acupuncture group. Both the treatments were given once a day with an interval of one day every six days; totally the treatment was given for 4 weeks. The TCM symptom score, Toronto clinical scoring system (TCSS) and nerve conduction velocity (NCV) before and after treatment were compared in the two groups. After treatment, the TCM symptom scores in the two groups were significantly reduced (both P <0.01); the improvement of TCM symptom in the <span class="hlt">warming</span> acupuncture group was superior to that in the conventional acupuncture group ( P <0.05). After treatment, the TCSS scores in the two groups were significantly reduced (both P <0.01); the TCSS score in the <span class="hlt">warming</span> acupuncture group was significantly lower than that in the conventional acupuncture group ( P <0.05). After treatment, the NCV of motor nerve of tibial nerve and nervus peroneus communis, as well as sensory nerve of tibial nerve and sural nerve was improved in the <span class="hlt">warming</span> acupuncture group (all P <0.05), while only the NCV of motor nerve and sensory nerve of tibial nerve was improved in the conventional acupuncture group (both P <0.05); there were no significant difference between the two groups (all P >0.05). <span class="hlt">Warming</span> acupuncture and conventional acupuncture could both increase TCM symptom score, improve NCV in patients of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AtmEn.167..426W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AtmEn.167..426W"><span><span class="hlt">ENSO</span>-related PM10 variability on the Korean Peninsula</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wie, Jieun; Moon, Byung-Kwon</p> <p>2017-10-01</p> <p>Particulate matter, defined as particles of less than 10 μm in diameter (PM10), was analyzed over the Korean Peninsula from 2001 to 2015 to examine the influence of the El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) on subseasonal PM10 variability. The PM10 data were obtained from 151 air quality monitoring stations provided by the Korea Environment Corporation (KECO). Lead-lag correlation analysis, which was performed to investigate the connection between NDJF (November-February) NINO3 index and seasonal mean PM10 data, did not yield any statistically significant correlations. However, using five-pentad moving-averaged PM10 data, statistically significant correlations between NDJF NINO3 index and PM10 variability were found in four subseasonal periods, with alternating positive and negative correlations. In the periods during which PM10 levels on the Korean Peninsula were positively (negatively) correlated with the <span class="hlt">ENSO</span> index, the positive PM10 anomalies are associated with El Niño (La Niña) years, which implies that the occurrence of high-PM10 events could be modulated by the <span class="hlt">ENSO</span> phase. In addition, this <span class="hlt">ENSO</span>-related PM10 variation is negatively correlated with <span class="hlt">ENSO</span>-related precipitation in the Korean Peninsula, indicating that more (less) wet deposition leads to lower (higher) PM10 level. Therefore, we conclude that the <span class="hlt">ENSO</span>-induced precipitation anomalies over the Korean Peninsula are mainly responsible for <span class="hlt">ENSO</span>-related PM10 variations. This study will be helpful for further identifying detailed chemistry-climate processes that control PM10 concentrations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016220','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016220"><span>Expression of seasonal and <span class="hlt">ENSO</span> forcing in climatic variability at lower than <span class="hlt">ENSO</span> frequencies: evidence from Pleistocene marine varves off California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Anderson, R.Y.; Linsley, B.K.; Gardner, J.V.</p> <p>1990-01-01</p> <p>Upper Pleistocene marine sediments along the upper continental slope off northern and central California contain alternations of varved and bioturbated sediments and associated changes in biota and sediment composition. These alternations can be related to conditions that accompany El Nin??o and anti-El Nin??o (<span class="hlt">ENSO</span>) circulation. Anti-El Nin??o conditions are characterized by increased upwelling and productivity and by low concentrations of dissolved oxygen in the oxygen minimum zone that resulted in varve preservation. El Nin??o conditions are characterized by little or no upwelling, low productivity, and higher concentrations of dissolved oxygen that resulted in zones of bioturbation. Alternations of varves and zones of bioturbation, that range from decades to millennia, occur through the upper Pleistocene section. The inferred long-term alternations in El Nin??o and anti-El Nin??o conditions appear to be a re-expression of <span class="hlt">ENSO</span>'s primary 3-7 year cycle. Decadal to millennial cycles of productivity associated with El Nin??o and anti-El Nin??o conditions may have served as a "carbon pump" and transferred atmospheric CO2 to the marine reservoir. Changes in sediment composition and organisms associated with El Nin??o or anti-El Nin??o conditions can be related to both seasonal and <span class="hlt">ENSO</span> phenomena. Expression of these changes at lower-than-<span class="hlt">ENSO</span> frequencies may be partly explained by adding the effects of seasonal variability to effects produced by a self-oscillating <span class="hlt">ENSO</span> system. However, deterministic mechanisms, including solar modulation of <span class="hlt">ENSO</span>, may also contribute to long-term alternations of El Nin??o and anti-El Nin??o conditions. ?? 1990.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFMOS21C..02W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFMOS21C..02W"><span>The Tropical Western Hemisphere <span class="hlt">Warm</span> Pool</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, C.; Enfield, D. B.</p> <p>2002-12-01</p> <p>The paper describes and examines variability of the tropical Western Hemisphere <span class="hlt">warm</span> pool (WHWP) of water warmer than 28.5oC. The WHWP is the second-largest tropical <span class="hlt">warm</span> pool on Earth. Unlike the Eastern Hemisphere <span class="hlt">warm</span> pool in the western Pacific, which straddles the equator, the WHWP is entirely north of the equator. At various stages of development the WHWP extends over parts of the eastern North Pacific, the Gulf of Mexico, the Caribbean, and the western tropical North Atlantic. It has a large seasonal cycle and its interannual fluctuations of area and intensity are significant. Surface heat fluxes <span class="hlt">warm</span> the WHWP through the boreal spring to an annual maximum of SST and WHWP area in the late summer/early fall, associated with eastern North Pacific and Atlantic hurricane activities and rainfall from northern South America to the southern tier of the United States. Observations suggest that a positive ocean-atmosphere feedback operating through longwave radiation and associated cloudiness seems to operate in the WHWP. During winter preceding large <span class="hlt">warm</span> pool, there is an alteration of the Walker and Hadley circulation cells that serves as a "tropospheric bridge" for transferring Pacific <span class="hlt">ENSO</span> effects to the Atlantic sector and inducing initial <span class="hlt">warming</span> of <span class="hlt">warm</span> pool. Associated with the <span class="hlt">warm</span> SST anomalies is a decrease in sea level pressure anomalies and an anomalous increase in atmospheric convection and cloudiness. The increase in convective activity and cloudiness results in less net longwave radiation loss from the sea surface, which then reinforces SST anomalies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=243723','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=243723"><span>Changes in endogenous plant hormones and 'H-NMR profiles and signals in Styrax japonicus seeds as influenced by <span class="hlt">warm</span> and <span class="hlt">cold</span> stratification</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Germination of Styrax japonicus Sieb. et. Zucc. seeds was promoted by <span class="hlt">warm</span> stratification (WS) at around 20 °C followed by <span class="hlt">cold</span> stratification (CS) at around 5oC. Biochemical and physiological changes in Styrax seeds during these WS and CS treatments were not investigated. The objective of this wo...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..4312560Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..4312560Z"><span>Modulation of Bjerknes feedback on the decadal variations in <span class="hlt">ENSO</span> predictability</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zheng, Fei; Fang, Xiang-Hui; Zhu, Jiang; Yu, Jin-Yi; Li, Xi-Chen</p> <p>2016-12-01</p> <p>Clear decadal variations exist in the predictability of the El Niño-Southern Oscillation (<span class="hlt">ENSO</span>), with the most recent decade having the lowest <span class="hlt">ENSO</span> predictability in the past six decades. The Bjerknes Feedback (BF) intensity, which dominates the development of <span class="hlt">ENSO</span>, has been proposed to determine <span class="hlt">ENSO</span> predictability. Here we demonstrate that decadal variations in BF intensity are largely a result of the sensitivity of the zonal winds to the zonal sea level pressure (SLP) gradient in the equatorial Pacific. Furthermore, the results show that during low-<span class="hlt">ENSO</span> predictability decades, zonal wind anomalies over the equatorial Pacific are more linked to SLP variations in the off-equatorial Pacific, which can then transfer this information into surface temperature and precipitation fields through the BF, suggesting a weakening in the ocean-atmosphere coupling in the tropical Pacific. This result indicates that more attention should be paid to off-equatorial processes in the prediction of <span class="hlt">ENSO</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1468249','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1468249"><span>Liver transplantation in man: morphometric analysis of the parenchymal alterations following <span class="hlt">cold</span> ischaemia and <span class="hlt">warm</span> ischaemia/reperfusion</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>VIZZOTTO, LAURA; VERTEMATI, MAURIZIO; DEGNA, CARLO TOMMASINI; ASENI, PAOLO</p> <p>2001-01-01</p> <p>Ischaemia and reperfusion phases represent critical events during liver transplantation. The purpose of this study was to describe morphological alterations of both vascular and parenchymal compartments after ischaemia and reperfusion and to evaluate the possible relationship between morphometric parameters and biochemical/clinical data. Three needle biopsies were drawn from 20 patients who underwent orthotopic liver transplantation. The first biopsy was taken before flushing with preservation solution, and the second and the third to evaluate respectively the effects of <span class="hlt">cold</span> ischaemia and of <span class="hlt">warm</span> ischaemia/reperfusion. Biopsies were examined by an image analyser and morphometric parameters related to the liver parenchyma were evaluated. At the second biopsy we observed a decrease of the endothelium volume fraction while the same parameter referred to the sinusoidal lumen achieved a peak value. The hepatocytes showed a lower surface parenchymal/vascular sides ratio. This parameter was reversed at the end of the reperfusion phase; furthermore the third biopsy revealed endothelial swelling and a decreased volume fraction of the sinusoidal lumen. The results quantify the damage to the sinusoidal bed which, as already known, is one of the main targets of <span class="hlt">cold</span> ischaemia; <span class="hlt">warm</span> ischaemia and reperfusion accentuate endothelial damage. The end of transplantation is characterised by damage chiefly to parenchymal cells. Hepatocytes show a rearrangement of their surface sides, probably related to the alterations of the sinusoidal bed. In addition, the fluctuations of morphometric parameters during ischaemia/reperfusion correlate positively with biochemical data and clinical course of the patients. PMID:11430699</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp.2361H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp.2361H"><span>Contribution of tropical instability waves to <span class="hlt">ENSO</span> irregularity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holmes, Ryan M.; McGregor, Shayne; Santoso, Agus; England, Matthew H.</p> <p>2018-05-01</p> <p>Tropical instability waves (TIWs) are a major source of internally-generated oceanic variability in the equatorial Pacific Ocean. These non-linear phenomena play an important role in the sea surface temperature (SST) budget in a region critical for low-frequency modes of variability such as the El Niño-Southern Oscillation (<span class="hlt">ENSO</span>). However, the direct contribution of TIW-driven stochastic variability to <span class="hlt">ENSO</span> has received little attention. Here, we investigate the influence of TIWs on <span class="hlt">ENSO</span> using a 1/4° ocean model coupled to a simple atmosphere. The use of a simple atmosphere removes complex intrinsic atmospheric variability while allowing the dominant mode of air-sea coupling to be represented as a statistical relationship between SST and wind stress anomalies. Using this hybrid coupled model, we perform a suite of coupled ensemble forecast experiments initiated with wind bursts in the western Pacific, where individual ensemble members differ only due to internal oceanic variability. We find that TIWs can induce a spread in the forecast amplitude of the Niño 3 SST anomaly 6-months after a given sequence of WWBs of approximately ± 45% the size of the ensemble mean anomaly. Further, when various estimates of stochastic atmospheric forcing are added, oceanic internal variability is found to contribute between about 20% and 70% of the ensemble forecast spread, with the remainder attributable to the atmospheric variability. While the oceanic contribution to <span class="hlt">ENSO</span> stochastic forcing requires further quantification beyond the idealized approach used here, our results nevertheless suggest that TIWs may impact <span class="hlt">ENSO</span> irregularity and predictability. This has implications for <span class="hlt">ENSO</span> representation in low-resolution coupled models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150022193','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150022193"><span>Stability of <span class="hlt">ENSO</span> and Its Tropical Pacific Teleconnections over the Last Millennium</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lewis, Sophie; Legrande, A. N.</p> <p>2015-01-01</p> <p>Determining past changes in the amplitude, frequency and teleconnections of the El Nio Southern Oscillation (<span class="hlt">ENSO</span>) is important for understanding its potential sensitivity to future anthropogenic climate change. Palaeo-reconstructions from proxy records provide long-term information of <span class="hlt">ENSO</span> interactions with the background climatic state through time. However, it remains unclear how <span class="hlt">ENSO</span> characteristics have changed through time, and precisely which signals proxies record. Proxy interpretations are underpinned by the assumption of stationarity in relationships between local and remote climates, and often utilise archives from single locations located in the Pacific Ocean to reconstruct <span class="hlt">ENSO</span> histories. Here, we investigate the stationarity of <span class="hlt">ENSO</span> teleconnections using the Last Millennium experiment of CMIP5 (Coupled Model Intercomparison Project phase 5) (Taylor et al., 2012). We show that modelled <span class="hlt">ENSO</span> characteristics vary on decadal- to centennial-scales, resulting from internal variability and external forcings, such as tropical volcanic eruptions. Furthermore, the relationship between <span class="hlt">ENSO</span> conditions and local climates across the Pacific basin varies throughout the Last Millennium. Results show the stability of teleconnections is regionally dependent and proxies may reveal complex changes in teleconnected patterns, rather than large-scale changes in base <span class="hlt">ENSO</span> characteristics. As such, proxy insights into <span class="hlt">ENSO</span> likely require evidence to be synthesised over large spatial areas in order to deconvolve changes occurring in the NINO3.4 region from those pertaining to proxy-relevant local climatic variables. To obtain robust histories of the <span class="hlt">ENSO</span> and its remote impacts, we recommend interpretations of proxy records should be considered in conjunction with palaeo-reconstructions from within the Central Pacific</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=drought&pg=5&id=EJ758494','ERIC'); return false;" href="https://eric.ed.gov/?q=drought&pg=5&id=EJ758494"><span>Fires, Floods, and Hurricanes: Is <span class="hlt">ENSO</span> to Blame?</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Mjelde, James W.; Litzenberg, Kerry K.; Hoyle, Julie E.; Holochwost, Sharon R.; Funkhouser, Sarah</p> <p>2007-01-01</p> <p>Scientists have associated the El Nino/Southern Oscillation (<span class="hlt">ENSO</span>) phenomenon with extreme climate events such as flooding in California, droughts in Australia, fires in Indonesia, and increased hurricane activity in the Atlantic Ocean. The popular media is constantly attributing individual storms to the <span class="hlt">ENSO</span> phenomenon. The reality is that a…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25902893','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25902893"><span>Moisture rivals temperature in limiting photosynthesis by trees establishing beyond their <span class="hlt">cold</span>-edge range limit under ambient and <span class="hlt">warmed</span> conditions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moyes, Andrew B; Germino, Matthew J; Kueppers, Lara M</p> <p>2015-09-01</p> <p>Climate change is altering plant species distributions globally, and <span class="hlt">warming</span> is expected to promote uphill shifts in mountain trees. However, at many <span class="hlt">cold</span>-edge range limits, such as alpine treelines in the western United States, tree establishment may be colimited by low temperature and low moisture, making recruitment patterns with <span class="hlt">warming</span> difficult to predict. We measured response functions linking carbon (C) assimilation and temperature- and moisture-related microclimatic factors for limber pine (Pinus flexilis) seedlings growing in a heating × watering experiment within and above the alpine treeline. We then extrapolated these response functions using observed microclimate conditions to estimate the net effects of <span class="hlt">warming</span> and associated soil drying on C assimilation across an entire growing season. Moisture and temperature limitations were each estimated to reduce potential growing season C gain from a theoretical upper limit by 15-30% (c. 50% combined). <span class="hlt">Warming</span> above current treeline conditions provided relatively little benefit to modeled net assimilation, whereas assimilation was sensitive to either wetter or drier conditions. Summer precipitation may be at least as important as temperature in constraining C gain by establishing subalpine trees at and above current alpine treelines as seasonally dry subalpine and alpine ecosystems continue to <span class="hlt">warm</span>. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ClDy...42.3061B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ClDy...42.3061B"><span>Zonal structure and variability of the Western Pacific dynamic <span class="hlt">warm</span> pool edge in CMIP5</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, Jaclyn N.; Langlais, Clothilde; Maes, Christophe</p> <p>2014-06-01</p> <p>The equatorial edge of the Western Pacific <span class="hlt">Warm</span> Pool is operationally identified by one isotherm ranging between 28° and 29 °C, chosen to align with the interannual variability of strong zonal salinity gradients and the convergence of zonal ocean currents. The simulation of this edge is examined in 19 models from the World Climate Research Program Coupled Model Intercomparison Project Phase 5 (CMIP5), over the historical period from 1950 to 2000. The dynamic <span class="hlt">warm</span> pool edge (DWPE), where the zonal currents converge, is difficult to determine from limited observations and biased models. A new analysis technique is introduced where a proxy for DWPE is determined by the isotherm that most closely correlates with the movements of the strong salinity gradient. It can therefore be a different isotherm in each model. The DWPE is simulated much closer to observations than if a direct temperature-only comparison is made. Aspects of the DWPE remain difficult for coupled models to simulate including the mean longitude, the interannual excursions, and the zonal convergence of ocean currents. Some models have only very weak salinity gradients trapped to the western side of the basin making it difficult to even identify a DWPE. The model's DWPE are generally 1-2 °C cooler than observed. In line with theory, the magnitude of the zonal migrations of the DWPE are strongly related to the amplitudes of the Nino3.4 SST index. Nevertheless, a better simulation of the mean location of the DWPE does not necessarily improve the amplitude of a model's <span class="hlt">ENSO</span>. It is also found that in a few models (CSIROMk3.6, inmcm and inmcm4-esm) the <span class="hlt">warm</span> pool displacements result from a net heating or cooling rather than a zonal advection of <span class="hlt">warm</span> water. The simulation of the DWPE has implications for <span class="hlt">ENSO</span> dynamics when considering <span class="hlt">ENSO</span> paradigms such as the delayed action oscillator mechanism, the Advective-Reflective oscillator, and the zonal-advective feedback. These are also discussed in the context</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6717P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6717P"><span>Changes in El Nino - Southern Oscillation (<span class="hlt">ENSO</span>) conditions during the Younger Dryas revealed by New Zealand tree-rings.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Palmer, Jonathan; Turney, Chris; Cook, Edward; Fenwick, Pavla; Thomas, Zoë; Helle, Gerhard; Jones, Richard; Clement, Amy; Hogg, Alan; Southon, John; Bronk Ramsey, Christopher; Staff, Richard; Muscheler, Raimund; Corrège, Thierry; Hua, Quan</p> <p>2017-04-01</p> <p>The <span class="hlt">warming</span> trend at the end of the last glacial was disrupted by rapid cooling clearly identified in Greenland (Greenland Stadial 1 or GS-1) and Europe (Younger Dryas Stadial or YD). This reversal to glacial-like conditions is one of the best known examples of abrupt change but the exact timing and global spatial extent remains uncertain. Whilst the wider Atlantic region has a network of high-resolution proxy records spanning the YD, the Pacific Ocean suffers from a scarcity of sub-decadally resolved sequences. Here we report the results from an investigation into a tree-ring chronology from northern New Zealand aimed at addressing the paucity of data. The conifer tree species kauri (Agathis australis) is known from contemporary studies to be sensitive to regional climate changes. An analysis of a 'historic' 452-year kauri chronology confirms a tropical-Pacific teleconnection via the El Niño - Southern Oscillation (<span class="hlt">ENSO</span>). We then focus our study to a 1010-year subfossil kauri chronology that has been precisely dated by comprehensive radiocarbon dating and contains a striking ring-width downturn between 12,500 to 12,380 cal BP within the YD. Wavelet analysis shows a marked increase in <span class="hlt">ENSO</span>-like periodicities occurring after the downturn event. Comparison to low- and mid-latitude Pacific records suggests a coherency in the changes to <span class="hlt">ENSO</span> and Southern Hemisphere westerly airflow during this period. The drivers for this climate event remain unclear but may be related to solar changes that subsequently led to establishment and/or increased expression of <span class="hlt">ENSO</span> across the mid-latitudes of the Pacific, seemingly independent of the Atlantic and polar regions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040161152&hterms=forest+trees&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dforest%2Btrees','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040161152&hterms=forest+trees&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dforest%2Btrees"><span>Forest Understory Fire in the Brazilian Amazon in <span class="hlt">ENSO</span> and Non-<span class="hlt">ENSO</span> Years: Area Burned and Committed Carbon Emissions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.</p> <p>2004-01-01</p> <p>"Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (<span class="hlt">ENSO</span>) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non <span class="hlt">ENSO</span> year and within the first four kilometers for the <span class="hlt">ENSO</span> year. The area of forest burned by understory forest fire during the severe drought (<span class="hlt">ENSO</span>) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the <span class="hlt">ENSO</span> and from 0,004 Pg to 0,024 Pg during the non <span class="hlt">ENSO</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1811455B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1811455B"><span><span class="hlt">ENSO</span> effects on stratospheric trace gases: How do we capture reality?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Braesicke, Peter; Kirner, Oliver; Versick, Stefan; Joeckel, Patrick; Stiler, Gabriele</p> <p>2016-04-01</p> <p>The El Niño/Southern Oscillation (<span class="hlt">ENSO</span>) phenomenon is an important pacemaker for interannual variability in the Earth's atmosphere. <span class="hlt">ENSO</span> impacts on trace gases have been observed and modelled for the stratosphere and the troposphere. However, unambiguous attribution is often difficult due to the limited length of homogenous observational records and thus long-term (decadal) trends are sometimes difficult to detect. Generally <span class="hlt">ENSO</span> impacts in low latitudes are easier to detect, because the response emerges close (temporally and spatially) to the forcing. Moving from low to high latitudes it becomes increasingly difficult to isolate <span class="hlt">ENSO</span> driven variability, due to time-lags involved and many other modes of variability playing a role as well. Here, we use a nudged version of the EMAC chemistry-climate model to evaluate <span class="hlt">ENSO</span> impacts on trace gases over the last 35 years (a so-called Ref-C1SD integration) and contrast the nudged model with its free running counterpart. We use water vapour and ozone observations from the MIPAS instrument on ENVISAT from 2002 to 2012 to test the model performance. Using lagged correlations for the longer model time-series we trace the <span class="hlt">ENSO</span> signal from the tropical lower troposphere to the polar lower and middle stratosphere and provide a framework for simple attribution of the <span class="hlt">ENSO</span> signal in trace gases. This concise characterisation of the <span class="hlt">ENSO</span> impact on trace gases aids improved trend detection in temporally limited time series.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC31E1042A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC31E1042A"><span>Trans-Pacific <span class="hlt">ENSO</span> teleconnections pose a correlated risk to global agriculture</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anderson, W. B.; Seager, R.; Cane, M. A.; Baethgen, W.</p> <p>2017-12-01</p> <p>The El Niño Southern Oscillation (<span class="hlt">ENSO</span>) is a major source of interannual climate variability, particularly in the Pacific Basin. <span class="hlt">ENSO</span> life-cycles tend to evolve over multiple years, as do the associated trans-Pacific <span class="hlt">ENSO</span> teleconnections. This analysis, however, represents the first attempt to characterize the structure of the risk posed by <span class="hlt">ENSO</span> to wheat, maize and soybean production across the Pacific Basin. Our results indicate that most <span class="hlt">ENSO</span> teleconnections relevant for crop flowering seasons are the result of a single trans-Pacific circulation anomaly that develops in boreal summer and persists through the spring. During the late summer and early fall of a developing <span class="hlt">ENSO</span> event, the tropical Pacific forces an atmospheric anomaly in the midlatitudes that spans the Pacific Basin. This teleconnection directly links the soybean and maize growing seasons of the US, Mexico and China. It also connects the wheat growing seasons of Argentina, southern Brazil and Australia. The <span class="hlt">ENSO</span> event peaks in boreal winter, when the atmospheric circulation anomalies intensify and affect maize and soybeans in southeast South America. As the event decays, the <span class="hlt">ENSO</span>-induced circulation anomalies persist through the wheat flowering seasons in China and the US. While the prospect of <span class="hlt">ENSO</span> forcing simultaneous droughts in major food producing regions seems disastrous, there may be a silver lining from the perspective of global food security: trans-Pacific <span class="hlt">ENSO</span> teleconnections to yields are often offsetting between major producing regions in the eastern and western portions of the Pacific Basin. El Niños tend to create good maize and soybean growing conditions in the US and southeast South America, but poor growing conditions in China, Mexico and northeast Brazil. The opposite is true during La Niña. Wheat growing conditions in southeast South America generally have the opposite sign of those in Australia. Finally, we investigate how trade networks interact with this structure of <span class="hlt">ENSO</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913121L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913121L"><span><span class="hlt">ENSO</span> activity during the last climate cycle using IFA</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leduc, Guillaume; Vidal, Laurence; Thirumalai, Kaustubh</p> <p>2017-04-01</p> <p>The El Niño / Southern Oscillation (<span class="hlt">ENSO</span>) is the principal mode of interannual climate variability and affects key climate parameters such as low-latitude rainfall variability. Anticipating future <span class="hlt">ENSO</span> variability under anthropogenic forcing is vital due to its profound socioeconomic impact. Fossil corals suggest that 20th century <span class="hlt">ENSO</span> variance is particularly high as compared to other time periods of the Holocene (Cobb et al., 2013, Science), the Last Glacial Maximum (Ford et al., 2015, Science) and the last glacial period (Tudhope et al., 2001, Science). Yet, recent climate modeling experiments suggest an increase in the frequency of both El Niño (Cai et al., 2014, Nature Climate Change) and La Niña (Cai et al., 2015, Nature Climate Change) events. We have expanded an Individual Foraminifera Analysis (IFA) dataset using the thermocline-dwelling N. dutertrei on a marine core collected in the Panama Basin (Leduc et al., 2009, Paleoceanography), that has proven to be a skillful way to reconstruct the <span class="hlt">ENSO</span> (Thirumalai et al., 2013, Paleoceanography). Our new IFA dataset comprehensively covers the Holocene, the last deglaciation and Termination II (MIS5/6) time windows. We will also use previously published data from the Marine Isotope Stage 3 (MIS3). Our dataset confirms variable <span class="hlt">ENSO</span> intensity during the Holocene and weaker activity during LGM than during the Holocene. As a next step, <span class="hlt">ENSO</span> activity will be discussed with respect to the contrasting climatic background of the analysed time windows (millenial-scale variability, Terminations).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APJAS..50..531Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APJAS..50..531Y"><span>Interdecadal changes in the Asian winter monsoon variability and its relationship with <span class="hlt">ENSO</span> and AO</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yun, Kyung-Sook; Seo, Ye-Won; Ha, Kyung-Ja; Lee, June-Yi; Kajikawa, Yoshiyuki</p> <p>2014-08-01</p> <p>Interdecadal changes in the Asian winter monsoon (AWM) variability are investigated using three surface air temperature datasets for the 55-year period of 1958-2012 from (1) the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis 1 (NCEP), (2) combined datasets from the European Centre for Medium-range Weather Forecasts (ECMWF) 40-yr reanalysis and interim data (ERA), and (3) Japanese 55-year reanalysis (JRA). Particular attention has been paid to the first four empirical orthogonal function (EOF) modes of the AWM temperature variability that together account for 64% of the total variance and have been previously identified as predictable modes. The four modes are characterized as follows: the first mode by a southern <span class="hlt">warming</span> over the Indo-western Pacific Ocean associated with a gradually increasing basin-wide <span class="hlt">warming</span> trend; the second mode by northern <span class="hlt">warming</span> with the interdecadal change after the late 1980s; the third and fourth modes by north-south triple pattern, which reveal a phase shift after the late 1970s. The three reanalyses agree well with each other when producing the first three modes, but show large discrepancy in capturing both spatial and temporal characteristics of the fourth mode. It is therefore considered that the first three leading modes are more reliable than the rest higher modes. Considerable interdecadal changes are found mainly in the first two modes. While the first mode shows gradually decreasing variance, the second mode exhibits larger interannual variance during the recent decade. In addition, after the late 1970s, the first mode has a weakening relationship with the El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) whereas the second mode has strengthening association with the Artic Oscillation (AO). This indicates an increasing role of AO but decreasing role of <span class="hlt">ENSO</span> on the AWM variability. A better understanding of the interdecadal change in the dominant modes would contribute toward advancing in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JHyd..530...51S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JHyd..530...51S"><span>A global analysis of the asymmetric effect of <span class="hlt">ENSO</span> on extreme precipitation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Xun; Renard, Benjamin; Thyer, Mark; Westra, Seth; Lang, Michel</p> <p>2015-11-01</p> <p>The global and regional influence of the El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) phenomenon on extreme precipitation was analyzed using a global database comprising over 7000 high quality observation sites. To better quantify possible changes in relatively rare design-relevant precipitation quantiles (e.g. the 1 in 10 year event), a Bayesian regional extreme value model was used, which employed the Southern Oscillation Index (SOI) - a measure of <span class="hlt">ENSO</span> - as a covariate. Regions found to be influenced by <span class="hlt">ENSO</span> include parts of North and South America, southern and eastern Asia, South Africa, Australia and Europe. The season experiencing the greatest <span class="hlt">ENSO</span> effect varies regionally, but in most of the <span class="hlt">ENSO</span>-affected regions the strongest effect happens in boreal winter, during which time the 10-year precipitation for |SOI| = 20 (corresponding to either a strong El Niño or La Niña episode) can be up to 50% higher or lower than for SOI = 0 (a neutral phase). Importantly, the effect of <span class="hlt">ENSO</span> on extreme precipitation is asymmetric, with most parts of the world experiencing a significant effect only for a single <span class="hlt">ENSO</span> phase. This finding has important implications on the current understanding of how <span class="hlt">ENSO</span> influences extreme precipitation, and will enable a more rigorous theoretical foundation for providing quantitative extreme precipitation intensity predictions at seasonal timescales. We anticipate that incorporating asymmetric impacts of <span class="hlt">ENSO</span> on extreme precipitation will help lead to better-informed climate-adaptive design of flood-sensitive infrastructure.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AdAtS..34..941G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AdAtS..34..941G"><span>Characteristics of temperature change in China over the last 2000 years and spatial patterns of dryness/wetness during <span class="hlt">cold</span> and <span class="hlt">warm</span> periods</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ge, Quansheng; Liu, Haolong; Ma, Xiang; Zheng, Jingyun; Hao, Zhixin</p> <p>2017-08-01</p> <p>This paper presents new high-resolution proxies and paleoclimatic reconstructions for studying climate changes in China for the past 2000 years. Multi-proxy synthesized reconstructions show that temperature variation in China has exhibited significant 50-70-yr, 100-120-yr, and 200-250-yr cycles. Results also show that the amplitudes of decadal and centennial temperature variation were 1.3°C and 0.7°C, respectively, with the latter significantly correlated with long-term changes in solar radiation, especially <span class="hlt">cold</span> periods, which correspond approximately to sunspot minima. The most rapid <span class="hlt">warming</span> in China occurred over AD 1870-2000, at a rate of 0.56° ± 0.42°C (100 yr)-1; however, temperatures recorded in the 20th century may not be unprecedented for the last 2000 years, as data show records for the periods AD 981-1100 and AD 1201-70 are comparable to the present. The ensemble means of dryness/wetness spatial patterns in eastern China across all centennial <span class="hlt">warm</span> periods illustrate a tripole pattern: dry south of 25°N, wet from 25°-30°N, and dry to the north of 30°N. However, for all centennial <span class="hlt">cold</span> periods, this spatial pattern also exhibits a meridional distribution. The increase in precipitation over the monsoonal regions of China associated with the 20th century <span class="hlt">warming</span> can primarily be attributed to a mega El Ni˜no-Southern Oscillation and the Atlantic Multidecadal Oscillation. In addition, a significant association between increasing numbers of locusts and dry/<span class="hlt">cold</span> conditions is found in eastern China. Plague intensity also generally increases in concert with wetness in northern China, while more precipitation is likely to have a negative effect in southern China.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=426046','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=426046"><span>Differences in Steady-State Net Ammonium and Nitrate Influx by <span class="hlt">Cold</span>- and <span class="hlt">Warm</span>-Adapted Barley Varieties 1</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bloom, Arnold J.; Chapin, F. Stuart</p> <p>1981-01-01</p> <p>A flowing nutrient culture system permitted relatively rapid determination of the steady-state net nitrogen influx by an intact barley (Hardeum vulgare L. cv Kombar and Olli) plant. Ion-selective electrodes monitored the depletion of ammonium and nitrate from a nutrient solution after a single pass through a root cuvette. Influx at concentrations as low as 4 micromolar was measured. Standard errors for a sample size of three plants were typically less than 10% of the mean. When grown under identical conditions, a variety of barley bred for <span class="hlt">cold</span> soils had higher nitrogen influx rates at low concentrations and low temperatures than one bred for <span class="hlt">warm</span> soils, whereas the one bred for <span class="hlt">warm</span> soils had higher influx rates at high concentrations and high temperatures. Ammonium was more readily absorbed than nitrate by both varieties at all concentrations and temperatures tested. Ammonium and nitrate influx in both varieties were equally inhibited by low temperatures. PMID:16662052</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PrOce.140....1D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PrOce.140....1D"><span><span class="hlt">ENSO</span> and anthropogenic impacts on phytoplankton diversity in tropical coastal waters</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doan-Nhu, Hai; Nguyen-Ngoc, Lam; Nguyen, Chi-Thoi</p> <p>2016-01-01</p> <p>16-year phytoplankton data were analysed to assess <span class="hlt">ENSO</span> and anthropogenic impacts on biodiversity and community structure at 3 locations (Nha-Trang and Phan-Thiet Bays and near Phu-Qui Island) in South Centre Viet Nam to understand (1) the primary scales of change in phytoplankton community structure, and traditional and taxonomic diversity indices; (2) the significance of environmental changes and/or climate variability on phytoplankton diversity; and (3) the usefulness of these long-term data for analysing future impacts of anthropogenic and climate changes. Traditional and taxonomic diversity indices were compared and tested in linkage with environmental conditions and <span class="hlt">ENSO</span>. Nutrient data indicated stronger environmental impacts in Phan-Thiet Bay, milder in Nha-Trang Bay and less noticeable near Phu-Qui Island. There were measurable impacts of both anthropogenic and <span class="hlt">ENSO</span> on phytoplankton at different locations in various parameters, e.g. species number, diversity and community structures. The lowest diversity was recorded in the most anthropogenically impacted site, Phan-Thiet Bay. Although a stronger impact on phytoplankton was recorded in <span class="hlt">ENSO</span> year in Phan Thiet Bay, quantitative separation between anthropogenic and <span class="hlt">ENSO</span> impacts using phytoplankton biodiversity indices was impossible. In the waters with less anthropogenic impacts, <span class="hlt">ENSO</span> effects on taxonomic diversity was better indicated by negative phytoplankton responses to the ONI index (Nha-Trang Bay) and recovery of phytoplankton after the <span class="hlt">ENSO</span> events (near Phu-Qui Island). Among the diversity indices, the taxonomic diversity indices (e.g. Δ+ and Λ+) better described impacts of <span class="hlt">ENSO</span> than the traditional ones.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.475...25C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.475...25C"><span><span class="hlt">ENSO</span> variability reflected in precipitation oxygen isotopes across the Asian Summer Monsoon region</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cai, Zhongyin; Tian, Lide; Bowen, Gabriel J.</p> <p>2017-10-01</p> <p>Oxygen isotope signals (δ18O) from paleo-archives are important proxies for past Asian Summer Monsoon (ASM) climate reconstruction. However, causes of interannual variation in the δ18O values of modern precipitation across the ASM region remain in argument. We report interannual δ18O variation in southern Tibetan Plateau precipitation based on long-term observations at Lhasa. These data, together with precipitation δ18O records from five Global Network of Isotopes in Precipitation (GNIP) stations and two ice core δ18O records, were used to define a regional metric of ASM precipitation δ18O (ASMOI). Back-trajectory analyses for rainy season precipitation events indicate that moisture sources vary little between years with relatively high and low δ18O values, a result that is consistent for the south (Lhasa), southeast (Bangkok), and east ASM regions (Hong Kong). In contrast, δ18O values at these three locations are significantly correlated with convection in the estimated source regions and along transport paths. These results suggest that upstream convection, rather than moisture source change, causes interannual variation in ASM precipitation δ18O values. Contrasting values of the ASMOI in El Niño and La Niña years reveal a positive isotope-El Niño Southern Oscillation (<span class="hlt">ENSO</span>) response (e.g., high values corresponding to <span class="hlt">warm</span> phases), which we interpret as a response to changes in regional convection. We show that the isotope-<span class="hlt">ENSO</span> response is amplified at high elevation sites and during La Niña years. These findings should improve interpretations of paleo-δ18O data as a proxy for past ASM variation and provide new opportunities to use data from this region to study paleo-<span class="hlt">ENSO</span> activity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPP41C1371Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPP41C1371Y"><span><span class="hlt">ENSO</span>-Type Signals Recorded in the Late Cretaceous Laminated Sediments of Songliao Basin, Northeast China</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, E.; Wang, C.; Hinnov, L. A.; Wu, H.</p> <p>2014-12-01</p> <p>The quasi-periodic, ca. 2-7 year El Niño Southern Oscillation (<span class="hlt">ENSO</span>) phenomenon globally influences the inter-annual variability of temperature and precipitation. Global <span class="hlt">warming</span> may increase the frequency of extreme <span class="hlt">ENSO</span> events. Although the Cretaceous plate tectonic configuration was different from today, the sedimentary record suggests that <span class="hlt">ENSO</span>-type oscillations had existed at the time of Cretaceous greenhouse conditions. Cored Cretaceous lacustrine sediments from the Songliao Basin in Northeast China (SK-1 cores from the International Continental Drilling Program) potentially offer a partially varved record of Cretaceous paleoclimate. Fourteen polished thin sections from the depth interval 1096.12-1096.53 m with an age of 84.4 Ma were analyzed by optical and scanning electron microscopy (SEM). ImageJ software was applied to extract gray scale curves from optical images at pixel resolution. We tracked minimum values of the gray scale curves to estimate the thickness of each lamina. Five sedimentary structures were recognized: flaser bedding, wavy bedding, lenticular bedding, horizontal bedding, and massive layers. The mean layer thicknesses with different sedimentary structures range from 116 to 162mm, very close to the mean sedimentation rate estimated for this sampled interval, 135mm/year, indicating that the layers bounded by pure clay lamina with the minimum gray values are varves. SEM images indicate that a varve is composed, in succession, of one lamina rich in coarse silt, one lamina rich in fine silt, one clay-rich lamina with some silt, and one clay-rich lamina. This suggests that a Cretaceous year featured four distinct depositional seasons, two of which were rainy and the others were lacking precipitation. Spectral analysis of extended intervals of the tuned gray scale curve indicates the presence of inter-annual periodicities of 2.2-2.7 yr, 3.5-6.1 year, and 10.1-14.5 year consistent with those of modern <span class="hlt">ENSO</span> cycles and solar cycles, as well as</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22539727','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22539727"><span>The impacts of repeated <span class="hlt">cold</span> exposure on insects.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marshall, Katie E; Sinclair, Brent J</p> <p>2012-05-15</p> <p>Insects experience repeated <span class="hlt">cold</span> exposure (RCE) on multiple time scales in natural environments, yet the majority of studies of the effects of <span class="hlt">cold</span> on insects involve only a single exposure. Three broad groups of experimental designs have been employed to examine the effects of RCE on insect physiology and fitness, defined by the control treatments: 'RCE vs <span class="hlt">cold</span>', which compares RCE with constant <span class="hlt">cold</span> conditions; 'RCE vs <span class="hlt">warm</span>', which compares RCE with constant <span class="hlt">warm</span> conditions; and 'RCE vs matched <span class="hlt">cold</span>' which compares RCE with a prolonged period of <span class="hlt">cold</span> matched by time to the RCE condition. RCE are generally beneficial to immediate survival, and increase <span class="hlt">cold</span> hardiness relative to insects receiving a single prolonged <span class="hlt">cold</span> exposure. However, the effects of RCE depend on the study design, and RCE vs <span class="hlt">warm</span> studies cannot differentiate between the effects of <span class="hlt">cold</span> exposure in general vs RCE in particular. Recent studies of gene transcription, immune function, feeding and reproductive output show that the responses of insects to RCE are distinct from the responses to single <span class="hlt">cold</span> exposures. We suggest that future research should attempt to elucidate the mechanistic link between physiological responses and fitness parameters. We also recommend that future RCE experiments match the time spent at the stressful low temperature in all experimental groups, include age controls where appropriate, incorporate a pilot study to determine time and intensity of exposure, and measure sub-lethal impacts on fitness.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2017/5084/sir20175084.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2017/5084/sir20175084.pdf"><span>Characterization of water quality and suspended sediment during <span class="hlt">cold</span>-season flows, <span class="hlt">warm</span>-season flows, and stormflows in the Fountain and Monument Creek watersheds, Colorado, 2007–2015</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Miller, Lisa D.; Stogner, Sr., Robert W.</p> <p>2017-09-01</p> <p>From 2007 through 2015, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, conducted a study in the Fountain and Monument Creek watersheds, Colorado, to characterize surface-water quality and suspended-sediment conditions for three different streamflow regimes with an emphasis on characterizing water quality during storm runoff. Data collected during this study were used to evaluate the effects of stormflows and wastewater-treatment effluent discharge on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality samples were collected at 2 sites on Upper Fountain Creek, 2 sites on Monument Creek, 3 sites on Lower Fountain Creek, and 13 tributary sites during 3 flow regimes: <span class="hlt">cold</span>-season flow (November–April), <span class="hlt">warm</span>-season flow (May–October), and stormflow from 2007 through 2015. During 2015, additional samples were collected and analyzed for Escherichia coli (E. coli) during dry weather conditions at 41 sites, located in E. coli impaired stream reaches, to help identify source areas and scope of the impairment.Concentrations of E. coli, total arsenic, and dissolved copper, selenium, and zinc in surface-water samples were compared to Colorado in-stream standards. Stormflow concentrations of E. coli frequently exceeded the recreational use standard of 126 colonies per 100 milliliters at main-stem and tributary sites by more than an order of magnitude. Even though median E. coli concentrations in <span class="hlt">warm</span>-season flow samples were lower than median concentrations in storm-flow samples, the water quality standard for E. coli was still exceeded at most main-stem sites and many tributary sites during <span class="hlt">warm</span>-season flows. Six samples (three <span class="hlt">warm</span>-season flow and three stormflow samples) collected from Upper Fountain Creek, upstream from the confluence of Monument Creek, and two stormflow samples collected from Lower Fountain Creek, downstream from the confluence with Monument Creek, exceeded the acute water</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPC34B2178C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPC34B2178C"><span>The Role of Reversed Equatorial Zonal Transport in Terminating an <span class="hlt">ENSO</span> Event</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, H. C.; Hu, Z. Z.; Huang, B.; Sui, C. H.</p> <p>2016-02-01</p> <p>In this study, we demonstrate that a sudden reversal of anomalous equatorial zonal current at the peaking <span class="hlt">ENSO</span> phase triggers the rapid termination of an <span class="hlt">ENSO</span> event. Throughout an <span class="hlt">ENSO</span> cycle, the anomalous equatorial zonal current is strongly controlled by the concavity of the anomalous thermocline meridional structure near the equator. During the <span class="hlt">ENSO</span> developing phase, the anomalous zonal current in the central and eastern Pacific generally enhances the <span class="hlt">ENSO</span> growth through its zonal SST advection. In the mature phase of <span class="hlt">ENSO</span>, however, the equatorial thermocline depth anomalies are reflected in the eastern Pacific and slowly propagate westward off the equator in both hemispheres. As a result, the concavity of the thermocline anomalies near the equator is reversed, i.e., the off-equatorial thermocline depth anomalies become higher than that on the equator for El Niño events and lower for La Niño events. This meridional change of thermocline structure reverses zonal transport rapidly in the central-to-eastern equatorial Pacific, which weakens the <span class="hlt">ENSO</span> SST anomalies by reversed advection. More importantly, the reversed zonal mass transport weakens the existing zonal tilting of equatorial thermocline and suppresses the thermocline feedback. Both processes are concentrated in the eastern equatorial Pacific and can be effective on subseasonal time scales. These current reversal effects are built-in to the <span class="hlt">ENSO</span> peak phase and independent of the zonal wind effect on thermocline slope. It functions as an oceanic control on <span class="hlt">ENSO</span> evolution during both El Niño and La Niña events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27808438','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27808438"><span><span class="hlt">Warm</span> hands, <span class="hlt">cold</span> heart: progressive whole-body cooling increases <span class="hlt">warm</span> thermosensitivity of human hands and feet in a dose-dependent fashion.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Filingeri, Davide; Morris, Nathan B; Jay, Ollie</p> <p>2017-01-01</p> <p> remained unchanged (P = 0.831), sensitivity to skin <span class="hlt">warming</span> increased significantly at each level of T sk for all skin regions [10 min, +4.9% (-1.1 to +11.0); 20 min, +6.1% (+0.1-12.2); and 30 min, +7.9% (+1.9-13.9); P = 0.009]. Linear regression indicated a 1.2% °C -1 increase in <span class="hlt">warm</span> thermosensitivity with whole-body skin cooling. Overall, large decreases in T sk significantly facilitated <span class="hlt">warm</span> but not <span class="hlt">cold</span> sensory processing of local thermal stimuli, in a dose-dependent fashion. In highlighting a novel feature of human temperature integration, these findings point to the existence of an endogenous thermosensory system that could modulate local skin thermal sensitivity in relationship to whole-body thermal states. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1439712-accelerated-increase-arctic-tropospheric-warming-events-surpassing-stratospheric-warming-events-during-winter-accelerated-increase-arctic-warming','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1439712-accelerated-increase-arctic-tropospheric-warming-events-surpassing-stratospheric-warming-events-during-winter-accelerated-increase-arctic-warming"><span>Accelerated increase in the Arctic tropospheric <span class="hlt">warming</span> events surpassing stratospheric <span class="hlt">warming</span> events during winter: Accelerated Increase in Arctic <span class="hlt">Warming</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, S. -Y. Simon; Lin, Yen-Heng; Lee, Ming-Ying</p> <p></p> <p>In January 2016, a robust reversal of the Arctic Oscillation (AO) took place associated with a rapid tropospheric <span class="hlt">warming</span> in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric <span class="hlt">warming</span> in March-April. The succession of these two distinct Arctic <span class="hlt">warming</span> events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic <span class="hlt">warming</span> were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as well as those documented in previous studies. Our results indicate a recent and accelerated increasemore » in the tropospheric <span class="hlt">warming</span> type versus a flat trend in stratospheric <span class="hlt">warming</span> type. Given that tropospheric <span class="hlt">warming</span> events occur twice as fast than the stratospheric <span class="hlt">warming</span> type, the noted increase in the former implies further intensification in midlatitude winter weather extremes similar to those experienced in early 2016. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric <span class="hlt">warming</span> events and associated impact on the anomalously <span class="hlt">cold</span> Siberia.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4738287','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4738287"><span>Global <span class="hlt">Warming</span> Attenuates the Tropical Atlantic-Pacific Teleconnection</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju</p> <p>2016-01-01</p> <p>Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread <span class="hlt">warming</span> intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by <span class="hlt">warming</span> in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global <span class="hlt">warming</span>. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like <span class="hlt">warming</span> of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse <span class="hlt">warming</span> continues, the trend in the tropical Pacific as well as the development of <span class="hlt">ENSO</span> will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection. PMID:26838053</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26838053','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26838053"><span>Global <span class="hlt">Warming</span> Attenuates the Tropical Atlantic-Pacific Teleconnection.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju</p> <p>2016-02-03</p> <p>Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread <span class="hlt">warming</span> intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by <span class="hlt">warming</span> in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global <span class="hlt">warming</span>. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like <span class="hlt">warming</span> of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse <span class="hlt">warming</span> continues, the trend in the tropical Pacific as well as the development of <span class="hlt">ENSO</span> will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...74a2017G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...74a2017G"><span>Research on trend of <span class="hlt">warm</span>-humid climate in Central Asia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gong, Zhi; Peng, Dailiang; Wen, Jingyi; Cai, Zhanqing; Wang, Tiantian; Hu, Yuekai; Ma, Yaxin; Xu, Junfeng</p> <p>2017-07-01</p> <p>Central Asia is a typical arid area, which is sensitive and vulnerable part of climate changes, at the same time, Central Asia is the Silk Road Economic Belt of the core district, the <span class="hlt">warm</span>-humid climate change will affect the production and economic development of neighboring countries. The average annual precipitation, average anneal temperature and evapotranspiration are the important indexes to weigh the climate change. In this paper, the annual precipitation, annual average temperature and evapotranspiration data of every pixel point in Central Asia are analyzed by using long-time series remote sensing data to analyze the trend of <span class="hlt">warm</span> and humid conditions. Finally, using the model to analyzed the distribution of <span class="hlt">warm</span>-dry trend, the <span class="hlt">warm</span>-wet trend, the <span class="hlt">cold</span>-dry trend and the <span class="hlt">cold</span>-wet trend in Central Asia and Xinjiang area. The results showed that most of the regions of Central Asia were <span class="hlt">warm</span>-humid and <span class="hlt">warm</span>-dry trends, but only a small number of regions showed <span class="hlt">warm</span>-dry and <span class="hlt">cold</span>-dry trends. It is of great significance to study the climatic change discipline and guarantee the ecological safety and improve the ability to cope with climate change in the region. It also provide scientific basis for the formulation of regional climate change program. The first section in your paper</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19234117','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19234117"><span>The potential for behavioral thermoregulation to buffer "<span class="hlt">cold</span>-blooded" animals against climate <span class="hlt">warming</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kearney, Michael; Shine, Richard; Porter, Warren P</p> <p>2009-03-10</p> <p>Increasing concern about the impacts of global <span class="hlt">warming</span> on biodiversity has stimulated extensive discussion, but methods to translate broad-scale shifts in climate into direct impacts on living animals remain simplistic. A key missing element from models of climatic change impacts on animals is the buffering influence of behavioral thermoregulation. Here, we show how behavioral and mass/energy balance models can be combined with spatial data on climate, topography, and vegetation to predict impacts of increased air temperature on thermoregulating ectotherms such as reptiles and insects (a large portion of global biodiversity). We show that for most "<span class="hlt">cold</span>-blooded" terrestrial animals, the primary thermal challenge is not to attain high body temperatures (although this is important in temperate environments) but to stay cool (particularly in tropical and desert areas, where ectotherm biodiversity is greatest). The impact of climate <span class="hlt">warming</span> on thermoregulating ectotherms will depend critically on how changes in vegetation cover alter the availability of shade as well as the animals' capacities to alter their seasonal timing of activity and reproduction. Warmer environments also may increase maintenance energy costs while simultaneously constraining activity time, putting pressure on mass and energy budgets. Energy- and mass-balance models provide a general method to integrate the complexity of these direct interactions between organisms and climate into spatial predictions of the impact of climate change on biodiversity. This methodology allows quantitative organism- and habitat-specific assessments of climate change impacts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3923316','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3923316"><span>Comparison of Shoulder Range of Motion, Strength, and Playing Time in Uninjured High School Baseball Pitchers Who Reside in <span class="hlt">Warm</span>- and <span class="hlt">Cold</span>-Weather Climates</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kaplan, Kevin M.; ElAttrache, Neal S.; Jobe, Frank W.; Morrey, Bernard F.; Kaufman, Kenton R.; Hurd, Wendy J.</p> <p>2014-01-01</p> <p>Background There is an assumption that baseball athletes who reside in <span class="hlt">warm</span>-weather climates experience larger magnitude adaptations in throwing shoulder motion and strength compared with their peers who reside in <span class="hlt">cold</span>-weather climates. Hypotheses (1) The <span class="hlt">warm</span>-weather climate (WWC) group would exhibit more pronounced shoulder motion and strength adaptations than the <span class="hlt">cold</span>-weather climate (CWC) group, and (2) the WWC group would participate in pitching activities for a greater proportion of the year than the CWC group, with the time spent pitching predicting throwing shoulder motion and strength in both groups. Study Design Cross-sectional study; Level of evidence, 3. Methods One hundred uninjured high school pitchers (50 each WWC, CWC) were recruited. Rotational shoulder motion and isometric strength were measured and participants reported the number of months per year they pitched. To identify differences between groups, t tests were performed; linear regression was used to determine the influence of pitching volume on shoulder motion and strength. Results The WWC group pitched more months per year than athletes from the CWC group, with the number of months spent pitching negatively related to internal rotation motion and external rotation strength. The WWC group exhibited greater shoulder range of motion in all planes compared with the CWC group, as well as significantly lower external rotation strength and external/internal rotation strength ratios. There was no difference in internal rotation strength between groups, nor a difference in the magnitude of side-to-side differences for strength or motion measures. Conclusion Athletes who reside in <span class="hlt">cold</span>- and <span class="hlt">warm</span>-weather climates exhibit differences in throwing shoulder motion and strength, related in part to the number of months spent participating in pitching activities. The amount of time spent participating in pitching activities and the magnitude of range of motion and strength adaptations in athletes who reside</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188021','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188021"><span>Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in <span class="hlt">warm</span>- but not <span class="hlt">cold</span>-acclimated lake whitefish (Coregonus clupeaformis)</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zak, Megan A.; Regish, Amy M.; McCormick, Stephen; Manzon, Richard G.</p> <p>2017-01-01</p> <p>Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19 °C) or below (8 °C) the thermal optimum (13 °C) and exposure to exogenous thyroid hormone (60 µg T4/g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. <span class="hlt">Warm</span> acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in <span class="hlt">warm</span>-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following <span class="hlt">cold</span> acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in <span class="hlt">warm</span>-acclimated than in <span class="hlt">cold</span>-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28212894','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28212894"><span>Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in <span class="hlt">warm</span>- but not <span class="hlt">cold</span>-acclimated lake whitefish (Coregonus clupeaformis).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zak, Megan A; Regish, Amy M; McCormick, Stephen D; Manzon, Richard G</p> <p>2017-06-01</p> <p>Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19°C) or below (8°C) the thermal optimum (13°C) and exposure to exogenous thyroid hormone (60µg T 4 /g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. <span class="hlt">Warm</span> acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in <span class="hlt">warm</span>-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following <span class="hlt">cold</span> acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in <span class="hlt">warm</span>-acclimated than in <span class="hlt">cold</span>-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JESS..126...30D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JESS..126...30D"><span>Study of the global and regional climatic impacts of <span class="hlt">ENSO</span> magnitude using SPEEDY AGCM</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dogar, Muhammad Mubashar; Kucharski, Fred; Azharuddin, Syed</p> <p>2017-03-01</p> <p><span class="hlt">ENSO</span> is considered as a strong atmospheric teleconnection that has pronounced global and regional circulation effects. It modifies global monsoon system, especially, Asian and African monsoons. Previous studies suggest that both the frequency and magnitude of <span class="hlt">ENSO</span> events have increased over the last few decades resulting in a need to study climatic impacts of <span class="hlt">ENSO</span> magnitude both at global and regional scales. Hence, to better understand the impact of <span class="hlt">ENSO</span> amplitude over the tropical and extratropical regions focussing on the Asian and African domains, <span class="hlt">ENSO</span> sensitivity experiments are conducted using ICTPAGCM (`SPEEDY'). It is anticipated that the tropical Pacific SST forcing will be enough to produce <span class="hlt">ENSO</span>-induced teleconnection patterns; therefore, the model is forced using NINO3.4 regressed SST anomalies over the tropical Pacific only. SPEEDY reproduces the impact of <span class="hlt">ENSO</span> over the Pacific, North and South America and African regions very well. However, it underestimates <span class="hlt">ENSO</span> teleconnection patterns and associated changes over South Asia, particularly in the Indian region, which suggests that the tropical Pacific SST forcing is not sufficient to represent <span class="hlt">ENSO</span>-induced teleconnection patterns over South Asia. Therefore, SST forcing over the tropical Indian Ocean together with air-sea coupling is also required for better representation of <span class="hlt">ENSO</span>-induced changes in these regions. Moreover, results obtained by this pacemaker experiment show that <span class="hlt">ENSO</span> impacts are relatively stronger over the Inter-Tropical Convergence Zone (ITCZ) compared to extratropics and high latitude regions. The positive phase of <span class="hlt">ENSO</span> causes weakening in rainfall activity over African tropical rain belt, parts of South and Southeast Asia, whereas, the La Niña phase produces more rain over these regions during the summer season. Model results further reveal that <span class="hlt">ENSO</span> magnitude has a stronger impact over African Sahel and South Asia, especially over the Indian region because of its significant impact</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A22D..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A22D..08S"><span>Reforecasting the 1972-73 <span class="hlt">ENSO</span> Event and the Monsoon Drought Over India</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shukla, J.; Huang, B.; Shin, C. S.</p> <p>2016-12-01</p> <p>This paper presents the results of reforcasting the 1972-73 <span class="hlt">ENSO</span> event and the Indian summer monsoon drought using the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), initialized with the Eu­ropean Centre for Medium-Range Weather Forecasts (ECMWF) global ocean reanalysis version 4, and observation-based land and atmosphere reanalyses. The results of this paper demonstrate that if the modern day climate models were available during the 1970's, even with the limited observations at that time, it should have been possible to predict the 1972-73 <span class="hlt">ENSO</span> event and the associated monsoon drought. These results further suggest the necessity of continuing to develop realistic models of the climate system for accurate and reliable seasonal predictions. This paper also presents a comparison of the 1972-73 El Niño reforecast with the 1997-98 case. As the strongest event during 1958-78, the 1972-73 El Niño is distinguished from the 1997-98 one by its early termination. Initialized in the spring season, the forecast system predicted the onset and development of both events reasonably well, although the reforecasts underestimate the <span class="hlt">ENSO</span> peaking magnitudes. On the other hand, the reforecasts initialized in spring and fall of 1972 persistently predicted lingering wind and SST anomalies in the eastern equatorial Pacific during the spring of 1973. Initialized in fall of 1997, the reforecast also grossly overestimates the peaking westerly wind and <span class="hlt">warm</span> SST anomalies in the 1997-98 El Niño.In 1972-73, both the Eastern Pacific SST anomalies (for example Nino 3 Index) and the summer monsoon drought over India and the adjoining areas were predicted remarkably well. In contrast, the Eastern Pacific SST anomalies for the 1997-98 event were predicted well, but the normal summer monsoon rainfall over India of 1997 was not predicted by the model. This case study of the 1972-73 event is part of a larger, comprehensive reforecast project</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014DSRII.107...29M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014DSRII.107...29M"><span>Evaluating the role of fronts in habitat overlaps between <span class="hlt">cold</span> and <span class="hlt">warm</span> water species in the western North Pacific: A proof of concept</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mugo, Robinson M.; Saitoh, Sei-Ichi; Takahashi, Fumihiro; Nihira, Akira; Kuroyama, Tadaaki</p> <p>2014-09-01</p> <p><span class="hlt">Cold</span>- and <span class="hlt">warm</span>-water species' fishing grounds show a spatial synchrony around fronts in the western North Pacific (WNP). However, it is not yet clear whether a front (thermal, salinity or chlorophyll) acts as an absolute barrier to fish migration on either side or its structure allows interaction of species with different physiological requirements. Our objective was to assess potential areas of overlap between <span class="hlt">cold</span>- and <span class="hlt">warm</span>-water species using probabilities of presence derived from fishery datasets and remotely sensed environment data in the Kuroshio-Oyashio region in the WNP. Fishery data comprised skipjack tuna (Katsuwonus pelamis) fishing locations and proxy presences (derived from fishing night light images) for neon flying squid (Ommastrephes bartrami) and Pacific saury (Cololabis saira). Monthly (August-November) satellite remotely sensed sea-surface temperature, chlorophyll-a and sea-surface height anomaly images were used as environment data. Maximum entropy (MaxEnt) models were used to determine probabilities of presence (PoP) for each set of fishery and environment data for the area 35-45°N and 140-160°E. Maps of both sets of PoPs were compared and areas of overlap identified using a combined probability map. Results indicated that areas of spatial overlap existed among the species habitats, which gradually widened from September to November. The reasons for these overlaps include the presence of strong thermal/ocean-color gradients between <span class="hlt">cold</span> Oyashio and <span class="hlt">warm</span> Kuroshio waters, and also the presence of the sub-arctic front. Due to the high abundance of food along frontal zones, the species use the fronts as foraging grounds while confining within physiologically tolerable waters on either side of the front. The interaction zone around the front points to areas that might be accessible to both species for foraging, which suggests intense prey-predator interaction zones.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA622254','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA622254"><span>Low-Frequency Variability of the Yellow Sea <span class="hlt">Cold</span> Water Mass Identified from the China Coastal Waters and Adjacent Seas Reanalysis</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-01-01</p> <p>the bottom of the central trough has a shape that resembles a saddle. In July, the <span class="hlt">cold</span> water that has a temperature lower than 10∘C covers a third of...the YSCWM The YSCWM is a large water mass covering a third of the bottom layer at its largest extension. It has relatively stable properties with low...in the wind stress and heat fluxes. In summer, <span class="hlt">ENSO</span> has the strongest influence on the YSCWM variability. <span class="hlt">ENSO</span> may exert influence on the third mode</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AdSpR..60.2379A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AdSpR..60.2379A"><span>Variability of lightning activity over India on <span class="hlt">ENSO</span> time scales</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ahmad, Adnan; Ghosh, Mili</p> <p>2017-12-01</p> <p><span class="hlt">ENSO</span>, the reliable indicator of inter-annual climate variation of the ocean-atmosphere system in the tropical Pacific region, can affect the overall lightning activity which is another atmospheric phenomenon. In the present study, the impact of the <span class="hlt">ENSO</span> on the total lightning activity over India has been studied for the period 2004-2014. During the El-Nino period (July 2004-April 2005 and July 2009-April 2010), total number of lightning flashes increased by 10% and 18% respectively and during La-Nina period (July 2010-April 2011 and August 2011 to March 2012), the total number of lightning flashes decreased approximately by 19% and 28% respectively as compared to the mean of corresponding period (2004-14) of the Non-<span class="hlt">ENSO</span>. Seasonal variation of flash density is also examined for the El-Nino and La-Nina period. The result shows that in the El-Nino period of the pre-monsoon and monsoon seasons, there is an increment in the flash density approximately by 48% and 9% respectively than the Non-<span class="hlt">ENSO</span> and the spatial variation also having high flash density along the foot of Himalayas region. In the post-monsoon season, there is a marginal change in the flash density between El-Nino and the Non-<span class="hlt">ENSO</span>. In the winter season, there is an increment in flash density in the El-Nino period approximately by 45% than the Non-<span class="hlt">ENSO</span>. In the La-Nina period of the pre-monsoon and monsoon seasons, there is the decrement in the flash density approximately by the 44% and 24% respectively than the Non-<span class="hlt">ENSO</span>. In the Post-monsoon season and winter season of La-Nina, the flash density is increased by about 24% and 33% over India. These findings can be applied to do proper planning of lightning induced hazard mitigation as lightning is of one of the major natural disasters of India.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030005428','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030005428"><span><span class="hlt">Warm</span> Hands and Feet</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1976-01-01</p> <p>Comfort Products, Inc. was responsible for the <span class="hlt">cold</span> weather glove and thermal boots, adapted from a spacesuit design that kept astronauts <span class="hlt">warm</span> or cool in the temperature extremes of the Apollo Moon Mission. Gloves and boots are thermally heated. Batteries are worn inside wrist of glove or sealed in sole of skiboot and are rechargeable hundreds of times. They operate flexible resistance circuit which is turned on periodically when wearer wants to be <span class="hlt">warm</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000090520&hterms=climate+change+climate+patterns&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dclimate%2Bchange%2Bclimate%2Bpatterns','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000090520&hterms=climate+change+climate+patterns&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dclimate%2Bchange%2Bclimate%2Bpatterns"><span>The Evolution of Tropical Precipitation Patterns During <span class="hlt">ENSO</span> Events Using 21+ Years of GPCP Merged Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Curtis, Scott; Adler, Robert</p> <p>2000-01-01</p> <p>The <span class="hlt">ENSO</span> phenomenon is characterized by fluctuations in the climate system of the tropical Pacific. Quantifying changes in the precipitation component of this system is important in understanding the distribution of heating in the atmosphere which drives the large-scale circulation and affects the weather patterns in the mid-latitudes. Monitoring precipitation anomalies in the Pacific is also an important component for tracking the evolution of <span class="hlt">ENSO</span>. The most timely and complete observations of the earth come from satellite instruments. In this study, the state of the art satellite-gauge merged monthly precipitation data set from the Global Precipitation Climatology Project (GPCP) is used to depict tropical rainfall patterns during <span class="hlt">ENSO</span> events over the past two decades and quantify these patterns using indices. This analysis will be complemented by daily precipitation data which can resolve the Madden-Julian Oscillation and westerly wind burst events. The 1997-98 El Nino and 1998-2000 La Nina were the best observed <span class="hlt">ENSO</span> cycle in the historic record. Prior to the El Nino (in terms of anomalous <span class="hlt">warming</span> of the east Pacific) dry anomalies over the Maritime Continent were observed in February 1997 as a westerly wind burst advected convection to the east. The largest SST anomalies occurred around November-December 1997, which were followed by the largest precipitation anomalies in the beginning of 1998. The largest precipitation departures from normal were not colocated with the SST anomalies, but were further west, In the spring of 1998 negative precipitation anomalies to the north of the equator intensified, signaling the mature phase of the El Nino. A rapid increase in the precipitation-based La Nina index from December-January 1998 to March-April 1998 signaled the coming La Nina. The 1982-1983 El Nino was comparable in strength (according to several indices) and the precipitation patterns evolved in a similar fashion. For the 1998-2000 La Nina, the coldest anomalies</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28729610','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28729610"><span>Mean Bias in Seasonal Forecast Model and <span class="hlt">ENSO</span> Prediction Error.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Seon Tae; Jeong, Hye-In; Jin, Fei-Fei</p> <p>2017-07-20</p> <p>This study uses retrospective forecasts made using an APEC Climate Center seasonal forecast model to investigate the cause of errors in predicting the amplitude of El Niño Southern Oscillation (<span class="hlt">ENSO</span>)-driven sea surface temperature variability. When utilizing Bjerknes coupled stability (BJ) index analysis, enhanced errors in <span class="hlt">ENSO</span> amplitude with forecast lead times are found to be well represented by those in the growth rate estimated by the BJ index. <span class="hlt">ENSO</span> amplitude forecast errors are most strongly associated with the errors in both the thermocline slope response and surface wind response to forcing over the tropical Pacific, leading to errors in thermocline feedback. This study concludes that upper ocean temperature bias in the equatorial Pacific, which becomes more intense with increasing lead times, is a possible cause of forecast errors in the thermocline feedback and thus in <span class="hlt">ENSO</span> amplitude.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.1840R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.1840R"><span>NorTropical <span class="hlt">Warm</span> Pool variability and its effects on the climate of Colombia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ricaurte Villota, Constanza; Romero-Rodriguez, Deisy; Coca-Domínguez, Oswaldo</p> <p>2015-04-01</p> <p>Much has been said about the effects of El Niño Southern Oscillation (<span class="hlt">ENSO</span>) on oceanographic and climatic conditions in Colombia, but little is known about the influence of the Atlantic <span class="hlt">Warm</span> Pool (AWP), which includes the gulf of Mexico, the Caribbean and the western tropical North Atlantic. The AWP has been identified by some authors as an area that influences the Earth's climate, associated with anomalous summer rainfall and hurricane activity in the Atlantic. The aim of this study was to understand the variation in the AWP and its effects on the climate of Colombia. An annual average of sea surface temperature (SST) was obtained from the composition of monthly images of the Spectroradiometer Moderate Resolution Imaging Spectroradiometer (MODIS), with resolution of 4 km, for one area that comprises the marine territory of Colombia, Panama, Costa Rica both the Pacific and the Caribbean, and parts of the Caribbean coast of Nicaragua, for the period between 2007 and 2013. The results suggest that <span class="hlt">warm</span> pool is not restricted to the Caribbean, but it also covers a strip Pacific bordering Central America and the northern part of the Colombian coast, so it should be called the Nor-Tropical <span class="hlt">Warm</span> pool (NTWP). Within the NTWP higher SST correspond to a marine area extending about 1 degree north and south of Central and out of the Colombian Caribbean coast. The NTWP also showed large interannual variability, with the years 2008 and 2009 with lower SST in average, while 2010, 2011 and 2013 years with warmer conditions, matching with greater precipitation. It was also noted that during warmer conditions (high amplitude NTWP) the <span class="hlt">cold</span> tongue from the south Pacific has less penetration on Colombian coast. Finally, the results suggest a strong influence of NTWP in climatic conditions in Colombia.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000086133','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000086133"><span>Evolution of Tropical and Extratropical Precipitation Anomalies During the 1997 to 1999 <span class="hlt">ENSO</span> Cycle</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Curtis, Scott; Adler, Robert; Huffman, George; Nelkin, Eric; Bolvin, David; Einaudi, Franco (Technical Monitor)</p> <p>2000-01-01</p> <p>The 1997-1999 <span class="hlt">ENSO</span> period was very powerful, but also well observed. Multiple satellite rainfall estimates combined with gauge observations allow for a quantitative analysis of precipitation anomalies in the tropics and elsewhere accompanying the 1997-99 <span class="hlt">ENSO</span> cycle. An examination of the evolution of the El Nino and accompanying precipitation anomalies revealed that a dry Maritime Continent preceded the formation of positive SST anomalies in the eastern Pacific Ocean. 30-60 day oscillations in the winter of 1996/97 may have contributed to this lag relationship. Furthermore, westerly wind burst events may have maintained the drought over the Maritime Continent. The <span class="hlt">warming</span> of the equatorial Pacific was then followed by an increase in convection. A rapid transition from El Nino to La Nina occurred in May 1998, but as early as October-November 1997 precipitation indices captured substantial changes in Pacific rainfall anomalies. The global precipitation patterns for this event were in good agreement with the strong consistent <span class="hlt">ENSO</span>-related precipitation signals identified in earlier studies. Differences included a shift in precipitation anomalies over Africa during the 1997-98 El Nino and unusually wet conditions over northeast Australia during the later stages of the El Nino. Also, the typically wet region in the north tropical Pacific was mostly dry during the 1998-99 La Nina. Reanalysis precipitation was compared to observations during this time period and substantial differences were noted. In particular, the model had a bias towards positive precipitation anomalies and the magnitudes of the anomalies in the equatorial Pacific were small compared to the observations. Also, the evolution of the precipitation field, including the drying of the Maritime Continent and eastward progression of rainfall in the equatorial Pacific was less pronounced for the model compared to the observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP23D..06L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP23D..06L"><span><span class="hlt">ENSO</span> activity during the last climate cycle using Individual Foraminifera Analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leduc, G.; Vidal, L.; Thirumalai, K.</p> <p>2017-12-01</p> <p>The El Niño / Southern Oscillation (<span class="hlt">ENSO</span>) is the principal mode of interannual climate variability and affects key climate parameters such as low-latitude rainfall variability. Recent climate modeling experiments tend to suggest an increase in the frequency of both El Niño and La Niña events in the future, but these results remain model-dependent and require to be validated by paleodata-model comparisons. Fossil corals indicate that the <span class="hlt">ENSO</span> variance during the 20th century is particularly high as compared to other time periods of the Holocene. Beyond the Holocene, however, little is known on past <span class="hlt">ENSO</span> changes, which makes difficult to test paleoclimate model simulations that are used to study the <span class="hlt">ENSO</span> sensitivity to various types of forcings. We have expanded an Individual Foraminifera Analysis (IFA) dataset using the thermocline-dwelling N. dutertrei on a marine core collected in the Panama Basin (Leduc et al., 2009), that has proven to be a skillful way to reconstruct the <span class="hlt">ENSO</span> (Thirumalai et al., 2013). Our new IFA dataset comprehensively covers the Holocene, allowing to verify how the IFA method compares with <span class="hlt">ENSO</span> reconstructions using corals. The dataset then extends back in time to Marine Isotope Stage 6 (MIS), with a special focus the last deglaciation and Termination II (MIS5/6) time windows, as well as key time periods to tests the sensitivity of <span class="hlt">ENSO</span> to ice volume and orbital parameters. The new dataset confirms variable <span class="hlt">ENSO</span> activity during the Holocene and weaker activity during LGM than during the Holocene, as a recent isotope-enabled climate model simulations of the LGM suggests (Zhu et al., 2017). Such pattern is reproduced for the Termination II. Leduc, G., L. Vidal, O. Cartapanis, and E. Bard (2009), Modes of eastern equatorial Pacific thermocline variability: Implications for <span class="hlt">ENSO</span> dynamics over the last glacial period, Paleoceanography, 24, PA3202, doi:10.1029/2008PA001701. Thirumalai, K., J. W. Partin, C. S. Jackson, and T. M. Quinn (2013</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4052348','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4052348"><span>Moving in extreme environments: open water swimming in <span class="hlt">cold</span> and <span class="hlt">warm</span> water</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2014-01-01</p> <p>Open water swimming (OWS), either ‘wild’ such as river swimming or competitive, is a fast growing pastime as well as a part of events such as triathlons. Little evidence is available on which to base high and low water temperature limits. Also, due to factors such as acclimatisation, which disassociates thermal sensation and comfort from thermal state, individuals cannot be left to monitor their own physical condition during swims. Deaths have occurred during OWS; these have been due to not only thermal responses but also cardiac problems. This paper, which is part of a series on ‘Moving in Extreme Environments’, briefly reviews current understanding in pertinent topics associated with OWS. Guidelines are presented for the organisation of open water events to minimise risk, and it is concluded that more information on the responses to immersion in <span class="hlt">cold</span> and <span class="hlt">warm</span> water, the causes of the individual variation in these responses and the precursors to the cardiac events that appear to be the primary cause of death in OWS events will help make this enjoyable sport even safer. PMID:24921042</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020023732&hterms=How+temperature+effect+rate+evaporation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DHow%2Btemperature%2Beffect%2Brate%2Bevaporation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020023732&hterms=How+temperature+effect+rate+evaporation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DHow%2Btemperature%2Beffect%2Brate%2Bevaporation"><span>Tropical Ocean Evaporation/SST Sensitivity and It's Link to Water and Energy Budget Variations During <span class="hlt">ENSO</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Robertson, Franklin R.; Marshall, Susan; Oglesby, Robert; Roads, John; Sohn, Byung-Ju; Arnold, James E. (Technical Monitor)</p> <p>2001-01-01</p> <p>The continuing debate over feedback mechanisms governing tropical sea surface temperatures (SSTs) and tropical climate in general has highlighted the diversity of potential checks and balances within the climate system. Competing feedbacks due to changes in surface evaporation, water vapor, and cloud long- and shortwave radiative properties each may serve critical roles in stabilizing or destabilizing the climate system. It is also intriguing that even those climate variations having origins internal to the climate system - changes in ocean heat transport for example, apparently require complementary equilibrating effects by changes in atmospheric energy fluxes. Perhaps the best observational evidence of this is the relatively invariant nature of tropically averaged net radiation exiting the top-of-atmosphere (TOA) as measured by broadband satellite sensors over the past two decades. Thus, analyzing how these feedback mechanisms are operating within the context of current interannual variability may offer considerable insight for anticipating future climate change. In this paper we focus primarily on interannual variations of ocean evaporative fluxes and their significance for coupled water and energy cycles within the tropical climate system. In particular, we use both the da Silva estimates of surface fluxes (based on the Comprehensive Ocean Atmosphere Data Set, COADS) and numerical simulations from several global climate models to examine evaporation sensitivity to perturbations in SST associated with <span class="hlt">warm</span> and <span class="hlt">cold</span> <span class="hlt">ENSO</span> events. The specific questions we address are as follows: (1) What recurring patterns of surface wind and humidity anomalies are present during <span class="hlt">ENSO</span> and how do they combine to yield systematic evaporation anomalies?, (2) What is the resulting tropical ocean mean evaporation-SST sensitivity associated with this climate perturbation?, and (3) What role does this evaporation play in tropical heat and water balance over tropical oceanic regions? We</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1343183-dms-role-enso-cycle-tropics-dms-role-enso-cycle-tropics','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1343183-dms-role-enso-cycle-tropics-dms-role-enso-cycle-tropics"><span>DMS role in <span class="hlt">ENSO</span> cycle in the tropics: DMS Role in <span class="hlt">ENSO</span> Cycle in Tropics</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Xu, Li; Cameron-Smith, Philip; Russell, Lynn M.</p> <p></p> <p>We examined the multiyear mean and variability of dimethyl sulfide (DMS) and its relationship to sulfate aerosols, as well as cloud microphysical and radiative properties. We conducted a 150 year simulation using preindustrial conditions produced by the Community Earth System Model embedded with a dynamic DMS module. The model simulated the mean spatial distribution of DMS emissions and burden, as well as sulfur budgets associated with DMS, SO2, H2SO4, and sulfate that were generally similar to available observations and inventories for a variety of regions. Changes in simulated sea-to-air DMS emissions and associated atmospheric abundance, along with associated aerosols andmore » cloud and radiative properties, were consistently dominated by El Niño–Southern Oscillation (<span class="hlt">ENSO</span>) cycle in the tropical Pacific region. Simulated DMS, aerosols, and clouds showed a weak positive feedback on sea surface temperature. This feedback suggests a link among DMS, aerosols, clouds, and climate on interannual timescales. The variability of DMS emissions associated with <span class="hlt">ENSO</span> was primarily caused by a higher variation in wind speed during La Niña events. The simulation results also suggest that variations in DMS emissions increase the frequency of La Niña events but do not alter <span class="hlt">ENSO</span> variability in terms of the standard deviation of the Niño 3 sea surface temperature anomalies.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26603219','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26603219"><span>The Effect of Hollyhock (Althaea officinalis L) Leaf Compresses Combined With <span class="hlt">Warm</span> and <span class="hlt">Cold</span> Compress on Breast Engorgement in Lactating Women: A Randomized Clinical Trial.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Khosravan, Shahla; Mohammadzadeh-Moghadam, Hossein; Mohammadzadeh, Fatemeh; Fadafen, Samane Ajam Khames; Gholami, Malihe</p> <p>2017-01-01</p> <p>Breast engorgement affects lactation. The present study was conducted to determine the effect of hollyhock combined with <span class="hlt">warm</span> and <span class="hlt">cold</span> compresses on improving breast engorgement in lactating women. Participants included 40 women with breast engorgement divided into intervention and control groups, with participants in both groups being applied routine interventions and <span class="hlt">warm</span> compress before nursing and a <span class="hlt">cold</span> compress after nursing; however, the intervention group was also applied hollyhock compress. Both groups received these treatments 6 times during 2 days. The data collected were analyzed in SPSS-16 using a generalized estimating equation. According to the results, a significant difference was observed in the overall breast engorgement severity in the intervention group (P < .001). The severity of breast engorgement was also found to have a significant relationship with time (P < .001). According to the findings, hollyhock leaf compress combined with performing routine interventions for breast engorgement can improve breast engorgement. © The Author(s) 2015.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1290364-meridional-dipole-premonsoon-bay-bengal-tropical-cyclone-activity-induced-enso-tropical-cyclones-monsoon-enso','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1290364-meridional-dipole-premonsoon-bay-bengal-tropical-cyclone-activity-induced-enso-tropical-cyclones-monsoon-enso"><span>A meridional dipole in premonsoon Bay of Bengal tropical cyclone activity induced by <span class="hlt">ENSO</span>: TROPICAL CYCLONES, MONSOON AND <span class="hlt">ENSO</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Balaguru, Karthik; Leung, L. Ruby; Lu, Jian</p> <p>2016-06-27</p> <p>Analysis of Bay of Bengal tropical cyclone (TC) track data for the month of May during 1980-2013 reveals a meridional dipole in TC intensification: TC intensification rates increased in the northern Bay and decreased in the southern Bay. The dipole was driven by an increase in low-level vorticity and atmospheric humidity in the northern Bay, making the environment more favorable for TC intensification, and enhanced vertical wind shear in the southern Bay, tending to reduce TC development. These environmental changes were associated with a strengthening of the monsoon circulation for the month of May, driven by a La Nin˜a-like shiftmore » in tropical Pacific SSTs andassociated tropical wave dynamics. Analysis of a suite of climate models fromthe CMIP5 archive for the 150-year historical period shows that most models correctly reproduce the link between <span class="hlt">ENSO</span> and Bay of Bengal TC activity through the monsoon at interannual timescales. Under the RCP 8.5 scenario the same CMIP5 models produce an El Nin˜o like <span class="hlt">warming</span> trend in the equatorial Pacific, tending to weaken the monsoon circulation. These results suggest« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/481955','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/481955"><span>Proxy Records of the Indonesian Low and the El Ni{tilde n}o-Southern Oscillation (<span class="hlt">ENSO</span>) from Stable Isotope Measurements of Indonesian Reef Corals</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Moore, M.D.</p> <p>1995-12-31</p> <p>The Earth`s largest atmospheric convective center is the Indonesian Low. It generates the Australasian monsoon, drives the zonal tropospheric Walker Circulation, and is implicated in the genesis of the El Nino-Southern Oscillation (<span class="hlt">ENSO</span>). The long-term variability of the Indonesian Low is poorly characterized, yet such information is crucial for evaluating whether changes in the strength and frequency of <span class="hlt">ENSO</span> events are a possible manifestation of global <span class="hlt">warming</span>. Stable oxygen isotope ratios ({delta}{sup 18}O) in shallow-water reef coral skeletons track topical convective activity over hundreds of years because the input of isotopically-depleted rainwater dilutes seawater {delta}{sup 18}O. Corals also impose amore » temperature-dependent fractionation on {delta}{sup 18}O, but where annual rainfall is high and sea surface temperature (SST) variability is low the freshwater flux effect dominates.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT........34K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT........34K"><span>Influence of Decadal Variability of Global Oceans on South Asian Monsoon and <span class="hlt">ENSO</span>-Monsoon Relation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krishnamurthy, Lakshmi</p> <p></p> <p>This study has investigated the influence of the decadal variability associated with global oceans on South Asian monsoon and El Nino-Southern Oscillation (<span class="hlt">ENSO</span>)-monsoon relation. The results are based on observational analysis using long records of monsoon rainfall and circulation and coupled general circulation model experiments using the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) version 4 model. The multi-channel singular spectrum analysis (MSSA) of the observed rainfall over India yields three decadal modes. The first mode (52 year period) is associated with the Atlantic Multidecadal Oscillation (AMO), the second one (21 year) with the Pacific Decadal Oscillation (PDO) and the third mode (13 year) with the Atlantic tripole. The existence of these decadal modes in the monsoon was also found in the control simulation of NCAR CCSM4. The regionally de-coupled model experiments performed to isolate the influence of North Pacific and North Atlantic also substantiate the above results. The relation between the decadal modes in the monsoon rainfall with the known decadal modes in global SST is examined. The PDO has significant negative correlation with the Indian Monsoon Rainfall (IMR). The mechanism for PDO-monsoon relation is hypothesized through the seasonal footprinting mechanism and further through Walker and Hadley circulations. The model results also confirm the negative correlation between PDO and IMR and the mechanism through which PDO influences monsoon. Both observational and model analysis show that droughts (floods) are more likely over India than floods (droughts) when <span class="hlt">ENSO</span> and PDO are in their <span class="hlt">warm</span> (<span class="hlt">cold</span>) phase. This study emphasizes the importance of carefully distinguishing the different decadal modes in the SST in the North Atlantic Ocean as they have different impacts on the monsoon. The AMO exhibits significant positive correlation with the IMR while the Atlantic tripole has significant negative</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5099569','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5099569"><span>Direct and indirect <span class="hlt">ENSO</span> modulation of winter temperature over the Asian–Pacific–American region</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Leung, Marco Y. T.; Zhou, Wen</p> <p>2016-01-01</p> <p>In this study, the direct and indirect atmospheric responses over the Asian–Pacific–American region to the El Niño–Southern Oscillation (<span class="hlt">ENSO</span>) are documented. Since <span class="hlt">ENSO</span> is likely to induce the northward displacement of the East Asian trough (NDEAT), some of the influence of <span class="hlt">ENSO</span> on the Asian–Pacific–American region is possibly indirect and acts by inducing NDEAT. To separate corresponding influences of <span class="hlt">ENSO</span> and NDEAT, partial regression is utilized. It is noted that temperature variations in the East Asian–Western Pacific region are controlled mainly by NDEAT. In contrast, <span class="hlt">ENSO</span> demonstrates a weak direct relation to the temperature variation over the East Asian–Western Pacific region. This suggests that the influence of <span class="hlt">ENSO</span> on this region is indirect, through modulation of NDEAT. On the other hand, temperature variation over the tropical eastern Pacific is dominated by <span class="hlt">ENSO</span> forcing. Finally, temperature variation over the eastern North American–Western Pacific region is controlled by both <span class="hlt">ENSO</span> and NDEAT. Nevertheless, their influences on temperature and circulation over this region tend to offset each other. This implies that temperature variation is controlled by their relative strengths. PMID:27821838</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004PrOce..60..201A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004PrOce..60..201A"><span>Regime shifts in the Humboldt Current ecosystem [review article</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alheit, Jürgen; Niquen, Miguel</p> <p>2004-02-01</p> <p>Of the four major eastern boundary currents, the Humboldt Current (HC) stands out because it is extremely productive, dominated by anchovy dynamics and subject to frequent direct environmental perturbations of the El Niño Southern Oscillation (<span class="hlt">ENSO</span>). The long-term dynamics of the HC ecosystem are controlled by shifts between alternating anchovy and sardine regimes that restructure the entire ecosystem from phytoplankton to the top predators. These regime shifts are caused by lasting periods of <span class="hlt">warm</span> or <span class="hlt">cold</span> temperature anomalies related to the approach or retreat of <span class="hlt">warm</span> subtropical oceanic waters to the coast of Peru and Chile. Phases with mainly negative temperature anomalies parallel anchovy regimes (1950-1970; 1985 to the present) and the rather <span class="hlt">warm</span> period from 1970 to 1985 was characterized by sardine dominance. The transition periods (turning points) from one regime to the other were 1968-1970 and 1984-1986. Like an El Nino, the <span class="hlt">warm</span> periods drastically change trophic relationships in the entire HC ecosystem, exposing the Peruvian anchovy to a multitude of adverse conditions. Positive temperature anomalies off Peru drive the anchovy population close to the coast as the coastal upwelling cells usually offer the coolest environment, thereby substantially decreasing the extent of the areas of anchovy distribution and spawning. This enhances the effects of negative density-dependent processes such as egg and larval cannibalism and dramatically increases its catchability. Increased spatial overlap between anchovies and the warmer water preferring sardines intensifies anchovy egg mortality further as sardines feed heavily on anchovy eggs. Food sources for juvenile and adult anchovies which prey on a mixed diet of phyto- and zooplankton are drastically reduced because of decreased plankton production due to restricted upwelling in <span class="hlt">warm</span> years, as demonstrated by lower zooplankton and phytoplankton volumes and the diminution of the fraction of large copepods, their</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996PhDT.........7X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996PhDT.........7X"><span>Predictability of a Coupled Model of <span class="hlt">ENSO</span> Using Singular Vector Analysis: Optimal Growth and Forecast Skill.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xue, Yan</p> <p></p> <p>The optimal growth and its relationship with the forecast skill of the Zebiak and Cane model are studied using a simple statistical model best fit to the original nonlinear model and local linear tangent models about idealized climatic states (the mean background and <span class="hlt">ENSO</span> cycles in a long model run), and the actual forecast states, including two sets of runs using two different initialization procedures. The seasonally varying Markov model best fit to a suite of 3-year forecasts in a reduced EOF space (18 EOFs) fits the original nonlinear model reasonably well and has comparable or better forecast skill. The initial error growth in a linear evolution operator A is governed by the eigenvalues of A^{T}A, and the square roots of eigenvalues and eigenvectors of A^{T}A are named singular values and singular vectors. One dominant growing singular vector is found, and the optimal 6 month growth rate is largest for a (boreal) spring start and smallest for a fall start. Most of the variation in the optimal growth rate of the two forecasts is seasonal, attributable to the seasonal variations in the mean background, except that in the <span class="hlt">cold</span> events it is substantially suppressed. It is found that the mean background (zero anomaly) is the most unstable state, and the "forecast IC states" are more unstable than the "coupled model states". One dominant growing singular vector is found, characterized by north-south and east -west dipoles, convergent winds on the equator in the eastern Pacific and a deepened thermocline in the whole equatorial belt. This singular vector is insensitive to initial time and optimization time, but its final pattern is a strong function of initial states. The <span class="hlt">ENSO</span> system is inherently unpredictable for the dominant singular vector can amplify 5-fold to 24-fold in 6 months and evolve into the large scales characteristic of <span class="hlt">ENSO</span>. However, the inherent <span class="hlt">ENSO</span> predictability is only a secondary factor, while the mismatches between the model and data is a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.A13B0258P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.A13B0258P"><span>Re-reading the IPCC Report: Aerosols, Droughts and <span class="hlt">ENSO</span> Events</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Potts, K. A.</p> <p>2008-12-01</p> <p>The Technical Summary of Working Group One in the IPCC Fourth Assessment Report states that "changes in aerosols may have affected precipitation and other aspects of the hydrologic cycle more strongly than other anthropogenic forcing agents" and that "Simulations also suggest that absorbing aerosols, particularly black carbon, can reduce the solar radiation reaching the surface and can <span class="hlt">warm</span> the atmosphere at regional scales, affecting the vertical temperature profile and the large-scale atmospheric circulation". Taking these two statements at face value I first identify eight seasonal, anthropogenic, regional scale, aerosol plumes which now occur each year and then report the correlation of the aerosol optical depth (AOD) of some of these plumes with climate anomalies in the higher latitudes and with <span class="hlt">ENSO</span> events. The eight identified aerosol plumes vary significantly in extent and AOD inter annually. They have also increased in geographic extent and AOD over recent decades as the population in the tropics, the origin of the majority of these plumes, has increased dramatically requiring increased levels of agriculture and commercial activity. I show that: the AOD of the South East Asian Plume, occurring from late July to November, correlates with four characteristics of drought in south eastern Australia; the aerosol index of the Middle East Plume correlates negatively with rainfall in Darfur; and the volume of tephra ejected by volcanoes in south east Asia correlates: negatively with rainfall and water inflows into the Murray River in south eastern Australia; and positively with <span class="hlt">ENSO</span> events over the period 1890/91 to 2006. I conclude that aerosol plumes over south eastern Asia are the cause of drought in south eastern Australia and <span class="hlt">ENSO</span> events and confirm the statements made in the IPCC Report with respect to these aerosol plumes. I propose a new component of surface aerosol radiative forcing, Regional Dimming, which interferes with the seasonal movement of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1094946-greenhouse-gases-changing-enso-precursors-western-north-pacific','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1094946-greenhouse-gases-changing-enso-precursors-western-north-pacific"><span>Are Greenhouse Gases Changing <span class="hlt">ENSO</span> Precursors in the Western North Pacific?</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, S-Y; Heureux, Michelle L.; Yoon, Jin-Ho</p> <p></p> <p>Using multiple observational and modeling datasets, we document a strengthening relationship between boreal winter sea surface temperature anomalies (SSTA) in the western North Pacific (WNP) and the development of the El Nino-Southern Oscillation (<span class="hlt">ENSO</span>) one year later. The increased WNP-<span class="hlt">ENSO</span> association emerged in the mid 20th century and has grown through the present, reaching correlation coefficients as high as ~0.70 in recent decades. Fully coupled climate experiments with the Community Earth System Model (CESM) replicate the WNP-<span class="hlt">ENSO</span> association and indicate that greenhouse gases (GHG) are largely responsible for the observed increase. We speculate that shifts in the location and amplitudesmore » of positive SST trends in the subtropical-tropical western Pacific impacts the low-level circulation so that WNP variability is increasingly influencing the development of <span class="hlt">ENSO</span> one year later. A strengthened GHG-driven relationship between the WNP and <span class="hlt">ENSO</span> provides an example of how anthropogenic climate change can potentially improve the skill of intraseasonal-to-interannual climate prediction.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001JCli...14..445T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001JCli...14..445T"><span>A Linear Stochastic Dynamical Model of <span class="hlt">ENSO</span>. Part II: Analysis.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, C. J.; Battisti, D. S.</p> <p>2001-02-01</p> <p>In this study the behavior of a linear, intermediate model of <span class="hlt">ENSO</span> is examined under stochastic forcing. The model was developed in a companion paper (Part I) and is derived from the Zebiak-Cane <span class="hlt">ENSO</span> model. Four variants of the model are used whose stabilities range from slightly damped to moderately damped. Each model is run as a simulation while being perturbed by noise that is uncorrelated (white) in space and time. The statistics of the model output show the moderately damped models to be more realistic than the slightly damped models. The moderately damped models have power spectra that are quantitatively quite similar to observations, and a seasonal pattern of variance that is qualitatively similar to observations. All models produce <span class="hlt">ENSOs</span> that are phase locked to the annual cycle, and all display the `spring barrier' characteristic in their autocorrelation patterns, though in the models this `barrier' occurs during the summer and is less intense than in the observations (inclusion of nonlinear effects is shown to partially remedy this deficiency). The more realistic models also show a decadal variability in the lagged autocorrelation pattern that is qualitatively similar to observations.Analysis of the models shows that the greatest part of the variability comes from perturbations that project onto the first singular vector, which then grow rapidly into the <span class="hlt">ENSO</span> mode. Essentially, the model output represents many instances of the <span class="hlt">ENSO</span> mode, with random phase and amplitude, stimulated by the noise through the optimal transient growth of the singular vectors.The limit of predictability for each model is calculated and it is shown that the more realistic (moderately damped) models have worse potential predictability (9-15 months) than the deterministic chaotic models that have been studied widely in the literature. The predictability limits are strongly correlated with the stability of the models' <span class="hlt">ENSO</span> mode-the more highly damped models having much shorter</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.3806W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.3806W"><span>Accelerated increase in the Arctic tropospheric <span class="hlt">warming</span> events surpassing stratospheric <span class="hlt">warming</span> events during winter</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, S.-Y. Simon; Lin, Yen-Heng; Lee, Ming-Ying; Yoon, Jin-Ho; Meyer, Jonathan D. D.; Rasch, Philip J.</p> <p>2017-04-01</p> <p>In January 2016, a robust reversal of the Arctic Oscillation took place associated with a rapid tropospheric <span class="hlt">warming</span> in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric <span class="hlt">warming</span> in March. The succession of these two distinct Arctic <span class="hlt">warming</span> events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic <span class="hlt">warming</span> were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as documented in previous studies. The analysis indicates a recent and seemingly accelerated increase in the tropospheric <span class="hlt">warming</span> type versus a flat trend in stratospheric <span class="hlt">warming</span> type. The shorter duration and more rapid transition of tropospheric <span class="hlt">warming</span> events may connect to the documented increase in midlatitude weather extremes, more so than the route of stratospheric <span class="hlt">warming</span> type. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric <span class="hlt">warming</span> events and associated remarkable strengthening of the <span class="hlt">cold</span> Siberian high manifest in 2016.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23059135','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23059135"><span>First-aid with <span class="hlt">warm</span> water delays burn progression and increases skin survival.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tobalem, M; Harder, Y; Tschanz, E; Speidel, V; Pittet-Cuénod, B; Wettstein, R</p> <p>2013-02-01</p> <p>First aid treatment for thermal injuries with <span class="hlt">cold</span> water removes heat and decreases inflammation. However, perfusion in the ischemic zone surrounding the coagulated core can be compromised by <span class="hlt">cold</span>-induced vasoconstriction and favor burn progression. The aim of this study is to evaluate the effect of local <span class="hlt">warming</span> on burn progression in the rat comb burn model. 24 male Wistar rats were randomly assigned to either no treatment (control) or application of <span class="hlt">cold</span> (17 °C) or <span class="hlt">warm</span> (37 °C) water applied for 20 min. Evolution of burn depth, interspace necrosis, and microcirculatory perfusion were assessed with histology, planimetry, respectively with Laser Doppler flowmetry after 1 h, as well as 1, 4, and 7 days. Consistent conversion from a superficial to a deep dermal burn within 24 h was obtained in control animals. <span class="hlt">Warm</span> and <span class="hlt">cold</span> water significantly delayed burn depth progression, however after 4 days the burn depth was similar in all groups. Interspace necrosis was significantly reduced by <span class="hlt">warm</span> water treatment (62±4% vs. 69±5% (<span class="hlt">cold</span> water) and 82±3% (control); p<0.05). This was attributed to the significantly improved perfusion after <span class="hlt">warming</span>, which was present 1 h after burn induction and was maintained thereafter (103±4% of baseline vs. 91±3% for <span class="hlt">cold</span> water and 80±2% for control, p<0.05). In order to limit damage after burn injury, burn progression has to be prevented. Besides delaying burn progression, the application of <span class="hlt">warm</span> water provided an additional benefit by improving the microcirculatory perfusion, which translated into increased tissue survival. Copyright © 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70044270','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70044270"><span>Deep Arctic Ocean <span class="hlt">warming</span> during the last glacial cycle</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cronin, T. M.; Dwyer, G.S.; Farmer, J.; Bauch, H.A.; Spielhagen, R.F.; Jakobsson, M.; Nilsson, J.; Briggs, W.M.; Stepanova, A.</p> <p>2012-01-01</p> <p>In the Arctic Ocean, the <span class="hlt">cold</span> and relatively fresh water beneath the sea ice is separated from the underlying warmer and saltier Atlantic Layer by a halocline. Ongoing sea ice loss and <span class="hlt">warming</span> in the Arctic Ocean have demonstrated the instability of the halocline, with implications for further sea ice loss. The stability of the halocline through past climate variations is unclear. Here we estimate intermediate water temperatures over the past 50,000 years from the Mg/Ca and Sr/Ca values of ostracods from 31 Arctic sediment cores. From about 50 to 11 kyr ago, the central Arctic Basin from 1,000 to 2,500 m was occupied by a water mass we call Glacial Arctic Intermediate Water. This water mass was 1–2 °C warmer than modern Arctic Intermediate Water, with temperatures peaking during or just before millennial-scale Heinrich <span class="hlt">cold</span> events and the Younger Dryas <span class="hlt">cold</span> interval. We use numerical modelling to show that the intermediate depth <span class="hlt">warming</span> could result from the expected decrease in the flux of fresh water to the Arctic Ocean during glacial conditions, which would cause the halocline to deepen and push the <span class="hlt">warm</span> Atlantic Layer into intermediate depths. Although not modelled, the reduced formation of <span class="hlt">cold</span>, deep waters due to the exposure of the Arctic continental shelf could also contribute to the intermediate depth <span class="hlt">warming</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4682959','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4682959"><span><span class="hlt">Warming</span> Ocean Conditions Relate to Increased Trophic Requirements of Threatened and Endangered Salmon</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Daly, Elizabeth A.; Brodeur, Richard D.</p> <p>2015-01-01</p> <p>The trophic habits, size and condition of yearling Chinook salmon (Oncorhynchus tshawytscha) caught early in their marine residence were examined during 19 survey years (1981–1985; 1998–2011). Juvenile salmon consumed distinct highly piscivorous diets in <span class="hlt">cold</span> and <span class="hlt">warm</span> ocean regimes with major differences between ocean regimes driven by changes in consumption of juvenile rockfishes, followed by several other fish prey, adult euphausiids and decapod larvae. Notable, Chinook salmon consumed 30% more food in the <span class="hlt">warm</span> versus <span class="hlt">cold</span> ocean regime in both May and June. Additionally, there were about 30% fewer empty stomachs in the <span class="hlt">warm</span> ocean regime in May, and 10% fewer in <span class="hlt">warm</span> June periods. The total prey energy density consumed during the warmer ocean regime was also significantly higher than in <span class="hlt">cold</span>. Chinook salmon had lower condition factor and were smaller in fork length during the <span class="hlt">warm</span> ocean regime, and were longer and heavier for their size during the <span class="hlt">cold</span> ocean regime. The significant increase in foraging during the <span class="hlt">warm</span> ocean regime occurred concurrently with lower available prey biomass. Adult return rates of juvenile Chinook salmon that entered the ocean during a <span class="hlt">warm</span> ocean regime were lower. Notably, our long term data set contradicts the long held assertion that juvenile salmon eat less in a <span class="hlt">warm</span> ocean regime when low growth and survival is observed, and when available prey are reduced. Comparing diet changes between decades under variable ocean conditions may assist us in understanding the effects of projected <span class="hlt">warming</span> ocean regimes on juvenile Chinook salmon and their survival in the ocean environment. Bioenergetically, the salmon appear to require more food resources during <span class="hlt">warm</span> ocean regimes. PMID:26675673</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26675673','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26675673"><span><span class="hlt">Warming</span> Ocean Conditions Relate to Increased Trophic Requirements of Threatened and Endangered Salmon.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Daly, Elizabeth A; Brodeur, Richard D</p> <p>2015-01-01</p> <p>The trophic habits, size and condition of yearling Chinook salmon (Oncorhynchus tshawytscha) caught early in their marine residence were examined during 19 survey years (1981-1985; 1998-2011). Juvenile salmon consumed distinct highly piscivorous diets in <span class="hlt">cold</span> and <span class="hlt">warm</span> ocean regimes with major differences between ocean regimes driven by changes in consumption of juvenile rockfishes, followed by several other fish prey, adult euphausiids and decapod larvae. Notable, Chinook salmon consumed 30% more food in the <span class="hlt">warm</span> versus <span class="hlt">cold</span> ocean regime in both May and June. Additionally, there were about 30% fewer empty stomachs in the <span class="hlt">warm</span> ocean regime in May, and 10% fewer in <span class="hlt">warm</span> June periods. The total prey energy density consumed during the warmer ocean regime was also significantly higher than in <span class="hlt">cold</span>. Chinook salmon had lower condition factor and were smaller in fork length during the <span class="hlt">warm</span> ocean regime, and were longer and heavier for their size during the <span class="hlt">cold</span> ocean regime. The significant increase in foraging during the <span class="hlt">warm</span> ocean regime occurred concurrently with lower available prey biomass. Adult return rates of juvenile Chinook salmon that entered the ocean during a <span class="hlt">warm</span> ocean regime were lower. Notably, our long term data set contradicts the long held assertion that juvenile salmon eat less in a <span class="hlt">warm</span> ocean regime when low growth and survival is observed, and when available prey are reduced. Comparing diet changes between decades under variable ocean conditions may assist us in understanding the effects of projected <span class="hlt">warming</span> ocean regimes on juvenile Chinook salmon and their survival in the ocean environment. Bioenergetically, the salmon appear to require more food resources during <span class="hlt">warm</span> ocean regimes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22695427','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22695427"><span>Steady-state and time-dependent thermodynamic modeling of the effect of intravenous infusion of <span class="hlt">warm</span> and <span class="hlt">cold</span> fluids.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barthel, Erik R; Pierce, James R</p> <p>2012-06-01</p> <p>Hypothermia results in vital sign lability, coagulopathy, wound infections, and other sequelae. Normothermia can be restored by several modalities, including passive blanket heating, <span class="hlt">warm</span> forced-air devices, and active fluid <span class="hlt">warming</span> (AFW). In AFW, intravenously administered fluids are heated to 40 to 45 °C to minimize net thermal losses and to raise body temperature. Clinical studies have demonstrated the efficacy of AFW as part of a strategy encompassing several methods, but the isolated contribution of AFW to <span class="hlt">warming</span> has not been theoretically examined in detail. A calorimetric model is derived to determine the functional dependence of <span class="hlt">warming</span> on patient weight, hypothermia severity, infusion temperature, and volume infused. A second heat transfer model is derived to describe the time-dependent temperature changes of the periphery and core after <span class="hlt">warmed</span>-fluid infusion. There is an inverse linear relationship between the patient's initial temperature and the amount of <span class="hlt">warming</span> achieved with a given volume. In contrast, as the temperature of the infusion approaches the desired final temperature, the volume required for a fixed temperature change increases nonlinearly. For weight-based boluses, the temperature change scales appropriately with patient mass. Infusion of 2 L of room-temperature crystalloid results in a decrease in body temperature of approximately one-third degree Celsius in the average normothermic adult. For the heat transfer model, previously reported rates of temperature drop and recovery after the intravenous infusion of <span class="hlt">cold</span> fluids are qualitatively reproduced with a blood mixing time of approximately 15 minutes. Our calculations reveal that AFW has a larger measurable beneficial effect for patients with more severe hypothermia, but true rewarming of the patient with AFW alone would require prohibitively large fluid volumes (more than 10 L of 40 °C fluid) or dangerously hot fluid (20 mL/kg of 80 °C fluid for a 1 °C increase). The major</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110013371','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110013371"><span>The Response of Tropical Tropospheric Ozone to <span class="hlt">ENSO</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Oman, L. D.; Ziemke, J. R.; Douglass, A. R.; Waugh, D. W.; Lang, C.; Rodriguez, J. M.; Nielsen, J. E.</p> <p>2011-01-01</p> <p>We have successfully reproduced the Ozone <span class="hlt">ENSO</span> Index (OEI) in the Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) forced by observed sea surface temperatures over a 25-year period. The vertical ozone response to <span class="hlt">ENSO</span> is consistent with changes in the Walker circulation. We derive the sensitivity of simulated ozone to <span class="hlt">ENSO</span> variations using linear regression analysis. The western Pacific and Indian Ocean region shows similar positive ozone sensitivities from the surface to the upper troposphere, in response to positive anomalies in the Nino 3.4 Index. The eastern and central Pacific region shows negative sensitivities with the largest sensitivity in the upper troposphere. This vertical response compares well with that derived from SHADOZ ozonesondes in each region. The OEI reveals a response of tropospheric ozone to circulation change that is nearly independent of changes in emissions and thus it is potentially useful in chemistry-climate model evaluation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H43I1338K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H43I1338K"><span>Integration of <span class="hlt">ENSO</span> Signal Power Through Hydrological Processes in the Little River Watershed</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keener, V. W.; Jones, J. W.; Bosch, D. D.; Cho, J.</p> <p>2011-12-01</p> <p>The relationship of the El-Nino/Southern Oscillation (<span class="hlt">ENSO</span>) to hydrology is typically discussed in terms of the ability to separate significantly different hydrologic variable responses versus the anomaly that has taken place. Most of the work relating <span class="hlt">ENSO</span> trends to proxy variables had been done on precipitation records until the mid 1990s, at which point increasing numbers of studies started to focus on <span class="hlt">ENSO</span> relationships with streamflow as well as other environmental variables. The signals in streamflow are typically complex, representing the integration of both climatic, landscape, and anthropological responses that are able to strengthen the inherent <span class="hlt">ENSO</span> signal in chaotic regional precipitation data. There is a need to identify climate non-stationarities related to <span class="hlt">ENSO</span> and their links to watershed-scale outcomes. For risk-management in particular, inter-annual modes of climate variability and their seasonal expression are of interest. In this study, we analyze 36 years of historical monthly streamflow data from the Little River Watershed (LWR), a coastal plain ecosystem in Georgia, in conjunction with wavelet spectral analysis and modeling via the Soil & Water Assessment Tool (SWAT). Using both spectral and physical models allows us to identify the mechanism by which the <span class="hlt">ENSO</span> signal power in surface and simulated groundwater flow is strengthened as compared to precipitation. The clear increase in the power of the inter-annual climate signal is demonstrated by shared patterns in water budget and exceedance curves, as well as in high <span class="hlt">ENSO</span> related energy in the 95% significant wavelet spectra for each variable and the NINO 3.4 index. In the LRW, the power of the <span class="hlt">ENSO</span> teleconnection is increased in both the observed and simulated stream flow through the mechanisms of groundwater flow and interflow, through confinement by a geological layer, the Hawthorn Formation. This non-intuitive relationship between <span class="hlt">ENSO</span> signal strength and streamflow could prove to be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19141198','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19141198"><span>[The innovation of <span class="hlt">warm</span> disease theory in the Ming Dynasty before Wen yi lun On Pestilence].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Zhi-bin</p> <p>2008-10-01</p> <p>Some doctors of the Ming dynasty raised subversive doubts against the traditional viewpoints of "exogenous <span class="hlt">cold</span> disease is <span class="hlt">warm</span>-heat" before the emergence of Wen yi lun (On Pestilence), holding that <span class="hlt">warm</span>-heat disease "is contracted in different seasons instead of being transformed from <span class="hlt">cold</span> to <span class="hlt">warm</span> and/or heat". The conception of the separation of <span class="hlt">warm</span>-heat disease and exogenous <span class="hlt">cold</span> disease had changed from obscure to clear. As the idea became clear, the recognition on the new affection of <span class="hlt">warm</span>, heat, summer-heat, pestilent pathogen was formed, and the idea that the pathogens of summer-heat and <span class="hlt">warm</span> entered the human body through the mouth and nostrils was put forward. The six-channel syndrome differentiation of <span class="hlt">warm</span> disease and the five sweat-resolving methods in pestilence raised by the doctors of this period are the aspects of the differential diagnosis of syndrome and treatment in <span class="hlt">warm</span> diseases, and deserve to be paid attention to.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AAS...23124709K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AAS...23124709K"><span><span class="hlt">Warm</span> and <span class="hlt">cold</span> molecular gas conditions modeled in 87 galaxies observed by the Herschel SPIRE FTS</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kamenetzky, Julia; Rangwala, Naseem; Glenn, Jason</p> <p>2018-01-01</p> <p>Molecular gas is the raw material for star formation, and like the interstellar medium (ISM) in general, it can exist in regions of higher and lower excitation. Rotational transitions of the CO molecule are bright and sensitive to <span class="hlt">cold</span> molecular gas. While the majority of the molecular gas exists in the very <span class="hlt">cold</span> component traced by CO J=1-0, the higher-J lines trace the highly excited gas that may be more indicative of star formation processes. The atmosphere is opaque to these lines, but the launch of the Herschel Space Observatory made them accessible for study of Galactic and extragalactic sources. We have conducted two-component, non-local thermodynamic equilibrium (non-LTE) modeling of the CO lines from J=1‑0 through J=13‑12 in 87 galaxies observed by the Herschel SPIRE Fourier Transform Spectrometer (FTS). We used the nested sampling algorithm Multinest to compare the measured CO spectral line energy distributions (SLEDs) to the ones produced by a custom version of the non-LTE code RADEX. This allowed us to fully examine the degeneracies in parameter space for kinetic temperature, molecular gas density, CO column density, and area filling factor.Here we discuss the major findings of our study, as well as the important implications of two-component molecular gas modeling. The average pressure of the <span class="hlt">warm</span> gas is slightly correlated with galaxy LFIR, but that of the <span class="hlt">cold</span> gas is not. A high-J (such as J=11-10) to J=1-0 line ratio is diagnostic of <span class="hlt">warm</span> component pressure. We find a very large spread in our derived values of "alpha-CO," with no discernable trend with LFIR, and average molecular gas depletion times that decrease with LFIR. If only a few molecular lines are available in a galaxy's SLED, the limited ability to model only one component will change the results. A one-component fit often underestimates the flux of carbon monoxide (CO) J=1‑0 and the mass. If low-J lines are not included, mass is underestimated by an order of magnitude. Even when</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP53B1127C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP53B1127C"><span>Precipitation and ice core isotopes from the Asian Summer Monsoon region reflect coherent <span class="hlt">ENSO</span> variability</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cai, Z.; Tian, L.; Bowen, G. J.</p> <p>2017-12-01</p> <p>Oxygen isotope signals (δ18O) from paleo-archives are important proxies for past Asian Summer Monsoon (ASM) climate reconstruction. However, causes of interannual variation in the δ18O values of modern precipitation across the ASM region remain in argument. We report interannual δ18O variation in southern Tibetan Plateau precipitation based on long-term observations at Lhasa. These data, together with precipitation δ18O records from five Global Network of Isotopes in Precipitation (GNIP) stations and two ice core δ18O records, were used to define a regional metric of ASM precipitation δ18O (ASMOI). Back-trajectory analyses for rainy season precipitation events indicate that moisture sources vary little between years with relatively high and low δ18O values, a result that is consistent for the south (Lhasa), southeast (Bangkok), and east ASM regions (Hong Kong). In contrast, δ18O values at these three locations are significantly correlated with convection in the estimated source regions and along transport paths. These results suggest that upstream convection, rather than moisture source change, causes interannual variation in ASM precipitation δ18O values. Contrasting values of the ASMOI in El Niño and La Niña years reveal a positive isotope-El Niño Southern Oscillation (<span class="hlt">ENSO</span>) response (e.g., high values corresponding to <span class="hlt">warm</span> phases), which we interpret as a response to changes in regional convection. We show that the isotope-<span class="hlt">ENSO</span> response is amplified at high elevation sites and during La Niña years. These findings should improve interpretations of paleo-δ18O data as a proxy for past ASM variation and provide new opportunities to use data from this region to study paleo-<span class="hlt">ENSO</span> activity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2656166','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2656166"><span>The potential for behavioral thermoregulation to buffer “<span class="hlt">cold</span>-blooded” animals against climate <span class="hlt">warming</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kearney, Michael; Shine, Richard; Porter, Warren P.</p> <p>2009-01-01</p> <p>Increasing concern about the impacts of global <span class="hlt">warming</span> on biodiversity has stimulated extensive discussion, but methods to translate broad-scale shifts in climate into direct impacts on living animals remain simplistic. A key missing element from models of climatic change impacts on animals is the buffering influence of behavioral thermoregulation. Here, we show how behavioral and mass/energy balance models can be combined with spatial data on climate, topography, and vegetation to predict impacts of increased air temperature on thermoregulating ectotherms such as reptiles and insects (a large portion of global biodiversity). We show that for most “<span class="hlt">cold</span>-blooded” terrestrial animals, the primary thermal challenge is not to attain high body temperatures (although this is important in temperate environments) but to stay cool (particularly in tropical and desert areas, where ectotherm biodiversity is greatest). The impact of climate <span class="hlt">warming</span> on thermoregulating ectotherms will depend critically on how changes in vegetation cover alter the availability of shade as well as the animals' capacities to alter their seasonal timing of activity and reproduction. Warmer environments also may increase maintenance energy costs while simultaneously constraining activity time, putting pressure on mass and energy budgets. Energy- and mass-balance models provide a general method to integrate the complexity of these direct interactions between organisms and climate into spatial predictions of the impact of climate change on biodiversity. This methodology allows quantitative organism- and habitat-specific assessments of climate change impacts. PMID:19234117</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24587563','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24587563"><span>Tradeoffs between global <span class="hlt">warming</span> and day length on the start of the carbon uptake period in seasonally <span class="hlt">cold</span> ecosystems.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wohlfahrt, Georg; Cremonese, Edoardo; Hammerle, Albin; Hörtnagl, Lukas; Galvagno, Marta; Gianelle, Damiano; Marcolla, Barbara; di Cella, Umberto Morra</p> <p>2013-12-16</p> <p>It is well established that <span class="hlt">warming</span> leads to longer growing seasons in seasonally <span class="hlt">cold</span> ecosystems. Whether this goes along with an increase in the net ecosystem carbon dioxide (CO 2 ) uptake is much more controversial. We studied the effects of <span class="hlt">warming</span> on the start of the carbon uptake period (CUP) of three mountain grasslands situated along an elevational gradient in the Alps. To this end we used a simple empirical model of the net ecosystem CO 2 exchange, calibrated and forced with multi-year empirical data from each site. We show that reductions in the quantity and duration of daylight associated with earlier snowmelts were responsible for diminishing returns, in terms of carbon gain, from longer growing seasons caused by reductions in daytime photosynthetic uptake and increases in nighttime losses of CO 2 . This effect was less pronounced at high, compared to low, elevations, where the start of the CUP occurred closer to the summer solstice when changes in day length and incident radiation are minimal.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663230-what-sets-radial-locations-warm-debris-disks','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663230-what-sets-radial-locations-warm-debris-disks"><span>What Sets the Radial Locations of <span class="hlt">Warm</span> Debris Disks?</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ballering, Nicholas P.; Rieke, George H.; Su, Kate Y. L.</p> <p></p> <p>The architectures of debris disks encode the history of planet formation in these systems. Studies of debris disks via their spectral energy distributions (SEDs) have found infrared excesses arising from <span class="hlt">cold</span> dust, <span class="hlt">warm</span> dust, or a combination of the two. The <span class="hlt">cold</span> outer belts of many systems have been imaged, facilitating their study in great detail. Far less is known about the <span class="hlt">warm</span> components, including the origin of the dust. The regularity of the disk temperatures indicates an underlying structure that may be linked to the water snow line. If the dust is generated from collisions in an exo-asteroid belt,more » the dust will likely trace the location of the water snow line in the primordial protoplanetary disk where planetesimal growth was enhanced. If instead the <span class="hlt">warm</span> dust arises from the inward transport from a reservoir of icy material farther out in the system, the dust location is expected to be set by the current snow line. We analyze the SEDs of a large sample of debris disks with <span class="hlt">warm</span> components. We find that <span class="hlt">warm</span> components in single-component systems (those without detectable <span class="hlt">cold</span> components) follow the primordial snow line rather than the current snow line, so they likely arise from exo-asteroid belts. While the locations of many <span class="hlt">warm</span> components in two-component systems are also consistent with the primordial snow line, there is more diversity among these systems, suggesting additional effects play a role.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110005602','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110005602"><span>Can the GEOS CCM Simulate the Temperature Response to <span class="hlt">Warm</span> Pool El Nino Events in the Antarctic Stratosphere?</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hurwitz, M. M.; Song, I.-S.; Oman, L. D.; Newman, P. A.; Molod, A. M.; Frith, S. M.; Nielsen, J. E.</p> <p>2010-01-01</p> <p>"<span class="hlt">Warm</span> pool" (WP) El Nino events are characterized by positive sea surface temperature (SST) anomalies in the central equatorial Pacific. During austral spring. WP El Nino events are associated with an enhancement of convective activity in the South Pacific Convergence Zone, provoking a tropospheric planetary wave response and thus increasing planetary wave driving of the Southern Hemisphere stratosphere. These conditions lead to higher polar stratospheric temperatures and to a weaker polar jet during austral summer, as compared with neutral <span class="hlt">ENSO</span> years. Furthermore, this response is sensitive to the phase of the quasi-biennial oscillation (QBO): a stronger <span class="hlt">warming</span> is seen in WP El Nino events coincident with the easterly phase of the quasi-biennial oscillation (QBO) as compared with WP El Nino events coincident with a westerly or neutral QBO. The Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) is used to further explore the atmospheric response to <span class="hlt">ENSO</span>. Time-slice simulations are forced by composited SSTs from observed WP El Nino and neutral <span class="hlt">ENSO</span> events. The modeled eddy heat flux, temperature and wind responses to WP El Nino events are compared with observations. A new gravity wave drag scheme has been implemented in the GEOS CCM, enabling the model to produce a realistic, internally generated QBO. By repeating the above time-slice simulations with this new model version, the sensitivity of the WP El Nino response to the phase of the quasi-biennial oscillation QBO is estimated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110005628','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110005628"><span>Can the GEOS CCM Simulate the Temperature Response to <span class="hlt">Warm</span> Pool El Nino Events in the Antarctic Stratosphere?</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hurwitz, M. M.; Song, I.-S.; Oman, L. D.; Newman, P. A.; Molod, A. M.; Frith, S. M.; Nielsen, J. E.</p> <p>2011-01-01</p> <p>"<span class="hlt">Warm</span> pool" (WP) El Nino events are characterized by positive sea surface temperature (SST) anomalies in the central equatorial Pacific. During austral spring, WP El Nino events are associated with an enhancement of convective activity in the South Pacific Convergence Zone, provoking a tropospheric planetary wave response and thus increasing planetary wave driving of the Southern Hemisphere stratosphere. These conditions lead to higher polar stratospheric temperatures and to a weaker polar jet during austral summer, as compared with neutral <span class="hlt">ENSO</span> years. Furthermore, this response is sensitive to the phase of the quasi-biennial oscillation (QBO): a stronger <span class="hlt">warming</span> is seen in WP El Nino events coincident with the easterly phase of the quasi-biennial oscillation (QBO) as compared with WP El Nino events coincident with a westerly or neutral QBO. The Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) is used to further explore the atmospheric response to <span class="hlt">ENSO</span>. Time-slice simulations are forced by composited SSTs from observed NP El Nino and neutral <span class="hlt">ENSO</span> events. The modeled eddy heat flux, temperature and wind responses to WP El Nino events are compared with observations. A new gravity wave drag scheme has been implemented in the GEOS CCM, enabling the model to produce e realistic, internally generated QBO. By repeating the above time-slice simulations with this new model version, the sensitivity of the WP El Nino response to the phase of the quasi-biennial oscillation QBO is estimated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp.2381G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp.2381G"><span>Decadal modulation of the relationship between intraseasonal tropical variability and <span class="hlt">ENSO</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gushchina, Daria; Dewitte, Boris</p> <p>2018-05-01</p> <p>The El Niño Southern Oscillation (<span class="hlt">ENSO</span>) amplitude is modulated at decadal timescales, which, over the last decades, has been related to the low-frequency changes in the frequency of occurrence of the two types of El Niño events, that is the Eastern Pacific (EP) and Central Pacific (CP) El Niños. Meanwhile <span class="hlt">ENSO</span> is tightly linked to the intraseasonal tropical variability (ITV) that is generally enhanced prior to El Niño development and can act as a trigger of the event. Here we revisit the ITV/<span class="hlt">ENSO</span> relationship taking into account changes in <span class="hlt">ENSO</span> properties over the last six decades. The focus is on two main components of ITV, the Madden-Julian Oscillation (MJO) and convectively coupled equatorial Rossby waves (ER). We show that the ITV/<span class="hlt">ENSO</span> relationship exhibits a decadal modulation that is not related in a straight-forward manner to the change in occurrence of El Niño types and Pacific decadal modes. While enhanced MJO activity associated to EP El Niño development mostly took place over the period 1985-2000, the ER activity is enhanced prior to El Niño development over the whole period with a tendency to relate more to CP El Niño than to EP El Niño. In particular the relationship between ER activity and <span class="hlt">ENSO</span> was particularly strong for the period 2000-2015, which results in a significant positive long-term trend of the predictive value of ER activity. The statistics of the MJO and ER activity is consistent with the hypothesis that they can be considered a state-dependent noise for <span class="hlt">ENSO</span> linked to distinct lower frequency climate modes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMS...183...63C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMS...183...63C"><span>Physical and biogeochemical variability in Todos Santos Bay, northwestern Baja California, derived from a numerical NPZD model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cruz-Rico, Jorge; Rivas, David</p> <p>2018-07-01</p> <p>A physical-biogeochemical Nitrate-Phytoplankton-Zooplankton-Detritus (NPZD) numerical model is used to study the variability of coastal phytoplankton biomass in northwestern Baja California and the Todos Santos Bay (TSB), a region of high socioeconomic importance located in the southern California Current System. The model reproduces adequately the most important oceanographic features of the study area, like the coastal chlorophyll-a (Chl-a) maxima and thermal gradients in the regions of enhanced coastal upwelling. The variability of Chl-a in the TSB is influenced by the activity of El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) and decadal modes of the Pacific, e.g., the Pacific Decadal Oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO). From de multi-year model simulation (2004-2011), this large-scale influence is remarkable in two contrasting anomalous years. The year 2006 was anomalously <span class="hlt">warm</span> and with low Chl-a levels, associated with <span class="hlt">warm</span> phases of <span class="hlt">ENSO</span> and PDO and a weakening of the NPGO. These climatic anomalies caused a strong stratification and weak upwelling around the TSB, which induced a poor nutrient input into the Bay and a deep and weak subsurface Chl-a maximum (SCM) during summer. The year 2011, on the other hand, was a <span class="hlt">cold</span> year with enhanced upwelling during the spring, associated with <span class="hlt">cold</span> phases of <span class="hlt">ENSO</span> and PDO and an intensification of the NPGO. These conditions also caused a weak stratification and an intense nutrient transport into the TSB and hence a shallower and stronger SCM.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.1429C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.1429C"><span>Indian Ocean and Indian summer monsoon: relationships without <span class="hlt">ENSO</span> in ocean-atmosphere coupled simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crétat, Julien; Terray, Pascal; Masson, Sébastien; Sooraj, K. P.; Roxy, Mathew Koll</p> <p>2017-08-01</p> <p>The relationship between the Indian Ocean and the Indian summer monsoon (ISM) and their respective influence over the Indo-Western North Pacific (WNP) region are examined in the absence of El Niño Southern Oscillation (<span class="hlt">ENSO</span>) in two partially decoupled global experiments. <span class="hlt">ENSO</span> is removed by nudging the tropical Pacific simulated sea surface temperature (SST) toward SST climatology from either observations or a fully coupled control run. The control reasonably captures the observed relationships between <span class="hlt">ENSO</span>, ISM and the Indian Ocean Dipole (IOD). Despite weaker amplitude, IODs do exist in the absence of <span class="hlt">ENSO</span> and are triggered by a boreal spring ocean-atmosphere coupled mode over the South-East Indian Ocean similar to that found in the presence of <span class="hlt">ENSO</span>. These pure IODs significantly affect the tropical Indian Ocean throughout boreal summer, inducing a significant modulation of both the local Walker and Hadley cells. This meridional circulation is masked in the presence of <span class="hlt">ENSO</span>. However, these pure IODs do not significantly influence the Indian subcontinent rainfall despite overestimated SST variability in the eastern equatorial Indian Ocean compared to observations. On the other hand, they promote a late summer cross-equatorial quadrupole rainfall pattern linking the tropical Indian Ocean with the WNP, inducing important zonal shifts of the Walker circulation despite the absence of <span class="hlt">ENSO</span>. Surprisingly, the interannual ISM rainfall variability is barely modified and the Indian Ocean does not force the monsoon circulation when <span class="hlt">ENSO</span> is removed. On the contrary, the monsoon circulation significantly forces the Arabian Sea and Bay of Bengal SSTs, while its connection with the western tropical Indian Ocean is clearly driven by <span class="hlt">ENSO</span> in our numerical framework. Convection and diabatic heating associated with above-normal ISM induce a strong response over the WNP, even in the absence of <span class="hlt">ENSO</span>, favoring moisture convergence over India.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SGeo...39....1N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SGeo...39....1N"><span>Global Terrestrial Water Storage Changes and Connections to <span class="hlt">ENSO</span> Events</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ni, Shengnan; Chen, Jianli; Wilson, Clark R.; Li, Jin; Hu, Xiaogong; Fu, Rong</p> <p>2018-01-01</p> <p>Improved data quality of extended record of the Gravity Recovery and Climate Experiment (GRACE) satellite gravity solutions enables better understanding of terrestrial water storage (TWS) variations. Connections of TWS and climate change are critical to investigate regional and global water cycles. In this study, we provide a comprehensive analysis of global connections between interannual TWS changes and El Niño Southern Oscillation (<span class="hlt">ENSO</span>) events, using multiple sources of data, including GRACE measurements, land surface model (LSM) predictions and precipitation observations. We use cross-correlation and coherence spectrum analysis to examine global connections between interannual TWS changes and the Niño 3.4 index, and select four river basins (Amazon, Orinoco, Colorado, and Lena) for more detailed analysis. The results indicate that interannual TWS changes are strongly correlated with <span class="hlt">ENSO</span> over much of the globe, with maximum cross-correlation coefficients up to 0.70, well above the 95% significance level ( 0.29) derived by the Monte Carlo experiments. The strongest correlations are found in tropical and subtropical regions, especially in the Amazon, Orinoco, and La Plata basins. While both GRACE and LSM TWS estimates show reasonably good correlations with <span class="hlt">ENSO</span> and generally consistent spatial correlation patterns, notably higher correlations are found between GRACE TWS and <span class="hlt">ENSO</span>. The existence of significant correlations in middle-high latitudes shows the large-scale impact of <span class="hlt">ENSO</span> on the global water cycle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC31D1206W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC31D1206W"><span>Mapping <span class="hlt">ENSO</span>: Precipitation for the U.S. Affiliated Pacific Islands</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wright, E.; Price, J.; Kruk, M. C.; Luchetti, N.; Marra, J. J.</p> <p>2015-12-01</p> <p>The United States Affiliated Pacific Islands (USAPI) are highly susceptible to extreme precipitation events such as drought and flooding, which directly affect their freshwater availability. Precipitation distribution differs by sub-region, and is predominantly influenced by phases of the El Niño Southern Oscillation (<span class="hlt">ENSO</span>). Forecasters currently rely on <span class="hlt">ENSO</span> climatologies from sparse in situ station data to inform their precipitation outlooks. This project provided an updated <span class="hlt">ENSO</span>-based climatology of long-term precipitation patterns for each USAPI Exclusive Economic Zone (EEZ) using the NOAA PERSIANN Climate Data Record (CDR). This data provided a 30-year record (1984-2015) of daily precipitation at 0.25° resolution, which was used to calculate monthly, seasonal, and yearly precipitation. Results indicated that while the PERSIANN precipitation accurately described the monthly, seasonal, and annual trends, it under-predicted the precipitation on the islands. Additionally, maps showing percent departure from normal (30 year average) were made for each three month season based on the Oceanic Niño Index (ONI) for five <span class="hlt">ENSO</span> phases (moderate-strong El Niño and La Niña, weak El Niño and La Niña, and neutral). Local weather service offices plan on using these results and maps to better understand how the different <span class="hlt">ENSO</span> phases influence precipitation patterns.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26394551','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26394551"><span>Distinctive ocean interior changes during the recent <span class="hlt">warming</span> slowdown.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cheng, Lijing; Zheng, Fei; Zhu, Jiang</p> <p>2015-09-23</p> <p>The earth system experiences continuous heat input, but a "climate hiatus" of upper ocean waters has been observed in this century. This leads to a question: where is the extra heat going? Using four in situ observation datasets, we explore the ocean subsurface temperature changes from 2004 to 2013. The observations all show that the ocean has continued to gain heat in this century, which is indicative of anthropogenic global <span class="hlt">warming</span>. However, a distinctive pattern of change in the interior ocean is observed. The sea surface (1-100 m) temperature has decreased in this century, accompanied by <span class="hlt">warming</span> in the 101-300 m layer. This pattern is due to the changes in the frequency of El Niño and La Niña events (<span class="hlt">ENSO</span> characteristics), according to both observations and CMIP5 model simulations. In addition, we show for the first time that the ocean subsurface within 301-700 m experienced a net cooling, indicative of another instance of variability in the natural ocean. Furthermore, the ocean layer of 701-1500 m has experienced significant <span class="hlt">warming</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMOS34A..08C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMOS34A..08C"><span>Biological consequences of <span class="hlt">ENSO</span>: What have we learned recently?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chavez, F.; Messié, M.</p> <p>2013-12-01</p> <p>A comprehensive theory regarding the biological response to El Niño was developed from observations during the 1982-83 event. The theory has withstood the test of time but additional information from remote sensing and growing in situ databases has allowed for a more comprehensive evaluation of the biological consequences of the full <span class="hlt">ENSO</span> cycle on global scales and in relation to other climatic variability and change. Here we review the major developments over the past few decades that include a greater appreciation for the cool or La Niña phase and the relation of <span class="hlt">ENSO</span> to other climatic variability including the Pacific Decadal Oscillation and the North Pacific Gyre Oscillation. The use of <span class="hlt">ENSO</span> as an analog for biological consequences of a warmer world is also discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A42E..05K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A42E..05K"><span>Inter-model Diversity of <span class="hlt">ENSO</span> simulation and its relation to basic states</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kug, J. S.; Ham, Y. G.</p> <p>2016-12-01</p> <p>In this study, a new methodology is developed to improve the climate simulation of state-of-the-art coupledglobal climate models (GCMs), by a postprocessing based on the intermodel diversity. Based on the closeconnection between the interannual variability and climatological states, the distinctive relation between theintermodel diversity of the interannual variability and that of the basic state is found. Based on this relation,the simulated interannual variabilities can be improved, by correcting their climatological bias. To test thismethodology, the dominant intermodel difference in precipitation responses during El Niño-SouthernOscillation (<span class="hlt">ENSO</span>) is investigated, and its relationship with climatological state. It is found that the dominantintermodel diversity of the <span class="hlt">ENSO</span> precipitation in phase 5 of the Coupled Model Intercomparison Project(CMIP5) is associated with the zonal shift of the positive precipitation center during El Niño. This dominantintermodel difference is significantly correlated with the basic states. The models with wetter (dryer) climatologythan the climatology of the multimodel ensemble (MME) over the central Pacific tend to shift positive<span class="hlt">ENSO</span> precipitation anomalies to the east (west). Based on the model's systematic errors in atmospheric<span class="hlt">ENSO</span> response and bias, the models with better climatological state tend to simulate more realistic atmospheric<span class="hlt">ENSO</span> responses.Therefore, the statistical method to correct the <span class="hlt">ENSO</span> response mostly improves the <span class="hlt">ENSO</span> response. Afterthe statistical correction, simulating quality of theMMEENSO precipitation is distinctively improved. Theseresults provide a possibility that the present methodology can be also applied to improving climate projectionand seasonal climate prediction.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS43A2018K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS43A2018K"><span>Role of the <span class="hlt">cold</span> water on the formation of the East Korean <span class="hlt">Warm</span> Current in the East/Japan Sea : A numerical experiment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Y.; Kim, Y. H.; Cho, Y. K.</p> <p>2016-12-01</p> <p>The East/Japan Sea (EJS) is a marginal sea of the western Pacific with an average depth of 2,000 m. The water exchange between the EJS and the Pacific occurs through the Korea Strait and Tsugaru Strait corresponding to the inlet and outlet respectively. The Tsushima Current flowing into the ESJ through the Korea Strait is divided into two main branches, the Nearshore Branch flowing along the Japanese coast, and the East Korean <span class="hlt">Warm</span> Current (EKWC) heading northward along the Korean coast. Many previous studies reported the effects of <span class="hlt">cold</span> water on the formation of the EKWC using 2-dimensional model that was limited in the Korea Strait. However, 3-dimensional structure of the <span class="hlt">cold</span> water in relation to the EKWC have not been examined. In this study, we investigated the effects of <span class="hlt">cold</span> water on the formation of the EKWC using 3-dimension numerical model. Model results indicate that the thickness and relative vorticity of the upper layer decrease due to the presence of the lower <span class="hlt">cold</span> water along the Korean coast. Correspondingly, the negative relative vorticity also intensifies the EKWC along the Korean coast.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000085545','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000085545"><span>Dynamics of Monsoon-Induced Biennial Variability in <span class="hlt">ENSO</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kim, Kyu-Myong; Lau, K.-M.; Einaudi, Franco (Technical Monitor)</p> <p>2000-01-01</p> <p>The mechanism of the quasi-biennial tendency in El Nino Southern Oscillation (<span class="hlt">ENSO</span>)-monsoon coupled system is investigated using an intermediate coupled model. The monsoon wind forcing is prescribed as a function of Sea Surface Temperature (SST) anomalies based on the relationship between zonal wind anomalies over the western Pacific to sea level change in the equatorial eastern Pacific. The key mechanism of quasi-biennial tendency in El Nino evolution is found to be in the strong coupling of <span class="hlt">ENSO</span> to monsoon wind forcing over the western Pacific. Strong boreal summer monsoon wind forcing, which lags the maximum SST anomaly in the equatorial eastern Pacific approximately 6 months, tends to generate Kelvin waves of the opposite sign to anomalies in the eastern Pacific and initiates the turnabout in the eastern Pacific. Boreal winter monsoon forcing, which has zero lag with maximum SST in the equatorial eastern Pacific, tends to damp the <span class="hlt">ENSO</span> oscillations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70177069','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70177069"><span>Large reptiles and <span class="hlt">cold</span> temperatures: Do extreme <span class="hlt">cold</span> spells set distributional limits for tropical reptiles in Florida?</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mazzotti, Frank J.; Cherkiss, Michael S.; Parry, Mark; Beauchamp, Jeff; Rochford, Mike; Smith, Brian J.; Hart, Kristen M.; Brandt, Laura A.</p> <p>2016-01-01</p> <p>Distributional limits of many tropical species in Florida are ultimately determined by tolerance to low temperature. An unprecedented <span class="hlt">cold</span> spell during 2–11 January 2010, in South Florida provided an opportunity to compare the responses of tropical American crocodiles with <span class="hlt">warm</span>-temperate American alligators and to compare the responses of nonnative Burmese pythons with native <span class="hlt">warm</span>-temperate snakes exposed to prolonged <span class="hlt">cold</span> temperatures. After the January 2010 <span class="hlt">cold</span> spell, a record number of American crocodiles (n = 151) and Burmese pythons (n = 36) were found dead. In contrast, no American alligators and no native snakes were found dead. American alligators and American crocodiles behaved differently during the <span class="hlt">cold</span> spell. American alligators stopped basking and retreated to warmer water. American crocodiles apparently continued to bask during extreme <span class="hlt">cold</span> temperatures resulting in lethal body temperatures. The mortality of Burmese pythons compared to the absence of mortality for native snakes suggests that the current population of Burmese pythons in the Everglades is less tolerant of <span class="hlt">cold</span> temperatures than native snakes. Burmese pythons introduced from other parts of their native range may be more tolerant of <span class="hlt">cold</span> temperatures. We documented the direct effects of <span class="hlt">cold</span> temperatures on crocodiles and pythons; however, evidence of long-term effects of <span class="hlt">cold</span> temperature on their populations within their established ranges remains lacking. Mortality of crocodiles and pythons outside of their current established range may be more important in setting distributional limits.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28735578','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28735578"><span>Age-related differences of semen quality, seminal plasma, and spermatozoa antioxidative and oxidative stress variables in bulls during <span class="hlt">cold</span> and <span class="hlt">warm</span> periods of the year.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vince, S; Žura Žaja, I; Samardžija, M; Majić Balić, I; Vilić, M; Đuričić, D; Valpotić, H; Marković, F; Milinković-Tur, S</p> <p>2018-03-01</p> <p>The aims of this study were to determine the presence and quantities of antioxidative status and oxidative stress (OS) variables in the seminal plasma and spermatozoa of bulls of varying age during <span class="hlt">cold</span> and <span class="hlt">warm</span> periods of the year, and to establish the correlation of these variables with semen quality parameters. The study was conducted on two groups each comprising nine Simmental bulls: one group contained younger animals (aged 2 to 4 years) and the second older animals (aged 5 to 10 years). Semen samples were collected using an artificial vagina for biochemical analysis. Seminal plasma and spermatozoa activities of total superoxide dismutase (TSOD), manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), catalase (CAT), selenium-dependent glutathione peroxidase, reduced glutathione and concentrations of total protein (TP), thiobarbituric acid reactive substances (TBARS) and protein carbonyl content (PCC) were determined. Several antioxidants in seminal plasma were also determined: total glutathione peroxidase (TGSH-Px), selenium-independent glutathione peroxidase (Non-SeGSH-Px), uric acid, albumins (ALB) and alkaline phosphatase (ALP). Significantly higher spermatozoa motility was observed during the <span class="hlt">cold</span> v. <span class="hlt">warm</span> period, and a significantly higher volume and total number of spermatozoa per ejaculate was observed in older than in younger bulls. Significantly higher values of ALP, TP and ALB were found in seminal plasma of older bulls than in younger bulls during the <span class="hlt">warm</span> period. The seminal plasma of younger bulls showed significantly higher activities of TSOD, MnSOD, CuZnSOD, TGSH-Px and Non-SeGSH-Px. Younger bulls had significantly higher PCC concentration and activity of CAT in seminal plasma than older bulls during the <span class="hlt">cold</span> period. Significantly higher concentrations of PCC and TBARS, and activities of TSOD, MnSOD and CuZnSOD were established in spermatozoa of the younger than in older bulls during the <span class="hlt">warm</span> period. It could be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6192R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6192R"><span><span class="hlt">Warm</span>-adapted microbial communities enhance their carbon-use efficiency in <span class="hlt">warmed</span> soils</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rousk, Johannes; Frey, Serita</p> <p>2017-04-01</p> <p> negligible changes in Topt, Tmin and Q10 for respiration. When these physiological changes were scaled with soil temperature data to estimate real-time variation in situ during three years, the <span class="hlt">warm</span>-adaptation resulted in elevated microbial CUEs during summer temperatures in <span class="hlt">warm</span>-adapted communities and reduced microbial CUEs during winter temperatures. By comparing simulated microbial CUEs in <span class="hlt">cold</span>-adapted communities exposed to <span class="hlt">warmed</span> conditions to microbial CUEs in the <span class="hlt">warm</span>-adapted communities exposed to those temperatures, we could demonstrate that the shifts towards <span class="hlt">warm</span>-adapted microbial communities had selected for elevated microbial CUEs for the full range of in situ soil temperatures during three years. Our results suggest that microbial adaptation to <span class="hlt">warming</span> will enhance microbial CUEs, shifting their balance of C use from respiration to biomass production. If our estimates scale to ecosystem level, this would imply that <span class="hlt">warm</span>-adapted microbial communities will ultimately have the potential to store more C in soil than their <span class="hlt">cold</span>-adapted counter parts could when exposed to warmer temperatures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24762424','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24762424"><span>Voluntary water intake during and following moderate exercise in the <span class="hlt">cold</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mears, Stephen A; Shirreffs, Susan M</p> <p>2014-02-01</p> <p>Exercising in <span class="hlt">cold</span> environments results in water losses, yet examination of resultant voluntary water intake has focused on <span class="hlt">warm</span> conditions. The purpose of the study was to assess voluntary water intake during and following exercise in a <span class="hlt">cold</span> compared with a <span class="hlt">warm</span> environment. Ten healthy males (22 ± 2 years, 67.8 ± 7.0 kg, 1.77 ± 0.06 m, VO₂peak 60.5 ± 8.9 ml·kg⁻¹·min⁻¹) completed two trials (7-8 days). In each trial subjects sat for 30 min before cycling at 70% VO₂peak (162 ± 27W) for 60 min in 25.0 ± 0.1 °C, 50.8 ± 1.5% relative humidity (RH; <span class="hlt">warm</span>) or 0.4 ± 1.0 °C, 68.8 ± 7.5% RH (<span class="hlt">cold</span>). Subjects then sat for 120 min at 22.2 ± 1.2 °C, 50.5 ± 8.0% RH. Ad libitum drinking was allowed during the exercise and recovery periods. Urine volume, body mass, serum osmolality, and sensations of thirst were measured at baseline, postexercise and after 60 and 120 min of the recovery period. Sweat loss was greater in the <span class="hlt">warm</span> trial (0.96 ± 0.18 l v 0.48 ± 0.15 l; p < .0001) but body mass losses over the trials were similar (1.15 ± 0.34% (<span class="hlt">cold</span>) v 1.03 ± 0.26% (<span class="hlt">warm</span>)). More water was consumed throughout the duration of the <span class="hlt">warm</span> trial (0.81 ± 0.42 l v 0.50 ± 0.49 l; p = .001). Cumulative urine output was greater in the <span class="hlt">cold</span> trial (0.81 ± 0.46 v 0.54 ± 0.31 l; p = .036). Postexercise serum osmolality was higher compared with baseline in the <span class="hlt">cold</span> (292 ± 2 v 287 ± 3 mOsm.kg⁻¹, p < .0001) and <span class="hlt">warm</span> trials (288 ± 5 v 285 ± 4 mOsm·kg⁻¹; p = .048). Thirst sensations were similar between trials (p > .05). Ad libitum water intake adjusted so that similar body mass losses occurred in both trials. In the <span class="hlt">cold</span> there appeared to a blunted thirst response.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28167038','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28167038"><span>Deacclimation may be crucial for winter survival of cereals under <span class="hlt">warming</span> climate.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rapacz, Marcin; Jurczyk, Barbara; Sasal, Monika</p> <p>2017-03-01</p> <p>Climate <span class="hlt">warming</span> can change the winter weather patterns. Warmer temperatures during winter result in a lower risk of extreme freezing events. On the other hand the predicted <span class="hlt">warm</span> gaps during winter will decrease their freezing tolerance. Both contradict effects will affect winter survival but their resultant effect is unclear. In this paper, we demonstrate that climate <span class="hlt">warming</span> may result in a decrease in winter survival of plants. A field study of winterhardiness of common wheat and triticale was established at 11 locations and repeated during three subsequent winters. The freezing tolerance of the plants was studied after controlled <span class="hlt">cold</span> acclimation and de-acclimation using both plant survival analysis and chlorophyll fluorescence measurements. <span class="hlt">Cold</span> deacclimation resistance was shown to be independent from <span class="hlt">cold</span> acclimation ability. Further, <span class="hlt">cold</span> deacclimation resistance appeared to be crucial for overwintering when deacclimation conditions occurred in the field. The shortening of uninterrupted <span class="hlt">cold</span> acclimation may increase <span class="hlt">cold</span> deacclimation efficiency, which could threaten plant survival during warmer winters. Measurements of chlorophyll fluorescence transient showed some differences triggered by freezing before and after deacclimation. We conclude that <span class="hlt">cold</span> deacclimation resistance should be considered in the breeding of winter cereals and in future models of winter damage risk. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFMPP51A0302E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFMPP51A0302E"><span>Tracking <span class="hlt">ENSO</span> with tropical trees: Progress in stable isotope dendroclimatology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Evans, M. N.; Poussart, P. F.; Saleska, S. R.; Schrag, D. P.</p> <p>2002-12-01</p> <p>The terrestrial tropics remain an important gap in the growing proxy network used to characterize past <span class="hlt">ENSO</span> behavior. Here we describe a strategy for development of proxy estimates of paleo-<span class="hlt">ENSO</span>, via proxy rainfall estimates derived from stable isotope (δ18O) measurements made on tropical trees. The approach applies a new model of oxygen isotopic composition of alpha-cellulose (Roden et al., 2000), a rapid method for cellulose extraction from raw wood (Brendel et al., 2000), and continuous flow isotope ratio mass spectrometry (Brand, 1996) to develop proxy chronological, rainfall and growth rate estimates from tropical trees, even those lacking annual rings. The promise and pitfalls of the approach are illustrated in pilot datasets from the US, Costa Rica, Brazil, and Peru, which show isotopic cycles of 4-6 per mil, and interannual anomalies of up to 8 per mil. Together with the mature <span class="hlt">ENSO</span> proxies (corals, extratropical tree-rings, varved sediments, and ice cores), replicated and well-dated stable isotope chronologies from tropical trees may eventually improve our understanding of <span class="hlt">ENSO</span> history over the past several hundred years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25363633','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25363633"><span><span class="hlt">Warming</span> shifts 'worming': effects of experimental <span class="hlt">warming</span> on invasive earthworms in northern North America.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A; Rice, Karen; Rich, Roy; Reich, Peter B</p> <p>2014-11-03</p> <p>Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and <span class="hlt">cold</span> winters in that region that to date supposedly have slowed earthworm invasion, future <span class="hlt">warming</span> is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, <span class="hlt">warming</span>-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field <span class="hlt">warming</span> experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental <span class="hlt">warming</span> effects on earthworm densities and biomass could indeed be partly explained by <span class="hlt">warming</span>-induced reductions in SWC. The direction of <span class="hlt">warming</span> effects depended on the current average SWC: <span class="hlt">warming</span> had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that <span class="hlt">warming</span> limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless <span class="hlt">warming</span> is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1439712-accelerated-increase-arctic-tropospheric-warming-events-surpassing-stratosphericwarming-events-during-winter','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1439712-accelerated-increase-arctic-tropospheric-warming-events-surpassing-stratosphericwarming-events-during-winter"><span>Accelerated Increase in the Arctic Tropospheric <span class="hlt">Warming</span> Events Surpassing Stratospheric<span class="hlt">Warming</span> Events During Winter</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Simon; Lin, Yen-Heng; Lee, Ming-Ying</p> <p>2017-04-22</p> <p>In January 2016, a robust reversal of the Arctic Oscillation (AO) took place associated with a rapid tropospheric <span class="hlt">warming</span> in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric <span class="hlt">warming</span> in March-April. The succession of these two distinct Arctic <span class="hlt">warming</span> events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic <span class="hlt">warming</span> were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as well as those documented in previous studies. Our results indicate a recent and accelerated increasemore » in the tropospheric <span class="hlt">warming</span> type versus a flat trend in stratospheric <span class="hlt">warming</span> type. Given that tropospheric <span class="hlt">warming</span> events occur twice as fast than the stratospheric <span class="hlt">warming</span> type, the noted increase in the former implies further intensification in midlatitude winter weather extremes similar to those experienced in early 2016. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric <span class="hlt">warming</span> events and associated impact on the anomalously <span class="hlt">cold</span> Siberia.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18....8S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18....8S"><span>Dynamics and spatial structure of <span class="hlt">ENSO</span> from re-analyses versus CMIP5 models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Serykh, Ilya; Sonechkin, Dmitry</p> <p>2016-04-01</p> <p>Basing on a mathematical idea about the so-called strange nonchaotic attractor (SNA) in the quasi-periodically forced dynamical systems, the currently available re-analyses data are considered. It is found that the El Niño - Southern Oscillation (<span class="hlt">ENSO</span>) is driven not only by the seasonal heating, but also by three more external periodicities (incommensurate to the annual period) associated with the ~18.6-year lunar-solar nutation of the Earth rotation axis, ~11-year sunspot activity cycle and the ~14-month Chandler wobble in the Earth's pole motion. Because of the incommensurability of their periods all four forces affect the system in inappropriate time moments. As a result, the <span class="hlt">ENSO</span> time series look to be very complex (strange in mathematical terms) but nonchaotic. The power spectra of <span class="hlt">ENSO</span> indices reveal numerous peaks located at the periods that are multiples of the above periodicities as well as at their sub- and super-harmonic. In spite of the above <span class="hlt">ENSO</span> complexity, a mutual order seems to be inherent to the <span class="hlt">ENSO</span> time series and their spectra. This order reveals itself in the existence of a scaling of the power spectrum peaks and respective rhythms in the <span class="hlt">ENSO</span> dynamics that look like the power spectrum and dynamics of the SNA. It means there are no limits to forecast <span class="hlt">ENSO</span>, in principle. In practice, it opens a possibility to forecast <span class="hlt">ENSO</span> for several years ahead. Global spatial structures of anomalies during El Niño and power spectra of <span class="hlt">ENSO</span> indices from re-analyses are compared with the respective output quantities in the CMIP5 climate models (the Historical experiment). It is found that the models reproduce global spatial structures of the near surface temperature and sea level pressure anomalies during El Niño very similar to these fields in the re-analyses considered. But the power spectra of the <span class="hlt">ENSO</span> indices from the CMIP5 models show no peaks at the same periods as the re-analyses power spectra. We suppose that it is possible to improve modeled</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUSMPP51A..04C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUSMPP51A..04C"><span>Variability of Extreme Precipitation Events in Tijuana, Mexico During <span class="hlt">ENSO</span> Years</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cavazos, T.; Rivas, D.</p> <p>2007-05-01</p> <p>We present the variability of daily precipitation extremes (top 10 percecnt) in Tijuana, Mexico during 1950-2000. Interannual rainfall variability is significantly modulated by El Nino/Southern Oscillation. The interannual precipitation variability exhibits a large change with a relatively wet period and more variability during 1976- 2000. The wettest years and the largest frequency of daily extremes occurred after 1976-1977, with 6 out of 8 wet years characterized by El Nino episodes and 2 by neutral conditions. However, more than half of the daily extremes during 1950-2000 occurred in non-<span class="hlt">ENSO</span> years, evidencing that neutral conditions also contribute significantly to extreme climatic variability in the region. Extreme events that occur in neutral (strong El Nino) conditions are associated with a pineapple express and a neutral PNA (negative TNH) teleconnection pattern that links an anomalous tropical convective forcing west (east) of the date line with a strong subtropical jet over the study area. At regional scale, both types of extremes are characterized by a trough in the subtropical jet over California/Baja California, which is further intensified by thermal interaction with an anomalous <span class="hlt">warm</span> California Current off Baja California, low-level moisture advection from the subtropical <span class="hlt">warm</span> sea-surface region, intense convective activity over the study area and extreme rainfall from southern California to Baja California.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25794828','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25794828"><span>Peritoneal Tumorigenesis and Inflammation are Ameliorated by Humidified-<span class="hlt">Warm</span> Carbon Dioxide Insufflation in the Mouse.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Carpinteri, Sandra; Sampurno, Shienny; Bernardi, Maria-Pia; Germann, Markus; Malaterre, Jordane; Heriot, Alexander; Chambers, Brenton A; Mutsaers, Steven E; Lynch, Andrew C; Ramsay, Robert G</p> <p>2015-12-01</p> <p>Conventional laparoscopic surgery uses CO2 that is dry and <span class="hlt">cold</span>, which can damage peritoneal surfaces. It is speculated that disseminated cancer cells may adhere to such damaged peritoneum and metastasize. We hypothesized that insufflation using humidified-<span class="hlt">warm</span> CO2, which has been shown to reduce mesothelial damage, will also ameliorate peritoneal inflammation and tumor cell implantation compared to conventional dry-<span class="hlt">cold</span> CO2. Laparoscopic insufflation was modeled in mice along with anesthesia and ventilation. Entry and exit ports were introduced to maintain insufflation using dry-<span class="hlt">cold</span> or humidified-<span class="hlt">warm</span> CO2 with a constant flow and pressure for 1 h; then 1000 or 1 million fluorescent-tagged murine colorectal cancer cells (CT26) were delivered into the peritoneal cavity. The peritoneum was collected at intervals up to 10 days after the procedure to measure inflammation, mesothelial damage, and tumor burden using fluorescent detection, immunohistochemistry, and scanning electron microscopy. Rapid temperature control was achieved only in the humidified-<span class="hlt">warm</span> group. Port-site tumors were present in all mice. At 10 days, significantly fewer tumors on the peritoneum were counted in mice insufflated with humidified-<span class="hlt">warm</span> compared to dry-<span class="hlt">cold</span> CO2 (p < 0.03). The inflammatory marker COX-2 was significantly increased in the dry-<span class="hlt">cold</span> compared to the humidified-<span class="hlt">warm</span> cohort (p < 0.01), while VEGFA expression was suppressed only in the humidified-<span class="hlt">warm</span> cohort. Significantly less mesothelial damage and tumor cell implantation was evident from 2 h after the procedure in the humidified-<span class="hlt">warm</span> cohort. Mesothelial cell damage and inflammation are reduced by using humidified-<span class="hlt">warm</span> CO2 for laparoscopic oncologic surgery and may translate to reduce patients' risk of developing peritoneal metastasis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSAH13A..05M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSAH13A..05M"><span>Galápagos coral reef persistence after <span class="hlt">ENSO</span> <span class="hlt">warming</span> across an acidification gradient</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Manzello, D.; Enochs, I.; Bruckner, A.; Renaud, P.; Kolodziej, G.; Budd, D. A.; Carlton, R.; Glynn, P.</p> <p>2016-02-01</p> <p>Anthropogenic CO2 is causing <span class="hlt">warming</span> and ocean acidification. Coral reefs are being severely impacted, yet confusion lingers regarding how reefs will respond to these stressors over this century. Since the 1982-1983 El Niño-Southern Oscillation <span class="hlt">warming</span> event, the persistence of reefs around the Galápagos Islands has differed across an acidification gradient. Reefs disappeared where pH < 8.0 and aragonite saturation state (Ωarag) ≤ 3 and have not recovered, whereas one reef has persisted where pH > 8.0 and Ωarag > 3. Where upwelling is greatest, calcification by massive Porites is higher than predicted by a published relationship with temperature despite high CO2, possibly due to elevated nutrients. However, skeletal P/Ca, a proxy for phosphate exposure, negatively correlates with density (R = - 0.822, p < 0.0001). We propose that elevated nutrients have the potential to exacerbate acidification by depressing coral skeletal densities and further increasing bioerosion already accelerated by low pH.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986IJBm...30..301M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986IJBm...30..301M"><span>Physiological changes in women during exercise in <span class="hlt">cold</span> environments</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murray, S. J.; Shephard, R. J.; Radomski, M. W. M.</p> <p>1986-12-01</p> <p>Both the stress of exercise and the stress of a <span class="hlt">cold</span> environment have been shown to increase the mobilization and utilization of body fat, thereby reducing body fat stores. Much of the research has been done on either rats or male human subjects. The purpose of this research was to show the physiological changes which occur to young, relatively obese, women who exercised during five consecutive days, for 200 min per day, in each of three environmental, chamber conditions: (1) <span class="hlt">warm-warm</span> (WW), +15‡C; (2) <span class="hlt">cold-cold</span> (CC), -20‡C; and (3) <span class="hlt">cold-warm</span> (CW), -20‡C ambient temperature, with +18‡C air pumped to face masks for <span class="hlt">warmed</span> air breathing. Oxygen cost of exercise, respiratory quotients, energy intake and utilization, and body composition changes were measured before, during, and after each environmental condition. While the respiratory quotients and the skinfold measurements decreased in the colder conditions, the underwater weighing determined percentage body fat did not show the same decrement as the skinfold measures, indicating a possible translocation of body fat from the subcutaneous depots to the deep body fat depots. Body mass loss was significant (P<0.05) only in the WW condition. Thermogenesis would have been centred in the skeletal muscle and liver during the CW condition; however, with facial and upper airway cooling in the CC condition; brown adipose tissue (BAT) hypertrophy may be postulated at this more intense level of <span class="hlt">cold</span> stress. Due to a greater stability of depot fat in the female, a longer <span class="hlt">cold</span> exposure would be required to observe the fully developed BAT thermogenesis which would follow after the consequences of fat translocation which we have documented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50.1495P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50.1495P"><span>Main processes of the Atlantic <span class="hlt">cold</span> tongue interannual variability</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Planton, Yann; Voldoire, Aurore; Giordani, Hervé; Caniaux, Guy</p> <p>2018-03-01</p> <p>The interannual variability of the Atlantic <span class="hlt">cold</span> tongue (ACT) is studied by means of a mixed-layer heat budget analysis. A method to classify extreme <span class="hlt">cold</span> and <span class="hlt">warm</span> ACT events is proposed and applied to ten various analysis and reanalysis products. This classification allows 5 <span class="hlt">cold</span> and 5 <span class="hlt">warm</span> ACT events to be selected over the period 1982-2007. <span class="hlt">Cold</span> (<span class="hlt">warm</span>) ACT events are defined by the presence of negative (positive) sea surface temperature (SST) anomalies at the center of the equatorial Atlantic in late boreal spring, preceded by negative (positive) zonal wind stress anomalies in the western equatorial Atlantic. An ocean general circulation model capable of reconstructing the interannual variability of the ACT correctly is used to demonstrate that <span class="hlt">cold</span> ACT events develop rapidly from May to June mainly due to intense cooling by vertical mixing and horizontal advection. The simulated cooling at the center of the basin is the result of the combined effects of non-local and local processes. The non-local process is an upwelling associated with an eastward-propagating Kelvin wave, which makes the mixed-layer more shallow and preconditions the upper layers to be cooled by an intense heat loss at the base of the mixed-layer, which is amplified by a stronger local injection of energy from the atmosphere. The early cooling by vertical mixing in March is also shown to be a good predictor of June cooling. In July, horizontal advection starts to <span class="hlt">warm</span> the mixed-layer abnormally and damps SST anomalies. The advection anomalies, which result from changes in the horizontal temperature gradient, are associated in some cases with the propagation of Rossby waves along the equator. During <span class="hlt">warm</span> ACT events, processes are reversed, generating positive SST anomalies: a downwelling Kelvin wave triggers stratification anomalies and mixed-layer depth anomalies, amplified by a weaker injection of energy from the atmosphere in May-June. In July, <span class="hlt">warm</span> ACT events are abnormally cooled due to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021800','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021800"><span><span class="hlt">ENSO</span> and hydrologic extremes in the western United States</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cayan, D.R.; Redmond, K.T.; Riddle, L.G.</p> <p>1999-01-01</p> <p>Frequency distributions of daily precipitation in winter and daily stream flow from late winter to early summer, at several hundred sites in the western United States, exhibit strong and systematic responses to the two phases of <span class="hlt">ENSO</span>. Most of the stream flows considered are driven by snowmelt. The Southern Oscillation index (SOI) is used as the <span class="hlt">ENSO</span> phase indicator. Both modest (median) and larger (90th percentile) events were considered. In years with negative SOI values (El Nino), days with high daily precipitation and stream flow are more frequent than average over the Southwest and less frequent over the Northwest. During years with positive SOI values (La Nina), a nearly opposite pattern is seen. A more pronounced increase is seen in the number of days exceeding climatological 90th percentile values than in the number exceeding climatological 50th percentile values, for both precipitation and stream flow. Stream flow responses to <span class="hlt">ENSO</span> extremes are accentuated over precipitation responses. Evidence suggests that the mechanism for this amplification involves <span class="hlt">ENSO</span>-phase differences in the persistence and duration of wet episodes, affecting the efficiency of the process by which precipitation is converted to runoff. The SOI leads the precipitation events by several months, and hydrologic lags (mostly through snowmelt) dealy the stream flow response by several more months. The combined 6-12 month predictive aspect of this relationship should be of significant benefit in responding to flood (or drought) risk and in improving overall water management in the western states.Frequency distributions of daily precipitation in winter and daily stream flow from late winter to early summer, at several hundred sites in the western United States, exhibit strong and systematic responses to the two phases of <span class="hlt">ENSO</span>. Most of the stream flows considered are driven by snowmelt. The Southern Oscillation index (SOI) is used as the <span class="hlt">ENSO</span> phase indicator. Both modest (median) and larger</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1612884W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1612884W"><span><span class="hlt">ENSO</span> impacts on flood risk at the global scale</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ward, Philip; Dettinger, Michael; Jongman, Brenden; Kummu, Matti; Winsemius, Hessel</p> <p>2014-05-01</p> <p>We present the impacts of El Niño Southern Oscillation (<span class="hlt">ENSO</span>) on society and the economy, via relationships between <span class="hlt">ENSO</span> and the hydrological cycle. We also discuss ways in which this knowledge can be used in disaster risk management and risk reduction. This contribution provides the most recent results of an ongoing 4-year collaborative research initiative to assess and map the impacts of large scale interannual climate variability on flood hazard and risk at the global scale. We have examined anomalies in flood risk between <span class="hlt">ENSO</span> phases, whereby flood risk is expressed in terms of indicators such as: annual expected damage; annual expected affected population; annual expected affected Gross Domestic Product (GDP). We show that large anomalies in flood risk occur during El Niño or La Niña years in basins covering large parts of the Earth's surface. These anomalies reach statistical significance river basins covering almost two-thirds of the Earth's surface. Particularly strong anomalies exist in southern Africa, parts of western Africa, Australia, parts of Central Eurasia (especially for El Niño), the western USA (especially La Niña anomalies), and parts of South America. We relate these anomalies to possible causal relationships between <span class="hlt">ENSO</span> and flood hazard, using both modelled and observed data on flood occurrence and extremity. The implications for flood risk management are many-fold. In those regions where disaster risk is strongly influenced by <span class="hlt">ENSO</span>, the potential predictably of <span class="hlt">ENSO</span> could be used to develop probabilistic flood risk projections with lead times up to several seasons. Such data could be used by the insurance industry in managing risk portfolios and by multinational companies for assessing the robustness of their supply chains to potential flood-related interruptions. Seasonal forecasts of <span class="hlt">ENSO</span> influence of peak flows could also allow for improved flood early warning and regulation by dam operators, which could also reduce overall risks</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008725','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008725"><span>The Impact of <span class="hlt">Warm</span> Pool El Nino Events on Antarctic Ozone</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hurwitz, Margaret M.; Newman, P. A.; Song, In-Sun; Frith, Stacey M.</p> <p>2011-01-01</p> <p><span class="hlt">Warm</span> pool El Nino (WPEN) events are characterized by positive sea surface temperature (SST) anomalies in the central equatorial Pacific in austral spring and summer. Previous work found an enhancement in planetary wave activity in the South Pacific in austral spring, and a <span class="hlt">warming</span> of 3-5 K in the Antarctic lower stratosphere during austral summer, in WPEN events as compared with <span class="hlt">ENSO</span> neutral. In this presentation, we show that weakening of the Antarctic vortex during WPEN affects the structure and magnitude of high-latitude total ozone. We use total ozone data from TOMS and OMI, as well as station data from Argentina and Antarctica, to identify shifts in the longitudinal location of the springtime ozone minimum from its climatological position. In addition, we examine the sensitivity of the WPEN-related ozone response to the phase of the quasi-biennial oscillation (QBO). We then compare the observed response to WPEN events with Goddard Earth Observing System chemistry-climate model, version 2 (GEOS V2 CCM) simulations. Two, 50-year time-slice simulations are forced by annually repeating SST and sea ice climatologies, one set representing observed WPEN events and the second set representing neutral <span class="hlt">ENSO</span> events, in a present-day climate. By comparing the two simulations, we isolate the impact of WPEN events on lower stratospheric ozone, and furthermore, examine the sensitivity of the WPEN ozone response to the phase of the QBO.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeoRL..40.6136W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeoRL..40.6136W"><span>Trade-offs between global <span class="hlt">warming</span> and day length on the start of the carbon uptake period in seasonally <span class="hlt">cold</span> ecosystems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wohlfahrt, Georg; Cremonese, Edoardo; Hammerle, Albin; Hörtnagl, Lukas; Galvagno, Marta; Gianelle, Damiano; Marcolla, Barbara; Cella, Umberto Morra</p> <p>2013-12-01</p> <p>is well established that <span class="hlt">warming</span> leads to longer growing seasons in seasonally <span class="hlt">cold</span> ecosystems. Whether this goes along with an increase in the net ecosystem carbon dioxide (CO2) uptake is much more controversial. We studied the effects of <span class="hlt">warming</span> on the start of the carbon uptake period (CUP) of three mountain grasslands situated along an elevational gradient in the Alps. To this end, we used a simple empirical model of the net ecosystem CO2 exchange, calibrated, and forced with multiyear empirical data from each site. We show that reductions in the quantity and duration of daylight associated with earlier snowmelts were responsible for diminishing returns, in terms of carbon gain, from longer growing seasons caused by reductions in daytime photosynthetic uptake and increases in nighttime losses of CO2. This effect was less pronounced at high, compared to low, elevations, where the start of the CUP occurred closer to the summer solstice when changes in day length and incident radiation are minimal.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23032283','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23032283"><span>Analysis of the El Niño/La Niña-Southern Oscillation variability and malaria in the Estado Sucre, Venezuela.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Delgado-Petrocelli, Laura; Córdova, Karenia; Camardiel, Alberto; Aguilar, Víctor H; Hernández, Denise; Ramos, Santiago</p> <p>2012-09-01</p> <p>The last decade has seen an unprecedented, worldwide acceleration of environmental and climate changes. These processes impact the dynamics of natural systems, which include components associated with human communities such as vector-borne diseases. The dynamics of environmental and climate variables, altered by global change as reported by the Intergovernmental Panel on Climate Change, affect the distribution of many tropical diseases. Complex systems, e.g. the El Niño/La Niña-Southern Oscillation (<span class="hlt">ENSO</span>), in which environmental variables operate synergistically, can provoke the reemergence and emergence of vector-borne diseases at new sites. This research investigated the influence of <span class="hlt">ENSO</span> events on malaria incidence by determining the relationship between climate variations, expressed as <span class="hlt">warm</span>, <span class="hlt">cold</span> and neutral phases, and their relation to the number of malaria cases in some north-eastern municipalities of Venezuela (Estado Sucre) during the period 1990-2000. Significant differences in malaria incidence were found, particularly in the La Niña <span class="hlt">ENSO</span> phases (<span class="hlt">cold</span>) of moderate intensity. These findings should be taken into account for surveillance and control in the future as they shed light on important indicators that can lead to reduced vulnerability to malaria.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMPP22A..06T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMPP22A..06T"><span>Hydrological Cycle in the Western Equatorial <span class="hlt">Warm</span> Pool over the Past 220 k years</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tachikawa, K.; Cartapanis, O.; Vidal, L.; Beaufort, L.; Bard, E.</p> <p>2008-12-01</p> <p>The Western Pacific <span class="hlt">Warm</span> Pool is a major source of heat and moisture to extra-tropical regions, and its condition could have great impact on global climate response to various forcing factors. We reconstructed the rainfall pattern over Papua New Guinea (PNG) for the past 220 kyr using terrigenous elemental contents (Ti, Fe, K and Si) and calcareous productivity (Ca) recorded in a marine sediment core MD05-2920 (2°51.48S, 144°32.04E) from 100 km off the Sepik River mouth in Northern PNG. The core chronostratigraphy is established by 14C dating and benthic foraminiferal oxygen isotopes. The Sepik and Ramu river system forms one of the highest sediment discharge zones in the world because of high rainfall rates, <span class="hlt">warm</span> and humid climate, steep topography and erodible volcanic rocks in the draining basin. At present, the rainfall over this area is under the influence of both Asia-Australian monsoon and El Niño Southern Oscillation (<span class="hlt">ENSO</span>). The results obtained by an XRF core scanner indicate that for the whole record major sediment components are of terrigenous river-born nature and biogenic CaCO3. Spectral analysis reveals that dominant peaks for Ti are precession and obliquity periods whereas Ca variability is rather dominated by obliquity. The wet periods appear during maximum local insolation, which is in phase with minimum East Asian summer monsoon strength recorded by Chinese speleothems. Modeled past <span class="hlt">ENSO</span> activity cannot explain the reconstructed rainfall and productivity patterns. Taken together, the fresh water cycle over New Guinea is better explained by latitudinal shifts of the Intertropical Convergence Zone rather than <span class="hlt">ENSO</span>-type variability on orbital time scales. The variability of calcareous productivity is likely related to general changes in nutricline depth of the tropical Pacific band.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4217098','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4217098"><span><span class="hlt">Warming</span> shifts ‘worming': effects of experimental <span class="hlt">warming</span> on invasive earthworms in northern North America</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A.; Rice, Karen; Rich, Roy; Reich, Peter B.</p> <p>2014-01-01</p> <p>Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and <span class="hlt">cold</span> winters in that region that to date supposedly have slowed earthworm invasion, future <span class="hlt">warming</span> is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, <span class="hlt">warming</span>-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field <span class="hlt">warming</span> experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental <span class="hlt">warming</span> effects on earthworm densities and biomass could indeed be partly explained by <span class="hlt">warming</span>-induced reductions in SWC. The direction of <span class="hlt">warming</span> effects depended on the current average SWC: <span class="hlt">warming</span> had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that <span class="hlt">warming</span> limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless <span class="hlt">warming</span> is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration. PMID:25363633</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003JCli...16..297V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003JCli...16..297V"><span>Low-Level Jets and Their Effects on the South American Summer Climate as Simulated by the NCEP Eta Model(.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vernekar, Anandu D.; Kirtman, Ben P.; Fennessy, Michael J.</p> <p>2003-01-01</p> <p> influenced by LLJs, which have a nocturnal rainfall maximum. The intraseasonal variability of the LLJs is episodic with an approximate period of 20 days. The interannual variability of the LLJs is dominated by the <span class="hlt">ENSO</span> cycle. The LLJ east of the Andes Mountains is stronger in the <span class="hlt">warm</span> phase of <span class="hlt">ENSO</span> than in the <span class="hlt">cold</span> phase. However, the model has some difficulty simulating the observed relationship between the strength of LLJ and precipitation, but the model succeeds in the case of LLJs just north of the equator. For example, these LLJs are weaker in the <span class="hlt">warm</span> phase of <span class="hlt">ENSO</span> than in the <span class="hlt">cold</span> phase. Hence, during the <span class="hlt">warm</span> (<span class="hlt">cold</span>) phase of <span class="hlt">ENSO</span>, dry (wet) conditions normally occur over the northern part of the Amazon basin, which is the exit region of these LLJs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.A52B..10R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.A52B..10R"><span>The Relation of El Nino Southern Oscillation to Winter Tornado Outbreaks</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robinson Cook, A. D.; Schaefer, J. T.</p> <p>2007-12-01</p> <p>Winter tornado activity (January, February, and March) between 1950 and 2003 was analyzed to determine the possible effect of seasonally averaged sea surface temperatures in the equatorial Pacific Ocean, the <span class="hlt">ENSO</span> phase, on the location and strength of tornado outbreaks in the United States. Tornado activity was gauged through analyses of tornadoes occurring on tornado days (a calendar day featuring 6 or more tornadoes within the contiguous United States) and strong and violent tornado days (a calendar day featuring 5 or more tornadoes rated F-2 and greater within the contiguous United States). The tornado days were then stratified according to <span class="hlt">warm</span> (37 tornado days, 14 violent days), <span class="hlt">cold</span> (51 tornado days, 28 violent days), and neutral (74 tornado days, 44 violent days) winter <span class="hlt">ENSO</span> phase. It is seen that during winter periods of neutral tropical Pacific sea surface temperatures, there is a tendency for United States tornado outbreaks to be stronger and more frequent than they are during winter periods of anomalously <span class="hlt">warm</span> tropical Pacific sea surface temperatures (El Nino). During winter periods with anomalously cool Pacific sea surface temperatures (La Nina), the frequency and strength of United States tornado activity lies between that of the neutral and El Nino phase. <span class="hlt">ENSO</span> related shifts in the preferred location of tornado activity are also observed. Historically, during the neutral phase, tornado outbreaks typically occurred from central Oklahoma and Kansas eastward through the Carolinas. During <span class="hlt">cold</span> phases, tornado outbreaks have typically occurred in a zone stretching from southeastern Texas northeastward into Illinois, Indiana, and Michigan. During anomalously <span class="hlt">warm</span> phases activity was mainly limited to the Gulf Coast States including central Florida. The data are statistically and synoptically analyzed to show that they are not only statistically significant, but also meteorologically reasonable.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26916258','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26916258"><span>Summer precipitation anomalies in Asia and North America induced by Eurasian non-monsoon land heating versus <span class="hlt">ENSO</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhao, Ping; Wang, Bin; Liu, Jiping; Zhou, Xiuji; Chen, Junming; Nan, Sulan; Liu, Ge; Xiao, Dong</p> <p>2016-02-26</p> <p>When floods ravage Asian monsoon regions in summer, megadroughts often attack extratropical North America, which feature an intercontinental contrasting precipitation anomaly between Asia and North America. However, the characteristics of the contrasting Asian-North American (CANA) precipitation anomalies and associated mechanisms have not been investigated specifically. In this article, we firmly establish this summer CANA pattern, providing evidence for a significant effect of the land surface thermal forcing over Eurasian non-monsoon regions on the CANA precipitation anomalies by observations and numerical experiments. We show that the origin of the CANA precipitation anomalies and associated anomalous anticyclones over the subtropical North Pacific and Atlantic has a deeper root in Eurasian non-monsoon land surface heating than in North American land surface heating. The ocean forcing from the <span class="hlt">ENSO</span> is secondary and tends to be confined in the tropics. Our results have strong implications to interpretation of the feedback of global <span class="hlt">warming</span> on hydrological cycle over Asia and North America. Under the projected global <span class="hlt">warming</span> due to the anthropogenic forcing, the prominent surface <span class="hlt">warming</span> over Eurasian non-monsoon regions is a robust feature which, through the mechanism discussed here, would favor a precipitation increase over Asian monsoon regions and a precipitation decrease over extratropical North America.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26575137','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26575137"><span>The Triaging and Treatment of <span class="hlt">Cold</span>-Induced Injuries.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sachs, Christoph; Lehnhardt, Marcus; Daigeler, Adrien; Goertz, Ole</p> <p>2015-10-30</p> <p>In Central Europe, <span class="hlt">cold</span>-induced injuries are much less common than burns. In a burn center in western Germany, the mean ratio of these two types of injury over the past 10 years was 1 to 35. Because <span class="hlt">cold</span>-induced injuries are so rare, physicians often do not know how to deal with them. This article is based on a review of publications (up to December 2014) retrieved by a selective search in PubMed using the terms "freezing," "frostbite injury," "non-freezing <span class="hlt">cold</span> injury," and "frostbite review," as well as on the authors' clinical experience. Freezing and <span class="hlt">cold</span>-induced trauma are part of the treatment spectrum in burn centers. The treatment of <span class="hlt">cold</span>-induced injuries is not standardized and is based largely on case reports and observations of use. distinction is drawn between non-freezing injuries, in which there is a slow temperature drop in tissue without freezing, and freezing injuries in which ice crystals form in tissue. In all cases of <span class="hlt">cold</span>-induced injury, the patient should be slowly <span class="hlt">warmed</span> to 22°-27°C to prevent reperfusion injury. Freezing injuries are treated with <span class="hlt">warming</span> of the body's core temperature and with the bathing of the affected body parts in <span class="hlt">warm</span> water with added antiseptic agents. Any large or open vesicles that are already apparent should be debrided. To inhibit prostaglandin-mediated thrombosis, ibuprofen is given (12 mg/kg body weight b.i.d.). The treatment of <span class="hlt">cold</span>-induced injuries is based on their type, severity, and timing. The recommendations above are grade C recommendations. The current approach to reperfusion has yielded promising initial results and should be further investigated in prospective studies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998EOSTr..79..463O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998EOSTr..79..463O"><span>Hot Talk, <span class="hlt">Cold</span> Science</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oglesby, Robert J.</p> <p></p> <p>One of the hottest topics in climate science is understanding and evaluating the impacts of possible global <span class="hlt">warming</span> caused by anthropogenic emissions of greenhouse gases. In Hot Talk, <span class="hlt">Cold</span> Science, S. Fred Singer does not accept global <span class="hlt">warming</span>. Singer says in his preface, “The purpose of this book is to demonstrate that the evidence [for global <span class="hlt">warming</span>] is neither settled, nor compelling, nor even convincing. On the contrary, scientists continue to discover new mechanisms for climate change and to put forth new theories to try to account for the fact that global temperature is not rising, even though greenhouse theory says it should”.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1611667P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1611667P"><span>Role of tropical Indian and Atlantic Oceans variability on <span class="hlt">ENSO</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prodhomme, Chloé; Terray, Pascal; Masson, Sebastien; Boschat, Ghyslaine</p> <p>2014-05-01</p> <p>There are strong evidences of an interaction between tropical Indian, Atlantic and Pacific Oceans. Nevertheless, these interactions remain deeply controversial. While some authors claim the tropical Indian and Atlantic oceans only play a passive role with respect to <span class="hlt">ENSO</span>, others suggest a driving role for these two basins on <span class="hlt">ENSO</span>. The mecanisms underlying these relations are not fully understood and, in the Indian Ocean, the possible role of both modes of tropical variability (the Indian Ocean Dipole (IOD) and the Indian Ocean Basin mode (IOB)) remain unclear. To better quantify and understand how the variability of the tropical Indian and Atlantic Oceans impact <span class="hlt">ENSO</span> variability, we performed two sensitivity experiments using the SINTEX-F2 coupled model. For each experiment, we suppressed the variability of SST and the air-sea coupling in either the tropical Indian Ocean or tropical Atlantic Ocean by applying a strong nudging of the SST to the observed SST climatology. In both experiments, the <span class="hlt">ENSO</span> periodicity increases. In the Atlantic experiment, our understanding of this increased periodicity is drastically limited by the strongly biased mean state in this region. Conversely, in the Indian Ocean experiment, the increase of <span class="hlt">ENSO</span> periodicity is related to the absence of the IOB following the El Niño peak, which leads to a decrease of westerly winds in the western Pacific during late winter and spring after the peak. These weaker westerlies hinders the transition to a La Niña phase and thus increase the duration and periodicity of the event.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040171391','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040171391"><span><span class="hlt">ENSO</span> Bred Vectors in Coupled Ocean-Atmosphere General Circulation Models</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yang, S. C.; Cai, Ming; Kalnay, E.; Rienecker, M.; Yuan, G.; Toth, ZA.</p> <p>2004-01-01</p> <p>The breeding method has been implemented in the NASA Seasonal-to-Interannual Prediction Project (NSIPP) Coupled General Circulation Model (CGCM) with the goal of improving operational seasonal to interannual climate predictions through ensemble forecasting and data assimilation. The coupled instability as cap'tured by the breeding method is the first attempt to isolate the evolving <span class="hlt">ENSO</span> instability and its corresponding global atmospheric response in a fully coupled ocean-atmosphere GCM. Our results show that the growth rate of the coupled bred vectors (BV) peaks at about 3 months before a background <span class="hlt">ENSO</span> event. The dominant growing BV modes are reminiscent of the background <span class="hlt">ENSO</span> anomalies and show a strong tropical response with wind/SST/thermocline interrelated in a manner similar to the background <span class="hlt">ENSO</span> mode. They exhibit larger amplitudes in the eastern tropical Pacific, reflecting the natural dynamical sensitivity associated with the presence of the shallow thermocline. Moreover, the extratropical perturbations associated with these coupled BV modes reveal the variations related to the atmospheric teleconnection patterns associated with background <span class="hlt">ENSO</span> variability, e.g. over the North Pacific and North America. A similar experiment was carried out with the NCEP/CFS03 CGCM. Comparisons between bred vectors from the NSIPP CGCM and NCEP/CFS03 CGCM demonstrate the robustness of the results. Our results strongly suggest that the breeding method can serve as a natural filter to identify the slowly varying, coupled instabilities in a coupled GCM, which can be used to construct ensemble perturbations for ensemble forecasts and to estimate the coupled background error covariance for coupled data assimilation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4281213','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4281213"><span>You Turn Me <span class="hlt">Cold</span>: Evidence for Temperature Contagion</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Featherstone, Eric; Voon, Valerie; Singer, Tania; Critchley, Hugo D.; Harrison, Neil A.</p> <p>2014-01-01</p> <p>Introduction During social interactions, our own physiological responses influence those of others. Synchronization of physiological (and behavioural) responses can facilitate emotional understanding and group coherence through inter-subjectivity. Here we investigate if observing cues indicating a change in another's body temperature results in a corresponding temperature change in the observer. Methods Thirty-six healthy participants (age; 22.9±3.1 yrs) each observed, then rated, eight purpose-made videos (3 min duration) that depicted actors with either their right or left hand in visibly <span class="hlt">warm</span> (<span class="hlt">warm</span> videos) or <span class="hlt">cold</span> water (<span class="hlt">cold</span> videos). Four control videos with the actors' hand in front of the water were also shown. Temperature of participant observers' right and left hands was concurrently measured using a thermistor within a Wheatstone bridge with a theoretical temperature sensitivity of <0.0001°C. Temperature data were analysed in a repeated measures ANOVA (temperature × actor's hand × observer's hand). Results Participants rated the videos showing hands immersed in <span class="hlt">cold</span> water as being significantly cooler than hands immersed in <span class="hlt">warm</span> water, F(1,34) = 256.67, p<0.001. Participants' own hands also showed a significant temperature-dependent effect: hands were significantly colder when observing <span class="hlt">cold</span> vs. <span class="hlt">warm</span> videos F(1,34) = 13.83, p = 0.001 with post-hoc t-test demonstrating a significant reduction in participants' own left (t(35) = −3.54, p = 0.001) and right (t(35) = −2.33, p = 0.026) hand temperature during observation of <span class="hlt">cold</span> videos but no change to <span class="hlt">warm</span> videos (p>0.1). There was however no evidence of left-right mirroring of these temperature effects p>0.1). Sensitivity to temperature contagion was also predicted by inter-individual differences in self-report empathy. Conclusions We illustrate physiological contagion of temperature in healthy individuals, suggesting that empathetic understanding for primary low</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.472.4099K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.472.4099K"><span>Universal subhalo accretion in <span class="hlt">cold</span> and <span class="hlt">warm</span> dark matter cosmologies</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kubik, Bogna; Libeskind, Noam I.; Knebe, Alexander; Courtois, Hélène; Yepes, Gustavo; Gottlöber, Stefan; Hoffman, Yehuda</p> <p>2017-12-01</p> <p>The influence of the large-scale structure on host haloes may be studied by examining the angular infall pattern of subhaloes. In particular, since <span class="hlt">warm</span> dark matter (WDM) and <span class="hlt">cold</span> dark matter (CDM) cosmologies predict different abundances and internal properties for haloes at the low-mass end of the mass function, it is interesting to examine if there are differences in how these low-mass haloes are accreted. The accretion events are defined as the moment a halo becomes a substructure, namely when it crosses its host's virial radius. We quantify the cosmic web at each point by the shear tensor and examine where, with respect to its eigenvectors, such accretion events occur in ΛCDM and ΛWDM (1 keV sterile neutrino) cosmological models. We find that the CDM and WDM subhaloes are preferentially accreted along the principal axis of the shear tensor corresponding to the direction of weakest collapse. The beaming strength is modulated by the host and subhalo masses and by the redshift at which the accretion event occurs. Although strongest for the most massive hosts and subhaloes at high redshift, the preferential infall is found to be always aligned with the axis of weakest collapse, thus we say that it has universal nature. We compare the strength of beaming in the ΛWDM cosmology with the one found in the ΛCDM scenario. While the main findings remain the same, the accretion in the ΛWDM model for the most massive host haloes appears more beamed than in ΛCDM cosmology across all the redshifts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016QSRv..153..139P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016QSRv..153..139P"><span>Changes in El Niño - Southern Oscillation (<span class="hlt">ENSO</span>) conditions during the Greenland Stadial 1 (GS-1) chronozone revealed by New Zealand tree-rings</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Palmer, Jonathan G.; Turney, Chris S. M.; Cook, Edward R.; Fenwick, Pavla; Thomas, Zoë; Helle, Gerhard; Jones, Richard; Clement, Amy; Hogg, Alan; Southon, John; Bronk Ramsey, Christopher; Staff, Richard; Muscheler, Raimund; Corrège, Thierry; Hua, Quan</p> <p>2016-12-01</p> <p>The <span class="hlt">warming</span> trend at the end of the last glacial was disrupted by rapid cooling clearly identified in Greenland (Greenland Stadial 1 or GS-1) and Europe (Younger Dryas Stadial or YD). This reversal to glacial-like conditions is one of the best known examples of abrupt change but the exact timing and global spatial extent remain uncertain. Whilst the wider Atlantic region has a network of high-resolution proxy records spanning GS-1, the Pacific Ocean suffers from a scarcity of sub-decadally resolved sequences. Here we report the results from an investigation into a tree-ring chronology from northern New Zealand aimed at addressing the paucity of data. The conifer tree species kauri (Agathis australis) is known from contemporary studies to be sensitive to regional climate changes. An analysis of a 'historic' 452-year kauri chronology confirms a tropical-Pacific teleconnection via the El Niño - Southern Oscillation (<span class="hlt">ENSO</span>). We then focus our study on a 1010-year sub-fossil kauri chronology that has been precisely dated by comprehensive radiocarbon dating and contains a striking ring-width downturn between ∼12,500 and 12,380 cal BP within GS-1. Wavelet analysis shows a marked increase in <span class="hlt">ENSO</span>-like periodicities occurring after the downturn event. Comparison to low- and mid-latitude Pacific records suggests a coherency with <span class="hlt">ENSO</span> and Southern Hemisphere atmospheric circulation change during this period. The driver(s) for this climate event remain unclear but may be related to solar changes that subsequently led to establishment and/or increased expression of <span class="hlt">ENSO</span> across the mid-latitudes of the Pacific, seemingly independent of the Atlantic and polar regions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28994168','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28994168"><span>Hair cortisol levels of lactating dairy cows in <span class="hlt">cold</span>- and <span class="hlt">warm</span>-temperate regions in Japan.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Uetake, Katsuji; Morita, Shigeru; Sakagami, Nobutada; Yamamoto, Kazuaki; Hashimura, Shinji; Tanaka, Toshio</p> <p>2018-02-01</p> <p>We compared the hair cortisol levels of lactating dairy cows in a <span class="hlt">cold</span>- and a <span class="hlt">warm</span>-temperate region out of four climatic zones in Japan. We simultaneously investigated the effects of calving number, lactation period and month of hair sampling. Hair of nine Holstein lactating cows chosen from each region (i.e. 18 cows per sampling) was sampled in March, June, September and December. Number of calvings (1, 2, ≥3) and lactation duration (early: <100, middle: 101-200, and late: >201 days) were balanced between regions. Cortisol was extracted from hair by methanol, and its level was determined with a cortisol immunoassay kit. A multi-way analysis of variance revealed that the effects of month of hair sampling (P < 0.001) and its combination with region (P < 0.05) were significant. In a multiple comparison test, significant differences (P < 0.01) in hair cortisol level (pg/mg of hair) were found between June (13.0 ± 1.0) and the other 3 months, and between September (1.6 ± 0.2) and December (4.5 ± 0.3). The rise in cortisol level from March to June was more intense in the <span class="hlt">cold</span>-temperate region. These results demonstrate the necessity of considering seasonal variations in each climatic region when we use hair cortisol level as an indicator of stress. © 2017 Japanese Society of Animal Science.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20455543','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20455543"><span>Influence of prefermentative <span class="hlt">cold</span> maceration on the color and anthocyanic copigmentation of organic Tempranillo wines elaborated in a <span class="hlt">warm</span> climate.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gordillo, Belen; López-Infante, M Isabel; Ramírez-Pérez, Pilar; González-Miret, M Lourdes; Heredia, Francisco J</p> <p>2010-06-09</p> <p>The stabilization of red wine color by the copigmentation phenomenon is a crucial process that does not always proceed favorably under natural conditions during the first stages of vinification. The impact of the prefermentative <span class="hlt">cold</span> maceration technique on the phenolic composition and magnitude of the copigmentation level of organic Tempranillo wines elaborated in a <span class="hlt">warm</span> climate have been studied as an enological alternative to the traditional maceration for obtaining highly colored wines. Tristimulus colorimetry was applied to study the color of wines during vinification, and a high-performance liquid chromatography (HPLC) procedure was used for the analysis of phenolic compounds. Spectrophotometric and colorimetric analyses were also performed to evaluate the copigmentation level of the wines. Significant chemical and color differences were found depending on the maceration technique applied. Prefermentative <span class="hlt">cold</span> macerated wines were richer in those compounds accounting directly for the color of red wine (anthocyanins) and those involved in anthocyanin stabilization through copigmentation reactions (phenols), which was in accordance with the higher copigmentation degree and darker, more saturated and vivid bluish colors. The evaluation of the copigmentation based on colorimetric parameters in the CIELAB color space showed that prefermentative <span class="hlt">cold</span> maceration caused greater effectiveness of copigmentation than traditional maceration since it induces more important and hence more easily perceptible color changes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004CSR....24.2343A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004CSR....24.2343A"><span>Geochemistry of coral from Papua New Guinea as a proxy for <span class="hlt">ENSO</span> ocean-atmosphere interactions in the Pacific <span class="hlt">Warm</span> Pool</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ayliffe, Linda K.; Bird, Michael I.; Gagan, Michael K.; Isdale, Peter J.; Scott-Gagan, Heather; Parker, Bruce; Griffin, David; Nongkas, Michael; McCulloch, Malcolm T.</p> <p>2004-12-01</p> <p>A Porites sp. coral growing offshore from the Sepik and Ramu Rivers in equatorial northern Papua New Guinea has yielded an accurate 20-year history (1977-1996) of sea surface temperature (SST), river discharge, and wind-induced mixing of the upper water column. Depressions in average SSTs of about 0.5-1.0 °C (indicated by coral Sr/Ca) and markedly diminished freshwater runoff to the coastal ocean (indicated by coral δ18O, δ13C and UV fluorescence) are evident during the El Niño - Southern Oscillation (<span class="hlt">ENSO</span>) events of 1982-1983, 1987 and 1991-1993. The perturbations recorded by the coral are in good agreement with changes in instrumental SST and river discharge/precipitation records, which are known to be diagnostic of the response of the Pacific <span class="hlt">Warm</span> Pool ocean-atmosphere system to El Niño. Consideration of coastal ocean dynamics indicates that the establishment of northwest monsoon winds promotes mixing of near-surface waters to greater depths in the first quarter of most years, making the coral record sensitive to changes in the Asian-Australian monsoon cycle. Sudden cooling of SSTs by ˜1°C following westerly wind episodes, as indicated by the coral Sr/Ca, is consistent with greater mixing in the upper water column at these times. Furthermore, the coral UV fluorescence and oxygen isotope data indicate minimal contribution of river runoff to surface ocean waters at the beginning of most years, during the time of maximum discharge. This abrupt shift in flood-plume behaviour appears to reflect the duration and magnitude of northwest monsoon winds, which tend to disperse flood plume waters to a greater extent in the water column when wind-mixing is enhanced. Our results suggest that a multi-proxy geochemical approach to the production of long coral records should provide comprehensive reconstructions of tropical paleoclimate processes operating on interannual timescales.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ERL....13d4031L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ERL....13d4031L"><span>Identification of symmetric and asymmetric responses in seasonal streamflow globally to <span class="hlt">ENSO</span> phase</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Donghoon; Ward, Philip J.; Block, Paul</p> <p>2018-04-01</p> <p>The phase of the El Niño Southern Oscillation (<span class="hlt">ENSO</span>) has large-ranging effects on streamflow and hydrologic conditions globally. While many studies have evaluated this relationship through correlation analysis between annual streamflow and <span class="hlt">ENSO</span> indices, an assessment of potential asymmetric relationships between <span class="hlt">ENSO</span> and streamflow is lacking. Here, we evaluate seasonal variations in streamflow by <span class="hlt">ENSO</span> phase to identify asymmetric (AR) and symmetric (SR) spatial pattern responses globally and further corroborate with local precipitation and hydrological condition. The AR and SR patterns between seasonal precipitation and streamflow are identified at many locations for the first time. Our results identify strong SR patterns in particular regions including northwestern and southern US, northeastern and southeastern South America, northeastern and southern Africa, southwestern Europe, and central-south Russia. The seasonally lagged anomalous streamflow patterns are also identified and attributed to snowmelt, soil moisture, and/or cumulative hydrological processes across river basins. These findings may be useful in water resources management and natural hazards planning by better characterizing the propensity of flood or drought conditions by <span class="hlt">ENSO</span> phase.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22017799','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22017799"><span>The effect of active <span class="hlt">warming</span> in prehospital trauma care during road and air ambulance transportation - a clinical randomized trial.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lundgren, Peter; Henriksson, Otto; Naredi, Peter; Björnstig, Ulf</p> <p>2011-10-21</p> <p>Prevention and treatment of hypothermia by active <span class="hlt">warming</span> in prehospital trauma care is recommended but scientific evidence of its effectiveness in a clinical setting is scarce. The objective of this study was to evaluate the effect of additional active <span class="hlt">warming</span> during road or air ambulance transportation of trauma patients. Patients were assigned to either passive <span class="hlt">warming</span> with blankets or passive <span class="hlt">warming</span> with blankets with the addition of an active <span class="hlt">warming</span> intervention using a large chemical heat pad applied to the upper torso. Ear canal temperature, subjective sensation of <span class="hlt">cold</span> discomfort and vital signs were monitored. Mean core temperatures increased from 35.1°C (95% CI; 34.7-35.5°C) to 36.0°C (95% CI; 35.7-36.3°C) (p < 0.05) in patients assigned to passive <span class="hlt">warming</span> only (n = 22) and from 35.6°C (95% CI; 35.2-36.0°C) to 36.4°C (95% CI; 36.1-36.7°C) (p < 0.05) in patients assigned to additional active <span class="hlt">warming</span> (n = 26) with no significant differences between the groups. <span class="hlt">Cold</span> discomfort decreased in 2/3 of patients assigned to passive <span class="hlt">warming</span> only and in all patients assigned to additional active <span class="hlt">warming</span>, the difference in <span class="hlt">cold</span> discomfort change being statistically significant (p < 0.05). Patients assigned to additional active <span class="hlt">warming</span> also presented a statistically significant decrease in heart rate and respiratory frequency (p < 0.05). In mildly hypothermic trauma patients, with preserved shivering capacity, adequate passive <span class="hlt">warming</span> is an effective treatment to establish a slow rewarming rate and to reduce <span class="hlt">cold</span> discomfort during prehospital transportation. However, the addition of active <span class="hlt">warming</span> using a chemical heat pad applied to the torso will significantly improve thermal comfort even further and might also reduce the <span class="hlt">cold</span> induced stress response. ClinicalTrials.gov: NCT01400152.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27746134','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27746134"><span>Osmotic versus adrenergic control of ion transport by ionocytes of Fundulus heteroclitus in the <span class="hlt">cold</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tait, Janet C; Mercer, Evan W; Gerber, Lucie; Robertson, George N; Marshall, William S</p> <p>2017-01-01</p> <p>In eurythermic vertebrates, acclimation to the <span class="hlt">cold</span> may produce changes in physiological control systems. We hypothesize that relatively direct osmosensitive control will operate better than adrenergic receptor mediated control of ion transport in <span class="hlt">cold</span> vs. <span class="hlt">warm</span> conditions. Fish were acclimated to full strength seawater (SW) at 21°C and 5°C for four weeks, gill samples and blood were taken and opercular epithelia mounted in Ussing style chambers. Short-circuit current (I sc ) at 21°C and 5°C (measured at acclimation temperature), was significantly inhibited by the α 2 -adrenergic agonist clonidine but the ED 50 dose was significantly higher in <span class="hlt">cold</span> conditions (93.8±16.4nM) than in <span class="hlt">warm</span> epithelia (47.8±8.1nM) and the maximum inhibition was significantly lower in <span class="hlt">cold</span> (-66.1±2.2%) vs. <span class="hlt">warm</span> conditions (-85.6±1.3%), indicating lower sensitivity in the <span class="hlt">cold</span>. β-Adrenergic responses were unchanged. Hypotonic inhibition of I sc , was higher in <span class="hlt">warm</span> acclimated (-95%), compared to <span class="hlt">cold</span> acclimated fish (-75%), while hypertonic stimulations were the same, indicating equal responsiveness to hyperosmotic stimuli. Plasma osmolality was significantly elevated in <span class="hlt">cold</span> acclimated fish and, by TEM, gill ionocytes from <span class="hlt">cold</span> acclimated fish had significantly shorter mitochondria. These data are consistent with a shift in these eurythermic animals from complex adrenergic control to relatively simple biomechanical osmotic control of ion secretion in the <span class="hlt">cold</span>. Copyright © 2016. Published by Elsevier Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=282358','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=282358"><span>Changes in free amino acid levels in sour orange leaves in response to <span class="hlt">cold</span> stress and during recovery from <span class="hlt">cold</span> stress</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>In a previous study, we reported that potted sour orange trees recovering from <span class="hlt">cold</span> stress attracted more Asian citrus psyllid than the control plants continuously kept under <span class="hlt">warm</span> condition. In parallel studies, <span class="hlt">cold</span> treated plants were shown to have relatively increased amounts of ninhydrin positi...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4585812','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4585812"><span>Distinctive ocean interior changes during the recent <span class="hlt">warming</span> slowdown</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cheng, Lijing; Zheng, Fei; Zhu, Jiang</p> <p>2015-01-01</p> <p>The earth system experiences continuous heat input, but a “climate hiatus” of upper ocean waters has been observed in this century. This leads to a question: where is the extra heat going? Using four in situ observation datasets, we explore the ocean subsurface temperature changes from 2004 to 2013. The observations all show that the ocean has continued to gain heat in this century, which is indicative of anthropogenic global <span class="hlt">warming</span>. However, a distinctive pattern of change in the interior ocean is observed. The sea surface (1–100 m) temperature has decreased in this century, accompanied by <span class="hlt">warming</span> in the 101–300 m layer. This pattern is due to the changes in the frequency of El Niño and La Niña events (<span class="hlt">ENSO</span> characteristics), according to both observations and CMIP5 model simulations. In addition, we show for the first time that the ocean subsurface within 301–700 m experienced a net cooling, indicative of another instance of variability in the natural ocean. Furthermore, the ocean layer of 701–1500 m has experienced significant <span class="hlt">warming</span>. PMID:26394551</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17711359','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17711359"><span>Pain modulation during drives through <span class="hlt">cold</span> and hot virtual environments.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mühlberger, Andreas; Wieser, Matthias J; Kenntner-Mabiala, Ramona; Pauli, Paul; Wiederhold, Brenda K</p> <p>2007-08-01</p> <p>Evidence exists that virtual worlds reduce pain perception by providing distraction. However, there is no experimental study to show that the type of world used in virtual reality (VR) distraction influences pain perception. Therefore, we investigated whether pain triggered by heat or <span class="hlt">cold</span> stimuli is modulated by "<span class="hlt">warm</span> "or "<span class="hlt">cold</span> " virtual environments and whether virtual worlds reduce pain perception more than does static picture presentation. We expected that <span class="hlt">cold</span> worlds would reduce pain perception from heat stimuli, while <span class="hlt">warm</span> environments would reduce pain perception from <span class="hlt">cold</span> stimuli. Additionally, both virtual worlds should reduce pain perception in general. Heat and <span class="hlt">cold</span> pain stimuli thresholds were assessed outside VR in 48 volunteers in a balanced crossover design. Participants completed three 4-minute assessment periods: virtual "walks " through (1) a winter and (2) an autumn landscape and static exposure to (3) a neutral landscape. During each period, five heat stimuli or three <span class="hlt">cold</span> stimuli were delivered via a thermode on the participant's arm, and affective and sensory pain perceptions were rated. Then the thermode was changed to the other arm, and the procedure was repeated with the opposite pain stimuli (heat or <span class="hlt">cold</span>). We found that both <span class="hlt">warm</span> and <span class="hlt">cold</span> virtual environments reduced pain intensity and unpleasantness for heat and <span class="hlt">cold</span> pain stimuli when compared to the control condition. Since participants wore a head-mounted display (HMD) in both the control condition and VR, we concluded that the distracting value of virtual environments is not explained solely by excluding perception of the real world. Although VR reduced pain unpleasantness, we found no difference in efficacy between the types of virtual world used for each pain stimulus.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy..tmp..889W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy..tmp..889W"><span>Modulation of <span class="hlt">ENSO</span> evolution by strong tropical volcanic eruptions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Tao; Guo, Dong; Gao, Yongqi; Wang, Huijun; Zheng, Fei; Zhu, Yali; Miao, Jiapeng; Hu, Yongyun</p> <p>2017-11-01</p> <p>The simulated responses of the El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) to volcanic forcings are controversial, and some mechanisms of these responses are not clear. We investigate the impacts of volcanic forcing on the <span class="hlt">ENSO</span> using a long-term simulation covering 1400-1999 as simulated by the Bergen Climate Model (BCM) and a group of simulations performed with the Community Atmosphere Model version 4.0 (CAM4) and the BCM's ocean component Miami Isopycanic Coordinated Ocean Model (MICOM). The analysis of the long-term BCM simulation indicates that <span class="hlt">ENSO</span> has a negative-positive-negative response to strong tropical volcanic eruptions (SVEs), which corresponds to the different stages of volcanic forcing. In the initial forcing stage, a brief and weak La Niña-like response is caused by the cooling along the west coast of the South American continent and associated enhancement of the trade winds. In the peak forcing stage, westerly wind anomalies are excited by both reduced east-west sea level pressure gradients and weakened and equatorward shifted tropical convergence zones. These westerly wind anomalies extend to the equatorial eastern Pacific, leading to an El Niño-like response. At the same time, easterly wind anomalies west of 120°E and strong cooling effects can promote a discharged thermocline state and excite an upwelling Kelvin wave in the western Pacific. In the declining forcing stage, forced by the recovered trade winds, the upwelling Kelvin wave propagates eastward and reaches the equatorial eastern Pacific. Through the Bjerknes feedback, a strong and temporally extended La Niña-like response forms. Additional CAM4 simulations suggest a more important role of the surface cooling over the Maritime Continent and surrounding ocean in shaping the westerly wind anomalies over the equatorial central-eastern Pacific and the easterly wind anomalies west of 120° E, which are key to causing the El Niño-like responses and subsequent La Niña-like responses</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThApC.132..465R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThApC.132..465R"><span>Diversity in the representation of large-scale circulation associated with <span class="hlt">ENSO</span>-Indian summer monsoon teleconnections in CMIP5 models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramu, Dandi A.; Chowdary, Jasti S.; Ramakrishna, S. S. V. S.; Kumar, O. S. R. U. B.</p> <p>2018-04-01</p> <p>Realistic simulation of large-scale circulation patterns associated with El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) is vital in coupled models in order to represent teleconnections to different regions of globe. The diversity in representing large-scale circulation patterns associated with <span class="hlt">ENSO</span>-Indian summer monsoon (ISM) teleconnections in 23 Coupled Model Intercomparison Project Phase 5 (CMIP5) models is examined. CMIP5 models have been classified into three groups based on the correlation between Niño3.4 sea surface temperature (SST) index and ISM rainfall anomalies, models in group 1 (G1) overestimated El Niño-ISM teleconections and group 3 (G3) models underestimated it, whereas these teleconnections are better represented in group 2 (G2) models. Results show that in G1 models, El Niño-induced Tropical Indian Ocean (TIO) SST anomalies are not well represented. Anomalous low-level anticyclonic circulation anomalies over the southeastern TIO and western subtropical northwest Pacific (WSNP) cyclonic circulation are shifted too far west to 60° E and 120° E, respectively. This bias in circulation patterns implies dry wind advection from extratropics/midlatitudes to Indian subcontinent. In addition to this, large-scale upper level convergence together with lower level divergence over ISM region corresponding to El Niño are stronger in G1 models than in observations. Thus, unrealistic shift in low-level circulation centers corroborated by upper level circulation changes are responsible for overestimation of <span class="hlt">ENSO</span>-ISM teleconnections in G1 models. <span class="hlt">Warm</span> Pacific SST anomalies associated with El Niño are shifted too far west in many G3 models unlike in the observations. Further large-scale circulation anomalies over the Pacific and ISM region are misrepresented during El Niño years in G3 models. Too strong upper-level convergence away from Indian subcontinent and too weak WSNP cyclonic circulation are prominent in most of G3 models in which <span class="hlt">ENSO</span>-ISM teleconnections are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22348100-herschel-spire-fourier-transform-spectrometer-observations-excited-co-antennae-ngc-warm-cold-molecular-gas','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22348100-herschel-spire-fourier-transform-spectrometer-observations-excited-co-antennae-ngc-warm-cold-molecular-gas"><span>Herschel-spire Fourier transform spectrometer observations of excited CO and [C I] in the antennae (NGC 4038/39): <span class="hlt">Warm</span> and <span class="hlt">cold</span> molecular gas</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Schirm, Maximilien R. P.; Wilson, Christine D.; Parkin, Tara J.</p> <p>2014-02-01</p> <p>We present Herschel Spectral and Photometric Imaging Receiver (SPIRE) Fourier Transform Spectrometer (FTS) observations of the Antennae (NGC 4038/39), a well-studied, nearby (22 Mpc), ongoing merger between two gas-rich spiral galaxies. The SPIRE-FTS is a low spatial ( FWHM ∼ 19''-43'') and spectral (∼1.2 GHz) resolution mapping spectrometer covering a large spectral range (194-671 μm, 450-1545 GHz). We detect five CO transitions (J = 4-3 to J = 8-7), both [C I] transitions, and the [N II] 205 μm transition across the entire system, which we supplement with ground-based observations of the CO J = 1-0, J = 2-1, andmore » J = 3-2 transitions and Herschel Photodetecting Array Camera and Spectrometer (PACS) observations of [C II] and [O I] 63 μm. Using the CO and [C I] transitions, we perform both a local thermodynamic equilibrium (LTE) analysis of [C I] and a non-LTE radiative transfer analysis of CO and [C I] using the radiative transfer code RADEX along with a Bayesian likelihood analysis. We find that there are two components to the molecular gas: a <span class="hlt">cold</span> (T {sub kin} ∼ 10-30 K) and a <span class="hlt">warm</span> (T {sub kin} ≳ 100 K) component. By comparing the <span class="hlt">warm</span> gas mass to previously observed values, we determine a CO abundance in the <span class="hlt">warm</span> gas of x {sub CO} ∼ 5 × 10{sup –5}. If the CO abundance is the same in the <span class="hlt">warm</span> and <span class="hlt">cold</span> gas phases, this abundance corresponds to a CO J = 1-0 luminosity-to-mass conversion factor of α{sub CO} ∼ 7 M {sub ☉} pc{sup –2} (K km s{sup –1}){sup –1} in the <span class="hlt">cold</span> component, similar to the value for normal spiral galaxies. We estimate the cooling from H{sub 2}, [C II], CO, and [O I] 63 μm to be ∼0.01 L {sub ☉}/M {sub ☉}. We compare photon-dominated region models to the ratio of the flux of various CO transitions, along with the ratio of the CO flux to the far-infrared flux in NGC 4038, NGC 4039, and the overlap region. We find that the densities recovered from our non-LTE analysis are consistent with a background far</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19618171','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19618171"><span>Bilateral hand/wrist heat and <span class="hlt">cold</span> hyperalgesia, but not hypoesthesia, in unilateral carpal tunnel syndrome.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>de la Llave-Rincón, Ana Isabel; Fernández-de-las-Peñas, César; Fernández-Carnero, Josué; Padua, Luca; Arendt-Nielsen, Lars; Pareja, Juan A</p> <p>2009-10-01</p> <p>The aim of the current study was to evaluate bilaterally <span class="hlt">warm/cold</span> detection and heat/<span class="hlt">cold</span> pain thresholds over the hand/wrist in patients with carpal tunnel syndrome (CTS). A total of 25 women with strictly unilateral CTS (mean 42 +/- 10 years), and 20 healthy matched women (mean 41 +/- 8 years) were recruited. <span class="hlt">Warm/cold</span> detection and heat/<span class="hlt">cold</span> pain thresholds were assessed bilaterally over the carpal tunnel and the thenar eminence in a blinded design. Self-reported measures included both clinical pain history (intensity, location and area) and Boston Carpal Tunnel Questionnaire. No significant differences between groups for both <span class="hlt">warm</span> and <span class="hlt">cold</span> detection thresholds in either carpal tunnel or thenar eminence (P > 0.5) were found. Further, significant differences between groups, but not between sides, for both heat and <span class="hlt">cold</span> pain thresholds in both the carpal tunnel and thenar eminence were found (all P < 0.001). Heat pain thresholds (P < 0.01) were negatively correlated, whereas <span class="hlt">cold</span> pain thresholds (P < 0.001) were positively correlated with hand pain intensity and duration of symptoms. Our findings revealed bilateral thermal hyperalgesia (lower heat pain and reduced <span class="hlt">cold</span> pain thresholds) but not hypoesthesia (normal <span class="hlt">warm/cold</span> detection thresholds) in patients with strictly unilateral CTS when compared to controls. We suggest that bilateral heat and <span class="hlt">cold</span> hyperalgesia may reflect impairments in central nociceptive processing in patients with unilateral CTS. The bilateral thermal hyperalgesia associated with pain intensity and duration of pain history supports a role of generalized sensitization mechanisms in the initiation, maintenance and spread of pain in CTS.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20180000959&hterms=earth+system&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dearth%2Bsystem','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20180000959&hterms=earth+system&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dearth%2Bsystem"><span>Reduced <span class="hlt">ENSO</span> Variability at the LGM Revealed by an Isotope-Enabled Earth System Model</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhu, Jiang; Liu, Zhengyu; Brady, Esther; Otto-Bliesner, Bette; Zhang, Jiaxu; Noone, David; Tomas, Robert; Nusbaumer, Jesse; Wong, Tony; Jahn, Alexandra; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20180000959'); toggleEditAbsImage('author_20180000959_show'); toggleEditAbsImage('author_20180000959_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20180000959_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20180000959_hide"></p> <p>2017-01-01</p> <p>Studying the El Nino Southern Oscillation (<span class="hlt">ENSO</span>) in the past can help us better understand its dynamics and improve its future projections. However, both paleoclimate reconstructions and model simulations of <span class="hlt">ENSO</span> strength at the Last Glacial Maximum (LGM; 21 ka B.P.) have led to contradicting results. Here we perform model simulations using the recently developed water isotope-enabled Community Earth System Model (iCESM). For the first time, model-simulated oxygen isotopes are directly compared with those from <span class="hlt">ENSO</span> reconstructions using the individual foraminifera analysis (IFA). We find that the LGM <span class="hlt">ENSO</span> is most likely weaker comparing with the preindustrial. The iCESM suggests that total variance of the IFA records may only reflect changes in the annual cycle instead of <span class="hlt">ENSO</span> variability as previously assumed. Furthermore, the interpretation of subsurface IFA records can be substantially complicated by the habitat depth of thermocline-dwelling foraminifera and their vertical migration with a temporally varying thermocline.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.U53F..03S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.U53F..03S"><span>The <span class="hlt">ENSO</span>-pandemic influenza connection: coincident or causal?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shaman, J. L.; Lipsitch, M.</p> <p>2011-12-01</p> <p>The El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) is a coupled ocean-atmosphere system in the tropical Pacific, which affects weather conditions, including temperatures, precipitation, winds and storm activity, across the planet. <span class="hlt">ENSO</span> has two extreme phases marked by either warmer (El Niño) or cooler (La Niña) than average sea surface temperatures in the central equatorial Pacific. We find that the 4 most recent human influenza pandemics (1918, 1957, 1968, 2009), all of which were first identified in boreal spring or summer, were preceded by La Niña conditions in the equatorial Pacific. Changes in <span class="hlt">ENSO</span> have been shown to alter the migration, stopover time, fitness and interspecies mixing of migratory birds, and consequently likely affect their mixing with domestic animals. We hypothesize that La Niña conditions bring divergent influenza subtypes together in some parts of the world and favor the reassortment of influenza through simultaneous multiple infection of individual hosts and the generation of novel pandemic strains. We propose approaches to test this hypothesis using influenza population genetics, virus prevalence in various host species, and avian migration patterns.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.1939P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.1939P"><span>Ocean Chlorophyll as a Precursor of <span class="hlt">ENSO</span>: An Earth System Modeling Study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, Jong-Yeon; Dunne, John P.; Stock, Charles A.</p> <p>2018-02-01</p> <p>Ocean chlorophyll concentration, a proxy for phytoplankton, is strongly influenced by internal ocean dynamics such as those associated with El Niño-Southern Oscillation (<span class="hlt">ENSO</span>). Observations show that ocean chlorophyll responses to <span class="hlt">ENSO</span> generally lead sea surface temperature (SST) responses in the equatorial Pacific. A long-term global Earth system model simulation incorporating marine biogeochemical processes also exhibits a preceding chlorophyll response. In contrast to simulated SST anomalies, which significantly lag the wind-driven subsurface heat response to <span class="hlt">ENSO</span>, chlorophyll anomalies respond rapidly. Iron was found to be the key factor connecting the simulated surface chlorophyll anomalies to the subsurface ocean response. Westerly wind bursts decrease central Pacific chlorophyll by reducing iron supply through wind-driven thermocline deepening but increase western Pacific chlorophyll by enhancing the influx of coastal iron from the maritime continent. Our results mechanistically support the potential for chlorophyll-based indices to inform seasonal <span class="hlt">ENSO</span> forecasts beyond previously identified SST-based indices.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26495037','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26495037"><span>Winter Season Mortality: Will Climate <span class="hlt">Warming</span> Bring Benefits?</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kinney, Patrick L; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Tertre, Alain Le; Medina, Sylvia; Vautard, Robert</p> <p>2015-06-01</p> <p>Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to <span class="hlt">cold</span> temperature, many previous studies have concluded that winter mortality will substantially decline in a <span class="hlt">warming</span> climate. We analyzed whether and to what extent <span class="hlt">cold</span> temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of <span class="hlt">cold</span> temperatures led to spuriously large assumed <span class="hlt">cold</span> effects, and erroneous attribution of winter mortality to <span class="hlt">cold</span> temperatures. Our findings suggest that reductions in <span class="hlt">cold</span>-related mortality under <span class="hlt">warming</span> climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ERL....10f4016K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ERL....10f4016K"><span>Winter season mortality: will climate <span class="hlt">warming</span> bring benefits?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kinney, Patrick L.; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Le Tertre, Alain; Medina, Sylvia; Vautard, Robert</p> <p>2015-06-01</p> <p>Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to <span class="hlt">cold</span> temperature, many previous studies have concluded that winter mortality will substantially decline in a <span class="hlt">warming</span> climate. We analyzed whether and to what extent <span class="hlt">cold</span> temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of <span class="hlt">cold</span> temperatures led to spuriously large assumed <span class="hlt">cold</span> effects, and erroneous attribution of winter mortality to <span class="hlt">cold</span> temperatures. Our findings suggest that reductions in <span class="hlt">cold</span>-related mortality under <span class="hlt">warming</span> climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.noaa.gov/topic-tags/el-nino-la-nina-enso','SCIGOVWS'); return false;" href="http://www.noaa.gov/topic-tags/el-nino-la-nina-enso"><span>El Nino, La Nina, <span class="hlt">ENSO</span> | National Oceanic and Atmospheric Administration</span></a></p> <p><a target="_blank" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>your local weather Enter your ZIP code GO Enter Search Terms El Nino, <em>La</em> Nina, <span class="hlt">ENSO</span> Content <em>La</em> Nina is gone, for now May 10, 2018 More On El Nino, <em>La</em> Nina, <span class="hlt">ENSO</span> Ocean surface temperatures in April 2018 compared to the 1981-2010 average. What's going on with <em>La</em> Niña? March 22, 2018 More On El Nino, <em>La</em> Nina</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMPP43B1677M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMPP43B1677M"><span>Stable isotope records of convection variability in the West Pacific <span class="hlt">Warm</span> Pool from fast-growing stalagmites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maupin, C. R.; Partin, J. W.; Quinn, T. M.; Shen, C.; Lin, K.; Taylor, F. W.; Sinclair, D. J.; Banner, J. L.</p> <p>2010-12-01</p> <p>The potential response of the tropical Pacific to ongoing anthropogenic global <span class="hlt">warming</span> conditions is informed by instrumental data, model predictions and climate proxy evidence. However, these distinct lines of evidence lead to opposing predictions in terms of the nature of interannual (<span class="hlt">ENSO</span>) variability in a <span class="hlt">warming</span> world. Interpreted in an <span class="hlt">ENSO</span> framework, <span class="hlt">warming</span> in the tropical Pacific may elicit a zonally asymmetrical response and lead to an intensified Walker Circulation (more ‘La Niña - like’). Alternatively, discrepancies in the increasing rates of latent heat flux and rainfall due to <span class="hlt">warming</span> conditions may in fact reduce Walker Circulation (more ‘El Niño - like’). However, in order for such a framework to be useful in the context of future climate change, some knowledge of the natural variability in the strength of Walker Circulation components is required. The extant instrumental data are not of sufficient temporal length to fully assess the spectrum of natural variability in such climate components. Oxygen isotope records from tropical speleothems have been successfully used to document the nature of precessional forcing on precipitation and atmospheric circulation patterns throughout the tropics. Typical stalagmite growth rates of 10-100 μm yr-1 allow decadally resolved records of δ18O variability on time scales of centuries to millennia and beyond. Here we present the initial results from calcite stalagmites of heretofore unprecedented growth rates (~1-4 mm yr-1) in a cave in northwest Guadalcanal, Solomon Islands (~9°S, 160°E). These stalagmites have been absolutely dated by U-Th techniques and indicate stalagmite growth spanning ~1650 to 2010 CE. The δ18O records from stalagmites provide evidence for changes in convection in the equatorial WPWP region of the SPCZ: the rising limb of the Pacific Walker Circulation, and therefore provide critical insight into changes in zonal atmospheric circulation across the Pacific.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EP%26S...70...85S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EP%26S...70...85S"><span>El Niño-Southern Oscillation effect on quasi-biennial oscillations of temperature diurnal tides in the mesosphere and lower thermosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Yang-Yi; Liu, Huixin; Miyoshi, Yasunobu; Liu, Libo; Chang, Loren C.</p> <p>2018-05-01</p> <p>In this study, we evaluate the El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) signals in the two dominant temperature diurnal tides, diurnal westward wavenumber 1 (DW1) and diurnal eastward wavenumber 3 (DE3) on the quasi-biennial oscillation (QBO) scale (18-34 months) from 50 to 100 km altitudes. The tides are derived from the 21-year (January 1996-February 2017) Ground-to-Topside model of Atmosphere and Ionosphere for Aeronomy (GAIA) temperature simulations and 15-year (February 2002-February 2017) Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature observations. The results show that <span class="hlt">ENSO</span> <span class="hlt">warm</span> phases shorten the period ( 2 years) of the QBO in DW1 amplitude near the equator and DE3 amplitude at low latitudes of the Northern Hemisphere. In contrast, the QBO period lengthens ( 2.5 years) during the <span class="hlt">ENSO</span> neutral and <span class="hlt">cold</span> phases. Correlation analysis shows the long-lasting effect of <span class="hlt">ENSO</span> on the tidal QBO in the mesosphere and lower thermosphere.[Figure not available: see fulltext.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/57447-interannual-oscillations-northern-temperate-total-ozone','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/57447-interannual-oscillations-northern-temperate-total-ozone"><span>On the interannual oscillations in the northern temperate total ozone</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Krzyscin, J.W.</p> <p>1994-07-01</p> <p>The interannual variations in total ozone are studied using revised Dobson total ozone records (1961-1990) from 17 stations located within the latitude band 30 deg N - 60 deg N. To obtain the quasi-biennial oscillation (QBO), El Nino-Southern Oscillation (<span class="hlt">ENSO</span>), and 11-year solar cycle manifestation in the `northern temperate` total ozone data, various multiple regression models are constructed by the least squares fitting to the observed ozone. The statistical relationships between the selected indices of the atmospheric variabilities and total ozone are described in the linear and nonlinear regression models. Nonlinear relationships to the predictor variables are found. That is,more » the total ozone variations are statistically modeled by nonlinear terms accounting for the coupling between QBO and <span class="hlt">ENSO</span>, QBO and solar activity, and <span class="hlt">ENSO</span> and solar activity. It is suggested that large reduction of total ozone values over the `northern temperate` region occurs in <span class="hlt">cold</span> season when a strong <span class="hlt">ENSO</span> <span class="hlt">warm</span> event meets the west phase of the QBO during the period of high solar activity.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19923616','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19923616"><span>Effects of chronic environmental <span class="hlt">cold</span> on growth, health, and select metabolic and immunologic responses of preruminant calves.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nonnecke, B J; Foote, M R; Miller, B L; Fowler, M; Johnson, T E; Horst, R L</p> <p>2009-12-01</p> <p>The physiological response of the preruminant calf to sustained exposure to moderate <span class="hlt">cold</span> has not been studied extensively. Effects of <span class="hlt">cold</span> on growth performance and health of preruminant calves as well as functional measures of energy metabolism, fat-soluble vitamin, and immune responsiveness were evaluated in the present study. Calves, 3 to 10 d of age, were assigned randomly to <span class="hlt">cold</span> (n = 14) or <span class="hlt">warm</span> (n = 15) indoor environments. Temperatures in the <span class="hlt">cold</span> environment averaged 4.7 degrees C during the study. Frequent wetting of the environment and the calves was used to augment effects of the <span class="hlt">cold</span> environment. Temperatures in the <span class="hlt">warm</span> environment averaged 15.5 degrees C during the study. There was no attempt to increase the humidity in the <span class="hlt">warm</span> environment. Preventative medications or vaccinations that might influence disease resistance were not administered. Nonmedicated milk replacer (20% crude protein and 20% fat fed at 0.45 kg/d) and a nonmedicated starter grain fed ad libitum were fed to all calves. Relative humidity was, on average, almost 10% higher in the <span class="hlt">cold</span> environment. <span class="hlt">Warm</span>-environment calves were moderately healthier (i.e., lower respiratory scores) and required less antibiotics. Scour scores, days scouring, and electrolyte costs, however, were unaffected by environmental temperature. Growth rates were comparable in <span class="hlt">warm</span> and <span class="hlt">cold</span> environments, although <span class="hlt">cold</span>-environment calves consumed more starter grain and had lower blood glucose and higher blood nonesterified fatty acid concentrations. The nonesterified fatty acid and glucose values for <span class="hlt">cold</span>-stressed calves, however, did not differ sufficiently from normal values to categorize these calves as being in a state of negative-energy balance. Levels of fat-soluble vitamin, antibody, tumor necrosis factor-alpha, and haptoglobin were unaffected by sustained exposure to moderate <span class="hlt">cold</span>. These results support the contention that successful adaptation of the dairy calf to <span class="hlt">cold</span> is dependent upon the availability</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27408415','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27408415"><span>Resolution of Serologic Problems Due to <span class="hlt">Cold</span> Agglutinins in Chronic Lymphocytic Leukemia.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Javed, Rizwan; Datta, Suvro Sankha; Basu, Sabita; Chakrapani, Anupam</p> <p>2016-06-01</p> <p>Autoimmune hemolytic anemia can be classified depending on presence of <span class="hlt">warm</span>, <span class="hlt">cold</span> or mixed type of autoantibodies that are directed against antigens on the red blood cell surface. Here we report a case of pathological <span class="hlt">cold</span> agglutinin disease which was eventually detected due to blood group discrepancy. A request was sent to the blood bank for two units of packed red cells in a diagnosed case of CLL which showed type IV discrepancy during blood grouping.The discrepancy was subsequently resolved after <span class="hlt">warm</span> saline washing of red cells along with repetition of reverse grouping with pre-<span class="hlt">warmed</span> serum. The direct antiglobulin test was positive and revealed autoanibodies against C3b/C3d only. Indirect antiglobulin test was performed with 3-cell panel in a polyspecific gel card (IgG+C3d) showed a pan-reactive pattern along with a positive autocontrol. Subsequently a <span class="hlt">cold</span> agglutinin titration was performed and titers of 1024 at 4 °C; titer of 2 at room temperature were detected. Dithiothreitol (DTT) treatment of serum was undertaken and IgM type of autoantibody was detected in this case confirming a case of secondary <span class="hlt">cold</span> agglutinin disease in this patient. Two units of red cells were transfused to this patient after successfully performing cross-match with pre-<span class="hlt">warmed</span> serum. It was advised from the blood bank that the blood should be transfused slowly through a blood-warmer and patient should be kept in <span class="hlt">warm</span> condition to avoid in-vivo hemolysis due to high titer of <span class="hlt">cold</span> agglutinin. The transfusion was uneventful and patient is on regular follow-up till now. Thus we concluded that serological discrepancies observed in blood bank can successfully guide the bedside transfusion protocol in case of <span class="hlt">cold</span> agglutinin disease.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1376649-global-land-carbon-sink-response-temperature-precipitation-varies-enso-phase','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1376649-global-land-carbon-sink-response-temperature-precipitation-varies-enso-phase"><span>Global land carbon sink response to temperature and precipitation varies with <span class="hlt">ENSO</span> phase</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Fang, Yuanyuan; Michalak, Anna M.; Schwalm, Christopher R.; ...</p> <p>2017-06-01</p> <p>Climate variability associated with the El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to <span class="hlt">ENSO</span>. We show that the dominant driver varies with <span class="hlt">ENSO</span> phase. And whereas tropical temperature explains sink dynamics following El Niño conditions (r TG,P = 0.59, p <more » 0.01), the post La Niña sink is driven largely by tropical precipitation (r PG,T= -0.46, p = 0.04). This finding points to an <span class="hlt">ENSO</span>-phase-dependent interplay between water availability and temperature in controlling the carbon uptake response to climate variations in tropical ecosystems. Furthermore, we find that none of a suite of ten contemporary terrestrial biosphere models captures these <span class="hlt">ENSO</span>-phase-dependent responses, highlighting a key uncertainty in modeling climate impacts on the future of the global land carbon sink.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1406686-global-land-carbon-sink-response-temperature-precipitation-varies-enso-phase','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1406686-global-land-carbon-sink-response-temperature-precipitation-varies-enso-phase"><span>Global land carbon sink response to temperature and precipitation varies with <span class="hlt">ENSO</span> phase</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fang, Yuanyuan; Michalak, Anna M.; Schwalm, Christopher R.</p> <p></p> <p>Climate variability associated with the El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to <span class="hlt">ENSO</span>. Here, we show that the dominant driver varies with <span class="hlt">ENSO</span> phase. Whereas tropical temperature explains sink dynamics following El Niño conditions (r TG,P=0.59, p<0.01), the post Lamore » Niña sink is driven largely by tropical precipitation (r PG,T=-0.46, p=0.04). This finding points to an <span class="hlt">ENSO</span>-phase-dependent interplay between water availability and temperature in controlling the carbon uptake response to climate variations in tropical ecosystems. We further find that none of a suite of ten contemporary terrestrial biosphere models captures these <span class="hlt">ENSO</span>-phase-dependent responses, highlighting a key uncertainty in modeling climate impacts on the future of the global land carbon sink.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1376649','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1376649"><span>Global land carbon sink response to temperature and precipitation varies with <span class="hlt">ENSO</span> phase</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fang, Yuanyuan; Michalak, Anna M.; Schwalm, Christopher R.</p> <p></p> <p>Climate variability associated with the El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to <span class="hlt">ENSO</span>. We show that the dominant driver varies with <span class="hlt">ENSO</span> phase. And whereas tropical temperature explains sink dynamics following El Niño conditions (r TG,P = 0.59, p <more » 0.01), the post La Niña sink is driven largely by tropical precipitation (r PG,T= -0.46, p = 0.04). This finding points to an <span class="hlt">ENSO</span>-phase-dependent interplay between water availability and temperature in controlling the carbon uptake response to climate variations in tropical ecosystems. Furthermore, we find that none of a suite of ten contemporary terrestrial biosphere models captures these <span class="hlt">ENSO</span>-phase-dependent responses, highlighting a key uncertainty in modeling climate impacts on the future of the global land carbon sink.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSAH13A..07B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSAH13A..07B"><span>Spatial and Temporal Changes in Coral Community Responses to Ocean <span class="hlt">Warming</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barkley, H.; Cohen, A. L.</p> <p>2016-02-01</p> <p>Tropical Pacific sea surface temperature is projected to rise 2-3°C by the end of this century, fueling efforts to identify thermally-tolerant reef communities that have the best chance of surviving future climate change. We used skeletal indicators of thermal stress in massive Porites corals collected across the Palau archipelago to document spatial and temporal changes in community-scale tolerance to anomalous <span class="hlt">warm</span> events associated with the 1998 and 2010 Pacific <span class="hlt">ENSOs</span>. Within communities where bleaching was documented by visual surveys, we find a strong correlation between percent bleaching and the proportion of surviving Porites colonies exhibiting skeletal density anomalies or "stress bands". Using this relationship, we reconstructed the intensity and spatial patterns of bleaching during the 1998 <span class="hlt">ENSO</span> event when survey data are limited. On exposed barrier reefs and inshore fringing reefs, the proportion of corals with 1998 stress bands (60% and 40% respectively) was consistent with that expected from DHW predictions and post-bleaching surveys. Conversely, in the Rock Island bays, where ambient temperatures were highest, no 1998 stress bands were recorded. However, these corals did respond to the 2010 thermal anomaly with the appearance of stress bands and an abrupt decline in calcification. The reasons for this apparent shift in thermal tolerance in response to the relatively weak 2010 <span class="hlt">warming</span> are not yet clear. While the interplay of temperature with other environmental variables including light and flow cannot yet be ruled out, stressors associated with an increase in human activities, including tourism, on Palau are also considered.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5937792','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5937792"><span>Physiological responses to acute <span class="hlt">cold</span> exposure in young lean men</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Martinez-Tellez, Borja; Sanchez-Delgado, Guillermo; A. Alcantara, Juan M.; Acosta-Manzano, Pedro; Morales-Artacho, Antonio J.; R. Ruiz, Jonatan</p> <p>2018-01-01</p> <p>The aim of this study was to comprehensively describe the physiological responses to an acute bout of mild <span class="hlt">cold</span> in young lean men (n = 11, age: 23 ± 2 years, body mass index: 23.1 ± 1.2 kg/m2) to better understand the underlying mechanisms of non-shivering thermogenesis and how it is regulated. Resting energy expenditure, substrate metabolism, skin temperature, thermal comfort perception, superficial muscle activity, hemodynamics of the forearm and abdominal regions, and heart rate variability were measured under <span class="hlt">warm</span> conditions (22.7 ± 0.2°C) and during an individualized cooling protocol (air-conditioning and water cooling vest) in a <span class="hlt">cold</span> room (19.4 ± 0.1°C). The temperature of the cooling vest started at 16.6°C and decreased ~ 1.4°C every 10 minutes until participants shivered (93.5 ± 26.3 min). All measurements were analysed across 4 periods: <span class="hlt">warm</span> period, at 31% and at 64% of individual´s <span class="hlt">cold</span> exposure time until shivering occurred, and at the shivering threshold. Energy expenditure increased from <span class="hlt">warm</span> period to 31% of <span class="hlt">cold</span> exposure by 16.7% (P = 0.078) and to the shivering threshold by 31.7% (P = 0.023). Fat oxidation increased by 72.6% from <span class="hlt">warm</span> period to 31% of <span class="hlt">cold</span> exposure (P = 0.004), whereas no changes occurred in carbohydrates oxidation. As shivering came closer, the skin temperature and thermal comfort perception decreased (all P<0.05), except in the supraclavicular skin temperature, which did not change (P>0.05). Furthermore, the superficial muscle activation increased at the shivering threshold. It is noteworthy that the largest physiological changes occurred during the first 30 minutes of <span class="hlt">cold</span> exposure, when the participants felt less discomfort. PMID:29734360</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/7282957','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/7282957"><span>Extracerebral deep-body <span class="hlt">cold</span> sensitivity in the Pekin duck.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Inomoto, T; Simon, E</p> <p>1981-09-01</p> <p>Pekin ducks, in which cerebral <span class="hlt">cold</span> sensitivity is negligible, were submitted to general body cooling at <span class="hlt">warm</span>, thermoneutral, and <span class="hlt">cold</span> ambient temperature (Ta) with an intestinal thermode. In some animals, hypothermia was enhanced by additional hypothalamic cooling that suppressed <span class="hlt">cold</span> defense. In other animals, the spinal cord was cooled, either selectively or during intestinal cooling. From core temperature (Tc) and metabolic heat production (M) an overall <span class="hlt">cold</span> sensitivity of about -5 to -6 W . kg-1 . degrees C-1 was determined at thermoneutrality. Maximum M amounted to four to five times the resting M of 3.8 W . kg-1 and was attained when Tc fell by 2.5 degrees C or more. In the <span class="hlt">cold</span>, threshold Tc for the activation of M was elevated; overall <span class="hlt">cold</span> sensitivity remained constant. In the warmth, threshold Tc was lowered; overall <span class="hlt">cold</span> sensitivity was reduced, if mean skin temperature (Tsk) remained at aout 39 degrees C or higher. Spinal <span class="hlt">cold</span> sensitivity amounted to about -0.25 W . kg-1 . degrees C-1 at normal Tc and thermoneutral and <span class="hlt">warm</span> Ta; it increased to aout -0.50 W . kg-1 . degrees C-1 in the <span class="hlt">cold</span> and during hypothermia. Peripheral <span class="hlt">cold</span> sensitivity was estimated from Tsk and M as -0.4 to -0.8 W . kg-1 . degrees C-1. It is concluded that overall <span class="hlt">cold</span> sensitivity in ducks mainly depends on deep-body temperature sensors outside of the central nervous system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp.2334L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp.2334L"><span>A metric for quantifying El Niño pattern diversity with implications for <span class="hlt">ENSO</span>-mean state interaction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lemmon, Danielle E.; Karnauskas, Kristopher B.</p> <p>2018-04-01</p> <p>Recent research on the El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) phenomenon increasingly reveals the highly complex and diverse nature of <span class="hlt">ENSO</span> variability. A method of quantifying <span class="hlt">ENSO</span> spatial pattern uniqueness and diversity is presented, which enables (1) formally distinguishing between unique and "canonical" El Niño events, (2) testing whether historical model simulations aptly capture <span class="hlt">ENSO</span> diversity by comparing with instrumental observations, (3) projecting future <span class="hlt">ENSO</span> diversity using future model simulations, (4) understanding the dynamics that give rise to <span class="hlt">ENSO</span> diversity, and (5) analyzing the associated diversity of <span class="hlt">ENSO</span>-related atmospheric teleconnection patterns. Here we develop a framework for measuring El Niño spatial SST pattern uniqueness and diversity for a given set of El Niño events using two indices, the El Niño Pattern Uniqueness (EPU) index and El Niño Pattern Diversity (EPD) index, respectively. By applying this framework to instrumental records, we independently confirm a recent regime shift in El Niño pattern diversity with an increase in unique El Niño event sea surface temperature patterns. However, the same regime shift is not observed in historical CMIP5 model simulations; moreover, a comparison between historical and future CMIP5 model scenarios shows no robust change in future <span class="hlt">ENSO</span> diversity. Finally, we support recent work that asserts a link between the background cooling of the eastern tropical Pacific and changes in <span class="hlt">ENSO</span> diversity. This robust link between an eastern Pacific cooling mode and <span class="hlt">ENSO</span> diversity is observed not only in instrumental reconstructions and reanalysis, but also in historical and future CMIP5 model simulations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatCo...6E7154W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatCo...6E7154W"><span>Rethinking Indian monsoon rainfall prediction in the context of recent global <span class="hlt">warming</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Bin; Xiang, Baoqiang; Li, Juan; Webster, Peter J.; Rajeevan, Madhavan N.; Liu, Jian; Ha, Kyung-Ja</p> <p>2015-05-01</p> <p>Prediction of Indian summer monsoon rainfall (ISMR) is at the heart of tropical climate prediction. Despite enormous progress having been made in predicting ISMR since 1886, the operational forecasts during recent decades (1989-2012) have little skill. Here we show, with both dynamical and physical-empirical models, that this recent failure is largely due to the models' inability to capture new predictability sources emerging during recent global <span class="hlt">warming</span>, that is, the development of the central-Pacific El Nino-Southern Oscillation (CP-<span class="hlt">ENSO</span>), the rapid deepening of the Asian Low and the strengthening of North and South Pacific Highs during boreal spring. A physical-empirical model that captures these new predictors can produce an independent forecast skill of 0.51 for 1989-2012 and a 92-year retrospective forecast skill of 0.64 for 1921-2012. The recent low skills of the dynamical models are attributed to deficiencies in capturing the developing CP-<span class="hlt">ENSO</span> and anomalous Asian Low. The results reveal a considerable gap between ISMR prediction skill and predictability.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC41A0993T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC41A0993T"><span>Early 20th Century Arctic <span class="hlt">Warming</span> Intensified by Pacific and Atlantic Multidecadal Variability</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tokinaga, H.; Xie, S. P.; Mukougawa, H.</p> <p>2017-12-01</p> <p>We investigate the influence of Pacific and Atlantic multidecadal variability on the Arctic temperature, with a particular focus on the early 20th century Arctic <span class="hlt">warming</span>. Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing than at present. We find that the concurrent phase shift of Pacific and Atlantic multidecadal variability is the major driver for the early 20th century Arctic <span class="hlt">warming</span>. Atmospheric model simulations reproduce the early Arctic <span class="hlt">warming</span> when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early Arctic <span class="hlt">warming</span> is associated with the <span class="hlt">cold-to-warm</span> phase shifts of Atlantic and Pacific multidecadal variability modes, a SST pattern reminiscent of the positive phase of the Pacific decadal and Atlantic multidecadal oscillations. The extratropical North Atlantic and North Pacific SST <span class="hlt">warming</span> strengthens surface westerly winds over northern Eurasia, intensifying the <span class="hlt">warming</span> there. The equatorial Pacific <span class="hlt">warming</span> deepens the Aleutian low, advecting <span class="hlt">warm</span> air to the North American Arctic. Coupled ocean-atmosphere simulations support the constructive intensification of Arctic <span class="hlt">warming</span> by a concurrent, <span class="hlt">cold-to-warm</span> phase shift of the Pacific and Atlantic multidecadal variability. Our results aid attributing the historical Arctic <span class="hlt">warming</span> and thereby constrain the amplified <span class="hlt">warming</span> projected for this important region.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC32B..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC32B..04S"><span>An Ensemble Approach to Understanding the <span class="hlt">ENSO</span> Response to Climate Change</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stevenson, S.; Capotondi, A.; Fasullo, J.; Otto-Bliesner, B. L.</p> <p>2017-12-01</p> <p>The dynamics of the El Nino/Southern Oscillation (<span class="hlt">ENSO</span>) are known to be sensitive to changes in background climate conditions, as well as atmosphere/ocean feedbacks. However, the degree to which shifts in <span class="hlt">ENSO</span> characteristics can be robustly attributed to external climate forcings remains unknown. Efforts to assess these changes in a multi-model framework are subject to uncertainties due to both differing model physics and internal <span class="hlt">ENSO</span> variability. New community ensembles created at the National Center for Atmospheric Research and the NOAA Geophysical Fluid Dynamics Laboratory are ideally suited to addressing this problem, providing many realizations of the climate of the 850-2100 period with a combination of both natural and anthropogenic climate forcing factors. Here we analyze the impacts of external forcing on El Nino and La Nina evolution using four sets of simulations: the CESM Last Millennium Ensemble (CESM-LME), which covers the 850-2005 period and provides long-term context for forced responses; the Large Ensemble (CESM-LE), which includes 20th century and 21st century (RCP8.5) projections; the Medium Ensemble (CESM-ME), which is composed of 21st century RCP4.5 projections; and a large ensemble with the GFDL ESM2M, which includes 20th century and RCP8.5 projections. In the CESM, <span class="hlt">ENSO</span> variance increases slightly over the 20th century in all ensembles, with the effects becoming much larger during the 21st. The slower increase in variance over the 20th century is shown to arise from compensating influences from greenhouse gas (GHG) and anthropogenic aerosol emissions, which give way to GHG-dominated effects by 2100. However, the 21st century variance increase is not robust: CESM and the ESM2M differ drastically in their <span class="hlt">ENSO</span> projections. The mechanisms for these inter-model differences are discussed, as are the implications for the design of future multi-model <span class="hlt">ENSO</span> projection experiments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.9093L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.9093L"><span><span class="hlt">ENSO</span>-based probabilistic forecasts of March-May U.S. tornado and hail activity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lepore, Chiara; Tippett, Michael K.; Allen, John T.</p> <p>2017-09-01</p> <p>Extended logistic regression is used to predict March-May severe convective storm (SCS) activity based on the preceding December-February (DJF) El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) state. The spatially resolved probabilistic forecasts are verified against U.S. tornado counts, hail events, and two environmental indices for severe convection. The cross-validated skill is positive for roughly a quarter of the U.S. Overall, indices are predicted with more skill than are storm reports, and hail events are predicted with more skill than tornado counts. Skill is higher in the cool phase of <span class="hlt">ENSO</span> (La Niña like) when overall SCS activity is higher. SCS forecasts based on the predicted DJF <span class="hlt">ENSO</span> state from coupled dynamical models initialized in October of the previous year extend the lead time with only a modest reduction in skill compared to forecasts based on the observed DJF <span class="hlt">ENSO</span> state.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70043240','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70043240"><span>A westward extension of the <span class="hlt">warm</span> pool leads to a westward extension of the Walker circulation, drying eastern Africa</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Williams, A. Park; Funk, Christopher C.</p> <p>2011-01-01</p> <p>Observations and simulations link anthropogenic greenhouse and aerosol emissions with rapidly increasing Indian Ocean sea surface temperatures (SSTs). Over the past 60 years, the Indian Ocean <span class="hlt">warmed</span> two to three times faster than the central tropical Pacific, extending the tropical <span class="hlt">warm</span> pool to the west by ~40° longitude (>4,000 km). This propensity toward rapid <span class="hlt">warming</span> in the Indian Ocean has been the dominant mode of interannual variability among SSTs throughout the tropical Indian and Pacific Oceans (55°E–140°W) since at least 1948, explaining more variance than anomalies associated with the El Niño-Southern Oscillation (<span class="hlt">ENSO</span>). In the atmosphere, the primary mode of variability has been a corresponding trend toward greatly increased convection and precipitation over the tropical Indian Ocean. The temperature and rainfall increases in this region have produced a westward extension of the western, ascending branch of the atmospheric Walker circulation. Diabatic heating due to increased mid-tropospheric water vapor condensation elicits a westward atmospheric response that sends an easterly flow of dry air aloft toward eastern Africa. In recent decades (1980–2009), this response has suppressed convection over tropical eastern Africa, decreasing precipitation during the ‘long-rains’ season of March–June. This trend toward drought contrasts with projections of increased rainfall in eastern Africa and more ‘El Niño-like’ conditions globally by the Intergovernmental Panel on Climate Change. Increased Indian Ocean SSTs appear likely to continue to strongly modulate the <span class="hlt">Warm</span> Pool circulation, reducing precipitation in eastern Africa, regardless of whether the projected trend in <span class="hlt">ENSO</span> is realized. These results have important food security implications, informing agricultural development, environmental conservation, and water resource planning.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26950723','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26950723"><span>Short Oxygenated <span class="hlt">Warm</span> Perfusion With Prostaglandin E1 Administration Before <span class="hlt">Cold</span> Preservation as a Novel Resuscitation Method for Liver Grafts From Donors After Cardiac Death in a Rat In Vivo Model.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Maida, Kai; Akamatsu, Yorihiro; Hara, Yasuyuki; Tokodai, Kazuaki; Miyagi, Shigehito; Kashiwadate, Toshiaki; Miyazawa, Koji; Kawagishi, Naoki; Ohuchi, Noriaki</p> <p>2016-05-01</p> <p>We previously demonstrated that short oxygenated <span class="hlt">warm</span> perfusion (SOWP) prevented <span class="hlt">warm</span> ischemia-reperfusion injury in rat livers from donors after cardiac death (DCDs) in an ex vivo model. In the present study, we aimed to examine the in vivo effects of SOWP and SOWP with prostaglandin E1 (PGE1) in DCD rat liver transplants. We performed liver transplantation after 6-hour <span class="hlt">cold</span> preservation using grafts retrieved from DCD rats, divided into nontreatment (NT), SOWP, and SOWP with PGE1 (SOWP + PG) treatment groups. The SOWP grafts were perfused with oxygenated buffer at 37°C for 30 minutes before <span class="hlt">cold</span> preservation. Prostaglandin E1 was added to the SOWP + PG group perfusate. Eleven liver transplants from each group were performed to evaluate graft function and survival; 5 rats were used for data collection after 1-hour reperfusion, and 6 rats were used for the survival study. As a positive control, the same experiment was performed in a heart-beating donor group. In both the SOWP and SOWP + PG groups, serum liver enzymes, intercellular adhesion molecule 1 levels, and cellular damage were significantly decreased compared with the NT group. In the SOWP + PG group, bile production and energy status were significantly improved compared with the NT group. The 4-week survival was 0% (0/6), 67% (4/6), 83% (5/6), and 100% (6/6) in the NT, SOWP, SOWP + PG, and heart-beating donor group, respectively. Short oxygenated <span class="hlt">warm</span> perfusion before <span class="hlt">cold</span> preservation and the addition of PGE1 to SOWP were thus beneficial in an in vivo rat model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22209763','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22209763"><span>The use of <span class="hlt">warmed</span> water treatment to induce protective immunity against the bacterial <span class="hlt">cold</span>-water disease pathogen Flavobacterium psychrophilum in ayu (Plecoglossus altivelis).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sugahara, K; Eguchi, M</p> <p>2012-03-01</p> <p>We investigated the induction of protective immunity against bacterial <span class="hlt">cold</span>-water disease (BCWD) caused by Flavobacterium psychrophilum by <span class="hlt">warmed</span> water treatment in ayu (Plecoglossus altivelis). Fish were immersed in a live bacterial suspension (10⁷ CFU mL⁻¹) for 30 min and placed in 700 L concrete tanks. The 28 °C <span class="hlt">warmed</span> water treatment lasted 3 days and began 1, 6, and 24 h after immersion in the live bacterial suspension. A naïve control fish group was immersed in a sterilized modified Cytophaga (MCY) broth instead of the bacterial suspension. Fourteen days after the immersion, agglutination antibody titers against F. psychrophilum were measured by using micro-titer methods. Fish were then exposed to a bacterial bath to infect them with live F. psychrophilum, and cumulative mortality was monitored. Fish treated with <span class="hlt">warmed</span> water at 1, 6, and 24 h after immersion in the live bacterial suspension had cumulative mortalities of 36%, 30%, and 18%, respectively, all of which were significantly lower than the cumulative mortality of the naïve control fish (90%). Treated fish also showed high antibody titers against F. psychrophilum in agglutination tests. These results demonstrate that <span class="hlt">warmed</span> water treatment could not only cure BCWD but also immunize the fish against the causative agent F. psychrophilum. Copyright © 2011 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70118019','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70118019"><span>Influence of El Niño–Southern Oscillation (<span class="hlt">ENSO</span>) events on the evolution of central California's shoreline</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Storlazzi, Curt D.; Griggs, Gary B.</p> <p>2000-01-01</p> <p>Significant sea-cliff erosion and storm damage occurred along the central coast of California during the 1982–1983 and 1997–1998 El Niño winters. This generated interest among scientists and land-use planners in how historic El Niño–Southern Oscillation (<span class="hlt">ENSO</span>) winters have affected the coastal climate of central California. A relative <span class="hlt">ENSO</span> intensity index based on oceanographic and meteorologic data defines the timing and magnitude of <span class="hlt">ENSO</span> events over the past century. The index suggests that five higher intensity (relative values 4–6) and 17 lower intensity (relative values 1–3) <span class="hlt">ENSO</span> events took place between 1910 and 1995. The <span class="hlt">ENSO</span> intensity index correlates with fluctuations in the time series of cyclone activity, precipitation, detrended sea level, wave height, sea-surface temperature, and sea-level barometric pressure. Wave height, sea level, and precipitation, which are the primary external forcing parameters in sea-cliff erosion, increase nonlinearly with increasing relative <span class="hlt">ENSO</span> event intensity. The number of storms that caused coastal erosion or storm damage and the historic occurrence of large-scale sea-cliff erosion along the central coast also increase nonlinearly with increasing relative event intensity. These correlations and the frequency distribution of relative <span class="hlt">ENSO</span> event intensities indicate that moderate- to high-intensity <span class="hlt">ENSO</span> events cause the most sea-cliff erosion and shoreline recession over the course of a century.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.6334Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.6334Z"><span>Importance of convective parameterization in <span class="hlt">ENSO</span> predictions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Jieshun; Kumar, Arun; Wang, Wanqiu; Hu, Zeng-Zhen; Huang, Bohua; Balmaseda, Magdalena A.</p> <p>2017-06-01</p> <p>This letter explored the influence of atmospheric convection scheme on El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) predictions using a set of hindcast experiments. Specifically, a low-resolution version of the Climate Forecast System version 2 is used for 12 month hindcasts starting from each April during 1982-2011. The hindcast experiments are repeated with three atmospheric convection schemes. All three hindcasts apply the identical initialization with ocean initial conditions taken from the European Centre for Medium-Range Weather Forecasts and atmosphere/land initial states from the National Centers for Environmental Prediction. Assessments indicate a substantial sensitivity of the sea surface temperature prediction skill to the different convection schemes, particularly over the eastern tropical Pacific. For the Niño 3.4 index, the anomaly correlation skill can differ by 0.1-0.2 at lead times longer than 2 months. Long-term simulations are further conducted with the three convection schemes to understand the differences in prediction skill. By conducting heat budget analyses for the mixed-layer temperature anomalies, it is suggested that the convection scheme having the highest skill simulates stronger and more realistic coupled feedbacks related to <span class="hlt">ENSO</span>. Particularly, the strength of the Ekman pumping feedback is better represented, which is traced to more realistic simulation of surface wind stress. Our results imply that improving the mean state simulations in coupled (ocean-atmosphere) general circulation model (e.g., ameliorating the Intertropical Convergence Zone simulation) might further improve our <span class="hlt">ENSO</span> prediction capability.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JMS...158...59H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JMS...158...59H"><span>Seasonal and interannual variability of chlorophyll-a and associated physical synchronous variability in the western tropical Pacific</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hou, Xueyan; Dong, Qing; Xue, Cunjin; Wu, Shuchao</p> <p>2016-06-01</p> <p>Based on long-term satellite-derived ocean data sets and methods of empirical orthogonal function and singular value decomposition, we investigated the spatiotemporal variability of the chlorophyll-a concentration (CHL) on seasonal and interannual timescales in the western tropical Pacific associated with physical ocean variables of sea surface temperature (SST), sea level anomaly (SLA) and sea surface wind (SSW), and the El Niño Southern Oscillation (<span class="hlt">ENSO</span>) index. The bio-physical synchronous variation on interannual timescale was also confirmed in terms of the scales of variability and oscillation periods in the time-frequency space using the methods of Fourier transform, Morlet wavelet transform, and wavelet coherence analysis. On a seasonal timescale, the first two modes of the monthly mean CHL fields described the consecutive spatiotemporal variation in CHL in the western tropical Pacific. CHL reached the maximum during late winter-early spring and minimum during summer-early autumn with the exception of the northeast of Papua New Guinea and the Solomon Islands. The CHL bloom in boreal winter-spring was closely associated with <span class="hlt">cold</span> SST, high sea level along the North Equatorial Countercurrent meanders, and strong wind. On an interannual timescale, the variability of CHL exhibited a close correlation with SST, SLA, SSW, and <span class="hlt">ENSO</span>. During El Niño, CHL increased in the oligotrophic western basin of the <span class="hlt">warm</span> pool associated with <span class="hlt">cold</span> SST, low SLA, and strong westerly winds but decreased in the mesotrophic eastern basin of the <span class="hlt">warm</span> pool in association with <span class="hlt">warm</span> SST, high SLA, and weak easterly trade winds. There may exist time-lag for the bio-physical covariation, i.e., CHL and SST varied simultaneously within 1 month, and CHL variations led SLA by approximately 0-3 months but lagged wind speed by about 1 month. In the time-frequency domain, the interannual variability in CHL and physical ocean variables had high common power, indicating that the variability scales</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29146150','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29146150"><span>The effect of <span class="hlt">cold</span> acclimation on active ion transport in cricket ionoregulatory tissues.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Des Marteaux, Lauren E; Khazraeenia, Soheila; Yerushalmi, Gil Y; Donini, Andrew; Li, Natalia G; Sinclair, Brent J</p> <p>2018-02-01</p> <p><span class="hlt">Cold</span>-acclimated insects defend ion and water transport function during <span class="hlt">cold</span> exposure. We hypothesized that this is achieved via enhanced active transport. The Malpighian tubules and rectum are likely targets for such transport modifications, and recent transcriptomic studies indicate shifts in Na + -K + ATPase (NKA) and V-ATPase expression in these tissues following <span class="hlt">cold</span> acclimation. Here we quantify the effect of <span class="hlt">cold</span> acclimation (one week at 12°C) on active transport in the ionoregulatory organs of adult Gryllus pennsylvanicus field crickets. We compared primary urine production of <span class="hlt">warm</span>- and <span class="hlt">cold</span>-acclimated crickets in excised Malpighian tubules via Ramsay assay at a range of temperatures between 4 and 25°C. We then compared NKA and V-ATPase activities in Malpighian tubule and rectal homogenates from <span class="hlt">warm</span>- and <span class="hlt">cold</span>-acclimated crickets via NADH-linked photometric assays. Malpighian tubules of <span class="hlt">cold</span>-acclimated crickets excreted fluid at lower rates at all temperatures compared to <span class="hlt">warm</span>-acclimated crickets. This reduction in Malpighian tubule excretion rates may be attributed to increased NKA activity that we observed for <span class="hlt">cold</span>-acclimated crickets, but V-ATPase activity was unchanged. <span class="hlt">Cold</span> acclimation had no effect on rectal NKA activity at either 21°C or 6°C, and did not modify rectal V-ATPase activity. Our results suggest that an overall reduction, rather than enhancement of active transport in the Malpighian tubules allows crickets to maintain hemolymph water balance during <span class="hlt">cold</span> exposure, and increased Malpighian tubule NKA activity may help to defend and/or re-establish ion homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120001939','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120001939"><span>Modeling and Observations of the Response of Tropical Tropospheric Ozone to <span class="hlt">ENSO</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Oman, L. D.; Douglass, A. R.; Ziemke, J. R.; Waugh, D. W.; Lang, C.; Rodriquez, J. M.; Nielsen, J. E.</p> <p>2012-01-01</p> <p>The El Nino-Southern Oscillation (<span class="hlt">ENSO</span>) is the dominant mode of tropical variability on interannual time scales. <span class="hlt">ENSO</span> appears to extend its influence into the chemical composition of the tropical troposphere, Recent results have revealed an <span class="hlt">ENSO</span> induced wave-1 anomaly in observed tropical tropospheric column ozone, This results in a dipole over the western and eastern tropical Pacific, whereby differencing the two regions produces an ozone anomaly with an extremely high correlation to the Nino 3.4 Index. We have successfully reproduced this result using the Goddard Earth Observing System Version 5 (GEOS-5) general circulation model coupled to a comprehensive stratospheric and tropospheric chemical mechanism forced with observed sea surface temperatures over the past 25 years, An examination of the modeled ozone field reveals the vertical contributions of tropospheric ozone to the column over the western and eastern Pacific region, We will show targeted comparisons with SHADOZ ozonesondes over these regions to provide insight into the vertical structure. Also, comparisons with NASA's Aura satellite Microwave Limb Sounder (MLS) and Tropospheric Emissions Spectrometer (TES) instruments and other appropriate data sets will be shown. In addition, the water vapor response to <span class="hlt">ENSO</span> will be compared to help illuminate its role relative to dynamics in impacting ozone concentrations. These results indicate that the tropospheric ozone response to <span class="hlt">ENSO</span> is potentially a very useful chemistry-climate diagnostic and should be considered in future modeling assessments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JGRC..11312010I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JGRC..11312010I"><span>Characteristics of the <span class="hlt">cold</span>-water belt formed off Soya <span class="hlt">Warm</span> Current</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ishizu, Miho; Kitade, Yujiro; Matsuyama, Masaji</p> <p>2008-12-01</p> <p>We examined the data obtained by acoustic Doppler current profiler, conductivity-temperature-depth profiler, and expendable bathythermograph observations, which were collected in the summers of 2000, 2001, and 2002, to clarify the characteristics of the <span class="hlt">cold</span>-water belt (CWB), i.e., lower-temperature water than the surrounding water extending from the southwest coast of Sakhalin along the offshore side of Soya <span class="hlt">Warm</span> Current (SWC) and to confirm one of the formation mechanisms of the CWB as suggested by our previous study, i.e., the upwelling due to the convergence of bottom Ekman transport off the SWC region. The CWB was observed at about 30 km off the coast, having a thickness of 14 m and a minimum temperature of 12°C at the sea surface. The CWB does not have the specific water mass, but is constituted of three representative water types off the northeast coast of Hokkaido in summer, i.e., SWC water, Fresh Surface Okhotsk Sea Water, and Okhotsk Sea Intermediate Water. In a comparison of the horizontal distributions of current and temperature, the CWB region is found to be advected to the southeast at an average of 40 ± 29% of the maximum current velocity of the SWC. The pumping speed due to the convergence of the bottom Ekman transport is estimated as (1.5-3.0) × 10-4 m s-1. We examined the mixing ratio of the CWB, and the results implied that the water mass of the CWB is advected southeastward and mixes with a water mass upwelling in a different region off SWC.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A23G0297W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A23G0297W"><span>An Assessment of the SST Simulation Using the Climate Forecast System Coupled to the SSiB Surface Model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Y.; Xue, Y.; Huang, B.; Lee, J.; De Sales, F.</p> <p>2016-12-01</p> <p>A long term simulation has been conducted using the Climate Forecast System (CFSv2) coupled to the SSiB-2 land model, which consists of the Global Forecast System atmospheric model (GFS) and the Modular Ocean model - version 4 (MOM4) as the ocean component. This study evaluates the model's performance in simulating sea surface temperature (SST) mean state, trend, and inter-annual and decadal variabilities. The model is able to produce the reasonable spatial distribution of the SST climatology; however, it has prominent large scale biases. In the middle latitude of the Northern Hemisphere, major <span class="hlt">cold</span> biases is close to the <span class="hlt">warm</span> side of the large SST gradients, which may be associated with the weaker Kuroshio and Gulf Stream extensions that diffuse the SST gradient. IN addition, <span class="hlt">warm</span> biases extend along the west coast of the North America continent to the high latitude, which may be related with excessive Ekman down-welling and solar radiation fluxes reaching to the surface due to the lack of cloud there. <span class="hlt">Warm</span> biases also exist over the tropical <span class="hlt">cold</span> tough areas in the Pacific and Atlantic. The global SST trend and interannual variations are well captured except for that in the south Hemisphere after year 2000, which is mainly contributed by the bias from the southern Pacific Ocean. Although the model fails to accurately produce <span class="hlt">ENSO</span> events in proper years, it does reproduce the <span class="hlt">ENSO</span> frequency well; they are skewed toward more <span class="hlt">warm</span> events after 1990. The model also shows ability in SST decadal variation, such as the so-called inter-decadal Pacific oscillation (IPO); however, its phases seem to go reversely compared with the observation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A23M..08L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A23M..08L"><span>Tropical cyclone prediction skills - MJO and <span class="hlt">ENSO</span> dependence in S2S data sets</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, C. Y.; Camargo, S.; Vitart, F.; Sobel, A. H.; Tippett, M.</p> <p>2017-12-01</p> <p>The El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) and the Madden-Julian Oscillation (MJO) are two important climate controls on tropical cyclone (TC) activity. The seasonal prediction skill of dynamical models is determined in large part by their accurate representations of the <span class="hlt">ENSO</span>-TC relationship. Regarding intraseasonal TC variability, observations suggest MJO to be the primary control. Given the ongoing effort to develop dynamical seasonal-to-subseasonal (S2S) TC predictions, it is important to examine whether the global models, running on S2S timescales, are able to reproduce these known <span class="hlt">ENSO</span>-TC and MJO-TC relationships, and how this ability affects forecasting skill. Results from the S2S project (from F. Vitart) suggest that global models have skill in predicting MJO phase with up to two weeks of lead time (four weeks for ECMWF). Meanwhile, our results show that, qualitatively speaking, the MJO-TC relationship in storm genesis is reasonably captured, with some models (e.g., ECMWF, BoM, NCEP, MetFr) performing better than the others. However, we also find that model skill in predicting basin-wide genesis and accumulated cyclone energy (ACE) are mainly due to the models' ability to capture the climatological seasonality. Removing the seasonality significantly reduces the models' skill; even the best model (ECMWF) in the most reliable basin (western north Pacific and Atlantic) has very little skill (close to 0.1 in Brier skill score for genesis and close to 0 in rank probability skill score for ACE). This brings up the question: do any factors contribute to intraseasonal TC prediction skill other than seasonality? Is the low skill, after removing the seasonality, due to poor MJO and <span class="hlt">ENSO</span> simulations, or to poor representation of other <span class="hlt">ENSO</span>-TC or MJO-TC relationships, such as <span class="hlt">ENSO</span>'s impact on the storm tracks? We will quantitatively discuss the dependence of the TC prediction skill on <span class="hlt">ENSO</span> and MJO, focusing on Western North Pacific and Atlantic, where we have sufficient</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5744376','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5744376"><span>Strain Evolution in <span class="hlt">Cold-Warm</span> Forged Steel Components Studied by Means of EBSD Technique</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bonollo, Franco; Bassan, Fabio; Berto, Filippo</p> <p>2017-01-01</p> <p>Electron BackScatter Diffraction (EBSD) in conjunction with Field-Emission Environmental Scanning Electron Microscopy (FEG-ESEM) has been used to evaluate the microstructural and local plastic strain evolution in different alloys (AISI 1005, AISI 304L and Duplex 2205) deformed by a single-stage <span class="hlt">cold</span> and <span class="hlt">warm</span> forging process. The present work is aimed to describe the different behavior of the austenite and ferrite during plastic deformation as a function of different forging temperatures. Several topological EBSD maps have been measured on the deformed and undeformed states. Then, image quality factor, distributions of the grain size and misorientation have been analyzed in detail. In the austenitic stainless steel, the γ-phase has been found to harden more easily, then α-phase and γ-phase in AISI 1005 and in duplex stainless steel, sequentially. Compared to the high fraction of continuous dynamic recrystallized austenitic zones observed in stainless steels samples forged at low temperatures, the austenitic microstructure of samples forged at higher temperatures, 600–700 °C, has been found to be mainly characterized by large and elongated grains with some colonies of fine nearly-equiaxed grains attributed to discontinuous dynamic recrystallization. PMID:29258249</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8649L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8649L"><span>Excess <span class="hlt">warming</span> in Central Europe after the 8.2 ka <span class="hlt">cold</span> event: evidence from a varve-dated ostracod δ18O record from Mondsee (Austria)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lauterbach, Stefan; Andersen, Nils; Erlenkeuser, Helmut; Danielopol, Dan L.; Namiotko, Tadeusz; Hüls, Matthias; Belmecheri, Soumaya; Nantke, Carla; Meyer, Hanno; Chapligin, Bernhard; von Grafenstein, Uli; Brauer, Achim</p> <p>2017-04-01</p> <p>As evidenced by numerous palaeoclimate records worldwide, the Holocene <span class="hlt">warm</span> period has been punctuated by several short, low-amplitude <span class="hlt">cold</span> episodes. Among these, the so-called 8.2 ka <span class="hlt">cold</span> event represents a particularly prominent climate anomaly. Accordingly, several proxy-based and modeling studies have addressed its causal mechanisms, absolute dating, duration, amplitude, spatio-temporal characteristics and environmental consequences so far. However, knowledge about the dynamics and causes of subsequent climate recovery is still limited although this is essential for understanding rapid climate change. Here we present a new sub-decadally resolved and precisely dated oxygen isotope (δ18O) record for the interval 7.7-8.7 ka BP derived from benthic ostracods preserved in the varved lake sediments of pre-Alpine Mondsee (Austria), providing new insights into climate development around the 8.2 ka <span class="hlt">cold</span> event in Central Europe. The high-resolution Mondsee δ18O record reveals the occurrence of a pronounced <span class="hlt">cold</span> spell around 8.2 ka BP, whose amplitude (˜1.0 ‰ , equivalent to a 1.5-2.0 ˚ C cooling), total duration (151 years) and absolute dating (8231-8080 varve years BP, i.e. calendar years before AD 1950) agrees well with results from other Northern Hemisphere palaeoclimate archives, e.g. the Greenland ice cores. In addition, the Mondsee data set provides evidence for a 75-year-long δ18O overshoot directly following the 8.2 ka event (between 8080 and 8005 varve years BP), which is interpreted as a period of excess <span class="hlt">warming</span> (about 0.5-0.6 ˚ C above the pre-8.2 ka event level) in Central Europe. Though so far not been explicitly described elsewhere, this observation is consistent with evidence from other proxy records in the North Atlantic realm, therefore likely reflecting a hemispheric-scale signal rather than a local phenomenon. As a possible trigger we suggest an enhanced resumption of the Atlantic meridional overturning circulation (AMOC), supporting</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5484286','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5484286"><span><span class="hlt">Warmed</span>, humidified CO2 insufflation benefits intraoperative core temperature during laparoscopic surgery: A meta‐analysis</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dean, Meara; Ramsay, Robert; Heriot, Alexander; Mackay, John; Hiscock, Richard</p> <p>2016-01-01</p> <p>Abstract Background Intraoperative hypothermia is linked to postoperative adverse events. The use of <span class="hlt">warmed</span>, humidified CO2 to establish pneumoperitoneum during laparoscopy has been associated with reduced incidence of intraoperative hypothermia. However, the small number and variable quality of published studies have caused uncertainty about the potential benefit of this therapy. This meta‐analysis was conducted to specifically evaluate the effects of <span class="hlt">warmed</span>, humidified CO2 during laparoscopy. Methods An electronic database search identified randomized controlled trials performed on adults who underwent laparoscopic abdominal surgery under general anesthesia with either <span class="hlt">warmed</span>, humidified CO2 or <span class="hlt">cold</span>, dry CO2. The main outcome measure of interest was change in intraoperative core body temperature. Results The database search identified 320 studies as potentially relevant, and of these, 13 met the inclusion criteria and were included in the analysis. During laparoscopic surgery, use of <span class="hlt">warmed</span>, humidified CO2 is associated with a significant increase in intraoperative core temperature (mean temperature change, 0.3°C), when compared with <span class="hlt">cold</span>, dry CO2 insufflation. Conclusion <span class="hlt">Warmed</span>, humidified CO2 insufflation during laparoscopic abdominal surgery has been demonstrated to improve intraoperative maintenance of normothermia when compared with <span class="hlt">cold</span>, dry CO2. PMID:27976517</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp.2365C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp.2365C"><span>The Angola Low: relationship with southern African rainfall and <span class="hlt">ENSO</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crétat, Julien; Pohl, Benjamin; Dieppois, Bastien; Berthou, Ségolène; Pergaud, Julien</p> <p>2018-05-01</p> <p>The main states of the Angola Low (AL) are identified using clustering analysis applied to daily anomalous patterns of 700-hPa wind vorticity over Angola and adjacent countries from November to March for the 1980/81-2014/15 period. At the daily timescale, we examine the extent to which the main states of the AL modulate daily rainfall over southern Africa. At the interannual timescale, we assess both the relationship between the occurrence of these AL states and El Niño southern oscillation (<span class="hlt">ENSO</span>) and the role of the AL in explaining <span class="hlt">ENSO</span>'s failure in driving southern African rainfall at times. Three reanalyses are considered to account for uncertainties induced by the scarcity of data available for assimilation over southern Africa. Three preferential states of the Angola Low are identified: AL state close to its seasonal climatology with slight zonal displacements, anomalously weak AL state and anomalously strong AL state with meridional displacements. These different states all significantly modulate daily southern African rainfall. Near-climatological AL state promotes wet rainfall anomalies over eastern subtropical southern Africa and dry rainfall anomalies over its western part. A slight westward shift in the near-climatological position of the AL leads to reversed zonal gradient in rainfall. The remaining regimes significantly modulate the meridional gradient in southern African rainfall. Anomalously weak and anomalously northward AL states promote wet rainfall anomalies over tropical southern Africa and dry rainfall anomalies over subtropical southern Africa. The reverse prevails for anomalously southward AL. At the interannual timescale, <span class="hlt">ENSO</span> significantly modulates the seasonal occurrence of most AL states in the three reanalyses. Anomalously weak and southward AL states are more strongly correlated with regional rainfall than <span class="hlt">ENSO</span> in all reanalyses, suggesting that accounting for AL variability may improve seasonal forecasts. Case study analysis of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC41B1022P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC41B1022P"><span>Biennial-Aligned Lunisolar-Forcing of <span class="hlt">ENSO</span>: Implications for Simplified Climate Models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pukite, P. R.</p> <p>2017-12-01</p> <p>By solving Laplace's tidal equations along the equatorial Pacific thermocline, assuming a delayed-differential effective gravity forcing due to a combined lunar+solar (lunisolar) stimulus, we are able to precisely match <span class="hlt">ENSO</span> periodic variations over wide intervals. The underlying pattern is difficult to decode by conventional means such as spectral analysis, which is why it has remained hidden for so long, despite the excellent agreement in the time-domain. What occurs is that a non-linear seasonal modulation with monthly and fortnightly lunar impulses along with a biennially-aligned "see-saw" is enough to cause a physical aliasing and thus multiple folding in the frequency spectrum. So, instead of a conventional spectral tidal decomposition, we opted for a time-domain cross-validating approach to calibrate the amplitude and phasing of the lunisolar cycles. As the lunar forcing consists of three fundamental periods (draconic, anomalistic, synodic), we used the measured Earth's length-of-day (LOD) decomposed and resolved at a monthly time-scale [1] to align the amplitude and phase precisely. Even slight variations from the known values of the long-period tides will degrade the fit, so a high-resolution calibration is possible. Moreover, a narrow training segment from 1880-1920 using NINO34/SOI data is adequate to extrapolate the cycles of the past 100 years (see attached figure). To further understand the biennial impact of a yearly differential-delay, we were able to also decompose using difference equations the historical sea-level-height readings at Sydney harbor to clearly expose the <span class="hlt">ENSO</span> behavior. Finally, the <span class="hlt">ENSO</span> lunisolar model was validated by back-extrapolating to Unified <span class="hlt">ENSO</span> coral proxy (UEP) records dating to 1650. The quasi-biennial oscillation (QBO) behavior of equatorial stratospheric winds derives following a similar pattern to <span class="hlt">ENSO</span> via the tidal equations, but with an emphasis on draconic forcing. This improvement in <span class="hlt">ENSO</span> and QBO understanding has</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/31082','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/31082"><span>Sustainable construction in remote <span class="hlt">cold</span> regions.</span></a></p> <p><a target="_blank" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2015-12-01</p> <p>The goal of this project was to identify sustainable construction techniques appropriate for remote and <span class="hlt">cold</span> regions, some of which apply to : operations and maintenance as well. The vast body of literature regarding green construction in <span class="hlt">warm</span> region...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28478242','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28478242"><span>Physical <span class="hlt">coldness</span> enhances racial in-group bias in empathy: Electrophysiological evidence.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Luo, Siyang; Han, Xiaochun; Du, Na; Han, Shihui</p> <p>2017-05-03</p> <p>Empathy for others' pain plays a key role in prosocial behavior and is influenced by intergroup relationships. Increasing evidence suggests greater empathy for racial in-group than out-group individuals' pain and the racial in-group bias undergoes sociocultural and biological influences. The present study further investigated whether and how physical environments influence racial in-group bias in empathy by testing the hypothesis that sensory experiences of physical <span class="hlt">coldness</span> versus warmth enhance differential empathic neural responses to racial in-group vs. out-group individuals' suffering. We recorded event-related brain potentials to painful versus neutral expressions of same-race and other-race faces when participants held a <span class="hlt">cold</span> or <span class="hlt">warm</span> pack. We found that brain activity in the N2 (200-340ms) and P3 (400-600ms) time windows over the frontal/central region was positively shifted by painful (vs. neutral) expressions. Moreover, the N2/P3 empathic neural responses were significantly larger for same-race than other-race faces in the <span class="hlt">cold</span> but not in the <span class="hlt">warm</span> condition. Moreover, subjective ratings of different temperatures in the <span class="hlt">cold</span> vs. <span class="hlt">warm</span> conditions predicted larger changes of racial in-group bias in empathic neural responses in the N2 time window. Our findings suggest that sensory experiences of physical <span class="hlt">coldness</span> can strengthen emotional resonance with same-race individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140017640','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140017640"><span>Comparison of Forced <span class="hlt">ENSO</span>-Like Hydrological Expressions in Simulations of the Preindustrial and Mid-Holocene</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lewis, Sophie C.; LeGrande, Allegra N.; Schmidt, Gavin A.; Kelley, Maxwell</p> <p>2014-01-01</p> <p>Using the water isotope- and vapor source distribution (VSD) tracer-enabled Goddard Institute for Space Studies ModelE-R, we examine changing El Nino-Southern Oscillation (<span class="hlt">ENSO</span>)-like expressions in the hydrological cycle in a suite of model experiments. We apply strong surface temperature anomalies associated with composite observed El Nino and La Nina events as surface boundary conditions to preindustrial and mid-Holocene model experiments in order to investigate <span class="hlt">ENSO</span>-like expressions in the hydrological cycle under varying boundary conditions. We find distinct simulated hydrological anomalies associated with El Nino-like ("ENSOWARM") and La Nina-like ("ENSOCOOL") conditions, and the region-specific VSD tracers show hydrological differences across the Pacific basin between El Nino-like and La Nina-like events. The application of ENSOCOOL forcings does not produce climatological anomalies that represent the equal but opposite impacts of the ENSOWARM experiment, as the isotopic anomalies associated with ENSOWARM conditions are generally stronger than with ENSOCOOL and the spatial patterns of change distinct. Also, when the same <span class="hlt">ENSO</span>-like surface temperature anomalies are imposed on the mid-Holocene, the hydrological response is muted, relative to the preindustrial. Mid-Holocene changes in moisture sources to the analyzed regions across the Pacific reveal potentially complex relationships between <span class="hlt">ENSO</span>-like conditions and boundary conditions. Given the complex impacts of <span class="hlt">ENSO</span>-like conditions on various aspects of the hydrological cycle, we suggest that proxy record insights into paleo-<span class="hlt">ENSO</span> variability are most likely to be robust when synthesized from a network of many spatially diverse archives, which can account for the potential nonstationarity of <span class="hlt">ENSO</span> teleconnections under different boundary conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25671171','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25671171"><span>Global <span class="hlt">warming</span> and neurodegenerative disorders: speculations on their linkage.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Habibi, Laleh; Perry, George; Mahmoudi, Morteza</p> <p>2014-01-01</p> <p>Climate change is having considerable impact on biological systems. Eras of ice ages and <span class="hlt">warming</span> shaped the contemporary earth and origin of creatures including humans. <span class="hlt">Warming</span> forces stress conditions on cells. Therefore, cells evolved elaborate defense mechanisms, such as creation of heat shock proteins, to combat heat stress. Global <span class="hlt">warming</span> is becoming a crisis and this process would yield an undefined increasing rate of neurodegenerative disorders in future decades. Since heat stress is known to have a degenerative effects on neurons and, conversely, <span class="hlt">cold</span> conditions have protective effect on these cells, we hypothesize that persistent heat stress forced by global <span class="hlt">warming</span> might play a crucial role in increasing neurodegenerative disorders.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21078096','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21078096"><span>Predicted effects of climate <span class="hlt">warming</span> on the distribution of 50 stream fishes in Wisconsin, USA.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lyons, J; Stewart, J S; Mitro, M</p> <p>2010-11-01</p> <p>Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate <span class="hlt">warming</span> effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56·0-93·5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate <span class="hlt">warming</span> (summer air temperatures increase 1° C and water 0·8° C), moderate <span class="hlt">warming</span> (air 3° C and water 2·4° C) and major <span class="hlt">warming</span> (air 5° C and water 4° C). With climate <span class="hlt">warming</span>, 23 fishes were predicted to decline in distribution (three to extirpation under the major <span class="hlt">warming</span> scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three <span class="hlt">cold</span>-water and 16 cool-water fishes and four of 31 <span class="hlt">warm</span>-water fishes were predicted to decline, four <span class="hlt">warm</span>-water fishes to remain the same and 23 <span class="hlt">warm</span>-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have <span class="hlt">cold</span> to cool summer water temperatures and are dominated by <span class="hlt">cold</span>-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by <span class="hlt">warm</span>-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate <span class="hlt">warming</span> will have major effects on the distribution of stream fishes in Wisconsin. © 2010 The Authors. Journal of Fish Biology © 2010 The Fisheries Society of the British Isles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SGeo...38..277R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SGeo...38..277R"><span>Phenological Responses to <span class="hlt">ENSO</span> in the Global Oceans</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Racault, M.-F.; Sathyendranath, S.; Menon, N.; Platt, T.</p> <p>2017-01-01</p> <p>Phenology relates to the study of timing of periodic events in the life cycle of plants or animals as influenced by environmental conditions and climatic forcing. Phenological metrics provide information essential to quantify variations in the life cycle of these organisms. The metrics also allow us to estimate the speed at which living organisms respond to environmental changes. At the surface of the oceans, microscopic plant cells, so-called phytoplankton, grow and sometimes form blooms, with concentrations reaching up to 100 million cells per litre and extending over many square kilometres. These blooms can have a huge collective impact on ocean colour, because they contain chlorophyll and other auxiliary pigments, making them visible from space. Phytoplankton populations have a high turnover rate and can respond within hours to days to environmental perturbations. This makes them ideal indicators to study the first-level biological response to environmental changes. In the Earth's climate system, the El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) dominates large-scale inter-annual variations in environmental conditions. It serves as a natural experiment to study and understand how phytoplankton in the ocean (and hence the organisms at higher trophic levels) respond to climate variability. Here, the <span class="hlt">ENSO</span> influence on phytoplankton is estimated through variations in chlorophyll concentration, primary production and timings of initiation, peak, termination and duration of the growing period. The phenological variabilities are used to characterise phytoplankton responses to changes in some physical variables: sea surface temperature, sea surface height and wind. It is reported that in oceanic regions experiencing high annual variations in the solar cycle, such as in high latitudes, the influence of <span class="hlt">ENSO</span> may be readily measured using annual mean anomalies of physical variables. In contrast, in oceanic regions where <span class="hlt">ENSO</span> modulates a climate system characterised by a seasonal</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AdAtS..31..801X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AdAtS..31..801X"><span>The natural oscillation of two types of <span class="hlt">ENSO</span> events based on analyses of CMIP5 model control runs</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Kang; Su, Jingzhi; Zhu, Congwen</p> <p>2014-07-01</p> <p>The eastern- and central-Pacific El Niño-Southern Oscillation (EP- and CP-<span class="hlt">ENSO</span>) have been found to be dominant in the tropical Pacific Ocean, and are characterized by interannual and decadal oscillation, respectively. In the present study, we defined the EP- and CP-<span class="hlt">ENSO</span> modes by singular value decomposition (SVD) between SST and sea level pressure (SLP) anomalous fields. We evaluated the natural features of these two types of <span class="hlt">ENSO</span> modes as simulated by the pre-industrial control runs of 20 models involved in phase five of the Coupled Model Intercomparison Project (CMIP5). The results suggested that all the models show good skill in simulating the SST and SLP anomaly dipolar structures for the EP-<span class="hlt">ENSO</span> mode, but only 12 exhibit good performance in simulating the tripolar CP-<span class="hlt">ENSO</span> modes. Wavelet analysis suggested that the ensemble principal components in these 12 models exhibit an interannual and multi-decadal oscillation related to the EP- and CP-<span class="hlt">ENSO</span>, respectively. Since there are no changes in external forcing in the pre-industrial control runs, such a result implies that the decadal oscillation of CP-<span class="hlt">ENSO</span> is possibly a result of natural climate variability rather than external forcing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6043P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6043P"><span>The crucial role of the Green Sahara in damping <span class="hlt">ENSO</span> variability during the Holocene</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pausata, Francesco S. R.; Zhang, Qiong; Muschitiello, Francesco; Stager, Curt</p> <p>2016-04-01</p> <p>Several paleoclimate records show that the <span class="hlt">ENSO</span> variability may have been remarkably smaller during the mid Holocene (MH) relative to today; however, MH model simulations in which only the orbital forcing is taken into account are not able to fully capture the magnitude of this change. We use a fully coupled simulation for 6000 yr BP (MH) in which we prescribed not only the MH orbital forcing but also Saharan vegetation and reduced dust concentrations. By performing a set of idealized experiments in which each forcing is changed in turn, we show that when accounting for both vegetated Sahara and reduced dust concentrations, the amplitude of the <span class="hlt">ENSO</span> cycle and its variability are remarkably reduced (~25%) compared to case when only the orbital forcing is prescribed (only 7%). The changes in <span class="hlt">ENSO</span> behavior are accompanied by damping of the Atlantic El Niño variability (almost 50%). The simulated changes in equatorial variability are connected to the momentous strengthening of the WAM monsoon, which extents all the way to the northernmost part of the Sahara desert. Such changes in the WAM and in the atmospheric circulation over the equatorial Atlantic led to a reduction of the Atlantic El Niño variability and affect <span class="hlt">ENSO</span> behavior through the atmospheric circulation bridge between the Atlantic and the Pacific. Hence, our results suggest orbital forcing is likely not the only forcing at play behind the changes in <span class="hlt">ENSO</span> behavior and point to the changes over equatorial Atlantic connected to the Sahara greening as a crucial factor in altering the <span class="hlt">ENSO</span> spatiotemporal characteristic during the MH.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1394479-reduced-north-american-terrestrial-primary-productivity-linked-anomalous-arctic-warming','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1394479-reduced-north-american-terrestrial-primary-productivity-linked-anomalous-arctic-warming"><span>Reduced North American terrestrial primary productivity linked to anomalous Arctic <span class="hlt">warming</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Kim, Jin-Soo; Kug, Jong-Seong; Jeong, Su-Jong; ...</p> <p>2017-07-10</p> <p><span class="hlt">Warming</span> temperatures in the Northern Hemisphere have enhanced terrestrial productivity. Despite the <span class="hlt">warming</span> trend, North America has experienced more frequent and more intense <span class="hlt">cold</span> weather events during winters and springs. These events have been linked to anomalous Arctic <span class="hlt">warming</span> since 1990, and may affect terrestrial processes. Here we analyse many observation data sets and numerical model simulations to evaluate links between Arctic temperatures and primary productivity in North America. We find that positive springtime temperature anomalies in the Arctic have led to negative anomalies in gross primary productivity over most of North America during the last three decades, which amountmore » to a net productivity decline of 0.31 PgC yr -1 across the continent. This decline is mainly explained by two factors: severe <span class="hlt">cold</span> conditions in northern North America and lower precipitation in the South Central United States. In addition, United States crop-yield data reveal that during years experiencing anomalous <span class="hlt">warming</span> in the Arctic, yields declined by approximately 1 to 4% on average, with individual states experiencing declines of up to 20%. We conclude that the strengthening of Arctic <span class="hlt">warming</span> anomalies in the past decades has remotely reduced productivity over North America.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1394479-reduced-north-american-terrestrial-primary-productivity-linked-anomalous-arctic-warming','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1394479-reduced-north-american-terrestrial-primary-productivity-linked-anomalous-arctic-warming"><span>Reduced North American terrestrial primary productivity linked to anomalous Arctic <span class="hlt">warming</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kim, Jin-Soo; Kug, Jong-Seong; Jeong, Su-Jong</p> <p></p> <p><span class="hlt">Warming</span> temperatures in the Northern Hemisphere have enhanced terrestrial productivity. Despite the <span class="hlt">warming</span> trend, North America has experienced more frequent and more intense <span class="hlt">cold</span> weather events during winters and springs. These events have been linked to anomalous Arctic <span class="hlt">warming</span> since 1990, and may affect terrestrial processes. Here we analyse many observation data sets and numerical model simulations to evaluate links between Arctic temperatures and primary productivity in North America. We find that positive springtime temperature anomalies in the Arctic have led to negative anomalies in gross primary productivity over most of North America during the last three decades, which amountmore » to a net productivity decline of 0.31 PgC yr -1 across the continent. This decline is mainly explained by two factors: severe <span class="hlt">cold</span> conditions in northern North America and lower precipitation in the South Central United States. In addition, United States crop-yield data reveal that during years experiencing anomalous <span class="hlt">warming</span> in the Arctic, yields declined by approximately 1 to 4% on average, with individual states experiencing declines of up to 20%. We conclude that the strengthening of Arctic <span class="hlt">warming</span> anomalies in the past decades has remotely reduced productivity over North America.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A43I..03L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A43I..03L"><span>Influence of <span class="hlt">ENSO</span> on Gulf Stream cyclogenesis and the North Atlantic storm track</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, C.; Schemm, S.; Ciasto, L.; Kvamsto, N. G.</p> <p>2015-12-01</p> <p>There is emerging evidence that climate in the North Atlantic-European sector is sensitive to vacillations of tropical Pacific sea surface temperatures, in particular, the central Pacific flavour of the El Nino Southern Oscillation (<span class="hlt">ENSO</span>) and concomitant trends in atmospheric heating. The frequency of central Pacific <span class="hlt">ENSOs</span> appears to have increased over the last decades and some studies suggest it may continue increasing in the future, but the precise mechanisms by which these events affect the North Atlantic synoptic scale circulation are poorly understood. Here, we show that central Pacific <span class="hlt">ENSOs</span> influence where midlatitude cyclogenesis occurs over the Gulf Stream, producing more cyclogenesis in the jet exit region rather than in the climatologically preferred jet entrance region. The cyclones forming over the Gulf Stream in central Pacific <span class="hlt">ENSO</span> seasons tend to veer north, penetrating deeper into the Arctic rather than into continental Europe. The shift in cyclogenesis is linked to changes in the large scale circulation, namely, the upper-level trough formed in the lee of the Rocky Mountains.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70155280','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70155280"><span>A westward extension of the <span class="hlt">warm</span> pool leads to a westward extension of the Walker circulation, drying eastern Africa</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Funk, Christopher C.; Williams, A. Park</p> <p>2011-01-01</p> <p>Observations and simulations link anthropogenic greenhouse and aerosol emissions with rapidly increasing Indian Ocean sea surface temperatures (SSTs). Over the past 60 years, the Indian Ocean <span class="hlt">warmed</span> two to three times faster than the central tropical Pacific, extending the tropical <span class="hlt">warm</span> pool to the west by ~40° longitude (>4,000 km). This propensity toward rapid <span class="hlt">warming</span> in the Indian Ocean has been the dominant mode of interannual variability among SSTs throughout the tropical Indian and Pacific Oceans (55°E–140°W) since at least 1948, explaining more variance than anomalies associated with the El Niño-Southern Oscillation (<span class="hlt">ENSO</span>). In the atmosphere, the primary mode of variability has been a corresponding trend toward greatly increased convection and precipitation over the tropical Indian Ocean. The temperature and rainfall increases in this region have produced a westward extension of the western, ascending branch of the atmospheric Walker circulation. Diabatic heating due to increased mid-tropospheric water vapor condensation elicits a westward atmospheric response that sends an easterly flow of dry air aloft toward eastern Africa. In recent decades (1980–2009), this response has suppressed convection over tropical eastern Africa, decreasing precipitation during the ‘long-rains’ season of March–June. This trend toward drought contrasts with projections of increased rainfall in eastern Africa and more ‘El Niño-like’ conditions globally by the Intergovernmental Panel on Climate Change. Increased Indian Ocean SSTs appear likely to continue to strongly modulate the <span class="hlt">Warm</span> Pool circulation, reducing precipitation in eastern Africa, regardless of whether the projected trend in <span class="hlt">ENSO</span> is realized. These results have important food security implications, informing agricultural development, environmental conservation, and water resource planning.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4265694','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4265694"><span>Characteristics of Lake Chad Level Variability and Links to <span class="hlt">ENSO</span>, Precipitation, and River Discharge</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Demoz, Belay; Gebremariam, Sium</p> <p>2014-01-01</p> <p>This study used trend, correlation, and wavelet analysis to characterize Lake Chad (LC) level fluctuations, river discharge, El Niño Southern Oscillation (<span class="hlt">ENSO</span>), and precipitation regimes and their interrelationships. Linear correlation results indicate a negative association between <span class="hlt">ENSO</span> and LC level, river discharge and precipitation. Trend analysis shows increasing precipitation in the Lake Chad Basin (LCB) but decreasing LC level. The mode of interannual variability in LC level, rainfall, and <span class="hlt">ENSO</span> analyzed using wavelet analysis is dominated by 3-4-year periods. Results show that variability in <span class="hlt">ENSO</span> could explain only 31% and 13% of variations in LC level at Kindjeria and precipitation in the northern LCB, respectively. The wavelet transform coherency (WTC) between LC level of the southern pool at Kalom and <span class="hlt">ENSO</span> is statistically significant at the 95% confidence level and phase-locked, implying a cause-and-effect association. These strong coherencies coincide with the La Niña years with the exception of 1997-1998 El Niño events. The WTC shows strong covariance between increasing precipitation and LC level in the northern pool at a 2- to 4-year band and 3- to 4-year band localized from 1996 to 2010. Implications for water resource planning and management are discussed. PMID:25538946</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A53E2304P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A53E2304P"><span>Subtropical tropospheric wave forcing of planetary wave 2 in the prephase of the Stratospheric Sudden <span class="hlt">Warming</span> Event in January 2009</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peters, D. H. W.; Schneidereit, A.; Grams, C. M.; Quinting, J. F.; Keller, J. H.; Wolf, G. A.; Teubler, F.; Riemer, M.; Romppainen-Martius, O.</p> <p>2017-12-01</p> <p>Tropospheric forcing of planetary wavenumber 2 is examined in the prephase of the major stratospheric sudden <span class="hlt">warming</span> event in January 2009 (MSSW 2009). Because of a huge increase in Eliassen-Palm fluxes induced mainly by wavenumber 2, easterly angular momentum is transported into the Arctic stratosphere, deposited, and then decelerates the polar night jet. In agreement with earlier studies, the results reveal that the strongest eddy heat fluxes, associated with wavenumber 2, occur at 100hPa during the prephase of MSSW 2009 in ERA-Interim. In addition, moderate conditions of the <span class="hlt">cold</span> phase of <span class="hlt">ENSO</span> (La Niña) contribute to the eddy heat flux anomaly. It is shown that enhanced tropospheric wave forcing over Alaska and Scandinavia is caused by tropical processes in two ways. First, in a climatological sense, La Niña contributes to an enhanced anticyclonic flow over both regions. Second, the Madden-Julian oscillation (MJO) has an indirect influence on the Alaskan ridge by enhancing eddy activity over the North Pacific. This is manifested in an increase in cyclone frequency and associated <span class="hlt">warm</span> conveyor belt outflow, which contribute to the maintenance and amplification of the Alaskan anticyclone. The Scandinavian ridge is maintained by wave trains emanating from the Alaskan ridge propagating eastward, including an enhanced transport of eddy kinetic energy. The MSSW2009 is an extraordinary case of how a beneficial phasing of La Niña and MJO conditions together with multi scale interactions enhances tropospheric forcing for wavenumber 2-induced zonal mean eddy heat flux in the lower stratosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29720617','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29720617"><span>Modulation of the relationship between spring AO and the subsequent winter <span class="hlt">ENSO</span> by the preceding November AO.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Shangfeng; Chen, Wen; Yu, Bin</p> <p>2018-05-02</p> <p>Previous studies indicated that the spring Arctic Oscillation (AO) exerts significant influences on the subsequent winter El Niño-Southern Oscillation (<span class="hlt">ENSO</span>). This analysis suggests that the spring AO-<span class="hlt">ENSO</span> linkage is highly modulated by its preceding November AO. When November and the subsequent spring AO indices are in phase, the spring AO has a pronounced influence on <span class="hlt">ENSO</span>. However, when the November and spring AO indices are out of phase, the spring AO-<span class="hlt">ENSO</span> connection disappears. Modulation of the November AO on the spring AO-<span class="hlt">ENSO</span> connection is mainly through the constructive and destructive superposition of the November and spring AO associated sea surface temperature (SST) anomalies in the tropical central-eastern Pacific in spring and summer, as well as the SST anomalies developed further in the tropical Pacific via the positive air-sea feedback.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AdAtS..34..360Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AdAtS..34..360Q"><span>Relationships between the extratropical <span class="hlt">ENSO</span> precursor and leading modes of atmospheric variability in the Southern Hemisphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qin, Jianhuang; Ding, Ruiqiang; Wu, Zhiwei; Li, Jianping; Zhao, Sen</p> <p>2017-03-01</p> <p>Previous studies suggest that the atmospheric precursor of El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) in the extratropical Southern Hemisphere (SH) might trigger a quadrapole sea surface temperature anomaly (SSTA) in the South Pacific and subsequently influence the following <span class="hlt">ENSO</span>. Such a quadrapole SSTA is referred to as the South Pacific quadrapole (SPQ). The present study investigated the relationships between the atmospheric precursor signal of <span class="hlt">ENSO</span> and leading modes of atmospheric variability in the extratropical SH [including the SH annular mode (SAM), the first Pacific-South America (PSA1) mode, and the second Pacific-South America (PSA2) mode]. The results showed that the atmospheric precursor signal in the extratropical SH basically exhibits a barotropic wavenumber-3 structure over the South Pacific and is significantly correlated with the SAM and the PSA2 mode during austral summer. Nevertheless, only the PSA2 mode was found to be a precursor for the following <span class="hlt">ENSO</span>. It leads the SPQ-like SSTA by around one month, while the SAM and the PSA1 mode do not show any obvious linkage with either <span class="hlt">ENSO</span> or the SPQ. This suggests that the PSA2 mode may provide a bridge between the preceding circulation anomalies over the extratropical SH and the following <span class="hlt">ENSO</span> through the SPQ-like SSTA.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122..279D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122..279D"><span>Joint impact of North and South Pacific extratropical atmospheric variability on the onset of <span class="hlt">ENSO</span> events</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ding, Ruiqiang; Li, Jianping; Tseng, Yu-heng; Sun, Cheng; Xie, Fei</p> <p>2017-01-01</p> <p>Previous studies have indicated that boreal winter subtropical and extratropical sea surface pressure (SLP) anomalies over both the North and South Pacific are significantly related to the El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) state in the following boreal winter. Here we use observational data and model simulations to show that the ability of the boreal winter North Pacific SLP anomalies to initiate <span class="hlt">ENSO</span> events a year later may strongly depend on the state of the simultaneous South Pacific SLP anomalies and vice versa. When the boreal winter North Pacific SLP anomalies are of the opposite sign to the simultaneous South Pacific anomalies, the correlation of the North or South Pacific anomalies with the following <span class="hlt">ENSO</span> state becomes much weaker, and the strength of the <span class="hlt">ENSO</span> events also tends to be weaker. One possible reason for this is that when the boreal winter North and South Pacific SLP anomalies have the opposite sign, the westerly anomalies over the western-central equatorial Pacific during the following boreal summer are greatly reduced by the interference between the antecedent North and South Pacific SLP anomalies, thereby not favoring the development of <span class="hlt">ENSO</span> events. Further analysis indicates that a combination of North and South Pacific precursor signals may serve to enhance the <span class="hlt">ENSO</span> prediction skill.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1326147-impacts-enso-events-cloud-radiative-effects-preindustrial-conditions-changes-cloud-fraction-dependence-interactive-aerosol-emissions-concentrations-impact-enso-cloud-radiative-effect','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1326147-impacts-enso-events-cloud-radiative-effects-preindustrial-conditions-changes-cloud-fraction-dependence-interactive-aerosol-emissions-concentrations-impact-enso-cloud-radiative-effect"><span>Impacts of <span class="hlt">ENSO</span> events on cloud radiative effects in preindustrial conditions: Changes in cloud fraction and their dependence on interactive aerosol emissions and concentrations: IMPACT OF <span class="hlt">ENSO</span> ON CLOUD RADIATIVE EFFECT</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yang, Yang; Russell, Lynn M.; Xu, Li</p> <p></p> <p>The impacts of the El Niño–Southern Oscillation (<span class="hlt">ENSO</span>) events on shortwave and longwave cloud radiative effects (CRESW and CRELW) and the underlying changes in cloud fraction as well as aerosol emissions, wet scavenging and transport are quantified using three 150-year simulations in preindustrial conditions by the CESM model. Compared to recent observations from Clouds and the Earth’s Radiant Energy System (CERES), the model simulation successfully reproduced larger variations of CRESW over the tropical western and central Pacific, Indonesian regions, and the eastern Pacific Ocean, as well as large variations of CRELW located mainly within the tropics. The <span class="hlt">ENSO</span> cycle ismore » found to dominate interannual variations of cloud radiative effects, especially over the tropics. Relative to those during La Niña events, simulated cooling (<span class="hlt">warming</span>) effects from CRESW (CRELW) during El Niño events are stronger over the tropical western and central Pacific Ocean, with the largest difference exceeding 40 Wm–2 (30 Wm–2), with weaker effects of 10–30 Wm–2 over Indonesian regions and the subtropical Pacific Ocean. Sensitivity tests show that variations of cloud radiative effects are mainly driven by <span class="hlt">ENSO</span>-related changes in cloud fraction. The variations in medium and high cloud fractions each account for about 20–50% of the interannual variations of CRESW over the tropics and almost all of the variations of CRELW between 60°S and 60°N. The variation of low cloud fraction contributes most interannual variations of CRESW over the mid-latitude oceans. Variations in natural aerosol concentrations considering emissions, wet scavenging and transport explained 10–30% of the interannual variations of both CRESW and CRELW over the tropical Pacific, Indonesian regions and the tropical Indian Ocean. Changes in wet scavenging of natural aerosol modulate the variations of cloud radiative effects. Because of increased (decreased) precipitation over the tropical western</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AtmEn.166..498A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AtmEn.166..498A"><span>Influence of Northeast Monsoon <span class="hlt">cold</span> surges on air quality in Southeast Asia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ashfold, M. J.; Latif, M. T.; Samah, A. A.; Mead, M. I.; Harris, N. R. P.</p> <p>2017-10-01</p> <p>Ozone (O3) is an important ground-level pollutant. O3 levels and emissions of O3 precursors have increased significantly over recent decades in East Asia and export of this O3 eastward across the Pacific Ocean is well documented. Here we show that East Asian O3 is also transported southward to tropical Southeast (SE) Asia during the Northeast Monsoon (NEM) season (defined as November to February), and that this transport pathway is especially strong during '<span class="hlt">cold</span> surges'. Our analysis employs reanalysis data and measurements from surface sites in Peninsular Malaysia, both covering 2003-2012, along with trajectory calculations. Using a <span class="hlt">cold</span> surge index (northerly winds at 925 hPa averaged over 105-110°E, 5°N) to define sub-seasonal strengthening of the NEM winds, we find the largest changes in a region covering much of the Indochinese Peninsula and surrounding seas. Here, the levels of O3 and another key pollutant, carbon monoxide, calculated by the Monitoring Atmospheric Composition and Climate (MACC) Reanalysis are on average elevated by, respectively, >40% (∼15 ppb) and >60% (∼80 ppb) during <span class="hlt">cold</span> surges. Further, in the broader region of SE Asia local afternoon exceedances of the World Health Organization's air quality guideline for O3 (100 μg m-3, or ∼50 ppb, averaged over 8 h) largely occur during these <span class="hlt">cold</span> surges. Day-to-day variations in available O3 observations at surface sites on the east coast of Peninsular Malaysia and in corresponding parts of the MACC Reanalysis are similar, and are clearly linked to <span class="hlt">cold</span> surges. However, observed O3 levels are typically ∼10-20 ppb lower than the MACC Reanalysis. We show that these observations are also subject to influence from local urban pollution. In agreement with past work, we find year-to-year variations in <span class="hlt">cold</span> surge activity related to the El Nino-Southern Oscillation (<span class="hlt">ENSO</span>), but this does not appear to be the dominant influence of <span class="hlt">ENSO</span> on atmospheric composition in this region. Overall, our study</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeoRL..40.2284B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeoRL..40.2284B"><span>Kawasaki disease and <span class="hlt">ENSO</span>-driven wind circulation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ballester, Joan; Burns, Jane C.; Cayan, Dan; Nakamura, Yosikazu; Uehara, Ritei; Rodó, Xavier</p> <p>2013-05-01</p> <p>disease (KD) is the most common cause of acquired heart disease in children worldwide. Recently, a climatological study suggested that KD may be triggered by a windborne agent traveling across the north Pacific through the westerly wind flow prevailing at midlatitudes. Here we use KD records to describe the association between enhanced disease activity on opposite sides of the basin and different phases of the El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) phenomenon, via the linkage to these tropospheric winds. Results show that years with higher-than-normal KD cases in Japan preferentially occur during either El Niño Modoki or La Niña conditions, while in San Diego during the mature phase of El Niño or La Niña events. Given that <span class="hlt">ENSO</span> offers a degree of predictability at lead times of 6 months, these modulations suggest that seasonal predictions of KD could be used to alert clinicians to periods of increased disease activity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AMT.....9.1685K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AMT.....9.1685K"><span>Interannual variability of temperature in the UTLS region over Ganges-Brahmaputra-Meghna river basin based on COSMIC GNSS RO data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khandu; Awange, Joseph L.; Forootan, Ehsan</p> <p>2016-04-01</p> <p>Poor reliability of radiosonde records across South Asia imposes serious challenges in understanding the structure of upper-tropospheric and lower-stratospheric (UTLS) region. The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission launched in April 2006 has overcome many observational limitations inherent in conventional atmospheric sounding instruments. This study examines the interannual variability of UTLS temperature over the Ganges-Brahmaputra-Meghna (GBM) river basin in South Asia using monthly averaged COSMIC radio occultation (RO) data, together with two global reanalyses. Comparisons between August 2006 and December 2013 indicate that MERRA (Modern-Era Retrospective Analysis for Research Application) and ERA-Interim (European Centre for Medium-Range Weather Forecasts reanalysis) are warmer than COSMIC RO data by 2 °C between 200 and 50 hPa levels. These <span class="hlt">warm</span> biases with respect to COSMIC RO data are found to be consistent over time. The UTLS temperature show considerable interannual variability from 2006 to 2013 in addition to <span class="hlt">warming</span> (cooling) trends in the troposphere (stratosphere). The <span class="hlt">cold</span> (<span class="hlt">warm</span>) anomalies in the upper troposphere (tropopause region) are found to be associated with <span class="hlt">warm</span> <span class="hlt">ENSO</span> (El Niño-Southern Oscillation) phase, while quasi-biennial oscillation (QBO) is negatively (positively) correlated with temperature anomalies at 70 hPa (50 hPa) level. PCA (principal component analysis) decomposition of tropopause temperatures and heights over the basin indicate that <span class="hlt">ENSO</span> accounts for 73 % of the interannual (non-seasonal) variability with a correlation of 0.77 with Niño3.4 index whereas the QBO explains about 10 % of the variability. The largest tropopause anomaly associated with <span class="hlt">ENSO</span> occurs during the winter, when <span class="hlt">ENSO</span> reaches its peak. The tropopause temperature (height) increased (decreased) by about 1.5 °C (300 m) during the last major El Niño event of 2009/2010. In general, we find decreasing</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp.2396G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp.2396G"><span>Linear dynamical modes as new variables for data-driven <span class="hlt">ENSO</span> forecast</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gavrilov, Andrey; Seleznev, Aleksei; Mukhin, Dmitry; Loskutov, Evgeny; Feigin, Alexander; Kurths, Juergen</p> <p>2018-05-01</p> <p>A new data-driven model for analysis and prediction of spatially distributed time series is proposed. The model is based on a linear dynamical mode (LDM) decomposition of the observed data which is derived from a recently developed nonlinear dimensionality reduction approach. The key point of this approach is its ability to take into account simple dynamical properties of the observed system by means of revealing the system's dominant time scales. The LDMs are used as new variables for empirical construction of a nonlinear stochastic evolution operator. The method is applied to the sea surface temperature anomaly field in the tropical belt where the El Nino Southern Oscillation (<span class="hlt">ENSO</span>) is the main mode of variability. The advantage of LDMs versus traditionally used empirical orthogonal function decomposition is demonstrated for this data. Specifically, it is shown that the new model has a competitive <span class="hlt">ENSO</span> forecast skill in comparison with the other existing <span class="hlt">ENSO</span> models.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70189252','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70189252"><span>Influences of the El Niño Southern Oscillation and the Pacific Decadal Oscillation on the timing of the North American spring</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McCabe, Gregory J.; Ault, Toby R.; Cook, Benjamin I.; Betancourt, Julio L.; Schwartz, Mark D.</p> <p>2012-01-01</p> <p>Detrended, modelled first leaf dates for 856 sites across North America for the period 1900–2008 are used to examine how the El Niño Southern Oscillation (<span class="hlt">ENSO</span>) and the Pacific Decadal Oscillation (PDO) separately and together might influence the timing of spring. Although spring (mean March through April) <span class="hlt">ENSO</span> and PDO signals are apparent in first leaf dates, the signals are not statistically significant (at a 95% confidence level (p < 0.05)) for most sites. The most significant <span class="hlt">ENSO</span>/PDO signal in first leaf dates occurs for El Niño and positive PDO conditions. An analysis of the spatial distributions of first leaf dates for separate and combined <span class="hlt">ENSO</span>/PDO conditions features a northwest–southeast dipole that is significantly (at p < 0.05) different than the distributions for neutral conditions. The nature of the teleconnection between Pacific SST's and first leaf dates is evident in comparable composites for detrended sea level pressure (SLP) in the spring months. During positive <span class="hlt">ENSO</span>/PDO, there is an anomalous flow of <span class="hlt">warm</span> air from the southwestern US into the northwestern US and an anomalous northeasterly flow of <span class="hlt">cold</span> air from polar regions into the eastern and southeastern US. These flow patterns are reversed during negative <span class="hlt">ENSO</span>/PDO. Although the magnitudes of first leaf date departures are not necessarily significantly related to <span class="hlt">ENSO</span> and PDO, the spatial patterns of departures are significantly related to <span class="hlt">ENSO</span> and PDO. These significant relations and the long-lived persistence of SSTs provide a potential tool for forecasting the tendencies for first leaf dates to be early or late.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140001049','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140001049"><span>Influences of the El Nino Southern Oscillation and the Pacific Decadal Oscillation on the Timing of the North American Spring</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McCabe, Gregory J.; Ault, Toby R.; Cook, Benjamin I.; Betancourt, Julio L.; Schwartz, Mark D.</p> <p>2012-01-01</p> <p>Detrended, modelled first leaf dates for 856 sites across North America for the period 1900-2008 are used to examine how the El Nino Southern Oscillation (<span class="hlt">ENSO</span>) and the Pacific Decadal Oscillation (PDO) separately and together might influence the timing of spring. Although spring (mean March through April) <span class="hlt">ENSO</span> and PDO signals are apparent in first leaf dates, the signals are not statistically significant (at a 95% confidence level (p <0.05)) for most sites. The most significant <span class="hlt">ENSO</span>/PDO signal in first leaf dates occurs for El Nino and positive PDO conditions. An analysis of the spatial distributions of first leaf dates for separate and combined <span class="hlt">ENSO</span>/PDO conditions features a northwest-southeast dipole that is significantly (at p <0.05) different than the distributions for neutral conditions. The nature of the teleconnection between Pacific SST's and first leaf dates is evident in comparable composites for detrended sea level pressure (SLP) in the spring months. During positive <span class="hlt">ENSO</span>/PDO, there is an anomalous flow of <span class="hlt">warm</span> air from the southwestern US into the northwestern US and an anomalous northeasterly flow of <span class="hlt">cold</span> air from polar regions into the eastern and southeastern US. These flow patterns are reversed during negative <span class="hlt">ENSO</span>/PDO. Although the magnitudes of first leaf date departures are not necessarily significantly related to <span class="hlt">ENSO</span> and PDO, the spatial patterns of departures are significantly related to <span class="hlt">ENSO</span> and PDO. These significant relations and the long-lived persistence of SSTs provide a potential tool for forecasting the tendencies for first leaf dates to be early or late.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4789935','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4789935"><span>Exercise in the <span class="hlt">Cold</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fudge, Jessie</p> <p>2016-01-01</p> <p>Context: Hypothermia and frostbite injuries occur in <span class="hlt">cold</span> weather activities and sporting events. Evidence Acquisition: A PubMed search was used to identify original research and review articles related to <span class="hlt">cold</span>, frostbite, and hypothermia. Inclusion was based on their relevance to prevention and treatment of <span class="hlt">cold</span>-related injuries in sports and outdoor activities. Dates of review articles were limited to those published after 2010. No date limit was set for the most recent consensus statements or original research. Study Design: Clinical review. Level of Evidence: Level 5. Results: Frostbite and hypothermia are well-documented entities with good prevention strategies and prehospital treatment recommendations that have changed very little with time. A layered approach to clothing is the best way to prevent injury and respond to weather changes. Each athlete, defined as a participant in a <span class="hlt">cold</span> weather sport or activity, will respond to <span class="hlt">cold</span> differently depending on anthropometric measurements and underlying medical risk factors. An understanding of wind-chill temperatures, wetness, and the weather forecast allows athletes and event coordinators to properly respond to changing weather conditions. At the first sign of a freezing <span class="hlt">cold</span> injury, ensure <span class="hlt">warm</span>, dry clothes and move to a protected environment. Conclusion: <span class="hlt">Cold</span> injuries can be prevented, and <span class="hlt">cold</span> weather activities are safe with proper education, preparation, and response to changing weather conditions or injury. PMID:26857732</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JPhCS.423a2043S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JPhCS.423a2043S"><span>A study of El Niño-Southern oscillation impacts to the South China Sea region using ground-based GPS receiver</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suparta, Wayan; Iskandar, Ahmad; Singh Jit Singh, Mandeep; Alauddin Mohd Ali, Mohd; Yatim, Baharudin; Tangang, Fredolin</p> <p>2013-04-01</p> <p>We observe an <span class="hlt">ENSO</span> activity by using ground-based GPS receiver as an effort to study the effects of global <span class="hlt">warming</span> and climate change in the tropical region. The precipitable water vapor (PWV) derived from Global Positioning System (GPS) meteorology in line with the sea surface temperature anomaly (SSTa) is used to indicate their response on <span class="hlt">ENSO</span> activities. The PWV data used in this study was taken from the station at Universiti Malaysia Sabah, Kota Kinabalu (UMSK) over 2011, together with NTUS station (in the Singapore), PIMO (in Philippines) and BAKO (in Indonesia) are also compared. The relationship between PWV and SSTa at all stations on weekly basis exhibited modest with correlation coefficients between -0.30 and -0.78 significantly at the 99% confidence level. The negative correlation indicates that during a La Niña phase, the PWV is increased when the sea surface temperatures getting <span class="hlt">cold</span> causes <span class="hlt">warm</span> air mass in the central Pacific moved to west Pacific. The increased of PWV causes the GPS signals will be getting slower.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2661091','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2661091"><span>The role of <span class="hlt">ENSO</span> in understanding changes in Colombia's annual malaria burden by region, 1960–2006</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mantilla, Gilma; Oliveros, Hugo; Barnston, Anthony G</p> <p>2009-01-01</p> <p>Background Malaria remains a serious problem in Colombia. The number of malaria cases is governed by multiple climatic and non-climatic factors. Malaria control policies, and climate controls such as rainfall and temperature variations associated with the El Niño/Southern Oscillation (<span class="hlt">ENSO</span>), have been associated with malaria case numbers. Using historical climate data and annual malaria case number data from 1960 to 2006, statistical models are developed to isolate the effects of climate in each of Colombia's five contrasting geographical regions. Methods Because year to year climate variability associated with <span class="hlt">ENSO</span> causes interannual variability in malaria case numbers, while changes in population and institutional control policy result in more gradual trends, the chosen predictors in the models are annual indices of the <span class="hlt">ENSO</span> state (sea surface temperature [SST] in the tropical Pacific Ocean) and time reference indices keyed to two major malaria trends during the study period. Two models were used: a Poisson and a Negative Binomial regression model. Two <span class="hlt">ENSO</span> indices, two time reference indices, and one dummy variable are chosen as candidate predictors. The analysis was conducted using the five geographical regions to match the similar aggregation used by the National Institute of Health for its official reports. Results The Negative Binomial regression model is found better suited to the malaria cases in Colombia. Both the trend variables and the <span class="hlt">ENSO</span> measures are significant predictors of malaria case numbers in Colombia as a whole, and in two of the five regions. A one degree Celsius change in SST (indicating a weak to moderate <span class="hlt">ENSO</span> event) is seen to translate to an approximate 20% increase in malaria cases, holding other variables constant. Conclusion Regional differentiation in the role of <span class="hlt">ENSO</span> in understanding changes in Colombia's annual malaria burden during 1960–2006 was found, constituting a new approach to use <span class="hlt">ENSO</span> as a significant predictor of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170004582','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170004582"><span>The Impact of <span class="hlt">ENSO</span> on Trace Gas Composition in the Upper Troposphere to Lower Stratosphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Oman, Luke; Douglass, Anne; Ziemke, Jerry; Waugh, Darryn Warwick</p> <p>2016-01-01</p> <p>The El Nino-Southern Oscillation (<span class="hlt">ENSO</span>) is the dominant mode of interannual variability in the tropical troposphere and its effects extend well into the stratosphere. Its impact on atmospheric dynamics and chemistry cause important changes to trace gas constituent distributions. A comprehensive suite of satellite observations, reanalyses, and chemistry climate model simulations are illuminating our understanding of processes like <span class="hlt">ENSO</span>. Analyses of more than a decade of observations from NASAs Aura and Aqua satellites, combined with simulations from the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) and other Chemistry Climate Modeling Initiative (CCMI) models, and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) reanalysis have provided key insights into the response of atmospheric composition to <span class="hlt">ENSO</span>. While we will primarily focus on ozone and water vapor responses in the upper troposphere to lower stratosphere, the effects of <span class="hlt">ENSO</span> ripple through many important trace gas species throughout the atmosphere. The very large 2015-2016 El Nino event provides an opportunity to closely examine these impacts with unprecedented observational breadth. An improved quantification of natural climate variations, like those from <span class="hlt">ENSO</span>, is needed to detect and quantify anthropogenic climate changes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A43D0268P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A43D0268P"><span>A Spatial Perspective of Droughts and Pluvials in the Tropics and their Relationships to <span class="hlt">ENSO</span> in CMIP5 Model Simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perez Arango, J. D.; Lintner, B. R.; Lyon, B.</p> <p>2016-12-01</p> <p>Although many aspects of the tropical response to <span class="hlt">ENSO</span> are well-known, the spatial characteristics of the rainfall response to <span class="hlt">ENSO</span> remain relatively unexplored. Moreover, in current generation climate models, the spatial signatures of the <span class="hlt">ENSO</span> tropical teleconnection are more uncertain than other aspects of <span class="hlt">ENSO</span> variability, such as the amplitude of rainfall anomalies. Following the approach of Lyon (2004) and Lyon and Barnston (2005), we analyze here integrated measures of the spatial extent of drought and pluvial conditions in the tropics and their relationship to <span class="hlt">ENSO</span> in observations as well as simulations of Phase 5 of the Coupled Model Intercomparison Project (CMIP5) with prescribed SST forcing. We compute diagnostics including the model ensemble-means and standard deviations of moderate, intermediate, and severe droughts and pluvials and the lagged correlations with respect to <span class="hlt">ENSO</span>-based SST indices like NINO3. Overall, in a tropics-wide sense, the models generally capture the areal extent of observed droughts and pluvials and their phasing with respect to <span class="hlt">ENSO</span>. However, at more local scales, e.g., tropical South America, the simulated metrics agree less strongly with observations, underscoring the role of errors in the spatial patterns of <span class="hlt">ENSO</span>-induced rainfall anomalies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4683514','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4683514"><span><span class="hlt">ENSO</span> Modulations due to Interannual Variability of Freshwater Forcing and Ocean Biology-induced Heating in the Tropical Pacific</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Rong-Hua; Gao, Chuan; Kang, Xianbiao; Zhi, Hai; Wang, Zhanggui; Feng, Licheng</p> <p>2015-01-01</p> <p>Recent studies have identified clear climate feedbacks associated with interannual variations in freshwater forcing (FWF) and ocean biology-induced heating (OBH) in the tropical Pacific. The interrelationships among the related anomaly fields are analyzed using hybrid coupled model (HCM) simulations to illustrate their combined roles in modulating the El Niño-Southern Oscillation (<span class="hlt">ENSO</span>). The HCM-based supporting experiments are performed to isolate the related feedbacks, with interannually varying FWF and OBH being represented individually or collectively, which allows their effects to be examined in a clear way. It is demonstrated that the interannual freshwater forcing enhances <span class="hlt">ENSO</span> variability and slightly prolongs the simulated <span class="hlt">ENSO</span> period, while the interannual OBH reduces <span class="hlt">ENSO</span> variability and slightly shortens the <span class="hlt">ENSO</span> period, with their feedback effects tending to counteract each other. PMID:26678931</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916970M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916970M"><span>Mechanisms of the global electric circuit and lightning variability on the <span class="hlt">ENSO</span> time scale</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mareev, Evgeny; Volodin, Evgeny; Slyunyaev, Nikolay</p> <p>2017-04-01</p> <p>Many studies of lightning activity on the El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) time scale show increased activity over tropical land areas during the <span class="hlt">warm</span> El Niño phase (e.g., Satori et al., 2009; Price, 2009). The mechanisms of this variability—particularly in terms of its role in the global electric circuit (GEC)—are still under debate (e.g., Williams and Mareev, 2014). In this study a general circulation model of the atmosphere and ocean INMCM4.0 (Institute of Numerical Mathematics Coupled Model) is used for modelling the GEC variability on the <span class="hlt">ENSO</span> time scale. The ionospheric potential (IP) and the lightning flash rate are calculated to study regional peculiarities and possible mechanisms of lightning variation. The IP parameterisation is used (Mareev and Volodin, 2014) which takes into account quasi-stationary currents of electrified clouds (including thunderstorms) as principal contributors into the DC global circuit. The account of conductivity variation in the IP parameterisation is suggested based on the approach realised in (Slyunyaev et al., 2014). Comparison of simulation results with the observational data on lightning activity on the <span class="hlt">ENSO</span> time scale is discussed. Numerical simulations suggest that the inter-annual IP variability is low and does not exceed 1% of the mean value, being tightly correlated with the mean sea surface temperature (SST) in the Pacific Ocean (180W-100W, 5S-5N—El Niño area). The IP maximum corresponds to the SST minimum. This result can be explained taking into account that during El Niño (positive temperature anomaly) precipitations in the equatorial part of the Pacific increase while in other tropic zones including the land areas they decrease. Comparison of simulation results with the observational data on lightning activity on the <span class="hlt">ENSO</span> time scale is discussed. During the El Niño period in the model, the mean aerosol content in the atmosphere decrease, which is caused by the weakening of the winds over Sahara and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.G24A..10Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.G24A..10Z"><span>Merging altimeter data with Argo profiles to improve observation of tropical Pacific thermocline circulation and <span class="hlt">ENSO</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, D.; Lee, T.; Wang, F.; McPhaden, M. J.; Kessler, W. S.</p> <p>2016-12-01</p> <p>Meridional thermocline currents play an important role in the recharge and discharge of tropical Pacific <span class="hlt">warm</span> water during the development and transition of <span class="hlt">ENSO</span> cycles. Previous analyses have shown large variations of the equatorward meridional thermocline convergence/divergence on <span class="hlt">ENSO</span> and decadal time scales in the interior ocean. The total convergence/divergence is however unknown due to the lack of long term observation in the western boundary currents. Numerical modelling studies suggested a tendency of compensation between the interior and western boundary currents, but the exact compensation is model dependent. While Argo floats provide reasonable data coverage in the interior ocean, few floats are in the western boundary currents. Recent multi-mission satellite altimeter data and advanced processing techniques have resulted in higher resolution sea surface height anomaly (SSHA) products with better accuracy closer to the coasts. This study utilizes the statistical relationship between Argo dynamic height profiles and altimeter SSHA to calculate geostrophic thermocline currents in both the interior ocean and the western boundary of the tropical Pacific. The derived thermocline currents in the western boundary are validated by a 3.5-year moored Acoustic Doppler Current Profiler (ADCP) measurement in the Mindanao Current and by a series of glider surveys (Davis et al. 2012) in the Solomon Sea. The meridional transport timeseries of the interior and western boundary currents in the thermocline show different lead-lag relationships to the Nino 3.4 index. Results will be discussed in the context of recent 2014-2015 El Nino development and the potential contribution to the Tropical Pacific Observing System (TPOS).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA......310C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA......310C"><span>The <span class="hlt">enso</span> signal in the lower stratosphere: propagation via rossby waves.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Calvo, N.; Garcia Herrera, R.; Garcia, R.; Gallego, D.; Gimeno, L.; Hernandez, E.; Ribera, P.</p> <p>2003-04-01</p> <p>The <span class="hlt">ENSO</span> signal on the lower stratosphere has been analyzed through the study of the relationship between SST in the Tropical Pacific and lower stratospheric temperatures from the Microwave Sounding Unit (MSU) using the t4 channel, which is sensitive to lower stratospheric temperature. Lagged point correlations have been calculated between the Niño3.4 index and MSU t4 monthly anomaly series at each grid point for the whole globe from January 1979 through December 2000. Correlation values are very similar in both tropics and extratropics, but their signs are opposite: positive in extratropical regions and negative in the tropics. Moreover, the significant correlation signal is longer lasting at middle latitudes, from lag 9 to lag 6, and much shorter in the Tropics, where it is significant only at lags 0 and 3. In the extratropical area, four regions are significant: Eurasia, the Southern Indian Ocean, and the North and South Pacific Oceans. The signal in Eurasia is the first to be observed (at lag 9) and it could be considered as a predictor of extreme <span class="hlt">ENSO</span> events. The Pacific Ocean shows the PNA and PSA patterns. There, the signal appears earlier in the Southern Hemisphere (lag 6) because wind conditions at boreal summer (usually lag 6) do not favour the propagation of Rossby waves into the stratosphere. Further, the shape of the correlation patterns suggests that only planetary waves are able to propagate the <span class="hlt">ENSO</span> signal into the stratosphere. In the tropics, the <span class="hlt">ENSO</span> signal takes the form of a pair of Rossby gyres, observed in the Pacific Ocean at lags 0 and 3 as two regions of significant correlation located symmetricaly north and south of the Equator. The same analysis has been carried out for a period without any extreme events (SST anomalies in the Niño3.4 region smaller than 1 standard desviation), in which case no signal is observed in the lower stratosphere. This suggests that only strong <span class="hlt">ENSO</span> (defined by anomalies larger than 1 standard desviation in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=328990','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=328990"><span>Effects of <span class="hlt">cold</span> temperature and ethanol content on VOC ...</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle testing was conducted using a three-phase LA92 driving cycle in a temperature-controlled chassis dynamometer at two ambient temperatures (-7 °C and 24 °C). The <span class="hlt">cold</span> start phase and <span class="hlt">cold</span> ambient temperature increased VOC and MSAT emissions dramatically by up to several orders of magnitude compared to emissions during other phases and <span class="hlt">warm</span> ambient temperature testing, respectively. As a result, calculated ozone formation potentials during the <span class="hlt">cold</span> starts were significantly higher during <span class="hlt">cold</span> temperature tests by 7 to 21 times the <span class="hlt">warm</span> temperature values. The use of E85 fuel generally led to substantial reductions in hydrocarbons and increases in oxygenates such as ethanol and acetaldehyde compared to E0 and E10 fuels. However, the VOC emissions from E0 and E10 fuels were not significantly different. <span class="hlt">Cold</span> temperature effects on <span class="hlt">cold</span> start MSAT emissions varied by individual MSAT compound, but were consistent over a range of modern spark ignition vehicles. This manuscript communicates APPCD research activities on air toxics VOC emissions from mobile sources from the EPAct dynamometer study. Speciated VOC emissions from light-duty vehicles running on gasoline and ethanol blends at <span class="hlt">cold</span> tem</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991JCli....4..743A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991JCli....4..743A"><span>A Further Extension of the Tahiti-Darwin SOI, Early <span class="hlt">ENSO</span> Events and Darwin Pressure.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allan, Robert J.; Nicholls, Neville; Jones, Phil D.; Butterworth, Ian J.</p> <p>1991-07-01</p> <p>An extension of the Tahiti minus Darwin Southern Oscillation Index (SOI) from 1882 back to 1876 is reported following the recovery of early Darwin mean sea-level pressure data spanning the period 1865-81. As a result, we are able to compare, for the first time, the major 1877-78 and 1982-83 <span class="hlt">ENSO</span> events on the basis of this commonly used index. Early Darwin and Jakarta data are also examined in terms of a measure of the Australian response to documented El Niño and/or <span class="hlt">ENSO</span> events in 1866, 1868, 1871, 1873, 1874 and 1875.The SOI during the 1877-78 <span class="hlt">ENSO</span> event has a similar temporal response to that in 1982-83, but the index is slightly weaker than in the recent event. Examination of documentary evidence confirms the severity of the drought conditions that affected the Australian continent during the 1877-78 <span class="hlt">ENSO</span>, and shows that this response is in line with the wider Indo-Pacific impacts reported in the literature. Earlier El Niño phases in 1868 and 1873 are not resolved distinctly in either the Darwin or Jakarta pressure data. This appears to illustrate that El Niño event histories do not always indicate wider <span class="hlt">ENSO</span> influences in the Indo-Pacific basin, particularly during weak to moderate phases.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160005785&hterms=Ocean&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DOcean','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160005785&hterms=Ocean&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DOcean"><span>A CloudSat-CALIPSO View of Cloud and Precipitation Properties Across <span class="hlt">Cold</span> Fronts over the Global Oceans</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.</p> <p>2015-01-01</p> <p>The distribution of cloud and precipitation properties across oceanic extratropical cyclone <span class="hlt">cold</span> fronts is examined using four years of combined CloudSat radar and CALIPSO lidar retrievals. The global annual mean cloud and precipitation distributions show that low-level clouds are ubiquitous in the post frontal zone while higher-level cloud frequency and precipitation peak in the <span class="hlt">warm</span> sector along the surface front. Increases in temperature and moisture within the <span class="hlt">cold</span> front region are associated with larger high-level but lower mid-/low level cloud frequencies and precipitation decreases in the <span class="hlt">cold</span> sector. This behavior seems to be related to a shift from stratiform to convective clouds and precipitation. Stronger ascent in the <span class="hlt">warm</span> conveyor belt tends to enhance cloudiness and precipitation across the <span class="hlt">cold</span> front. A strong temperature contrast between the <span class="hlt">warm</span> and <span class="hlt">cold</span> sectors also encourages greater post-<span class="hlt">cold</span>-frontal cloud occurrence. While the seasonal contrasts in environmental temperature, moisture, and ascent strength are enough to explain most of the variations in cloud and precipitation across <span class="hlt">cold</span> fronts in both hemispheres, they do not fully explain the differences between Northern and Southern Hemisphere <span class="hlt">cold</span> fronts. These differences are better explained when the impact of the contrast in temperature across the <span class="hlt">cold</span> front is also considered. In addition, these large-scale parameters do not explain the relatively large frequency in springtime post frontal precipitation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140011840','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140011840"><span><span class="hlt">ENSO</span> Effect on East Asian Tropical Cyclone Landfall via Changes in Tracks and Genesis in a Statistical Model</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yonekura, Emmi; Hall, Timothy M.</p> <p>2014-01-01</p> <p>Improvements on a statistical tropical cyclone (TC) track model in the western North Pacific Ocean are described. The goal of the model is to study the effect of El Nino-Southern Oscillation (<span class="hlt">ENSO</span>) on East Asian TC landfall. The model is based on the International Best-Track Archive for Climate Stewardship (IBTrACS) database of TC observations for 1945-2007 and employs local regression of TC formation rates and track increments on the Nino-3.4 index and seasonally varying climate parameters. The main improvements are the inclusion of <span class="hlt">ENSO</span> dependence in the track propagation and accounting for seasonality in both genesis and tracks. A comparison of simulations of the 1945-2007 period with observations concludes that the model updates improve the skill of this model in simulating TCs. Changes in TC genesis and tracks are analyzed separately and cumulatively in simulations of stationary extreme <span class="hlt">ENSO</span> states. <span class="hlt">ENSO</span> effects on regional (100-km scale) landfall are attributed to changes in genesis and tracks. The effect of <span class="hlt">ENSO</span> on genesis is predominantly a shift in genesis location from the southeast in El Nino years to the northwest in La Nina years, resulting in higher landfall rates for the East Asian coast during La Nina. The effect of <span class="hlt">ENSO</span> on track propagation varies seasonally and spatially. In the peak activity season (July-October), there are significant changes in mean tracks with <span class="hlt">ENSO</span>. Landfall-rate changes from genesis- and track-<span class="hlt">ENSO</span> effects in the Philippines cancel out, while coastal segments of Vietnam, China, the Korean Peninsula, and Japan show enhanced La Nina-year increases.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/361682-establishing-native-warm-season-grasses-eastern-kentucky-strip-mines','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/361682-establishing-native-warm-season-grasses-eastern-kentucky-strip-mines"><span>Establishing native <span class="hlt">warm</span> season grasses on Eastern Kentucky strip mines</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Barnes, T.G.; Larkin, J.L.; Arnett, M.B.</p> <p>1998-12-31</p> <p>The authors evaluated various methods of establishing native <span class="hlt">warm</span> season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native <span class="hlt">warm</span> season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or <span class="hlt">cold</span>-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomassmore » samples were collected at the end of each growing season. Native <span class="hlt">warm</span> season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native <span class="hlt">warm</span> season grasses as a result of fertilization or seeding technique. Winter native <span class="hlt">warm</span> season grass plantings were failures and <span class="hlt">cold</span>-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and <span class="hlt">warm</span> season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native <span class="hlt">warm</span> season grass mixtures and the native <span class="hlt">warm</span> season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native <span class="hlt">warm</span> season grasses on Eastern Kentucky strip mines for wildlife</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..139a2020D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..139a2020D"><span>The impact of <span class="hlt">ENSO</span> on regional chlorophyll-a anomaly in the Arafura Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dewi, D. M. P. R.; Fatmasari, D.; Kurniawan, A.; Munandar, M. A.</p> <p>2018-03-01</p> <p>The El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) is a naturally occurring phenomenon that involves fluctuating ocean temperature in the equatorial Pacific. <span class="hlt">ENSO</span> influences ocean climate variability in Indonesia including the Arafura Sea. The relationship between oceanic chlorophyll-a and <span class="hlt">ENSO</span> has been the focus of study over the past decade. Here we examine the impact of <span class="hlt">ENSO</span> on regional chlorophyll-a anomaly in the Papua waters using 14 years of chlorophyll-a and sea surface temperature (SST) data from AQUA MODIS and sea level anomaly data from AVISO. It is found that when El Niño events occur the negative SST anomaly in the Papua waters as well as the enhanced upwelling cause the increase of chlorophyll-a concentration. The highest chlorophyll-a concentration (> 1 mg–cm-3) occured during El Niño and observed around the Aru archipelago. In contrast during La Niña event, the positive SST anomaly in Papua waters and the suppressed upwelling cause the decrease of chlorophyll-a concentration. Our results suggest that during El Niño (La Niña), the enhanced (suppressed) upwelling related to the significant decreasing (increasing) of sea level anomaly.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27762483','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27762483"><span>Range shifts or extinction? Ancient DNA and distribution modelling reveal past and future responses to climate <span class="hlt">warming</span> in <span class="hlt">cold</span>-adapted birds.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lagerholm, Vendela K; Sandoval-Castellanos, Edson; Vaniscotte, Amélie; Potapova, Olga R; Tomek, Teresa; Bochenski, Zbigniew M; Shepherd, Paul; Barton, Nick; Van Dyck, Marie-Claire; Miller, Rebecca; Höglund, Jacob; Yoccoz, Nigel G; Dalén, Love; Stewart, John R</p> <p>2017-04-01</p> <p>Global <span class="hlt">warming</span> is predicted to cause substantial habitat rearrangements, with the most severe effects expected to occur in high-latitude biomes. However, one major uncertainty is whether species will be able to shift their ranges to keep pace with climate-driven environmental changes. Many recent studies on mammals have shown that past range contractions have been associated with local extinctions rather than survival by habitat tracking. Here, we have used an interdisciplinary approach that combines ancient DNA techniques, coalescent simulations and species distribution modelling, to investigate how two common <span class="hlt">cold</span>-adapted bird species, willow and rock ptarmigan (Lagopus lagopus and Lagopus muta), respond to long-term climate <span class="hlt">warming</span>. Contrary to previous findings in mammals, we demonstrate a genetic continuity in Europe over the last 20 millennia. Results from back-casted species distribution models suggest that this continuity may have been facilitated by uninterrupted habitat availability and potentially also the greater dispersal ability of birds. However, our predictions show that in the near future, some isolated regions will have little suitable habitat left, implying a future decrease in local populations at a scale unprecedented since the last glacial maximum. © 2016 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918230T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918230T"><span>The role of sea surface salinity in <span class="hlt">ENSO</span> related water cycle anomaly</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, Wenqing; Yueh, Simon</p> <p>2017-04-01</p> <p>This study investigates the role of sea surface salinity (SSS) in the water cycle anomaly associated with El Niño Southern Oscillation (<span class="hlt">ENSO</span>). The 2015-16 El Niño, one of the strongest <span class="hlt">ENSO</span> events observed in centuries, coincident with unprecedented coverage of spacebased remote sensing of SSS over global oceans. We analyze three SSS data sets: from the NASA's missions of SMAP and Aquarius, and the ESA's Soil Moisture and Ocean Salinity (SMOS). One typical characteristics of an <span class="hlt">ENSO</span> event is the zonal displacement of the Western equatorial Pacific Fresh Pool (WPFP). The edge of the pool extends eastward during El Niño, retreats westward during La Niña. For super El Niño, the eastern edge of WPFP extends much more east across the equatorial Pacific. Indeed, SSS from SMAP reveals much stronger eastward migration of WPFP starting in April 2015. The eastern edge of WPFP reached 140°W in March 2016, about 40° more eastward extension than Aquarius observed in previous years. In the following months from March to June 2016, WPFP retreated westward, coincident with the ending of this strong El Niño event [WMO, El Nino/La Nina update, 2016]. SMOS data shows similar feature, confirming that there is no systematic biases between SMAP and Aquarius retrievals. We examine the linkage between the observed SSS variation and <span class="hlt">ENSO</span> related water cycle anomaly by integrated analysis of SSS data sets in conjunction with other satellite and in situ measurements on rain, wind, evaporation and ocean currents. Based on the governing equation of the mixed layer salt budget, the freshwater exchange between air-sea interfaces is estimated as residual of the mixed-layer salinity (MLS) temporal change and advection (Focean), as an alternative to evaporation minus precipitation (FE-P). We analyzed the spatial and temporal variation of Focean and FE-P to explore the anomalous signature in the oceanic and atmospheric branches of the water cycle associated with 2015/16 <span class="hlt">ENSO</span>. The maximum</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5489148','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5489148"><span>Return of <span class="hlt">warm</span> conditions in the southeastern Bering Sea: Phytoplankton - Fish</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Stabeno, Phyllis J.; Siddon, Elizabeth C.; Andrews, Alex G.; Cooper, Daniel W.; Eisner, Lisa B.; Farley, Edward V.; Harpold, Colleen E.; Heintz, Ron A.; Kimmel, David G.; Sewall, Fletcher F.; Spear, Adam H.; Yasumishii, Ellen C.</p> <p>2017-01-01</p> <p>In 2014, the Bering Sea shifted back to warmer ocean temperatures (+2 oC above average), bringing concern for the potential for a new <span class="hlt">warm</span> stanza and broad biological and ecological cascading effects. In 2015 and 2016 dedicated surveys were executed to study the progression of ocean heating and ecosystem response. We describe ecosystem response to multiple, consecutive years of ocean <span class="hlt">warming</span> and offer perspective on the broader impacts. Ecosystem changes observed include reduced spring phytoplankton biomass over the southeast Bering Sea shelf relative to the north, lower abundances of large-bodied crustacean zooplankton taxa, and degraded feeding and body condition of age-0 walleye pollock. This suggests poor ecosystem conditions for young pollock production and the risk of significant decline in the number of pollock available to the pollock fishery in 2–3 years. However, we also noted that high quality prey, large copepods and euphausiids, and lower temperatures in the north may have provided a refuge from poor conditions over the southern shelf, potentially buffering the impact of a sequential-year <span class="hlt">warm</span> stanza on the Bering Sea pollock population. We offer the hypothesis that juvenile (age-0, age-1) pollock may buffer deleterious <span class="hlt">warm</span> stanza effects by either utilizing high productivity waters associated with the strong, northerly <span class="hlt">Cold</span> Pool, as a refuge from the <span class="hlt">warm</span>, low production areas of the southern shelf, or by exploiting alternative prey over the southern shelf. We show that in 2015, the ocean waters influenced by spring sea ice (the <span class="hlt">Cold</span> Pool) supported robust phytoplankton biomass (spring) comprised of centric diatom chains, a crustacean copepod community comprised of large-bodied taxa (spring, summer), and a large aggregation of midwater fishes, potentially young pollock. In this manner, the <span class="hlt">Cold</span> Pool may have acted as a trophic refuge in that year. The few age-0 pollock occurring over the southeast shelf consumed high numbers of euphausiids which</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28658253','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28658253"><span>Return of <span class="hlt">warm</span> conditions in the southeastern Bering Sea: Phytoplankton - Fish.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Duffy-Anderson, Janet T; Stabeno, Phyllis J; Siddon, Elizabeth C; Andrews, Alex G; Cooper, Daniel W; Eisner, Lisa B; Farley, Edward V; Harpold, Colleen E; Heintz, Ron A; Kimmel, David G; Sewall, Fletcher F; Spear, Adam H; Yasumishii, Ellen C</p> <p>2017-01-01</p> <p>In 2014, the Bering Sea shifted back to warmer ocean temperatures (+2 oC above average), bringing concern for the potential for a new <span class="hlt">warm</span> stanza and broad biological and ecological cascading effects. In 2015 and 2016 dedicated surveys were executed to study the progression of ocean heating and ecosystem response. We describe ecosystem response to multiple, consecutive years of ocean <span class="hlt">warming</span> and offer perspective on the broader impacts. Ecosystem changes observed include reduced spring phytoplankton biomass over the southeast Bering Sea shelf relative to the north, lower abundances of large-bodied crustacean zooplankton taxa, and degraded feeding and body condition of age-0 walleye pollock. This suggests poor ecosystem conditions for young pollock production and the risk of significant decline in the number of pollock available to the pollock fishery in 2-3 years. However, we also noted that high quality prey, large copepods and euphausiids, and lower temperatures in the north may have provided a refuge from poor conditions over the southern shelf, potentially buffering the impact of a sequential-year <span class="hlt">warm</span> stanza on the Bering Sea pollock population. We offer the hypothesis that juvenile (age-0, age-1) pollock may buffer deleterious <span class="hlt">warm</span> stanza effects by either utilizing high productivity waters associated with the strong, northerly <span class="hlt">Cold</span> Pool, as a refuge from the <span class="hlt">warm</span>, low production areas of the southern shelf, or by exploiting alternative prey over the southern shelf. We show that in 2015, the ocean waters influenced by spring sea ice (the <span class="hlt">Cold</span> Pool) supported robust phytoplankton biomass (spring) comprised of centric diatom chains, a crustacean copepod community comprised of large-bodied taxa (spring, summer), and a large aggregation of midwater fishes, potentially young pollock. In this manner, the <span class="hlt">Cold</span> Pool may have acted as a trophic refuge in that year. The few age-0 pollock occurring over the southeast shelf consumed high numbers of euphausiids which may</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMGC51A0457K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMGC51A0457K"><span><span class="hlt">ENSO</span>-Based Index Insurance: Approach and Peru Flood Risk Management Application</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khalil, A. F.; Kwon, H.; Lall, U.; Miranda, M. J.; Skees, J. R.</p> <p>2006-12-01</p> <p>Index insurance has recently been advocated as a useful risk transfer tool for disaster management situations where rapid fiscal relief is desirable, and where estimating insured losses may be difficult, time consuming, or subject to manipulation and falsification. For climate related hazards, a rainfall or temperature index may be proposed. However, rainfall may be highly spatially variable relative to the gauge network, and in many locations data are inadequate to develop an index due to short time-series and the spatial dispersion of stations. In such cases, it may be helpful to consider a climate proxy index as a regional rainfall index. This is particularly useful if a long record is available for the climate index through an independent source and it is well correlated with the regional rainfall hazard. Here, <span class="hlt">ENSO</span> related climate indices are explored for use as a proxy to extreme rainfall in one of the departments of Peru -- Piura. The <span class="hlt">ENSO</span> index insurance product may be purchased by banks or microfinance institutions (MFIs) to aid agricultural damage relief in Peru. Crop losses in the region are highly correlated with floods, but are difficult to assess directly. Beyond agriculture, many other sectors suffer as well. Basic infrastructure is destroyed during the most severe events. This disrupts trade for many micro-enterprises. The reliability and quality of the local rainfall data is variable. Averaging the financial risk across the region is desirable. Some issues with the implementation of the proxy <span class="hlt">ENSO</span> index are identified and discussed. Specifically, we explore (a) the reliability of the index at different levels of probability of exceedance of maximum seasonal rainfall; (b) the potential for clustering of payoffs; (c) the potential that the index could be predicted with some lead time prior to the flood season; and (d) evidence for climate change or non-stationarity in the flood exceedance probability from the long <span class="hlt">ENSO</span> record. Finally, prospects for</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AdAtS..31...66L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AdAtS..31...66L"><span>The interdecadal changes of south pacific sea surface temperature in the mid-1990s and their connections with <span class="hlt">ENSO</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Gang; Li, Chongyin; Tan, Yanke; Bai, Tao</p> <p>2014-01-01</p> <p>The characteristic changes of South Pacific sea surface temperature anomalies (SSTAs) for the period January 1979 to December 2011, during which the 1990s Pacific pan-decadal variability (PDV) interdecadal regime shifts occurred, were examined. Empirical Orthogonal Function (EOF) analysis was applied to the monthly mean SSTA for two sub-periods: January 1979 to December 1994 (P1) and January 1996 to December 2011 (P2). Both the spatial and temporal features of the leading EOF mode for P1 and P2 showed a remarkable difference. The spatial structure of the leading EOF changed from a tripolar pattern for P1 (EOF-P1) to a dipole-like pattern for P2 (EOF-P2). Besides, EOF-P1 (EOF-P2) had significant spectral peaks at 4.6 yr (2.7 yr). EOF-P2 not only had a closer association with El Niño-Southern Oscillation (<span class="hlt">ENSO</span>), but also showed a faster response to <span class="hlt">ENSO</span> than EOF-P1 based on their lead-lag relationships with <span class="hlt">ENSO</span>. During the development of <span class="hlt">ENSO</span>, the South Pacific SSTA associated with <span class="hlt">ENSO</span> for both P1 and P2 showed a significant eastward propagation. However, after the peak of <span class="hlt">ENSO</span>, EOF-P1 showed a stronger persistence than EOF-P2, which still showed eastward propagation. The variability of the SSTA associated with the whole process of <span class="hlt">ENSO</span> evolution during P1 and the SSTA associated with the development of <span class="hlt">ENSO</span> during P2 support the existence of ocean-to-atmosphere forcing, but the SSTA associated with the decay of <span class="hlt">ENSO</span> shows the phenomenon of atmosphere-to-ocean forcing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22369966-cold-warm-atomic-gas-around-perseus-molecular-cloud-basic-properties','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22369966-cold-warm-atomic-gas-around-perseus-molecular-cloud-basic-properties"><span><span class="hlt">Cold</span> and <span class="hlt">warm</span> atomic gas around the Perseus molecular cloud. I. Basic properties</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Stanimirović, Snežana; Murray, Claire E.; Miller, Jesse</p> <p>2014-10-01</p> <p>Using the Arecibo Observatory, we have obtained neutral hydrogen (HI) absorption and emission spectral pairs in the direction of 26 background radio continuum sources in the vicinity of the Perseus molecular cloud. Strong absorption lines were detected in all cases, allowing us to estimate spin temperature (T{sub s} ) and optical depth for 107 individual Gaussian components along these lines of sight. Basic properties of individual H I clouds (spin temperature, optical depth, and the column density of the <span class="hlt">cold</span> and <span class="hlt">warm</span> neutral medium (CNM and WNM), respectively) in and around Perseus are very similar to those found for randommore » interstellar lines of sight sampled by the Millennium H I survey. This suggests that the neutral gas found in and around molecular clouds is not atypical. However, lines of sight in the vicinity of Perseus have, on average, a higher total H I column density and the CNM fraction, suggesting an enhanced amount of <span class="hlt">cold</span> H I relative to an average interstellar field. Our estimated optical depth and spin temperature are in stark contrast with the recent attempt at using Planck data to estimate properties of the optically thick H I. Only ∼15% of lines of sight in our study have a column density weighted average spin temperature lower than 50 K, in comparison with ≳ 85% of Planck's sky coverage. The observed CNM fraction is inversely proportional to the optical depth weighted average spin temperature, in excellent agreement with the recent numerical simulations by Kim et al. While the CNM fraction is, on average, higher around Perseus relative to a random interstellar field, it is generally low, between 10%-50%. This suggests that extended WNM envelopes around molecular clouds and/or significant mixing of CNM and WNM throughout molecular clouds are present and should be considered in the models of molecule and star formation. Our detailed comparison of H I absorption with CO emission spectra shows that only 3 of the 26 directions are clear</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16922186','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16922186"><span>Heat strain in <span class="hlt">cold</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rintamäki, Hannu; Rissanen, Sirkka</p> <p>2006-07-01</p> <p>In spite of increased environmental <span class="hlt">cold</span> stress, heat strain is possible also in a <span class="hlt">cold</span> environment. The body heat balance depends on three factors: environmental thermal conditions, metabolic heat production and thermal insulation of clothing and other protective garments. As physical exercise may increase metabolic heat production from rest values by ten times or even more, the required thermal insulation of clothing may vary accordingly. However, in most outdoor work, and often in indoor <span class="hlt">cold</span> work, too, the thermal insulation of clothing is impractical, difficult or impossible to adjust according to the changes in physical activity. This is especially true with whole body covering garments like chemical protective clothing. As a result of this imbalance, heat strain may develop. In <span class="hlt">cold</span> all the signs of heat strain (core temperature above 38 degrees C, <span class="hlt">warm</span> or hot thermal sensations, increased cutaneous circulation and sweating) may not be present at the same time. Heat strain in <span class="hlt">cold</span> may be whole body heat strain or related only to torso or core temperature. Together with heat strain in torso or body core, there can be at the same time even <span class="hlt">cold</span> strain in peripheral parts and/or superficial layers of the body. In <span class="hlt">cold</span> environment both the preservation of insulation and facilitation of heat loss are important. Development of clothing design is still needed to allow easy adjustments of thermal insulation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4644973','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4644973"><span>The coastal ocean response to the global <span class="hlt">warming</span> acceleration and hiatus</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn</p> <p>2015-01-01</p> <p>Coastlines are fundamental to humans for habitation, commerce, and natural resources. Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global <span class="hlt">warming</span> to global surface <span class="hlt">warming</span> hiatus after 1998. The task of understanding the coastal SST variations within the global context is an urgent matter. Our study on the global coastal SST from 1982 to 2013 revealed a significant cooling trend in the low and mid latitudes (31.4% of the global coastlines) after 1998, while 17.9% of the global coastlines changed from a cooling trend to a <span class="hlt">warming</span> trend concurrently. The trend reversals in the Northern Pacific and Atlantic coincided with the phase shift of Pacific Decadal Oscillation and North Atlantic Oscillation, respectively. These coastal SST changes are larger than the changes of the global mean and open ocean, resulting in a fast increase of extremely hot/<span class="hlt">cold</span> days, and thus extremely hot/<span class="hlt">cold</span> events. Meanwhile, a continuous increase of SST was detected for a considerable portion of coastlines (46.7%) with a strengthened <span class="hlt">warming</span> along the coastlines in the high northern latitudes. This suggests the <span class="hlt">warming</span> still continued and strengthened in some regions after 1998, but with a weaker pattern in the low and mid latitudes. PMID:26568024</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26568024','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26568024"><span>The coastal ocean response to the global <span class="hlt">warming</span> acceleration and hiatus.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn</p> <p>2015-11-16</p> <p>Coastlines are fundamental to humans for habitation, commerce, and natural resources. Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global <span class="hlt">warming</span> to global surface <span class="hlt">warming</span> hiatus after 1998. The task of understanding the coastal SST variations within the global context is an urgent matter. Our study on the global coastal SST from 1982 to 2013 revealed a significant cooling trend in the low and mid latitudes (31.4% of the global coastlines) after 1998, while 17.9% of the global coastlines changed from a cooling trend to a <span class="hlt">warming</span> trend concurrently. The trend reversals in the Northern Pacific and Atlantic coincided with the phase shift of Pacific Decadal Oscillation and North Atlantic Oscillation, respectively. These coastal SST changes are larger than the changes of the global mean and open ocean, resulting in a fast increase of extremely hot/<span class="hlt">cold</span> days, and thus extremely hot/<span class="hlt">cold</span> events. Meanwhile, a continuous increase of SST was detected for a considerable portion of coastlines (46.7%) with a strengthened <span class="hlt">warming</span> along the coastlines in the high northern latitudes. This suggests the <span class="hlt">warming</span> still continued and strengthened in some regions after 1998, but with a weaker pattern in the low and mid latitudes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1617208','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1617208"><span>Marine lake ecosystem dynamics illustrate <span class="hlt">ENSO</span> variation in the tropical western Pacific</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Martin, Laura E; Dawson, Michael N; Bell, Lori J; Colin, Patrick L</p> <p>2005-01-01</p> <p>Understanding El Niño/Southern Oscillation (<span class="hlt">ENSO</span>) and its biological consequences is hindered by a lack of high-resolution, long-term data from the tropical western Pacific. We describe a preliminary, 6 year dataset that shows tightly coupled <span class="hlt">ENSO</span>-related bio-physical dynamics in a seawater lake in Palau, Micronesia. The lake is more strongly stratified during La Niña than El Niño conditions, temperature anomalies in the lake co-vary strongly with the Niño 3.4 climate index, and the abundance of the dominant member of the pelagic community, an endemic subspecies of zooxanthellate jellyfish, is temperature associated. These results have broad relevance because the lake: (i) illustrates an <span class="hlt">ENSO</span> signal that is partly obscured in surrounding semi-enclosed lagoon waters and, therefore, (ii) may provide a model system for studying the effects of climate change on community evolution and cnidarian–zooxanthellae symbioses, which (iii) should be traceable throughout the Holocene because the lake harbours a high quality sediment record; the sediment record should (iv) provide a sensitive and regionally unique record of Holocene climate relevant to predicting <span class="hlt">ENSO</span> responses to future global climate change and, finally, (v) seawater lake ecosystems elsewhere in the Pacific may hold similar potential for past, present, and predictive measurements of climate variation and ecosystem response. PMID:17148349</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17148349','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17148349"><span>Marine lake ecosystem dynamics illustrate <span class="hlt">ENSO</span> variation in the tropical western Pacific.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martin, Laura E; Dawson, Michael N; Bell, Lori J; Colin, Patrick L</p> <p>2006-03-22</p> <p>Understanding El Niño/Southern Oscillation (<span class="hlt">ENSO</span>) and its biological consequences is hindered by a lack of high-resolution, long-term data from the tropical western Pacific. We describe a preliminary, 6 year dataset that shows tightly coupled <span class="hlt">ENSO</span>-related bio-physical dynamics in a seawater lake in Palau, Micronesia. The lake is more strongly stratified during La Niña than El Niño conditions, temperature anomalies in the lake co-vary strongly with the Niño 3.4 climate index, and the abundance of the dominant member of the pelagic community, an endemic subspecies of zooxanthellate jellyfish, is temperature associated. These results have broad relevance because the lake: (i) illustrates an <span class="hlt">ENSO</span> signal that is partly obscured in surrounding semi-enclosed lagoon waters and, therefore, (ii) may provide a model system for studying the effects of climate change on community evolution and cnidarian-zooxanthellae symbioses, which (iii) should be traceable throughout the Holocene because the lake harbours a high quality sediment record; the sediment record should (iv) provide a sensitive and regionally unique record of Holocene climate relevant to predicting <span class="hlt">ENSO</span> responses to future global climate change and, finally, (v) seawater lake ecosystems elsewhere in the Pacific may hold similar potential for past, present, and predictive measurements of climate variation and ecosystem response.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037586','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037586"><span>Predicted effects of climate <span class="hlt">warming</span> on the distribution of 50 stream fishes in Wisconsin, U.S.A.</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lyons, J.; Stewart, J.S.; Mitro, M.</p> <p>2010-01-01</p> <p>Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate <span class="hlt">warming</span> effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56.0-93.5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate <span class="hlt">warming</span> (summer air temperatures increase 1?? C and water 0.8?? C), moderate <span class="hlt">warming</span> (air 3?? C and water 2.4?? C) and major <span class="hlt">warming</span> (air 5?? C and water 4?? C). With climate <span class="hlt">warming</span>, 23 fishes were predicted to decline in distribution (three to extirpation under the major <span class="hlt">warming</span> scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three <span class="hlt">cold</span>-water and 16 cool-water fishes and four of 31 <span class="hlt">warm</span>-water fishes were predicted to decline, four <span class="hlt">warm</span>-water fishes to remain the same and 23 <span class="hlt">warm</span>-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have <span class="hlt">cold</span> to cool summer water temperatures and are dominated by <span class="hlt">cold</span>-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by <span class="hlt">warm</span>-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate <span class="hlt">warming</span> will have major effects on the distribution of stream fishes in Wisconsin. ?? 2010 The Authors. Journal of Fish Biology ?? 2010 The Fisheries Society of the British Isles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://onlinelibrary.wiley.com/doi/10.1111/j.1095-8649.2010.02763.x/full','USGSPUBS'); return false;" href="http://onlinelibrary.wiley.com/doi/10.1111/j.1095-8649.2010.02763.x/full"><span>Predicted effects of climate <span class="hlt">warming</span> on the distribution of 50 stream fishes in Wisconsin, U.S.A.</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stewart, Jana S.; Lyons, John D.; Matt Mitro,</p> <p>2010-01-01</p> <p>Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate <span class="hlt">warming</span> effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56·0–93·5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate <span class="hlt">warming</span> (summer air temperatures increase 1° C and water 0·8° C), moderate <span class="hlt">warming</span> (air 3° C and water 2·4° C) and major <span class="hlt">warming</span> (air 5° C and water 4° C). With climate <span class="hlt">warming</span>, 23 fishes were predicted to decline in distribution (three to extirpation under the major <span class="hlt">warming</span> scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three <span class="hlt">cold</span>-water and 16 cool-water fishes and four of 31 <span class="hlt">warm</span>-water fishes were predicted to decline, four <span class="hlt">warm</span>-water fishes to remain the same and 23 <span class="hlt">warm</span>-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have <span class="hlt">cold</span> to cool summer water temperatures and are dominated by <span class="hlt">cold</span>-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by <span class="hlt">warm</span>-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate <span class="hlt">warming</span> will have major effects on the distribution of stream fishes in Wisconsin.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24684400','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24684400"><span>Facing <span class="hlt">warm</span> temperatures during migration: cardiac mRNA responses of two adult Oncorhynchus nerka populations to <span class="hlt">warming</span> and swimming challenges.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Anttila, K; Eliason, E J; Kaukinen, K H; Miller, K M; Farrell, A P</p> <p>2014-05-01</p> <p>The main findings of the current study were that exposing adult sockeye salmon Onchorhynchus nerka to a <span class="hlt">warm</span> temperature that they regularly encounter during their river migration induced a heat shock response at an mRNA level, and this response was exacerbated with forced swimming. Similar to the heat shock response, increased immune defence-related responses were also observed after <span class="hlt">warm</span> temperature treatment and with a swimming challenge in two different populations (Chilko and Nechako), but with some important differences. Microarray analyses revealed that 347 genes were differentially expressed between the <span class="hlt">cold</span> (12-13° C) and <span class="hlt">warm</span> (18-19° C) treated fish, with stress response (GO:0006950) and response to fungus (GO:0009620) elevated with <span class="hlt">warm</span> treatment, while expression for genes involved in oxidative phosphorylation (GO:0006119) and electron transport chain (GO:0022900) elevated for <span class="hlt">cold</span>-treated fish. Analysis of single genes with real-time quantitative PCR revealed that temperature had the most significant effect on mRNA expression levels, with swimming and population having secondary influences. <span class="hlt">Warm</span> temperature treatment for the Chilko population induced expression of heat shock protein (hsp) 90α, hsp90β and hsp30 as well as interferon-inducible protein. The Nechako population, which is known to have a narrower thermal tolerance window than the Chilko population, showed even more pronounced stress responses to the <span class="hlt">warm</span> treatment and there was significant interaction between population and temperature treatment for hsp90β expression. Moreover, significant interactions were noted between temperature treatment and swimming challenge for hsp90α and hsp30, and while swimming challenge alone increased expression of these hsps, the expression levels were significantly elevated in <span class="hlt">warm</span>-treated fish swum to exhaustion. In conclusion, it seems that adult O. nerka currently encounter conditions that induce several cellular defence mechanisms during their once</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123..198S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123..198S"><span>Modulation of Winter Precipitation Dynamics Over the Arabian Gulf by <span class="hlt">ENSO</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sandeep, S.; Ajayamohan, R. S.</p> <p>2018-01-01</p> <p>The Arabian Gulf (Gulf) and the surrounding regions are centers of intense economic activity. The precipitating weather systems that form over the Gulf are important for this predominantly arid region. It is suggested that El Niño-Southern Oscillation (<span class="hlt">ENSO</span>) influences the Middle East precipitation variability through an equatorward shift of the subtropical jet. Here we present compelling evidence to illustrate the role of <span class="hlt">ENSO</span> in modulating the local dynamics and moisture transport in initiating precipitation during different <span class="hlt">ENSO</span> phases using satellite and reanalysis data. It is found that the moisture transport from the Red and Arabian Seas toward the Gulf is stronger during El Niño years. The pattern and strength of moisture transport toward the Gulf is weakened during La Niña and neutral years, with most of the transport directed toward the northern Gulf. Using a 120 h back trajectory analysis, it is found that while the air parcels coming toward the Gulf from the Arabian and Red Seas side originate at lower tropospheric levels, the air parcels from the Mediterranean originate at middle and upper tropospheric levels during El Niño years. In contrast, upper tropospheric air parcels originating over the southern Arabian Sea plays a dominant role on Gulf precipitation during La Niña and neutral years. The seasonal mean transients of zonal winds show a robust <span class="hlt">ENSO</span> signature over the Gulf, indicating a favorable (less favorable) condition for the penetration of midlatitude eddies over the region during El Niño (La Niña) winters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8163M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8163M"><span>How sea ice could be the <span class="hlt">cold</span> beating heart of European weather</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Margrethe Ringgaard, Ida; Yang, Shuting; Hesselbjerg Christensen, Jens; Kaas, Eigil</p> <p>2017-04-01</p> <p>The possibility that the ongoing rapid demise of Arctic sea ice may instigate abrupt changes is, however, not tackled by current research in general. Ice cores from the Greenland Ice Sheet (GIS) show clear evidence of past abrupt <span class="hlt">warm</span> events with up to 15 degrees <span class="hlt">warming</span> in less than a decade, most likely triggered by rapid disappearance of Nordic Seas sea ice. At present, both Arctic Sea ice and the GIS are in strong transformation: Arctic sea-ice cover has been retreating during most of the satellite era and in recent years, Arctic sea ice experienced a dramatic reduction and the summer extent was in 2012 and 2016 only half of the 1979-2000 average. With such dramatic change in the current sea ice coverage as a point of departure, several studies have linked reduction in wintertime sea ice in the Barents-Kara seas to <span class="hlt">cold</span> weather anomalies over Europe and through large scale tele-connections to regional <span class="hlt">warming</span> elsewhere. Here we aim to investigate if, and how, Arctic sea ice impacts European weather, i.e. if the Arctic sea ice works as the '<span class="hlt">cold</span> heart' of European weather. To understand the effects of the sea ice reduction on the full climate system, a fully-coupled global climate model, EC-Earth, is used. A new energy-conserving method for assimilating sea ice using the sensible heat flux is implemented in the coupled climate model and compared to the traditional, non-conserving, method of assimilating sea ice. Using this new method, experiments are performed with reduced sea ice cover in the Barents-Kara seas under both <span class="hlt">warm</span> and <span class="hlt">cold</span> conditions in Europe. These experiments are used to evaluate how the Arctic sea ice modulates European winter weather under present climate conditions with a view towards favouring both relatively <span class="hlt">cold</span> and <span class="hlt">warm</span> conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeCoA.179..123S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeCoA.179..123S"><span>Clumped isotope composition of <span class="hlt">cold</span>-water corals: A role for vital effects?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spooner, Peter T.; Guo, Weifu; Robinson, Laura F.; Thiagarajan, Nivedita; Hendry, Katharine R.; Rosenheim, Brad E.; Leng, Melanie J.</p> <p>2016-04-01</p> <p>The carbonate clumped isotope thermometer is a promising tool for determining past ocean temperatures. It is based on the temperature dependence of rare isotopes 'clumping' into the same carbonate ion group in the carbonate mineral lattice. The extent of this clumping effect is independent of the isotope composition of the water from which carbonate precipitates, providing unique advantages over many other paleotemperature proxies. Existing calibrations of this thermometer in <span class="hlt">cold</span>-water and <span class="hlt">warm</span>-water corals suggest clumped isotope 'vital effects' are negligible in <span class="hlt">cold</span>-water corals but may be significant in <span class="hlt">warm</span>-water corals. Here, we test the calibration of the carbonate clumped isotope thermometer in <span class="hlt">cold</span>-water corals with a recently collected and well characterised sample set spanning a range of coral genera (Balanophyllia, Caryophyllia, Dasmosmilia, Desmophyllum, Enallopsammia and Javania). The clumped isotope compositions (Δ47) of these corals exhibit systematic dependences on their growth temperatures, confirming the basis of the carbonate clumped isotope thermometer. However, some <span class="hlt">cold</span>-water coral genera show Δ47 values that are higher than the expected equilibrium values by up to 0.05‰ (equivalent to underestimating temperature by ∼9 °C) similar to previous findings for some <span class="hlt">warm</span>-water corals. This finding suggests that the vital effects affecting corals Δ47 are common to both <span class="hlt">warm</span>- and <span class="hlt">cold</span>-water corals. By comparison with models of the coral calcification process we suggest that the clumped isotope offsets in these genera are related to the kinetic isotope effects associated with CO2 hydration/hydroxylation reactions in the corals' calcifying fluid. Our findings complicate the use of the carbonate clumped isotope thermometer in corals, but suggest that species- or genus-specific calibrations could be useful for the future application of this paleotemperature proxy.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27976517','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27976517"><span><span class="hlt">Warmed</span>, humidified CO2 insufflation benefits intraoperative core temperature during laparoscopic surgery: A meta-analysis.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dean, Meara; Ramsay, Robert; Heriot, Alexander; Mackay, John; Hiscock, Richard; Lynch, A Craig</p> <p>2017-05-01</p> <p>Intraoperative hypothermia is linked to postoperative adverse events. The use of <span class="hlt">warmed</span>, humidified CO 2 to establish pneumoperitoneum during laparoscopy has been associated with reduced incidence of intraoperative hypothermia. However, the small number and variable quality of published studies have caused uncertainty about the potential benefit of this therapy. This meta-analysis was conducted to specifically evaluate the effects of <span class="hlt">warmed</span>, humidified CO 2 during laparoscopy. An electronic database search identified randomized controlled trials performed on adults who underwent laparoscopic abdominal surgery under general anesthesia with either <span class="hlt">warmed</span>, humidified CO 2 or <span class="hlt">cold</span>, dry CO 2 . The main outcome measure of interest was change in intraoperative core body temperature. The database search identified 320 studies as potentially relevant, and of these, 13 met the inclusion criteria and were included in the analysis. During laparoscopic surgery, use of <span class="hlt">warmed</span>, humidified CO 2 is associated with a significant increase in intraoperative core temperature (mean temperature change, 0.3°C), when compared with <span class="hlt">cold</span>, dry CO 2 insufflation . CONCLUSION: <span class="hlt">Warmed</span>, humidified CO 2 insufflation during laparoscopic abdominal surgery has been demonstrated to improve intraoperative maintenance of normothermia when compared with <span class="hlt">cold</span>, dry CO 2. © 2016 The Authors. Asian Journal of Endoscopic Surgery published by Asia Endosurgery Task Force and Japan Society of Endoscopic Surgery and John Wiley & Sons Australia, Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1578923','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1578923"><span>Red cell surface changes in <span class="hlt">cold</span> agglutination</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Salsbury, A. J.; Clarke, J. A.; Shand, W. S.</p> <p>1968-01-01</p> <p>Surface changes in red blood cells undergoing <span class="hlt">cold</span> agglutination have been investigated using the Cambridge Stereoscan electron microscope. On incubation of red cells with a <span class="hlt">cold</span> agglutinin of anti-I specificity at 4°C, circular shadows on the red cell membrane developed within 2 min. At the same time the membrane showed a granularity and processes began to develop on the surface. These processes increased in length, the processes of contiguous cells became interlinked and agglutination was complete after incubation of 1 hr. On <span class="hlt">warming</span> an agglutinated specimen, the process was reversed with separation of red cells and retraction of the finger-like processes to yield discrete red cells of normal appearance. The addition of heparin in vivo prevented agglutination but did not inhibit surface changes completely. Complement appeared to play no part in the production of <span class="hlt">cold</span> agglutination due to these antibodies or in the reversal of agglutination by <span class="hlt">warming</span>. The significance of the surface changes described in relation to previous information on the mechanism of agglutination, has been discussed. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11 PMID:5655472</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4005741','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4005741"><span>Murder or Not? <span class="hlt">Cold</span> Temperature Makes Criminals Appear to Be <span class="hlt">Cold</span>-Blooded and <span class="hlt">Warm</span> Temperature to Be Hot-Headed</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gockel, Christine; Kolb, Peter M.; Werth, Lioba</p> <p>2014-01-01</p> <p>Temperature-related words such as <span class="hlt">cold</span>-blooded and hot-headed can be used to describe criminal behavior. Words associated with <span class="hlt">coldness</span> describe premeditated behavior and words associated with heat describe impulsive behavior. Building on recent research about the close interplay between physical and interpersonal <span class="hlt">coldness</span> and warmth, we examined in a lab experiment how ambient temperature within a comfort zone influences judgments of criminals. Participants in rooms with low temperature regarded criminals to be more <span class="hlt">cold</span>-blooded than participants in rooms with high temperature. Specifically, they were more likely to attribute premeditated crimes, ascribed crimes resulting in higher degrees of penalty, and attributed more murders to criminals. Likewise, participants in rooms with high temperature regarded criminals to be more hot-headed than participants in rooms with low temperature: They were more likely to attribute impulsive crimes. Results imply that cognitive representations of temperature are closely related to representations of criminal behavior and attributions of intent. PMID:24788725</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24788725','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24788725"><span>Murder or not? <span class="hlt">Cold</span> temperature makes criminals appear to be <span class="hlt">cold</span>-blooded and <span class="hlt">warm</span> temperature to be hot-headed.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gockel, Christine; Kolb, Peter M; Werth, Lioba</p> <p>2014-01-01</p> <p>Temperature-related words such as <span class="hlt">cold</span>-blooded and hot-headed can be used to describe criminal behavior. Words associated with <span class="hlt">coldness</span> describe premeditated behavior and words associated with heat describe impulsive behavior. Building on recent research about the close interplay between physical and interpersonal <span class="hlt">coldness</span> and warmth, we examined in a lab experiment how ambient temperature within a comfort zone influences judgments of criminals. Participants in rooms with low temperature regarded criminals to be more <span class="hlt">cold</span>-blooded than participants in rooms with high temperature. Specifically, they were more likely to attribute premeditated crimes, ascribed crimes resulting in higher degrees of penalty, and attributed more murders to criminals. Likewise, participants in rooms with high temperature regarded criminals to be more hot-headed than participants in rooms with low temperature: They were more likely to attribute impulsive crimes. Results imply that cognitive representations of temperature are closely related to representations of criminal behavior and attributions of intent.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.8453P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.8453P"><span><span class="hlt">ENSO</span> detection and use to inform the operation of large scale water systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pham, Vuong; Giuliani, Matteo; Castelletti, Andrea</p> <p>2016-04-01</p> <p>El Nino Southern Oscillation (<span class="hlt">ENSO</span>) is a large-scale, coupled ocean-atmosphere phenomenon occurring in the tropical Pacific Ocean, and is considered one of the most significant factors causing hydro-climatic anomalies throughout the world. Water systems operations could benefit from a better understanding of this global phenomenon, which has the potential for enhancing the accuracy and lead-time of long-range streamflow predictions. In turn, these are key to design interannual water transfers in large scale water systems to contrast increasingly frequent extremes induced by changing climate. Despite the <span class="hlt">ENSO</span> teleconnection is well defined in some locations such as Western USA and Australia, there is no consensus on how it can be detected and used in other river basins, particularly in Europe, Africa, and Asia. In this work, we contribute a general framework relying on Input Variable Selection techniques for detecting <span class="hlt">ENSO</span> teleconnection and using this information for improving water reservoir operations. Core of our procedure is the Iterative Input variable Selection (IIS) algorithm, which is employed to find the most relevant determinants of streamflow variability for deriving predictive models based on the selected inputs as well as to find the most valuable information for conditioning operating decisions. Our framework is applied to the multipurpose operations of the Hoa Binh reservoir in the Red River basin (Vietnam), taking into account hydropower production, water supply for irrigation, and flood mitigation during the monsoon season. Numerical results show that our framework is able to quantify the relationship between the <span class="hlt">ENSO</span> fluctuations and the Red River basin hydrology. Moreover, we demonstrate that such <span class="hlt">ENSO</span> teleconnection represents valuable information for improving the operations of Hoa Binh reservoir.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>