Triffterer, Lydia; Marhofer, Peter; Sulyok, Irene; Keplinger, Maya; Mair, Stefan; Steinberger, Markus; Klug, Wolfgang; Kimberger, Oliver
2016-01-01
Perioperative hypothermia is a common problem, challenging the anesthesiologist and influencing patient outcome. Efficient and safe perioperative active warming is therefore paramount; yet, it can be particularly challenging in pediatric patients. Forced-air warming technology is the most widespread patient-warming option, with most forced-air warming systems consisting of a forced-air blower connected to a compressible, double layer plastic and/or a paper blanket with air holes on the patient side. We compared an alternative, forced-air, noncompressible, under-body patient-warming mattress (Baby/Kleinkinddecke of MoeckWarmingSystems, Moeck und Moeck GmbH; group MM) with a standard, compressible warming mattress system (Pediatric Underbody, Bair Hugger, 3M; group BH). The study included 80 patients aged <2 years, scheduled for elective surgery. After a preoperative core temperature measurement, the patients were placed on the randomized mattress in the operation theater and 4 temperature probes were applied rectally and to the patients' skin. The warming devices were turned on as soon as possible to the level for pediatric patients as recommended by the manufacturer (MM = 40°C, BH = 43°C). There was a distinct difference of temperature slope between the 2 groups: core temperatures of patients in the group MM remained stable and mean of the core temperature of patients in the group BH increased significantly (difference: +1.48°C/h; 95% confidence interval, 0.82-2.15°C/h; P = 0.0001). The need for temperature downregulation occurred more often in the BH group, with 22 vs 7 incidences (RR, 3.14; 95% confidence interval, 1.52-6.52; P = 0.0006). Skin temperatures were all lower in the MM group. Perioperatively, no side effects related to a warming device were observed in any group. Both devices are feasible choices for active pediatric patient warming, with the compressible mattress system being better suited to increase core temperature. The use of lower pediatric forced-air temperature settings, as recommended by the manufacturer, in the noncompressible mattress group resulted in more stable core temperature conditions, with fewer forced-air temperature adjustments necessary to avoid hyperthermia.
Apparatus and method for evaporator defrosting
Mei, Viung C.; Chen, Fang C.; Domitrovic, Ronald E.
2001-01-01
An apparatus and method for warm-liquid defrosting of the evaporator of a refrigeration system. The apparatus includes a first refrigerant expansion device that selectively expands refrigerant for cooling the evaporator, a second refrigerant expansion device that selectively expands the refrigerant after the refrigerant has passed through the evaporator, and a defrosting control for the first refrigerant expansion device and second refrigerant expansion device to selectively defrost the evaporator by causing warm refrigerant to flow through the evaporator. The apparatus is alternately embodied with a first refrigerant bypass and/or a second refrigerant bypass for selectively directing refrigerant to respectively bypass the first refrigerant expansion device and the second refrigerant expansion device, and with the defrosting control connected to the first refrigerant bypass and/or the second refrigerant bypass to selectively activate and deactivate the bypasses depending upon the current cycle of the refrigeration system. The apparatus alternately includes an accumulator for accumulating liquid and/or gaseous refrigerant that is then pumped either to a refrigerant receiver or the first refrigerant expansion device for enhanced evaporator defrosting capability. The inventive method of defrosting an evaporator in a refrigeration system includes the steps of compressing refrigerant in a compressor and cooling the refrigerant in the condenser such that the refrigerant is substantially in liquid form, passing the refrigerant substantially in liquid form through the evaporator, and expanding the refrigerant with a refrigerant expansion device after the refrigerant substantially passes through the evaporator.
Mechanical Behavior and Microstructure Evolution of Bearing Steel 52100 During Warm Compression
NASA Astrophysics Data System (ADS)
Huo, Yuanming; He, Tao; Chen, Shoushuang; Wu, Riming
2018-05-01
High-performance bearing steel requires a fine and homogeneous structure of carbide particles. Direct deformation spheroidizing of bearing steel in a dual-phase zone can contribute to achieving this important structure. In this work, warm compression testing of 52100 bearing steel was performed at temperatures in the range of 650-850°C and at strain rates of 0.1-10.0 s-1. The effect of deformation temperatures on mechanical behavior and microstructure evolution was investigated to determine the warm deformation temperature window. The effect of deformation rates on microstructure evolution and metal flow softening behavior of the warm compression was analyzed and discussed. Experimental results showed that the temperature range from 750°C to 800°C should be regarded as the critical range separating warm and hot deformation. Warm deformation at temperatures in the range of 650-750°C promoted carbide spheroidization, and this was determined to be the warm deformation temperature window. Metal flow softening during the warm deformation was caused by carbide spheroidization.
Warm Water Compress as an Alternative for Decreasing the Degree of Phlebitis.
Annisa, Fitri; Nurhaeni, Nani; Wanda, Dessie
Intravenous fluid therapy is an invasive procedure which may increase the risk of patient complications. One of the most common of these is phlebitis, which may cause discomfort and tissue damage. Therefore, a nursing intervention is needed to effectively treat phlebitis. The purpose of this study was to investigate the effectiveness of applying a warm compression intervention to reduce the degree of phlebitis. A quasi-experimental pre-test and post-test design was used, with a non-equivalent control group. The total sample size was 32 patients with degrees of phlebitis ranging from 1 to 4. The total sample was divided into 2 interventional groups: those patients that were given 0.9% NaCl compresses and those given warm water compresses. The results showed that both compresses were effective in reducing the degree of phlebitis, with similar p values (p = .000). However, there was no difference in the average reduction score between the two groups (p = .18). Therefore, a warm water compress is valuable in the treatment of phlebitis, and could decrease the degree of phlebitis both effectively and inexpensively.
Khosravan, Shahla; Mohammadzadeh-Moghadam, Hossein; Mohammadzadeh, Fatemeh; Fadafen, Samane Ajam Khames; Gholami, Malihe
2017-01-01
Breast engorgement affects lactation. The present study was conducted to determine the effect of hollyhock combined with warm and cold compresses on improving breast engorgement in lactating women. Participants included 40 women with breast engorgement divided into intervention and control groups, with participants in both groups being applied routine interventions and warm compress before nursing and a cold compress after nursing; however, the intervention group was also applied hollyhock compress. Both groups received these treatments 6 times during 2 days. The data collected were analyzed in SPSS-16 using a generalized estimating equation. According to the results, a significant difference was observed in the overall breast engorgement severity in the intervention group (P < .001). The severity of breast engorgement was also found to have a significant relationship with time (P < .001). According to the findings, hollyhock leaf compress combined with performing routine interventions for breast engorgement can improve breast engorgement. © The Author(s) 2015.
Corneal Staining and Hot Black Tea Compresses.
Achiron, Asaf; Birger, Yael; Karmona, Lily; Avizemer, Haggay; Bartov, Elisha; Rahamim, Yocheved; Burgansky-Eliash, Zvia
2017-03-01
Warm compresses are widely touted as an effective treatment for ocular surface disorders. Black tea compresses are a common household remedy, although there is no evidence in the medical literature proving their effect and their use may lead to harmful side effects. To describe a case in which the application of black tea to an eye with a corneal epithelial defect led to anterior stromal discoloration; evaluate the prevalence of hot tea compress use; and analyze, in vitro, the discoloring effect of tea compresses on a model of a porcine eye. We assessed the prevalence of hot tea compresses in our community and explored the effect of warm tea compresses on the cornea when the corneal epithelium's integrity is disrupted. An in vitro experiment in which warm compresses were applied to 18 fresh porcine eyes was performed. In half the eyes a corneal epithelial defect was created and in the other half the epithelium was intact. Both groups were divided into subgroups of three eyes each and treated experimentally with warm black tea compresses, pure water, or chamomile tea compresses. We also performed a study in patients with a history of tea compress use. Brown discoloration of the anterior stroma appeared only in the porcine corneas that had an epithelial defect and were treated with black tea compresses. No other eyes from any group showed discoloration. Of the patients included in our survey, approximately 50% had applied some sort of tea ingredient as a solid compressor or as the hot liquid. An intact corneal epithelium serves as an effective barrier against tea-stain discoloration. Only when this layer is disrupted does the damage occur. Therefore, direct application of black tea (Camellia sinensis) to a cornea with an epithelial defect should be avoided.
Effect of warm compress application on tissue temperature in healthy dogs.
Millard, Ralph P; Towle-Millard, Heather A; Rankin, David C; Roush, James K
2013-03-01
To measure the effect of warm compress application on tissue temperature in healthy dogs. 10 healthy mixed-breed dogs. Dogs were sedated with hydromorphone (0.1 mg/kg, IV) and diazepam (0.25 mg/kg, IV). Three 24-gauge thermocouple needles were inserted to a depth of 0.5 cm (superficial), 1.0 cm (middle), and 1.5 cm (deep) into a shaved, lumbar, epaxial region to measure tissue temperature. Warm (47°C) compresses were applied with gravity dependence for periods of 5, 10, and 20 minutes. Tissue temperature was recorded before compress application and at intervals for up to 80 minutes after application. Control data were collected while dogs received identical sedation but with no warm compress. Mean temperature associated with 5 minutes of heat application at the superficial, middle, and deep depths was significantly increased, compared with the control temperature. Application for 10 minutes significantly increased the temperature at all depths, compared with 5 minutes of application. Mean temperature associated with 20 minutes of application was not different at the superficial or middle depths, compared with 10 minutes of application. Temperature at the deep depth associated with 10 minutes of application was significantly higher, compared with 20 minutes of application, but all temperature increases at this depth were minimal. Results suggested that application of a warm compress should be performed for 10 minutes. Changes in temperature at a tissue depth of 1.5 cm were minimal or not detected. The optimal compress temperature to achieve therapeutic benefits was not determined.
21 CFR 864.9205 - Blood and plasma warming device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...
21 CFR 864.9205 - Blood and plasma warming device.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...
21 CFR 864.9205 - Blood and plasma warming device.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...
21 CFR 864.9205 - Blood and plasma warming device.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...
21 CFR 864.9205 - Blood and plasma warming device.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...
Yeung, Joyce; Davies, Robin; Gao, Fang; Perkins, Gavin D
2014-04-01
This study aims to compare the effect of three CPR prompt and feedback devices on quality of chest compressions amongst healthcare providers. A single blinded, randomised controlled trial compared a pressure sensor/metronome device (CPREzy), an accelerometer device (Phillips Q-CPR) and simple metronome on the quality of chest compressions on a manikin by trained rescuers. The primary outcome was compression depth. Secondary outcomes were compression rate, proportion of chest compressions with inadequate depth, incomplete release and user satisfaction. The pressure sensor device improved compression depth (37.24-43.64 mm, p=0.02), the accelerometer device decreased chest compression depth (37.38-33.19 mm, p=0.04) whilst the metronome had no effect (39.88 mm vs. 40.64 mm, p=0.802). Compression rate fell with all devices (pressure sensor device 114.68-98.84 min(-1), p=0.001, accelerometer 112.04-102.92 min(-1), p=0.072 and metronome 108.24 min(-1) vs. 99.36 min(-1), p=0.009). The pressure sensor feedback device reduced the proportion of compressions with inadequate depth (0.52 vs. 0.24, p=0.013) whilst the accelerometer device and metronome did not have a statistically significant effect. Incomplete release of compressions was common, but unaffected by the CPR feedback devices. Users preferred the accelerometer and metronome devices over the pressure sensor device. A post hoc study showed that de-activating the voice prompt on the accelerometer device prevented the deterioration in compression quality seen in the main study. CPR feedback devices vary in their ability to improve performance. In this study the pressure sensor device improved compression depth, whilst the accelerometer device reduced it and metronome had no effect. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Method and apparatus for holding two separate metal pieces together for welding
NASA Technical Reports Server (NTRS)
Mcclure, S. R. (Inventor)
1980-01-01
A method of holding two separate metal pieces together for welding is described including the steps of overlapping a portion of one of the metal pieces on a portion of the other metal piece, encasing the overlapping metal piece in a compressible device, drawing the compressible device into an enclosure, and compressing a portion of the compressible device around the overlapping portions of the metal pieces for holding the metal pieces under constant and equal pressure during welding. The preferred apparatus for performing the method utilizes a support mechanism to support the two separate metal pieces in an overlapping configuration; a compressible device surrounding the support mechanism and at least one of the metal pieces, and a compressing device surrounding the compressible device for compressing the compressible device around the overlapping portions of the metal pieces, thus providing constant and equal pressure at all points on the overlapping portions of the metal pieces.
... base of the eyelashes as well. Causes The exact cause of blepharitis is unknown. It is thought ... day. After the warm compresses, gently rub a solution of warm water and no-tears baby shampoo ...
On the compressibility and temperature boundary of warm frozen soils
NASA Astrophysics Data System (ADS)
Qi, Jilin; Dang, Boxiang; Guo, Xueluan; Sun, Xiaoyu; Yan, Xu
2017-04-01
A silty-clay obtained along the Qinghai-Tibetan railway and a standard Chinese sand were taken as study objects. Saturated frozen soil samples were prepared for testing. Step-load was used and confined compression was carried out on the soils under different temperatures. Compression index and pseudo-preconsolidation pressure (PPC) were obtained. Unlike unfrozen soils, PPC is not associated with stress history. However, it is still the boundary of elastic and plastic deformations. Different compression indexes can be obtained from an individual compression curve under pressures before and after PPC. The parameters at different thermal and stress conditions were analyzed. It is found that temperature plays a critical role in mechanical behaviours of frozen soils. Efforts were then made on the silty-clay in order to suggest a convincing temperature boundary in defining warm frozen soil. Three groups of ice-rich samples with different ice contents were prepared and tested under confined compression. The samples were compressed under a constant load and with 5 stepped temperatures. Strain rates at different temperatures were examined. It was found that the strain rate at around -0.6°C increased abruptly. Analysis of compression index was performed on the data both from our own testing program and from the literature, which showed that at about -1°C was a turning point in the curves for compression index against temperature. Based on both our work and taking into account the unfrozen water content vs. temperature, the range of -1°C to -0.5°C seems to be the temperature where the mechanical properties change greatly. For convenience, -1.0°C can be defined as the boundary for warm frozen soils.
Pressure-relieving properties of a intra-operative warming device.
Baker, E A; Leaper, D J
2003-04-01
The primary objective of this study was to determine differences in interface pressure between four mattress combinations: a standard operating table mattress, a pressure-relieving gel pad and an under-patient warming device set at 38 degrees C (Pegasus Inditherm System) and at ambient temperature. The secondary objective was to determine whether the warming device remains stable in extreme surgical positions. Interface pressures obtained with all four combinations were measured in 10 healthy volunteers using force sensing array technology. The warming device demonstrated better or equivalent pressure relief when compared with the standard gel pad. There was no significant difference in subject position 'shift' between the mattress, the gel pad and the warming device for either the Trendelenberg or reverse Trendelenberg positions. Both pressure-relieving mattresses and warming reduce intra-operative pressure damage. A mattress with both properties may further reduce pressure damage postoperatively. The warming device used in this study appears stable--subject 'slippage' was minimal in extreme positions. Research needs to be conducted among real anaesthetised patients to support these conclusions.
Effect of various warm-up devices on bat velocity of intercollegiate softball players.
Szymanski, David J; Bassett, Kylie E; Beiser, Erik J; Till, Megan E; Medlin, Greg L; Beam, Jason R; Derenne, Coop
2012-01-01
Numerous warm-up devices are available for use by softball players while they are in the on-deck circle. It is difficult to know which warm-up device produces the greatest bat velocity (BV) in the batter's box for softball players because on-deck studies with these individuals are sparse. Because the majority of warm-up device research has been conducted with baseball players, the primary purpose of this study was to examine the effect of various warm-up devices on the BV of female intercollegiate softball players and compare the results with those of male baseball players. A secondary purpose was to evaluate 2 new commercially available resistance devices as warm-up aids. Nineteen Division I intercollegiate softball players (age = 19.8 ± 1.2 years, height = 167.0 ± 4.7 cm, body mass = 69.2 ± 8.6 kg, lean body mass = 49.6 ± 3.6 kg, % body fat = 27.9 ± 5.9) participated in a warm-up with 1 of 8 resistance devices on separate days. Each of the 8 testing sessions had players perform a standardized dynamic warm-up, 3 maximal dry swings mimicking their normal game swing with the assigned warm-up device, 2 comfortable dry swings with a standard 83.8-cm, 652-g (33-in., 23-oz) softball bat followed by 3 maximal game swings (20-second rest between swings) while hitting a softball off a batting tee with the same standard softball bat. Results indicated that there were no statistically significant differences in BV after using any of the 8 warm-up devices (510.3-2,721.5 g or 18-96 oz) similar to in previous baseball research. This indicates that the results for both male and female intercollegiate players are similar and that intercollegiate softball players can use any of the 8 warm-up devices in the on-deck circle and have similar BVs. However, similar to in other previous baseball research, it is not recommended that female intercollegiate softball players warm up with the popular commercial donut ring in the on-deck circle because it produced the slowest BV.
Robak, A N
2008-11-01
A new method for the formation of a compression esophagointestinal anastomosis is proposed. The compression force in the new device for creation of compression circular anastomoses is created by means of a titanium nickelide spring with a "shape memory" effect. Experimental study showed good prospects of the new device and the advantages of the anastomosis compression suture formed by means of this device in comparison with manual ligature suturing.
Pearce, Brett; Mattheyse, Linda; Ellard, Louise; Desmond, Fiona; Pillai, Param; Weinberg, Laurence
2018-01-01
Background The avoidance of hypothermia is vital during prolonged and open surgery to improve patient outcomes. Hypothermia is particularly common during orthotopic liver transplantation (OLT) and associated with undesirable physiological effects that can adversely impact on perioperative morbidity. The KanMed WarmCloud (Bromma, Sweden) is a revolutionary, closed-loop, warm-air heating mattress developed to maintain normothermia and prevent pressure sores during major surgery. The clinical effectiveness of the WarmCloud device during OLT is unknown. Therefore, we conducted a randomized controlled trial to determine whether the WarmCloud device reduces hypothermia and prevents pressure injuries compared with the Bair Hugger underbody warming device. Methods Patients were randomly allocated to receive either the WarmCloud or Bair Hugger warming device. Both groups also received other routine standardized multimodal thermoregulatory strategies. Temperatures were recorded by nasopharyngeal temperature probe at set time points during surgery. The primary endpoint was nasopharyngeal temperature recorded 5 minutes before reperfusion. Secondary endpoints included changes in temperature over the predefined intraoperative time points, number of patients whose nadir temperature was below 35.5°C and the development of pressure injuries during surgery. Results Twenty-six patients were recruited with 13 patients randomized to each group. One patient from the WarmCloud group was excluded because of a protocol violation. Baseline characteristics were similar. The mean (standard deviation) temperature before reperfusion was 36.0°C (0.7) in the WarmCloud group versus 36.3°C (0.6) in the Bairhugger group (P = 0.25). There were no statistical differences between the groups for any of the secondary endpoints. Conclusions When combined with standardized multimodal thermoregulatory strategies, the WarmCloud device does not reduce hypothermia compared with the Bair Hugger device in patients undergoing OLT. PMID:29707629
Eichhorn, S; Mendoza Garcia, A; Polski, M; Spindler, J; Stroh, A; Heller, M; Lange, R; Krane, M
2017-06-01
The provision of sufficient chest compression is among the most important factors influencing patient survival during cardiopulmonary resuscitation (CPR). One approach to optimize the quality of chest compressions is to use mechanical-resuscitation devices. The aim of this study was to compare a new device for chest compression (corpuls cpr) with an established device (LUCAS II). We used a mechanical thorax model consisting of a chest with variable stiffness and an integrated heart chamber which generated blood flow dependent on the compression depth and waveform. The method of blood-flow generation could be changed between direct cardiac-compression mode and thoracic-pump mode. Different chest-stiffness settings and compression modes were tested to generate various blood-flow profiles. Additionally, an endurance test at high stiffness was performed to measure overall performance and compression consistency. Both resuscitation machines were able to compress the model thorax with a frequency of 100/min and a depth of 5 cm, independent of the chosen chest stiffness. Both devices passed the endurance test without difficulty. The corpuls cpr device was able to generate about 10-40% more blood flow than the LUCAS II device, depending on the model settings. In most scenarios, the corpuls cpr device also generated a higher blood pressure than the LUCAS II. The peak compression forces during CPR were about 30% higher using the corpuls cpr device than with the LUCAS II. In this study, the corpuls cpr device had improved blood flow and pressure outcomes than the LUCAS II device. Further examination in an animal model is required to prove the findings of this preliminary study.
Schober, P; Krage, R; Lagerburg, V; Van Groeningen, D; Loer, S A; Schwarte, L A
2014-04-01
Current cardiopulmonary resuscitation (CPR)-guidelines recommend an increased chest compression depth and rate compared to previous guidelines, and the use of automatic feedback devices is encouraged. However, it is unclear whether this compression depth can be maintained at an increased frequency. Moreover, the underlying surface may influence accuracy of feedback devices. We investigated compression depths over time and evaluated the accuracy of a feedback device on different surfaces. Twenty-four volunteers performed four two-minute blocks of CPR targeting at current guideline recommendations on different surfaces (floor, mattress, 2 backboards) on a patient simulator. Participants rested for 2 minutes between blocks. Influences of time and different surfaces on chest compression depth (ANOVA, mean [95% CI]) and accuracy of a feedback device to determine compression depth (Bland-Altman) were assessed. Mean compression depth did not reach recommended depth and decreased over time during all blocks (first block: from 42 mm [39-46 mm] to 39 mm [37-42 mm]). A two-minute resting period was insufficient to restore compression depth to baseline. No differences in compression depth were observed on different surfaces. The feedback device slightly underestimated compression depth on the floor (bias -3.9 mm), but markedly overestimated on the mattress (bias +12.6 mm). This overestimation was eliminated after correcting compression depth by a second sensor between manikin and mattress. Strategies are needed to improve chest compression depth, and more than two providers should alternate with chest compressions. The underlying surface does not necessarily adversely affect CPR performance but influences accuracy of feedback devices. Accuracy is improved by a second, posterior, sensor.
X-ray scattering measurements of strong ion-ion correlations in shock-compressed aluminum.
Ma, T; Döppner, T; Falcone, R W; Fletcher, L; Fortmann, C; Gericke, D O; Landen, O L; Lee, H J; Pak, A; Vorberger, J; Wünsch, K; Glenzer, S H
2013-02-08
The strong ion-ion correlation peak characteristic of warm dense matter (WDM) is observed for the first time using simultaneous angularly, temporally, and spectrally resolved x-ray scattering measurements in laser-driven shock-compressed aluminum. Laser-produced molybdenum x-ray line emission at an energy of 17.9 keV is employed to probe aluminum compressed to a density of ρ>8 g/cm(3). We observe a well pronounced peak in the static structure factor at a wave number of k=4.0 Å(-1). The measurements of the magnitude and position of this correlation peak are precise enough to test different theoretical models for the ion structure and show that only models taking the complex interaction in WDM into account agree with the data. This also demonstrates a new highly accurate diagnostic to directly measure the state of compression of warm dense matter.
Memory hierarchy using row-based compression
Loh, Gabriel H.; O'Connor, James M.
2016-10-25
A system includes a first memory and a device coupleable to the first memory. The device includes a second memory to cache data from the first memory. The second memory includes a plurality of rows, each row including a corresponding set of compressed data blocks of non-uniform sizes and a corresponding set of tag blocks. Each tag block represents a corresponding compressed data block of the row. The device further includes decompression logic to decompress data blocks accessed from the second memory. The device further includes compression logic to compress data blocks to be stored in the second memory.
Lee, Donghee; Erickson, Alek; You, Taesun; Dudley, Andrew T; Ryu, Sangjin
2018-06-13
Hyaline cartilage is a specialized type of connective tissue that lines many moveable joints (articular cartilage) and contributes to bone growth (growth plate cartilage). Hyaline cartilage is composed of a single cell type, the chondrocyte, which produces a unique hydrated matrix to resist compressive stress. Although compressive stress has profound effects on transcriptional networks and matrix biosynthesis in chondrocytes, mechanistic relationships between strain, signal transduction, cell metabolism, and matrix production remain superficial. Here, we describe development and validation of a polydimethylsiloxane (PDMS)-based pneumatic microfluidic cell compression device which generates multiple compression conditions in a single platform. The device contained an array of PDMS balloons of different sizes which were actuated by pressurized air, and the balloons compressed chondrocytes cells in alginate hydrogel constructs. Our characterization and testing of the device showed that the developed platform could compress chondrocytes with various magnitudes simultaneously with negligible effect on cell viability. Also, the device is compatible with live cell imaging to probe early effects of compressive stress, and it can be rapidly dismantled to facilitate molecular studies of compressive stress on transcriptional networks. Therefore, the proposed device will enhance the productivity of chondrocyte mechanobiology studies, and it can be applied to study mechanobiology of other cell types.
Igaki, Michihito; Suzuki, Masahiro; Sakamoto, Ichiro; Ichiba, Tomohisa; Kuriyama, Kenichi; Uchiyama, Makoto
2018-01-01
Appropriate warming of the periocular or posterior cervical skin has been reported to induce autonomic or mental relaxation in humans. To clarify the effects of cutaneous warming on human sleep, eight male subjects with mild sleep difficulties were asked to try three experimental conditions at home, each lasting for 5 days, in a cross-over manner: warming of the periocular skin with a warming device for 10 min before habitual bedtime, warming of the posterior cervical skin with a warming device for 30 min before habitual bedtime, and no treatment as a control. The warming device had a heat- and steam-generating sheet that allowed warming of the skin to 40 °C through a chemical reaction with iron. Electroencephalograms (EEGs) were recorded during nocturnal sleep using an ambulatory EEG device and subjected to spectral analysis. All the participants reported their sleep status using a visual analog scale. We found that warming of the periocular or posterior cervical skin significantly improved subjective sleep status relative to the control. The EEG delta power density in the first 90 min of the sleep episode was significantly increased under both warming of the periocular or posterior cervical skin relative to the control. These results suggest that warming of appropriate skin regions may have favorable effects on subjective and objective sleep quality.
Does warming the breasts affect the amount of breastmilk production?
Yiğit, Feride; Çiğdem, Zerrin; Temizsoy, Ebru; Cingi, Melek Ersoy; Korel, Özlem; Yıldırım, Egemen; Ovalı, Fahri
2012-12-01
Increasing the amount of breastmilk is vital for both the nursing mother and child. Warming up breasts before using electrical pumps to pump out breastmilk may help to increase the amount of breastmilk, especially in the mothers of babies who are being nursed in the neonatal intensive care unit. Thirty-nine mothers whose babies had been admitted to the neonatal intensive care unit were analyzed. A breast compress that was warmed up in a microwave oven for 1 minute at 180 W was applied to one of the breasts for 20 minutes, and both breasts were sucked by an electrical breast pump for 15 minutes. The amount of breastmilk after each procedure was recorded. The amount of breastmilk that was obtained from warmed breasts was significantly higher than that obtained from nonwarmed breasts (maximum, 47.02 ± 23.01 mL vs. 33.15 ± 19.98 mL) (p=0.000). Warming up breasts by a breast compress is easy and affordable, and this procedure increases the amount of breastmilk, thus facilitating infant nutrition and recovery especially in the neonatal intensive care unit.
Reed, Mike; Kimberger, Oliver; McGovern, Paul D; Albrecht, Mark C
2013-08-01
Forced-air warming devices are effective for the prevention of surgical hypothermia. However, these devices intake nonsterile floor-level air, and it is unknown whether they have adequate filtration measures to prevent the internal buildup or emission of microbial contaminants. We rated the intake filtration efficiency of a popular current-generation forced-air warming device (Bair Hugger model 750, Arizant Healthcare) using a monodisperse sodium chloride aerosol in the laboratory. We further sampled 23 forced-air warming devices (same model) in daily hospital use for internal microbial buildup and airborne-contamination emissions via swabbing and particle counting. Laboratory testing found the intake filter to be 63.8% efficient. Swabbing detected microorganisms within 100% of the forced-air warming blowers sampled, with isolates of coagulase-negative staphylococci, mold, and micrococci identified. Particle counting showed 96% of forced-air warming blowers to be emitting significant levels of internally generated airborne contaminants out of the hose end. These findings highlight the need for upgraded intake filtration, preferably high-efficiency particulate air filtration (99.97% efficient), on current-generation forced-air warming devices to reduce contamination buildup and emission risks.
Akbarzadeh, Marzieh; Nematollahi, Azar; Farahmand, Mahnaz; Amooee, Sedigheh
2018-01-01
Introduction: The aim of this study was to assess the effect of two-stage warm compress technique on the pain duration of the first and second labor stages and neonatal outcomes. Methods: The clinical trial was done on 150 women (75 subjects in each groups) in Shiraz-affiliated hospitals in 2012 A two-staged warm compress was done for 15-20 minutes in the first and second labor phase (cervical dilatation of 7 and 10 cm with zero status) while the control group received hospital routine care. The duration of labor and Apgar score were evaluated. Results: According to t-test, the average of labor duration was lower in the intervention group compared to the control group at the second stage. However, there was no significant difference for labor duration at the first stage and the first and fifth minute Apgar score. Conclusion: According to the result, this intervention seems a good method for decreasing labor duration at the second stage of parturition. PMID:29637053
Compression for the management of venous leg ulcers: which material do we have?
Partsch, Hugo
2014-05-01
Compression therapy is the most important basic treatment modality in venous leg ulcers. The review focusses on the materials which are used: 1. Compression bandages, 2. Compression stockings, 3. Self-adjustable Velcro-devices, 4. Compression pumps, 5. Hybrid devices. Compression bandages, usually applied by trained staff, provide a wide spectrum of materials with different elastic properties. To make bandaging easier, safer and more effective, most modern bandages combine different material components. Self-management of venous ulcers has become feasible by introducing double compression stockings ("ulcer kits") and self-adjustable Velcro devices. Compression pumps can be used as adjunctive measures, especially for patients with restricted mobility. The combination of sustained and intermittent compression ("hybrid device") is a promising new tool. The interface pressure corresponding to the dosage of compression therapy determines the hemodynamic efficacy of each device. In order to reduce ambulatory venous hypertension compression pressures of more than 50 mm Hg in the upright position are desirable. At the same time pressure should be lower in the resting position in order to be tolerated. This prerequisite may be fulfilled by using inelastic, short stretch material including multicomponent bandages and cohesive surfaces, all characterized by high stiffness. Such materials do not give way when calf muscles contract during walking which leads to high peaks of interface pressure ("massaging effect"). © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Short intense ion pulses for materials and warm dense matter research
NASA Astrophysics Data System (ADS)
Seidl, Peter A.; Persaud, Arun; Waldron, William L.; Barnard, John J.; Davidson, Ronald C.; Friedman, Alex; Gilson, Erik P.; Greenway, Wayne G.; Grote, David P.; Kaganovich, Igor D.; Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas
2015-11-01
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.
Update on mechanical cardiopulmonary resuscitation devices.
Rubertsson, Sten
2016-06-01
The aim of this review is to update and discuss the use of mechanical chest compression devices in treatment of cardiac arrest. Three recently published large multicenter randomized trials have not been able to show any improved outcome in adult out-of-hospital cardiac arrest patients when compared with manual chest compressions. Mechanical chest compression devices have been developed to better deliver uninterrupted chest compressions of good quality. Prospective large randomized studies have not been able to prove a better outcome compared to manual chest compressions; however, latest guidelines support their use when high-quality manual chest compressions cannot be delivered. Mechanical chest compressions can also be preferred during transportation, in the cath-lab and as a bridge to more invasive support like extracorporeal membrane oxygenation.
NASA Astrophysics Data System (ADS)
Arita, Reiko; Morishige, Naoyuki; Sakamoto, Ichiro; Imai, Natsuko; Shimada, Yuko; Igaki, Michihito; Suzuki, Atsushi; Itoh, Kouzo; Tsubota, Kazuo
2017-04-01
Menthol is thought to stimulate lacrimation via activation of cold-sensitive primary afferent neurons in the cornea. We evaluated a warm compress containing menthol as a potential treatment for dry eye by examining its effects on the tear film in healthy subjects (n = 20) and dry eye patients (n = 35). Disposable eyelid-warming steamers that either did (MH) or did not (HO) contain menthol were applied to one eye of each subject either once only for 10 min or repeatedly over 2 weeks. Single application of MH significantly increased tear meniscus volume (P = 8.6 × 10-5, P = 1.3 × 10-5) and tear film breakup time (P = 0.006, P = 0.002) as well as improved meibum condition in healthy subjects and dry eye patients, respectively. Repeated application of MH significantly increased tear meniscus volume (P = 0.004, P = 1.7 × 10-4) and tear film breakup time (P = 0.037, P = 0.010) in healthy subjects and dry eye patients, respectively. Repeated application of MH thus induced persistent increases in tear fluid volume and tear film stability in dry eye patients, suggesting that repeated use of a warm compress containing menthol is a potential novel treatment for dry eye disease.
Leung, Chung Ming; Or, Siu Wing; Ho, S L
2013-12-01
A force sensing device capable of sensing dc (or static) compressive forces is developed based on a NAS106N stainless steel compressive spring, a sintered NdFeB permanent magnet, and a coil-wound Tb(0.3)Dy(0.7)Fe(1.92)/Pb(Zr, Ti)O3 magnetostrictive∕piezoelectric laminate. The dc compressive force sensing in the device is evaluated theoretically and experimentally and is found to originate from a unique force-induced, position-dependent, current-driven dc magnetoelectric effect. The sensitivity of the device can be increased by increasing the spring constant of the compressive spring, the size of the permanent magnet, and/or the driving current for the coil-wound laminate. Devices of low-force (20 N) and high-force (200 N) types, showing high output voltages of 262 and 128 mV peak, respectively, are demonstrated at a low driving current of 100 mA peak by using different combinations of compressive spring and permanent magnet.
NASA Astrophysics Data System (ADS)
Zhao, Siwei; Tao, Wei; He, Qiaozhi; Zhao, Hui; Cao, Wenwu
2017-03-01
Diabetes mellitus (DM) is a chronic disease affecting nearly 400 million people worldwide. In order to manage the disease, patients need to monitor the blood glucose level by puncturing the finger several times a day, which is uncomfortable and inconvenient. We present here a potential non-invasive monitoring method based on the velocity of ultrasonic waves generated in glucose solution by the photoacoustic principal, which can recognize the glucose concentration down to 20mg/dL. In order to apply this method to warm bodies, we carefully designed the experiment and performed measurements from 30 °C to 50 °C to generate a set of calibration curves, which may be used by engineers to build devices. Most importantly, we have theoretically explained the relationship between the compressibility and the glucose concentration. Our results show that the compressibility of solution decreases with the glucose concentration, which clarified the controversy between theory and experiment results in the literature. The derived formula is generally validity, which can be used to nondestructively measure solution concentration for other types of solutions using photoacoustic principle.
Korb, Donald R; Blackie, Caroline A; Finnemore, Victor M; Douglass, Teresa
2015-04-01
The aim of this study was to assess the efficacy of using a combination treatment approach consisting of lipid emulsion eye drops, eyelid cleansing wipes, and omega-3 vitamin supplements compared with warm compresses in improving meibomian gland functionality in patients with lipid-deficient/evaporative dry eye disease (LDDE). This single-center, open-label, investigator-masked, randomized study enrolled patients aged ≥18 years, clinically diagnosed with LDDE defined as having ≤6 functional meibomian glands [meibomian gland yielding liquid secretion (MGYLS)] and positive for dry eye symptoms at screening. Patients were randomized to receive either the combination treatment (lipid emulsion eye drops, omega-3 supplements, and lid hygiene with eyelid wipes) or to apply warm, wet compresses once daily, 8 minutes per day, for 3 months. Meibomian gland functionality (number of MGYLS; primary outcome) and patient-reported subjective assessments (SPEED and OSDI questionnaires; secondary outcomes) were evaluated. Adverse events (AEs) and visual acuity were assessed as safety endpoints. Mean patient age was 41.7 years (n = 26; n = 13 per group). Mean ± SD number of MGYLS was not statistically significantly different between groups at baseline (combination treatment, 3.5 ± 1.5; warm compresses, 4.2 ± 1.4, P > 0.5), and was significantly greater with combination treatment versus warm compresses after 3 months of treatment (9.3 ± 2.7 vs. 4.7 ± 2.3; P = 0.006). Dry eye symptoms were significantly improved in both groups at all follow-up visits. Two AEs unrelated to treatment were reported; the BCVA was unchanged from baseline in both groups. The combination treatment regimen resulted in significant improvement in meibomian gland functionality and dry eye symptoms. No safety issues were observed.
Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets
None
2018-05-24
In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as it transitions into a superhot, highly compressed concoction known as âwarm dense matter.â
Allen, Paul B; Salyer, Steven W; Dubick, Michael A; Holcomb, John B; Blackbourne, Lorne H
2010-07-01
The purpose of this study was to develop an in vitro torso model constructed with fluid bags and to determine whether this model could be used to differentiate between the heat prevention performance of devices with active chemical or radiant forced-air heating systems compared with passive heat loss prevention devices. We tested three active (Hypothermia Prevention Management Kit [HPMK], Ready-Heat, and Bair Hugger) and five passive (wool, space blankets, Blizzard blankets, human remains pouch, and Hot Pocket) hypothermia prevention products. Active warming devices included products with chemically or electrically heated systems. Both groups were tested on a fluid model warmed to 37 degrees C versus a control with no warming device. Core temperatures were recorded every 5 minutes for 120 minutes in total. Products that prevent heat loss with an actively heated element performed better than most passive prevention methods. The original HPMK achieved and maintained significantly higher temperatures than all other methods and the controls at 120 minutes (p < 0.05). None of the devices with an actively heated element achieved the sustained 44 degrees C that could damage human tissue if left in place for 6 hours. The best passive methods of heat loss prevention were the Hot Pocket and Blizzard blanket, which performed the same as two of the three active heating methods tested at 120 minutes. Our in vitro fluid bag "torso" model seemed sensitive to detect heat loss in the evaluation of several active or passive warming devices. All active and most passive devices were better than wool blankets. Under conditions near room temperature, passive warming methods (Blizzard blanket or the Hot Pocket) were as effective as active warming devices other than the original HPMK. Further studies are necessary to determine how these data can translate to field conditions in preventing heat loss in combat casualties.
Austin, Andrea L; Spalding, Carmen N; Landa, Katrina N; Myer, Brian R; Donald, Cure; Smith, Jason E; Platt, Gerald; King, Heather C
2017-10-27
In effort to improve chest compression quality among health care providers, numerous feedback devices have been developed. Few studies, however, have focused on the use of cardiopulmonary resuscitation feedback devices for infants and children. This study evaluated the quality of chest compressions with standard team-leader coaching, a metronome (MetroTimer by ONYX Apps), and visual feedback (SkillGuide Cardiopulmonary Feedback Device) during simulated infant cardiopulmonary resuscitation. Seventy voluntary health care providers who had recently completed Pediatric Advanced Life Support or Basic Life Support courses were randomized to perform simulated infant cardiopulmonary resuscitation into 1 of 3 groups: team-leader coaching alone (control), coaching plus metronome, or coaching plus SkillGuide for 2 minutes continuously. Rate, depth, and frequency of complete recoil during cardiopulmonary resuscitation were recorded by the Laerdal SimPad device for each participant. American Heart Association-approved compression techniques were randomized to either 2-finger or encircling thumbs. The metronome was associated with more ideal compression rate than visual feedback or coaching alone (104/min vs 112/min and 113/min; P = 0.003, 0.019). Visual feedback was associated with more ideal depth than auditory (41 mm vs 38.9; P = 0.03). There were no significant differences in complete recoil between groups. Secondary outcomes of compression technique revealed a difference of 1 mm. Subgroup analysis of male versus female showed no difference in mean number of compressions (221.76 vs 219.79; P = 0.72), mean compression depth (40.47 vs 39.25; P = 0.09), or rate of complete release (70.27% vs 64.96%; P = 0.54). In the adult literature, feedback devices often show an increase in quality of chest compressions. Although more studies are needed, this study did not demonstrate a clinically significant improvement in chest compressions with the addition of a metronome or visual feedback device, no clinically significant difference in Pediatric Advanced Life Support-approved compression technique, and no difference between compression quality between genders.
Blomberg, Hans; Gedeborg, Rolf; Berglund, Lars; Karlsten, Rolf; Johansson, Jakob
2011-10-01
Mechanical chest compression devices are being implemented as an aid in cardiopulmonary resuscitation (CPR), despite lack of evidence of improved outcome. This manikin study evaluates the CPR-performance of ambulance crews, who had a mechanical chest compression device implemented in their routine clinical practice 8 months previously. The objectives were to evaluate time to first defibrillation, no-flow time, and estimate the quality of compressions. The performance of 21 ambulance crews (ambulance nurse and emergency medical technician) with the authorization to perform advanced life support was studied in an experimental, randomized cross-over study in a manikin setup. Each crew performed two identical CPR scenarios, with and without the aid of the mechanical compression device LUCAS. A computerized manikin was used for data sampling. There were no substantial differences in time to first defibrillation or no-flow time until first defibrillation. However, the fraction of adequate compressions in relation to total compressions was remarkably low in LUCAS-CPR (58%) compared to manual CPR (88%) (95% confidence interval for the difference: 13-50%). Only 12 out of the 21 ambulance crews (57%) applied the mandatory stabilization strap on the LUCAS device. The use of a mechanical compression aid was not associated with substantial differences in time to first defibrillation or no-flow time in the early phase of CPR. However, constant but poor chest compressions due to failure in recognizing and correcting a malposition of the device may counteract a potential benefit of mechanical chest compressions. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Self-actuating heat switches for redundant refrigeration systems
NASA Technical Reports Server (NTRS)
Chan, Chung K. (Inventor)
1988-01-01
A dual refrigeration system for cooling a sink device is described, which automatically thermally couples the cold refrigerator to the sink device while thermally isolating the warm refrigerator from the sink device. The system includes two gas gap heat switches that each thermally couples one of the refrigerators to the sink device, and a pair of sorption pumps that are coupled through tubes to the heat switches. When the first refrigerator is operated and therefore cold, the first pump which is thermally coupled to it is also cooled and adsorbs gas to withdraw it from the second heat switch, to thereby thermally isolate the sink device from the warm second refrigerator. With the second refrigerator being warm, the second pump is also warm and desorbs gas, so the gas lies in the first switch, to close that switch and therefore thermally couple the cold first refrigerator to the sink device. Thus, the heat switches are automatically switched according to the temperature of the corresponding refrigerator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Reilly, Michael K., E-mail: moreilly1@mater.ie; Ryan, David; Sugrue, Gavin
PurposeTransradial pneumatic compression devices can be used to achieve haemostasis following radial artery puncture. This article describes a novel technique for acquiring haemostasis of arterio-venous haemodialysis fistula access sites without the need for suture placement using one such compression device.Materials and MethodsA retrospective review of fistulograms with or without angioplasty/thrombectomy in a single institution was performed. 20 procedures performed on 12 patients who underwent percutaneous intervention of failing or thrombosed arterio-venous fistulas (AVF) had 27 puncture sites. Haemostasis was achieved using a pneumatic compression device at all access sites. Procedure details including size of access sheath, heparin administration and complicationsmore » were recorded.ResultsTwo diagnostic fistulograms, 14 fistulograms and angioplasties and four thrombectomies were performed via access sheaths with an average size (±SD) of 6 Fr (±1.12). IV unfractionated heparin was administered in 11 of 20 procedures. Haemostasis was achieved in 26 of 27 access sites following 15–20 min of compression using the pneumatic compression device. One case experienced limited bleeding from an inflow access site that was successfully treated with reinflation of the device for a further 5 min. No other complication was recorded.ConclusionsHaemostasis of arterio-venous haemodialysis fistula access sites can be safely and effectively achieved using a pneumatic compression device. This is a technically simple, safe and sutureless technique for acquiring haemostasis after AVF intervention.« less
NASA Technical Reports Server (NTRS)
Hurst, Victor, IV; West, Sarah; Austin, Paul; Branson, Richard; Beck, George
2006-01-01
Astronaut crew medical officers (CMO) aboard the International Space Station (ISS) receive 40 hours of medical training during the 18 months preceding each mission. Part of this training ilncludes twoperson cardiopulmonary resuscitation (CPR) per training guidelines from the American Heart Association (AHA). Recent studies concluded that the use of metronomic tones improves the coordination of CPR by trained clinicians. Similar data for bystander or "trained lay people" (e.g. CMO) performance of CPR (BCPR) have been limited. The purpose of this study was to evailuate whether use of timing devices, such as audible metronomic tones, would improve BCPR perfomance by trained bystanders. Twenty pairs of bystanders trained in two-person BCPR performled BCPR for 4 minutes on a simulated cardiopulmonary arrest patient using three interventions: 1) BCPR with no timing devices, 2) BCPR plus metronomic tones for coordinating compression rate only, 3) BCPR with a timing device and metronome for coordinating ventilation and compression rates, respectively. Bystanders were evaluated on their ability to meet international and AHA CPR guidelines. Bystanders failed to provide the recommended number of breaths and number of compressions in the absence of a timing device and in the presence of audible metronomic tones for only coordinating compression rate. Bystanders using timing devices to coordinate both components of BCPR provided the reco number of breaths and were closer to providing the recommended number of compressions compared with the other interventions. Survey results indicated that bystanders preferred to use a metronome for delivery of compressions during BCPR. BCPR performance is improved by timing devices that coordinate both compressions and breaths.
Perineal techniques during the second stage of labour for reducing perineal trauma.
Aasheim, Vigdis; Nilsen, Anne Britt Vika; Reinar, Liv Merete; Lukasse, Mirjam
2017-06-13
Most vaginal births are associated with trauma to the genital tract. The morbidity associated with perineal trauma can be significant, especially when it comes to third- and fourth-degree tears. Different interventions including perineal massage, warm or cold compresses, and perineal management techniques have been used to prevent trauma. This is an update of a Cochrane review that was first published in 2011. To assess the effect of perineal techniques during the second stage of labour on the incidence and morbidity associated with perineal trauma. We searched Cochrane Pregnancy and Childbirth's Trials Register (26 September 2016) and reference lists of retrieved studies. Published and unpublished randomised and quasi-randomised controlled trials evaluating perineal techniques during the second stage of labour. Cross-over trials were not eligible for inclusion. Three review authors independently assessed trials for inclusion, extracted data and evaluated methodological quality. We checked data for accuracy. Twenty-two trials were eligible for inclusion (with 20 trials involving 15,181 women providing data). Overall, trials were at moderate to high risk of bias; none had adequate blinding, and most were unclear for both allocation concealment and incomplete outcome data. Interventions compared included the use of perineal massage, warm and cold compresses, and other perineal management techniques.Most studies did not report data on our secondary outcomes. We downgraded evidence for risk of bias, inconsistency, and imprecision for all comparisons. Hands off (or poised) compared to hands onHands on or hands off the perineum made no clear difference in incidence of intact perineum (average risk ratio (RR) 1.03, 95% confidence interval (CI) 0.95 to 1.12, two studies, Tau² 0.00, I² 37%, 6547 women; moderate-quality evidence), first-degree perineal tears (average RR 1.32, 95% CI 0.99 to 1.77, two studies, 700 women; low-quality evidence), second-degree tears (average RR 0.77, 95% CI 0.47 to 1.28, two studies, 700 women; low-quality evidence), or third- or fourth-degree tears (average RR 0.68, 95% CI 0.21 to 2.26, five studies, Tau² 0.92, I² 72%, 7317 women; very low-quality evidence). Substantial heterogeneity for third- or fourth-degree tears means these data should be interpreted with caution. Episiotomy was more frequent in the hands-on group (average RR 0.58, 95% CI 0.43 to 0.79, Tau² 0.07, I² 74%, four studies, 7247 women; low-quality evidence), but there was considerable heterogeneity between the four included studies.There were no data for perineal trauma requiring suturing. Warm compresses versus control (hands off or no warm compress)A warm compress did not have any clear effect on the incidence of intact perineum (average RR 1.02, 95% CI 0.85 to 1.21; 1799 women; four studies; moderate-quality evidence), perineal trauma requiring suturing (average RR 1.14, 95% CI 0.79 to 1.66; 76 women; one study; very low-quality evidence), second-degree tears (average RR 0.95, 95% CI 0.58 to 1.56; 274 women; two studies; very low-quality evidence), or episiotomy (average RR 0.86, 95% CI 0.60 to 1.23; 1799 women; four studies; low-quality evidence). It is uncertain whether warm compress increases or reduces the incidence of first-degree tears (average RR 1.19, 95% CI 0.38 to 3.79; 274 women; two studies; I² 88%; very low-quality evidence).Fewer third- or fourth-degree perineal tears were reported in the warm-compress group (average RR 0.46, 95% CI 0.27 to 0.79; 1799 women; four studies; moderate-quality evidence). Massage versus control (hands off or routine care)The incidence of intact perineum was increased in the perineal-massage group (average RR 1.74, 95% CI 1.11 to 2.73, six studies, 2618 women; I² 83% low-quality evidence) but there was substantial heterogeneity between studies). This group experienced fewer third- or fourth-degree tears (average RR 0.49, 95% CI 0.25 to 0.94, five studies, 2477 women; moderate-quality evidence).There were no clear differences between groups for perineal trauma requiring suturing (average RR 1.10, 95% CI 0.75 to 1.61, one study, 76 women; very low-quality evidence), first-degree tears (average RR 1.55, 95% CI 0.79 to 3.05, five studies, Tau² 0.47, I² 85%, 537 women; very low-quality evidence), or second-degree tears (average RR 1.08, 95% CI 0.55 to 2.12, five studies, Tau² 0.32, I² 62%, 537 women; very low-quality evidence). Perineal massage may reduce episiotomy although there was considerable uncertainty around the effect estimate (average RR 0.55, 95% CI 0.29 to 1.03, seven studies, Tau² 0.43, I² 92%, 2684 women; very low-quality evidence). Heterogeneity was high for first-degree tear, second-degree tear and for episiotomy - these data should be interpreted with caution. Ritgen's manoeuvre versus standard careOne study (66 women) found that women receiving Ritgen's manoeuvre were less likely to have a first-degree tear (RR 0.32, 95% CI 0.14 to 0.69; very low-quality evidence), more likely to have a second-degree tear (RR 3.25, 95% CI 1.73 to 6.09; very low-quality evidence), and neither more nor less likely to have an intact perineum (RR 0.17, 95% CI 0.02 to 1.31; very low-quality evidence). One larger study reported that Ritgen's manoeuvre did not have an effect on incidence of third- or fourth-degree tears (RR 1.24, 95% CI 0.78 to 1.96,1423 women; low-quality evidence). Episiotomy was not clearly different between groups (RR 0.81, 95% CI 0.63 to 1.03, two studies, 1489 women; low-quality evidence). Other comparisonsThe delivery of posterior versus anterior shoulder first, use of a perineal protection device, different oils/wax, and cold compresses did not show any effects on perineal outcomes. Only one study contributed to each of these comparisons, so data were insufficient to draw conclusions. Moderate-quality evidence suggests that warm compresses, and massage, may reduce third- and fourth-degree tears but the impact of these techniques on other outcomes was unclear or inconsistent. Poor-quality evidence suggests hands-off techniques may reduce episiotomy, but this technique had no clear impact on other outcomes. There were insufficient data to show whether other perineal techniques result in improved outcomes.Further research could be performed evaluating perineal techniques, warm compresses and massage, and how different types of oil used during massage affect women and their babies. It is important for any future research to collect information on women's views.
Short intense ion pulses for materials and warm dense matter research
Seidl, Peter A.; Persaud, Arun; Waldron, William L.; ...
2015-08-14
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 10 10 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li + ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientificmore » topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Finally, we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.« less
NASA Astrophysics Data System (ADS)
Asilah Khairi, Nor; Bahari Jambek, Asral
2017-11-01
An Internet of Things (IoT) device is usually powered by a small battery, which does not last long. As a result, saving energy in IoT devices has become an important issue when it comes to this subject. Since power consumption is the primary cause of radio communication, some researchers have proposed several compression algorithms with the purpose of overcoming this particular problem. Several data compression algorithms from previous reference papers are discussed in this paper. The description of the compression algorithm in the reference papers was collected and summarized in a table form. From the analysis, MAS compression algorithm was selected as a project prototype due to its high potential for meeting the project requirements. Besides that, it also produced better performance regarding energy-saving, better memory usage, and data transmission efficiency. This method is also suitable to be implemented in WSN. MAS compression algorithm will be prototyped and applied in portable electronic devices for Internet of Things applications.
Poder, Thomas G; Pruneau, Denise; Dorval, Josée; Thibault, Louis; Fisette, Jean-François; Bédard, Suzanne K; Jacques, Annie; Beauregard, Patrice
2016-01-01
Blood warmers were developed to reduce the risk of hypothermia associated with the infusion of cold blood products. During massive transfusion, these devices are used with compression sleeve, which induce a major stress to red blood cells. In this setting, the combination of blood warmer and compression sleeve could generate hemolysis and harm the patient. We conducted this study to compare the impact of different pressure rates on the hemolysis of packed red blood cells and on the outlet temperature when a blood warmer set at 41.5°C is used. Pressure rates tested were 150 and 300 mmHg. Ten packed red blood cells units were provided by Héma-Québec and each unit was sequentially tested. We found no increase in hemolysis either at 150 or 300 mmHg. By cons, we found that the blood warmer was not effective at warming the red blood cells at the specified temperature. At 150 mmHg, the outlet temperature reached 37.1°C and at 300 mmHg, the temperature was 33.7°C. To use a blood warmer set at 41.5°C in conjunction with a compression sleeve at 150 or 300 mmHg does not generate hemolysis. At 300 mmHg a blood warmer set at 41.5°C does not totally avoid a risk of hypothermia.
Cardiopulmonary resuscitation using the cardio vent device in a resuscitation model.
Suner, Selim; Jay, Gregory D; Kleinman, Gary J; Woolard, Robert H; Jagminas, Liudvikas; Becker, Bruce M
2002-05-01
To compare the "Bellows on Sternum Resuscitation" (BSR) device that permits simultaneous compression and ventilation by one rescuer with two person cardiopulmonary resuscitation (CPR) with bag-valve-mask (BVM) ventilation in a single blind crossover study performed in the laboratory setting. Tidal volume and compression depth were recorded continuously during 12-min CPR sessions with the BSR device and two person CPR. Six CPR instructors performed a total of 1,894 ventilations and 10,532 compressions in 3 separate 12-min sessions. Mean tidal volume (MTV) and compression rate (CR) with the BSR device differed significantly from CPR with the BVM group (1242 mL vs. 1065 mL, respectively, p = 0.0018 and 63.2 compressions per minute (cpm) vs. 81.3 cpm, respectively, p = 0.0076). Error in compression depth (ECD) rate of 9.78% was observed with the BSR device compared to 8.49% with BMV CPR (p = 0.1815). Error rate was significantly greater during the second half of CPR sessions for both BSR and BVM groups. It is concluded that one-person CPR with the BSR device is equivalent to two-person CPR with BVM in all measured parameters except for CR. Both groups exhibited greater error rate in CPR performance in the latter half of 12-min CPR sessions.
Calculation of external-internal flow fields for mixed-compression inlets
NASA Technical Reports Server (NTRS)
Chyu, W. J.; Kawamura, T.; Bencze, D. P.
1986-01-01
Supersonic inlet flows with mixed external-internal compressions were computed using a combined implicit-explicit (Beam-Warming-Steger/MacCormack) method for solving the three-dimensional unsteady, compressible Navier-Stokes equations in conservation form. Numerical calculations were made of various flows related to such inlet operations as the shock-wave intersections, subsonic spillage around the cowl lip, and inlet started versus unstarted conditions. Some of the computed results were compared with wind tunnel data.
Calculation of external-internal flow fields for mixed-compression inlets
NASA Technical Reports Server (NTRS)
Chyu, W. J.; Kawamura, T.; Bencze, D. P.
1987-01-01
Supersonic inlet flows with mixed external-internal compressions were computed using a combined implicit-explicit (Beam-Warming-Steger/MacCormack) method for solving the three-dimensional unsteady, compressible Navier-Stokes equations in conservation form. Numerical calculations were made of various flows related to such inlet operations as the shock-wave intersections, subsonic spillage around the cowl lip, and inlet started versus unstarted conditions. Some of the computed results were compared with wind tunnel data.
Process Options for Nominal 2-K Helium Refrigeration System Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Knudsen, Venkatarao Ganni
Nominal 2-K helium refrigeration systems are frequently used for superconducting radio frequency and magnet string technologies used in accelerators. This paper examines the trade-offs and approximate performance of four basic types of processes used for the refrigeration of these technologies; direct vacuum pumping on a helium bath, direct vacuum pumping using full or partial refrigeration recovery, cold compression, and hybrid compression (i.e., a blend of cold and warm sub-atmospheric compression).
Beachler, Jason A; Krueger, Chad A; Johnson, Anthony E
This process improvement study sought to evaluate the compliance in orthopaedic patients with sequential compression devices and to monitor any improvement in compliance following an educational intervention. All non-intensive care unit orthopaedic primary patients were evaluated at random times and their compliance with sequential compression devices was monitored and recorded. Following a 2-week period of data collection, an educational flyer was displayed in every patient's room and nursing staff held an in-service training event focusing on the importance of sequential compression device use in the surgical patient. Patients were then monitored, again at random, and compliance was recorded. With the addition of a simple flyer and a single in-service on the importance of mechanical compression in the surgical patient, a significant improvement in compliance was documented at the authors' institution from 28% to 59% (p < .0001).
Real-Time Mobile Device-Assisted Chest Compression During Cardiopulmonary Resuscitation.
Sarma, Satyam; Bucuti, Hakiza; Chitnis, Anurag; Klacman, Alex; Dantu, Ram
2017-07-15
Prompt administration of high-quality cardiopulmonary resuscitation (CPR) is a key determinant of survival from cardiac arrest. Strategies to improve CPR quality at point of care could improve resuscitation outcomes. We tested whether a low cost and scalable mobile phone- or smart watch-based solution could provide accurate measures of compression depth and rate during simulated CPR. Fifty health care providers (58% intensive care unit nurses) performed simulated CPR on a calibrated training manikin (Resusci Anne, Laerdal) while wearing both devices. Subjects received real-time audiovisual feedback from each device sequentially. Primary outcome was accuracy of compression depth and rate compared with the calibrated training manikin. Secondary outcome was improvement in CPR quality as defined by meeting both guideline-recommend compression depth (5 to 6 cm) and rate (100 to 120/minute). Compared with the training manikin, typical error for compression depth was <5 mm (smart phone 4.6 mm; 95% CI 4.1 to 5.3 mm; smart watch 4.3 mm; 95% CI 3.8 to 5.0 mm). Compression rates were similarly accurate (smart phone Pearson's R = 0.93; smart watch R = 0.97). There was no difference in improved CPR quality defined as the number of sessions meeting both guideline-recommended compression depth (50 to 60 mm) and rate (100 to 120 compressions/minute) with mobile device feedback (60% vs 50%; p = 0.3). Sessions that did not meet guideline recommendations failed primarily because of inadequate compression depth (46 ± 2 mm). In conclusion, a mobile device application-guided CPR can accurately track compression depth and rate during simulation in a practice environment in accordance with resuscitation guidelines. Copyright © 2017 Elsevier Inc. All rights reserved.
Colwell, Clifford W
2014-11-01
Venous thromboembolic (VTE) events, either deep vein thromboses (DVT) or pulmonary emboli (PE), are important complications in patients undergoing knee or hip arthroplasty. Symptomatic VTE rates observed in total joint arthroplasty patients using the mobile compression device with home use capability were non-inferior to rates reported for pharmacological prophylaxis, including warfarin, enoxaparin, rivaroxaban, and dabigatran. Major bleeding in total hip arthroplasty was less using the mobile compression device than using low molecular weight heparin. A cost analysis demonstrated a cost savings based on decreased major bleeding. Use of a mobile compression device with or without aspirin for patients undergoing total joint arthroplasty provides a non-inferior risk for developing VTE compared with current pharmacological protocols.
Battery self-warming mechanism using the inverter and the battery main disconnect circuitry
Ashtiani, Cyrus N.; Stuart, Thomas A.
2005-04-19
An apparatus connected to an energy storage device for powering an electric motor and optionally providing a warming function for the energy storage device is disclosed. The apparatus includes a circuit connected to the electric motor and the energy storage device for generating a current. The apparatus also includes a switching device operably associated with the circuit for selectively directing the current to one of the electric motor and the energy storage device.
Bavry, Anthony A; Raymond, Russell E; Bhatt, Deepak L; Chambers, Charles E; DeNardo, Andrew J; Hermiller, James B; Myers, Paul R; Pitts, Douglas E; Scott, John A; Savader, Scott J; Steinhubl, Steven
2008-04-01
The aim of vascular closure devices is to safely secure the arterial access site at the conclusion of catheterization procedures, thereby increasing patient comfort and decreasing time to hemostasis and ambulation. The FISH (femoral introducer sheath and hemostasis) device is novel in that the access sheath and closure component are incorporated onto the same system. The FISH pivotal investigation was conducted at 8 catheterization laboratories throughout the United States. Eligible diagnostic patients were randomized (2 to 1) to the FISH device versus manual compression and assessed for time to hemostasis and time to ambulation. Half of the participants underwent ultrasonographic evaluation at 30-day follow up. Enrollment for an interventional cohort is ongoing and will be reported at a later date; however, the interventional patients enrolled to date were combined with the diagnostic patients to comprise the safety data of the trial. Overall, 191 patients were randomized to the FISH device and 106 patients to manual compression. Most patients received a 6 Fr sheath (approximately 70%), while the remaining patients received a 5 or 8 Fr sheath. Twenty-seven patients who received the FISH device were converted to manual compression due to anticipated suboptimal hemostasis. Among the diagnostic patients, the mean time to hemostasis was 8.9 minutes for the FISH device, compared to 17.2 minutes for manual compression (p < 0.0001). Similarly, the mean time to ambulation was 2.4 hours for the FISH device, compared to 4.3 hours for manual compression (p < 0.0001). Among the total cohort, there was 1 death and 1 episode of major access-site-related bleeding that required transfusion occurred in the FISH group (1.1%), compared to no serious adverse safety events in the manual compression group (p = 1.0). For the FISH group, there were 5 minor adverse safety events; 3 access-site hematomas and 2 pseudoaneurysms treated with thrombin injection, and in the manual compression group, there was 2 access-site hematomas and 1 pseudoaneurysm treated with thrombin injection (p = 1.0). Among diagnostic patients with good sheath placement and favorable femoral anatomy, the FISH device is superior in achieving time to hemostasis and ambulation compared to manual compression. At 30 days, there is no apparent difference in serious or minor adverse vascular events with the use of the FISH device.
[Design of warm-acupuncture technique training evaluation device].
Gao, Ming; Xu, Gang; Yang, Huayuan; Liu, Tangyi; Tang, Wenchao
2017-01-12
To design a warm-acupuncture teaching instrument to train and evaluate its manipulation. We refer to the principle and technical operation characteristics of traditional warm-acupuncture, as well as the mechanical design and single-chip microcomputer technology. The device is consisted of device noumenon, universal acupoints simulator, vibration reset system and circuit control system, including frame, platform framework, the swing framework, universal acupoints simulator, vibration reset outfit, operation time circuit, acupuncture sensation display, and vibration control circuit, etc. It can be used to train needle inserting with different angles and moxa rubbing and loading. It displays whether a needle point meets the location required. We determine whether the moxa group on a needle handle is easy to fall off through vibration test, and operation time is showed. The device can objectively help warm-acupuncture training and evaluation so as to promote its clinical standardization manipulation.
Akbarzadeh, Marzieh; Vaziri, Faride; Farahmand, Mahnaz; Masoudi, Zahra; Amooee, Sedigheh; Zare, Najaf
2016-02-01
Genital trauma during vaginal delivery may result from episiotomy, spontaneous perineal tears (perineum, vagina), or both. In 2012, this study aimed to investigate the effect of warm compress bistage intervention on the rate of episiotomy, perineal trauma, and postpartum pain intensity in the primiparous woman with delayed Valsalva maneuver. In this randomized clinical trial, which was performed in hospitals in Shiraz, Iran, in 2012-2013, 150 women were randomly divided into 2 groups: 1 intervention and 1 control. The intervention group received warm compress bistage intervention at 7-cm and 10-cm dilatation and zero position during the first and second stages of labor for 15 to 20 minutes, whereas the control group received the hospitals' routine care. After delivery, the prevalence of episiotomy; intact perineum; location, degree, and length of rupture; and postpartum pain intensity were assessed in the 2 groups. Following that, the data were analyzed with SPSS statistical software (version 16) using χ test, t test, and odds ratio. The results revealed a significant difference between the intervention and control groups regarding the frequency of intact perinea (27% vs 6.7%) and the frequency of episiotomy (45% vs 90.70%). In addition, the frequency of the location of rupture (P = .019), mean length of episiotomy incision (P = .02), and mean intensity of pain the day after delivery (P < .001) were significantly lower in the intervention group compared with the control group. However, the rate of ruptures was higher in the intervention group. Warm compress bistage intervention was effective in reducing episiotomies and the mean length of episiotomy incision, reducing pain after delivery, and increasing the rate of intact perinea. However, the rate of ruptures slightly increased in the intervention group compared with the control group.
Nii, Kouhei; Nakai, Kanji; Tsutsumi, Masanori; Aikawa, Hiroshi; Iko, Minoru; Sakamoto, Kimiya; Mitsutake, Takafumi; Eto, Ayumu; Hanada, Hayatsura; Kazekawa, Kiyoshi
2015-01-01
We investigated the incidence of embolic protection device retrieval difficulties at carotid artery stenting (CAS) with a closed-cell stent and demonstrated the usefulness of a manual carotid compression assist technique. Between July 2010 and October 2013, we performed 156 CAS procedures using self-expandable closed-cell stents. All procedures were performed with the aid of a filter design embolic protection device. We used FilterWire EZ in 118 procedures and SpiderFX in 38 procedures. The embolic protection device was usually retrieved by the accessory retrieval sheath after CAS. We applied a manual carotid compression technique when it was difficult to navigate the retrieval sheath through the deployed stent. We compared clinical outcomes in patients where simple retrieval was possible with patients where the manual carotid compression assisted technique was used for retrieval. Among the 156 CAS procedures, we encountered 12 (7.7%) where embolic protection device retrieval was hampered at the proximal stent terminus. Our manual carotid compression technique overcame this difficulty without eliciting neurologic events, artery dissection, or stent deformity. In patients undergoing closed-cell stent placement, embolic protection device retrieval difficulties may be encountered at the proximal stent terminus. Manual carotid compression assisted retrieval is an easy, readily available solution to overcome these difficulties. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Wave energy devices with compressible volumes.
Kurniawan, Adi; Greaves, Deborah; Chaplin, John
2014-12-08
We present an analysis of wave energy devices with air-filled compressible submerged volumes, where variability of volume is achieved by means of a horizontal surface free to move up and down relative to the body. An analysis of bodies without power take-off (PTO) systems is first presented to demonstrate the positive effects a compressible volume could have on the body response. Subsequently, two compressible device variations are analysed. In the first variation, the compressible volume is connected to a fixed volume via an air turbine for PTO. In the second variation, a water column separates the compressible volume from another volume, which is fitted with an air turbine open to the atmosphere. Both floating and bottom-fixed, axisymmetric, configurations are considered, and linear analysis is employed throughout. Advantages and disadvantages of each device are examined in detail. Some configurations with displaced volumes less than 2000 m 3 and with constant turbine coefficients are shown to be capable of achieving 80% of the theoretical maximum absorbed power over a wave period range of about 4 s.
Wave energy devices with compressible volumes
Kurniawan, Adi; Greaves, Deborah; Chaplin, John
2014-01-01
We present an analysis of wave energy devices with air-filled compressible submerged volumes, where variability of volume is achieved by means of a horizontal surface free to move up and down relative to the body. An analysis of bodies without power take-off (PTO) systems is first presented to demonstrate the positive effects a compressible volume could have on the body response. Subsequently, two compressible device variations are analysed. In the first variation, the compressible volume is connected to a fixed volume via an air turbine for PTO. In the second variation, a water column separates the compressible volume from another volume, which is fitted with an air turbine open to the atmosphere. Both floating and bottom-fixed, axisymmetric, configurations are considered, and linear analysis is employed throughout. Advantages and disadvantages of each device are examined in detail. Some configurations with displaced volumes less than 2000 m3 and with constant turbine coefficients are shown to be capable of achieving 80% of the theoretical maximum absorbed power over a wave period range of about 4 s. PMID:25484609
Radiation dermatitis caused by a bolus effect from an abdominal compression device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connor, Michael; Wei, Randy L.; Yu, Suhong
American Association of Physicists in Medicine (AAPM) Task Group 176 evaluated the dosimetric effects caused by couch tops and immobilization devices. The report analyzed the extensive physics-based literature on couch tops, stereotactic body radiation therapy (SBRT) frames, and body immobilization bags, while noting the scarcity of clinical reports of skin toxicity because of external devices. Here, we present a clinical case report of grade 1 abdominal skin toxicity owing to an abdominal compression device. We discuss the dosimetric implications of the utilized treatment plan as well as post hoc alternative plans and quantify differences in attenuation and skin dose/build-up betweenmore » the device, a lower-density alternative device, and an open field. The description of the case includes a 66-year-old male with HER2 amplified poorly differentiated distal esophageal adenocarcinoma treated with neoadjuvant chemo-radiation and the use of an abdominal compression device. Radiation was delivered using volumetric modulated arc therapy (VMAT) with 2 arcs using abdominal compression and image guidance. The total dose was 50.4 Gy delivered over 40 elapsed days. With 2 fractions remaining, the patient developed dermatitis in the area of the compression device. The original treatment plan did not include a contour of the device. Alternative post hoc treatment plans were generated, one to contour the device and a second with anterior avoidance. In conclusion, replanning with the device contoured revealed the bolus effect. The skin dose increased from 27 to 36 Gy. planned target volume (PTV) coverage at 45 Gy was reduced to 76.5% from 95.8%. The second VMAT treatment plan with an anterior avoidance sector and more oblique beam angles maintained PTV coverage and spared the anterior wall, however at the expense of substantially increased dose to lung. This case report provides an important reminder of the bolus effect from external devices such as abdominal compression. Special consideration must be given to contour and/or avoiding beam entrance to the device, and to the use of such devices in patients who may have heightened radiosensitivity, such as those who are human immunodeficiency virus (HIV)–positive.« less
ERIC Educational Resources Information Center
Lathrop, Janice
Task analyses are provided for two duty areas for the occupation of physical therapist assistant in the rehabilitation services cluster. Ten tasks are listed for the duty area "providing therapeutic measures": apply cold compress, administer hot soak, apply heat lamp, apply warm compress, apply ice bag, assist with dressing change, apply…
Device and method for determining freezing points
NASA Technical Reports Server (NTRS)
Mathiprakasam, Balakrishnan (Inventor)
1986-01-01
A freezing point method and device (10) are disclosed. The method and device pertain to an inflection point technique for determining the freezing points of mixtures. In both the method and device (10), the mixture is cooled to a point below its anticipated freezing point and then warmed at a substantially linear rate. During the warming process, the rate of increase of temperature of the mixture is monitored by, for example, thermocouple (28) with the thermocouple output signal being amplified and differentiated by a differentiator (42). The rate of increase of temperature data are analyzed and a peak rate of increase of temperature is identified. In the preferred device (10) a computer (22) is utilized to analyze the rate of increase of temperature data following the warming process. Once the maximum rate of increase of temperature is identified, the corresponding temperature of the mixture is located and earmarked as being substantially equal to the freezing point of the mixture. In a preferred device (10), the computer (22), in addition to collecting the temperature and rate of change of temperature data, controls a programmable power supply (14) to provide a predetermined amount of cooling and warming current to thermoelectric modules (56).
2015-01-01
streak tube imaging Lidar [15]. Nevertheless, instead of one- dimensional (1D) fan beam, a laser source modulates the digital micromirror device DMD and...Trans. Inform. Theory, vol. 52, pp. 1289-1306, 2006. [10] D. Dudley, W. Duncan and J. Slaughter, "Emerging Digital Micromirror Device (DMD) Applications
Buléon, Clément; Delaunay, Julie; Parienti, Jean-Jacques; Halbout, Laurent; Arrot, Xavier; Gérard, Jean-Louis; Hanouz, Jean-Luc
2016-09-01
Chest compressions require physical effort leading to increased fatigue and rapid degradation in the quality of cardiopulmonary resuscitation overtime. Despite harmful effect of interrupting chest compressions, current guidelines recommend that rescuers switch every 2 minutes. The impact on the quality of chest compressions during extended cardiopulmonary resuscitation has yet to be assessed. We conducted randomized crossover study on manikin (ResusciAnne; Laerdal). After randomization, 60 professional emergency rescuers performed 2 × 10 minutes of continuous chest compressions with and without a feedback device (CPRmeter). Efficient compression rate (primary outcome) was defined as the frequency target reached along with depth and leaning at the same time (recorded continuously). The 10-minute mean efficient compression rate was significantly better in the feedback group: 42% vs 21% (P< .001). There was no significant difference between the first (43%) and the tenth minute (36%; P= .068) with feedback. Conversely, a significant difference was evident from the second minute without feedback (35% initially vs 27%; P< .001). The efficient compression rate difference with and without feedback was significant every minute, from the second minute onwards. CPRmeter feedback significantly improved chest compression depth from the first minute, leaning from the second minute and rate from the third minute. A real-time feedback device delivers longer effective, steadier chest compressions over time. An extrapolation of these results from simulation may allow rescuer switches to be carried out beyond the currently recommended 2 minutes when a feedback device is used. Copyright © 2016 Elsevier Inc. All rights reserved.
Compliant Buckled Foam Actuators and Application in Patient-Specific Direct Cardiac Compression.
Mac Murray, Benjamin C; Futran, Chaim C; Lee, Jeanne; O'Brien, Kevin W; Amiri Moghadam, Amir A; Mosadegh, Bobak; Silberstein, Meredith N; Min, James K; Shepherd, Robert F
2018-02-01
We introduce the use of buckled foam for soft pneumatic actuators. A moderate amount of residual compressive strain within elastomer foam increases the applied force ∼1.4 × or stroke ∼2 × compared with actuators without residual strain. The origin of these improved characteristics is explained analytically. These actuators are applied in a direct cardiac compression (DCC) device design, a type of implanted mechanical circulatory support that avoids direct blood contact, mitigating risks of clot formation and stroke. This article describes a first step toward a pneumatically powered, patient-specific DCC design by employing elastomer foam as the mechanism for cardiac compression. To form the device, a mold of a patient's heart was obtained by 3D printing a digitized X-ray computed tomography or magnetic resonance imaging scan into a solid model. From this model, a soft, robotic foam DCC device was molded. The DCC device is compliant and uses compressed air to inflate foam chambers that in turn apply compression to the exterior of a heart. The device is demonstrated on a porcine heart and is capable of assisting heart pumping at physiologically relevant durations (∼200 ms for systole and ∼400 ms for diastole) and stroke volumes (∼70 mL). Although further development is necessary to produce a fully implantable device, the material and processing insights presented here are essential to the implementation of a foam-based, patient-specific DCC design.
Moretti, Claudio; Quadri, Giorgio; Gaita, Fiorenzo; Sheiban, Imad
2011-01-01
Diagnostic cardiac catheterizations are predominantly performed using the femoral artery access. Several devices have been developed to aid in the closure of femoral arteriotomy. Safeguard® is a new pneumatic compression device that has been developed for compression of the femoral artery after brief manual compression. We hereby report the case of an elderly patient who underwent a percutaneous coronary intervention via the femoral artery in whom a Safeguard™ device, left overnight because of persistent oozing, provoked an extensive pressure ulcer. Knowledge of this potential complication is important to minimize its occurance and provide appropriate treatment. PMID:21977303
Moretti, Claudio; Quadri, Giorgio; Gaita, Fiorenzo; Sheiban, Imad
2011-01-01
Diagnostic cardiac catheterizations are predominantly performed using the femoral artery access. Several devices have been developed to aid in the closure of femoral arteriotomy.Safeguard® is a new pneumatic compression device that has been developed for compression of the femoral artery after brief manual compression. We hereby report the case of an elderly patient who underwent a percutaneous coronary intervention via the femoral artery in whom a Safeguard™ device, left overnight because of persistent oozing, provoked an extensive pressure ulcer. Knowledge of this potential complication is important to minimize its occurance and provide appropriate treatment.
Shock-adiabatic to quasi-isentropic compression of warm dense helium up to 150 GPa
NASA Astrophysics Data System (ADS)
Zheng, J.; Chen, Q. F.; Gu, Y. J.; Li, J. T.; Li, Z. G.; Li, C. J.; Chen, Z. Y.
2017-06-01
Multiple reverberation compression can achieve higher pressure, higher temperature, but lower entropy. It is available to provide an important validation for the elaborate and wider planetary models and simulate the inertial confinement fusion capsule implosion process. In the work, we have developed the thermodynamic and optical properties of helium from shock-adiabatic to quasi-isentropic compression by means of a multiple reverberation technique. By this technique, the initial dense gaseous helium was compressed to high pressure and high temperature and entered the warm dense matter (WDM) region. The experimental equation of state (EOS) of WDM helium in the pressure-density-temperature (P-ρ -T) range of 1 -150 GPa , 0.1 -1.1 g c m-3 , and 4600-24 000 K were measured. The optical radiations emanating from the WDM helium were recorded, and the particle velocity profiles detecting from the sample/window interface were obtained successfully up to 10 times compression. The optical radiation results imply that dense He has become rather opaque after the 2nd compression with a density of about 0.3 g c m-3 and a temperature of about 1 eV. The opaque states of helium under multiple compression were analyzed by the particle velocity measurements. The multiple compression technique could efficiently enhanced the density and the compressibility, and our multiple compression ratios (ηi=ρi/ρ0,i =1 -10 ) of helium are greatly improved from 3.5 to 43 based on initial precompressed density (ρ0) . For the relative compression ratio (ηi'=ρi/ρi -1) , it increases with pressure in the lower density regime and reversely decreases in the higher density regime, and a turning point occurs at the 3rd and 4th compression states under the different loading conditions. This nonmonotonic evolution of the compression is controlled by two factors, where the excitation of internal degrees of freedom results in the increasing compressibility and the repulsive interactions between the particles results in the decreasing compressibility at the onset of electron excitation and ionization. In the P-ρ -T contour with the experiments and the calculations, our multiple compression states from insulating to semiconducting fluid (from transparent to opaque fluid) are illustrated. Our results give an elaborate validation of EOS models and have applications for planetary and stellar opaque atmospheres.
The role of Shabansky orbits in the generation of compression-related EMIC waves
NASA Astrophysics Data System (ADS)
McCollough, J. P.; Elkington, S. R.; Baker, D.
2009-12-01
Electromagnetic ion-cyclotron (EMIC) waves arise from temperature anisotropies in trapped warm plasma populations. In particular, EMIC waves at high L values near local noon are often found to be related to magnetospheric compression events. There are several possible mechanisms that can generate these temperature anisotropies: energizing processes, including adiabatic compression and shock-induced and radial transport; and non-energizing processes, such as drift shell splitting and the effects of off-equatorial minima on particle populations. In this work we investigate the role of off-equatorial minima in the generation of temperature anisotropies both at the magnetic equator and at higher latitudes. There are two kinds of behavior particles undergo in response: particles with high equatorial pitch angles (EPAs) are forced to execute so-called Shabanksy orbits and mirror at high latitudes without passing through the equator, and those with lower EPAs will pass through the equator with higher EPAs than before; as a result, perpendicular energies increase at the cost of parallel energies. By using a 3D particle tracing code in a tunable analytic compressed-dipole field, we parameterize the effects of Shabansky orbits on the anisotropy of the warm plasma. These results as well as evidence from simulations of a real event in which EMIC waves were observed (the compression event of 29 June 2007) are presented.
Quasi-Isentropic Compressibility of Deuterium at a Pressure of 12 TPa
NASA Astrophysics Data System (ADS)
Mochalov, M. A.; Il'kaev, R. I.; Fortov, V. E.; Mikhailov, A. L.; Arinin, V. A.; Blikov, A. O.; Komrakov, V. A.; Maksimkin, I. P.; Ogorodnikov, V. A.; Ryzhkov, A. V.
2018-04-01
An experimental result for the quasi-isentropic compressibility of a strongly nonideal deuterium plasma compressed in a spherical device by the pressure P = 11400 GPa (114 Mbar) to the density ρ ≈ 10g/cm3 has been reported. The characteristics of the experimental device, diagnostic methods, and experimental results have been described. The trajectory of motion of metallic shells compressing a deuterium plasma has been recorded using intense pulsed sources of X rays with the boundary energy of electrons up to 60 MeV. The deuterium plasma density ρ ≈ 10g/cm3 has been determined from the measured radius of the shell at the time of its "stop." The pressure of the compressed plasma has been determined from gas-dynamic calculations taking into account the real characteristics of the experimental device.
Skillman, Joanna; Thomas, Sunil
2011-12-01
When intermittent compression devices (ICDs) are used to prevent venous thromboembolism (VTE) they can cause pressure sores in a selected group of women, undergoing long operations. A prospective audit pre and post intervention showed a reduced risk with an alternative device, without increasing the risk of VTE.
Compressive sensing scalp EEG signals: implementations and practical performance.
Abdulghani, Amir M; Casson, Alexander J; Rodriguez-Villegas, Esther
2012-11-01
Highly miniaturised, wearable computing and communication systems allow unobtrusive, convenient and long term monitoring of a range of physiological parameters. For long term operation from the physically smallest batteries, the average power consumption of a wearable device must be very low. It is well known that the overall power consumption of these devices can be reduced by the inclusion of low power consumption, real-time compression of the raw physiological data in the wearable device itself. Compressive sensing is a new paradigm for providing data compression: it has shown significant promise in fields such as MRI; and is potentially suitable for use in wearable computing systems as the compression process required in the wearable device has a low computational complexity. However, the practical performance very much depends on the characteristics of the signal being sensed. As such the utility of the technique cannot be extrapolated from one application to another. Long term electroencephalography (EEG) is a fundamental tool for the investigation of neurological disorders and is increasingly used in many non-medical applications, such as brain-computer interfaces. This article investigates in detail the practical performance of different implementations of the compressive sensing theory when applied to scalp EEG signals.
Macroscopic Lagrangian description of warm plasmas. II Nonlinear wave interactions
NASA Technical Reports Server (NTRS)
Kim, H.; Crawford, F. W.
1983-01-01
A macroscopic Lagrangian is simplified to the adiabatic limit and expanded about equilibrium, to third order in perturbation, for three illustrative cases: one-dimensional compression parallel to the static magnetic field, two-dimensional compression perpendicular to the static magnetic field, and three-dimensional compression. As examples of the averaged-Lagrangian method applied to nonlinear wave interactions, coupling coefficients are derived for interactions between two electron plasma waves and an ion acoustic wave, and between an ordinary wave, an electron plasma wave, and an ion acoustic wave.
Patient warming excess heat: the effects on orthopedic operating room ventilation performance.
Belani, Kumar G; Albrecht, Mark; McGovern, Paul D; Reed, Mike; Nachtsheim, Christopher
2013-08-01
Patient warming has become a standard of care for the prevention of unintentional hypothermia based on benefits established in general surgery. However, these benefits may not fully translate to contamination-sensitive surgery (i.e., implants), because patient warming devices release excess heat that may disrupt the intended ceiling-to-floor ventilation airflows and expose the surgical site to added contamination. Therefore, we studied the effects of 2 popular patient warming technologies, forced air and conductive fabric, versus control conditions on ventilation performance in an orthopedic operating room with a mannequin draped for total knee replacement. Ventilation performance was assessed by releasing neutrally buoyant detergent bubbles ("bubbles") into the nonsterile region under the head-side of the anesthesia drape. We then tracked whether the excess heat from upper body patient warming mobilized the "bubbles" into the surgical site. Formally, a randomized replicated design assessed the effect of device (forced air, conductive fabric, control) and anesthesia drape height (low-drape, high-drape) on the number of bubbles photographed over the surgical site. The direct mass-flow exhaust from forced air warming generated hot air convection currents that mobilized bubbles over the anesthesia drape and into the surgical site, resulting in a significant increase in bubble counts for the factor of patient warming device (P < 0.001). Forced air had an average count of 132.5 versus 0.48 for conductive fabric (P = 0.003) and 0.01 for control conditions (P = 0.008) across both drape heights. Differences in average bubble counts across both drape heights were insignificant between conductive fabric and control conditions (P = 0.87). The factor of drape height had no significant effect (P = 0.94) on bubble counts. Excess heat from forced air warming resulted in the disruption of ventilation airflows over the surgical site, whereas conductive patient warming devices had no noticeable effect on ventilation airflows. These findings warrant future research into the effects of forced air warming excess heat on clinical outcomes during contamination-sensitive surgery.
Pruneau, Denise; Dorval, Josée; Thibault, Louis; Fisette, Jean-François; Bédard, Suzanne K.; Jacques, Annie; Beauregard, Patrice
2016-01-01
Background Blood warmers were developed to reduce the risk of hypothermia associated with the infusion of cold blood products. During massive transfusion, these devices are used with compression sleeve, which induce a major stress to red blood cells. In this setting, the combination of blood warmer and compression sleeve could generate hemolysis and harm the patient. We conducted this study to compare the impact of different pressure rates on the hemolysis of packed red blood cells and on the outlet temperature when a blood warmer set at 41.5°C is used. Methods Pressure rates tested were 150 and 300 mmHg. Ten packed red blood cells units were provided by Héma-Québec and each unit was sequentially tested. Results We found no increase in hemolysis either at 150 or 300 mmHg. By cons, we found that the blood warmer was not effective at warming the red blood cells at the specified temperature. At 150 mmHg, the outlet temperature reached 37.1°C and at 300 mmHg, the temperature was 33.7°C. Conclusion To use a blood warmer set at 41.5°C in conjunction with a compression sleeve at 150 or 300 mmHg does not generate hemolysis. At 300 mmHg a blood warmer set at 41.5°C does not totally avoid a risk of hypothermia. PMID:27711116
All-tantalum electrolytic capacitor
NASA Technical Reports Server (NTRS)
Green, G. E., Jr.
1977-01-01
Device uses single-compression tantalum-to-tantalum seal. Single-compression seal allows better utilization of volume within device. As result of all-tantalum case and lengthened cathode, electrical parameters, particularly equivalent series resistance and capacitance stability, improved over silver-cased capacitor.
Ibrahim, Mona; Ahmed, Azza; Mohamed, Warda Yousef; El-Sayed Abu Abduo, Somaya
2015-01-01
Trauma is the leading cause of death in Americans up to 44 years old each year. Deep vein thrombosis (DVT) is a significant condition occurring in trauma, and prophylaxis is essential to the appropriate management of trauma patients. The incidence of DVT varies in trauma patients, depending on patients' risk factors, modality of prophylaxis, and methods of detection. However, compression devices and arteriovenous (A-V) foot pumps prophylaxis are recommended in trauma patients, but the efficacy and optimal use of it is not well documented in the literature. The aim of this study was to review the literature on the effect of compression devices in preventing DVT among adult trauma patients. We searched through PubMed, CINAHL, and Cochrane Central Register of Controlled Trials for eligible studies published from 1990 until June 2014. Reviewers identified all randomized controlled trials that satisfied the study criteria, and the quality of included studies was assessed by Cochrane risk of bias tool. Five randomized controlled trials were included with a total of 1072 patients. Sequential compression devices significantly reduced the incidence of DVT in trauma patients. Also, foot pumps were more effective in reducing incidence of DVT compared with sequential compression devices. Sequential compression devices and foot pumps reduced the incidence of DVT in trauma patients. However, the evidence is limited to a small sample size and did not take into account other confounding variables that may affect the incidence of DVT in trauma patients. Future randomized controlled trials with larger probability samples to investigate the optimal use of mechanical prophylaxis in trauma patients are needed.
... decreases, you can use heat on the muscle. Stretching and light exercises to bring blood to the injured area can also be useful. In general, stretching and warm compresses are helpful before exercises. Cooling ...
Use of ultraportable vacuum therapy systems in the treatment of venous leg ulcer.
Cuomo, Roberto; Nisi, Giuseppe; Grimaldi, Luca; Brandi, Cesare; D'Aniello, Carlo
2017-10-23
The high incidence of venous leg ulcers and the difficult to give a complete healing involves in an increase of costs for National Health System. Main therapies to obtain a fast healing are compressive bandages, treatment of abnormal venous flow and in-situ-strategies of wound care. Negative pressure therapy does not conventionally used, because these systems not allow the use of compression bandages. Recently the development of ultraportable devices has improved the compliance and the results. Ten patients with venous chronic ulcer on the lower extremities were recruited for this study: all patients had venous leg ulcers from at least one year. We treated the patients with autologous partial thickness skin graft and subsequently we applied NANOVA device included in compressive bandage. We used NANOVA for fourteen days and after we made traditional medications. We submitted a questionnaire to evaluate the impact of dressing and NANOVA device in the quality of life of patients. The device contributed to the formation of granulation tissue and increased the success rate of autologous skin graft without limiting mobility of patient. In addition to this, we have been able to perform compression bandages thanks to small size of this device. Eight ulcers healed within 90 days of medication. We believe that ultraportable negative pressure systems are useful devices for treatment of venous leg ulcers because them allows to realize a compressive bandage without mobility limitations.
Device Assists Cardiac Chest Compression
NASA Technical Reports Server (NTRS)
Eichstadt, Frank T.
1995-01-01
Portable device facilitates effective and prolonged cardiac resuscitation by chest compression. Developed originally for use in absence of gravitation, also useful in terrestrial environments and situations (confined spaces, water rescue, medical transport) not conducive to standard manual cardiopulmonary resuscitation (CPR) techniques.
Garner, Alan A; Hsu, Jeremy; McShane, Anne; Sroor, Adam
Increased fracture displacement has previously been described with the application of pelvic circumferential compression devices (PCCDs) in patients with lateral compression-type pelvic fracture. We describe the first reported case of hemodynamic deterioration temporally associated with the prehospital application of a PCCD in a patient with a complex acetabular fracture with medial displacement of the femoral head. Active hemorrhage from a site adjacent to the acetabular fracture was subsequently demonstrated on angiography. Caution in the application of PCCDs to patients with lateral compression-type fractures is warranted. Copyright © 2017 Air Medical Journal Associates. All rights reserved.
NASA Astrophysics Data System (ADS)
Tang, J.; Gu, Y. J.; Chen, Q. F.; Li, Z. G.; Zheng, J.; Li, C. J.; Li, J. T.
2018-04-01
Multiple shock reverberation compression experiments are designed and performed to determine the equation of state of neon ranging from the initial dense gas up to the warm dense regime where the pressure is from about 40 MPa to 120 GPa and the temperature is from about 297 K up to above 20 000 K. The wide region experimental data are used to evaluate the available theoretical models. It is found that, for neon below 1.1 g/cm 3 , within the framework of density functional theory molecular dynamics, a van der Waals correction is meaningful. Under high pressure and temperature, results from the self-consistent fluid variational theory model are sensitive to the potential parameter and could give successful predictions in the whole experimental regime if a set of proper parameters is employed. The new observations on neon under megabar (1 Mbar =1011Pa ) pressure and eV temperature (1 eV ≈104K ) enrich the understanding on properties of warm dense matter and have potential applications in revealing the formation and evolution of gaseous giants or mega-Earths.
Method for preventing jamming conditions in a compression device
Williams, Paul M.; Faller, Kenneth M.; Bauer, Edward J.
2002-06-18
A compression device for feeding a waste material to a reactor includes a waste material feed assembly having a hopper, a supply tube and a compression tube. Each of the supply and compression tubes includes feed-inlet and feed-outlet ends. A feed-discharge valve assembly is located between the feed-outlet end of the compression tube and the reactor. A feed auger-screw extends axially in the supply tube between the feed-inlet and feed-outlet ends thereof. A compression auger-screw extends axially in the compression tube between the feed-inlet and feed-outlet ends thereof. The compression tube is sloped downwardly towards the reactor to drain fluid from the waste material to the reactor and is oriented at generally right angle to the supply tube such that the feed-outlet end of the supply tube is adjacent to the feed-inlet end of the compression tube. A programmable logic controller is provided for controlling the rotational speed of the feed and compression auger-screws for selectively varying the compression of the waste material and for overcoming jamming conditions within either the supply tube or the compression tube.
Short Intense Ion Pulses for Materials and Warm Dense Matter Research
NASA Astrophysics Data System (ADS)
Seidl, Peter; Ji, Q.; Lidia, S. M.; Persaud, A.; Stettler, M.; Takakuwa, J. H.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.
2015-11-01
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r <1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li + ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. We will describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminium perovskite using the fully integrated accelerator and neutralized drift compression components (arXiv:1506.05839). This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Maffiodo, Daniela; De Nisco, Giuseppe; Gallo, Diego; Audenino, Alberto; Morbiducci, Umberto; Ferraresi, Carlo
2016-04-01
This work investigates the effect that the application of intermittent pneumatic compression to lower limbs has on the cardiovascular system. Intermittent pneumatic compression can be applied to subjects with reduced or null mobility and can be useful for therapeutic purposes in sports recovery, deep vein thrombosis prevention and lymphedema drainage. However, intermittent pneumatic compression performance and the effectiveness are often difficult to predict. This study presents a reduced-order numerical model of the interaction between the cardiovascular system and the intermittent pneumatic compression device. The effect that different intermittent pneumatic compression operating conditions have on the overall circulation is investigated. Our findings confirm (1) that an overall positive effect on hemodynamics can be obtained by properly applying the intermittent pneumatic compression device and (2) that using intermittent pneumatic compression for cardiocirculatory recovery is feasible in subjects affected by lower limb disease. © IMechE 2016.
New experimental platform to study high density laser-compressed matter
Doppner, T.; LePape, S.; Ma, T.; ...
2014-09-26
We have developed a new experimental platform at the Linac Coherent Light Source (LCLS) which combines simultaneous angularly and spectrally resolved x-ray scatteringmeasurements. This technique offers a new insights on the structural and thermodynamic properties of warm dense matter. The < 50 fs temporal duration of the x-ray pulse provides near instantaneous snapshots of the dynamics of the compression. We present a proof of principle experiment for this platform to characterize a shock-compressed plastic foil. We observe the disappearance of the plastic semi-crystal structure and the formation of a compressed liquid ion-ion correlation peak. As a result, the plasma parametersmore » of shock-compressed plastic can be measured as well, but requires an averaging over a few tens of shots.« less
Corpuls CPR Generates Higher Mean Arterial Pressure Than LUCAS II in a Pig Model of Cardiac Arrest.
Eichhorn, S; Mendoza, A; Prinzing, A; Stroh, A; Xinghai, L; Polski, M; Heller, M; Lahm, H; Wolf, E; Lange, R; Krane, M
2017-01-01
According to the European Resuscitation Council guidelines, the use of mechanical chest compression devices is a reasonable alternative in situations where manual chest compression is impractical or compromises provider safety. The aim of this study is to compare the performance of a recently developed chest compression device (Corpuls CPR) with an established system (LUCAS II) in a pig model. Methods . Pigs ( n = 5/group) in provoked ventricular fibrillation were left untreated for 5 minutes, after which 15 min of cardiopulmonary resuscitation was performed with chest compressions. After 15 min, defibrillation was performed every 2 min if necessary, and up to 3 doses of adrenaline were given. If there was no return of spontaneous circulation after 25 min, the experiment was terminated. Coronary perfusion pressure, carotid blood flow, end-expiratory CO 2 , regional oxygen saturation by near infrared spectroscopy, blood gas, and local organ perfusion with fluorescent labelled microspheres were measured at baseline and during resuscitation. Results . Animals treated with Corpuls CPR had significantly higher mean arterial pressures during resuscitation, along with a detectable trend of greater carotid blood flow and organ perfusion. Conclusion . Chest compressions with the Corpuls CPR device generated significantly higher mean arterial pressures than compressions performed with the LUCAS II device.
Corpuls CPR Generates Higher Mean Arterial Pressure Than LUCAS II in a Pig Model of Cardiac Arrest
Mendoza, A.; Prinzing, A.; Stroh, A.; Xinghai, L.; Polski, M.; Heller, M.; Lahm, H.; Wolf, E.; Lange, R.; Krane, M.
2017-01-01
According to the European Resuscitation Council guidelines, the use of mechanical chest compression devices is a reasonable alternative in situations where manual chest compression is impractical or compromises provider safety. The aim of this study is to compare the performance of a recently developed chest compression device (Corpuls CPR) with an established system (LUCAS II) in a pig model. Methods. Pigs (n = 5/group) in provoked ventricular fibrillation were left untreated for 5 minutes, after which 15 min of cardiopulmonary resuscitation was performed with chest compressions. After 15 min, defibrillation was performed every 2 min if necessary, and up to 3 doses of adrenaline were given. If there was no return of spontaneous circulation after 25 min, the experiment was terminated. Coronary perfusion pressure, carotid blood flow, end-expiratory CO2, regional oxygen saturation by near infrared spectroscopy, blood gas, and local organ perfusion with fluorescent labelled microspheres were measured at baseline and during resuscitation. Results. Animals treated with Corpuls CPR had significantly higher mean arterial pressures during resuscitation, along with a detectable trend of greater carotid blood flow and organ perfusion. Conclusion. Chest compressions with the Corpuls CPR device generated significantly higher mean arterial pressures than compressions performed with the LUCAS II device. PMID:29392137
Gittinger, Matthew; Brolliar, Sarah M; Grand, James A; Nichol, Graham; Fernandez, Rosemarie
2017-06-01
This pilot study used a simulation-based platform to evaluate the effect of an automated mechanical chest compression device on team communication and patient management. Four-member emergency department interprofessional teams were randomly assigned to perform manual chest compressions (control, n = 6) or automated chest compressions (intervention, n = 6) during a simulated cardiac arrest with 2 phases: phase 1 baseline (ventricular tachycardia), followed by phase 2 (ventricular fibrillation). Patient management was coded using an Advanced Cardiovascular Life Support-based checklist. Team communication was categorized in the following 4 areas: (1) teamwork focus; (2) huddle events, defined as statements focused on re-establishing situation awareness, reinforcing existing plans, and assessing the need to adjust the plan; (3) clinical focus; and (4) profession of team member. Statements were aggregated for each team. At baseline, groups were similar with respect to total communication statements and patient management. During cardiac arrest, the total number of communication statements was greater in teams performing manual compressions (median, 152.3; interquartile range [IQR], 127.6-181.0) as compared with teams using an automated compression device (median, 105; IQR, 99.5-123.9). Huddle events were more frequent in teams performing automated chest compressions (median, 4.0; IQR, 3.1-4.3 vs. 2.0; IQR, 1.4-2.6). Teams randomized to the automated compression intervention had a delay to initial defibrillation (median, 208.3 seconds; IQR, 153.3-222.1 seconds) as compared with control teams (median, 63.2 seconds; IQR, 30.1-397.2 seconds). Use of an automated compression device may impact both team communication and patient management. Simulation-based assessments offer important insights into the effect of technology on healthcare teams.
APPARATUS FOR THE DENSIFICATION AND ENERGIZATION OF CHARGED PARTICLES
Post, R.F.; Coensgen, F.H.
1962-12-18
This patent relates to a device for materially increasing the energy and density of a plasma to produce conditions commensurate with the establishment and promotion of controlled thermonuclear reactions. To this end the device employs three successive stages of magnetic compression, each stage having magnetic mirrors to compress a plasma, the mirrors being moveable to transfer the plasma to successive stages for further compression. Accordingly, a plasma introduced to the first stage is increased in density and energy in stepwide fashion by virtue of the magnetic compression in the successive stages such that the plasma upon reaching the last stage is of extremely high energy and density commensurate the plasma particles undergoing thermonuclear reactions. The principal novelty of the device resides in the provision of a unidirectional magnetic field which increases in stepwise fashion in coaxially communicating compression chambers of progressively decreasing lengths and diameters. Pulsed magnetic fields are superimposed upon the undirectional field and are manipulated to establish resultant magnetic compression fields which increase in intensity and progressively move, with respect to time, through the compression chambers in the direction of the smallest one thereof. The resultant field in the last compression chamber is hence of relatively high intensity, and the density and energy of the plasma confined therein are correspondingly high. (AEC)
Disappearance and Compressibility of Buried Pine Wood in a Warm Temperate Soil Environment.
Gholz, H L; Krazynski, L M; Volk, B G
1991-02-01
The rate of disappearance of buried pine wood in Florida was found to be 15%/yr.As consumption by microorganisms and termites proceeded, the wood also became more compressible. After only 5 yr, consumption and compression could account for 60-70% loss of original volume of wood under pavement near the surface of an embankment. This large volume loss occurring in a relatively short time period may be responsible for many surface deformations in pavements and weaknesses in other embankments where wood may occur as a contaminant. © 1991 by the Ecological Society of America.
Kim, Yeomyung
2017-01-01
Objective We developed a new chest compression depth (CCD) measuring technology using radar and impulse-radio ultra-wideband (IR-UWB) sensor. This study was performed to determine its accuracy on a soft surface. Methods Four trials, trial 1: chest compressions on the floor using an accelerometer device; trial 2: chest compressions on the floor using an IR-UWB sensor; trial 3: chest compressions on a foam mattress using an accelerometer device; trial 4: chest compressions on a foam mattress using an IR-UWB sensor, were performed in a random order. In all the trials, a cardiopulmonary resuscitation provider delivered 50 uninterrupted chest compressions to a manikin. Results The CCD measured by the manikin and the device were as follows: 57.42 ± 2.23 and 53.92 ± 2.92 mm, respectively in trial 1 (p < 0.001); 56.29 ± 1.96 and 54.16 ± 3.90 mm, respectively in trial 2 (p < 0.001); 55.61 ± 1.57 and 103.48 ± 10.48 mm, respectively in trial 3 (p < 0.001); 57.14 ± 3.99 and 55.51 ± 3.39 mm, respectively in trial 4 (p = 0.012). The gaps between the CCD measured by the manikin and the devices (accelerometer device vs. IR-UWB sensor) on the floor were not different (3.50 ± 2.08 mm vs. 3.15 ± 2.27 mm, respectively, p = 0.136). However, the gaps were significantly different on the foam mattress (48.53 ± 5.65 mm vs. 4.10 ± 2.47 mm, p < 0.001). Conclusion The IR-UWB sensor could measure the CCD accurately both on the floor and on the foam mattress. PMID:28854262
Yu, Byung Gyu; Oh, Je Hyeok; Kim, Yeomyung; Kim, Tae Wook
2017-01-01
We developed a new chest compression depth (CCD) measuring technology using radar and impulse-radio ultra-wideband (IR-UWB) sensor. This study was performed to determine its accuracy on a soft surface. Four trials, trial 1: chest compressions on the floor using an accelerometer device; trial 2: chest compressions on the floor using an IR-UWB sensor; trial 3: chest compressions on a foam mattress using an accelerometer device; trial 4: chest compressions on a foam mattress using an IR-UWB sensor, were performed in a random order. In all the trials, a cardiopulmonary resuscitation provider delivered 50 uninterrupted chest compressions to a manikin. The CCD measured by the manikin and the device were as follows: 57.42 ± 2.23 and 53.92 ± 2.92 mm, respectively in trial 1 (p < 0.001); 56.29 ± 1.96 and 54.16 ± 3.90 mm, respectively in trial 2 (p < 0.001); 55.61 ± 1.57 and 103.48 ± 10.48 mm, respectively in trial 3 (p < 0.001); 57.14 ± 3.99 and 55.51 ± 3.39 mm, respectively in trial 4 (p = 0.012). The gaps between the CCD measured by the manikin and the devices (accelerometer device vs. IR-UWB sensor) on the floor were not different (3.50 ± 2.08 mm vs. 3.15 ± 2.27 mm, respectively, p = 0.136). However, the gaps were significantly different on the foam mattress (48.53 ± 5.65 mm vs. 4.10 ± 2.47 mm, p < 0.001). The IR-UWB sensor could measure the CCD accurately both on the floor and on the foam mattress.
Image compression system and method having optimized quantization tables
NASA Technical Reports Server (NTRS)
Ratnakar, Viresh (Inventor); Livny, Miron (Inventor)
1998-01-01
A digital image compression preprocessor for use in a discrete cosine transform-based digital image compression device is provided. The preprocessor includes a gathering mechanism for determining discrete cosine transform statistics from input digital image data. A computing mechanism is operatively coupled to the gathering mechanism to calculate a image distortion array and a rate of image compression array based upon the discrete cosine transform statistics for each possible quantization value. A dynamic programming mechanism is operatively coupled to the computing mechanism to optimize the rate of image compression array against the image distortion array such that a rate-distortion-optimal quantization table is derived. In addition, a discrete cosine transform-based digital image compression device and a discrete cosine transform-based digital image compression and decompression system are provided. Also, a method for generating a rate-distortion-optimal quantization table, using discrete cosine transform-based digital image compression, and operating a discrete cosine transform-based digital image compression and decompression system are provided.
Protective carrier for microcircuit devices
Robinson, Lyle A.
1976-10-26
An improved protective carrier for microcircuit devices having beam leads wherein a compressible member is disposed on the carrier base beneath and overlapping the periphery of an aperture in a flexible circuit element, the element being adapted to receive and make electrical contact with microcircuit device beam leads, the compressible member disposed or arranged to achieve flexing of the circuit element against the microcircuit device beam leads to conform to variations in thicknesses of the device beam leads or circuit element electrical paths and thereby insure electrical connection between the beam leads and the electrical paths.
Nyström, Gustav; Marais, Andrew; Karabulut, Erdem; Wågberg, Lars; Cui, Yi; Hamedi, Mahiar M.
2015-01-01
Traditional thin-film energy-storage devices consist of stacked layers of active films on two-dimensional substrates and do not exploit the third dimension. Fully three-dimensional thin-film devices would allow energy storage in bulk materials with arbitrary form factors and with mechanical properties unique to bulk materials such as compressibility. Here we show three-dimensional energy-storage devices based on layer-by-layer self-assembly of interdigitated thin films on the surface of an open-cell aerogel substrate. We demonstrate a reversibly compressible three-dimensional supercapacitor with carbon nanotube electrodes and a three-dimensional hybrid battery with a copper hexacyanoferrate ion intercalating cathode and a carbon nanotube anode. The three-dimensional supercapacitor shows stable operation over 400 cycles with a capacitance of 25 F g−1 and is fully functional even at compressions up to 75%. Our results demonstrate that layer-by-layer self-assembly inside aerogels is a rapid, precise and scalable route for building high-surface-area 3D thin-film devices. PMID:26021485
McGovern, P D; Albrecht, M; Belani, K G; Nachtsheim, C; Partington, P F; Carluke, I; Reed, M R
2011-11-01
We investigated the capacity of patient warming devices to disrupt the ultra-clean airflow system. We compared the effects of two patient warming technologies, forced-air and conductive fabric, on operating theatre ventilation during simulated hip replacement and lumbar spinal procedures using a mannequin as a patient. Infection data were reviewed to determine whether joint infection rates were associated with the type of patient warming device that was used. Neutral-buoyancy detergent bubbles were released adjacent to the mannequin's head and at floor level to assess the movement of non-sterile air into the clean airflow over the surgical site. During simulated hip replacement, bubble counts over the surgical site were greater for forced-air than for conductive fabric warming when the anaesthesia/surgery drape was laid down (p = 0.010) and at half-height (p < 0.001). For lumbar surgery, forced-air warming generated convection currents that mobilised floor air into the surgical site area. Conductive fabric warming had no such effect. A significant increase in deep joint infection, as demonstrated by an elevated infection odds ratio (3.8, p = 0.024), was identified during a period when forced-air warming was used compared to a period when conductive fabric warming was used. Air-free warming is, therefore, recommended over forced-air warming for orthopaedic procedures.
Investigating the Short-term Effect of Eyelid Massage on Corneal Topography.
Riede-Pult, Britta H; Evans, Katharine; Pult, Heiko
2017-06-01
The aim of this study was to evaluate the short-term effect of eyelid massage, after the use of warm compresses, on corneal topography. Corneal topography was evaluated on 20 subjects (mean age, 47.0 [SD ±17.3] years) using the Oculus Keratograph (Oculus, Wetzlar, Germany). Corneal eccentricity (Epsilon) was compared between topography measurements before eyelid warming (using warm compresses) (T1), after eyelid warming (T2), directly after eyelid massage (T3), and 30 minutes after eyelid massage (T4). Differences in corneal eccentricity between the enrolment measurement (T1) and consecutive measurements (T1-4) were analyzed. The contralateral eye-treated by warm compresses, but not by eyelid massage-was the control. Visual acuity (decimal), bulbar conjunctival hyperemia, and corneal staining (Cornea and Contact Lens Research Unit grading scale) were evaluated at T1 and T4 to assess clinical safety. No significant differences were found between consecutive eccentricity measurements overall and with the central radii (repeated-measures analysis of variance, P > .238 (massaged eyelid: Epsilon T1: 0.48 [95% confidence interval, ±0.07], T2: 0.49 [±0.05], T3: 0.49 [±0.06], T4: 0.48 [±0.06]; horizontal radii T1: 7.76 [±0.13] mm, T2: 7.74 [±0.13] mm, T3: 7.75 [±0.13] mm, T4: 7.76 [±0.13] mm; vertical radii T1: 7.56 [±0.12] mm, T2: 7.55 [±0.10] mm, T3: 7.54 [±0.10] mm, T4: 7.58 [±0.11] mm). Decimal visual acuity significantly improved at the end of the study (massaged eyelid: T1: 1.1 [±0.1]; T4: 1.3 [±0.1]; P < .032). No significant differences were detected between the consecutive evaluation of corneal staining (Wilcoxon test; P > .285). Redness was not significantly different between time points (repeated-measures analysis of variance; P = .187) in the colateral eyes. Hyperemia was significantly reduced in the massaged eyes (T1: 2.0 grade units [±0.3]; T4: 1.9 [±0.3]; P = .021). Eyelid warming followed by eyelid massage appears to be a safe procedure, without any clinically relevant short-term effects on the cornea.
Retrofit device and method to improve humidity control of vapor compression cooling systems
Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.
2016-08-16
A method and device for improving moisture removal capacity of a vapor compression system is disclosed. The vapor compression system is started up with the evaporator blower initially set to a high speed. A relative humidity in a return air stream is measured with the evaporator blower operating at the high speed. If the measured humidity is above the predetermined high relative humidity value, the evaporator blower speed is reduced from the initially set high speed to the lowest possible speed. The device is a control board connected with the blower and uses a predetermined change in measured relative humidity to control the blower motor speed.
Hot-compress: A new postdeposition treatment for ZnO-based flexible dye-sensitized solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haque Choudhury, Mohammad Shamimul, E-mail: shamimul129@gmail.com; Department of Electrical and Electronic Engineering, International Islamic University Chittagong, b154/a, College Road, Chittagong 4203; Kishi, Naoki
2016-08-15
Highlights: • A new postdeposition treatment named hot-compress is introduced. • Hot-compression gives homogeneous compact layer ZnO photoanode. • I-V and EIS analysis data confirms the efficacy of this method. • Charge transport resistance was reduced by the application of hot-compression. - Abstract: This article introduces a new postdeposition treatment named hot-compress for flexible zinc oxide–base dye-sensitized solar cells. This postdeposition treatment includes the application of compression pressure at an elevated temperature. The optimum compression pressure of 130 Ma at an optimum compression temperature of 70 °C heating gives better photovoltaic performance compared to the conventional cells. The aptness ofmore » this method was confirmed by investigating scanning electron microscopy image, X-ray diffraction, current-voltage and electrochemical impedance spectroscopy analysis of the prepared cells. Proper heating during compression lowers the charge transport resistance, longer the electron lifetime of the device. As a result, the overall power conversion efficiency of the device was improved about 45% compared to the conventional room temperature compressed cell.« less
Compression device for feeding a waste material to a reactor
Williams, Paul M.; Faller, Kenneth M.; Bauer, Edward J.
2001-08-21
A compression device for feeding a waste material to a reactor includes a waste material feed assembly having a hopper, a supply tube and a compression tube. Each of the supply and compression tubes includes feed-inlet and feed-outlet ends. A feed-discharge valve assembly is located between the feed-outlet end of the compression tube and the reactor. A feed auger-screw extends axially in the supply tube between the feed-inlet and feed-outlet ends thereof. A compression auger-screw extends axially in the compression tube between the feed-inlet and feed-outlet ends thereof. The compression tube is sloped downwardly towards the reactor to drain fluid from the waste material to the reactor and is oriented at generally right angle to the supply tube such that the feed-outlet end of the supply tube is adjacent to the feed-inlet end of the compression tube. A programmable logic controller is provided for controlling the rotational speed of the feed and compression auger-screws for selectively varying the compression of the waste material and for overcoming jamming conditions within either the supply tube or the compression tube.
Evaluation of three different devices to reduce stasis edema in poorly mobile nursing home patients.
Benigni, Jean-Patrick; Uhl, Jean-François; Balet, Florence; Filori, Pascal; Chahim, Maxime
2018-03-08
Prolonged immobility in the sitting position in the elderly is known to produce venous stasis with leg edema and possible skin changes. Compression stockings are often applied for this clinical problem. There are few experienced nursing staff available to supervise the difficult task of stocking application. The authors have researched other effective and simple devices that may be suitable alternatives. This article reports the results of three different devices to reduce leg edema, as measured by reduction in leg volume : an electro- stimulation device, an adjustable compression Velcro® wrap and a short stretch bandage, each tested over a two-hour period. In this randomized pilot study including 38 patients, the authors observed no difference in leg volume following electro-stimulation (Veinoplus®). They noted a significant reduction in leg volume following use of the other two devices, more with the adjustable Velcro® wrap compression (Circaid Juxtafit®) than with the short stretch bandage (Rosidal K®). Measurement of the interface pressures created by these two devices and also assessing the stiffness created by applying each device for two hours confirm that pressure is more important than stiffness in the reduction of edema in these particular patients. This pilot study is to be added to the results of previous published studies showing the efficacy in reducting leg edema of Velcro® adjustable compression wrap and its ease of use.
Sansinena, Marina; Santos, Maria Victoria; Chirife, Jorge; Zaritzky, Noemi
2018-05-01
Heat transfer during cooling and warming is difficult to measure in cryo-devices; mathematical modelling is an alternative method that can describe these processes. In this study, we tested the validity of one such model by assessing in-vitro development of vitrified and warmed bovine oocytes after parthenogenetic activation and culture. The viability of oocytes vitrified in four different cryo-devices was assessed. Consistent with modelling predictions, oocytes vitrified using cryo-devices with the highest modelled cooling rates had significantly (P < 0.05) better cleavage and blastocyst formation rates. We then evaluated a two-step sample removal process, in which oocytes were held in nitrogen vapour for 15 s to simulate sample identification during clinical application, before being removed completely and warmed. Oocytes exposed to this procedure showed reduced developmental potential, according to the model, owing to thermodynamic instability and devitrification at relatively low temperatures. These findings suggest that cryo-device selection and handling, including method of removal from nitrogen storage, are critical to survival of vitrified oocytes. Limitations of the study include use of parthenogenetically activated rather than fertilized ova and lack of physical measurement of recrystallization. We suggest mathematical modelling could be used to predict the effect of critical steps in cryopreservation. Copyright © 2018 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
1972-01-01
The assembly drawings of the receiver unit are presented for the data compression/error correction digital test system. Equipment specifications are given for the various receiver parts, including the TV input buffer register, delta demodulator, TV sync generator, memory devices, and data storage devices.
Komasawa, Nobuyasu; Ueki, Ryusuke; Kaminoh, Yoshiroh; Nishi, Shin-Ichi
2014-10-01
In the 2010 American Heart Association guidelines, supraglottic devices (SGDs) such as the laryngeal mask are proposed as alternatives to tracheal intubation for cardiopulmonary resuscitation. Some SGDs can also serve as a means for tracheal intubation after successful ventilation. The purpose of this study was to evaluate the effect of chest compression on airway management with four intubating SGDs, aura-i (aura-i), air-Q (air-Q), i-gel (i-gel), and Fastrack (Fastrack), during cardiopulmonary resuscitation using a manikin. Twenty novice physicians inserted the four intubating SGDs into a manikin with or without chest compression. Insertion time and successful ventilation rate were measured. For cases of successful ventilation, blind tracheal intubation via the intubating SGD was performed with chest compression and success or failure within 30 s was recorded. Chest compression did not decrease the ventilation success rate of the four intubating SGDs (without chest compression (success/total): air-Q, 19/20; aura-i, 19/20; i-gel, 18/20; Fastrack, 19/20; with chest compression: air-Q, 19/20; aura-i, 19/20; i-gel, 16/20; Fastrack, 18/20). Insertion time was significantly lengthened by chest compression in the i-gel trial (P < 0.05), but not with the other three devices. The blind intubation success rate with chest compression was the highest in the air-Q trial (air-Q, 15/19; aura-i, 14/19; i-gel, 12/16; Fastrack, 10/18). This simulation study revealed the utility of intubating SGDs for airway management during chest compression.
Caroff, Jildaz; Mihalea, Cristian; Da Ros, Valerio; Yagi, Takanobu; Iacobucci, Marta; Ikka, Léon; Moret, Jacques; Spelle, Laurent
2017-07-01
Recent reports have revealed a worsening of aneurysm occlusion between WEB treatment baseline and angiographic follow-up due to "compression" of the device. We utilized computational fluid dynamics (CFD) in order to determine whether the underlying mechanism of this worsening is flow related. We included data from all consecutive patients treated in our institution with a WEB for unruptured aneurysms located either at the middle cerebral artery or basilar tip. The CFD study was performed using pre-operative 3D rotational angiography. From digital subtraction follow-up angiographies patients were dichotomized into two groups: one with WEB "compression" and one without. We performed statistical analyses to determine a potential correlation between WEB compression and CFD inflow ratio. Between July 2012 and June 2015, a total of 22 unruptured middle cerebral artery or basilar tip aneurysms were treated with a WEB device in our department. Three patients were excluded from the analysis and the mean follow-up period was 17months. Eleven WEBs presented "compression" during follow-up. Interestingly, device "compression" was statistically correlated to the CFD inflow ratio (P=0.018), although not to aneurysm volume, aspect ratio or neck size. The mechanisms underlying the worsening of aneurysm occlusion in WEB-treated patients due to device compression are most likely complex as well as multifactorial. However, it is apparent from our pilot study that a high arterial inflow is, at least, partially involved. Further theoretical and animal research studies are needed to increase our understanding of this phenomenon. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Momozawa, Kenji; Matsuzawa, Atsushi; Tokunaga, Yukio; Abe, Shiori; Koyanagi, Yumi; Kurita, Miho; Nakano, Marina; Miyake, Takao
2017-04-24
Currently, the cryopreservation of embryos and oocytes is essential for assisted reproductive technology (ART) laboratories worldwide. This study aimed to evaluate the efficacy of the Kitasato Vitrification System (KVS) as a vitrification device for the cryopreservation of mouse embryos to determine whether this novel device can be adapted to the field of ART. In Experiment 1, blastocysts were vitrified using the KVS. Vitrified blastocysts were warmed and subsequently cultured for 72 h. In Experiment 2, 2-cell-stage embryos were vitrified using the KVS, and vitrified embryos were warmed and subsequently cultured for 96 h. In Experiment 3, we evaluated the in vivo developmental potential of vitrified 2-cell-stage embryos using the KVS, and in Experiment 4, we evaluated the cooling and warming rates for these devices using a numerical simulation. In Experiment 1, there were no significant differences between the survival rates of the KVS and a control device. However, re-expanded (100%) and hatching (91.8%) rates were significantly higher for blastocysts vitrified using the KVS. In Experiment 2, there were no significant differences between the survival rates, or rates of development to the blastocyst stage, of vitrified and fresh embryos. In Experiment 3, after embryo transfer, 41% of the embryos developed into live offspring. In Experiment 4, the cooling and warming rates of the KVS were 683,000 and 612,000 °C/min, respectively, exceeding those of the control device. Our study clearly demonstrates that the KVS is a novel vitrification device for the cryopreservation of mouse embryos at the blastocyst and 2-cell stage.
Electrostimulation's enhancement of recovery during a rugby preseason.
Beaven, C Martyn; Cook, Christian; Gray, David; Downes, Paul; Murphy, Ian; Drawer, Scott; Ingram, John R; Kilduff, Liam P; Gill, Nicholas
2013-01-01
Rugby preseason training involves high-volume strength and conditioning training, necessitating effective management of the recovery-stress state to avoid overtraining and maximize adaptive gains. Compression garments and an electrostimulation device have been proposed to improve recovery by increasing venous blood flow. These devices were assessed using salivary testosterone and cortisol, plasma creatine kinase, and player questionnaires to determine sleep quality, energy level, mood, and enthusiasm. Twenty-five professional rugby players were assigned to 1 of 2 treatments (compression garment or a concurrent combination of electrostimulation and compression) in a crossover design over 2 × 2-wk training blocks. Substantial benefits were observed in self-assessed energy levels (effect size [ES] 0.86), and enthusiasm (ES 0.80) as a result of the combined treatment when compared with compression-garment use. The combination treatment had no discernable effect on salivary hormones, with no treatment effect observed. The electrostimulation device did tend to accelerate the return of creatine kinase to baseline levels after 2 preseason rugby games when compared with the compression-garment intervention (ES 0.61; P = .08). Electrostimulation elicited psychometric and physiological benefits reflective of an improved recovery-stress state in professional male rugby players when combined with a lower-body compression garment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing... the container. (d) Compressed breathing gas contained valves or a separate charging system or adapter...
Code of Federal Regulations, 2014 CFR
2014-10-01
... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing... the container. (d) Compressed breathing gas contained valves or a separate charging system or adapter...
Code of Federal Regulations, 2011 CFR
2011-10-01
... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing... the container. (d) Compressed breathing gas contained valves or a separate charging system or adapter...
Code of Federal Regulations, 2013 CFR
2013-10-01
... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing... the container. (d) Compressed breathing gas contained valves or a separate charging system or adapter...
Code of Federal Regulations, 2012 CFR
2012-10-01
... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing... the container. (d) Compressed breathing gas contained valves or a separate charging system or adapter...
Ozaki, N.; Nellis, W. J.; Mashimo, T.; Ramzan, M.; Ahuja, R.; Kaewmaraya, T.; Kimura, T.; Knudson, M.; Miyanishi, K.; Sakawa, Y.; Sano, T.; Kodama, R.
2016-01-01
Materials at high pressures and temperatures are of great current interest for warm dense matter physics, planetary sciences, and inertial fusion energy research. Shock-compression equation-of-state data and optical reflectivities of the fluid dense oxide, Gd3Ga5O12 (GGG), were measured at extremely high pressures up to 2.6 TPa (26 Mbar) generated by high-power laser irradiation and magnetically-driven hypervelocity impacts. Above 0.75 TPa, the GGG Hugoniot data approach/reach a universal linear line of fluid metals, and the optical reflectivity most likely reaches a constant value indicating that GGG undergoes a crossover from fluid semiconductor to poor metal with minimum metallic conductivity (MMC). These results suggest that most fluid compounds, e.g., strong planetary oxides, reach a common state on the universal Hugoniot of fluid metals (UHFM) with MMC at sufficiently extreme pressures and temperatures. The systematic behaviors of warm dense fluid would be useful benchmarks for developing theoretical equation-of-state and transport models in the warm dense matter regime in determining computational predictions. PMID:27193942
Ozaki, N.; Nellis, W. J.; Mashimo, T.; ...
2016-05-19
Materials at high pressures and temperatures are of great current interest for warm dense matter physics, planetary sciences, and inertial fusion energy research. Shock-compression equation-of-state data and optical reflectivities of the fluid dense oxide, Gd 3Ga 5O 12 (GGG), were measured at extremely high pressures up to 2.6 TPa (26 Mbar) generated by high-power laser irradiation and magnetically-driven hypervelocity impacts. Above 0.75 TPa, the GGG Hugoniot data approach/reach a universal linear line of fluid metals, and the optical reflectivity most likely reaches a constant value indicating that GGG undergoes a crossover from fluid semiconductor to poor metal with minimum metallicmore » conductivity (MMC). These results suggest that most fluid compounds, e.g., strong planetary oxides, reach a common state on the universal Hugoniot of fluid metals (UHFM) with MMC at sufficiently extreme pressures and temperatures. Lastly, the systematic behaviors of warm dense fluid would be useful benchmarks for developing theoretical equation-of-state and transport models in the warm dense matter regime in determining computational predictions.« less
Ozaki, N; Nellis, W J; Mashimo, T; Ramzan, M; Ahuja, R; Kaewmaraya, T; Kimura, T; Knudson, M; Miyanishi, K; Sakawa, Y; Sano, T; Kodama, R
2016-05-19
Materials at high pressures and temperatures are of great current interest for warm dense matter physics, planetary sciences, and inertial fusion energy research. Shock-compression equation-of-state data and optical reflectivities of the fluid dense oxide, Gd3Ga5O12 (GGG), were measured at extremely high pressures up to 2.6 TPa (26 Mbar) generated by high-power laser irradiation and magnetically-driven hypervelocity impacts. Above 0.75 TPa, the GGG Hugoniot data approach/reach a universal linear line of fluid metals, and the optical reflectivity most likely reaches a constant value indicating that GGG undergoes a crossover from fluid semiconductor to poor metal with minimum metallic conductivity (MMC). These results suggest that most fluid compounds, e.g., strong planetary oxides, reach a common state on the universal Hugoniot of fluid metals (UHFM) with MMC at sufficiently extreme pressures and temperatures. The systematic behaviors of warm dense fluid would be useful benchmarks for developing theoretical equation-of-state and transport models in the warm dense matter regime in determining computational predictions.
Fluid driven torsional dipole seismic source
Hardee, Harry C.
1991-01-01
A compressible fluid powered oscillating downhole seismic source device capable of periodically generating uncontaminated horizontally-propagated, shear waves is provided. A compressible fluid generated oscillation is created within the device which imparts an oscillation to a housing when the device is installed in a housing such as the cylinder off an existing downhole tool, thereby a torsional seismic source is established. Horizontal waves are transferred to the surrounding bore hole medium through downhole clamping.
Xhepa, Erion; Byrne, Robert A; Schulz, Stefanie; Helde, Sandra; Gewalt, Senta; Cassese, Salvatore; Linhardt, Maryam; Ibrahim, Tareq; Mehilli, Julinda; Hoppe, Katharina; Grupp, Katharina; Kufner, Sebastian; Böttiger, Corinna; Hoppmann, Petra; Burgdorf, Christof; Fusaro, Massimiliano; Ott, Ilka; Schneider, Simon; Hengstenberg, Christian; Schunkert, Heribert; Laugwitz, Karl-Ludwig; Kastrati, Adnan
2014-06-01
Vascular closure devices (VCD) have been introduced into clinical practice with the aim of increasing the procedural efficiency and clinical safety of coronary angiography. However, clinical studies comparing VCD and manual compression have yielded mixed results, and large randomised clinical trials comparing the two strategies are missing. Moreover, comparative efficacy studies between different VCD in routine clinical use are lacking. The Instrumental Sealing of ARterial puncture site - CLOSURE device versus manual compression (ISAR-CLOSURE) trial is a prospective, randomised clinical trial designed to compare the outcomes associated with the use of VCD or manual compression to achieve femoral haemostasis. The test hypothesis is that femoral haemostasis after coronary angiography achieved using VCD is not inferior to manual compression in terms of access-site-related vascular complications. Patients undergoing coronary angiography via the common femoral artery will be randomised in a 1:1:1 fashion to receive FemoSeal VCD, EXOSEAL VCD or manual compression. The primary endpoint is the incidence of the composite of arterial access-related complications (haematoma ≥5 cm, pseudoaneurysm, arteriovenous fistula, access-site-related bleeding, acute ipsilateral leg ischaemia, the need for vascular surgical/interventional treatment or documented local infection) at 30 days after randomisation. According to power calculations based on non-inferiority hypothesis testing, enrolment of 4,500 patients is planned. The trial is registered at www.clinicaltrials.gov (study identifier: NCT01389375). The safety of VCD as compared to manual compression in patients undergoing transfemoral coronary angiography remains an issue of clinical equipoise. The aim of the ISAR-CLOSURE trial is to assess whether femoral haemostasis achieved through the use of VCD is non-inferior to manual compression in terms of access-site-related vascular complications.
NASA Astrophysics Data System (ADS)
Poese, Matthew E.; Smith, Robert W. M.; Garrett, Steven L.
2005-09-01
This talk will compare electrodynamically driven thermoacoustic refrigeration technology to some common implementations of low-lift vapor-compression technology. A rudimentary explanation of vapor-compression refrigeration will be presented along with some of the implementation problems faced by refrigeration engineers using compressor-based systems. These problems include oil management, compressor slugging, refrigerant leaks and the environmental impact of refrigerants. Recently, the method of evaluating this environmental impact has been codified to include the direct effects of the refrigerants on global warming as well as the so-called ``indirect'' warming impact of the carbon dioxide released during the generation (at the power plant) of the electrical power consumed by the refrigeration equipment. It is issues like these that generate commercial interest in an alternative refrigeration technology. However, the requirements of a candidate technology for adoption in a mature and risk-averse commercial refrigeration industry are as hard to divine as they are to meet. Also mentioned will be the state of other alternative refrigeration technologies like free-piston Stirling, thermoelectric and magnetocaloric as well as progress using vapor compression technology with alternative refrigerants like hydrocarbons and carbon dioxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leitner, M.; Bieniosek, F.; Kwan, J.
The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaboration between Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Princeton Plasma Physics Laboratory (PPPL), is currently constructing a new induction linear accelerator, called Neutralized Drift Compression eXperiment NDCX-II. The accelerator design makes effective use of existing components from LLNL's decommissioned Advanced Test Accelerator (ATA), especially induction cells and Blumlein voltage sources that have been transferred to LBNL. We have developed an aggressive acceleration 'schedule' that compresses the emitted ion pulse from 500 ns to 1 ns in just 15 meters. In the nominal design concept, 30more » nC of Li{sup +} are accelerated to 3.5 MeV and allowed to drift-compress to a peak current of about 30 A. That beam will be utilized for warm dense matter experiments investigating the interaction of ion beams with matter at high temperature and pressure. Construction of the accelerator will be complete within a period of approximately two and a half years and will provide a worldwide unique opportunity for ion-driven warm dense matter experiments as well as research related to novel beam manipulations for heavy ion fusion drivers.« less
Macho, Jorge Berzosa; Montón, Luis Gardeazabal; Rodriguez, Roberto Cortiñas
2017-08-01
The Cyber Physical Systems (CPS) paradigm is based on the deployment of interconnected heterogeneous devices and systems, so interoperability is at the heart of any CPS architecture design. In this sense, the adoption of standard and generic data formats for data representation and communication, e.g., XML or JSON, effectively addresses the interoperability problem among heterogeneous systems. Nevertheless, the verbosity of those standard data formats usually demands system resources that might suppose an overload for the resource-constrained devices that are typically deployed in CPS. In this work we present Context- and Template-based Compression (CTC), a data compression approach targeted to resource-constrained devices, which allows reducing the resources needed to transmit, store and process data models. Additionally, we provide a benchmark evaluation and comparison with current implementations of the Efficient XML Interchange (EXI) processor, which is promoted by the World Wide Web Consortium (W3C), and it is the most prominent XML compression mechanism nowadays. Interestingly, the results from the evaluation show that CTC outperforms EXI implementations in terms of memory usage and speed, keeping similar compression rates. As a conclusion, CTC is shown to be a good candidate for managing standard data model representation formats in CPS composed of resource-constrained devices.
Montón, Luis Gardeazabal
2017-01-01
The Cyber Physical Systems (CPS) paradigm is based on the deployment of interconnected heterogeneous devices and systems, so interoperability is at the heart of any CPS architecture design. In this sense, the adoption of standard and generic data formats for data representation and communication, e.g., XML or JSON, effectively addresses the interoperability problem among heterogeneous systems. Nevertheless, the verbosity of those standard data formats usually demands system resources that might suppose an overload for the resource-constrained devices that are typically deployed in CPS. In this work we present Context- and Template-based Compression (CTC), a data compression approach targeted to resource-constrained devices, which allows reducing the resources needed to transmit, store and process data models. Additionally, we provide a benchmark evaluation and comparison with current implementations of the Efficient XML Interchange (EXI) processor, which is promoted by the World Wide Web Consortium (W3C), and it is the most prominent XML compression mechanism nowadays. Interestingly, the results from the evaluation show that CTC outperforms EXI implementations in terms of memory usage and speed, keeping similar compression rates. As a conclusion, CTC is shown to be a good candidate for managing standard data model representation formats in CPS composed of resource-constrained devices. PMID:28763013
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-587] In the Matter of Certain Connecting Devices (``Quick Clamps'') for Use With Modular Compressed Air Conditioning Units, Including Filters, Regulators, and Lubricators (``FRL's'') That Are Part of Larger Pneumatic Systems and the FRL Units They...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-14
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-587] In the Matter of Certain Connecting Devices (``Quick Clamps'') for Use With Modular Compressed Air Conditioning Units, Including Filters, Regulators, and Lubricators (``Frl's'') That Are Part of Larger Pneumatic Systems and the FRL Units They...
Medical Treatment for Postthrombotic Syndrome
Palacios, Federico Silva; Rathbun, Suman Wasan
2017-01-01
Deep vein thrombosis (DVT) is a prevalent disease. About 20 to 30% of patients with DVT will develop postthrombotic syndrome (PTS) within months after the initial diagnosis of DVT. There is no gold standard for diagnosis of PTS, but clinical signs include pitting edema, hyperpigmentation, phlebectatic crown, venous eczema, and varicose veins. Several scoring systems have been developed for diagnostic evaluation. Conservative treatment includes compression therapy, medications, lifestyle modification, and exercise. Compression therapy, the mainstay and most proven noninvasive therapy for patients with PTS, can be prescribed as compression stockings, bandaging, adjustable compression wrap devices, and intermittent pneumatic compression. Medications may be used to both prevent and treat PTS and include anticoagulation, anti-inflammatories, vasoactive drugs, antibiotics, and diuretics. Exercise, weight loss, smoking cessation, and leg elevation are also recommended. Areas of further research include the duration, compliance, and strength of compression stockings in the prevention of PTS after DVT; the use of intermittent compression devices; the optimal medical anticoagulant regimen after endovascular therapy; and the role of newer anticoagulants as anti-inflammatory agents. PMID:28265131
A mobile compression device for thrombosis prevention in hip and knee arthroplasty.
Colwell, Clifford W; Froimson, Mark I; Anseth, Scott D; Giori, Nicholas J; Hamilton, William G; Barrack, Robert L; Buehler, Knute C; Mont, Michael A; Padgett, Douglas E; Pulido, Pamela A; Barnes, C Lowery
2014-02-05
Venous thromboembolic events, either deep venous thrombosis or pulmonary embolism, are important complications in patients undergoing knee or hip arthroplasty. The purpose of this study was to evaluate the effectiveness of a mobile compression device (ActiveCare+S.F.T.) with or without aspirin compared with current pharmacological protocols for prophylaxis against venous thromboembolism in patients undergoing elective primary unilateral arthroplasty of a lower-extremity joint. A multicenter registry was established to capture the rate of symptomatic venous thromboembolic events following primary knee arthroplasty (1551 patients) or hip arthroplasty (1509 patients) from ten sites. All patients were eighteen years of age or older with no known history of venous thromboembolism, coagulation disorder, or solid tumor. Use of the compression device began perioperatively and continued for a minimum of ten days. Patients with symptoms of deep venous thrombosis or pulmonary embolism underwent duplex ultrasonography and/or spiral computed tomography. All patients were evaluated at three months postoperatively to document any evidence of deep venous thrombosis or pulmonary embolism. Of 3060 patients, twenty-eight (0.92%) had venous thromboembolism (twenty distal deep venous thrombi, three proximal deep venous thrombi, and five pulmonary emboli). One death occurred, with no autopsy performed. Symptomatic venous thromboembolic rates observed in patients who had an arthroplasty of a lower-extremity joint using the mobile compression device were noninferior (not worse than), at a margin of 1.0%, to the rates reported for pharmacological prophylaxis, including warfarin, enoxaparin, rivaroxaban, and dabigatran, except in the knee arthroplasty group, in which the mobile compression device fell short of the rate reported for rivaroxaban by 0.06%. Use of the mobile compression device with or without aspirin for patients undergoing arthroplasty of a lower-extremity joint provides a noninferior risk for the development of venous thromboembolism compared with current pharmacological protocols.
Navarro-Patón, R; Freire-Tellado, M; Basanta-Camiño, S; Barcala-Furelos, R; Arufe-Giraldez, V; Rodriguez-Fernández, J E
2018-05-01
To evaluate the learning of basic life support (BLS) measures on the part of laypersons after 3different teaching programs. A quasi-experimental before-after study involving a non-probabilistic sample without a control group was carried out. Primary school teacher students from the University of Santiago (Spain). A total of 124 students (68.8% women and 31.2% men) aged 20-39 years (M=22.23; SD=3.79), with no previous knowledge of BLS, were studied. Three teaching programs were used: a traditional course, an audio-visual approach and feedback devices. Chest compressions as sole cardiopulmonary resuscitation skill evaluation: average compression depth, compression rate, chest recoil percentage and percentage of correct compressions. Automated external defibrillator: time needed to apply a shock before and after the course. There were significant differences in the results obtained after 2minutes of chest compressions, depending on the training program received, with feedback devices having a clear advantage referred to average compression depth (p<0.001), compression rate (p<0.001), chest recoil percentage (p<0.001) and percentage of correct compressions (p<0.001). Regarding automated external defibrillator, statistically significant differences were found in T after (p=0.025). The teaching course using feedback devices obtained the best results in terms of the quality of chest compressions, followed by the traditional course and audio-visual approach. These favorable results were present in both men and women. All 3teaching methods reached the goal of reducing defibrillation time. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.
Utility of a simple lighting device to improve chest compressions learning.
González-Calvete, L; Barcala-Furelos, R; Moure-González, J D; Abelairas-Gómez, C; Rodríguez-Núñez, A
2017-11-01
The recommendations on cardiopulmonary resuscitation (CPR) emphasize the quality of the manoeuvres, especially chest compressions (CC). Audiovisual feedback devices could improve the quality of the CC during CPR. The aim of this study was to evaluate the usefulness of a simple lighting device as a visual aid during CPR on a mannequin. Twenty-two paediatricians who attended an accredited paediatric CPR course performed, in random order, 2min of CPR on a mannequin without and with the help of a simple lighting device, which flashes at a frequency of 100 cycles per minute. The following CC variables were analyzed using a validated compression quality meter (CPRmeter ® ): depth, decompression, rate, CPR time and percentage of compressions. With the lighting device, participants increased average quality (60.23±54.50 vs. 79.24±9.80%; P=.005), percentage in target depth (48.86±42.67 vs. 72.95±20.25%; P=.036) and rate (35.82±37.54 vs. 67.09±31.95%; P=.024). A simple light device that flashes at the recommended frequency improves the quality of CC performed by paediatric residents on a mannequin. The usefulness of this CPR aid system should be assessed in real patients. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.
Mechanical characteristics of the new BONE-LOK bi-cortical internal fixation device.
Cachia, Victor V; Shumway, Don; Culbert, Brad; Padget, Marty
2003-01-01
The purpose of this study was to evaluate the mechanical characteristics of a new and unique titanium compression anchor with BONE-LOK (Triage Medical, Inc, Irvine, CA) technology for compressive, bi-cortical internal fixation of bone. This device provides fixation through the use of a distal grasping anchor and an adjustable proximal collar that are joined by an axially movable pin and guide wire. The titanium compression anchor, in 2.0-, 2.7-, and 3.5-mm diameters, were compared with cortex screws (Synthes USA, Paoli, PA) of the same diameter and material for pullout strength in 20 lb/cu ft and 30 lb/cu ft solid rigid polyurethane foam; and for compression strength in 20 lb/cu ft foam. Retention strength of the collar was tested independently. The results showed significantly greater pullout strength of the 2.7-mm and 3.5-mm titanium compression anchor as compared with the 2.7-mm and 3.5-mm cortex screws in these test models. Pullout strength of the 2.0-mm titanium compression anchor was not statistically different in comparison with the 2.0-mm cortical screws. Compression strength of the titanium compression anchor was significantly greater than the cortical screws for all diameters tested. These differences represent a distinct advantage with the new device, which warrants further in vivo testing. Collar retention strength testing values were obtained for reference only and have no comparative significance.
1991-12-01
850F FOR 2 HRS STEP 2 - 665F FOR 2 HRS STEP 3 - WARM WATER QUENCH STEP 4 - 230F FOR 24 HRS TABLE G5 TENSILE RESULTS FOR IN905XL FORGING COMPANY TEST...HRS STEP 2 - 665F FOR 2 HRS STEP 3 - WARM WATER QUENCH STEP 4 - 230F FOR 24 HRS 12 TABLE G6 COMPRESSION RESULTS FOR IN905XL FORGING COMPANY TEST...LONG 58.0 11.4 DYNAMICS (*) (*): HEAT TREATED TO THE FOLLOWING SCHEDULE: STEP 1 - 850F FOR 2 HRS STEP 2 - 665F FOR 2 HRS STEP 3 - WARM WATER QUENCH
Use of silicon oxynitride as a sacrificial material for microelectromechanical devices
Habermehl, Scott D.; Sniegowski, Jeffry J.
2001-01-01
The use of silicon oxynitride (SiO.sub.x N.sub.y) as a sacrificial material for forming a microelectromechanical (MEM) device is disclosed. Whereas conventional sacrificial materials such as silicon dioxide and silicate glasses are compressively strained, the composition of silicon oxynitride can be selected to be either tensile-strained or substantially-stress-free. Thus, silicon oxynitride can be used in combination with conventional sacrificial materials to limit an accumulation of compressive stress in a MEM device; or alternately the MEM device can be formed entirely with silicon oxynitride. Advantages to be gained from the use of silicon oxynitride as a sacrificial material for a MEM device include the formation of polysilicon members that are substantially free from residual stress, thereby improving the reliability of the MEM device; an ability to form the MEM device with a higher degree of complexity and more layers of structural polysilicon than would be possible using conventional compressively-strained sacrificial materials; and improved manufacturability resulting from the elimination of wafer distortion that can arise from an excess of accumulated stress in conventional sacrificial materials. The present invention is useful for forming many different types of MEM devices including accelerometers, sensors, motors, switches, coded locks, and flow-control devices, with or without integrated electronic circuitry.
Factors that influence the tribocharging of pulverulent materials in compressed-air devices
NASA Astrophysics Data System (ADS)
Das, S.; Medles, K.; Mihalcioiu, A.; Beleca, R.; Dragan, C.; Dascalescu, L.
2008-12-01
Tribocharging of pulverulent materials in compressed-air devices is a typical multi-factorial process. This paper aims at demonstrating the interest of using the design of experiments methodology in association with virtual instrumentation for quantifying the effects of various process varaibles and of their interactions, as a prerequisite for the development of new tribocharging devices for industrial applications. The study is focused on the tribocharging of PVC powders in compressed-air devices similar to those employed in electrostatic painting. A classical 2 full-factorial design (3 factors at two levels) was employed for conducting the experiments. The response function was the charge/mass ratio of the material collected in a modified Faraday cage, at the exit of the tribocharging device. The charge/mass ratio was found to increase with the injection pressure and the vortex pressure in the tribocharging device, and to decrease with the increasing of the feed rate. In the present study an in-house design of experiments software was employed for statistical analysis of experimental data and validation of the experimental model.
Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device.
Coogan, Jessica S; Francis, W Loren; Eliason, Travis D; Bredbenner, Todd L; Stemper, Brian D; Yoganandan, Narayan; Pintar, Frank A; Nicolella, Daniel P
2016-01-01
Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3-L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3-L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with the normal intact nucleus.
Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device
Coogan, Jessica S.; Francis, W. Loren; Eliason, Travis D.; Bredbenner, Todd L.; Stemper, Brian D.; Yoganandan, Narayan; Pintar, Frank A.; Nicolella, Daniel P.
2016-01-01
Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3–L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3–L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with the normal intact nucleus. PMID:27990418
Lin, Yiqun; Wan, Brandi; Belanger, Claudia; Hecker, Kent; Gilfoyle, Elaine; Davidson, Jennifer; Cheng, Adam
2017-01-01
The depth of chest compression (CC) during cardiac arrest is associated with patient survival and good neurological outcomes. Previous studies showed that mattress compression can alter the amount of CCs given with adequate depth. We aim to quantify the amount of mattress compressibility on two types of ICU mattresses and explore the effect of memory foam mattress use and a backboard on mattress compression depth and effect of feedback source on effective compression depth. The study utilizes a cross-sectional self-control study design. Participants working in the pediatric intensive care unit (PICU) performed 1 min of CC on a manikin in each of the following four conditions: (i) typical ICU mattress; (ii) typical ICU mattress with a CPR backboard; (iii) memory foam ICU mattress; and (iv) memory foam ICU mattress with a CPR backboard, using two different sources of real-time feedback: (a) external accelerometer sensor device measuring total compression depth and (b) internal light sensor measuring effective compression depth only. CPR quality was concurrently measured by these two devices. The differences of the two measures (mattress compression depth) were summarized and compared using multilevel linear regression models. Effective compression depths with different sources of feedback were compared with a multilevel linear regression model. The mean mattress compression depth varied from 24.6 to 47.7 mm, with percentage of depletion from 31.2 to 47.5%. Both use of memory foam mattress (mean difference, MD 11.7 mm, 95%CI 4.8-18.5 mm) and use of backboard (MD 11.6 mm, 95% CI 9.0-14.3 mm) significantly minimized the mattress compressibility. Use of internal light sensor as source of feedback improved effective CC depth by 7-14 mm, compared with external accelerometer sensor. Use of a memory foam mattress and CPR backboard minimizes mattress compressibility, but depletion of compression depth is still substantial. A feedback device measuring sternum-to-spine displacement can significantly improve effective compression depth on a mattress. Not applicable. This is a mannequin-based simulation research.
Chekan, Edward; Whelan, Richard L
2014-01-01
The introduction of both new surgical devices and reengineered existing devices leads to modifications in the way traditional tasks are carried out and allows for the development of new surgical techniques. Each new device has benefits and limitations in regards to tissue interactions that, if known, allow for optimal use. However, most surgeons are unaware of these attributes and, therefore, new device introduction creates a "knowledge gap" that is potentially dangerous. The goal of this review is to present a framework for the study of device- tissue interactions and to initiate the process of "filling in" the knowledge gap via the available literature. Surgical staplers, which are continually being developed, are the focus of this piece. The integrity of the staple line, which depends on adequate tissue compression, is the primary factor in creating a stable anastomosis. This review focuses on published studies that evaluated the creation of stable anastomoses in bariatric, thoracic, and colorectal procedures. Understanding how staplers interact with target tissues is key to improving patient outcomes. It is clear from this review that each tissue type presents unique challenges. The thickness of each tissue varies as do the intrinsic biomechanical properties that determine the ideal compressive force and prefiring compression time for each tissue type. The correct staple height will vary depending on these tissue-specific properties and the tissue pathology. These studies reinforce the universal theme that compression, staple height, tissue thickness, tissue compressibility, and tissue type must all be considered by the surgeon prior to choosing a stapler and cartridge. The surgeon's experience, therefore, is a critical factor. Educational programs need to be established to inform and update surgeons on the characteristics of each stapler. It is hoped that the framework presented in this review will facilitate this process.
Cachia, Victor V; Culbert, Brad; Warren, Chris; Oka, Richard; Mahar, Andrew
2003-01-01
The purpose of this study was to evaluate the structural and mechanical characteristics of a new and unique titanium cortical-cancellous helical compression anchor with BONE-LOK (Triage Medical, Inc., Irvine, CA) technology for compressive internal fixation of fractures and osteotomies. This device provides fixation through the use of a distal helical anchor and a proximal retentive collar that are united by an axially movable pin (U.S. and international patents issued and pending). The helical compression anchor (2.7-mm diameter) was compared with 3.0-mm diameter titanium cancellous screws (Synthes, Paoli, PA) for pullout strength and compression in 7# and 12# synthetic rigid polyurethane foam (simulated bone matrix), and for 3-point bending stiffness. The following results (mean +/- standard deviation) were obtained: foam block pullout strength in 12# foam: 2.7-mm helical compression anchor 70 +/- 2.0 N and 3.0-mm titanium cancellous screws 37 +/- 11 N; in 7# foam: 2.7-mm helical compression anchor 33 +/- 3 N and 3.0-mm titanium cancellous screws 31 +/- 12 N. Three-point bending stiffness, 2.7-mm helical compression anchor 988 +/- 68 N/mm and 3.0-mm titanium cancellous screws 845 +/- 88 N/mm. Compression strength testing in 12# foam: 2.7-mm helical compression anchor 70.8 +/- 4.8 N and 3.0-mm titanium cancellous screws 23.0 +/- 3.1 N, in 7# foam: 2.7-mm helical compression anchor 42.6 +/- 3.2 N and 3.0-mm titanium cancellous screws 10.4 +/- 0.9 N. Results showed greater pullout strength, 3-point bending stiffness, and compression strength for the 2.7-mm helical compression anchor as compared with the 3.0-mm titanium cancellous screws in these testing models. This difference represents a distinct advantage in the new device that warrants further in vivo testing.
Gold-based electrical interconnections for microelectronic devices
Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.; Watson, Robert D.
2002-01-01
A method of making an electrical interconnection from a microelectronic device to a package, comprising ball or wedge compression bonding a gold-based conductor directly to a silicon surface, such as a polysilicon bonding pad in a MEMS or IMEMS device, without using layers of aluminum or titanium disposed in-between the conductor and the silicon surface. After compression bonding, optional heating of the bond above 363 C. allows formation of a liquid gold-silicon eutectic phase containing approximately 3% (by weight) silicon, which significantly improves the bond strength by reforming and enhancing the initial compression bond. The same process can be used for improving the bond strength of Au--Ge bonds by forming a liquid Au-12Ge eutectic phase.
Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.
2015-12-08
A device and method are provided to improve performance of a vapor compression system using a retrofittable control board to start up the vapor compression system with the evaporator blower initially set to a high speed. A baseline evaporator operating temperature with the evaporator blower operating at the high speed is recorded, and then the device detects if a predetermined acceptable change in evaporator temperature has occurred. The evaporator blower speed is reduced from the initially set high speed as long as there is only a negligible change in the measured evaporator temperature and therefore a negligible difference in the compressor's power consumption so as to obtain a net increase in the Coefficient of Performance.
Making sense of global warming: Norwegians appropriating knowledge of anthropogenic climate change.
Ryghaug, Marianne; Sørensen, Knut Holtan; Naess, Robert
2011-11-01
This paper studies how people reason about and make sense of human-made global warming, based on ten focus group interviews with Norwegian citizens. It shows that the domestication of climate science knowledge was shaped through five sense-making devices: news media coverage of changes in nature, particularly the weather, the coverage of presumed experts' disagreement about global warming, critical attitudes towards media, observations of political inaction, and considerations with respect to everyday life. These sense-making devices allowed for ambiguous outcomes, and the paper argues four main outcomes with respect to the domestication processes: the acceptors, the tempered acceptors, the uncertain and the sceptics.
Effect of forced-air warming on the performance of operating theatre laminar flow ventilation.
Dasari, K B; Albrecht, M; Harper, M
2012-03-01
Forced-air warming exhaust may disrupt operating theatre airflows via formation of convection currents, which depends upon differences in exhaust and operating room air temperatures. We investigated whether the floor-to-ceiling temperatures around a draped manikin in a laminar-flow theatre differed when using three types of warming devices: a forced-air warming blanket (Bair Hugger™); an over-body conductive blanket (Hot Dog™); and an under-body resistive mattress (Inditherm™). With forced-air warming, mean (SD) temperatures were significantly elevated over the surgical site vs those measured with the conductive blanket (+2.73 (0.7) °C; p<0.001) or resistive mattress (+3.63 (0.7) °C; p<0.001). Air temperature differences were insignificant between devices at floor (p=0.339), knee (p=0.799) and head height levels (p=0.573). We conclude that forced-air warming generates convection current activity in the vicinity of the surgical site. The clinical concern is that these currents may disrupt ventilation airflows intended to clear airborne contaminants from the surgical site. Anaesthesia © 2012 The Association of Anaesthetists of Great Britain and Ireland.
Hildebrand, Richard J.; Wozniak, John J.
2001-01-01
A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.
Munday, Judy; Hines, Sonia; Wallace, Karen; Chang, Anne M; Gibbons, Kristen; Yates, Patsy
2014-12-01
Women undergoing cesarean section are vulnerable to adverse effects associated with inadvertent perioperative hypothermia, but there has been a lack of synthesized evidence for temperature management in this population. This systematic review aimed to synthesize the best available evidence in relation to preventing hypothermia in mothers undergoing cesarean section surgery. Randomized controlled trials meeting the inclusion criteria (adult patients of any ethnic background, with or without comorbidities, undergoing any mode of anesthesia for any type of cesarean section) were eligible for consideration. Active or passive warming interventions versus usual care or placebo, aiming to limit or manage core heat loss in women undergoing cesarean section were considered. The primary outcome was maternal core temperature. A comprehensive search with no language restrictions was undertaken of multiple databases from their inception until May 2012. Two independent reviewers using the standardized critical appraisal instrument for randomized controlled trials from the Joanna Briggs Institute Meta-Analysis of Statistics Assessment and Review Instruments (JBI-MASTARI) assessed retrieved papers for methodological quality and conducted data collection. Where possible, results were combined in a fixed effects meta-analysis using the Cochrane Collaboration Review Manager software. Due to heterogeneity for one outcome, random effects meta-analysis was also used. A combined total of 719 participants from 12 studies were included. Intravenous fluid warming was found to be effective at maintaining maternal temperature and preventing shivering. Warming devices, including forced air warming and under-body carbon polymer mattresses, were effective at preventing hypothermia. However, effectiveness increased if the devices were applied preoperatively. Preoperative warming devices reduced shivering and improved neonatal temperatures at birth. Intravenous fluid warming did not improve neonatal temperature, and the effectiveness of warming interventions on umbilical pH remains unclear. Intravenous fluid warming by any method improves maternal temperature and reduces shivering during and after cesarean section, as does preoperative body warming. Preoperative warming strategies should be utilized where possible. Preoperative or intraoperative warmed IV fluids should be standard practice. Warming strategies are less effective when intrathecal opioids are administered. Further research is needed to investigate interventions in emergency cesarean section surgery. Larger scale studies using standardized, clinically meaningful temperature measurement time points are required. © 2014 Sigma Theta Tau International.
Optical properties of highly compressed polystyrene: An ab initio study
NASA Astrophysics Data System (ADS)
Hu, S. X.; Collins, L. A.; Colgan, J. P.; Goncharov, V. N.; Kilcrease, D. P.
2017-10-01
Using all-electron density functional theory, we have performed an ab initio study on x-ray absorption spectra of highly compressed polystyrene (CH). We found that the K -edge shifts in strongly coupled, degenerate polystyrene cannot be explained by existing continuum-lowering models adopted in traditional plasma physics. To gain insights into the K -edge shift in warm, dense CH, we have developed a model designated as "single mixture in a box" (SMIAB), which incorporates both the lowering of the continuum and the rising of the Fermi surface resulting from high compression. This simple SMIAB model correctly predicts the K -edge shift of carbon in highly compressed CH in good agreement with results from quantum molecular dynamics (QMD) calculations. Traditional opacity models failed to give the proper K -edge shifts as the CH density increased. Based on QMD calculations, we have established a first-principles opacity table (FPOT) for CH in a wide range of densities and temperatures [ρ =0.1 -100 g /c m3 and T =2000 -1 000 000 K ]. The FPOT gives much higher Rosseland mean opacity compared to the cold-opacity-patched astrophysics opacity table for warm, dense CH and favorably compares to the newly improved Los Alamos atomic model for moderately compressed CH (ρCH≤10 g /c m3 ), but remains a factor of 2 to 3 higher at extremely high densities (ρCH≥50 g /c m3 ). We anticipate the established FPOT of CH will find important applications to reliable designs of high-energy-density experiments. Moreover, the understanding of K -edge shifting revealed in this study could provide guides for improving the traditional opacity models to properly handle the strongly coupled and degenerate conditions.
Optical properties of highly compressed polystyrene: An ab initio study
Hu, S. X.; Collins, L. A.; Colgan, J. P.; ...
2017-10-16
Using all-electron density functional theory, we have performed an ab initio study on x ray absorption spectra of highly compressed polystyrene (CH). Here, we found that the K-edge shifts in strongly coupled, degenerate polystyrene cannot be explained by existing continuum-lowering models adopted in traditional plasma physics. To gain insights into the K edge shift in warm, dense CH, we have developed a model designated as “single-mixture-in-a-box” (SMIAB), which incorporates both the lowering of continuum and the rising of Fermi surface resulting from high compression. This simple SMIAB model correctly predicts the K-edge shift of carbon in highly compressed CH inmore » good agreement with results from quantum-molecular-dynamics (QMD) calculations. Traditional opacity models failed to give the proper K-edge shifts as the CH density increased. Based on QMD calculations, we have established a first-principles opacity table (FPOT) for CH in a wide range of densities and temperatures [p = 0.1 to 100 g/cm 3 and T = 2000 to 1,000,000 K]. The FPOT gives much higher Rosseland mean opacity compared to the cold-opacity–patched astrophysics opacity table for warm, dense CH and favorably compares to the newly improved Los Alamos ATOMIC model for moderately compressed CH (pCH ≤10 g/cm 3) but remains a factor of 2 to 3 higher at extremely high densities (pCH ≥ 50 g/cm 3). We anticipate the established FPOT of CH will find important applications to reliable designs of high-energy-density experiments. Moreover, the understanding of K-edge shifting revealed in this study could provide guides for improving the traditional opacity models to properly handle the strongly coupled and degenerate conditions.« less
Optical properties of highly compressed polystyrene: An ab initio study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, S. X.; Collins, L. A.; Colgan, J. P.
Using all-electron density functional theory, we have performed an ab initio study on x ray absorption spectra of highly compressed polystyrene (CH). Here, we found that the K-edge shifts in strongly coupled, degenerate polystyrene cannot be explained by existing continuum-lowering models adopted in traditional plasma physics. To gain insights into the K edge shift in warm, dense CH, we have developed a model designated as “single-mixture-in-a-box” (SMIAB), which incorporates both the lowering of continuum and the rising of Fermi surface resulting from high compression. This simple SMIAB model correctly predicts the K-edge shift of carbon in highly compressed CH inmore » good agreement with results from quantum-molecular-dynamics (QMD) calculations. Traditional opacity models failed to give the proper K-edge shifts as the CH density increased. Based on QMD calculations, we have established a first-principles opacity table (FPOT) for CH in a wide range of densities and temperatures [p = 0.1 to 100 g/cm 3 and T = 2000 to 1,000,000 K]. The FPOT gives much higher Rosseland mean opacity compared to the cold-opacity–patched astrophysics opacity table for warm, dense CH and favorably compares to the newly improved Los Alamos ATOMIC model for moderately compressed CH (pCH ≤10 g/cm 3) but remains a factor of 2 to 3 higher at extremely high densities (pCH ≥ 50 g/cm 3). We anticipate the established FPOT of CH will find important applications to reliable designs of high-energy-density experiments. Moreover, the understanding of K-edge shifting revealed in this study could provide guides for improving the traditional opacity models to properly handle the strongly coupled and degenerate conditions.« less
González-Otero, Digna M; de Gauna, Sofía Ruiz; Ruiz, Jesus; Rivero, Raquel; Gutierrez, J J; Saiz, Purificación; Russell, James K
2018-04-20
Out-of-hospital cardiac arrest is common in public locations, including public transportation sites. Feedback devices are increasingly being used to improve chest-compression quality. However, their performance during public transportation has not been studied yet. To test two CPR feedback devices representative of the current technologies (accelerometer and electromag- netic-field) in a long-distance train. Volunteers applied compressions on a manikin during the train route using both feedback devices. Depth and rate measurements computed by the devices were compared to the gold-standard values. Sixty-four 4-min records were acquired. The accelerometer-based device provided visual help in all experiments. Median absolute errors in depth and rate were 2.4 mm and 1.3 compressions per minute (cpm) during conventional speed, and 2.5 mm and 1.2 cpm during high speed. The electromagnetic-field-based device never provided CPR feedback; alert messages were shown instead. However, measurements were stored in its internal memory. Absolute errors for depth and rate were 2.6 mm and 0.7 cpm during conventional speed, and 2.6 mm and 0.7 cpm during high speed. Both devices were accurate despite the accelerations and the electromagnetic interferences induced by the train. However, the electromagnetic-field-based device would require modifications to avoid excessive alerts impeding feedback.
A randomized control hands-on defibrillation study-Barrier use evaluation.
Wampler, David; Kharod, Chetan; Bolleter, Scotty; Burkett, Alison; Gabehart, Caitlin; Manifold, Craig
2016-06-01
Chest compressions and defibrillation are the only therapies proven to increase survival in cardiac arrest. Historically, rescuers must remove hands to shock, thereby interrupting chest compressions. This hands-off time results in a zero blood flow state. Pauses have been associated with poorer neurological recovery. This was a blinded randomized control cadaver study evaluating the detection of defibrillation during manual chest compressions. An active defibrillator was connected to the cadaver in the sternum-apex configuration. The sham defibrillator was not connected to the cadaver. Subjects performed chest compressions using 6 barrier types: barehand, single and double layer nitrile gloves, firefighter gloves, neoprene pad, and a manual chest compression/decompression device. Randomized defibrillations (10 per barrier type) were delivered at 30 joules (J) for bare hand and 360J for all other barriers. After each shock, the subject indicated degree of sensation on a VAS scale. Ten subjects participated. All subjects detected 30j shocks during barehand compressions, with only 1 undetected real shock. All barriers combined totaled 500 shocks delivered. Five (1%) active shocks were detected, 1(0.2%) single layer of Nitrile, 3(0.6%) with double layer nitrile, and 1(0.2%) with the neoprene barrier. One sham shock was reported with the single layer nitrile glove. No shocks were detected with fire gloves or compression decompression device. All shocks detected barely perceptible (0.25(±0.05)cm on 10cm VAS scale). Nitrile gloves and neoprene pad prevent (99%) responder's detection of defibrillation of a cadaver. Fire gloves and compression decompression device prevented detection. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Development of Methods and Equipment for Sheet Stamping
NASA Astrophysics Data System (ADS)
Botashev, A. Yu; Bisilov, N. U.; Malsugenov, R. S.
2018-03-01
New methods of sheet stamping were developed: the gas forming with double-sided heating of a blank part and the gas molding with backpressure. In case of the first method the blank part is heated to the set temperature by means of a double-sided impact of combustion products of gas mixtures, after which, under the influence of gas pressure a stamping process is performed. In case of gas molding with backpressure, the blank part is heated to the set temperature by one-sided impact of the combustion products, while backpressure is created on the opposite side of the blank part by compressed air. In both methods the deformation takes place in the temperature range of warm or hot treatment due to the heating of a blank part. This allows one to form parts of complicated shape within one technological operation, which significantly reduces the cost of production. To implement these methods, original devices were designed and produced, which are new types of forging and stamping equipment. Using these devices, an experimental research on the stamping process was carried out and high-quality parts were obtained, which makes it possible to recommend the developed methods of stamping in the industrial production. Their application in small-scale production will allow one to reduce the cost price of stamped parts 2 or 3 times.
ERIC Educational Resources Information Center
Paulins, Paulis; Krauze, Armands; Ozolinsh, Maris; Muiznieks, Andris
2016-01-01
The article focuses on the process of water warming from 0 °C in a glass. An experiment is performed that analyzes the temperature in the top and bottom layers of water during warming. The experimental equipment is very simple and can be easily set up using devices available in schools. The temperature curves obtained from the experiment help us…
Grenier, Etienne; Gehin, Claudine; Lun, Bertrand; McAdams, Eric
2013-01-01
This paper presents a preliminary study to demonstrate the instantaneous local effect of compression stocking (Class 2) on skin microcirculatory activity. The measurement needs to be carefully performed as the sensor is placed under the garment. To assess the local effect of compression stockings, we use the ambulatory device Hematron located on the calf under the garment. Skin microcirculatory activity is assessed through the skin's effective thermal conductivity measurement. A specific housing for the sensor has been designed to avoid excessive pressure induced by the sensor when squeezed by stockings. The experiment, conducted on ten healthy subjects, comprised two stages: without and with compression stockings. Skin effective thermal conductivity was recorded at three successive positions (supine, sitting and standing). Significant improvement in skin microcirculatory activity was recorded by the Hematron device for the three positions. We have also demonstrated that Hematron sensor can be used under compression stockings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, T; Kang, S; Kim, D
Purpose: The aim of this study is to develop the abdominal compression device which could control pressure level according to the abdominal respiratory motion and evaluate its feasibility. Methods: In this study, we focused on developing the abdominal compression device which could control pressure level at any point of time so the developed device is possible to use a variety of purpose (gating technique or respiratory training system) while maintaining the merit of the existing commercial device. The compression device (air pad form) was designed to be able to compress the front and side of abdomen and the pressure levelmore » of the abdomen is controlled by air flow. Pressure level of abdomen (air flow) was determined using correlation data between external abdominal motion and respiratory volume signal measured by spirometer. In order to verify the feasibility of the device, it was necessary to confirm the correlation between the abdominal respiratory motion and respiratory volume signal and cooperation with respiratory training system also checked. Results: In the previous study, we could find that the correlation coefficient ratio between diaphragm and respiratory volume signal measured by spirometer was 0.95. In this study, we confirmed the correlation between the respiratory volume signal and the external abdominal motion measured by belt-transducer (correlation coefficient ratio was 0.92) and used the correlated respiratory volume data as an abdominal pressure level. It was possible to control the pressure level with negligible time delay and respiratory volume data based guiding waveforms could be properly inserted into the respiratory training system. Conclusion: Through this feasibility study, we confirmed the correlation between the respiratory volume signal and the external abdominal motion. Also initial assessment of the device and its compatibility with the respiratory training system were verified. Further study on application in respiratory gated therapy and respiratory training system will be investigated. This work was supported by Radiation Technology R and D program (No. 2013M2A2A7043498)and Basic Atomic Energy Research Institute (BAERI)(No. NRF-2009-0078390) through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning.« less
Evaluation of advanced cooling therapy's esophageal cooling device for core temperature control.
Naiman, Melissa; Shanley, Patrick; Garrett, Frank; Kulstad, Erik
2016-05-01
Managing core temperature is critical to patient outcomes in a wide range of clinical scenarios. Previous devices designed to perform temperature management required a trade-off between invasiveness and temperature modulation efficiency. The Esophageal Cooling Device, made by Advanced Cooling Therapy (Chicago, IL), was developed to optimize warming and cooling efficiency through an easy and low risk procedure that leverages heat transfer through convection and conduction. Clinical data from cardiac arrest, fever, and critical burn patients indicate that the Esophageal Cooling Device performs very well both in terms of temperature modulation (cooling rates of approximately 1.3°C/hour, warming of up to 0.5°C/hour) and maintaining temperature stability (variation around goal temperature ± 0.3°C). Physicians have reported that device performance is comparable to the performance of intravascular temperature management techniques and superior to the performance of surface devices, while avoiding the downsides associated with both.
NASA Technical Reports Server (NTRS)
Wesselski, Clarence J. (Inventor); Nagy, Kornel (Inventor)
1992-01-01
A latching device is disclosed which is lever operated sequentially to actuate a set of collet fingers to provide a radial expansion and to actuate a force mechanism to provide a compressive gripping force for attaching first and second devices to one another. The latching device includes a body member having elongated collet fingers which, in a deactuated condition, is insertable through bores on the first and second devices so that gripping terminal portions on the collet fingers are proximate to the end of the bore of the first device while a spring assembly on the body member is located proximate to the outer surface of a second device. A lever is rotatable through 90 deg to move a latching rod to sequentially actuate and expand collet fingers and to actuate the spring assembly by compressing it. During the first 30 deg of movement of the lever, the collet fingers are actuated by the latching rod to provide a radial expansion and during the last 60 deg of movement of the lever, the spring assembly acts as a force mechanism and is actuated to develop a compressive latching force on the devices. The latching rod and lever are connected by a camming mechanism. The amount of spring force in the spring assembly can be adjusted; the body member can be permanently attached by a telescoping assembly to one of the devices; and the structure can be used as a pulling device for removing annular bearings or the like from blind bores.
A Comparative Study of Compression Video Technology.
ERIC Educational Resources Information Center
Keller, Chris A.; And Others
The purpose of this study was to provide an overview of compression devices used to increase the cost effectiveness of teleconferences by reducing satellite bandwidth requirements for the transmission of television pictures and accompanying audio signals. The main body of the report describes the comparison study of compression rates and their…
Multiple Compressions in the Middle Energy Plasma Focus Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yousefi, H. R.; Ejiri, Y.; Ito, H.
This paper reports some of the results that are aimed to investigate the neutron emission from the middle energy Mather-type plasma focus. These results indicated that with increase the pressure, compression time is increase but there is not any direct relation between the compression time and neutron yield. Also it seems that multiple compression regimes is occurred in low pressure and single compression is appeared at higher pressure where is the favorable to neutron production.
Cao, Xin; He, Jin; Li, Huan; Kang, Liping; He, Xuexia; Sun, Jie; Jiang, Ruibing; Xu, Hua; Lei, Zhibin; Liu, Zong-Huai
2018-05-30
Compared with other flexible energy-storage devices, the design and construction of the compressible energy-storage devices face more difficulty because they must accommodate large strain and shape deformations. In the present work, CoNi 2 S 4 nanoparticles/3D porous carbon nanotube (CNT) sponge cathode with highly compressible property and excellent capacitance is prepared by electrodepositing CoNi 2 S 4 on CNT sponge, in which CoNi 2 S 4 nanoparticles with size among 10-15 nm are uniformly anchored on CNT, causing the cathode to show a high compression property and gives high specific capacitance of 1530 F g -1 . Meanwhile, Fe 2 O 3 /CNT sponge anode with specific capacitance of 460 F g -1 in a prolonged voltage window is also prepared by electrodepositing Fe 2 O 3 nanosheets on CNT sponge. An asymmetric supercapacitor (CoNi 2 S 4 /CNT//Fe 2 O 3 /CNT) is assembled by using CoNi 2 S 4 /CNT sponge as positive electrode and Fe 2 O 3 /CNT sponge as negative electrode in 2 m KOH solution. It exhibits excellent energy density of up to 50 Wh kg -1 at a power density of 847 W kg -1 and excellent cycling stability at high compression. Even at a strain of 85%, about 75% of the initial capacitance is retained after 10 000 consecutive cycles. The CoNi 2 S 4 /CNT//Fe 2 O 3 /CNT device is a promising candidate for flexible energy devices due to its excellent compressibility and high energy density. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Howard, W. H.; Young, D. R.
1972-01-01
Device applies compressive force to bone to minimize loss of bone calcium during weightlessness or bedrest. Force is applied through weights, or hydraulic, pneumatic or electrically actuated devices. Device is lightweight and easy to maintain and operate.
Desai, Sanjay; Mitra, Amit; Arkans, Ed; Singh, Tej M
2018-05-01
Delays in arteriovenous fistula maturation can cause care delays and increased costs. Increased distention pressure and intermittent wall shear stress may dilate veins based on prior research. Early use of non-invasive devices may help assist clinical arteriovenous fistula dilation. This was an Institutional Review Board approved study. After arteriovenous fistula creation, a novel, intermittent pneumatic compression device (Fist Assist ® ) was applied 15 cm proximal to arteriovenous fistula enabling 60 mmHg of cyclic compression for 6 h daily for 30 days. Among the patients who completed 1 month follow-up, 30 (n = 30) arteriovenous fistula patients were in the study arm to test vein dilation with Fist Assist. Controls (n = 16) used a sham device. Vein size was measured and recorded at baseline and after 30 days by duplex measurement. Clinical results (percentage increase) were recorded and tested for significance. No patients experienced thrombosis or adverse effects. Patient compliance and satisfaction was high. After 1 month, the mean percentage increase in vein diameter in the Fist Assist treatment group was significantly larger (p = 0.026) than controls in the first 5 mm segment of the fistula after the anastomosis. All fistulas treated with Fist Assist are still functional with no reported thrombosis or extravasations. Early application of an intermittent pneumatic compression device may assist in arteriovenous fistula dilation and are safe. Non-invasive devices like Fist Assist may have clinical utility to help fistulae development and decrease costs as they may eventually assist maturation.
Berliner, Jonathan L; Ortiz, Philippe A; Lee, Yuo-Yu; Miller, Theodore T; Westrich, Geoffrey H
2018-01-01
Improvements in device design have allowed for portable pneumatic compression devices (PPCDs). However, portability results in smaller pumps that move less blood. Additionally, although patients often stand when wearing PPCDs, few studies have evaluated the hemodynamic effects of PCDs while standing. A crossover study was performed to compare a PPCD (ActiveCare+S.F.T.; Medical Compression Systems, Or Akiva, Israel) to a stationary pneumatic compression device (SPCD) (VenaFlow; DJO Global, Carlsbad, CA) on hemodynamics in supine and standing positions among 2 cohorts composed of 10 controls and 10 total hip arthroplasty patients. Differences in baseline peak venous velocity (PVV), PVV with each PCD, and delta PVV with each PCD were assessed. A multivariate analysis was performed to examine differences between cohorts, devices, and position. In both positions, the SPCD demonstrated a larger change in PVV when compared to the PPCD (P < .001). The total hip arthroplasty group had a greater delta PVV while standing when considering both PCDs together (P < .001). When considering both cohorts, delta PVV was greater while standing, only when the SPCD was used (P < .001). There was no difference between standing and supine positions when the PPCD was used. The SPCD demonstrated a greater capacity to increase PPV in the supine and standing positions. The SPCD generated greater values of PVV and delta PVV in the standing position. Although these results demonstrate a difference between devices, it is important to establish the PVV necessary to prevent VTE before one is considered more effective. Copyright © 2017 Elsevier Inc. All rights reserved.
Dynamic Range Enhancement of High-Speed Electrical Signal Data via Non-Linear Compression
NASA Technical Reports Server (NTRS)
Laun, Matthew C. (Inventor)
2016-01-01
Systems and methods for high-speed compression of dynamic electrical signal waveforms to extend the measuring capabilities of conventional measuring devices such as oscilloscopes and high-speed data acquisition systems are discussed. Transfer function components and algorithmic transfer functions can be used to accurately measure signals that are within the frequency bandwidth but beyond the voltage range and voltage resolution capabilities of the measuring device.
Chen, Lei; Chen, Xiuling; Liu, Fayong; Chen, Haohong; Wang, Hui; Zhao, Erlong; Jiang, Yang; Chan, Ting-Shan; Wang, Chia-Hsin; Zhang, Wenhua; Wang, Yu; Chen, Shifu
2015-01-01
The deficiency of Y3Al5O12:Ce (YAG:Ce) luminescence in red component can be compensated by doping Gd3+, thus lead to it being widely used for packaging warm white light-emitting diode devices. This article presents a systematic study on the photoluminescence properties, crystal structures and electronic band structures of (Y1−xGdx)3Al5O12: Ce3+ using powerful experimental techniques of thermally stimulated luminescence, X-ray diffraction, X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS) and ultraviolet photoelectron spectra (UPS) of the valence band, assisted with theoretical calculations on the band structure, density of states (DOS), and charge deformation density (CDD). A new interpretation from the viewpoint of compression deformation of electron cloud in a rigid structure by combining orbital hybridization with solid-state energy band theory together is put forward to illustrate the intrinsic mechanisms that cause the emission spectral shift, thermal quenching, and luminescence intensity decrease of YAG: Ce upon substitution of Y3+ by Gd3+, which are out of the explanation of the classic configuration coordinate model. The results indicate that in a rigid structure, the charge deformation provides an efficient way to tune chromaticity, but the band gaps and crystal defects must be controlled by comprehensively accounting for luminescence thermal stability and efficiency. PMID:26175141
Zhu, Xue-liang; Tan, Zhan-na; Li, Bo-ying; Wang, Jian-ling; Shi, Jing; Sun, Yan-hui; Li, Xiao- feng; Xu, Jing; Zhang, Xuan-ping; Zhang, Xin; Du, Yu-zhu; Jia, Chun-shieng
2014-09-01
To explore the specific efficacy of different moxibustion techniques in treatment of common diseases and clinical indications, and compare the specificity in clinical indications and efficacy among different moxibustion techniques so as to guide clinical practice better. The modern computerization and data mining technology were adopted to set up moxibustion literature database. The relevant literature of moxibustion techniques in recent 60 years were collected, screened, examined, extracted and analyzed statistically so as to explore the advantages of different moxibustion techniques in clinical treatment. (1) Of 2,516 literature, moxa stick, moxe cone and moxa device were used in the highest frequency in internal medicine department, for 730 times, 278 times and 102 times respectively. The warm needling technique was used in the highest frequency, for 70 times in the surgical department. (2) In the dermatology department, the curative rate with moxa cone was the highest, 75%. In the ear-nose-throat department, the warm needing technique and moxa device achieved the highest curative rate, 49% for both of them. In the internal medicine department and surgical department, the curative rate of warm needling technique was 53% and 58% respectively. In the gynecology department, the curative rate of moxa device was the highest, 59%. In the pediatrics department, the curative rate of moxa cone was the highest, 80%. (3) The numbers of priority disorders, frequency ≥20 times: 24 kinds of disease for moxa stick, five kinds of disease for moxa cone, 2 kinds of disease for warm needling technqiue and one disorder for moxa device. Facial paralysis, diarrhea, lumbar and leg pain and elbow and knee swelling pain were of the highest priority, treated with these 4 moxibustion techniques, with a certain of literature research values. (4) The warm needling technique achieved the better efficacy on elbow and knee swelling pain, lumbar and leg pain and diarrhea compared with the other three techniques and the curative rate was higher. The moxa device tecnique achieved the higher curative rate for facial paralysis compared with the other three techniques. Through the comparison of application frequency, curative rate, clinical application frequency in disorders and the efficacy of priority disorders in the treatment with different moxibustion techniques, it is found that moxa stick, moxa cone and moxa device are simple in manipulation, safe and effective. Hence, they can be extensively used in the treatment of common disorders in every department in clinic. The warm needling technique acts on the body by the co-work of needling and warming stimulation of mugwort. It achieves the particular effect on the disorders with complicated etiologies compared with the other three techniques. It can be chosen in priority for the disorders caused by blockage in meridian and collateral and stagnation of qi and blood.
NASA Astrophysics Data System (ADS)
Lv, Peng; Tang, Xun; Yuan, Jiajiao; Ji, Chenglong
2017-11-01
Highly compressible electrodes are in high demand in volume-restricted energy storage devices. Superelastic reduced graphene oxide (rGO) aerogel with attractive characteristics are proposed as the promising skeleton for compressible electrodes. Herein, a ternary aerogel was prepared by successively electrodepositing polypyrrole (PPy) and MnO2 into the superelastic rGO aerogel. In the rGO/PPy/MnO2 aerogel, rGO aerogel provides the continuously conductive network; MnO2 is mainly responsible for pseudo reactions; the middle PPy layer not only reduces the interface resistance between rGO and MnO2, but also further enhanced the mechanical strength of rGO backbone. The synergistic effect of the three components leads to excellent performances including high specific capacitance, reversible compressibility, and extreme durability. The gravimetric capacitance of the compressible rGO/PPy/MnO2 aerogel electrodes reaches 366 F g-1 and can retain 95.3% even under 95% compressive strain. And a volumetric capacitance of 138 F cm-3 is achieved, which is much higher than that of other rGO-based compressible electrodes. This volumetric capacitance value can be preserved by 85% after 3500 charge/discharge cycles with various compression conditions. This work will pave the way for advanced applications in the area of compressible energy-storage devices meeting the requirement of limiting space.
Economic analysis of using above ground gas storage devices for compressed air energy storage system
NASA Astrophysics Data System (ADS)
Liu, Jinchao; Zhang, Xinjing; Xu, Yujie; Chen, Zongyan; Chen, Haisheng; Tan, Chunqing
2014-12-01
Above ground gas storage devices for compressed air energy storage (CAES) have three types: air storage tanks, gas cylinders, and gas storage pipelines. A cost model of these gas storage devices is established on the basis of whole life cycle cost (LCC) analysis. The optimum parameters of the three types are determined by calculating the theoretical metallic raw material consumption of these three devices and considering the difficulties in manufacture and the influence of gas storage device number. The LCCs of the three types are comprehensively analyzed and compared. The result reveal that the cost of the gas storage pipeline type is lower than that of the other two types. This study may serve as a reference for designing large-scale CAES systems.
Mechanical versus manual chest compressions for cardiac arrest.
Brooks, Steven C; Hassan, Nizar; Bigham, Blair L; Morrison, Laurie J
2014-02-27
This is the first update of the Cochrane review on mechanical chest compression devices published in 2011 (Brooks 2011). Mechanical chest compression devices have been proposed to improve the effectiveness of cardiopulmonary resuscitation (CPR). To assess the effectiveness of mechanical chest compressions versus standard manual chest compressions with respect to neurologically intact survival in patients who suffer cardiac arrest. We searched the Cochrane Central Register of Controlled Studies (CENTRAL; 2013, Issue 12), MEDLINE Ovid (1946 to 2013 January Week 1), EMBASE (1980 to 2013 January Week 2), Science Citation abstracts (1960 to 18 November 2009), Science Citation Index-Expanded (SCI-EXPANDED) (1970 to 11 January 2013) on Thomson Reuters Web of Science, biotechnology and bioengineering abstracts (1982 to 18 November 2009), conference proceedings Citation Index-Science (CPCI-S) (1990 to 11 January 2013) and clinicaltrials.gov (2 August 2013). We applied no language restrictions. Experts in the field of mechanical chest compression devices and manufacturers were contacted. We included randomised controlled trials (RCTs), cluster RCTs and quasi-randomised studies comparing mechanical chest compressions versus manual chest compressions during CPR for patients with atraumatic cardiac arrest. Two review authors abstracted data independently; disagreement between review authors was resolved by consensus and by a third review author if consensus could not be reached. The methodologies of selected studies were evaluated by a single author for risk of bias. The primary outcome was survival to hospital discharge with good neurological outcome. We planned to use RevMan 5 (Version 5.2. The Nordic Cochrane Centre) and the DerSimonian & Laird method (random-effects model) to provide a pooled estimate for risk ratio (RR) with 95% confidence intervals (95% CIs), if data allowed. Two new studies were included in this update. Six trials in total, including data from 1166 participants, were included in the review. The overall quality of included studies was poor, and significant clinical heterogeneity was observed. Only one study (N = 767) reported survival to hospital discharge with good neurological function (defined as a Cerebral Performance Category score of one or two), demonstrating reduced survival with mechanical chest compressions when compared with manual chest compressions (RR 0.41, 95% CI 0.21 to 0.79). Data from four studies demonstrated increased return of spontaneous circulation, and data from two studies demonstrated increased survival to hospital admission with mechanical chest compressions as compared with manual chest compressions, but none of the individual estimates reached statistical significance. Marked clinical heterogeneity between studies precluded any pooled estimates of effect. Evidence from RCTs in humans is insufficient to conclude that mechanical chest compressions during cardiopulmonary resuscitation for cardiac arrest are associated with benefit or harm. Widespread use of mechanical devices for chest compressions during cardiac events is not supported by this review. More RCTs that measure and account for the CPR process in both arms are needed to clarify the potential benefit to be derived from this intervention.
The Efficacy of LUCAS in Prehospital Cardiac Arrest Scenarios: A Crossover Mannequin Study.
Gyory, Robert A; Buchle, Scott E; Rodgers, David; Lubin, Jeffrey S
2017-04-01
High-quality cardiopulmonary resuscitation (CPR) is critical for successful cardiac arrest outcomes. Mechanical devices may improve CPR quality. We simulated a prehospital cardiac arrest, including patient transport, and compared the performance of the LUCAS™ device, a mechanical chest compression-decompression system, to manual CPR. We hypothesized that because of the movement involved in transporting the patient, LUCAS would provide chest compressions more consistent with high-quality CPR guidelines. We performed a crossover-controlled study in which a recording mannequin was placed on the second floor of a building. An emergency medical services (EMS) crew responded, defibrillated, and provided either manual or LUCAS CPR. The team transported the mannequin through hallways and down stairs to an ambulance and drove to the hospital with CPR in progress. Critical events were manually timed while the mannequin recorded data on compressions. Twenty-three EMS providers participated. Median time to defibrillation was not different for LUCAS compared to manual CPR (p=0.97). LUCAS had a lower median number of compressions per minute (112/min vs. 125/min; IQR = 102-128 and 102-126 respectively; p<0.002), which was more consistent with current American Heart Association CPR guidelines, and percent adequate compression rate (71% vs. 40%; IQR = 21-93 and 12-88 respectively; p<0.002). In addition, LUCAS had a higher percent adequate depth (52% vs. 36%; IQR = 25-64 and 29-39 respectively; p<0.007) and lower percent total hands-off time (15% vs. 20%; IQR = 10-22 and 15-27 respectively; p<0.005). LUCAS performed no differently than manual CPR in median compression release depth, percent fully released compressions, median time hands off, or percent correct hand position. In our simulation, LUCAS had a higher rate of adequate compressions and decreased total hands-off time as compared to manual CPR. Chest compression quality may be better when using a mechanical device during patient movement in prehospital cardiac arrest patient.
Technology study of quantum remote sensing imaging
NASA Astrophysics Data System (ADS)
Bi, Siwen; Lin, Xuling; Yang, Song; Wu, Zhiqiang
2016-02-01
According to remote sensing science and technology development and application requirements, quantum remote sensing is proposed. First on the background of quantum remote sensing, quantum remote sensing theory, information mechanism, imaging experiments and prototype principle prototype research situation, related research at home and abroad are briefly introduced. Then we expounds compress operator of the quantum remote sensing radiation field and the basic principles of single-mode compression operator, quantum quantum light field of remote sensing image compression experiment preparation and optical imaging, the quantum remote sensing imaging principle prototype, Quantum remote sensing spaceborne active imaging technology is brought forward, mainly including quantum remote sensing spaceborne active imaging system composition and working principle, preparation and injection compression light active imaging device and quantum noise amplification device. Finally, the summary of quantum remote sensing research in the past 15 years work and future development are introduced.
Debaty, Guillaume; Metzger, Anja; Rees, Jennifer; McKnite, Scott; Puertas, Laura; Yannopoulos, Demetris; Lurie, Keith
2016-01-01
Objective To improve the likelihood for survival with favorable neurologic function after cardiac arrest, we assessed a new advanced life support approach using active compression-decompression cardiopulmonary resuscitation plus an intrathoracic pressure regulator. Design Prospective animal investigation. Setting Animal laboratory. Subjects Female farm pigs (n = 25) (39 ± 3 kg). Interventions Protocol A: After 12 minutes of untreated ventricular fibrillation, 18 pigs were randomized to group A—3 minutes of basic life support with standard cardiopulmonary resuscitation, defibrillation, and if needed 2 minutes of advanced life support with standard cardiopulmonary resuscitation; group B—3 minutes of basic life support with standard cardiopulmonary resuscitation, defibrillation, and if needed 2 minutes of advanced life support with active compression-decompression plus intrathoracic pressure regulator; and group C—3 minutes of basic life support with active compression-decompression cardiopulmonary resuscitation plus an impedance threshold device, defibrillation, and if needed 2 minutes of advanced life support with active compression-decompression plus intrathoracic pressure regulator. Advanced life support always included IV epinephrine (0.05 μg/kg). The primary endpoint was the 24-hour Cerebral Performance Category score. Protocol B: Myocardial and cerebral blood flow were measured in seven pigs before ventricular fibrillation and then following 6 minutes of untreated ventricular fibrillation during sequential 5 minutes treatments with active compression-decompression plus impedance threshold device, active compression-decompression plus intrathoracic pressure regulator, and active compression-decompression plus intrathoracic pressure regulator plus epinephrine. Measurements and Main Results Protocol A: One of six pigs survived for 24 hours in group A versus six of six in groups B and C (p = 0.002) and Cerebral Performance Category scores were 4.7 ± 0.8, 1.7 ± 0.8, and 1.0 ± 0, respectively (p = 0.001). Protocol B: Brain blood flow was significantly higher with active compression-decompression plus intrathoracic pressure regulator compared with active compression-decompression plus impedance threshold device (0.39 ± 0.23 vs 0.27 ± 0.14 mL/min/g; p = 0.03), whereas differences in myocardial perfusion were not statistically significant (0.65 ± 0.81 vs 0.42 ± 0.36 mL/min/g; p = 0.23). Brain and myocardial blood flow with active compression-decompression plus intrathoracic pressure regulator plus epinephrine were significantly increased versus active compression-decompression plus impedance threshold device (0.40 ± 0.22 and 0.84 ± 0.60 mL/min/g; p = 0.02 for both). Conclusion Advanced life support with active compression-decompression plus intrathoracic pressure regulator significantly improved cerebral perfusion and 24-hour survival with favorable neurologic function. These findings support further evaluation of this new advanced life support methodology in humans. PMID:25756411
Watson, B.L.; Aeby, I.
1980-08-26
An adaptive data compression device for compressing data is described. The device has a frequency content, including a plurality of digital filters for analyzing the content of the data over a plurality of frequency regions, a memory, and a control logic circuit for generating a variable rate memory clock corresponding to the analyzed frequency content of the data in the frequency region and for clocking the data into the memory in response to the variable rate memory clock.
Release Resistant Electrical Interconnections For Mems Devices
Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.
2005-02-22
A release resistant electrical interconnection comprising a gold-based electrical conductor compression bonded directly to a highly-doped polysilicon bonding pad in a MEMS, IMEMS, or MOEMS device, without using any intermediate layers of aluminum, titanium, solder, or conductive adhesive disposed in-between the conductor and polysilicon pad. After the initial compression bond has been formed, subsequent heat treatment of the joint above 363 C creates a liquid eutectic phase at the bondline comprising gold plus approximately 3 wt % silicon, which, upon re-solidification, significantly improves the bond strength by reforming and enhancing the initial bond. This type of electrical interconnection is resistant to chemical attack from acids used for releasing MEMS elements (HF, HCL), thereby enabling the use of a "package-first, release-second" sequence for fabricating MEMS devices. Likewise, the bond strength of an Au--Ge compression bond may be increased by forming a transient liquid eutectic phase comprising Au-12 wt % Ge.
Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics
NASA Astrophysics Data System (ADS)
Hansen, Stephanie
2017-10-01
The burning core of an inertial confinement fusion (ICF) plasma at stagnation is surrounded by a shell of warm, dense matter whose properties are difficult both to model (due to a complex interplay of thermal, degeneracy, and strong coupling effects) and to diagnose (due to low emissivity and high opacity). We demonstrate a promising technique to study the warm dense shells of ICF plasmas based on the fluorescence emission of dopants or impurities in the shell material. This emission, which is driven by x-rays produced in the hot core, exhibits signature changes in response to compression and heating. High-resolution measurements of absorption and fluorescence features can refine our understanding of the electronic structure of material under high compression, improve our models of density-driven phenomena such as ionization potential depression and plasma polarization shifts, and help diagnose shell density, temperature, mass distribution, and residual motion in ICF plasmas at stagnation. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. This work was supported by the U.S. Department of Energy, Office of Science Early Career Research Program, Office of Fusion Energy Sciences under FWP-14-017426.
Parallel design patterns for a low-power, software-defined compressed video encoder
NASA Astrophysics Data System (ADS)
Bruns, Michael W.; Hunt, Martin A.; Prasad, Durga; Gunupudi, Nageswara R.; Sonachalam, Sekar
2011-06-01
Video compression algorithms such as H.264 offer much potential for parallel processing that is not always exploited by the technology of a particular implementation. Consumer mobile encoding devices often achieve real-time performance and low power consumption through parallel processing in Application Specific Integrated Circuit (ASIC) technology, but many other applications require a software-defined encoder. High quality compression features needed for some applications such as 10-bit sample depth or 4:2:2 chroma format often go beyond the capability of a typical consumer electronics device. An application may also need to efficiently combine compression with other functions such as noise reduction, image stabilization, real time clocks, GPS data, mission/ESD/user data or software-defined radio in a low power, field upgradable implementation. Low power, software-defined encoders may be implemented using a massively parallel memory-network processor array with 100 or more cores and distributed memory. The large number of processor elements allow the silicon device to operate more efficiently than conventional DSP or CPU technology. A dataflow programming methodology may be used to express all of the encoding processes including motion compensation, transform and quantization, and entropy coding. This is a declarative programming model in which the parallelism of the compression algorithm is expressed as a hierarchical graph of tasks with message communication. Data parallel and task parallel design patterns are supported without the need for explicit global synchronization control. An example is described of an H.264 encoder developed for a commercially available, massively parallel memorynetwork processor device.
Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.
1986-01-01
The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.
Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine
NASA Astrophysics Data System (ADS)
Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.
1986-06-01
The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.
NASA Technical Reports Server (NTRS)
Gleich, D.
1972-01-01
The fabrication of helicopter rotary wings from composite materials is discussed. Two composite spar specimens consisting of compressively prestressed stainless steel liner over-wrapped with pretensioned fiberglass were constructed. High liner strength and toughness together with the prescribed prestresses and final sizing of the part are achieved by means of cryogenic stretch forming of the fiber wrapped composite spar at minus 320 F, followed by release of the forming pressure and warm up to room temperature. The prestresses are chosen to provide residual compression in the metal liner under operating loads.
Vortex motion in axisymmetric piston-cylinder configurations
NASA Technical Reports Server (NTRS)
Shih, T. I. P.; Smith, G. E.; Springer, G. S.
1982-01-01
By using the Beam and Warming implicit-factored method of solution of the Navier-Stokes equations, velocities were calculated inside axisymmetric piston cylinder configurations during the intake and compression strokes. Results are presented in graphical form which show the formation, growth and breakup of those vortices which form during the intake stroke by the jet issuing from the valve. It is shown that at bore-to-stroke ratio of less than unity, the vortices may breakup during the intake stroke. It is also shown that vortices which do not breakup during the intake stroke coalesce during the compression stroke.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Hongying; Deng, Lingling; Chen, Shufen, E-mail: iamsfchen@njupt.edu.cn, E-mail: wei-huang@njupt.edu.cn
2014-04-15
Flexible warm-white top-emitting organic light-emitting devices (TEOLEDs) are fabricated onto PET substrates with a simple semi-transparent cathode Sm/Ag and two-color phosphors respectively doped into a single host material TCTA. By adjusting the relative position of the orange-red EML sandwiched between the blue emitting layers, the optimized device exhibits the highest power/current efficiency of 8.07 lm/W and near 13 cd/A, with a correlated color temperature (CCT) of 4105 K and a color rendering index (CRI) of 70. In addition, a moderate chromaticity variation of (-0.025, +0.008) around warm white illumination coordinates (0.45, 0.44) is obtained over a large luminance range ofmore » 1000 to 10000 cd/m{sup 2}. The emission mechanism is discussed via delta-doping method and single-carrier device, which is summarized that the carrier trapping, the exciton quenching, the mobility change and the recombination zone alteration are negative to color stability while the energy transfer process and the blue/red/blue sandwiched structure are contributed to the color stability in our flexible white TEOLEDs.« less
Getting through birth in one piece: protecting the perineum.
Hastings-Tolsma, Marie; Vincent, Deborah; Emeis, Cathy; Francisco, Teresa
2007-01-01
To identify factors related to perineal trauma in childbirth, replicating the work of . A retrospective descriptive analysis of pregnancy and birth data recorded into the Nurse Midwifery Clinical Data Set for women (N = 510) with a singleton pregnancy and largely uncomplicated prenatal course. Prenatal care occurred at four prenatal clinics with births at a tertiary care facility during 1996-1997, with care provided by nurse midwifery faculty. Multivariate statistics detailed clinical characteristics associated with perineal trauma. Episiotomy was related to parity, marital status, infant weight, fetal bradycardia, prolonged second stage labor, and lack of perineal care measures. Factors related to laceration were age, insurance status, and marital status. For all women, laceration was more likely when in lithotomy position for birth (p = .002) or when prolonged second stage labor occurred (p = .001). Factors that were protective against perineal trauma included massage, warm compress use, manual support, and birthing in the lateral position. found that ethnicity and education were related to episiotomy and that warm compresses were protective. In this study, use of oils/lubricants increased lacerations, as did lithotomy positioning. Laceration rates were similar in both studies. Episiotomy use was lower in this study. Side-lying position for birth and perineal support and compress use are important interventions for decreasing perineal trauma. Strategies to promote perineal integrity need to be implemented by nurses who provide prenatal education and care for the laboring woman.
Hardware compression using common portions of data
Chang, Jichuan; Viswanathan, Krishnamurthy
2015-03-24
Methods and devices are provided for data compression. Data compression can include receiving a plurality of data chunks, sampling at least some of the plurality of data chunks extracting a common portion from a number of the plurality of data chunks based on the sampling, and storing a remainder of the plurality of data chunks in memory.
21 CFR 868.5270 - Breathing system heater.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Identification. A breathing system heater is a device that is intended to warm breathing gases before they enter a patient's airway. The device may include a temperature controller. (b) Classification. Class II...
Review of vortex tube expansion in vapour compression refrigeration system
NASA Astrophysics Data System (ADS)
Liu, Yefeng; Yu, Jun
2018-05-01
A vortex tube expansion device replacing the throttle valve is proposed to improve the efficiency of vapour compression refrigeration cycle by reducing the loss of irreversibility in expansion process. The vortex tube is well-suited for these applications because it is simple, compact, light, quiet. Thus, this paper presents an overview of the thermodynamic analysis of vapour compression refrigeration cycle with vortex tube expansion device using different refrigerants. The paper also reviews the experiments and the calculations presented in previous studies on temperature separation in the vortex tube. The temperature separation mechanism and the flow-field inside the vortex tubes is explored by measuring the pressure, velocity, and temperature fields.
To what extent is water responsible for the maintenance of the life for warm-blooded organisms?
Fisenko, Anatoliy I; Malomuzh, Nikolay P
2009-05-22
In this work, attention is mainly focused on those properties of water which are essentially changed in the physiological temperature range of warm-blooded organisms. Studying in detail the half-width of the diffusion peak in the quasi-elastic incoherent neutron scattering, the behavior of the entropy and the kinematic shear viscosity, it is shown that the character of the translational and rotational thermal motions in water radically change near T(H) ~ 315 K, which can be interpreted as the temperature of the smeared dynamic phase transition. These results for bulk pure water are completed by the analysis of the isothermic compressibility and the NMR-spectra for water-glycerol solutions. It was noted that the non-monotone temperature dependence of the isothermic compressibility (beta(T)) takes also place for the water-glycerol solutions until the concentration of glycerol does not exceed 30 mol%. At that, the minimum of beta(T) shifts at left when the concentration increases. All these facts give us some reasons to assume that the properties of the intracellular and extracellular fluids are close to ones for pure water. Namely therefore, we suppose that the upper temperature limit for the life of warm-blooded organisms [T(D) = (315 +/- 3) K] is tightly connected with the temperature of the dynamic phase transition in water. This supposition is equivalent to the assertion that the denaturation of proteins at T > or = T(H) is mainly provoked by the rebuilding of the H-bond network in the intracellular and extracellular fluids, which takes place at T > or = T(H). A question why the heavy water cannot be a matrix for the intracellular and extracellular fluids is considered. The lower physiological pH limit for the life of warm-blooded organisms is discussed.
Hwang, In-Sul; Kwon, Dae-Jin; Im, Gi-Sun; Tashima, Kazuya; Hochi, Shinichi; Hwang, Seongsoo
2016-01-01
Vitrification with the Cryotop device is the most promising technique for oocyte cryopreservation, but the high post-warming morphological survival of bovine oocytes does not guarantee high developmental competence after in vitro fertilization (IVF). This study was designed to examine achievement of normal fertilization in bovine oocytes vitrified-warmed with the Cryotop device. Oocytes were matured in vitro and vitrified-warmed after complete removal of the cumulus layers. Distribution of cortical granules (CGs) was assessed by Lens culinaris agglutinin (LCA) lectin staining. Ten hours after IVF, presumptive zygotes were analyzed for pronuclear formation. Day-8 blastocysts were harvested and stained with Hoechst-33342 for total cell counting. Both yield and mean cell number of the blastocysts were impaired by Cryotop vitrification. Incidence of polyspermic fertilization was three-times higher in vitrified oocytes compared to fresh oocytes. No difference in CG distribution was found between vitrified and fresh oocytes. Polyspermic fertilization induced in vitrified-warmed bovine oocytes may be one of the possible causes responsible for their low developmental potential.
The efficacy of the new SCD response compression system in the prevention of venous stasis.
Kakkos, S K; Szendro, G; Griffin, M; Daskalopoulou, S S; Nicolaides, A N
2000-11-01
The current commercially available sequential intermittent pneumatic compression device used for the prevention of deep venous thrombosis has a constant cycle of 11 seconds' compression and 60 seconds' deflation. This deflation period ensures that the veins are filled before the subsequent cycle begins. It has been suggested that in some positions (eg, semirecumbent or sitting) and with different patients (eg, those with venous reflux), refilling of the veins may occur much earlier than 60 seconds, and thus a more frequent cycle may be more effective in expelling blood proximally. The aim of the study was to test the effectiveness of a new sequential compression system (the SCD Response Compression System), which has the ability to detect the change in the venous volume and to respond by initiating the subsequent cycle when the veins are substantially full. In an open controlled trial at an academic vascular laboratory, the SCD Response Compression System was tested against the existing SCD Sequel Compression System in 12 healthy volunteers who were in supine, semirecumbent, and sitting positions. The refilling time sensed by the device was compared with that determined from recordings of femoral vein flow velocity by the use of duplex ultrasound scan. The total volume of blood expelled per hour during compression was compared with that produced by the existing SCD system in the same volunteers and positions. The refilling time determined automatically by the SCD Response Compression System varied from 24 to 60 seconds in the subjects tested, demonstrating individual patient variation. The refilling time (mean +/- SD) in the sitting position was 40.6 +/- 10. 0 seconds, which was significantly longer (P <.001) than that measured in the supine and semirecumbent positions, 33.8 +/- 4.1 and 35.6 +/- 4.9 seconds, respectively. There was a linear relationship between the duplex scan-derived refill time (mean of 6 readings per leg) and the SCD Response device-derived refill time (r = 0.85, P <. 001). The total volume of blood (mean +/- SD) expelled per hour by the existing SCD Sequel device in the supine, semirecumbent, and sitting positions was 2.23 +/- 0.90 L/h, 2.47 +/- 0.86 L/h, and 3.28 +/- 1.24 L/h, respectively. The SCD Response device increased the volume expelled to 3.92 +/- 1.60 L/h or a 76% increase (P =.001) in the supine position, to 3.93 +/- 1.55 L/h or a 59% increase (P =. 001) in the semirecumbent position, and to 3.97 +/- 1.42 L/h or a 21% increase (P =.026) in the sitting position. By achieving more appropriately timed compression cycles over time, the new SCD Response System is effective in preventing venous stasis by means of a new method that improves on the clinically documented effectiveness of the existing SCD system. Further studies testing its potential for improved efficacy in preventing deep venous thrombosis are justified.
A device for characterising the mechanical properties of the plantar soft tissue of the foot.
Parker, D; Cooper, G; Pearson, S; Crofts, G; Howard, D; Busby, P; Nester, C
2015-11-01
The plantar soft tissue is a highly functional viscoelastic structure involved in transferring load to the human body during walking. A Soft Tissue Response Imaging Device was developed to apply a vertical compression to the plantar soft tissue whilst measuring the mechanical response via a combined load cell and ultrasound imaging arrangement. Accuracy of motion compared to input profiles; validation of the response measured for standard materials in compression; variability of force and displacement measures for consecutive compressive cycles; and implementation in vivo with five healthy participants. Static displacement displayed average error of 0.04 mm (range of 15 mm), and static load displayed average error of 0.15 N (range of 250 N). Validation tests showed acceptable agreement compared to a Houndsfield tensometer for both displacement (CMC > 0.99 RMSE > 0.18 mm) and load (CMC > 0.95 RMSE < 4.86 N). Device motion was highly repeatable for bench-top tests (ICC = 0.99) and participant trials (CMC = 1.00). Soft tissue response was found repeatable for intra (CMC > 0.98) and inter trials (CMC > 0.70). The device has been shown to be capable of implementing complex loading patterns similar to gait, and of capturing the compressive response of the plantar soft tissue for a range of loading conditions in vivo. Copyright © 2015. Published by Elsevier Ltd.
Comparison of three portable instruments to measure compression pressure.
Partsch, H; Mosti, G
2010-10-01
Measurement of interface pressure between the skin and a compression device has gained practical importance not only for characterizing the efficacy of different compression products in physiological and clinical studies but also for the training of medical staff. A newly developed portable pneumatic pressure transducer (Picopress®) was compared with two established systems (Kikuhime® and SIGaT tester®) measuring linearity, variability and accuracy on a cylindrical model using a stepwise inflated sphygmomanometer as the reference. In addition the variation coefficients were measured by applying the transducers repeatedly under a blood pressure cuff on the distal lower leg of a healthy human subject with stepwise inflation. In the pressure range between 10 and 80 mmHg all three devices showed a linear association compared with the sphygmomanometer values (Pearson r>0.99). The best reproducibility (variation coefficients between 1.05-7.4%) and the highest degree of accuracy demonstrated by Bland-Altman plots was achieved with the Picopress® transducer. Repeated measurements of pressure in a human leg revealed average variation coefficients for the three devices of 4.17% (Kikuhime®), 8.52% (SIGaT®) and 2.79% (Picopress®). The results suggest that the Picopress® transducer, which also allows dynamic pressure tracing in connection with a software program and which may be left under a bandage for several days, is a reliable instrument for measuring the pressure under a compression device.
NASA Technical Reports Server (NTRS)
Bailey, R. F.
1982-01-01
Glass film has low intrinsic compressive stress for isolating active layers of magnetic-bubble and other solid-state devices. Solid-state device structure incorporates low-stress glasses as barrier and spacer layers. Glass layers mechanically isolate substrate, conductor, and nickel/iron layers.
Methods, systems, and devices for deep desulfurization of fuel gases
Li, Liyu [Richland, WA; King, David L [Richland, WA; Liu, Jun [Richland, WA; Huo, Qisheng [Richland, WA
2012-04-17
A highly effective and regenerable method, system and device that enables the desulfurization of warm fuel gases by passing these warm gasses over metal-based sorbents arranged in a mesoporous substrate. This technology will protect Fischer-Tropsch synthesis catalysts and other sulfur sensitive catalysts, without drastic cooling of the fuel gases. This invention can be utilized in a process either alone or alongside other separation processes, and allows the total sulfur in such a gas to be reduced to less than 500 ppb and in some instances as low as 50 ppb.
Active bypass flow control for a seal in a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, Todd A.; Kimmel, Keith D.
An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wears.more » In at least one embodiment, the metering device may include a valve formed from one or more pins movable between open and closed positions in which the one pin at least partially bisects the bypass channel to regulate flow.« less
[Real-time feedback systems for improvement of resuscitation quality].
Lukas, R P; Van Aken, H; Engel, P; Bohn, A
2011-07-01
The quality of chest compression is a determinant of survival after cardiac arrest. Therefore, the European Resuscitation Council (ERC) 2010 guidelines on resuscitation strongly focus on compression quality. Despite its impact on survival, observational studies have shown that chest compression quality is not reached by professional rescue teams. Real-time feedback devices for resuscitation are able to measure chest compression during an ongoing resuscitation attempt through a sternal sensor equipped with a motion and pressure detection system. In addition to the electrocardiograph (ECG) ventilation can be detected by transthoracic impedance monitoring. In cases of quality deviation, such as shallow chest compression depth or hyperventilation, feedback systems produce visual or acoustic alarms. Rescuers can thereby be supported and guided to the requested quality in chest compression and ventilation. Feedback technology is currently available both as a so-called stand-alone device and as an integrated feature in a monitor/defibrillator unit. Multiple studies have demonstrated sustainable enhancement in the education of resuscitation due to the use of real-time feedback technology. There is evidence that real-time feedback for resuscitation combined with training and debriefing strategies can improve both resuscitation quality and patient survival. Chest compression quality is an independent predictor for survival in resuscitation and should therefore be measured and documented in further clinical multicenter trials.
VizieR Online Data Catalog: Effects of preionization in radiative shocks (Sutherland+, 2017)
NASA Astrophysics Data System (ADS)
Sutherland, R. S.; Dopita, M. A.
2017-06-01
In this paper we treat the preionization problem in shocks over the velocity range 10
NASA Astrophysics Data System (ADS)
Ji, Q.; Seidl, P. A.; Waldron, W. L.; Takakuwa, J. H.; Friedman, A.; Grote, D. P.; Persaud, A.; Barnard, J. J.; Schenkel, T.
2016-02-01
The neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of ˜1 eV using intense, short pulses (˜1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He+ ions leads to more uniform energy deposition of the target material than Li+ ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li+ ions from a hot plate type ion source. He+ beam pulses as high as 200 mA at the peak and 4 μs long were measured from a multi-aperture 7-cm-diameter emission area. Within ±5% variation, the uniform beam area is approximately 6 cm across. The accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies.
Ji, Q; Seidl, P A; Waldron, W L; Takakuwa, J H; Friedman, A; Grote, D P; Persaud, A; Barnard, J J; Schenkel, T
2016-02-01
The neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of ∼1 eV using intense, short pulses (∼1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He(+) ions leads to more uniform energy deposition of the target material than Li(+) ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li(+) ions from a hot plate type ion source. He(+) beam pulses as high as 200 mA at the peak and 4 μs long were measured from a multi-aperture 7-cm-diameter emission area. Within ±5% variation, the uniform beam area is approximately 6 cm across. The accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies.
Ji, Q.; Seidl, P. A.; Waldron, W. L.; ...
2015-11-12
In this paper, the neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of ~1 eV using intense, short pulses (~1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He + ions leads to more uniform energy deposition of the target material than Li + ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li + ions frommore » a hot plate type ion source. He + beam pulses as high as 200 mA at the peak and 4 μs long were measured from a multi-aperture 7-cm-diameter emission area. Within ±5% variation, the uniform beam area is approximately 6 cm across. Finally, the accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies.« less
Delos Reyes, Arthur P; Partsch, Hugo; Mosti, Giovanni; Obi, Andrea; Lurie, Fedor
2014-10-01
The International Compression Club, a collaboration of medical experts and industry representatives, was founded in 2005 to develop consensus reports and recommendations regarding the use of compression therapy in the treatment of acute and chronic vascular disease. During the recent meeting of the International Compression Club, member presentations were focused on the clinical application of intermittent pneumatic compression in different disease scenarios as well as on the use of inelastic and short stretch compression therapy. In addition, several new compression devices and systems were introduced by industry representatives. This article summarizes the presentations and subsequent discussions and provides a description of the new compression therapies presented. Copyright © 2014 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Control of unsteady separated flow associated with the dynamic stall of airfoils
NASA Technical Reports Server (NTRS)
Wilder, Michael C.
1992-01-01
The two principal objectives of this research were to achieve an improved understanding of the mechanisms involved in the onset and development of dynamic stall under compressible flow conditions, and to investigate the feasibility of employing adaptive airfoil geometry as an active flow control device in the dynamic stall engine. Presented here are the results of a quantitative (PDI) study of the compressibility effects on dynamic stall over the transiently pitching airfoil, as well as a discussion of a preliminary technique developed to measure the deformation produced by the adaptive geometry control device, and bench test results obtained using an airfoil equipped with the device.
PACE: Power-Aware Computing Engines
2005-02-01
more costly than compu- tation on our test platform, and it is memory access that dominates most lossless data compression algorithms . In fact, even...Performance and implementation concerns A compression algorithm may be implemented with many different, yet reasonable, data structures (including...Related work This section discusses data compression for low- bandwidth devices and optimizing algorithms for low energy. Though much work has gone
Murakami, Maki; McDill, Tandace L; Cindrick-Pounds, Lori; Loran, David B; Woodside, Kenneth J; Mileski, William J; Hunter, Glenn C; Killewich, Lois A
2003-11-01
Intermittent pneumatic compression (IPC) devices prevent lower-extremity deep venous thrombosis (LEDVT) when used properly, but compliance remains an issue. Devices are frequently discontinued when patients are out of bed, and they are rarely used in emergency departments. Trauma patients are at high risk for LEDVT; however, IPCs are underused in this population because of compliance limitations. The hypothesis of this study was that a new miniaturized, portable, battery-powered pneumatic compression device improves compliance in trauma patients over that provided by a standard device. This was a prospective trial in which trauma patients (mean age, 46 years; revised trauma score, 11.7) were randomized to DVT prophylaxis with a standard calf-length sequential IPC device (SCD group) or a miniaturized sequential device (continuous enhanced-circulation therapy [CECT] group). The CECT device can be battery-operated for up to 6 hours and worn during ambulation. Timers attached to the devices, which recorded the time each device was applied to the legs and functioning, were used to quantify compliance. For each subject in each location during hospitalization, compliance rates were determined by dividing the number of minutes the device was functioning by the total minutes in that location. Compliance rates for all subjects were averaged in each location: emergency department, operating room, intensive care unit, and nursing ward. Total compliance rate in the CECT group was significantly higher than in the SCD group (77.7% vs. 58.9%, P =.004). Compliance in the emergency department and nursing ward were also significantly greater with the CECT device (P =.002 and P =.008 respectively). Previous studies have demonstrated that reduced compliance with IPC devices results in a higher incidence of LEDVT. Given its ability to improve compliance, the CECT may provide superior DVT prevention compared with that provided by standard devices.
Peck, Jonathan H; Sing, David C; Nagaraja, Srinidhi; Peck, Deepa G; Lotz, Jeffrey C; Dmitriev, Anton E
2017-03-21
Cervical intervertebral body fusion devices (IBFDs) are utilized to provide stability while fusion occurs in patients with cervical pathology. For a manufacturer to market a new cervical IBFD in the United States, substantial equivalence to a cervical IBFD previously cleared by FDA must be established through the 510(k) regulatory pathway. Mechanical performance data are typically provided as part of the 510(k) process for IBFDs. We reviewed all Traditional 510(k) submissions for cervical IBFDs deemed substantially equivalent and cleared for marketing from 2007 through 2014. To reduce sources of variability in test methods and results, analysis was restricted to cervical IBFD designs without integrated fixation, coatings, or expandable features. Mechanical testing reports were analyzed and results were aggregated for seven commonly performed tests (static and dynamic axial compression, compression-shear, and torsion testing per ASTM F2077, and subsidence testing per ASTM F2267), and percentile distributions of performance measurements were calculated. Eighty-three (83) submissions met the criteria for inclusion in this analysis. The median device yield strength was 10,117N for static axial compression, 3680N for static compression-shear, and 8.6Nm for static torsion. Median runout load was 2600N for dynamic axial compression, 1400N for dynamic compression-shear, and ±1.5Nm for dynamic torsion. In subsidence testing, median block stiffness (Kp) was 424N/mm. The mechanical performance data presented here will aid in the development of future cervical IBFDs by providing a means for comparison for design verification purposes. Published by Elsevier Ltd.
Materials investigation of thermal triggers used in pressure relief devices on transit buses.
DOT National Transportation Integrated Search
2003-07-01
This investigation pertains to the composition and general condition of the thermally activated trigger mechanism of Pressure Relief Devices [PRD's], safety devices used on compressed natural gas cylinders commonly used to store fuel on transit buses...
Compression and neutron and ion beams emission mechanisms within a plasma focus device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yousefi, H. R.; Mohanty, S. R.; Nakada, Y.
This paper reports some results of investigations of the neutron emission from middle energy Mather-type plasma focus. Multiple compressions were observed, and it seems that multiple compression regimes can occur at low pressure, while single compression appeared at higher pressure, which is favorable for neutron production. The multiple compression mechanism can be attributed to the (m=0 type) instability. The m=0 type instability is a necessary condition for fusion activity and x-ray production, but is not sufficient by itself. Accompanying the multiple compressions, multiple deuteron and neutron pulses were detected, which implies that there are different kinds of acceleration mechanisms.
Mechanical CPR: Who? When? How?
Poole, Kurtis; Couper, Keith; Smyth, Michael A; Yeung, Joyce; Perkins, Gavin D
2018-05-29
In cardiac arrest, high quality cardiopulmonary resuscitation (CPR) is a key determinant of patient survival. However, delivery of effective chest compressions is often inconsistent, subject to fatigue and practically challenging.Mechanical CPR devices provide an automated way to deliver high-quality CPR. However, large randomised controlled trials of the routine use of mechanical devices in the out-of-hospital setting have found no evidence of improved patient outcome in patients treated with mechanical CPR, compared with manual CPR. The limited data on use during in-hospital cardiac arrest provides preliminary data supporting use of mechanical devices, but this needs to be robustly tested in randomised controlled trials.In situations where high-quality manual chest compressions cannot be safely delivered, the use of a mechanical device may be a reasonable clinical approach. Examples of such situations include ambulance transportation, primary percutaneous coronary intervention, as a bridge to extracorporeal CPR and to facilitate uncontrolled organ donation after circulatory death.The precise time point during a cardiac arrest at which to deploy a mechanical device is uncertain, particularly in patients presenting in a shockable rhythm. The deployment process requires interruptions in chest compression, which may be harmful if the pause is prolonged. It is recommended that use of mechanical devices should occur only in systems where quality assurance mechanisms are in place to monitor and manage pauses associated with deployment.In summary, mechanical CPR devices may provide a useful adjunct to standard treatment in specific situations, but current evidence does not support their routine use.
Perineal techniques during the second stage of labour for reducing perineal trauma.
Aasheim, Vigdis; Nilsen, Anne Britt Vika; Lukasse, Mirjam; Reinar, Liv Merete
2011-12-07
Most vaginal births are associated with some form of trauma to the genital tract. The morbidity associated with perineal trauma is significant, especially when it comes to third- and fourth-degree tears. Different perineal techniques and interventions are being used to prevent perineal trauma. These interventions include perineal massage, warm compresses and perineal management techniques. The objective of this review was to assess the effect of perineal techniques during the second stage of labour on the incidence of perineal trauma. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (20 May 2011), the Cochrane Central Register of ControlledTrials (The Cochrane Library 2011, Issue 2 of 4), MEDLINE (January 1966 to 20 May 2011) and CINAHL (January 1983 to 20 May 2011). Published and unpublished randomised and quasi-randomised controlled trials evaluating any described perineal techniques during the second stage. Three review authors independently assessed trails for inclusion, extracted data and evaluated methodological quality. Data were checked for accuracy. We included eight trials involving 11,651 randomised women. There was a significant effect of warm compresses on reduction of third- and fourth-degree tears (risk ratio (RR) 0.48, 95% confidence interval (CI) 0.28 to 0.84 (two studies, 1525 women)). There was also a significant effect towards favouring massage versus hands off to reduce third- and fourth-degree tears (RR 0.52, 95% CI 0.29 to 0.94 (two studies, 2147 women)). Hands off (or poised) versus hand on showed no effect on third- and fourth-degree tears, but we observed a significant effect of hands off on reduced rate of episiotomy (RR 0.69, 95% CI 0.50 to 0.96 (two studies, 6547 women)). The use of warm compresses on the perineum is associated with a decreased occurrence of perineal trauma. The procedure has shown to be acceptable to women and midwives. This procedure may therefore be offered to women.
Compression testing of flammable liquids
NASA Technical Reports Server (NTRS)
Briles, O. M.; Hollenbaugh, R. P.
1979-01-01
Small cylindrical test chamber determines catalytic effect of given container material on fuel that might contribute to accidental deflagration or detonation below expected temperature under adiabatic compression. Device is useful to producers and users of flammable liquids and to safety specialists.
Ion detection device and method with compressing ion-beam shutter
Sperline, Roger P [Tucson, AZ
2009-05-26
An ion detection device, method and computer readable medium storing instructions for applying voltages to shutter elements of the detection device to compress ions in a volume defined by the shutter elements and to output the compressed ions to a collector. The ion detection device has a chamber having an inlet and receives ions through the inlet, a shutter provided in the chamber opposite the inlet and configured to allow or prevent the ions to pass the shutter, the shutter having first and second shutter elements, a collector provided in the chamber opposite the shutter and configured to collect ions passed through the shutter, and a processing unit electrically connected to the first and second shutter elements. The processing unit applies, during a first predetermined time interval, a first voltage to the first shutter element and a second voltage to the second shutter element, the second voltage being lower than the first voltage such that ions from the inlet enter a volume defined by the first and second shutter elements, and during a second predetermined time interval, a third voltage to the first shutter element, higher than the first voltage, and a fourth voltage to the second shutter element, the third voltage being higher than the fourth voltage such that ions that entered the volume are compressed as the ions exit the volume and new ions coming from the inlet are prevented from entering the volume. The processing unit is electrically connected to the collector and configured to detect the compressed ions based at least on a current received from the collector and produced by the ions collected by the collector.
Self-charging metering and dispensing device for fluids
NASA Technical Reports Server (NTRS)
Hooper, S. L.; Setzer, D. (Inventor)
1984-01-01
A self-metering and dispensing device for fluids obtained from a pressurized fluid supply is discussed. Tubing and valving means permit the introduction of fluid into and discharge from a closed cylindrical reservoir. The reservoir contains a slideably disposed piston co-acting with a coil compression spring, with piston travel determining the amount of fluid in the reservoir. Once the determined amount of fluid is introduced into the reservoir, the fluid is discharged by the force of the coil compression spring acting upon the piston.
Elbuluk, Ameer M; Kim, Kelvin Y; Chen, Kevin K; Anoushiravani, Afshin A; Schwarzkopf, Ran; Iorio, Richard
2018-04-01
The objective of this study was to evaluate the efficacy of respiratory synchronized compression devices (RSCDs) versus nonsynchronized intermittent pneumatic compression devices (NSIPCDs) in preventing venous thromboembolism (VTE) after total joint arthroplasty. A systematic literature review was conducted. Data regarding surgical procedure, deep vein thrombosis, pulmonary embolism, mortality, and adverse events were abstracted. Compared with control groups, the risk ratio of deep vein thrombosis development was 0.51 with NSIPCDs and 0.47 with RSCDs. This review demonstrates that RSCDs may be marginally more effective at preventing VTE events than NSIPCDs. Furthermore, the addition of mechanical prophylaxis to any chemoprophylactic regimen increases VTE prevention. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaur, M.; Barbano, L. J.; Suen-Lewis, E. M.; Shrock, J. E.; Light, A. D.; Schaffner, D. A.; Brown, M. B.; Woodruff, S.; Meyer, T.
2018-02-01
We have explored the thermodynamics of compressed magnetized plasmas in laboratory experiments and we call these studies `magnetothermodynamics'. The experiments are carried out in the Swarthmore Spheromak eXperiment device. In this device, a magnetized plasma source is located at one end and at the other end, a closed conducting can is installed. We generate parcels of magnetized plasma and observe their compression against the end wall of the conducting cylinder. The plasma parameters such as plasma density, temperature and magnetic field are measured during compression using HeNe laser interferometry, ion Doppler spectroscopy and a linear probe array, respectively. To identify the instances of ion heating during compression, a PV diagram is constructed using measured density, temperature and a proxy for the volume of the magnetized plasma. Different equations of state are analysed to evaluate the adiabatic nature of the compressed plasma. A three-dimensional resistive magnetohydrodynamic code (NIMROD) is employed to simulate the twisted Taylor states and shows stagnation against the end wall of the closed conducting can. The simulation results are consistent to what we observe in our experiments.
Portable exothermal energy source for disaster relief operations
NASA Astrophysics Data System (ADS)
Zimbeck, Walter R.
1994-03-01
This manuscript describes an example of transfer technology from a U.S. Government Laboratory to commercial products that meet national needs in the public safety and health care sectors. Funded by the U.S. Army, the first project is the development of a portable, non-powered food warming device for serving meals to soldiers in the field. The second project is being funded by the National Institutes of Health for development of a heat therapy device for relief from rheumatoid arthritis discomfort in the hands and other affected joints. Both of these heating devices are portable, reusable heat pack products that can be regenerated in a microwave oven or in boiling water. The knowledge developed during these two projects will be applied to many other related products. Applications in support of natural and manmade disaster relief include food warming heat packs for food service to victims and rescue workers in sustained black-out conditions, and heat pack warming blankets for emergency medical situations in which patients are in traumatic shock and the onset of hypothermia is imminent.
Performance limit of daytime radiative cooling in warm humid environment
NASA Astrophysics Data System (ADS)
Suichi, Takahiro; Ishikawa, Atsushi; Hayashi, Yasuhiko; Tsuruta, Kenji
2018-05-01
Daytime radiative cooling potentially offers efficient passive cooling, but the performance is naturally limited by the environment, such as the ambient temperature and humidity. Here, we investigate the performance limit of daytime radiative cooling under warm and humid conditions in Okayama, Japan. A cooling device, consisting of alternating layers of SiO2 and poly(methyl methacrylate) on an Al mirror, is fabricated and characterized to demonstrate a high reflectance for sunlight and a selective thermal radiation in the mid-infrared region. In the temperature measurement under the sunlight irradiation, the device shows 3.4 °C cooler than a bare Al mirror, but 2.8 °C warmer than the ambient of 35 °C. The corresponding numerical analyses reveal that the atmospheric window in λ = 16 ˜ 25 μm is closed due to a high humidity, thereby limiting the net emission power of the device. Our study on the humidity influence on the cooling performance provides a general guide line of how one can achieve practical passive cooling in a warm humid environment.
Applications of surface acoustic and shallow bulk acoustic wave devices
NASA Astrophysics Data System (ADS)
Campbell, Colin K.
1989-10-01
Surface acoustic wave (SAW) device coverage includes delay lines and filters operating at selected frequencies in the range from about 10 MHz to 11 GHz; modeling with single-crystal piezoelectrics and layered structures; resonators and low-loss filters; comb filters and multiplexers; antenna duplexers; harmonic devices; chirp filters for pulse compression; coding with fixed and programmable transversal filters; Barker and quadraphase coding; adaptive filters; acoustic and acoustoelectric convolvers and correlators for radar, spread spectrum, and packet radio; acoustooptic processors for Bragg modulation and spectrum analysis; real-time Fourier-transform and cepstrum processors for radar and sonar; compressive receivers; Nyquist filters for microwave digital radio; clock-recovery filters for fiber communications; fixed-, tunable-, and multimode oscillators and frequency synthesizers; acoustic charge transport; and other SAW devices for signal processing on gallium arsenide. Shallow bulk acoustic wave device applications include gigahertz delay lines, surface-transverse-wave resonators employing energy-trapping gratings, and oscillators with enhanced performance and capability.
Compact and portable digitally controlled device for testing footwear materials: technical note.
Foto, James G
2008-01-01
Little or no practical decision-making data are available to the foot-care provider regarding the selection of orthotic materials used in therapeutic footwear. A device for simulating in-shoe forefoot conditions for the testing of orthosis materials is described. Materials are tested for their effectiveness by evaluating and comparing stress-strain and dynamic compression fatigue characteristics. The device, called the Cyclical Compression Tester (CCT), has been optimized for size, simplicity of construction, and cost. Application of the device ranges from the clinician deciding the useful life of single- and multidensity orthosis materials to the researcher characterizing materials for finite-element analysis modeling. This real-time CCT device and custom user interface combine to make an evaluation tool useful for testing how the pressure distribution of in-shoe materials changes over time in therapeutic footwear for those with peripheral neuropathy at risk for foot injury.
Adequacy of solar energy to keep babies warm.
Daga, S R; Sequera, D; Goel, S; Desai, B; Gajendragadkar, A
1996-02-01
Solar energy could be used as an alternate energy source for keeping neonates warm especially in tropical countries. The present study investigated the efficacy of solar powered room heating system. Referral center for neonatal care. A fluid system heated by solar panels and circulated into a room was used to maintain room temperature. A servocontrolled heating device was used to regulate and maintain desired room temperature. Neonatal rectal temperature and room temperature. Infants between 1750-2250 g were observed to require a mean room temperature of 32.5 degrees C to maintain normothermia. In 85 infants less than 1500 g, of the 5050 infant temperature records, only 3% showed a record less than 36 degrees C. Solar powered room heating is effective in maintaining infant temperature and is cost-effective as compared to the existing warming devices.
21 CFR 878.4780 - Powered suction pump.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered suction pump. 878.4780 Section 878.4780...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4780 Powered suction pump. (a) Identification. A powered suction pump is a portable, AC-powered or compressed air-powered device intended to be...
Naveed, Muhammad; Han, Lei; Khan, Ghulam Jilany; Yasmeen, Sufia; Mikrani, Reyaj; Abbas, Muhammad; Cunyu, Li; Xiaohui, Zhou
2018-06-01
Congestive heart failure (CHF) is a complicated pathophysiological syndrome, leading cause of hospitalization as well as mortalities in developed countries wherein an irregular function of the heart leads to the insufficient blood supply to the body organs. It is an accumulative slackening of various complications including myocardial infarction (MI), coronary heart disease (CAD), hypertension, valvular heart disease (VHD) and cardiomyopathy; its hallmarks include hypertrophy, increased interstitial fibrosis and loss of myocytes. The etiology of CHF is very complex and despite the rapid advancement in pharmacological and device-based interventional therapies still, a single therapy may not be sufficient to meet the demand for coping with the diseases. Total artificial hearts (TAH) and ventricular assist devices (VADs) have been widely used clinically to assist patients with severe HF. Unfortunately, direct contact between the patient's blood and device leads to thromboembolic events, and then coagulatory factors, as well as, infection contribute significantly to complicate the situation. There is no effective treatment of HF except cardiac transplantation, however, genetic variations, tissue mismatch; differences in certain immune response and socioeconomic crisis are an important concern with cardiac transplantation suggesting an alternate bridge to transplant (BTT) or destination therapies (DT). For these reasons, researchers have turned to mechanically driven compression devices, ventricular restraint devices (VRD) and heart patches. The ASD is a combination of all operational patches and cardiac support devices (CSD) by delivering biological agents and can restrain or compress the heart. Present study summarizes the accessible peer-reviewed literature focusing on the mechanism of Direct Cardiac Compression (DCC) devices, VRD and patches and their acquaintance to optimize the therapeutic efficacy in a synergistic way. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganni, Venkatarao; Knudsen, Peter N.; Arenius, Dana M.
The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Smith, G. E.; Springer, G. S.; Rimon, Y.
1983-01-01
A method is presented for formulating the boundary conditions in implicit finite-difference form needed for obtaining solutions to the compressible Navier-Stokes equations by the Beam and Warming implicit factored method. The usefulness of the method was demonstrated (a) by establishing the boundary conditions applicable to the analysis of the flow inside an axisymmetric piston-cylinder configuration and (b) by calculating velocities and mass fractions inside the cylinder for different geometries and different operating conditions. Stability, selection of time step and grid sizes, and computer time requirements are discussed in reference to the piston-cylinder problem analyzed.
Real-time encoding and compression of neuronal spikes by metal-oxide memristors
NASA Astrophysics Data System (ADS)
Gupta, Isha; Serb, Alexantrou; Khiat, Ali; Zeitler, Ralf; Vassanelli, Stefano; Prodromakis, Themistoklis
2016-09-01
Advanced brain-chip interfaces with numerous recording sites bear great potential for investigation of neuroprosthetic applications. The bottleneck towards achieving an efficient bio-electronic link is the real-time processing of neuronal signals, which imposes excessive requirements on bandwidth, energy and computation capacity. Here we present a unique concept where the intrinsic properties of memristive devices are exploited to compress information on neural spikes in real-time. We demonstrate that the inherent voltage thresholds of metal-oxide memristors can be used for discriminating recorded spiking events from background activity and without resorting to computationally heavy off-line processing. We prove that information on spike amplitude and frequency can be transduced and stored in single devices as non-volatile resistive state transitions. Finally, we show that a memristive device array allows for efficient data compression of signals recorded by a multi-electrode array, demonstrating the technology's potential for building scalable, yet energy-efficient on-node processors for brain-chip interfaces.
Real-time encoding and compression of neuronal spikes by metal-oxide memristors
Gupta, Isha; Serb, Alexantrou; Khiat, Ali; Zeitler, Ralf; Vassanelli, Stefano; Prodromakis, Themistoklis
2016-01-01
Advanced brain-chip interfaces with numerous recording sites bear great potential for investigation of neuroprosthetic applications. The bottleneck towards achieving an efficient bio-electronic link is the real-time processing of neuronal signals, which imposes excessive requirements on bandwidth, energy and computation capacity. Here we present a unique concept where the intrinsic properties of memristive devices are exploited to compress information on neural spikes in real-time. We demonstrate that the inherent voltage thresholds of metal-oxide memristors can be used for discriminating recorded spiking events from background activity and without resorting to computationally heavy off-line processing. We prove that information on spike amplitude and frequency can be transduced and stored in single devices as non-volatile resistive state transitions. Finally, we show that a memristive device array allows for efficient data compression of signals recorded by a multi-electrode array, demonstrating the technology's potential for building scalable, yet energy-efficient on-node processors for brain-chip interfaces. PMID:27666698
Performance of ZnO based piezo-generators under controlled compression
NASA Astrophysics Data System (ADS)
Tao, Ran; Parmar, Mitesh; Ardila, Gustavo; Oliveira, Paulo; Marques, Daniel; Montès, Laurent; Mouis, Mireille
2017-06-01
This paper reports on the fabrication and characterization of ZnO based vertically integrated nanogenerator (VING) devices under controlled compression. The basic NG structure is a composite material integrating hydrothermally grown vertical piezoelectric zinc oxide (ZnO) nanowires (NWs) into a dielectric matrix (PMMA). A specific characterization set-up has been developed to control the applied compression and the perpendicularity of the applied force on the devices. The role of different fabrication parameters has been evaluated experimentally and compared with previously reported theoretical models, including the thickness of the top PMMA layer and the density of the NWs array in the matrix. Finally, the performance of the VING structure has been evaluated experimentally for different resistive loads obtaining a power density of 85 μW cm-3 considering only the active layer of the device. This has been compared to the performance of a commercial bulk layer of PZT (25 μW cm-3) under the same applied force of 5 N.
Optical scanning holography based on compressive sensing using a digital micro-mirror device
NASA Astrophysics Data System (ADS)
A-qian, Sun; Ding-fu, Zhou; Sheng, Yuan; You-jun, Hu; Peng, Zhang; Jian-ming, Yue; xin, Zhou
2017-02-01
Optical scanning holography (OSH) is a distinct digital holography technique, which uses a single two-dimensional (2D) scanning process to record the hologram of a three-dimensional (3D) object. Usually, these 2D scanning processes are in the form of mechanical scanning, and the quality of recorded hologram may be affected due to the limitation of mechanical scanning accuracy and unavoidable vibration of stepper motor's start-stop. In this paper, we propose a new framework, which replaces the 2D mechanical scanning mirrors with a Digital Micro-mirror Device (DMD) to modulate the scanning light field, and we call it OSH based on Compressive Sensing (CS) using a digital micro-mirror device (CS-OSH). CS-OSH can reconstruct the hologram of an object through the use of compressive sensing theory, and then restore the image of object itself. Numerical simulation results confirm this new type OSH can get a reconstructed image with favorable visual quality even under the condition of a low sample rate.
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu (Inventor)
1997-01-01
A pre-coding method and device for improving data compression performance by removing correlation between a first original data set and a second original data set, each having M members, respectively. The pre-coding method produces a compression-efficiency-enhancing double-difference data set. The method and device produce a double-difference data set, i.e., an adjacent-delta calculation performed on a cross-delta data set or a cross-delta calculation performed on two adjacent-delta data sets, from either one of (1) two adjacent spectral bands coming from two discrete sources, respectively, or (2) two time-shifted data sets coming from a single source. The resulting double-difference data set is then coded using either a distortionless data encoding scheme (entropy encoding) or a lossy data compression scheme. Also, a post-decoding method and device for recovering a second original data set having been represented by such a double-difference data set.
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu (Inventor)
1998-01-01
A pre-coding method and device for improving data compression performance by removing correlation between a first original data set and a second original data set, each having M members, respectively. The pre-coding method produces a compression-efficiency-enhancing double-difference data set. The method and device produce a double-difference data set, i.e., an adjacent-delta calculation performed on a cross-delta data set or a cross-delta calculation performed on two adjacent-delta data sets, from either one of (1) two adjacent spectral bands coming from two discrete sources, respectively, or (2) two time-shifted data sets coming from a single source. The resulting double-difference data set is then coded using either a distortionless data encoding scheme (entropy encoding) or a lossy data compression scheme. Also, a post-decoding method and device for recovering a second original data set having been represented by such a double-difference data set.
21 CFR 868.6250 - Portable air compressor.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e.g., to drive ventilators and other respiratory devices. (b) Classification. Class II (performance...
21 CFR 868.6250 - Portable air compressor.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e.g., to drive ventilators and other respiratory devices. (b) Classification. Class II (performance...
Andrzejowski, J C; Turnbull, D; Nandakumar, A; Gowthaman, S; Eapen, G
2010-09-01
We compared the effect of delivering fluid warmed using two methods in 76 adult patients having short duration surgery. All patients received a litre of crystalloid delivered either at room temperature, warmed using an in-line warming device or pre-warmed in a warming cabinet for at least 8 h. The tympanic temperature of those receiving fluid at room temperature was 0.4 °C lower on arrival in recovery when compared with those receiving fluid from a warming cabinet (p = 0.008). Core temperature was below the hypothermic threshold of 36.0 °C in seven (14%) patients receiving either type of warm fluid, compared to eight (32%) patients receiving fluid at room temperature (p = 0.03). The administration of 1 l warmed fluid to patients having short duration general anaesthesia results in higher postoperative temperatures. Pre-warmed fluid, administered within 30 min of its removal from a warming cabinet, is as efficient at preventing peri-operative hypothermia as that delivered through an in-line warming system. © 2010 The Authors. Journal compilation © 2010 The Association of Anaesthetists of Great Britain and Ireland.
NASA Astrophysics Data System (ADS)
Onogaki, Hitoshi; Yokoyama, Shuichi
The temperature control of the environmental examination device has loss of the energy consumption to cool it while warming it. This paper proposed a tempareture control system method with energy saving for the enviromental examination device without using cooling in consideration of temperature characteristics.
Brophy, Carl M; Hoh, Daniel J
2018-06-01
Cervical disc arthroplasty (CDA) has received widespread attention as an alternative to anterior fusion due to its similar neurological and functional improvement, with the advantage of preservation of segmental motion. As CDA becomes more widely implemented, the potential for unexpected device-related adverse events may be identified. The authors report on a 48-year-old man who presented with progressive neurological deficits 3 years after 2-level CDA was performed. Imaging demonstrated periprosthetic osteolysis of the vertebral endplates at the CDA levels, with a heterogeneously enhancing ventral epidural mass compressing the spinal cord. Diagnostic workup for infectious and neoplastic processes was negative. The presumptive diagnosis was an inflammatory pannus formation secondary to abnormal motion at the CDA levels. Posterior cervical decompression and instrumented fusion was performed without removal of the arthroplasty devices or the ventral epidural mass. Postoperative imaging at 2 months demonstrated complete resolution of the compressive pannus, with associated improvement in clinical symptoms. Follow-up MRI at > 6 months showed no recurrence of the pannus. At 1 year postoperatively, CT scanning revealed improvement in periprosthetic osteolysis. Inflammatory pannus formation may be an unexpected complication of abnormal segmental motion after CDA. This rare etiology of an epidural mass associated with an arthroplasty device should be considered, in addition to workup for other potential infectious or neoplastic mass lesions. In symptomatic individuals, compressive pannus lesions can be effectively treated with fusion across the involved segment without removal of the device.
Free-Standing Organic Transistors and Circuits with Sub-Micron Thicknesses
Fukuda, Kenjiro; Sekine, Tomohito; Shiwaku, Rei; Morimoto, Takuya; Kumaki, Daisuke; Tokito, Shizuo
2016-01-01
The realization of wearable electronic devices with extremely thin and flexible form factors has been a major technological challenge. While substrates typically limit the thickness of thin-film electronic devices, they are usually necessary for their fabrication and functionality. Here we report on ultra-thin organic transistors and integrated circuits using device components whose substrates that have been removed. The fabricated organic circuits with total device thicknesses down to 350 nm have electrical performance levels close to those fabricated on conventional flexible substrates. Moreover, they exhibit excellent mechanical robustness, whereby their static and dynamic electrical characteristics do not change even under 50% compressive strain. Tests using systematically applied compressive strains reveal that these free-standing organic transistors possess anisotropic mechanical stability, and a strain model for a multilayer stack can be used to describe the strain in this sort of ultra-thin device. These results show the feasibility of ultimate-thin organic electronic devices using free-standing constructions. PMID:27278828
Nosehouse: heat-conserving ventilators based on nasal counterflow exchangers.
Vogel, Steven
2009-12-01
Small birds and mammals commonly minimize respiratory heat loss with reciprocating counterflow exchangers in their nasal passageways. These animals extract heat from the air in an exhalation to warm those passageways and then use that heat to warm the subsequent inhalation. Although the near-constant volume of buildings precludes direct application of the device, a pair of such exchangers located remotely from each other circumvents that problem. A very simple and crudely constructed small-scale physical model of the device worked well enough as a heat conserver to suggest utility as a ventilator for buildings.
Image display device in digital TV
Choi, Seung Jong [Seoul, KR
2006-07-18
Disclosed is an image display device in a digital TV that is capable of carrying out the conversion into various kinds of resolution by using single bit map data in the digital TV. The image display device includes: a data processing part for executing bit map conversion, compression, restoration and format-conversion for text data; a memory for storing the bit map data obtained according to the bit map conversion and compression in the data processing part and image data inputted from an arbitrary receiving part, the receiving part receiving one of digital image data and analog image data; an image outputting part for reading the image data from the memory; and a display processing part for mixing the image data read from the image outputting part and the bit map data converted in format from the a data processing part. Therefore, the image display device according to the present invention can convert text data in such a manner as to correspond with various resolution, carry out the compression for bit map data, thereby reducing the memory space, and support text data of an HTML format, thereby providing the image with the text data of various shapes.
Measurement of Preheat Due to Nonlocal Electron Transport in Warm Dense Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falk, K.; Holec, M.; Fontes, C. J.
This work presents a novel approach to study electron transport in warm dense matter. It also includes the first x-ray Thomson scattering (XRTS) measurement from low-density CH foams compressed by a strong laser-driven shock at the OMEGA laser facility. The XRTS measurement is combined with velocity interferometry (VISAR) and optical pyrometry (SOP) providing a robust measurement of thermodynamic conditions in the shock. Evidence of significant preheat contributing to elevated temperatures reaching 17.5–35 eV in shocked CH foam is measured by XRTS. These measurements are complemented by abnormally high shock velocities observed by VISAR and early emission seen by SOP. Thesemore » results are compared to radiation hydrodynamics simulations that include first-principles treatment of nonlocal electron transport in warm dense matter with excellent agreement. Additional simulations confirm that the x-ray contribution to this preheat is negligible.« less
Measurement of Preheat Due to Nonlocal Electron Transport in Warm Dense Matter
Falk, K.; Holec, M.; Fontes, C. J.; ...
2018-01-10
This work presents a novel approach to study electron transport in warm dense matter. It also includes the first x-ray Thomson scattering (XRTS) measurement from low-density CH foams compressed by a strong laser-driven shock at the OMEGA laser facility. The XRTS measurement is combined with velocity interferometry (VISAR) and optical pyrometry (SOP) providing a robust measurement of thermodynamic conditions in the shock. Evidence of significant preheat contributing to elevated temperatures reaching 17.5–35 eV in shocked CH foam is measured by XRTS. These measurements are complemented by abnormally high shock velocities observed by VISAR and early emission seen by SOP. Thesemore » results are compared to radiation hydrodynamics simulations that include first-principles treatment of nonlocal electron transport in warm dense matter with excellent agreement. Additional simulations confirm that the x-ray contribution to this preheat is negligible.« less
Harbour, L; Dharma-Wardana, M W C; Klug, D D; Lewis, L J
2016-11-01
Ultrafast laser experiments yield increasingly reliable data on warm dense matter, but their interpretation requires theoretical models. We employ an efficient density functional neutral-pseudoatom hypernetted-chain (NPA-HNC) model with accuracy comparable to ab initio simulations and which provides first-principles pseudopotentials and pair potentials for warm-dense matter. It avoids the use of (i) ad hoc core-repulsion models and (ii) "Yukawa screening" and (iii) need not assume ion-electron thermal equilibrium. Computations of the x-ray Thomson scattering (XRTS) spectra of aluminum and beryllium are compared with recent experiments and with density-functional-theory molecular-dynamics (DFT-MD) simulations. The NPA-HNC structure factors, compressibilities, phonons, and conductivities agree closely with DFT-MD results, while Yukawa screening gives misleading results. The analysis of the XRTS data for two of the experiments, using two-temperature quasi-equilibrium models, is supported by calculations of their temperature relaxation times.
Measurement of Preheat Due to Nonlocal Electron Transport in Warm Dense Matter
NASA Astrophysics Data System (ADS)
Falk, K.; Holec, M.; Fontes, C. J.; Fryer, C. L.; Greeff, C. W.; Johns, H. M.; Montgomery, D. S.; Schmidt, D. W.; Šmíd, M.
2018-01-01
This Letter presents a novel approach to study electron transport in warm dense matter. It also includes the first x-ray Thomson scattering (XRTS) measurement from low-density CH foams compressed by a strong laser-driven shock at the OMEGA laser facility. The XRTS measurement is combined with velocity interferometry (VISAR) and optical pyrometry (SOP) providing a robust measurement of thermodynamic conditions in the shock. Evidence of significant preheat contributing to elevated temperatures reaching 17.5-35 eV in shocked CH foam is measured by XRTS. These measurements are complemented by abnormally high shock velocities observed by VISAR and early emission seen by SOP. These results are compared to radiation hydrodynamics simulations that include first-principles treatment of nonlocal electron transport in warm dense matter with excellent agreement. Additional simulations confirm that the x-ray contribution to this preheat is negligible.
40 CFR 1065.510 - Engine mapping.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the warm-up until the engine coolant, block, or head absolute temperature is within ± 2% of its mean... demand to minimum, use the dynamometer or other loading device to target a torque of zero on the engine's...-speed governor, operate the engine at warm idle speed and zero torque on the engine's primary output...
Benoit, A.; Mustafy, T.; Londono, I.; Grimard, G.; Aubin, C-E.; Villemure, I.
2016-01-01
Fusionless devices are currently designed to treat spinal deformities such as scoliosis by the application of a controlled mechanical loading. Growth modulation by dynamic compression was shown to preserve soft tissues. The objective of this in vivo study was to characterize the effect of static vs. dynamic loading on the bone formed during growth modulation. Controlled compression was applied during 15 days on the 7th caudal vertebra (Cd7) of rats during growth spurt. The load was sustained in the “static” group and sinusoidally oscillating in the “dynamic” group. The effect of surgery and of the device was investigated using control and sham (operated on but no load applied) groups. A high resolution CT-scan of Cd7 was acquired at days 2, 8 and 15 of compression. Growth rates, histomorphometric parameters and mineral density of the newly formed bone were quantified and compared. Static and dynamic loadings significantly reduced the growth rate by 20% compared to the sham group. Dynamic loading preserved newly formed bone histomorphometry and mineral density whereas static loading induced thicker (+31%) and more mineralized (+12%) trabeculae. A significant sham effect was observed. Growth modulation by dynamic compression constitutes a promising way to develop new treatment for skeletal deformities. PMID:27609036
Non-destructive testing of concrete.
DOT National Transportation Integrated Search
1979-11-01
This research project was initiated to evaluate the performance of an ultrasonic testing device device in predicting compressive strengths from tests performed on samples of fresh concrete. : The initial phase of this study involved laboratory perora...
ERIC Educational Resources Information Center
Broward County Schools, Fort Lauderdale, FL.
Part of a series on special educaton procedures in Florida, the manual presents information for teachers of visually impaired students regarding the use of electronic communication devices. Each of four types of devices is profiled: closed circuit television (CCTV), compressed speech devices, typewriter attachments for the Optacon (a device that…
System and method for storing energy
Yarger, Eric Jay [Rigby, ID; Morrison, John [Butte, MT; Richardson, John Grant [Idaho Falls, ID; Spencer, David Frazer [Idaho Falls, ID; Christiansen, Dale W [Blackfoot, ID
2010-03-30
A self-recharging battery comprising a generator and an energy storage device contained within the battery case. The generator comprises a magnetic structure configured to generate a compressed magnetic field and a coil configured to focus the compressed magnetic field in electrical conductive elements of the coil.
Foo, Ning-Ping; Chang, Jer-Hao; Su, Shih-Bin; Chen, Kow-Tong; Cheng, Ching-Fa; Chen, Pei-Chung
2014-01-01
Background The survival rate of patients with out-of-hospital cardiac arrest is low, and measures to improve the quality of cardiopulmonary resuscitation (CPR) during ambulance transportation are desirable. We designed a stabilization device, and in a randomized crossover trial we found performing CPR in a moving ambulance with the device (MD) could achieve better efficiency than that without the device (MND), but the efficiency was lower than that in a non-moving ambulance (NM). Purpose To evaluate whether a modified version of the stabilization device, can promote further the quality of CPR during ambulance transportation. Methods Participants of the previous study were recruited, and they performed CPR for 10 minutes in a moving ambulance with the modified version of the stabilization device (MVSD). The primary outcomes were effective chest compressions and no-flow fraction recorded by a skill-reporter manikin. The secondary outcomes included back pain, physiological parameters, and the participants' rating about the device after performing CPR. Results The overall effective compressions in 10 minutes were 86.4±17.5% for NM, 60.9±14.6% for MND, 69.7±22.4% for MD, and 86.6%±13.2% for MVSD (p<0.001). Whereas changes in back pain severity and physiology parameters were similar under all conditions, MVSD had the lowest no-flow fraction. Differences in effective compressions and the no-flow fraction between MVSD and NM did not reach statistical significance. Conclusions The use of the modified device can improve quality of CPR in a moving ambulance to a level similar to that in a non-moving condition without increasing the severity of back pain. PMID:25329643
Foo, Ning-Ping; Chang, Jer-Hao; Su, Shih-Bin; Chen, Kow-Tong; Cheng, Ching-Fa; Chen, Pei-Chung; Lin, Tsung-Yi; Guo, How-Ran
2014-01-01
The survival rate of patients with out-of-hospital cardiac arrest is low, and measures to improve the quality of cardiopulmonary resuscitation (CPR) during ambulance transportation are desirable. We designed a stabilization device, and in a randomized crossover trial we found performing CPR in a moving ambulance with the device (MD) could achieve better efficiency than that without the device (MND), but the efficiency was lower than that in a non-moving ambulance (NM). To evaluate whether a modified version of the stabilization device, can promote further the quality of CPR during ambulance transportation. Participants of the previous study were recruited, and they performed CPR for 10 minutes in a moving ambulance with the modified version of the stabilization device (MVSD). The primary outcomes were effective chest compressions and no-flow fraction recorded by a skill-reporter manikin. The secondary outcomes included back pain, physiological parameters, and the participants' rating about the device after performing CPR. The overall effective compressions in 10 minutes were 86.4±17.5% for NM, 60.9±14.6% for MND, 69.7±22.4% for MD, and 86.6%±13.2% for MVSD (p<0.001). Whereas changes in back pain severity and physiology parameters were similar under all conditions, MVSD had the lowest no-flow fraction. Differences in effective compressions and the no-flow fraction between MVSD and NM did not reach statistical significance. The use of the modified device can improve quality of CPR in a moving ambulance to a level similar to that in a non-moving condition without increasing the severity of back pain.
Active bypass flow control for a seal in a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, Todd A.; Kimmel, Keith D.
An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wearsmore » In at least one embodiment, the metering device may include an annular ring having at least one metering orifice extending therethrough, whereby alignment of the metering orifice with the outlet may be adjustable to change a cross-sectional area of an opening of aligned portions of the outlet and the metering orifice.« less
Transverse compression of PPTA fibers
NASA Astrophysics Data System (ADS)
Singletary, James
2000-07-01
Results of single transverse compression testing of PPTA and PIPD fibers, using a novel test device, are presented and discussed. In the tests, short lengths of single fibers are compressed between two parallel, stiff platens. The fiber elastic deformation is analyzed as a Hertzian contact problem. The inelastic deformation is analyzed by elastic-plastic FE simulation and by laser-scanning confocal microscopy of the compressed fibers ex post facto. The results obtained are compared to those in the literature and to the theoretical predictions of PPTA fiber transverse elasticity based on PPTA crystal elasticity.
NASA Astrophysics Data System (ADS)
Young, Andrea; Dean, Cory; Meric, Inanc; Hone, Jim; Shepard, Ken; Kim, Philip
2010-03-01
Using a transfer procedure and single crystal hexagonal Boron Nitride gate dielectric, we are able to fabricate high mobility graphene devices with local top and back gates. The novel geometry of these devices allows us to measure the spatially averaged compressibility of mono- and bilayer graphene using the ``penetration field'' technique [Eisenstein, J.P. et al. Phys. Rev. Lett. 68, 674 (1992)]. In particular, we analyze the the effects of strong transverse electric fields on the compressibility of graphenes, especially as pertains to charged impurity scattering in single layer graphene and the opening of an energy gap in bilayer.
Climate effects of non-compliant Volkswagen diesel cars
NASA Astrophysics Data System (ADS)
Tanaka, Katsumasa; Lund, Marianne T.; Aamaas, Borgar; Berntsen, Terje
2018-04-01
On-road operations of Volkswagen light-duty diesel vehicles equipped with defeat devices cause emissions of NOx up to 40 times above emission standards. Higher on-road NOx emissions are a widespread problem not limited to Volkswagen vehicles, but the Volkswagen violations brought this issue under the spotlight. While several studies investigated the health impacts of high NOx emissions, the climatic impacts have not been quantified. Here we show that such diesel cars generate a larger warming on the time scale of several years but a smaller warming on the decadal time scale during actual on-road operations than in vehicle certification tests. The difference in longer-term warming levels, however, depends on underlying driving conditions. Furthermore, in the presence of defeat devices, the climatic advantage of ‘clean diesel’ cars over gasoline cars, in terms of global-mean temperature change, is in our view not necessarily the case.
Multilayer compressive seal for sealing in high temperature devices
Chou, Yeong-Shyung [Richland, WA; Stevenson, Jeffry W [Richland, WA
2007-08-21
A mica based compressive seal has been developed exhibiting superior thermal cycle stability when compared to other compressive seals known in the art. The seal is composed of compliant glass or metal interlayers and a sealing (gasket) member layer composed of mica that is infiltrated with a glass forming material, which effectively reduces leaks within the seal. The compressive seal shows approximately a 100-fold reduction in leak rates compared with previously developed hybrid seals after from 10 to about 40 thermal cycles under a compressive stress of from 50 psi to 100 psi at temperatures in the range from 600.degree. C. to about 850.degree. C.
Optical and transport properties of dense liquid silica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Tingting; Millot, Marius; Kraus, Richard G.
2015-06-15
Using density-functional-theory based molecular dynamics and the Kubo-Greenwood linear response theory, we evaluated the high-pressure equation of state and the optical and transport properties of quartz and fused silica shock-compressed to 2000 GPa. The computed Hugoniots and corresponding optical reflectivity values are in very good agreement with published data for quartz, and new data that we obtained on fused silica using magnetically launched flyer plate experiments. The rise of optical reflectivity upon shock compression appears to be primarily a temperature-driven mechanism, which is relatively insensitive to small density variation. We observed that the electrical conductivity does not display Drude-like frequencymore » dependence, especially at lower temperatures. In addition, the Wiedemann-Franz relation between electrical and thermal conductivities was found to be invalid. It suggests that even at three-fold compression, warm dense liquid silica on the Hugoniot curve is still far away from the degenerate limit.« less
[Prevention of perioperative hypothermia].
Horn, Ernst-Peter; Torossian, Alexander
2010-03-01
Inadvertent perioperative hypothermia impairs postoperative outcome in surgical patients due to ischemic myocardial events, wound infections and coagulation disorders. Body core temperature should be assessed 1-2h preoperatively and continuously during surgery. To prevent hypothermia patients and nursing clinical staff should be teached and trained. Preoperatively surgical patients should always be prewarmed by using convective warming devices and active warming should be continued in surgeries longer than 1 hour. Warming of IV fluids is effective if infusion rates are above 1l/h. Core temperature should be measured in the recovery room and active warming should be started when patients are hypothermic or if they feel cold. Georg Thieme Verlag Stuttgart * New York.
21 CFR 868.6250 - Portable air compressor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Portable air compressor. 868.6250 Section 868.6250...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6250 Portable air compressor. (a) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e...
21 CFR 868.6250 - Portable air compressor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Portable air compressor. 868.6250 Section 868.6250...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6250 Portable air compressor. (a) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e...
21 CFR 868.6250 - Portable air compressor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Portable air compressor. 868.6250 Section 868.6250...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6250 Portable air compressor. (a) Identification. A portable air compressor is a device intended to provide compressed air for medical purposes, e...
Renzi, Ronald F
2013-11-19
An interconnecting device for connecting a plurality of first fluid-bearing conduits to a corresponding plurality of second fluid-bearing conduits thereby providing fluid communication between the first fluid-bearing conduits and the second fluid-bearing conduits. The device includes a manifold and one or two ferrule plates that are held by compressive axial forces.
Theory of warm ionized gases: equation of state and kinetic Schottky anomaly.
Capolupo, A; Giampaolo, S M; Illuminati, F
2013-10-01
Based on accurate Lennard-Jones-type interaction potentials, we derive a closed set of state equations for the description of warm atomic gases in the presence of ionization processes. The specific heat is predicted to exhibit peaks in correspondence to single and multiple ionizations. Such kinetic analog in atomic gases of the Schottky anomaly in solids is enhanced at intermediate and low atomic densities. The case of adiabatic compression of noble gases is analyzed in detail and the implications on sonoluminescence are discussed. In particular, the predicted plasma electron density in a sonoluminescent bubble turns out to be in good agreement with the value measured in recent experiments.
46 CFR 151.50-30 - Compressed gases.
Code of Federal Regulations, 2011 CFR
2011-10-01
... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-30 Compressed gases. (a) All tank inlet and outlet connections, except safety relief valves, liquid level gauging devices, and pressure gauges shall be marked to designate whether they terminate in the vapor or liquid space. Labels, when...
46 CFR 151.50-30 - Compressed gases.
Code of Federal Regulations, 2014 CFR
2014-10-01
... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-30 Compressed gases. (a) All tank inlet and outlet connections, except safety relief valves, liquid level gauging devices, and pressure gauges shall be marked to designate whether they terminate in the vapor or liquid space. Labels, when...
46 CFR 151.50-30 - Compressed gases.
Code of Federal Regulations, 2012 CFR
2012-10-01
... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-30 Compressed gases. (a) All tank inlet and outlet connections, except safety relief valves, liquid level gauging devices, and pressure gauges shall be marked to designate whether they terminate in the vapor or liquid space. Labels, when...
46 CFR 151.50-30 - Compressed gases.
Code of Federal Regulations, 2013 CFR
2013-10-01
... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-30 Compressed gases. (a) All tank inlet and outlet connections, except safety relief valves, liquid level gauging devices, and pressure gauges shall be marked to designate whether they terminate in the vapor or liquid space. Labels, when...
46 CFR 151.50-30 - Compressed gases.
Code of Federal Regulations, 2010 CFR
2010-10-01
... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-30 Compressed gases. (a) All tank inlet and outlet connections, except safety relief valves, liquid level gauging devices, and pressure gauges shall be marked to designate whether they terminate in the vapor or liquid space. Labels, when...
Warm Dense Matter: Another Application for Pulsed Power Hydrodynamics
2009-06-01
Pulsed power hydrodynamic techniques, such as large convergence liner compression of a large volume, modest density, low temperature plasma to...controlled than are similar high explosively powered hydrodynamic experiments. While the precision and controllability of gas- gun experiments is...well established, pulsed power techniques using imploding liner offer access to convergent conditions, difficult to obtain with guns – and essential
NASA Astrophysics Data System (ADS)
Bonne, F.; Alamir, M.; Bonnay, P.
2017-02-01
This paper deals with multivariable constrained model predictive control for Warm Compression Stations (WCS). WCSs are subject to numerous constraints (limits on pressures, actuators) that need to be satisfied using appropriate algorithms. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to achieve precise control of pressures in normal operation or to avoid reaching stopping criteria (such as excessive pressures) under high disturbances (such as a pulsed heat load expected to take place in future fusion reactors, expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details the simulator used to validate this new control scheme and the associated simulation results on the SBTs WCS. This work is partially supported through the French National Research Agency (ANR), task agreement ANR-13-SEED-0005.
Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach
Al-Ali, Abdulla; Mohamed, Amr; Ward, Rabab
2018-01-01
Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG) signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B/K are evaluated based on compression ratio (CR), percentage root-mean-square difference (PRD), and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects), the new algorithm demonstrates the highest compression performance (CR=6 and PRD=1.88) and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity) over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring. PMID:29337892
Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach.
Elgendi, Mohamed; Al-Ali, Abdulla; Mohamed, Amr; Ward, Rabab
2018-01-16
Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG) signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B / K are evaluated based on compression ratio (CR), percentage root-mean-square difference (PRD), and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects), the new algorithm demonstrates the highest compression performance ( CR = 6 and PRD = 1.88 ) and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity) over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring.
Semeraro, Federico; Frisoli, Antonio; Loconsole, Claudio; Bannò, Filippo; Tammaro, Gaetano; Imbriaco, Guglielmo; Marchetti, Luca; Cerchiari, Erga L
2013-04-01
Outcome after cardiac arrest is dependent on the quality of chest compressions (CC). A great number of devices have been developed to provide guidance during CPR. The present study evaluates a new CPR feedback system (Mini-VREM: Mini-Virtual Reality Enhanced Mannequin) designed to improve CC during training. Mini-VREM system consists of a Kinect(®) (Microsoft, Redmond, WA, USA) motion sensing device and specifically developed software to provide audio-visual feedback. Mini-VREM was connected to a commercially available mannequin (Laerdal Medical, Stavanger, Norway). Eighty trainees (healthcare professionals and lay people) volunteered in this randomised crossover pilot study. All subjects performed a 2 min CC trial, 1h pause and a second 2 min CC trial. The first group (FB/NFB, n=40) performed CC with Mini-VREM feedback (FB) followed by CC without feedback (NFB). The second group (NFB/FB, n=40) performed vice versa. Primary endpoints: adequate compression (compression rate between 100 and 120 min(-1) and compression depth between 50 and 60mm); compressions rate within 100-120 min(-1); compressions depth within 50-60mm. When compared to the performance without feedback, with Mini-VREM feedback compressions were more adequate (FB 35.78% vs. NFB 7.27%, p<0.001) and more compressions achieved target rate (FB 72.04% vs. 31.42%, p<0.001) and target depth (FB 47.34% vs. 24.87%, p=0.002). The participants perceived the system to be easy to use with effective feedback. The Mini-VREM system was able to improve significantly the CC performance by healthcare professionals and by lay people in a simulated CA scenario, in terms of compression rate and depth. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Deoghare, Ashish B.; Kashyap, Siddharth; Padole, Pramod M.
2013-03-01
Degenerative disc disease is a major source of lower back pain and significantly alters the biomechanics of the lumbar spine. Dynamic stabilization device is a remedial technique which uses flexible materials to stabilize the affected lumbar region while preserving the natural anatomy of the spine. The main objective of this research work is to investigate the stiffness variation of dynamic stabilization device under various loading conditions under compression, axial rotation and flexion. Three dimensional model of the two segment lumbar spine is developed using computed tomography (CT) scan images. The lumbar structure developed is analyzed in ANSYS workbench. Two types of dynamic stabilization are considered: one with stabilizing device as pedicle instrumentation and second with stabilization device inserted around the inter-vertebral disc. Analysis suggests that proper positioning of the dynamic stabilization device is of paramount significance prior to the surgery. Inserting the device in the posterior region indicates the adverse effects as it shows increase in the deformation of the inter-vertebral disc. Analysis executed by positioning stabilizing device around the inter-vertebral disc yields better result for various stiffness values under compression and other loadings. [Figure not available: see fulltext.
Gallardo, Miguel; Hebles, María; Migueles, Beatriz; Dorado, Mónica; Aguilera, Laura; González, Mercedes; Piqueras, Paloma; Montero, Lorena; Sánchez-Martín, Pascual; Sánchez-Martín, Fernando; Risco, Ramón
2016-08-01
Although it was qualitatively pointed out by Fahy et al. (1984), the key role of the warming rates in non-equillibrium vitrification has only recently been quantitatively established for murine oocytes by Mazur and Seki (2011). In this work we study the performance of a closed vitrification device designed under the new paradigm, for the vitrification of human oocytes. The vitrification carrier consists of a main straw in which a specifically designed capillary is mounted and where the oocytes are loaded by aspiration. It can be hermetically sealed before immersion in liquid nitrogen for vitrification, and it is warmed in a sterile water bath at 37 °C. Measured warming rates achieved with this design were of 600.000 ºC/min for a standard DMEM solution and 200.000 ºC/min with the vitrification solution for human oocytes. A cohort of 143 donor MII sibling human oocytes was split into two groups: control (fresh) and vitrified with SafeSpeed device. Similar results were found in both groups: survival (97.1%), fertilization after ICSI (74.7% in control vs. 77.3% in vitrified) and good quality embryos at day three (54.3% in control vs. 58.1% in vitrified) were settled as performance indicators. The pregnancy rate was 3/6 (50%) for the control, 2/3 (66%) for vitrified and 4/5 (80%) for mixed transfers. Copyright © 2016. Published by Elsevier Inc.
Cryopreservation and re-culture of a 2.3 litre biomass for use in a bioartificial liver device
Kilbride, Peter; Lamb, Stephen; Gibbons, Stephanie; Bundy, James; Erro, Eloy; Selden, Clare; Fuller, Barry; Morris, John
2017-01-01
For large and complex tissue engineered constructs to be available on demand, long term storage using methods, such as cryopreservation, are essential. This study optimised parameters such as excess media concentration and warming rates and used the findings to enable the successful cryopreservation of 2.3 litres of alginate encapsulated liver cell spheroids. This volume of biomass is typical of those required for successful treatment of Acute Liver Failure using our Bioartificial Liver Device. Adding a buffer of medium above the biomass, as well as slow (0.6°C/min) warming rates was found to give the best results, so long as the warming through the equilibrium melting temperature was rapid. After 72 h post thaw-culture, viable cell number, glucose consumption, lactate production, and alpha-fetoprotein production had recovered to pre-freeze values in the 2.3 litre biomass (1.00 ± 0.05, 1.19 ± 0.10, 1.23 ± 0.18, 2.03 ± 0.04 per ml biomass of the pre-cryopreservation values respectively). It was also shown that further improvements in warming rates of the biomass could reduce recovery time to < 48 h. This is the first example of a biomass of this volume being successfully cryopreserved in a single cassette and re-cultured. It demonstrates that a bioartificial liver device can be cryopreserved, and has wider applications to scale-up large volume cryopreservation. PMID:28841674
Cryopreservation and re-culture of a 2.3 litre biomass for use in a bioartificial liver device.
Kilbride, Peter; Lamb, Stephen; Gibbons, Stephanie; Bundy, James; Erro, Eloy; Selden, Clare; Fuller, Barry; Morris, John
2017-01-01
For large and complex tissue engineered constructs to be available on demand, long term storage using methods, such as cryopreservation, are essential. This study optimised parameters such as excess media concentration and warming rates and used the findings to enable the successful cryopreservation of 2.3 litres of alginate encapsulated liver cell spheroids. This volume of biomass is typical of those required for successful treatment of Acute Liver Failure using our Bioartificial Liver Device. Adding a buffer of medium above the biomass, as well as slow (0.6°C/min) warming rates was found to give the best results, so long as the warming through the equilibrium melting temperature was rapid. After 72 h post thaw-culture, viable cell number, glucose consumption, lactate production, and alpha-fetoprotein production had recovered to pre-freeze values in the 2.3 litre biomass (1.00 ± 0.05, 1.19 ± 0.10, 1.23 ± 0.18, 2.03 ± 0.04 per ml biomass of the pre-cryopreservation values respectively). It was also shown that further improvements in warming rates of the biomass could reduce recovery time to < 48 h. This is the first example of a biomass of this volume being successfully cryopreserved in a single cassette and re-cultured. It demonstrates that a bioartificial liver device can be cryopreserved, and has wider applications to scale-up large volume cryopreservation.
Development and validation of a new guidance device for lateral approach stereotactic breast biopsy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, K.; Kornecki, A.; Bax, J.
2009-06-15
Stereotactic breast biopsy (SBB) is the gold standard for minimally invasive breast cancer diagnosis. Current systems rely on one of two methods for needle insertion: A vertical approach (perpendicular to the breast compression plate) or a lateral approach (parallel to the compression plate). While the vertical approach is more frequently used, it is not feasible in patients with thin breasts (<3 cm thick after compression) or with superficial lesions. Further, existing SBB guidance hardware provides at most one degree of rotational freedom in the needle trajectory, and as such requires a separate skin incision for each biopsy target. The authorsmore » present a new design of lateral guidance device for SBB, which addresses the limitations of the vertical approach and provides improvements over the existing lateral guidance hardware. Specifically, the new device provides (1) an adjustable rigid needle support to minimize needle deflection within the breast and (2) an additional degree of rotational freedom in the needle trajectory, allowing the radiologist to sample multiple targets through a single skin incision. This device was compared to a commercial lateral guidance device in a series of phantom experiments. Needle placement error using each device was measured in agar phantoms for needle insertions at lateral depths of 2 and 5 cm. The biopsy success rate for each device was then estimated by performing biopsy procedures in commercial SBB phantoms. SBB performed with the new lateral guidance device provided reduced needle placement error relative to the commercial lateral guidance device (0.89{+-}0.22 vs 1.75{+-}0.35 mm for targets at 2 cm depth; 1.94{+-}0.20 vs 3.21{+-}0.31 mm for targets at 5 cm depth). The new lateral guidance device also provided improved biopsy accuracy in SBB procedures compared to the commercial lateral guidance device (100% vs 58% success rate). Finally, experiments were performed to demonstrate that the new device can accurately sample lesions within thin breast phantoms and multiple lesions through a single incision point. This device can be incorporated directly into the clinical SBB procedural workflow, with no additional electrical hardware, software, postprocessing, or image analysis.« less
Kim, Dong-Sun; Kwon, Jin-San
2014-01-01
Research on real-time health systems have received great attention during recent years and the needs of high-quality personal multichannel medical signal compression for personal medical product applications are increasing. The international MPEG-4 audio lossless coding (ALS) standard supports a joint channel-coding scheme for improving compression performance of multichannel signals and it is very efficient compression method for multi-channel biosignals. However, the computational complexity of such a multichannel coding scheme is significantly greater than that of other lossless audio encoders. In this paper, we present a multichannel hardware encoder based on a low-complexity joint-coding technique and shared multiplier scheme for portable devices. A joint-coding decision method and a reference channel selection scheme are modified for a low-complexity joint coder. The proposed joint coding decision method determines the optimized joint-coding operation based on the relationship between the cross correlation of residual signals and the compression ratio. The reference channel selection is designed to select a channel for the entropy coding of the joint coding. The hardware encoder operates at a 40 MHz clock frequency and supports two-channel parallel encoding for the multichannel monitoring system. Experimental results show that the compression ratio increases by 0.06%, whereas the computational complexity decreases by 20.72% compared to the MPEG-4 ALS reference software encoder. In addition, the compression ratio increases by about 11.92%, compared to the single channel based bio-signal lossless data compressor. PMID:25237900
Gutiérrez, J. J.; Russell, James K.
2016-01-01
Background. Cardiopulmonary resuscitation (CPR) feedback devices are being increasingly used. However, current accelerometer-based devices overestimate chest displacement when CPR is performed on soft surfaces, which may lead to insufficient compression depth. Aim. To assess the performance of a new algorithm for measuring compression depth and rate based on two accelerometers in a simulated resuscitation scenario. Materials and Methods. Compressions were provided to a manikin on two mattresses, foam and sprung, with and without a backboard. One accelerometer was placed on the chest and the second at the manikin's back. Chest displacement and mattress displacement were calculated from the spectral analysis of the corresponding acceleration every 2 seconds and subtracted to compute the actual sternal-spinal displacement. Compression rate was obtained from the chest acceleration. Results. Median unsigned error in depth was 2.1 mm (4.4%). Error was 2.4 mm in the foam and 1.7 mm in the sprung mattress (p < 0.001). Error was 3.1/2.0 mm and 1.8/1.6 mm with/without backboard for foam and sprung, respectively (p < 0.001). Median error in rate was 0.9 cpm (1.0%), with no significant differences between test conditions. Conclusion. The system provided accurate feedback on chest compression depth and rate on soft surfaces. Our solution compensated mattress displacement, avoiding overestimation of compression depth when CPR is performed on soft surfaces. PMID:27999808
Knutsen, Ashleen R; Borkowski, Sean L; Ebramzadeh, Edward; Flanagan, Colleen L; Hollister, Scott J; Sangiorgio, Sophia N
2015-09-01
Recently, as an alternative to metal spinal fusion cages, 3D printed bioresorbable materials have been explored; however, the static and fatigue properties of these novel cages are not well known. Unfortunately, current ASTM testing standards used to determine these properties were designed prior to the advent of bioresorbable materials for cages. Therefore, the applicability of these standards for bioresorbable materials is unknown. In this study, an image-based topology and a conventional 3D printed bioresorbable poly(ε)-caprolactone (PCL) cervical cage design were tested in compression, compression-shear, and torsion, to establish their static and fatigue properties. Difficulties were in fact identified in establishing failure criteria and in particular determining compressive failure load. Given these limitations, under static loads, both designs withstood loads of over 650 N in compression, 395 N in compression-shear, and 0.25 Nm in torsion, prior to yielding. Under dynamic testing, both designs withstood 5 million (5M) cycles of compression at 125% of their respective yield forces. Geometry significantly affected both the static and fatigue properties of the cages. The measured compressive yield loads fall within the reported physiological ranges; consequently, these PCL bioresorbable cages would likely require supplemental fixation. Most importantly, supplemental testing methods may be necessary beyond the current ASTM standards, to provide more accurate and reliable results, ultimately improving preclinical evaluation of these devices. Copyright © 2015 Elsevier Ltd. All rights reserved.
A real-time ECG data compression and transmission algorithm for an e-health device.
Lee, SangJoon; Kim, Jungkuk; Lee, Myoungho
2011-09-01
This paper introduces a real-time data compression and transmission algorithm between e-health terminals for a periodic ECGsignal. The proposed algorithm consists of five compression procedures and four reconstruction procedures. In order to evaluate the performance of the proposed algorithm, the algorithm was applied to all 48 recordings of MIT-BIH arrhythmia database, and the compress ratio (CR), percent root mean square difference (PRD), percent root mean square difference normalized (PRDN), rms, SNR, and quality score (QS) values were obtained. The result showed that the CR was 27.9:1 and the PRD was 2.93 on average for all 48 data instances with a 15% window size. In addition, the performance of the algorithm was compared to those of similar algorithms introduced recently by others. It was found that the proposed algorithm showed clearly superior performance in all 48 data instances at a compression ratio lower than 15:1, whereas it showed similar or slightly inferior PRD performance for a data compression ratio higher than 20:1. In light of the fact that the similarity with the original data becomes meaningless when the PRD is higher than 2, the proposed algorithm shows significantly better performance compared to the performance levels of other algorithms. Moreover, because the algorithm can compress and transmit data in real time, it can be served as an optimal biosignal data transmission method for limited bandwidth communication between e-health devices.
Fernández, Sarah N.; González, Rafael; Solana, María J.; Urbano, Javier; Toledo, Blanca
2017-01-01
Aims Chest compressions (CC) during cardiopulmonary resuscitation are not sufficiently effective in many circumstances. Mechanical CC could be more effective than manual CC, but there are no studies comparing both techniques in children. The objective of this study was to compare the effectiveness of manual and mechanical chest compressions with Thumper device in a pediatric cardiac arrest animal model. Material and methods An experimental model of asphyxial cardiac arrest (CA) in 50 piglets (mean weight 9.6 kg) was used. Animals were randomized to receive either manual CC or mechanical CC using a pediatric piston chest compressions device (Life-Stat®, Michigan Instruments). Mean arterial pressure (MAP), arterial blood gases and end-tidal CO2 (etCO2) values were measured at 3, 9, 18 and 24 minutes after the beginning of resuscitation. Results There were no significant differences in MAP, DAP, arterial blood gases and etCO2 between chest compression techniques during CPR. Survival rate was higher in the manual CC (15 of 30 = 50%) than in the mechanical CC group (3 of 20 = 15%) p = 0.016. In the mechanical CC group there was a non significant higher incidence of haemorrhage through the endotracheal tube (45% vs 20%, p = 0.114). Conclusions In a pediatric animal model of cardiac arrest, mechanical piston chest compressions produced lower survival rates than manual chest compressions, without any differences in hemodynamic and respiratory parameters. PMID:29190801
46 CFR 56.30-25 - Flared, flareless, and compression fittings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Flared, flareless, and compression fittings. 56.30-25 Section 56.30-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING... devices, and shape memory alloys. Fittings to which this section applies must be designed, constructed...
42 CFR 84.141 - Breathing gas; minimum requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air...) Compressed, gaseous breathing air shall meet the applicable minimum grade requirements for Type I gaseous air set forth in the Compressed Gas Association Commodity Specification for Air, G-7.1, 1966 (Grade D or...
42 CFR 84.141 - Breathing gas; minimum requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air...) Compressed, gaseous breathing air shall meet the applicable minimum grade requirements for Type I gaseous air set forth in the Compressed Gas Association Commodity Specification for Air, G-7.1, 1966 (Grade D or...
42 CFR 84.141 - Breathing gas; minimum requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air...) Compressed, gaseous breathing air shall meet the applicable minimum grade requirements for Type I gaseous air set forth in the Compressed Gas Association Commodity Specification for Air, G-7.1, 1966 (Grade D or...
42 CFR 84.141 - Breathing gas; minimum requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air...) Compressed, gaseous breathing air shall meet the applicable minimum grade requirements for Type I gaseous air set forth in the Compressed Gas Association Commodity Specification for Air, G-7.1, 1966 (Grade D or...
46 CFR 112.50-7 - Compressed air starting.
Code of Federal Regulations, 2011 CFR
2011-10-01
... AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-7 Compressed... emergency generator room and a handcranked, diesel-powered air compressor for recharging the air receiver..., and energy storing devices must be in the emergency generator room, except for the main or auxiliary...
46 CFR 112.50-7 - Compressed air starting.
Code of Federal Regulations, 2010 CFR
2010-10-01
... AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-7 Compressed... emergency generator room and a handcranked, diesel-powered air compressor for recharging the air receiver..., and energy storing devices must be in the emergency generator room, except for the main or auxiliary...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vauzour, B.; Laboratoire d'Optique Appliquée, ENSTA-CNRS-Ecole Polytechnique, UMR 7639, 91761 Palaiseau; Debayle, A.
2014-03-15
We present results on laser-driven relativistic electron beam propagation through aluminum samples, which are either solid and cold or compressed and heated by laser-induced shock. A full numerical description of fast electron generation and transport is found to reproduce the experimental absolute K{sub α} yield and spot size measurements for varying target thicknesses, and to sequentially quantify the collisional and resistive electron stopping powers. The results demonstrate that both stopping mechanisms are enhanced in compressed Al samples and are attributed to the increase in the medium density and resistivity, respectively. For the achieved time- and space-averaged electronic current density, 〈j{submore » h}〉∼8×10{sup 10} A/cm{sup 2} in the samples, the collisional and resistive stopping powers in warm and compressed Al are estimated to be 1.5 keV/μm and 0.8 keV/μm, respectively. By contrast, for cold and solid Al, the corresponding estimated values are 1.1 keV/μm and 0.6 keV/μm. Prospective numerical simulations involving higher j{sub h} show that the resistive stopping power can reach the same level as the collisional one. In addition to the effects of compression, the effect of the transient behavior of the resistivity of Al during relativistic electron beam transport becomes progressively more dominant, and for a significantly high current density, j{sub h}∼10{sup 12} A/cm{sup 2}, cancels the difference in the electron resistive stopping power (or the total stopping power in units of areal density) between solid and compressed samples. Analytical calculations extend the analysis up to j{sub h}=10{sup 14} A/cm{sup 2} (representative of the full-scale fast ignition scenario of inertial confinement fusion), where a very rapid transition to the Spitzer resistivity regime saturates the resistive stopping power, averaged over the electron beam duration, to values of ∼1 keV/μm.« less
Global warming and the regional persistence of a temperate-zone insect (Tenodera sinensis)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rooney, T.P.; Smith, A.T.; Hurd, L.E.
Models based on the paleoecological record predict that animals in temperate regions will respond to global warming by migrating poleward to remain within their temperature tolerance ranges. The effect of global warming on invertebrates is of great concern because of their critical role in ecosystem structure and function. Migration poses a problem for many species because of their limited dispersal abilities. The life cycle of a typical temperature zone univoltine insect. Tenodera sinensis (Mantodea: Mantidae) is constrained by degree-days per season: too few prevent maturation before the killing frost in the autumn; too many allow egg hatch before a killingmore » frost. We used field and laboratory observation on the life history and ecology of this species to predict the effect of global warming on the regional distribution of this insect by the end of the next century. Based on the simplified, best-case, biological assumptions of our model, the geographical range of T. sinensis in eastern North America would be compressed toward the northern part of its present contiguous regional distribution. This and other univoltine temperate species with long maturation periods and low vagility could face regional extinction if global warming predictions are accurate. 61 refs., 3 figs.« less
Lee, Won Seok; Won, Sejeong; Park, Jeunghee; Lee, Jihye; Park, Inkyu
2012-06-07
Controlled alignment and mechanically robust bonding between nanowires (NWs) and electrodes are essential requirements for reliable operation of functional NW-based electronic devices. In this work, we developed a novel process for the alignment and bonding between NWs and metal electrodes by using thermo-compressive transfer printing. In this process, bottom-up synthesized NWs were aligned in parallel by shear loading onto the intermediate substrate and then finally transferred onto the target substrate with low melting temperature metal electrodes. In particular, multi-layer (e.g. Cr/Au/In/Au and Cr/Cu/In/Au) metal electrodes are softened at low temperatures (below 100 °C) and facilitate submergence of aligned NWs into the surface of electrodes at a moderate pressure (∼5 bar). By using this thermo-compressive transfer printing process, robust electrical and mechanical contact between NWs and metal electrodes can be realized. This method is believed to be very useful for the large-area fabrication of NW-based electrical devices with improved mechanical robustness, electrical contact resistance, and reliability.
Laser and acoustic lens for lithotripsy
Visuri, Steven R.; Makarewicz, Anthony J.; London, Richard A.; Benett, William J.; Krulevitch, Peter; Da Silva, Luiz B.
2002-01-01
An acoustic focusing device whose acoustic waves are generated by laser radiation through an optical fiber. The acoustic energy is capable of efficient destruction of renal and biliary calculi and deliverable to the site of the calculi via an endoscopic procedure. The device includes a transducer tip attached to the distal end of an optical fiber through which laser energy is directed. The transducer tip encapsulates an exogenous absorbing dye. Under proper irradiation conditions (high absorbed energy density, short pulse duration) a stress wave is produced via thermoelastic expansion of the absorber for the destruction of the calculi. The transducer tip can be configured into an acoustic lens such that the transmitted acoustic wave is shaped or focused. Also, compressive stress waves can be reflected off a high density/low density interface to invert the compressive wave into a tensile stress wave, and tensile stresses may be more effective in some instances in disrupting material as most materials are weaker in tension than compression. Estimations indicate that stress amplitudes provided by this device can be magnified more than 100 times, greatly improving the efficiency of optical energy for targeted material destruction.
In situ repair of a failed compression fitting
Wolbert, R.R.; Jandrasits, W.G.
1985-08-05
A method and apparatus for the in situ repair of a failed compression fitting is provided. Initially, a portion of a guide tube is inserted coaxially in the bore of the compression fitting and locked therein. A close fit dethreading device is then coaxially mounted on the guide tube to cut the threads from the fitting. Thereafter, the dethreading device and guide tube are removed and a new fitting is inserted onto the dethreaded fitting with the body of the new fitting overlaying the dethreaded portion. Finally, the main body of the new fitting is welded to the main body of the old fitting whereby a new threaded portion of the replacement fitting is precisely coaxial with the old threaded portion. If needed, a bushing is located on the dethreaded portion which is sized to fit snugly between the dethreaded portion and the new fitting. Preferably, the dethreading device includes a cutting tool which is moved incrementally in a radial direction whereby the threads are cut from the threaded portion of the failed fitting in increments.
Rosati, R; Rebuffat, C; Pezzuoli, G
1988-01-01
The authors report the preliminary results obtained in animal and clinical experimentation of a new mechanical device for circular anastomosis which they have developed. It is a gun that places an apparatus consisting of three polypropylene rings that, through the compression among them of the severed edges of the bowel, realize a sutureless anastomosis and are spontaneously evacuated. Fifty-eight colonic anastomoses were performed in dogs with this device; 23 stapled colonic anastomoses were also executed concurrently. Forty-four animals underwent a relaparotomy to remove the colonic specimen containing the anastomoses. Bursting pressure and the histologic features of the anastomoses were evaluated at different time intervals after operation. A good healing of all compression anastomoses was observed, thereby allowing them to initiate the experience in humans. Thirteen anastomoses (6 colorectal extraperitoneal, 1 colorectal intraperitoneal, 5 colocolonic, 1 ileorectal) were performed at the 1st Surgical Department, Milan University. One subclinical leakage (7.7%) spontaneously healed in a few days. No stenoses were observed. Images Fig. 1. Fig. 2., Fig. 4., Fig. 6. Fig. 3., Fig. 5., Fig. 7. Fig. 8. Fig. 9. PMID:3345111
In situ repair of a failed compression fitting
Wolbert, Ronald R.; Jandrasits, Walter G.
1986-01-01
A method and apparatus for the in situ repair of a failed compression fitg is provided. Initially, a portion of a guide tube is inserted coaxially in the bore of the compression fitting and locked therein. A close fit dethreading device is then coaxially mounted on the guide tube to cut the threads from the fitting. Thereafter, the dethreading device and guide tube are removed and a new fitting is inserted onto the dethreaded fitting with the body of the new fitting overlaying the dethreaded portion. Finally, the main body of the new fitting is welded to the main body of the old fitting whereby a new threaded portion of the replacement fitting is precisely coaxial with the old threaded portion. If needed, a bushing is located on the dethreaded portion which is sized to fit snugly between the dethreaded portion and the new fitting. Preferably, the dethreading device includes a cutting tool which is moved incrementally in a radial direction whereby the threads are cut from the threaded portion of the failed fitting in increments.
Surgical stapling device–tissue interactions: what surgeons need to know to improve patient outcomes
Chekan, Edward; Whelan, Richard L
2014-01-01
The introduction of both new surgical devices and reengineered existing devices leads to modifications in the way traditional tasks are carried out and allows for the development of new surgical techniques. Each new device has benefits and limitations in regards to tissue interactions that, if known, allow for optimal use. However, most surgeons are unaware of these attributes and, therefore, new device introduction creates a “knowledge gap” that is potentially dangerous. The goal of this review is to present a framework for the study of device– tissue interactions and to initiate the process of “filling in” the knowledge gap via the available literature. Surgical staplers, which are continually being developed, are the focus of this piece. The integrity of the staple line, which depends on adequate tissue compression, is the primary factor in creating a stable anastomosis. This review focuses on published studies that evaluated the creation of stable anastomoses in bariatric, thoracic, and colorectal procedures. Understanding how staplers interact with target tissues is key to improving patient outcomes. It is clear from this review that each tissue type presents unique challenges. The thickness of each tissue varies as do the intrinsic biomechanical properties that determine the ideal compressive force and prefiring compression time for each tissue type. The correct staple height will vary depending on these tissue-specific properties and the tissue pathology. These studies reinforce the universal theme that compression, staple height, tissue thickness, tissue compressibility, and tissue type must all be considered by the surgeon prior to choosing a stapler and cartridge. The surgeon’s experience, therefore, is a critical factor. Educational programs need to be established to inform and update surgeons on the characteristics of each stapler. It is hoped that the framework presented in this review will facilitate this process. PMID:25246812
Parnia, Sam; Nasir, Asad; Ahn, Anna; Malik, Hanan; Yang, Jie; Zhu, Jiawen; Dorazi, Francis; Richman, Paul
2014-04-01
A major hurdle limiting the ability to improve the quality of resuscitation has been the lack of a noninvasive real-time detection system capable of monitoring the quality of cerebral and other organ perfusion, as well as oxygen delivery during cardiopulmonary resuscitation. Here, we report on a novel system of cerebral perfusion targeted resuscitation. An observational study evaluating the role of cerebral oximetry (Equanox; Nonin, Plymouth, MI, and Invos; Covidien, Mansfield, MA) as a real-time marker of cerebral perfusion and oxygen delivery together with the impact of an automated mechanical chest compression system (Life Stat; Michigan Instruments, Grand Rapids, MI) on oxygen delivery and return of spontaneous circulation following in-hospital cardiac arrest. Tertiary medical center. In-hospital cardiac arrest patients (n = 34). Cerebral oximetry provided real-time information regarding the quality of perfusion and oxygen delivery. The use of automated mechanical chest compression device (n = 12) was associated with higher regional cerebral oxygen saturation compared with manual chest compression device (n = 22) (53.1% ± 23.4% vs 24% ± 25%, p = 0.002). There was a significant difference in mean regional cerebral oxygen saturation (median % ± interquartile range) in patients who achieved return of spontaneous circulation (n = 15) compared with those without return of spontaneous circulation (n = 19) (47.4% ± 21.4% vs 23% ± 18.42%, p < 0.001). After controlling for patients achieving return of spontaneous circulation or not, significantly higher mean regional cerebral oxygen saturation levels during cardiopulmonary resuscitation were observed in patients who were resuscitated using automated mechanical chest compression device (p < 0.001). The integration of cerebral oximetry into cardiac arrest resuscitation provides a novel noninvasive method to determine the quality of cerebral perfusion and oxygen delivery to the brain. The use of automated mechanical chest compression device during in-hospital cardiac arrest may lead to improved oxygen delivery and organ perfusion.
Muscle powered blood pump: design and initial test results.
Trumble, D R; Magovern, J A
1999-01-01
A pneumatic ventricular assist device (Sarns/3M) has been redesigned for low volume hydraulic actuation to accommodate muscle powered drive systems. Design modifications include adding a bellows/piston mechanism (to compress the blood sac) and a compliance chamber for volume compensation. A simple prototype device was constructed to measure the efficacy of piston pump actuation and to validate pusher plate design. Device manufacture was affected by removing the drive line housing from the pneumatic pump and replacing it with a piston/bushing mechanism. A convex piston profile was chosen to maximize ejection fraction and minimize device size. Stroke volume was found to be a linear function of piston displacement (approximately 3 ml/mm) and reached a maximum value of 45 ml. Mean compression forces of 46-56 N acting during a 12 mm stroke (2.1 L/min at 60 cycles/min) were sufficient to generate mean afterload pressures of 70-110 mm Hg in a mock circulatory loop. Peak compression forces ranged from 72 to 86 N and work input was calculated to be 552-672 mJ/stroke. These data indicate that this method for delivering muscle power to the bloodstream is both mechanically viable and compatible with the functional capacity of conditioned latissimus dorsi muscle.
NASA Technical Reports Server (NTRS)
Kimura, S.; Steinbach, G. C.; Watenpaugh, D. E.; Hargens, A. R.
2001-01-01
STUDY DESIGN: Axial load-dependent changes in the lumbar spine of supine healthy volunteers were examined using a compression device compatible with magnetic resonance imaging. OBJECTIVE: To test two hypotheses: Axial loading of 50% body weight from shoulder to feet in supine posture 1) simulates the upright lumbar spine alignment and 2) decreases disc height significantly. SUMMARY OF BACKGROUND DATA: Axial compression on the lumbar spine has significantly narrowed the lumbar dural sac in patients with sciatica, neurogenic claudication or both. METHODS: Using a device compatible with magnetic resonance imaging, the lumbar spine of eight young volunteers, ages 22 to 36 years, was axially compressed with a force equivalent to 50% of body weight, approximating the normal load on the lumbar spine in upright posture. Sagittal lumbar magnetic resonance imaging was performed to measure intervertebral angle and disc height before and during compression. RESULTS: Each intervertebral angle before and during compression was as follows: T12-L1 (-0.8 degrees +/- 2.5 degrees and -1.5 degrees +/- 2.6 degrees ), L1-L2 (0.7 degrees +/- 1.4 degrees and 3.3 degrees +/- 2.9 degrees ), L2-L3 (4.7 degrees +/- 3.5 degrees and 7.3 degrees +/- 6 degrees ), L3-L4 (7.9 degrees +/- 2.4 degrees and 11.1 degrees +/- 4.6 degrees ), L4-L5 (14.3 degrees +/- 3.3 degrees and 14.9 degrees +/- 1.7 degrees ), L5-S1 (25.8 degrees +/- 5.2 degrees and 20.8 degrees +/- 6 degrees ), and L1-S1 (53.4 degrees +/- 11.9 degrees and 57.3 degrees +/- 16.7 degrees ). Negative values reflect kyphosis, and positive values reflect lordosis. A significant difference between values before and during compression was obtained at L3-L4 and L5-S1. There was a significant decrease in disc height only at L4-L5 during compression. CONCLUSIONS: The axial force of 50% body weight in supine posture simulates the upright lumbar spine morphologically. No change in intervertebral angle occurred at L4-L5. However, disc height at L4-L5 decreased significantly during compression.
... is important to use an oral syringe (measuring device) to accurately measure and take your dose of mercaptopurine. If you do not ... one. After you use the oral syringe to take your medication, remove the plunger from the rest of the measuring device, wash both parts with warm soapy water, and ...
21 CFR 884.4900 - Obstetric table and accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Devices § 884.4900 Obstetric table and accessories. (a) Identification. An obstetric table is a device with adjustable sections designed to support a patient in the various positions required during...: patient equipment, support attachments, and cabinets for warming instruments and disposing of wastes. (b...
Pressures of Wilderness Improvised Wound Irrigation Techniques: How Do They Compare?
Luck, John B; Campagne, Danielle; Falcón Banchs, Roberto; Montoya, Jason; Spano, Susanne J
2016-12-01
Compare the pressures measured by improvised irrigation techniques to a commercial device and to prior reports. Devices tested included a commercial 500-mL compressible plastic bottle with splash guard, a 10-mL syringe, a 10-mL syringe with a 14-ga angiocatheter (with needle removed), a 50-mL Sawyer syringe, a plastic bag punctured with a 14-ga needle, a plastic bottle with cap punctured by a 14-ga needle, a plastic bottle with sports top, and a bladder-style hydration system. Each device was leveled on a support, manually compressed, and aimed toward a piece of glass. A high-speed camera placed behind the glass recorded the height of the stream upon impact at its highest and lowest point. Measurements were recorded 5 times for each device. Pressures in pounds per square inch (psi) were calculated. The syringe and angiocatheter pressures measured the highest pressures (16-49 psi). The 50-mL syringe (7-11 psi), 14-ga punctured water bottle (7-25 psi), and water bottle with sports top (3-7 psi) all measured at or above the commercial device (4-5 psi). Only the bladder-style hydration system (1-2 psi) and plastic bag with 14-ga needle puncture (2-3 psi) did not reach pressures generated by the commercial device. Pressures are consistent with those previously reported. All systems using compressible water bottles and all syringe-based systems provided pressures at or exceeding a commercial wound irrigation device. A 14-ga punctured plastic bag and bladder-style hydration pack failed to generate similar irrigation pressures. Copyright © 2016 Wilderness Medical Society. All rights reserved.
The effects of compressive preloads on the compression-after-impact strength of carbon/epoxy
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Lance, D. G.
1992-01-01
A preloading device was used to examine the effects of compressive prestress on the compression-after-impact (CAI) strength of 16-ply, quasi-isotropic carbon epoxy test coupons. T300/934 material was evaluated at preloads from 200 to 4000 lb at impact energies from 1 to 9 joules. IM7/8551-7 material was evaluated at preloads from 4000 to 10,000 lb at impact energies from 4 to 16 joules. Advanced design of experiments methodology was used to design and evaluate the test matrices. The results showed that no statistically significant change in CAI strength could be contributed to the amount of compressive preload applied to the specimen.
Ported jacket for use in deformation measurement apparatus
Wagner, L.A.; Senseny, P.E.; Mellegard, K.D.; Olsberg, S.B.
1990-03-06
A device for allowing deformation measurement of a jacketed specimen when the specimen is loaded includes an elastomeric specimen container or jacket surrounding a specimen while the specimen is being loaded by a test apparatus. The specimen jacket wall is compressible, and the wall follows and allows deformation of the specimen. The jacket wall of compressible material is provided with at least one opening and a thin layer or shim of substantially non-compressible (metal) material which covers and seals this opening. An extensometer is then positioned with its specimen engaging contact members engaging the substantially non-compressible material to measure the deformation of the specimen when the specimen is loaded, without compressibility effects of the jacket. 9 figs.
Gates, Simon; Lall, Ranjit; Quinn, Tom; Deakin, Charles D; Cooke, Matthew W; Horton, Jessica; Lamb, Sarah E; Slowther, Anne-Marie; Woollard, Malcolm; Carson, Andy; Smyth, Mike; Wilson, Kate; Parcell, Garry; Rosser, Andrew; Whitfield, Richard; Williams, Amanda; Jones, Rebecca; Pocock, Helen; Brock, Nicola; Black, John Jm; Wright, John; Han, Kyee; Shaw, Gary; Blair, Laura; Marti, Joachim; Hulme, Claire; McCabe, Christopher; Nikolova, Silviya; Ferreira, Zenia; Perkins, Gavin D
2017-03-01
Mechanical chest compression devices may help to maintain high-quality cardiopulmonary resuscitation (CPR), but little evidence exists for their effectiveness. We evaluated whether or not the introduction of Lund University Cardiopulmonary Assistance System-2 (LUCAS-2; Jolife AB, Lund, Sweden) mechanical CPR into front-line emergency response vehicles would improve survival from out-of-hospital cardiac arrest (OHCA). Evaluation of the LUCAS-2 device as a routine ambulance service treatment for OHCA. Pragmatic, cluster randomised trial including adults with non-traumatic OHCA. Ambulance dispatch staff and those collecting the primary outcome were blind to treatment allocation. Blinding of the ambulance staff who delivered the interventions and reported initial response to treatment was not possible. We also conducted a health economic evaluation and a systematic review of all trials of out-of-hospital mechanical chest compression. Four UK ambulance services (West Midlands, North East England, Wales and South Central), comprising 91 urban and semiurban ambulance stations. Clusters were ambulance service vehicles, which were randomly assigned (approximately 1 : 2) to the LUCAS-2 device or manual CPR. Patients were included if they were in cardiac arrest in the out-of-hospital environment. Exclusions were patients with cardiac arrest as a result of trauma, with known or clinically apparent pregnancy, or aged < 18 years. Patients received LUCAS-2 mechanical chest compression or manual chest compressions according to the first trial vehicle to arrive on scene. Survival at 30 days following cardiac arrest; survival without significant neurological impairment [Cerebral Performance Category (CPC) score of 1 or 2]. We enrolled 4471 eligible patients (1652 assigned to the LUCAS-2 device and 2819 assigned to control) between 15 April 2010 and 10 June 2013. A total of 985 (60%) patients in the LUCAS-2 group received mechanical chest compression and 11 (< 1%) patients in the control group received LUCAS-2. In the intention-to-treat analysis, 30-day survival was similar in the LUCAS-2 (104/1652, 6.3%) and manual CPR groups [193/2819, 6.8%; adjusted odds ratio (OR) 0.86, 95% confidence interval (CI) 0.64 to 1.15]. Survival with a CPC score of 1 or 2 may have been worse in the LUCAS-2 group (adjusted OR 0.72, 95% CI 0.52 to 0.99). No serious adverse events were noted. The systematic review found no evidence of a survival advantage if mechanical chest compression was used. The health economic analysis showed that LUCAS-2 was dominated by manual chest compression. There was substantial non-compliance in the LUCAS-2 arm. For 272 out of 1652 patients (16.5%), mechanical chest compression was not used for reasons that would not occur in clinical practice. We addressed this issue by using complier average causal effect analyses. We attempted to measure CPR quality during the resuscitation attempts of trial participants, but were unable to do so. There was no evidence of improvement in 30-day survival with LUCAS-2 compared with manual compressions. Our systematic review of recent randomised trials did not suggest that survival or survival without significant disability may be improved by the use of mechanical chest compression. The use of mechanical chest compression for in-hospital cardiac arrest, and in specific circumstances (e.g. transport), has not yet been evaluated. Current Controlled Trials ISRCTN08233942. This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment ; Vol. 21, No. 11. See the NIHR Journals Library website for further project information.
Survived ileocecal blowout from compressed air.
Weber, Marco; Kolbus, Frank; Dressler, Jan; Lessig, Rüdiger
2011-03-01
Industrial accidents with compressed air entering the gastro-intestinal tract often run fatally. The pressures usually over-exceed those used by medical applications such as colonoscopy and lead to vast injuries of the intestines with high mortality. The case described in this report is of a 26-year-old man who was harmed by compressed air that entered through the anus. He survived because of fast emergency operation. This case underlines necessity of explicit instruction considering hazards handling compressed air devices to maintain safety at work. Further, our observations support the hypothesis that the mucosa is the most elastic layer of the intestine wall.
Use of the Abdominal Aortic Tourniquet for Hemorrhage Control
2016-06-01
compression to the aorta at the abdominal-pelvic junction to occlude blood flow in the common iliac and inguinal arteries. The target of the compression...circumferential device that utilizes a belt, windlass and pneumatic pressure to compress the aorta . The belt and windlass together greatly increase the...clamping the aorta or fully stopping all blood flow to the pelvis and lower extremities. In essence the AAT™ acts as a valve to figuratively ‘turn the
Remote possibly hazardous content container sampling device
Volz, David L.
1998-01-01
The present invention relates to an apparatus capable of sampling enclosed containers, where the contents of the container is unknown. The invention includes a compressed air device capable of supplying air pressure, device for controlling the amount of air pressure applied, a pneumatic valve, a sampling device having a hollow, sampling insertion needle suspended therein and device to communicate fluid flow between the container and a containment vessel, pump or direct reading instrument.
A Standard Mammography Unit - Standard 3D Ultrasound Probe Fusion Prototype: First Results.
Schulz-Wendtland, Rüdiger; Jud, Sebastian M; Fasching, Peter A; Hartmann, Arndt; Radicke, Marcus; Rauh, Claudia; Uder, Michael; Wunderle, Marius; Gass, Paul; Langemann, Hanna; Beckmann, Matthias W; Emons, Julius
2017-06-01
The combination of different imaging modalities through the use of fusion devices promises significant diagnostic improvement for breast pathology. The aim of this study was to evaluate image quality and clinical feasibility of a prototype fusion device (fusion prototype) constructed from a standard tomosynthesis mammography unit and a standard 3D ultrasound probe using a new method of breast compression. Imaging was performed on 5 mastectomy specimens from patients with confirmed DCIS or invasive carcinoma (BI-RADS ™ 6). For the preclinical fusion prototype an ABVS system ultrasound probe from an Acuson S2000 was integrated into a MAMMOMAT Inspiration (both Siemens Healthcare Ltd) and, with the aid of a newly developed compression plate, digital mammogram and automated 3D ultrasound images were obtained. The quality of digital mammogram images produced by the fusion prototype was comparable to those produced using conventional compression. The newly developed compression plate did not influence the applied x-ray dose. The method was not more labour intensive or time-consuming than conventional mammography. From the technical perspective, fusion of the two modalities was achievable. In this study, using only a few mastectomy specimens, the fusion of an automated 3D ultrasound machine with a standard mammography unit delivered images of comparable quality to conventional mammography. The device allows simultaneous ultrasound - the second important imaging modality in complementary breast diagnostics - without increasing examination time or requiring additional staff.
Plaisance, Patrick; Lurie, Keith G; Vicaut, Eric; Martin, Dominique; Gueugniaud, Pierre-Yves; Petit, Jean-Luc; Payen, Didier
2004-06-01
The purpose of this multicentre clinical randomized controlled blinded prospective trial was to determine whether an inspiratory impedance threshold device (ITD), when used in combination with active compression-decompression (ACD) cardiopulmonary resuscitation (CPR), would improve survival rates in patients with out-of-hospital cardiac arrest. Patients were randomized to receive either a sham (n = 200) or an active impedance threshold device (n = 200) during advanced cardiac life support performed with active compression-decompression cardiopulmonary resuscitation. The primary endpoint of this study was 24 h survival. The 24 h survival rates were 44/200 (22%) with the sham valve and 64/200 (32%) with the active valve (P = 0.02). The number of patients who had a return of spontaneous circulation (ROSC), intensive care unit (ICU) admission, and hospital discharge rates was 77 (39%), 57 (29%), and 8 (4%) in the sham valve group versus 96 (48%) (P = 0.05), 79 (40%) (P = 0.02), and 10 (5%) (P = 0.6) in the active valve group. Six out of ten survivors in the active valve group and 1/8 survivors in the sham group had normal neurological function at hospital discharge (P = 0.1). The use of an impedance valve in patients receiving active compression-decompression cardiopulmonary resuscitation for out-of-hospital cardiac arrest significantly improved 24 h survival rates.
Schulz-Wendtland, Rüdiger; Jud, Sebastian M.; Fasching, Peter A.; Hartmann, Arndt; Radicke, Marcus; Rauh, Claudia; Uder, Michael; Wunderle, Marius; Gass, Paul; Langemann, Hanna; Beckmann, Matthias W.; Emons, Julius
2017-01-01
Aim The combination of different imaging modalities through the use of fusion devices promises significant diagnostic improvement for breast pathology. The aim of this study was to evaluate image quality and clinical feasibility of a prototype fusion device (fusion prototype) constructed from a standard tomosynthesis mammography unit and a standard 3D ultrasound probe using a new method of breast compression. Materials and Methods Imaging was performed on 5 mastectomy specimens from patients with confirmed DCIS or invasive carcinoma (BI-RADS ™ 6). For the preclinical fusion prototype an ABVS system ultrasound probe from an Acuson S2000 was integrated into a MAMMOMAT Inspiration (both Siemens Healthcare Ltd) and, with the aid of a newly developed compression plate, digital mammogram and automated 3D ultrasound images were obtained. Results The quality of digital mammogram images produced by the fusion prototype was comparable to those produced using conventional compression. The newly developed compression plate did not influence the applied x-ray dose. The method was not more labour intensive or time-consuming than conventional mammography. From the technical perspective, fusion of the two modalities was achievable. Conclusion In this study, using only a few mastectomy specimens, the fusion of an automated 3D ultrasound machine with a standard mammography unit delivered images of comparable quality to conventional mammography. The device allows simultaneous ultrasound – the second important imaging modality in complementary breast diagnostics – without increasing examination time or requiring additional staff. PMID:28713173
NASA Astrophysics Data System (ADS)
Wijaya, Surya Li; Savvides, Marios; Vijaya Kumar, B. V. K.
2005-02-01
Face recognition on mobile devices, such as personal digital assistants and cell phones, is a big challenge owing to the limited computational resources available to run verifications on the devices themselves. One approach is to transmit the captured face images by use of the cell-phone connection and to run the verification on a remote station. However, owing to limitations in communication bandwidth, it may be necessary to transmit a compressed version of the image. We propose using the image compression standard JPEG2000, which is a wavelet-based compression engine used to compress the face images to low bit rates suitable for transmission over low-bandwidth communication channels. At the receiver end, the face images are reconstructed with a JPEG2000 decoder and are fed into the verification engine. We explore how advanced correlation filters, such as the minimum average correlation energy filter [Appl. Opt. 26, 3633 (1987)] and its variants, perform by using face images captured under different illumination conditions and encoded with different bit rates under the JPEG2000 wavelet-encoding standard. We evaluate the performance of these filters by using illumination variations from the Carnegie Mellon University's Pose, Illumination, and Expression (PIE) face database. We also demonstrate the tolerance of these filters to noisy versions of images with illumination variations.
Estimation of shear stress by using a myocardial bridge-mural coronary artery simulating device.
Ding, Hao; Yang, Qian; Shang, Kun; Lan, Hailian; Lv, Jie; Liu, Zhilin; Liu, Yang; Sheng, Lixing; Zeng, Yanjun
2017-01-01
This study was aimed at developing a myocardial bridge-mural coronary artery simulative device and analyzing the relationship between shear stress on the mural coronary artery and atherosclerosis. A myocardial bridge-mural coronary artery simulative device was used to simulate experiments in vitro. In the condition of maintaining any related parameters such as system temperature, average flow rate, and heart rate, we calculated and observed changes in proximal and distal mean values, and oscillatory value of shear stress on the mural coronary artery by regulating the compression level of the myocardial bridge to the mural coronary artery. Under 0% compression, no significant differences were observed in distal and proximal mean values and oscillatory value of the shear stress on the mural coronary artery. With the increase in the degree of compression, the mean shear stress at the distal end was greater than that at the proximal end, but the oscillatory value of the shear stress at the proximal end was greater than that at the distal end. The experimental results of this study indicate that myocardial bridge compression leads to abnormal hemodynamics at the proximal end of the mural coronary artery. This abnormal phenomenon is of great significance in the study of atherosclerosis hemodynamic pathogenesis, which has potential clinical value for pathological effects and treatments of myocardial bridge.
Device for improved air and fuel distribution to a combustor
Laster, Walter R.; Schilp, Reinhard
2016-05-31
A flow conditioning device (30, 50, 70, 100, 150) for a can annular gas turbine engine, including a plurality of flow elements (32, 34, 52, 54, 72, 74, 102) disposed in a compressed air flow path (42, 60, 80, 114, 122) leading to a combustor (12), configured such that relative adjustment of at least one flow directing element (32, 52, 72, 110) with respect to an adjacent flow directing element (34, 54, 74, 112, 120) during operation of the gas turbine engine is effective to adjust a level of choking of the compressed air flow path (42, 60, 80, 114, 122).
Wafer-level packaging with compression-controlled seal ring bonding
Farino, Anthony J
2013-11-05
A device may be provided in a sealed package by aligning a seal ring provided on a first surface of a first semiconductor wafer in opposing relationship with a seal ring that is provided on a second surface of a second semiconductor wafer and surrounds a portion of the second wafer that contains the device. Forcible movement of the first and second wafer surfaces toward one another compresses the first and second seal rings against one another. A physical barrier against the movement, other than the first and second seal rings, is provided between the first and second wafer surfaces.
2016-08-21
less pronounced for pelvis velocity • Seat velocity and dynamic displacement not recorded for this test series – Would provide key information for...effectiveness of seat – Displacement /time history data should be recorded for all future test series UNCLASSIFIED UNCLASSIFIED Conclusions/Future...interfacing with seat manufacturers to broaden occupant protection range – Record dynamic stroke on all drop tower tests to evaluate correlation between displacement rate and lumbar compression UNCLASSIFIED UNCLASSIFIED 17
Modelling of the internal dynamics and density in a tens of joules plasma focus device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquez, Ariel; Gonzalez, Jose; Tarifeno-Saldivia, Ariel
2012-01-15
Using MHD theory, coupled differential equations were generated using a lumped parameter model to describe the internal behaviour of the pinch compression phase in plasma focus discharges. In order to provide these equations with appropriate initial conditions, the modelling of previous phases was included by describing the plasma sheath as planar shockwaves. The equations were solved numerically, and the results were contrasted against experimental measurements performed on the device PF-50J. The model is able to predict satisfactorily the timing and the radial electron density profile at the maximum compression.
Inelastic X-ray Scattering Measurements of Ionization in Warm, Dense Matter
NASA Astrophysics Data System (ADS)
Davis, Paul F.
In this work we demonstrate spectrally resolved x-ray scattering from electron-plasma waves in shock-compressed deuterium and proton-heated matter. Because the spectral signature of inelastic x-ray scattering is strongly dependent on the free electron density of the system, it is used to infer ionization in dynamically heated samples. Using 2-6 ns, 500 J laser pulses from LLNL's Janus laser, we shocked liquid deuterium to pressures approaching 50 GPa, reaching compressions of 4 times liquid density. A second laser produced intense 2 keV x-rays. By collecting and spectrally dispersing forward scattered photons at 45°, the onset of ionization was detected at compressions of about 3 times in the form of plasmon oscillations. Backscattered x-rays bolstered this observation by measuring the free electron distribution through Compton scattering. Comparison with simulations shows very close agreement between the pressure dependence of ionization and molecular dissociation in dynamically compressed deuterium. In a second set of experiments, a 10 ps, 200 J Titan laser pulse was split into two beams. One created a stream of MeV protons to heat samples of boron and boron-nitride and the other pumped 4.5 keV K-alpha radiation in a titanium foil to probe the hot target. We observed scattered x-rays 300 ps after heating, noting a strong difference in average ionization between the two target materials at temperatures of 16 eV and very similar mass densities. Comparison with electron structure calculations suggests that this difference is due to a persistence of long-range ion structure in BN resulting in high-temperature band structure. These results underscore the importance of understanding the complex electron structure of materials even at electron-volt temperatures and gigapascal pressures. Our results provide new data to guide the theoretical modeling of warm, dense matter important to understanding giant planets and inertial fusion targets.
Self-Alining End Supports for Energy Absorber
NASA Technical Reports Server (NTRS)
Alfaro-Bou, E.; Eichelberger, C. P.; Fasanella, E.
1986-01-01
Simple devices stabilize axially-loaded compressive members. Energyabsorbing column held by two end supports, which stabilize column and tolerate misalinement. Column absorbs excess load by collapsing lengthwise. Self-alining supports small, lightweight, and almost maintenance-free. Their use eliminates alinement problem, opening up more applications and providing higher reliability for compressively-loaded energy absorbers.
Compressing and querying multiple GPS traces for transportation planning.
DOT National Transportation Integrated Search
2013-07-01
In recent years, there has been a significant increase in the number of vehicles which have been equipped with : GPS devices. These devices generate huge volumes of trace data, and information extracted from these traces : could significantly help tr...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozaki, N.; Nellis, W. J.; Mashimo, T.
Materials at high pressures and temperatures are of great current interest for warm dense matter physics, planetary sciences, and inertial fusion energy research. Shock-compression equation-of-state data and optical reflectivities of the fluid dense oxide, Gd 3Ga 5O 12 (GGG), were measured at extremely high pressures up to 2.6 TPa (26 Mbar) generated by high-power laser irradiation and magnetically-driven hypervelocity impacts. Above 0.75 TPa, the GGG Hugoniot data approach/reach a universal linear line of fluid metals, and the optical reflectivity most likely reaches a constant value indicating that GGG undergoes a crossover from fluid semiconductor to poor metal with minimum metallicmore » conductivity (MMC). These results suggest that most fluid compounds, e.g., strong planetary oxides, reach a common state on the universal Hugoniot of fluid metals (UHFM) with MMC at sufficiently extreme pressures and temperatures. Lastly, the systematic behaviors of warm dense fluid would be useful benchmarks for developing theoretical equation-of-state and transport models in the warm dense matter regime in determining computational predictions.« less
Nonlinear compression of temporal solitons in an optical waveguide via inverse engineering
NASA Astrophysics Data System (ADS)
Paul, Koushik; Sarma, Amarendra K.
2018-03-01
We propose a novel method based on the so-called shortcut-to-adiabatic passage techniques to achieve fast compression of temporal solitons in a nonlinear waveguide. We demonstrate that soliton compression could be achieved, in principle, at an arbitrarily small distance by inverse-engineering the pulse width and the nonlinearity of the medium. The proposed scheme could possibly be exploited for various short-distance communication protocols and may be even in nonlinear guided wave-optics devices and generation of ultrashort soliton pulses.
NASA Technical Reports Server (NTRS)
Hartfield, Roy J., Jr.; Abbitt, John D., III; Mcdaniel, James C.
1989-01-01
A technique is described for imaging the injectant mole-fraction distribution in nonreacting compressible mixing flow fields. Planar fluorescence from iodine, seeded into air, is induced by a broadband argon-ion laser and collected using an intensified charge-injection-device array camera. The technique eliminates the thermodynamic dependence of the iodine fluorescence in the compressible flow field by taking the ratio of two images collected with identical thermodynamic flow conditions but different iodine seeding conditions.
Isoda, Haruo; Takehara, Yasuo; Fujino, Hitoshi; Sone, Kazuya; Suzuki, Takeshi; Tsuzaki, Yoshinari; Miyazaki, Kouji; Fujie, Michio; Sakahara, Harumi; Maekawa, Yasuaki
2015-01-01
ABSTRACT Cryosurgery is a minimally invasive treatment for certain types of cancers. Argon-based cryosurgical devices are available at present, however a large compressed gas cylinder with the pressure of 300 atmospheres is needed. To overcome these drawbacks, we developed a new cryosurgical probe measuring about 50 cm in length with separate lumens inside for liquid and gaseous ethylene to be used as a thermosiphon and liquid nitrogen-cooled aluminum thermal storage blocks. The probe needle was 8 cm in length and 3 mm in outer diameter. To investigate the freezing capabilities of our new cryosurgical system we inserted the needle 5cm into a poly-acrylamide gel phantom warmed to 36.5 ℃. Thermal storage blocks made of aluminum, cooled at –196 ℃ in liquid nitrogen, were attached to the condenser of the probe and replaced with thermal storage blocks every 4 to 5 minutes to compensate for warming. We took digital camera images of the ice ball at the needle and measured the temperature in certain locations of the cryoprobe. Ice ball formation started at one minute after cooling. The sizes (longest diameter × minimum diameter) at 10, 20 and 30 minutes after the start of the procedure were 4.5×2.1, 4.5×3.1 and 4.6×3.7 cm, respectively. During the procedure the minimum temperature of the condenser was –85 ℃ and the needle was –65 ℃. This newly developed compact cryosurgical probe with thermosiphon effect and cooled thermal storage blocks created an ice ball that can be used for cryosurgery within 20 minutes. PMID:26412886
Fabrication and Deformation of 3D Multilayered Kirigami Microstructures.
Humood, Mohammad; Shi, Yan; Han, Mengdi; Lefebvre, Joseph; Yan, Zheng; Pharr, Matt; Zhang, Yihui; Huang, Yonggang; Rogers, John A; Polycarpou, Andreas A
2018-03-01
Mechanically guided 3D microassembly with controlled compressive buckling represents a promising emerging route to 3D mesostructures in a broad range of advanced materials, including single-crystalline silicon (Si), of direct relevance to microelectronic devices. During practical applications, the assembled 3D mesostructures and microdevices usually undergo external mechanical loading such as out-of-plane compression, which can induce damage in or failure of the structures/devices. Here, the mechanical responses of a few mechanically assembled 3D kirigami mesostructures under flat-punch compression are studied through combined experiment and finite element analyses. These 3D kirigami mesostructures consisting of a bilayer of Si and SU-8 epoxy are formed through integration of patterned 2D precursors with a prestretched elastomeric substrate at predefined bonding sites to allow controlled buckling that transforms them into desired 3D configurations. In situ scanning electron microscopy measurement enables detailed studies of the mechanical behavior of these structures. Analysis of the load-displacement curves allows the measurement of the effective stiffness and elastic recovery of various 3D structures. The compression experiments indicate distinct regimes in the compressive force/displacement curves and reveals different geometry-dependent deformation for the structures. Complementary computational modeling supports the experimental findings and further explains the geometry-dependent deformation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Feasibility Study of Compressive Sensing Underwater Imaging Lidar
2014-03-28
Texas Instruments Digital Micromirror Devices development system. In addition, through these studies, the deficiencies and/or areas of lack...device, such as the Digital Micromirror Device (DMD), to spatially modulate the laser source that illuminates the target plane. The same binary patterns...Digital Micromirror Device (DMD) Applications," Proc. of SPIE, 2003, 4985, 14-25. [8] T. E. Giddings and J. J. Shirron, "Numerical Simulation of the
NASA Astrophysics Data System (ADS)
Cheng, Hu; Zhang, Junran; Li, Yanchun; Li, Gong; Li, Xiaodong; Liu, Jing
2018-01-01
We have designed and implemented a novel DLD for controlling pressure and compression/decompression rate. Combined with the use of the symmetric diamond anvil cells (DACs), the DLD adopts three piezo-electric (PE) actuators and three static load screws to remotely control pressure in accurate and consistent manner at room temperature. This device allows us to create different loading mechanisms and frames for a variety of existing and commonly used diamond cells rather than designing specialized or dedicated diamond cells with various drives. The sample pressure compression/decompression rate that we have achieved is up to 58.6/43.3 TPa/s, respectively. The minimum of load time is less than 1 ms. The DLD is a powerful tool for exploring the effects of rapid (de)compression on the structure of materials and the properties of materials.
[Medical image compression: a review].
Noreña, Tatiana; Romero, Eduardo
2013-01-01
Modern medicine is an increasingly complex activity , based on the evidence ; it consists of information from multiple sources : medical record text , sound recordings , images and videos generated by a large number of devices . Medical imaging is one of the most important sources of information since they offer comprehensive support of medical procedures for diagnosis and follow-up . However , the amount of information generated by image capturing gadgets quickly exceeds storage availability in radiology services , generating additional costs in devices with greater storage capacity . Besides , the current trend of developing applications in cloud computing has limitations, even though virtual storage is available from anywhere, connections are made through internet . In these scenarios the optimal use of information necessarily requires powerful compression algorithms adapted to medical activity needs . In this paper we present a review of compression techniques used for image storage , and a critical analysis of them from the point of view of their use in clinical settings.
Hierarchy of stability factors in reverse shoulder arthroplasty.
Gutiérrez, Sergio; Keller, Tony S; Levy, Jonathan C; Lee, William E; Luo, Zong-Ping
2008-03-01
Reverse shoulder arthroplasty is being used more frequently to treat irreparable rotator cuff tears in the presence of glenohumeral arthritis and instability. To date, however, design features and functions of reverse shoulder arthroplasty, which may be associated with subluxation and dislocation of these implants, have been poorly understood. We asked: (1) what is the hierarchy of importance of joint compressive force, prosthetic socket depth, and glenosphere size in relation to stability, and (2) is this hierarchy defined by underlying and theoretically predictable joint contact characteristics? We examined the intrinsic stability in terms of the force required to dislocate the humerosocket from the glenosphere of eight commercially available reverse shoulder arthroplasty devices. The hierarchy of factors was led by compressive force followed by socket depth; glenosphere size played a much lesser role in stability of the reverse shoulder arthroplasty device. Similar results were predicted by a mathematical model, suggesting the stability was determined primarily by compressive forces generated by muscles.
Investigations on response time of magnetorheological elastomer under compression mode
NASA Astrophysics Data System (ADS)
Zhu, Mi; Yu, Miao; Qi, Song; Fu, Jie
2018-05-01
For efficient fast control of vibration system with magnetorheological elastomer (MRE)-based smart device, the response time of MRE material is the key parameter which directly affects the control performance of the vibration system. For a step coil current excitation, this paper proposed a Maxwell behavior model with time constant λ to describe the normal force response of MRE, and the response time of MRE was extracted through the separation of coil response time. Besides, the transient responses of MRE under compression mode were experimentally investigated, and the effects of (i) applied current, (ii) particle distribution and (iii) compressive strain on the response time of MRE were addressed. The results revealed that the three factors can affect the response characteristic of MRE quite significantly. Besides the intrinsic importance for contributing to the response evaluation and effective design of MRE device, this study may conduce to the optimal design of controller for MRE control system.
You, Je Sung; Chung, Sung Phil; Chang, Chul Ho; Park, Incheol; Lee, Hye Sun; Kim, SeungHo; Lee, Hahn Shick
2013-08-01
In real cardiopulmonary resuscitation (CPR), noise can arise from instructional voices and environmental sounds in places such as a battlefield and industrial and high-traffic areas. A feedback device using a flashing light was designed to overcome noise-induced stimulus saturation during CPR. This study was conducted to determine whether 'flashlight' guidance influences CPR performance in a simulated noisy setting. We recruited 30 senior medical students with no previous experience of using flashlight-guided CPR to participate in this prospective, simulation-based, crossover study. The experiment was conducted in a simulated noisy situation using a cardiac arrest model without ventilation. Noise such as patrol car and fire engine sirens was artificially generated. The flashlight guidance device emitted light pulses at the rate of 100 flashes/min. Participants also received instructions to achieve the desired rate of 100 compressions/min. CPR performances were recorded with a Resusci Anne mannequin with a computer skill-reporting system. There were significant differences between the control and flashlight groups in mean compression rate (MCR), MCR/min and visual analogue scale. However, there were no significant differences in correct compression depth, mean compression depth, correct hand position, and correctly released compression. The flashlight group constantly maintained the pace at the desired 100 compressions/min. Furthermore, the flashlight group had a tendency to keep the MCR constant, whereas the control group had a tendency to decrease it after 60 s. Flashlight-guided CPR is particularly advantageous for maintaining a desired MCR during hands-only CPR in noisy environments, where metronome pacing might not be clearly heard.
Hardware Implementation of Lossless Adaptive Compression of Data From a Hyperspectral Imager
NASA Technical Reports Server (NTRS)
Keymeulen, Didlier; Aranki, Nazeeh I.; Klimesh, Matthew A.; Bakhshi, Alireza
2012-01-01
Efficient onboard data compression can reduce the data volume from hyperspectral imagers on NASA and DoD spacecraft in order to return as much imagery as possible through constrained downlink channels. Lossless compression is important for signature extraction, object recognition, and feature classification capabilities. To provide onboard data compression, a hardware implementation of a lossless hyperspectral compression algorithm was developed using a field programmable gate array (FPGA). The underlying algorithm is the Fast Lossless (FL) compression algorithm reported in Fast Lossless Compression of Multispectral- Image Data (NPO-42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), p. 26 with the modification reported in Lossless, Multi-Spectral Data Comressor for Improved Compression for Pushbroom-Type Instruments (NPO-45473), NASA Tech Briefs, Vol. 32, No. 7 (July 2008) p. 63, which provides improved compression performance for data from pushbroom-type imagers. An FPGA implementation of the unmodified FL algorithm was previously developed and reported in Fast and Adaptive Lossless Onboard Hyperspectral Data Compression System (NPO-46867), NASA Tech Briefs, Vol. 36, No. 5 (May 2012) p. 42. The essence of the FL algorithm is adaptive linear predictive compression using the sign algorithm for filter adaption. The FL compressor achieves a combination of low complexity and compression effectiveness that exceeds that of stateof- the-art techniques currently in use. The modification changes the predictor structure to tolerate differences in sensitivity of different detector elements, as occurs in pushbroom-type imagers, which are suitable for spacecraft use. The FPGA implementation offers a low-cost, flexible solution compared to traditional ASIC (application specific integrated circuit) and can be integrated as an intellectual property (IP) for part of, e.g., a design that manages the instrument interface. The FPGA implementation was benchmarked on the Xilinx Virtex IV LX25 device, and ported to a Xilinx prototype board. The current implementation has a critical path of 29.5 ns, which dictated a clock speed of 33 MHz. The critical path delay is end-to-end measurement between the uncompressed input data and the output compression data stream. The implementation compresses one sample every clock cycle, which results in a speed of 33 Msample/s. The implementation has a rather low device use of the Xilinx Virtex IV LX25, making the total power consumption of the implementation about 1.27 W.
X-ray absorption radiography for high pressure shock wave studies
NASA Astrophysics Data System (ADS)
Antonelli, L.; Atzeni, S.; Batani, D.; Baton, S. D.; Brambrink, E.; Forestier-Colleoni, P.; Koenig, M.; Le Bel, E.; Maheut, Y.; Nguyen-Bui, T.; Richetta, M.; Rousseaux, C.; Ribeyre, X.; Schiavi, A.; Trela, J.
2018-01-01
The study of laser compressed matter, both warm dense matter (WDM) and hot dense matter (HDM), is relevant to several research areas, including materials science, astrophysics, inertial confinement fusion. X-ray absorption radiography is a unique tool to diagnose compressed WDM and HDM. The application of radiography to shock-wave studies is presented and discussed. In addition to the standard Abel inversion to recover a density map from a transmission map, a procedure has been developed to generate synthetic radiographs using density maps produced by the hydrodynamics code DUED. This procedure takes into account both source-target geometry and source size (which plays a non negligible role in the interpretation of the data), and allows to reproduce transmission data with a good degree of accuracy.
Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.
Liu, Lili; Niu, Zhiqiang; Chen, Jun
2016-07-25
As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle life. The recent boom in electronic devices with different functions in transparent LED displays, stretchable electronic systems and artificial skin has increased the demand for supercapacitors to move towards light, thin, integrated macro- and micro-devices with transparent, flexible, stretchable, compressible and/or wearable abilities. The successful fabrication of such supercapacitors depends mainly on the preparation of innovative electrode materials and the design of unconventional supercapacitor configurations. Tremendous research efforts have been recently made to design and construct innovative nanocarbon-based electrode materials and supercapacitors with unconventional configurations. We review here recent developments in supercapacitors from nanocarbon-based electrode materials to device configurations. The advances in nanocarbon-based electrode materials mainly include the assembly technologies of macroscopic nanostructured electrodes with different dimensions of carbon nanotubes/nanofibers, graphene, mesoporous carbon, activated carbon, and their composites. The electrodes with macroscopic nanostructured carbon-based materials overcome the issues of low conductivity, poor mechanical properties, and limited dimensions that are faced by conventional methods. The configurational design of advanced supercapacitor devices is presented with six types of unconventional supercapacitor devices: flexible, micro-, stretchable, compressible, transparent and fiber supercapacitors. Such supercapacitors display unique configurations and excellent electrochemical performance at different states such as bending, stretching, compressing and/or folding. For example, all-solid-state simplified supercapacitors that are based on nanostructured graphene composite paper are able to maintain 95% of the original capacity at a 180° folding state. The progress made so far will guide further developments in the structural design of nanocarbon-based electrode materials and the configurational diversity of supercapacitor devices. Future developments and prospects in the controllable assembly of macroscopic nanostructured electrodes and the innovation of unconventional supercapacitor configurations are also discussed. This should shed light on the R&D of supercapacitors.
A FLUID SORBENT RECYCLING DEVICE FOR INDUSTRIAL FLUID USERS
A roller compression Extractor® that extracts fluids from reusable sorbent pads was evaluated as a method of waste reduction. The extraction device, evaluated for industrial fluid users in New Jersey, was found to be effective in recycling unpleated sorbent pads, especially ...
Reducing the dimensions of acoustic devices using anti-acoustic-null media
NASA Astrophysics Data System (ADS)
Li, Borui; Sun, Fei; He, Sailing
2018-02-01
An anti-acoustic-null medium (anti-ANM), a special homogeneous medium with anisotropic mass density, is designed by transformation acoustics (TA). Anti-ANM can greatly compress acoustic space along the direction of its main axis, where the size compression ratio is extremely large. This special feature can be utilized to reduce the geometric dimensions of classic acoustic devices. For example, the height of a parabolic acoustic reflector can be greatly reduced. We also design a brass-air structure on the basis of the effective medium theory to materialize the anti-ANM in a broadband frequency range. Numerical simulations verify the performance of the proposed anti-ANM.
Integrated LTCC pressure/flow/temperature multisensor for compressed air diagnostics.
Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter
2010-01-01
We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.
Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†
Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter
2010-01-01
We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues. PMID:22163518
X-Ray Thomson Scattering and Radiography from Spherical Implosions on the OMEGA Laser
NASA Astrophysics Data System (ADS)
Saunders, A. M.; Laziki-Jenei, A.; Doeppner, T.; Landen, O. L.; MacDonald, M.; Nilsen, J.; Swift, D.; Falcone, R. W.
2017-10-01
X-ray Thomson scattering (XRTS) is an experimental technique that directly probes the physics of warm dense matter by measuring electron density, electron temperature, and ionization state. XRTS in combination with x-ray radiography offers a unique ability to measure an absolute equation of state (EOS) from material under compression. Recent experiments highlight uncertainties in EOS models and the predicted ionization of compressed matter, suggesting more validation of models is needed. We present XRTS and x-ray radiography measurements taken at the OMEGA Laser Facility from directly-driven solid carbon spheres at densities on the order of 1x1024 g cm-3 and temperatures on the order of 30 eV. The results shed light on the equations of state of matter under compression. This work performed under auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and under the Stewardship Science Graduate Fellowship, Grant Number DE- NA0002135.
NASA Astrophysics Data System (ADS)
Cox, Marie E.; Dunand, David C.
2013-07-01
Acoustic emission methods are used to investigate the evolution of internal microfractural damage during uniaxial compression of amorphous Zr-based foams with aligned, elongated pores. The foams are fabricated by means of densifying a blend of crystalline W powders and amorphous Zr-based powders with two oxygen contents (0.078 and 0.144 wt pct) by warm equal channel angular extrusion, followed by dissolution of the elongated W phase from the fully densified amorphous matrix. For the high-oxygen foams, prior powder boundaries in the amorphous struts promote damage that accumulates during compression, resulting in energy-absorbing properties comparable with the low-oxygen foams without stress-concentrating powder boundaries. The influence of pore orientation on the evolution of microfracture damage and the ability of the foams to accumulate damage without catastrophic failure is also investigated: pores oriented from 24 to 68 deg to the loading direction promote wall bending, resulting in foams with more diffuse damage and better energy-absorbing properties.
Li, Chaojing; Wang, Fujun; Douglas, Graeham; Zhang, Ze; Guidoin, Robert; Wang, Lu
2017-05-01
Vascular grafts made by tissue engineering processes are prone to buckling and twisting, which can impede blood flow and lead to collapse of the vessel. These vascular conduits may suffer not only from insufficient tensile strength, but also from vulnerabilities related to compression, torsion, and pulsatile pressurization. Aiming to develop a tissue engineering-inspired blood conduit, composite vascular graft (cVG) prototypes were created by combining a flexible polylactic acid (PLA) knitted fabric with a soft polycaprolactone (PCL) matrix. The graft is to be populated in-situ with cellular migration and proliferation into the device. Comprehensive characterizations probed the relationship between structure and mechanical properties of the different cVG prototypes. The composite grafts exhibited major improvements in mechanical characteristics compared to single-material devices, with particular improvement in compression and torsional resistance. A commercial expanded polytetrafluoroethylene (ePTFE) vascular graft was used as a control against the proposed composite vascular grafts. CVG devices showed high tensile strength, high bursting strength, and improved suture retention. Compression, elastic recovery, and compliance were similar to those for the ePTFE graft. Copyright © 2016 Elsevier Ltd. All rights reserved.
Finite Element Analysis of Stresses Developed in the Blood Sac of a Left Ventricular Assist Device
Haut Donahue, T. L.; Dehlin, W.; Gillespie, J.; Weiss, W.J.; Rosenberg, G.
2009-01-01
The goal of this research is to develop a 3D finite element (FE) model of a left ventricular assist device (LVAD) to predict stresses in the blood sac. The hyperelastic stress-strain curves for the segmented poly(ether polyurethane urea) blood sac were determined in both tension and compression using a servo-hydraulic testing system at various strain rates. Over the range of strain rates studied, the sac was not strain rate sensitive, however the material response was different for tension versus compression. The experimental tension and compression properties were used in a FE model that consisted of the pusher plate, blood sac and pump case. A quasi-static analysis was used to allow for nonlinearities due to contact and material deformation. The 3D FE model showed that blood sac stresses are not adversely affected by the location of the inlet and outlet ports of the device and that over the systolic ejection phase of the simulation the prediction of blood sac stresses from the full 3D model and an axisymmetric model are the same. Minimizing stresses in the blood sac will increase the longevity of the blood sac in vivo. PMID:19131267
Han, Hyeon; Kim, Donghoon; Chu, Kanghyun; Park, Jucheol; Nam, Sang Yeol; Heo, Seungyang; Yang, Chan-Ho; Jang, Hyun Myung
2018-01-17
Ferroelectric photovoltaics (FPVs) are being extensively investigated by virtue of switchable photovoltaic responses and anomalously high photovoltages of ∼10 4 V. However, FPVs suffer from extremely low photocurrents due to their wide band gaps (E g ). Here, we present a promising FPV based on hexagonal YbFeO 3 (h-YbFO) thin-film heterostructure by exploiting its narrow E g . More importantly, we demonstrate enhanced FPV effects by suitably exploiting the substrate-induced film strain in these h-YbFO-based photovoltaics. A compressive-strained h-YbFO/Pt/MgO heterojunction device shows ∼3 times enhanced photovoltaic efficiency than that of a tensile-strained h-YbFO/Pt/Al 2 O 3 device. We have shown that the enhanced photovoltaic efficiency mainly stems from the enhanced photon absorption over a wide range of the photon energy, coupled with the enhanced polarization under a compressive strain. Density functional theory studies indicate that the compressive strain reduces E g substantially and enhances the strength of d-d transitions. This study will set a new standard for determining substrates toward thin-film photovoltaics and optoelectronic devices.
Granular Media-Based Tunable Passive Vibration Suppressor
NASA Technical Reports Server (NTRS)
Dillon, Robert P.; Davis, Gregory L.; Shapiro, Andrew A.; Borgonia, John Paul C.; Kahn, Daniel L.; Boechler, Nicholas; Boechler,, Chiara
2013-01-01
and vibration suppression device is composed of statically compressed chains of spherical particles. The device superimposes a combination of dissipative damping and dispersive effects. The dissipative damping resulting from the elastic wave attenuation properties of the bulk material selected for the granular media is independent of particle geometry and periodicity, and can be accordingly designed based on the dissipative (or viscoelastic) properties of the material. For instance, a viscoelastic polymer might be selected where broadband damping is desired. In contrast, the dispersive effects result from the periodic arrangement and geometry of particles composing a linear granular chain. A uniform (monatomic) chain of statically compressed spherical particles will have a low-pass filter effect, with a cutoff frequency tunable as a function of particle mass, elastic modulus, Poisson fs ratio, radius, and static compression. Elastic waves with frequency content above this cutoff frequency will exhibit an exponential decay in amplitude as a function of propagation distance. System design targeting a specific application is conducted using a combination of theoretical, computational, and experimental techniques to appropriately select the particle radii, material (and thus elastic modulus and Poisson fs ratio), and static compression to satisfy estimated requirements derived for shock and/or vibration protection needs under particular operational conditions. The selection of a chain of polymer spheres with an elastic modulus .3 provided the appropriate dispersive filtering effect for that exercise; however, different operational scenarios may require the use of other polymers, metals, ceramics, or a combination thereof, configured as an array of spherical particles. The device is a linear array of spherical particles compressed in a container with a mechanism for attachment to the shock and/or vibration source, and a mechanism for attachment to the article requiring isolation (Figure 1). This configuration is referred to as a single-axis vibration suppressor. This invention also includes further designs for the integration of the single-axis vibration suppressor into a six-degree-of-freedom hexapod "Stewart"mounting configuration (Figure 2). By integrating each singleaxis vibration suppressor into a hexapod formation, a payload will be protected in all six degrees of freedom from shock and/or vibration. Additionally, to further enable the application of this device to multiple operational scenarios, particularly in the case of high loads, the vibration suppressor devices can be used in parallel in any array configuration.
Yeung, Joyce; Chilwan, Mehboob; Field, Richard; Davies, Robin; Gao, Fang; Perkins, Gavin D
2014-07-01
Minimising interruptions in chest compressions is associated with improved survival from cardiac arrest. Current in-hospital guidelines recommend continuous chest compressions after the airway is secured on the premise that this will reduce no flow time. The aim of this study was to determine the effect of advanced airway use on the no flow ratio and other measures of CPR quality. Consecutive adult patients who sustained an in-hospital cardiac arrest were enrolled in this prospective observational study. The quality of CPR was measured using the Q-CPR device (Phillips, UK) before and after an advanced airway device (endotracheal tube [ET] or laryngeal mask airway [LMA]) was inserted. Patients receiving only bag-mask ventilation were used as the control cohort. The primary outcome was no flow ratio (NFR). Secondary outcomes were chest compression rate, depth, compressions too shallow, compressions with leaning, ventilation rate, inflation time, change in impedance and time required to successfully insert airway device. One hundred patients were enrolled in the study (2008-2011). Endotracheal tube and LMA placement took similar durations (median 15.8 s (IQR 6.8-19.4) vs. LMA median 8.0s (IQR 5.5-15.9), p=0.1). The use of an advanced airway was associated with improved no flow ratios (endotracheal tube placement (n=50) improved NFR from baseline median 0.24 IQR 0.17-0.40) to 0.15 to (IQR 0.09-0.28), p=0.012; LMA (n=25) from median 0.28 (IQR 0.23-0.40) to 0.13 (IQR 0.11- 0.19), p=0.0001). There was no change in NFR in patients managed solely with bag valve mask (BVM) (n=25) (median 0.29 (IQR 0.18-0.59) vs. median 0.26 (IQR 0.12-0.37), p=0.888). There was no significant difference in time taken to successfully insert the airway device between the two groups. The use of an advanced airway (ETT or LMA) during in-hospital cardiac arrest was associated with improved no flow ratio. Further studies are required to determine the effect of airway devices on overall patient outcomes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Her, Ae-Young; Lim, Kyung-Hun; Shin, Eun-Seok
2018-01-27
This case study describes the successful percutaneous transcatheter retrieval of an embolized Amplatzer occluder device using the "waist capture technique" in a patient with an atrial septal defect. This technique allowed for stability of the Amplatzer device, compression of the atrial discs for easier removal, prevention of further embolization, and minimal injury to vasculature during device retrieval. This novel and effective technique can be used safely for the retrieval of Amplatzer devices in the venous system.
Kolmogorov-Kraichnan Scaling in the Inverse Energy Cascade of Two-Dimensional Plasma Turbulence
NASA Astrophysics Data System (ADS)
Antar, G. Y.
2003-08-01
Turbulence in plasmas that are magnetically confined, such as tokamaks or linear devices, is two dimensional or at least quasi two dimensional due to the strong magnetic field, which leads to extreme elongation of the fluctuations, if any, in the direction parallel to the magnetic field. These plasmas are also compressible fluid flows obeying the compressible Navier-Stokes equations. This Letter presents the first comprehensive scaling of the structure functions of the density and velocity fields up to 10th order in the PISCES linear plasma device and up to 6th order in the Mega-Ampère Spherical Tokamak (MAST). In the two devices, it is found that the scaling of the turbulent fields is in good agreement with the prediction of the Kolmogorov-Kraichnan theory for two-dimensional turbulence in the energy cascade subrange.
Patil, Suneel G; Sajjan, MC Suresh; Patil, Rekha
2015-01-01
Background: The luting cements must withstand masticatory and parafunctional stresses in the warm and wet oral environment. Mouth temperature and the temperature of the ingested foods may induce thermal variation and plastic deformation within the cements and might affect the strength properties. The objectives of this study were to evaluate the effect of temperature on the compressive and diametral tensile strengths of two polycarboxylate, a conventional glass ionomer and a resin modified glass ionomer luting cements and, to compare the compressive strength and the diametral tensile strength of the selected luting cements at varying temperatures. Materials and Methods: In this study, standardized specimens were prepared. The temperature of the specimens was regulated prior to testing them using a universal testing machine at a crosshead speed of 1 mm/min. Six specimens each were tested at 23°C, 37°C and 50°C for both the compressive and diametral tensile strengths, for all the luting cements. Results: All the luting cements showed a marginal reduction in their compressive and diametral tensile strengths at raised temperatures. Fuji Plus was strongest in compression, followed by Fuji I > Poly F > Liv Carbo. Fuji Plus had the highest diametral tensile strength values, followed by Poly F = Fuji I = Liv Carbo, at all temperatures. Conclusion: An increase in the temperature caused no significant reduction in the compressive and diametral tensile strengths of the cements evaluated. The compressive strength of the luting cements differed significantly from one another at all temperatures. The diametral tensile strength of resin modified glass ionomers differed considerably from the other cements, whereas there was no significant difference between the other cements, at all the temperatures. PMID:25859100
Patil, Suneel G; Sajjan, Mc Suresh; Patil, Rekha
2015-02-01
The luting cements must withstand masticatory and parafunctional stresses in the warm and wet oral environment. Mouth temperature and the temperature of the ingested foods may induce thermal variation and plastic deformation within the cements and might affect the strength properties. The objectives of this study were to evaluate the effect of temperature on the compressive and diametral tensile strengths of two polycarboxylate, a conventional glass ionomer and a resin modified glass ionomer luting cements and, to compare the compressive strength and the diametral tensile strength of the selected luting cements at varying temperatures. In this study, standardized specimens were prepared. The temperature of the specimens was regulated prior to testing them using a universal testing machine at a crosshead speed of 1 mm/min. Six specimens each were tested at 23°C, 37°C and 50°C for both the compressive and diametral tensile strengths, for all the luting cements. All the luting cements showed a marginal reduction in their compressive and diametral tensile strengths at raised temperatures. Fuji Plus was strongest in compression, followed by Fuji I > Poly F > Liv Carbo. Fuji Plus had the highest diametral tensile strength values, followed by Poly F = Fuji I = Liv Carbo, at all temperatures. An increase in the temperature caused no significant reduction in the compressive and diametral tensile strengths of the cements evaluated. The compressive strength of the luting cements differed significantly from one another at all temperatures. The diametral tensile strength of resin modified glass ionomers differed considerably from the other cements, whereas there was no significant difference between the other cements, at all the temperatures.
Lv, Peng; Wang, Yaru; Ji, Chenglong; Yuan, Jiajiao
2017-01-01
Ultra-compressible electrodes with high electrochemical performance, reversible compressibility and extreme durability are in high demand in compression-tolerant energy storage devices. Herein, an ultra-compressible ternary composite was synthesized by successively electrodepositing poly(3,4-ethylenedioxythiophene) (PEDOT) and MnO2 into the superelastic graphene aerogel (SEGA). In SEGA/PEDOT/MnO2 ternary composite, SEGA provides the compressible backbone and conductive network; MnO2 is mainly responsible for pseudo reactions; the middle PEDOT not only reduces the interface resistance between MnO2 and graphene, but also further reinforces the strength of graphene cellar walls. The synergistic effect of the three components in the ternary composite electrode leads to high electrochemical performances and good compression-tolerant ability. The gravimetric capacitance of the compressible ternary composite electrodes reaches 343 F g−1 and can retain 97% even at 95% compressive strain. And a volumetric capacitance of 147.4 F cm−3 is achieved, which is much higher than that of other graphene-based compressible electrodes. This value of volumetric capacitance can be preserved by 80% after 3500 charge/discharge cycles under various compression strains, indicating an extreme durability.
Özbilen, Sedat; Liebert, Daniela; Beck, Tilmann; Bram, Martin
2016-03-01
Porous titanium cylinders were produced with a constant amount of temporary space holder (70 vol.%). Different interstitial contents were achieved by varying the starting powders (HDH vs. gas atomized) and manufacturing method (cold compaction without organic binders vs. warm compaction of MIM feedstocks). Interstitial contents (O, C, and N) as a function of manufacturing were measured by chemical analysis. Samples contained 0.34-0.58 wt.% oxygen, which was found to have the greatest effect on mechanical properties. Quasi-static mechanical tests under compression at low strain rate were used for reference and to define parameters for cyclic compression tests. Not unexpectedly, increased oxygen content increased the yield strength of the porous titanium. Cyclic compression fatigue tests were conducted using sinusoidal loading in a servo-hydraulic testing machine. Increased oxygen content was concomitant with embrittlement of the titanium matrix, resulting in significant reduction of compression cycles before failure. For samples with 0.34 wt.% oxygen, R, σ(min) and σ(max) were varied systematically to estimate the fatigue limit (~4 million cycles). Microstructural changes induced by cyclic loading were then characterized by optical microscopy, SEM and EBSD. Copyright © 2015 Elsevier B.V. All rights reserved.
Basic life support: evaluation of learning using simulation and immediate feedback devices1.
Tobase, Lucia; Peres, Heloisa Helena Ciqueto; Tomazini, Edenir Aparecida Sartorelli; Teodoro, Simone Valentim; Ramos, Meire Bruna; Polastri, Thatiane Facholi
2017-10-30
to evaluate students' learning in an online course on basic life support with immediate feedback devices, during a simulation of care during cardiorespiratory arrest. a quasi-experimental study, using a before-and-after design. An online course on basic life support was developed and administered to participants, as an educational intervention. Theoretical learning was evaluated by means of a pre- and post-test and, to verify the practice, simulation with immediate feedback devices was used. there were 62 participants, 87% female, 90% in the first and second year of college, with a mean age of 21.47 (standard deviation 2.39). With a 95% confidence level, the mean scores in the pre-test were 6.4 (standard deviation 1.61), and 9.3 in the post-test (standard deviation 0.82, p <0.001); in practice, 9.1 (standard deviation 0.95) with performance equivalent to basic cardiopulmonary resuscitation, according to the feedback device; 43.7 (standard deviation 26.86) mean duration of the compression cycle by second of 20.5 (standard deviation 9.47); number of compressions 167.2 (standard deviation 57.06); depth of compressions of 48.1 millimeter (standard deviation 10.49); volume of ventilation 742.7 (standard deviation 301.12); flow fraction percentage of 40.3 (standard deviation 10.03). the online course contributed to learning of basic life support. In view of the need for technological innovations in teaching and systematization of cardiopulmonary resuscitation, simulation and feedback devices are resources that favor learning and performance awareness in performing the maneuvers.
Cho, Kwang Rae; Kim, Myoung-Hun; Ko, Myoung Jin; Jung, Jae Wook; Lee, Ki Hwa; Park, Yei-Heum; Kim, Yong Han; Kim, Ki Hoon; Kim, Jin Soo
2014-12-01
Hypothermia generates potentially severe complications in operating or recovery room. Forced air warmer is effective to maintain body temperature. Extremely low frequency electromagnetic field (ELF-EMF) is harmful to human body and mainly produced by electronic equipment including convective air warming system. We investigated ELF-EMF from convective air warming device on various temperature selection and distance for guideline to protect medical personnel and patients. The intensity of ELF-EMF was measured as two-second interval for five minutes on various distance (0.1, 0.2, 0.3, 0.5 and 1meter) and temperature selection (high, medium, low and ambient). All of electrical devices were off including lamp, computer and air conditioner. Groups were compared using one-way ANOVA. P<0.05 was considered significant. Mean values of ELF-EMF on the distance of 30 cm were 18.63, 18.44, 18.23 and 17.92 milligauss (mG) respectively (high, medium, low and ambient temperature set). ELF-EMF of high temperature set was higher than data of medium, low and ambient set in all the distances. ELF-EMF from convective air warming system is higher in condition of more close location and higher temperature. ELF-EMF within thirty centimeters exceeds 2mG recommended by Swedish TCO guideline.
In-vivo heat retention comparison of eyelid warming masks.
Bitton, Etty; Lacroix, Zoé; Léger, Stéphanie
2016-08-01
Meibomian gland dysfunction (MGD) is one of the most common causes of evaporative dry eye. Warm compresses (WC) are recommended as adjunct therapy to slowly transfer heat to the meibomian glands to melt or soften the stagnant meibum with targeted temperatures of 40-45°C. This clinical study evaluated the heat retention profiles of commercially available eyelid warming masks over a 12-min interval. Five eyelid-warming masks (MGDRx Eyebag(®), EyeDoctor(®), Bruder(®), Tranquileyes XR™, Thera°Pearl(®)) were heated following manufacturer's instructions and heat retention was assessed at 1-min intervals for 12min. A facecloth warmed with hot tap water was used as comparison. Twelve (n=12) subjects participated in the study (10F:2M, ranging in age from 21 to 30 with an average of 23.2±3.8years). Each mask demonstrated a unique heat retention profile, reaching maximum temperature at different times and having a different final temperature at the end of the 12-min evaluation. After heating, all eyelid warming masks reached a temperature near 37°C within the first minute. The facecloth was significantly cooler than all other masks as of the 2-min mark (p<0.05). Reusability, availability and heat retention profiles should be considered when selecting an eyelid warming masks for adjunct WC therapy in the management of MGD. All masks tested, with the exception of the facecloth, demonstrated stable heat retention throughout the 12min, bringing further awareness that patient education is required to discuss the shortcomings of the heat retention of the facecloth, if only heated once. Copyright © 2016 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Plastic Faulting in Ice: Shear Localization under Elevated Pressure
NASA Astrophysics Data System (ADS)
Golding, N.; Durham, W. B.
2013-12-01
Ice exhibits, at least, two distinct kinds of shear faults when loaded triaxially under compression. Under moderate levels of confinement, brittle failure follows crack growth, crack coalescence and the development of a fault oriented about 30 degrees from the direction of maximum compression. The mechanism governing this mode of failure, termed frictional or Coulombic faulting, has previously been discussed for ice and rocks in connection with the comb-crack model. Under higher levels of confinement, where frictional sliding is suppressed by confining pressure, failure is characterized by sudden brittle-like loss in load bearing capacity and the development of a narrow shear band, comprised of recrystallized grains, oriented about 45 degrees from the direction of maximum compression, i.e. along the direction of maximum shear. This mode of failure, referred to here as plastic faulting, has previously been discussed for warm ice, T = 233 - 263 K, in connection with adiabatic shear heating and has been discussed for cold ice, T = 77 - 163 K, in connection with phase transformation. Here, new results are presented that examine the mechanical behavior and microstructural properties of plastic faulting in polycrystalline ice loaded at temperatures from T = 175 - 210 K and confining pressures up to P = 200 MPa. The results are reviewed in context of previous work and possible mechanisms to account for shear localization in ice under high pressure, including 1) adiabatic shear heating, 2) grain refinement and 3) phase transformation, are discussed. The present observations highlight the similarities in the behavior of plastic faulting under both warm and cold conditions and suggest adiabatic shear heating as a possible mechanism to account for shear instability and plastic faulting at temperatures ranging from T = 77 - 263 K.
Method for compression of binary data
Berlin, Gary J.
1996-01-01
The disclosed method for compression of a series of data bytes, based on LZSS-based compression methods, provides faster decompression of the stored data. The method involves the creation of a flag bit buffer in a random access memory device for temporary storage of flag bits generated during normal LZSS-based compression. The flag bit buffer stores the flag bits separately from their corresponding pointers and uncompressed data bytes until all input data has been read. Then, the flag bits are appended to the compressed output stream of data. Decompression can be performed much faster because bit manipulation is only required when reading the flag bits and not when reading uncompressed data bytes and pointers. Uncompressed data is read using byte length instructions and pointers are read using word instructions, thus reducing the time required for decompression.
Lower-limb warming improves sleep quality in elderly people living in nursing homes.
Oshima-Saeki, Chika; Taniho, Yuiko; Arita, Hiromi; Fujimoto, Etsuko
2017-01-01
Sleep disturbances are common in older people. This study was conducted to examine the effects of a hot pack, which was used to warm the lower limbs, on the sleep of elderly people living in a nursing home. This is a prospective cohort involving seven elderly women. Subjects aged 74-93 years old were treated by warming the lower limbs for 40 minutes using hot packs every night over 8 weeks. A hot pack made of a dense polymer and warmed in a microwave oven was used as a warming device. In the first and last week, the subjects were required to wear an activity monitor to determine their sleep-awake status. During the second to ninth week, they received limb-warming treatment by a hot pack heated to 42ºC for 40 min every night. Surface skin temperature data were collected by thermographic measurement. As a result, lower-limb warming by a hot pack significantly improved the quality of sleep in the subjects. During warming, the surface temperature of the hands and face rose by approximately 0.5-1.5ºC. This study showed that lower-limb warming with a hot pack reduced sleep latency and wake episodes after sleep onset; thus, improving the quality of sleep in elderly people living in a nursing home.
Telemedicine + OCT: toward design of optimized algorithms for high-quality compressed images
NASA Astrophysics Data System (ADS)
Mousavi, Mahta; Lurie, Kristen; Land, Julian; Javidi, Tara; Ellerbee, Audrey K.
2014-03-01
Telemedicine is an emerging technology that aims to provide clinical healthcare at a distance. Among its goals, the transfer of diagnostic images over telecommunication channels has been quite appealing to the medical community. When viewed as an adjunct to biomedical device hardware, one highly important consideration aside from the transfer rate and speed is the accuracy of the reconstructed image at the receiver end. Although optical coherence tomography (OCT) is an established imaging technique that is ripe for telemedicine, the effects of OCT data compression, which may be necessary on certain telemedicine platforms, have not received much attention in the literature. We investigate the performance and efficiency of several lossless and lossy compression techniques for OCT data and characterize their effectiveness with respect to achievable compression ratio, compression rate and preservation of image quality. We examine the effects of compression in the interferogram vs. A-scan domain as assessed with various objective and subjective metrics.
40 CFR 1039.801 - What definitions apply to this part?
Code of Federal Regulations, 2014 CFR
2014-07-01
... operation in water. Auxiliary emission-control device means any element of design that senses temperature... suppression operations. Emission-control system means any device, system, or element of design that controls... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Definitions...
Compression and Reswelling of Microgel Particles after an Osmotic Shock
NASA Astrophysics Data System (ADS)
Sleeboom, Jelle J. F.; Voudouris, Panayiotis; Punter, Melle T. J. J. M.; Aangenendt, Frank J.; Florea, Daniel; van der Schoot, Paul; Wyss, Hans M.
2017-09-01
We use dedicated microfluidic devices to expose soft hydrogel particles to a rapid change in the externally applied osmotic pressure and observe a surprising, nonmonotonic response: After an initial rapid compression, the particle slowly reswells to approximately its original size. We theoretically account for this behavior, enabling us to extract important material properties from a single microfluidic experiment, including the compressive modulus, the gel permeability, and the diffusivity of the osmolyte inside the gel. We expect our approach to be relevant to applications such as controlled release, chromatography, and responsive materials.
Nonlinear model for thermal effects in free-electron lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter, E., E-mail: peterpeter@uol.com.br; Endler, A., E-mail: aendler@if.ufrgs.br; Rizzato, F. B., E-mail: rizzato@if.ufrgs.br
2014-11-15
In the present work, we extend results of a previous paper [Peter et al., Phys. Plasmas 20, 12 3104 (2013)] and develop a semi-analytical model to account for thermal effects on the nonlinear dynamics of the electron beam in free-electron lasers. We relax the condition of a cold electron beam but still use the concept of compressibility, now associated with a warm beam model, to evaluate the time scale for saturation and the peak laser intensity in high-gain regimes. Although vanishing compressibilites and the associated divergent densities are absent in warm models, a series of discontinuities in the electron density precedemore » the saturation process. We show that full wave-particle simulations agree well with the predictions of the model.« less
A closed-loop compressive-sensing-based neural recording system.
Zhang, Jie; Mitra, Srinjoy; Suo, Yuanming; Cheng, Andrew; Xiong, Tao; Michon, Frederic; Welkenhuysen, Marleen; Kloosterman, Fabian; Chin, Peter S; Hsiao, Steven; Tran, Trac D; Yazicioglu, Firat; Etienne-Cummings, Ralph
2015-06-01
This paper describes a low power closed-loop compressive sensing (CS) based neural recording system. This system provides an efficient method to reduce data transmission bandwidth for implantable neural recording devices. By doing so, this technique reduces a majority of system power consumption which is dissipated at data readout interface. The design of the system is scalable and is a viable option for large scale integration of electrodes or recording sites onto a single device. The entire system consists of an application-specific integrated circuit (ASIC) with 4 recording readout channels with CS circuits, a real time off-chip CS recovery block and a recovery quality evaluation block that provides a closed feedback to adaptively adjust compression rate. Since CS performance is strongly signal dependent, the ASIC has been tested in vivo and with standard public neural databases. Implemented using efficient digital circuit, this system is able to achieve >10 times data compression on the entire neural spike band (500-6KHz) while consuming only 0.83uW (0.53 V voltage supply) additional digital power per electrode. When only the spikes are desired, the system is able to further compress the detected spikes by around 16 times. Unlike other similar systems, the characteristic spikes and inter-spike data can both be recovered which guarantes a >95% spike classification success rate. The compression circuit occupied 0.11mm(2)/electrode in a 180nm CMOS process. The complete signal processing circuit consumes <16uW/electrode. Power and area efficiency demonstrated by the system make it an ideal candidate for integration into large recording arrays containing thousands of electrode. Closed-loop recording and reconstruction performance evaluation further improves the robustness of the compression method, thus making the system more practical for long term recording.
Piippo-Huotari, Oili; Norrman, Eva; Anderzén-Carlsson, Agneta; Geijer, Håkan
2018-05-01
The radiation dose for patients can be reduced with many methods and one way is to use abdominal compression. In this study, the radiation dose and image quality for a new patient-controlled compression device were compared with conventional compression and compression in the prone position . To compare radiation dose and image quality of patient-controlled compression compared with conventional and prone compression in general radiography. An experimental design with quantitative approach. After obtaining the approval of the ethics committee, a consecutive sample of 48 patients was examined with the standard clinical urography protocol. The radiation doses were measured as dose-area product and analyzed with a paired t-test. The image quality was evaluated by visual grading analysis. Four radiologists evaluated each image individually by scoring nine criteria modified from the European quality criteria for diagnostic radiographic images. There was no significant difference in radiation dose or image quality between conventional and patient-controlled compression. Prone position resulted in both higher dose and inferior image quality. Patient-controlled compression gave similar dose levels as conventional compression and lower than prone compression. Image quality was similar with both patient-controlled and conventional compression and was judged to be better than in the prone position.
Bae, L. J.; Zastrau, U.; Chung, H. -K.; ...
2018-03-01
Warm dense conditions in titanium foils irradiated with intense femtosecond laser pulses are diagnosed using an x-ray imaging spectroscopy technique. The line shapes of radially resolved titanium Kα spectra are measured with a toroidally bent GaAs crystal and an x-ray charge-coupled device. Measured spectra are compared with the K-shell emissions modeled using an atomic kinetics – spectroscopy simulation code. Kα line shapes are strongly affected by warm (5-40 eV) bulk electron temperatures and imply multiple temperature distributions in the targets. Finally, the spatial distribution of temperature is dependent on the target thickness, and a thin target shows an advantage tomore » generate uniform warm dense conditions in a large area.« less
Propagational characteristics in a warm hybrid plasmonic waveguide
NASA Astrophysics Data System (ADS)
Mahmodi Moghadam, M.; Shahmansouri, M.; Farokhi, B.
2017-12-01
We theoretically analyze the properties of guided modes in a warm planar conductor-gap-dielectric (CGD) system. The latter consists of a high index dielectric, separated from a warm metallic plasma with a low index nano-sized dielectric layer (gap) by using the hydrodynamic model coupled to Maxwell's equations. The effects of thermal pressure on the confinement and the propagation losses of Hybrid Plasmon Polariton (HPP) modes are studied. We found that the thermal effect leads to a reduction in the effective refractive index as well as in the propagation losses of the HPP mode. Furthermore, the cutoff thickness in the warm CGD waveguide is found to be smaller than that in a cold CGD waveguide. The results may be useful in understanding the essential physics of active/passive Plasmonic devices and chip-scale systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, L. J.; Zastrau, U.; Chung, H. -K.
Warm dense conditions in titanium foils irradiated with intense femtosecond laser pulses are diagnosed using an x-ray imaging spectroscopy technique. The line shapes of radially resolved titanium Kα spectra are measured with a toroidally bent GaAs crystal and an x-ray charge-coupled device. Measured spectra are compared with the K-shell emissions modeled using an atomic kinetics – spectroscopy simulation code. Kα line shapes are strongly affected by warm (5-40 eV) bulk electron temperatures and imply multiple temperature distributions in the targets. Finally, the spatial distribution of temperature is dependent on the target thickness, and a thin target shows an advantage tomore » generate uniform warm dense conditions in a large area.« less
2015-05-11
Micromirror Device (DMD) is a microelectromechanical (MEMS) device. A DMD consists of millions of electrostatically actuated micro- mirrors (or pixels...digital micromirror device) were analyzed. We discussed the effort of developing such a prototype by Proc. of SPIE Vol. 9484 94840I-11 Downloaded...to Digital Micromirror Device (DMD) Technology”, (n.d.) Retrieved May 1, 2011, from http://www.ti.com/lit/an/dlpa008a/dlpa008a.pdf. [16
Streamlined Genome Sequence Compression using Distributed Source Coding
Wang, Shuang; Jiang, Xiaoqian; Chen, Feng; Cui, Lijuan; Cheng, Samuel
2014-01-01
We aim at developing a streamlined genome sequence compression algorithm to support alternative miniaturized sequencing devices, which have limited communication, storage, and computation power. Existing techniques that require heavy client (encoder side) cannot be applied. To tackle this challenge, we carefully examined distributed source coding theory and developed a customized reference-based genome compression protocol to meet the low-complexity need at the client side. Based on the variation between source and reference, our protocol will pick adaptively either syndrome coding or hash coding to compress subsequences of changing code length. Our experimental results showed promising performance of the proposed method when compared with the state-of-the-art algorithm (GRS). PMID:25520552
Gonczy, John D.; Markley, Finley W.; McCaw, William R.; Niemann, Ralph C.
1992-01-01
An apparatus for evaluating the tensile and compressive properties of material samples at very low or cryogenic temperatures employs a stationary frame and a dewar mounted below the frame. A pair of coaxial cylindrical tubes extend downward towards the bottom of the dewar. A compressive or tensile load is generated hydraulically and is transmitted by the inner tube to the material sample. The material sample is located near the bottom of the dewar in a liquid refrigerant bath. The apparatus employs a displacement measuring device, such as a linear variable differential transformer, to measure the deformation of the material sample relative to the amount of compressive or tensile force applied to the sample.
Compressible viscous flows generated by oscillating flexible cylinders
NASA Astrophysics Data System (ADS)
Van Eysden, Cornelis A.; Sader, John E.
2009-01-01
The fluid dynamics of oscillating elastic beams underpin the operation of many modern technological devices ranging from micromechanical sensors to the atomic force microscope. While viscous effects are widely acknowledged to have a strong influence on these dynamics, fluid compressibility is commonly neglected. Here, we theoretically study the three-dimensional flow fields that are generated by the motion of flexible cylinders immersed in viscous compressible fluids and discuss the implications of compressibility in practice. We consider cylinders of circular cross section and flat blades of zero thickness that are executing flexural and torsional oscillations of arbitrary wave number. Exact analytical solutions are derived for these flow fields and their resulting hydrodynamic loads.
Performance of three systems for warming intravenous fluids at different flow rates.
Satoh, J; Yamakage, M; Wasaki, S I; Namiki, A
2006-02-01
This study compared the intravenous fluid warming capabilities of three systems at different flow rates. The devices studied were a water-bath warmer, a dry-heat plate warmer, and an intravenous fluid tube warmer Ambient temperature was controlled at 22 degrees to 24 degrees C. Normal saline (0.9% NaCl) at either room temperature (21 degrees to 23 degrees C) or at ice-cold temperature (3 degrees to 5 degrees C) was administered through each device at a range of flow rates (2 to 100 ml/min). To mimic clinical conditions, the temperature of the fluid was measured with thermocouples at the end of a one metre tube connected to the outflow of the warmer for the first two devices and at the end of the 1.2 m warming tubing for the intravenous fluid tube warmer The temperature of fluid delivered by the water bath warmer increased as the flow rate was increased up to 15 to 20 ml/min but decreased with greater flow rates. The temperature of the fluid delivered by the dry-heat plate warmer significantly increased as the flow rate was increased within the range tested (due to decreased cooling after leaving the device at higher flow rates). The temperature of fluid delivered by the intravenous fluid tube warmer did not depend on the flow rate up to 20 ml/min but significantly and fluid temperature-dependently decreased at higher flow rates (>30 ml/min). Under the conditions of our testing, the dry heat plate warmer delivered the highest temperature fluid at high flow rates.
Temperature modulation with an esophageal heat transfer device - a pediatric swine model study.
Kulstad, Erik B; Naiman, Melissa; Shanley, Patrick; Garrett, Frank; Haryu, Todd; Waller, Donald; Azarafrooz, Farshid; Courtney, Daniel Mark
2015-01-01
An increasing number of conditions appear to benefit from control and modulation of temperature, but available techniques to control temperature often have limitations, particularly in smaller patients with high surface to mass ratios. We aimed to evaluate a new method of temperature modulation with an esophageal heat transfer device in a pediatric swine model, hypothesizing that clinically significant modulation in temperature (both increases and decreases of more than 1°C) would be possible. Three female Yorkshire swine averaging 23 kg were anesthetized with inhalational isoflurane prior to placement of the esophageal device, which was powered by a commercially available heat exchanger. Swine temperature was measured rectally and cooling and warming were performed by selecting the appropriate external heat exchanger mode. Temperature was recorded over time in order to calculate rates of temperature change. Histopathology of esophageal tissue was performed after study completion. Average swine baseline temperature was 38.3°C. Swine #1 exhibited a cooling rate of 3.5°C/hr; however, passive cooling may have contributed to this rate. External warming blankets maintained thermal equilibrium in swine #2 and #3, demonstrating maximum temperature decrease of 1.7°C/hr. Warming rates averaged 0.29°C/hr. Histopathologic analysis of esophageal tissue showed no adverse effects. An esophageal heat transfer device successfully modulated the temperature in a pediatric swine model. This approach to temperature modulation may offer a useful new modality to control temperature in conditions warranting temperature management (such as maintenance of normothermia, induction of hypothermia, fever control, or malignant hyperthermia).
Torus elements used in effective shock absorber
NASA Technical Reports Server (NTRS)
Cunningham, P.; Platus, D. L.
1966-01-01
Energy absorbing device forces torus elements to revolve annularly between two concentric tubes when a load is applied to one tube. Interference forces can be varied by using torus elements of different thicknesses. The device operates repeatedly in compression or tension, and under problems of large onset rate tolerance or structural overload.
Multi-zonal Navier-Stokes code with the LU-SGS scheme
NASA Technical Reports Server (NTRS)
Klopfer, G. H.; Yoon, S.
1993-01-01
The LU-SGS (lower upper symmetric Gauss Seidel) algorithm has been implemented into the Compressible Navier-Stokes, Finite Volume (CNSFV) code and validated with a multizonal Navier-Stokes simulation of a transonic turbulent flow around an Onera M6 transport wing. The convergence rate and robustness of the code have been improved and the computational cost has been reduced by at least a factor of 2 over the diagonal Beam-Warming scheme.
High flow, low mobile weight quick disconnect system
NASA Technical Reports Server (NTRS)
Smith, Ronn G. (Inventor); Nagy, Jr., Zoltan Frank (Inventor); Moszczienski, Joseph Roch (Inventor)
2010-01-01
A fluid coupling device and coupling system that may start and stop the flow of a fluid is disclosed. In some embodiments, first and second couplings are provided having an actuator coupled with each of the couplings. The couplings and actuators may be detachable to provide quick disconnect features and, in some embodiments, provide unitary actuation for the actuators of the coupling device to facilitate connection in mobile applications. Actuation may occur as the two couplings and actuators are engaged and disengaged and may occur by rotational actuation of the actuators. Rotational actuation can be provided to ensure flow through the coupling device, which in some embodiments may further provide an offset venturi feature. Upon disengagement, a compression element such as a compression spring can be provided to return the actuators to a closed position. Some embodiments further provide a seal external to the actuators and provided at incipient engagement of the couplings.
Sterilization validation for medical compresses at IRASM multipurpose irradiation facility
NASA Astrophysics Data System (ADS)
Alexandru, Mioara; Ene, Mihaela
2007-08-01
In Romania, IRASM Radiation Processing Center is the unique supplier of radiation sterilization services—industrial scale (ISO 9001:2000 and ISO 13485:2003 certified). Its Laboratory of Microbiological Testing is the sole third party competent laboratory (GLPractice License, ISO 17025 certification in progress) for pharmaceutics and medical devices as well. We here refer to medical compresses as a distinct category of sterile products, made from different kind of hydrophilic materials (cotton, non-woven, polyurethane foam) with or without an impregnated ointment base (paraffin, plant extracts). These products are included in the class of medical devices, but for the sterilization validation, from microbiological point of view, there are important differences in testing method compared to the common medical devices (syringes, catheters, etc). In this paper, we present some results and practical solutions chosen to perform a sterilization validation, compliant with ISO 11137: 2006.
Ultrathin strain-gated field effect transistor based on In-doped ZnO nanobelts
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Du, Junli; Li, Bing; Zhang, Shuhao; Hong, Mengyu; Zhang, Xiaomei; Liao, Qingliang; Zhang, Yue
2017-08-01
In this work, we fabricated a strain-gated piezoelectric transistor based on single In-doped ZnO nanobelt with ±(0001) top/bottom polar surfaces. In the vertical structured transistor, the Pt tip of the AFM and Au film are used as source and drain electrode. The electrical transport performance of the transistor is gated by compressive strains. The working mechanism is attributed to the Schottky barrier height changed under the coupling effect of piezoresistive and piezoelectric. Uniquely, the transistor turns off under the compressive stress of 806 nN. The strain-gated transistor is likely to have important applications in high resolution mapping device and MEMS devices.
Ma, Zhonglei; Wei, Ajing; Ma, Jianzhong; Shao, Liang; Jiang, Huie; Dong, Diandian; Ji, Zhanyou; Wang, Qian; Kang, Songlei
2018-04-19
Lightweight, compressible and highly sensitive pressure/strain sensing materials are highly desirable for the development of health monitoring, wearable devices and artificial intelligence. Herein, a very simple, low-cost and solution-based approach is presented to fabricate versatile piezoresistive sensors based on conductive polyurethane (PU) sponges coated with synergistic multiwalled carbon nanotubes (MWCNTs) and graphene. These sensor materials are fabricated by convenient dip-coating layer-by-layer (LBL) electrostatic assembly followed by in situ reduction without using any complicated microfabrication processes. The resultant conductive MWCNT/RGO@PU sponges exhibit very low densities (0.027-0.064 g cm-3), outstanding compressibility (up to 75%) and high electrical conductivity benefiting from the porous PU sponges and synergistic conductive MWCNT/RGO structures. In addition, the MWCNT/RGO@PU sponges present larger relative resistance changes and superior sensing performances under external applied pressures (0-5.6 kPa) and a wide range of strains (0-75%) compared with the RGO@PU and MWCNT@PU sponges, due to the synergistic effect of multiple mechanisms: "disconnect-connect" transition of nanogaps, microcracks and fractured skeletons at low compression strain and compressive contact of the conductive skeletons at high compression strain. The electrical and piezoresistive properties of MWCNT/RGO@PU sponges are strongly associated with the dip-coating cycle, suspension concentration, and the applied pressure and strain. Fully functional applications of MWCNT/RGO@PU sponge-based piezoresistive sensors in lighting LED lamps and detecting human body movements are demonstrated, indicating their excellent potential for emerging applications such as health monitoring, wearable devices and artificial intelligence.
Havel, Christof; Schreiber, Wolfgang; Trimmel, Helmut; Malzer, Reinhard; Haugk, Moritz; Richling, Nina; Riedmüller, Eva; Sterz, Fritz; Herkner, Harald
2010-01-01
Automated verbal and visual feedback improves quality of resuscitation in out-of-hospital cardiac arrest and was proven to increase short-term survival. Quality of resuscitation may be hampered in more difficult situations like emergency transportation. Currently there is no evidence if feedback devices can improve resuscitation quality during different modes of transportation. To assess the effect of real time automated feedback on the quality of resuscitation in an emergency transportation setting. Randomised cross-over trial. Medical University of Vienna, Vienna Municipal Ambulance Service and Helicopter Emergency Medical Service Unit (Christophorus Flugrettungsverein) in September 2007. European Resuscitation Council (ERC) certified health care professionals performing CPR in a flying helicopter and in a moving ambulance vehicle on a manikin with human-like chest properties. CPR sessions, with real time automated feedback as the intervention and standard CPR without feedback as control. Quality of chest compression during resuscitation. Feedback resulted in less deviation from ideal compression rate 100 min(-1) (9+/-9 min(-1), p<0.0001) with this effect becoming steadily larger over time. Applied work was less in the feedback group compared to controls (373+/-448 cm x compression; p<0.001). Feedback did not influence ideal compression depth significantly. There was some indication of a learning effect of the feedback device. Real time automated feedback improves certain aspects of CPR quality in flying helicopters and moving ambulance vehicles. The effect of feedback guidance was most pronounced for chest compression rate. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Taguchi, Akiko; Ratnaraj, Jebadurai; Kabon, Barbara; Sharma, Neeru; Lenhardt, Rainer; Sessler, Daniel I.
2005-01-01
Background: Forced-air warming is sometimes unable to maintain perioperative normothermia. We therefore compared heat transfer, regional heat distribution, and core rewarming of forced-air warming with a novel circulating-water garment. Methods: Nine volunteers were each evaluated on two randomly ordered study days. They were anesthetized and cooled to a core temperature near 34°C. The volunteers were subsequently warmed for 2.5 hours with either a circulating-water garment or forced-air cover. Overall, heat balance was determined from the difference between cutaneous heat loss (thermal flux transducers) and metabolic heat production (oxygen consumption). Average arm and leg (peripheral) tissue temperatures were determined from 18 intramuscular needle thermocouples, 15 skin thermal flux transducers, and “deep” arm and foot thermometers. Results: Heat production (≈ 60 kcal/h) and loss (≈45 kcal/h) were similar with each treatment before warming. The increase in heat transfer across anterior portions of the skin surface was similar with each warming system (≈65 kcal/h). Forced-air warming had no effect on posterior heat transfer whereas circulating-water transferred 21 ± 9 kcal/h through the posterior skin surface after a half hour of warming. Over 2.5 h, circulating-water thus increased body heat content 56% more than forced air. Core temperatures thus increased faster than with circulating water than forced air, especially during the first hour, with the result that core temperature was 1.1 ± 0.7°C greater after 2.5 h (P < 0.001). Peripheral tissue heat content increased twice as much as core heat content with each device, but the core-to-peripheral tissue temperature gradient remained positive throughout the study. Conclusions: The circulating-water system transferred more heat than forced air, with the difference resulting largely from posterior heating. Circulating water rewarmed patients 0.4°C/h faster than forced air. A substantial peripheral-to-core tissue-temperature gradient with each device indicated that peripheral tissues insulated the core, thus slowing heat transfer. PMID:15114200
Battery thermal management unit
NASA Astrophysics Data System (ADS)
Sanders, Nicholas A.
1989-03-01
A battery warming device has been designed which uses waste heat from an operating internal combustion engine to warm a battery. A portion of the waste heat is stored in the sensible and latent heat of a phase change type material for use in maintaining the battery temperature after the engine is shut off. The basic design of the device consists of a Phase Change Material (PCM) reservoir and a simple heat exchanger connected to the engineer's cooling system. Two types of units were built, tested and field trialed. A strap-on type which was strapped to the side of an automotive battery and was intended for the automotive after-market and a tray type on which a battery or batteries sat. This unit was intended for the heavy duty truck market. It was determined that both types of units increased the average cranking power of the batteries they were applied to. Although there were several design problems with the units such as the need for an automatic thermostatically controlled bypass valve, the overall feeling is that there is a market opportunity for both the strap-on and tray type battery warming units.
Tunneling Nanoelectromechanical Switches Based on Compressible Molecular Thin Films.
Niroui, Farnaz; Wang, Annie I; Sletten, Ellen M; Song, Yi; Kong, Jing; Yablonovitch, Eli; Swager, Timothy M; Lang, Jeffrey H; Bulović, Vladimir
2015-08-25
Abrupt switching behavior and near-zero leakage current of nanoelectromechanical (NEM) switches are advantageous properties through which NEMs can outperform conventional semiconductor electrical switches. To date, however, typical NEMs structures require high actuation voltages and can prematurely fail through permanent adhesion (defined as stiction) of device components. To overcome these challenges, in the present work we propose a NEM switch, termed a "squitch," which is designed to electromechanically modulate the tunneling current through a nanometer-scale gap defined by an organic molecular film sandwiched between two electrodes. When voltage is applied across the electrodes, the generated electrostatic force compresses the sandwiched molecular layer, thereby reducing the tunneling gap and causing an exponential increase in the current through the device. The presence of the molecular layer avoids direct contact of the electrodes during the switching process. Furthermore, as the layer is compressed, the increasing surface adhesion forces are balanced by the elastic restoring force of the deformed molecules which can promote zero net stiction and recoverable switching. Through numerical analysis, we demonstrate the potential of optimizing squitch design to enable large on-off ratios beyond 6 orders of magnitude with operation in the sub-1 V regime and with nanoseconds switching times. Our preliminary experimental results based on metal-molecule-graphene devices suggest the feasibility of the proposed tunneling switching mechanism. With optimization of device design and material engineering, squitches can give rise to a broad range of low-power electronic applications.
NASA Astrophysics Data System (ADS)
Pang, Xiaomin; Wang, Xiaotao; Dai, Wei; Li, Haibing; Wu, Yinong; Luo, Ercang
2018-06-01
A compact and high efficiency cooler working at liquid hydrogen temperature has many important applications such as cooling superconductors and mid-infrared sensors. This paper presents a two-stage gas-coupled pulse tube cooler system with a completely co-axial configuration. A stepped warm displacer, working as the phase shifter for both stages, has been studied theoretically and experimentally in this paper. Comparisons with the traditional phase shifter (double inlet) are also made. Compared with the double inlet type, the stepped warm displacer has the advantages of recovering the expansion work from the pulse tube hot end (especially from the first stage) and easily realizing an appropriate phase relationship between the pressure wave and volume flow rate at the pulse tube hot end. Experiments are then carried out to investigate the performance. The pressure ratio at the compression space is maintained at 1.37, for the double inlet type, the system obtains 1.1 W cooling power at 20 K with 390 W acoustic power input and the relative Carnot efficiency is only 3.85%; while for the stepped warm displacer type, the system obtains 1.06 W cooling power at 20 K with only 224 W acoustic power input and the relative Carnot efficiency can reach 6.5%.
NASA Astrophysics Data System (ADS)
Yang, Liping; Peter, Hardi; He, Jiansen; Tu, Chuanyi; Wang, Linghua; Zhang, Lei; Yan, Limei
2018-01-01
In the solar atmosphere, jets are ubiquitous at various spatial-temporal scales. They are important for understanding the energy and mass transports in the solar atmosphere. According to recent observational studies, the high-speed network jets are likely to be intermittent but continual sources of mass and energy for the solar wind. Here, we conduct a 2D magnetohydrodynamics simulation to investigate the mechanism of these network jets. A combination of magnetic flux emergence and horizontal advection is used to drive the magnetic reconnection in the transition region between a strong magnetic loop and a background open flux. The simulation results show that not only a fast warm jet, much similar to the network jets, is found, but also an adjacent slow cool jet, mostly like classical spicules, is launched. Differing from the fast warm jet driven by magnetic reconnection, the slow cool jet is mainly accelerated by gradients of both thermal pressure and magnetic pressure near the outer border of the mass-concentrated region compressed by the emerging loop. These results provide a different perspective on our understanding of the formation of both the slow cool jets from the solar chromosphere and the fast warm jets from the solar transition region.
Compressed sensing approach for wrist vein biometrics.
Lantsov, Aleksey; Ryabko, Maxim; Shchekin, Aleksey
2018-04-01
The work describes features of the compressed sensing (CS) approach utilized for development of a wearable system for wrist vein recognition with single-pixel detection; we consider this system useful for biometrics authentication purposes. The CS approach implies use of a spatial light modulation (SLM) which, in our case, can be performed differently-with a liquid crystal display or diffusely scattering medium. We show that compressed sensing combined with above-mentioned means of SLM allows us to avoid using an optical system-a limiting factor for wearable devices. The trade-off between the 2 different SLM approaches regarding issues of practical implementation of CS approach for wrist vein recognition purposes is discussed. A possible solution of a misalignment problem-a typical issue for imaging systems based upon 2D arrays of photodiodes-is also proposed. Proposed design of the wearable device for wrist vein recognition is based upon single-pixel detection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Further Investigations of Hypersonic Engine Seals
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.
2004-01-01
Durable, flexible sliding seals are required in advanced hypersonic engines to seal the perimeters of movable engine ramps for efficient, safe operation in high heat flux environments at temperatures of 2000 to 2500 F. Current seal designs do not meet the demanding requirements for future engines, so NASA's Glenn Research Center is developing advanced seals and preloading devices to overcome these shortfalls. An advanced ceramic wafer seal design and two silicon nitride compression spring designs were evaluated in a series of compression, scrub, and flow tests. Silicon nitride wafer seals survived 2000 in. (50.8 m) of scrubbing at 2000 F against a silicon carbide rub surface with no chips or signs of damage. Flow rates measured for the wafers before and after scrubbing were almost identical and were up to 32 times lower than those recorded for the best braided rope seal flow blockers. Silicon nitride compression springs showed promise conceptually as potential seal preload devices to help maintain seal resiliency.
Stretchable and foldable electronic devices
Rogers, John A; Huang, Yonggang; Ko, Heung Cho; Stoykovich, Mark; Choi, Won Mook; Song, Jizhou; Ahn, Jong Hyun; Kim, Dae Hyeong
2013-10-08
Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.
Stretchable and foldable electronic devices
Rogers, John A; Huang, Yonggang; Ko, Heung Cho; Stoykovich, Mark; Choi, Won Mook; Song, Jizhou; Ahn, Jong Hyun; Kim, Dae Hyeong
2014-12-09
Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.
Method for compression of binary data
Berlin, G.J.
1996-03-26
The disclosed method for compression of a series of data bytes, based on LZSS-based compression methods, provides faster decompression of the stored data. The method involves the creation of a flag bit buffer in a random access memory device for temporary storage of flag bits generated during normal LZSS-based compression. The flag bit buffer stores the flag bits separately from their corresponding pointers and uncompressed data bytes until all input data has been read. Then, the flag bits are appended to the compressed output stream of data. Decompression can be performed much faster because bit manipulation is only required when reading the flag bits and not when reading uncompressed data bytes and pointers. Uncompressed data is read using byte length instructions and pointers are read using word instructions, thus reducing the time required for decompression. 5 figs.
Designing a warm-up protocol for elite bob-skeleton athletes.
Cook, Christian; Holdcroft, Danny; Drawer, Scott; Kilduff, Liam P
2013-03-01
To investigate how different warm-ups influenced subsequent sled-pull sprint performance in Olympic-level bob-skeleton athletes as part of their preparation for the 2010 Winter Olympics. Three female and 3 male athletes performed 5 different randomized warm-ups of differing intensities, durations, and timing relative to subsequent testing, each 2 days apart, all repeated twice. After warm-ups, testing on a sled-pull sprint over 20 m, 3 repeats 3 min apart, took place. Performance testing showed improvement (P < .001, ES > 1.2) with both increasing intensity of warm-up and closeness of completion to testing, with 20-m sled sprinting being 0.1-0.25 s faster in higher-intensity protocols performed near testing In addition, supplementing the warm-ups by wearing of a light survival coat resulted in further performance improvement (P = .000, ES 1.8). Changing timing and intensity of warm-up and using an ancillary passive heat-retention device improved sprint performance in Olympic-level bob-skeleton athletes. Subsequent adoption of these on the competitive circuit was associated with a seasonal improvement in push times and was ultimately implemented in the 2010 Winter Olympics.
Computational Simulation of Explosively Generated Pulsed Power Devices
2013-03-21
to practical applications. These are the magnetic flux compression generators (FCG), ferromagnetic generators (FMG) and ferroelectric generators (FEG...The first device works on the concept of field interaction between a conducting medium and a magnetic field. The last two devices make use of either... magnetic or electric fields stored in a prepared material (4). This research will focus on the ferroelectric generator as a high voltage source for
X-ray Thomson Scattering in Warm Dense Matter without the Chihara Decomposition.
Baczewski, A D; Shulenburger, L; Desjarlais, M P; Hansen, S B; Magyar, R J
2016-03-18
X-ray Thomson scattering is an important experimental technique used to measure the temperature, ionization state, structure, and density of warm dense matter (WDM). The fundamental property probed in these experiments is the electronic dynamic structure factor. In most models, this is decomposed into three terms [J. Chihara, J. Phys. F 17, 295 (1987)] representing the response of tightly bound, loosely bound, and free electrons. Accompanying this decomposition is the classification of electrons as either bound or free, which is useful for gapped and cold systems but becomes increasingly questionable as temperatures and pressures increase into the WDM regime. In this work we provide unambiguous first principles calculations of the dynamic structure factor of warm dense beryllium, independent of the Chihara form, by treating bound and free states under a single formalism. The computational approach is real-time finite-temperature time-dependent density functional theory (TDDFT) being applied here for the first time to WDM. We compare results from TDDFT to Chihara-based calculations for experimentally relevant conditions in shock-compressed beryllium.
Shih, Andre; Udassi, Sharda; Porvasnik, Stacy L; Lamb, Melissa A; Badugu, Srinivasarao; Venkata, Giridhar Kaliki; Lopez-Colon, Dalia; Haque, Ikram U; Zaritsky, Arno L; Udassi, Jai P
2013-10-01
To evaluate the hemodynamic effects of using an adhesive glove device (AGD) to perform active compression-decompression CPR (AGD-CPR) in conjunction with an impedance threshold device (ITD) in a pediatric cardiac arrest model. Controlled, randomized animal study. In this study, 18 piglets were anesthetized, ventilated, and continuously monitored. After 3min of untreated ventricular fibrillation, animals were randomized (6/group) to receive either standard CPR (S-CPR), active compression-decompression CPR via adhesive glove device (AGD-CPR) or AGD-CPR along with an ITD (AGD-CPR+ITD) for 2min at 100-120compressions/min. AGD is delivered using a fingerless leather glove with a Velcro patch on the palmer aspect and the counter Velcro patch adhered to the pig's chest. Data (mean±SD) were analyzed using one-way ANOVA with pair wise multiple comparisons to assess differences between groups. p-Value≤0.05 was considered significant. Both AGD-CPR and AGD-CPR+ITD groups produced lower intrathoracic pressure (IttP, mmHg) during decompression phase (-13.4±6.7, p=0.01 and -11.9±6.5, p=0.01, respectively) in comparison to S-CPR (-0.3±4.2). Carotid blood flow (CBF, % of baseline mL/min) was higher in AGD-CPR and AGD-CPR+ITD (respectively 64.3±47.3%, p=0.03 and 67.5±33.1%, p=0.04) as compared with S-CPR (29.1±12.5%). Coronary perfusion pressure (CPP, mmHg) was higher in AGD-CPR and AGD-CPR+ITD (respectively 19.7±4.6, p=0.04 and 25.6±12.1, p=0.02) when compared to S-CPR (9.6±9.1). There was no statistically significant difference between AGD-CPR and AGD-CPR+ITD groups with reference to intra-thoracic pressure, carotid blood flow and coronary perfusion pressure. Active compression decompression delivered by this simple and inexpensive adhesive glove device resulted in improved cerebral blood flow and coronary perfusion pressure. There was no statistically significant added effect of ITD use along with AGD-CPR on the decompression of the chest. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Pantazopoulos, Ioannis N; Xanthos, Theodoros T; Vlachos, Ioannis; Troupis, Georgios; Kotsiomitis, Evangelos; Johnson, Elisabeth; Papalois, Apostolos; Skandalakis, Panagiotis
2012-03-01
To assess whether intermittent impedance of inspiratory gas exchange improves hemodynamic parameters, 48-hr survival, and neurologic outcome in a swine model of asphyxial cardiac arrest treated with active compression-decompression cardiopulmonary resuscitation. Prospective, randomized, double-blind study. Laboratory investigation. Thirty healthy Landrace/Large-White piglets of both sexes, aged 10 to 15 wks, whose average weight was 19 ± 2 kg. At approximately 7 mins following endotracheal tube clamping, ventricular fibrillation was induced and remained untreated for another 8 mins. Before initiation of cardiopulmonary resuscitation, animals were randomly assigned to either receive active compression-decompression cardiopulmonary resuscitation plus a sham impedance threshold device (control group, n = 15), or active compression-decompression cardiopulmonary resuscitation plus an active impedance threshold device (experimental group, n = 15). Electrical defibrillation was attempted every 2 mins until return of spontaneous circulation or asystole. Return of spontaneous circulation was observed in six (40%) animals treated with the sham valve and 14 (93.3%) animals treated with the active valve (p = .005, odds ratio 21.0, 95% confidence interval 2.16-204.6). Neuron-specific enolase and S-100 levels increased in the ensuing 4 hrs post resuscitation in both groups, but they were significantly elevated in animals treated with the sham valve (p < .01). At 48 hrs, neurologic alertness score was significantly better in animals treated with the active valve (79.1 ± 18.7 vs. 50 ± 10, p < .05) and was strongly negatively correlated with 1- and 4-hr postresuscitation neuron-specific enolase (r = -.86, p < .001 and r = -.87, p < .001, respectively) and S-100 (r = -.77, p < .001 and r = -0.8, p = .001) values. In this model of asphyxial cardiac arrest, intermittent airway occlusion with the impedance threshold device during the decompression phase of active compression-decompression cardiopulmonary resuscitation significantly improved hemodynamic parameters, 24- and 48-hr survival, and neurologic outcome evaluated both with clinical and biochemical parameters (neuron-specific enolase, S-100).
[Automatic mechanical chest compression during helicopter transportation].
Kyrval, Helle S; Ahmad, Khalil
2010-11-15
We describe a case story with a drowned, hypothermic trauma patient treated with an automatic mechanical chest compression device during helicopter transportation to a trauma center. After falling from a 25 meter high bridge into 2 °C water, she was rescued lifeless 17 minutes later. Advanced life support was initiated. During transport by a rescue helicopter, chest compressions were effectively provided by Lund University Cardiopulmonary Assist System (LUCAS). Upon arrival to a trauma centre approx. 60 minutes later, the patient was treated with extracorporal circulation and rewarmed. She was eventually discharged to her home with minor loss of cerebral function.
Air blast type coal slurry fuel injector
Phatak, Ramkrishna G.
1986-01-01
A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.
Air blast type coal slurry fuel injector
Phatak, R.G.
1984-08-31
A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine is disclosed which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.
Dynamic Compression of the Signal in a Charge Sensitive Amplifier: From Concept to Design
NASA Astrophysics Data System (ADS)
Manghisoni, Massimo; Comotti, Daniele; Gaioni, Luigi; Ratti, Lodovico; Re, Valerio
2015-10-01
This work is concerned with the design of a low-noise Charge Sensitive Amplifier featuring a dynamic signal compression based on the non-linear features of an inversion-mode MOS capacitor. These features make the device suitable for applications where a non-linear characteristic of the front-end is required, such as in imaging instrumentation for free electron laser experiments. The aim of the paper is to discuss a methodology for the proper design of the feedback network enabling the dynamic signal compression. Starting from this compression solution, the design of a low-noise Charge Sensitive Amplifier is also discussed. The study has been carried out by referring to a 65 nm CMOS technology.
Discontinuity minimization for omnidirectional video projections
NASA Astrophysics Data System (ADS)
Alshina, Elena; Zakharchenko, Vladyslav
2017-09-01
Advances in display technologies both for head mounted devices and television panels demand resolution increase beyond 4K for source signal in virtual reality video streaming applications. This poses a problem of content delivery trough a bandwidth limited distribution networks. Considering a fact that source signal covers entire surrounding space investigation reviled that compression efficiency may fluctuate 40% in average depending on origin selection at the conversion stage from 3D space to 2D projection. Based on these knowledge the origin selection algorithm for video compression applications has been proposed. Using discontinuity entropy minimization function projection origin rotation may be defined to provide optimal compression results. Outcome of this research may be applied across various video compression solutions for omnidirectional content.
Gonczy, J.D.; Markley, F.W.; McCaw, W.R.; Niemann, R.C.
1992-04-21
An apparatus for evaluating the tensile and compressive properties of material samples at very low or cryogenic temperatures employs a stationary frame and a dewar mounted below the frame. A pair of coaxial cylindrical tubes extend downward towards the bottom of the dewar. A compressive or tensile load is generated hydraulically and is transmitted by the inner tube to the material sample. The material sample is located near the bottom of the dewar in a liquid refrigerant bath. The apparatus employs a displacement measuring device, such as a linear variable differential transformer, to measure the deformation of the material sample relative to the amount of compressive or tensile force applied to the sample. 7 figs.
Taking Impressions of Hidden Cavity Walls
NASA Technical Reports Server (NTRS)
Burley, D.; Mayer, W.
1987-01-01
Lightweight, portable internal-molding device makes it possible to measure radii of, or examine contours of, passageways in hidden or complicated cavities. With device, measurements made in field, without returning assemblies to shop or laboratory for inspection. Molding head expands when compressed air applied. Inflatable tubes around head perform dual sealing and aligning function.
Udassi, Jai P.; Udassi, Sharda; Lamb, Melissa A.; Lamb, Kenneth E.; Theriaque, Douglas W.; Shuster, Jonathan J.; Zaritsky, Arno L.; Haque, Ikram U.
2013-01-01
Objective We developed an adhesive glove device (AGD) to perform ACD-CPR in pediatric manikins, hypothesizing that AGD-ACD-CPR provides better chest decompression compared to standard (S)-CPR. Design Split-plot design randomizing 16 subjects to test four manikin-technique models in a crossover fashion to AGD-ACD-CPR vs. S-CPR. Healthcare providers performed 5 min of CPR with 30:2 compression:ventilation ratio in the four manikin models: (1) adolescent; (2) child two-hand; (3) child one-hand; and (4) infant two-thumb. Methods Modified manikins recorded compression pressure (CP), compression depth (CD) and decompression depth (DD). The AGD consisted of a modified oven mitt with an adjustable strap; a Velcro patch was sewn to the palmer aspect. The counter Velcro patch was bonded to the anterior chest wall. For infant CPR, the thumbs of two oven mitts were stitched together with Velcro. Subjects were asked to actively pull up during decompression. Subjects’ heart rate (HR), respiratory rate (RR) and recovery time (RT) for HR/RR to return to baseline were recorded. Subjects were blinded to data recordings. Data (mean ± SEM) were analyzed using a two-tailed paired t-test. Significance was defined qualitatively as P ≤ 0.05. Results Mean decompression depth difference was significantly greater with AGD-ACD-CPR compared to S-CPR; 38–75% of subjects achieved chest decompression to or beyond baseline. AGD-ACD-CPR provided 6–12% fewer chest compressions/minute than S-CPR group. There was no significant difference in CD, CP, HR, RR and RT within each group comparing both techniques. Conclusion A simple, inexpensive glove device for ACD-CPR improved chest decompression with emphasis on active pull in manikins without excessive rescuer fatigue. The clinical implication of fewer compressions/minute in the AGD group needs to be evaluated. PMID:19683849
Zhang, Juwei; Tan, Xiaojiang; Zheng, Pengbo
2017-01-01
Electromagnetic methods are commonly employed to detect wire rope discontinuities. However, determining the residual strength of wire rope based on the quantitative recognition of discontinuities remains problematic. We have designed a prototype device based on the residual magnetic field (RMF) of ferromagnetic materials, which overcomes the disadvantages associated with in-service inspections, such as large volume, inconvenient operation, low precision, and poor portability by providing a relatively small and lightweight device with improved detection precision. A novel filtering system consisting of the Hilbert-Huang transform and compressed sensing wavelet filtering is presented. Digital image processing was applied to achieve the localization and segmentation of defect RMF images. The statistical texture and invariant moment characteristics of the defect images were extracted as the input of a radial basis function neural network. Experimental results show that the RMF device can detect defects in various types of wire rope and prolong the service life of test equipment by reducing the friction between the detection device and the wire rope by accommodating a high lift-off distance. PMID:28300790
Ruiz de Gauna, Sofía; González-Otero, Digna M.; Ruiz, Jesus; Russell, James K.
2016-01-01
Background Quality of cardiopulmonary resuscitation (CPR) is key to increase survival from cardiac arrest. Providing chest compressions with adequate rate and depth is difficult even for well-trained rescuers. The use of real-time feedback devices is intended to contribute to enhance chest compression quality. These devices are typically based on the double integration of the acceleration to obtain the chest displacement during compressions. The integration process is inherently unstable and leads to important errors unless boundary conditions are applied for each compression cycle. Commercial solutions use additional reference signals to establish these conditions, requiring additional sensors. Our aim was to study the accuracy of three methods based solely on the acceleration signal to provide feedback on the compression rate and depth. Materials and Methods We simulated a CPR scenario with several volunteers grouped in couples providing chest compressions on a resuscitation manikin. Different target rates (80, 100, 120, and 140 compressions per minute) and a target depth of at least 50 mm were indicated. The manikin was equipped with a displacement sensor. The accelerometer was placed between the rescuer’s hands and the manikin’s chest. We designed three alternatives to direct integration based on different principles (linear filtering, analysis of velocity, and spectral analysis of acceleration). We evaluated their accuracy by comparing the estimated depth and rate with the values obtained from the reference displacement sensor. Results The median (IQR) percent error was 5.9% (2.8–10.3), 6.3% (2.9–11.3), and 2.5% (1.2–4.4) for depth and 1.7% (0.0–2.3), 0.0% (0.0–2.0), and 0.9% (0.4–1.6) for rate, respectively. Depth accuracy depended on the target rate (p < 0.001) and on the rescuer couple (p < 0.001) within each method. Conclusions Accurate feedback on chest compression depth and rate during CPR is possible using exclusively the chest acceleration signal. The algorithm based on spectral analysis showed the best performance. Despite these encouraging results, further research should be conducted to asses the performance of these algorithms with clinical data. PMID:26930061
First-Principles Equation of State and Shock Compression of Warm Dense Aluminum and Hydrocarbons
NASA Astrophysics Data System (ADS)
Driver, Kevin; Soubiran, Francois; Zhang, Shuai; Militzer, Burkhard
2017-10-01
Theoretical studies of warm dense plasmas are a key component of progress in fusion science, defense science, and astrophysics programs. Path integral Monte Carlo (PIMC) and density functional theory molecular dynamics (DFT-MD), two state-of-the-art, first-principles, electronic-structure simulation methods, provide a consistent description of plasmas over a wide range of density and temperature conditions. Here, we combine high-temperature PIMC data with lower-temperature DFT-MD data to compute coherent equations of state (EOS) for aluminum and hydrocarbon plasmas. Subsequently, we derive shock Hugoniot curves from these EOSs and extract the temperature-density evolution of plasma structure and ionization behavior from pair-correlation function analyses. Since PIMC and DFT-MD accurately treat effects of atomic shell structure, we find compression maxima along Hugoniot curves attributed to K-shell and L-shell ionization, which provide a benchmark for widely-used EOS tables, such as SESAME and LEOS, and more efficient models. LLNL-ABS-734424. Funding provided by the DOE (DE-SC0010517) and in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Computational resources provided by Blue Waters (NSF ACI1640776) and NERSC. K. Driver's and S. Zhang's current address is Lawrence Livermore Natl. Lab, Livermore, CA, 94550, USA.
On the stability of the disordered molecular alloy phase of ammonia hemihydrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, C. W.; SUPA, School of Physics and Astronomy, Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3JZ; Bull, C. L.
The disordered-molecular-alloy phase (DMA) of ammonia hydrates [J. S. Loveday and R. J. Nelmes, Phys. Rev. Lett. 83, 4329 (1999)] is unique in that it has substitutional disorder of ammonia and water over the molecular sites of a body centred cubic lattice. Whilst this structure has been observed in ammonia di- and mono-hydrate compositions, it has not been conclusively observed in the ammonia hemihydrate system. This work presents investigations of the structural behaviour of ammonia hemihydrate as a function of P and T. The indications of earlier studies [Ma et al. RSC Adv. 2, 4290 (2012)] that the DMA structuremore » could be produced by compression of ammonia hemihydrate above 20 GPa at ambient temperature are confirmed. In addition, the DMA structure was found to form reversibly both from the melt, and on warming of ammonia hemihydrate phase-II, in the pressure range between 4 and 8 GPa. The route used to make the DMA structure from ammonia mono- and di-hydrates—compression at 170 K to 6 GPa followed by warming to ambient temperature—was found not to produce the DMA structure for ammonia hemihydrate. These results provide the first strong evidence that DMA is a thermodynamically stable form. A high-pressure phase diagram for ammonia hemihydrate is proposed which has importance for planetary modelling.« less
Absorption Kinetics of Subcutaneously Administered Ceftazidime in Hypoperfused Guinea Pigs.
Ebihara, Tsuyoshi; Oshima, Shinji; Okita, Mitsuyoshi; Shiina, Sayumi; Negishi, Akio; Ohara, Kousuke; Ohshima, Shigeru; Iwasaki, Hiroyuki; Yoneyama, Akira; Kitazumi, Eiji; Kobayashi, Daisuke
2015-12-01
Pneumonia is the most common cause of death in patients with severe motor and intellectual disabilities (SMID), and intravenous ceftazidime (CAZ) is a widely used treatment for such infections. However, intravenous administration in patients with SMID may be difficult because of insufficient vascular development. The aim of our study was to determine the feasibility of subcutaneous drug administration by mentholated warm compresses (WMCs) as an alternative delivery method for ceftazidime in patients with SMID. CAZ was subcutaneously administered to the abdominal region of naphazoline-treated hypoperfused guinea pigs, which were used as a hemodynamic model of patients with SMID. MWCs or warm compresses (WCs) were applied to the injection site to increase blood flow. We calculated the cumulative CAZ absorption over time by using the deconvolution method. Application of MWCs or WCs increased blood flow at the administration site and increased CAZ plasma levels. Application of MWCs or WCs after subcutaneous CAZ injection led to higher CAZ plasma levels than the mutant prevention concentration for a longer period than was observed for CAZ administration without the application of MWCs or WCs. The application of MWCs or WCs enhanced subcutaneous CAZ absorption by increasing blood flow. MWCs and WCs are considered to be safe and routine methods to induce defecation after surgery on the digestive system; thus, the combination of these methods and subcutaneous CAZ administration is a potential method for treating pneumonia in patients with SMID.
[Effectiveness of physiotherapy on painful shoulder impingement syndrome].
Gomora-García, Mónica; Rojano-Mejía, David; Solis-Hernández, José Luis; Escamilla-Chávez, Carolina
2016-01-01
Painful shoulder impingement syndrome is one of the first reasons for care in rehabilitation centres. As the evidence regarding the effectiveness of physical measures as adjuvant treatment is limited, the aim of this study was to determine the effectiveness of physiotherapy on shoulder pain. A retrospective and analytical study was conducted using the medical records of patients with shoulder pain who attended in a rehabilitation centre from October 2010 to September 2011. The demographic and clinical data were collected, and the clinical improvement was determined as: complete, incomplete, or no improvement. Chi squared was used to determine whether there were differences between the different modalities of physiotherapy, as well as the level of improvement. The study included a total of 181 patients, with a mean age of 54.3 years, and a mean of 4.6 months of onset of pain. The physiotherapy treatments included: warm compresses plus interferential current (60.2%), and warm compresses plus ultrasound (17.1%). Just over half (53.6%) obtained a moderate recovery, 36.4% slight improvement, and 9.9% no improvement. No significant differences were found between the different forms of therapy. The supervised rehabilitation program consists of 9 sessions of physiotherapy. A functional improvement of 90% was obtained, without finding any statistical differences between the therapies used. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.
High-performance ultra-low power VLSI analog processor for data compression
NASA Technical Reports Server (NTRS)
Tawel, Raoul (Inventor)
1996-01-01
An apparatus for data compression employing a parallel analog processor. The apparatus includes an array of processor cells with N columns and M rows wherein the processor cells have an input device, memory device, and processor device. The input device is used for inputting a series of input vectors. Each input vector is simultaneously input into each column of the array of processor cells in a pre-determined sequential order. An input vector is made up of M components, ones of which are input into ones of M processor cells making up a column of the array. The memory device is used for providing ones of M components of a codebook vector to ones of the processor cells making up a column of the array. A different codebook vector is provided to each of the N columns of the array. The processor device is used for simultaneously comparing the components of each input vector to corresponding components of each codebook vector, and for outputting a signal representative of the closeness between the compared vector components. A combination device is used to combine the signal output from each processor cell in each column of the array and to output a combined signal. A closeness determination device is then used for determining which codebook vector is closest to an input vector from the combined signals, and for outputting a codebook vector index indicating which of the N codebook vectors was the closest to each input vector input into the array.
[Importance of mechanical assist devices in acute circulatory arrest].
Ferrari, Markus Wolfgang
2016-03-01
Mechanical assist devices are indicated for hemodynamic stabilization in acute circulatory arrest if conventional means of cardiopulmonary resuscitation are unable to re-establish adequate organ perfusion. Their temporary use facilitates further diagnostic and therapeutic options in selected patients, e.g. coronary angiography followed by revascularization.External thorax compression devices allow sufficient cardiac massage in case of preclinical or in-hospital circulatory arrest, especially under complex transfer conditions. These devices perform standardized thorax compressions at a rate of 80-100 per minute. Invasive mechanical support devices are used in the catheter laboratory or in the intensive care unit. Axial turbine pumps, e.g. the Impella, continuously pump blood from the left ventricle into the aortic root. The Impella can also provide right ventricle support by pumping blood from the vena cava into the pulmonary artery. So-called emergency systems or ECMO devices consist of a centrifugal pump and a membrane oxygenator allowing complete takeover of cardiac and pulmonary functions. Withdrawing blood from the right atrium and vena cava, oxygenated blood is returned to the abdominal aorta. Isolated centrifugal pumps provide left heart support without an oxygenator after transseptal insertion of a venous cannula into the left atrium.Mechanical assist devices are indicated for acute organ protection and hemodynamic stabilization for diagnostic and therapeutic measures as well as bridge to myocardial recovery. Future technical developments and better insights into the pathophysiology of mechanical circulatory support will broaden the spectrum of indications of such devices in acute circulatory arrest.
NASA Astrophysics Data System (ADS)
Zhao, Yang; Yang, Jia-Min; Zhang, Ji-Yan; Yang, Guo-Hong; Xiong, Gang; Wei, Min-Xi; Song, Tian-Ming; Zhang, Zhi-Yu
2013-06-01
A time-resolved K edge absorption measurement of warm dense KCl was performed on Shenguang II laser facility. The x-ray radiation driven shocks were adopted to take colliding shocks compression. By using Dog bone hohlraum the CH/KCl/CH sample was shielded from the laser hitting point to suppress the M band preheating and enhance the compressibility. Thus, an unexplored and extreme region of the plasma state with the maximum 5 times solid density and temperature lower than 3 eV (with coupling constant Γii around 100) was first obtained. The photoabsorption spectra of chlorine near the K-shell edge have been measured with a crystal spectrometer using a short x-ray backlighter. The K edge red shift up to 11.7 eV and broadening of 15.2 eV were obtained for the maximum compression. The electron temperature, inferred by Fermi-Dirac fit of the measured K-edge broadening, was consistent with the hydrodynamic predictions. The comparison of the K edge shift with a plasma model, in which the ionization effect, continuum lowering and partial degeneracy are considered, shows that more improvements are desired to describe in details the variation of K edge shift. This work might extend future study of WDM in extreme conditions of high compression.
First-principles equation of state and shock compression predictions of warm dense hydrocarbons
Zhang, Shuai; Driver, Kevin P.; Soubiran, Francois; ...
2017-07-10
We use path integral Monte Carlo and density functional molecular dynamics to construct a coherent set of equations of state (EOS) for a series of hydrocarbon materials with various C:H ratios (2:1, 1:1, 2:3, 1:2, and 1:4) over the range of 0.07–22.4gcm –3 and 6.7 × 10 3 – 1.29 × 10 8K. The shock Hugoniot curve derived for each material displays a single compression maximum corresponding to K-shell ionization. For C:H = 1:1, the compression maximum occurs at 4.7-fold of the initial density and we show radiation effects significantly increase the shock compression ratio above 2 Gbar, surpassing relativisticmore » effects. The single-peaked structure of the Hugoniot curves contrasts with previous work on higher-Z plasmas, which exhibit a two-peak structure corresponding to both K- and L-shell ionization. Analysis of the electronic density of states reveals that the change in Hugoniot structure is due to merging of the L-shell eigenstates in carbon, while they remain distinct for higher-Z elements. Lastly, we show that the isobaric-isothermal linear mixing rule for carbon and hydrogen EOS is a reasonable approximation with errors better than 1% for stellar-core conditions.« less
First-principles equation of state and shock compression predictions of warm dense hydrocarbons
NASA Astrophysics Data System (ADS)
Zhang, Shuai; Driver, Kevin P.; Soubiran, François; Militzer, Burkhard
2017-07-01
We use path integral Monte Carlo and density functional molecular dynamics to construct a coherent set of equations of state (EOS) for a series of hydrocarbon materials with various C:H ratios (2:1, 1:1, 2:3, 1:2, and 1:4) over the range of 0.07 -22.4 g cm-3 and 6.7 ×103-1.29 ×108K . The shock Hugoniot curve derived for each material displays a single compression maximum corresponding to K -shell ionization. For C:H = 1:1, the compression maximum occurs at 4.7-fold of the initial density and we show radiation effects significantly increase the shock compression ratio above 2 Gbar, surpassing relativistic effects. The single-peaked structure of the Hugoniot curves contrasts with previous work on higher-Z plasmas, which exhibit a two-peak structure corresponding to both K - and L -shell ionization. Analysis of the electronic density of states reveals that the change in Hugoniot structure is due to merging of the L -shell eigenstates in carbon, while they remain distinct for higher-Z elements. Finally, we show that the isobaric-isothermal linear mixing rule for carbon and hydrogen EOS is a reasonable approximation with errors better than 1% for stellar-core conditions.
Light-pulse atom interferometric device
Biedermann, Grant; McGuinness, Hayden James Evans; Rakholia, Akash; Jau, Yuan-Yu; Schwindt, Peter; Wheeler, David R.
2016-03-22
An atomic interferometric device useful, e.g., for measuring acceleration or rotation is provided. The device comprises at least one vapor cell containing a Raman-active chemical species, an optical system, and at least one detector. The optical system is conformed to implement a Raman pulse interferometer in which Raman transitions are stimulated in a warm vapor of the Raman-active chemical species. The detector is conformed to detect changes in the populations of different internal states of atoms that have been irradiated by the optical system.
Calvo-Buey, J A; Calvo-Marcos, D; Marcos-Camina, R M
2016-01-01
To determine whether the use of CPRmeter(®) during the resuscitation manoeuvres, is related to a higher quality of external cardiac massage, as recommended by the International Liaison Committee on Resuscitation (ILCOR). To compare the quality obtained without the use or this, and whether there are differences related to anthropometric, demographic, professional and/or occupational factors. Experimental, open trial performed with life support simulators in a stratified random sample of 88 health workers randomly distributed between groups A (without indications of the device) and B (with them). The homogeneity of their confounding variables was compared, as well as the compressions depth and compressions rate, the proportion of completed release, and distribution of the quality massage variable (according to criteria ILCOR) between the groups. The qualitative variables were analysed with the chi-square test, and quantitative variables with the Student t-test or Mann-Whitney U-test and the association between the variable quality massage variable, and use of the device with the odds ratio. Group A: mean depth 42.1mm (standard deviation 10.1), mean rate 121.3/min (21.6), percentage of complete release 71.2% (36.9). Group B: 51.2mm (5.9) 111.9/min (6.4), 92.9% (10.1) respectively. Odds ratio for quality massage regarding the use of the device was 5.170 (95% CI; 2.060-12.977). The use of CPRmeter(®) device in simulated resuscitations is related to a higher quality of cardiac massage, improving the approach to the ILCOR recommendations, regardless of the characteristics of the participants. They were 83.8% more likely to achieve a quality massage using the device than without it. Copyright © 2015 Elsevier España, S.L.U. y SEEIUC. All rights reserved.
Determination of elastomeric foam parameters for simulations of complex loading.
Petre, M T; Erdemir, A; Cavanagh, P R
2006-08-01
Finite element (FE) analysis has shown promise for the evaluation of elastomeric foam personal protection devices. Although appropriate representation of foam materials is necessary in order to obtain realistic simulation results, material definitions used in the literature vary widely and often fail to account for the multi-mode loading experienced by these devices. This study aims to provide a library of elastomeric foam material parameters that can be used in FE simulations of complex loading scenarios. Twelve foam materials used in footwear were tested in uni-axial compression, simple shear and volumetric compression. For each material, parameters for a common compressible hyperelastic material model used in FE analysis were determined using: (a) compression; (b) compression and shear data; and (c) data from all three tests. Material parameters and Drucker stability limits for the best fits are provided with their associated errors. The material model was able to reproduce deformation modes for which data was provided during parameter determination but was unable to predict behavior in other deformation modes. Simulation results were found to be highly dependent on the extent of the test data used to determine the parameters in the material definition. This finding calls into question the many published results of simulations of complex loading that use foam material parameters obtained from a single mode of testing. The library of foam parameters developed here presents associated errors in three deformation modes that should provide for a more informed selection of material parameters.
NASA Astrophysics Data System (ADS)
Markman, A.; Javidi, B.
2016-06-01
Quick-response (QR) codes are barcodes that can store information such as numeric data and hyperlinks. The QR code can be scanned using a QR code reader, such as those built into smartphone devices, revealing the information stored in the code. Moreover, the QR code is robust to noise, rotation, and illumination when scanning due to error correction built in the QR code design. Integral imaging is an imaging technique used to generate a three-dimensional (3D) scene by combining the information from two-dimensional (2D) elemental images (EIs) each with a different perspective of a scene. Transferring these 2D images in a secure manner can be difficult. In this work, we overview two methods to store and encrypt EIs in multiple QR codes. The first method uses run-length encoding with Huffman coding and the double-random-phase encryption (DRPE) to compress and encrypt an EI. This information is then stored in a QR code. An alternative compression scheme is to perform photon-counting on the EI prior to compression. Photon-counting is a non-linear transformation of data that creates redundant information thus improving image compression. The compressed data is encrypted using the DRPE. Once information is stored in the QR codes, it is scanned using a smartphone device. The information scanned is decompressed and decrypted and an EI is recovered. Once all EIs have been recovered, a 3D optical reconstruction is generated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A.; Barnard, J. J.; Cohen, R. H.
The Heavy Ion Fusion Science Virtual National Laboratory(a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the"warm dense matter" regime at<~;; 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Test Accelerator at LLNL,more » NDCX-II will compress a ~;;500 ns pulse of Li+ ions to ~;;1 ns while accelerating it to 3-4 MeV over ~;;15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A; Barnard, J J; Cohen, R H
The Heavy Ion Fusion Science Virtual National Laboratory (a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the 'warm dense matter' regime at {approx}< 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Testmore » Accelerator at LLNL, NDCX-II will compress a {approx}500 ns pulse of Li{sup +} ions to {approx} 1 ns while accelerating it to 3-4 MeV over {approx} 15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sand, J.R.; Fischer, S.K.
1997-01-01
The Montreal Protocol phase-out of chlorofluorocarbons (CFCs) has required manufacturers to develop refrigeration and air-conditioning systems that use refrigerants that can not damage stratospheric ozone. Most refrigeration industries have adapted their designs to use hydrochlorofluorocarbon (HCFC) or hydrofluorocarbon (HFC) refrigerants; new automobile air- conditioning systems use HFC-134a. These industries are now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants on global warming. Automobile air-conditioning has three separate impacts on global warming; (1) the effects of refrigerant inadvertently released to the atmosphere from accidents, servicing, and leakage; (2) the efficiency of the cooling equipmentmore » (due to the emission of C0{sub 2} from burning fuel to power the system); and (3) the emission of C0{sub 2} from burning fuel to transport the system. The Total Equivalent Warming Impact (TEWI) is an index that should be used to compare the global warming effects of alternative air-conditioning systems because it includes these contributions from the refrigerant, cooling efficiency, and weight. This paper compares the TEWI of current air-conditioning systems using HFC-134a with that of transcritical vapor compression system using carbon dioxide and systems using flammable refrigerants with secondary heat transfer loops. Results are found to depend on both climate and projected efficiency of C0{sub 2}systems. Performance data on manufacturing prototype systems are needed to verify the potential reductions in TEWI. Extensive field testing is also required to determine the performance, reliability, and ``serviceability`` of each alternative to HFC-134a to establish whether the potential reduction of TEWI can be achieved in a viable consumer product.« less
Alternative Compression Garments
NASA Technical Reports Server (NTRS)
Stenger, M. B.; Lee, S. M. C.; Ribeiro, L. C.; Brown, A. K.; Westby, C. M.; Platts, S. H.
2011-01-01
Orthostatic intolerance after spaceflight is still an issue for astronauts as no in-flight countermeasure has been 100% effective. Future anti-gravity suits (AGS) may be similar to the Shuttle era inflatable AGS or may be a mechanical compression device like the Russian Kentavr. We have evaluated the above garments as well as elastic, gradient compression garments of varying magnitude and determined that breast-high elastic compression garments may be a suitable replacement to the current AGS. This new garment should be more comfortable than the AGS, easy to don and doff, and as effective a countermeasure to orthostatic intolerance. Furthermore, these new compression garments could be worn for several days after space flight as necessary if symptoms persisted. We conducted two studies to evaluate elastic, gradient compression garments. The purpose of these studies was to evaluate the comfort and efficacy of an alternative compression garment (ACG) immediately after actual space flight and 6 degree head-down tilt bed rest as a model of space flight, and to determine if they would impact recovery if worn for up to three days after bed rest.
Liang, Xu; Nie, Kaiwen; Ding, Xian; Dang, Liqin; Sun, Jie; Shi, Feng; Xu, Hua; Jiang, Ruibin; He, Xuexia; Liu, Zonghuai; Lei, Zhibin
2018-03-28
The development of compressible supercapacitor highly relies on the innovative design of electrode materials with both superior compression property and high capacitive performance. This work reports a highly compressible supercapacitor electrode which is prepared by growing electroactive NiCo 2 S 4 (NCS) nanosheets on the compressible carbon sponge (CS). The strong adhesion of the metallic conductive NCS nanosheets to the highly porous carbon scaffolds enable the CS-NCS composite electrode to exhibit an enhanced conductivity and ideal structural integrity during repeated compression-release cycles. Accordingly, the CS-NCS composite electrode delivers a specific capacitance of 1093 F g -1 at 0.5 A g -1 and remarkable rate performance with 91% capacitance retention in the range of 0.5-20 A g -1 . Capacitance performance under the strain of 60% shows that the incorporation of NCS nanosheets in CS scaffolds leads to over five times enhancement in gravimetric capacitance and 17 times enhancement in volumetric capacitance. These performances enable the CS-NCS composite to be one of the promising candidates for potential applications in compressible electrochemical energy storage devices.
Membrane filtration device for studying compression of fouling layers in membrane bioreactors
Bugge, Thomas Vistisen; Larsen, Poul; Nielsen, Per Halkjær; Christensen, Morten Lykkegaard
2017-01-01
A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology’s ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation. PMID:28749990
NASA Astrophysics Data System (ADS)
Mishra, Shubham; Sarkar, Jahar
2016-12-01
Performance assessment of ejector-expansion vapor compression refrigeration system with eco-friendly R134a alternative refrigerants (R152a, R1234yf, R600a, R600, R290, R161, R32, and propylene) is presented for air-conditioning application. Ejector has been modeled by considering experimental data based correlations of component efficiencies to take care of all irreversibilities. Ejector area ratio has been optimized based on maximum coefficient of performance (COP) for typical air-conditioner operating temperatures. Selected refrigerants have been compared based on area ratio, pressure lift ratio, entrainment ratio, COP, COP improvement and volumetric cooling capacity. Effects of normal boiling point and critical point on the performances have been studied as well. Using ejector as an expansion device, maximum improvement in COP is noted in R1234yf (10.1%), which reduces the COP deviation with R134a (4.5% less in basic cycle and 2.5% less in ejector cycle). Hence, R1234yf seems to be best alternative for ejector expansion system due to its mild flammability and comparable volumetric capacity and cooling COP. refrigerant R161 is superior to R134a in terms of both COP and volumetric cooling capacity, although may be restricted for low capacity application due to its flammability.
Treatment of Clavicular Nonunions with Shape Memory Ni-Ti Alloy Swan-Like Bone Connector
NASA Astrophysics Data System (ADS)
Liu, Xin-Wei; Xu, Shuo-Gui; Wang, Pan-Feng; Zhang, Chun-Cai
2011-07-01
Disability caused by nonunited fracture of the clavicle is a rare condition that is expressed by local pain. This condition is usually treated by reduction of the fracture and stable fixation with augmentation by autogenous bone graft. This is a retrospective study to assess outcome of the treatment of clavicular nonunion with a novel shape memory Ni-Ti alloy swan-like bone connector (SMC). August, 2003 to December, 2006, 5 consecutive patients with clavicular nonunion were treated using SMC in our hospital. The SMC device was cooled with ice before implantation and then warmed to 40-50 °C after implantation, to produce balanced axial and compression forces that would stabilize the fracture. We have used cancellous bone grafting in all our cases to obtain solid healing. Average follow-up was 37 months (range 25-58). In all patients, satisfactory osseous union was achieved. There was no complication from the hardware. The average Constant score which is for evaluating function of injured shoulder after operation was 86 points (average Constant score for the unaffected shoulder was 95). All patients were very satisfied with the treatment and outcome. The SMC provides a new effective method for fracture fixation and treatment of bone nonunion for clavicle.
New Technology Sparks Smoother Engines and Cleaner Air
NASA Technical Reports Server (NTRS)
2001-01-01
Automotive Resources, Inc. (ARI) has developed a new device for igniting fuel in engines-the SmartPlug.TM SmartPlug is a self-contained ignition system that may be retrofitted to existing spark-ignition and compression-ignition engines. The SmartPlug needs as little as six watts of power for warm-up, and requires no electricity at all when the engine is running. Unlike traditional spark plugs, once the SmartPlug ignites the engine, and the engine heats up, the power supply for the plug is no longer necessary. In the utility industry, SmartPlugs can be used in tractors, portable generators, compressors, and pumps. In addition to general-purpose applications, such as lawn mowers and chainsaws, SmartPlugs can also be used in the recreational, marine, aviation, and automotive industries. Unlike traditional ignition systems, the SmartPlug system requires no distributor, coil points, or moving parts. SmartPlugs are non-fouling, with a faster and cleaner burn than traditional spark plugs. They prevent detonation and are not sensitive to moisture, allowing them to be used on a variety of engines. Other advantages include no electrical noise, no high voltage, exceptionally high altitude capabilities, and better cold-start statistics than those of standard spark ignition systems. Future applications for the SmartPlug are being evaluated by manufacturers in the snowmobile industry.
Watson, Bobby L.; Aeby, Ian
1982-01-01
An adaptive data compression device for compressing data having variable frequency content, including a plurality of digital filters for analyzing the content of the data over a plurality of frequency regions, a memory, and a control logic circuit for generating a variable rate memory clock corresponding to the analyzed frequency content of the data in the frequency region and for clocking the data into the memory in response to the variable rate memory clock.
Short pulse laser stretcher-compressor using a single common reflective grating
Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Telford, Steve
2004-05-25
The present invention provides an easily aligned, all-reflective, aberration-free pulse stretcher-compressor in a compact geometry. The stretcher-compressor device is a reflective multi-layer dielectric that can be utilized for high power chirped-pulse amplification material processing applications. A reflective grating element of the device is constructed: 1) to receive a beam for stretching of laser pulses in a beam stretcher beam path and 2) to also receive stretched amplified pulses to be compressed in a compressor beam path through the same (i.e., common) reflective multilayer dielectric diffraction grating. The stretched and compressed pulses are interleaved about the grating element to provide the desired number of passes in each respective beam path in order to achieve the desired results.
Application of acoustic surface wave technology to shuttle radar
NASA Technical Reports Server (NTRS)
1975-01-01
The application of surface acoustic wave (SAW) signal processing devices in the space shuttle was explored. In order to demonstrate the functions which a SAW device might perform, a breadboard pulse compression filter (PCF) module was assembled. The PCF permits a pulse radar to operate with a large duty cycle and low peak power, a regime favorable to the use of solid state RF sources. The transducer design, strong coupling compensation, circuit model analysis, fabrication limitations, and performance evaluation of a PCF are described. The nominal value of the compression ratio is 100:1 with 10-MHz bandwidth centered at 60 MHz and 10-microsecond dispersive delay. The PCF incorporates dispersive interdigital transducers and a piezoelectric lithium niobate substrate.
Miniature reciprocating heat pumps and engines
NASA Technical Reports Server (NTRS)
Thiesen, Jack H. (Inventor); Mohling, Robert A. (Inventor); Willen, Gary S. (Inventor)
2003-01-01
The present invention discloses a miniature thermodynamic device that can be constructed using standard micro-fabrication techniques. The device can be used to provide cooling, generate power, compress gases, pump fluids and reduce pressure below ambient (operate as a vacuum pump). Embodiments of the invention relating to the production of a cooling effect and the generation of electrical power, change the thermodynamic state of the system by extracting energy from a pressurized fluid. Energy extraction is attained using an expansion process, which is as nearly isentropic as possible for the appropriately chosen fluid. An isentropic expansion occurs when a compressed gas does work to expand, and in the disclosed embodiments, the gas does work by overcoming either an electrostatic or a magnetic force.
Wang, Chunfei; Zhang, Guang; Wu, Taihu; Zhan, Ningbo; Wang, Yaling
2016-03-01
High-quality cardiopulmonary resuscitation contributes to cardiac arrest survival. The traditional chest compression (CC) standard, which neglects individual differences, uses unified standards for compression depth and compression rate in practice. In this study, an effective and personalized CC method for automatic mechanical compression devices is provided. We rebuild Charles F. Babbs' human circulation model with a coronary perfusion pressure (CPP) simulation module and propose a closed-loop controller based on a fuzzy control algorithm for CCs, which adjusts the CC depth according to the CPP. Compared with a traditional proportion-integration-differentiation (PID) controller, the performance of the fuzzy controller is evaluated in computer simulation studies. The simulation results demonstrate that the fuzzy closed-loop controller results in shorter regulation time, fewer oscillations and smaller overshoot than traditional PID controllers and outperforms the traditional PID controller for CPP regulation and maintenance.
NASA Astrophysics Data System (ADS)
Gedalin, Daniel; Oiknine, Yaniv; August, Isaac; Blumberg, Dan G.; Rotman, Stanley R.; Stern, Adrian
2017-04-01
Compressive sensing theory was proposed to deal with the high quantity of measurements demanded by traditional hyperspectral systems. Recently, a compressive spectral imaging technique dubbed compressive sensing miniature ultraspectral imaging (CS-MUSI) was presented. This system uses a voltage controlled liquid crystal device to create multiplexed hyperspectral cubes. We evaluate the utility of the data captured using the CS-MUSI system for the task of target detection. Specifically, we compare the performance of the matched filter target detection algorithm in traditional hyperspectral systems and in CS-MUSI multiplexed hyperspectral cubes. We found that the target detection algorithm performs similarly in both cases, despite the fact that the CS-MUSI data is up to an order of magnitude less than that in conventional hyperspectral cubes. Moreover, the target detection is approximately an order of magnitude faster in CS-MUSI data.
Avrin, D E; Andriole, K P; Yin, L; Gould, R G; Arenson, R L
2001-03-01
A hierarchical storage management (HSM) scheme for cost-effective on-line archival of image data using lossy compression is described. This HSM scheme also provides an off-site tape backup mechanism and disaster recovery. The full-resolution image data are viewed originally for primary diagnosis, then losslessly compressed and sent off site to a tape backup archive. In addition, the original data are wavelet lossy compressed (at approximately 25:1 for computed radiography, 10:1 for computed tomography, and 5:1 for magnetic resonance) and stored on a large RAID device for maximum cost-effective, on-line storage and immediate retrieval of images for review and comparison. This HSM scheme provides a solution to 4 problems in image archiving, namely cost-effective on-line storage, disaster recovery of data, off-site tape backup for the legal record, and maximum intermediate storage and retrieval through the use of on-site lossy compression.
König, H; Dinkelaker, F; Wolf, K J
1991-08-01
The aim of this study was to improve the MRI diagnosis of CMP, with special reference to the early stages and accurate staging. For this purpose, the retropatellar cartilage was examined by MRI while compression was carried out, using 21 patients and five normal controls. The compression was applied by means of a specially constructed device. Changes in cartilage thickness and signal intensity were evaluated quantitatively during FLASH and FISP sequences. In all patients the results of arthroscopies were available and in 12 patients, cartilage biopsies had been obtained. CMP stage I could be distinguished from normal cartilage by reduction in cartilage thickness and signal increase from the oedematous cartilage during compression. In CMP stages II/III, abnormal protein deposition of collagen type I could be demonstrated by its compressibility. In stages III and IV, the method does not add any significant additional information.
Komasawa, Nobuyasu; Fujiwara, Shunsuke; Majima, Nozomi; Minami, Toshiaki
2015-08-01
Pregnancy-related mortality, estimated to occur in approximately 1: 50,000 deliveries, is rare in developed countries. The 2010 American Heart Association (AHA) Guidelines for Resuscitation emphasize the importance of high-quality chest compression as a key determinant of successful cardiopulmonary resuscitation. During pregnancy, the uterus can compress the inferior vena cava, impeding venous return and thereby reducing stroke volume and cardiac output. To maximize the effectiveness of chest compressions in pregnancy, the AHA guidelines recommend the 27-30 degrees left-lateral tilt (LLT) position. When CPR is performed on parturients in the LLT position, chest compressions will probably be more effective if performed with the operator standing on the left side of the patient. The videolaryngoscope Pentax-AWS Airwayscope (AWS) was found to be an effective tool for airway management during chest compressions in 27 LLT simulations, suggesting that the AWS may be a useful device for airway management during maternal resuscitation.
Compressed gas fuel storage system
Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.
2001-01-01
A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.
Polydimethylsiloxane pressure sensors for force analysis in tension band wiring of the olecranon.
Zens, Martin; Goldschmidtboeing, Frank; Wagner, Ferdinand; Reising, Kilian; Südkamp, Norbert P; Woias, Peter
2016-11-14
Several different surgical techniques are used in the treatment of olecranon fractures. Tension band wiring is one of the most preferred options by surgeons worldwide. The concept of this technique is to transform a tensile force into a compression force that adjoins two surfaces of a fractured bone. Currently, little is known about the resulting compression force within a fracture. Sensor devices are needed that directly transduce the compression force into a measurement quality. This allows the comparison of different surgical techniques. Ideally the sensor devices ought to be placed in the gap between the fractured segments. The design, development and characterization of miniaturized pressure sensors fabricated entirely from polydimethylsiloxane (PDMS) for a placement within a fracture is presented. The pressure sensors presented in this work are tested, calibrated and used in an experimental in vitro study. The pressure sensors are highly sensitive with an accuracy of approximately 3 kPa. A flexible fabrication process for various possible applications is described. The first in vitro study shows that using a single-twist or double-twist technique in tension band wiring of the olecranon has no significant effect on the resulting compression forces. The in vitro study shows the feasibility of the proposed measurement technique and the results of a first exemplary study.
Computational and experimental studies of LEBUs at high device Reynolds numbers
NASA Technical Reports Server (NTRS)
Bertelrud, Arild; Watson, R. D.
1988-01-01
The present paper summarizes computational and experimental studies for large-eddy breakup devices (LEBUs). LEBU optimization (using a computational approach considering compressibility, Reynolds number, and the unsteadiness of the flow) and experiments with LEBUs at high Reynolds numbers in flight are discussed. The measurements include streamwise as well as spanwise distributions of local skin friction. The unsteady flows around the LEBU devices and far downstream are characterized by strain-gage measurements on the devices and hot-wire readings downstream. Computations are made with available time-averaged and quasi-stationary techniques to find suitable device profiles with minimum drag.
Moore, Johanna C; Lamhaut, Lionel; Hutin, Alice; Dodd, Kenneth W; Robinson, Aaron E; Lick, Michael C; Salverda, Bayert J; Hinke, Mason B; Labarere, José; Debaty, Guillaume; Segal, Nicolas
2017-10-01
The purpose of this study was to examine continuous oxygen insufflation (COI) in a swine model of cardiac arrest. The primary hypothesis was COI during standard CPR (S-CPR) should result in higher intrathoracic pressure (ITP) during chest compression and lower ITP during decompression versus S-CPR alone. These changes with COI were hypothesized to improve hemodynamics. The second hypothesis was that changes in ITP with S-CPR+COI would result in superior hemodynamics compared with active compression decompression (ACD) + impedance threshold device (ITD) CPR, as this method primarily lowers ITP during chest decompression. After 6min of untreated ventricular fibrillation, S-CPR was initiated in 8 female swine for 4min, then 3min of S-CPR+COI, then 3min of ACD+ITD CPR, then 3min of S-CPR+COI. ITP and hemodynamics were continuously monitored. During S-CPR+COI, ITP was always positive during the CPR compression and decompression phases. ITP compression values with S-CPR+COI versus S-CPR alone were 5.5±3 versus 0.2±2 (p<0.001) and decompression values were 2.8±2 versus -1.3±2 (p<0.001), respectively. With S-CPR+COI versus ACD+ITD the ITP compression values were 5.5±3 versus 1.5±2 (p<0.01) and decompression values were 2.8±2 versus -4.7±3 (p<0.001), respectively. COI during S-CPR created a continuous positive pressure in the airway during both the compression and decompression phase of CPR. At no point in time did COI generate a negative intrathoracic pressures during CPR in this swine model of cardiac arrest. Copyright © 2017 Elsevier B.V. All rights reserved.
A Peltier-based freeze-thaw device for meteorite disaggregation
NASA Astrophysics Data System (ADS)
Ogliore, R. C.
2018-02-01
A Peltier-based freeze-thaw device for the disaggregation of meteorite or other rock samples is described. Meteorite samples are kept in six water-filled cavities inside a thin-walled Al block. This block is held between two Peltier coolers that are automatically cycled between cooling and warming. One cycle takes approximately 20 min. The device can run unattended for months, allowing for ˜10 000 freeze-thaw cycles that will disaggregate meteorites even with relatively low porosity. This device was used to disaggregate ordinary and carbonaceous chondrite regoltih breccia meteorites to search for micrometeoroid impact craters.
Heating and Cooling Rates With an Esophageal Heat Exchange System.
Kalasbail, Prathima; Makarova, Natalya; Garrett, Frank; Sessler, Daniel I
2018-04-01
The Esophageal Cooling Device circulates warm or cool water through an esophageal heat exchanger, but warming and cooling efficacy in patients remains unknown. We therefore determined heat exchange rates during warming and cooling. Nineteen patients completed the trial. All had general endotracheal anesthesia for nonthoracic surgery. Intraoperative heat transfer was measured during cooling (exchanger fluid at 7°C) and warming (fluid at 42°C). Each was evaluated for 30 minutes, with the initial condition determined randomly, starting at least 40 minutes after induction of anesthesia. Heat transfer rate was estimated from fluid flow through the esophageal heat exchanger and inflow and outflow temperatures. Core temperature was estimated from a zero-heat-flux thermometer positioned on the forehead. Mean heat transfer rate during warming was 18 (95% confidence interval, 16-20) W, which increased core temperature at a rate of 0.5°C/h ± 0.6°C/h (mean ± standard deviation). During cooling, mean heat transfer rate was -53 (-59 to -48) W, which decreased core temperature at a rate of 0.9°C/h ± 0.9°C/h. Esophageal warming transferred 18 W which is considerably less than the 80 W reported with lower or upper body forced-air covers. However, esophageal warming can be used to supplement surface warming or provide warming in cases not amenable to surface warming. Esophageal cooling transferred more than twice as much heat as warming, consequent to the much larger difference between core and circulating fluid temperature with cooling (29°C) than warming (6°C). Esophageal cooling extracts less heat than endovascular catheters but can be used to supplement catheter-based cooling or possibly replace them in appropriate patients.
Microfluidic device for chemical and mechanical manipulation of suspended cells
NASA Astrophysics Data System (ADS)
Rezvani, Samaneh; Shi, Nan; Squires, Todd M.; Schmidt, Christoph F.
2018-01-01
Microfluidic devices have proven to be useful and versatile for cell studies. We here report on a method to adapt microfluidic stickers made from UV-curable optical adhesive with inserted permeable hydrogel membrane micro-windows for mechanical studies of suspended cells. The windows were fabricated by optical projection lithography using scanning confocal microscopy. The device allows us to rapidly exchange embedding medium while observing and probing the cells. We characterize the device and demonstrate the function by exposing cultured fibroblasts to varying osmotic conditions. Cells can be shrunk reversibly under osmotic compression.
Kumar, Ashish; Kumar, Manjeet; Komaragiri, Rama
2018-04-19
Bradycardia can be modulated using the cardiac pacemaker, an implantable medical device which sets and balances the patient's cardiac health. The device has been widely used to detect and monitor the patient's heart rate. The data collected hence has the highest authenticity assurance and is convenient for further electric stimulation. In the pacemaker, ECG detector is one of the most important element. The device is available in its new digital form, which is more efficient and accurate in performance with the added advantage of economical power consumption platform. In this work, a joint algorithm based on biorthogonal wavelet transform and run-length encoding (RLE) is proposed for QRS complex detection of the ECG signal and compressing the detected ECG data. Biorthogonal wavelet transform of the input ECG signal is first calculated using a modified demand based filter bank architecture which consists of a series combination of three lowpass filters with a highpass filter. Lowpass and highpass filters are realized using a linear phase structure which reduces the hardware cost of the proposed design approximately by 50%. Then, the location of the R-peak is found by comparing the denoised ECG signal with the threshold value. The proposed R-peak detector achieves the highest sensitivity and positive predictivity of 99.75 and 99.98 respectively with the MIT-BIH arrhythmia database. Also, the proposed R-peak detector achieves a comparatively low data error rate (DER) of 0.002. The use of RLE for the compression of detected ECG data achieves a higher compression ratio (CR) of 17.1. To justify the effectiveness of the proposed algorithm, the results have been compared with the existing methods, like Huffman coding/simple predictor, Huffman coding/adaptive, and slope predictor/fixed length packaging.
Method and apparatus for extracting water from air
Spletzer, Barry L.; Callow, Diane Schafer; Marron, Lisa C.; Salton, Jonathan R.
2002-01-01
The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water. The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.
The fracture characteristic of three collinear cracks under true triaxial compression.
Liu, Jianjun; Zhu, Zheming; Wang, Bo
2014-01-01
The mechanical behavior of multicracks under compression has become a very important project in the field of fracture mechanics and rock mechanics. In this paper, experimental and numerical studies on the fracture property of three collinear cracks under compression were implemented. The specimens were a square concrete plate, and the cracks were made by a very thin film. The tests were conducted by using true triaxial loading device. In the numerical study, the Abaqus code was employed. The effect of crack orientation and the confining stress on cracked specimen compressive strength were investigated. The results show that the critical stresses of cracked specimens change with crack inclination angles, and, as the angle is 45°, the critical stress is the lowest; the critical stresses increase with the confining stresses.
The Fracture Characteristic of Three Collinear Cracks under True Triaxial Compression
Liu, Jianjun; Zhu, Zheming; Wang, Bo
2014-01-01
The mechanical behavior of multicracks under compression has become a very important project in the field of fracture mechanics and rock mechanics. In this paper, experimental and numerical studies on the fracture property of three collinear cracks under compression were implemented. The specimens were a square concrete plate, and the cracks were made by a very thin film. The tests were conducted by using true triaxial loading device. In the numerical study, the Abaqus code was employed. The effect of crack orientation and the confining stress on cracked specimen compressive strength were investigated. The results show that the critical stresses of cracked specimens change with crack inclination angles, and, as the angle is 45°, the critical stress is the lowest; the critical stresses increase with the confining stresses. PMID:24790569
Partsch, Hugo; Clark, Michael; Bassez, Sophie; Benigni, Jean-Patrick; Becker, Francis; Blazek, Vladimir; Caprini, Joseph; Cornu-Thénard, André; Hafner, Jürg; Flour, Mieke; Jünger, Michael; Moffatt, Christine; Neumann, Martino
2006-02-01
Interface pressure and stiffness characterizing the elastic properties of the material are the parameters determining the dosage of compression treatment and should therefore be measured in future clinical trials. To provide some recommendations regarding the use of suitable methods for this indication. This article was formulated based on the results of an international consensus meeting between a group of medical experts and representatives from the industry held in January 2005 in Vienna, Austria. Proposals are made concerning methods for measuring the interface pressure and for assessing the stiffness of a compression device in an individual patient. In vivo measurement of interface pressure is encouraged when clinical and experimental outcomes of compression treatment are to be evaluated.
42 CFR 84.79 - Breathing gas; minimum requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self... respiratory tract irritating compounds. (c) Compressed, gaseous breathing air shall meet the applicable...
42 CFR 84.79 - Breathing gas; minimum requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self... respiratory tract irritating compounds. (c) Compressed, gaseous breathing air shall meet the applicable...
42 CFR 84.79 - Breathing gas; minimum requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self... respiratory tract irritating compounds. (c) Compressed, gaseous breathing air shall meet the applicable...
42 CFR 84.79 - Breathing gas; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self... respiratory tract irritating compounds. (c) Compressed, gaseous breathing air shall meet the applicable...
42 CFR 84.79 - Breathing gas; minimum requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self... respiratory tract irritating compounds. (c) Compressed, gaseous breathing air shall meet the applicable...
Crane, Nicole J; Gillern, Suzanne M; Tajkarimi, Kambiz; Levin, Ira W; Pinto, Peter A; Elster, Eric A
2010-10-01
We report the novel use of 3-charge coupled device camera technology to infer tissue oxygenation. The technique can aid surgeons to reliably differentiate vascular structures and noninvasively assess laparoscopic intraoperative changes in renal tissue perfusion during and after warm ischemia. We analyzed select digital video images from 10 laparoscopic partial nephrectomies for their individual 3-charge coupled device response. We enhanced surgical images by subtracting the red charge coupled device response from the blue response and overlaying the calculated image on the original image. Mean intensity values for regions of interest were compared and used to differentiate arterial and venous vasculature, and ischemic and nonischemic renal parenchyma. The 3-charge coupled device enhanced images clearly delineated the vessels in all cases. Arteries were indicated by an intense red color while veins were shown in blue. Differences in mean region of interest intensity values for arteries and veins were statistically significant (p >0.0001). Three-charge coupled device analysis of pre-clamp and post-clamp renal images revealed visible, dramatic color enhancement for ischemic vs nonischemic kidneys. Differences in the mean region of interest intensity values were also significant (p <0.05). We present a simple use of conventional 3-charge coupled device camera technology in a way that may provide urological surgeons with the ability to reliably distinguish vascular structures during hilar dissection, and detect and monitor changes in renal tissue perfusion during and after warm ischemia. Copyright © 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Suppressing molecular vibrations in organic semiconductors by inducing strain
Kubo, Takayoshi; Häusermann, Roger; Tsurumi, Junto; Soeda, Junshi; Okada, Yugo; Yamashita, Yu; Akamatsu, Norihisa; Shishido, Atsushi; Mitsui, Chikahiko; Okamoto, Toshihiro; Yanagisawa, Susumu; Matsui, Hiroyuki; Takeya, Jun
2016-01-01
Organic molecular semiconductors are solution processable, enabling the growth of large-area single-crystal semiconductors. Improving the performance of organic semiconductor devices by increasing the charge mobility is an ongoing quest, which calls for novel molecular and material design, and improved processing conditions. Here we show a method to increase the charge mobility in organic single-crystal field-effect transistors, by taking advantage of the inherent softness of organic semiconductors. We compress the crystal lattice uniaxially by bending the flexible devices, leading to an improved charge transport. The mobility increases from 9.7 to 16.5 cm2 V−1 s−1 by 70% under 3% strain. In-depth analysis indicates that compressing the crystal structure directly restricts the vibration of the molecules, thus suppresses dynamic disorder, a unique mechanism in organic semiconductors. Since strain can be easily induced during the fabrication process, we expect our method to be exploited to build high-performance organic devices. PMID:27040501
Suppressing molecular vibrations in organic semiconductors by inducing strain.
Kubo, Takayoshi; Häusermann, Roger; Tsurumi, Junto; Soeda, Junshi; Okada, Yugo; Yamashita, Yu; Akamatsu, Norihisa; Shishido, Atsushi; Mitsui, Chikahiko; Okamoto, Toshihiro; Yanagisawa, Susumu; Matsui, Hiroyuki; Takeya, Jun
2016-04-04
Organic molecular semiconductors are solution processable, enabling the growth of large-area single-crystal semiconductors. Improving the performance of organic semiconductor devices by increasing the charge mobility is an ongoing quest, which calls for novel molecular and material design, and improved processing conditions. Here we show a method to increase the charge mobility in organic single-crystal field-effect transistors, by taking advantage of the inherent softness of organic semiconductors. We compress the crystal lattice uniaxially by bending the flexible devices, leading to an improved charge transport. The mobility increases from 9.7 to 16.5 cm(2) V(-1) s(-1) by 70% under 3% strain. In-depth analysis indicates that compressing the crystal structure directly restricts the vibration of the molecules, thus suppresses dynamic disorder, a unique mechanism in organic semiconductors. Since strain can be easily induced during the fabrication process, we expect our method to be exploited to build high-performance organic devices.
α Heating in a Stagnated Z-pinch
NASA Astrophysics Data System (ADS)
Appelbe, Brian; Chittenden, Jeremy
2009-01-01
A computational investigation of a scheme for magneto-inertial confinement fusion in a Z-pinch is carried out. In the scheme implosion of a deuterium-tritium fuel mass is preceded by formation of a hotspot containing warm, dense plasma on axis. The presence of the hotspot increases energy yield. Compression of the hotspot by the main fuel mass initiates thermonuclear burn. There is significant heating of the plasma by thermonuclear α particles which are confined by the strong magnetic field of the Z-pinch.
Investigation of Compressible Fluids for Use in soft Recoil Mechanisms
1977-09-01
deNemours & Co., Wilmington, DE . A chemical formula for this material is F This particular material is available in limited stocks and is no longer being...in a dry ice bath,, transported to the laboratory, connected to the gas buret and allowed to warm to room temperature. The gas volume was measured and...their flash points are very low. The MIEL -H-5606 fluid was included here for comparison with published bulk modulus data. Another material evaluated, the
High performance MPEG-audio decoder IC
NASA Technical Reports Server (NTRS)
Thorn, M.; Benbassat, G.; Cyr, K.; Li, S.; Gill, M.; Kam, D.; Walker, K.; Look, P.; Eldridge, C.; Ng, P.
1993-01-01
The emerging digital audio and video compression technology brings both an opportunity and a new challenge to IC design. The pervasive application of compression technology to consumer electronics will require high volume, low cost IC's and fast time to market of the prototypes and production units. At the same time, the algorithms used in the compression technology result in complex VLSI IC's. The conflicting challenges of algorithm complexity, low cost, and fast time to market have an impact on device architecture and design methodology. The work presented in this paper is about the design of a dedicated, high precision, Motion Picture Expert Group (MPEG) audio decoder.
Comparison of 10 Hemostatic Dressings in a Groin Puncture Model in Swine
2009-09-01
attended or remote surgical theaters as well as for first aid bandaging in extreme sport.Methods to suppress massive external hemorrhage should be provided...Products Newport, O Instaclot (IC) Emergency Medical Devices Loxa WoundStat (WS) TraumaCure, Inc. Bethesda, Md Solid (flexible) agents Alpha Bandage ...referred to throughout are listed in Table I. The hemostatic products and the standard compressed gauze bandage (SD; H&H compressed gauze, H&H
The Effect of Compressive Loading on the Fatigue Lifetime of Graphite/ Epoxy Laminates
1979-10-01
Un-notched 11 3 Specimen Configuration, Notched 12 4 Location of Thickness and Width Measurements 14 5 Overall View of Composite Compression Test...Grips in Universal Testing Machine 24 8 Specimen Positioning Device 26 9 "Full-Fixity" Apparatus, Showing Auxiliary Platens 26 10 Specimen and Restraint...the accumu- lation of a statistically significant data base. * IA previous research study [11 showed that graphite/epoxy composites under constant
Study on high reliability safety valve for railway vehicle
NASA Astrophysics Data System (ADS)
Zhang, Xuan; Chen, Ruikun; Zhang, Shixi; Xu, BuDu
2017-09-01
Now, the realization of most of the functions of the railway vehicles rely on compressed air, so the demand for compressed air is growing higher and higher. This safety valve is a protection device for pressure limitation and pressure relief in an air supply system of railway vehicles. I am going to introduce the structure, operating principle, research and development process of the safety valve designed by our company in this document.
Micro-Ramps for External Compression Low-Boom Inlets
NASA Technical Reports Server (NTRS)
Rybalko, Michael; Loth, Eric; Chima, Rodrick V.; Hirt, Stefanie M.; DeBonis, James R.
2010-01-01
The application of vortex generators for flow control in an external compression, axisymmetric, low-boom concept inlet was investigated using RANS simulations with three-dimensional (3-D), structured, chimera (overset) grids and the WIND-US code. The low-boom inlet design is based on previous scale model 1- by 1-ft wind tunnel tests and features a zero-angle cowl and relaxed isentropic compression centerbody spike, resulting in defocused oblique shocks and a weak terminating normal shock. Validation of the methodology was first performed for micro-ramps in supersonic flow on a flat plate with and without oblique shocks. For the inlet configuration, simulations with several types of vortex generators were conducted for positions both upstream and downstream of the terminating normal shock. The performance parameters included incompressible axisymmetric shape factor, separation area, inlet pressure recovery, and massflow ratio. The design of experiments (DOE) methodology was used to select device size and location, analyze the resulting data, and determine the optimal choice of device geometry. The optimum upstream configuration was found to substantially reduce the post-shock separation area but did not significantly impact recovery at the aerodynamic interface plane (AIP). Downstream device placement allowed for fuller boundary layer velocity profiles and reduced distortion. This resulted in an improved pressure recovery and massflow ratio at the AIP compared to the baseline solid-wall configuration.
Milligan, James; Lee, Anna; Gill, Martin; Weatherall, Andrew; Tetlow, Chloe; Garner, Alan A
2016-08-01
Prehospital transfusion of packed red blood cells (PRBC) may be life saving for hypovolaemic trauma patients. PRBCs should preferably be warmed prior to administration but practical prehospital devices have only recently become available. The effectiveness of purpose designed prehospital warmers compared with previously used improvised methods of warming has not previously been described. Expired units of PRBCs were randomly assigned to a warming method in a bench study. Warming methods were exposure to body heat of an investigator, leaving the blood in direct sunlight on a dark material, wrapping the giving set around gel heat pads or a commercial fluid warmer (Belmont Buddy Lite). Methods were compared with control units that were run through the fluid circuit with no active warming strategy. The mean temperature was similar for all methods on removal from the fridge (4.5°C). The mean temperatures (degrees centigrade) for all methods were higher than the control group at the end of the circuit (all P≤0.001). For each method the mean (95% CI) temperature at the end of the circuit was; body heat 17.2 (16.4-18.0), exposure to sunlight 20.2 (19.4-21.0), gel heat pads 18.8 (18.0-19.6), Buddy Lite 35.2 (34.5-36.0) and control group 14.7 (13.9-15.5). All of the warming methods significantly warmed the blood but only the Buddy Lite reliably warmed the blood to a near normal physiological level. Improvised warming methods therefore cannot be recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.
Forced-air patient warming blankets disrupt unidirectional airflow.
Legg, A J; Hamer, A J
2013-03-01
We have recently shown that waste heat from forced-air warming blankets can increase the temperature and concentration of airborne particles over the surgical site. The mechanism for the increased concentration of particles and their site of origin remained unclear. We therefore attempted to visualise the airflow in theatre over a simulated total knee replacement using neutral-buoyancy helium bubbles. Particles were created using a Rocket PS23 smoke machine positioned below the operating table, a potential area of contamination. The same theatre set-up, warming devices and controls were used as in our previous study. This demonstrated that waste heat from the poorly insulated forced-air warming blanket increased the air temperature on the surgical side of the drape by > 5°C. This created convection currents that rose against the downward unidirectional airflow, causing turbulence over the patient. The convection currents increased the particle concentration 1000-fold (2 174 000 particles/m(3) for forced-air warming vs 1000 particles/m(3) for radiant warming and 2000 particles/m(3) for the control) by drawing potentially contaminated particles from below the operating table into the surgical site. Cite this article: Bone Joint J 2013;95-B:407-10.
Tension pneumothorax secondary to automatic mechanical compression decompression device.
Hutchings, A C; Darcy, K J; Cumberbatch, G L A
2009-02-01
The details are presented of the first published case of a tension pneumothorax induced by an automatic compression-decompression (ACD) device during cardiac arrest. An elderly patient collapsed with back pain and, on arrival of the crew, was in pulseless electrical activity (PEA) arrest. He was promptly intubated and correct placement of the endotracheal tube was confirmed by noting equal air entry bilaterally and the ACD device applied. On the way to the hospital he was noted to have absent breath sounds on the left without any change in the position of the endotracheal tube. Needle decompression of the left chest caused a hiss of air but the patient remained in PEA. Intercostal drain insertion in the emergency department released a large quantity of air from his left chest but without any change in his condition. Post-mortem examination revealed a ruptured abdominal aortic aneurysm as the cause of death. Multiple left rib fractures and a left lung laceration secondary to the use of the ACD device were also noted, although the pathologist felt that the tension pneumothorax had not contributed to the patient's death. It is recommended that a simple or tension pneumothorax should be considered when there is unilateral absence of breath sounds in addition to endobronchial intubation if an ACD device is being used.
High-quality cardiopulmonary resuscitation.
Nolan, Jerry P
2014-06-01
The quality of cardiopulmonary resuscitation (CPR) impacts on outcome after cardiac arrest. This review will explore the factors that contribute to high-quality CPR and the metrics that can be used to monitor performance. A recent consensus statement from North America defined five key components of high-quality CPR: minimizing interruptions in chest compressions, providing compressions of adequate rate and depth, avoiding leaning on the chest between compressions, and avoiding excessive ventilation. Studies have shown that real-time feedback devices improve the quality of CPR and, in one before-and-after study, outcome from out-of-hospital cardiac arrest. There is evidence for increasing survival rates following out-of-hospital cardiac arrest and this is associated with increasing rates of bystander CPR. The quality of CPR provided by healthcare professionals can be improved with real-time feedback devices. The components of high-quality CPR and the metrics that can be measured and fed back to healthcare professionals have been defined by expert consensus. In the future, real-time feedback based on the physiological responses to CPR may prove more effective.
Dynamic Behaviors of Materials under Ramp Wave Loading on Compact Pulsed Power Generators
NASA Astrophysics Data System (ADS)
Zhao, Jianheng; Luo, Binqiang; Wang, Guiji; Chong, Tao; Tan, Fuli; Liu, Cangli; Sun, Chengwei
The technique using intense current to produce magnetic pressure provides a unique way to compress matter near isentrope to high density without obvious temperature increment, which is characterized as ramp wave loading, and firstly developed by Sandia in 1998. Firstly recent advances on compact pulsed power generators developed in our laboratory, such as CQ-4, CQ-3-MMAF and CQ-7 devices, are simply introduced here, which devoted to ramp wave loading from 50GPa to 200 GPa, and to ultrahigh-velocity flyer launching up to 30 km/s. And then, we show our progress in data processing methods and experiments of isentropic compression conducted on these devices mentioned above. The suitability of Gruneisen EOS and Vinet EOS are validated by isentropic experiments of tantalum, and the parameters of SCG constitutive equation of aluminum and copper are modified to give better prediction under isentropic compression. Phase transition of bismuth and tin are investigated under different initial temperatures, parameters of Helmholtz free energy and characteristic relaxation time in kinetic phase transition equation are calibrated. Supported by NNSF of China under Contract No.11327803 and 11176002
Hayter, M A; Bould, M D; Afsari, M; Riem, N; Chiu, M; Boet, S
2013-02-01
Mental practice (MP) is defined as the 'symbolic rehearsal of a physical activity in the absence of any gross-muscular movements' and has been used in sport and music to enhance performance. In healthcare, MP has been demonstrated to improve technical skill performance of surgical residents. However, its effect on crisis resource management (CRM) skills has yet to be determined. We aimed to investigate the effect of warm-up with MP on CRM skill performance during a simulated crisis scenario. Following ethics board approval, 40 anaesthesia residents were randomized. The intervention group performed 20 min of MP of a script based on CRM principles. The control group received a 20 min didactic teaching session on an unrelated topic. Each subject then managed a simulated cardiac arrest. Two CRM experts rated the video recordings of each performance using the previously validated Ottawa GRS. The time to start chest compressions, administer epinephrine, and give blood was recorded. There was no significant difference between the intervention and control groups: total Ottawa GRS score was 24.50 (18.63-28.88 [6.50-34.50]) (median (inter-quartile range [range]) vs 20.50 (13.00-29.13 [6.50-34.50]) (P=0.53); the time to start chest compressions 146.0 s (138.0-231.0 [115.0-323.0]) vs 162.5 s (138.0-231.0 [100.0-460.0]) (P=0.27), the time to epinephrine administration 163.0 s (151.0-187.0 [111.0-337.0]) vs 187.0 s (164.0-244.0 [115.0-310.0]) (P=0.09), and the time to blood administration 220.5 s (130.8-309.0 [92.0-485.0]) vs 252.5 (174.5-398.8 [65.0-527.0]) (P=0.48). Unlike technical skills, warm-up with MP does not seem to improve CRM skills in simulated crisis scenarios.
46 CFR 177.202 - Plans and information required.
Code of Federal Regulations, 2012 CFR
2012-10-01
... with number of circuits and rating of energy consuming devices; (vii) Type of capacity of storage... including: bilge, ballast, hydraulic, sanitary, compressed air, combustible and flammable liquids, vents...
46 CFR 177.202 - Plans and information required.
Code of Federal Regulations, 2014 CFR
2014-10-01
... with number of circuits and rating of energy consuming devices; (vii) Type of capacity of storage... including: bilge, ballast, hydraulic, sanitary, compressed air, combustible and flammable liquids, vents...
46 CFR 177.202 - Plans and information required.
Code of Federal Regulations, 2013 CFR
2013-10-01
... with number of circuits and rating of energy consuming devices; (vii) Type of capacity of storage... including: bilge, ballast, hydraulic, sanitary, compressed air, combustible and flammable liquids, vents...
46 CFR 177.202 - Plans and information required.
Code of Federal Regulations, 2011 CFR
2011-10-01
... with number of circuits and rating of energy consuming devices; (vii) Type of capacity of storage... including: bilge, ballast, hydraulic, sanitary, compressed air, combustible and flammable liquids, vents...
Nanostructured materials for advanced energy conversion and storage devices
NASA Astrophysics Data System (ADS)
Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno; Tarascon, Jean-Marie; van Schalkwijk, Walter
2005-05-01
New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted.
Research on a new wave energy absorption device
NASA Astrophysics Data System (ADS)
Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Zhu, Yiming
2018-01-01
To reduce impact of global warming and the energy crisis problems caused by pollution of energy combustion, the research on renewable and clean energies becomes more and more important. This paper designed a new wave absorption device, and also gave an introduction on its mechanical structure. The flow tube model is analyzed, and presented the formulation of the proposed method. To verify the principle of wave absorbing device, an experiment was carried out in a laboratory environment, and the results of the experiment can be applied for optimizing the structure design of output power.
Structural Turnbuckle Bears Compressive or Tensile Loads
NASA Technical Reports Server (NTRS)
Bateman, W. A.; Lang, C. H.
1985-01-01
Column length adjuster based on turnbuckle principle. Device consists of internally and externally threaded bushing, threaded housing and threaded rod. Housing attached to one part and threaded rod attached to other part of structure. Turning double threaded bushing contracts or extends rod in relation to housing. Once adjusted, bushing secured with jamnuts. Device used for axially loaded members requiring length adjustment during installation.
Mass Mortality of Cassin's Auklets, Assessing the Impact of a Warming Ocean
NASA Astrophysics Data System (ADS)
Parrish, J.
2016-02-01
In Fall/Winter 2014-15, more than 100,000 Cassin's Auklets, Ptychoramphus aleuticus, washed ashore on U.S. West Coast beaches. A small-bodied, zooplanktivorous bird, Cassin's nest in colonies scattered along the Northeast Pacific coastline, with a particular concentration in the Scott Islands, northwest of Vancouver Island, BC where 80% of the world's population ( 3.5M) breeds. Standardized, effort-controlled beach surveys conducted by >500 volunteers for three citizen science organizations (BeachCOMBERS, Beach Watch, COASST) at >225 sites from Cape Flattery, WA to Monterey Bay, CA were used to document the event and contrast it to regionally specific long-term average carcass-fall. Data are abundance of independently verified carcass identifications collected (bi)monthly at known locations and dates, providing an instantaneous index of "new" carcass encounter rate. Two pulses were evident: A small but significant anomaly (+2-3 carcasses/km) in November primarily in California and a much larger (+20-25 carcasses/km) more sustained anomaly in December-January along the Washington and northern Oregon coastline. Four non-exclusive hypotheses were examined: surplus production of young-of-the year (i.e. elevated post-breeding mortality), severity of fall/winter storms (i.e. elevated winterkill), shifts in food diversity (proxied as copepod regional diversity along the Newport Line), and habitat compression calculated as location and relative area of wintering habitat (assessed by GLS-tagged birds) with a monthly SST anomaly <1.0oC. Multivariate models suggest production, food diversity and habitat compression are all valid predictors. Drifter simulations suggest that a large portion of the event can be explained by the extreme compression of cold water habitat in July-September 2014, trapping dispersing Scott Islands birds as the warm water anomaly expanded eastward, leaving open the question of whether this event was anomalous mortality and/or anomalously high beaching rates.
High-Throughput Non-Contact Vitrification of Cell-Laden Droplets Based on Cell Printing
NASA Astrophysics Data System (ADS)
Shi, Meng; Ling, Kai; Yong, Kar Wey; Li, Yuhui; Feng, Shangsheng; Zhang, Xiaohui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng
2015-12-01
Cryopreservation is the most promising way for long-term storage of biological samples e.g., single cells and cellular structures. Among various cryopreservation methods, vitrification is advantageous by employing high cooling rate to avoid the formation of harmful ice crystals in cells. Most existing vitrification methods adopt direct contact of cells with liquid nitrogen to obtain high cooling rates, which however causes the potential contamination and difficult cell collection. To address these limitations, we developed a non-contact vitrification device based on an ultra-thin freezing film to achieve high cooling/warming rate and avoid direct contact between cells and liquid nitrogen. A high-throughput cell printer was employed to rapidly generate uniform cell-laden microdroplets into the device, where the microdroplets were hung on one side of the film and then vitrified by pouring the liquid nitrogen onto the other side via boiling heat transfer. Through theoretical and experimental studies on vitrification processes, we demonstrated that our device offers a high cooling/warming rate for vitrification of the NIH 3T3 cells and human adipose-derived stem cells (hASCs) with maintained cell viability and differentiation potential. This non-contact vitrification device provides a novel and effective way to cryopreserve cells at high throughput and avoid the contamination and collection problems.
High-Throughput Non-Contact Vitrification of Cell-Laden Droplets Based on Cell Printing
Shi, Meng; Ling, Kai; Yong, Kar Wey; Li, Yuhui; Feng, Shangsheng; Zhang, Xiaohui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng
2015-01-01
Cryopreservation is the most promising way for long-term storage of biological samples e.g., single cells and cellular structures. Among various cryopreservation methods, vitrification is advantageous by employing high cooling rate to avoid the formation of harmful ice crystals in cells. Most existing vitrification methods adopt direct contact of cells with liquid nitrogen to obtain high cooling rates, which however causes the potential contamination and difficult cell collection. To address these limitations, we developed a non-contact vitrification device based on an ultra-thin freezing film to achieve high cooling/warming rate and avoid direct contact between cells and liquid nitrogen. A high-throughput cell printer was employed to rapidly generate uniform cell-laden microdroplets into the device, where the microdroplets were hung on one side of the film and then vitrified by pouring the liquid nitrogen onto the other side via boiling heat transfer. Through theoretical and experimental studies on vitrification processes, we demonstrated that our device offers a high cooling/warming rate for vitrification of the NIH 3T3 cells and human adipose-derived stem cells (hASCs) with maintained cell viability and differentiation potential. This non-contact vitrification device provides a novel and effective way to cryopreserve cells at high throughput and avoid the contamination and collection problems. PMID:26655688
NASA Astrophysics Data System (ADS)
Wang, Jun; Min, Kyeong-Yuk; Chong, Jong-Wha
2010-11-01
Overdrive is commonly used to reduce the liquid-crystal response time and motion blur in liquid-crystal displays (LCDs). However, overdrive requires a large frame memory in order to store the previous frame for reference. In this paper, a high-compression-ratio codec is presented to compress the image data stored in the on-chip frame memory so that only 1 Mbit of on-chip memory is required in the LCD overdrives of mobile devices. The proposed algorithm further compresses the color bitmaps and representative values (RVs) resulting from the block truncation coding (BTC). The color bitmaps are represented by a luminance bitmap, which is further reduced and reconstructed using median filter interpolation in the decoder, while the RVs are compressed using adaptive quantization coding (AQC). Interpolation and AQC can provide three-level compression, which leads to 16 combinations. Using a rate-distortion analysis, we select the three optimal schemes to compress the image data for video graphics array (VGA), wide-VGA LCD, and standard-definitionTV applications. Our simulation results demonstrate that the proposed schemes outperform interpolation BTC both in PSNR (by 1.479 to 2.205 dB) and in subjective visual quality.
76 FR 8772 - Government in the Sunshine Act Meeting Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-15
...-TA-587 (Remand) (Certain Connecting Devices (``Quick Clamps'') for Use with Modular Compressed Air Conditioning Units, Including Filters, Regulators, and Lubricators (``FRL's'') That are Part of Larger...
Cloud solution for histopathological image analysis using region of interest based compression.
Kanakatte, Aparna; Subramanya, Rakshith; Delampady, Ashik; Nayak, Rajarama; Purushothaman, Balamuralidhar; Gubbi, Jayavardhana
2017-07-01
Recent technological gains have led to the adoption of innovative cloud based solutions in medical imaging field. Once the medical image is acquired, it can be viewed, modified, annotated and shared on many devices. This advancement is mainly due to the introduction of Cloud computing in medical domain. Tissue pathology images are complex and are normally collected at different focal lengths using a microscope. The single whole slide image contains many multi resolution images stored in a pyramidal structure with the highest resolution image at the base and the smallest thumbnail image at the top of the pyramid. Highest resolution image will be used for tissue pathology diagnosis and analysis. Transferring and storing such huge images is a big challenge. Compression is a very useful and effective technique to reduce the size of these images. As pathology images are used for diagnosis, no information can be lost during compression (lossless compression). A novel method of extracting the tissue region and applying lossless compression on this region and lossy compression on the empty regions has been proposed in this paper. The resulting compression ratio along with lossless compression on tissue region is in acceptable range allowing efficient storage and transmission to and from the Cloud.
Chest compression rates and survival following out-of-hospital cardiac arrest.
Idris, Ahamed H; Guffey, Danielle; Pepe, Paul E; Brown, Siobhan P; Brooks, Steven C; Callaway, Clifton W; Christenson, Jim; Davis, Daniel P; Daya, Mohamud R; Gray, Randal; Kudenchuk, Peter J; Larsen, Jonathan; Lin, Steve; Menegazzi, James J; Sheehan, Kellie; Sopko, George; Stiell, Ian; Nichol, Graham; Aufderheide, Tom P
2015-04-01
Guidelines for cardiopulmonary resuscitation recommend a chest compression rate of at least 100 compressions/min. A recent clinical study reported optimal return of spontaneous circulation with rates between 100 and 120/min during cardiopulmonary resuscitation for out-of-hospital cardiac arrest. However, the relationship between compression rate and survival is still undetermined. Prospective, observational study. Data is from the Resuscitation Outcomes Consortium Prehospital Resuscitation IMpedance threshold device and Early versus Delayed analysis clinical trial. Adults with out-of-hospital cardiac arrest treated by emergency medical service providers. None. Data were abstracted from monitor-defibrillator recordings for the first five minutes of emergency medical service cardiopulmonary resuscitation. Multiple logistic regression assessed odds ratio for survival by compression rate categories (<80, 80-99, 100-119, 120-139, ≥140), both unadjusted and adjusted for sex, age, witnessed status, attempted bystander cardiopulmonary resuscitation, location of arrest, chest compression fraction and depth, first rhythm, and study site. Compression rate data were available for 10,371 patients; 6,399 also had chest compression fraction and depth data. Age (mean±SD) was 67±16 years. Chest compression rate was 111±19 per minute, compression fraction was 0.70±0.17, and compression depth was 42±12 mm. Circulation was restored in 34%; 9% survived to hospital discharge. After adjustment for covariates without chest compression depth and fraction (n=10,371), a global test found no significant relationship between compression rate and survival (p=0.19). However, after adjustment for covariates including chest compression depth and fraction (n=6,399), the global test found a significant relationship between compression rate and survival (p=0.02), with the reference group (100-119 compressions/min) having the greatest likelihood for survival. After adjustment for chest compression fraction and depth, compression rates between 100 and 120 per minute were associated with greatest survival to hospital discharge.
NASA Astrophysics Data System (ADS)
Arteev, M. S.; Vaulin, V. A.; Slinko, V. N.; Chumerin, P. Yu; Yushkov, Yu G.
1992-06-01
An analysis is made of the possibility of using a commercial microsecond microwave oscillator, supplemented by a device for time compression of microwave pulses, in pumping of industrial lasers with a high efficiency of conversion of the pump source energy into laser radiation. The results are reported of preliminary experiments on the commissioning of an excimer XeCl laser.
Active high-power RF switch and pulse compression system
Tantawi, Sami G.; Ruth, Ronald D.; Zolotorev, Max
1998-01-01
A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.
A gigawatt level repetitive rate adjustable magnetic pulse compressor.
Li, Song; Gao, Jing-Ming; Yang, Han-Wu; Qian, Bao-Liang; Li, Ze-Xin
2015-08-01
In this paper, a gigawatt level repetitive rate adjustable magnetic pulse compressor is investigated both numerically and experimentally. The device has advantages of high power level, high repetitive rate achievability, and long lifetime reliability. Importantly, dominate parameters including the saturation time, the peak voltage, and even the compression ratio can be potentially adjusted continuously and reliably, which significantly expands the applicable area of the device and generators based on it. Specifically, a two-stage adjustable magnetic pulse compressor, utilized for charging the pulse forming network of a high power pulse generator, is designed with different compression ratios of 25 and 18 through an optimized design process. Equivalent circuit analysis shows that the modification of compression ratio can be achieved by just changing the turn number of the winding. At the same time, increasing inductance of the grounded inductor will decrease the peak voltage and delay the charging process. Based on these analyses, an adjustable compressor was built and studied experimentally in both the single shot mode and repetitive rate mode. Pulses with peak voltage of 60 kV and energy per pulse of 360 J were obtained in the experiment. The rise times of the pulses were compressed from 25 μs to 1 μs and from 18 μs to 1 μs, respectively, at repetitive rate of 20 Hz with good repeatability. Experimental results show reasonable agreement with analyses.
Pourazadi, Shahram; Ahmadi, Sadegh; Menon, Carlo
2015-11-05
One of the recommended treatments for disorders associated with the lower extremity venous insufficiency is the application of external mechanical compression. Compression stockings and elastic bandages are widely used for the purpose of compression therapy and are usually designed to exert a specified value or range of compression on the leg. However, the leg deforms under external compression, which can lead to undesirable variations in the amount of compression applied by the compression bandages. In this paper, the use of an active compression bandage (ACB), whose compression can be regulated through an electrical signal, is investigated. The ACB is based on the use of dielectric elastomer actuators. This paper specifically investigates, via both analytical and non-linear numerical simulations, the potential pressure the ACB can apply when the compliancy of the human leg is taken into account. The work underpins the need to account for the compressibility of the leg when designing compression garments for lower extremity venous insufficiency. A mathematical model is used to simulate the volumetric change of a calf when compressed. Suitable parameters for this calf model are selected from the literature where the calf, from ankle to knee, is divided into six different regions. An analytical electromechanical model of the ACB, which considers its compliancy as a function of its pre-stretch and electricity applied, is used to predict the ACB's behavior. Based on these calf and ACB analytical models, a simulation is performed to investigate the interaction between the ACB and the human calf with and without an electrical stimulus applied to the ACB. This simulation is validated by non-linear analysis performed using a software based on the finite element method (FEM). In all simulations, the ACB's elastomer is stretched to a value in the range between 140 and 220 % of its initial length. Using data from the literature, the human calf model, which is examined in this work, has different compliancy in its different regions. For example, when a 28.5 mmHg (3.8 kPa) of external compression is applied to the entire calf, the ankle shows a 3.7 % of volume change whereas the knee region undergoes a 2.7 % of volume change. The paper presents the actual pressure in the different regions of the calf for different values of the ACB's stretch ratio when it is either electrically activated or not activated, and when compliancy of the leg is either considered or not considered. For example, results of the performed simulation show that about 10 % variation in compression in the ankle region is expected when the ACB initially applies 6 kPa and the compressibility of the calf is first considered and then not considered. Such a variation reduces to 5 % when the initial pressure applied by the ACB reduced by half. Comparison with non-linear FEM simulations show that the analytical models used in this work can closely estimate interaction between an active compression bandage and a human calf. In addition, compliancy of the leg should not be neglected when either designing a compression band or predicting the compressive force it can exert. The methodology proposed in this work can be extended to other types of elastic compression bandages and garments for biomedical applications.
Method and apparatus for extracting water from air
Spletzer, Barry L.
2001-01-01
The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water (ideally isothermal to a humidity of 1.0, then adiabatic thereafter). The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.
Fast and accurate face recognition based on image compression
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Blasch, Erik
2017-05-01
Image compression is desired for many image-related applications especially for network-based applications with bandwidth and storage constraints. The face recognition community typical reports concentrate on the maximal compression rate that would not decrease the recognition accuracy. In general, the wavelet-based face recognition methods such as EBGM (elastic bunch graph matching) and FPB (face pattern byte) are of high performance but run slowly due to their high computation demands. The PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) algorithms run fast but perform poorly in face recognition. In this paper, we propose a novel face recognition method based on standard image compression algorithm, which is termed as compression-based (CPB) face recognition. First, all gallery images are compressed by the selected compression algorithm. Second, a mixed image is formed with the probe and gallery images and then compressed. Third, a composite compression ratio (CCR) is computed with three compression ratios calculated from: probe, gallery and mixed images. Finally, the CCR values are compared and the largest CCR corresponds to the matched face. The time cost of each face matching is about the time of compressing the mixed face image. We tested the proposed CPB method on the "ASUMSS face database" (visible and thermal images) from 105 subjects. The face recognition accuracy with visible images is 94.76% when using JPEG compression. On the same face dataset, the accuracy of FPB algorithm was reported as 91.43%. The JPEG-compressionbased (JPEG-CPB) face recognition is standard and fast, which may be integrated into a real-time imaging device.
Dynamic Compression Experiments on Hydrogen and Deuterium in the Warm Dense Liquid.
NASA Astrophysics Data System (ADS)
Desjarlais, Michael; McCoy, Chad; Cochrane, Kyle; Mattsson, Thomas; Knudson, Marcus; Redmer, Ronald
2017-06-01
Recently a shock-ramp platform has been developed on the Z Accelerator to access off-Hugoniot states in liquids. The accelerator delivers a two-step current pulse; the first accelerates the electrode to a constant velocity, which upon impact with the sample cell creates a well-defined shock, the subsequent current rise produces ramp compression from the initially shocked state producing relatively cool (1-2 kK), high pressure (>300 GPa), high compression (10 to 15-fold compression) states. This technique allows experimental access to the region of phase space where hydrogen is predicted to undergo a first-order phase transition from an insulating molecular-like to a conducting atomic-like liquid. Here we discuss the experimental platform, survey various theoretical predictions for the liquid-liquid, insulator-to-metal transition in hydrogen, and present results of experiments on both deuterium and hydrogen that clearly show an abrupt transition to a metallic state. We also present results from recent experiments at higher temperatures (3-4 kK) and compare the observations to both first-principles theory and previous step-wise loading experiments that exhibited a minimum metallic conductivity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Short-pulse, compressed ion beams at the Neutralized Drift Compression Experiment
Seidl, P. A.; Barnard, J. J.; Davidson, R. C.; ...
2016-05-01
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kinetic energy is 1.2 MeV. To enable the short pulse duration and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long drift compression section following the last accelerator cell. A short-focal-length solenoid focuses the beam in the presence of the volumetric plasma that is near the target. In the accelerator, the line-charge density increases due to the velocity ramp imparted onmore » the beam bunch. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including select topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Below the transition to melting, the short beam pulses offer an opportunity to study the multi-scale dynamics of radiation-induced damage in materials with pump-probe experiments, and to stabilize novel metastable phases of materials when short-pulse heating is followed by rapid quenching. First experiments used a lithium ion source; a new plasma-based helium ion source shows much greater charge delivered to the target.« less
Minami, Kouichiro; Kokubo, Yota; Maeda, Ichinosuke; Hibino, Shingo
2017-02-01
In chest compression for cardiopulmonary resuscitation (CPR), the lower half of the sternum is pressed according to the American Heart Association (AHA) guidelines 2010. These have been no studies which identify the exact location of the applied by individual chest compressions. We developed a rubber power-flexible capacitive sensor that could measure the actual pressure point of chest compression in real time. Here, we examined the pressure point of chest compression by ambulance crews during CPR using a mannequin. We included 179 ambulance crews. Chest compression was performed for 2 min. The pressure position was monitored, and the quality of chest compression was analyzed by using a flexible pressure sensor (Shinnosukekun™). Of the ambulance crews, 58 (32.4 %) pressed the center and 121 (67.6 %) pressed outside the proper area of chest compression. Many of them pressed outside the center; 8, 7, 41, and 90 pressed on the caudal, left, right, and cranial side, respectively. Average compression rate, average recoil, average depth, and average duty cycle were 108.6 counts per minute, 0.089, 4.5 cm, and 48.27 %, respectively. Many of the ambulance crews did not press on the sternal lower half definitely. This new device has the potential to improve the quality of CPR during training or in clinical practice.
Little, J P; Tevelen, G; Adam, C J; Evans, J H; Pearcy, M J
2009-07-01
Biological tissues are subjected to complex loading states in vivo and in order to define constitutive equations that effectively simulate their mechanical behaviour under these loads, it is necessary to obtain data on the tissue's response to multiaxial loading. Single axis and shear testing of biological tissues is often carried out, but biaxial testing is less common. We sought to design and commission a biaxial compression testing device, capable of obtaining repeatable data for biological samples. The apparatus comprised a sealed stainless steel pressure vessel specifically designed such that a state of hydrostatic compression could be created on the test specimen while simultaneously unloading the sample along one axis with an equilibrating tensile pressure. Thus a state of equibiaxial compression was created perpendicular to the long axis of a rectangular sample. For the purpose of calibration and commissioning of the vessel, rectangular samples of closed cell ethylene vinyl acetate (EVA) foam were tested. Each sample was subjected to repeated loading, and nine separate biaxial experiments were carried out to a maximum pressure of 204 kPa (30 psi), with a relaxation time of two hours between them. Calibration testing demonstrated the force applied to the samples had a maximum error of 0.026 N (0.423% of maximum applied force). Under repeated loading, the foam sample demonstrated lower stiffness during the first load cycle. Following this cycle, an increased stiffness, repeatable response was observed with successive loading. While the experimental protocol was developed for EVA foam, preliminary results on this material suggest that this device may be capable of providing test data for biological tissue samples. The load response of the foam was characteristic of closed cell foams, with consolidation during the early loading cycles, then a repeatable load-displacement response upon repeated loading. The repeatability of the test results demonstrated the ability of the test device to provide reproducible test data and the low experimental error in the force demonstrated the reliability of the test data.
NASA Astrophysics Data System (ADS)
Hussain, Sadakat
Soy-based polyurethane foams (PUFs) were reinforced with fibres of different aspect ratios to improve the compressive modulus. Each of the three fibre types reinforced PUF differently. Shorter micro-crystalline cellulose fibres were found embedded inside the cell struts of PUF and reinforced them. The reinforcement was attributed to be stress transfer from the matrix to the fibre by comparing the experimental results to those predicted by micro-mechanical models for short fibre reinforced composites. The reinforced cell struts increased the overall compressive modulus of the foam. Longer glass fibres (470 microns, length) provided the best reinforcement. These fibres were found to be larger than the cell diameters. The micro-mechanical models could not predict the reinforcement provided by the longer glass fibres. The models predicted negligible reinforcement because the very low modulus PUF should not transfer load to the higher modulus fibres. However, using a finite element model, it was determined that the fibres were providing reinforcement through direct fibre interaction with each other. Intermediate length glass fibres (260 microns, length) were found to poorly reinforce the PUF and should be avoided. These fibres were too short to interact with each other and were on average too large to embed and reinforce cell struts. In order to produce natural fibre reinforced PUFs in the future, a novel device was invented. The purpose of the device is to deliver natural fibres at a constant mass flow rate. The device was found to consistently meter individual loose natural fibre tufts at a mass flow rate of 2 grams per second. However, the device is not robust and requires further development to deliver a fine stream of natural fibre that can mix and interact with the curing polymeric components of PUF. A design plan was proposed to address the remaining issues with the device.
Biomechanical evaluation of CIBOR spine interbody fusion device.
Chong, Alexander C M; Harrer, Seth W; Heggeness, Michael H; Wooley, Paul H
2017-07-01
The CIBOR PEEK spinal interbody fusion device is an anterior lumbar interbody fusion construct with a hollow center designed to accommodate an osteoinductive carbon foam insert to promote bony ingrowth to induce fusion where rigid stabilization is needed. Three different sizes of the device were investigated. Part-I: implants were tested under axial compression and rotation using polyurethane foam blocks. Part-II: simulated 2-legged stance using cadaveric specimen using the L5-S1 lumbar spine segment. Part-III: a survey feedback form was used to investigate two orthopedic surgeons concern regarding the implant. In Part-I, the subsidence hysteresis under axial compression loading was found to be statistical significant difference between these three implant sizes. It was noted that the implants had migration as rotation applied, and the amount of subsidence was a factor of the axial compression loads applied. In Part-II, a minor subsidence and carbon foam debris were observed when compared to each implant size. Poor contact surface of the implant with the end plates of the L5 or S1 vertebrae from the anterior view under maximum loads was observed; however, the implant seemed to be stable. Each surgeon has their own subjective opinion about the CIBOR implant. Two out of the three different sizes of the device (medium and large sizes) provided appropriate rigid stabilization at the physiological loads. Neither orthopedic surgeon was 100% satisfied with overall performance of the implant, but felt potential improvement could be made. This study indicates an option for operative treatment of spine interbody fusion, as the CIBOR spine interbody fusion device has a hollow center. This hollow center is designed to accommodate a carbon foam insert to promote bony ingrowth. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1157-1168, 2017. © 2016 Wiley Periodicals, Inc.
Effects of Forced Air Warming on Airflow around the Operating Table.
Shirozu, Kazuhiro; Kai, Tetsuya; Setoguchi, Hidekazu; Ayagaki, Nobuyasu; Hoka, Sumio
2018-01-01
Forced air warming systems are used to maintain body temperature during surgery. Benefits of forced air warming have been established, but the possibility that it may disturb the operating room environment and contribute to surgical site contamination is debated. The direction and speed of forced air warming airflow and the influence of laminar airflow in the operating room have not been reported. In one institutional operating room, we examined changes in airflow speed and direction from a lower-body forced air warming device with sterile drapes mimicking abdominal surgery or total knee arthroplasty, and effects of laminar airflow, using a three-dimensional ultrasonic anemometer. Airflow from forced air warming and effects of laminar airflow were visualized using special smoke and laser light. Forced air warming caused upward airflow (39 cm/s) in the patient head area and a unidirectional convection flow (9 to 14 cm/s) along the ceiling from head to foot. No convection flows were observed around the sides of the operating table. Downward laminar airflow of approximately 40 cm/s counteracted the upward airflow caused by forced air warming and formed downward airflow at 36 to 45 cm/s. Downward airflows (34 to 56 cm/s) flowing diagonally away from the operating table were detected at operating table height in both sides. Airflow caused by forced air warming is well counteracted by downward laminar airflow from the ceiling. Thus it would be less likely to cause surgical field contamination in the presence of sufficient laminar airflow.
Zhao, Fan; Xue, Wen; Wang, Fujun; Liu, Laijun; Shi, Haoqin; Wang, Lu
2018-08-01
Stents are vital devices to treat vascular stenosis in pediatric patients with congenital heart disease. Bioresorbable stents (BRSs) have been applied to reduce challenging complications caused by permanent metal stents. However, it remains almost a total lack of BRSs with satisfactory compression performance specifically for children with congenital heart disease, leading to importantly suboptimal effects. In this work, composite bioresorbable prototype stents with superior compression resistance were designed by braiding and annealing technology, incorporating poly (p-dioxanone) (PPDO) monofilaments and polycaprolactone (PCL) multifilament. Stent prototype compression properties were investigated. The results revealed that novel composite prototype stents showed superior compression force compared to the control ones, as well as recovery ability. Furthermore, deformation mechanisms were analyzed by computational simulation, which revealed bonded interlacing points among yarns play an important role. This research presents important clinical implications in bioresorbable stent manufacture and provides further study with an innovative stent design. Copyright © 2018 Elsevier Ltd. All rights reserved.
Energy and Quality Evaluation for Compressive Sensing of Fetal Electrocardiogram Signals
Da Poian, Giulia; Brandalise, Denis; Bernardini, Riccardo; Rinaldo, Roberto
2016-01-01
This manuscript addresses the problem of non-invasive fetal Electrocardiogram (ECG) signal acquisition with low power/low complexity sensors. A sensor architecture using the Compressive Sensing (CS) paradigm is compared to a standard compression scheme using wavelets in terms of energy consumption vs. reconstruction quality, and, more importantly, vs. performance of fetal heart beat detection in the reconstructed signals. We show in this paper that a CS scheme based on reconstruction with an over-complete dictionary has similar reconstruction quality to one based on wavelet compression. We also consider, as a more important figure of merit, the accuracy of fetal beat detection after reconstruction as a function of the sensor power consumption. Experimental results with an actual implementation in a commercial device show that CS allows significant reduction of energy consumption in the sensor node, and that the detection performance is comparable to that obtained from original signals for compression ratios up to about 75%. PMID:28025510
NASA Astrophysics Data System (ADS)
Song, Jun Hee; Kim, Hak Kun; Kim, Sam Yeon
2014-07-01
Laminated fiber-reinforced composites can be applied to an insulating structure of a nuclear fusion device. It is necessary to investigate the interlaminar fracture characteristics of the laminated composites for the assurance of design and structural integrity. The three methods used to prepare the glass fiber reinforced plastic composites tested in this study were vacuum pressure impregnation, high pressure laminate (HPL), and prepreg laminate. We discuss the design criteria for safe application of composites and the shear-compressive test methods for evaluating mechanical properties of the material. Shear-compressive tests could be performed successfully using series-type test jigs that were inclined 0°, 30°, 45°, 60°, and 75° to the normal axis. Shear strength depends strongly on the applied compressive stress. The design range of allowable shear stress was extended by use of the appropriate composite fabrication method. HPL had the largest design range, and the allowable interlaminar shear stress was 0.254 times the compressive stress.
Normothermic perfusion: a new paradigm for organ preservation.
Brockmann, Jens; Reddy, Srikanth; Coussios, Constantin; Pigott, David; Guirriero, Dino; Hughes, David; Morovat, Alireza; Roy, Debabrata; Winter, Lucy; Friend, Peter J
2009-07-01
Transplantation of organs retrieved after cardiac arrest could increase the donor organ supply. However, the combination of warm ischemia and cold preservation is highly detrimental to the reperfused organ. Our objective was to maintain physiological temperature and organ function during preservation and thereby alleviate this injury and allow successful transplantation. We have developed a liver perfusion device that maintains physiological temperature with provision of oxygen and nutrition. Reperfusion experiments suggested that this allows recovery of ischemic damage. In a pig liver transplant model, we compared the outcome following either conventional cold preservation or warm preservation. Preservation periods of 5 and 20 hours and durations of warm ischemia of 40 and 60 minutes were tested. After 20 hours preservation without warm ischemia, post-transplant survival was improved (27%-86%, P = 0.026), with corresponding differences in transaminase levels and histological analysis. With the addition of 40 minutes warm ischemia, the differences were even more marked (cold vs. warm groups 0% vs. 83%, P = 0.001). However, with 60 minutes warm ischemia and 20 hours preservation, there were no survivors. Analysis of hemodynamic and liver function data during perfusion showed several factors to be predictive of posttransplant survival, including bile production, base excess, portal vein flow, and hepatocellular enzymes. Organ preservation by warm perfusion, maintaining physiological pressure and flow parameters, has enabled prolonged preservation and successful transplantation of both normal livers and those with substantial ischemic damage. This technique has the potential to address the shortage of organs for transplantation.
42 CFR 84.300 - Closed-circuit escape respirator; description.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES... the size of a water canteen, that employ either compressed oxygen with a chemical system for removing...
42 CFR 84.300 - Closed-circuit escape respirator; description.
Code of Federal Regulations, 2014 CFR
2014-10-01
... OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES... the size of a water canteen, that employ either compressed oxygen with a chemical system for removing...
42 CFR 84.300 - Closed-circuit escape respirator; description.
Code of Federal Regulations, 2013 CFR
2013-10-01
... OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES... the size of a water canteen, that employ either compressed oxygen with a chemical system for removing...
Comparison of Several Numerical Methods for Simulation of Compressible Shear Layers
NASA Technical Reports Server (NTRS)
Kennedy, Christopher A.; Carpenter, Mark H.
1997-01-01
An investigation is conducted on several numerical schemes for use in the computation of two-dimensional, spatially evolving, laminar variable-density compressible shear layers. Schemes with various temporal accuracies and arbitrary spatial accuracy for both inviscid and viscous terms are presented and analyzed. All integration schemes use explicit or compact finite-difference derivative operators. Three classes of schemes are considered: an extension of MacCormack's original second-order temporally accurate method, a new third-order variant of the schemes proposed by Rusanov and by Kutier, Lomax, and Warming (RKLW), and third- and fourth-order Runge-Kutta schemes. In each scheme, stability and formal accuracy are considered for the interior operators on the convection-diffusion equation U(sub t) + aU(sub x) = alpha U(sub xx). Accuracy is also verified on the nonlinear problem, U(sub t) + F(sub x) = 0. Numerical treatments of various orders of accuracy are chosen and evaluated for asymptotic stability. Formally accurate boundary conditions are derived for several sixth- and eighth-order central-difference schemes. Damping of high wave-number data is accomplished with explicit filters of arbitrary order. Several schemes are used to compute variable-density compressible shear layers, where regions of large gradients exist.
Thermal Analysis of of Near-Isothermal Compressed Gas Energy Storage System
Odukomaiya, Adewale; Abu-Heiba, Ahmad; Gluesenkamp, Kyle R.; ...
2016-01-01
In this paper, alternative system configurations for a novel Ground-Level Integrated Diverse Energy Storage (GLIDES) system, which can store energy via input of electricity and heat and deliver dispatchable electricity, is presented. The proposed system is low-cost and hybridizes compressed air and pumped hydro storage approaches that will allow for the off-peak storage of intermittent renewable energy for use during peak times. This study reveals that implementing direct-contact low grade heat exchange via sprayed falling droplets to cool the gas during charging (compression) and warm the gas during discharging (expansion) can be achieved through a secondary recirculating loop of liquid.more » This study shows that if the recirculating liquid loop is pre-conditioned with waste-heat prior to spraying during gas expansion and considering all the round trip conversion losses from standard 120 V 60 HZ electricity input and output with utilization of low grade heat at 90 C the alternative system design leads to a 16% boost in round trip efficiency of the electricity storage to elec = 82% with an energy density of ED = 3.59 MJ/m3.« less