Sample records for warm core eddy

  1. Warm-Core Intensification Through Horizontal Eddy Heat Transports into the Eye

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.; Starr, David OC (Technical Monitor)

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob confirms subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation does not, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  2. Warm-Core Intensification of a Hurricane Through Horizontal Eddy Heat Transports Inside the Eye

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob also identifies subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, excluding the eyewall (at least in an azimuthal mean sense), subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation cannot, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller contributions coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  3. Hydrographical and dynamical reconstruction of the Warm Core Cyprus Eddy from gliders data

    NASA Astrophysics Data System (ADS)

    Bosse, Anthony; Testor, Pierre; Hayes, Dan; Ruiz, Simon; Mauri, Elena; Charantonis, Anastase; d'Ortenzio, Fabrizio; Mortier, Laurent

    2016-04-01

    In the 80s, the POEM (Physical Oceanography of the Eastern Mediterranean) cruises in the Levantine Basin first revealed the presence of a very pronounced dynamical structure off Cyprus: The Cyprus Warm Core Eddy. Since then, a large amount of data have been collected thanks to the use of autonomous oceanic gliders (+8000 profiles since 2009). Part of those profiles were carried out in the upper layers down to 200 m, and we take benefit of a novel approach named ITCOMP SOM that uses a statistical approach to extend them down to 1000 m (see [1] for more details). This dataset have a particularly good spatio-temporal coverage in 2009 for about a month, thanks to simultaneous deployments of several gliders (up to 6). In this study, we present a set of 3D reconstruction of the dynamical and hydrographical characteristics of the Warm Core Cyprus Eddy between 2009 and 2015. Moreover, chlorophyll-a fluorescence data measured by the gliders give evidence to strong vertical velocities at the edge of the eddy. We discuss possible mechanisms (frontogenesis, symmetric instability) that could generate such signals and provide an assessment of the role of this peculiar circulation feature on the circulation and biogeochemistry of the Levantine basin. Reference: [1] Charantonis, A., P. Testor, L. Mortier, F. D'Ortenzio, S. Thiria (2015): Completion of a sparse GLIDER database using multi-iterative Self-Organizing Maps (ITCOMP SOM), Procedia Computer Science, 51(1):2198-2206. DOI: 10.1016/j.procs.2015.05.496

  4. A numerical modeling study of the East Australian Current encircling and overwashing a warm-core eddy

    NASA Astrophysics Data System (ADS)

    MacDonald, H. S.; Roughan, M.; Baird, M. E.; Wilkin, J.

    2013-01-01

    Abstract<span class="hlt">Warm-core</span> <span class="hlt">eddies</span> (WCEs) often form in the meanders of Western Boundary Currents (WBCs). WCEs are frequently overwashed with less dense waters sourced from the WBC. We use the Regional Ocean Modelling System to investigate the ocean state during the overwashing of one such WCE in October 2008 in the East Australian Current (EAC). Comparisons of model outputs with satellite sea surface temperature and vertical profiles show that the model provides a realistic simulation of the <span class="hlt">eddy</span> during the period when the EAC encircled and then overwashed the <span class="hlt">eddy</span>. During the encircling stage, an <span class="hlt">eddy</span> with closed circulation persisted at depth. In the surface EAC water entered from the north, encircled the <span class="hlt">eddy</span> and exited to the east. The overwashing stage was initiated by the expulsion of cyclonic vorticity. For the following 8 days after the expulsion, waters from the EAC washed over the top of the <span class="hlt">eddy</span>, transferring heat and anticyclonic vorticity radially-inward. After approximately one rotation period of overwashing, the <span class="hlt">eddy</span> separated. The overwashing creates a two-layer system that forms a subsurface maximum velocity at the interface of the two layers. Analysis of water mass properties, Eulerian tracer dynamics, and Lagrangian particle tracks show that the original <span class="hlt">eddy</span> sinks 10-50 m during the overwashing period. Overwashing has been observed in many WBCs and occurs in most WCEs in the western Tasman Sea.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28928408','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28928408"><span>Local atmospheric response to <span class="hlt">warm</span> mesoscale ocean <span class="hlt">eddies</span> in the Kuroshio-Oyashio Confluence region.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sugimoto, Shusaku; Aono, Kenji; Fukui, Shin</p> <p>2017-09-19</p> <p>In the extratropical regions, surface winds enhance upward heat release from the ocean to atmosphere, resulting in cold surface ocean: surface ocean temperature is negatively correlated with upward heat flux. However, in the western boundary currents and <span class="hlt">eddy</span>-rich regions, the warmer surface waters compared to surrounding waters enhance upward heat release-a positive correlation between upward heat release and surface ocean temperature, implying that the ocean drives the atmosphere. The atmospheric response to <span class="hlt">warm</span> mesoscale ocean <span class="hlt">eddies</span> with a horizontal extent of a few hundred kilometers remains unclear because of a lack of observations. By conducting regional atmospheric model experiments, we show that, in the Kuroshio-Oyashio Confluence region, wintertime <span class="hlt">warm</span> <span class="hlt">eddies</span> heat the marine atmospheric boundary layer (MABL), and accelerate westerly winds in the near-surface atmosphere via the vertical mixing effect, leading to wind convergence around the eastern edge of <span class="hlt">eddies</span>. The <span class="hlt">warm-eddy</span>-induced convergence forms local ascending motion where convective precipitation is enhanced, providing diabatic heating to the atmosphere above MABL. Our results indicate that <span class="hlt">warm</span> <span class="hlt">eddies</span> affect not only near-surface atmosphere but also free atmosphere, and possibly synoptic atmospheric variability. A detailed understanding of <span class="hlt">warm</span> <span class="hlt">eddy</span>-atmosphere interaction is necessary to improve in weather and climate projections.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010108171','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010108171"><span><span class="hlt">Warm-Core</span> Intensification Through Horizontal <span class="hlt">Eddy</span> Heat Transports into the Eye</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.; Starr, David OC. (Technical Monitor)</p> <p>2001-01-01</p> <p>The mechanism for the formation and intensification of the hurricane <span class="hlt">warm</span> <span class="hlt">core</span> is not well understood. The generally accepted explanation is that the <span class="hlt">warm</span> <span class="hlt">core</span> forms as a result of gentle subsidence of air within the eye that <span class="hlt">warms</span> as a result of adiabatic compression. Malkus suggested that this subsidence is part of a deep circulation in which air begins descent at high levels in the eye, acquires cyclonic angular momentum as it descends to lower levels, and then diverges at low levels, where it is entrained back into the eyewall. Inward mixing from the eyewall is hypothesized to force the subsidence and maintain the moisture and momentum budgets of the subsiding air. Willoughby suggested that air within the eye has remained so since it was first enclosed during the formation of the eyewall and that it subsides at most only a few kilometers rather than through the depth of the troposphere. He relates the subsidence to the low-level divergence and entrainment into the eyewall noted by Malkus, but suggests that shrinkage of the eye's volume is more than adequate to account for the air lost to the eyewall or converted to cloudy air by turbulent mixing across the eye boundary. Smith offered an alternative view of the subsidence forcing, suggesting that vertical motion in a mature hurricane eye is generated largely by imbalances between the downward vertical pressure gradient force and the upward buoyancy force. The vertical pressure gradient force is associated with the decay and/or radial spread of the tangential wind field with height at those levels were the winds are in approximate gradient wind balance. The rate of subsidence is just that required to <span class="hlt">warm</span> the air sufficiently such that the buoyancy remains in close hydrostatic balance with an increasing vertical pressure gradient force. In this study, a very high-resolution simulation of Hurricane Bob using a cloud-resolving grid scale of 1.3 km is used to examine the heat budget within the storm with particular</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS33B1458S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS33B1458S"><span>Convection anomalies associated with <span class="hlt">warm</span> <span class="hlt">eddy</span> at the coastal area</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shi, R.; Wang, D.</p> <p>2017-12-01</p> <p>A possible correlation between a <span class="hlt">warm</span> <span class="hlt">eddy</span> and thunderstorms and convective precipitations are investigated at the coastal area in the northwestern South China Sea. Compared to the climatological mean in August from 2006 to 2013, an extreme enhancement of thunderstorm activities and precipitation rate are identified at the southern offshore area of Hainan island in August 2010 when a strong and long-live <span class="hlt">warm</span> <span class="hlt">eddy</span> was observed near the coastline at the same time. The 3 hourly satellite data (TRMM) indicate that the nocturnal convections is strong offshore and that could be responsible for the extreme positive anomalies of thunderstorms and rainfall in August 2010. The TRMM data also show a small reduction of thunderstorm activities and rainfall on the island in the afternoon. Meanwhile, the Weather Research and Forecasting (WRF) model was applied to simulate the change of rainfall in August 2010. The WRF simulation of rainfall rate is comparable with the observation results while there is some difference in the spatial distribution. The WRF simulation successfully captured the strong offshore rainfall and the diurnal variation of rainfall in August 2010. The WRF simulation indicated that the different convergence induced by sea/land breeze could be one essential reason for the adjustment of thunderstorms and rainfall in 2010. The substantial connection between sea/land breeze and upper layer heat content modified by the <span class="hlt">warm</span> <span class="hlt">eddy</span> is still on ongoing and will be reported in the future work.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhRvS..13g0401K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhRvS..13g0401K"><span>Energy loss due to <span class="hlt">eddy</span> current in linear transformer driver <span class="hlt">cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, A. A.; Mazarakis, M. G.; Manylov, V. I.; Vizir, V. A.; Stygar, W. A.</p> <p>2010-07-01</p> <p>In linear transformer drivers [Phys. Rev. ST Accel. Beams 12, 050402 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050402; Phys. Rev. ST Accel. Beams 12, 050401 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050401] as well as any other linear induction accelerator cavities, ferromagnetic <span class="hlt">cores</span> are used to prevent the current from flowing along the induction cavity walls which are in parallel with the load. But if the <span class="hlt">core</span> is made of conductive material, the applied voltage pulse generates the <span class="hlt">eddy</span> current in the <span class="hlt">core</span> itself which heats the <span class="hlt">core</span> and therefore also reduces the overall linear transformer driver (LTD) efficiency. The energy loss due to generation of the <span class="hlt">eddy</span> current in the <span class="hlt">cores</span> depends on the specific resistivity of the <span class="hlt">core</span> material, the design of the <span class="hlt">core</span>, as well as on the distribution of the <span class="hlt">eddy</span> current in the <span class="hlt">core</span> tape during the remagnetizing process. In this paper we investigate how the <span class="hlt">eddy</span> current is distributed in a <span class="hlt">core</span> tape with an arbitrary shape hysteresis loop. Our model is based on the textbook knowledge related to the <span class="hlt">eddy</span> current generation in ferromagnetics with rectangular hysteresis loop, and in usual conductors. For the reader’s convenience, we reproduce some most important details of this knowledge in our paper. The model predicts that the same <span class="hlt">core</span> would behave differently depending on how fast the applied voltage pulse is: in the high frequency limit, the equivalent resistance of the <span class="hlt">core</span> reduces during the pulse whereas in the low frequency limit it is constant. An important inference is that the energy loss due to the <span class="hlt">eddy</span> current generation can be reduced by increasing the cross section of the <span class="hlt">core</span> over the minimum value which is required to avoid its saturation. The conclusions of the model are confirmed with experimental observations presented at the end of the paper.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997PhDT........59Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997PhDT........59Z"><span>Acoustic assessment of sound scattering zooplankton in <span class="hlt">warm</span>- and cold-<span class="hlt">core</span> <span class="hlt">eddies</span> in the Gulf of Mexico</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zimmerman, Robert Allen</p> <p></p> <p>Zooplankton and micronekton which cause a density discontinuity with the surrounding seawater reflect acoustic energy. This acoustic backscatter intensity (ABI) was measured using a vessel mounted 153 kHz acoustic Doppler current profiler. The ABI was used to describe vertical migration and distribution of sound scatterers in several mesoscale hydrographic features commonly found in the Gulf of Mexico: cold-<span class="hlt">core</span> rings (CCRs), <span class="hlt">warm-core</span> Loop Current <span class="hlt">eddies</span> (LCEs) and the Loop Current (LC). The present paradigm contends that cold- <span class="hlt">core</span> (cyclonic) features are mesoscale areas of enhanced production due to an influx of new nitrogen to surface waters as a result of divergent flow. The null hypothesis which was tested in this study was that the acoustic signatures of these features were not significantly different from one another. Clear diel differences in all of the features and a robust, positive correlation between ABI and plankton and micronekton wet displacement volume collected in MOCNESS tows in the upper 100 m of the water column were observed. During the day, ABI in CCRs was significantly greater than in LCEs and in the LC with regards to the upper 200 m. However, ABI in the LCEs and LC were not significantly different from each other. During the night, the ABI in the upper 50 m of the CCRs was significantly greater than that in the LCEs and the LC. However, there were no differences between features when ABI at night was summed for the entire upper 200 m, due to substantial vertical migrations of organisms into the upper 200 m of the water column at night. Two LCEs were revisited at an age of 8-9 months after their initial acoustic transects. The null hypothesis that there would be no significant difference in integrated ABI when the LCEs were resampled was rejected: both LCEs showed a reduction in integrated ABI over the upper 200 m. Further investigations into the faunal changes of these features are warranted, but the ADCP should continue to be a useful</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007DSRII..54..789W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007DSRII..54..789W"><span>The Leeuwin Current and its <span class="hlt">eddies</span>: An introductory overview</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Waite, A. M.; Thompson, P. A.; Pesant, S.; Feng, M.; Beckley, L. E.; Domingues, C. M.; Gaughan, D.; Hanson, C. E.; Holl, C. M.; Koslow, T.; Meuleners, M.; Montoya, J. P.; Moore, T.; Muhling, B. A.; Paterson, H.; Rennie, S.; Strzelecki, J.; Twomey, L.</p> <p>2007-04-01</p> <p>The Leeuwin Current (LC) is an anomalous poleward-flowing eastern boundary current that carries <span class="hlt">warm</span>, low-salinity water southward along the coast of Western Australia. We present an introduction to a new body of work on the physical and biological dynamics of the LC and its <span class="hlt">eddies</span>, collected in this Special Issue of Deep-Sea Research II, including (1) several modelling efforts aimed at understanding LC dynamics and <span class="hlt">eddy</span> generation, (2) papers from regional surveys of primary productivity and nitrogen uptake patterns in the LC, and (3) the first detailed field investigations of the biological oceanography of LC mesoscale <span class="hlt">eddies</span>. Key results in papers collected here include insight into the source regions of the LC and the Leeuwin Undercurrent (LUC), the energetic interactions of the LC and LUC, and their roles in the generation of <span class="hlt">warm-core</span> (WC) and cold-<span class="hlt">core</span> (CC) <span class="hlt">eddies</span>, respectively. In near-shore waters, the dynamics of upwelling were found to control the spatio-temporal variability of primary production, and important latitudinal differences were found in the fraction of production driven by nitrate (the f-ratio). The ubiquitous deep chlorophyll maximum within LC was found to be a significant contributor to total water column production within the region. WC <span class="hlt">eddies</span> including a single large <span class="hlt">eddy</span> studied in 2000 contained relatively elevated chlorophyll a concentrations thought to originate at least in part from the continental shelf/shelf break region and to have been incorporated during <span class="hlt">eddy</span> formation. During the <span class="hlt">Eddies</span> 2003 voyage, a more detailed study comparing the WC and CC <span class="hlt">eddies</span> illuminated more mechanistic details of the unusual dynamics and ecology of the <span class="hlt">eddies</span>. Food web analysis suggested that the WC <span class="hlt">eddy</span> had an enhanced "classic" food web, with more concentrated mesozooplankton and larger diatom populations than in the CC <span class="hlt">eddy</span>. Finally, implications for fisheries management are addressed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850045555&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dconvection%2Bcurrents','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850045555&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dconvection%2Bcurrents"><span>Rotary motions and convection as a means of regulating primary production in <span class="hlt">warm</span> <span class="hlt">core</span> rings. [of ocean currents</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yentsch, C. S.; Phinney, D. A.</p> <p>1985-01-01</p> <p>The term 'ring' is generally used in the case of a subdivision of ocean <span class="hlt">eddies</span>. in the present investigation, it denotes mesoscale features which are spawned by the Gulf Stream. This investigation is concerned with the mechanism involved in the regulation of the growth of phytoplankton by the physical oceanographic features of rings. Gulf Stream rings were first observed by Parker (1971) and Fuglister (1972) as a result of extensive temperature measurements from ships in the Gulf Stream. Attention is given to changes in density boundaries associated with the rotation of rings, a synthetic model of a newly formed <span class="hlt">warm</span> <span class="hlt">core</span> ring, convection-stabilization, the role of light, the influence of convective overturn in adding nutrients to surface waters of <span class="hlt">warm</span> <span class="hlt">core</span> rings, and two major areas which require study.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123.3072G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123.3072G"><span>Calibrated Seismic Imaging of <span class="hlt">Eddy</span>-Dominated <span class="hlt">Warm</span>-Water Transport Across the Bellingshausen Sea, Southern Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gunn, K. L.; White, N. J.; Larter, R. D.; Caulfield, C. P.</p> <p>2018-04-01</p> <p>Seismic reflection images of thermohaline circulation from the Bellingshausen Sea, adjacent to the West Antarctica Peninsula, were acquired during February 2015. This survey shows that bright reflectivity occurs throughout the upper 300 m. By calibrating these seismic images with coeval hydrographic measurements, intrusion of <span class="hlt">warm</span> water features onto the continental shelf at Marguerite and Belgica Troughs is identified and characterized. These features have distinctive lens-shaped patterns of reflectivity with lengths of 0.75-11.00 km and thicknesses of 100-150 m, suggesting that they are small mesoscale to submesoscale <span class="hlt">eddies</span>. Abundant <span class="hlt">eddies</span> are observed along a transect that crosses Belgica Trough. Near Alexander Island Drift, a large, of order (O)102 km3, bowl-like feature, that may represent an anticyclonic Taylor column, is imaged on a pair of orthogonal images. A modified iterative procedure is used to convert seismic imagery into maps of temperature that enable the number and size of <span class="hlt">eddies</span> being transported onto the shelf to be quantified. Finally, analysis of prestack shot records suggests that these <span class="hlt">eddies</span> are advecting southward at speeds of O>(0.1>) m s-1, consistent with limited legacy hydrographic measurements. Concentration of observed <span class="hlt">eddies</span> south of the Southern Antarctic Circumpolar Current Front implies they represent both a dominant, and a long-lived, mechanism of <span class="hlt">warm</span>-water transport, especially across Belgica Trough. Our observations suggest that previous estimates of <span class="hlt">eddy</span> frequency may have been underestimated by up to 1 order of magnitude, which has significant implications for calculations of ice mass loss on the shelf of the West Antarctic Peninsula.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CSR...143..206K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CSR...143..206K"><span><span class="hlt">Eddy</span>-induced transport of the Kuroshio <span class="hlt">warm</span> water around the Ryukyu Islands in the East China Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kamidaira, Yuki; Uchiyama, Yusuke; Mitarai, Satoshi</p> <p>2017-07-01</p> <p>In this study, an oceanic downscaling model in a double-nested configuration was used to investigate the role played by the Kuroshio <span class="hlt">warm</span> current in preserving and maintaining biological diversity in the coral coasts around the Ryukyu Islands (Japan). A comparison of the modeled data demonstrated that the innermost submesoscale <span class="hlt">eddy</span>-resolving model successfully reproduced the synoptic and mesoscale oceanic structures even without data assimilation. The Kuroshio flows on the shelf break of the East China Sea approximately 150-200 km from the islands; therefore, <span class="hlt">eddy</span>-induced transient processes are essential to the lateral transport of material within the strip between the Kuroshio and the islands. The model indicated an evident predominance of submesoscale anticyclonic <span class="hlt">eddies</span> over cyclonic <span class="hlt">eddies</span> near the surface of this strip. An energy conversion analysis relevant to the <span class="hlt">eddy</span>-generation mechanisms revealed that a combination of both the shear instability due to the Kuroshio and the topography and baroclinic instability around the Kuroshio front jointly provoke these near-surface anticyclonic <span class="hlt">eddies</span>, as well as the subsurface cyclonic <span class="hlt">eddies</span> that are shed around the shelf break. Both surface and subsurface <span class="hlt">eddies</span> fit within the submesoscale, and they are energized more as the grid resolution of the model is increased. An <span class="hlt">eddy</span> heat flux (EHF) analysis was performed with decomposition into the divergent (dEHF) and rotational (rEHF) components. The rEHF vectors appeared along the temperature variance contours by following the Kuroshio, whereas the dEHF properly measured the transverse transport normal to the Kuroshio's path. The diagnostic EHF analysis demonstrated that an asymmetric dEHF occurs within the surface mixed layer, which promotes eastward transport toward the islands. Conversely, below the mixed layer, a negative dEHF tongue is formed that promotes the subsurface westward <span class="hlt">warm</span> water transport.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17510362','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17510362"><span>Mesoscale <span class="hlt">eddies</span> drive increased silica export in the subtropical Pacific Ocean.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Benitez-Nelson, Claudia R; Bidigare, Robert R; Dickey, Tommy D; Landry, Michael R; Leonard, Carrie L; Brown, Susan L; Nencioli, Francesco; Rii, Yoshimi M; Maiti, Kanchan; Becker, Jamie W; Bibby, Thomas S; Black, Wil; Cai, Wei-Jun; Carlson, Craig A; Chen, Feizhou; Kuwahara, Victor S; Mahaffey, Claire; McAndrew, Patricia M; Quay, Paul D; Rappé, Michael S; Selph, Karen E; Simmons, Melinda P; Yang, Eun Jin</p> <p>2007-05-18</p> <p>Mesoscale <span class="hlt">eddies</span> may play a critical role in ocean biogeochemistry by increasing nutrient supply, primary production, and efficiency of the biological pump, that is, the ratio of carbon export to primary production in otherwise nutrient-deficient waters. We examined a diatom bloom within a cold-<span class="hlt">core</span> cyclonic <span class="hlt">eddy</span> off Hawaii. <span class="hlt">Eddy</span> primary production, community biomass, and size composition were markedly enhanced but had little effect on the carbon export ratio. Instead, the system functioned as a selective silica pump. Strong trophic coupling and inefficient organic export may be general characteristics of community perturbation responses in the <span class="hlt">warm</span> waters of the Pacific Ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9158E..11L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9158E..11L"><span>Tropical cyclone <span class="hlt">warm</span> <span class="hlt">core</span> analyses with FY-3 microwave temperature sounder data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Zhe; Bai, Jie; Zhang, Wenjun; Yan, Jun; Zhou, Zhuhua</p> <p>2014-05-01</p> <p>Space-borne microwave instruments are well suited to analyze Tropical Cyclone (TC) <span class="hlt">warm</span> <span class="hlt">core</span> structure, because certain wavelengths of microwave energy are able to penetrate the cirrus above TC. With the vector discrete-ordinate microwave radiative transfer model, the basic atmospheric parameters of Hurricane BOB are used to simulate the upwelling brightness temperatures on each channel of the Microwave Temperature Sounder (MWTS) onboard FY-3A/3B observation. Based on the simulation, the characteristic of 1109 super typhoon "Muifa" <span class="hlt">warm</span> <span class="hlt">core</span> structure is analyzed with the MWTS channel 3. Through the radiative and hydrostatic equation, TC <span class="hlt">warm</span> <span class="hlt">core</span> brightness temperature anomalies are related to surface pressure anomalies. In order to correct the radiation attenuation caused by MWTS scan geometric features, and improve the capability in capturing the relatively complete <span class="hlt">warm</span> <span class="hlt">core</span> radiation, a proposed algorithm is devised to correct the bias from receiving <span class="hlt">warm</span> <span class="hlt">core</span> microwave radiation, shows similar time-variant tendency with "Muifa" minimal sea level pressure as described by TC best track data. As the next generation of FY-3 satellite will be launched in 2012, this method will be further verified</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.6814Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.6814Y"><span>The Lofoten Basin <span class="hlt">eddy</span>: Three years of evolution as observed by Seagliders</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Lu-Sha; Bosse, Anthony; Fer, Ilker; Orvik, Kjell A.; Bruvik, Erik M.; Hessevik, Idar; Kvalsund, Karsten</p> <p>2017-08-01</p> <p>The Lofoten Basin in the Norwegian Sea is an area where the <span class="hlt">warm</span> Atlantic Water is subject to the greatest heat losses anywhere in the Nordic Seas. A long-lived, deep, anticyclonic <span class="hlt">eddy</span> is located in the central part of the basin (the Lofoten Basin <span class="hlt">Eddy</span>, LBE). Here we use observations from Seagliders, collected between July 2012 and July 2015, to describe LBE in unprecedented detail. The missions were designed to sample LBE repeatedly, allowing for multiple realizations of radial sections across the <span class="hlt">eddy</span>. LBE has a mean radius of 18 ± 4 km and propagates cyclonically with a mean speed of approximately 3-4 cm s-1. The anticyclonic azimuthal peak velocity varies between 0.5 and 0.7 m s-1, located between 700 and 900 m depth. The average contribution of geostrophy in the cyclogeostrophic balance is 44%. The relative vorticity of the <span class="hlt">core</span> is close to the local Coriolis parameter. The evolution of <span class="hlt">core</span> water properties shows substantial interannual variability, influenced by surface buoyancy flux and advection of anomalous low-salinity near-surface waters that may affect the vertical extent of winter convection. A comparison of the <span class="hlt">eddy</span> properties to those inferred from automated tracking of satellite altimeter observations shows that the location of <span class="hlt">eddy</span> center is successfully detected to within one half <span class="hlt">eddy</span> radius, but vorticity is underestimated and the radius overestimated, each approximately by a factor of 2, because of excessive smoothing relative to the small <span class="hlt">eddy</span> radius.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988JGR....9315502S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988JGR....9315502S"><span>A simulation of the global ocean circulation with resolved <span class="hlt">eddies</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Semtner, Albert J.; Chervin, Robert M.</p> <p>1988-12-01</p> <p>A multilevel primitive-equation model has been constructed for the purpose of simulating ocean circulation on modern supercomputing architectures. The model is designed to take advantage of faster clock speeds, increased numbers of processors, and enlarged memories of machines expected to be available over the next decade. The model allows global <span class="hlt">eddy</span>-resolving simulations to be conducted in support of the World Ocean Circulation Experiment. Furthermore, global ocean modeling is essential for proper representation of the full range of oceanic and climatic phenomena. The first such global <span class="hlt">eddy</span>-resolving ocean calculation is reported here. A 20-year integration of a global ocean model with ½° grid spacing and 20 vertical levels has been carried out with realistic geometry and annual mean wind forcing. The temperature and salinity are constrained to Levitus gridded data above 25-m depth and below 710-m depth (on time scales of 1 month and 3 years, respectively), but the values in the main thermocline are unconstrained for the last decade of the calculation. The final years of the simulation allow the spontaneous formation of waves and <span class="hlt">eddies</span> through the use of scale-selective viscosity and diffusion. A quasi-equilibrium state shows many realistic features of ocean circulation, including unstable separating western boundary currents, the known anomalous northward heat transport in the South Atlantic, and a global compensation for the abyssal spread of North Atlantic Deep Water via a long chain of thermocline mass transport from the tropical Pacific, through the Indonesian archipelago, across the Indian Ocean, and around the southern tip of Africa. This chain of thermocline transport is perhaps the most striking result from the model, and <span class="hlt">eddies</span> and waves are evident along the entire 20,000-km path of the flow. The modeled Gulf Stream separates somewhat north of Cape Hatteras, produces <span class="hlt">warm</span>- and cold-<span class="hlt">core</span> rings, and maintains its integrity as a meadering thermal front</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DSRI..124..126B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DSRI..124..126B"><span>Anatomy of a subtropical intrathermocline <span class="hlt">eddy</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barceló-Llull, Bàrbara; Sangrà, Pablo; Pallàs-Sanz, Enric; Barton, Eric D.; Estrada-Allis, Sheila N.; Martínez-Marrero, Antonio; Aguiar-González, Borja; Grisolía, Diana; Gordo, Carmen; Rodríguez-Santana, Ángel; Marrero-Díaz, Ángeles; Arístegui, Javier</p> <p>2017-06-01</p> <p>An interdisciplinary survey of a subtropical intrathermocline <span class="hlt">eddy</span> was conducted within the Canary <span class="hlt">Eddy</span> Corridor in September 2014. The anatomy of the <span class="hlt">eddy</span> is investigated using near submesoscale fine resolution two-dimensional data and coarser resolution three-dimensional data. The <span class="hlt">eddy</span> was four months old, with a vertical extension of 500 m and 46 km radius. It may be viewed as a propagating negative anomaly of potential vorticity (PV), 95% below ambient PV. We observed two <span class="hlt">cores</span> of low PV, one in the upper layers centered at 85 m, and another broader anomaly located between 175 m and the maximum sampled depth in the three-dimensional dataset (325 m). The upper <span class="hlt">core</span> was where the maximum absolute values of normalized relative vorticity (or Rossby number), |Ro| =0.6, and azimuthal velocity, U=0.5 m s-1, were reached and was defined as the <span class="hlt">eddy</span> dynamical <span class="hlt">core</span>. The typical biconvex isopleth shape for intrathermocline <span class="hlt">eddies</span> induces a decrease of static stability, which causes the low PV of the upper <span class="hlt">core</span>. The deeper low PV <span class="hlt">core</span> was related to the occurrence of a pycnostad layer of subtropical mode water that was embedded within the <span class="hlt">eddy</span>. The <span class="hlt">eddy</span> <span class="hlt">core</span>, of 30 km radius, was in near solid body rotation with period of 4 days. It was encircled by a thin outer ring that was rotating more slowly. The kinetic energy (KE) content exceeded that of available potential energy (APE), KE/APE=1.58; this was associated with a low aspect ratio and a relatively intense rate of spin as indicated by the relatively high value of Ro. Inferred available heat and salt content anomalies were AHA=2.9×1018 J and ASA=14.3×1010 kg, respectively. The <span class="hlt">eddy</span> AHA and ASA contents per unit volume largely exceed those corresponding to Pacific Ocean intrathermocline <span class="hlt">eddies</span>. This suggests that intrathermocline <span class="hlt">eddies</span> may play a significant role in the zonal conduit of heat and salt along the Canary <span class="hlt">Eddy</span> Corridor.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CSR...114...72M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CSR...114...72M"><span>The formation of a cold-<span class="hlt">core</span> <span class="hlt">eddy</span> in the East Australian Current</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Macdonald, H. S.; Roughan, M.; Baird, M. E.; Wilkin, J.</p> <p>2016-02-01</p> <p>Cold-<span class="hlt">core</span> <span class="hlt">eddies</span> (CCEs) frequently form in western boundary currents and can affect continental shelf processes. It is not always clear, however, if baroclinic or barotropic instabilities contribute more to their formation. The Regional Ocean Modelling System (ROMS) is used to investigate the ocean state during the formation of a CCE in the East Australian Current (EAC) during October 2009. The observed <span class="hlt">eddy</span> initially appeared as a small billow (approx. 50 km in length) that perturbed the landward edge of the EAC. The billow grew into a mesoscale CCE (approx. 100 km in diameter), diverting the EAC around it. A ROMS simulation with a realistic wind field reproduced a similar <span class="hlt">eddy</span>. This <span class="hlt">eddy</span> formed from negative vorticity waters found on the continental shelf south of the EAC separation point. A sensitivity analysis is performed whereby the impact of 3 different wind forcing scenarios, upwelling, downwelling, and no winds, are investigated. A CCE formed in all wind scenarios despite the wind induced changes in hydrographic conditions in the continental shelf and slope waters. As such, the source of energy for <span class="hlt">eddy</span> formation did not come from the interactions of wind with the continental shelf waters. Analysis of strain and energy transformation confirms this by showing that the prevailing source of CCE energy was kinetic energy of the offshore EAC. These results clearly link the formation of the CCE to the swift flowing EAC and barotropic instabilities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28380260','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28380260"><span>A numerical study of the acoustic radiation due to <span class="hlt">eddy</span> current-cryostat interactions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Yaohui; Liu, Feng; Zhou, Xiaorong; Li, Yu; Crozier, Stuart</p> <p>2017-06-01</p> <p>To investigate the acoustic radiation due to <span class="hlt">eddy</span> current-cryostat interactions and perform a qualitative analysis on noise reduction methods. In order to evaluate the sound pressure level (SPL) of the <span class="hlt">eddy</span> current induced <span class="hlt">warm</span> bore wall vibration, a Finite Element (FE) model was created to simulate the noises from both the <span class="hlt">warm</span> bore wall vibration and the gradient coil assembly. For the SPL reduction of the <span class="hlt">warm</span> bore wall vibration, we first improved the active shielding of the gradient coil, thus reducing the <span class="hlt">eddy</span> current on the <span class="hlt">warm</span> bore wall. A damping treatment was then applied to the <span class="hlt">warm</span> bore wall to control the acoustic radiation. Initial simulations show that the SPL of the <span class="hlt">warm</span> bore wall is higher than that of the gradient assembly with typical design shielding ratios at many frequencies. Subsequent simulation results of <span class="hlt">eddy</span> current control and damping treatment application show that the average SPL reduction of the <span class="hlt">warm</span> bore wall can be as high as 9.6 dB, and even higher in some frequency bands. Combining <span class="hlt">eddy</span> current control and suggested damping scheme, the noise level in a MRI system can be effectively reduced. © 2017 American Association of Physicists in Medicine.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li class="active"><span>1</span></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_1 --> <div id="page_2" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="21"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA13155.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA13155.html"><span>Birth of a Loop Current <span class="hlt">Eddy</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2010-05-24</p> <p>The northern portion of the Gulf of Mexico Loop Current, shown in red, appears about to detach a large ring of current, creating a separate <span class="hlt">eddy</span>. An <span class="hlt">eddy</span> is a large, <span class="hlt">warm</span>, clockwise-spinning vortex of water -- the ocean version of a cyclone.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123..201C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123..201C"><span>Mesoscale <span class="hlt">Eddy</span> Activity and Transport in the Atlantic Water Inflow Region North of Svalbard</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crews, L.; Sundfjord, A.; Albretsen, J.; Hattermann, T.</p> <p>2018-01-01</p> <p>Mesoscale <span class="hlt">eddies</span> are known to transport heat and biogeochemical properties from Arctic Ocean boundary currents to basin interiors. Previous hydrographic surveys and model results suggest that <span class="hlt">eddy</span> formation may be common in the Atlantic Water (AW) inflow area north of Svalbard, but no quantitative <span class="hlt">eddy</span> survey has yet been done for the region. Here vorticity and water property signatures are used to identify and track AW <span class="hlt">eddies</span> in an <span class="hlt">eddy</span>-resolving sea ice-ocean model. The boundary current sheds AW <span class="hlt">eddies</span> along most of the length of the continental slope considered, from the western Yermak Plateau to 40°E, though <span class="hlt">eddies</span> forming east of 20°E are likely more important for slope-to-basin transport. <span class="hlt">Eddy</span> formation seasonality reflects seasonal stability properties of the boundary current in the eastern portion of the study domain, but on and immediately east of the Yermak Plateau enhanced <span class="hlt">eddy</span> formation during summer merits further investigation. AW <span class="hlt">eddies</span> tend to be anticyclonic, have radii close to the local deformation radius, and be centered in the halocline. They transport roughly 0.16 Sv of AW and, due to their <span class="hlt">warm</span> <span class="hlt">cores</span>, 1.0 TW away from the boundary current. These findings suggest <span class="hlt">eddies</span> may be important for halocline ventilation in the Eurasian Basin, as has been shown for Pacific Water <span class="hlt">eddies</span> in the Canadian Basin.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA......143M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA......143M"><span>Stationary spiraling <span class="hlt">eddies</span> in presence of polar amplification of global <span class="hlt">warming</span> as a governing factor of ecology of Greenland seals White Sea population: results of verification study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melentyev, K.; Chernook, V.; Melentyev, V.</p> <p>2003-04-01</p> <p>Ice-associated forms of marine mammals are representatives of a high level of fodder chains in the ocean and taxation of population number for different group, as assessment of ecology and animal welfare are the important tasks for marine biology, ecology, fishery and other application uses. Many problems create a global <span class="hlt">warming</span> and antropogenical impact on marine and coastal ecosystem. In order to investigate ice covered Arctic Ocean and charting the number of seals were performed annual inspections onboard research aircraft PINRO "Arktika". Multi-spectral airborne and satellite observations were fulfilled regularly from Barents and White Sea to the Bering and Okhotsk Sea (1996-2002). A contemporary status of different group of sea mammals was evaluated, where number of adults and pups were checked separately. In situ observations were provided with using helicopter and icebreaker for gathering a water samples and ice <span class="hlt">cores</span> (with following biochemical and toxicological analysis). A prevailing part of life cycle of Greenland seals (harp seal) is strongly depended from winter hydrology (water masses, stable currents, meandering fronts, stationary <span class="hlt">eddies</span>) and closely connected with type of ice (pack, fast ice) and other parameters of ice (age, origin, salinity, ice edge.). First-year ice floes which has a specific properties and distinctive features are used by harp seals for pupping, lactation, molting, pairing and resting. Ringed seals, inversely, use for corresponding purposes only fast-ice. Different aspects of ecology, and migration features of harp seals were analyzed in frame of verification study. It was revealed a scale of influence of winter severity and wind regime, but stationary <span class="hlt">eddies</span> in the White Sea is most effective governing factor (novelty). Following relationship " <span class="hlt">eddies</span> - ecology of Greenland seal White Sea population " will be discussed: A) regularities of <span class="hlt">eddies</span> formation and their spatial arrangement, temporal (seasonal and annual</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.4444C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.4444C"><span>The formation processes of phytoplankton growth and decline in mesoscale <span class="hlt">eddies</span> in the western North Pacific Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chang, Yu-Lin; Miyazawa, Yasumasa; Oey, Lie-Yauw; Kodaira, Tsubasa; Huang, Shihming</p> <p>2017-05-01</p> <p>In this study, we investigate the processes of phytoplankton growth and decline in mesoscale <span class="hlt">eddies</span> in the western North Pacific Ocean based on the in situ chlorophyll data obtained from 52 cruises conducted by the Japan Meteorological Agency together with idealized numerical simulations. Both the observation and model results suggest that chlorophyll/phytoplankton concentrations are higher in cold than in <span class="hlt">warm</span> <span class="hlt">eddies</span> in near-surface water (z > -70 m). In the idealized simulation, the isopycnal movements associated with upwelling/downwelling transport phytoplankton and nutrients to different vertical depths during <span class="hlt">eddy</span> formation (stage A). Phytoplankton and nutrients in cold <span class="hlt">eddies</span> is transported toward shallower waters while those in <span class="hlt">warm</span> <span class="hlt">eddies</span> move toward deeper waters. In the period after the <span class="hlt">eddy</span> has formed (stage B), sunlight and initially upwelled nutrients together promote the growth of phytoplankton in cold <span class="hlt">eddies</span>. Phytoplankton in <span class="hlt">warm</span> <span class="hlt">eddies</span> decays due to insufficient sunlight in deeper waters. In stage B, upwelling and downwelling coexist in both <span class="hlt">warm</span> and cold <span class="hlt">eddies</span>, contributing nearly equally to vertical displacement. The upwelling/downwelling-induced nitrate flux accounts for a small percentage (˜3%) of the total nitrate flux in stage B. The vertical velocity caused by propagating <span class="hlt">eddies</span>, therefore, is not the primary factor causing differences in phytoplankton concentrations between stage-B <span class="hlt">warm</span> and cold <span class="hlt">eddies</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006DSRI...53.1907C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006DSRI...53.1907C"><span>Southern elephant seal trajectories, fronts and <span class="hlt">eddies</span> in the Brazil/Malvinas Confluence</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Campagna, Claudio; Piola, Alberto R.; Rosa Marin, Maria; Lewis, Mirtha; Fernández, Teresita</p> <p>2006-12-01</p> <p>This study describes the association between transient, mesoscale hydrographic features along the axis of the Brazil-Malvinas Confluence, in the SW Atlantic, and the foraging behavior of 2-3-year-old (focal) juvenile southern elephant seals, Mirounga leonina, from Península Valdés, Argentina. Departing from the dominant pattern of foraging on predictable bathymetric fronts on the Patagonian shelf and slope, three females out of 12 satellite-tracked juveniles remained at the edge of young <span class="hlt">warm-core</span> <span class="hlt">eddies</span> and near the outer <span class="hlt">core</span> of cold-<span class="hlt">core</span> <span class="hlt">eddies</span>, coinciding with the most productive areas of these temperature fronts. Seal trajectories along high-temperature gradients were always consistent with the speed and direction of surface currents inferred from the temperature distribution and confirmed by surface drifters. Movements of foraging seals were compared with those of surface drifters, coinciding in time and space and yielding independent and consistent data on regional water circulation parameters. The diving pattern recorded for one focal seal yielded shallower dives and a loose diel pattern in the <span class="hlt">eddy</span>, and a marked diurnal cycle compatible with foraging on vertically migrating prey in the cold waters of the Malvinas Current. Pre-reproductive females that use the mesoscale fronts of the Argentine Basin as an alternative foraging area would benefit from lower competition with more experienced seals and with other top predators that reproduce along the coast of Patagonia.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910264Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910264Y"><span>Description of the Lofoten Basin <span class="hlt">Eddy</span> using three years of Seaglider observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Lusha; Bosse, Anthony; Fer, Ilker; Arild Orvik, Kjell; Magnus Bruvik, Erik; Hessevik, Idar; Kvalsund, Karsten</p> <p>2017-04-01</p> <p>The Lofoten Basin of the Norwegian Sea is an area where the <span class="hlt">warm</span> Atlantic Water is subject to the greatest heat losses anywhere in the Nordic Seas. The region is recognized as an area of intense mesoscale activity, including <span class="hlt">eddies</span> shed from the Norwegian slope current and a long-lived, deep, anticyclonic <span class="hlt">eddy</span> residing in the central part of the basin (the Lofoten Basin <span class="hlt">Eddy</span>, LBE). Here we use observations from Seagliders, collected in five missions between July 2012 and April 2015, to describe the LBE in unprecedented detail. The missions were concentrated to sample the LBE repeatedly, allowing for multiple realizations of radial sections across the <span class="hlt">eddy</span>. The LBE has a mean radius of 18 ± 4 km, and propagates cyclonically with a mean speed of approximately 3-4 cm s-1. The anticyclonic azimuthal peak velocity varies between 0.5 and 0.7 m s-1, located between 680 and 860 m depth, and 16 and 25 km radial distance to the <span class="hlt">eddy</span> center. The contribution of geostrophy in the cyclogeostrophic balance is approximately 50%, which indicates the importance of the non-linear effects. The relative vorticity representative of the <span class="hlt">core</span> exhibits large values between -0.7f to -0.9f, where f is the local Coriolis parameter. The <span class="hlt">eddy</span> <span class="hlt">core</span> is long-lived (at least two years from May 2013 to March 2015), has characteristic values of Conservative Temperature of 4.8°C and Absolute Salinity of 35.34 g kg-1, and deepens to approximately 730 m in wintertime. A comparison of the <span class="hlt">eddy</span> properties to those inferred from automated tracking of satellite altimeter observations shows that while the location of <span class="hlt">eddy</span> center is detected accurately to within 5 km, the altimeter inferred vorticity is underestimated and the radius overestimated, each approximately by a factor of 2, because of excessive smoothing relative to the small <span class="hlt">eddy</span> radius.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121.8208Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121.8208Z"><span>Nonlinear multiscale interactions and internal dynamics underlying a typical <span class="hlt">eddy</span>-shedding event at Luzon Strait</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Yuan-Bing; Liang, X. San; Gan, Jianping</p> <p>2016-11-01</p> <p><span class="hlt">Eddy</span>-shedding is a highly nonlinear process that presents a major challenge in geophysical fluid dynamics. Using the newly developed localized multiscale energy and vorticity analysis (MS-EVA), this study investigates an observed typical <span class="hlt">warm</span> <span class="hlt">eddy</span>-shedding event as the Kuroshio passes the Luzon Strait, in order to gain insight into the underlying internal dynamics. Through multiscale window transform (MWT), it is found that the loop-form Kuroshio intrusion into the South China Sea (SCS) is not a transient feature, but a quasi-equilibrium state of the system. A mesoscale reconstruction reveals that the <span class="hlt">eddy</span> does not have its origin at the intrusion path, but comes from the Northwest Pacific. It propagates westward, preceded by a cyclonic (cold) <span class="hlt">eddy</span>, through the Kuroshio into the SCS. As the <span class="hlt">eddy</span> pair runs across the main current, the cold one weakens and the <span class="hlt">warm</span> one intensifies through a mixed instability. In its development, another cold <span class="hlt">eddy</span> is generated to its southeast, which also experiences a mixed instability. It develops rapidly and cuts the <span class="hlt">warm</span> <span class="hlt">eddy</span> off the stream. Both the <span class="hlt">warm</span> and cold <span class="hlt">eddies</span> then propagate westward in the form of a Rossby wave (first baroclinic mode). As the <span class="hlt">eddies</span> approach the Dongsha Islands, they experience another baroclinic instability, accompanied by a sudden accumulation of <span class="hlt">eddy</span> available potential energy. This part of potential energy is converted to <span class="hlt">eddy</span> kinetic energy through buoyancy conversion, and is afterward transferred back to the large-scale field through inverse cascading, greatly reducing the intensity of the <span class="hlt">eddy</span> and eventually leading to its demise.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A43B3259H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A43B3259H"><span>Impact of a <span class="hlt">warm</span> <span class="hlt">core</span> <span class="hlt">eddy</span> on near-surface wind at Brazil-Malvinas Confluence region in high resolution simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hackerott, J. A.; Mesquita, M. D. S.; Camargo, R. D.; Pezzi, L. P.</p> <p>2014-12-01</p> <p>Several studies show that near surface winds acquire anticyclonic (cyclonic) vorticity and accelerate (decelerate) when flow in the same direction as positive (negative) orientation of the Sea Surface Temperature (SST) gradient. Many of them were made over different oceanic thermal fronts in the world analyzing contrasts in SST gradients. However, still remains much uncertainty about how strong is this wind modulation, particularly on areas in need of studies and in-situ data, such as the Brazil-Malvinas Confluence Region (BMC) where intense SST gradients are found. This study brings results of the Weather Research and Forecasting (WRF) model simulations, configured with nested grids, where it is compared the influence of distinct synoptic patterns observed at BMC where three different SST patterns are imposed to WRF. These patterns are: (1) with a typical smoothed SST field, named as Control; (2) Small <span class="hlt">Eddy</span>, which is the same as Control but adding an <span class="hlt">eddy</span> of 1° radius and a +2°C amplitude; and (3) Intense <span class="hlt">Eddy</span>, which is also the same as Control, but where an <span class="hlt">eddy</span> of 1° radius and +4°C amplitude is added. The artificial imposed <span class="hlt">eddy</span> is analogous to the SST patterns observed at BMC, with different intensities. The simulations were integrated for 76 hours using initial and lateral boundary conditions from the Global Forecast System (GFS) model with 0.5° resolution. The results showed that the wind at 10m height is influenced by the diurnal cycle of turbulence in the Marine Atmospheric Boundary Layer (MABL) modified by variations in SST. The wind magnitude changes up to 1m.s-1 over a 4/50°C.km-1 SST gradient and 0.6m.s-1 over a 2/50°C.km-1 SST gradient. This effect generates meso-scale disturbances that propagate to larger scales leading to disturbances in remote areas. Thus, the preliminary analyses are suggesting that there is an interaction between the meso and synoptic scale playing a role. Mechanisms such this one might not be captured by atmospheric</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123..367M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123..367M"><span>Modulating Effects of Mesoscale Oceanic <span class="hlt">Eddies</span> on Sea Surface Temperature Response to Tropical Cyclones Over the Western North Pacific</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Zhanhong; Fei, Jianfang; Huang, Xiaogang; Cheng, Xiaoping</p> <p>2018-01-01</p> <p>The impact of mesoscale oceanic <span class="hlt">eddies</span> on the temporal and spatial characteristics of sea surface temperature (SST) response to tropical cyclones is investigated in this study based on composite analysis of cyclone-<span class="hlt">eddy</span> interactions over the western North Pacific. The occurrence times of maximum cooling, recovery time, and spatial patterns of SST response are specially evaluated. The influence of cold-<span class="hlt">core</span> <span class="hlt">eddies</span> (CCEs) renders the mean occurrence time of maximum SST cooling to become about half a day longer than that in <span class="hlt">eddy</span>-free condition, while <span class="hlt">warm-core</span> <span class="hlt">eddies</span> (WCEs) have little effect on this facet. The recovery time of SST cooling also takes longer in presence of CCEs, being overall more pronounced for stronger or slower tropical cyclones. The effect of WCEs on the recovery time is again not significant. The modulation of maximum SST decrease by WCEs for category 2-5 storms is found to be remarkable in the subtropical region but not evident in the tropical region, while the role of CCEs is remarkable in both regions. The CCEs are observed to change the spatial characteristics of SST response, with enhanced SST decrease initially at the right side of storm track. During the recovery period the strengthened SST cooling by CCEs propagates leftward gradually, with a feature similar as both the westward-propagating <span class="hlt">eddies</span> and the recovery of cold wake. These results underscore the importance of resolving mesoscale oceanic <span class="hlt">eddies</span> in coupled numerical models to improve the prediction of storm-induced SST response.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29369893','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29369893"><span>Effects of Ambient Temperature and Forced-air <span class="hlt">Warming</span> on Intraoperative <span class="hlt">Core</span> Temperature: A Factorial Randomized Trial.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pei, Lijian; Huang, Yuguang; Xu, Yiyao; Zheng, Yongchang; Sang, Xinting; Zhou, Xiaoyun; Li, Shanqing; Mao, Guangmei; Mascha, Edward J; Sessler, Daniel I</p> <p>2018-05-01</p> <p>The effect of ambient temperature, with and without active <span class="hlt">warming</span>, on intraoperative <span class="hlt">core</span> temperature remains poorly characterized. The authors determined the effect of ambient temperature on <span class="hlt">core</span> temperature changes with and without forced-air <span class="hlt">warming</span>. In this unblinded three-by-two factorial trial, 292 adults were randomized to ambient temperatures 19°, 21°, or 23°C, and to passive insulation or forced-air <span class="hlt">warming</span>. The primary outcome was <span class="hlt">core</span> temperature change between 1 and 3 h after induction. Linear mixed-effects models assessed the effects of ambient temperature, <span class="hlt">warming</span> method, and their interaction. A 1°C increase in ambient temperature attenuated the negative slope of <span class="hlt">core</span> temperature change 1 to 3 h after anesthesia induction by 0.03 (98.3% CI, 0.01 to 0.06) °Ccore/(h°Cambient) (P < 0.001), for patients who received passive insulation, but not for those <span class="hlt">warmed</span> with forced-air (-0.01 [98.3% CI, -0.03 to 0.01] °Ccore/[h°Cambient]; P = 0.40). Final <span class="hlt">core</span> temperature at the end of surgery increased 0.13°C (98.3% CI, 0.07 to 0.20; P < 0.01) per degree increase in ambient temperature with passive insulation, but was unaffected by ambient temperature during forced-air <span class="hlt">warming</span> (0.02 [98.3% CI, -0.04 to 0.09] °Ccore/°Cambient; P = 0.40). After an average of 3.4 h of surgery, <span class="hlt">core</span> temperature was 36.3° ± 0.5°C in each of the forced-air groups, and ranged from 35.6° to 36.1°C in passively insulated patients. Ambient intraoperative temperature has a negligible effect on <span class="hlt">core</span> temperature when patients are <span class="hlt">warmed</span> with forced air. The effect is larger when patients are passively insulated, but the magnitude remains small. Ambient temperature can thus be set to comfortable levels for staff in patients who are actively <span class="hlt">warmed</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO24B2959C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO24B2959C"><span>Effect of mesoscale <span class="hlt">eddies</span> on the Taiwan Strait Current</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chang, Y. L.; Miyazawa, Y.; Guo, X.</p> <p>2016-02-01</p> <p>This study shows that mesoscale <span class="hlt">eddies</span> can alter the Taiwan Strait current. The 20-year data-assimilated Japan Coastal Ocean Predictability Experiment 2 (JCOPE2) reanalysis data are analyzed, and the results are confirmed with idealized experiments. The leading wind-forced seasonal cycle is excluded to focus on the effect of the <span class="hlt">eddy</span>. The <span class="hlt">warm</span> <span class="hlt">eddy</span> southwest of Taiwan is shown to generate a northward flow, whereas the cold <span class="hlt">eddy</span> produces a southward current. The effect of the <span class="hlt">eddy</span> penetrates onto the shelf through the Joint Effect of Baroclinicity and Relief (JEBAR). The cross-isobath fluxes lead to shelfward convergence and divergence, setting up the modulation of the sea level slope. The resulting along-strait current anomaly eventually affects a wide area of the Taiwan Strait. The stronger <span class="hlt">eddy</span> leads to larger modification of the cross-shelf flows and sea level slope, producing a greater transport anomaly. The composite Sea-Viewing Wide Field-of-view Sensor chlorophyll-a (Chl-a) serves as an indicator to show the change in Chl-a concentration in the strait in response to the <span class="hlt">eddy</span>-induced current. During the <span class="hlt">warm</span> <span class="hlt">eddy</span> period, the current carries the southern water of lower concentration northward, reducing Chl-a concentration in the strait. In contrast, Chl-a is enhanced because the cold <span class="hlt">eddy</span>-induced southward current carries the northern water of higher concentration southward into the strait.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcDyn.tmp...40C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcDyn.tmp...40C"><span><span class="hlt">Eddy</span> properties in the Southern California Current System</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chenillat, Fanny; Franks, Peter J. S.; Capet, Xavier; Rivière, Pascal; Grima, Nicolas; Blanke, Bruno; Combes, Vincent</p> <p>2018-05-01</p> <p>The California Current System (CCS) is an eastern boundary upwelling system characterized by strong <span class="hlt">eddies</span> that are often generated at the coast. These <span class="hlt">eddies</span> contribute to intense, long-distance cross-shelf transport of upwelled water with enhanced biological activity. However, the mechanisms of formation of such coastal <span class="hlt">eddies</span>, and more importantly their capacity to trap and transport tracers, are poorly understood. Their unpredictability and strong dynamics leave us with an incomplete picture of the physical and biological processes at work, their effects on coastal export, lateral water exchange among <span class="hlt">eddies</span> and their surrounding waters, and how long and how far these <span class="hlt">eddies</span> remain coherent structures. Focusing our analysis on the southern part of the CCS, we find a predominance of cyclonic <span class="hlt">eddies</span>, with a 25-km radius and a SSH amplitude of 6 cm. They are formed near shore and travel slightly northwest offshore for 190 days at 2 km day-1. We then study one particular, representative cyclonic <span class="hlt">eddy</span> using a combined Lagrangian and Eulerian numerical approach to characterize its kinematics. Formed near shore, this <span class="hlt">eddy</span> trapped a <span class="hlt">core</span> made up of 67% California Current waters and 33% California Undercurrent waters. This <span class="hlt">core</span> was surrounded by other waters while the <span class="hlt">eddy</span> detached from the coast, leaving the oldest waters at the <span class="hlt">eddy</span>'s <span class="hlt">core</span> and the younger waters toward the edge. The <span class="hlt">eddy</span> traveled several months as a coherent structure, with only limited lateral exchange within the <span class="hlt">eddy</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS24B..08G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS24B..08G"><span>Role of CO2-forced Antarctic shelf freshening on local shelf <span class="hlt">warming</span> in an <span class="hlt">eddying</span> global climate model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goddard, P.; Dufour, C.; Yin, J.; Griffies, S. M.; Winton, M.</p> <p>2017-12-01</p> <p>Ocean <span class="hlt">warming</span> near the Antarctic ice shelves has critical implications for future ice sheet mass loss and global sea level rise. A global climate model (GFDL CM2.6) with an <span class="hlt">eddying</span> ocean is used to quantify and better understand the mechanisms contributing to ocean <span class="hlt">warming</span> on the Antarctic continental shelf in an idealized 2xCO2 experiment. The results indicate that the simulated shelf region <span class="hlt">warming</span> varies in magnitude at different locations. Relatively large <span class="hlt">warm</span> anomalies occur both in the upper 100 m and at depth, which are controlled by different mechanisms. Here, we focus on the deep shelf <span class="hlt">warming</span> and its relationship to shelf freshening. Under CO2-forcing, enhanced runoff from Antarctica, more regional precipitation, and reduction of sea ice contribute to the shelf freshening. The freshening increases the lateral density gradient of the Antarctic Slope Front, which can limit along-isopycnal onshore transport of heat from the Circumpolar Deep Water across the shelf break. Thus, the magnitude and location of the freshening anomalies govern the magnitude and location of onshore heat transport and deep <span class="hlt">warm</span> anomalies. Additionally, the freshening increases vertical stratification on the shelf. The enhanced stratification reduces vertical mixing of heat associated with diffusion and gravitational instabilities, further contributing to the build-up of temperature anomalies at depth. Freshening is a crucial driver of the magnitude and location of the <span class="hlt">warming</span>; however, other drivers influence the <span class="hlt">warming</span> such as CO2-forced weakening of the easterly wind stress and associated shoaling of isotherms. Understanding the relative role of freshening in the inhomogeneous ocean <span class="hlt">warming</span> of the Antarctic continental shelf would lead to better projections of future ice sheet mass loss, especially near the most vulnerable calving fronts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011OcScD...8.1261D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011OcScD...8.1261D"><span>Extraction of spatial-temporal rules from mesoscale <span class="hlt">eddies</span> in the South China Sea Based on rough set theory</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Du, Y.; Fan, X.; He, Z.; Su, F.; Zhou, C.; Mao, H.; Wang, D.</p> <p>2011-06-01</p> <p>In this paper, a rough set theory is introduced to represent spatial-temporal relationships and extract the corresponding rules from typical mesoscale-<span class="hlt">eddy</span> states in the South China Sea (SCS). Three decision attributes are adopted in this study, which make the approach flexible in retrieving spatial-temporal rules with different features. Spatial-temporal rules of typical states in the SCS are extracted as three decision attributes, which then are confirmed by the previous works. The results demonstrate that this approach is effective in extracting spatial-temporal rules from typical mesoscale-<span class="hlt">eddy</span> states, and therefore provides a powerful approach to forecasts in the future. Spatial-temporal rules in the SCS indicate that <span class="hlt">warm</span> <span class="hlt">eddies</span> following the rules are generally in the southeastern and central SCS around 2000 m isobaths in winter. Their intensity and vorticity are weaker than those of cold <span class="hlt">eddies</span>. They usually move a shorter distance. By contrast, cold <span class="hlt">eddies</span> are in 2000 m-deeper regions of the southwestern and northeastern SCS in spring and fall. Their intensity and vorticity are strong. Usually they move a long distance. In winter, a few rules are followed by cold <span class="hlt">eddies</span> in the northern tip of the basin and southwest of Taiwan Island rather than <span class="hlt">warm</span> <span class="hlt">eddies</span>, indicating cold <span class="hlt">eddies</span> may be well-regulated in the region. Several <span class="hlt">warm-eddy</span> rules are achieved west of Luzon Island, indicating <span class="hlt">warm</span> <span class="hlt">eddies</span> may be well-regulated in the region as well. Otherwise, <span class="hlt">warm</span> and cold <span class="hlt">eddies</span> are distributed not only in the jet flow off southern Vietnam induced by intraseasonal wind stress in summer-fall, but also in the northern shallow water, which should be a focus of future study.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.2805J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.2805J"><span>Dynamical <span class="hlt">Core</span> in Atmospheric Model Does Matter in the Simulation of Arctic Climate</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jun, Sang-Yoon; Choi, Suk-Jin; Kim, Baek-Min</p> <p>2018-03-01</p> <p>Climate models using different dynamical <span class="hlt">cores</span> can simulate significantly different winter Arctic climates even if equipped with virtually the same physics schemes. Current climate simulated by the global climate model using cubed-sphere grid with spectral element method (SE <span class="hlt">core</span>) exhibited significantly warmer Arctic surface air temperature compared to that using latitude-longitude grid with finite volume method <span class="hlt">core</span>. Compared to the finite volume method <span class="hlt">core</span>, SE <span class="hlt">core</span> simulated additional adiabatic <span class="hlt">warming</span> in the Arctic lower atmosphere, and this was consistent with the <span class="hlt">eddy</span>-forced secondary circulation. Downward longwave radiation further enhanced Arctic near-surface <span class="hlt">warming</span> with a higher surface air temperature of about 1.9 K. Furthermore, in the atmospheric response to the reduced sea ice conditions with the same physical settings, only the SE <span class="hlt">core</span> showed a robust cooling response over North America. We emphasize that special attention is needed in selecting the dynamical <span class="hlt">core</span> of climate models in the simulation of the Arctic climate and associated teleconnection patterns.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950029612&hterms=chlorophyll&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dchlorophyll','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950029612&hterms=chlorophyll&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dchlorophyll"><span>Ship and satellite observations of chlorophyll stocks in interacting cyclone-anticyclone <span class="hlt">eddy</span> pairs in the western Gulf of Mexico</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Biggs, Douglas, C.; Mueller-Karger, Frank E.</p> <p>1994-01-01</p> <p>When anticyclonic <span class="hlt">eddies</span> shed by the Loop Current of the Gulf of Mexico reach the western margin of the gulf, they influence the surface circulation over the continental slope and rise. Of particular interest is the generation of cyclone (cold-<span class="hlt">core</span>)-anticyclone (<span class="hlt">warm-core</span>) pairs when aging Loop Current <span class="hlt">eddies</span> interact with the continental margin. In this paper we describe the physical and biological characteristics of these cyclone-anticyclone pairs. Our objective was to determine how <span class="hlt">eddy</span> pairs affect the distribution of phytoplankton in the region and how satellite ocean color measurements are applicable to tracing of the <span class="hlt">eddies</span>. We present shipboard data collected between 1980 and 1982 on the hydrography, chlorophyll stocks, and nutrient concentrations of <span class="hlt">eddy</span> pairs in the western Gulf of Mexico and compare these data with coastal zone color scanner (CZCS) images collected during the time frame of the cruises. Surface pigment concentrations followed a seasonal cycle, with low concentrations (0.05-0.1 mg m(exp -3)) found within cyclones and anticyclones from April through early November and higher concentrations (greater than 0.1 mg(exp -3)) found in the winter. CZCS pigment concentrations were locally high in the flow confluence of cyclone-anticyclone pairs. The CZCS imagery shows that some cyclone-anticyclone geometries transport high-chlorophyll shelf water seaward at least 100-200 km off-shelf.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1409744','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1409744"><span>Effects of a Circulating-water Garment and Forced-air <span class="hlt">Warming</span> on Body Heat Content and <span class="hlt">Core</span> Temperature</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Taguchi, Akiko; Ratnaraj, Jebadurai; Kabon, Barbara; Sharma, Neeru; Lenhardt, Rainer; Sessler, Daniel I.</p> <p>2005-01-01</p> <p>Background: Forced-air <span class="hlt">warming</span> is sometimes unable to maintain perioperative normothermia. We therefore compared heat transfer, regional heat distribution, and <span class="hlt">core</span> rewarming of forced-air <span class="hlt">warming</span> with a novel circulating-water garment. Methods: Nine volunteers were each evaluated on two randomly ordered study days. They were anesthetized and cooled to a <span class="hlt">core</span> temperature near 34°C. The volunteers were subsequently <span class="hlt">warmed</span> for 2.5 hours with either a circulating-water garment or forced-air cover. Overall, heat balance was determined from the difference between cutaneous heat loss (thermal flux transducers) and metabolic heat production (oxygen consumption). Average arm and leg (peripheral) tissue temperatures were determined from 18 intramuscular needle thermocouples, 15 skin thermal flux transducers, and “deep” arm and foot thermometers. Results: Heat production (≈ 60 kcal/h) and loss (≈45 kcal/h) were similar with each treatment before <span class="hlt">warming</span>. The increase in heat transfer across anterior portions of the skin surface was similar with each <span class="hlt">warming</span> system (≈65 kcal/h). Forced-air <span class="hlt">warming</span> had no effect on posterior heat transfer whereas circulating-water transferred 21 ± 9 kcal/h through the posterior skin surface after a half hour of <span class="hlt">warming</span>. Over 2.5 h, circulating-water thus increased body heat content 56% more than forced air. <span class="hlt">Core</span> temperatures thus increased faster than with circulating water than forced air, especially during the first hour, with the result that <span class="hlt">core</span> temperature was 1.1 ± 0.7°C greater after 2.5 h (P < 0.001). Peripheral tissue heat content increased twice as much as <span class="hlt">core</span> heat content with each device, but the <span class="hlt">core</span>-to-peripheral tissue temperature gradient remained positive throughout the study. Conclusions: The circulating-water system transferred more heat than forced air, with the difference resulting largely from posterior heating. Circulating water rewarmed patients 0.4°C/h faster than forced air. A substantial peripheral-to-<span class="hlt">core</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123.2081P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123.2081P"><span>How <span class="hlt">Eddies</span> Gain, Retain, and Release Water: A Case Study of a Hokkaido Anticyclone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prants, S. V.; Budyansky, M. V.; Uleysky, M. Yu.</p> <p>2018-03-01</p> <p>A Lagrangian methodology is elaborated to identify the origin of water masses in the Kuroshio-Oyashio frontal zone where waters of the Kuroshio Extension and Oyashio Current and of the Japan and Okhotsk Seas converge. It allows one to track the evolution of mesoscale <span class="hlt">eddies</span> during the satellite-altimetry era and to document how they gain, retain, and release water masses of different origin. The methodology is applied to study <span class="hlt">warm-core</span> mesoscale anticyclones propagating along the Japan and Kuril Trenches near the eastern coast of Hokkaido Island that have been observed from 1 January 1993 to 10 December 2016 in an altimetry-based velocity field. The Hokkaido <span class="hlt">eddy</span>, sampled by profiling floats and a few cruises in 2003 and 2004, is analyzed in detail in order to compare Lagrangian simulation results to observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011OcDyn..61..991G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011OcDyn..61..991G"><span><span class="hlt">Eddy</span> resolving modelling of the Gulf of Lions and Catalan Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garreau, Pierre; Garnier, Valérie; Schaeffer, Amandine</p> <p>2011-07-01</p> <p>The generation process of strong long-lived <span class="hlt">eddies</span> flowing southwestwards along the Catalan slope was revealed through numerical modelling and in situ observations. Careful analyses of a particular event in autumn 2007 demonstrated a link between a "LATEX" <span class="hlt">eddy</span>, which remained in the southwestern corner of the Gulf of Lions and a "CATALAN" <span class="hlt">eddy</span>, which moved along the Catalan Shelf, since the death of the former gave birth to the latter. The origin of such <span class="hlt">eddies</span> was found to be an accumulation of potential energy in the southwestern corner of the Gulf of Lions: under the influence of the negative wind stress curl associated with the Tramontane, a <span class="hlt">warm</span> and less dense water body can be isolated and fed by a coastal current carrying <span class="hlt">warm</span> water from the Catalan Sea. In summer, this structure can grow and intensify to generate a strong anticyclonic <span class="hlt">eddy</span>. After a long period of Tramontane, a burst of southeasterlies and northerlies appeared to detach the "LATEX" <span class="hlt">eddy</span>, which flowed out of the Gulf of Lions, migrating along the Catalan continental slope and continued into the Balearic Sea as the "CATALAN" <span class="hlt">eddy</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE51B..07R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE51B..07R"><span>On the Long-term Stability of the Lofoten Basin <span class="hlt">Eddy</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rossby, H. T. T.; Søiland, H.; Chafik, L.</p> <p>2016-02-01</p> <p>In recent years several studies have identified an area of intense anticyclonic activity about 500 km straight west of the Lofoten Islands at 70°N in the northern Norwegian Sea; it is now recognized as the coherent Lofoten Basin <span class="hlt">Eddy</span> (LBE). While we normally think of coherent <span class="hlt">eddies</span> as short-lived (months to a few years), we infer here that the <span class="hlt">eddy</span> may have been in existence for hundreds of years if not longer. First, we show from five acoustic Doppler current profiler surveys that it is quite stable with a rotating solid body <span class="hlt">core</span> 1000 m deep and 8 km radius with relative vorticity close to its theoretical limit -f. The surveys also show the LBE typically has a >60 km radius with maximum swirl velocities at about 17-20 km radius. From the velocity field we estimate the dynamic height amplitude at the surface to be about 0.21±0.03 dyn. Second, and as others have noted from both hydrography and altimetry, the LBE is maintained by a supply of anticyclonic <span class="hlt">eddies</span> that break away from the Norwegian Atlantic Current where it appears to go unstable over the steep Lofoten Escarpment. Third, altimetry from the last 20 years shows the extremum in sea surface height relative to the surrounding waters to be about the same over time, 0.2 dyn. m. Altimetric analysis also shows the LBE to undergo a cyclonic wandering over the deepest (>3000 m) part of the Lofoten Basin. Lastly, three hydrographic sections from the 1960s show the dynamic height signal to be virtually the same then as it is now. From these observations we conclude that the LBE is a permanent feature of the Nordic Seas and plays a central role in maintaining the pool of <span class="hlt">warm</span> water in the western Lofoten Basin. The fact that it is fed and maintained by a continual and plentiful supply of pinched-off <span class="hlt">eddies</span> from the <span class="hlt">warm</span> Norwegian Atlantic Current at the Lofoten Escarpment leads us to suggest that the LBE has been in existence for hundreds of years if not longer.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_2 --> <div id="page_3" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="41"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/862919','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/862919"><span><span class="hlt">Eddy</span> current position indicating apparatus for measuring displacements of <span class="hlt">core</span> components of a liquid metal nuclear reactor</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Day, Clifford K.; Stringer, James L.</p> <p>1977-01-01</p> <p>Apparatus for measuring displacements of <span class="hlt">core</span> components of a liquid metal fast breeder reactor by means of an <span class="hlt">eddy</span> current probe. The active portion of the probe is located within a dry thimble which is supported on a stationary portion of the reactor <span class="hlt">core</span> support structure. Split rings of metal, having a resistivity significantly different than sodium, are fixedly mounted on the <span class="hlt">core</span> component to be monitored. The split rings are slidably positioned around, concentric with the probe and symmetrically situated along the axis of the probe so that motion of the ring along the axis of the probe produces a proportional change in the probes electrical output.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..289a2021D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..289a2021D"><span>Research of aluminum alloys with using <span class="hlt">eddy</span>-current transducers on the basis of <span class="hlt">cores</span> of various form</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dmitriev, S. F.; Ishkov, A. V.; Katasonov, A. O.; Malikov, V. N.; Sagalakov, A. M.</p> <p>2018-01-01</p> <p>The research aims to develop a microminiature <span class="hlt">eddy</span> current transducer for aluminum alloys. The research topic is considered relevant due to the need for evaluation and forecasting of safe operating life of aluminum. A microminiature transformer-type transducer was designed, which enables to perform local investigations of unferromagnetic materials using <span class="hlt">eddy</span>-current method based on local studies conductivity. Having the designed transducer as a basis, a hardware-software complex was built to perform experimental studies of aluminium. <span class="hlt">Cores</span> with different shapes were used in this work. Test results are reported for a flaws in the form of hidden slits and apertures inside the slabs is derived for excitation coil frequencies of 300-700 Hz.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11334097','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11334097"><span>The effects of <span class="hlt">core</span> and peripheral <span class="hlt">warming</span> methods on temperature and physiologic variables in injured children.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bernardo, L M; Gardner, M J; Lucke, J; Ford, H</p> <p>2001-04-01</p> <p>Injured children are at risk for thermoregulatory compromise, where temperature maintenance mechanisms are overwhelmed by severe injury, environmental exposure, and resuscitation measures. Adequate thermoregulation can be maintained, and heat loss can be prevented, by <span class="hlt">core</span> (administration of <span class="hlt">warmed</span> intravenous fluid) and peripheral (application of convective air <span class="hlt">warming</span>) methods. It is not known which <span class="hlt">warming</span> method is better to maintain thermoregulation and prevent heat loss in injured children during their trauma resuscitations. The purpose of this feasibility study was to compare the effects of <span class="hlt">core</span> and peripheral <span class="hlt">warming</span> measures on body temperature and physiologic changes in a small sample of injured children during their initial emergency department (ED) treatment. A prospective, randomized experimental design was used. Eight injured children aged 3 to 14 years (mean = 6.87, SD = 3.44 ) treated in the ED of Children's Hospital of Pittsburgh were enrolled. Physiologic responses (eg, heart rate, blood pressure, respiratory rate, arterial oxygen saturation, <span class="hlt">core</span>, peripheral temperatures) and level of consciousness were continuously measured and recorded every 5 minutes to detect early thermoregulatory compromise and to determine the child's response to <span class="hlt">warming</span>. Data were collected throughout the resuscitation period, including transport to CT scan, the inpatient nursing unit, intensive care unit, operating room or discharge to home. <span class="hlt">Core</span> <span class="hlt">warming</span> was accomplished with the Hotline Fluid Warmer (Sims Level 1, Inc., Rockland, MA), and peripheral <span class="hlt">warming</span> was accomplished with the Snuggle <span class="hlt">Warm</span> Convective <span class="hlt">Warming</span> System (Sins Level 1, Inc., Rockland, MA). Data were analyzed using descriptive and inferential statistics. There were no statistically significant differences between the two groups on age (t = -0.485, P = 0.645); weight (t = -0.005, P = 0.996); amount of prehospital intravenous (IV) fluid (t = 0314, P = 0.766); temperature on ED arrival (t = 0.287, P = 0</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5484286','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5484286"><span><span class="hlt">Warmed</span>, humidified CO2 insufflation benefits intraoperative <span class="hlt">core</span> temperature during laparoscopic surgery: A meta‐analysis</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dean, Meara; Ramsay, Robert; Heriot, Alexander; Mackay, John; Hiscock, Richard</p> <p>2016-01-01</p> <p>Abstract Background Intraoperative hypothermia is linked to postoperative adverse events. The use of <span class="hlt">warmed</span>, humidified CO2 to establish pneumoperitoneum during laparoscopy has been associated with reduced incidence of intraoperative hypothermia. However, the small number and variable quality of published studies have caused uncertainty about the potential benefit of this therapy. This meta‐analysis was conducted to specifically evaluate the effects of <span class="hlt">warmed</span>, humidified CO2 during laparoscopy. Methods An electronic database search identified randomized controlled trials performed on adults who underwent laparoscopic abdominal surgery under general anesthesia with either <span class="hlt">warmed</span>, humidified CO2 or cold, dry CO2. The main outcome measure of interest was change in intraoperative <span class="hlt">core</span> body temperature. Results The database search identified 320 studies as potentially relevant, and of these, 13 met the inclusion criteria and were included in the analysis. During laparoscopic surgery, use of <span class="hlt">warmed</span>, humidified CO2 is associated with a significant increase in intraoperative <span class="hlt">core</span> temperature (mean temperature change, 0.3°C), when compared with cold, dry CO2 insufflation. Conclusion <span class="hlt">Warmed</span>, humidified CO2 insufflation during laparoscopic abdominal surgery has been demonstrated to improve intraoperative maintenance of normothermia when compared with cold, dry CO2. PMID:27976517</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA13A2269S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA13A2269S"><span>Relationship between lunar tidal enhancements in the equatorial electrojet and tropospheric <span class="hlt">eddy</span> heat flux during stratospheric sudden <span class="hlt">warmings</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siddiqui, T. A.; Yamazaki, Y.; Stolle, C.; Lühr, H.; Matzka, J.</p> <p>2017-12-01</p> <p>A number of studies in recent years have reported about the lunar tidal enhancements in the equatorial electrojet (EEJ) from ground- and space-based magnetometer measurements during stratospheric sudden <span class="hlt">warming</span> (SSW) events. In this study, we make use of the ground magnetometer recordings at Huancayo observatory in Peru for the years 1978 - 2013 to derive a relationship between the lunar tidal enhancements in the EEJ and tropospheric <span class="hlt">eddy</span> heat fluxes at 100 hPa during the SSW events. Tropospheric <span class="hlt">eddy</span> heat fluxes are used to quantify the amount of wave activity entering the stratosphere. Anomalously large upward wave activity is known to precede the polar vortex breakdown during SSWs. We make use of the superposed epoch analysis method to determine the temporal relations between lunar tidal enhancements and <span class="hlt">eddy</span> heat flux anomalies during SSWs, in order to demonstrate the causal relationship between these two phenomena. We also compare the lunar tidal enhancements and <span class="hlt">eddy</span> heat flux anomalies for vortex split and for vortex displaced SSWs. It is found that larger lunar tidal enhancements are recorded for vortex split events, as compared to vortex displaced events. This confirms earlier observation; larger heat flux anomalies are recorded during vortex split SSW events than the heat flux anomalies during vortex displaced SSW events. Further, the temporal relations of lunar tidal enhancements in the EEJ have been compared separately for both the QBO phases and with the phases of the moon with respect to the central epoch of SSWs by means of the superposed epoch analysis approach. The EEJ lunar tidal enhancements in the east phase of QBO are found to be larger than the lunar tidal enhancements in the west phase of QBO. The phase of moon relative to the central SSW epoch also affects the lunar tidal enhancement in the EEJ. It is found that the lunar tidal enhancements are significantly larger when the day of new or full moon lies near the central SSW epoch, as compared</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcMod.123...98D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcMod.123...98D"><span>Understanding variability of the Southern Ocean overturning circulation in <span class="hlt">CORE</span>-II models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Downes, S. M.; Spence, P.; Hogg, A. M.</p> <p>2018-03-01</p> <p>The current generation of climate models exhibit a large spread in the steady-state and projected Southern Ocean upper and lower overturning circulation, with mechanisms for deep ocean variability remaining less well understood. Here, common Southern Ocean metrics in twelve models from the Coordinated Ocean-ice Reference Experiment Phase II (<span class="hlt">CORE</span>-II) are assessed over a 60 year period. Specifically, stratification, surface buoyancy fluxes, and <span class="hlt">eddies</span> are linked to the magnitude of the strengthening trend in the upper overturning circulation, and a decreasing trend in the lower overturning circulation across the <span class="hlt">CORE</span>-II models. The models evolve similarly in the upper 1 km and the deep ocean, with an almost equivalent poleward intensification trend in the Southern Hemisphere westerly winds. However, the models differ substantially in their <span class="hlt">eddy</span> parameterisation and surface buoyancy fluxes. In general, models with a larger heat-driven water mass transformation where deep waters upwell at the surface ( ∼ 55°S) transport warmer waters into intermediate depths, thus weakening the stratification in the upper 2 km. Models with a weak <span class="hlt">eddy</span> induced overturning and a <span class="hlt">warm</span> bias in the intermediate waters are more likely to exhibit larger increases in the upper overturning circulation, and more significant weakening of the lower overturning circulation. We find the opposite holds for a cool model bias in intermediate depths, combined with a more complex 3D <span class="hlt">eddy</span> parameterisation that acts to reduce isopycnal slope. In summary, the Southern Ocean overturning circulation decadal trends in the coarse resolution <span class="hlt">CORE</span>-II models are governed by biases in surface buoyancy fluxes and the ocean density field, and the configuration of the <span class="hlt">eddy</span> parameterisation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........40Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........40Z"><span>A Study of the Southern Ocean: Mean State, <span class="hlt">Eddy</span> Genesis & Demise, and Energy Pathways</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zajaczkovski, Uriel</p> <p></p> <p>The Southern Ocean (SO), due to its deep penetrating jets and <span class="hlt">eddies</span>, is well-suited for studies that combine surface and sub-surface data. This thesis explores the use of Argo profiles and sea surface height ( SSH) altimeter data from a statistical point of view. A linear regression analysis of SSH and hydrographic data reveals that the altimeter can explain, on average, about 35% of the variance contained in the hydrographic fields and more than 95% if estimated locally. Correlation maxima are found at mid-depth, where dynamics are dominated by geostrophy. Near the surface, diabatic processes are significant, and the variance explained by the altimeter is lower. Since SSH variability is associated with <span class="hlt">eddies</span>, the regression of SSH with temperature (T) and salinity (S) shows the relative importance of S vs T in controlling density anomalies. The AAIW salinity minimum separates two distinct regions; above the minimum density changes are dominated by T, while below the minimum S dominates over T. The regression analysis provides a method to remove <span class="hlt">eddy</span> variability, effectively reducing the variance of the hydrographic fields. We use satellite altimetry and output from an assimilating numerical model to show that the SO has two distinct <span class="hlt">eddy</span> motion regimes. North and south of the Antarctic Circumpolar Current (ACC), <span class="hlt">eddies</span> propagate westward with a mean meridional drift directed poleward for cyclonic <span class="hlt">eddies</span> (CEs) and equatorward for anticyclonic <span class="hlt">eddies</span> (AEs). <span class="hlt">Eddies</span> formed within the boundaries of the ACC have an effective eastward propagation with respect to the mean deep ACC flow, and the mean meridional drift is reversed, with <span class="hlt">warm-core</span> AEs propagating poleward and cold-<span class="hlt">core</span> CEs propagating equatorward. This circulation pattern drives downgradient <span class="hlt">eddy</span> heat transport, which could potentially transport a significant fraction (24 to 60 x 1013 W) of the net poleward ACC <span class="hlt">eddy</span> heat flux. We show that the generation of relatively large amplitude <span class="hlt">eddies</span> is not a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986DSRA...33.1729Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986DSRA...33.1729Y"><span>Small-scale zooplankton aggregations at the front of a Kuroshio <span class="hlt">warm-core</span> ring</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamamoto, Tamiji; Nishizawa, Satoshi</p> <p>1986-11-01</p> <p>A Longhurst-Hardy Plankton Recorder was used to study the small-scale zooplankton distribution across the front of a Kuroshio <span class="hlt">warm-core</span> ring in June 1979. Zooplankton were strongly aggregated in the frontal region; patches of zooplankton and phytoplankton were spatially separated. A major part of the zooplankton assemblage consisted of neritic forms such as cladocerans and indicator species of the cold Oyashio water. This implies that lateral entrainment of coastal waters, which is directly influenced by the Oyashio, was an important factor in the formation of the aggregations at the Kuroshio <span class="hlt">warm-core</span> ring front. Variation in the distribution of abundance peaks of individual zooplankton species was also observed. Futhermore, zooplankton showed more intensive non-randomness (aggregation) than phytoplankton and non-motile euphausiid's eggs. Thus, biological processes, such as motility and prey-predator interaction, also appeared to be regulating the patchiness.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008A%26A...484...51C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008A%26A...484...51C"><span><span class="hlt">Warming</span> rays in cluster cool <span class="hlt">cores</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Colafrancesco, S.; Marchegiani, P.</p> <p>2008-06-01</p> <p>Context: Cosmic rays are confined in the atmospheres of galaxy clusters and, therefore, they can play a crucial role in the heating of their cool <span class="hlt">cores</span>. Aims: We discuss here the thermal and non-thermal features of a model of cosmic ray heating of cluster <span class="hlt">cores</span> that can provide a solution to the cooling-flow problems. To this aim, we generalize a model originally proposed by Colafrancesco, Dar & DeRujula (2004) and we show that our model predicts specific correlations between the thermal and non-thermal properties of galaxy clusters and enables various observational tests. Methods: The model reproduces the observed temperature distribution in clusters by using an energy balance condition in which the X-ray energy emitted by clusters is supplied, in a quasi-steady state, by the hadronic cosmic rays, which act as “<span class="hlt">warming</span> rays” (WRs). The temperature profile of the intracluster (IC) gas is strictly correlated with the pressure distribution of the WRs and, consequently, with the non-thermal emission (radio, hard X-ray and gamma-ray) induced by the interaction of the WRs with the IC gas and the IC magnetic field. Results: The temperature distribution of the IC gas in both cool-<span class="hlt">core</span> and non cool-<span class="hlt">core</span> clusters is successfully predicted from the measured IC plasma density distribution. Under this contraint, the WR model is also able to reproduce the thermal and non-thermal pressure distribution in clusters, as well as their radial entropy distribution, as shown by the analysis of three clusters studied in detail: Perseus, A2199 and Hydra. The WR model provides other observable features of galaxy clusters: a correlation of the pressure ratio (WRs to thermal IC gas) with the inner cluster temperature (P_WR/P_th) ˜ (kT_inner)-2/3, a correlation of the gamma-ray luminosity with the inner cluster temperature Lγ ˜ (kT_inner)4/3, a substantial number of cool-<span class="hlt">core</span> clusters observable with the GLAST-LAT experiment, a surface brightness of radio halos in cool-<span class="hlt">core</span> clusters</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA06427.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA06427.html"><span>Rita Roars Through a <span class="hlt">Warm</span> Gulf September 22, 2005</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2005-09-22</p> <p>This sea surface height map of the Gulf of Mexico, with the Florida peninsula on the right and the Texas-Mexico Gulf Coast on the left, is based on altimeter data from four satellites including NASA’s Topex/Poseidon and Jason. Red indicates a strong circulation of much warmer waters, which can feed energy to a hurricane. This area stands 35 to 60 centimeters (about 13 to 23 inches) higher than the surrounding waters of the Gulf. The actual track of a hurricane is primarily dependent upon steering winds, which are forecasted through the use of atmospheric models. However, the interaction of the hurricane with the upper ocean is the primary source of energy for the storm. Hurricane intensity is therefore greatly affected by the upper ocean temperature structure and can exhibit explosive growth over <span class="hlt">warm</span> ocean currents and <span class="hlt">eddies</span>. <span class="hlt">Eddies</span> are currents of water that run contrary to the direction of the main current. According to the forecasted track through the Gulf of Mexico, Hurricane Rita will continue crossing the <span class="hlt">warm</span> waters of a Gulf of Mexico circulation feature called the Loop Current and then pass near a <span class="hlt">warm</span>-water <span class="hlt">eddy</span> called the <span class="hlt">Eddy</span> Vortex, located in the north central Gulf, south of Louisiana. http://photojournal.jpl.nasa.gov/catalog/PIA06427</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A52F..08M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A52F..08M"><span>A regime perspective on the North Atlantic <span class="hlt">eddy</span>-driven jet stream response to sudden stratospheric <span class="hlt">warmings</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maycock, A.; Masukwedza, G.; Hitchcock, P.</p> <p>2017-12-01</p> <p>The winter North Atlantic <span class="hlt">eddy</span>-driven jet (NAJ) has been shown to exhibit three preferred latitudinal positions. Here we examine, for the first time, the influence of major Sudden Stratospheric <span class="hlt">Warmings</span> (SSWs) on the regime behaviour of the NAJ using an ensemble of climate model experiments with stratospheric conditions nudged towards a major SSW, but with each ensemble member having freely evolving tropospheric conditions. The SSW experiment is compared to a control ensemble in which stratospheric variability is absent. The experiments show that the SSW leads to an increased occupancy of the southerly NAJ state and reduced occupancy of the northerly state. This effect is distinct from the mean southward shift of the NAJ identified in many previous studies, and instead suggests changes to the characteristics of NAJ variability as a result of SSWs. These results may aid in understanding the mechanisms by which SSWs impact on Euro-Atlantic climate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO24B2941S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO24B2941S"><span>A Baroclinic <span class="hlt">Eddy</span> Mixer: Supercritical Transformation of Compensated <span class="hlt">Eddies</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sutyrin, G.</p> <p>2016-02-01</p> <p>In contrast to many real-ocean rings and <span class="hlt">eddies</span>, circular vortices with initial lower layer at rest tend to be highly unstable in idealized two-layer models, unless their radius is made small or the lower layer depth is made artificially large. Numerical simulations of unstable vortices with parameters typical for ocean <span class="hlt">eddies</span> revealed strong deformations and pulsations of the vortex <span class="hlt">core</span> in the two-layer setup due to development of corotating tripolar structures in the lower layer during their supercritical transformation. The addition of a middle layer with the uniform potential vorticity weakens vertical coupling between the upper and lower layer that enhances vortex stability and makes the vortex lifespan more realistic. Such a three-layer vortex model possesses smaller lower interface slope than the two-layer model that reduces the potential vorticity gradient in the lower layer and provides with less unstable configurations. While cyclonic <span class="hlt">eddies</span> become only slightly deformed and look nearly circular when the middle layer with uniform potential vorticity is added, anticyclonic <span class="hlt">eddies</span> tend to corotating and pulsating elongated states through potential vorticity stripping and stirring. Enhanced vortex stability in such three-layer setup has important implications for adequate representation of the energy transfer across scales.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27976517','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27976517"><span><span class="hlt">Warmed</span>, humidified CO2 insufflation benefits intraoperative <span class="hlt">core</span> temperature during laparoscopic surgery: A meta-analysis.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dean, Meara; Ramsay, Robert; Heriot, Alexander; Mackay, John; Hiscock, Richard; Lynch, A Craig</p> <p>2017-05-01</p> <p>Intraoperative hypothermia is linked to postoperative adverse events. The use of <span class="hlt">warmed</span>, humidified CO 2 to establish pneumoperitoneum during laparoscopy has been associated with reduced incidence of intraoperative hypothermia. However, the small number and variable quality of published studies have caused uncertainty about the potential benefit of this therapy. This meta-analysis was conducted to specifically evaluate the effects of <span class="hlt">warmed</span>, humidified CO 2 during laparoscopy. An electronic database search identified randomized controlled trials performed on adults who underwent laparoscopic abdominal surgery under general anesthesia with either <span class="hlt">warmed</span>, humidified CO 2 or cold, dry CO 2 . The main outcome measure of interest was change in intraoperative <span class="hlt">core</span> body temperature. The database search identified 320 studies as potentially relevant, and of these, 13 met the inclusion criteria and were included in the analysis. During laparoscopic surgery, use of <span class="hlt">warmed</span>, humidified CO 2 is associated with a significant increase in intraoperative <span class="hlt">core</span> temperature (mean temperature change, 0.3°C), when compared with cold, dry CO 2 insufflation . CONCLUSION: <span class="hlt">Warmed</span>, humidified CO 2 insufflation during laparoscopic abdominal surgery has been demonstrated to improve intraoperative maintenance of normothermia when compared with cold, dry CO 2. © 2016 The Authors. Asian Journal of Endoscopic Surgery published by Asia Endosurgery Task Force and Japan Society of Endoscopic Surgery and John Wiley & Sons Australia, Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123.3594W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123.3594W"><span>A 400-Year Ice <span class="hlt">Core</span> Melt Layer Record of Summertime <span class="hlt">Warming</span> in the Alaska Range</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Winski, Dominic; Osterberg, Erich; Kreutz, Karl; Wake, Cameron; Ferris, David; Campbell, Seth; Baum, Mark; Bailey, Adriana; Birkel, Sean; Introne, Douglas; Handley, Mike</p> <p>2018-04-01</p> <p><span class="hlt">Warming</span> in high-elevation regions has societally important impacts on glacier mass balance, water resources, and sensitive alpine ecosystems, yet very few high-elevation temperature records exist from the middle or high latitudes. While a variety of paleoproxy records provide critical temperature records from low elevations over recent centuries, melt layers preserved in alpine glaciers present an opportunity to develop calibrated, annually resolved temperature records from high elevations. Here we present a 400-year temperature proxy record based on the melt layer stratigraphy of two ice <span class="hlt">cores</span> collected from Mt. Hunter in Denali National Park in the central Alaska Range. The ice <span class="hlt">core</span> record shows a sixtyfold increase in water equivalent total annual melt between the preindustrial period (before 1850 Common Era) and present day. We calibrate the melt record to summer temperatures based on weather station data from the ice <span class="hlt">core</span> drill site and find that the increase in melt production represents a summer <span class="hlt">warming</span> rate of at least 1.92 ± 0.31°C per century during the last 100 years, exceeding rates of temperature increase at most low-elevation sites in Alaska. The Mt. Hunter melt layer record is significantly (p < 0.05) correlated with surface temperatures in the central tropical Pacific through a Rossby wave-like pattern that enhances high temperatures over Alaska. Our results show that rapid alpine <span class="hlt">warming</span> has taken place in the Alaska Range for at least a century and that conditions in the tropical oceans contribute to this <span class="hlt">warming</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PalOc..31..564V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PalOc..31..564V"><span>Effects of Drake Passage on a strongly <span class="hlt">eddying</span> global ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Viebahn, Jan P.; von der Heydt, Anna S.; Le Bars, Dewi; Dijkstra, Henk A.</p> <p>2016-05-01</p> <p>The climate impact of ocean gateway openings during the Eocene-Oligocene transition is still under debate. Previous model studies employed grid resolutions at which the impact of mesoscale <span class="hlt">eddies</span> has to be parameterized. We present results of a state-of-the-art <span class="hlt">eddy</span>-resolving global ocean model with a closed Drake Passage and compare with results of the same model at noneddying resolution. An analysis of the pathways of heat by decomposing the meridional heat transport into <span class="hlt">eddy</span>, horizontal, and overturning circulation components indicates that the model behavior on the large scale is qualitatively similar at both resolutions. Closing Drake Passage induces (i) sea surface <span class="hlt">warming</span> around Antarctica due to equatorward expansion of the subpolar gyres, (ii) the collapse of the overturning circulation related to North Atlantic Deep Water formation leading to surface cooling in the North Atlantic, and (iii) significant equatorward <span class="hlt">eddy</span> heat transport near Antarctica. However, quantitative details significantly depend on the chosen resolution. The <span class="hlt">warming</span> around Antarctica is substantially larger for the noneddying configuration (˜5.5°C) than for the <span class="hlt">eddying</span> configuration (˜2.5°C). This is a consequence of the subpolar mean flow which partitions differently into gyres and circumpolar current at different resolutions. We conclude that for a deciphering of the different mechanisms active in Eocene-Oligocene climate change detailed analyses of the pathways of heat in the different climate subsystems are crucial in order to clearly identify the physical processes actually at work.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BGeo...14.2167K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BGeo...14.2167K"><span>Upwelling and isolation in oxygen-depleted anticyclonic modewater <span class="hlt">eddies</span> and implications for nitrate cycling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karstensen, Johannes; Schütte, Florian; Pietri, Alice; Krahmann, Gerd; Fiedler, Björn; Grundle, Damian; Hauss, Helena; Körtzinger, Arne; Löscher, Carolin R.; Testor, Pierre; Vieira, Nuno; Visbeck, Martin</p> <p>2017-04-01</p> <p>The temporal evolution of the physical and biogeochemical structure of an oxygen-depleted anticyclonic modewater <span class="hlt">eddy</span> is investigated over a 2-month period using high-resolution glider and ship data. A weakly stratified <span class="hlt">eddy</span> <span class="hlt">core</span> (squared buoyancy frequency N2 ˜ 0.1 × 10-4 s-2) at shallow depth is identified with a horizontal extent of about 70 km and bounded by maxima in N2. The upper N2 maximum (3-5 × 10-4 s-2) coincides with the mixed layer base and the lower N2 maximum (0.4 × 10-4 s-2) is found at about 200 m depth in the <span class="hlt">eddy</span> centre. The <span class="hlt">eddy</span> <span class="hlt">core</span> shows a constant slope in temperature/salinity (T/S) characteristic over the 2 months, but an erosion of the <span class="hlt">core</span> progressively narrows down the T/S range. The <span class="hlt">eddy</span> minimal oxygen concentrations decreased by about 5 µmol kg-1 in 2 months, confirming earlier estimates of oxygen consumption rates in these <span class="hlt">eddies</span>. Separating the mesoscale and perturbation flow components reveals oscillating velocity finestructure ( ˜ 0.1 m s-1) underneath the <span class="hlt">eddy</span> and at its flanks. The velocity finestructure is organized in layers that align with layers in properties (salinity, temperature) but mostly cross through surfaces of constant density. The largest magnitude in velocity finestructure is seen between the surface and 140 m just outside the maximum mesoscale flow but also in a layer underneath the <span class="hlt">eddy</span> centre, between 250 and 450 m. For both regions a cyclonic rotation of the velocity finestructure with depth suggests the vertical propagation of near-inertial wave (NIW) energy. Modification of the planetary vorticity by anticyclonic (<span class="hlt">eddy</span> <span class="hlt">core</span>) and cyclonic (<span class="hlt">eddy</span> periphery) relative vorticity is most likely impacting the NIW energy propagation. Below the low oxygen <span class="hlt">core</span> salt-finger type double diffusive layers are found that align with the velocity finestructure. Apparent oxygen utilization (AOU) versus dissolved inorganic nitrate (NO3-) ratios are about twice as high (16) in the <span class="hlt">eddy</span> <span class="hlt">core</span> compared to surrounding waters (8</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28602311','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28602311"><span>Trichodesmium blooms and <span class="hlt">warm-core</span> ocean surface features in the Arabian Sea and the Bay of Bengal.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jyothibabu, R; Karnan, C; Jagadeesan, L; Arunpandi, N; Pandiarajan, R S; Muraleedharan, K R; Balachandran, K K</p> <p>2017-08-15</p> <p>Trichodesmium is a bloom-forming, diazotrophic, non-heterocystous cyanobacteria widely distributed in the warmer oceans, and their bloom is considered a 'biological indication' of stratification and nitrogen limitation in the ocean surface layer. In the first part of this paper, based on the retrospective analyses of the ocean surface mesoscale features associated with 59 Trichodesmium bloom incidences recorded in the past, 32 from the Arabian Sea and the Bay of Bengal, and 27 from the rest of the world, we have showed that <span class="hlt">warm-core</span> features have an inducing effect on bloom formation. In the second part, we have considered the environmental preferences of Trichodesmium bloom based on laboratory and field studies across the globe, and proposed a view about how <span class="hlt">warm-core</span> features could provide an inducing pre-requisite condition for the bloom formation in the Arabian Sea and the Bay of Bengal. Proposed that the subsurface waters of <span class="hlt">warm-core</span> features maintain more likely chances for the conducive nutrient and light conditions required for the triggering of the blooms. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.B44B0389T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.B44B0389T"><span><span class="hlt">Eddy</span> Mediated Nutrient Pattern in the North Eastern Arabian Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thachaparambil, M.; Moolakkal Antony, R.; B R, S.; V N, S.; N, C.; M, S.</p> <p>2016-02-01</p> <p>A Cold <span class="hlt">Core</span> <span class="hlt">Eddy</span> (CCE) mediated nutrient pattern in the North Eastern Arabian Sea (NEAS) is explained based on in situ measurments during March 2013 onboard FORV Sagar Sampada which was not reported earlier in the area. Samples for physical, chemical and biological parameters were collected in 5 stations along the diameter of the <span class="hlt">eddy</span> and following standard protocols. The <span class="hlt">core</span> of the CCE is identified at 21°20.38'N; 66°30.68'E with a diameter of 120Km. Earlier studies explaining the process and the forcing mechanism of the particular <span class="hlt">eddy</span> records that, the <span class="hlt">eddy</span> is short term (1-3 months) and is regular during the season. Surface waters were well oxygenated (>4.8 ml L-1) in the <span class="hlt">core</span>. Surface value of nutrients viz., Nitrate, Nitrite, Silicate and phosphate in the <span class="hlt">core</span> regions was 0.9µM, 0.01 µM, 0.5 µM and 0.7 µM respectively indicating upwelling in the <span class="hlt">core</span>. Spring intermonsoon (SIM) is generally termed as a transition period between the active winter and summer seasons and as per earlier studies, high biological production and the regularly occurring Noctilica bloom is supported by the nutrient loading due to convective mixing during winter as well as regenerated production. However, present observations shows that, nutrient pumping due to the upwelling associated with the CCE also contributes for sustaining high biological production and are evident in the Chl a and mesozooplankton biovolume which records values of 4.35mg/m3 and 1.09ml/m3 respectively in the <span class="hlt">core</span>. An intense Noctiluca blooms observed in the western flank of the <span class="hlt">eddy</span> (Chl a 13.25 mg/m3; cell density 5.8×106 cells/litre), where Nitrate concentration records 1.04µM explains the role of such mesoscale processes in the sustenance of the HAB events. While eastern flank of the CCE showed typical open ocean condition of the season showing Nitrate 0.08µM; Chl a 0.23mg/m3; and phytoplankton cell density as 421 cells/litre. Keywords: Cold <span class="hlt">core</span> <span class="hlt">eddy</span>, nutrients, NEAS, SIM, biological production</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040082072&hterms=Kill&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DKill','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040082072&hterms=Kill&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DKill"><span><span class="hlt">Warm</span> <span class="hlt">Core</span> Structure of Hurricane Erin Diagnosed from High Altitude Dropsondes during CAMEX-4</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Halverson, J. B.; Simpson, J.; Heymsfield, G.; Pierce, H.; Hock, T.; Ritchie, L.</p> <p>2003-01-01</p> <p>A combination multi-aircraft and several satellite sensors were used to examine the <span class="hlt">core</span> of Hurricane Erin on September 10, 2001, as part of the CAMEX4 program. During the first set of aircraft passes, around 1700 UTC, Erin was still at its maximum intensity with a central pressure of 969 hpa and windspeed of 105 kts (54 m/s). The storm was moving slowly northwestward at 4 m/s, over an increasingly colder sea surface. Three instrumented aircraft, the NOAA P3 with radar, the NASA ER- 2 at 19 km, newly equipped with GPS dropwindsondes, and the NASA DC-8 with dropwindsondes flew in formation across the eye at about 1700 UTC and again 2.5 hrs later around 1930 UTC. The storm had weakened by 13 m/s between the first and second eye penetrations. The <span class="hlt">warm</span> <span class="hlt">core</span> had a maximum temperature anomaly of only 11 C, located at 500 hpa, much weaker and lower than active hurricanes. The <span class="hlt">core</span> appeared to slant rearward above 400 hpa. Even on the first penetration, airborne radar showed that the eye wall cloud towers were dying. The tops fell short of reaching 15 km and a melting band was found throughout. The tropopause had a bulge to 15.8 km elevation (environment approx. 14.4 km) above the dying convection. A feature of Erin at this timt was a pronounced wave-number-one convective asymmetry with all convective activity being confined to the forward quadrants on the left side of the shear vector as calculated from analyses. This is similar to that predicted by the mesoscale numerical models, which also predict that such small amounts of shear would not affect the storm intensity. In Erin, it is remarkable that relatively small shear produced such a pronounced asymmetry in the convection. In addition, horizontal asymmetries in the low-level <span class="hlt">warm</span> <span class="hlt">core</span> were identified. Almost certainly, the colder ocean would kill the tall convective towers feeding the <span class="hlt">warm</span> <span class="hlt">core</span>, even if wind shear were absent.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A43J..05Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A43J..05Z"><span>On the Roles of Upper- versus Lower-level Thermal Forcing in Shifting the <span class="hlt">Eddy</span>-Driven Jet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Y.; Nie, Y.; Chen, G.; Yang, X. Q.</p> <p>2017-12-01</p> <p>One most drastic atmospheric change in the global <span class="hlt">warming</span> scenario is the increase in temperature over tropical upper-troposphere and polar surface. The strong <span class="hlt">warming</span> over those two area alters the spacial distributions of the baroclinicity in the upper-troposphere of subtropics and in the lower-level of subpolar region, with competing effects on the mid-latitude atmospheric circulation. The final destination of the <span class="hlt">eddy</span>-driven jet in future climate could be "a tug of war" between the impacts of such upper- versus lower-level thermal forcing. In this study, the roles of upper- versus lower-level thermal forcing in shifting the <span class="hlt">eddy</span>-driven jet are investigated using a nonlinear multi-level quasi-geostrophic channel model. All of our sensitivity experiments show that the latitudinal position of the <span class="hlt">eddy</span>-driven jet is more sensitive to the upper-level thermal forcing. Such upper-level dominance over the lower-level forcing can be attributed to the different mechanisms through which <span class="hlt">eddy</span>-driven jet responses to them. The upper-level thermal forcing induces a jet shift mainly by affecting the baroclinic generation of <span class="hlt">eddies</span>, which supports the latitudinal shift of the <span class="hlt">eddy</span> momentum flux convergence. The jet response to the lower-level thermal forcing, however, is strongly "<span class="hlt">eddy</span> dissipation control". The lower-level forcing, by changing the baroclinicity in the lower troposphere, induces a direct thermal zonal wind response in the upper level thus modifies the nonlinear wave breaking and the resultant irreversible <span class="hlt">eddy</span> mixing, which amplifies the latitudinal shift of the <span class="hlt">eddy</span>-driven jet. Whether the <span class="hlt">eddy</span> response is "generation control" or "dissipation control" may strongly depend on the <span class="hlt">eddy</span> behavior in its baroclinic processes. Only the anomalous <span class="hlt">eddy</span> generation that penetrates into the upper troposphere can have a striking impact on the <span class="hlt">eddy</span> momentum flux, which pushes the jet shift more efficiently and dominates the <span class="hlt">eddy</span> response.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4922168','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4922168"><span>Encounter with mesoscale <span class="hlt">eddies</span> enhances survival to settlement in larval coral reef fishes</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shulzitski, Kathryn; Sponaugle, Su; Hauff, Martha; Walter, Kristen D.; Cowen, Robert K.</p> <p>2016-01-01</p> <p>Oceanographic features, such as <span class="hlt">eddies</span> and fronts, enhance and concentrate productivity, generating high-quality patches that dispersive marine larvae may encounter in the plankton. Although broad-scale movement of larvae associated with these features can be captured in biophysical models, direct evidence of processes influencing survival within them, and subsequent effects on population replenishment, are unknown. We sequentially sampled cohorts of coral reef fishes in the plankton and nearshore juvenile habitats in the Straits of Florida and used otolith microstructure analysis to compare growth and size-at-age of larvae collected inside and outside of mesoscale <span class="hlt">eddies</span> to those that survived to settlement. Larval habitat altered patterns of growth and selective mortality: Thalassoma bifasciatum and Cryptotomus roseus that encountered <span class="hlt">eddies</span> in the plankton grew faster than larvae outside of <span class="hlt">eddies</span> and likely experienced higher survival to settlement. During <span class="hlt">warm</span> periods, T. bifasciatum residing outside of <span class="hlt">eddies</span> in the oligotrophic Florida Current experienced high mortality and only the slowest growers survived early larval life. Such slow growth is advantageous in nutrient poor habitats when <span class="hlt">warm</span> temperatures increase metabolic demands but is insufficient for survival beyond the larval stage because only fast-growing larvae successfully settled to reefs. Because larvae arriving to the Straits of Florida from distant sources must spend long periods of time outside of <span class="hlt">eddies</span>, our results indicate that they have a survival disadvantage. High productivity features such as <span class="hlt">eddies</span> not only enhance the survival of pelagic larvae, but also potentially increase the contribution of locally spawned larvae to reef populations. PMID:27274058</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900062914&hterms=effect+global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Deffect%2Bglobal%2Bwarming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900062914&hterms=effect+global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Deffect%2Bglobal%2Bwarming"><span>The ice-<span class="hlt">core</span> record - Climate sensitivity and future greenhouse <span class="hlt">warming</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lorius, C.; Raynaud, D.; Jouzel, J.; Hansen, J.; Le Treut, H.</p> <p>1990-01-01</p> <p>The prediction of future greenhouse-gas-<span class="hlt">warming</span> depends critically on the sensitivity of earth's climate to increasing atmospheric concentrations of these gases. Data from <span class="hlt">cores</span> drilled in polar ice sheets show a remarkable correlation between past glacial-interglacial temperature changes and the inferred atmospheric concentration of gases such as carbon dioxide and methane. These and other palaeoclimate data are used to assess the role of greenhouse gases in explaining past global climate change, and the validity of models predicting the effect of increasing concentrations of such gases in the atmosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP23E..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP23E..03W"><span>A 400-year ice <span class="hlt">core</span> melt layer record of summertime <span class="hlt">warming</span> in the Alaska Range</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Winski, D.; Osterberg, E. C.; Kreutz, K. J.; Wake, C. P.; Ferris, D. G.; Campbell, S. W.; Baum, M.; Raudzens Bailey, A.; Birkel, S. D.; Introne, D.; Handley, M.</p> <p>2017-12-01</p> <p><span class="hlt">Warming</span> in high-elevation regions has socially relevant impacts on glacier mass balance, water resources, and sensitive alpine ecosystems, yet very few high-elevation temperature records exist from the middle or high latitudes. While many terrestrial paleoclimate records provide critical temperature records from low elevations over recent centuries, melt layers preserved in alpine glaciers present an opportunity to develop calibrated, annually-resolved temperature records from high elevations. We present a 400-year temperature record based on the melt-layer stratigraphy in two ice <span class="hlt">cores</span> collected from Mt. Hunter in the Central Alaska Range. The ice <span class="hlt">core</span> record shows a 60-fold increase in melt frequency and water equivalent melt thickness between the pre-industrial period (before 1850) and present day. We calibrate the melt record to summer temperatures based on local and regional weather station analyses, and find that the increase in melt production represents a summer <span class="hlt">warming</span> of at least 2° C, exceeding rates of temperature increase at most low elevation sites in Alaska. The Mt. Hunter melt layer record is significantly (p<0.05) correlated with surface temperatures in the central tropical Pacific through a Rossby-wave like pattern that induces high temperatures over Alaska. Our results show that rapid alpine <span class="hlt">warming</span> has taken place in the Alaska Range for at least a century, and that conditions in the tropical oceans contribute to this <span class="hlt">warming</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22886839','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22886839"><span>Local insufflation of <span class="hlt">warm</span> humidified CO₂increases open wound and <span class="hlt">core</span> temperature during open colon surgery: a randomized clinical trial.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Frey, Joana M; Janson, Martin; Svanfeldt, Monika; Svenarud, Peter K; van der Linden, Jan A</p> <p>2012-11-01</p> <p>The open surgical wound is exposed to cold and dry ambient air resulting in heat loss through radiation, evaporation, and convection. Also, general and neuraxial anesthesia decrease the patient's <span class="hlt">core</span> temperature. Despite routine preventive measures mild intraoperative hypothermia is still common and contributes to postoperative morbidity and mortality. We hypothesized that local insufflation of <span class="hlt">warm</span> fully humidified CO(2) would increase both the open surgical wound and <span class="hlt">core</span> temperature. Eighty-three patients undergoing open colon surgery were equally and parallelly randomized to either standard <span class="hlt">warming</span> measures including forced-air <span class="hlt">warming</span>, <span class="hlt">warm</span> fluids, and insulation of limbs and head, or to additional local wound insufflation of <span class="hlt">warm</span> (37°C) humidified (100% relative humidity) CO(2) at a laminar flow (10 L/min) via a gas diffuser. Wound surface and <span class="hlt">core</span> temperatures were followed with a heat-sensitive infrared camera and a tympanic thermometer. The mean wound area temperature during surgery was 31.3°C in the <span class="hlt">warm</span> humidified CO(2) group compared with 29.6°C in the control group (P < 0.001, 95% confidence interval [CI], 1.2°C to 2.3°C). Also, the mean wound edge temperature during surgery was 30.1°C compared with 28.5°C in the control group (P < 0.001, 95% CI, 0.2°C to 0.7°C). Mean <span class="hlt">core</span> temperature before start of surgery was similar with 36.7°C ± 0.5°C in the <span class="hlt">warm</span> humidified CO(2) group versus 36.6°C ± 0.5°C in the control group (95% CI, 0.4 to -0.1°C). At end of surgery, the 2 groups differed significantly with 36.9 ± 0.5°C in the <span class="hlt">warm</span> humidified CO(2) group versus 36.3 ± 0.5°C in the control group (P < 0.001, 95% CI, 0.38°C to 0.82°C). Moreover, only 8 patients of 40 in the <span class="hlt">warm</span> humidified CO(2) group had a <span class="hlt">core</span> temperature <36.5°C (20%, 95% CI, 7 to 33%), whereas in the control group this was the case in 24 of 39 (62%, 95% CI, 46% to 78%, P = 0.001) patients (difference of the percentages between the groups 42%, 95% CI, 22% to 61%, P < 0</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26162667','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26162667"><span>Computational investigation of longitudinal diffusion, <span class="hlt">eddy</span> dispersion, and trans-particle mass transfer in bulk, random packings of <span class="hlt">core</span>-shell particles with varied shell thickness and shell diffusion coefficient.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Daneyko, Anton; Hlushkou, Dzmitry; Baranau, Vasili; Khirevich, Siarhei; Seidel-Morgenstern, Andreas; Tallarek, Ulrich</p> <p>2015-08-14</p> <p>In recent years, chromatographic columns packed with <span class="hlt">core</span>-shell particles have been widely used for efficient and fast separations at comparatively low operating pressure. However, the influence of the porous shell properties on the mass transfer kinetics in <span class="hlt">core</span>-shell packings is still not fully understood. We report on results obtained with a modeling approach to simulate three-dimensional advective-diffusive transport in bulk random packings of monosized <span class="hlt">core</span>-shell particles, covering a range of reduced mobile phase flow velocities from 0.5 up to 1000. The impact of the effective diffusivity of analyte molecules in the porous shell and the shell thickness on the resulting plate height was investigated. An extension of Giddings' theory of coupled <span class="hlt">eddy</span> dispersion to account for retention of analyte molecules due to stagnant regions in porous shells with zero mobile phase flow velocity is presented. The plate height equation involving a modified <span class="hlt">eddy</span> dispersion term excellently describes simulated data obtained for particle-packings with varied shell thickness and shell diffusion coefficient. It is confirmed that the model of trans-particle mass transfer resistance of <span class="hlt">core</span>-shell particles by Kaczmarski and Guiochon [42] is applicable up to a constant factor. We analyze individual contributions to the plate height from different mass transfer mechanisms in dependence of the shell parameters. The simulations demonstrate that a reduction of plate height in packings of <span class="hlt">core</span>-shell relative to fully porous particles arises mainly due to reduced trans-particle mass transfer resistance and transchannel <span class="hlt">eddy</span> dispersion. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGRC..11612046E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGRC..11612046E"><span>Three-dimensional structure of a swarm of the salp Thalia democratica within a cold-<span class="hlt">core</span> <span class="hlt">eddy</span> off southeast Australia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Everett, J. D.; Baird, M. E.; Suthers, I. M.</p> <p>2011-12-01</p> <p>Swarms of the salp Thalia democratica periodically occur off southeast Australia following the austral spring bloom of phytoplankton. In October 2008 a filament of upwelled water was advected south by the adjacent East Australian Current and formed a 30 km diameter cold-<span class="hlt">core</span> <span class="hlt">eddy</span> (CCE). The three-dimensional structure of a subsurface swarm of T. democratica within the <span class="hlt">eddy</span> was examined using both oblique and vertical hauls and an optical plankton counter (OPC) deployed on a towed body. The CCE displayed distinct uplift of the nutricline and elevated fluorescence. Net samples show the zooplankton community was dominated by T. democratica, comprising 73%-88% of zooplankton abundance. The size distribution of T. democratica measured from net samples was 0.5-5 mm and was used to interpret the OPC transects, which showed the swarm formed a 15 km diameter disc located 20-40 m deep in the center of the <span class="hlt">eddy</span>. The maximum salp abundance was in the pycnocline and coincided with the subsurface fluorescence maximum. The mean abundance of T. democratica size particles within the disc was 5003 individuals m-3 (ind. m-3), contrasted with only 604 ind. m-3 at the outer edge of the <span class="hlt">eddy</span>. The vertically concentrated and horizontally constrained disc-shaped salp swarm occurred at the interface of salp-bearing inner shelf water and nutrient-rich upwelled water in a CCE. The physical processes that formed the CCE on the inshore edge of the western boundary current led to the largest density of salps recorded.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP13D1109M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP13D1109M"><span>Isotopic composition of ice <span class="hlt">core</span> air reveals abrupt Antarctic <span class="hlt">warming</span> during and after Heinrich Event 1a</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morgan, J. D.; Bereiter, B.; Baggenstos, D.; Kawamura, K.; Shackleton, S. A.; Severinghaus, J. P.</p> <p>2017-12-01</p> <p>Antarctic temperature variations during Heinrich events, as recorded by δ18O­ice­, generally show more gradual changes than the abrupt <span class="hlt">warmings</span> seen in Greenland ice. However, quantitative temperature interpretation of the water isotope temperature proxy is difficult as the relationship between δ18Oice and temperature is not constant through time. Fortunately, ice <span class="hlt">cores</span> offer a second temperature proxy based on trapped gases. During times of surface <span class="hlt">warming</span>, thermal fractionation of gases in the column of unconsolidated snow (firn) on top of the ice sheet results in isotopically heavier nitrogen (N2) and argon (Ar) being trapped in the ice <span class="hlt">core</span> bubbles. During times of surface cooling, isotopically lighter gases are trapped. Measurements of δ15N and δ40Ar can therefore be used, in combination with a model for the height of the column of firn, to quantitatively reconstruct surface temperatures. In the WAIS Divide Ice <span class="hlt">Core</span>, the two temperature proxies show a brief disagreement during Heinrich Stadial 1. Despite δ18Oice recording relatively constant temperature, the nitrogen and argon isotopes imply an abrupt <span class="hlt">warming</span> between 16 and 15.8 kyr BP, manifest as an abrupt 1.25oC increase in the firn temperature gradient. To our knowledge, this would be the first evidence that such abrupt climate change has been recorded in an Antarctic climate proxy. If confirmed by more detailed studies, this event may represent <span class="hlt">warming</span> due to an extreme southward shift of the Earth's thermal equator (and the southern hemisphere westerly wind belt), caused by the 16.1 ka Heinrich Event.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..DFD.L1004Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..DFD.L1004Z"><span>Nested large-<span class="hlt">eddy</span> simulations of nighttime shear-instability waves and transient <span class="hlt">warming</span> in a steep valley</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Bowen; Chow, Fotini</p> <p>2012-11-01</p> <p>This numerical study investigates the nighttime flow dynamics in a steep valley. The Owens Valley in California is highly complex, and represents a challenging terrain for large-<span class="hlt">eddy</span> simulations (LES). To ensure a faithful representation of the nighttime atmospheric boundary layer (ABL), realistic external boundary conditions are provided through grid nesting. The model obtains initial and lateral boundary conditions from reanalysis data, and bottom boundary conditions from a land-surface model. We demonstrate the ability to extend a mesoscale model to LES resolutions through a systematic grid-nesting framework, achieving accurate simulations of the stable ABL over complex terrain. Nighttime cold-air flow was channeled through a gap on the valley sidewall. The resulting katabatic current induced a cross-valley flow. Directional shear against the down-valley flow in the lower layers of the valley led to breaking Kelvin-Helmholtz waves at the interface, which is captured only on the LES grid. Later that night, the flow transitioned from down-slope to down-valley near the western sidewall, leading to a transient <span class="hlt">warming</span> episode. Simulation results are verified against field observations and reveal good spatial and temporal precision. Supported by NSF grant ATM-0645784.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OPhy...15..107W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OPhy...15..107W"><span>Field analysis & <span class="hlt">eddy</span> current losses calculation in five-phase tubular actuator</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Waindok, Andrzej; Tomczuk, Bronislaw</p> <p>2017-12-01</p> <p>Field analysis including <span class="hlt">eddy</span> currents in the magnetic <span class="hlt">core</span> of five-phase permanent magnet tubular linear actuator (TLA) has been carried out. The <span class="hlt">eddy</span> currents induced in the magnetic <span class="hlt">core</span> cause the losses which have been calculated. The results from 2D finite element (FE) analysis have been compared with those from 3D calculations. The losses in the mover of the five-phase actuator are much lower than the losses in its stator. That is why the former ones can be neglected in the computer aided designing. The calculation results have been verified experimentally</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.3753S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.3753S"><span>Dependence of Arctic climate on the latitudinal position of stationary waves and to high-latitudes surface <span class="hlt">warming</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shin, Yechul; Kang, Sarah M.; Watanabe, Masahiro</p> <p>2017-12-01</p> <p>Previous studies suggest large uncertainties in the stationary wave response under global <span class="hlt">warming</span>. Here, we investigate how the Arctic climate responds to changes in the latitudinal position of stationary waves, and to high-latitudes surface <span class="hlt">warming</span> that mimics the effect of Arctic sea ice loss under global <span class="hlt">warming</span>. To generate stationary waves in an atmospheric model coupled to slab ocean, a series of experiments is performed where the thermal forcing with a zonal wavenumber-2 (with zero zonal-mean) is prescribed at the surface at different latitude bands in the Northern Hemisphere. When the stationary waves are generated in the subtropics, the cooling response dominates over the <span class="hlt">warming</span> response in the lower troposphere due to cloud radiative effects. Then, the low-level baroclinicity is reduced in the subtropics, which gives rise to a poleward shift of the <span class="hlt">eddy</span> driven jet, thereby inducing substantial cooling in the northern high latitudes. As the stationary waves are progressively generated at higher latitudes, the zonal-mean climate state gradually becomes more similar to the integration with no stationary waves. These differences in the mean climate affect the Arctic climate response to high-latitudes surface <span class="hlt">warming</span>. Additional surface heating over the Arctic is imposed to the reference climates in which the stationary waves are located at different latitude bands. When the stationary waves are positioned at lower latitudes, the <span class="hlt">eddy</span> driven jet is located at higher latitude, closer to the prescribed Arctic heating. As baroclinicity is more effectively perturbed, the jet shifts more equatorward that accompanies a larger reduction in the poleward <span class="hlt">eddy</span> transport of heat and momentum. A stronger <span class="hlt">eddy</span>-induced descending motion creates greater <span class="hlt">warming</span> over the Arctic. Our study calls for a more accurate simulation of the present-day stationary wave pattern to enhance the predictability of the Arctic <span class="hlt">warming</span> response in a changing climate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.5927S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.5927S"><span>Characterization and impact of "dead-zone" <span class="hlt">eddies</span> in the tropical Northeast Atlantic Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schuette, Florian; Karstensen, Johannes; Krahmann, Gerd; Hauss, Helena; Fiedler, Björn; Brandt, Peter; Visbeck, Martin; Körtzinger, Arne</p> <p>2016-04-01</p> <p>Localized open-ocean low-oxygen dead-zones in the tropical Northeast Atlantic are recently discovered ocean features that can develop in dynamically isolated water masses within cyclonic <span class="hlt">eddies</span> (CE) and anticyclonic modewater <span class="hlt">eddies</span> (ACME). Analysis of a comprehensive oxygen dataset obtained from gliders, moorings, research vessels and Argo floats shows that <span class="hlt">eddies</span> with low oxygen concentrations at 50-150 m depths can be found in surprisingly high numbers and in a large area (from about 5°N to 20°N, from the shelf at the eastern boundary to 30°W). Minimum oxygen concentrations of about 9 μmol/kg in CEs and close to anoxic concentrations (< 1 μmol/kg) in ACMEs were observed. In total, 495 profiles with oxygen concentrations below the minimum background concentration of 40 μmol/kg could be associated with 27 independent "dead-zone" <span class="hlt">eddies</span> (10 CEs; 17 ACMEs). The low oxygen concentration right beneath the mixed layer has been attributed to the combination of high productivity in the surface waters of the <span class="hlt">eddies</span> and the isolation of the <span class="hlt">eddies</span>' <span class="hlt">cores</span>. Indeed <span class="hlt">eddies</span> of both types feature a cold sea surface temperature anomaly and enhanced chlorophyll concentrations in their center. The oxygen minimum is located in the <span class="hlt">eddy</span> <span class="hlt">core</span> beneath the mixed layer at around 80 m depth. The mean oxygen anomaly between 50 to 150 m depth for CEs (ACMEs) is -49 (-81) μmol/kg. <span class="hlt">Eddies</span> south of 12°N carry weak hydrographic anomalies in their <span class="hlt">cores</span> and seem to be generated in the open ocean away from the boundary. North of 12°N, <span class="hlt">eddies</span> of both types carry anomalously low salinity water of South Atlantic Central Water origin from the eastern boundary upwelling region into the open ocean. This points to an <span class="hlt">eddy</span> generation near the eastern boundary. A conservative estimate yields that around 5 dead-zone <span class="hlt">eddies</span> (4 CEs; 1 ACME) per year entering the area north of 12°N between the Cap Verde Islands and 19°W. The associated contribution to the oxygen budget of the shallow oxygen minimum</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920000268&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DEddy%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920000268&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DEddy%2Bcurrent"><span><span class="hlt">Eddy</span>-Current Probes For Inspecting Graphite-Fiber Composites</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Workman, Gary L.; Wang, Morgan</p> <p>1992-01-01</p> <p><span class="hlt">Eddy</span>-current probes with E-shaped and U-shaped magnetic <span class="hlt">cores</span> developed to detect flaws in graphite-fiber/epoxy and other composites. Magnetic fields more concentrated, yielding better coupling with specimens.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A11D1910B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A11D1910B"><span>The Role of Ocean <span class="hlt">Eddies</span> in the Southern Ocean Response to Observed Greenhouse Gas Forcing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bilgen, S. I.; Kirtman, B. P.</p> <p>2017-12-01</p> <p>The Southern Ocean (SO) is crucial to understanding the possible future response to a changing climate. This is a principal region where energy is conveyed to the ocean by the westerly winds and it is here that mesoscale ocean <span class="hlt">eddies</span> field dominate meridional heat and momentum transport. Compared to the Arctic, the Antarctic and the surrounding SO have a "delayed <span class="hlt">warming</span>" anthropogenic greenhouse gas (GHG) response. Understanding the role of the ocean dynamics in modulating the mesoscale atmosphere-ocean interactions in the SO in a fully coupled regime is crucial to efforts aimed at predicting the consequences of the <span class="hlt">warming</span> and variability to the climate system. The response of model run at multiple resolutions (<span class="hlt">eddy</span> permitting, <span class="hlt">eddy</span> resolving) to both GHG forcing and historical forcing are examined in NCAR CCSM4 with four experiments. The first simulation, 0.5° atmosphere coupled to ocean and sea ice components with 1° resolution (LR). The second simulation uses the identical atmospheric model but coupled to 0.1° ocean and sea ice component models (HR). For the third and fourth experiments, the global ocean is simulated for LR an HR models, and a climate change scenario are produced by applying a fixed (present-day) CO2 concentration. The analysis focuses on the last 55 years of two individual 155 year simulations. We discuss results from a set of state-of-art model experiments in comparison with observational estimates and explore mechanisms by examining sea surface temperature, westerly winds, surface heat flux, ocean heat transport. In LR simulations, the patterns and mechanisms of SO changes under GHG forcing are similar to those over the historical period: <span class="hlt">warming</span> is damped southward of the ACC and enhanced to the north, however major changes between the HR simulations are explored. We find that in recent decades the Southern Annual Mode has shown a distinct upward trend, the result of an anthropogenic global <span class="hlt">warming</span>. Also, HR simulations show that</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45..834S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45..834S"><span>Circum-Antarctic Shoreward Heat Transport Derived From an <span class="hlt">Eddy</span>- and Tide-Resolving Simulation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stewart, Andrew L.; Klocker, Andreas; Menemenlis, Dimitris</p> <p>2018-01-01</p> <p>Almost all heat reaching the bases of Antarctica's ice shelves originates from <span class="hlt">warm</span> Circumpolar Deep Water in the open Southern Ocean. This study quantifies the roles of mean and transient flows in transporting heat across almost the entire Antarctic continental slope and shelf using an ocean/sea ice model run at <span class="hlt">eddy</span>- and tide-resolving (1/48°) horizontal resolution. Heat transfer by transient flows is approximately attributed to <span class="hlt">eddies</span> and tides via a decomposition into time scales shorter than and longer than 1 day, respectively. It is shown that <span class="hlt">eddies</span> transfer heat across the continental slope (ocean depths greater than 1,500 m), but tides produce a stronger shoreward heat flux across the shelf break (ocean depths between 500 m and 1,000 m). However, the tidal heat fluxes are approximately compensated by mean flows, leaving the <span class="hlt">eddy</span> heat flux to balance the net shoreward heat transport. The <span class="hlt">eddy</span>-driven cross-slope overturning circulation is too weak to account for the <span class="hlt">eddy</span> heat flux. This suggests that isopycnal <span class="hlt">eddy</span> stirring is the principal mechanism of shoreward heat transport around Antarctica, though likely modulated by tides and surface forcing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004IJTIA.124...77W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004IJTIA.124...77W"><span>3D Magnetic Field Analysis of a Turbine Generator Stator <span class="hlt">Core</span>-end Region</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wakui, Shinichi; Takahashi, Kazuhiko; Ide, Kazumasa; Takahashi, Miyoshi; Watanabe, Takashi</p> <p></p> <p>In this paper we calculated magnetic flux density and <span class="hlt">eddy</span> current distributions of a 71MVA turbine generator stator <span class="hlt">core</span>-end using three-dimensional numerical magnetic field analysis. Subsequently, the magnetic flux densities and <span class="hlt">eddy</span> current densities in the stator <span class="hlt">core</span>-end region on the no-load and three-phase short circuit conditions obtained by the analysis have good agreements with the measurements. Furthermore, the differences of <span class="hlt">eddy</span> current and <span class="hlt">eddy</span> current loss in the stator <span class="hlt">core</span>-end region for various load conditions are shown numerically. As a result, the facing had an effect that decrease the <span class="hlt">eddy</span> current loss of the end plate about 84%.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMIN33A0103B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMIN33A0103B"><span>Tools and Methods for Visualization of Mesoscale Ocean <span class="hlt">Eddies</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bemis, K. G.; Liu, L.; Silver, D.; Kang, D.; Curchitser, E.</p> <p>2017-12-01</p> <p>Mesoscale ocean <span class="hlt">eddies</span> form in the Gulf Stream and transport heat and nutrients across the ocean basin. The internal structure of these three-dimensional <span class="hlt">eddies</span> and the kinematics with which they move are critical to a full understanding of their transport capacity. A series of visualization tools have been developed to extract, characterize, and track ocean <span class="hlt">eddies</span> from 3D modeling results, to visually show the ocean <span class="hlt">eddy</span> story by applying various illustrative visualization techniques, and to interactively view results stored on a server from a conventional browser. In this work, we apply a feature-based method to track instances of ocean <span class="hlt">eddies</span> through the time steps of a high-resolution multidecadal regional ocean model and generate a series of <span class="hlt">eddy</span> paths which reflect the life cycle of individual <span class="hlt">eddy</span> instances. The basic method uses the Okubu-Weiss parameter to define <span class="hlt">eddy</span> <span class="hlt">cores</span> but could be adapted to alternative specifications of an <span class="hlt">eddy</span>. Stored results include pixel-lists for each <span class="hlt">eddy</span> instance, tracking metadata for <span class="hlt">eddy</span> paths, and physical and geometric properties. In the simplest view, isosurfaces are used to display <span class="hlt">eddies</span> along an <span class="hlt">eddy</span> path. Individual <span class="hlt">eddies</span> can then be selected and viewed independently or an <span class="hlt">eddy</span> path can be viewed in the context of all <span class="hlt">eddy</span> paths (longer than a specified duration) and the ocean basin. To tell the story of mesoscale ocean <span class="hlt">eddies</span>, we combined illustrative visualization techniques, including visual effectiveness enhancement, focus+context, and smart visibility, with the extracted volume features to explore <span class="hlt">eddy</span> characteristics at multiple scales from ocean basin to individual <span class="hlt">eddy</span>. An evaluation by domain experts indicates that combining our feature-based techniques with illustrative visualization techniques provides an insight into the role <span class="hlt">eddies</span> play in ocean circulation. A web-based GUI is under development to facilitate easy viewing of stored results. The GUI provides the user control to choose amongst available</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUSMOS53A..15Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUSMOS53A..15Z"><span>The Death of Two <span class="hlt">Eddies</span>, Against the Shelf</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zavala-Trujillo, B.; Badan, A.; Rivas, D.; Ochoa, J.; Sheinbaum, J.; Candela, J.</p> <p>2007-05-01</p> <p>A set of five moorings deployed in front of the coast of Tamaulipas, western Gulf of Mexico, provided fourteen months (from August 2004 to November 2005) of surface to bottom observations of currents and temperature that document the processes associated with the collision and dissipation of two <span class="hlt">warm</span> mesoscale <span class="hlt">eddies</span> with the continental slope. Two Loop Current <span class="hlt">eddies</span> (Titanic and Ulysses) were identified reaching the study area during the observation period. On September 2004, the two southernmost 2000-m moorings show that temperature and salinity increases throughout the entire water column, related to <span class="hlt">eddy</span> Titanic; similarily; on April 2005, <span class="hlt">eddy</span> Ulysses caused a strong increase of temperature in the 3500-m mooring. The velocity field suggests three different régimes: a coastal region, the continental slope currents, and the abyssal circulation. Over the slope, three different layers can be identified: a surface layer (above 500 m depth), influenced by <span class="hlt">eddies</span> and transients, a deep layer (under de 1900 m) with a persistent southerly current and a transition layer (from 500 to 1900 m) that separates them. The variance ellipses at ~ 700 m at the 3500-m mooring have no a predominant orientation of the mayor axis. At the northernmost 2000-m mooring, the axis of maximum variation is oriented with the bathymetry, but at the southernmost 2000-m mooring it is perpendicular to the coast. The spectral characteristics of the measurements are also discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015OcDyn..65.1335G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015OcDyn..65.1335G"><span>Impacts of mesoscale <span class="hlt">eddies</span> in the South China Sea on biogeochemical cycles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Mingxian; Chai, Fei; Xiu, Peng; Li, Shiyu; Rao, Shivanesh</p> <p>2015-09-01</p> <p>Biogeochemical cycles associated with mesoscale <span class="hlt">eddies</span> in the South China Sea (SCS) were investigated. The study was based on a coupled physical-biogeochemical Pacific Ocean model (Regional Ocean Model System-Carbon, Silicate, and Nitrogen Ecosystem, ROMS-CoSiNE) simulation for the period from 1991 to 2008. A total of 568 mesoscale <span class="hlt">eddies</span> with lifetime longer than 30 days were used in the analysis. Composite analysis revealed that the cyclonic <span class="hlt">eddies</span> were associated with abundance of nutrients, phytoplankton, and zooplankton while the anticyclonic <span class="hlt">eddies</span> depressed biogeochemical cycles, which are generally controlled by the <span class="hlt">eddy</span> pumping mechanism. In addition, diatoms were dominant in phytoplankton species due to the abundance of silicate. Dipole structures of vertical fluxes with net upward motion in cyclonic <span class="hlt">eddies</span> and net downward motion in anticyclonic <span class="hlt">eddies</span> were revealed. During the lifetime of an <span class="hlt">eddy</span>, the evolutions of physical, biological, and chemical structures were not linearly coupled at the <span class="hlt">eddy</span> <span class="hlt">core</span> where plankton grew, and composition of the community depended not only on the physical and chemical processes but also on the adjustments by the predator-prey relationship.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.G24A..07D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.G24A..07D"><span><span class="hlt">Eddy</span> Properties and their Spatiotemporal Variability in the North Indian Ocean from Satellite Altimetry</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dandapat, S.; Chakraborty, A.</p> <p>2016-12-01</p> <p>A comprehensive study on the statistics and variability of mesoscale <span class="hlt">eddies</span> in the North Indian Ocean (NIO) are investigated using satellite altimetry data for the period of 1993-2014. A hybrid algorithm based on the physical and geometrical properties of mesoscale <span class="hlt">eddies</span> is applied to detect the <span class="hlt">eddies</span> and track their propagation. The potential <span class="hlt">eddies</span> with radius larger than 50 km and lifespan longer than 30 days are considered for the analysis. The NIO consists of two unique tropical basins with the high number of <span class="hlt">eddy</span> generations and activity: the Arabian Sea (AS) and the Bay of Bengal (BOB). It is noticed that the occurrence of cyclonic <span class="hlt">eddies</span> (CEs) are found to be significant in AS, while the anticyclonic <span class="hlt">eddies</span> (ACEs) dominate the BOB. In both the oceans <span class="hlt">eddies</span> mostly propagate westward. The AS <span class="hlt">eddies</span> showed the higher mean values, propagation speed, mean radius, mean lifetime than BOB <span class="hlt">eddies</span>. In the AS, it is found that <span class="hlt">eddies</span> formed on the western side of the basin persist longer and move towards north where as the number of <span class="hlt">eddies</span> in the eastern coast of the basin is fewer and short lived. In the BOB, two highly <span class="hlt">eddy</span> productive zones are identified: offshore of Visakhapatnam and the northern part of western BOB. The occurrence of ACEs dominate the offshore of Visakhapatnam, whereas the CEs in the northern part of western BOB. The ACEs are larger but the CEs have longer lifetime and are more energetic in the BOB. Along with the statistical properties, we also examined the <span class="hlt">eddy</span> temporal variability in seasonal scale and their structural properties from ARGO data in the NIO. The seasonal variations are found to be significant in AS and BOB and in both the oceans significant correlation has been found between the <span class="hlt">eddy</span> genesis and local wind stress curl. The strong positive wind stress curl during summer favors the formation of more CEs. In general, both ACEs and CEs in the NIO have single-<span class="hlt">core</span> vertical structure with the <span class="hlt">core</span> at a depth of about 100-200 dbar.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21219514','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21219514"><span>A systematic review of randomised controlled trials of the effects of <span class="hlt">warmed</span> irrigation fluid on <span class="hlt">core</span> body temperature during endoscopic surgeries.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jin, Yinghui; Tian, Jinhui; Sun, Mei; Yang, Kehu</p> <p>2011-02-01</p> <p>The purpose of this systematic review was to establish whether <span class="hlt">warmed</span> irrigation fluid temperature could decrease the drop of body temperature and incidence of shivering and hypothermia. Irrigation fluid, which is used in large quantities during endoscopic surgeries at room temperature, is considered to be associated with hypothermia and shivering. It remains controversial whether using <span class="hlt">warmed</span> irrigation fluid to replace room-temperature irrigation fluid will decrease the drop of <span class="hlt">core</span> body temperature and the occurrence of hypothermia. A comprehensive search (computerised database searches, footnote chasing, citation chasing) was undertaken to identify all the randomised controlled trials that explored temperature of irrigation fluid in endoscopic surgery. An approach involving meta-analysis was used. We searched PubMed, EMBASE, Cochrane Library, SCI, China academic journals full-text databases, Chinese Biomedical Literature Database, Chinese scientific journals databases and Chinese Medical Association Journals for trials that meet the inclusion criteria. Study quality was assessed using standards recommended by Cochrane Library Handbook 5.0.1. Disagreement was resolved by consensus. Thirteen randomised controlled trials including 686 patients were identified. The results showed that room-temperature irrigation fluid caused a greater drop of <span class="hlt">core</span> body temperature in patients, compared to <span class="hlt">warmed</span> irrigation fluid (p < 0.00001; I(2) = 85%). The occurrence of shivering [odds ratio (OR) 5.13, 95% CI: 2.95-10.19, p < 0.00001; I(2) = 0%] and hypothermia (OR 22.01, 95% CI: 2.03-197.08, p = 0.01; I(2) = 64%) in the groups having <span class="hlt">warmed</span> irrigation fluid were lower than the group of studies having room-temperature fluid. In endoscopic surgeries, irrigation fluid is recommended to be <span class="hlt">warmed</span> to decrease the drop of <span class="hlt">core</span> body temperature and the risk of perioperative shivering and hypothermia. <span class="hlt">Warming</span> irrigating fluid should be considered standard practice in all endoscopic</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMNG43B1574A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMNG43B1574A"><span>Nonlinear <span class="hlt">Eddy-Eddy</span> Interactions in Dry Atmospheres Macroturbulence</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ait Chaalal, F.; Schneider, T.</p> <p>2012-12-01</p> <p>The statistical moment equations derived from the atmospheric equation of motions are not closed. However neglecting the large-scale <span class="hlt">eddy-eddy</span> nonlinear interactions in an idealized dry general circulation model (GCM), which is equivalent to truncating the moment equations at the second order, can reproduce some of the features of the general circulation ([1]), highlighting the significance of <span class="hlt">eddy</span>-mean flow interactions and the weakness of <span class="hlt">eddy-eddy</span> interactions in atmospheric macroturbulence ([2]). The goal of the present study is to provide new insight into the rôle of these <span class="hlt">eddy-eddy</span> interactions and discuss the relevance of a simple stochastic parametrization to represent them. We investigate in detail the general circulation in an idealized dry GCM, comparing full simulations with simulations where the <span class="hlt">eddy-eddy</span> interactions are removed. The radiative processes are parametrized through Newtonian relaxation toward a radiative-equilibrium state with a prescribed equator to pole temperature contrast. A convection scheme relaxing toward a prescribed convective vertical lapse rate mimics some aspects of moist convection. The study is performed over a wide range of parameters covering the planetary rotation rate, the equator to pole temperature contrast and the vertical lapse rate. Particular attention is given to the wave-mean flow interactions and to the spectral budget. It is found that the no <span class="hlt">eddy-eddy</span> simulations perform well when the baroclinic activity is weaker, for example for lower equator to pole temperature contrasts or higher rotation rates: the mean meridional circulation is well reproduced, with realistic <span class="hlt">eddy</span>-driven jets and energy-containing <span class="hlt">eddy</span> length scales of the order of the Rossby deformation radius. For a stronger baroclinic activity the no <span class="hlt">eddy-eddy</span> model does not achieve a realistic isotropization of the <span class="hlt">eddies</span>, the meridional circulation is compressed in the meridional direction and secondary <span class="hlt">eddy</span>-driven jets emerge. In addition, the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001JGR...106.2605O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001JGR...106.2605O"><span><span class="hlt">Eddy</span> energy and shelf interactions in the Gulf of Mexico</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ohlmann, J. Carter; Niiler, P. Peter; Fox, Chad A.; Leben, Robert R.</p> <p>2001-02-01</p> <p>Sea surface height anomaly data from satellite are continuously available for the entire Gulf of Mexico. Surface current velocities derived from these remotely sensed data are compared with surface velocities from drifting buoys. The comparison shows that satellite altimetry does an excellent job resolving gulf <span class="hlt">eddies</span> over the shelf rise (depths between ˜200 and 2000 m) if the proper length scale is used. Correlations between altimeter- and drifter-derived velocities are statistically significant (r>0.5) when the surface slope is computed over 125 km, indicating that remotely sensed sea surface height anomaly data can be used to aid the understanding of circulation over the shelf rise. Velocity variance over the shelf rise from the altimetry data shows regions of pronounced <span class="hlt">eddy</span> energy south of the Mississippi outflow, south of the Texas-Louisiana shelf, and in the northwest and northeast corners of the gulf. These are the same locations where surface drifters are most likely to cross the shelf rise, suggesting gulf <span class="hlt">eddies</span> promote cross-shore flows. This is clearly exemplified with both <span class="hlt">warm</span> and cold <span class="hlt">eddies</span>. Finally, the contribution of gulf <span class="hlt">eddies</span> and wind stress to changes in the mean circulation are compared. Results indicate that the <span class="hlt">eddy</span>-generated vorticity flux to the mean flow is greater than the contribution from the surface wind stress curl, especially in the region of the Loop current and along the shelf rise base in the western gulf. Future modeling efforts must not neglect the role of <span class="hlt">eddies</span> in driving gulf circulation over the shelf rise.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMOS51A1262L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMOS51A1262L"><span>Reactive Iron Delivery to the Central Gulf of Alaska via Two Mesoscale <span class="hlt">Eddies</span> (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lippiatt, S. M.; Brown, M. T.; Lohan, M. C.; Bruland, K. W.</p> <p>2010-12-01</p> <p>Coastal waters in the northern Gulf of Alaska (GoA) are considered Fe-rich and nitrate-poor, in contrast to the Fe-poor, high-nitrate, low chlorophyll (HNLC) waters of the central GoA. Mixing between these two regimes can lead to enhanced primary productivity. Mesoscale anticyclonic <span class="hlt">eddies</span> are an important mechanism for cross-shelf exchange of coastal and HNLC waters. This presentation will discuss findings from a cruise in the GoA during late summer 2007, namely dissolved Fe, leachable particulate Fe (defined as the portion of the particulate Fe that is solubilized with a two hour, 25% acetic acid leach with a short heating step and a reducing agent), and nitrate. Leachable particulate Fe concentrations in coastal surface waters between Yakutat, AK and the Kenai Peninsula ranged from over 1 uM in the Alsek River plume to less than 5 nM at the base of Cook Inlet, and were more variable and at least an order of magnitude higher than dissolved Fe concentrations. Relatively low and consistent dissolved Fe (~2 nM) suggests that the system’s ability to solubilize this large concentration of leachable particulate Fe is overwhelmed by the massive input of glacial-derived particulate Fe. Suspended leachable particulate Fe is available for exchange to the dissolved phase and is suggested to maintain a relatively constant 2 nM concentration of dissolved Fe in the coastal GoA. Glacial meltwaters were not a significant source of nitrate compared to central GoA HNLC or upwelled waters. The work completed in the coastal GoA set the stage for assessing the delivery of this glacial-derived coastal Fe to HNLC waters via mesoscale <span class="hlt">eddies</span>. Two mesoscale <span class="hlt">eddies</span> were sampled during this study: a Sitka <span class="hlt">eddy</span> located off Yakutat, Alaska and a Kenai <span class="hlt">eddy</span> sampled off the shelf break near Kodiak Island. The temperature and salinity structures of the <span class="hlt">eddies</span> reflected their coastal origin; <span class="hlt">core</span> waters were warmer and fresher than surrounding basin waters, coincident with elevated dissolved</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........59F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........59F"><span>Southern Ocean <span class="hlt">Eddy</span> Heat Flux and <span class="hlt">Eddy</span>-Mean Flow Interactions in Drake Passage</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foppert, Annie</p> <p></p> <p>The Antarctic Circumpolar Current (ACC) is a complex current system composed of multiple jets that is both unique to the world's oceans and relatively under observed compared with other current systems. Observations taken by current- and pressure-recording inverted echo sounders (CPIES) over four years, from November 2007 to November 2011, quantify the mean structure of one of the main jets of the ACC - the Polar Front - in a composite-mean sense. While the array of CPIES deployed in Drake Passage included a 3 x 7 local dynamics array, analysis of the Polar Front makes use of the line of CPIES that spanned the width of Drake Passage (C-Line). The Polar Front tends to prefer one of two locations, separated along the C-Line by 1° of latitude, with the <span class="hlt">core</span> of the jet centered on corresponding geopotential height contours (with a 17 cm dierence between the northern and southern jets). Potential vorticity fields suggest that the Polar Front is susceptible to baroclinic instability, regardless of whether it is found upstream (farther south along the C-Line) or downstream (farther north along the C-Line) of the Shackleton Fracture Zone (SFZ), yet the <span class="hlt">core</span> of the jet remains a barrier to smaller-scale mixing, as inferred from estimated mixing lengths. Within the local dynamics array of CPIES, the observed offset between <span class="hlt">eddy</span> heat flux (EHF) and <span class="hlt">eddy</span> kinetic energy (EKE) and the alignment of EHF with sea surface height (SSH) standard deviation motivates a proxy for depth-integrated EHF that can be estimated from available satellite SSH data. An <span class="hlt">eddy</span>-resolving numerical model develops the statistics of a logarithmic fit between SSH standard deviation and cross-frontal EHF that is applied to the ACC in a circumglobal sense. We find 1.06 PW enters the ACC from the north and 0.02 PW exits towards Antarctica. The magnitude of the estimated EHF, along with contemporaneous estimates of the mean heat flux, suggests that the air-sea heat flux south of the PF is an overestimate</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.8182M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.8182M"><span>Observations of the interaction between near-inertial waves and mesoscale <span class="hlt">eddies</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martínez-Marrero, Antonio; Sangrá, Pablo; Caldeira, Rui; Aguiar-González, Borja; Rodríguez-Santana, Ángel</p> <p>2014-05-01</p> <p>Trajectories of eight drifters dragged below the surface mixed layer and current meter data from a mooring are used to analyse the interaction between near-inertial waves and mesoscale <span class="hlt">eddies</span>. Drifters were deployed within <span class="hlt">eddies</span> generated downstream of Canary and Madeira islands between 1998 and 2007. The mooring was installed in the passage of cyclonic <span class="hlt">eddies</span> induced by Gran Canaria island during 2006. Rotatory wavelet analysis of Lagrangian velocities shows a clear relationship between the near-inertial waves' intrinsic frequencies and the <span class="hlt">eddy</span> angular velocities. The results reveal that near-inertial waves reach a minimum frequency of half the planetary vorticity (f/2) in the inner <span class="hlt">core</span> of young anticyclonic <span class="hlt">eddies</span> rotating with its maximum absolute angular speed of f/2. The highest amplitudes of the observed inertial motions are also found within anticyclonic <span class="hlt">eddies</span> evidencing the trapping of inertial waves. Finally, the analysis of the current meter series show frequency fluctuations of the near-inertial currents in the upper 500 meters that are related to the passage of cyclonic <span class="hlt">eddies</span>. These fluctuations appear to be consistent with the variation of the background vorticity produced by the <span class="hlt">eddies</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1415733','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1415733"><span>SPRUCE Whole Ecosystem <span class="hlt">Warming</span> (WEW) Peat Water Content and Temperature Profiles for Experimental Plot <span class="hlt">Cores</span> Beginning June 2016</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Gutknecht, J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Kluber, L. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Schadt, C. W. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.</p> <p>2016-06-01</p> <p>This data set provides the peat water content and peat temperature at time of sampling for peat <span class="hlt">cores</span> collected before and during the SPRUCE Whole Ecosystem <span class="hlt">Warming</span> (WEW) study. <span class="hlt">Cores</span> for the current data set were collected during the following bulk peat sampling events: 13 June 2016 and 23 August 2016. Over time, this dataset will be updated with each new major bulk peat sampling event, and dates/methods will be updated accordingly.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12744717','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12744717"><span><span class="hlt">Warm</span> up I: potential mechanisms and the effects of passive <span class="hlt">warm</span> up on exercise performance.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bishop, David</p> <p>2003-01-01</p> <p>Despite limited scientific evidence supporting their effectiveness, <span class="hlt">warm</span>-up routines prior to exercise are a well-accepted practice. The majority of the effects of <span class="hlt">warm</span> up have been attributed to temperature-related mechanisms (e.g. decreased stiffness, increased nerve-conduction rate, altered force-velocity relationship, increased anaerobic energy provision and increased thermoregulatory strain), although non-temperature-related mechanisms have also been proposed (e.g. effects of acidaemia, elevation of baseline oxygen consumption (.VO(2)) and increased postactivation potentiation). It has also been hypothesised that <span class="hlt">warm</span> up may have a number of psychological effects (e.g. increased preparedness). <span class="hlt">Warm</span>-up techniques can be broadly classified into two major categories: passive <span class="hlt">warm</span> up or active <span class="hlt">warm</span> up. Passive <span class="hlt">warm</span> up involves raising muscle or <span class="hlt">core</span> temperature by some external means, while active <span class="hlt">warm</span> up utilises exercise. Passive heating allows one to obtain the increase in muscle or <span class="hlt">core</span> temperature achieved by active <span class="hlt">warm</span> up without depleting energy substrates. Passive <span class="hlt">warm</span> up, although not practical for most athletes, also allows one to test the hypothesis that many of the performance changes associated with active <span class="hlt">warm</span> up can be largely attributed to temperature-related mechanisms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997JCli...10.1616Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997JCli...10.1616Z"><span>Model-Simulated Northern Winter Cyclone and Anticyclone Activity under a Greenhouse <span class="hlt">Warming</span> Scenario.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yi; Wang, Wei-Chyung</p> <p>1997-07-01</p> <p>Two 100-yr equilibrium simulations from the NCAR Community Climate Model coupled to a nondynamic slab ocean are used to investigate the activity of northern winter extratropical cyclones and anticyclones under a greenhouse <span class="hlt">warming</span> scenario. The first simulation uses the 1990 observed CO2, CH4, N2O, CFC-11, and CFC-12 concentrations, and the second adopts the year 2050 concentrations according to the Intergovernmental Panel on Climate Change business-as-usual scenario. Variables that describe the characteristic properties of the cyclone-scale <span class="hlt">eddies</span>, such as surface cyclone and anticyclone frequency and the bandpassed root-mean-square of 500-hPa geopotential height, along with the Eady growth rate maximum, form a framework for the analysis of the cyclone and anticyclone activity.Objective criteria are developed for identifying cyclone and anticyclone occurrences based on the 1000-hPa geopotential height and vorticity fields and tested using ECMWF analyses. The potential changes of the <span class="hlt">eddy</span> activity under the greenhouse <span class="hlt">warming</span> climate are then examined. Results indicate that the activity of cyclone-scale <span class="hlt">eddies</span> decreases under the greenhouse <span class="hlt">warming</span> scenario. This is not only reflected in the surface cyclone and anticyclone frequency and in the bandpassed rms of 500-hPa geopotential height, but is also discerned from the Eady growth rate maximum. Based on the analysis, three different physical mechanisms responsible for the decreased <span class="hlt">eddy</span> activity are discussed: 1) a decrease of the extratropical meridional temperature gradient from the surface to the midtroposphere, 2) a reduction in the land-sea thermal contrast in the east coastal regions of the Asian and North American continents, and 3) an increase in the <span class="hlt">eddy</span> meridional latent heat fluxes. Uncertainties in the results related to the limitations of the model and the model equilibrium simulations are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1243286-modifications-wrf-dynamical-core-improve-treatment-moisture-large-eddy-simulations-wrf-dy-core-moisture-treatment','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1243286-modifications-wrf-dynamical-core-improve-treatment-moisture-large-eddy-simulations-wrf-dy-core-moisture-treatment"><span>Modifications to WRF's dynamical <span class="hlt">core</span> to improve the treatment of moisture for large-<span class="hlt">eddy</span> simulations: WRF DY-<span class="hlt">CORE</span> MOISTURE TREATMENT</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Xiao, Heng; Endo, Satoshi; Wong, May</p> <p></p> <p>Yamaguchi and Feingold (2012) note that the cloud fields in their Weather Research and Forecasting (WRF) large-<span class="hlt">eddy</span> simulations (LESs) of marine stratocumulus exhibit a strong sensitivity to time stepping choices. In this study, we reproduce and analyze this sensitivity issue using two stratocumulus cases, one marine and one continental. Results show that (1) the sensitivity is associated with spurious motions near the moisture jump between the boundary layer and the free atmosphere, and (2) these spurious motions appear to arise from neglecting small variations in water vapor mixing ratio (qv) in the pressure gradient calculation in the acoustic sub­stepping portionmore » of the integration procedure. We show that this issue is remedied in the WRF dynamical <span class="hlt">core</span> by replacing the prognostic equation for the potential temperature θ with one for the moist potential temperature θm=θ(1+1.61qv), which allows consistent treatment of moisture in the calculation of pressure during the acoustic sub­steps. With this modification, the spurious motions and the sensitivity to the time stepping settings (i.e., the dynamic time step length and number of acoustic sub­steps) are eliminated in both of the example stratocumulus cases. This modification improves the applicability of WRF for LES applications, and possibly other models using similar dynamical <span class="hlt">core</span> formulations, and also permits the use of longer time steps than in the original code.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/234157-use-eddy-current-mixes-solve-weld-examination-application','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/234157-use-eddy-current-mixes-solve-weld-examination-application"><span>Use of <span class="hlt">eddy</span> current mixes to solve a weld examination application</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ward, R.C.; LaBoissonniere, A.</p> <p>1995-12-31</p> <p>The augmentation of typical nondestructive (i.e., ultrasound) weld inspection techniques by the use of <span class="hlt">eddy</span> current tools may significantly enhance the quality and reliability of weld inspections. One recent example is the development of an <span class="hlt">eddy</span> current technique for use in the examination of BWR <span class="hlt">core</span> shroud welds, where multi-frequency mixes are used to eliminate signals coming from the weld material so that the examination of the heat affected zone is enhanced. An analysis tool most commonly associated with ultrasound examinations, the C-Scan based on gated information, may be implemented with <span class="hlt">eddy</span> current data to enhance analysis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040031476','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040031476"><span>Nonlinear Gulf Stream Interaction with the Deep Western Boundary Current System: Observations and a Numerical Simulation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dietrich, David E.; Mehra, Avichal; Haney, Robert L.; Bowman, Malcolm J.; Tseng, Yu-Heng</p> <p>2003-01-01</p> <p>Gulf Stream (GS) separation near its observed Cape Hatteras (CH) separation location, and its ensuing path and dynamics, is a challenging ocean modeling problem. If a model GS separates much farther north than CH, then northward GS meanders, which pinch off <span class="hlt">warm</span> <span class="hlt">core</span> <span class="hlt">eddies</span> (rings), are not possible or are strongly constrained by the Grand Banks shelfbreak. Cold <span class="hlt">core</span> rings pinch off the southward GS meanders. The rings are often re-absorbed by the GS. The important <span class="hlt">warm</span> <span class="hlt">core</span> rings enhance heat exchange and, especially, affect the northern GS branch after GS bifurcation near the New England Seamount Chain. This northern branch gains heat by contact with the southern branch water upstream of bifurcation, and <span class="hlt">warms</span> the Arctic Ocean and northern seas, thus playing a major role in ice dynamics, thermohaline circulation and possible global climate <span class="hlt">warming</span>. These rings transport heat northward between the separated GS and shelf slope/Deep Western Boundary Current system (DWBC). This region has nearly level time mean isopycnals. The <span class="hlt">eddy</span> heat transport convergence/divergence enhances the shelfbreak and GS front intensities and thus also increases watermass transformation. The fronts are maintained by <span class="hlt">warm</span> advection by the Florida Current and cool advection by the DWBC. Thus, the GS interaction with the DWBC through the intermediate <span class="hlt">eddy</span> field is climatologically important.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8763F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8763F"><span>Effect of mesoscale oceanic <span class="hlt">eddies</span> on mid-latitude storm-tracks.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foussard, Alexis; Lapeyre, Guillaume; Plougonven, Riwal</p> <p>2017-04-01</p> <p>Sharp sea surface temperature (SST) gradients associated with oceanic western boundary currents (WBC) exert an influence on the position and intensity of mid-latitude storm-tracks. This occurs through strong surface baroclinicity maintained by cross frontal SST gradient and deep vertical atmospheric motion due to convection on the <span class="hlt">warm</span> flank of the WBC. However the additional role of mesoscale oceanic structures (30-300km) has not yet been explored although they have a non-negligible influence on surface heat fluxes. Using the Weather Research and Forecasting model, we investigate the potential role of these oceanic <span class="hlt">eddies</span> in the case of an idealized atmospheric mid-latitude storm track forced by a mesoscale oceanic <span class="hlt">eddy</span> field superposed with a large-scale SST gradient. Surface latent and sensible fluxes are shown to react with a non-linear response to the SST variations, providing additional heat and moisture supply at large scales. The atmospheric response is not restricted to the boundary layer but reaches the free troposphere, especially through increased water vapor vertical transport and latent heat release. This additional heating in presence of <span class="hlt">eddies</span> is balanced by a shift of the storm-track and its poleward heat flux toward high latitudes, with amplitude depending on atmospheric configuration and <span class="hlt">eddies</span> amplitude. We also explore how this displacement of perturbations changes the position and structure of the mid-latitude jet through <span class="hlt">eddy</span> momentum fluxes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcMod.127....1B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcMod.127....1B"><span>Dynamically consistent parameterization of mesoscale <span class="hlt">eddies</span>. Part III: Deterministic approach</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berloff, Pavel</p> <p>2018-07-01</p> <p>This work continues development of dynamically consistent parameterizations for representing mesoscale <span class="hlt">eddy</span> effects in non-<span class="hlt">eddy</span>-resolving and <span class="hlt">eddy</span>-permitting ocean circulation models and focuses on the classical double-gyre problem, in which the main dynamic <span class="hlt">eddy</span> effects maintain eastward jet extension of the western boundary currents and its adjacent recirculation zones via <span class="hlt">eddy</span> backscatter mechanism. Despite its fundamental importance, this mechanism remains poorly understood, and in this paper we, first, study it and, then, propose and test its novel parameterization. We start by decomposing the reference <span class="hlt">eddy</span>-resolving flow solution into the large-scale and <span class="hlt">eddy</span> components defined by spatial filtering, rather than by the Reynolds decomposition. Next, we find that the eastward jet and its recirculations are robustly present not only in the large-scale flow itself, but also in the rectified time-mean <span class="hlt">eddies</span>, and in the transient rectified <span class="hlt">eddy</span> component, which consists of highly anisotropic ribbons of the opposite-sign potential vorticity anomalies straddling the instantaneous eastward jet <span class="hlt">core</span> and being responsible for its continuous amplification. The transient rectified component is separated from the flow by a novel remapping method. We hypothesize that the above three components of the eastward jet are ultimately driven by the small-scale transient <span class="hlt">eddy</span> forcing via the <span class="hlt">eddy</span> backscatter mechanism, rather than by the mean <span class="hlt">eddy</span> forcing and large-scale nonlinearities. We verify this hypothesis by progressively turning down the backscatter and observing the induced flow anomalies. The backscatter analysis leads us to formulating the key <span class="hlt">eddy</span> parameterization hypothesis: in an <span class="hlt">eddy</span>-permitting model at least partially resolved <span class="hlt">eddy</span> backscatter can be significantly amplified to improve the flow solution. Such amplification is a simple and novel <span class="hlt">eddy</span> parameterization framework implemented here in terms of local, deterministic flow roughening controlled by single</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.3255D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.3255D"><span>Observational insights into chlorophyll distributions of subtropical South Indian Ocean <span class="hlt">eddies</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dufois, François; Hardman-Mountford, Nick J.; Fernandes, Michelle; Wojtasiewicz, Bozena; Shenoy, Damodar; Slawinski, Dirk; Gauns, Mangesh; Greenwood, Jim; Toresen, Reidar</p> <p>2017-04-01</p> <p>The South Indian Ocean subtropical gyre has been described as a unique environment where anticyclonic ocean <span class="hlt">eddies</span> highlight enhanced surface chlorophyll in winter. The processes responsible for this chlorophyll increase in anticyclones have remained elusive, primarily because previous studies investigating this unusual behavior were mostly based on satellite data, which only views the ocean surface. Here we present in situ data from an oceanographic voyage focusing on the mesoscale variability of biogeochemical variables across the subtropical gyre. During this voyage an autonomous biogeochemical profiling float transected an anticyclonic <span class="hlt">eddy</span>, recording its physical and biological state over a period of 6 weeks. We show that several processes might be responsible for the <span class="hlt">eddy</span>/chlorophyll relationship, including horizontal advection of productive waters and deeper convective mixing in anticyclonic <span class="hlt">eddies</span>. While a deep chlorophyll maximum is present in the subtropical Indian Ocean outside anticyclonic <span class="hlt">eddies</span>, mixing reaches deeper in anticyclonic <span class="hlt">eddy</span> <span class="hlt">cores</span>, resulting in increased surface chlorophyll due to the stirring of the deep chlorophyll maximum and possibly resulting in new production from nitrate injection below the deep chlorophyll maximum.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSME24F0766G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSME24F0766G"><span>The Use of Mesoscale <span class="hlt">Eddies</span> and Gulf Stream Meanders by White Sharks Carcharodon carcharias</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gaube, P.; Thorrold, S.; Braun, C.; McGillicuddy, D. J., Jr.; Lawson, G. L.; Skomal, G. B.</p> <p>2016-02-01</p> <p>Large pelagic fishes like sharks, tuna, swordfish, and billfish spend a portion of their lives in the open ocean, yet their spatial distribution in this vast habitat remains relatively unknown. Mesoscale ocean <span class="hlt">eddies</span>, rotating vortices with radius scales of approximately 100 km, structure open ocean ecosystems from primary producers to apex predators by influencing nutrient distributions and transporting large trapped parcels of water over long distances. Recent advances in both the tagging and tracking of marine animals combined with improved detection and tracking of mesoscale <span class="hlt">eddies</span> has shed some light on the oceanographic features influencing their migrations. Here we show that white sharks use the interiors of anticyclonic and cyclonic <span class="hlt">eddies</span> differently, a previously undocumented behavior. While swimming in <span class="hlt">warm</span>, subtropical water, white sharks preferentially inhabit anticyclonic <span class="hlt">eddies</span> compared to cyclonic <span class="hlt">eddies</span>. In the vicinity of the Gulf Stream, the depth and duration of dives recorded by an archival temperature- and depth-recording tag affixed to a large female are shown to be significantly deeper and longer in anticyclonic <span class="hlt">eddies</span> compared to those in cyclonic <span class="hlt">eddies</span>. This asymmetry is linked to positive subsurface temperature anomalies generated by anticyclonic <span class="hlt">eddies</span> that are more than 7 degrees C warmer than cyclonic <span class="hlt">eddies</span>, thus reducing the need for these animals to expend as much energy regulating their internal temperature. In addition, anticyclonic <span class="hlt">eddies</span> may be regions of enhance foraging success, as suggested by a series of acoustics surveys in the North Atlantic which indicated elevated mesopelagic fish biomass in anticyclones compared to cyclones.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.B44B0379X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.B44B0379X"><span>Impacts of mesoscale <span class="hlt">eddies</span> on biogeochemical cycles in the South China Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiu, P.; Chai, F.; Guo, M.</p> <p>2016-02-01</p> <p>Biogeochemical cycles associated with mesoscale <span class="hlt">eddies</span> in the South China Sea (SCS) are investigated by using satellite surface chlorophyll concentration, altimeter data, satellite sea surface temperature, and a coupled physical-biogeochemical Pacific Ocean model (ROMS-CoSiNE) simulation for the period from 1991 to 2007. Considering the annual mean, composite analysis reveals that cyclonic <span class="hlt">eddies</span> are associated with higher concentrations of nutrients, phytoplankton and zooplankton while the anticyclonic <span class="hlt">eddies</span> are with lower concentrations compared with surrounding waters, which is generally controlled by the <span class="hlt">eddy</span> pumping mechanism. Dipole structures of vertical fluxes with net upward motion in cyclonic <span class="hlt">eddies</span> and net downward motion in anticyclonic <span class="hlt">eddies</span> are also revealed. During the lifetime of an <span class="hlt">eddy</span>, the evolutions of physical, biological, and chemical structures are not linearly coupled at the <span class="hlt">eddy</span> <span class="hlt">core</span> where plankton grow and composition of the community depend not only on the physical and chemical processes but also on the adjustments by the predator-prey relationship. Considering the seasonal variability, we find <span class="hlt">eddy</span> pumping mechanisms are generally dominant in winter and <span class="hlt">eddy</span> advection effects are dominant in summer. Over the space, variability of chlorophyll to the west of Luzon Strait and off northwest of Luzon Island are mainly controlled by <span class="hlt">eddy</span> pumping mechanism. In regions off the Vietnam coast, chlorophyll distributions are generally associated with horizontal <span class="hlt">eddy</span> advection. This research highlights different mesoscale mechanisms affecting biological structures that can potentially disturb ocean biogeochemical cycling processes in the South China Sea.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26505571','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26505571"><span>Forced-Air <span class="hlt">Warming</span> During Pediatric Surgery: A Randomized Comparison of a Compressible with a Noncompressible <span class="hlt">Warming</span> System.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Triffterer, Lydia; Marhofer, Peter; Sulyok, Irene; Keplinger, Maya; Mair, Stefan; Steinberger, Markus; Klug, Wolfgang; Kimberger, Oliver</p> <p>2016-01-01</p> <p>Perioperative hypothermia is a common problem, challenging the anesthesiologist and influencing patient outcome. Efficient and safe perioperative active <span class="hlt">warming</span> is therefore paramount; yet, it can be particularly challenging in pediatric patients. Forced-air <span class="hlt">warming</span> technology is the most widespread patient-<span class="hlt">warming</span> option, with most forced-air <span class="hlt">warming</span> systems consisting of a forced-air blower connected to a compressible, double layer plastic and/or a paper blanket with air holes on the patient side. We compared an alternative, forced-air, noncompressible, under-body patient-<span class="hlt">warming</span> mattress (Baby/Kleinkinddecke of Moeck<span class="hlt">Warming</span>Systems, Moeck und Moeck GmbH; group MM) with a standard, compressible <span class="hlt">warming</span> mattress system (Pediatric Underbody, Bair Hugger, 3M; group BH). The study included 80 patients aged <2 years, scheduled for elective surgery. After a preoperative <span class="hlt">core</span> temperature measurement, the patients were placed on the randomized mattress in the operation theater and 4 temperature probes were applied rectally and to the patients' skin. The <span class="hlt">warming</span> devices were turned on as soon as possible to the level for pediatric patients as recommended by the manufacturer (MM = 40°C, BH = 43°C). There was a distinct difference of temperature slope between the 2 groups: <span class="hlt">core</span> temperatures of patients in the group MM remained stable and mean of the <span class="hlt">core</span> temperature of patients in the group BH increased significantly (difference: +1.48°C/h; 95% confidence interval, 0.82-2.15°C/h; P = 0.0001). The need for temperature downregulation occurred more often in the BH group, with 22 vs 7 incidences (RR, 3.14; 95% confidence interval, 1.52-6.52; P = 0.0006). Skin temperatures were all lower in the MM group. Perioperatively, no side effects related to a <span class="hlt">warming</span> device were observed in any group. Both devices are feasible choices for active pediatric patient <span class="hlt">warming</span>, with the compressible mattress system being better suited to increase <span class="hlt">core</span> temperature. The use of lower pediatric</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930000761&hterms=prepregs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dprepregs','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930000761&hterms=prepregs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dprepregs"><span><span class="hlt">Eddy</span>-Current Monitoring Of Composite Layups</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fox, Robert L.; Buckley, John D.</p> <p>1993-01-01</p> <p><span class="hlt">Eddy</span>-current-probe apparatus used to determine predominant orientations of fibers in fiber/matrix composite materials. Apparatus nondestructive, noninvasive means for monitoring composite prepregs and layups during fabrication to ensure predictable and repeatable mechanical properties of finished composite panels. Consists essentially of electromagnet coil wrapped around horseshoe-shaped powdered-iron or ferrite ore. Optionally, capacitor included in series or parallel with coil to form resonant circuit. Impedance monitor excites radio-frequency current in coil and measures impedance of probe circuit. Affected by whatever material placed near ends of <span class="hlt">core</span>, where material intercepts alternating magnetic field excited in <span class="hlt">core</span> by current in coil.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003JCli...16.3314I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003JCli...16.3314I"><span>Atmospheric Response to Zonal Variations in Midlatitude SST: Transient and Stationary <span class="hlt">Eddies</span> and Their Feedback(.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Inatsu, Masaru; Mukougawa, Hitoshi; Xie, Shang-Ping</p> <p>2003-10-01</p> <p>Midwinter storm track response to zonal variations in midlatitude sea surface temperatures (SSTs) has been investigated using an atmospheric general circulation model under aquaplanet and perpetual-January conditions. Zonal wavenumber-1 SST variations with a meridionally confined structure are placed at various latitudes. Having these SST variations centered at 30°N leads to a zonally localized storm track, while the storm track becomes nearly zonally uniform when the same SST forcing is moved farther north at 40° and 50°N. Large (small) baroclinic energy conversion north of the <span class="hlt">warm</span> (cold) SST anomaly near the axis of the storm track (near 40°N) is responsible for the large (small) storm growth. The equatorward transfer of <span class="hlt">eddy</span> kinetic energy by the ageostrophic motion and the mechanical damping are important to diminish the storm track activity in the zonal direction.Significant stationary <span class="hlt">eddies</span> form in the upper troposphere, with a ridge (trough) northeast of the <span class="hlt">warm</span> (cold) SST anomaly at 30°N. Heat and vorticity budget analyses indicate that zonally localized condensational heating in the storm track is the major cause for these stationary <span class="hlt">eddies</span>, which in turn exert a positive feedback to maintain the localized storm track by strengthening the vertical shear near the surface. These results indicate an active role of synoptic <span class="hlt">eddies</span> in inducing deep, tropospheric-scale response to midlatitude SST variations. Finally, the application of the model results to the real atmosphere is discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4501708','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4501708"><span>Enhanced Particulate Organic Carbon Export at <span class="hlt">Eddy</span> Edges in the Oligotrophic Western North Pacific Ocean</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shih, Yung-Yen; Hung, Chin-Chang; Gong, Gwo-Ching; Chung, Wan-Chen; Wang, Yu-Huai; Lee, I-Huan; Chen, Kuo-Shu; Ho, Chuang-Yi</p> <p>2015-01-01</p> <p>Mesoscale <span class="hlt">eddies</span> in the subtropical oligotrophic ocean are ubiquitous and play an important role in nutrient supply and oceanic primary production. However, it is still unclear whether these mesoscale <span class="hlt">eddies</span> can efficiently transfer CO2 from the atmosphere to deep waters via biological pump because of the sampling difficulty due to their transient nature. In 2007, particulate organic carbon (POC) fluxes, measured below the euphotic zone at the edge of <span class="hlt">warm</span> <span class="hlt">eddy</span> were 136–194 mg-C m−2 d−1 which was greatly elevated over that (POC flux = 26–35 mg-C m−2 d−1) determined in the nutrient-depleted oligotrophic waters in the Western North Pacific (WNP). In 2010, higher POC fluxes (83–115 mg-C m−2 d−1) were also observed at the boundary of mesoscale <span class="hlt">eddies</span> in the WNP. The enhanced POC flux at the edge of <span class="hlt">eddies</span> was mainly attributed to both large denuded diatom frustules and zooplankton fecal pellets based on scanning electron microscopy (SEM) examination. The result suggests that mesoscale <span class="hlt">eddies</span> in the oligotrophic waters in the subtropical WNP can efficiently increase the oceanic carbon export flux and the <span class="hlt">eddy</span> edge is a crucial conduit in carbon sequestration to deep waters. PMID:26171611</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780010687','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780010687"><span>Stratospheric <span class="hlt">warmings</span>: Synoptic, dynamic and general-circulation aspects</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mcinturff, R. M. (Editor)</p> <p>1978-01-01</p> <p>Synoptic descriptions consist largely of case studies, which involve a distinction between major and minor <span class="hlt">warmings</span>. Results of energetics studies show the importance of tropospheric-stratospheric interaction, and the significance of the pressure-work term near the tropopause. Theoretical studies have suggested the role of wave-zonal flow interaction as well as nonlinear interaction between <span class="hlt">eddies</span>, chemical and photochemical reactions, boundary forcing, and other factors. Numerical models have been based on such considerations, and these are discussed under various categories. Some indication is given as to why some of the models have been more successful than others in simulating warnings. The question of ozone and its role in <span class="hlt">warmings</span> is briefly discussed. Finally, a broad view is taken of stratospheric <span class="hlt">warmings</span> in relation to man's activities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22767922','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22767922"><span><span class="hlt">Eddy</span>-driven stratification initiates North Atlantic spring phytoplankton blooms.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mahadevan, Amala; D'Asaro, Eric; Lee, Craig; Perry, Mary Jane</p> <p>2012-07-06</p> <p>Springtime phytoplankton blooms photosynthetically fix carbon and export it from the surface ocean at globally important rates. These blooms are triggered by increased light exposure of the phytoplankton due to both seasonal light increase and the development of a near-surface vertical density gradient (stratification) that inhibits vertical mixing of the phytoplankton. Classically and in current climate models, that stratification is ascribed to a springtime <span class="hlt">warming</span> of the sea surface. Here, using observations from the subpolar North Atlantic and a three-dimensional biophysical model, we show that the initial stratification and resulting bloom are instead caused by <span class="hlt">eddy</span>-driven slumping of the basin-scale north-south density gradient, resulting in a patchy bloom beginning 20 to 30 days earlier than would occur by <span class="hlt">warming</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-sl3-121-2371.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-sl3-121-2371.html"><span>Pattern of downstream <span class="hlt">eddies</span> in stratocumulus clouds over Pacific Ocean</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1973-08-01</p> <p>SL3-121-2371 (July-September 1973) --- A pattern of downstream <span class="hlt">eddies</span> in the stratocumulus clouds over the Pacific Ocean west of Baja California, as photographed by the crewmen of the second Skylab manned mission (Skylab 3) from the space station cluster in Earth orbit. The clouds, produced by the cold California current running to the south and southwest, are prevented from rising by <span class="hlt">warm</span> air above them. Photo credit: NASA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMOS41C1243R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMOS41C1243R"><span>Interaction between Meso-scale <span class="hlt">Eddies</span> and Sub-polar Front in the East (Japan) Sea based on ARGO, AVHRR, and Numerical Model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ro, Y.; Kim, E.</p> <p>2008-12-01</p> <p>The East (Japan) Sea is drawing keen international attentions from broad spectrum of groups such as scientists, diplomats, and defense officers for its geopolitical situation, peculiar scientific assets recognized as miniature ocean. From physical oceanographic aspect, it is very rich with many features such as basin-wide circulation pattern, boundary currents, sub-polar front, meso-scale <span class="hlt">eddy</span> activities and deep water formation. The circulation pattern in the East (Japan) Sea has been of major interests for its peculiar gyre, a western boundary current and its separation that resembles the currents such as Kuroshio and Gulf Stream. In relation to the gyre system in the East Sea, the formation of the East Korea <span class="hlt">Warm</span> Current (EKWC) has brought up with many numerical experiments. Numerical experiments suggested a new idea to explain the formation of the EKWC in that the potential energy supply into the Ulleung Basin (UB) from the meso-scale <span class="hlt">eddy</span> is a key process. This is closely linked with the baroclinic instability and the meandering of offshore component of Tsushima <span class="hlt">Warm</span> Current. The UB has drawn attentions for its role of the formation of two major boundary currents, EKWC, North Korea <span class="hlt">Warm</span> Current (NKCC), their interaction with the mesoscale UWE, watermass exchange between the Northern Japan Basin and UB. Numerical experiments along with hydrographic and other satellite datasets such as AVHRR, altimeter and ARGO profiles have been analyzed to understand the formation of the UWE. We found that the influence of the bottom topography and frictional forcing against lateral boundary are all closely associated with the sub-polar front. Meandering of the axis of the sub-polar front is closely linked with the separation point of the EKWC, Ulleung <span class="hlt">Warm</span> <span class="hlt">Eddy</span>, and other small and meso-scale <span class="hlt">eddies</span> on the sub-polar front. These will be demonstrated with results of the numerical modeling experiments and animation movie will be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4740428','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4740428"><span>Observing mesoscale <span class="hlt">eddy</span> effects on mode-water subduction and transport in the North Pacific</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Xu, Lixiao; Li, Peiliang; Xie, Shang-Ping; Liu, Qinyu; Liu, Cong; Gao, Wendian</p> <p>2016-01-01</p> <p>While modelling studies suggest that mesoscale <span class="hlt">eddies</span> strengthen the subduction of mode waters, this <span class="hlt">eddy</span> effect has never been observed in the field. Here we report results from a field campaign from March 2014 that captured the <span class="hlt">eddy</span> effects on mode-water subduction south of the Kuroshio Extension east of Japan. The experiment deployed 17 Argo floats in an anticyclonic <span class="hlt">eddy</span> (AC) with enhanced daily sampling. Analysis of over 3,000 hydrographic profiles following the AC reveals that potential vorticity and apparent oxygen utilization distributions are asymmetric outside the AC <span class="hlt">core</span>, with enhanced subduction near the southeastern rim of the AC. There, the southward <span class="hlt">eddy</span> flow advects newly ventilated mode water from the north into the main thermocline. Our results show that subduction by <span class="hlt">eddy</span> lateral advection is comparable in magnitude to that by the mean flow—an effect that needs to be better represented in climate models. PMID:26829888</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatSR...746218G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatSR...746218G"><span>An Intrathermocline <span class="hlt">Eddy</span> and a tropical cyclone in the Bay of Bengal</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gordon, Arnold L.; Shroyer, Emily; Murty, V. S. N.</p> <p>2017-04-01</p> <p>The Bay of Bengal, subjected to monsoonal forcing and tropical cyclones, displays a complex field of ocean <span class="hlt">eddies</span>. On 5 December 2013 a sub-surface vortex or Intrathermocline <span class="hlt">Eddy</span> (ITE) composed of water characteristic of the Andaman Sea was observed within the thermocline of the western Bay of Bengal. We propose that the ITE was the product of Tropical Cyclone Lehar interaction on 27 November 2013 with a westward propagating surface <span class="hlt">eddy</span> from the eastern Bay of Bengal. While Lehar’s interaction with the ocean initially removes heat from the upper layers of the <span class="hlt">eddy</span>, air-sea flux is limited as the deeper portions of the <span class="hlt">eddy</span> was subducted into the stratified thermocline, inhibiting further interaction with the atmosphere. The ITE <span class="hlt">core</span> from 30 to 150 m is thus isolated from local air-sea fluxes by strong stratification at the mixed layer base, and its periphery is stable to shear instability, suggestive of longevity and the ability to carry water far distances with minimal modification.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28401909','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28401909"><span>An Intrathermocline <span class="hlt">Eddy</span> and a tropical cyclone in the Bay of Bengal.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gordon, Arnold L; Shroyer, Emily; Murty, V S N</p> <p>2017-04-12</p> <p>The Bay of Bengal, subjected to monsoonal forcing and tropical cyclones, displays a complex field of ocean <span class="hlt">eddies</span>. On 5 December 2013 a sub-surface vortex or Intrathermocline <span class="hlt">Eddy</span> (ITE) composed of water characteristic of the Andaman Sea was observed within the thermocline of the western Bay of Bengal. We propose that the ITE was the product of Tropical Cyclone Lehar interaction on 27 November 2013 with a westward propagating surface <span class="hlt">eddy</span> from the eastern Bay of Bengal. While Lehar's interaction with the ocean initially removes heat from the upper layers of the <span class="hlt">eddy</span>, air-sea flux is limited as the deeper portions of the <span class="hlt">eddy</span> was subducted into the stratified thermocline, inhibiting further interaction with the atmosphere. The ITE <span class="hlt">core</span> from 30 to 150 m is thus isolated from local air-sea fluxes by strong stratification at the mixed layer base, and its periphery is stable to shear instability, suggestive of longevity and the ability to carry water far distances with minimal modification.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110016684','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110016684"><span>Improved Thermoplastic/Iron-Particle Transformer <span class="hlt">Cores</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wincheski, Russell A.; Bryant, Robert G.; Namkung, Min</p> <p>2004-01-01</p> <p>A method of fabricating improved transformer <span class="hlt">cores</span> from composites of thermoplastic matrices and iron-particles has been invented. Relative to commercially available laminated-iron-alloy transformer <span class="hlt">cores</span>, the <span class="hlt">cores</span> fabricated by this method weigh less and are less expensive. Relative to prior polymer-matrix/ iron-particle composite-material transformer <span class="hlt">cores</span>, the <span class="hlt">cores</span> fabricated by this method can be made mechanically stronger and more magnetically permeable. In addition, whereas some prior <span class="hlt">cores</span> have exhibited significant <span class="hlt">eddy</span>-current losses, the <span class="hlt">cores</span> fabricated by this method exhibit very small <span class="hlt">eddy</span>-current losses. The <span class="hlt">cores</span> made by this method can be expected to be attractive for use in diverse applications, including high-signal-to-noise transformers, stepping motors, and high-frequency ignition coils. The present method is a product of an experimental study of the relationships among fabrication conditions, final densities of iron particles, and mechanical and electromagnetic properties of fabricated <span class="hlt">cores</span>. Among the fabrication conditions investigated were molding pressures (83, 104, and 131 MPa), and molding temperatures (250, 300, and 350 C). Each block of <span class="hlt">core</span> material was made by uniaxial-compression molding, at the applicable pressure/temperature combination, of a mixture of 2 weight percent of LaRC (or equivalent high-temperature soluble thermoplastic adhesive) with 98 weight percent of approximately spherical iron particles having diameters in the micron range. Each molded block was cut into square cross-section rods that were used as <span class="hlt">core</span> specimens in mechanical and electromagnetic tests. Some of the <span class="hlt">core</span> specimens were annealed at 900 C and cooled slowly before testing. For comparison, a low-carbon-steel <span class="hlt">core</span> was also tested. The results of the tests showed that density, hardness, and rupture strength generally increased with molding pressure and temperature, though the correlation was rather weak. The weakness of the correlation was attributed to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1232699-modifications-wrfs-dynamical-core-improve-treatment-moisture-large-eddy-simulations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1232699-modifications-wrfs-dynamical-core-improve-treatment-moisture-large-eddy-simulations"><span>Modifications to WRFs dynamical <span class="hlt">core</span> to improve the treatment of moisture for large-<span class="hlt">eddy</span> simulations</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Xiao, Heng; Endo, Satoshi; Wong, May; ...</p> <p>2015-10-29</p> <p>Yamaguchi and Feingold (2012) note that the cloud fields in their large-<span class="hlt">eddy</span> simulations (LESs) of marine stratocumulus using the Weather Research and Forecasting (WRF) model exhibit a strong sensitivity to time stepping choices. In this study, we reproduce and analyze this sensitivity issue using two stratocumulus cases, one marine and one continental. Results show that (1) the sensitivity is associated with spurious motions near the moisture jump between the boundary layer and the free atmosphere, and (2) these spurious motions appear to arise from neglecting small variations in water vapor mixing ratio (qv) in the pressure gradient calculation in themore » acoustic sub-stepping portion of the integration procedure. We show that this issue is remedied in the WRF dynamical <span class="hlt">core</span> by replacing the prognostic equation for the potential temperature θ with one for the moist potential temperature θm=θ(1+1.61qv), which allows consistent treatment of moisture in the calculation of pressure during the acoustic sub-steps. With this modification, the spurious motions and the sensitivity to the time stepping settings (i.e., the dynamic time step length and number of acoustic sub-steps) are eliminated in both of the example stratocumulus cases. In conclusion, this modification improves the applicability of WRF for LES applications, and possibly other models using similar dynamical <span class="hlt">core</span> formulations, and also permits the use of longer time steps than in the original code.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.8998K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.8998K"><span>A multidisciplinary glider survey of an open ocean dead-zone <span class="hlt">eddy</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karstensen, Johannes; Schütte, Florian; Pietri, Alice; Krahmann, Gerd; Fiedler, Björn; Löscher, Carolin; Grundle, Damian; Hauss, Helena; Körtzinger, Arne; Testor, Pierre; Viera, Nuno</p> <p>2016-04-01</p> <p>The physical (temperature, salinity) and biogeochemical (oxygen, nitrate, chlorophyll fluorescence, turbidity) structure of an anticyclonic modewater <span class="hlt">eddy</span>, hosting an open ocean dead zone, is investigated using observational data sampled in high temporal and spatial resolution with autonomous gliders in March and April 2014. The <span class="hlt">core</span> of the <span class="hlt">eddy</span> is identified in the glider data as a volume of fresher (on isopycnals) water in the depth range from the mixed layer base (about 70m) to about 200m depth. The width is about 80km. The <span class="hlt">core</span> aligns well with the 40 μmolkg-1 oxygen contour. From two surveys about 1 month apart, changes in the minimal oxygen concentrations (below 5μmolkg-1) are observed that indicate that small scale processes are in operation. Several scales of coherent variability of physical and biogeochemical variable are identified - from a few meters to the mesoscale. One of the gliders carried an autonomous Nitrate (N) sensor and the data is used to analyse the possible nitrogen pathways within the <span class="hlt">eddy</span>. Also the highest N is accompanied by lowest oxygen concentrations, the AOU:N ratio reveals a preferred oxygen cycling per N.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917050Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917050Z"><span>Mesoscale <span class="hlt">eddies</span> control meridional heat flux variability in the subpolar North Atlantic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Jian; Bower, Amy; Yang, Jiayan; Lin, Xiaopei; Zhou, Chun</p> <p>2017-04-01</p> <p>The meridional heat flux in the subpolar North Atlantic is vital to the climate of the high-latitude North Atlantic. For the basinwide heat flux across a section between Greenland and Scotland, much of the variability occurs in the Iceland basin, where the North Atlantic Current (NAC) carries relatively <span class="hlt">warm</span> and salty water northward. As a component of the Overturning in the Subpolar North Atlantic Program (OSNAP), WHOI and OUC are jointly operating gliders in the Iceland Basin to continuously monitor the circulation and corresponding heat flux in this <span class="hlt">eddy</span>-rich region. Based on one year of observations, two circulation regimes in the Iceland basin have been identified: a mesoscale <span class="hlt">eddy</span> like circulation pattern and northward NAC circulation pattern. When a mesoscale <span class="hlt">eddy</span> is generated, the rotational currents associated with the <span class="hlt">eddy</span> lead to both northward and southward flow in the Iceland basin. This is quite different from the broad northward flow associated with the NAC when there is no <span class="hlt">eddy</span>. The transition between the two regimes coupled with the strong temperature front in the Iceland basin can modify the meridional heat flux on the order of 0.3PW, which is the dominant source for the heat flux change the Iceland Basin. According to high-resolution numerical model results, the Iceland Basin has the largest contribution to the meridional heat flux variability along the section between Greenland and Scotland. Therefore, mesoscale <span class="hlt">eddies</span> in the Iceland Basin provide important dynamics to control the meridional heat flux variability in the subpolar North Atlantic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5388918','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5388918"><span>An Intrathermocline <span class="hlt">Eddy</span> and a tropical cyclone in the Bay of Bengal</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gordon, Arnold L.; Shroyer, Emily; Murty, V. S. N.</p> <p>2017-01-01</p> <p>The Bay of Bengal, subjected to monsoonal forcing and tropical cyclones, displays a complex field of ocean <span class="hlt">eddies</span>. On 5 December 2013 a sub-surface vortex or Intrathermocline <span class="hlt">Eddy</span> (ITE) composed of water characteristic of the Andaman Sea was observed within the thermocline of the western Bay of Bengal. We propose that the ITE was the product of Tropical Cyclone Lehar interaction on 27 November 2013 with a westward propagating surface <span class="hlt">eddy</span> from the eastern Bay of Bengal. While Lehar’s interaction with the ocean initially removes heat from the upper layers of the <span class="hlt">eddy</span>, air-sea flux is limited as the deeper portions of the <span class="hlt">eddy</span> was subducted into the stratified thermocline, inhibiting further interaction with the atmosphere. The ITE <span class="hlt">core</span> from 30 to 150 m is thus isolated from local air-sea fluxes by strong stratification at the mixed layer base, and its periphery is stable to shear instability, suggestive of longevity and the ability to carry water far distances with minimal modification. PMID:28401909</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25532432','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25532432"><span><span class="hlt">Core</span> temperature changes and sprint performance of elite female soccer players after a 15-minute <span class="hlt">warm</span>-up in a hot-humid environment.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Somboonwong, Juraiporn; Chutimakul, Ladawan; Sanguanrungsirikul, Sompol</p> <p>2015-01-01</p> <p><span class="hlt">Warm</span>-up session should be modified according to the environmental conditions. However, there is limited evidence regarding the proper soccer <span class="hlt">warm</span>-up time for female players in the heat. The purpose of this study was to examine the rise in <span class="hlt">core</span> body temperature and the sprint performance after a 15-minute <span class="hlt">warm</span>-up in a hot-humid environment using female soccer players during the different phases of their menstrual cycle. Thirteen eumenorrheic national female soccer players (aged 18.8 ± 1.3 years, (Equation is included in full-text article.)53.05 ± 6.66 ml·kg·min) performed a 15-minute <span class="hlt">warm</span>-up protocol at an ambient temperature of 32.5 ± 1.6° C with a relative humidity of 53.6 ± 10.2% during their early follicular and midluteal phases of their cycle. The <span class="hlt">warm</span>-up protocol is composed of jogging, skipping by moving the legs in various directions, and sprinting alternated with jogging, followed by a 45-minute recovery period. Rectal temperatures were recorded during the rest period and every 5 minutes throughout the <span class="hlt">warm</span>-up and recovery phases of the study. Heart rate was monitored at rest and every 5 minutes during the <span class="hlt">warm</span>-up. Forty-yard sprint time was assessed immediately after the completion of <span class="hlt">warm</span>-up, which was later compared with the time at baseline. The value for the baseline was obtained at least 2 days before the experiment. During the early follicular and midluteal phases, the rectal temperatures obtained at the end of the <span class="hlt">warm</span>-up period were significantly (p < 0.05) higher by 1.26° C (95% confidence interval [CI] = +0.46 to +2.06° C) and 1.18° C (95% CI = +0.53 to +1.83° C), whereas the heart rates increased to 153.67 ± 20.34 and 158.38 ± 15.19 b·min, respectively. After 20 minutes of the recovery period, the rectal temperature decreased by approximately 50%. The sprint times were significantly (p < 0.05) faster post-<span class="hlt">warm</span>-up during both the early follicular (5.52 seconds; 95% CI = 5.43-5.60 seconds) and midluteal phases (5.51 seconds; 95% CI</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMNG13A..05W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMNG13A..05W"><span>Ingredients of the <span class="hlt">Eddy</span> Soup: A Geometric Decomposition of <span class="hlt">Eddy</span>-Mean Flow Interactions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Waterman, S.; Lilly, J. M.</p> <p>2014-12-01</p> <p>Understanding <span class="hlt">eddy</span>-mean flow interactions is a long-standing problem in geophysical fluid dynamics with modern relevance to the task of representing <span class="hlt">eddy</span> effects in coarse resolution models while preserving their dependence on the underlying dynamics of the flow field. Exploiting the recognition that the velocity covariance matrix/<span class="hlt">eddy</span> stress tensor that describes <span class="hlt">eddy</span> fluxes, also encodes information about <span class="hlt">eddy</span> size, shape and orientation through its geometric representation in the form of the so-called variance ellipse, suggests a potentially fruitful way forward. Here we present a new framework that describes <span class="hlt">eddy</span>-mean flow interactions in terms of a geometric description of the <span class="hlt">eddy</span> motion, and illustrate it with an application to an unstable jet. Specifically we show that the <span class="hlt">eddy</span> vorticity flux divergence F, a key dynamical quantity describing the average effect of fluctuations on the time-mean flow, may be decomposed into two components with distinct geometric interpretations: 1. variations in variance ellipse orientation; and 2. variations in the anisotropic part of the <span class="hlt">eddy</span> kinetic energy, a function of the variance ellipse size and shape. Application of the divergence theorem shows that F integrated over a region is explained entirely by variations in these two quantities around the region's periphery. This framework has the potential to offer new insights into <span class="hlt">eddy</span>-mean flow interactions in a number of ways. It identifies the ingredients of the <span class="hlt">eddy</span> motion that have a mean flow forcing effect, it links <span class="hlt">eddy</span> effects to spatial patterns of variance ellipse geometry that can suggest the mechanisms underpinning these effects, and finally it illustrates the importance of resolving <span class="hlt">eddy</span> shape and orientation, and not just <span class="hlt">eddy</span> size/energy, to accurately represent <span class="hlt">eddy</span> feedback effects. These concepts will be both discussed and illustrated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GeoRL..3916608E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GeoRL..3916608E"><span>An avenue of <span class="hlt">eddies</span>: Quantifying the biophysical properties of mesoscale <span class="hlt">eddies</span> in the Tasman Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Everett, J. D.; Baird, M. E.; Oke, P. R.; Suthers, I. M.</p> <p>2012-08-01</p> <p>The Tasman Sea is unique - characterised by a strong seasonal western boundary current that breaks down into a complicated field of mesoscale <span class="hlt">eddies</span> almost immediately after separating from the coast. Through a 16-year analysis of Tasman Sea <span class="hlt">eddies</span>, we identify a region along the southeast Australian coast which we name ‘<span class="hlt">Eddy</span> Avenue’ where <span class="hlt">eddies</span> have higher sea level anomalies, faster rotation and greater sea surface temperature and chlorophyll a anomalies. The density of cyclonic and anticyclonic <span class="hlt">eddies</span> within <span class="hlt">Eddy</span> Avenue is 23% and 16% higher respectively than the broader Tasman Sea. We find that <span class="hlt">Eddy</span> Avenue cyclonic and anticyclonic <span class="hlt">eddies</span> have more strongly differentiated biological properties than those of the broader Tasman Sea, as a result of larger anticyclonic <span class="hlt">eddies</span> formed from Coral Sea water depressing chl. a concentrations, and for coastal cyclonic <span class="hlt">eddies</span> due to the entrainment of nutrient-rich shelf waters. Cyclonic <span class="hlt">eddies</span> within <span class="hlt">Eddy</span> Avenue have almost double the chlorophyll a (0.35 mg m-3) of anticyclonic <span class="hlt">eddies</span> (0.18 mg m-3). The average chlorophyll a concentration for cyclonic <span class="hlt">eddies</span> is 16% higher in <span class="hlt">Eddy</span> Avenue and 28% lower for anticyclonic <span class="hlt">eddies</span> when compared to the Tasman Sea. With a strengthening East Australian Current, the propagation of these <span class="hlt">eddies</span> will have significant implications for heat transport and the entrainment and connectivity of plankton and larval fish populations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.1102B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.1102B"><span>Methane Emissions from Permafrost Regions using Low-Power <span class="hlt">Eddy</span> Covariance Stations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burba, G.; Sturtevant, C.; Schreiber, P.; Peltola, O.; Zulueta, R.; Mammarella, I.; Haapanala, S.; Rinne, J.; Vesala, T.; McDermitt, D.; Oechel, W.</p> <p>2012-04-01</p> <p>Methane is an important greenhouse gas with a <span class="hlt">warming</span> potential 23 times that of carbon dioxide over a 100-year cycle. The permafrost regions of the world store significant amounts of organic materials under anaerobic conditions, leading to large methane production and accumulation in the upper layers of bedrock, soil and ice. These regions are currently undergoing dramatic change in response to <span class="hlt">warming</span> trends, and may become a significant potential source of global methane release under a <span class="hlt">warming</span> climate over the coming decades and centuries. Presently, most measurements of methane fluxes in permafrost regions have been made with static chamber techniques, and very few were done with the <span class="hlt">eddy</span> covariance approach using closed-path analyzers. Although chambers and closed-path analyzers have advantages, both techniques have significant limitations, especially for permafrost research. Static chamber measurements are discrete in time and space, and particularly difficult to use over polygonal tundra with highly non-uniform micro-topography and active water layer. They also may not capture the dynamics of methane fluxes on varying time scales (hours to annual estimates). In addition, placement of the chamber may disturb the surface integrity causing a significant over-estimation of the measured flux. Closed-path gas analyzers for measuring methane <span class="hlt">eddy</span> fluxes employ advanced technologies such as TDLS (Tunable Diode Laser Spectroscopy), ICOS (Integrated Cavity Output Spectroscopy), WS-CRDS (wavelength scanned cavity ring-down spectroscopy), but require high flow rates at significantly reduced optical cell pressures to provide adequate response time and sharpen absorption features. Such methods, when used with the <span class="hlt">eddy</span> covariance technique, require a vacuum pump and a total of 400-1500 Watts of grid power for the pump and analyzer system. The weight of such systems often exceeds 100-200 lbs, restricting practical applicability for remote or portable field studies. As a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20120002780&hterms=Evolution+test&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DEvolution%2Btest','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20120002780&hterms=Evolution+test&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DEvolution%2Btest"><span>Genesis of Pre-Hurricane Felix (2007). Part 2; <span class="hlt">Warm</span> <span class="hlt">Core</span> Formation, Precipitation Evolution, and Predictability</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, zhuo; Montgomery M. T.; Dunkerton, T. J.</p> <p>2010-01-01</p> <p>This is the second of a two-part study examining the simulated formation of Atlantic Hurricane Felix (2007) in a cloud-representing framework. Here several open issues are addressed concerning the formation of the storm's <span class="hlt">warm</span> <span class="hlt">core</span>, the evolution and respective contribution of stratiform versus convective precipitation within the parent wave's pouch, and the sensitivity of the development pathway reported in Part I to different model physics options and initial conditions. All but one of the experiments include ice microphysics as represented by one of several parameterizations, and the partition of convective versus stratiform precipitation is accomplished using a standard numerical technique based on the high-resolution control experiment. The transition to a <span class="hlt">warm-core</span> tropical cyclone from an initially cold-<span class="hlt">core</span>, lower tropospheric wave disturbance is analyzed first. As part of this transformation process, it is shown that deep moist convection is sustained near the pouch center. Both convective and stratiform precipitation rates increase with time. While stratiform precipitation occupies a larger area even at the tropical storm stage, deep moist convection makes a comparable contribution to the total rain rate at the pregenesis stage, and a larger contribution than stratiform processes at the storm stage. The convergence profile averaged near the pouch center is found to become dominantly convective with increasing deep moist convective activity there. Low-level convergence forced by interior diabatic heating plays a key role in forming and intensifying the near-surface closed circulation, while the midlevel convergence associated with stratiform precipitation helps to increase the midlevel circulation and thereby contributes to the formation and upward extension of a tropospheric-deep cyclonic vortex. Sensitivity tests with different model physics options and initial conditions demonstrate a similar pregenesis evolution. These tests suggest that the genesis</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27168982','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27168982"><span>Nutrient uplift in a cyclonic <span class="hlt">eddy</span> increases diversity, primary productivity and iron demand of microbial communities relative to a western boundary current.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Doblin, Martina A; Petrou, Katherina; Sinutok, Sutinee; Seymour, Justin R; Messer, Lauren F; Brown, Mark V; Norman, Louiza; Everett, Jason D; McInnes, Allison S; Ralph, Peter J; Thompson, Peter A; Hassler, Christel S</p> <p>2016-01-01</p> <p>The intensification of western boundary currents in the global ocean will potentially influence meso-scale <span class="hlt">eddy</span> generation, and redistribute microbes and their associated ecological and biogeochemical functions. To understand <span class="hlt">eddy</span>-induced changes in microbial community composition as well as how they control growth, we targeted the East Australian Current (EAC) region to sample microbes in a cyclonic (cold-<span class="hlt">core</span>) <span class="hlt">eddy</span> (CCE) and the adjacent EAC. Phototrophic and diazotrophic microbes were more diverse (2-10 times greater Shannon index) in the CCE relative to the EAC, and the cell size distribution in the CCE was dominated (67%) by larger micro-plankton [Formula: see text], as opposed to pico- and nano-sized cells in the EAC. Nutrient addition experiments determined that nitrogen was the principal nutrient limiting growth in the EAC, while iron was a secondary limiting nutrient in the CCE. Among the diazotrophic community, heterotrophic NifH gene sequences dominated in the EAC and were attributable to members of the gamma-, beta-, and delta-proteobacteria, while the CCE contained both phototrophic and heterotrophic diazotrophs, including Trichodesmium, UCYN-A and gamma-proteobacteria. Daily sampling of incubation bottles following nutrient amendment captured a cascade of effects at the cellular, population and community level, indicating taxon-specific differences in the speed of response of microbes to nutrient supply. Nitrogen addition to the CCE community increased picoeukaryote chlorophyll a quotas within 24 h, suggesting that nutrient uplift by <span class="hlt">eddies</span> causes a 'greening' effect as well as an increase in phytoplankton biomass. After three days in both the EAC and CCE, diatoms increased in abundance with macronutrient (N, P, Si) and iron amendment, whereas haptophytes and phototrophic dinoflagellates declined. Our results indicate that cyclonic <span class="hlt">eddies</span> increase delivery of nitrogen to the upper ocean to potentially mitigate the negative consequences of increased</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.B34B0359M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.B34B0359M"><span>Microbial utilization of nitrogen in cold <span class="hlt">core</span> <span class="hlt">eddies</span>: size does matter</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McInnes, A.; Messer, L. F.; Laiolo, L.; Laverock, B.; Laczka, O.; Brown, M. V.; Seymour, J.; Doblin, M.</p> <p>2016-02-01</p> <p>As the base of the marine food web, and the first step in the biological carbon pump, understanding changes in microbial community composition is essential for predicting changes in the marine nitrogen (N) cycle. Climate change projections suggest that oligotrophic waters will become more stratified with a concomitant shift in microbial community composition based on changes in N supply. In regions of strong boundary currents, <span class="hlt">eddies</span> could reduce this limitation through nutrient uplift and other forms of <span class="hlt">eddy</span> mixing. Understanding the preference for different forms of N by microbes is essential for understanding and predicting shifts in the microbial community. This study aims to understand the utilization of different N species within different microbial size fractions as well as understand the preferred source of N to these groups across varying mesoscale and sub-mesoscale features in the East Australian Current (EAC). In June 2015 we sampled microbial communities from three depths (surface, chlorophyll-a maximum and below the mixed layer), in three mesoscale and sub-mesoscale <span class="hlt">eddy</span> features, as well as two end-point water masses (coastal and oligotrophic EAC water). Particulate matter was analysed for stable C and N isotopes, and seawater incubations with trace amounts of 15NO3, 15NH4, 15N2, 15Urea and 13C were undertaken. All samples were size fractionated into 0.3-2.0 µm, 2.0-10 µm, and >10 µm size classes, encompassing the majority of microbes in these waters. Microbial community composition was also assessed (pigments, flow cytometry, DNA), as well as physical and chemical parameters, to better understand the drivers of carbon fixation and nitrogen utilization across a diversity of water masses and microbial size classes. We observed that small, young features have a greater abundance of larger size classes. We therefore predict that these microbes will preferentially draw down the recently pulsed NO3. Ultimately, the size and age of a feature will</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5193B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5193B"><span>Southern Ocean <span class="hlt">eddy</span> compensation in a forced <span class="hlt">eddy</span>-resolving GCM</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bruun Poulsen, Mads; Jochum, Markus; Eden, Carsten; Nuterman, Roman</p> <p>2017-04-01</p> <p>Contemporary <span class="hlt">eddy</span>-resolving model studies have demonstrated that the common parameterisation of isopycnal mixing in the ocean is subject to limitations in the Southern Ocean where the mesoscale <span class="hlt">eddies</span> are of leading order importance to the dynamics. We here present forced simulations from the Community Earth System Model on a global {1/10}° and 1° horizontal grid, the latter employing an <span class="hlt">eddy</span> parameterisation, where the strength of the zonal wind stress south of 25°S has been varied. With a 50% zonally symmetric increase of the wind stress, we show that the two models arrive at two radically different solutions in terms of the large-scale circulation, with an increase of the deep inflow of water to the Southern Ocean at 40°S by 50% in the high resolution model against 20% at coarse resolution. Together with a weaker vertical displacement of the pycnocline in the 1° model, these results suggest that the parameterised <span class="hlt">eddies</span> have an overly strong compensating effect on the water mass transformation compared to the explicit <span class="hlt">eddies</span>. Implications for <span class="hlt">eddy</span> mixing parameterisations will be discussed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.9209G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.9209G"><span>Complementary Use of Glider Data, Altimetry, and Model for Exploring Mesoscale <span class="hlt">Eddies</span> in the Tropical Pacific Solomon Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gourdeau, L.; Verron, J.; Chaigneau, A.; Cravatte, S.; Kessler, W.</p> <p>2017-11-01</p> <p>Mesoscale activity is an important component of the Solomon Sea circulation that interacts with the energetic low-latitude western boundary currents of the South Tropical Pacific Ocean carrying waters of subtropical origin before joining the equatorial Pacific. Mixing associated with mesoscale activity could explain water mass transformation observed in the Solomon Sea that likely impacts El Niño Southern Oscillation dynamics. This study makes synergetic use of glider data, altimetry, and high-resolution model for exploring mesoscale <span class="hlt">eddies</span>, especially their vertical structures, and their role on the Solomon Sea circulation. The description of individual <span class="hlt">eddies</span> observed by altimetry and gliders provides the first elements to characterize the 3-D structure of these tropical <span class="hlt">eddies</span>, and confirms the usefulness of the model to access a more universal view of such <span class="hlt">eddies</span>. Mesoscale <span class="hlt">eddies</span> appear to have a vertical extension limited to the Surface Waters (SW) and the Upper Thermocline Water (UTW), i.e., the first 140-150 m depth. Most of the <span class="hlt">eddies</span> are nonlinear, meaning that <span class="hlt">eddies</span> can trap and transport water properties. But they weakly interact with the deep New Guinea Coastal Undercurrent that is a key piece of the equatorial circulation. Anticyclonic <span class="hlt">eddies</span> are particularly efficient to advect salty and <span class="hlt">warm</span> SW coming from the intrusion of equatorial Pacific waters at Solomon Strait, and to impact the characteristics of the New Guinea Coastal Current. Cyclonic <span class="hlt">eddies</span> are particularly efficient to transport South Pacific Tropical Water (SPTW) anomalies from the North Vanuatu Jet and to erode by diapycnal mixing the high SPTW salinity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870057537&hterms=sampling+distribution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsampling%2Bdistribution','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870057537&hterms=sampling+distribution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsampling%2Bdistribution"><span>Multiplatform sampling (ship, aircraft, and satellite) of a Gulf Stream <span class="hlt">warm</span> <span class="hlt">core</span> ring</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Raymond C.; Brown, Otis B.; Hoge, Frank E.; Baker, Karen S.; Evans, Robert H.</p> <p>1987-01-01</p> <p>The purpose of this paper is to demonstrate the ability to meet the need to measure distributions of physical and biological properties of the ocean over large areas synoptically and over long time periods by means of remote sensing utilizing contemporaneous buoy, ship, aircraft, and satellite (i.e., multiplatform) sampling strategies. A mapping of sea surface temperature and chlorophyll fields in a Gulf Stream <span class="hlt">warm</span> <span class="hlt">core</span> ring using the multiplatform approach is described. Sampling capabilities of each sensing system are discussed as background for the data collected by means of these three dissimilar methods. Commensurate space/time sample sets from each sensing system are compared, and their relative accuracies in space and time are determined. The three-dimensional composite maps derived from the data set provide a synoptic perspective unobtainable from single platforms alone.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1211432-nanolaminated-permalloy-core-high-flux-high-frequency-ultracompact-power-conversion','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1211432-nanolaminated-permalloy-core-high-flux-high-frequency-ultracompact-power-conversion"><span>Nanolaminated Permalloy <span class="hlt">Core</span> for High-Flux, High-Frequency Ultracompact Power Conversion</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kim, J; Kim, M; Galle, P</p> <p>2013-09-01</p> <p>Metallic magnetic materials have desirable magnetic properties, including high permeability, and high saturation flux density, when compared with their ferrite counterparts. However, <span class="hlt">eddy</span>-current losses preclude their use in many switching converter applications, due to the challenge of simultaneously achieving sufficiently thin laminations such that <span class="hlt">eddy</span> currents are suppressed (e.g., 500 nm-1 mu m for megahertz frequencies), while simultaneously achieving overall <span class="hlt">core</span> thicknesses such that substantial power can be handled. A CMOS-compatible fabrication process based on robot-assisted sequential electrodeposition followed by selective chemical etching has been developed for the realization of a <span class="hlt">core</span> of substantial overall thickness (tens to hundreds ofmore » micrometers) comprised of multiple, stacked permalloy (Ni80Fe20) nanolaminations. Tests of toroidal inductors with nanolaminated <span class="hlt">cores</span> showed negligible <span class="hlt">eddy</span>-current loss relative to total <span class="hlt">core</span> loss even at a peak flux density of 0.5 T in the megahertz frequency range. To illustrate the use of these <span class="hlt">cores</span>, a buck power converter topology is implemented with switching frequencies of 1-2 MHz. Power conversion efficiency greater than 85% with peak operating flux density of 0.3-0.5 T in the <span class="hlt">core</span> and converter output power level exceeding 5 W was achieved.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.3964S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.3964S"><span>Characterizing frontal <span class="hlt">eddies</span> along the East Australian Current from HF radar observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schaeffer, Amandine; Gramoulle, A.; Roughan, M.; Mantovanelli, A.</p> <p>2017-05-01</p> <p>The East Australian Current (EAC) dominates the ocean circulation along south-eastern Australia, however, little is known about the submesoscale frontal instabilities associated with this western boundary current. One year of surface current measurements from HF radars, in conjunction with mooring and satellite observations, highlight the occurrence and propagation of meanders and frontal <span class="hlt">eddies</span> along the inshore edge of the EAC. <span class="hlt">Eddies</span> were systematically identified using the geometry of the high spatial resolution (˜1.5 km) surface currents, and tracked every hour. Cyclonic <span class="hlt">eddies</span> were observed irregularly, on average every 7 days, with inshore radius ˜10 km. Among various forms of structures, frontal <span class="hlt">eddies</span> associated with EAC meanders were characterized by poleward advection speeds of ˜0.3-0.4 m/s, migrating as far as 500 km south, based on satellite imagery. Flow field kinematics show that cyclonic <span class="hlt">eddies</span> have high Rossby numbers (0.6-1.9) and enhance particle dispersion. Patches of intensified surface divergence at the leading edge of the structures are expected to generate vertical uplift. This is confirmed by subsurface measurements showing temperature uplift of up to 55 m over 24 h and rough estimates of vertical velocities of 10s of meters per day. While frontal <span class="hlt">eddies</span> propagate through the radar domain independently of local wind stress, upfront wind can influence their stalling and growth, and can also generate large cold <span class="hlt">core</span> <span class="hlt">eddies</span> through intense shear. Such coherent structures are a major mechanism for the transport and entrainment of nutrient rich coastal or deep waters, influencing physical and biological dynamics, and connectivity over large distances.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MMTA...48.4645B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MMTA...48.4645B"><span>Liquid Film Migration in <span class="hlt">Warm</span> Formed Aluminum Brazing Sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benoit, M. J.; Whitney, M. A.; Wells, M. A.; Jin, H.; Winkler, S.</p> <p>2017-10-01</p> <p><span class="hlt">Warm</span> forming has previously proven to be a promising manufacturing route to improve formability of Al brazing sheets used in automotive heat exchanger production; however, the impact of <span class="hlt">warm</span> forming on subsequent brazing has not previously been studied. In particular, the interaction between liquid clad and solid <span class="hlt">core</span> alloys during brazing through the process of liquid film migration (LFM) requires further understanding. Al brazing sheet comprised of an AA3003 <span class="hlt">core</span> and AA4045 clad alloy, supplied in O and H24 tempers, was stretched between 0 and 12 pct strain, at room temperature and 523K (250 °C), to simulate <span class="hlt">warm</span> forming. Brazeability was predicted through thermal and microstructure analysis. The rate of solid-liquid interactions was quantified using thermal analysis, while microstructure analysis was used to investigate the opposing processes of LFM and <span class="hlt">core</span> alloy recrystallization during brazing. In general, liquid clad was consumed relatively rapidly and LFM occurred in forming conditions where the <span class="hlt">core</span> alloy did not recrystallize during brazing. The results showed that <span class="hlt">warm</span> forming could potentially impair brazeability of O temper sheet by extending the regime over which LFM occurs during brazing. No change in microstructure or thermal data was found for H24 sheet when the forming temperature was increased, and thus <span class="hlt">warm</span> forming was not predicted to adversely affect the brazing performance of H24 sheet.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.2491L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.2491L"><span>Air-sea heat fluxes associated to mesoscale <span class="hlt">eddies</span> in the Southwestern Atlantic Ocean and their dependence on different regional conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leyba, Inés M.; Saraceno, Martín; Solman, Silvina A.</p> <p>2017-10-01</p> <p>Heat fluxes between the ocean and the atmosphere largely represent the link between the two media. A possible mechanism of interaction is generated by mesoscale ocean <span class="hlt">eddies</span>. In this work we evaluate if <span class="hlt">eddies</span> in Southwestern Atlantic (SWA) Ocean may significantly affect flows between the ocean and the atmosphere. Atmospherics conditions associated with <span class="hlt">eddies</span> were examined using data of sea surface temperature (SST), sensible (SHF) and latent heat flux (LHF) from NCEP-CFSR reanalysis. On average, we found that NCEP-CFSR reanalysis adequately reflects the variability expected from <span class="hlt">eddies</span> in the SWA, considering the classical <span class="hlt">eddy</span>-pumping theory: anticyclonic (cyclonic) <span class="hlt">eddies</span> cause maximum positive (negative) anomalies with maximum mean anomalies of 0.5 °C (-0.5 °C) in SST, 6 W/m2 (-4 W/m2) in SHF and 12 W/m2 (-9 W/m2) in LHF. However, a regional dependence of heat fluxes associated to mesoscale cyclonic <span class="hlt">eddies</span> was found: in the turbulent Brazil-Malvinas Confluence (BMC) region they are related with positive heat flux anomaly (ocean heat loss), while in the rest of the SWA they behave as expected (ocean heat gain). We argue that <span class="hlt">eddy</span>-pumping do not cool enough the center of the cyclonic <span class="hlt">eddies</span> in the BMC region simply because most of them trapped very <span class="hlt">warm</span> waters when they originate in the subtropics. The article therefore concludes that in the SWA: (1) a robust link exists between the SST anomalies generated by <span class="hlt">eddies</span> and the local anomalous heat flow between the ocean and the atmosphere; (2) in the BMC region cyclonic <span class="hlt">eddies</span> are related with positive heat anomalies, contrary to what is expected.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.9795D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.9795D"><span>Mesoscale <span class="hlt">Eddies</span> in the Northwestern Pacific Ocean: Three-Dimensional <span class="hlt">Eddy</span> Structures and Heat/Salt Transports</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dong, Di; Brandt, Peter; Chang, Ping; Schütte, Florian; Yang, Xiaofeng; Yan, Jinhui; Zeng, Jisheng</p> <p>2017-12-01</p> <p>The region encompassing the Kuroshio Extension (KE) in the Northwestern Pacific Ocean (25°N-45°N and 130°E-180°E) is one of the most <span class="hlt">eddy</span>-energetic regions of the global ocean. The three-dimensional structures and transports of mesoscale <span class="hlt">eddies</span> in this region are comprehensively investigated by combined use of satellite data and Argo profiles. With the allocation of Argo profiles inside detected <span class="hlt">eddies</span>, the spatial variations of structures of <span class="hlt">eddy</span> temperature and salinity anomalies are analyzed. The results show that <span class="hlt">eddies</span> predominantly have subsurface (near-surface) intensified temperature and salinity anomalies south (north) of the KE jet, which is related to different background stratifications between these regions. A new method based on <span class="hlt">eddy</span> trajectories and the inferred three-dimensional <span class="hlt">eddy</span> structures is proposed to estimate heat and salt transports by <span class="hlt">eddy</span> movements in a Lagrangian framework. Spatial distributions of <span class="hlt">eddy</span> transports are presented over the vicinity of the KE for the first time. The magnitude of <span class="hlt">eddy</span>-induced meridional heat (freshwater volume) transport is on the order of 0.01 PW (103 m3/s). The <span class="hlt">eddy</span> heat transport divergence results in an oceanic heat loss south and heat gain north of the KE, thereby reinforcing and counteracting the oceanic heat loss from air-sea fluxes south and north of the KE jet, respectively. It also suggests a poleward heat transport across the KE jet due to <span class="hlt">eddy</span> propagation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG21A0131P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG21A0131P"><span>The Stability of Outcropping Ocean <span class="hlt">Eddies</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paldor, N.; Cohen, Y.; Dvorkin, Y.</p> <p>2017-12-01</p> <p>In the end of the last century numerous ship-borne observations and linear instability studies have addressed the long life span of meso-scale ocean <span class="hlt">eddies</span>. These <span class="hlt">eddies</span> are observed to persist in the ocean for periods of 2-3 years with little deformation. As <span class="hlt">eddy</span> instabilities occur because Rossby waves in the surrounding (assumed motionless) ocean interact with various waves in the <span class="hlt">eddy</span> itself, the stability was attributed to some <span class="hlt">eddy</span> structure that hinders such wave-wave interactions. However, instabilities with growthrates of the order of the inertial period were found in various multilayer models including hypothesized structures and several observed <span class="hlt">eddy</span> structures. A solution to the difference between instability theory and observed stability was ultimately suggested by relaxing the assumption of a motionless ocean that surrounds the <span class="hlt">eddy</span> and prescribing the mean flow in the ocean such that it counterbalances the depth changes imposed by the <span class="hlt">eddy</span> while maintaining a constant PV-ocean. This hypothesis was successfully applied to Gaussian <span class="hlt">eddies</span> for mathematical simplicity. Yet, the Gaussian <span class="hlt">eddy</span> has no surface front - thus avoiding instabilities that involve frontal waves - and it disagrees with observation that clearly show that most <span class="hlt">eddies</span> have surface fronts. Here the constant PV ocean hypothesis is applied to two frontal <span class="hlt">eddies</span>: constant PV-<span class="hlt">eddies</span> and solidly rotating <span class="hlt">eddy</span>. A complete account of the mean flow of the coupled <span class="hlt">eddy</span>-ocean system is analyzed using a canonical formulation of the gradient balance. The phase speeds of waves in the <span class="hlt">eddy</span>-ocean system are computed by a shooting method. Both <span class="hlt">eddies</span> are found to be unstable in motionless ocean, yet in a constant PV-ocean no instabilities are found using the exact same numerical search. While many <span class="hlt">eddy</span> structures can be hypothesized there are only a handful of physical mechanisms for instability and in these <span class="hlt">eddies</span> the assumed constant PV-ocean negates many of these physical mechanisms for instability</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080031702&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DGlobal%2Bwarming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080031702&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DGlobal%2Bwarming"><span>Global <span class="hlt">Warming</span> - Are We on Thin Ice?</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tucker, Compton J.</p> <p>2007-01-01</p> <p>The evidence for global <span class="hlt">warming</span> is very conclusive for the past 400-500 years. Prior to the 16th century, proxy surface temperature data are regionally good but lack a global distribution. The speaker will review surface temperature reconstruction based upon ice <span class="hlt">cores</span>, coral <span class="hlt">cores</span>, tree rings, deep sea sediments, and bore holes and discuss the controversy surrounding global <span class="hlt">warming</span>. This will be contrasted with the excellent data we have from the satellite era of earth observations the past 30+ years that enables the quantitative study of climate across earth science disciplines.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011DSRII..58..538S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011DSRII..58..538S"><span>The strengthening East Australian Current, its <span class="hlt">eddies</span> and biological effects — an introduction and overview</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suthers, Iain M.; Young, Jock W.; Baird, Mark E.; Roughan, Moninya; Everett, Jason D.; Brassington, Gary B.; Byrne, Maria; Condie, Scott A.; Hartog, Jason R.; Hassler, Christel S.; Hobday, Alistair J.; Holbrook, Neil J.; Malcolm, Hamish A.; Oke, Peter R.; Thompson, Peter A.; Ridgway, Ken</p> <p>2011-03-01</p> <p> particles may rise up to the euphotic zone and then down beneath. In a <span class="hlt">warm-core</span> <span class="hlt">eddy</span>, surface flooding is shown to produce a new shallower surface mixed layer and promote algal growth. An assessment of plankton data from 1938-1942 showed that the local, synoptic conditions had to be incorporated before any comparison with the present. There are useful relationships of water mass characteristics in the Tasman Sea and separation zone with larval fish diversity and abundance, as well as with long-line fisheries. These fisheries-pelagic habitat relationships are invaluable for fisheries management, as well as for climate change assessments. There is further need to examine the EAC influence on rainfall, storm activity, dust deposition, and on the movements by fish, sharks and whales. The Australian Integrated Marine Observing System (IMOS) has provided new infrastructure to determine the changing behaviour of the EAC and its bio-physical interaction with the coasts and estuaries. The forecasting and hindcasting capability developed under the Bluelink project has provided a new tool for data synthesis and dynamical analysis. The impact of a strengthening EAC and how it influences the livelihoods of over half the Australian population, from Brisbane to Sydney, Hobart and Melbourne, is just being realised.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.9907D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.9907D"><span>The Solomon Sea <span class="hlt">eddy</span> activity from a 1/36° regional model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Djath, Bughsin; Babonneix, Antoine; Gourdeau, Lionel; Marin, Frédéric; Verron, Jacques</p> <p>2013-04-01</p> <p>In the South West Pacific, the Solomon Sea exhibits the highest levels of <span class="hlt">eddy</span> kinetic energy but relatively little is known about the <span class="hlt">eddy</span> activity in this region. This Sea is directly influenced by a monsoonal regime and ENSO variability, and occupies a strategical location as the Western Boundary Currents exiting it are known to feed the <span class="hlt">warm</span> pool and to be the principal sources of the Equatorial UnderCurrent. During their transit in the Solomon Sea, meso-scale <span class="hlt">eddies</span> are suspected to notably interact and influence these water masses. The goal of this study is to give an exhaustive description of this <span class="hlt">eddy</span> activity. A dual approach, based both on altimetric data and high resolution modeling, has then been chosen for this purpose. First, an algorithm is applied on nearly 20 years of 1/3° x 1/3° gridded SLA maps (provided by the AVISO project). This allows <span class="hlt">eddies</span> to be automatically detected and tracked, thus providing some basic <span class="hlt">eddy</span> properties. The preliminary results show that two main and distinct types of <span class="hlt">eddies</span> are detected. <span class="hlt">Eddies</span> in the north-eastern part shows a variability associated with the mean structure, while those in the southern part are associated with generation/propagation processes. However, the resolution of the AVISO dataset is not very well suited to observe fine structures and to match with the numerous islands bordering the Solomon Sea. For this reason, we will confront these observations with the outputs of a 1/36° resolution realistic model of the Solomon Sea. The high resolution numerical model (1/36°) indeed permits to reproduce very fine scale features, such as <span class="hlt">eddies</span> and filaments. The model is two-way embedded in a 1/12° regional model which is itself one-way embedded in the DRAKKAR 1/12° global model. The NEMO code is used as well as the AGRIF software for model nestings. Validation is realized by comparison with AVISO observations and available in situ data. In preparing the future wide-swath altimetric SWOT mission that is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010048921','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010048921"><span>Effects of <span class="hlt">Eddy</span> Viscosity on Time Correlations in Large <span class="hlt">Eddy</span> Simulation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>He, Guowei; Rubinstein, R.; Wang, Lian-Ping; Bushnell, Dennis M. (Technical Monitor)</p> <p>2001-01-01</p> <p>Subgrid-scale (SGS) models for large. <span class="hlt">eddy</span> simulation (LES) have generally been evaluated by their ability to predict single-time statistics of turbulent flows such as kinetic energy and Reynolds stresses. Recent application- of large <span class="hlt">eddy</span> simulation to the evaluation of sound sources in turbulent flows, a problem in which time, correlations determine the frequency distribution of acoustic radiation, suggest that subgrid models should also be evaluated by their ability to predict time correlations in turbulent flows. This paper compares the two-point, two-time Eulerian velocity correlation evaluated from direct numerical simulation (DNS) with that evaluated from LES, using a spectral <span class="hlt">eddy</span> viscosity, for isotropic homogeneous turbulence. It is found that the LES fields are too coherent, in the sense that their time correlations decay more slowly than the corresponding time. correlations in the DNS fields. This observation is confirmed by theoretical estimates of time correlations using the Taylor expansion technique. Tile reason for the slower decay is that the <span class="hlt">eddy</span> viscosity does not include the random backscatter, which decorrelates fluid motion at large scales. An effective <span class="hlt">eddy</span> viscosity associated with time correlations is formulated, to which the <span class="hlt">eddy</span> viscosity associated with energy transfer is a leading order approximation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GBioC..32..226F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GBioC..32..226F"><span>Biogeochemical Role of Subsurface Coherent <span class="hlt">Eddies</span> in the Ocean: Tracer Cannonballs, Hypoxic Storms, and Microbial Stewpots?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frenger, Ivy; Bianchi, Daniele; Stührenberg, Carolin; Oschlies, Andreas; Dunne, John; Deutsch, Curtis; Galbraith, Eric; Schütte, Florian</p> <p>2018-02-01</p> <p>Subsurface <span class="hlt">eddies</span> are known features of ocean circulation, but the sparsity of observations prevents an assessment of their importance for biogeochemistry. Here we use a global <span class="hlt">eddying</span> (0.1°) ocean-biogeochemical model to carry out a census of subsurface coherent <span class="hlt">eddies</span> originating from eastern boundary upwelling systems (EBUS) and quantify their biogeochemical effects as they propagate westward into the subtropical gyres. While most <span class="hlt">eddies</span> exist for a few months, moving over distances of hundreds of kilometers, a small fraction (<5%) of long-lived <span class="hlt">eddies</span> propagates over distances greater than 1,000 km, carrying the oxygen-poor and nutrient-rich signature of EBUS into the gyre interiors. In the Pacific, transport by subsurface coherent <span class="hlt">eddies</span> accounts for roughly 10% of the offshore transport of oxygen and nutrients in pycnocline waters. This "leakage" of subsurface waters can be a significant fraction of the transport by nutrient-rich poleward undercurrents and may contribute to the well-known reduction of productivity by <span class="hlt">eddies</span> in EBUS. Furthermore, at the density layer of their <span class="hlt">cores</span>, <span class="hlt">eddies</span> decrease climatological oxygen locally by close to 10%, thereby expanding oxygen minimum zones. Finally, <span class="hlt">eddies</span> represent low-oxygen extreme events in otherwise oxygenated waters, increasing the area of hypoxic waters by several percent and producing dramatic short-term changes that may play an important ecological role. Capturing these nonlocal effects in global climate models, which typically include noneddying oceans, would require dedicated parameterizations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27386549','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27386549"><span>Anticyclonic <span class="hlt">eddies</span> are more productive than cyclonic <span class="hlt">eddies</span> in subtropical gyres because of winter mixing.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dufois, François; Hardman-Mountford, Nick J; Greenwood, Jim; Richardson, Anthony J; Feng, Ming; Matear, Richard J</p> <p>2016-05-01</p> <p>Mesoscale <span class="hlt">eddies</span> are ubiquitous features of ocean circulation that modulate the supply of nutrients to the upper sunlit ocean, influencing the rates of carbon fixation and export. The popular <span class="hlt">eddy</span>-pumping paradigm implies that nutrient fluxes are enhanced in cyclonic <span class="hlt">eddies</span> because of upwelling inside the <span class="hlt">eddy</span>, leading to higher phytoplankton production. We show that this view does not hold for a substantial portion of <span class="hlt">eddies</span> within oceanic subtropical gyres, the largest ecosystems in the ocean. Using space-based measurements and a global biogeochemical model, we demonstrate that during winter when subtropical <span class="hlt">eddies</span> are most productive, there is increased chlorophyll in anticyclones compared with cyclones in all subtropical gyres (by 3.6 to 16.7% for the five basins). The model suggests that this is a consequence of the modulation of winter mixing by <span class="hlt">eddies</span>. These results establish a new paradigm for anticyclonic <span class="hlt">eddies</span> in subtropical gyres and could have important implications for the biological carbon pump and the global carbon cycle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.B43A..03F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.B43A..03F"><span>Biogeochemistry of Recently Discovered Oxygen-Depleted Mesoscale <span class="hlt">Eddies</span> in the Open Eastern Tropical North Atlantic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fiedler, B.; Grundle, D.; Löscher, C. R.; Schütte, F.; Hauss, H.; Karstensen, J.; Silva, P.; Koertzinger, A.</p> <p>2016-02-01</p> <p>Severely oxygen-depleted mesoscale features in the open eastern tropical North Atlantic, which are formed in the Mauritanian upwelling region, were discovered only recently. So far, few remote surveys conducted with autonomous platforms such as moorings, underwater gliders and profiling floats have provided a very first insight into these mesoscale <span class="hlt">eddies</span>. Due to their hydrographic properties such water bodies are well isolated from ambient waters and therefore can develop severe near-surface oxygen deficits. In this presentation we show results from the first-ever biogeochemical survey of one of these anticyclonic mode-water <span class="hlt">eddies</span> conducted in spring 2014 at the Cape Verde Ocean Observatory (CVOO) off West Africa. Very low oxygen concentrations of 4.5 µmol kg-1 associated with a CO2 partial pressure of 1164 µatm were found close to the <span class="hlt">core</span> of the <span class="hlt">eddy</span> (at 100 m depth). Measurements for nitrate and phosphate also show exceptional high values. Findings point to rapid oxygen consumption through remineralization of organic matter along with depressed lateral mixing of this water body. Indeed, rates for oxygen utilization (OUR) were found to be enhanced when compared to known values in the Atlantic. A closer look into the carbonate system inside the eddýs <span class="hlt">core</span> revealed disadvantageous conditions for calcifying organisms with the pH dropping down to 7.6 and the Aragonite saturation level reaching 1 at the lower boundary of the euphotic zone. Finally, strong indications for a shift in nitrogen cycling in the <span class="hlt">core</span> of the <span class="hlt">eddy</span> from nitrification towards denitrification were found based on gene abundance and N2O-isotope analyses. To our knowledge such severe hypoxic and even suboxic near-surface conditions along with active denitrification have never been reported before in the open Atlantic Ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996DSRI...43.1475P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996DSRI...43.1475P"><span>The <span class="hlt">eddy</span> cannon</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pichevin, Thierry; Nof, Doron</p> <p>1996-09-01</p> <p>A new nonlinear mechanism for the generation of "Meddies" by a cape is proposed. The essence of the new process is that the flow-force associated with any steady current that curves back on itself around a cape cannot be balanced without generating and shedding <span class="hlt">eddies</span>. The process is modeled as follows. A westward flowing density current advances along a zonal wall and turns eastward after reaching the edge of the wall (i.e. the Cape of St Vincent). Integration of the steady (and inviscid) momentum equation along the wall gives the long-shore flow-force and shows that, no matter what the details of the turning process are, such a scenario is impossible. It corresponds to an unbalanced flow-force and, therefore, cannot exist. Namely, in an analogy to a rocket, the zonal longshore current forces the entire system to the west. A flow field that can compensate for such a force is westward drifting <span class="hlt">eddies</span> that push the system to the east. In a similar fashion to the backward push associated with a firing cannon, the westward moving <span class="hlt">eddies</span> (bullets) balance the integrated momentum of the flow around the cape. Nonlinear solutions are constructed analytically using an approach that enables one to compute the <span class="hlt">eddies</span>' size and generation frequency without solving for the incredibly complicated details of the generation process itself. The method takes advantage of the fact that, after each <span class="hlt">eddy</span> is generated, the system returns to its original structure. It is based on the integration of the momentum equation (for periodic flows) over a control volume and a perturbation expansion in ɛ, the ratio between the <span class="hlt">eddies</span>' westward drift and the parent current speed. It is found that, because of the relatively small size of the Mediterranean <span class="hlt">eddies</span>, β is not a sufficiently strong mechanism to remove the <span class="hlt">eddies</span> (from the Cape of St Vincent) at the observed frequency. It is, therefore, concluded that westward advection must also take place. Specifically, it is found that an advection</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012IJTFM.132..435K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012IJTFM.132..435K"><span><span class="hlt">Core</span> Characteristics Deterioration due to Plastic Deformation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaido, Chikara; Arai, Satoshi</p> <p></p> <p>This paper discusses the effect of plastic deformation at <span class="hlt">core</span> manufacturing on the characteristics of <span class="hlt">cores</span> where non-oriented electrical steel sheets are used as <span class="hlt">core</span> material. Exciting field and iron loss increase proportionally to plastic deformation in the case of rP<10, where rP is a ratio of plastic deformation to that at yield point. In this region, anomalous <span class="hlt">eddy</span> currents increase because plastic deformations of crystalline grains are distributed and then the flux distribution is induced. In the case of rP>20, the deterioration tend to saturate, and the increases in magnetic field and iron loss are 1000 to 1500A/m and 2 to 4W/kg. They are related to grain size, and high grade with larger grain may have lager field increase and smaller iron loss increase. Anomalous <span class="hlt">eddy</span> current losses scarcely increase in this region. In actual motors, the plastic deformation affects iron loss increase although exciting current increases a little.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.5306C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.5306C"><span>Distribution of Upper Circumpolar Deep Water on the <span class="hlt">warming</span> continental shelf of the West Antarctic Peninsula</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Couto, Nicole; Martinson, Douglas G.; Kohut, Josh; Schofield, Oscar</p> <p>2017-07-01</p> <p>We use autonomous underwater vehicles to characterize the spatial distribution of Upper Circumpolar Deep Water (UCDW) on the continental shelf of the West Antarctic Peninsula (WAP) and present the first near-synoptic measurements of mesoscale features (<span class="hlt">eddies</span>) containing UCDW on the WAP. Thirty-three subsurface <span class="hlt">eddies</span> with widths on the order of 10 km were detected during four glider deployments. Each <span class="hlt">eddy</span> contributed an average of 5.8 × 1016 J to the subpycnocline waters, where a cross-shelf heat flux of 1.37 × 1019 J yr-1 is required to balance the diffusive loss of heat to overlying winter water and to the near-coastal waters. Approximately two-thirds of the heat coming onto the shelf diffuses across the pycnocline and one-third diffuses to the coastal waters; long-term <span class="hlt">warming</span> of the subpycnocline waters is a small residual of this balance. Sixty percent of the profiles that contained UCDW were part of a coherent <span class="hlt">eddy</span>. Between 20% and 53% of the lateral onshore heat flux to the WAP can be attributed to <span class="hlt">eddies</span> entering Marguerite Trough, a feature in the southern part of the shelf which is known to be an important conduit for UCDW. A northern trough is identified as additional important location for <span class="hlt">eddy</span> intrusion.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A53E2304P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A53E2304P"><span>Subtropical tropospheric wave forcing of planetary wave 2 in the prephase of the Stratospheric Sudden <span class="hlt">Warming</span> Event in January 2009</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peters, D. H. W.; Schneidereit, A.; Grams, C. M.; Quinting, J. F.; Keller, J. H.; Wolf, G. A.; Teubler, F.; Riemer, M.; Romppainen-Martius, O.</p> <p>2017-12-01</p> <p>Tropospheric forcing of planetary wavenumber 2 is examined in the prephase of the major stratospheric sudden <span class="hlt">warming</span> event in January 2009 (MSSW 2009). Because of a huge increase in Eliassen-Palm fluxes induced mainly by wavenumber 2, easterly angular momentum is transported into the Arctic stratosphere, deposited, and then decelerates the polar night jet. In agreement with earlier studies, the results reveal that the strongest <span class="hlt">eddy</span> heat fluxes, associated with wavenumber 2, occur at 100hPa during the prephase of MSSW 2009 in ERA-Interim. In addition, moderate conditions of the cold phase of ENSO (La Niña) contribute to the <span class="hlt">eddy</span> heat flux anomaly. It is shown that enhanced tropospheric wave forcing over Alaska and Scandinavia is caused by tropical processes in two ways. First, in a climatological sense, La Niña contributes to an enhanced anticyclonic flow over both regions. Second, the Madden-Julian oscillation (MJO) has an indirect influence on the Alaskan ridge by enhancing <span class="hlt">eddy</span> activity over the North Pacific. This is manifested in an increase in cyclone frequency and associated <span class="hlt">warm</span> conveyor belt outflow, which contribute to the maintenance and amplification of the Alaskan anticyclone. The Scandinavian ridge is maintained by wave trains emanating from the Alaskan ridge propagating eastward, including an enhanced transport of <span class="hlt">eddy</span> kinetic energy. The MSSW2009 is an extraordinary case of how a beneficial phasing of La Niña and MJO conditions together with multi scale interactions enhances tropospheric forcing for wavenumber 2-induced zonal mean <span class="hlt">eddy</span> heat flux in the lower stratosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4860325','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4860325"><span>Nutrient uplift in a cyclonic <span class="hlt">eddy</span> increases diversity, primary productivity and iron demand of microbial communities relative to a western boundary current</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Petrou, Katherina; Sinutok, Sutinee; Seymour, Justin R.; Messer, Lauren F.; Brown, Mark V.; Norman, Louiza; Everett, Jason D.; McInnes, Allison S.; Ralph, Peter J.; Thompson, Peter A.; Hassler, Christel S.</p> <p>2016-01-01</p> <p>The intensification of western boundary currents in the global ocean will potentially influence meso-scale <span class="hlt">eddy</span> generation, and redistribute microbes and their associated ecological and biogeochemical functions. To understand <span class="hlt">eddy</span>-induced changes in microbial community composition as well as how they control growth, we targeted the East Australian Current (EAC) region to sample microbes in a cyclonic (cold-<span class="hlt">core</span>) <span class="hlt">eddy</span> (CCE) and the adjacent EAC. Phototrophic and diazotrophic microbes were more diverse (2–10 times greater Shannon index) in the CCE relative to the EAC, and the cell size distribution in the CCE was dominated (67%) by larger micro-plankton \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$(\\geq 20\\lrm{\\mu }\\mathrm{m})$\\end{document}≥20μm, as opposed to pico- and nano-sized cells in the EAC. Nutrient addition experiments determined that nitrogen was the principal nutrient limiting growth in the EAC, while iron was a secondary limiting nutrient in the CCE. Among the diazotrophic community, heterotrophic NifH gene sequences dominated in the EAC and were attributable to members of the gamma-, beta-, and delta-proteobacteria, while the CCE contained both phototrophic and heterotrophic diazotrophs, including Trichodesmium, UCYN-A and gamma-proteobacteria. Daily sampling of incubation bottles following nutrient amendment captured a cascade of effects at the cellular, population and community level, indicating taxon-specific differences in the speed of response of microbes to nutrient supply. Nitrogen addition to the CCE community increased picoeukaryote chlorophyll a quotas within 24 h, suggesting that nutrient uplift by <span class="hlt">eddies</span> causes a ‘greening’ effect as well as an increase in phytoplankton biomass. After three days in both the EAC and CCE, diatoms</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24784596','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24784596"><span>Open-loop correction for an <span class="hlt">eddy</span> current dominated beam-switching magnet.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Koseki, K; Nakayama, H; Tawada, M</p> <p>2014-04-01</p> <p>A beam-switching magnet and the pulsed power supply it requires have been developed for the Japan Proton Accelerator Research Complex. To switch bunched proton beams, the dipole magnetic field must reach its maximum value within 40 ms. In addition, the field flatness should be less than 5 × 10(-4) to guide each bunched beam to the designed orbit. From a magnetic field measurement by using a long search coil, it was found that an <span class="hlt">eddy</span> current in the thick endplates and laminated <span class="hlt">core</span> disturbs the rise of the magnetic field. The <span class="hlt">eddy</span> current also deteriorates the field flatness over the required flat-top period. The measured field flatness was 5 × 10(-3). By using a double-exponential equation to approximate the measured magnetic field, a compensation pattern for the <span class="hlt">eddy</span> current was calculated. The integrated magnetic field was measured while using the newly developed open-loop compensation system. A field flatness of less than 5 × 10(-4), which is an acceptable value, was achieved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016BGeo...13.1977H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016BGeo...13.1977H"><span>Dead zone or oasis in the open ocean? Zooplankton distribution and migration in low-oxygen modewater <span class="hlt">eddies</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hauss, Helena; Christiansen, Svenja; Schütte, Florian; Kiko, Rainer; Edvam Lima, Miryam; Rodrigues, Elizandro; Karstensen, Johannes; Löscher, Carolin R.; Körtzinger, Arne; Fiedler, Björn</p> <p>2016-04-01</p> <p>The eastern tropical North Atlantic (ETNA) features a mesopelagic oxygen minimum zone (OMZ) at approximately 300-600 m depth. Here, oxygen concentrations rarely fall below 40 µmol O2 kg-1, but are expected to decline under future projections of global <span class="hlt">warming</span>. The recent discovery of mesoscale <span class="hlt">eddies</span> that harbour a shallow suboxic (< 5 µmol O2 kg-1) OMZ just below the mixed layer could serve to identify zooplankton groups that may be negatively or positively affected by ongoing ocean deoxygenation. In spring 2014, a detailed survey of a suboxic anticyclonic modewater <span class="hlt">eddy</span> (ACME) was carried out near the Cape Verde Ocean Observatory (CVOO), combining acoustic and optical profiling methods with stratified multinet hauls and hydrography. The multinet data revealed that the <span class="hlt">eddy</span> was characterized by an approximately 1.5-fold increase in total area-integrated zooplankton abundance. At nighttime, when a large proportion of acoustic scatterers is ascending into the upper 150 m, a drastic reduction in mean volume backscattering (Sv) at 75 kHz (shipboard acoustic Doppler current profiler, ADCP) within the shallow OMZ of the <span class="hlt">eddy</span> was evident compared to the nighttime distribution outside the <span class="hlt">eddy</span>. Acoustic scatterers avoided the depth range between approximately 85 to 120 m, where oxygen concentrations were lower than approximately 20 µmol O2 kg-1, indicating habitat compression to the oxygenated surface layer. This observation is confirmed by time series observations of a moored ADCP (upward looking, 300 kHz) during an ACME transit at the CVOO mooring in 2010. Nevertheless, part of the diurnal vertical migration (DVM) from the surface layer to the mesopelagic continued through the shallow OMZ. Based upon vertically stratified multinet hauls, Underwater Vision Profiler (UVP5) and ADCP data, four strategies followed by zooplankton in response to in response to the <span class="hlt">eddy</span> OMZ have been identified: (i) shallow OMZ avoidance and compression at the surface (e.g. most calanoid</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=325742','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=325742"><span>Modeling uncertainty of evapotranspiration measurements from multiple <span class="hlt">eddy</span> covariance towers over a crop canopy</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>All measurements have random error associated with them. With fluxes in an <span class="hlt">eddy</span> covariance system, measurement error can been modelled in several ways, often involving a statistical description of turbulence at its <span class="hlt">core</span>. Using a field experiment with four towers, we generated four replicates of meas...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006IJTFM.126.1255F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006IJTFM.126.1255F"><span>Detection of Real Flaw using Uniform <span class="hlt">Eddy</span> Current Multi-probe</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fukuoka, Katsuhiro; Hashimoto, Mitsuo</p> <p></p> <p>The establishment of the nondestructive inspection technology with plant structures has been stimulated by the recent occurrence of cracks in the nuclear power plant structures. In this research, a uniform <span class="hlt">eddy</span> current multi-probe to apply to the complex structure and inspect the cracks at high-speed data acquisition was developed. Pick-up coils of the developed probe were arranged on a flexible printed circuit board. This probe was able to obtain clear signal for an EDM (electro-discharge machining) slit with 0.5 mm depth and distinguish EDM slits arranged at 2 mm intervals. It was confirmed that the SCC (stress corrosion cracking) of real flaw was able to be detected with developed uniform <span class="hlt">eddy</span> current multi-probe by using the ferrite <span class="hlt">core</span> for the exciting coil and considering the impedance matching of the exciting coil and the flaw detection device.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122...23A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122...23A"><span>Coherent mesoscale <span class="hlt">eddies</span> in the North Atlantic subtropical gyre: 3-D structure and transport with application to the salinity maximum</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amores, Angel; Melnichenko, Oleg; Maximenko, Nikolai</p> <p>2017-01-01</p> <p>The mean vertical structure and transport properties of mesoscale <span class="hlt">eddies</span> are investigated in the North Atlantic subtropical gyre by combining historical records of Argo temperature/salinity profiles and satellite sea level anomaly data in the framework of the <span class="hlt">eddy</span> tracking technique. The study area is characterized by a low <span class="hlt">eddy</span> kinetic energy and sea surface salinity maximum. Although <span class="hlt">eddies</span> have a relatively weak signal at surface (amplitudes around 3-7 cm), the <span class="hlt">eddy</span> composites reveal a clear deep signal that penetrates down to at least 1200 m depth. The analysis also reveals that the vertical structure of the <span class="hlt">eddy</span> composites is strongly affected by the background stratification. The horizontal patterns of temperature/salinity anomalies can be reconstructed by a linear combination of a monopole, related to the elevation/depression of the isopycnals in the <span class="hlt">eddy</span> <span class="hlt">core</span>, and a dipole, associated with the horizontal advection of the background gradient by the <span class="hlt">eddy</span> rotation. A common feature of all the <span class="hlt">eddy</span> composites reconstructed is the phase coherence between the <span class="hlt">eddy</span> temperature/salinity and velocity anomalies in the upper ˜300 m layer, resulting in the transient <span class="hlt">eddy</span> transports of heat and salt. As an application, a box model of the near-surface layer is used to estimate the role of mesoscale <span class="hlt">eddies</span> in maintaining a quasi-steady state distribution of salinity in the North Atlantic subtropical salinity maximum. The results show that mesoscale <span class="hlt">eddies</span> are able to provide between 4 and 21% of the salt flux out of the area required to compensate for the local excess of evaporation over precipitation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121.4503R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121.4503R"><span>Quantifying mesoscale <span class="hlt">eddies</span> in the Lofoten Basin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raj, R. P.; Johannessen, J. A.; Eldevik, T.; Nilsen, J. E. Ø.; Halo, I.</p> <p>2016-07-01</p> <p>The Lofoten Basin is the most <span class="hlt">eddy</span> rich region in the Norwegian Sea. In this paper, the characteristics of these <span class="hlt">eddies</span> are investigated from a comprehensive database of nearly two decades of satellite altimeter data (1995-2013) together with Argo profiling floats and surface drifter data. An automated method identified 1695/1666 individual anticyclonic/cyclonic <span class="hlt">eddies</span> in the Lofoten Basin from more than 10,000 altimeter-based <span class="hlt">eddy</span> observations. The <span class="hlt">eddies</span> are found to be predominantly generated and residing locally. The spatial distributions of lifetime, occurrence, generation sites, size, intensity, and drift of the <span class="hlt">eddies</span> are studied in detail. The anticyclonic <span class="hlt">eddies</span> in the Lofoten Basin are the most long-lived <span class="hlt">eddies</span> (>60 days), especially in the western part of the basin. We reveal two hotspots of <span class="hlt">eddy</span> occurrence on either side of the Lofoten Basin. Furthermore, we infer a cyclonic drift of <span class="hlt">eddies</span> in the western Lofoten Basin. Barotropic energy conversion rates reveals energy transfer from the slope current to the <span class="hlt">eddies</span> during winter. An automated colocation of surface drifters trapped inside the altimeter-based <span class="hlt">eddies</span> are used to corroborate the orbital speed of the anticyclonic and cyclonic <span class="hlt">eddies</span>. Moreover, the vertical structure of the altimeter-based <span class="hlt">eddies</span> is examined using colocated Argo profiling float profiles. Combination of altimetry, Argo floats, and surface drifter data is therefore considered to be a promising observation-based approach for further studies of the role of <span class="hlt">eddies</span> in transport of heat and biomass from the slope current to the Lofoten Basin.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816601S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816601S"><span>Methane fluxes above the Hainich forest by True <span class="hlt">Eddy</span> Accumulation and <span class="hlt">Eddy</span> Covariance</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siebicke, Lukas; Gentsch, Lydia; Knohl, Alexander</p> <p>2016-04-01</p> <p>Understanding the role of forests for the global methane cycle requires quantifying vegetation-atmosphere exchange of methane, however observations of turbulent methane fluxes remain scarce. Here we measured turbulent fluxes of methane (CH4) above a beech-dominated old-growth forest in the Hainich National Park, Germany, and validated three different measurement approaches: True <span class="hlt">Eddy</span> Accumulation (TEA, closed-path laser spectroscopy), and <span class="hlt">eddy</span> covariance (EC, open-path and closed-path laser spectroscopy, respectively). The Hainich flux tower is a long-term Fluxnet and ICOS site with turbulent fluxes and ecosystem observations spanning more than 15 years. The current study is likely the first application of True <span class="hlt">Eddy</span> Accumulation (TEA) for the measurement of turbulent exchange of methane and one of the very few studies comparing open-path and closed-path <span class="hlt">eddy</span> covariance (EC) setups side-by-side. We observed uptake of methane by the forest during the day (a methane sink with a maximum rate of 0.03 μmol m-2 s-1 at noon) and no or small fluxes of methane from the forest to the atmosphere at night (a methane source of typically less than 0.01 μmol m-2 s-1) based on continuous True <span class="hlt">Eddy</span> Accumulation measurements in September 2015. First results comparing TEA to EC CO2 fluxes suggest that True <span class="hlt">Eddy</span> Accumulation is a valid option for turbulent flux quantifications using slow response gas analysers (here CRDS laser spectroscopy, other potential techniques include mass spectroscopy). The TEA system was one order of magnitude more energy efficient compared to closed-path <span class="hlt">eddy</span> covariance. The open-path <span class="hlt">eddy</span> covariance setup required the least amount of user interaction but is often constrained by low signal-to-noise ratios obtained when measuring methane fluxes over forests. Closed-path <span class="hlt">eddy</span> covariance showed good signal-to-noise ratios in the lab, however in the field it required significant amounts of user intervention in addition to a high power consumption. We conclude</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121..476T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121..476T"><span>The formation of a subsurface anticyclonic <span class="hlt">eddy</span> in the Peru-Chile Undercurrent and its impact on the near-coastal salinity, oxygen, and nutrient distributions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomsen, Soeren; Kanzow, Torsten; Krahmann, Gerd; Greatbatch, Richard J.; Dengler, Marcus; Lavik, Gaute</p> <p>2016-01-01</p> <p>The formation of a subsurface anticyclonic <span class="hlt">eddy</span> in the Peru-Chile Undercurrent (PCUC) in January and February 2013 is investigated using a multiplatform four-dimensional observational approach. Research vessel, multiple glider, and mooring-based measurements were conducted in the Peruvian upwelling regime near 12°30'S. The data set consists of >10,000 glider profiles and repeated vessel-based hydrography and velocity transects. It allows a detailed description of the <span class="hlt">eddy</span> formation and its impact on the near-coastal salinity, oxygen, and nutrient distributions. In early January, a strong PCUC with maximum poleward velocities of ˜0.25 m/s at 100-200 m depth was observed. Starting on 20 January, a subsurface anticyclonic <span class="hlt">eddy</span> developed in the PCUC downstream of a topographic bend, suggesting flow separation as the <span class="hlt">eddy</span> formation mechanism. The <span class="hlt">eddy</span> <span class="hlt">core</span> waters exhibited oxygen concentration of <1 μmol/kg, an elevated nitrogen deficit of ˜17 μmol/L, and potential vorticity close to zero, which seemed to originate from the bottom boundary layer of the continental slope. The <span class="hlt">eddy</span>-induced across-shelf velocities resulted in an elevated exchange of water masses between the upper continental slope and the open ocean. Small-scale salinity and oxygen structures were formed by along-isopycnal stirring, and indications of <span class="hlt">eddy</span>-driven oxygen ventilation of the upper oxygen minimum zone were observed. It is concluded that mesoscale stirring of solutes and the offshore transport of <span class="hlt">eddy</span> <span class="hlt">core</span> properties could provide an important coastal open ocean exchange mechanism with potentially large implications for nutrient budgets and biogeochemical cycling in the oxygen minimum zone off Peru.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO14F2869P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO14F2869P"><span>Impact of space dependent <span class="hlt">eddy</span> mixing on large ocean circulation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pradal, M. A. S.; Gnanadesikan, A.; Abernathey, R. P.</p> <p>2016-02-01</p> <p>Throughout the ocean, mesoscale <span class="hlt">eddies</span> stir tracers such as heat, oxygen, helium, dissolved CO2, affecting their spatial distribution. Recent work (Gnanadesikan et al., 2013) showed that changes in <span class="hlt">eddy</span> stirring could result in changes of the volume of hypoxic and anoxic waters, leading to drastic consequences for ocean biogeochemical cycles. The parameterization of mesocale <span class="hlt">eddies</span> in global climate models (GCMs) is two parts, based on the formulations of Redi (1982) and Gent and McWilliams (1990) which are associated with mixing parameters ARedi and AGM respectively. Numerous studies have looked at the sensitivity of ESMs to changing AGM, either alone or in combination with an ARedi parameter taken to be equivalent to the value of the AGM. By contrast the impact of the Redi parameterization in isolation remains unexplored. In a previous article, Pradal and Gnanadesikan, 2014, described the sensitivity of the climate system to a six fold increase in the Redi parameter. They found that increasing the isopycnal mixing coefficient tended to <span class="hlt">warm</span> the climate of the planet overall, through an increase of heat absorption linked to a destabilization of the halocline in subpolar regions (particularly the Southern Ocean). This previous work varied a globally constant Redi parameter from 400m2/s to 2400m2/s. New estimates from altimetry (Abernathey and Marshall, 2013) better constrain the spatial patterns and range for the ARedi parameter. Does such spatial variation matter, and if so, where does matter? Following Gnanadesikan et al. (2013) and Pradal and Gnanadesikan, 2014 this study examines this question with a suite of Earth System Models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25866139','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25866139"><span><span class="hlt">Warming</span> of intravenous and irrigation fluids for preventing inadvertent perioperative hypothermia.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Campbell, Gillian; Alderson, Phil; Smith, Andrew F; Warttig, Sheryl</p> <p>2015-04-13</p> <p>Inadvertent perioperative hypothermia (a drop in <span class="hlt">core</span> temperature to below 36°C) occurs because of interference with normal temperature regulation by anaesthetic drugs, exposure of skin for prolonged periods and receipt of large volumes of intravenous and irrigation fluids. If the temperature of these fluids is below <span class="hlt">core</span> body temperature, they can cause significant heat loss. <span class="hlt">Warming</span> intravenous and irrigation fluids to <span class="hlt">core</span> body temperature or above might prevent some of this heat loss and subsequent hypothermia. To estimate the effectiveness of preoperative or intraoperative <span class="hlt">warming</span>, or both, of intravenous and irrigation fluids in preventing perioperative hypothermia and its complications during surgery in adults. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (2014, Issue 2), MEDLINE Ovid SP (1956 to 4 February 2014), EMBASE Ovid SP (1982 to 4 February 2014), the Institute for Scientific Information (ISI) Web of Science (1950 to 4 February 2014), Cumulative Index to Nursing and Allied Health Literature (CINAHL) EBSCOhost (1980 to 4 February 2014) and reference lists of identified articles. We also searched the Current Controlled Trials website and ClinicalTrials.gov. We included randomized controlled trials or quasi-randomized controlled trials comparing fluid <span class="hlt">warming</span> methods versus standard care or versus other <span class="hlt">warming</span> methods used to maintain normothermia. Two review authors independently extracted data from eligible trials and settled disputes with a third review author. We contacted study authors to ask for additional details when needed. We collected data on adverse events only if they were reported in the trials. We included in this review 24 studies with a total of 1250 participants. The trials included various numbers and types of participants. Investigators used a range of methods to <span class="hlt">warm</span> fluids to temperatures between 37°C and 41°C. We found that evidence was of moderate quality because descriptions of trial design were</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=GL-2002-001554&hterms=articles+nutrition&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Darticles%2Bnutrition','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=GL-2002-001554&hterms=articles+nutrition&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Darticles%2Bnutrition"><span><span class="hlt">Eddies</span> off Tasmania</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>This true-color satellite image shows a large phytoplankton bloom, several hundred square kilometers in size, in the Indian Ocean off the west coast of Tasmania. In this scene, the rich concentration of microscopic marine plants gives the water a lighter, more turquoise appearance which helps to highlight the current patterns there. Notice the <span class="hlt">eddies</span>, or vortices in the water, that can be seen in several places. It is possible that these <span class="hlt">eddies</span> were formed by converging ocean currents flowing around Tasmania, or by fresh river runoff from the island, or both. Often, <span class="hlt">eddies</span> in the sea serve as a means for stirring the water, thus providing nutrients that help support phytoplankton blooms, which in turn provide nutrition for other organisms. Effectively, these <span class="hlt">eddies</span> help feed the sea (click to read an article on this topic). This image was acquired November 7, 2000, by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) flying aboard the Orbview-2 satellite. Tasmania is located off Australia's southeastern coast. Image courtesy SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25965023','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25965023"><span>Ice slurry ingestion reduces both <span class="hlt">core</span> and facial skin temperatures in a <span class="hlt">warm</span> environment.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Onitsuka, Sumire; Zheng, Xinyan; Hasegawa, Hiroshi</p> <p>2015-07-01</p> <p>Internal body cooling by ingesting ice slurry has recently attracted attention. Because ice slurries are ingested through the mouth, it is possible that this results in conductive cooling of the facial skin and brain. However, no studies have investigated this possibility. Thus, the aim of this study was to investigate the effects of ice slurry ingestion on forehead skin temperature at the point of conductive cooling between the forehead skin and brain. Eight male subjects ingested either 7.5g/kg of ice slurry (-1°C; ICE), a cold sports drink (4°C; COOL), or a <span class="hlt">warm</span> sports drink (37°C; CON) for 15min in a <span class="hlt">warm</span> environment (30°C, 80% relative humidity). Then, they remained at rest for 1h. As physiological indices, rectal temperature (Tre), mean skin temperature, forehead skin temperature (Thead), heart rate, nude body mass, and urine specific gravity were measured. Subjective thermal sensation (TS) was measured at 5-min intervals throughout the experiment. With ICE, Tre and Thead were significantly reduced compared with CON and COOL conditions (p<0.05). The results of the other physiological indices were not significantly different. TS with ICE was significantly lower than that with CON and COOL (p<0.05) and was correlated with Tre or Thead (p<0.05). These results indicate that ice slurry ingestion may induce conductive cooling between forehead skin and brain, and reduction in <span class="hlt">core</span> and forehead skin temperature reduced thermal sensation. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22254965-open-loop-correction-eddy-current-dominated-beam-switching-magnet','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22254965-open-loop-correction-eddy-current-dominated-beam-switching-magnet"><span>Open-loop correction for an <span class="hlt">eddy</span> current dominated beam-switching magnet</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Koseki, K., E-mail: kunio.koseki@kek.jp; Nakayama, H.; Tawada, M.</p> <p>2014-04-15</p> <p>A beam-switching magnet and the pulsed power supply it requires have been developed for the Japan Proton Accelerator Research Complex. To switch bunched proton beams, the dipole magnetic field must reach its maximum value within 40 ms. In addition, the field flatness should be less than 5 × 10{sup −4} to guide each bunched beam to the designed orbit. From a magnetic field measurement by using a long search coil, it was found that an <span class="hlt">eddy</span> current in the thick endplates and laminated <span class="hlt">core</span> disturbs the rise of the magnetic field. The <span class="hlt">eddy</span> current also deteriorates the field flatness over the requiredmore » flat-top period. The measured field flatness was 5 × 10{sup −3}. By using a double-exponential equation to approximate the measured magnetic field, a compensation pattern for the <span class="hlt">eddy</span> current was calculated. The integrated magnetic field was measured while using the newly developed open-loop compensation system. A field flatness of less than 5 × 10{sup −4}, which is an acceptable value, was achieved.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/32825','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/32825"><span>The pines of the <span class="hlt">Eddy</span> Arboretum</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>John Duffield</p> <p>1949-01-01</p> <p>The <span class="hlt">Eddy</span> Arboretum at Placerville, California, contains more than 90 species, varieties, and hybrids of pines, and is therefore of great interest to horticulturists. The Arboretum was established in 1925 as a source of breeding stock for the <span class="hlt">Eddy</span> Tree Breeding Station, founded in the same year by Mr. James G. <span class="hlt">Eddy</span> of Seattle. In 1934 Mr. <span class="hlt">Eddy</span> presented the Arboretum...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ChJOL..33.1320L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ChJOL..33.1320L"><span><span class="hlt">Eddy</span> formation and surface flow field in the Luzon Strait area during the summer of 2009</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Ze; Hou, Yijun; Xie, Qiang</p> <p>2015-09-01</p> <p>The formation of mesoscale <span class="hlt">eddies</span> and the structure of the surface flow field in the Luzon Strait area were examined using in-situ CTD data, Argo float data, and multi-satellite remote sensing data collected from May to August 2009. The results show that vigorous water exchange between Kuroshio water and South China Sea (SCS) water began to emerge over the 200 m water column throughout the strait. Based on an objective definition of surface currents, float A69 tracked an anti-cyclonic <span class="hlt">eddy</span> southwest of Taiwan Island under a Lagrangian current measurement. The salinity inside the anti-cyclonic <span class="hlt">eddy</span> was higher than in typical SCS water but lower than in Kuroshio mainstream water, indicating that this <span class="hlt">eddy</span> was induced by Kuroshio frontal intrusion through the Luzon Strait and into the SCS. From hydrographic data, we propose that continuous horizontal diffusion with high-salinity characteristics in the subsurface layer could extend to 119°E or even further west. The high-temperature filament, large positive sea level anomaly and clockwise geostrophic current all confirmed the existence of this <span class="hlt">warm</span> <span class="hlt">eddy</span> in May and June. A strongly negative wind stress curl maintained the <span class="hlt">eddy</span> until it died. The surface flow field during July and August was rather complicated. Float A83 described an east-west orientated shuttle run in the 20°N section that was not reported by previous studies. At the same time, float A80 indicated a Kuroshio bend into the north-central region of Luzon Strait but it did not cross 120.5°E. The water mass rejoining the Kuroshio mainstream from the southern tip of Taiwan Island was less saline, indicating an entrainment of water from SCS by the Kuroshio bend.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PrOce..96...14B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PrOce..96...14B"><span>Mesoscale <span class="hlt">eddies</span> in the Gulf of Aden and their impact on the spreading of Red Sea Outflow Water</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bower, Amy S.; Furey, Heather H.</p> <p>2012-04-01</p> <p>The Gulf of Aden (GOA) in the northwestern Indian Ocean is the receiving basin for Red Sea Outflow Water (RSOW), one of the World’s few high-salinity dense overflows, but relatively little is known about spreading pathways and transformation of RSOW through the gulf. Here we combine historical data, satellite altimetry, new synoptic hydrographic surveys and the first in situ direct observations of subsurface currents in the GOA to identify the most important processes in the spreading of RSOW. The new in situ data sets were collected in 2001-2003 as part of the Red Sea Outflow Experiment (REDSOX) and consist of two CTD/LADCP Surveys and 49 one-year trajectories from acoustically tracked floats released at the depth of RSOW. The results indicate that the prominent positive and negative sea level anomalies frequently observed in the GOA with satellite altimetry are associated with anticyclonic and cyclonic <span class="hlt">eddies</span> that often reach to at least 1000 m depth, i.e., through the depth range of equilibrated RSOW. The <span class="hlt">eddies</span> dominate RSOW spreading pathways and help to rapidly mix the outflow water with the background. <span class="hlt">Eddies</span> in the central and eastern gulf are basin-scale (∼250-km diameter) and have maximum azimuthal speeds of about 30 cm/s at the RSOW level. In the western gulf, smaller <span class="hlt">eddies</span> not detectable with satellite altimetry appear to form as the larger westward-propagating <span class="hlt">eddies</span> impale themselves on the high ridges flanking the Tadjura Rift. Both the hydrographic and Lagrangian observations show that <span class="hlt">eddies</span> originating outside the gulf often transport a <span class="hlt">core</span> of much cooler, fresher water from the Arabian Sea all the way to the western end of the GOA, where the highest-salinity outflow water is found. This generates large vertical and horizontal gradients of temperature and salinity, setting up favorable conditions for salt fingering and diffusive convection. Both of these mixing processes were observed to be active in the gulf. Two new annually appearing</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17901296','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17901296"><span>Southern Hemisphere and deep-sea <span class="hlt">warming</span> led deglacial atmospheric CO2 rise and tropical <span class="hlt">warming</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stott, Lowell; Timmermann, Axel; Thunell, Robert</p> <p>2007-10-19</p> <p>Establishing what caused Earth's largest climatic changes in the past requires a precise knowledge of both the forcing and the regional responses. We determined the chronology of high- and low-latitude climate change at the last glacial termination by radiocarbon dating benthic and planktonic foraminiferal stable isotope and magnesium/calcium records from a marine <span class="hlt">core</span> collected in the western tropical Pacific. Deep-sea temperatures <span class="hlt">warmed</span> by approximately 2 degrees C between 19 and 17 thousand years before the present (ky B.P.), leading the rise in atmospheric CO2 and tropical-surface-ocean <span class="hlt">warming</span> by approximately 1000 years. The cause of this deglacial deep-water <span class="hlt">warming</span> does not lie within the tropics, nor can its early onset between 19 and 17 ky B.P. be attributed to CO2 forcing. Increasing austral-spring insolation combined with sea-ice albedo feedbacks appear to be the key factors responsible for this <span class="hlt">warming</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=stretching&pg=2&id=EJ940553','ERIC'); return false;" href="https://eric.ed.gov/?q=stretching&pg=2&id=EJ940553"><span><span class="hlt">Warm</span>-Ups: The Key to the Beginning of a Great Lesson</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>James, Alisa R.; Collier, Douglas H.</p> <p>2011-01-01</p> <p>Historically, traditional pre-lesson <span class="hlt">warm</span>-ups in physical education have consisted of callisthenic exercises such as jumping jacks, pushups, sit-ups, and running laps, as well as static stretching activities. These <span class="hlt">warm</span>-ups are used to increase <span class="hlt">core</span> body temperature and to assist blood flow to the working muscles. Although the traditional <span class="hlt">warm</span>-up…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1371481-using-large-eddy-simulations-reveal-size-strength-phase-updraft-downdraft-cores-arctic-mixed-phase-stratocumulus-cloud','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1371481-using-large-eddy-simulations-reveal-size-strength-phase-updraft-downdraft-cores-arctic-mixed-phase-stratocumulus-cloud"><span>Using large <span class="hlt">eddy</span> simulations to reveal the size, strength, and phase of updraft and downdraft <span class="hlt">cores</span> of an Arctic mixed-phase stratocumulus cloud</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Roesler, Erika L.; Posselt, Derek J.; Rood, Richard B.</p> <p>2017-04-06</p> <p>Three-dimensional large <span class="hlt">eddy</span> simulations (LES) are used to analyze a springtime Arctic mixed-phase stratocumulus observed on 26 April 2008 during the Indirect and Semi-Direct Aerosol Campaign. Two subgrid-scale turbulence parameterizations are compared. The first scheme is a 1.5-order turbulent kinetic energy (1.5-TKE) parameterization that has been previously applied to boundary layer cloud simulations. The second scheme, Cloud Layers Unified By Binormals (CLUBB), provides higher-order turbulent closure with scale awareness. The simulations, in comparisons with observations, show that both schemes produce the liquid profiles within measurement variability but underpredict ice water mass and overpredict ice number concentration. The simulation using CLUBBmore » underpredicted liquid water path more than the simulation using the 1.5-TKE scheme, so the turbulent length scale and horizontal grid box size were increased to increase liquid water path and reduce dissipative energy. The LES simulations show this stratocumulus cloud to maintain a closed cellular structure, similar to observations. The updraft and downdraft <span class="hlt">cores</span> self-organize into a larger meso-γ-scale convective pattern with the 1.5-TKE scheme, but the <span class="hlt">cores</span> remain more isotropic with the CLUBB scheme. Additionally, the <span class="hlt">cores</span> are often composed of liquid and ice instead of exclusively containing one or the other. Furthermore, these results provide insight into traditionally unresolved and unmeasurable aspects of an Arctic mixed-phase cloud. From analysis, this cloud's updraft and downdraft <span class="hlt">cores</span> appear smaller than other closed-cell stratocumulus such as midlatitude stratocumulus and Arctic autumnal mixed-phase stratocumulus due to the weaker downdrafts and lower precipitation rates.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.6014B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.6014B"><span><span class="hlt">Warming</span>: mechanism and latitude dependence</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barkin, Yury</p> <p>2010-05-01</p> <p>Introduction. In the work it is shown, that in present <span class="hlt">warming</span> of climate of the Earth and in style of its display a fundamental role the mechanism of the forced swing and relative oscillations of eccentric <span class="hlt">core</span> of the Earth and its mantle plays. Relative displacements of the centers of mass of the <span class="hlt">core</span> and the mantle are dictated by the features of orbital motions of bodies of solar system and nonineriality of the Earth reference frame (or ot the mantle) at the motion of the Earth with respect to a baricenter of solar system and at rotation of the planet. As a result in relative translational displacements of the <span class="hlt">core</span> and the mantle the frequencies characteristic for orbital motion of all bodies of solar system, and also their combination are shown. Methods of a space geodesy, gravimetry, geophysics, etc. unequivocally and clearly confirm phenomenon of drift of the center of mass of the Earth in define northern direction. This drift is characterized by the significant velocity in about 5 mm/yr. The unique opportunity of its explanation consists in the natural assumption of existence of the unidirectional relative displacement (drift) the center of mass of the <span class="hlt">core</span> and the center of mass of the mantle of the Earth. And this displacement (at superfluous mass of the <span class="hlt">core</span> in 16.7 % from the mass of full the Earth) is characterized still more significant velocity in 2.6 cm/yr and occurs on our geodynamic studies in a direction to Taimyr peninsula. The dynamic explanation to century drift for today does not exist. It is possible to note, however, that data of observations of last years, indirectly testifying that similar drifts of the centers of mass in present epoch occur on other bodies of Solar system have been obtain: the Sun, Mars, the Titan, Enceladus, the Neptune, etc. We connect with mentioned phenomena the observed secular variations of natural processes on this celestial bodies. I.e. it is possible to assume, that observable eccentric positions of the centers</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007DSRII..54.1129G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007DSRII..54.1129G"><span>Potential mechanisms of influence of the Leeuwin Current <span class="hlt">eddy</span> system on teleost recruitment to the Western Australian continental shelf</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gaughan, Daniel J.</p> <p>2007-04-01</p> <p>The Leeuwin Current (LC), an oligotrophic, <span class="hlt">warm</span> current that flows south (poleward) along the shelf-break off the west coast of Australia and then east along the south coast, is recognized as a key factor affecting fisheries production in the region, but the mechanisms for this influence have not been determined. Recruitment strength of the globally significant western rock lobster ( Panulirus cygnus) stock is correlated to interannual variations in the strength of the LC. While this relationship has been based on a 2-decade time-series of P. cygnus recruitment data, the important teleost species of the region rarely have recruitment data for more than a few years; yet this group is nonetheless economically, socially and politically important. Furthermore, there is little knowledge of the egg- and larval-stage dynamics for the majority of these teleosts. Previous and new information on those aspects of the LC system that could theoretically impact on recruitment of shelf teleosts were identified to provide a basis for developing a conceptual model of how the LC could affect recruitment. The potential impacts of the LC system, which entrains shelf water, were examined with reference to retention/loss of teleost eggs and larvae and positive/negative influences on feeding conditions for larvae. Owing to the lack of early-life-history information for many teleosts in Western Australia, this was undertaken for generalized shelf species whose eggs are spawned on the shelf and whose larvae must settle on the shelf to access favourable nursery habitat. The results indicate that the LC system most likely contributes a net negative impact on success of teleost eggs and larvae. Larvae of shelf teleosts entrained and trapped in the <span class="hlt">warm-core</span> (WC) <span class="hlt">eddies</span> that form from the LC and then propagate offshore would contribute little to recruitment. Given that larval teleosts predominantly feed on copepods and that these were much less abundant in the WC <span class="hlt">eddy</span> than is typical of shelf</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......129L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......129L"><span>Fast solver for large scale <span class="hlt">eddy</span> current non-destructive evaluation problems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lei, Naiguang</p> <p></p> <p>-dimension raster scan data typically takes one to two days on a dedicated eight-<span class="hlt">core</span> PC. A novel direct integral solver for <span class="hlt">eddy</span> current problems and GPU-based implementation is also investigated in this research to reduce the computational time.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21821513','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21821513"><span>A randomized comparison of intraoperative PerfecTemp and forced-air <span class="hlt">warming</span> during open abdominal surgery.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Egan, Cameron; Bernstein, Ethan; Reddy, Desigen; Ali, Madi; Paul, James; Yang, Dongsheng; Sessler, Daniel I</p> <p>2011-11-01</p> <p>The PerfecTemp is an underbody resistive <span class="hlt">warming</span> system that combines servocontrolled underbody <span class="hlt">warming</span> with viscoelastic foam pressure relief. Clinical efficacy of the system has yet to be formally evaluated. We therefore tested the hypothesis that intraoperative distal esophageal (<span class="hlt">core</span>) temperatures with the PerfecTemp (underbody resistive) <span class="hlt">warming</span> system are noninferior to upper-body forced-air <span class="hlt">warming</span> in patients undergoing major open abdominal surgery under general anesthesia. Adults scheduled for elective major open abdominal surgery (liver, pancreas, gynecological, and colorectal surgery) under general anesthesia were enrolled at 2 centers. Patients were randomly assigned to underbody resistive or forced-air <span class="hlt">warming</span>. Resistive heating started when patients were transferred to the operating room table; forced-air <span class="hlt">warming</span> started after patients were draped. The primary outcome was noninferiority of intraoperative time-weighted average <span class="hlt">core</span> temperature, adjusted for baseline characteristics and using a buffer of 0.5°C. Thirty-six patients were randomly assigned to underbody resistive heating and 34 to forced-air <span class="hlt">warming</span>. Baseline and surgical characteristics were generally similar. We had sufficient evidence (P=0.018) to conclude that underbody resistive <span class="hlt">warming</span> is not worse than (i.e., noninferior to) upper-body forced-air <span class="hlt">warming</span> in the time-weighted average intraoperative temperature, with a mean difference of -0.12°C [95% confidence interval (CI) -0.37 to 0.14]. <span class="hlt">Core</span> temperatures at the end of surgery averaged 36.3°C [95% CI 36 to 36.5] in the resistive <span class="hlt">warming</span> patients and 36.6°C [95% CI 36.4 to 36.8] in those assigned to forced-air <span class="hlt">warming</span> for a mean difference of -0.34°C [95% CI -0.69 to 0.01]. Mean intraoperative time-weighted average <span class="hlt">core</span> temperatures were no different, and significantly noninferior, with underbody resistive heating in comparison with upper-body forced-air <span class="hlt">warming</span>. Underbody resistive heating may be an alternative to forced</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816124S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816124S"><span>A True <span class="hlt">Eddy</span> Accumulation - <span class="hlt">Eddy</span> Covariance hybrid for measurements of turbulent trace gas fluxes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siebicke, Lukas</p> <p>2016-04-01</p> <p><span class="hlt">Eddy</span> covariance (EC) is state-of-the-art in directly and continuously measuring turbulent fluxes of carbon dioxide and water vapor. However, low signal-to-noise ratios, high flow rates and missing or complex gas analyzers limit it's application to few scalars. True <span class="hlt">eddy</span> accumulation, based on conditional sampling ideas by Desjardins in 1972, requires no fast response analyzers and is therefore potentially applicable to a wider range of scalars. Recently we showed possibly the first successful implementation of True <span class="hlt">Eddy</span> Accumulation (TEA) measuring net ecosystem exchange of carbon dioxide of a grassland. However, most accumulation systems share the complexity of having to store discrete air samples in physical containers representing entire flux averaging intervals. The current study investigates merging principles of <span class="hlt">eddy</span> accumulation and <span class="hlt">eddy</span> covariance, which we here refer to as "true <span class="hlt">eddy</span> accumulation in transient mode" (TEA-TM). This direct flux method TEA-TM combines true <span class="hlt">eddy</span> accumulation with continuous sampling. The TEA-TM setup is simpler than discrete accumulation methods while avoiding the need for fast response gas analyzers and high flow rates required for EC. We implemented the proposed TEA-TM method and measured fluxes of carbon dioxide (CO2), methane (CH4) and water vapor (H2O) above a mixed beech forest at the Hainich Fluxnet and ICOS site, Germany, using a G2301 laser spectrometer (Picarro Inc., USA). We further simulated a TEA-TM sampling system using measured high frequency CO2 time series from an open-path gas analyzer. We operated TEA-TM side-by-side with open-, enclosed- and closed-path EC flux systems for CO2, H2O and CH4 (LI-7500, LI-7200, LI-6262, LI-7700, Licor, USA, and FGGA LGR, USA). First results show that TEA-TM CO2 fluxes were similar to EC fluxes. Remaining differences were similar to those between the three <span class="hlt">eddy</span> covariance setups (open-, enclosed- and closed-path gas analyzers). Measured TEA-TM CO2 fluxes from our physical</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/7222766','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/7222766"><span>Harmonics suppression of vacuum chamber <span class="hlt">eddy</span> current induced fields with application to the Superconducting Super Collider (SSC) Low Energy Booster (LEB) Magnets</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Schlueter, R.D.; Halbach, K.</p> <p>1991-12-04</p> <p>This memo presents the formulation of an expression for <span class="hlt">eddy</span> currents induced in a thin-walled conductor due to a time-dependent electromagnet field excitation. Then follows an analytical development for prediction of vacuum chamber <span class="hlt">eddy</span> current induced field harmonics in iron-<span class="hlt">core</span> electromagnets. A passive technique for harmonics suppression is presented with specific application to the design of the Superconducting Super Collider (SSC) Low Energy B (LEB) Magnets.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23945585','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23945585"><span>Onset of deglacial <span class="hlt">warming</span> in West Antarctica driven by local orbital forcing.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p></p> <p>2013-08-22</p> <p>The cause of <span class="hlt">warming</span> in the Southern Hemisphere during the most recent deglaciation remains a matter of debate. Hypotheses for a Northern Hemisphere trigger, through oceanic redistributions of heat, are based in part on the abrupt onset of <span class="hlt">warming</span> seen in East Antarctic ice <span class="hlt">cores</span> and dated to 18,000 years ago, which is several thousand years after high-latitude Northern Hemisphere summer insolation intensity began increasing from its minimum, approximately 24,000 years ago. An alternative explanation is that local solar insolation changes cause the Southern Hemisphere to <span class="hlt">warm</span> independently. Here we present results from a new, annually resolved ice-<span class="hlt">core</span> record from West Antarctica that reconciles these two views. The records show that 18,000 years ago snow accumulation in West Antarctica began increasing, coincident with increasing carbon dioxide concentrations, <span class="hlt">warming</span> in East Antarctica and cooling in the Northern Hemisphere associated with an abrupt decrease in Atlantic meridional overturning circulation. However, significant <span class="hlt">warming</span> in West Antarctica began at least 2,000 years earlier. Circum-Antarctic sea-ice decline, driven by increasing local insolation, is the likely cause of this <span class="hlt">warming</span>. The marine-influenced West Antarctic records suggest a more active role for the Southern Ocean in the onset of deglaciation than is inferred from ice <span class="hlt">cores</span> in the East Antarctic interior, which are largely isolated from sea-ice changes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70048748','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70048748"><span>Onset of deglacial <span class="hlt">warming</span> in West Antarctica driven by local orbital forcing</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>WAIS Divide Project Members,; Fudge, T. J.; Steig, Eric J.; Markle, Bradley R.; Schoenemann, Spruce W.; Ding, Qinghua; Taylor, Kendrick C.; McConnell, Joseph R.; Brook, Edward J.; Sowers, Todd; White, James W. C.; Alley, Richard B.; Cheng, Hai; Clow, Gary D.; Cole-Dai, Jihong; Conway, Howard; Cuffey, Kurt M.; Edwards, Jon S.; Edwards, R. Lawrence; Edwards, Ross; Fegyveresi, John M.; Ferris, David; Fitzpatrick, Joan J.; Johnson, Jay; Hargreaves, Geoffrey; Lee, James E.; Maselli, Olivia J.; Mason, William; McGwire, Kenneth C.; Mitchell, Logan E.; Mortensen, Nicolai B.; Neff, Peter; Orsi, Anais J.; Popp, Trevor J.; Schauer, Andrew J.; Severinghaus, Jeffrey P.; Sigl, Michael; Spencer, Matthew K.; Vaughn, Bruce H.; Voigt, Donald E.; Waddington, Edwin D.; Wang, Xianfeng; Wong, Gifford J.</p> <p>2013-01-01</p> <p>The cause of <span class="hlt">warming</span> in the Southern Hemisphere during the most recent deglaciation remains a matter of debate. Hypotheses for a Northern Hemisphere trigger, through oceanic redistributions of heat, are based in part on the abrupt onset of <span class="hlt">warming</span> seen in East Antarctic ice <span class="hlt">cores</span> and dated to 18,000 years ago, which is several thousand years after high-latitude Northern Hemisphere summer insolation intensity began increasing from its minimum, approximately 24,000 years ago. An alternative explanation is that local solar insolation changes cause the Southern Hemisphere to <span class="hlt">warm</span> independently. Here we present results from a new, annually resolved ice-<span class="hlt">core</span> record from West Antarctica that reconciles these two views. The records show that 18,000 years ago snow accumulation in West Antarctica began increasing, coincident with increasing carbon dioxide concentrations, <span class="hlt">warming</span> in East Antarctica and cooling in the Northern Hemisphere associated with an abrupt decrease in Atlantic meridional overturning circulation. However, significant <span class="hlt">warming</span> in West Antarctica began at least 2,000 years earlier. Circum-Antarctic sea-ice decline, driven by increasing local insolation, is the likely cause of this <span class="hlt">warming</span>. The marine-influenced West Antarctic records suggest a more active role for the Southern Ocean in the onset of deglaciation than is inferred from ice <span class="hlt">cores</span> in the East Antarctic interior, which are largely isolated from sea-ice changes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016BGeo...13.1105A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016BGeo...13.1105A"><span>Influence of mesoscale <span class="hlt">eddies</span> on the distribution of nitrous oxide in the eastern tropical South Pacific</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arévalo-Martínez, Damian L.; Kock, Annette; Löscher, Carolin R.; Schmitz, Ruth A.; Stramma, Lothar; Bange, Hermann W.</p> <p>2016-02-01</p> <p>Recent observations in the eastern tropical South Pacific (ETSP) have shown the key role of meso- and submesoscale processes (e.g. <span class="hlt">eddies</span>) in shaping its hydrographic and biogeochemical properties. Off Peru, elevated primary production from coastal upwelling in combination with sluggish ventilation of subsurface waters fuels a prominent oxygen minimum zone (OMZ). Given that nitrous oxide (N2O) production-consumption processes in the water column are sensitive to oxygen (O2) concentrations, the ETSP is a region of particular interest to investigate its source-sink dynamics. To date, no detailed surveys linking mesoscale processes and N2O distributions as well as their relevance to nitrogen (N) cycling are available. In this study, we present the first measurements of N2O across three mesoscale <span class="hlt">eddies</span> (two mode water or anticyclonic and one cyclonic) which were identified, tracked, and sampled during two surveys carried out in the ETSP in November-December 2012. A two-peak structure was observed for N2O, wherein the two maxima coincide with the upper and lower boundaries of the OMZ, indicating active nitrification and partial denitrification. This was further supported by the abundances of the key gene for nitrification, ammonium monooxygenase (amoA), and the gene marker for N2O production during denitrification, nitrite reductase (nirS). Conversely, we found strong N2O depletion in the <span class="hlt">core</span> of the OMZ (O2 < 5 µmol L-1) to be consistent with nitrite (NO2-) accumulation and low levels of nitrate (NO3-), thus suggesting active denitrification. N2O depletion within the OMZ's <span class="hlt">core</span> was substantially higher in the centre of mode water <span class="hlt">eddies</span>, supporting the view that <span class="hlt">eddy</span> activity enhances N-loss processes off Peru, in particular near the shelf break where nutrient-rich, productive waters from upwelling are trapped before being transported offshore. Analysis of <span class="hlt">eddies</span> during their propagation towards the open ocean showed that, in general, "ageing" of mesoscale <span class="hlt">eddies</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015DSRI..104....1H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015DSRI..104....1H"><span>Zooplankton trophic niches respond to different water types of the western Tasman Sea: A stable isotope analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Henschke, Natasha; Everett, Jason D.; Suthers, Iain M.; Smith, James A.; Hunt, Brian P. V.; Doblin, Martina A.; Taylor, Matthew D.</p> <p>2015-10-01</p> <p>The trophic relationships of 21 species from an oceanic zooplankton community were studied using stable isotopes of carbon and nitrogen. Zooplankton and suspended particulate organic matter (POM) were sampled in three different water types in the western Tasman Sea: inner shelf (IS), a cold <span class="hlt">core</span> <span class="hlt">eddy</span> (CCE) and a <span class="hlt">warm</span> <span class="hlt">core</span> <span class="hlt">eddy</span> (WCE). δ15N values ranged from 3.9‰ for the parasitic copepod Sapphirina augusta to 10.2‰ for the euphausiid, Euphausia spinifera. δ13C varied from -22.6 to -19.4‰ as a result of the copepod Euchirella curticauda and E. spinifera. The isotopic composition of POM varied significantly among water types; as did the trophic enrichment of zooplankton over POM, with the lowest enrichment in the recently upwelled IS water type (0.5‰) compared to the <span class="hlt">warm</span> <span class="hlt">core</span> <span class="hlt">eddy</span> (1.6‰) and cold <span class="hlt">core</span> <span class="hlt">eddy</span> (2.7‰). The WCE was an oligotrophic environment and was associated with an increased trophic level for omnivorous zooplankton (copepods and euphausiids) to a similar level as carnivorous zooplankton (chaetognaths). Therefore carnivory in zooplankton can increase in response to lower abundance and reduced diversity in their phytoplankton and protozoan prey. Trophic niche width comparisons across three zooplankton species: the salp Thalia democratica, the copepod Eucalanus elongatus and the euphausiid Thysanoessa gregaria, indicated that both niche partitioning and competition can occur within the zooplankton community. We have shown that trophic relationships among the zooplankton are dynamic and respond to different water types. The changes to the zooplankton isotopic niche, however, were still highly variable as result of oceanographic variation within water types.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP13D1105E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP13D1105E"><span>Decadal-scale progression of Dansgaard-Oeschger <span class="hlt">warming</span> events - Are <span class="hlt">warmings</span> at the end of Heinrich-Stadials different from others?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Erhardt, T.; Capron, E.; Rasmussen, S.; Schuepbach, S.; Bigler, M.; Fischer, H.</p> <p>2017-12-01</p> <p>During the last glacial period proxy records throughout the Northern Hemisphere document a succession of rapid millennial-scale <span class="hlt">warming</span> events, called Dansgaard Oeschger (DO) events. Marine proxy records from the Atlantic also reveal, that some of the <span class="hlt">warming</span> events where preceded by large ice rafting events, referred to as Heinrich events. Different mechanisms have been proposed, that can produce DO-like <span class="hlt">warming</span> in model experiments, however the progression and plausible trigger of the events and their possible interplay with the Heinrich events is still unknown. Because of their fast nature, the progression is challenging to reconstruct from paleoclimate data due to the temporal resolution achievable in many archives and cross-dating uncertainties between records. We use new high-resolution multi-proxy records of sea-salt and terrestrial aerosol concentrations over the period 10-60 ka from two Greenland deep ice <span class="hlt">cores</span> in conjunction with local precipitation and temperature proxy records from one of the <span class="hlt">cores</span> to investigate the progression of environmental changes at the onset of the individual <span class="hlt">warming</span> events. The timing differences are then used to explore whether the DO <span class="hlt">warming</span> events that terminate Heinrich-Stadials progressed differently in comparison to those after Non-Heinrich-Stadials. Our analysis indicates no difference in the progression of the <span class="hlt">warming</span> terminating Heinrich-Stadials and Non-Heinrich-Stadials. Combining the evidence from all <span class="hlt">warming</span> events in the period, our analysis shows a consistent lead of the changes in both local precipitation and terrestrial dust aerosol concentrations over the change in sea-salt aerosol concentrations and local temperature by approximately one decade. This implies that both the moisture transport to Greenland and the intensity of the Asian winter monsoon changed before the sea-ice cover in the North Atlantic was reduced, rendering a collapse of the sea-ice cover as a trigger for the DO events unlikely.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.B33B0408B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.B33B0408B"><span><span class="hlt">Eddy</span> Covariance Measurements of Methane Flux Using an Open-Path Gas Analyzer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burba, G.; Anderson, T.; Zona, D.; Schedlbauer, J.; Anderson, D.; Eckles, R.; Hastings, S.; Ikawa, H.; McDermitt, D.; Oberbauer, S.; Oechel, W.; Riensche, B.; Starr, G.; Sturtevant, C.; Xu, L.</p> <p>2008-12-01</p> <p>Methane is an important greenhouse gas with a <span class="hlt">warming</span> potential of about 23 times that of carbon dioxide over a 100-year cycle (Houghton et al., 2001). Measurements of methane fluxes from the terrestrial biosphere have mostly been made using flux chambers, which have many advantages, but are discrete in time and space and may disturb surface integrity and air pressure. Open-path analyzers offer a number of advantages for measuring methane fluxes, including undisturbed in- situ flux measurements, spatial integration using the <span class="hlt">Eddy</span> Covariance approach, zero frequency response errors due to tube attenuation, confident water and thermal density terms from co-located fast measurements of water and sonic temperature, and remote deployment due to lower power demands in the absence of a pump. The prototype open-path methane analyzer is a VCSEL (vertical-cavity surface-emitting laser)-based instrument. It employs an open Herriott cell and measures levels of methane with RMS noise below 6 ppb at 10 Hz sampling in controlled laboratory environment. Field maintenance is minimized by a self-cleaning mechanism to keep the lower mirror free of contamination. <span class="hlt">Eddy</span> Covariance measurements of methane flux using the prototype open-path methane analyzer are presented for the period between 2006 and 2008 in three ecosystems with contrasting weather and moisture conditions: (1) Fluxes over a short-hydroperiod sawgrass wetland in the Florida Everglades were measured in a <span class="hlt">warm</span> and humid environment with temperatures often exceeding 25oC, variable winds, and frequent heavy dew at night; (2) Fluxes over coastal wetlands in an Arctic tundra were measured in an environment with frequent sub-zero temperatures, moderate winds, and ocean mist; (3) Fluxes over pacific mangroves in Mexico were measured in an environment with moderate air temperatures high winds, and sea spray. Presented <span class="hlt">eddy</span> covariance flux data were collected from a co-located prototype open-path methane analyzer, LI-7500, and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1211441-electrodeposited-nanolaminated-conife-cores-ultracompact-dc-dc-power-conversion','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1211441-electrodeposited-nanolaminated-conife-cores-ultracompact-dc-dc-power-conversion"><span>Electrodeposited Nanolaminated CoNiFe <span class="hlt">Cores</span> for Ultracompact DC-DC Power Conversion</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kim, J; Kim, M; Herrault, F</p> <p>2015-09-01</p> <p>Laminated metallic alloy <span class="hlt">cores</span> (i.e., alternating layers of thin film metallic alloy and insulating material) of appropriate lamination thickness enable suppression of <span class="hlt">eddy</span> current losses at high frequencies. Magnetic <span class="hlt">cores</span> comprised of many such laminations yield substantial overall magnetic volume, thereby enabling high-power operation. Previously, we reported nanolaminated permalloy (Ni-80 Fe-20) <span class="hlt">cores</span> based on a sequential electrodeposition technique, demonstrating negligible <span class="hlt">eddy</span> current losses at peak flux densities up to 0.5 T and operating at megahertz frequencies. This paper demonstrates improved performance of nanolaminated <span class="hlt">cores</span> comprising tens to hundreds of layers of 300-500-nm-thick CoNiFe films that exhibit superior magnetic properties (e.g.,more » higher saturation flux density and lower coercivity) than permalloy. Nanolaminated CoNiFe <span class="hlt">cores</span> can be operated up to a peak flux density of 0.9 T, demonstrating improved power handling capacity and exhibiting 30% reduced volumetric <span class="hlt">core</span> loss, attributed to lowered hysteresis losses compared to the nanolaminated permalloy <span class="hlt">core</span> of the same geometry. Operating these <span class="hlt">cores</span> in a buck dc-dc power converter at a switching frequency of 1 MHz, the nanolaminated CoNiFe <span class="hlt">cores</span> achieved a conversion efficiency exceeding 90% at output power levels up to 7 W, compared to an achieved permalloy <span class="hlt">core</span> conversion efficiency below 86% at 6 W.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930000556&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DEddy%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930000556&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DEddy%2Bcurrent"><span>Unified Ultrasonic/<span class="hlt">Eddy</span>-Current Data Acquisition</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chern, E. James; Butler, David W.</p> <p>1993-01-01</p> <p>Imaging station for detecting cracks and flaws in solid materials developed combining both ultrasonic C-scan and <span class="hlt">eddy</span>-current imaging. Incorporation of both techniques into one system eliminates duplication of computers and of mechanical scanners; unifies acquisition, processing, and storage of data; reduces setup time for repetitious ultrasonic and <span class="hlt">eddy</span>-current scans; and increases efficiency of system. Same mechanical scanner used to maneuver either ultrasonic or <span class="hlt">eddy</span>-current probe over specimen and acquire point-by-point data. For ultrasonic scanning, probe linked to ultrasonic pulser/receiver circuit card, while, for <span class="hlt">eddy</span>-current imaging, probe linked to impedance-analyzer circuit card. Both ultrasonic and <span class="hlt">eddy</span>-current imaging subsystems share same desktop-computer controller, containing dedicated plug-in circuit boards for each.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/2004/114/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/2004/114/"><span>Bracketing mid-pliocene sea surface temperature: maximum and minimum possible <span class="hlt">warming</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dowsett, Harry</p> <p>2004-01-01</p> <p>Estimates of sea surface temperature (SST) from ocean <span class="hlt">cores</span> reveal a <span class="hlt">warm</span> phase of the Pliocene between about 3.3 and 3.0 Mega-annums (Ma). Pollen records from land based <span class="hlt">cores</span> and sections, although not as well dated, also show evidence for a warmer climate at about the same time. Increased greenhouse forcing and altered ocean heat transport is the leading candidates for the underlying cause of Pliocene global warmth. However, despite being a period of global warmth, there exists considerable variability within this interval. Two new SST reconstructions have been created to provide a climatological error bar for <span class="hlt">warm</span> peak phases of the Pliocene. These data represent the maximum and minimum possible <span class="hlt">warming</span> recorded within the 3.3 to 3.0 Ma interval.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24908640','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24908640"><span>Coupled circuit numerical analysis of <span class="hlt">eddy</span> currents in an open MRI system.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Akram, Md Shahadat Hossain; Terada, Yasuhiko; Keiichiro, Ishi; Kose, Katsumi</p> <p>2014-08-01</p> <p>We performed a new coupled circuit numerical simulation of <span class="hlt">eddy</span> currents in an open compact magnetic resonance imaging (MRI) system. Following the coupled circuit approach, the conducting structures were divided into subdomains along the length (or width) and the thickness, and by implementing coupled circuit concepts we have simulated transient responses of <span class="hlt">eddy</span> currents for subdomains in different locations. We implemented the Eigen matrix technique to solve the network of coupled differential equations to speed up our simulation program. On the other hand, to compute the coupling relations between the biplanar gradient coil and any other conducting structure, we implemented the solid angle form of Ampere's law. We have also calculated the solid angle for three dimensions to compute inductive couplings in any subdomain of the conducting structures. Details of the temporal and spatial distribution of the <span class="hlt">eddy</span> currents were then implemented in the secondary magnetic field calculation by the Biot-Savart law. In a desktop computer (Programming platform: Wolfram Mathematica 8.0®, Processor: Intel(R) <span class="hlt">Core</span>(TM)2 Duo E7500 @ 2.93GHz; OS: Windows 7 Professional; Memory (RAM): 4.00GB), it took less than 3min to simulate the entire calculation of <span class="hlt">eddy</span> currents and fields, and approximately 6min for X-gradient coil. The results are given in the time-space domain for both the direct and the cross-terms of the <span class="hlt">eddy</span> current magnetic fields generated by the Z-gradient coil. We have also conducted free induction decay (FID) experiments of <span class="hlt">eddy</span> fields using a nuclear magnetic resonance (NMR) probe to verify our simulation results. The simulation results were found to be in good agreement with the experimental results. In this study we have also conducted simulations for transient and spatial responses of secondary magnetic field induced by X-gradient coil. Our approach is fast and has much less computational complexity than the conventional electromagnetic numerical simulation</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012IzAOP..48...37I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012IzAOP..48...37I"><span><span class="hlt">Eddy</span>-resolving 1/10° model of the World Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ibrayev, R. A.; Khabeev, R. N.; Ushakov, K. V.</p> <p>2012-02-01</p> <p>The first results on simulating the intra-annual variability of the World Ocean circulation by use of the <span class="hlt">eddy</span>-resolving model are considered. For this purpose, a model of the World Ocean with a 1/10° horizontal resolution and 49 vertical levels was developed (a 1/10 × 1/10 × 49 model of the World Ocean). This model is based on the traditional system of three-dimensional equations of the large-scale dynamics of the ocean and boundary conditions with an explicit allowance for water fluxes on the free surface of the ocean. The equations are written in the tripolar coordinate system. The numerical method is based on the separation of the barotropic and baroclinic components of the solution. Discretization in time is implemented using explicit schemes allowing effective parallelization for a large number of processors. The model uses the sub-models of the boundary layer of the atmosphere and the submodel of sea-ice thermodynamics. The model of the World Ocean was developed at the Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS) and the P.P. Shirshov Institute of Oceanogy (IO RAS). The formulation of the problem of simulating the intra-annual variability of thermohydrodynamic processes of the World Ocean and the parameterizations that were used are considered. In the numerical experiment, the temporal evolution of the atmospheric effect is determined by the normal annual cycle according to the conditions of the international Coordinated Ocean-Ice Reference Experiment (<span class="hlt">CORE</span>-I). The calculation was carried out on a multiprocessor computer with distributed memory; 1601 computational <span class="hlt">cores</span> were used. The presented analysis demonstrates that the obtained results are quite satisfactory when compared to the results that were obtained by other <span class="hlt">eddy</span>-resolving models of the global ocean. The analysis of the model solution is, to a larger extent, of a descriptive character. A detailed analysis of the results is to be presented in following works</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930000136&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DEddy%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930000136&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DEddy%2Bcurrent"><span>Improved Imaging With Laser-Induced <span class="hlt">Eddy</span> Currents</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chern, Engmin J.</p> <p>1993-01-01</p> <p>System tests specimen of material nondestructively by laser-induced <span class="hlt">eddy</span>-current imaging improved by changing method of processing of <span class="hlt">eddy</span>-current signal. Changes in impedance of <span class="hlt">eddy</span>-current coil measured in absolute instead of relative units.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ThCFD..28..651S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ThCFD..28..651S"><span>Moffatt <span class="hlt">eddies</span> at an interface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shtern, Vladimir</p> <p>2014-12-01</p> <p>It is shown that an infinite set of <span class="hlt">eddies</span> can develop near the interface-wall intersection in a two-fluid flow. A striking feature is that the <span class="hlt">eddy</span> occurrence depends on from what side of the interface the flow is driven. In air-water flows where the viscosity ratio is 0.018, the <span class="hlt">eddies</span> develop if a driving source is located on (i) the air side for , (ii) any side for , and (iii) the water side for , where is the upper interface-wall angle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010BGeo....7..151N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010BGeo....7..151N"><span>Optical Characterization of an <span class="hlt">Eddy</span>-induced Diatom Bloom West of the Island of Hawaii</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nencioli, F.; Chang, G.; Twardowski, M.; Dickey, T. D.</p> <p>2010-01-01</p> <p>Optical properties were collected along a transect across cyclonic <span class="hlt">eddy</span> Opal in the lee of Hawaii during the E-Flux III field experiment (10-27 March 2005). The <span class="hlt">eddy</span> was characterized by an intense doming of isopycnal surfaces, and by an enhanced Deep Chlorophyll Maximum Layer (DCML) within its <span class="hlt">core</span>. The phytoplankton bloom was diatom dominated, evidencing an <span class="hlt">eddy</span>-induced shift in ecological community. Four distinct regions were identified throughout the water column at Opal's <span class="hlt">core</span>: a surface mixed layer dominated by small phytoplankton; a layer dominated by "senescent" diatoms between the bottom of the upper mixed layer and the DCML; the DCML; and a deep layer characterized by decreasing phytoplankton activity. We focused on two parameters, the ratio of chlorophyll concentration to particulate beam attenuation coefficient, [chl]/cp, and the backscattering ratio (the particle backscattering to particle scattering ratio), b<span style="position: relative; top: -.5em; left: -.65em;">~<i style=" margin-left:-.7em">bp, and tested their sensitivity to the changes in particle composition observed through the water column at the <span class="hlt">eddy</span> center. Our results show that [chl]/cp is not a good indicator. Despite the shift in ecological community, the ratio remains controlled primarily by the variation in chlorophyll concentration per cell with depth (photoadaptation), so that its values increase throughout the DCML. Steeper increase of [chl]/cp below the DCML suggest that remineralization might be another important controlling factor. On the other hand, b<span style="position: relative; top: -.5em; left: -.65em;">~<i style=" margin-left:-.7em">bp clearly indicates a shift from a small phytoplankton to a diatom dominated community. Below an upper layer characterized by constant values, the b<span style="position: relative; top: -.5em; left: -.65em;">~<i style=" margin-left:-.7em">bp showed a rapid decrease to a broad minimum within the DCML. The higher values below the DCML are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930003687','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930003687"><span>Automated <span class="hlt">eddy</span> current analysis of materials</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Workman, Gary L.</p> <p>1991-01-01</p> <p>The use of <span class="hlt">eddy</span> current techniques for characterizing flaws in graphite-based filament-wound cylindrical structures is described. A major emphasis was also placed upon incorporating artificial intelligence techniques into the signal analysis portion of the inspection process. Developing an <span class="hlt">eddy</span> current scanning system using a commercial robot for inspecting graphite structures (and others) was a goal in the overall concept and is essential for the final implementation for the expert systems interpretation. Manual scans, as performed in the preliminary work here, do not provide sufficiently reproducible <span class="hlt">eddy</span> current signatures to be easily built into a real time expert system. The expert systems approach to <span class="hlt">eddy</span> current signal analysis requires that a suitable knowledge base exist in which correct decisions as to the nature of a flaw can be performed. A robotic workcell using <span class="hlt">eddy</span> current transducers for the inspection of carbon filament materials with improved sensitivity was developed. Improved coupling efficiencies achieved with the E-probes and horseshoe probes are exceptional for graphite fibers. The <span class="hlt">eddy</span> current supervisory system and expert system was partially developed on a MacIvory system. Continued utilization of finite element models for predetermining <span class="hlt">eddy</span> current signals was shown to be useful in this work, both for understanding how electromagnetic fields interact with graphite fibers, and also for use in determining how to develop the knowledge base. Sufficient data was taken to indicate that the E-probe and the horseshoe probe can be useful <span class="hlt">eddy</span> current transducers for inspecting graphite fiber components. The lacking component at this time is a large enough probe to have sensitivity in both the far and near field of a thick graphite epoxy component.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.9608F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.9608F"><span><span class="hlt">Eddy</span> Seeding in the Labrador Sea: a Submerged Autonomous Launching Platform (SALP) Application</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Furey, Heather H.; Femke de Jong, M.; Bower, Amy S.</p> <p>2013-04-01</p> <p>A simplified Submerged Autonomous Launch Platform (SALP) was used to release profiling floats into <span class="hlt">warm-core</span> Irminger Rings (IRs) in order to investigate their vertical structure and evolution in the Labrador Sea from September 2007 - September 2009. IRs are thought to play an important role in restratification after convection in the Labrador Sea. The SALP is designed to release surface drifters or subsurface floats serially from a traditional ocean mooring, using real-time ocean measurements as criteria for launch. The original prototype instrument used properties measured at multiple depths, with information relayed to the SALP controller via acoustic modems. In our application, two SALP carousels were attached at 500 meters onto a heavily-instrumented deep water mooring, in the path of recently-shed IRs off the west Greenland shelf. A release algorithm was designed to use temperature and pressure measured at the SALP depth only to release one or two APEX profiling drifters each time an IR passed the mooring, using limited historical observations to set release thresholds. Mechanically and electronically, the SALP worked well: out of eleven releases, there was only one malfunction when a float was caught in the cage after the burn-wire had triggered. However, getting floats trapped in <span class="hlt">eddies</span> met with limited success due to problems with the release algorithm and float ballasting. Out of seven floats launched from the platform using oceanographic criteria, four were released during <span class="hlt">warm</span> water events that were not related to passing IRs. Also, after float release, it took on average about 2.6 days for the APEX to adjust from its initial ballast depth, about 600 meters, to its park point of 300 meters, leaving the float below the trapped <span class="hlt">core</span> of water in the IRs. The other mooring instruments (at depths of 100 to 3000 m), revealed that 12 IRs passed by the mooring in the 2-year monitoring period. With this independent information, we were able to assess and improve</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED086445.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED086445.pdf"><span><span class="hlt">Eddy</span> Current Testing, RQA/M1-5330.17.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.</p> <p></p> <p>As one in the series of classroom training handbooks, prepared by the U.S. space program, instructional material is presented in this volume concerning familiarization and orientation on <span class="hlt">eddy</span> current testing. The subject is presented under the following headings: Introduction, <span class="hlt">Eddy</span> Current Principles, <span class="hlt">Eddy</span> Current Equipment, <span class="hlt">Eddy</span> Current Methods,…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcMod.114....1R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcMod.114....1R"><span>A comparison of the structure, properties, and water mass composition of quasi-isotropic <span class="hlt">eddies</span> in western boundary currents in an <span class="hlt">eddy</span>-resolving ocean model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rykova, Tatiana; Oke, Peter R.; Griffin, David A.</p> <p>2017-06-01</p> <p>Using output from a near-global <span class="hlt">eddy</span>-resolving ocean model, we analyse the properties and characteristics of quasi-isotropic <span class="hlt">eddies</span> in five Western Boundary Current (WBC) regions, including the extensions of the Agulhas, East Australian Current (EAC), Brazil-Malvinas Confluence (BMC), Kuroshio and Gulf Stream regions. We assess the model <span class="hlt">eddies</span> by comparing to satellite and in situ observations, and show that most aspects of the model's representation of <span class="hlt">eddies</span> are realistic. We find that the mean <span class="hlt">eddies</span> differ dramatically between these WBC regions - all with some unique and noteworthy characteristics. We find that the vertical displacement of isopycnals of Agulhas <span class="hlt">eddies</span> is the greatest, averaging 350-450 m at depths of over 800-900 m. EAC (BMC) <span class="hlt">eddies</span> are the least (most) barotropic, with only 50% (85-90%) of the velocity associated with the barotropic mode. Kuroshio <span class="hlt">eddies</span> are the most stratified, resulting in small isopycnal displacement, even for strong <span class="hlt">eddies</span>; and Gulf Stream <span class="hlt">eddies</span> carry the most heat. Despite their differences, we explicitly show that the source waters for anticyclonic <span class="hlt">eddies</span> are a mix of the WBC water (from the boundary current itself) and water that originates equatorward of the WBC <span class="hlt">eddy</span>-field; and cyclonic <span class="hlt">eddies</span> are a mix of WBC water and water that originates poleward of the WBC <span class="hlt">eddy</span>-field.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890014529','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890014529"><span><span class="hlt">Eddy</span> current damper</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ellis, R. C.; Fink, R. A.; Rich, R. W.</p> <p>1989-01-01</p> <p>A high torque capacity <span class="hlt">eddy</span> current damper used as a rate limiting device for a large solar array deployment mechanism is discussed. The <span class="hlt">eddy</span> current damper eliminates the problems associated with the outgassing or leaking of damping fluids. It also provides performance advantages such as damping torque rates, which are truly linear with respect to input speed, continuous 360 degree operation in both directions of rotation, wide operating temperature range, and the capability of convenient adjustment of damping rates by the user without disassembly or special tools.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUSM.A31A..15C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUSM.A31A..15C"><span>Ocean-atmosphere coupling at the Brazil-Malvinas Confluence region based on in situ, satellite and numerical model data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Casagrande, F.; Souza, R.; Pezzi, L.</p> <p>2013-05-01</p> <p>In the Southwest Atlantic close to 40oS, the meeting of two ocean currents with distinct characteristics, the Brazil Current (BC), <span class="hlt">warm</span> and saline, and the Malvinas Current (MC), cold and low salinity, resulting in strong activity marked by the formation of mesoscale <span class="hlt">eddies</span>, this region is known as Brazil Malvinas Confluence (BMC). The INTERCONF project (Ocean Atmosphere Interaction over the region of CBM) perfoms since the 2002 data collection in situ radiosondes and XBTs onboard the Oceanographic Support Ship Ary Rongel during its trajectory of Brazil to the Antarctic continent. This paper analyzes the thermal contrast and ocean atmosphere coupling on the ocean front from the INTERCONF data, and compares the results to satellite data (QuikSCAT) and numerical models (Eta-CPTEC / INPE). The results indicate that the Sea Surface Temperature (SST) is driving the atmosphere, on the <span class="hlt">warm</span> waters of the BC occurs an intensification of the winds and heat fluxes, and the reverse occurs on the cold waters of the MC. The data collected in 2009 include the presence of a <span class="hlt">warm</span> <span class="hlt">core</span> <span class="hlt">eddy</span> (42 oS to 43.1 oS) which recorded higher values of heat fluxes and wind speed in relation to its surroundings. On the <span class="hlt">warm</span> <span class="hlt">core</span> <span class="hlt">eddy</span> wind speed recorded was about 10 m.s-1, while on the BC and MC was approximately 7 m.s-1 and 2 m.s-1, respectively. Satellite data and numerical model tends to overestimate the wind speed data in the region in relation to data collected in situ. The heat flux data from the numerical model tend to increase over the <span class="hlt">warm</span> waters and cold waters on the decline, though the amounts recorded by the model have low correlation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950040891&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DGlobal%2Bwarming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950040891&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DGlobal%2Bwarming"><span>Global variations of zonal mean ozone during stratospheric <span class="hlt">warming</span> events</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Randel, William J.</p> <p>1993-01-01</p> <p>Eight years of Solar Backscatter Ultraviolet (SBUV) ozone data are examined to study zonal mean variations associated with stratospheric planetary wave (<span class="hlt">warming</span>) events. These fluctuations are found to be nearly global in extent, with relatively large variations in the tropics, and coherent signatures reaching up to 50 deg in the opposite (summer) hemisphere. These ozone variations are a manifestation of the global circulation cells associated with stratospheric <span class="hlt">warming</span> events; the ozone responds dynamically in the lower stratosphere to transport, and photochemically in the upper stratosphere to the circulation-induced temperature changes. The observed ozone variations in the tropics are of particular interest because transport is dominated by zonal-mean vertical motions (<span class="hlt">eddy</span> flux divergences and mean meridional transports are negligible), and hence, substantial simplifications to the governing equations occur. The response of the atmosphere to these impulsive circulation changes provides a situation for robust estimates of the ozone-temperature sensitivity in the upper stratosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ECSS..183..203R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ECSS..183..203R"><span>A western boundary current <span class="hlt">eddy</span> characterisation study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ribbe, Joachim; Brieva, Daniel</p> <p>2016-12-01</p> <p>The analysis of an <span class="hlt">eddy</span> census for the East Australian Current (EAC) region yielded a total of 497 individual short-lived (7-28 days) cyclonic and anticyclonic <span class="hlt">eddies</span> for the period 1993 to 2015. This was an average of about 23 <span class="hlt">eddies</span> per year. 41% of the tracked individual cyclonic and anticyclonic <span class="hlt">eddies</span> were detected off southeast Queensland between about 25 °S and 29 °S. This is the region where the flow of the EAC intensifies forming a swift western boundary current that impinges near Fraser Island on the continental shelf. This zone was also identified as having a maximum in detected short-lived cyclonic <span class="hlt">eddies</span>. A total of 94 (43%) individual cyclonic <span class="hlt">eddies</span> or about 4-5 per year were tracked in this region. The census found that these potentially displaced entrained water by about 115 km with an average displacement speed of about 4 km per day. Cyclonic <span class="hlt">eddies</span> were likely to contribute to establishing an on-shelf longshore northerly flow forming the western branch of the Fraser Island Gyre and possibly presented an important cross-shelf transport process in the life cycle of temperate fish species of the EAC domain. In-situ observations near western boundary currents previously documented the entrainment, off-shelf transport and export of near shore water, nutrients, sediments, fish larvae and the renewal of inner shelf water due to short-lived <span class="hlt">eddies</span>. This study found that these cyclonic <span class="hlt">eddies</span> potentially play an important off-shelf transport process off the central east Australian coast.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29235209','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29235209"><span>Contrasting above- and belowground organic matter decomposition and carbon and nitrogen dynamics in response to <span class="hlt">warming</span> in High Arctic tundra.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Blok, Daan; Faucherre, Samuel; Banyasz, Imre; Rinnan, Riikka; Michelsen, Anders; Elberling, Bo</p> <p>2018-06-01</p> <p>Tundra regions are projected to <span class="hlt">warm</span> rapidly during the coming decades. The tundra biome holds the largest terrestrial carbon pool, largely contained in frozen permafrost soils. With <span class="hlt">warming</span>, these permafrost soils may thaw and become available for microbial decomposition, potentially providing a positive feedback to global <span class="hlt">warming</span>. <span class="hlt">Warming</span> may directly stimulate microbial metabolism but may also indirectly stimulate organic matter turnover through increased plant productivity by soil priming from root exudates and accelerated litter turnover rates. Here, we assess the impacts of experimental <span class="hlt">warming</span> on turnover rates of leaf litter, active layer soil and thawed permafrost sediment in two high-arctic tundra heath sites in NE-Greenland, either dominated by evergreen or deciduous shrubs. We incubated shrub leaf litter on the surface of control and <span class="hlt">warmed</span> plots for 1 and 2 years. Active layer soil was collected from the plots to assess the effects of 8 years of field <span class="hlt">warming</span> on soil carbon stocks. Finally, we incubated open <span class="hlt">cores</span> filled with newly thawed permafrost soil for 2 years in the active layer of the same plots. After field incubation, we measured basal respiration rates of recovered thawed permafrost <span class="hlt">cores</span> in the lab. <span class="hlt">Warming</span> significantly reduced litter mass loss by 26% after 1 year incubation, but differences in litter mass loss among treatments disappeared after 2 years incubation. <span class="hlt">Warming</span> also reduced litter nitrogen mineralization and decreased the litter carbon to nitrogen ratio. Active layer soil carbon stocks were reduced 15% by <span class="hlt">warming</span>, while soil dissolved nitrogen was reduced by half in <span class="hlt">warmed</span> plots. <span class="hlt">Warming</span> had a positive legacy effect on carbon turnover rates in thawed permafrost <span class="hlt">cores</span>, with 10% higher respiration rates measured in <span class="hlt">cores</span> from <span class="hlt">warmed</span> plots. These results demonstrate that <span class="hlt">warming</span> may have contrasting effects on above- and belowground tundra carbon turnover, possibly governed by microbial resource availability. © 2017 John</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120003374','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120003374"><span>Weather Research and Forecasting Model Sensitivity Comparisons for <span class="hlt">Warm</span> Season Convective Initiation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Watson, Leela R.</p> <p>2007-01-01</p> <p>This report describes the work done by the Applied Meteorology Unit (AMU) in assessing the success of different model configurations in predicting <span class="hlt">warm</span> season convection over East-Central Florida. The Weather Research and Forecasting Environmental Modeling System (WRF EMS) software allows users to choose among two dynamical <span class="hlt">cores</span> - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model - the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Besides model <span class="hlt">core</span> and initialization options, the WRF model can be run with one- or two-way nesting. Having a series of initialization options and WRF <span class="hlt">cores</span>, as well as many options within each <span class="hlt">core</span>, creates challenges for local forecasters, such as determining which configuration options are best to address specific forecast concerns. This project assessed three different model intializations available to determine which configuration best predicts <span class="hlt">warm</span> season convective initiation in East-Central Florida. The project also examined the use of one- and two-way nesting in predicting <span class="hlt">warm</span> season convection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24178508','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24178508"><span><span class="hlt">Warm</span>-up and performance in competitive swimming.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Marinho, Daniel A</p> <p>2014-03-01</p> <p><span class="hlt">Warm</span>-up before physical activity is commonly accepted to be fundamental, and any priming practices are usually thought to optimize performance. However, specifically in swimming, studies on the effects of <span class="hlt">warm</span>-up are scarce, which may be due to the swimming pool environment, which has a high temperature and humidity, and to the complexity of <span class="hlt">warm</span>-up procedures. The purpose of this study is to review and summarize the different studies on how <span class="hlt">warming</span> up affects swimming performance, and to develop recommendations for improving the efficiency of <span class="hlt">warm</span>-up before competition. Most of the main proposed effects of <span class="hlt">warm</span>-up, such as elevated <span class="hlt">core</span> and muscular temperatures, increased blood flow and oxygen delivery to muscle cells and higher efficiency of muscle contractions, support the hypothesis that <span class="hlt">warm</span>-up enhances performance. However, while many researchers have reported improvements in performance after <span class="hlt">warm</span>-up, others have found no benefits to <span class="hlt">warm</span>-up. This lack of consensus emphasizes the need to evaluate the real effects of <span class="hlt">warm</span>-up and optimize its design. Little is known about the effectiveness of <span class="hlt">warm</span>-up in competitive swimming, and the variety of <span class="hlt">warm</span>-up methods and swimming events studied makes it difficult to compare the published conclusions about the role of <span class="hlt">warm</span>-up in swimming. Recent findings have shown that <span class="hlt">warm</span>-up has a positive effect on the swimmer's performance, especially for distances greater than 200 m. We recommend that swimmers <span class="hlt">warm</span>-up for a relatively moderate distance (between 1,000 and 1,500 m) with a proper intensity (a brief approach to race pace velocity) and recovery time sufficient to prevent the early onset of fatigue and to allow the restoration of energy reserves (8-20 min).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1106N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1106N"><span>Baroclinic Adjustment of the <span class="hlt">Eddy</span>-Driven Jet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Novak, Lenka; Ambaum, Maarten H. P.; Harvey, Ben J.</p> <p>2017-04-01</p> <p>The prediction of poleward shift in the midlatitude <span class="hlt">eddy</span>-driven jets due to anthropogenic climate change is now a robust feature of climate models, but the magnitude of this shift or the processes responsible for it are less certain. This uncertainty comes from the complex response in storm tracks to large-scale forcing and their nonlinear modulation of the jet. This study uses global circulation models to reveal a relationship between <span class="hlt">eddy</span> growth rate (referred to as baroclinicity) and <span class="hlt">eddy</span> activity, whereby baroclinicity responds most rapidly to an <span class="hlt">eddy</span>-dissipating forcing whereas <span class="hlt">eddy</span> activity responds most rapidly to a baroclinicity-replenishing forcing. This nonlinearity can be generally explained using a two-dimensional dynamical system essentially describing the baroclinic adjustment as a predator-prey relationship. Despite this nonlinearity, the barotropic changes in the <span class="hlt">eddy</span>-driven jet appear to be of a comparable magnitude for the ranges of both types of forcing tested in this study. It is implied that while changes in <span class="hlt">eddy</span> activity or baroclinicity may indicate the sign of latitudinal jet shifting, the precise magnitude of this shifting is a result of a balance between these two quantities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CSR...156...11B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CSR...156...11B"><span>Mechanism for the recent ocean <span class="hlt">warming</span> events on the Scotian Shelf of eastern Canada</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brickman, D.; Hebert, D.; Wang, Z.</p> <p>2018-03-01</p> <p>In 2012, 2014, and 2015 anomalous <span class="hlt">warm</span> events were observed in the subsurface waters in the Scotian Shelf region of eastern Canada. Monthly output from a high resolution numerical ocean model simulation of the North Atlantic ocean for the period 1990-2015 is used to investigate this phenomenon. It is found that the model shows skill in simulating the anomaly fields derived from various sources of data, and the observed <span class="hlt">warming</span> trend over the last decade. From analysis of the model run it is found that the anomalies originate from the interaction between the Gulf Stream and the Labrador Current at the tail of the Grand Banks (south of Newfoundland). This interaction results in the creation of anomalous <span class="hlt">warm</span>/salty (or cold/fresh) <span class="hlt">eddies</span> that travel east-to-west along the shelfbreak. These anomalies penetrate into the Gulf of St. Lawrence, onto the Scotian Shelf, and into the Gulf of Maine via deep channels along the shelfbreak. The observed <span class="hlt">warming</span> trend can be attributed to an increase in the frequency of creation of <span class="hlt">warm</span> anomalies during the last decade. Strong anomalous events are commonly observed in the data and model, and thus should be considered as part of the natural variability of the coupled atmosphere-ocean system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.9980B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.9980B"><span>Wind Forced Variability in <span class="hlt">Eddy</span> Formation, <span class="hlt">Eddy</span> Shedding, and the Separation of the East Australian Current</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bull, Christopher Y. S.; Kiss, Andrew E.; Jourdain, Nicolas C.; England, Matthew H.; van Sebille, Erik</p> <p>2017-12-01</p> <p>The East Australian Current (EAC), like many other subtropical western boundary currents, is believed to be penetrating further poleward in recent decades. Previous observational and model studies have used steady state dynamics to relate changes in the westerly winds to changes in the separation behavior of the EAC. As yet, little work has been undertaken on the impact of forcing variability on the EAC and Tasman Sea circulation. Here using an <span class="hlt">eddy</span>-permitting regional ocean model, we present a suite of simulations forced by the same time-mean fields, but with different atmospheric and remote ocean variability. These <span class="hlt">eddy</span>-permitting results demonstrate the nonlinear response of the EAC to variable, nonstationary inhomogeneous forcing. These simulations show an EAC with high intrinsic variability and stochastic <span class="hlt">eddy</span> shedding. We show that wind stress variability on time scales shorter than 56 days leads to increases in <span class="hlt">eddy</span> shedding rates and southward <span class="hlt">eddy</span> propagation, producing an increased transport and southward reach of the mean EAC extension. We adopt an energetics framework that shows the EAC extension changes to be coincident with an increase in offshore, upstream <span class="hlt">eddy</span> variance (via increased barotropic instability) and increase in subsurface mean kinetic energy along the length of the EAC. The response of EAC separation to regional variable wind stress has important implications for both past and future climate change studies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870050640&hterms=planetary+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dplanetary%2Bmotion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870050640&hterms=planetary+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dplanetary%2Bmotion"><span>Effects of <span class="hlt">eddy</span> initial conditions on nonlinear forcing of planetary scale waves by amplifying baroclinic <span class="hlt">eddies</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Young, Richard E.</p> <p>1986-01-01</p> <p>The previous study of Young and Villere concerning growth of planetary scale waves forced by wave-wave interactions of amplifying intermediate scale baroclinic <span class="hlt">eddies</span> is extended to investigate effects of different <span class="hlt">eddy</span> initial conditions. A global, spectral, primitive equation model is used for the calculations. For every set of <span class="hlt">eddy</span> initial conditions considered, growth rates of planetary modes are considerably greater than growth rates computed from linear instability theory for a fixed zonally independent basic state. However, values of growth rates ranged over a factor of 3 depending on the particular set of <span class="hlt">eddy</span> initial conditions used. Nonlinear forcing of planetary modes via wave-wave coupling becomes more important than baroclinic growth on the basic state at small values of the intermediate-scale modal amplitudes. The relative importance of direct transfer of kinetic energy from intermediate scales of motion to a planetary mode, compared to baroclinic conversion of available potential energy to kinetic energy within that planetary mode, depends on the individual case. In all cases, however, the transfer of either kinetic or available potential energy to the planetary modes was accomplished principally by wave-wave transfer from intermediate scale <span class="hlt">eddies</span>, rather than from the zonally averaged state. The zonal wavenumber 2 planetary mode was prominent in all solutions, even in those for which <span class="hlt">eddy</span> initial conditions were such that a different planetary mode was selectively forced at the start. General characteristics of the structural evolution of the planetary wave components of total heat and momentum flux, and modal structures themselves, were relatively insensitive to variations in <span class="hlt">eddy</span> initial conditions, even though quantitative details varied from case to case.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26312615','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26312615"><span>Acute <span class="hlt">Warm</span>-up Effects in Submaximal Athletes: An EMG Study of Skilled Violinists.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McCrary, J Matt; Halaki, Mark; Sorkin, Evgeny; Ackermann, Bronwen J</p> <p>2016-02-01</p> <p><span class="hlt">Warm</span>-up is commonly recommended for injury prevention and performance enhancement across all activities, yet this recommendation is not supported by evidence for repetitive submaximal activities such as instrumental music performance. The objective of this study is to quantify the effects of cardiovascular, <span class="hlt">core</span> muscle, and musical <span class="hlt">warm</span>-ups on muscle activity levels, musical performance, and subjective experience in skilled violinists. Fifty-five undergraduate, postgraduate, or professional violinists performed five randomly ordered 45-s musical excerpts of varying physical demands both before and after a randomly assigned 15-min, moderate-intensity cardiovascular, <span class="hlt">core</span> muscle, musical (technical violin exercises), or inactive control <span class="hlt">warm</span>-up protocol. Surface EMG data were obtained for 16 muscles of the trunk, shoulders, and right arm during each musical performance. Sound recording and perceived exertion (RPE) data were also obtained. Sound recordings were randomly ordered and rated for performance quality by blinded adjudicators. Questionnaire data regarding participant pain sites and fitness levels were used to stratify participants according to pain and fitness levels. Data were analyzed using two- and three-factor ANCOVA (surface EMG and sound recording) and Wilcoxon matched pairs tests (RPE). None of the three <span class="hlt">warm</span>-up protocols had significant effects on muscle activity levels (P ≥ 0.10). Performance quality did not significantly increase (P ≥ 0.21). RPE significantly decreased (P < 0.05) after <span class="hlt">warm</span>-up for each of the three experimental <span class="hlt">warm</span>-ups; control condition RPE did not significantly decrease (P > 0.23). Acute physiological and musical benefits from cardiovascular, <span class="hlt">core</span> muscle, and musical <span class="hlt">warm</span>-ups in skilled violinists are limited to decreases in RPE. This investigation provides data from the performing arts in support of sports medical evidence suggesting that <span class="hlt">warm</span>-up only effectively enhances maximal strength and power performance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=GL-2002-001703&hterms=Red+Sea+outflow+water&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DRed%2BSea%2Boutflow%2Bwater','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=GL-2002-001703&hterms=Red+Sea+outflow+water&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DRed%2BSea%2Boutflow%2Bwater"><span><span class="hlt">Eddies</span> off the Queen Charlotte Islands</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>The bright red, green, and turquoise patches to the west of British Columbia's Queen Charlotte Islands and Alaska's Alexander Archipelago highlight the presence of biological activity in the ocean. These colors indicate high concentrations of chlorophyll, the primary pigment found in phytoplankton. Notice that there are a number of <span class="hlt">eddies</span> visible in the Pacific Ocean in this pseudo-color scene. The <span class="hlt">eddies</span> are formed by strong outflow currents from rivers along North America's west coast that are rich in nutrients from the springtime snowmelt running off the mountains. This nutrient-rich water helps stimulate the phytoplankton blooms within the <span class="hlt">eddies</span>. (For more details, read Tracking <span class="hlt">Eddies</span> that Feed the Sea.) To the west of the <span class="hlt">eddies</span> in the water, another type of <span class="hlt">eddy</span>-this one in the atmosphere-forms the clouds into the counterclockwise spiral characteristic of a low pressure system in the Northern Hemisphere. (Click on the image above to see it at full resolution; or click to see the scene in true-color.) The snow-covered mountains of British Columbia are visible in the upper righthand corner of the image. This scene was constructed using SeaWiFS data collected on June 13, 2002. SeaWiFS image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1314985','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1314985"><span>The Effect of Postoperative Skin-Surface <span class="hlt">Warming</span> on Oxygen Consumption and the Shivering Threshold</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Alfonsi, P.; Nourredine, K.; Adam, F.; Chauvin, M.; Sessler, D. I.</p> <p>2005-01-01</p> <p>Summary Cutaneous <span class="hlt">warming</span> is reportedly an effective treatment for shivering during epidural and after general anaesthesia. We quantified the efficacy of cutaneous <span class="hlt">warming</span> as a treatment for shivering. Unwarmed surgical patients (final intraoperative <span class="hlt">core</span> temperatures ≈35°C) were randomly assigned to be covered with a blanket (n=9) or full-body forced-air cover (n=9). Shivering was evaluated clinically and by oxygen consumption. Forced-air heating increased mean-skin temperature (35.7±0.4 °C vs. 33.2±0.8°C, P< 0.0001) and lowered <span class="hlt">core</span> temperature at the shivering threshold (35.7±0.2 °C vs. 36.4±0.2°C, P< 0.0001). Active <span class="hlt">warming</span> improved thermal comfort and significantly reduced oxygen consumption from 9.7±4.4 to 5.6±1.9 mL·min−1·kg−1(P=0.038). However, duration of shivering was similar in the two groups (37±11 min [<span class="hlt">warming</span>] and 36±10 min [control]). <span class="hlt">Core</span> temperature thus contributed about four times as much as skin temperature to control of shivering. Cutaneous <span class="hlt">warming</span> improved thermal comfort and reduced metabolic stress in postoperative patients, but did not quickly obliterate shivering. PMID:14705689</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020071029&hterms=Bio&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D90%26Ntt%3DBio','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020071029&hterms=Bio&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D90%26Ntt%3DBio"><span>New Chemical, Bio-Optical and Physical Observations of Upper Ocean Response to the Passage of a Mesoscale <span class="hlt">Eddy</span> off Bermuda</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McNeil, J. D.; Jannasch, H. W.; Dickey, T.; McGillicuddy, D.; Brzekinski, M.; Sakamoto, C. M.</p> <p>1999-01-01</p> <p>A mesoscale <span class="hlt">eddy</span> advected across the Bermuda Testbed Mooring site over a 30-day period centered on July 14, 1995. Temperature and current measurements along with biogeochemical measurements were used to characterize the biological response of the upper ocean associated with the introduction of nitrate into the euphoric layer due to the doming of isotherms associated with the <span class="hlt">eddy</span>. Complementary shipboard data showed an anomalous water mass, which extended from a depth of approximately 50 to 1000 m, manifesting as a cold surface expression and <span class="hlt">warm</span> anomaly at depth. Although mesoscale <span class="hlt">eddies</span> are frequently observed in the Sargasso Sea, the present observations are particularly unique because of the high-temporal-resolution measurements of the new instrumentation deployed on the mooring. Analyzers that measure nitrate plus nitrite were placed at depths of 80 and 200 m and bio-optical sensors were located at depths of 20, 35, 45, 71, and 86 m. Peak nitrate values of nearly 3.0 microns at 80 m and chlorophyll alpha values of 1.4 mg/cu m at 71 m were observed, as well as a 25- to 30-meter shoaling of the 1% light level depth. A Doppler shift from the inertial period (22.8 hours) to 25.2 hours was observed in several time series records due to the movement of the <span class="hlt">eddy</span> across the mooring. Inertial pumping brought cold, nutrient-rich waters farther into the euphotic zone than would occur solely by isothermal lifting. Silicic acid was depleted to undetectable levels owing to the growth of diatoms within the <span class="hlt">eddy</span>. The chlorophyll alpha values associated with the <span class="hlt">eddy</span> appear to be the largest recorded during the 8 years of the ongoing U.S. JGOFS Bermuda Atlantic Time Series Study (BATS) program.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020038032&hterms=Bermuda&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DBermuda','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020038032&hterms=Bermuda&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DBermuda"><span>New Chemical, Bio-Optical and Physical Observations of Upper Ocean Response to the Passage of a Mesoscale <span class="hlt">Eddy</span> Off Bermuda</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McNeil, J. D.; Jannasch, H. W.; Dickey, T.; McGillicuddy, Dennis J., Jr.; Brzezinski, M.; Sakamoto, C. M.</p> <p>1999-01-01</p> <p>A mesoscale <span class="hlt">eddy</span> advected across the Bermuda Testbed Mooring site over a 30-day period centered on July 14, 1995. Temperature and current measurements along with biogeochemical measurements were used to characterize the biological response of the upper ocean associated with the introduction of nitrate into the euphotic layer due to the doming of isotherms associated with the <span class="hlt">eddy</span>. Complementary shipboard data showed an anomalous water mass, which extended from a depth of approximately 50 to 1000 m, manifesting as a cold surface expression and <span class="hlt">warm</span> anomaly at depth. Although mesoscale <span class="hlt">eddies</span> are frequently observed in the Sargasso Sea, the present observations are particularly unique because of the high-temporal-resolution measurements of the new instrumentation deployed on the mooring. Analyzers that measure nitrate plus nitrite were placed at depths of 80 and 200 m and bio-optical sensors were located at depths of 20, 35, 45, 71, and 86 m. Peak nitrate values of nearly 3.0 micro-M at 80 m and chlorophyll a values of 1.4 mg/cubic m at 71 m were observed, a well as a 25- to 30-meter shoaling of the 1% light level depth. A Doppler shift from the inertial period (22.8 hours) to 25.2 hours was observed in several time series records due to the movement of the <span class="hlt">eddy</span> across the mooring. Inertial pumping brought cold, nutrient-rich waters farther into the euphotic zone than would occur solely by isothermal lifting. Silicic acid was depleted to undetectable levels owing to the growth of diatoms within the <span class="hlt">eddy</span>. The chlorophyll a values associated with the <span class="hlt">eddy</span> appear to be the largest recorded during the eight years of the ongoing US JGOFS Bermuda Atlantic Time Series Study program.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28964228','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28964228"><span>Determination of <span class="hlt">eddy</span> current response with magnetic measurements.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiang, Y Z; Tan, Y; Gao, Z; Nakamura, K; Liu, W B; Wang, S Z; Zhong, H; Wang, B B</p> <p>2017-09-01</p> <p>Accurate mutual inductances between magnetic diagnostics and poloidal field coils are an essential requirement for determining the poloidal flux for plasma equilibrium reconstruction. The mutual inductance calibration of the flux loops and magnetic probes requires time-varying coil currents, which also simultaneously drive <span class="hlt">eddy</span> currents in electrically conducting structures. The <span class="hlt">eddy</span> current-induced field appearing in the magnetic measurements can substantially increase the calibration error in the model if the <span class="hlt">eddy</span> currents are neglected. In this paper, an expression of the magnetic diagnostic response to the coil currents is used to calibrate the mutual inductances, estimate the conductor time constant, and predict the <span class="hlt">eddy</span> currents response. It is found that the <span class="hlt">eddy</span> current effects in magnetic signals can be well-explained by the <span class="hlt">eddy</span> current response determination. A set of experiments using a specially shaped saddle coil diagnostic are conducted to measure the SUNIST-like <span class="hlt">eddy</span> current response and to examine the accuracy of this method. In shots that include plasmas, this approach can more accurately determine the plasma-related response in the magnetic signals by eliminating the field due to the <span class="hlt">eddy</span> currents produced by the external field.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930000347&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DEddy%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930000347&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DEddy%2Bcurrent"><span><span class="hlt">Eddy</span>-Current Inspection Of Graphite-Fiber Composites</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Workman, G. L.; Bryson, C. C.</p> <p>1993-01-01</p> <p>NASA technical memorandum describes initial research on, and proposed development of, automated system for nondestructive <span class="hlt">eddy</span>-current inspection of parts made of graphite-fiber/epoxy-matrix composite materials. Sensors in system E-shaped or U-shaped <span class="hlt">eddy</span>-current probes like those described in "<span class="hlt">Eddy</span>-Current Probes For Inspecting Graphite-Fiber Composites" (MFS-26129).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930091209','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930091209"><span>The decay of a simple <span class="hlt">eddy</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bateman, H</p> <p>1923-01-01</p> <p>The principal result obtained in this report is a generalization of Taylor's formula for a simple <span class="hlt">eddy</span>. The discussion of the properties of the <span class="hlt">eddy</span> indicates that there is a slight analogy between the theory of <span class="hlt">eddies</span> in a viscous fluid and the quantum theory of radiation. Another exact solution of the equations of motion of viscous fluid yields a result which reminds one of the well-known condition for instability in the case of a horizontally stratified atmosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B41J..02O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B41J..02O"><span>Long Term Thawing Experiments on Intact <span class="hlt">Cores</span> of Arctic Mineral Cryosol: Implications for Greenhouse Gas Feedbacks from Global <span class="hlt">Warming</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Onstott, T. C.; Stackhouse, B. T.; Lau, C. Y. M.; Whyte, L. G.; Pfiffner, S. M.; Vishnivetskaya, T. A.</p> <p>2015-12-01</p> <p>Mineral cryosols comprise >87% of Arctic tundra. Much attention has focused on high-organic carbon cryosols and how they will respond to global <span class="hlt">warming</span>. The biogeochemical processes related to the greenhouse gas release from mineral cryosols, however, have not been fully explored. To this end, seventeen intact <span class="hlt">cores</span> of active layer and underlying permafrost of mineral cryosol from Axel Heiberg Island, Nunavut, Canada, were subjected to 85 weeks of thawing at 4.5°C under various treatment regimes. The fluxes of CO2 and CH4 across the atmosphere-soil boundary and vertical profiles of the gas and water chemistry and the metagenomes were determined. The flux measurements were compared to those of microcosms and field measurements. The main conclusions were as follows: 1) CO2 emission rates from the intact <span class="hlt">cores</span> do not behave in the typical fast to slow carbon pool fashion that typify microcosm experiments. The CO2 emission rates from the intact <span class="hlt">cores</span> were much slower than those from the microcosm initially, but steadily increased with time, overtaking and then exceeding microcosm release rates after one year. 2) The increased CO2 flux from thawing permafrost could not be distinguished from that of control <span class="hlt">cores</span> until after a full year of thawing. 3) Atmospheric CH4 oxidation was present in all intact <span class="hlt">cores</span> regardless of whether they are water saturated or not, but after one year it had diminished to the point of being negligible. Over that same time the period the metagenomic data recorded a significant decline in the proportion of high-affinity methanotrophs. 4) Thaw slumps in the <span class="hlt">cores</span> temporarily increased the CH4 oxidation and the CO2 emission rates. 5) The microbial community structures varied significantly by depth with methanotrophs being more abundant in above 35 cm depth than below 35 cm depth. 6) Other than the diminishment of Type II methanotrophs, the microbial community structure varied little after one week of thawing, nor even after 18 months of thaw.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007QSRv...26.2012C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007QSRv...26.2012C"><span>Abrupt climate <span class="hlt">warming</span> in East Antarctica during the early Holocene</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cremer, Holger; Heiri, Oliver; Wagner, Bernd; Wagner-Cremer, Friederike</p> <p>2007-08-01</p> <p>We report a centennial-scale <span class="hlt">warming</span> event between 8600 and 8400 cal BP from Amery Oasis, East Antarctica, that is documented by the geochemical record in a lacustrine sediment sequence. The organic carbon content, the C/S ratio, and the sedimentation rate in this <span class="hlt">core</span> have distinctly elevated values around 8500 y ago reflecting relatively <span class="hlt">warm</span> and ice-free conditions that led to well-ventilated conditions in the lake and considerable sedimentation of both autochthonous and allochthonous organic matter on the lake bottom. This abrupt <span class="hlt">warming</span> event occurred concurrently with reported <span class="hlt">warm</span> climatic conditions in the Southern Ocean while the climate in central East Antarctic remained cold. The comparison of the spatial and temporal variability of <span class="hlt">warm</span> climatic periods documented in various terrestrial, marine, and glacial archives from East Antarctica elucidates the uniqueness of the centennial-scale <span class="hlt">warming</span> event in the Amery Oasis. We also discuss a possible correlation of the Amery <span class="hlt">warming</span> event with the abrupt climatic deterioration around 8200 cal BP on the Northern Hemisphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.9744J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.9744J"><span><span class="hlt">Eddy</span>-Kuroshio Interactions: Local and Remote Effects</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jan, Sen; Mensah, Vigan; Andres, Magdalena; Chang, Ming-Huei; Yang, Yiing Jang</p> <p>2017-12-01</p> <p>Quasi-geostrophic mesoscale <span class="hlt">eddies</span> regularly impinge on the Kuroshio in the western North Pacific, but the processes underlying the evolution of these <span class="hlt">eddy</span>-Kuroshio interactions have not yet been thoroughly investigated in the literature. Here this interaction is examined with results from a semi-idealized three-dimensional numerical model and observations from four pressure-sensor equipped inverted echo sounders (PIESs) in a zonal section east of Taiwan and satellite altimeters. Both the observations and numerical simulations suggest that, during the interaction of a cyclonic <span class="hlt">eddy</span> with the Kuroshio, the circular <span class="hlt">eddy</span> is deformed into an elliptic shape with the major axis in the northwest-southeast direction, before being dissipated; the poleward velocity and associated Kuroshio transport decrease and the sea level and pycnocline slopes across the Kuroshio weaken. In contrast, for an anticyclonic <span class="hlt">eddy</span> during the <span class="hlt">eddy</span>-Kuroshio interaction, variations in the velocity, sea level, and isopycnal depth are reversed; the circular <span class="hlt">eddy</span> is also deformed to an ellipse but with the major axis parallel to the Kuroshio. The model results also demonstrate that the velocity field is modified first and consequently the SSH and isopycnal depth evolve during the interaction. Furthermore, due to the combined effect of impingement latitude and realistic topography, some <span class="hlt">eddy</span>-Kuroshio interactions east of Taiwan are found to have remote effects, both in the Luzon Strait and on the East China Sea shelf northeast of Taiwan.<abstract type="synopsis"><title type="main">Plain Language SummaryMesoscale <span class="hlt">eddies</span> are everywhere in the ocean. These ocean swirls of either clockwise or counterclockwise spinning with diameter of about 100-300 km and rounding current speed of about 0.5 m/s, carrying energy and certain type of water mass, move westward and eventually reach the western boundary of each ocean. The evolution of these <span class="hlt">eddies</span> and the interaction which occurs when they encounter the western</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..43.5802S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..43.5802S"><span>On sharp vorticity gradients in elongating baroclinic <span class="hlt">eddies</span> and their stabilization with a solid-body rotation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sutyrin, Georgi G.</p> <p>2016-06-01</p> <p>Wide compensated vortices are not able to remain circular in idealized two-layer models unless the ocean depth is assumed to be unrealistically large. Small perturbations on both cyclonic and anticyclonic <span class="hlt">eddies</span> grow slower if a middle layer with uniform potential vorticity (PV) is added, owing to a weakening of the vertical coupling between the upper and lower layers and a reduction of the PV gradient in the deep layer. Numerical simulations show that the nonlinear development of the most unstable elliptical mode causes self-elongation of the upper vortex <span class="hlt">core</span> and splitting of the deep PV anomaly into two corotating parts. The emerging tripolar flow pattern in the lower layer results in self-intensification of the fluid rotation in the water column around the vortex center. Further vortex evolution depends on the model parameters and initial conditions, which limits predictability owing to multiple equilibrium attractors existing in the dynamical system. The vortex <span class="hlt">core</span> strips thin filaments, which roll up into submesoscale vortices to result in substantial mixing at the vortex periphery. Stirring and damping of vorticity by bottom friction are found to be essential for subsequent vortex stabilization. The development of sharp PV gradients leads to nearly solid-body rotation inside the vortex <span class="hlt">core</span> and formation of transport barriers at the vortex periphery. These processes have important implications for understanding the longevity of real-ocean <span class="hlt">eddies</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27717291','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27717291"><span>Turbulent <span class="hlt">eddy</span> diffusion models in exposure assessment - Determination of the <span class="hlt">eddy</span> diffusion coefficient.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shao, Yuan; Ramachandran, Sandhya; Arnold, Susan; Ramachandran, Gurumurthy</p> <p>2017-03-01</p> <p>The use of the turbulent <span class="hlt">eddy</span> diffusion model and its variants in exposure assessment is limited due to the lack of knowledge regarding the isotropic <span class="hlt">eddy</span> diffusion coefficient, D T . But some studies have suggested a possible relationship between D T and the air changes per hour (ACH) through a room. The main goal of this study was to accurately estimate D T for a range of ACH values by minimizing the difference between the concentrations measured and predicted by <span class="hlt">eddy</span> diffusion model. We constructed an experimental chamber with a spatial concentration gradient away from the contaminant source, and conducted 27 3-hr long experiments using toluene and acetone under different air flow conditions (0.43-2.89 ACHs). An <span class="hlt">eddy</span> diffusion model accounting for chamber boundary, general ventilation, and advection was developed. A mathematical expression for the slope based on the geometrical parameters of the ventilation system was also derived. There is a strong linear relationship between D T and ACH, providing a surrogate parameter for estimating D T in real-life settings. For the first time, a mathematical expression for the relationship between D T and ACH has been derived that also corrects for non-ideal conditions, and the calculated value of the slope between these two parameters is very close to the experimentally determined value. The values of D T obtained from the experiments are generally consistent with values reported in the literature. They are also independent of averaging time of measurements, allowing for comparison of values obtained from different measurement settings. These findings make the use of turbulent <span class="hlt">eddy</span> diffusion models for exposure assessment in workplace/indoor environments more practical.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020043256','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020043256"><span>Large <span class="hlt">Eddy</span> Simulation of a Turbulent Jet</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Webb, A. T.; Mansour, Nagi N.</p> <p>2001-01-01</p> <p>Here we present the results of a Large <span class="hlt">Eddy</span> Simulation of a non-buoyant jet issuing from a circular orifice in a wall, and developing in neutral surroundings. The effects of the subgrid scales on the large <span class="hlt">eddies</span> have been modeled with the dynamic large <span class="hlt">eddy</span> simulation model applied to the fully 3D domain in spherical coordinates. The simulation captures the unsteady motions of the large-scales within the jet as well as the laminar motions in the entrainment region surrounding the jet. The computed time-averaged statistics (mean velocity, concentration, and turbulence parameters) compare well with laboratory data without invoking an empirical entrainment coefficient as employed by line integral models. The use of the large <span class="hlt">eddy</span> simulation technique allows examination of unsteady and inhomogeneous features such as the evolution of <span class="hlt">eddies</span> and the details of the entrainment process.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1713084S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1713084S"><span>Turbulent fluxes by "Conditional <span class="hlt">Eddy</span> Sampling"</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siebicke, Lukas</p> <p>2015-04-01</p> <p>Turbulent flux measurements are key to understanding ecosystem scale energy and matter exchange, including atmospheric trace gases. While the <span class="hlt">eddy</span> covariance approach has evolved as an invaluable tool to quantify fluxes of e.g. CO2 and H2O continuously, it is limited to very few atmospheric constituents for which sufficiently fast analyzers exist. High instrument cost, lack of field-readiness or high power consumption (e.g. many recent laser-based systems requiring strong vacuum) further impair application to other tracers. Alternative micrometeorological approaches such as conditional sampling might overcome major limitations. Although the idea of <span class="hlt">eddy</span> accumulation has already been proposed by Desjardin in 1972 (Desjardin, 1977), at the time it could not be realized for trace gases. Major simplifications by Businger and Oncley (1990) lead to it's widespread application as 'Relaxed <span class="hlt">Eddy</span> Accumulation' (REA). However, those simplifications (flux gradient similarity with constant flow rate sampling irrespective of vertical wind velocity and introduction of a deadband around zero vertical wind velocity) have degraded <span class="hlt">eddy</span> accumulation to an indirect method, introducing issues of scalar similarity and often lack of suitable scalar flux proxies. Here we present a real implementation of a true <span class="hlt">eddy</span> accumulation system according to the original concept. Key to our approach, which we call 'Conditional <span class="hlt">Eddy</span> Sampling' (CES), is the mathematical formulation of conditional sampling in it's true form of a direct <span class="hlt">eddy</span> flux measurement paired with a performant real implementation. Dedicated hardware controlled by near-real-time software allows full signal recovery at 10 or 20 Hz, very fast valve switching, instant vertical wind velocity proportional flow rate control, virtually no deadband and adaptive power management. Demonstrated system performance often exceeds requirements for flux measurements by orders of magnitude. The system's exceptionally low power consumption is ideal</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS31B1402A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS31B1402A"><span><span class="hlt">Eddy</span>-induced salinity pattern in the North Pacific</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abe, H.; Ebuchi, N.; Ueno, H.; Ishiyama, H.; Matsumura, Y.</p> <p>2017-12-01</p> <p>This research examines spatio-temporal behavior of sea surface salinity (SSS) after intense rainfall events using observed data from Aquarius. Aquarius SSS in the North Pacific reveals one notable event in which SSS is locally freshened by intense rainfall. Although SSS pattern shortly after the rainfall reflects atmospheric pattern, its final form reflects ocean dynamic structure; an anticyclonic <span class="hlt">eddy</span>. Since this anticyclonic <span class="hlt">eddy</span> was located at SSS front created by precipitation, this <span class="hlt">eddy</span> stirs the water in a clockwise direction. This <span class="hlt">eddy</span> stirring was visible for several months. It is expected horizontal transport by mesoscale <span class="hlt">eddies</span> would play significant role in determining upper ocean salinity structure.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/869453','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/869453"><span>Expert system for analyzing <span class="hlt">eddy</span> current measurements</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Levy, Arthur J.; Oppenlander, Jane E.; Brudnoy, David M.; Englund, James M.; Loomis, Kent C.</p> <p>1994-01-01</p> <p>A method and apparatus (called DODGER) analyzes <span class="hlt">eddy</span> current data for heat exchanger tubes or any other metallic object. DODGER uses an expert system to analyze <span class="hlt">eddy</span> current data by reasoning with uncertainty and pattern recognition. The expert system permits DODGER to analyze <span class="hlt">eddy</span> current data intelligently, and obviate operator uncertainty by analyzing the data in a uniform and consistent manner.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920023181','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920023181"><span>Study of <span class="hlt">eddy</span> current probes</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Workman, Gary L.; Wang, Morgan</p> <p>1992-01-01</p> <p>The recognition of materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in <span class="hlt">eddy</span> current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using <span class="hlt">eddy</span> current inspection techniques.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhFl...20b6602V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhFl...20b6602V"><span>Dipolar <span class="hlt">eddies</span> in a decaying stratified turbulent flow</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Voropayev, S. I.; Fernando, H. J. S.; Morrison, R.</p> <p>2008-02-01</p> <p>Laboratory experiments on the evolution of dipolar (momentum) <span class="hlt">eddies</span> in a stratified fluid in the presence of random background motions are described. A turbulent jet puff was used to generate the momentum <span class="hlt">eddies</span>, and a decaying field of ambient random vortical motions was generated by a towed grid. Data on vorticity/velocity fields of momentum <span class="hlt">eddies</span>, those of background motions, and their interactions were collected in the presence and absence of the other, and the main characteristics thereof were parametrized. Similarity arguments predict that dipolar <span class="hlt">eddies</span> in stratified fluids may preserve their identity in decaying grid-generated stratified turbulence, which was verified experimentally. Possible applications of the results include mushroomlike currents and other naturally/artificially generated large dipolar <span class="hlt">eddies</span> in strongly stratified layers of the ocean, the longevity of which is expected to be determined by the characteristics of the <span class="hlt">eddies</span> and random background motions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70133683','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70133683"><span>Nonperiodic <span class="hlt">eddy</span> pulsations</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rubin, David M.; McDonald, Richard R.</p> <p>1995-01-01</p> <p>Recirculating flow in lateral separation <span class="hlt">eddies</span> is typically weaker than main stem flow and provides an effective environment for trapping sediment. Observations of recirculating flow and sedimentary structures demonstrate that <span class="hlt">eddies</span> pulsate in size and in flow velocity even when main stem flow is steady. Time series measurements of flow velocity and location of the reattachment point indicate that these pulsations are nonperiodic. Nonperiodic flow in the lee of a channel margin constriction is grossly different from the periodic flow in the lee of a cylinder that is isolated in a flow. Our experiments demonstrate that placing a flow-parallel plate adjacent to a cylinder is sufficient to cause the leeside flow to change from a periodic sequence of vortices to a nonperiodically pulsating lateral separation <span class="hlt">eddy</span>, even if flow conditions are otherwise unchanged. Two processes cause the leeside flow to become nonperiodic when the plate is added. First, vortices that are shed from the cylinder deform and become irregular as they impact the plate or interfere with remnants of other vortices near the reattachment point. Second, these deformed vortices and other flow structures are recirculated in the lateral separation <span class="hlt">eddy</span>, thereby influencing the future state (pressure and momentum distribution) of the recirculating flow. The vortex deformation process was confirmed experimentally by documenting spatial differences in leeside flow; vortex shedding that is evident near the separation point is undetectable near the reattachment point. Nonlinear forecasting techniques were used in an attempt to distinguish among several possible kinds of nonperiodic flows. The computational techniques were unable to demonstrate that any of the nonperiodic flows result from low-dimensional nonlinear processes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS31C2027L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS31C2027L"><span>The Dynamics of <span class="hlt">Eddy</span> Fluxes and Jet-Scale Overturning Circulations and its Impact on the Mixed Layer Formation in the Indo-Western Pacific Southern Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>LI, Q.; Lee, S.</p> <p>2016-12-01</p> <p>The relationship between Antarctic Circumpolar Current (ACC) jets and <span class="hlt">eddy</span> fluxes in the Indo-western Pacific Southern Ocean (90°E-145°E) is investigated using an <span class="hlt">eddy</span>-resolving model. In this region, transient <span class="hlt">eddy</span> momentum flux convergence occurs at the latitude of the primary jet <span class="hlt">core</span>, whereas <span class="hlt">eddy</span> buoyancy flux is located over a broader region that encompasses the jet and the inter-jet minimum. In a small sector (120°E-144°E) where jets are especially zonal, a spatial and temporal decomposition of the <span class="hlt">eddy</span> fluxes further reveals that fast <span class="hlt">eddies</span> act to accelerate the jet with the maximum <span class="hlt">eddy</span> momentum flux convergence at the jet center, while slow <span class="hlt">eddies</span> tend to decelerate the zonal current at the inter-jet minimum. Transformed Eulerian mean (TEM) diagnostics reveals that the <span class="hlt">eddy</span> momentum contribution accelerates the jets at all model depths, whereas the buoyancy flux contribution decelerates the jets at depths below 600 m. In ocean sectors where the jets are relatively well defined, there exist jet-scale overturning circulations (JSOC) with sinking motion on the equatorward flank, and rising motion on the poleward flank of the jets. The location and structure of these thermally indirect circulations suggest that they are driven by the <span class="hlt">eddy</span> momentum flux convergence, much like the Ferrel cell in the atmosphere. This study also found that the JSOC plays a significant role in the oceanic heat transport and that it also contributes to the formation of a thin band of mixed layer that exists on the equatorward flank of the Indo-western Pacific ACC jets.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JPhD...42g5001E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JPhD...42g5001E"><span>A novel <span class="hlt">eddy</span> current damper: theory and experiment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ebrahimi, Babak; Khamesee, Mir Behrad; Golnaraghi, Farid</p> <p>2009-04-01</p> <p>A novel <span class="hlt">eddy</span> current damper is developed and its damping characteristics are studied analytically and experimentally. The proposed <span class="hlt">eddy</span> current damper consists of a conductor as an outer tube, and an array of axially magnetized ring-shaped permanent magnets separated by iron pole pieces as a mover. The relative movement of the magnets and the conductor causes the conductor to undergo motional <span class="hlt">eddy</span> currents. Since the <span class="hlt">eddy</span> currents produce a repulsive force that is proportional to the velocity of the conductor, the moving magnet and the conductor behave as a viscous damper. The <span class="hlt">eddy</span> current generation causes the vibration to dissipate through the Joule heating generated in the conductor part. An accurate, analytical model of the system is obtained by applying electromagnetic theory to estimate the damping properties of the proposed <span class="hlt">eddy</span> current damper. A prototype <span class="hlt">eddy</span> current damper is fabricated, and experiments are carried out to verify the accuracy of the theoretical model. The experimental test bed consists of a one-degree-of-freedom vibration isolation system and is used for the frequency and transient time response analysis of the system. The <span class="hlt">eddy</span> current damper model has a 0.1 m s-2 (4.8%) RMS error in the estimation of the mass acceleration. A damping coefficient as high as 53 Ns m-1 is achievable with the fabricated prototype. This novel <span class="hlt">eddy</span> current damper is an oil-free, inexpensive damper that is applicable in various vibration isolation systems such as precision machinery, micro-mechanical suspension systems and structure vibration isolation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNG24A..01B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNG24A..01B"><span>Dynamically Consistent Parameterization of Mesoscale <span class="hlt">Eddies</span> This work aims at parameterization of <span class="hlt">eddy</span> effects for use in non-<span class="hlt">eddy</span>-resolving ocean models and focuses on the effect of the stochastic part of the <span class="hlt">eddy</span> forcing that backscatters and induces eastward jet extension of the western boundary currents and its adjacent recirculation zones.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berloff, P. S.</p> <p>2016-12-01</p> <p>This work aims at developing a framework for dynamically consistent parameterization of mesoscale <span class="hlt">eddy</span> effects for use in non-<span class="hlt">eddy</span>-resolving ocean circulation models. The proposed <span class="hlt">eddy</span> parameterization framework is successfully tested on the classical, wind-driven double-gyre model, which is solved both with explicitly resolved vigorous <span class="hlt">eddy</span> field and in the non-<span class="hlt">eddy</span>-resolving configuration with the <span class="hlt">eddy</span> parameterization replacing the <span class="hlt">eddy</span> effects. The parameterization focuses on the effect of the stochastic part of the <span class="hlt">eddy</span> forcing that backscatters and induces eastward jet extension of the western boundary currents and its adjacent recirculation zones. The parameterization locally approximates transient <span class="hlt">eddy</span> flux divergence by spatially localized and temporally periodic forcing, referred to as the plunger, and focuses on the linear-dynamics flow solution induced by it. The nonlinear self-interaction of this solution, referred to as the footprint, characterizes and quantifies the induced <span class="hlt">eddy</span> forcing exerted on the large-scale flow. We find that spatial pattern and amplitude of each footprint strongly depend on the underlying large-scale flow, and the corresponding relationships provide the basis for the <span class="hlt">eddy</span> parameterization and its closure on the large-scale flow properties. Dependencies of the footprints on other important parameters of the problem are also systematically analyzed. The parameterization utilizes the local large-scale flow information, constructs and scales the corresponding footprints, and then sums them up over the gyres to produce the resulting <span class="hlt">eddy</span> forcing field, which is interactively added to the model as an extra forcing. Thus, the assumed ensemble of plunger solutions can be viewed as a simple model for the cumulative effect of the stochastic <span class="hlt">eddy</span> forcing. The parameterization framework is implemented in the simplest way, but it provides a systematic strategy for improving the implementation algorithm.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050000293&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DEddy%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050000293&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DEddy%2Bcurrent"><span><span class="hlt">Eddy</span> current correction in volume-localized MR spectroscopy</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lin, C.; Wendt, R. E. 3rd; Evans, H. J.; Rowe, R. M.; Hedrick, T. D.; LeBlanc, A. D.</p> <p>1994-01-01</p> <p>The quality of volume-localized magnetic resonance spectroscopy is affected by <span class="hlt">eddy</span> currents caused by gradient switching. <span class="hlt">Eddy</span> currents can be reduced with improved gradient systems; however, it has been suggested that the distortion due to <span class="hlt">eddy</span> currents can be compensated for during postprocessing with a single-frequency reference signal. The authors propose modifying current techniques for acquiring the single-frequency reference signal by using relaxation weighting to reduce interference from components that cannot be eliminated by digital filtering alone. Additional sequences with T1 or T2 weighting for reference signal acquisition are shown to have the same <span class="hlt">eddy</span> current characteristics as the original signal without relaxation weighting. The authors also studied a new <span class="hlt">eddy</span> current correction method that does not require a single-frequency reference signal. This method uses two free induction decays (FIDs) collected from the same volume with two sequences with opposite gradients. Phase errors caused by <span class="hlt">eddy</span> currents are opposite in these two FIDs and can be canceled completely by combining the FIDs. These methods were tested in a phantom. <span class="hlt">Eddy</span> current distortions were corrected, allowing quantitative measurement of structures such as the -CH = CH- component, which is otherwise undetectable.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26097744','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26097744"><span>A daily global mesoscale ocean <span class="hlt">eddy</span> dataset from satellite altimetry.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Faghmous, James H; Frenger, Ivy; Yao, Yuanshun; Warmka, Robert; Lindell, Aron; Kumar, Vipin</p> <p>2015-01-01</p> <p>Mesoscale ocean <span class="hlt">eddies</span> are ubiquitous coherent rotating structures of water with radial scales on the order of 100 kilometers. <span class="hlt">Eddies</span> play a key role in the transport and mixing of momentum and tracers across the World Ocean. We present a global daily mesoscale ocean <span class="hlt">eddy</span> dataset that contains ~45 million mesoscale features and 3.3 million <span class="hlt">eddy</span> trajectories that persist at least two days as identified in the AVISO dataset over a period of 1993-2014. This dataset, along with the open-source <span class="hlt">eddy</span> identification software, extract <span class="hlt">eddies</span> with any parameters (minimum size, lifetime, etc.), to study global <span class="hlt">eddy</span> properties and dynamics, and to empirically estimate the impact <span class="hlt">eddies</span> have on mass or heat transport. Furthermore, our open-source software may be used to identify mesoscale features in model simulations and compare them to observed features. Finally, this dataset can be used to study the interaction between mesoscale ocean <span class="hlt">eddies</span> and other components of the Earth System.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4460914','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4460914"><span>A daily global mesoscale ocean <span class="hlt">eddy</span> dataset from satellite altimetry</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Faghmous, James H.; Frenger, Ivy; Yao, Yuanshun; Warmka, Robert; Lindell, Aron; Kumar, Vipin</p> <p>2015-01-01</p> <p>Mesoscale ocean <span class="hlt">eddies</span> are ubiquitous coherent rotating structures of water with radial scales on the order of 100 kilometers. <span class="hlt">Eddies</span> play a key role in the transport and mixing of momentum and tracers across the World Ocean. We present a global daily mesoscale ocean <span class="hlt">eddy</span> dataset that contains ~45 million mesoscale features and 3.3 million <span class="hlt">eddy</span> trajectories that persist at least two days as identified in the AVISO dataset over a period of 1993–2014. This dataset, along with the open-source <span class="hlt">eddy</span> identification software, extract <span class="hlt">eddies</span> with any parameters (minimum size, lifetime, etc.), to study global <span class="hlt">eddy</span> properties and dynamics, and to empirically estimate the impact <span class="hlt">eddies</span> have on mass or heat transport. Furthermore, our open-source software may be used to identify mesoscale features in model simulations and compare them to observed features. Finally, this dataset can be used to study the interaction between mesoscale ocean <span class="hlt">eddies</span> and other components of the Earth System. PMID:26097744</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A12E..03R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A12E..03R"><span>Anisotropic Mesoscale <span class="hlt">Eddy</span> Transport in Ocean General Circulation Models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.</p> <p>2014-12-01</p> <p>Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale <span class="hlt">eddies</span>. The effects of <span class="hlt">eddies</span> are typically introduced by relating subgrid <span class="hlt">eddy</span> fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an <span class="hlt">eddy</span> transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale <span class="hlt">eddies</span>, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the <span class="hlt">eddy</span> diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale <span class="hlt">eddies</span> on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the <span class="hlt">eddy</span> diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic <span class="hlt">eddy</span> parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the <span class="hlt">eddy</span> transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20649896','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20649896"><span>A randomised single blinded study of the administration of pre-<span class="hlt">warmed</span> fluid vs active fluid <span class="hlt">warming</span> on the incidence of peri-operative hypothermia in short surgical procedures.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Andrzejowski, J C; Turnbull, D; Nandakumar, A; Gowthaman, S; Eapen, G</p> <p>2010-09-01</p> <p>We compared the effect of delivering fluid <span class="hlt">warmed</span> using two methods in 76 adult patients having short duration surgery. All patients received a litre of crystalloid delivered either at room temperature, <span class="hlt">warmed</span> using an in-line <span class="hlt">warming</span> device or pre-<span class="hlt">warmed</span> in a <span class="hlt">warming</span> cabinet for at least 8 h. The tympanic temperature of those receiving fluid at room temperature was 0.4 °C lower on arrival in recovery when compared with those receiving fluid from a <span class="hlt">warming</span> cabinet (p = 0.008). <span class="hlt">Core</span> temperature was below the hypothermic threshold of 36.0 °C in seven (14%) patients receiving either type of <span class="hlt">warm</span> fluid, compared to eight (32%) patients receiving fluid at room temperature (p = 0.03). The administration of 1 l <span class="hlt">warmed</span> fluid to patients having short duration general anaesthesia results in higher postoperative temperatures. Pre-<span class="hlt">warmed</span> fluid, administered within 30 min of its removal from a <span class="hlt">warming</span> cabinet, is as efficient at preventing peri-operative hypothermia as that delivered through an in-line <span class="hlt">warming</span> system. © 2010 The Authors. Journal compilation © 2010 The Association of Anaesthetists of Great Britain and Ireland.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=yoga&pg=4&id=EJ754958','ERIC'); return false;" href="https://eric.ed.gov/?q=yoga&pg=4&id=EJ754958"><span>Add Yoga to Your Singing <span class="hlt">Warm</span>-Ups</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Kuhn, Ivana Pinho</p> <p>2006-01-01</p> <p>Yoga has much to contribute to singing. The main physical disciplines of yoga are strength, flexibility, alignment, body awareness through breath control, and concentration. These basics also constitute the <span class="hlt">core</span> of good singing. With instruction incorporated into the regular <span class="hlt">warm</span>-up, one can introduce beginning yoga ideas into choir practice. Yoga…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3260222','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3260222"><span>Mesoscale <span class="hlt">Eddies</span> Are Oases for Higher Trophic Marine Life</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Godø, Olav R.; Samuelsen, Annette; Macaulay, Gavin J.; Patel, Ruben; Hjøllo, Solfrid Sætre; Horne, John; Kaartvedt, Stein; Johannessen, Johnny A.</p> <p>2012-01-01</p> <p>Mesoscale <span class="hlt">eddies</span> stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within <span class="hlt">eddies</span> remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic <span class="hlt">eddies</span> shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of <span class="hlt">eddies</span>, demonstrating that <span class="hlt">eddies</span> catalyze energy transfer across trophic levels. <span class="hlt">Eddies</span> create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale <span class="hlt">eddies</span>. Our findings emphasize the impact of <span class="hlt">eddies</span> on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. PMID:22272294</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992DSRA...39S.219T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992DSRA...39S.219T"><span>Distribution and growth of salps in a Kuroshio <span class="hlt">warm-core</span> ring during summer 1987</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsuda, Atsushi; Nemoto, Takahisa</p> <p>1992-03-01</p> <p>A salp bloom, accounting for 47% of the macrozooplankton wet weight in the upper 200 m, was observed in a Kuroshio <span class="hlt">warm-core</span> ring and adjacent areas during September 1987. Although salps had wide distribution and high biomass in the ring and adjacent southern areas, they did not occur north of the northern ring front. Thalia democratica dominated in these areas and Salpa fusiformis was abundant at some stations. Salps were distributed only in the upper 200 m of the water column. The maximum abundance of T. democratica was in the surface mixed layer, 0-20 m. S. fusiformis was most abundant from 50 to 75 m. Diel vertical migration was observed only for solitary zooids of S. fusiformis. All other salps appeared only on the surface. The growth of aggregate zooids of T. democratica was investigated with the time-series sampling during a 28-h sampling period following a drifter. Several cohorts were identified in the length-frequency distributions. The average relative growth rate in length was 8.0% per hour. Carbon consumption by the T. democratica population, calculated from the derived growth rate, suggested that T. democratica was a major consumer of the primary production in the ring.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900032957&hterms=eddy+current+manufacturer&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Deddy%2Bcurrent%2Bmanufacturer','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900032957&hterms=eddy+current+manufacturer&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Deddy%2Bcurrent%2Bmanufacturer"><span>Thin film <span class="hlt">eddy</span> current impulse deicer</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Samuel O.; Zieve, Peter B.</p> <p>1990-01-01</p> <p>Two new styles of electrical impulse deicers has been developed and tested in NASA's Icing Research Tunnel. With the <span class="hlt">Eddy</span> Current Repulsion Deicing Boot (EDB), a thin and flexible spiral coil is encapsulated between two thicknesses of elastomer. The coil, made by an industrial printed circuit board manufacturer, is bonded to the aluminum aircraft leading edge. A capacitor bank is discharged through the coil. Induced <span class="hlt">eddy</span> currents repel the coil from the aluminum aircraft structure and shed accumulated ice. A second configuration, the <span class="hlt">Eddy</span> Current Repulsion Deicing-Strip (EDS) uses an outer metal erosion strip fastened over the coil. Opposite flowing <span class="hlt">eddy</span> currents repel the strip and create the impulse deicing force. The outer strip serves as a surface for the collection and shedding of ice and does not require any structural properties. The EDS is suitable for composite aircraft structures. Both systems successfully dispelled over 95 percent of the accumulated ice from airfoils over the range of the FAA icing envelope.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33B1194M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33B1194M"><span>Synoptic <span class="hlt">eddy</span>-resolving Ocean Surveys over the Slope of the Chukchi Sea 2016 and 2017</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muenchow, A.; Elmer, C.; Badiey, M.; Eickmeier, J.; Ryan, P. A.</p> <p>2017-12-01</p> <p>Mild weather and <span class="hlt">warm</span> waters kept the outer continental shelf of the Chukchi Sea ice-free in 2016 when we conducted ocean surveys as part of the Canada Basin Acoustic Propagation Experiment (CANAPE). We used standard CTD and ADCP profiling systems aboard R/V Sikuliaq to describe ocean density and velocity fields at 3 km scales across and 6 km scales along the slope. Our survey covers 800 km2between the 100-m and 400-m isobaths and resolves the internal Rossby radius of deformation which represents the dominant spatial (or <span class="hlt">eddy</span>) scale for a density-stratified ocean. Our early November 2016 data revealed Bering Sea Summer Waters with temperatures exceeding 1.0 C at 80-m depth near the 200-m isobath. Three-dimensional distribution of this water and associated density gradients suggests a current to the east. The flow is likely unstable, we speculate, because it spawns <span class="hlt">eddy</span>-like features that we will describe. We will test this hypothesis with ocean current shear estimated from vessel-mounted ADCP profiles. A similar survey is planned for October 2017, when USCGC Healy will re-visit the area to recover ocean moorings deployed prior to the 2016 surveys.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.1745R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.1745R"><span>Intense mesoscale variability in the Sardinia Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Russo, Aniello; Borrione, Ines; Falchetti, Silvia; Knoll, Michaela; Fiekas, Heinz-Volker; Heywood, Karen; Oddo, Paolo; Onken, Reiner</p> <p>2015-04-01</p> <p>From the 6 to 25 June 2014, the REP14-MED sea trial was conducted by CMRE, supported by 20 partners from six different nations. The at-sea activities were carried out onboard the research vessels Alliance (NATO) and Planet (German Ministry of Defense), comprising a marine area of about 110 x 110 km2 to the west of the Sardinian coast. More than 300 CTD casts typically spaced at 10 km were collected; both ships continuously recorded vertical profiles of currents by means of their ADCPs, and a ScanFish® and a CTD chain were towed for almost three days by Alliance and Planet, respectively, following parallel routes. Twelve gliders from different manufacturers (Slocum, SeaGliderTM and SeaExplorer) were continuously sampling the study area following zonal tracks spaced at 10 km. In addition, six moorings, 17 surface drifters and one ARVOR float were deployed. From a first analysis of the observations, several mesoscale features were identified in the survey area, in particular: (i) a <span class="hlt">warm-core</span> anticyclonic <span class="hlt">eddy</span> in the southern part of the domain, about 50 km in diameter and with the strongest signal at about 50-m depth (ii) another <span class="hlt">warm-core</span> anticyclonic <span class="hlt">eddy</span> of comparable dimensions in the central part of the domain, but extending to greater depth than the former one, and (iii) a small (less than 15 km in diameter) cold-<span class="hlt">core</span> cyclonic <span class="hlt">eddy</span> of Winter Intermediate Water in the depth range between 170 m and 370 m. All three <span class="hlt">eddies</span> showed intensified currents, up to 50 cm s-1. The huge high-resolution observational data set and the variety of observation techniques enabled the mesoscale features and their variability to be tracked for almost three weeks. In order to obtain a deeper understanding of the mesoscale dynamic behaviour and their interactions, assimilation studies with an ocean circulation model are underway.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5620663','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5620663"><span>Surface Profiling and <span class="hlt">Core</span> Evaluation of Aluminum Honeycomb Sandwich Aircraft Panels Using Multi-Frequency <span class="hlt">Eddy</span> Current Testing</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Reyno, Tyler; Underhill, P. Ross; Krause, Thomas W.; Marsden, Catharine; Wowk, Diane</p> <p>2017-01-01</p> <p>Surface damage on honeycomb aircraft panels is often measured manually, and is therefore subject to variation based on inspection personnel. <span class="hlt">Eddy</span> current testing (ECT) is sensitive to variations in probe-to-specimen spacing, or lift-off, and is thus promising for high-resolution profiling of surface damage on aluminum panels. Lower frequency testing also allows inspection through the face sheet, an advantage over optical 3D scanning methods. This paper presents results from the ECT inspection of surface damage on an approximately flat aluminum honeycomb aircraft panel, and compares the measurements to those taken using optical 3D scanning technology. An ECT C-Scan of the dented panel surface was obtained by attaching the probe to a robotic scanning apparatus. Data was taken simultaneously at four frequencies of 25, 100, 400 and 1600 kHz. A reference surface was then defined that approximated the original, undamaged panel surface, which also compensated for the effects of specimen tilt and thermal drift within the ECT instrument. Data was converted to lift-off using height calibration curves developed for each probe frequency. A damage region of 22,550 mm2 area with dents ranging in depth from 0.13–1.01 mm was analyzed. The method was accurate at 1600 kHz to within 0.05 mm (2σ) when compared with 231 measurements taken via optical 3D scanning. Testing at 25 kHz revealed a 3.2 mm cell size within the honeycomb <span class="hlt">core</span>, which was confirmed via destructive evaluation. As a result, ECT demonstrates potential for implementation as a method for rapid in-field aircraft panel surface damage assessment. PMID:28906434</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28906434','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28906434"><span>Surface Profiling and <span class="hlt">Core</span> Evaluation of Aluminum Honeycomb Sandwich Aircraft Panels Using Multi-Frequency <span class="hlt">Eddy</span> Current Testing.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reyno, Tyler; Underhill, P Ross; Krause, Thomas W; Marsden, Catharine; Wowk, Diane</p> <p>2017-09-14</p> <p>Surface damage on honeycomb aircraft panels is often measured manually, and is therefore subject to variation based on inspection personnel. <span class="hlt">Eddy</span> current testing (ECT) is sensitive to variations in probe-to-specimen spacing, or lift-off, and is thus promising for high-resolution profiling of surface damage on aluminum panels. Lower frequency testing also allows inspection through the face sheet, an advantage over optical 3D scanning methods. This paper presents results from the ECT inspection of surface damage on an approximately flat aluminum honeycomb aircraft panel, and compares the measurements to those taken using optical 3D scanning technology. An ECT C-Scan of the dented panel surface was obtained by attaching the probe to a robotic scanning apparatus. Data was taken simultaneously at four frequencies of 25, 100, 400 and 1600 kHz. A reference surface was then defined that approximated the original, undamaged panel surface, which also compensated for the effects of specimen tilt and thermal drift within the ECT instrument. Data was converted to lift-off using height calibration curves developed for each probe frequency. A damage region of 22,550 mm² area with dents ranging in depth from 0.13-1.01 mm was analyzed. The method was accurate at 1600 kHz to within 0.05 mm (2σ) when compared with 231 measurements taken via optical 3D scanning. Testing at 25 kHz revealed a 3.2 mm cell size within the honeycomb <span class="hlt">core</span>, which was confirmed via destructive evaluation. As a result, ECT demonstrates potential for implementation as a method for rapid in-field aircraft panel surface damage assessment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDH23003R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDH23003R"><span>Anisotropic mesoscale <span class="hlt">eddy</span> transport in ocean general circulation models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reckinger, Scott; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank; Dennis, John; Danabasoglu, Gokhan</p> <p>2014-11-01</p> <p>In modern climate models, the effects of oceanic mesoscale <span class="hlt">eddies</span> are introduced by relating subgrid <span class="hlt">eddy</span> fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an <span class="hlt">eddy</span> transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale <span class="hlt">eddies</span>, is universally treated isotropically. However, the diffusive processes that the parameterization approximates, such as shear dispersion and potential vorticity barriers, typically have strongly anisotropic characteristics. Generalizing the <span class="hlt">eddy</span> diffusivity tensor for anisotropy extends the number of parameters from one to three: major diffusivity, minor diffusivity, and alignment. The Community Earth System Model (CESM) with the anisotropic <span class="hlt">eddy</span> parameterization is used to test various choices for the parameters, which are motivated by observations and the <span class="hlt">eddy</span> transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces temperature and salinity biases. These effects can be improved by parameterizing the oceanic anisotropic transport mechanisms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AIPC.1096.1069K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AIPC.1096.1069K"><span><span class="hlt">Eddy</span> Current Assessment of Engineered Components Containing Nanofibers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ko, Ray T.; Hoppe, Wally; Pierce, Jenny</p> <p>2009-03-01</p> <p>The <span class="hlt">eddy</span> current approach has been used to assess engineered components containing nanofibers. Five specimens with different programmed defects were fabricated. A 4-point collinear probe was used to verify the electrical resistivity of each specimen. The liftoff component of the <span class="hlt">eddy</span> current signal was used to test two extreme cases with different nano contents. Additional <span class="hlt">eddy</span> current measurements were also used in detecting a missing nano layer simulating a manufacturing process error. The results of this assessment suggest that <span class="hlt">eddy</span> current liftoff measurement can be a useful tool in evaluating the electrical properties of materials containing nanofibers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27910585','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27910585"><span>The <span class="hlt">eddy</span> current probe array for Keda Torus eXperiment.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Zichao; Li, Hong; Tu, Cui; Hu, Jintong; You, Wei; Luo, Bing; Tan, Mingsheng; Adil, Yolbarsop; Wu, Yanqi; Shen, Biao; Xiao, Bingjia; Zhang, Ping; Mao, Wenzhe; Wang, Hai; Wen, Xiaohui; Zhou, Haiyang; Xie, Jinlin; Lan, Tao; Liu, Adi; Ding, Weixing; Xiao, Chijin; Liu, Wandong</p> <p>2016-11-01</p> <p>In a reversed field pinch device, the conductive shell is placed as close as possible to the plasma so as to balance the plasma during discharge. Plasma instabilities such as the resistive wall mode and certain tearing modes, which restrain the plasma high parameter operation, respond closely with conditions in the wall, in essence the <span class="hlt">eddy</span> current present. Also, the effect of <span class="hlt">eddy</span> currents induced by the external coils cannot be ignored when active control is applied to control instabilities. One diagnostic tool, an <span class="hlt">eddy</span> current probe array, detects the <span class="hlt">eddy</span> current in the composite shell. Magnetic probes measuring differences between the inner and outer magnetic fields enable estimates of the amplitude and angle of these <span class="hlt">eddy</span> currents. Along with measurements of currents through the copper bolts connecting the poloidal shield copper shells, we can obtain the <span class="hlt">eddy</span> currents over the entire shell. Magnetic field and <span class="hlt">eddy</span> current resolutions approach 2 G and 6 A, respectively. Additionally, the vortex electric field can be obtained by <span class="hlt">eddy</span> current probes. As the conductivity of the composite shell is high, the <span class="hlt">eddy</span> current probe array is very sensitive to the electric field and has a resolution of 0.2 mV/cm. In a bench test experiment using a 1/4 vacuum vessel, measurements of the induced <span class="hlt">eddy</span> currents are compared with simulation results based on a 3D electromagnetic model. The preliminary data of the <span class="hlt">eddy</span> currents have been detected during discharges in a Keda Torus eXperiment device. The typical value of toroidal and poloidal <span class="hlt">eddy</span> currents across the magnetic probe coverage rectangular area could reach 3.0 kA and 1.3 kA, respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OcSci..12.1249L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OcSci..12.1249L"><span>GEM: a dynamic tracking model for mesoscale <span class="hlt">eddies</span> in the ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Qiu-Yang; Sun, Liang; Lin, Sheng-Fu</p> <p>2016-12-01</p> <p>The Genealogical Evolution Model (GEM) presented here is an efficient logical model used to track dynamic evolution of mesoscale <span class="hlt">eddies</span> in the ocean. It can distinguish between different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, the GEM first uses a two-dimensional (2-D) similarity vector (i.e., a pair of ratios of overlap area between two <span class="hlt">eddies</span> to the area of each <span class="hlt">eddy</span>) rather than a scalar to measure the similarity between <span class="hlt">eddies</span>, which effectively solves the "missing <span class="hlt">eddy</span>" problem (temporarily lost <span class="hlt">eddy</span> in tracking). Second, for tracking when an <span class="hlt">eddy</span> splits, the GEM uses both "parent" (the original <span class="hlt">eddy</span>) and "child" (<span class="hlt">eddy</span> split from parent) and the dynamic processes are described as the birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of <span class="hlt">eddies</span> M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O(LM(N + 1)T). The tracking of each <span class="hlt">eddy</span> is very smooth because we require that the snapshots of each <span class="hlt">eddy</span> on adjacent days overlap one another. Although <span class="hlt">eddy</span> splitting or merging is ubiquitous in the ocean, they have different geographic distributions in the North Pacific Ocean. Both the merging and splitting rates of the <span class="hlt">eddies</span> are high, especially at the western boundary, in currents and in "<span class="hlt">eddy</span> deserts". The GEM is useful not only for satellite-based observational data, but also for numerical simulation outputs. It is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70194854','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70194854"><span>Transient <span class="hlt">eddy</span> formation around headlands</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Signell, Richard P.; Geyer, W. Rockwell</p> <p>1991-01-01</p> <p><span class="hlt">Eddies</span> with length scales of 1-10 km are commonly observed in coastal waters and play an important role in the dispersion of water-borne materials. The generation and evolution of these <span class="hlt">eddies</span> by oscillatory tidal flow around coastal headlands is investigated with analytical and numerical models. Using shallow water depth-averaged vorticity dynamics, <span class="hlt">eddies</span> are shown to form when flow separation occurs near the tip of the headland, causing intense vorticity generated along the headland to be injected into the interior. An analytic boundary layer model demonstrates that flow separation occurs when the pressure gradient along the boundary switches from favoring (accelerating) to adverse (decelerating), and its occurrence depends principally on three parameters: the aspect ratio [b/a], where b and a are characteristic width and length scales of the headland; [H/CDa], where H is the water depth, CD is the depth-averaged drag coefficient; and [Uo/aa], where Uo and a are the magnitude and frequency of the far-field tidal flow. Simulations with a depth-averaged numerical model show a wide range of responses to changes in these parameters, including cases where no separation occurs, cases where only one <span class="hlt">eddy</span> exists at a given time, and cases where bottom friction is weak enough that <span class="hlt">eddies</span> produced during successive tidal cycles coexist, interacting strongly with each other. These simulations also demonstrate that in unsteady flow, a strong start-up vortex forms after the flow separates, leading to a much more intense patch of vorticity and stronger recirculation than found in steady flow. </p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS33B1456D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS33B1456D"><span>Increasing of <span class="hlt">eddy</span> activity in the northeastern Pacific during 1993-2011</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ding, M.; Lin, P.; Liu, H.; Chai, F.</p> <p>2017-12-01</p> <p>We study the long-term behaviors of <span class="hlt">eddy</span> activity in the northeastern Pacific (NEP) and the dynamic mechanism behind them based on the 3rd version of the mesoscale <span class="hlt">eddy</span> trajectories dataset released by Chelton et al. (2013) combined with other observation and reanalysis datasets. Both the <span class="hlt">eddy</span> kinetic energy (EKE) and <span class="hlt">eddy</span> occurrence number (EON) present prominent increasing trends, with inter-annual and decadal variabilities northeast of the Hawaii-Emperor seamounts. The increasing trend of the EON is mainly due to prolongation of the <span class="hlt">eddy</span> lifetime associated with the <span class="hlt">eddy</span> intensification, particularly for anticyclonic <span class="hlt">eddies</span> (AEs). Weakened surface winds tend to prolong the <span class="hlt">eddy</span> lifetimes, as the <span class="hlt">eddy</span> attenuation time scale is inversely proportional to the wind speed. The enhanced anticyclonic wind stress curl (WSC) anomalies inject more energy into the AE over the study region and provide a more suitable environment for AEs growth. The decadal climate modes, such as the Pacific decadal oscillation (PDO) and the North Pacific gyre oscillation (NPGO), may also modulate <span class="hlt">eddy</span> activities in the NEP by exerting fluctuations in the surface wind system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011BAAS...43..008G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011BAAS...43..008G"><span>Obituary: John Allen <span class="hlt">Eddy</span> (1931-2009)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gingerich, Owen</p> <p>2011-12-01</p> <p>Jack <span class="hlt">Eddy</span>, who was born 25 March 1931 in Pawnee City in southeastern Nebraska, died after a long battle with cancer in Tucson, Arizona, on 10 June 2009. Best known for his work on the long-term instability of the sun, described in a landmark paper in Science titled "The Maunder Minimum," he also deserves recognition as one of the triumvirate who founded the Historical Astronomy Division of the AAS. His father ran a cooperative farm store where Jack worked as a teenager; his parents were of modest means and there were concerns whether he could afford college, but one of the state senators, also from Pawnee City, nominated him for the U.S. Naval Academy. A course in celestial navigation gave him a love of the sky. After graduation in 1953, he served four years on aircraft carriers in the Pacific during the Korean War and then as a navigator and operations officer on a destroyer in the Persian Gulf. In 1957, he left the Navy and entered graduate school at the University of Colorado in Boulder, where in 1962 he received a Ph.D. in astro-geophysics. His thesis, supervised by Gordon Newkirk, dealt with light scattering in the upper atmosphere, based on data from stratospheric balloon flights. He then worked as teacher and researcher at the High Altitude Observatory in Boulder. Always adventuresome and willing to explore new frontiers, on his own time <span class="hlt">Eddy</span> examined an Amerindian stone circle in the Big Horn mountains of Wyoming, a so-called medicine wheel, concluding that there were alignments with both the solstitial sun and Aldebaran. His conjectures became a cover story on Science magazine in June of 1974. In 1971 Jack privately reproduced for his friends a small collection of his own hilarious cartoons titled "Job Opportunities for Out-of-work Astronomers," with an abstract beginning, "Contrary to popular belief, a PhD in Astronomy/Astrophysics need not be a drawback in locating work in this decade." For example, under merchandising, a used car salesman advertises</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.3329M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.3329M"><span>Subregional characterization of mesoscale <span class="hlt">eddies</span> across the Brazil-Malvinas Confluence</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mason, Evan; Pascual, Ananda; Gaube, Peter; Ruiz, Simón; Pelegrí, Josep L.; Delepoulle, Antoine</p> <p>2017-04-01</p> <p>Horizontal and vertical motions associated with coherent mesoscale structures, including <span class="hlt">eddies</span> and meanders, are responsible for significant global transports of many properties, including heat and mass. Mesoscale vertical fluxes also influence upper ocean biological productivity by mediating the supply of nutrients into the euphotic layer, with potential impacts on the global carbon cycle. The Brazil-Malvinas Confluence (BMC) is a western boundary current region in the South Atlantic with intense mesoscale activity. This region has an active role in the genesis and transformation of water masses and thus is a critical component of the Atlantic meridional overturning circulation. The collision between the Malvinas and Brazil Currents over the Patagonian shelf/slope creates an energetic front that translates offshore to form a vigorous <span class="hlt">eddy</span> field. Recent improvements in gridded altimetric sea level anomaly fields allow us to track BMC mesoscale <span class="hlt">eddies</span> with high spatial and temporal resolutions using an automated <span class="hlt">eddy</span> tracker. We characterize the <span class="hlt">eddies</span> across fourteen 5° × 5° subregions. <span class="hlt">Eddy</span>-centric composites of tracers and geostrophic currents diagnosed from a global reanalysis of surface and in situ data reveal substantial subregional heterogeneity. The in situ data are also used to compute the evolving quasi-geostrophic vertical velocity (QG-ω) associated with each instantaneous <span class="hlt">eddy</span> instance. The QG-ω <span class="hlt">eddy</span> composites have the expected dipole patterns of alternating upwelling/downwelling, however, the magnitude and sign of azimuthally averaged vertical velocity varies among subregions. Maximum <span class="hlt">eddy</span> values are found near fronts and sharp topographic gradients. In comparison with regional <span class="hlt">eddy</span> composites, subregional composites provide refined information about mesoscale <span class="hlt">eddy</span> heterogeneity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPA....8d7603O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPA....8d7603O"><span>Magnetic characterization of the stator <span class="hlt">core</span> of a high-speed motor made of an ultrathin electrical steel sheet using the magnetic property evaluation system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oka, Mohachiro; Enokizono, Masato; Mori, Yuji; Yamazaki, Kazumasa</p> <p>2018-04-01</p> <p>Recently, the application areas for electric motors have been expanding. For instance, electric motors are used in new technologies such as rovers, drones, cars, and robots. The motor used in such machinery should be small, high-powered, highly-efficient, and high-speed. In such motors, loss at high-speed rotation must be especially minimal. <span class="hlt">Eddy</span>-current loss in the stator <span class="hlt">core</span> is known to increase greatly during loss at high-speed rotation of the motor. To produce an efficient high-speed motor, we are developing a stator <span class="hlt">core</span> for a motor using an ultrathin electrical steel sheet with only a small amount of <span class="hlt">eddy</span>-current loss. Furthermore, the magnetic property evaluation for efficient, high-speed motor stator <span class="hlt">cores</span> that use conventional commercial frequency is insufficient. Thus, we made a new high-speed magnetic property evaluation system to evaluate the magnetic properties of the efficient high-speed motor stator <span class="hlt">core</span>. This system was composed of high-speed A/D converters, D/A converters, and a high-speed power amplifier. In experiments, the ultrathin electrical steel sheet dramatically suppressed iron loss and, in particular, <span class="hlt">eddy</span>-current loss. In addition, a new high-speed magnetic property evaluation system accurately evaluated the magnetic properties of the efficient high-speed motor stator <span class="hlt">core</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvF...2k3801G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvF...2k3801G"><span>Simulations of <span class="hlt">eddy</span> kinetic energy transport in barotropic turbulence</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grooms, Ian</p> <p>2017-11-01</p> <p><span class="hlt">Eddy</span> energy transport in rotating two-dimensional turbulence is investigated using numerical simulation. Stochastic forcing is used to generate an inhomogeneous field of turbulence and the time-mean energy profile is diagnosed. An advective-diffusive model for the transport is fit to the simulation data by requiring the model to accurately predict the observed time-mean energy distribution. Isotropic harmonic diffusion of energy is found to be an accurate model in the case of uniform, solid-body background rotation (the f plane), with a diffusivity that scales reasonably well with a mixing-length law κ ∝V ℓ , where V and ℓ are characteristic <span class="hlt">eddy</span> velocity and length scales. Passive tracer dynamics are added and it is found that the energy diffusivity is 75 % of the tracer diffusivity. The addition of a differential background rotation with constant vorticity gradient β leads to significant changes to the energy transport. The <span class="hlt">eddies</span> generate and interact with a mean flow that advects the <span class="hlt">eddy</span> energy. Mean advection plus anisotropic diffusion (with reduced diffusivity in the direction of the background vorticity gradient) is moderately accurate for flows with scale separation between the <span class="hlt">eddies</span> and mean flow, but anisotropic diffusion becomes a much less accurate model of the transport when scale separation breaks down. Finally, it is observed that the time-mean <span class="hlt">eddy</span> energy does not look like the actual <span class="hlt">eddy</span> energy distribution at any instant of time. In the future, stochastic models of the <span class="hlt">eddy</span> energy transport may prove more useful than models of the mean transport for predicting realistic <span class="hlt">eddy</span> energy distributions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840000104&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DEddy%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840000104&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DEddy%2Bcurrent"><span><span class="hlt">Eddy</span>-Current Inspection of Ball Bearings</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bankston, B.</p> <p>1985-01-01</p> <p>Custom <span class="hlt">eddy</span>-current probe locates surface anomalies. Low friction air cushion within cone allows ball to roll easily. <span class="hlt">Eddy</span> current probe reliably detects surface and near-surface cracks, voids, and material anomalies in bearing balls or other spherical objects. Defects in ball surface detected by probe displayed on CRT and recorded on strip-chart recorder.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDH27003H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDH27003H"><span>The turbulent cascade of individual <span class="hlt">eddies</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huertas-Cerdeira, Cecilia; Lozano-Durán, Adrián; Jiménez, Javier</p> <p>2014-11-01</p> <p>The merging and splitting processes of Reynolds-stress carrying structures in the inertial range of scales are studied through their time-resolved evolution in channels at Reλ = 100 - 200 . Mergers and splits coexist during the whole life of the structures, and are responsible for a substantial part of their growth and decay. Each interaction involves two or more <span class="hlt">eddies</span> and results in little overall volume loss or gain. Most of them involve a small <span class="hlt">eddy</span> that merges with, or splits from, a significantly larger one. Accordingly, if merge and split indexes are respectively defined as the maximum number of times that a structure has merged from its birth or will split until its death, the mean <span class="hlt">eddy</span> volume grows linearly with both indexes, suggesting an accretion process rather than a hierarchical fragmentation. However, a non-negligible number of interactions involve <span class="hlt">eddies</span> of similar scale, with a second probability peak of the volume of the smaller parent or child at 0.3 times that of the resulting or preceding structure. Funded by the Multiflow project of the ERC.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRC..120..677E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRC..120..677E"><span>Cyclonic entrainment of preconditioned shelf waters into a frontal <span class="hlt">eddy</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Everett, J. D.; Macdonald, H.; Baird, M. E.; Humphries, J.; Roughan, M.; Suthers, I. M.</p> <p>2015-02-01</p> <p>The volume transport of nutrient-rich continental shelf water into a cyclonic frontal <span class="hlt">eddy</span> (entrainment) was examined from satellite observations, a Slocum glider and numerical simulation outputs. Within the frontal <span class="hlt">eddy</span>, parcels of water with temperature/salinity signatures of the continental shelf (18-19°C and >35.5, respectively) were recorded. The distribution of patches of shelf water observed within the <span class="hlt">eddy</span> was consistent with the spiral pattern shown within the numerical simulations. A numerical dye tracer experiment showed that the surface waters (≤50 m depth) of the frontal <span class="hlt">eddy</span> are almost entirely (≥95%) shelf waters. Particle tracking experiments showed that water was drawn into the <span class="hlt">eddy</span> from over 4° of latitude (30-34.5°S). Consistent with the glider observations, the modeled particles entrained into the <span class="hlt">eddy</span> sunk relative to their initial position. Particles released south of 33°S, where the waters are cooler and denser, sunk 34 m deeper than their release position. Distance to the shelf was a critical factor in determining the volume of shelf water entrained into the <span class="hlt">eddy</span>. Entrainment reduced to 0.23 Sv when the <span class="hlt">eddy</span> was furthest from the shelf, compared to 0.61 Sv when the <span class="hlt">eddy</span> was within 10 km of the shelf. From a biological perspective, quantifying the entrainment of shelf water into frontal <span class="hlt">eddies</span> is important, as it is thought to play a significant role in providing an offshore nursery habitat for coastally spawned larval fish.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25477461','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25477461"><span>Multidecadal <span class="hlt">warming</span> of Antarctic waters.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schmidtko, Sunke; Heywood, Karen J; Thompson, Andrew F; Aoki, Shigeru</p> <p>2014-12-05</p> <p>Decadal trends in the properties of seawater adjacent to Antarctica are poorly known, and the mechanisms responsible for such changes are uncertain. Antarctic ice sheet mass loss is largely driven by ice shelf basal melt, which is influenced by ocean-ice interactions and has been correlated with Antarctic Continental Shelf Bottom Water (ASBW) temperature. We document the spatial distribution of long-term large-scale trends in temperature, salinity, and <span class="hlt">core</span> depth over the Antarctic continental shelf and slope. <span class="hlt">Warming</span> at the seabed in the Bellingshausen and Amundsen seas is linked to increased heat content and to a shoaling of the mid-depth temperature maximum over the continental slope, allowing warmer, saltier water greater access to the shelf in recent years. Regions of ASBW <span class="hlt">warming</span> are those exhibiting increased ice shelf melt. Copyright © 2014, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29734335','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29734335"><span>POMC neurons in heat: A link between <span class="hlt">warm</span> temperatures and appetite suppression.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vicent, Maria A; Mook, Conor L; Carter, Matthew E</p> <p>2018-05-01</p> <p>When <span class="hlt">core</span> body temperature increases, appetite and food consumption decline. A higher <span class="hlt">core</span> body temperature can occur during exercise, during exposure to <span class="hlt">warm</span> environmental temperatures, or during a fever, yet the mechanisms that link relatively <span class="hlt">warm</span> temperatures to appetite suppression are unknown. A recent study in PLOS Biology demonstrates that neurons in the mouse hypothalamus that express pro-opiomelanocortin (POMC), a neural population well known to suppress food intake, also express a temperature-sensitive ion channel, transient receptor potential vanilloid 1 (TRPV1). Slight increases in body temperature cause a TRPV1-dependent increase in activity in POMC neurons, which suppresses feeding in mice. Taken together, this study suggests a novel mechanism linking body temperature and food-seeking behavior.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22914090','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22914090"><span>Recent Antarctic Peninsula <span class="hlt">warming</span> relative to Holocene climate and ice-shelf history.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mulvaney, Robert; Abram, Nerilie J; Hindmarsh, Richard C A; Arrowsmith, Carol; Fleet, Louise; Triest, Jack; Sime, Louise C; Alemany, Olivier; Foord, Susan</p> <p>2012-09-06</p> <p>Rapid <span class="hlt">warming</span> over the past 50 years on the Antarctic Peninsula is associated with the collapse of a number of ice shelves and accelerating glacier mass loss. In contrast, <span class="hlt">warming</span> has been comparatively modest over West Antarctica and significant changes have not been observed over most of East Antarctica, suggesting that the ice-<span class="hlt">core</span> palaeoclimate records available from these areas may not be representative of the climate history of the Antarctic Peninsula. Here we show that the Antarctic Peninsula experienced an early-Holocene <span class="hlt">warm</span> period followed by stable temperatures, from about 9,200 to 2,500 years ago, that were similar to modern-day levels. Our temperature estimates are based on an ice-<span class="hlt">core</span> record of deuterium variations from James Ross Island, off the northeastern tip of the Antarctic Peninsula. We find that the late-Holocene development of ice shelves near James Ross Island was coincident with pronounced cooling from 2,500 to 600 years ago. This cooling was part of a millennial-scale climate excursion with opposing anomalies on the eastern and western sides of the Antarctic Peninsula. Although <span class="hlt">warming</span> of the northeastern Antarctic Peninsula began around 600 years ago, the high rate of <span class="hlt">warming</span> over the past century is unusual (but not unprecedented) in the context of natural climate variability over the past two millennia. The connection shown here between past temperature and ice-shelf stability suggests that <span class="hlt">warming</span> for several centuries rendered ice shelves on the northeastern Antarctic Peninsula vulnerable to collapse. Continued <span class="hlt">warming</span> to temperatures that now exceed the stable conditions of most of the Holocene epoch is likely to cause ice-shelf instability to encroach farther southward along the Antarctic Peninsula.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920000982','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920000982"><span>Automated <span class="hlt">eddy</span> current analysis of materials</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Workman, Gary L.</p> <p>1990-01-01</p> <p>This research effort focused on the use of <span class="hlt">eddy</span> current techniques for characterizing flaws in graphite-based filament-wound cylindrical structures. A major emphasis was on incorporating artificial intelligence techniques into the signal analysis portion of the inspection process. Developing an <span class="hlt">eddy</span> current scanning system using a commercial robot for inspecting graphite structures (and others) has been a goal in the overall concept and is essential for the final implementation for expert system interpretation. Manual scans, as performed in the preliminary work here, do not provide sufficiently reproducible <span class="hlt">eddy</span> current signatures to be easily built into a real time expert system. The expert systems approach to <span class="hlt">eddy</span> current signal analysis requires that a suitable knowledge base exist in which correct decisions as to the nature of the flaw can be performed. In <span class="hlt">eddy</span> current or any other expert systems used to analyze signals in real time in a production environment, it is important to simplify computational procedures as much as possible. For that reason, we have chosen to use the measured resistance and reactance values for the preliminary aspects of this work. A simple computation, such as phase angle of the signal, is certainly within the real time processing capability of the computer system. In the work described here, there is a balance between physical measurements and finite element calculations of those measurements. The goal is to evolve into the most cost effective procedures for maintaining the correctness of the knowledge base.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.6648M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.6648M"><span>Climatic Change and Dynamics of Northern Hemisphere Storm-tracks: Changes in Transient <span class="hlt">Eddies</span> Behavior</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martynova, Yuliya; Krupchatnikov, Vladimir</p> <p>2013-04-01</p> <p>An evidence of our understanding of the general circulation is whether we can predict changes in the general circulation that might be associated with past or future climate changes. Changes in the location, intensity or seasonality of major climatological features of the general circulation could be more important than average temperature changes, particularly where these changes could affect local hydrology, energy balances, etc. Under these major climatological features we assume the poleward expansion of the tropical circulation (Hadley circulation), static stability (changes in the vertical temperature structure of the atmosphere), role of SST forcing, sea ice extension, extratropical <span class="hlt">eddies</span> behavior. We have a question: would the climate change significantly affect the location and intensity of midlatitude storm-tracks and associated jets? Mean-flow interaction in midlatitudes produces low-frequency variations in the latitude of the jets. It is reasonable to think that a modest climate change might significantly affects the jets location and their associated storm tracks. The storm-tracks are defined as the region of strong baroclinicity (maximum meridional temperature gradient), which are determined on the basis of <span class="hlt">eddy</span> statistics like <span class="hlt">eddy</span> fluxes of angular momentum, energy, and water (with the use of high-bandpass filter). In the Northern Hemisphere, there are two major storms: in the region of Atlantic and Pacific. The storm-tracks play important role in the dynamics of weather and climate. They affect the global energy cycle and the hydrological cycle, and as a result they bring heavy rains and other hazardous weather phenomena in the middle latitudes. The recent increase in global tropopause heights is closely associated with systematic temperature changes below and above the tropopause. Temperature increases in the troposphere and decreases in the stratosphere. The pattern of <span class="hlt">warming</span> and cooling also affects the zonal wind structure in the region of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25405472','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25405472"><span>Efficacy of distortion correction on diffusion imaging: comparison of FSL <span class="hlt">eddy</span> and <span class="hlt">eddy</span>_correct using 30 and 60 directions diffusion encoding.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yamada, Haruyasu; Abe, Osamu; Shizukuishi, Takashi; Kikuta, Junko; Shinozaki, Takahiro; Dezawa, Ko; Nagano, Akira; Matsuda, Masayuki; Haradome, Hiroki; Imamura, Yoshiki</p> <p>2014-01-01</p> <p>Diffusion imaging is a unique noninvasive tool to detect brain white matter trajectory and integrity in vivo. However, this technique suffers from spatial distortion and signal pileup or dropout originating from local susceptibility gradients and <span class="hlt">eddy</span> currents. Although there are several methods to mitigate these problems, most techniques can be applicable either to susceptibility or <span class="hlt">eddy</span>-current induced distortion alone with a few exceptions. The present study compared the correction efficiency of FSL tools, "<span class="hlt">eddy</span>_correct" and the combination of "<span class="hlt">eddy</span>" and "topup" in terms of diffusion-derived fractional anisotropy (FA). The brain diffusion images were acquired from 10 healthy subjects using 30 and 60 directions encoding schemes based on the electrostatic repulsive forces. For the 30 directions encoding, 2 sets of diffusion images were acquired with the same parameters, except for the phase-encode blips which had opposing polarities along the anteroposterior direction. For the 60 directions encoding, non-diffusion-weighted and diffusion-weighted images were obtained with forward phase-encoding blips and non-diffusion-weighted images with the same parameter, except for the phase-encode blips, which had opposing polarities. FA images without and with distortion correction were compared in a voxel-wise manner with tract-based spatial statistics. We showed that images corrected with <span class="hlt">eddy</span> and topup possessed higher FA values than images uncorrected and corrected with <span class="hlt">eddy</span>_correct with trilinear (FSL default setting) or spline interpolation in most white matter skeletons, using both encoding schemes. Furthermore, the 60 directions encoding scheme was superior as measured by increased FA values to the 30 directions encoding scheme, despite comparable acquisition time. This study supports the combination of <span class="hlt">eddy</span> and topup as a superior correction tool in diffusion imaging rather than the <span class="hlt">eddy</span>_correct tool, especially with trilinear interpolation, using 60 directions</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-eddies-in-the-southern-ocean_17078909501_o.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-eddies-in-the-southern-ocean_17078909501_o.html"><span><span class="hlt">Eddies</span> in the Southern Ocean</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-04-08</p> <p>The cloud cover over the Southern Ocean occasionally parts as it did on January 1, 2015 just west of the Drake Passage where the VIIRS instrument on the Suomi NPP satellite glimpsed the above collection of ocean-color delineated <span class="hlt">eddies</span> which have diameters ranging from a couple of kilometers to a couple of hundred kilometers. Recent studies indicate that <span class="hlt">eddy</span> activity has been increasing in the Southern Ocean with possible implications for climate change. Credit: NASA's OceanColor/Suomi NPP/VIIRS</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JMS....85....1H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JMS....85....1H"><span>Cyclonic <span class="hlt">eddies</span> identified in the Cape Basin of the South Atlantic Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hall, C.; Lutjeharms, J. R. E.</p> <p>2011-03-01</p> <p>Inter-ocean exchange south of Africa takes place largely through the movement of Agulhas Rings into the Cape Basin. Recent observations have shown that the highly energetic flow field in this basin consists of anti-cyclonic rings as well as cyclonic <span class="hlt">eddies</span>. Very little is known of the characteristics of the cyclonic <span class="hlt">eddies</span>. Using altimetric data, this study determines the location, frequency and seasonality of these cyclonic <span class="hlt">eddies</span> their size, trajectories, life spans and their association with Agulhas Rings. Cyclonic <span class="hlt">eddies</span> were seen to split, merge and link with other cyclonic <span class="hlt">eddies</span>, where splitting events created child cyclonic <span class="hlt">eddies</span>. The 105 parent and 157 child cyclonic <span class="hlt">eddies</span> identified over a decade show that on average 11 parent and 17 child cyclonic <span class="hlt">eddies</span> appear annually in AVISO merged absolute dynamic topography data along the continental slope. Thirty-two percent follow an overall west south-westward direction, with 27% going west north-westward. Average translocation speeds are 2.2 ± 0.1 km/day for parent and 3.0 ± 0.2 km/day for child cyclonic <span class="hlt">eddies</span>. Parent cyclonic <span class="hlt">eddy</span> lifespan averaged 250 ± 18 days; whereas child cyclonic <span class="hlt">eddies</span> survived for only 118 ± 11 days. A significant difference in lifespan for parent and child cyclonic <span class="hlt">eddies</span> identified in the north and south region of the study area was detected. Seventy-seven percent of the northern and 93% of the southern cyclonic <span class="hlt">eddies</span> were first detected directly adjacent to passing Agulhas Rings, suggesting a vital interaction between these mesoscale <span class="hlt">eddies</span> within the region. Topographical features appeared to affect the behaviour and lifespan of these deep cyclonic <span class="hlt">eddies</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990062175','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990062175"><span>Large <span class="hlt">Eddy</span> Simulation of Cirrus Clouds</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wu, Ting; Cotton, William R.</p> <p>1999-01-01</p> <p>The Regional Atmospheric Modeling System (RAMS) with mesoscale interactive nested-grids and a Large-<span class="hlt">Eddy</span> Simulation (LES) version of RAMS, coupled to two-moment microphysics and a new two-stream radiative code were used to investigate the dynamic, microphysical, and radiative aspects of the November 26, 1991 cirrus event. Wu (1998) describes the results of that research in full detail and is enclosed as Appendix 1. The mesoscale nested grid simulation successfully reproduced the large scale circulation as compared to the Mesoscale Analysis and Prediction System's (MAPS) analyses and other observations. Three cloud bands which match nicely to the three cloud lines identified in an observational study (Mace et al., 1995) are predicted on Grid #2 of the nested grids, even though the mesoscale simulation predicts a larger west-east cloud width than what was observed. Large-<span class="hlt">eddy</span> simulations (LES) were performed to study the dynamical, microphysical, and radiative processes in the 26 November 1991 FIRE 11 cirrus event. The LES model is based on the RAMS version 3b developed at Colorado State University. It includes a new radiation scheme developed by Harrington (1997) and a new subgrid scale model developed by Kosovic (1996). The LES model simulated a single cloud layer for Case 1 and a two-layer cloud structure for Case 2. The simulations demonstrated that latent heat release can play a significant role in the formation and development of cirrus clouds. For the thin cirrus in Case 1, the latent heat release was insufficient for the cirrus clouds to become positively buoyant. However, in some special cases such as Case 2, positively buoyant cells can be embedded within the cirrus layers. These cells were so active that the rising updraft induced its own pressure perturbations that affected the cloud evolution. Vertical profiles of the total radiative and latent heating rates indicated that for well developed, deep, and active cirrus clouds, radiative cooling and latent</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26400696','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26400696"><span><span class="hlt">Warm</span>-Up Strategies for Sport and Exercise: Mechanisms and Applications.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McGowan, Courtney J; Pyne, David B; Thompson, Kevin G; Rattray, Ben</p> <p>2015-11-01</p> <p>It is widely accepted that <span class="hlt">warming</span>-up prior to exercise is vital for the attainment of optimum performance. Both passive and active <span class="hlt">warm</span>-up can evoke temperature, metabolic, neural and psychology-related effects, including increased anaerobic metabolism, elevated oxygen uptake kinetics and post-activation potentiation. Passive <span class="hlt">warm</span>-up can increase body temperature without depleting energy substrate stores, as occurs during the physical activity associated with active <span class="hlt">warm</span>-up. While the use of passive <span class="hlt">warm</span>-up alone is not commonplace, the idea of utilizing passive <span class="hlt">warming</span> techniques to maintain elevated <span class="hlt">core</span> and muscle temperature throughout the transition phase (the period between completion of the <span class="hlt">warm</span>-up and the start of the event) is gaining in popularity. Active <span class="hlt">warm</span>-up induces greater metabolic changes, leading to increased preparedness for a subsequent exercise task. Until recently, only modest scientific evidence was available supporting the effectiveness of pre-competition <span class="hlt">warm</span>-ups, with early studies often containing relatively few participants and focusing mostly on physiological rather than performance-related changes. External issues faced by athletes pre-competition, including access to equipment and the length of the transition/marshalling phase, have also frequently been overlooked. Consequently, <span class="hlt">warm</span>-up strategies have continued to develop largely on a trial-and-error basis, utilizing coach and athlete experiences rather than scientific evidence. However, over the past decade or so, new research has emerged, providing greater insight into how and why <span class="hlt">warm</span>-up influences subsequent performance. This review identifies potential physiological mechanisms underpinning <span class="hlt">warm</span>-ups and how they can affect subsequent exercise performance, and provides recommendations for <span class="hlt">warm</span>-up strategy design for specific individual and team sports.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDR34001C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDR34001C"><span>Time tracking and interaction of energy-<span class="hlt">eddies</span> at different scales</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cardesa, Jose I.; Vela-Martin, Alberto; Jimenez, Javier</p> <p>2016-11-01</p> <p>We study the energy cascade through coherent structures obtained in time-resolved simulations of incompressible, statistically steady isotropic turbulence. The structures are defined as geometrically connected regions of the flow with high kinetic energy. We compute the latter by band-pass filtering the velocity field around a scale r. We analyse the dynamics of structures extracted with different r, which are a proxy for <span class="hlt">eddies</span> containing energy at those r. We find that the size of these "energy-<span class="hlt">eddies</span>" scales with r, while their lifetime scales with the local <span class="hlt">eddy</span>-turnover r 2 / 3ɛ - 1 / 3 , where ɛ is the energy dissipation averaged over all space and time. Furthermore, a statistical analysis over the lives of the <span class="hlt">eddies</span> shows a slight predominance of the splitting over the merging process. When we isolate the <span class="hlt">eddies</span> which do not interact with other <span class="hlt">eddies</span> of the same scale, we observe a parent-child dependence by which, on average, structures are born at scale r during the decaying part of the life of a structure at scale r' > r . The energy-<span class="hlt">eddy</span> at r' lives in the same region of space as that at r. Finally, we investigate how interactions between <span class="hlt">eddies</span> at the same scale are echoed across other scales. Funded by the ERC project Coturb.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMS...175...24G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMS...175...24G"><span>Controlling effects of mesoscale <span class="hlt">eddies</span> on thermohaline structure and in situ chlorophyll distribution in the western North Pacific</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, Wei; Wang, Zhenyan; Zhang, Kainan</p> <p>2017-11-01</p> <p>Based on the conductivity, temperature and depth (CTD) data collected at 93 hydrographic stations during a marine cruise and on contemporary satellite altimeter observations, a series of <span class="hlt">eddies</span> have been observed passing over the stratified upper water of the Parece Vela Basin. The results from hydrographic measurements and in situ chlorophyll fluorescence measurements have revealed that these <span class="hlt">eddies</span> exerted significant controlling effects on the thermohaline structure and chlorophyll distribution, especially on the prevalent subsurface chlorophyll maximum layer (SCML). Based on these observations and particulate beam attenuation coefficient (cp) data, the in situ phytoplankton bloom around the pycnocline can be largely attributable to the formation of a well-developed SCML in the studied system. The uplift of the cold subsurface water within the cyclone, shoaling the pycnocline to a shallower layer, resulted in a low-temperature anomaly and different salinity anomalies at different depths. This uplift in the cyclone further caused the SCML to appear at a shallower depth with a higher in situ chlorophyll concentration than that in the normal domain. Conversely, the sinking of the <span class="hlt">warm</span> surface water to the subsurface layer within the anticyclone depressed the pycnocline to a deeper layer and generated a high-temperature anomaly and opposite salinity anomalies compared with the cyclone. The sinking of the pycnocline within the anticyclone considerably influenced the characteristics of the SCML, which had a deeper depth and a lower in situ chlorophyll concentration than that of the normal sea. This study contributes rare quasi-synchronous CTD observations capturing mesoscale <span class="hlt">eddies</span> and provides valuable descriptions of the variations in the SCML under the influence of mesoscale <span class="hlt">eddies</span> based on in situ optical measurements from the seldom-discussed western North Pacific.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDA34004R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDA34004R"><span>Large <span class="hlt">eddy</span> simulation of heat entrainment under Arctic sea ice</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramudu, Eshwan; Gelderloos, Renske; Yang, Di; Meneveau, Charles; Gnanadesikan, Anand</p> <p>2017-11-01</p> <p>Sea ice cover in the Arctic has declined rapidly in recent decades. To better understand ice loss through bottom melting, we choose to study the Canada Basin of the Arctic Ocean, which is characterized by a perennial anomalously <span class="hlt">warm</span> Pacific Summer Water (PSW) layer residing at the base of the mixed layer and a summertime Near-Surface Temperature Maximum (NSTM) layer trapping heat from solar radiation. The interaction of these <span class="hlt">warm</span> layers with a moving ice basal surface is investigated using large <span class="hlt">eddy</span> simulation. We find that the presence of the NSTM enhances heat entrainment from the mixed layer. Another conclusion from our work is that there is no heat entrained from the PSW layer, even at the largest ice-drift velocity of 0.3 m s-1 considered. We propose a scaling law for the heat flux at the ice basal surface which depends on the initial temperature anomaly in the NSTM layer and the ice-drift velocity. A case study of `The Great Arctic Cyclone of 2012' gives a turbulent heat flux from the mixed layer that is approximately 70% of the total ocean-to-ice heat flux estimated from the PIOMAS model often used for short-term predictions. Present results highlight the need for large-scale climate models to account for the NSTM layer. We acknowledge funding from NOAA Grant NA15OAR4310172, the NSF, and the University of Houston start-up fund.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcMod.115...42P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcMod.115...42P"><span>Evaluation of scale-aware subgrid mesoscale <span class="hlt">eddy</span> models in a global <span class="hlt">eddy</span>-rich model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pearson, Brodie; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank</p> <p>2017-07-01</p> <p>Two parameterizations for horizontal mixing of momentum and tracers by subgrid mesoscale <span class="hlt">eddies</span> are implemented in a high-resolution global ocean model. These parameterizations follow on the techniques of large <span class="hlt">eddy</span> simulation (LES). The theory underlying one parameterization (2D Leith due to Leith, 1996) is that of enstrophy cascades in two-dimensional turbulence, while the other (QG Leith) is designed for potential enstrophy cascades in quasi-geostrophic turbulence. Simulations using each of these parameterizations are compared with a control simulation using standard biharmonic horizontal mixing.Simulations using the 2D Leith and QG Leith parameterizations are more realistic than those using biharmonic mixing. In particular, the 2D Leith and QG Leith simulations have more energy in resolved mesoscale <span class="hlt">eddies</span>, have a spectral slope more consistent with turbulence theory (an inertial enstrophy or potential enstrophy cascade), have bottom drag and vertical viscosity as the primary sinks of energy instead of lateral friction, and have isoneutral parameterized mesoscale tracer transport. The parameterization choice also affects mass transports, but the impact varies regionally in magnitude and sign.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SenIm..14...81V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SenIm..14...81V"><span><span class="hlt">Eddy</span> Current Sensing of Torque in Rotating Shafts</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Varonis, Orestes J.; Ida, Nathan</p> <p>2013-12-01</p> <p>The noncontact torque sensing in machine shafts is addressed based on the stress induced in a press-fitted magnetoelastic sleeve on the shaft and <span class="hlt">eddy</span> current sensing of the changes of electrical conductivity and magnetic permeability due to the presence of stress. The <span class="hlt">eddy</span> current probe uses dual drive, dual sensing coils whose purpose is increased sensitivity to torque and decreased sensitivity to variations in distance between probe and shaft (liftoff). A mechanism of keeping the distance constant is also employed. Both the probe and the magnetoelastic sleeve are evaluated for performance using a standard <span class="hlt">eddy</span> current instrument. An <span class="hlt">eddy</span> current instrument is also used to drive the coils and analyze the torque data. The method and sensor described are general and adaptable to a variety of applications. The sensor is suitable for static and rotating shafts, is independent of shaft diameter and operational over a large range of torques. The torque sensor uses a differential <span class="hlt">eddy</span> current measurement resulting in cancellation of common mode effects including temperature and vibrations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910012157','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910012157"><span>Characteristic <span class="hlt">eddy</span> decomposition of turbulence in a channel</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moin, Parviz; Moser, Robert D.</p> <p>1991-01-01</p> <p>The proper orthogonal decomposition technique (Lumley's decomposition) is applied to the turbulent flow in a channel to extract coherent structures by decomposing the velocity field into characteristic <span class="hlt">eddies</span> with random coefficients. In the homogeneous spatial directions, a generaliztion of the shot-noise expansion is used to determine the characteristic <span class="hlt">eddies</span>. In this expansion, the Fourier coefficients of the characteristic <span class="hlt">eddy</span> cannot be obtained from the second-order statistics. Three different techniques are used to determine the phases of these coefficients. They are based on: (1) the bispectrum, (2) a spatial compactness requirement, and (3) a functional continuity argument. Results from these three techniques are found to be similar in most respects. The implications of these techniques and the shot-noise expansion are discussed. The dominant <span class="hlt">eddy</span> is found to contribute as much as 76 percent to the turbulent kinetic energy. In both 2D and 3D, the characteristic <span class="hlt">eddies</span> consist of an ejection region straddled by streamwise vortices that leave the wall in the very short streamwise distance of about 100 wall units.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070020326','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070020326"><span><span class="hlt">Eddy</span> Current System for Material Inspection and Flaw Visualization</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bachnak, R.; King, S.; Maeger, W.; Nguyen, T.</p> <p>2007-01-01</p> <p><span class="hlt">Eddy</span> current methods have been successfully used in a variety of non-destructive evaluation applications including detection of cracks, measurements of material thickness, determining metal thinning due to corrosion, measurements of coating thickness, determining electrical conductivity, identification of materials, and detection of corrosion in heat exchanger tubes. This paper describes the development of an <span class="hlt">eddy</span> current prototype that combines positional and <span class="hlt">eddy</span>-current data to produce a C-scan of tested material. The preliminary system consists of an <span class="hlt">eddy</span> current probe, a position tracking mechanism, and basic data visualization capability. Initial test results of the prototype are presented in this paper.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC23D1092Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC23D1092Z"><span>Long-term Trends and Variability of <span class="hlt">Eddy</span> Activities in the South China Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, M.; von Storch, H.</p> <p>2017-12-01</p> <p>For constructing empirical downscaling models and projecting possible future states of <span class="hlt">eddy</span> activities in the South China Sea (SCS), long-term statistical characteristics of the SCS <span class="hlt">eddy</span> are needed. We use a daily global <span class="hlt">eddy</span>-resolving model product named STORM covering the period of 1950-2010. This simulation has employed the MPI-OM model with a mean horizontal resolution of 10km and been driven by the NCEP reanalysis-1 data set. An <span class="hlt">eddy</span> detection and tracking algorithm operating on the gridded sea surface height anomaly (SSHA) fields was developed. A set of parameters for the criteria in the SCS are determined through sensitivity tests. Our method detected more than 6000 <span class="hlt">eddy</span> tracks in the South China Sea. For all of them, <span class="hlt">eddy</span> diameters, track length, <span class="hlt">eddy</span> intensity, <span class="hlt">eddy</span> lifetime and <span class="hlt">eddy</span> frequency were determined. The long-term trends and variability of those properties also has been derived. Most of the <span class="hlt">eddies</span> propagate westward. Nearly 100 <span class="hlt">eddies</span> travel longer than 1000km, and over 800 <span class="hlt">eddies</span> have a lifespan of more than 2 months. Furthermore, for building the statistical empirical model, the relationship between the SCS <span class="hlt">eddy</span> statistics and the large-scale atmospheric and oceanic phenomena has been investigated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27958434','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27958434"><span>Detecting defects in marine structures by using <span class="hlt">eddy</span> current infrared thermography.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Swiderski, W</p> <p>2016-12-01</p> <p><span class="hlt">Eddy</span> current infrared (IR) thermography is a new nondestructive testing (NDT) technique used for the detection of cracks in electroconductive materials. By combining the well-established inspection methods of <span class="hlt">eddy</span> current NDT and IR thermography, this technique uses induced <span class="hlt">eddy</span> currents to heat test samples. In this way, IR thermography allows the visualization of <span class="hlt">eddy</span> current distribution that is distorted in defect sites. This paper discusses the results of numerical modeling of <span class="hlt">eddy</span> current IR thermography procedures in application to marine structures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ChPhB..27c0301C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ChPhB..27c0301C"><span>Analytical model of tilted driver–pickup coils for <span class="hlt">eddy</span> current nondestructive evaluation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cao, Bing-Hua; Li, Chao; Fan, Meng-Bao; Ye, Bo; Tian, Gui-Yun</p> <p>2018-03-01</p> <p>A driver-pickup probe possesses better sensitivity and flexibility due to individual optimization of a coil. It is frequently observed in an <span class="hlt">eddy</span> current (EC) array probe. In this work, a tilted non-coaxial driver-pickup probe above a multilayered conducting plate is analytically modeled with spatial transformation for <span class="hlt">eddy</span> current nondestructive evaluation. Basically, the <span class="hlt">core</span> of the formulation is to obtain the projection of magnetic vector potential (MVP) from the driver coil onto the vector along the tilted pickup coil, which is divided into two key steps. The first step is to make a projection of MVP along the pickup coil onto a horizontal plane, and the second one is to build the relationship between the projected MVP and the MVP along the driver coil. Afterwards, an analytical model for the case of a layered plate is established with the reflection and transmission theory of electromagnetic fields. The calculated values from the resulting model indicate good agreement with those from the finite element model (FEM) and experiments, which validates the developed analytical model. Project supported by the National Natural Science Foundation of China (Grant Nos. 61701500, 51677187, and 51465024).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...74a2017G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...74a2017G"><span>Research on trend of <span class="hlt">warm</span>-humid climate in Central Asia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gong, Zhi; Peng, Dailiang; Wen, Jingyi; Cai, Zhanqing; Wang, Tiantian; Hu, Yuekai; Ma, Yaxin; Xu, Junfeng</p> <p>2017-07-01</p> <p>Central Asia is a typical arid area, which is sensitive and vulnerable part of climate changes, at the same time, Central Asia is the Silk Road Economic Belt of the <span class="hlt">core</span> district, the <span class="hlt">warm</span>-humid climate change will affect the production and economic development of neighboring countries. The average annual precipitation, average anneal temperature and evapotranspiration are the important indexes to weigh the climate change. In this paper, the annual precipitation, annual average temperature and evapotranspiration data of every pixel point in Central Asia are analyzed by using long-time series remote sensing data to analyze the trend of <span class="hlt">warm</span> and humid conditions. Finally, using the model to analyzed the distribution of <span class="hlt">warm</span>-dry trend, the <span class="hlt">warm</span>-wet trend, the cold-dry trend and the cold-wet trend in Central Asia and Xinjiang area. The results showed that most of the regions of Central Asia were <span class="hlt">warm</span>-humid and <span class="hlt">warm</span>-dry trends, but only a small number of regions showed <span class="hlt">warm</span>-dry and cold-dry trends. It is of great significance to study the climatic change discipline and guarantee the ecological safety and improve the ability to cope with climate change in the region. It also provide scientific basis for the formulation of regional climate change program. The first section in your paper</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.B23C0469T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.B23C0469T"><span>Observation of methane fluxes using <span class="hlt">eddy</span> covariance technique and relaxed <span class="hlt">eddy</span> accumulation techniques simultaneously over rice paddies in Taiwan</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, M.; Tsai, J.; Tsuang, B.; Feng, P.; Kuo, P.</p> <p>2012-12-01</p> <p>In the past decades, more and more attention was given to the increase of atmospheric methane concentration from the scientific community. Methane is one of greenhouse gases with a global <span class="hlt">warming</span> potential 21 times greater than carbon dioxide on a 100-year horizon. Rice paddy fields were considered as a major source for methane and so far there are few studies where the <span class="hlt">eddy</span> covariance (EC) technique has been used to measure methane fluxes from rice paddy fields, especially in Asia. Therefore, in this study we used EC technique and relaxed <span class="hlt">eddy</span> accumulation (REA) method simultaneously to observe the methane fluxes over rice paddy, fertilized with pig manure, in Taiwan from 22th February to 5th June in 2012. A suit of Micrometeorologial variables and water table depth were measured in conjunction with the fluxes. The results showed that the rice paddy field was source of methane during most of the study period and the observed methane fluxes ranged between - 0.5 and 13 μg m-2 s-1. and the maximum values usually occurred in the afternoon. A significant methane emission was observed in the first one and a half month after transplanting. Comparison of daily methane fluxes measured by EC and REA showed generally good agreement between both methods with a coefficient of determination of 0.81, although the magnitude of methane fluxes measured by REA were slightly lower than those by EC. During the continuous flooded period, the methane fluxes can be depicted well by a function of soil temperature with an exponential form. Sudden pulses of methane fluxes were observed when drained for the removal of obstruction which hindered the methane diffuse from the soil to the atmosphere. During fallow period between growth periods, the paddy fields was a sink of methane where the methane uptake was about 0.5μg m-2 s-1 around noon.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15558995','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15558995"><span><span class="hlt">Warming</span> by immersion or exercise affects initial cooling rate during subsequent cold water immersion.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Scott, Chris G; Ducharme, Michel B; Haman, François; Kenny, Glen P</p> <p>2004-11-01</p> <p>We examined the effect of prior heating, by exercise and <span class="hlt">warm</span>-water immersion, on <span class="hlt">core</span> cooling rates in individuals rendered mildly hypothermic by immersion in cold water. There were seven male subjects who were randomly assigned to one of three groups: 1) seated rest for 15 min (control); 2) cycling ergometry for 15 min at 70% Vo2 peak (active <span class="hlt">warming</span>); or 3) immersion in a circulated bath at 40 degrees C to an esophageal temperature (Tes) similar to that at the end of exercise (passive <span class="hlt">warming</span>). Subjects were then immersed in 7 degrees C water to a Tes of 34.5 degrees C. Initial Tes cooling rates (initial approximately 6 min cooling) differed significantly among the treatment conditions (0.074 +/- 0.045, 0.129 +/- 0.076, and 0.348 +/- 0.117 degrees C x min(-1) for control, active, and passive <span class="hlt">warming</span> conditions, respectively); however, secondary cooling rates (rates following initial approximately 6 min cooling to the end of immersion) were not different between treatments (average of 0.102 +/- 0.085 degrees C x min(-1)). Overall Tes cooling rates during the full immersion period differed significantly and were 0.067 +/- 0.047, 0.085 +/- 0.045, and 0.209 +/- 0.131 degrees C x min(-1) for control, active, and passive <span class="hlt">warming</span>, respectively. These results suggest that prior <span class="hlt">warming</span> by both active and, to a greater extent, passive <span class="hlt">warming</span>, may predispose a person to greater heat loss and to experience a larger decline in <span class="hlt">core</span> temperature when subsequently exposed to cold water. Thus, functional time and possibly survival time could be reduced when cold water immersion is preceded by whole-body passive <span class="hlt">warming</span>, and to a lesser degree by active <span class="hlt">warming</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS41D..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS41D..05S"><span>Recent Ship, Satellite and Autonomous Observations of Southern Ocean <span class="hlt">Eddies</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strutton, P. G.; Moreau, S.; Llort, J.; Phillips, H. E.; Patel, R.; Della Penna, A.; Langlais, C.; Lenton, A.; Matear, R.; Dawson, H.; Boyd, P. W.</p> <p>2016-12-01</p> <p>The Southern Ocean is the area of greatest uncertainty regarding the exchange of CO2 between the ocean and atmosphere. It is also a region of abundant energetic <span class="hlt">eddies</span> that significantly impact circulation and biogeochemistry. In the Indian sector of the Southern Ocean, cyclonic <span class="hlt">eddies</span> are unusual in that they are upwelling favorable, as for cyclonic <span class="hlt">eddies</span> elsewhere, but during summer they are low in silicate and phytoplankton biomass. The reverse is true for anticyclonic <span class="hlt">eddies</span> in that they have counter-intuitive positive chlorophyll anomalies in summer. Similar but less obvious patterns occur in the Pacific and Atlantic sectors. Using ship, satellite and autonomous observations in the region south of Australia, the physical and biogeochemical signatures of both types of <span class="hlt">eddies</span> were documented in 2016. A cyclonic <span class="hlt">eddy</span> that lived for seven weeks exhibited doming isopycnals indicative of upwelling. However, low surface silicate and chlorophyll concentrations appeared to be characteristic of surface waters to the south where the <span class="hlt">eddy</span> formed. Higher chlorophyll was confined to filaments at the <span class="hlt">eddy</span> edge. Surface nitrate and phosphate concentrations were more than sufficient for a bloom of non-siliceous phytoplankton to occur. Acoustic observations from a high resolution TRIAXUS transect through the <span class="hlt">eddy</span> documented high zooplankton biomass in the upper 150m. It is hypothesized that a non-diatom bloom was prevented by grazing pressure, but light may have also been an important limiting resource in late summer (April). Two SOCCOM floats that were deployed in the <span class="hlt">eddy</span> field continued to monitor the physics, nitrate and bio-optics through the transition to winter. These observations across complementary platforms have identified and then explained the reason for these unexpected biological anomalies in an energetic and globally important region of the global ocean. Understanding the role of <span class="hlt">eddies</span> in this region will be critical to the representation of mesoscale</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JOL....36..193Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JOL....36..193Z"><span>An aftereffect of global <span class="hlt">warming</span> on tropical Pacific decadal variability</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zheng, Jian; Liu, Qinyu; Wang, Chuanyang</p> <p>2018-03-01</p> <p>Studies have shown that global <span class="hlt">warming</span> over the past six decades can weaken the tropical Pacific Walker circulation and maintain the positive phase of the Interdecadal Pacific Oscillation (IPO). Based on observations and model simulations, another aftereffect of global <span class="hlt">warming</span> on IPO is found. After removing linear trends (global <span class="hlt">warming</span> signals) from observations, however, the tropical Pacific climate still exhibited some obvious differences between two IPO negative phases. The boreal winter (DJF) equatorial central-eastern Pacific sea surface temperature (SST) was colder during the 1999-2014 period (P2) than that during 1961-1976 (P1). This difference may have been a result of global <span class="hlt">warming</span> nonlinear modulation of precipitation; i.e., in the climatological rainy region, the <span class="hlt">core</span> area of the tropical Indo-western Pacific <span class="hlt">warm</span> pool receives more precipitation through the "wet-get-wetter" mechanism. Positive precipitation anomalies in the <span class="hlt">warm</span> pool during P2 are much stronger than those during P1, even after subtracting the linear trend. Corresponding to the differences of precipitation, the Pacific Walker circulation is stronger in P2 than in P1. Consequent easterly winds over the equatorial Pacific led to a colder equatorial eastern-central Pacific during P2. Therefore, tropical Pacific climate differences between the two negative IPO phases are aftereffects of global <span class="hlt">warming</span>. These aftereffects are supported by the results of coupled climate model experiments, with and without global <span class="hlt">warming</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870050550&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DEddy%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870050550&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DEddy%2Bcurrent"><span>The influence of <span class="hlt">eddy</span> currents on magnetic actuator performance</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zmood, R. B.; Anand, D. K.; Kirk, J. A.</p> <p>1987-01-01</p> <p>The present investigation of the effects of <span class="hlt">eddy</span> currents on EM actuators' transient performance notes that a transfer function representation encompassing a first-order model of the <span class="hlt">eddy</span> current influence can be useful in control system analysis. The method can be extended to represent the higher-order effects of <span class="hlt">eddy</span> currents for actuators that cannot be represented by semiinfinite planes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910000981','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910000981"><span><span class="hlt">Eddy</span> current inspection of graphite fiber components</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Workman, G. L.; Bryson, C. C.</p> <p>1990-01-01</p> <p>The recognition of defects in materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in <span class="hlt">eddy</span> current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using <span class="hlt">eddy</span> current inspection techniques. The unique capabilities of E-probes and horseshoe probes for inspecting probes for inspecting graphite fiber materials were evaluated and appear to hold great promise once the technology development matures. The initial results are described of modeling <span class="hlt">eddy</span> current interactions with certain flaws in graphite fiber samples.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/875048','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/875048"><span><span class="hlt">Eddy</span> current technique for predicting burst pressure</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Petri, Mark C.; Kupperman, David S.; Morman, James A.; Reifman, Jaques; Wei, Thomas Y. C.</p> <p>2003-01-01</p> <p>A signal processing technique which correlates <span class="hlt">eddy</span> current inspection data from a tube having a critical tubing defect with a range of predicted burst pressures for the tube is provided. The method can directly correlate the raw <span class="hlt">eddy</span> current inspection data representing the critical tubing defect with the range of burst pressures using a regression technique, preferably an artificial neural network. Alternatively, the technique deconvolves the raw <span class="hlt">eddy</span> current inspection data into a set of undistorted signals, each of which represents a separate defect of the tube. The undistorted defect signal which represents the critical tubing defect is related to a range of burst pressures utilizing a regression technique.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3875410','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3875410"><span>Carbon Dynamics within Cyclonic <span class="hlt">Eddies</span>: Insights from a Biomarker Study</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Alonso-González, Iván J.; Arístegui, Javier; Lee, Cindy; Sanchez-Vidal, Anna; Calafat, Antoni; Fabrés, Joan; Sangrá, Pablo; Mason, Evan</p> <p>2013-01-01</p> <p>It is generally assumed that episodic nutrient pulses by cyclonic <span class="hlt">eddies</span> into surface waters support a significant fraction of the primary production in subtropical low-nutrient environments in the northern hemisphere. However, contradictory results related to the influence of <span class="hlt">eddies</span> on particulate organic carbon (POC) export have been reported. As a step toward understanding the complex mechanisms that control export of material within <span class="hlt">eddies</span>, we present here results from a sediment trap mooring deployed within the path of cyclonic <span class="hlt">eddies</span> generated near the Canary Islands over a 1.5-year period. We find that, during summer and autumn (when surface stratification is stronger, <span class="hlt">eddies</span> are more intense, and a relative enrichment in CaCO3 forming organisms occurs), POC export to the deep ocean was 2–4 times higher than observed for the rest of the year. On the contrary, during winter and spring (when mixing is strongest and the seasonal phytoplankton bloom occurs), no significant enhancement of POC export associated with <span class="hlt">eddies</span> was observed. Our biomarker results suggest that a large fraction of the material exported from surface waters during the late-winter bloom is either recycled in the mesopelagic zone or bypassed by migrant zooplankton to the deep scattering layer, where it would disaggregate to smaller particles or be excreted as dissolved organic carbon. Cyclonic <span class="hlt">eddies</span>, however, would enhance carbon export below 1000 m depth during the summer stratification period, when <span class="hlt">eddies</span> are more intense and frequent, highlighting the important role of <span class="hlt">eddies</span> and their different biological communities on the regional carbon cycle. PMID:24386098</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24386098','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24386098"><span>Carbon dynamics within cyclonic <span class="hlt">eddies</span>: insights from a biomarker study.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alonso-González, Iván J; Arístegui, Javier; Lee, Cindy; Sanchez-Vidal, Anna; Calafat, Antoni; Fabrés, Joan; Sangrá, Pablo; Mason, Evan</p> <p>2013-01-01</p> <p>It is generally assumed that episodic nutrient pulses by cyclonic <span class="hlt">eddies</span> into surface waters support a significant fraction of the primary production in subtropical low-nutrient environments in the northern hemisphere. However, contradictory results related to the influence of <span class="hlt">eddies</span> on particulate organic carbon (POC) export have been reported. As a step toward understanding the complex mechanisms that control export of material within <span class="hlt">eddies</span>, we present here results from a sediment trap mooring deployed within the path of cyclonic <span class="hlt">eddies</span> generated near the Canary Islands over a 1.5-year period. We find that, during summer and autumn (when surface stratification is stronger, <span class="hlt">eddies</span> are more intense, and a relative enrichment in CaCO3 forming organisms occurs), POC export to the deep ocean was 2-4 times higher than observed for the rest of the year. On the contrary, during winter and spring (when mixing is strongest and the seasonal phytoplankton bloom occurs), no significant enhancement of POC export associated with <span class="hlt">eddies</span> was observed. Our biomarker results suggest that a large fraction of the material exported from surface waters during the late-winter bloom is either recycled in the mesopelagic zone or bypassed by migrant zooplankton to the deep scattering layer, where it would disaggregate to smaller particles or be excreted as dissolved organic carbon. Cyclonic <span class="hlt">eddies</span>, however, would enhance carbon export below 1000 m depth during the summer stratification period, when <span class="hlt">eddies</span> are more intense and frequent, highlighting the important role of <span class="hlt">eddies</span> and their different biological communities on the regional carbon cycle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFMOS51A0466S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFMOS51A0466S"><span>Observations and Numerical Modeling of <span class="hlt">Eddy</span> Generation in the Mediterranean Undercurrent</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Serra, N.; Ambar, I.; Kaese, R.</p> <p>2001-12-01</p> <p>In the frame of the European Union MAST III project CANIGO (Canary Islands Gibraltar Azores Observations), RAFOS floats were deployed in the Mediterranean undercurrent off south Portugal during the period from September 1997 to September 1998. An analysis of this Lagrangian approach complemented with results obtained with XBT probes and current meter data from the same project shows some of the major aspects of the flow associated with the undercurrent as well as the <span class="hlt">eddy</span> activity related with it. Floats that stayed in the undercurrent featured a downstream deceleration and a steering by bottom topography. Three meddy formations at Cape St. Vincent could be isolated from the float data as well as the generation of dipolar structures in the Portimao Canyon, a feature not previously directly observed. The dynamical coupling of meddies and cyclones was observed for a considerable period of time. High-resolution modeling of the Mediterranean Outflow using a sigma-coordinate primitive equations ocean model (SCRUM) incorporating realistic topography and stratification reveals the adjustment of the salty plume while descending along the continental slope of the Gulf of Cadiz channeled by the topography. The model reproduces the generation of <span class="hlt">eddies</span> in the two observed sites (cape and canyon) and the splitting of the outflow water into well-defined <span class="hlt">cores</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS24B..03D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS24B..03D"><span><span class="hlt">Eddy</span>-induced Sea Surface Salinity changes in the tropical Pacific</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Delcroix, T. C.; Chaigneau, A.; Soviadan, D.; Boutin, J.</p> <p>2017-12-01</p> <p>We analyse the Sea Surface Salinity (SSS) signature of westward propagating mesoscale <span class="hlt">eddies</span> in the tropical Pacific by collocating 5 years (2010-2015) of SMOS (Soil Moisture and Ocean Salinity) SSS and altimetry-derived sea level anomalies. The main characteristics of mesoscale <span class="hlt">eddies</span> are first identified in SLA maps. Composite analyses in the Central and Eastern ITCZ regions then reveal regionally dependent impacts with opposite SSS anomalies for the cyclonic and anticyclonic <span class="hlt">eddies</span>. In the Central region (where we have the largest meridional SSS gradient), we found dipole-like SSS changes with maximum anomalies on the leading edge of the <span class="hlt">eddy</span>. In the Eastern region (where we have the largest near-surface vertical salinity gradient) we found monopole-like SSS changes with maximum anomalies in the <span class="hlt">eddy</span> centre. These dipole/monopole patterns and the rotational sense of <span class="hlt">eddies</span> suggest the dominant role of horizontal and vertical advection in the Central and Eastern ITCZ regions, respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27052741','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27052741"><span>Efficacy of intravenous fluid <span class="hlt">warming</span> during goal-directed fluid therapy in patients undergoing laparoscopic colorectal surgery: a randomized controlled trial.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Choi, Ji-Won; Kim, Duk-Kyung; Lee, Seung-Won; Park, Jung-Bo; Lee, Gyu-Hong</p> <p>2016-06-01</p> <p>To evaluate the clinical efficacy of intravenous (IV) fluid <span class="hlt">warming</span> in patients undergoing laparoscopic colorectal surgery. Adult patients undergoing laparoscopic colorectal surgery were randomly assigned to receive either IV fluids at room temperature (control group) or <span class="hlt">warmed</span> IV fluids (<span class="hlt">warm</span> fluids group). Each patient received a standardized goal-directed fluid regimen based on stroke volume variances. Oesophageal temperature was measured at 15 min intervals for 2 h after induction of anaesthesia. A total of 52 patients were enrolled in the study. The drop in <span class="hlt">core</span> temperature in the <span class="hlt">warm</span> fluids group was significantly less than in the control group 2 h after the induction of anaesthesia. This significant difference was seen from 30 min after induction. IV fluid <span class="hlt">warming</span> was associated with a smaller drop in <span class="hlt">core</span> temperature than room temperature IV fluids in laparoscopic colorectal surgery incorporating goal-directed fluid therapy. © The Author(s) 2016.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.B43A0354S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.B43A0354S"><span>Assessment of benthic flux of dissolved organic carbon in wetland and estuarine sediments using the <span class="hlt">eddy</span>-correlation technique</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Swett, M. P.; Amirbahman, A.; Boss, E.</p> <p>2009-12-01</p> <p>Wetland and estuarine sediments release significant amounts of dissolved organic carbon (DOC) due to high levels of microbial activity, particularly sulfate reduction. Changes in climate and hydrologic conditions have a potential to alter DOC release from these systems as well. This is a concern, as high levels of DOC can lead to mobilization of toxic metals and organics in natural waters. In addition, source waters high in DOC produce undesirable disinfection byproducts in water treatment. Various in situ methods, such as peepers and sediment <span class="hlt">core</span> centrifugation, exist to quantify vertical benthic fluxes of DOC and other dissolved species from the sediment-water interface (SWI). These techniques, however, are intrusive and involve disturbance of the sediment environment. <span class="hlt">Eddy</span>-correlation allows for real-time, non-intrusive, in situ flux measurement of important analytes, such as O2 and DOC. An Acoustic Doppler Velocimeter (ADV) is used to obtain three-dimensional fluid velocity measurements. The <span class="hlt">eddy</span>-correlation technique employs the mathematical separation of fluid velocity into mean velocity and fluctuating velocity components, with the latter representing turbulent <span class="hlt">eddy</span> velocity. DOC concentrations are measured using a colored dissolved organic matter (CDOM) fluorometer, and instantaneous vertical flux is determined from the correlated data. This study assesses DOC flux at three project sites: a beaver pond in the Lower Penobscot Watershed, Maine; a mudflat in Penobscot River, Maine; and a mudflat in Great Bay, New Hampshire. <span class="hlt">Eddy</span> flux values are compared with results obtained using peepers and centrifugation, as well as vertical profiling.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1111428B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1111428B"><span>Internal and forced <span class="hlt">eddy</span> variability in the Labrador Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bracco, A.; Luo, H.; Zhong, Y.; Lilly, J.</p> <p>2009-04-01</p> <p>Water mass transformation in the Labrador Sea, widely believed to be one of the key regions in the Atlantic Meridional Overturning Circulation (AMOC), now appears to be strongly impacted by vortex dynamics of the unstable boundary current. Large interannual variations in both <span class="hlt">eddy</span> shedding and buoyancy transport from the boundary current have been observed but not explained, and are apparently sensitive to the state of the inflowing current. Heat and salinity fluxes associated with the <span class="hlt">eddies</span> drive ventilation changes not accounted for by changes in local surface forcing, particularly during occasional years of extreme <span class="hlt">eddy</span> activity, and constitute a predominant source of "internal" oceanic variability. The nature of this variable <span class="hlt">eddy</span>-driven restratification is one of the outstanding questions along the northern transformation pathway. Here we investigate the <span class="hlt">eddy</span> generation mechanism and the associated buoyancy fluxes by combining realistic and idealized numerical modeling, data analysis, and theory. Theory, supported by idealized experiments, provides criteria to test hypotheses as to the vortex formation process (by baroclinic instability linked to the bottom topography). Ensembles of numerical experiments with a high-resolution regional model (ROMS) allow for quantifying the sensitivity of <span class="hlt">eddy</span> generation and property transport to variations in local and external forcing parameters. For the first time, we reproduce with a numerical simulation the observed interannual variability in the <span class="hlt">eddy</span> kinetic energy in the convective region of the Labrador Basin and along the West Greenland Current.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17273460','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17273460"><span><span class="hlt">Warming</span> up with an ice vest: <span class="hlt">core</span> body temperature before and after cross-country racing.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hunter, Iain; Hopkins, J Ty; Casa, Douglas J</p> <p>2006-01-01</p> <p>Athletes running in a hot, humid environment may have an increased risk of heat illness. In the 2004 Olympic Games, American and Australian athletes were provided with ice vests designed to cool their bodies before performance. The vest appeared to be effective in keeping body temperatures down and improving the performance of the marathoners. However, body temperatures have not been reported when the vest was used before an actual competition. To determine if wearing the Nike Ice-Vest decreased <span class="hlt">core</span> temperature (Tc) before and during athletic performance in <span class="hlt">warm</span> (26 degrees C to 27 degrees C), humid (relative humidity = 50% to 75%) conditions. A 2 x 3 mixed-model design was used to compare groups (ice vest, no ice vest) across changes in temperature from baseline (10 minutes and 1 minute before the race and immediately after the race). 2005 Big Wave Invitational 4-km race in Hawaii and 2005 Great American 5-km race in North Carolina. Eighteen women from a National Collegiate Athletic Association Division I cross-country team who participated in either the Big Wave Invitational or the Great American Race. Four hours before the start of the race, the athletes ingested radiotelemetry temperature sensors. One hour before the start of the race, Tc was recorded, and half of the athletes donned a Nike Ice-Vest, which was removed immediately before the race. Additional Tc readings were taken at 10 minutes and 1 minute before the start of the race and immediately after the race. Ten minutes before the start of the race, Tc was elevated by 0.84 degrees C +/- 0.37 degrees C in the no-vest group, compared with 0.29 degrees C +/- 0.56 degrees C in the ice-vest group ( P < .01). This difference in Tc persisted at 1 minute before the start. Immediately after the finish, the increase in Tc averaged 2.75 degrees C +/- 0.62 degrees C in the no-vest group and 2.12 degrees C +/- 0.62 degrees C in the ice-vest group ( P < .01). Wearing an ice vest before cross-country performance in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA535734','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA535734"><span>Winds, <span class="hlt">Eddies</span> and Flow through Straits</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-01-01</p> <p>driven origin of the Philippine dipole <span class="hlt">eddies</span>. By contrast, in other volcanic island regions of the world (including the Hawaiian, Cabo Verde, and... volcanic island regions of the world. By contrast in the Hawaiian, Cabo Verde and Canary Islands, the driving mechanism in the <span class="hlt">eddy</span> dynamics is...J. Aristegui, and F. Herrera (2000), Lee region of Gran Canaria , J. Geophys. Res., 105(C7), 17173-17193. Chang, C.-P., Z. Wang, and H. Hendon</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4236106','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4236106"><span>Efficacy of Distortion Correction on Diffusion Imaging: Comparison of FSL <span class="hlt">Eddy</span> and <span class="hlt">Eddy</span>_Correct Using 30 and 60 Directions Diffusion Encoding</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yamada, Haruyasu; Abe, Osamu; Shizukuishi, Takashi; Kikuta, Junko; Shinozaki, Takahiro; Dezawa, Ko; Nagano, Akira; Matsuda, Masayuki; Haradome, Hiroki; Imamura, Yoshiki</p> <p>2014-01-01</p> <p>Diffusion imaging is a unique noninvasive tool to detect brain white matter trajectory and integrity in vivo. However, this technique suffers from spatial distortion and signal pileup or dropout originating from local susceptibility gradients and <span class="hlt">eddy</span> currents. Although there are several methods to mitigate these problems, most techniques can be applicable either to susceptibility or <span class="hlt">eddy</span>-current induced distortion alone with a few exceptions. The present study compared the correction efficiency of FSL tools, “<span class="hlt">eddy</span>_correct” and the combination of “eddy” and “topup” in terms of diffusion-derived fractional anisotropy (FA). The brain diffusion images were acquired from 10 healthy subjects using 30 and 60 directions encoding schemes based on the electrostatic repulsive forces. For the 30 directions encoding, 2 sets of diffusion images were acquired with the same parameters, except for the phase-encode blips which had opposing polarities along the anteroposterior direction. For the 60 directions encoding, non–diffusion-weighted and diffusion-weighted images were obtained with forward phase-encoding blips and non–diffusion-weighted images with the same parameter, except for the phase-encode blips, which had opposing polarities. FA images without and with distortion correction were compared in a voxel-wise manner with tract-based spatial statistics. We showed that images corrected with <span class="hlt">eddy</span> and topup possessed higher FA values than images uncorrected and corrected with <span class="hlt">eddy</span>_correct with trilinear (FSL default setting) or spline interpolation in most white matter skeletons, using both encoding schemes. Furthermore, the 60 directions encoding scheme was superior as measured by increased FA values to the 30 directions encoding scheme, despite comparable acquisition time. This study supports the combination of <span class="hlt">eddy</span> and topup as a superior correction tool in diffusion imaging rather than the <span class="hlt">eddy</span>_correct tool, especially with trilinear interpolation, using 60</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26116985','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26116985"><span>Comparison of Distal Limb <span class="hlt">Warming</span> With Fluidotherapy and <span class="hlt">Warm</span> Water Immersion for Mild Hypothermia Rewarming.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kumar, Parveen; McDonald, Gerren K; Chitkara, Radhika; Steinman, Alan M; Gardiner, Phillip F; Giesbrecht, Gordon G</p> <p>2015-09-01</p> <p>The purpose of the study was to determine the effectiveness of Fluidotherapy rewarming through the distal extremities for mildly hypothermic, vigorously shivering subjects. Fluidotherapy is a dry heat modality in which cellulose particles are suspended by <span class="hlt">warm</span> air circulation. Seven subjects (2 female) were cooled on 3 occasions in 8˚C water for 60 minutes, or to a <span class="hlt">core</span> temperature of 35°C. They were then dried and rewarmed in a seated position by 1) shivering only; 2) Fluidotherapy applied to the distal extremities (46 ± 1°C, mean ± SD); or 3) water immersion of the distal extremities (44 ± 1°C). The order of rewarming followed a balanced design. Esophageal temperature, skin temperature, heart rate, oxygen consumption, and heat flux were measured. The <span class="hlt">warm</span> water produced the highest rewarming rate, 6.1°C·h(-1), 95% CI: 5.3-6.9, compared with Fluidotherapy, 2.2°C·h(-1), 95% CI: 1.4-3.0, and shivering only, 2.0°C·h(-1), 95% CI: 1.2-2.8. The Fluidotherapy and <span class="hlt">warm</span> water conditions increased skin temperature and inhibited shivering heat production, thus reducing metabolic heat production (166 ± 42 W and 181 ± 45 W, respectively), compared with shivering only (322 ± 142 W). <span class="hlt">Warm</span> water provided a significantly higher net heat gain (398.0 ± 52 W) than shivering only (288.4 ± 115 W). Fluidotherapy was not as effective as <span class="hlt">warm</span> water for rewarming mildly hypothermic subjects. Although Fluidotherapy is more portable and technically simpler, it provides a lower rate of rewarming that is similar to shivering only. It does help decrease shivering heat production, lowering energy expenditure and cardiac work, and could be considered in a hospital setting, if convenient. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840000138&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DEddy%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840000138&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DEddy%2Bcurrent"><span><span class="hlt">Eddy</span>-Current Reference Standard</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ambrose, H. H., Jr.</p> <p>1985-01-01</p> <p>Magnetic properties of metallic reference standards duplicated and stabilized for <span class="hlt">eddy</span>-current coil measurements over long times. Concept uses precisely machined notched samples of known annealed materials as reference standards.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30d0909J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30d0909J"><span>Large <span class="hlt">eddy</span> simulation of spanwise rotating turbulent channel flow with dynamic variants of <span class="hlt">eddy</span> viscosity model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Zhou; Xia, Zhenhua; Shi, Yipeng; Chen, Shiyi</p> <p>2018-04-01</p> <p>A fully developed spanwise rotating turbulent channel flow has been numerically investigated utilizing large-<span class="hlt">eddy</span> simulation. Our focus is to assess the performances of the dynamic variants of <span class="hlt">eddy</span> viscosity models, including dynamic Vreman's model (DVM), dynamic wall adapting local <span class="hlt">eddy</span> viscosity (DWALE) model, dynamic σ (Dσ ) model, and the dynamic volumetric strain-stretching (DVSS) model, in this canonical flow. The results with dynamic Smagorinsky model (DSM) and direct numerical simulations (DNS) are used as references. Our results show that the DVM has a wrong asymptotic behavior in the near wall region, while the other three models can correctly predict it. In the high rotation case, the DWALE can get reliable mean velocity profile, but the turbulence intensities in the wall-normal and spanwise directions show clear deviations from DNS data. DVSS exhibits poor predictions on both the mean velocity profile and turbulence intensities. In all three cases, Dσ performs the best.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSED14A1607P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSED14A1607P"><span>Detection and characterization of submesoscale <span class="hlt">eddies</span> off the southwestern coast of Puerto Rico</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pomales, L.; Morell, J. M.</p> <p>2016-02-01</p> <p>Ubiquitous submesoscale <span class="hlt">eddies</span> (SE) have been reported to play a major role in upper ocean stirring, mixing and littoral water circulation. Remotely sensed ocean color imagery provided the first views of coherent submesoscale features all around the Puerto Rico coast. Operational numerical models for the region such as NCOM AMSEAS (3km and 3-hours) and global HYCOM (9km and 3-hours) are not able to resolve these. Deployments of High-Frequency Radars (HFRs) off the southwest coast of Puerto Rico now make possible hourly surface current observations which allow detection and characterization of the two dimensional structure of these submesoscale features. Numerical detection of these features has been achieved by the implementation of a vector geometry identification scheme on the HFR data, which has recently led to an exploratory analysis of a cyclonic persistent SE structure. The detected cyclone had a strong well-defined inner <span class="hlt">core</span> structure coherency and a 13.86km radius, SE was manually confirmed using USF's Alternative Floating Algae Index satellite imagery (1km and daily), which showed the detected <span class="hlt">eddy</span> center location had an offset of <8km from the real <span class="hlt">eddy</span> center which was estimated thanks to a patch of floating algae, presumably Sargassum sp., entrained in its center. NCOM AMSEAS or HYCOM did not resolve the observed SE. Further work will focus on the 3D description of these SEs. HFR vector fields, XBT's, CTD's and Glider profile data will be used to characterize the horizontal and vertical extent of the dynamics involved with these SEs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2517S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2517S"><span>Automatic tracking of dynamical evolutions of oceanic mesoscale <span class="hlt">eddies</span> with satellite observation data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Liang; Li, Qiu-Yang</p> <p>2017-04-01</p> <p>The oceanic mesoscale <span class="hlt">eddies</span> play a major role in ocean climate system. To analyse spatiotemporal dynamics of oceanic mesoscale <span class="hlt">eddies</span>, the Genealogical Evolution Model (GEM) based on satellite data is developed, which is an efficient logical model used to track dynamic evolution of mesoscale <span class="hlt">eddies</span> in the ocean. It can distinguish different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, a mononuclear <span class="hlt">eddy</span> detection method was firstly developed with simple segmentation strategies, e.g. watershed algorithm. The algorithm is very fast by searching the steepest descent path. Second, the GEM uses a two-dimensional similarity vector (i.e. a pair of ratios of overlap area between two <span class="hlt">eddies</span> to the area of each <span class="hlt">eddy</span>) rather than a scalar to measure the similarity between <span class="hlt">eddies</span>, which effectively solves the ''missing <span class="hlt">eddy</span>" problem (temporarily lost <span class="hlt">eddy</span> in tracking). Third, for tracking when an <span class="hlt">eddy</span> splits, GEM uses both "parent" (the original <span class="hlt">eddy</span>) and "child" (<span class="hlt">eddy</span> split from parent) and the dynamic processes are described as birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of <span class="hlt">eddies</span> M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O (LM(N+1)T). The tracking of each <span class="hlt">eddy</span> is very smooth because we require that the snapshots of each <span class="hlt">eddy</span> on adjacent days overlap one another. Although <span class="hlt">eddy</span> splitting or merging is ubiquitous in the ocean, they have different geographic distribution in the Northern Pacific Ocean. Both the merging and splitting rates of the <span class="hlt">eddies</span> are high, especially at the western boundary, in currents and in "<span class="hlt">eddy</span> deserts". GEM is useful not only for</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AdWR...50...62A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AdWR...50...62A"><span>On the discrepancy between <span class="hlt">eddy</span> covariance and lysimetry-based surface flux measurements under strongly advective conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alfieri, Joseph G.; Kustas, William P.; Prueger, John H.; Hipps, Lawrence E.; Evett, Steven R.; Basara, Jeffrey B.; Neale, Christopher M. U.; French, Andrew N.; Colaizzi, Paul; Agam, Nurit; Cosh, Michael H.; Chavez, José L.; Howell, Terry A.</p> <p>2012-12-01</p> <p>Discrepancies can arise among surface flux measurements collected using disparate techniques due to differences in both the instrumentation and theoretical underpinnings of the different measurement methods. Using data collected primarily within a pair of irrigated cotton fields as a part of the 2008 Bushland Evapotranspiration and Remote Sensing Experiment (BEAREX08), flux measurements collected with two commonly-used methods, <span class="hlt">eddy</span> covariance (EC) and lysimetry (LY), were compared and substantial differences were found. Daytime mean differences in the flux measurements from the two techniques could be in excess of 200 W m-2 under strongly advective conditions. Three causes for this disparity were found: (i) the failure of the <span class="hlt">eddy</span> covariance systems to fully balance the surface energy budget, (ii) flux divergence due to the local advection of <span class="hlt">warm</span>, dry air over the irrigated cotton fields, and (iii) the failure of lysimeters to accurately represent the surface properties of the cotton fields as a whole. Regardless of the underlying cause, the discrepancy among the flux measurements underscores the difficulty in collecting these measurements under strongly advective conditions. It also raises awareness of the uncertainty associated with in situ micrometeorological measurements and the need for caution when using such data for model validation or as observational evidence to definitively support or refute scientific hypotheses.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918076S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918076S"><span>True <span class="hlt">eddy</span> accumulation and <span class="hlt">eddy</span> covariance methods and instruments intercomparison for fluxes of CO2, CH4 and H2O above the Hainich Forest</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siebicke, Lukas</p> <p>2017-04-01</p> <p>The <span class="hlt">eddy</span> covariance (EC) method is state-of-the-art in directly measuring vegetation-atmosphere exchange of CO2 and H2O at ecosystem scale. However, the EC method is currently limited to a small number of atmospheric tracers by the lack of suitable fast-response analyzers or poor signal-to-noise ratios. High resource and power demands may further restrict the number of spatial sampling points. True <span class="hlt">eddy</span> accumulation (TEA) is an alternative method for direct and continuous flux observations. Key advantages are the applicability to a wider range of air constituents such as greenhouse gases, isotopes, volatile organic compounds and aerosols using slow-response analyzers. In contrast to relaxed <span class="hlt">eddy</span> accumulation (REA), true <span class="hlt">eddy</span> accumulation (Desjardins, 1977) has the advantage of being a direct method which does not require proxies. True <span class="hlt">Eddy</span> Accumulation has the potential to overcome above mentioned limitations of <span class="hlt">eddy</span> covariance but has hardly ever been successfully demonstrated in practice in the past. This study presents flux measurements using an innovative approach to true <span class="hlt">eddy</span> accumulation by directly, continuously and automatically measuring trace gas fluxes using a flow-through system. We merge high-frequency flux contributions from TEA with low-frequency covariances from the same sensors. We show flux measurements of CO2, CH4 and H2O by TEA and EC above an old-growth forest at the ICOS flux tower site "Hainich" (DE-Hai). We compare and evaluate the performance of the two direct turbulent flux measurement methods <span class="hlt">eddy</span> covariance and true <span class="hlt">eddy</span> accumulation using side-by-side trace gas flux observations. We further compare performance of seven instrument complexes, i.e. combinations of sonic anemometers and trace gas analyzers. We compare gas analyzers types of open-path, enclosed-path and closed-path design. We further differentiate data from two gas analysis technologies: infrared gas analysis (IRGA) and laser spectrometry (open path and CRDS closed</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25e6301H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25e6301H"><span>Fluorescence and absorption spectroscopy for <span class="hlt">warm</span> dense matter studies and ICF plasma diagnostics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hansen, S. B.; Harding, E. C.; Knapp, P. F.; Gomez, M. R.; Nagayama, T.; Bailey, J. E.</p> <p>2018-05-01</p> <p>The burning <span class="hlt">core</span> of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose <span class="hlt">core</span> conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of <span class="hlt">warm</span>, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. We show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the <span class="hlt">warm</span> dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of <span class="hlt">warm</span>, dense matter. This is illustrated by the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 1024 e/cm3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of <span class="hlt">warm</span> dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1441472-fluorescence-absorption-spectroscopy-warm-dense-matter-studies-icf-plasma-diagnostics','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1441472-fluorescence-absorption-spectroscopy-warm-dense-matter-studies-icf-plasma-diagnostics"><span>Fluorescence and absorption spectroscopy for <span class="hlt">warm</span> dense matter studies and ICF plasma diagnostics</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.; ...</p> <p>2018-03-07</p> <p>The burning <span class="hlt">core</span> of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose <span class="hlt">core</span> conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of <span class="hlt">warm</span>, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. In this work, we show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the <span class="hlt">warm</span> dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of <span class="hlt">warm</span>, dense matter. This is illustrated bymore » the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Lastly, analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 10 24 e/cm 3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of <span class="hlt">warm</span> dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870009329','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870009329"><span><span class="hlt">Eddy</span> currents in a conducting sphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bergman, John; Hestenes, David</p> <p>1986-01-01</p> <p>This report analyzes the <span class="hlt">eddy</span> current induced in a solid conducting sphere by a sinusoidal current in a circular loop. Analytical expressions for the <span class="hlt">eddy</span> currents are derived as a power series in the vectorial displacement of the center of the sphere from the axis of the loop. These are used for first order calculations of the power dissipated in the sphere and the force and torque exerted on the sphere by the electromagnetic field of the loop.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27436449','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27436449"><span>Mitigation of <span class="hlt">eddy</span> current heating during magnetic nanoparticle hyperthermia therapy.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stigliano, Robert V; Shubitidze, Fridon; Petryk, James D; Shoshiashvili, Levan; Petryk, Alicia A; Hoopes, P Jack</p> <p>2016-11-01</p> <p>Magnetic nanoparticle hyperthermia therapy is a promising technology for cancer treatment, involving delivering magnetic nanoparticles (MNPs) into tumours then activating them using an alternating magnetic field (AMF). The system produces not only a magnetic field, but also an electric field which penetrates normal tissue and induces <span class="hlt">eddy</span> currents, resulting in unwanted heating of normal tissues. Magnitude of the <span class="hlt">eddy</span> current depends, in part, on the AMF source and the size of the tissue exposed to the field. The majority of in vivo MNP hyperthermia therapy studies have been performed in small animals, which, due to the spatial distribution of the AMF relative to the size of the animals, do not reveal the potential toxicity of <span class="hlt">eddy</span> current heating in larger tissues. This has posed a non-trivial challenge for researchers attempting to scale up to clinically relevant volumes of tissue. There is a relative dearth of studies focused on decreasing the maximum temperature resulting from <span class="hlt">eddy</span> current heating to increase therapeutic ratio. This paper presents two simple, clinically applicable techniques for decreasing maximum temperature induced by <span class="hlt">eddy</span> currents. Computational and experimental results are presented to understand the underlying physics of <span class="hlt">eddy</span> currents induced in conducting, biological tissues and leverage these insights to mitigate <span class="hlt">eddy</span> current heating during MNP hyperthermia therapy. Phantom studies show that the displacement and motion techniques reduce maximum temperature due to <span class="hlt">eddy</span> currents by 74% and 19% in simulation, and by 77% and 33% experimentally. Further study is required to optimise these methods for particular scenarios; however, these results suggest larger volumes of tissue could be treated, and/or higher field strengths and frequencies could be used to attain increased MNP heating when these <span class="hlt">eddy</span> current mitigation techniques are employed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18760479','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18760479"><span>Global <span class="hlt">warming</span> and carbon dioxide through sciences.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Florides, Georgios A; Christodoulides, Paul</p> <p>2009-02-01</p> <p>Increased atmospheric CO(2)-concentration is widely being considered as the main driving factor that causes the phenomenon of global <span class="hlt">warming</span>. This paper attempts to shed more light on the role of atmospheric CO(2) in relation to temperature-increase and, more generally, in relation to Earth's life through the geological aeons, based on a review-assessment of existing related studies. It is pointed out that there has been a debate on the accuracy of temperature reconstructions as well as on the exact impact that CO(2) has on global <span class="hlt">warming</span>. Moreover, using three independent sets of data (collected from ice-<span class="hlt">cores</span> and chemistry) we perform a specific regression analysis which concludes that forecasts about the correlation between CO(2)-concentration and temperature rely heavily on the choice of data used, and one cannot be positive that indeed such a correlation exists (for chemistry data) or even, if existing (for ice-<span class="hlt">cores</span> data), whether it leads to a "severe" or a "gentle" global <span class="hlt">warming</span>. A very recent development on the greenhouse phenomenon is a validated adiabatic model, based on laws of physics, forecasting a maximum temperature-increase of 0.01-0.03 degrees C for a value doubling the present concentration of atmospheric CO(2). Through a further review of related studies and facts from disciplines like biology and geology, where CO(2)-change is viewed from a different perspective, it is suggested that CO(2)-change is not necessarily always a negative factor for the environment. In fact it is shown that CO(2)-increase has stimulated the growth of plants, while the CO(2)-change history has altered the physiology of plants. Moreover, data from palaeoclimatology show that the CO(2)-content in the atmosphere is at a minimum in this geological aeon. Finally it is stressed that the understanding of the functioning of Earth's complex climate system (especially for water, solar radiation and so forth) is still poor and, hence, scientific knowledge is not at a level to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25269994','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25269994"><span>A systematic review of the effectiveness of <span class="hlt">warming</span> interventions for women undergoing cesarean section.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Munday, Judy; Hines, Sonia; Wallace, Karen; Chang, Anne M; Gibbons, Kristen; Yates, Patsy</p> <p>2014-12-01</p> <p>Women undergoing cesarean section are vulnerable to adverse effects associated with inadvertent perioperative hypothermia, but there has been a lack of synthesized evidence for temperature management in this population. This systematic review aimed to synthesize the best available evidence in relation to preventing hypothermia in mothers undergoing cesarean section surgery. Randomized controlled trials meeting the inclusion criteria (adult patients of any ethnic background, with or without comorbidities, undergoing any mode of anesthesia for any type of cesarean section) were eligible for consideration. Active or passive <span class="hlt">warming</span> interventions versus usual care or placebo, aiming to limit or manage <span class="hlt">core</span> heat loss in women undergoing cesarean section were considered. The primary outcome was maternal <span class="hlt">core</span> temperature. A comprehensive search with no language restrictions was undertaken of multiple databases from their inception until May 2012. Two independent reviewers using the standardized critical appraisal instrument for randomized controlled trials from the Joanna Briggs Institute Meta-Analysis of Statistics Assessment and Review Instruments (JBI-MASTARI) assessed retrieved papers for methodological quality and conducted data collection. Where possible, results were combined in a fixed effects meta-analysis using the Cochrane Collaboration Review Manager software. Due to heterogeneity for one outcome, random effects meta-analysis was also used. A combined total of 719 participants from 12 studies were included. Intravenous fluid <span class="hlt">warming</span> was found to be effective at maintaining maternal temperature and preventing shivering. <span class="hlt">Warming</span> devices, including forced air <span class="hlt">warming</span> and under-body carbon polymer mattresses, were effective at preventing hypothermia. However, effectiveness increased if the devices were applied preoperatively. Preoperative <span class="hlt">warming</span> devices reduced shivering and improved neonatal temperatures at birth. Intravenous fluid <span class="hlt">warming</span> did not improve</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcDyn..67.1313C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcDyn..67.1313C"><span>Benchmarking the mesoscale variability in global ocean <span class="hlt">eddy</span>-permitting numerical systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cipollone, Andrea; Masina, Simona; Storto, Andrea; Iovino, Doroteaciro</p> <p>2017-10-01</p> <p>The role of data assimilation procedures on representing ocean mesoscale variability is assessed by applying <span class="hlt">eddy</span> statistics to a state-of-the-art global ocean reanalysis (C-GLORS), a free global ocean simulation (performed with the NEMO system) and an observation-based dataset (ARMOR3D) used as an independent benchmark. Numerical results are computed on a 1/4 ∘ horizontal grid (ORCA025) and share the same resolution with ARMOR3D dataset. This "<span class="hlt">eddy</span>-permitting" resolution is sufficient to allow ocean <span class="hlt">eddies</span> to form. Further to assessing the <span class="hlt">eddy</span> statistics from three different datasets, a global three-dimensional <span class="hlt">eddy</span> detection system is implemented in order to bypass the need of regional-dependent definition of thresholds, typical of commonly adopted <span class="hlt">eddy</span> detection algorithms. It thus provides full three-dimensional <span class="hlt">eddy</span> statistics segmenting vertical profiles from local rotational velocities. This criterion is crucial for discerning real <span class="hlt">eddies</span> from transient surface noise that inevitably affects any two-dimensional algorithm. Data assimilation enhances and corrects mesoscale variability on a wide range of features that cannot be well reproduced otherwise. The free simulation fairly reproduces <span class="hlt">eddies</span> emerging from western boundary currents and deep baroclinic instabilities, while underestimates shallower vortexes that populate the full basin. The ocean reanalysis recovers most of the missing turbulence, shown by satellite products , that is not generated by the model itself and consistently projects surface variability deep into the water column. The comparison with the statistically reconstructed vertical profiles from ARMOR3D show that ocean data assimilation is able to embed variability into the model dynamics, constraining <span class="hlt">eddies</span> with in situ and altimetry observation and generating them consistently with local environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRG..121..249W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRG..121..249W"><span>Increased wintertime CO2 loss as a result of sustained tundra <span class="hlt">warming</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Webb, Elizabeth E.; Schuur, Edward A. G.; Natali, Susan M.; Oken, Kiva L.; Bracho, Rosvel; Krapek, John P.; Risk, David; Nickerson, Nick R.</p> <p>2016-02-01</p> <p>Permafrost soils currently store approximately 1672 Pg of carbon (C), but as high latitudes <span class="hlt">warm</span>, this temperature-protected C reservoir will become vulnerable to higher rates of decomposition. In recent decades, air temperatures in the high latitudes have <span class="hlt">warmed</span> more than any other region globally, particularly during the winter. Over the coming century, the arctic winter is also expected to experience the most <span class="hlt">warming</span> of any region or season, yet it is notably understudied. Here we present nonsummer season (NSS) CO2 flux data from the Carbon in Permafrost Experimental Heating Research project, an ecosystem <span class="hlt">warming</span> experiment of moist acidic tussock tundra in interior Alaska. Our goals were to quantify the relationship between environmental variables and winter CO2 production, account for subnivean photosynthesis and late fall plant C uptake in our estimate of NSS CO2 exchange, constrain NSS CO2 loss estimates using multiple methods of measuring winter CO2 flux, and quantify the effect of winter soil <span class="hlt">warming</span> on total NSS CO2 balance. We measured CO2 flux using four methods: two chamber techniques (the snow pit method and one where a chamber is left under the snow for the entire season), <span class="hlt">eddy</span> covariance, and soda lime adsorption, and found that NSS CO2 loss varied up to fourfold, depending on the method used. CO2 production was dependent on soil temperature and day of season but atmospheric pressure and air temperature were also important in explaining CO2 diffusion out of the soil. <span class="hlt">Warming</span> stimulated both ecosystem respiration and productivity during the NSS and increased overall CO2 loss during this period by 14% (this effect varied by year, ranging from 7 to 24%). When combined with the summertime CO2 fluxes from the same site, our results suggest that this subarctic tundra ecosystem is shifting away from its historical function as a C sink to a C source.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.6165H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.6165H"><span>Temporal evolution of near-surface chlorophyll over cyclonic <span class="hlt">eddy</span> lifecycles in the southeastern Pacific</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Jie; Xu, Fanghua; Zhou, Kuanbo; Xiu, Peng; Lin, Yanluan</p> <p>2017-08-01</p> <p>Temporal evolution of near-surface chlorophyll (CHL) associated with mesoscale <span class="hlt">eddies</span> over entire <span class="hlt">eddy</span> lifespan is complicated. Based on satellite measurements and a reanalysis data set, we identify and quantify major temporal and spatial CHL responses in cyclonic <span class="hlt">eddies</span> in the southeastern Pacific, and explore the associated mechanisms. Only few temporal CHL variations can be directly linked to the four primary mechanisms: "<span class="hlt">eddy</span> pumping," "<span class="hlt">eddy</span> trapping," "<span class="hlt">eddy</span> stirring," and "<span class="hlt">eddy</span>-induced Ekman pumping." About 80% of the temporal CHL variations are too complex to be explained by a single mechanism. Five characteristic CHL responses, including classic dipoles (CD), positive-dominant dipoles (PD), negative-dominant dipoles (ND), positive monopoles (PM), and negative monopoles (NM) are identified using the self-organizing map (SOM). CD, a dominant response induced primarily by "<span class="hlt">eddy</span> stirring," has a continued increasing of frequency of occurrence with time, although its contribution to the total CHL variability remains low. As the secondary prominent response, NM has two peaks of frequency of occurrence at <span class="hlt">eddy</span> formation and maturation stages, mainly accounted by "<span class="hlt">eddy</span> trapping" after <span class="hlt">eddy</span> breakup and "<span class="hlt">eddy</span>-induced Ekman pumping," respectively. The sum of frequency of occurrence of PD and PM are comparable to that of NM. The initial positive CHL at <span class="hlt">eddy</span> formation stage is associated with "<span class="hlt">eddy</span> trapping." The significant positive CHL increase from the <span class="hlt">eddy</span> intensification to early decay stage is mainly attributed to "<span class="hlt">eddy</span> pumping." Although the frequency of occurrence of ND is the smallest, its contribution to negative CHL anomalies is unnegligible.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Eddy+AND+current&id=EJ185642','ERIC'); return false;" href="https://eric.ed.gov/?q=Eddy+AND+current&id=EJ185642"><span><span class="hlt">Eddy</span> Currents: Levitation, Metal Detectors, and Induction Heating</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Wouch, G.; Lord, A. E., Jr.</p> <p>1978-01-01</p> <p>A simple and accessible calculation is given of the effects of <span class="hlt">eddy</span> currents for a sphere in the field of a single circular loop of alternating current. These calculations should help toward the inclusion of <span class="hlt">eddy</span> current effects in upper undergraduate physics courses. (BB)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930000710&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DEddy%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930000710&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DEddy%2Bcurrent"><span><span class="hlt">Eddy</span>-Current Measurement Of Turning Or Curvature</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chern, Engmin J.</p> <p>1993-01-01</p> <p>Rotatable conductive plate covers sensing coil to varying degree. Curvature of pipe at remote or otherwise inaccessible location inside pipe measured using relatively simple angular-displacement <span class="hlt">eddy</span>-current probe. Crawler and sensor assemblies move along inside of pipe on wheels. Conductive plate pivots to follow curvature of pipe, partly covering one of <span class="hlt">eddy</span>-current coils to degree depending on local curvature on pipe.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14..178K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14..178K"><span>Satellite observations of <span class="hlt">eddies</span> in the Baltic, Black and Caspian seas</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karimova, S.</p> <p>2012-04-01</p> <p>In the present paper mesoscale and sub-mesoscale <span class="hlt">eddies</span> in the Baltic, Black and Caspian seas are studied by means of satellite radiometer and radar images. Using these data makes it possible to investigate the vortical structures of a wide spatial range, from the basin scale through mesoscale to a small scale with a few kilometers in size. Over 2000 Envisat ASAR and ERS-2 SAR images with two-year time coverage (2009-2010) and spatial resolution of 75 m obtained in different parts of the Baltic, Black and Caspian Seas were applied to study submesoscale (with a diameter less than ca. 20 km) <span class="hlt">eddies</span> in the basins mentioned. As a result of the analysis performed the role of different mechanisms (ones due to surfactant films, wave/current interactions and thermal fronts) in <span class="hlt">eddy</span> visualization in SAR imagery was revealed. In every basin studied the main <span class="hlt">eddy</span> characteristics such as number of <span class="hlt">eddies</span>, frequency of their occurrence in SAR imagery, sign of vorticity, typical length scale and lifetime as well as spatial distribution patterns were investigated. Spatio-temporal parameters of the vortices were subjected to statistical analysis. Interannual and seasonal variabilities of the <span class="hlt">eddy</span> parameters were traced. Hypotheses about the most important mechanisms of generation of the <span class="hlt">eddies</span> observed were proposed. Among them there are barotropic, baroclinic and topographic instabilities, convection in the surface layer and heterogeneous wind forcing. Satellite infrared and visible images were used for retrieving statistical information on the Black Sea mesoscale vortical structures. The dataset used included ~5000 AVHRR NOAA Sea Surface Temperature (SST) images covering the entire Black Sea with time coverage since September, 2004 to December, 2010 and ~1500 MODIS Aqua (SST, normalized water-leaving radiance at 551 nm, chlorophyll-a concentration) images obtained in 2006-2010. Spatial resolution of the images was 1 km. Analysis performed revealed that numerous vortical</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950013336','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950013336"><span>Predicting and explaining the movement of mesoscale oceanographic features using CLIPS</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bridges, Susan; Chen, Liang-Chun; Lybanon, Matthew</p> <p>1994-01-01</p> <p>The Naval Research Laboratory has developed an oceanographic expert system that describes the evolution of mesoscale features in the Gulf Stream region of the northwest Atlantic Ocean. These features include the Gulf Stream current and the <span class="hlt">warm</span> and cold <span class="hlt">core</span> <span class="hlt">eddies</span> associated with the Gulf Stream. An explanation capability was added to the <span class="hlt">eddy</span> prediction component of the expert system in order to allow the system to justify the reasoning process it uses to make predictions. The <span class="hlt">eddy</span> prediction and explanation components of the system have recently been redesigned and translated from OPS83 to C and CLIPS and the new system is called WATE (Where Are Those <span class="hlt">Eddies</span>). The new design has improved the system's readability, understandability and maintainability and will also allow the system to be incorporated into the Semi-Automated Mesoscale Analysis System which will eventually be embedded into the Navy's Tactical Environmental Support System, Third Generation, TESS(3).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/867097','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/867097"><span>Wire inhomogeneity detector having a <span class="hlt">core</span> with opposing pole pieces and guide pieces adjacent the opposing pole pieces</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Gibson, George H.; Smits, Robert G.; Eberhard, Philippe H.</p> <p>1989-01-01</p> <p>A device for uncovering imperfections in electrical conducting wire, particularly superconducting wire, by detecting variations in <span class="hlt">eddy</span> currents. <span class="hlt">Eddy</span> currents effect the magnetic field in a gap of an inductor, contained in a modified commercial ferrite <span class="hlt">core</span>, through which the wire being tested is passed. A small increase or decrease in the amount of conductive material, such as copper, in a fixed cross section of wire will unbalance a bridge used to measure the impedance of the inductor, tripping a detector and sounding an alarm.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcDyn.tmp...50S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcDyn.tmp...50S"><span><span class="hlt">Eddy</span> energy sources and mesoscale <span class="hlt">eddies</span> in the Sea of Okhotsk</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stepanov, Dmitry V.; Diansky, Nikolay A.; Fomin, Vladimir V.</p> <p>2018-05-01</p> <p>Based on <span class="hlt">eddy</span>-permitting ocean circulation model outputs, the mesoscale variability is studied in the Sea of Okhotsk. We confirmed that the simulated circulation reproduces the main features of the general circulation in the Sea of Okhotsk. In particular, it reproduced a complex structure of the East-Sakhalin current and the pronounced seasonal variability of this current. We established that the maximum of mean kinetic energy was associated with the East-Sakhalin Current. In order to uncover causes and mechanisms of the mesoscale variability, we studied the budget of <span class="hlt">eddy</span> kinetic energy (EKE) in the Sea of Okhotsk. Spatial distribution of the EKE showed that intensive mesoscale variability occurs along the western boundary of the Sea of Okhotsk, where the East-Sakhalin Current extends. We revealed a pronounced seasonal variability of EKE with its maximum intensity in winter and its minimum intensity in summer. Analysis of EKE sources and rates of energy conversion revealed a leading role of time-varying (turbulent) wind stress in the generation of mesoscale variability along the western boundary of the Sea of Okhotsk in winter and spring. We established that a contribution of baroclinic instability predominates over that of barotropic instability in the generation of mesoscale variability along the western boundary of the Sea of Okhotsk. To demonstrate the mechanism of baroclinic instability, the simulated circulation was considered along the western boundary of the Sea of Okhotsk from January to April 2005. In April, the mesoscale anticyclonic <span class="hlt">eddies</span> are observed along the western boundary of the Sea of Okhotsk. The role of the sea ice cover in the intensification of the mesoscale variability in the Sea of Okhotsk was discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/867240','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/867240"><span>Method and apparatus for correcting <span class="hlt">eddy</span> current signal voltage for temperature effects</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Kustra, Thomas A.; Caffarel, Alfred J.</p> <p>1990-01-01</p> <p>An apparatus and method for measuring physical characteristics of an electrically conductive material by the use of <span class="hlt">eddy</span>-current techniques and compensating measurement errors caused by changes in temperature includes a switching arrangement connected between primary and reference coils of an <span class="hlt">eddy</span>-current probe which allows the probe to be selectively connected between an <span class="hlt">eddy</span> current output oscilloscope and a digital ohm-meter for measuring the resistances of the primary and reference coils substantially at the time of <span class="hlt">eddy</span> current measurement. In this way, changes in resistance due to temperature effects can be completely taken into account in determining the true error in the <span class="hlt">eddy</span> current measurement. The true error can consequently be converted into an equivalent <span class="hlt">eddy</span> current measurement correction.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SGeo...38.1257N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SGeo...38.1257N"><span>Implications of <span class="hlt">Warm</span> Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nuijens, Louise; Emanuel, Kerry; Masunaga, Hirohiko; L'Ecuyer, Tristan</p> <p>2017-11-01</p> <p>Space-borne observations reveal that 20-40% of marine convective clouds below the freezing level produce rain. In this paper we speculate what the prevalence of <span class="hlt">warm</span> rain might imply for convection and large-scale circulations over tropical oceans. We present results using a two-column radiative-convective model of hydrostatic, nonlinear flow on a non-rotating sphere, with parameterized convection and radiation, and review ongoing efforts in high-resolution modeling and observations of <span class="hlt">warm</span> rain. The model experiments investigate the response of convection and circulation to sea surface temperature (SST) gradients between the columns and to changes in a parameter that controls the conversion of cloud condensate to rain. Convection over the cold ocean collapses to a shallow mode with tops near 850 hPa, but a congestus mode with tops near 600 hPa can develop at small SST differences when <span class="hlt">warm</span> rain formation is more efficient. Here, interactive radiation and the response of the circulation are crucial: along with congestus a deeper moist layer develops, which leads to less low-level radiative cooling, a smaller buoyancy gradient between the columns, and therefore a weaker circulation and less subsidence over the cold ocean. The congestus mode is accompanied with more surface precipitation in the subsiding column and less surface precipitation in the deep convecting column. For the shallow mode over colder oceans, circulations also weaken with more efficient <span class="hlt">warm</span> rain formation, but only marginally. Here, more <span class="hlt">warm</span> rain reduces convective tops and the boundary layer depth—similar to Large-<span class="hlt">Eddy</span> Simulation (LES) studies—which reduces the integrated buoyancy gradient. Elucidating the impact of <span class="hlt">warm</span> rain can benefit from large-domain high-resolution simulations and observations. Parameterizations of <span class="hlt">warm</span> rain may be constrained through collocated cloud and rain profiling from ground, and concurrent changes in convection and rain in subsiding and convecting branches of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DPS....4821006B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DPS....4821006B"><span>The Energetics of Transient <span class="hlt">Eddies</span> in the Martian Northern Hemisphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Battalio, Joseph Michael; Szunyogh, Istvan; Lemmon, Mark T.</p> <p>2016-10-01</p> <p>The energetics of northern hemisphere transient waves in the Mars Analysis Correction Data Assimilation is analyzed. Three periods between the fall and spring equinoxes (Ls=200°-230°, 255°-285°, and 330°-360°) during three Mars Years are selected to exemplify the fall, winter, and spring wave activity. Fall and spring <span class="hlt">eddy</span> energetics is similar with some inter-annual and inter-seasonal variability, but winter <span class="hlt">eddy</span> kinetic energy and its transport are strongly reduced in intensity as a result of the solsticial pause in <span class="hlt">eddy</span> activity. Barotropic energy conversion acts as a sink of <span class="hlt">eddy</span> kinetic energy throughout the northern hemisphere <span class="hlt">eddy</span> period with little reduction in amplitude during the solsticial pause. Baroclinic energy conversion acts as a source in fall and spring but disappears during the winter period as a result of the stabilized vertical shear profile of the westerly jet around winter solstice.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20357833','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20357833"><span>Mesoscale <span class="hlt">eddies</span>: hotspots of prokaryotic activity and differential community structure in the ocean.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baltar, Federico; Arístegui, Javier; Gasol, Josep M; Lekunberri, Itziar; Herndl, Gerhard J</p> <p>2010-08-01</p> <p>To investigate the effects of mesoscale <span class="hlt">eddies</span> on prokaryotic assemblage structure and activity, we sampled two cyclonic <span class="hlt">eddies</span> (CEs) and two anticyclonic <span class="hlt">eddies</span> (AEs) in the permanent <span class="hlt">eddy</span>-field downstream the Canary Islands. The <span class="hlt">eddy</span> stations were compared with two far-field (FF) stations located also in the Canary Current, but outside the influence of the <span class="hlt">eddy</span> field. The distribution of prokaryotic abundance (PA), bulk prokaryotic heterotrophic activity (PHA), various indicators of single-cell activity (such as nucleic acid content, proportion of live cells, and fraction of cells actively incorporating leucine), as well as bacterial and archaeal community structure were determined from the surface to 2000 m depth. In the upper epipelagic layer (0-200 m), the effect of <span class="hlt">eddies</span> on the prokaryotic community was more apparent, as indicated by the higher PA, PHA, fraction of living cells, and percentage of active cells incorporating leucine within <span class="hlt">eddies</span> than at FF stations. Prokaryotic community composition differed also between <span class="hlt">eddy</span> and FF stations in the epipelagic layer. In the mesopelagic layer (200-1000 m), there were also significant differences in PA and PHA between <span class="hlt">eddy</span> and FF stations, although in general, there were no clear differences in community composition or single-cell activity. The effects on prokaryotic activity and community structure were stronger in AE than CE, decreasing with depth in both types of <span class="hlt">eddies</span>. Overall, both types of <span class="hlt">eddies</span> show distinct community compositions (as compared with FF in the epipelagic), and represent oceanic 'hotspots' of prokaryotic activity (in the epi- and mesopelagic realms).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.6283V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.6283V"><span>Effects of Drake Passage on a strongly <span class="hlt">eddying</span> global ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Viebahn, Jan; von der Heydt, Anna S.; Dijkstra, Henk A.</p> <p>2015-04-01</p> <p>During the past 65 Million (Ma) years, Earth's climate has undergone a major change from <span class="hlt">warm</span> 'greenhouse' to colder 'icehouse' conditions with extensive ice sheets in the polar regions of both hemispheres. The Eocene-Oligocene (~34 Ma) and Oligocene-Miocene (~23 Ma) boundaries reflect major transitions in Cenozoic global climate change. Proposed mechanisms of these transitions include reorganization of ocean circulation due to critical gateway opening/deepening, changes in atmospheric CO2-concentration, and feedback mechanisms related to land-ice formation. Drake Passage (DP) is an intensively studied gateway because it plays a central role in closing the transport pathways of heat and chemicals in the ocean. The climate response to a closed DP has been explored with a variety of general circulation models, however, all of these models employ low model-grid resolutions such that the effects of subgrid-scale fluctuations ('<span class="hlt">eddies</span>') are parameterized. We present results of the first high-resolution (0.1° horizontally) realistic global ocean model simulation with a closed DP in which the <span class="hlt">eddy</span> field is largely resolved. The simulation extends over more than 200 years such that the strong transient adjustment process is passed and a near-equilibrium ocean state is reached. The effects of DP are diagnosed by comparing with both an open DP high-resolution control simulation (of same length) and corresponding low-resolution simulations. By focussing on the heat/tracer transports we demonstrate that the results are twofold: Considering spatially integrated transports the overall response to a closed DP is well captured by low-resolution simulations. However, looking at the actual spatial distributions drastic differences appear between far-scattered high-resolution and laminar-uniform low-resolution fields. We conclude that sparse and highly localized tracer proxy observations have to be interpreted carefully with the help of high-resolution model simulations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JAESc..98..285L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JAESc..98..285L"><span>An 80-year summer temperature history from the Xiao Dongkemadi ice <span class="hlt">core</span> in the central Tibetan Plateau and its association with atmospheric circulation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Xiangying; Ding, Yongjian; Yu, Zhongbo; Mika, Sillanpää; Liu, Shiyin; Shangguan, Donghui; Lu, Chengyang</p> <p>2015-02-01</p> <p>The climate significance of oxygen isotopes from the central Tibetan Plateau (cTP) ice <span class="hlt">cores</span> is a debated issue because of large scale atmospheric circulation. A high-resolution δ18O record was recovered from the Xiao Dongkemadi (XD) ice <span class="hlt">core</span>, which expanded the spatial coverage of δ18O data in this region. Annual average δ18O correlated significantly with nearby MJJAS air temperatures, suggesting the δ18O can be used as a proxy to reconstruct regional climate change. The reconstructed temperature anomaly is related to the regional and global <span class="hlt">warming</span> trends, and the greater <span class="hlt">warming</span> amplitude since 1970s is related to the elevation dependency of the <span class="hlt">warming</span> signal. The close relationship of the <span class="hlt">warming</span> to variations in glacier mass balances and discharge reveal that recent <span class="hlt">warming</span> has led to obvious glacier shrinkage and runoff increase. Correlation analysis suggests that monsoon and westerly moisture substantially influence the cTP ice <span class="hlt">core</span> records, along with an increase in their level of contribution to the XD <span class="hlt">core</span> accumulation in recent decades, and confirms a teleconnection of regional climate of the cTP ice <span class="hlt">cores</span> with climate parameters in the Indian and North Atlantic Oceans.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPC14D2096T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPC14D2096T"><span>Birth, life and death of an Anticyclonic <span class="hlt">eddy</span> in the Southern Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Torres, R.; Sallee, J. B.; Schwarz, J.; Hosegood, P. J.; Taylor, J. R.; Adams, K.; Bachman, S.; Stamper, M. A.</p> <p>2016-02-01</p> <p>The Antarctic Circumpolar Current (ACC) is a climatically relevant frontal structure of global importance, which regularly develops instabilities growing into meanders, and eventually evolving into long-lived anticyclonic <span class="hlt">eddies</span>. These <span class="hlt">eddies</span> exhibit sustained primary productivity that can last several months fuelled by local resupply of nutrients. During April-May 2015 we conducted an intensive field experiment in the Southern Ocean where we sampled and tracked an ACC meander as it developed into an <span class="hlt">eddy</span> and later vanished some 90 days later. The physical characteristics of the meander and <span class="hlt">eddy</span> were observed with a combination of high resolution hydrography, ADCP and turbulence observations, in addition to biogeochemical observations of nutrients and phytoplankton. The life and death of the <span class="hlt">eddy</span> was subsequently tracked through Argo, BIO-Argo Lagrangian profilers and remote sensing. In this presentation we will use observations and ecosystem modelling to discuss the physical processes that sustain the observed high Chlorophyll levels in the <span class="hlt">eddy</span> and explore how the <span class="hlt">eddy</span> evolution impacts the rate of nutrient supply and how this translates into the observed changes in chlorophyll. We will discuss the relevance of <span class="hlt">eddy</span> formation to Chlorophyll and productivity in the region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27974273','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27974273"><span>Anthropogenic organochlorine compounds as potential tracers for regional water masses: A case study of estuarine plume, coastal <span class="hlt">eddy</span>, wind-driven upwelling and long-range <span class="hlt">warm</span> current.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ya, Miaolei; Wu, Yuling; Li, Yongyu; Wang, Xinhong</p> <p>2017-03-01</p> <p>Water masses are the crucial factor driving the terrigenous anthropogenic organochlorine compounds (OCs) migration from the coast to open sea. Therefore, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were investigated in the Northern South China Sea (NSCS), where different types of water masses are generated by the East Asian summer monsoon: Pearl River estuary plume (PREP), Guangdong offshore <span class="hlt">eddy</span> (GDEC), South China Sea <span class="hlt">warm</span> current (SCSWC) and wind-driven upwelling current (WDUC). No discrepant distributions of OC concentrations were found in these water masses (p > 0.05). However, compositions and diagnostic ratios of HCHs, DDTs, trans- or cis-chlordane and PCBs could reflect the discrepancies in the input, transport and transformation of OCs caused by the hydrological characteristics of water masses, therefore, this allowing them to serve as potential tracers of regional water masses. In detail, α/γ-HCH and β-HCH percentages could indicate the weathered residue in the GDEC, long-range transport in the SCSWC, rapid photodegradation in the surface WDUC and biodegradation in the deep WDUC, respectively. The predominance of o, p'-DDT and p, p'-DDT could indicate fresh input in the PREP, GDEC and WDUC. DDT/DDTs of ratios <0.5 also reflected long-range transport in the SCSWC. Different DDD/DDE ratios indicated different oxygen environments of microbial degradation in the surface and deep water of the WDUC. Trans/cis-chlordane ratios could indicate the selective degradation of trans-chlordane in different water masses. Finally, a higher proportion of penta-PCB could reflect the strong paint additive sources carried by river erosion in the PREP. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870036447&hterms=value+biological&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dvalue%2Bbiological','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870036447&hterms=value+biological&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dvalue%2Bbiological"><span>Biological consequences of a recurrent <span class="hlt">eddy</span> off Point Conception, California</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Haury, Loren R.; Simpson, James J.; Pelaez, Jose; Wisenhahn, David; Koblinsky, Chester J.</p> <p>1986-01-01</p> <p>The biological effects on three different time scales (100-day mesoscale, annual, and several-year) of a mesoscale anticyclonic <span class="hlt">eddy</span> consistently found in shipboard surveys and satellite-sensed data several hundred kilometers southwest of Point Conception, CA, are described. A detailed shipboard study of the <span class="hlt">eddy</span> in January 1981 found a complex system of fronts in surface chlorophyll at the northern edge of the <span class="hlt">eddy</span>; microplankton and zooplankton distributions were strongly affected by entrainment processes at the surface and, apparently, at depth. Concurrent satellite coastal zone color scanner ocean color images show agreement with the general surface characteristics of the <span class="hlt">eddy</span> chlorophyll field but do not reflect features deeper than about 25 m, including the contribution of the deep chlorophyll maximum to the integrated chlorophyll values. Satellite data for the period October 1980 through October 1981 and shipboard data from California Cooperative Oceanic Fisheries Investigations (CalCOFI) for December 1980 to July 1981 show the continued presence of the <span class="hlt">eddy</span> in the sea surface temperature and color field and in the distributions of surface chlorophyll and zooplankton displacement volume. A review of the CalCOFI survey results from 1949 to the present time demonstrates the recurrent nature of the <span class="hlt">eddy</span> system on a year-to-year basis. The <span class="hlt">eddy</span> system appears to have a significant effect on the distribution of both oceanic and nearshore organisms. Offshore transport of coastal species occurs in the form of large entrained plumes or filaments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/13257','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/13257"><span>Development of and Improved Magneto-Optic/<span class="hlt">Eddy</span>-Current Imager</span></a></p> <p><a target="_blank" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1997-04-01</p> <p>Magneto-optic/<span class="hlt">eddy</span>-current imaging technology has been developed and approved for inspection of cracks in aging aircraft. This relatively new nondestructive test method gives the inspector the ability to quickly generate real-time <span class="hlt">eddy</span>-current images...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120007524','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120007524"><span><span class="hlt">Eddy</span> Current System and Method for Crack Detection</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor)</p> <p>2012-01-01</p> <p>An <span class="hlt">eddy</span> current system and method enables detection of sub-surface damage in a cylindrical object. The invention incorporates a dual frequency, orthogonally wound <span class="hlt">eddy</span> current probe mounted on a stepper motor-controlled scanning system. The system is designed to inspect for outer surface damage from the interior of the cylindrical object.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950070404&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DEddy%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950070404&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DEddy%2Bcurrent"><span>Revolving <span class="hlt">Eddy</span>-Current Probe Detects Cracks Near Rivets</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Namkung, Min; Wincheski, Buzz; Fulton, James P.; Nath, Shridhar; Simpson, John</p> <p>1995-01-01</p> <p>Scanning <span class="hlt">eddy</span>-current probe in circular pattern increases sensitivity with which probe indicates fatigue cracks and other defects in metal surfaces in vicinity of rivets. Technique devised to facilitate inspection of riveted joints in aircraft. <span class="hlt">Eddy</span>-current probe in question described in "Electro-magnetic Flaw Detector Is Easier To Use" (LAR-15046).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS31C2028F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS31C2028F"><span>On the cyclonic <span class="hlt">eddy</span> generation in Panay Strait, Philippines</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Flament, P. J.; Repollo, C. L. A.; Flores-vidal, X.; Villanoy, C.</p> <p>2016-12-01</p> <p>High Frequency Doppler Radar (HFDR), shallow pressure gauges and Acoustic Doppler Current Profiler (ADCP) time-series observations during the Philippine Straits Dynamics Experiment (PhilEx) were analyzed to describe the mesoscale currents in Panay Strait, Philippines. Low frequency surface currents inferred from three HFDR (July 2008 { July 2009), revealed a clear seasonal signal in concurrent with the reversal of the Asian monsoon. The mesoscale cyclonic <span class="hlt">eddy</span> west of Panay Island is generated during the winter northeast (NE) monsoon. This causes changes in the strength, depth and width of the intra-seasonal Panay coastal jet as its eastern limb. Winds from QuikSCAT satellite and from a nearby airport indicate that these flow structures correlate with the strength and direction of the prevailing local wind. An intensive survey of the cyclonic <span class="hlt">eddy</span> in February 8-9, 2009, obtaining a 24-hour successive cross-shore Conductivity-Temperature- Depth (CTD) sections in conjunction with shipboard ADCP measurements showed a well- developed cyclonic <span class="hlt">eddy</span> characterized by near-surface velocities reaching 50 cm/s. This observation coincides with the intensification of the wind in between Mindoro and Panay islands generating a positive wind stress curl in the lee of Panay, which in turn induces divergent surface currents. Water column response from the mean transects showed a pronounced signal of upwelling, indicated by the doming of isotherms and isopycnals. A pressure gradient then was sets up, resulting in the spin-up of a cyclonic <span class="hlt">eddy</span> in geostrophic balance. Evaluation of the surface vorticity balance equation suggests that the wind stress curl via Ekman pumping mechanism provides the necessary input in the formation and evolution of the cyclonic <span class="hlt">eddy</span>. In particular, the cumulative effect of the wind stress curl plays a key role on the generation of the <span class="hlt">eddy</span>. The Beta-effect on the other hand may led to propagation of the <span class="hlt">eddy</span> westward.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPA....8d7205V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPA....8d7205V"><span>Decomposing the permeability spectra of nanocrystalline finemet <span class="hlt">core</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Varga, Lajos K.; Kovac, Jozef</p> <p>2018-04-01</p> <p>In this paper we present a theoretical and experimental investigation on the magnetization contributions to permeability spectra of normal annealed Finemet <span class="hlt">core</span> with round type hysteresis curve. Real and imaginary parts of the permeability were determined as a function of exciting magnetic field (HAC) between 40 Hz -110 MHz using an Agilent 4294A type Precision Impedance Analyzer. The amplitude of the exciting field was below and around the coercive field of the sample. The spectra were decomposed using the Levenberg-Marquardt algorithm running under Origin 9 software in four contributions: i) <span class="hlt">eddy</span> current; ii) Debye relaxation of magnetization rotation, iii) Debye relaxation of damped domain wall motion and iv) resonant type DW motion. For small exciting amplitudes the first two components dominate. The last two contributions connected to the DW appear for relative large HAC only, around the coercive force. All the contributions will be discussed in detail accentuating the role of <span class="hlt">eddy</span> current that is not negligible even for the smallest applied exciting field.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992MatEv..50.1225H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992MatEv..50.1225H"><span><span class="hlt">Eddy</span> current standards - Cracks versus notches</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hagemaier, D. J.; Collingwood, M. R.; Nguyen, K. H.</p> <p>1992-10-01</p> <p><span class="hlt">Eddy</span> current tests aimed at evaluating cracks and electron-discharge machined (EDM) notches in 7075-T6 aluminum specimens are described. A comparison of the shape and amplitude of recordings made from both transverse and longitudinal scans of small EDM notches and fatigue cracks showd almost identical results. The signal amplitude and phase angle increased with an increase of EDM notch and crak size. It is concluded that equivalent <span class="hlt">eddy</span> current results obtained from similar-size surface cracks and notches in aluminum can be used to establish a desired sensitivity level for inspection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000RScI...71..567B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000RScI...71..567B"><span><span class="hlt">Eddy</span> current testing probe with dual half-cylindrical coils</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bae, Byung-Hoon; Choi, Jung-Mi; Kim, Soo-Yong</p> <p>2000-02-01</p> <p>We have developed a new <span class="hlt">eddy</span> current probe composed of a dual half-cylindrical (2HC) coil as an exciting coil and a sensing coil that is placed in the small gap of the 2HC coil. The 2HC coil induces a linear <span class="hlt">eddy</span> current on the narrow region within the target medium. The magnitude of <span class="hlt">eddy</span> current has a maximum peak with the narrow width, underneath the center of the exciting 2HC coil. Because of the linear <span class="hlt">eddy</span> current, the probe can be used to detect not only the existence of a crack but also its direction in conducting materials. Using specimen with a machined crack, and varying the exciting frequency from 0.5 to 100 kHz, we investigated the relationships between the direction of crack and the output voltage of the sensing coil.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APJAS..49..467K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APJAS..49..467K"><span>Catalina <span class="hlt">Eddy</span> as revealed by the historical downscaling of reanalysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kanamitsu, Masao; Yulaeva, Elena; Li, Haiqin; Hong, Song-You</p> <p>2013-08-01</p> <p>Climatological properties, dynamical and thermodynamical characteristics of the Catalina <span class="hlt">Eddy</span> are examined from the 61 years NCEP/NCAR Reanalysis downscaled to hourly 10 km resolution. The <span class="hlt">eddy</span> is identified as a mesoscale cyclonic circulation confined to the Southern California Bight. Pattern correlation of wind direction against the canonical Catalina <span class="hlt">Eddy</span> is used to extract cases from the downscaled analysis. Validation against published cases and various observations confirmed that the downscaled analysis accurately reproduces Catalina <span class="hlt">Eddy</span> events. A composite analysis of the initiation phase of the <span class="hlt">eddy</span> indicates that no apparent large-scale cyclonic/anti-cyclonic large-scale forcing is associated with the <span class="hlt">eddy</span> formation or decay. The source of the vorticity is located at the coast of the Santa Barbara Channel. It is generated by the convergence of the wind system crossing over the San Rafael Mountains and the large-scale northwesterly flow associated with the subtropical high. This vorticity is advected towards the southeast by the northwesterly flow, which contributes to the formation of the streak of positive vorticity. At 6 hours prior to the mature stage, there is an explosive generation of positive vorticity along the coast, coincident with the phase change of the sea breeze circulation (wind turning from onshore to offshore), resulting in the convergence all along the California coast. The generation of vorticity due to convergence along the coast together with the advection of vorticity from the north resulted in the formation of southerly flow along the coast, forming the Catalina <span class="hlt">Eddy</span>. The importance of diurnal variation and the lack of large-scale forcing are new findings, which are in sharp contrast to prior studies. These differences are due to the inclusion of many short-lived <span class="hlt">eddy</span> events detected in our study which have not been included in other studies.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPC21A..05M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPC21A..05M"><span>Influence of Kuroshio Oceanic <span class="hlt">Eddies</span> on North Pacific Weather Patterns</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, X.; Chang, P.; Saravanan, R.; Montuoro, R.; Hsieh, J. S.; Wu, D.; Lin, X.; Wu, L.; Jing, Z.</p> <p>2016-02-01</p> <p>High-resolution satellite observations reveal energetic meso-scale ocean <span class="hlt">eddy</span> activity and positive correlation between meso-scale sea surface temperature (SST) and surface wind along oceanic frontal zones, such as the Kuroshio and Gulf Stream, suggesting a potential role of meso-scale oceanic <span class="hlt">eddies</span> in forcing the atmosphere. Using a 27 km horizontal resolution Weather Research Forecasting (WRF) model forced with observed daily SST at 0.09° spatial resolution during boreal winter season, two ensembles of 10 WRF simulations, in one of which meso-scale SST variability induced by ocean <span class="hlt">eddies</span> was suppressed, were conducted in the North Pacific to study the local and remote influence of meso-scale oceanic <span class="hlt">eddies</span> in the Kuroshio Extention Region (KER) on the atmosphere. Suppression of meso-scale oceanic <span class="hlt">eddies</span> results in a deep tropospheric response along and downstream of the KER, including a significant decrease (increase) in winter season mean rainfall along the KER (west coast of US), a reduction of storm genesis in the KER, and a southward shift of the jet stream and North Pacific storm track in the eastern North Pacific. The simulated local and remote rainfall response to meso-scale oceanic <span class="hlt">eddies</span> in the KER is also supported by observational analysis. A mechanism invoking moist baroclinic instability is proposed as a plausible explanation for the linkage between meso-scale oceanic <span class="hlt">eddies</span> in the KER and large-scale atmospheric response in the North Pacific. It is argued that meso-scale oceanic <span class="hlt">eddies</span> can have a rectified effect on planetary boundary layer moisture, the stability of the lower atmosphere and latent heat release, which in turn affect cyclogenesis. The accumulated effect of the altered storm development downstream further contributes to the equivalent barotropic mean flow change in the eastern North Pacific basin.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JMMM..410..248R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JMMM..410..248R"><span>Prediction of high frequency <span class="hlt">core</span> loss for electrical steel using the data provided by manufacturer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roy, Rakesh; Dalal, Ankit; Kumar, Praveen</p> <p>2016-07-01</p> <p>This paper describes a technique to determine the <span class="hlt">core</span> loss data, at high frequencies, using the loss data provided by the lamination manufacturer. Steinmetz equation is used in this proposed method to determine <span class="hlt">core</span> loss at high frequency. This Steinmetz equation consists of static hysteresis and <span class="hlt">eddy</span> current loss. The presented technique considers the coefficients of Steinmetz equation as variable with frequency and peak magnetic flux density. The high frequency <span class="hlt">core</span> loss data, predicted using this model is compared with the catalogue data given by manufacturer and very good accuracy has been obtained for a wide range of frequency.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApSS..434..763C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApSS..434..763C"><span>Achieving the broader frequency electromagnetic absorber by development of magnetic <span class="hlt">core</span>-shell composite with tunable shell/<span class="hlt">core</span> sizes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, Ye; Guo, Yuhang; Zhang, Zhenya; Dong, Songtao; Liu, Suwei; Wang, Hongying</p> <p>2018-03-01</p> <p>Magnetic absorber has been regarded as the advanced electromagnetic energy transfer material to solve the increasingly high frequency electromagnetic interference issue. Even so, the pure magnetic material, in particular magnetic metal nanoparticle, suffering from the poor chemical stability and strong <span class="hlt">eddy</span> current effect, thus limits it further application. To overcome this shortage, surrounded the magnetic metal nanoparticle (MPs) with insulated oxide shell has been considered to be an efficient route to suppress such an <span class="hlt">eddy</span> current effect. Meanwhile, the combined insulated shell with good impedance matching feature, shows a positive role on the electromagnetic energy transfer intensity. In this regard, the binary Fe@α-Fe2O3 composite with the average size of ∼ 20 nm was prepared by a facile self-oxidation reaction. Interestingly, both the <span class="hlt">core</span> diameter and shell thickness is controllable by controlling the oxide degree. The electromagnetic energy transfer performance revealed the maximum absorption frequency bandwidth of the optimal Fe@α-Fe2O3 composite is up to 5.3 G(8.2-13.5 GHz)under a small coating thickness of 1.5 mm.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1748408','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1748408"><span><span class="hlt">Warming</span> Up With an Ice Vest: <span class="hlt">Core</span> Body Temperature Before and After Cross-Country Racing</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hunter, Iain; Hopkins, J. Ty; Casa, Douglas J</p> <p>2006-01-01</p> <p>Context: Athletes running in a hot, humid environment may have an increased risk of heat illness. In the 2004 Olympic Games, American and Australian athletes were provided with ice vests designed to cool their bodies before performance. The vest appeared to be effective in keeping body temperatures down and improving the performance of the marathoners. However, body temperatures have not been reported when the vest was used before an actual competition. Objective: To determine if wearing the Nike Ice-Vest decreased <span class="hlt">core</span> temperature (Tc) before and during athletic performance in <span class="hlt">warm</span> (26°C to 27°C), humid (relative humidity = 50% to 75%) conditions. Design: A 2 × 3 mixed-model design was used to compare groups (ice vest, no ice vest) across changes in temperature from baseline (10 minutes and 1 minute before the race and immediately after the race). Setting: 2005 Big Wave Invitational 4-km race in Hawaii and 2005 Great American 5-km race in North Carolina. Patients or Other Participants: Eighteen women from a National Collegiate Athletic Association Division I cross-country team who participated in either the Big Wave Invitational or the Great American Race. Intervention(s): Four hours before the start of the race, the athletes ingested radiotelemetry temperature sensors. One hour before the start of the race, Tc was recorded, and half of the athletes donned a Nike Ice-Vest, which was removed immediately before the race. Main Outcome Measure(s): Additional Tc readings were taken at 10 minutes and 1 minute before the start of the race and immediately after the race. Results: Ten minutes before the start of the race, Tc was elevated by 0.84°C ± 0.37°C in the no-vest group, compared with 0.29°C ± 0.56°C in the ice-vest group ( P < .01). This difference in Tc persisted at 1 minute before the start. Immediately after the finish, the increase in Tc averaged 2.75°C ± 0.62°C in the no-vest group and 2.12°C ± 0.62°C in the ice-vest group ( P < .01</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001ApPhL..78..383L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001ApPhL..78..383L"><span>High resolution <span class="hlt">eddy</span> current microscopy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lantz, M. A.; Jarvis, S. P.; Tokumoto, H.</p> <p>2001-01-01</p> <p>We describe a sensitive scanning force microscope based technique for measuring local variations in resistivity by monitoring changes in the <span class="hlt">eddy</span> current induced damping of a cantilever with a magnetic tip oscillating above a conducting sample. To achieve a high sensitivity, we used a cantilever with an FeNdBLa particle mounted on the tip. Resistivity measurements are demonstrated on a silicon test structure with a staircase doping profile. Regions with resistivities of 0.0013, 0.0041, and 0.022 Ω cm are clearly resolved with a lateral resolution of approximately 180 nm. For this range of resistivities, the <span class="hlt">eddy</span> current induced damping is found to depend linearly on the sample resistivity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4095903','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4095903"><span>The prospect of using large <span class="hlt">eddy</span> and detached <span class="hlt">eddy</span> simulations in engineering design, and the research required to get there</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Larsson, Johan; Wang, Qiqi</p> <p>2014-01-01</p> <p>In this paper, we try to look into the future to envision how large <span class="hlt">eddy</span> and detached <span class="hlt">eddy</span> simulations will be used in the engineering design process about 20–30 years from now. Some key challenges specific to the engineering design process are identified, and some of the critical outstanding problems and promising research directions are discussed. PMID:25024421</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.8068L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.8068L"><span>Hidden biosphere in an oxygen-deficient Atlantic open ocean <span class="hlt">eddy</span>: future implications of ocean deoxygenation on primary production in the eastern tropical North Atlantic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loescher, Carolin; Fischer, Martin; Neulinger, Sven; Fiedler, Björn; Philippi, Miriam; Schütte, Florian; Singh, Arvind; Hauss, Helena; Karstensen, Johannes; Körtzinger, Arne; Schmitz, Ruth</p> <p>2016-04-01</p> <p>The eastern tropical North Atlantic (ETNA) is characterized by a highly productive coastal upwelling system and a moderate oxygen minimum zone with lowest open ocean oxygen (O2) concentrations of approximately 40 μmol kg-1. The recent discovery of re-occurring mesoscale <span class="hlt">eddies</span> with close to anoxic O2 concentrations (<1 μmol kg-1) located just below the mixed layer has challenged our understanding of O2 distribution and biogeochemical processes in this area. Here, we present the first microbial community study from a deoxygenated anticyclonic modewater <span class="hlt">eddy</span> in the open waters of the ETNA. In the <span class="hlt">eddy</span>, we observed significantly lower bacterial diversity compared to surrounding waters, along with a significant community shift. We detected enhanced primary productivity in the surface layer of the <span class="hlt">eddy</span> indicated by elevated chlorophyll concentrations and carbon uptake rates of up to three times as high as in surrounding waters. Carbon uptake rates below the euphotic zone correlated to the presence of a specific high-light ecotype of Prochlorococcus, which is usually underrepresented in the ETNA. Our data indicate that high primary production in the <span class="hlt">eddy</span> fuels export production and supports enhanced respiration in a specific microbial community at shallow depths, below the mixed layer base. The O2-depleted <span class="hlt">core</span> waters <span class="hlt">eddy</span> promoted transcription of the key gene for denitrification, nirS. This process is usually absent from the open ETNA waters. In light of future projected ocean deoxygenation, our results show that even distinct events of anoxia have the potential to alter microbial community structure with critical impacts on primary productivity and biogeochemical processes of oceanic water bodies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015BGeo...12.7467L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015BGeo...12.7467L"><span>Hidden biosphere in an oxygen-deficient Atlantic open-ocean <span class="hlt">eddy</span>: future implications of ocean deoxygenation on primary production in the eastern tropical North Atlantic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Löscher, C. R.; Fischer, M. A.; Neulinger, S. C.; Fiedler, B.; Philippi, M.; Schütte, F.; Singh, A.; Hauss, H.; Karstensen, J.; Körtzinger, A.; Künzel, S.; Schmitz, R. A.</p> <p>2015-12-01</p> <p>The eastern tropical North Atlantic (ETNA) is characterized by a highly productive coastal upwelling system and a moderate oxygen minimum zone with lowest open-ocean oxygen (O2) concentrations of approximately 40 μmol kg-1. The recent discovery of re-occurring mesoscale <span class="hlt">eddies</span> with close to anoxic O2 concentrations (< 1 μmol kg-1) located just below the mixed layer has challenged our understanding of O2 distribution and biogeochemical processes in this area. Here, we present the first microbial community study from a deoxygenated anticyclonic modewater <span class="hlt">eddy</span> in the open waters of the ETNA. In the <span class="hlt">eddy</span>, we observed significantly lower bacterial diversity compared to surrounding waters, along with a significant community shift. We detected enhanced primary productivity in the surface layer of the <span class="hlt">eddy</span> indicated by elevated chlorophyll concentrations and carbon uptake rates of up to three times as high as in surrounding waters. Carbon uptake rates below the euphotic zone correlated to the presence of a specific high-light ecotype of Prochlorococcus, which is usually underrepresented in the ETNA. Our data indicate that high primary production in the <span class="hlt">eddy</span> fuels export production and supports enhanced respiration in a specific microbial community at shallow depths, below the mixed-layer base. The transcription of the key functional marker gene for dentrification, nirS, further indicated a potential for nitrogen loss processes in O2-depleted <span class="hlt">core</span> waters of the <span class="hlt">eddy</span>. Dentrification is usually absent from the open ETNA waters. In light of future projected ocean deoxygenation, our results show that even distinct events of anoxia have the potential to alter microbial community structure with critical impacts on primary productivity and biogeochemical processes of oceanic water bodies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5024127','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5024127"><span><span class="hlt">Eddy</span>, drift wave and zonal flow dynamics in a linear magnetized plasma</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Arakawa, H.; Inagaki, S.; Sasaki, M.; Kosuga, Y.; Kobayashi, T.; Kasuya, N.; Nagashima, Y.; Yamada, T.; Lesur, M.; Fujisawa, A.; Itoh, K.; Itoh, S.-I.</p> <p>2016-01-01</p> <p>Turbulence and its structure formation are universal in neutral fluids and in plasmas. Turbulence annihilates global structures but can organize flows and <span class="hlt">eddies</span>. The mutual-interactions between flow and the <span class="hlt">eddy</span> give basic insights into the understanding of non-equilibrium and nonlinear interaction by turbulence. In fusion plasma, clarifying structure formation by Drift-wave turbulence, driven by density gradients in magnetized plasma, is an important issue. Here, a new mutual-interaction among <span class="hlt">eddy</span>, drift wave and flow in magnetized plasma is discovered. A two-dimensional solitary <span class="hlt">eddy</span>, which is a perturbation with circumnavigating motion localized radially and azimuthally, is transiently organized in a drift wave – zonal flow (azimuthally symmetric band-like shear flows) system. The excitation of the <span class="hlt">eddy</span> is synchronized with zonal perturbation. The organization of the <span class="hlt">eddy</span> has substantial impact on the acceleration of zonal flow. PMID:27628894</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B51N..01N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B51N..01N"><span>Methane Cycling in a <span class="hlt">Warming</span> Wetland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Noyce, G. L.; Megonigal, P.; Rich, R.; Kirwan, M. L.; Herbert, E. R.</p> <p>2017-12-01</p> <p>Coastal wetlands are global hotspots of carbon (C) storage, but the future of these systems is uncertain. In June 2016, we initiated an in-situ, active, whole-ecosystem <span class="hlt">warming</span> experiment in the Smithsonian's Global Change Research Wetland to quantify how <span class="hlt">warming</span> and elevated CO2 affect the stability of coastal wetland soil C pools and contemporary rates of C sequestration. Transects are located in two plant communities, dominated by C3 sedges or C4 grasses. The experiment has a gradient design with air and soil <span class="hlt">warming</span> treatments ranging from ambient to +5.1 °C and heated plots consistently maintain their target temperature year-round. In April 2017, an elevated CO2 treatment was crossed with temperature in the C3community. Ongoing measurements include soil elevation, C fluxes, porewater chemistry and redox potential, and above- and below-ground growth and biomass. In both years, <span class="hlt">warming</span> increased methane (CH4) emissions (measured at 3-4 week intervals) from spring through fall at the C3 site, but had little effect on emissions from the C4 site. Winter (Dec-Mar) emissions showed no treatment effect. Stable isotope analysis of dissolved CH4 and DIC also indicated that <span class="hlt">warming</span> had differing effects on CH4 pathways in the two vegetation communities. To better understand temperature effects on rates of CH4 production and oxidation, 1 m soil <span class="hlt">cores</span> were collected from control areas of the marsh in summer 2017 and incubated at temperatures ranging from 4 °C to 35 °C. <span class="hlt">Warming</span> increased CH4 production and oxidation rates in surface samples and oxidation rates in the rooting zone samples from both sites, but temperature responses in deep (1 m) soil samples were minimal. In the surface and rooting zone samples, production rates were also consistently higher in C3 soils compared to C4 soils, but, contrary to our expectations, the temperature response was stronger in the C4 soils. However, oxidation in C3 rooting zone samples did have a strong temperature response. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11046509','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11046509"><span>Time evolution of the <span class="hlt">eddy</span> viscosity in two-dimensional navier-stokes flow</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chaves; Gama</p> <p>2000-02-01</p> <p>The time evolution of the <span class="hlt">eddy</span> viscosity associated with an unforced two-dimensional incompressible Navier-Stokes flow is analyzed by direct numerical simulation. The initial condition is such that the <span class="hlt">eddy</span> viscosity is isotropic and negative. It is shown by concrete examples that the Navier-Stokes dynamics stabilizes negative <span class="hlt">eddy</span> viscosity effects. In other words, this dynamics moves monotonically the initial negative <span class="hlt">eddy</span> viscosity to positive values before relaxation due to viscous term occurs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008GMS...177.....H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008GMS...177.....H"><span>Ocean Modeling in an <span class="hlt">Eddying</span> Regime</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hecht, Matthew W.; Hasumi, Hiroyasu</p> <p></p> <p>This monograph is the first to survey progress in realistic simulation in a strongly <span class="hlt">eddying</span> regime made possible by recent increases in computational capability. Its contributors comprise the leading researchers in this important and constantly evolving field. Divided into three parts, • Oceanographic Processes and Regimes: Fundamental Questions • Ocean Dynamics and State: From Regional to Global Scale, and • Modeling at the Mesoscale: State of the Art and Future Directions the volume details important advances in physical oceanography based on <span class="hlt">eddy</span> resolving ocean modeling. It captures the state of the art and discusses issues that ocean modelers must consider in order to effectively contribute to advancing current knowledge, from subtleties of the underlying fluid dynamical equations to meaningful comparison with oceanographic observations and leading-edge model development. It summarizes many of the important results which have emerged from ocean modeling in an <span class="hlt">eddying</span> regime, for those interested broadly in the physical science. More technical topics are intended to address the concerns of those actively working in the field.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A41B2267H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A41B2267H"><span>Annular Mode Dynamics: <span class="hlt">Eddy</span> Feedbacks and the Underlying Mechanisms</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hassanzadeh, P.; Ma, D.; Kuang, Z.</p> <p>2017-12-01</p> <p>Annular modes are the leading modes the extratropical circulation variability in both hemispheres on intraseasonal to interannual timescales. Temporal persistence and an equivalent-barotropic dipolar wind anomaly are the key spatio-temporal characteristics of the annular modes. The potential source(s) of this persistence, and in particular, whether there is a contribution from a positive <span class="hlt">eddy</span>-jet feedback, are still unclear (e.g., Lorenz and Hartmann, 2001; Byrne et al., 2016). The mechanism of this feedback, and how it depends on processes such as surface friction, is also not well understood (e.g., Robinson, 2000; Gerber et al., 2007). In this study, we utilize the recently calculated Linear Response Function (LRF) of an idealized GCM (Hassanzadeh and Kuang, 2016). The LRF enables us to accurately calculate the response of <span class="hlt">eddy</span> momentum/heat fluxes to the zonal-mean zonal wind and temperature anomalies of the annular mode. Using this information: 1) We confirm the existence of a positive <span class="hlt">eddy</span>-jet feedback in the annular mode of the idealized GCM and accurately quantify the magnitude of this feedback; 2) We quantify the contribution of key processes (e.g., <span class="hlt">eddy</span> momentum/heat fluxes and surface friction) to the annular mode dynamics in the idealized GCM. We show that as proposed by Robinson (2000), the baroclinic component of the annular mode and surface friction are essential for the positive <span class="hlt">eddy</span>-jet feedback. Results show that this feedback increases the persistence of the annular mode by a factor of two. We also show that the barotropic component of the annular mode alone does not lead to persistence. In fact, the <span class="hlt">eddy</span>-jet feedback for the barotropic component is negative because of the dominance of the barotropic governor effect. 3) Using the results of 1, we evaluate the underlying assumptions and accuracy of the statistical methods previously developed for quantifying the <span class="hlt">eddy</span>-jet feedback (Lorenz and Hartmann, 2001; Simpson et al., 2013) and introduce a new</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070025103&hterms=antartica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dantartica','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070025103&hterms=antartica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dantartica"><span>Simulations of Dynamics and Transport during the September 2002 Antarctic Major <span class="hlt">Warming</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Manney, Gloria L.; Sabutis, Joseph L.; Allen, Douglas R.; Lahoz, Willian A.; Scaife, Adam A.; Randall, Cora E.; Pawson, Steven; Naujokat, Barbara; Swinbank, Richard</p> <p>2005-01-01</p> <p>A mechanistic model simulation initialized on 14 September 2002, forced by 100-hPa geopotential heights from Met Office analyses, reproduced the dynamical features of the 2002 Antarctic major <span class="hlt">warming</span>. The vortex split on approx.25 September; recovery after the <span class="hlt">warming</span>, westward and equatorward tilting vortices, and strong baroclinic zones in temperature associated with a dipole pattern of upward and downward vertical velocities were all captured in the simulation. Model results and analyses show a pattern of strong upward wave propagation throughout the <span class="hlt">warming</span>, with zonal wind deceleration throughout the stratosphere at high latitudes before the vortex split, continuing in the middle and upper stratosphere and spreading to lower latitudes after the split. Three-dimensional Eliassen-Palm fluxes show the largest upward and poleward wave propagation in the 0(deg)-90(deg)E sector prior to the vortex split (coincident with the location of strongest cyclogenesis at the model's lower boundary), with an additional region of strong upward propagation developing near 180(deg)-270(deg)E. These characteristics are similar to those of Arctic wave-2 major <span class="hlt">warmings</span>, except that during this <span class="hlt">warming</span>, the vortex did not split below approx.600 K. The effects of poleward transport and mixing dominate modeled trace gas evolution through most of the mid- to high-latitude stratosphere, with a <span class="hlt">core</span> region in the lower-stratospheric vortex where enhanced descent dominates and the vortex remains isolated. Strongly tilted vortices led to low-latitude air overlying vortex air, resulting in highly unusual trace gas profiles. Simulations driven with several meteorological datasets reproduced the major <span class="hlt">warming</span>, but in others, stronger latitudinal gradients at high latitudes at the model boundary resulted in simulations without a complete vortex split in the midstratosphere. Numerous tests indicate very high sensitivity to the boundary fields, especially the wave-2 amplitude. Major <span class="hlt">warmings</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC21A0934N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC21A0934N"><span>Positive feedback of greenhouse gas balances to <span class="hlt">warming</span> is determined by non-growing season emissions in an alpine meadow</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niu, S.; Wang, J.; Quan, Q.; Chen, W.; Wen, X.; Yu, G.</p> <p>2017-12-01</p> <p>Large uncertainties exist in the sources and sinks of greenhouse gases (CO2, CH4, N2O) in response to climate <span class="hlt">warming</span> and human activity. So far, numerous previous studies have evaluated the CO2 budget, but little attention has paid to CH4 and N2O budgets and the concurrent balance of these three gases in combination, especially in the non-growing season. Here, we synthesized <span class="hlt">eddy</span> covariance measurement with the automatic chamber measurements of CO2, CH4, and N2O exposed to three levels of temperature treatments (ambient, +1.5 °C, +2.5 °C) and two disturbance treatments (ummowing, mowing) in an alpine meadow on the Tibetan Plateau. We have found that <span class="hlt">warming</span> caused increase in CH4 uptake and decrease in N2O emission offset little of the enhancement in CO2 emission, triggering a positive feedback to climate <span class="hlt">warming</span>. <span class="hlt">Warming</span> switches the ecosystem from a net sink (-17 ± 14 g CO2-eq m-2 yr-1) in the control to a net source of greenhouse gases of 94 ± 36 gCO2-eq m-2 yr-1 in the plots with +1.5 °C <span class="hlt">warming</span> treatment, and 177 ± 6 gCO2-eq m-2 yr-1 in the plots with +2.5 °C <span class="hlt">warming</span> treatment. The changes in the non-growing season balance, rather than those in the growing season, dominate the <span class="hlt">warming</span> responses of annual greehouse gas balance. And this is not changed by mowing. The dominant role of responses of winter greenhouse gas balance in the positive feedback of ecosystem to climate <span class="hlt">warming</span> highlights that greenhouse gas balance in cold season has to be considered when assessing climate-carbon cycle feedback.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26328583','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26328583"><span>Dissipative inertial transport patterns near coherent Lagrangian <span class="hlt">eddies</span> in the ocean.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Beron-Vera, Francisco J; Olascoaga, María J; Haller, George; Farazmand, Mohammad; Triñanes, Joaquín; Wang, Yan</p> <p>2015-08-01</p> <p>Recent developments in dynamical systems theory have revealed long-lived and coherent Lagrangian (i.e., material) <span class="hlt">eddies</span> in incompressible, satellite-derived surface ocean velocity fields. Paradoxically, observed drifting buoys and floating matter tend to create dissipative-looking patterns near oceanic <span class="hlt">eddies</span>, which appear to be inconsistent with the conservative fluid particle patterns created by coherent Lagrangian <span class="hlt">eddies</span>. Here, we show that inclusion of inertial effects (i.e., those produced by the buoyancy and size finiteness of an object) in a rotating two-dimensional incompressible flow context resolves this paradox. Specifically, we obtain that anticyclonic coherent Lagrangian <span class="hlt">eddies</span> attract (repel) negatively (positively) buoyant finite-size particles, while cyclonic coherent Lagrangian <span class="hlt">eddies</span> attract (repel) positively (negatively) buoyant finite-size particles. We show how these results explain dissipative-looking satellite-tracked surface drifter and subsurface float trajectories, as well as satellite-derived Sargassum distributions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19163660','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19163660"><span>The numeric calculation of <span class="hlt">eddy</span> current distributions in transcranial magnetic stimulation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tsuyama, Seichi; Hyodo, Akira; Sekino, Masaki; Hayami, Takehito; Ueno, Shoogo; Iramina, Keiji</p> <p>2008-01-01</p> <p>Transcranial magnetic stimulation (TMS) is a method to stimulate neurons in the brain. It is necessary to obtain <span class="hlt">eddy</span> current distributions and determine parameters such as position, radius and bend-angle of the coil to stimulate target area exactly. In this study, we performed FEM-based numerical simulations of <span class="hlt">eddy</span> current induced by TMS using three-dimentional human head model with inhomogeneous conductivity. We used double-cone coil and changed the coil radius and bend-angle of coil. The result of computer simulation showed that as coil radius increases, the <span class="hlt">eddy</span> current became stronger everywhere. And coil with bend-angle of 22.5 degrees induced stronger <span class="hlt">eddy</span> current than the coil with bendangle of 0 degrees. Meanwhile, when the bend-angle was 45 degrees, <span class="hlt">eddy</span> current became weaker than these two cases. This simulation allowed us to determine appropriate parameter easier.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910059077&hterms=pacific+ocean+phytoplankton&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dpacific%2Bocean%2Bphytoplankton','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910059077&hterms=pacific+ocean+phytoplankton&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dpacific%2Bocean%2Bphytoplankton"><span>Role of <span class="hlt">eddy</span> pumping in enhancing primary production in the ocean</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Falkowski, Paul G.; Kolber, Zbigniew; Ziemann, David; Bienfang, Paul K.</p> <p>1991-01-01</p> <p><span class="hlt">Eddy</span> pumping is considered to explain the disparity between geochemical estimates and biological measurements of exported production. Episodic nutrient injections from the ocean into the photic zone can be generated by <span class="hlt">eddy</span> pumping, which biological measurements cannot sample accurately. The enhancement of production is studied with respect to a cyclonic <span class="hlt">eddy</span> in the subtropical Pacific. A pump-and-probe fluorimeter generates continuous vertical profiles of primary productivity from which the contributions of photochemical and nonphotochemical processes to fluorescence are derived. A significant correlation is observed between the fluorescence measurements and radiocarbon measurements. The results indicate that <span class="hlt">eddy</span> pumping has an important effect on phytoplankton production and that this production is near the maximum relative specific growth rates. Based on the production enhancement observed in this case, <span class="hlt">eddy</span> pumping increases total primary production by only 20 percent and does not account for all enhancement.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO21A..06B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO21A..06B"><span>Inference and Biogeochemical Response of Vertical Velocities inside a Mode Water <span class="hlt">Eddy</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barceló-Llull, B.; Pallas Sanz, E.; Sangrà, P.</p> <p>2016-02-01</p> <p>With the aim to study the modulation of the biogeochemical fluxes by the ageostrophic secondary circulation in anticyclonic mesoscale <span class="hlt">eddies</span>, a typical <span class="hlt">eddy</span> of the Canary <span class="hlt">Eddy</span> Corridor was interdisciplinary surveyed on September 2014 in the framework of the PUMP project. The <span class="hlt">eddy</span> was elliptical shaped, 4 month old, 110 km diameter and 400 m depth. It was an intrathermocline type often also referred as mode water <span class="hlt">eddy</span> type. We inferred the mesoscale vertical velocity field resolving a generalized omega equation from the 3D density and ADCP velocity fields of a five-day sampled CTD-SeaSoar regular grid centred on the <span class="hlt">eddy</span>. The grid transects where 10 nautical miles apart. Although complex, in average, the inferred omega velocity field (hereafter w) shows a dipolar structure with downwelling velocities upstream of the propagation path (west) and upwelling velocities downstream. The w at the <span class="hlt">eddy</span> center was zero and maximum values were located at the periphery attaining ca. 6 m day-1. Coinciding with the occurrence of the vertical velocities cells a noticeable enhancement of phytoplankton biomass was observed at the <span class="hlt">eddy</span> periphery respect to the far field. A corresponding upward diapycnal flux of nutrients was also observed at the periphery. As minimum velocities where reached at the <span class="hlt">eddy</span> center, lineal Ekman pumping mechanism was discarded. Minimum values of phytoplankton biomass where also observed at the <span class="hlt">eddy</span> center. The possible mechanisms for such dipolar w cell are still being investigated, but an analysis of the generalized omega equation forcing terms suggest that it may be a combination of horizontal deformation and advection of vorticity by the ageostrophic current (related to nonlinear Ekman pumping). As expected for Trades, the wind was rather constant and uniform with a speed of ca. 5 m s-1. Diagnosed nonlinear Ekman pumping leaded also to a dipolar cell that mirrors the omega w dipolar cell.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940000548&hterms=food+beverage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dfood%2Bbeverage','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940000548&hterms=food+beverage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dfood%2Bbeverage"><span><span class="hlt">Eddy</span>-Current Inspection Of Tab Seals On Beverage Cans</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bar-Cohen, Yoseph</p> <p>1994-01-01</p> <p><span class="hlt">Eddy</span>-current inspection system monitors tab seals on beverage cans. Device inspects all cans at usual production rate of 1,500 to 2,000 cans per minute. Automated inspection of all units replaces visual inspection by microscope aided by mass spectrometry. System detects defects in real time. Sealed cans on conveyor pass near one of two coils in differential <span class="hlt">eddy</span>-current probe. Other coil in differential <span class="hlt">eddy</span>-current probe positioned near stationary reference can on which tab seal is known to be of acceptable quality. Signal of certain magnitude at output of probe indicates defective can, automatically ejected from conveyor.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS43B1278F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS43B1278F"><span>Deep <span class="hlt">Eddies</span> in the Gulf of Mexico</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Furey, H. H.; Bower, A. S.; Perez-Brunius, P.; Hamilton, P.</p> <p>2014-12-01</p> <p>A major Lagrangian program is currently underway to map the deep (1500-2500 m) circulation of the entire Gulf of Mexico. Beginning in 2011, more than 120 acoustically tracked RAFOS floats have been released in the eastern, central and western Gulf, many in pairs and triplets. Most floats are programmed to drift for two years, obtaining position fixes and temperature/pressure measurements three times daily. More than 80 floats have completed their missions, and results from the trajectories will be described with a focus on mesoscale <span class="hlt">eddying</span> behavior. In particular, the first-ever observations of deep energetic anticyclonic <span class="hlt">eddies</span> (possibly lenses) forming at and separating from a northeastward-flowing boundary current west of Campeche Bank will be discussed. The existence of these <span class="hlt">eddies</span> has major implications for exchange between the continental slope and interior Gulf. The project is being supported by the U.S. Bureau of Ocean Energy Management (BOEM).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDL31001C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDL31001C"><span>Energy Cascade Analysis: from Subscale <span class="hlt">Eddies</span> to Mean Flow</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheikh, Mohamad Ibrahim; Wonnell, Louis; Chen, James</p> <p>2017-11-01</p> <p>Understanding the energy transfer between <span class="hlt">eddies</span> and mean flow can provide insights into the energy cascade process. Much work has been done to investigate the energy cascade at the level of the smallest <span class="hlt">eddies</span> using different numerical techniques derived from the Navier-Stokes equations. These methodologies, however, prove to be computationally inefficient when producing energy spectra for a wide range of length scales. In this regard, Morphing Continuum Theory (MCT) resolves the length-scales issues by assuming the fluid continuum to be composed of inner structures that play the role of subscale <span class="hlt">eddies</span>. The current study show- cases the capabilities of MCT in capturing the dynamics of energy cascade at the level of subscale <span class="hlt">eddies</span>, through a supersonic turbulent flow of Mach 2.93 over an 8× compression ramp. Analysis of the results using statistical averaging procedure shows the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding rotational kinetic energy of the subscale <span class="hlt">eddies</span>, indicating a multiscale transfer of energy. The results show that MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980237753','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980237753"><span>Non-Contact <span class="hlt">EDDY</span> Current Hole Eccentricity and Diameter Measurement</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chern, E. James</p> <p>1998-01-01</p> <p>Precision holes are among the most critical features of a mechanical component. Deviations from permissible tolerances can impede operation and result in unexpected failure. We have developed an automated non-contact <span class="hlt">eddy</span> current hole diameter and eccentricity measuring system. The operating principle is based on the <span class="hlt">eddy</span> current lift-off effect, which is the coil impedance as a function of the distance between the coil and the test object. An absolute <span class="hlt">eddy</span> current probe rotates in the hole. The impedance of each angular position is acquired and input to the computer for integration and analysis. The eccentricity of the hole is the profile of the impedance as a function of angular position as compared to a straight line, an ideal hole. The diameter of the hole is the sum of the diameter of the probe and twice the distance-calibrated impedance. An <span class="hlt">eddy</span> current image is generated by integrating angular scans for a plurality of depths between the top and bottom to display the eccentricity profile. This system can also detect and image defects in the hole. The method for non-contact <span class="hlt">eddy</span> current hole diameter and eccentricity measurement has been granted a patent by the U.S. Patent and Trademark Office.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1047962-large-eddy-simulation-wind-plant-aerodynamics','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1047962-large-eddy-simulation-wind-plant-aerodynamics"><span>Large-<span class="hlt">Eddy</span> Simulation of Wind-Plant Aerodynamics</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Churchfield, M. J.; Lee, S.; Moriarty, P. J.</p> <p></p> <p>In this work, we present results of a large-<span class="hlt">eddy</span> simulation of the 48 multi-megawatt turbines composing the Lillgrund wind plant. Turbulent inflow wind is created by performing an atmospheric boundary layer precursor simulation, and turbines are modeled using a rotating, variable-speed actuator line representation. The motivation for this work is that few others have done large-<span class="hlt">eddy</span> simulations of wind plants with a substantial number of turbines, and the methods for carrying out the simulations are varied. We wish to draw upon the strengths of the existing simulations and our growing atmospheric large-<span class="hlt">eddy</span> simulation capability to create a sound methodology formore » performing this type of simulation. We used the OpenFOAM CFD toolbox to create our solver. The simulated time-averaged power production of the turbines in the plant agrees well with field observations, except with the sixth turbine and beyond in each wind-aligned. The power produced by each of those turbines is overpredicted by 25-40%. A direct comparison between simulated and field data is difficult because we simulate one wind direction with a speed and turbulence intensity characteristic of Lillgrund, but the field observations were taken over a year of varying conditions. The simulation shows the significant 60-70% decrease in the performance of the turbines behind the front row in this plant that has a spacing of 4.3 rotor diameters in this direction. The overall plant efficiency is well predicted. This work shows the importance of using local grid refinement to simultaneously capture the meter-scale details of the turbine wake and the kilometer-scale turbulent atmospheric structures. Although this work illustrates the power of large-<span class="hlt">eddy</span> simulation in producing a time-accurate solution, it required about one million processor-hours, showing the significant cost of large-<span class="hlt">eddy</span> simulation.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3163721','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3163721"><span>Quantification and Compensation of <span class="hlt">Eddy</span>-Current-Induced Magnetic Field Gradients</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Spees, William M.; Buhl, Niels; Sun, Peng; Ackerman, Joseph J.H.; Neil, Jeffrey J.; Garbow, Joel R.</p> <p>2011-01-01</p> <p>Two robust techniques for quantification and compensation of <span class="hlt">eddy</span>-current-induced magnetic-field gradients and static magnetic-field shifts (ΔB0) in MRI systems are described. Purpose-built 1-D or 6-point phantoms are employed. Both procedures involve measuring the effects of a prior magnetic-field-gradient test pulse on the phantom’s free induction decay (FID). Phantom-specific analysis of the resulting FID data produces estimates of the time-dependent, <span class="hlt">eddy</span>-current-induced magnetic field gradient(s) and ΔB0 shift. Using Bayesian methods, the time dependencies of the <span class="hlt">eddy</span>-current-induced decays are modeled as sums of exponentially decaying components, each defined by an amplitude and time constant. These amplitudes and time constants are employed to adjust the scanner’s gradient pre-emphasis unit and eliminate undesirable <span class="hlt">eddy</span>-current effects. Measurement with the six-point sample phantom allows for simultaneous, direct estimation of both on-axis and cross-term <span class="hlt">eddy</span>-current-induced gradients. The two methods are demonstrated and validated on several MRI systems with actively-shielded gradient coil sets. PMID:21764614</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21764614','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21764614"><span>Quantification and compensation of <span class="hlt">eddy</span>-current-induced magnetic-field gradients.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Spees, William M; Buhl, Niels; Sun, Peng; Ackerman, Joseph J H; Neil, Jeffrey J; Garbow, Joel R</p> <p>2011-09-01</p> <p>Two robust techniques for quantification and compensation of <span class="hlt">eddy</span>-current-induced magnetic-field gradients and static magnetic-field shifts (ΔB0) in MRI systems are described. Purpose-built 1-D or six-point phantoms are employed. Both procedures involve measuring the effects of a prior magnetic-field-gradient test pulse on the phantom's free induction decay (FID). Phantom-specific analysis of the resulting FID data produces estimates of the time-dependent, <span class="hlt">eddy</span>-current-induced magnetic field gradient(s) and ΔB0 shift. Using Bayesian methods, the time dependencies of the <span class="hlt">eddy</span>-current-induced decays are modeled as sums of exponentially decaying components, each defined by an amplitude and time constant. These amplitudes and time constants are employed to adjust the scanner's gradient pre-emphasis unit and eliminate undesirable <span class="hlt">eddy</span>-current effects. Measurement with the six-point sample phantom allows for simultaneous, direct estimation of both on-axis and cross-term <span class="hlt">eddy</span>-current-induced gradients. The two methods are demonstrated and validated on several MRI systems with actively-shielded gradient coil sets. Copyright © 2011 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020047719','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020047719"><span>Large <span class="hlt">Eddy</span> Simulation of Cryogenic Injection Processes at Supercritical Pressure</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Oefelein, Joseph C.; Garcia, Roberto (Technical Monitor)</p> <p>2002-01-01</p> <p>This paper highlights results from the first of a series of hierarchical simulations aimed at assessing the modeling requirements for application of the large <span class="hlt">eddy</span> simulation technique to cryogenic injection and combustion processes in liquid rocket engines. The focus is on liquid-oxygen-hydrogen coaxial injectors at a condition where the liquid-oxygen is injected at a subcritical temperature into a supercritical environment. For this situation a diffusion dominated mode of combustion occurs in the presence of exceedingly large thermophysical property gradients. Though continuous, these gradients approach the behavior of a contact discontinuity. Significant real gas effects and transport anomalies coexist locally in colder regions of the flow, with ideal gas and transport characteristics occurring within the flame zone. The current focal point is on the interfacial region between the liquid-oxygen <span class="hlt">core</span> and the coaxial hydrogen jet where the flame anchors itself.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3231639','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3231639"><span>Non-Destructive Techniques Based on <span class="hlt">Eddy</span> Current Testing</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto</p> <p>2011-01-01</p> <p>Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. <span class="hlt">Eddy</span> current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of <span class="hlt">eddy</span> current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that <span class="hlt">eddy</span> current testing systems will be increasingly used in the future. PMID:22163754</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1033443','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1033443"><span>Large-<span class="hlt">Eddy</span> Simulation of Wind-Plant Aerodynamics: Preprint</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Churchfield, M. J.; Lee, S.; Moriarty, P. J.</p> <p></p> <p>In this work, we present results of a large-<span class="hlt">eddy</span> simulation of the 48 multi-megawatt turbines composing the Lillgrund wind plant. Turbulent inflow wind is created by performing an atmospheric boundary layer precursor simulation and turbines are modeled using a rotating, variable-speed actuator line representation. The motivation for this work is that few others have done wind plant large-<span class="hlt">eddy</span> simulations with a substantial number of turbines, and the methods for carrying out the simulations are varied. We wish to draw upon the strengths of the existing simulations and our growing atmospheric large-<span class="hlt">eddy</span> simulation capability to create a sound methodology for performingmore » this type of simulation. We have used the OpenFOAM CFD toolbox to create our solver.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22163754','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22163754"><span>Non-destructive techniques based on <span class="hlt">eddy</span> current testing.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto</p> <p>2011-01-01</p> <p>Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. <span class="hlt">Eddy</span> current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of <span class="hlt">eddy</span> current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that <span class="hlt">eddy</span> current testing systems will be increasingly used in the future.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040191710&hterms=mit&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmit','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040191710&hterms=mit&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmit"><span>Subduction in an <span class="hlt">Eddy</span>-Resolving State Estimate of the Northeast Atlantic Ocean</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gebbie, Geoffrey</p> <p>2004-01-01</p> <p>Are <span class="hlt">eddies</span> an important contributor to subduction in the eastern subtropical gyre? Here, an adjoint model is used to combine a regional, <span class="hlt">eddy</span>-resolving numerical model with observations to produce a state estimate of the ocean circulation. The estimate is a synthesis of a variety of in- situ observations from the Subduction Experiment, TOPEX/POSEIDON altimetry, and the MTI General Circulation Model. The adjoint method is successful because the Northeast Atlantic Ocean is only weakly nonlinear. The state estimate provides a physically-interpretable, <span class="hlt">eddy</span>-resolving information source to diagnose subduction. Estimates of <span class="hlt">eddy</span> subduction for the eastern subtropical gyre of the North Atlantic are larger than previously calculated from parameterizations in coarse-resolution models. Furthermore, <span class="hlt">eddy</span> subduction rates have typical magnitudes of 15% of the total subduction rate. <span class="hlt">Eddies</span> contribute as much as 1 Sverdrup to water-mass transformation, and hence subduction, in the North Equatorial Current and the Azores Current. The findings of this thesis imply that the inability to resolve or accurately parameterize <span class="hlt">eddy</span> subduction in climate models would lead to an accumulation of error in the structure of the main thermocline, even in the relatively-quiescent eastern subtropical gyre.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21126666','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21126666"><span>Prevention of hypothermia by infusion of <span class="hlt">warm</span> fluid during abdominal surgery.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Hong-xia; You, Zhi-Jian; Zhang, Hong; Li, Zhiqing</p> <p>2010-12-01</p> <p>Perioperative hypothermia can lead to a number of complications for patients after surgery. The aim of this pilot study was to evaluate the efficacy of <span class="hlt">warm</span> fluids in maintaining normal <span class="hlt">core</span> temperature during the intraoperative period. We studied 30 American Society of Anesthesiologists (ASA) physical status I or II adult patients who required general anesthesia for abdominal surgery. In the control group (n = 15), fluids were infused at room temperature; in the test group (n = 15), fluids were infused at 37° C. In the control group, <span class="hlt">core</span> temperature decreased to 35.5 ± 0.3° C during the first 3 hours, and then stabilized at the end of anesthesia. In the test group, <span class="hlt">core</span> temperature decreased during the first 60 minutes, but increased to 36.9 ± 0.3° C at the end of anesthesia. In the control group, eight patients shivered at grade ≥2. In the test group, none of the patients reached grade ≥2 (P < .01). Infusion of <span class="hlt">warm</span> fluid is effective in keeping patients nearly normothermic and preventing postanesthetic shivering. It may provide an easy and effective method for prevention of perioperative hypothermia. Copyright © 2010 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A43I2581M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A43I2581M"><span>Assessing the Impacts of Mid-latitude Circulation Changes under +1.5ºC and +2ºC <span class="hlt">Warming</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Michel, C.; Bethke, I.; Seland Graff, L.; Iversen, T.; Li, C.; Mitchell, D.; Zappa, G.</p> <p>2017-12-01</p> <p>Understanding the mid-latitude circulation and its response to global <span class="hlt">warming</span> is critical for accurately assessing the ensuing regional impacts. Uncertainty in the response arises from uncertainty in emissions scenarios, the climate model used, and the large internal variability of the mid-latitudes. Here, we investigate the latter two sources of uncertainty in the forced response to weak <span class="hlt">warming</span> using multi-model large ensembles. The experiments are part of the project "Half a degree Additional <span class="hlt">warming</span>, Prognosis and Projected Implications" (HAPPI), following up on the Paris Agreement of 2015 (Mitchell et al., 2017). With 100 to 501 members from at least five state-of-the-art models, the experiment set allows us to estimate the regional impacts associated with robust responses of the mid-latitude circulation under +1.5ºC and +2ºC <span class="hlt">warming</span>, and to partition the sources of uncertainty using an analysis of variance method (Samson et al., 2013). In the Northern Hemisphere, the upper-level and <span class="hlt">eddy</span>-driven jets, as well as the storm track, shift in the <span class="hlt">warming</span> experiments but the response can be nonlinear with <span class="hlt">warming</span>. Robust stationary wave changes are seen in North Pacific and North America. Internal variability dominates the spread in the responses, although model spread contributes substantially over Europe, the North Atlantic, and the North Pacific jet entrance. We show how these responses impact temperature and precipitation in specific areas, such as western Europe and North America. Finally, we assess the changes in frequency and duration of blocking events. Results from this study will allow us to better quantify weather-related impacts and risks in a <span class="hlt">warming</span> climate, and help evaluate how the projected changes may affect society on climatological time scales.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhFl...29h6601K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhFl...29h6601K"><span>Cycloidal meandering of a mesoscale anticyclonic <span class="hlt">eddy</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kizner, Ziv; Shteinbuch-Fridman, Biana; Makarov, Viacheslav; Rabinovich, Michael</p> <p>2017-08-01</p> <p>By applying a theoretical approach, we propose a hypothetical scenario that might explain some features of the movement of a long-lived mesoscale anticyclone observed during 1990 in the Bay of Biscay [R. D. Pingree and B. Le Cann, "Three anticyclonic slope water oceanic <span class="hlt">eddies</span> (SWODDIES) in the southern Bay of Biscay in 1990," Deep-Sea Res., Part A 39, 1147 (1992)]. In the remote-sensing infrared images, at the initial stage of observations, the anticyclone was accompanied by two cyclonic <span class="hlt">eddies</span>, so the entire structure appeared as a tripole. However, at later stages, only the anticyclone was seen in the images, traveling generally west. Unusual for an individual <span class="hlt">eddy</span> were the high speed of its motion (relative to the expected planetary beta-drift) and the presence of almost cycloidal meanders in its trajectory. Although surface satellites seem to have quickly disappeared, we hypothesize that subsurface satellites continued to exist, and the coherence of the three vortices persisted for a long time. A significant perturbation of the central symmetry in the mutual arrangement of three <span class="hlt">eddies</span> constituting a tripole can make reasonably fast cycloidal drift possible. This hypothesis is tested with two-layer contour-dynamics f-plane simulations and with finite-difference beta-plane simulations. In the latter case, the interplay of the planetary beta-effect and that due to the sloping bottom is considered.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890006009','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890006009"><span>Technique for temperature compensation of <span class="hlt">eddy</span>-current proximity probes</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Masters, Robert M.</p> <p>1989-01-01</p> <p><span class="hlt">Eddy</span>-current proximity probes are used in turbomachinery evaluation testing and operation to measure distances, primarily vibration, deflection, or displacment of shafts, bearings and seals. Measurements of steady-state conditions made with standard <span class="hlt">eddy</span>-current proximity probes are susceptible to error caused by temperature variations during normal operation of the component under investigation. Errors resulting from temperature effects for the specific probes used in this study were approximately 1.016 x 10 to the -3 mm/deg C over the temperature range of -252 to 100 C. This report examines temperature caused changes on the <span class="hlt">eddy</span>-current proximity probe measurement system, establishes their origin, and discusses what may be done to minimize their effect on the output signal. In addition, recommendations are made for the installation and operation of the electronic components associated with an <span class="hlt">eddy</span>-current proximity probe. Several techniques are described that provide active on-line error compensation for over 95 percent of the temperature effects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSV...426...75I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSV...426...75I"><span>Analysis and numerical modelling of <span class="hlt">eddy</span> current damper for vibration problems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Irazu, L.; Elejabarrieta, M. J.</p> <p>2018-07-01</p> <p>This work discusses a contactless <span class="hlt">eddy</span> current damper, which is used to attenuate structural vibration. <span class="hlt">Eddy</span> currents can remove energy from dynamic systems without any contact and, thus, without adding mass or modifying the rigidity of the structure. An experimental modal analysis of a cantilever beam in the absence of and under a partial magnetic field is conducted in the bandwidth of 01 kHz. The results show that the <span class="hlt">eddy</span> current phenomenon can attenuate the vibration of the entire structure without modifying the natural frequencies or the mode shapes of the structure itself. In this study, a new inverse method to numerically determine the dynamic properties of the contactless <span class="hlt">eddy</span> current damper is proposed. The proposed inverse method and the <span class="hlt">eddy</span> current model based on a lineal viscous force are validated by a practical application. The numerically obtained transfer function correlates with the experimental one, thus showing good agreement in the entire bandwidth of 01 kHz. The proposed method provides an easy and quick tool to model and predict the dynamic behaviour of the contactless <span class="hlt">eddy</span> current damper, thereby avoiding the use of complex analytical models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.5046U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.5046U"><span><span class="hlt">Eddy</span>-driven nutrient transport and associated upper-ocean primary production along the Kuroshio</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uchiyama, Yusuke; Suzue, Yota; Yamazaki, Hidekatsu</p> <p>2017-06-01</p> <p>The Kuroshio is one of the most energetic western boundary currents accompanied by vigorous <span class="hlt">eddy</span> activity both on mesoscale and submesoscale, which affects biogeochemical processes in the upper ocean. We examine the primary production around the Kuroshio off Japan using a climatological ocean modeling based on the Regional Oceanic Modeling System (ROMS) coupled with a nitrogen-based nutrient, phytoplankton and zooplankton, and detritus (NPZD) biogeochemical model in a submesoscale <span class="hlt">eddy</span>-permitting configuration. The model indicates significant differences of the biogeochemical responses to <span class="hlt">eddy</span> activities in the Kuroshio Region (KR) and Kuroshio Extension Region (KE). In the KR, persisting cyclonic <span class="hlt">eddies</span> developed between the Kuroshio and coastline are responsible for upwelling-induced eutrophication. However, the <span class="hlt">eddy</span>-induced vertical nutrient flux counteracts and promotes pronounced southward and downward diapycnal nutrient transport from the mixed-layer down beneath the main body of the Kuroshio, which suppresses the near-surface productivity. In contrast, the KE has a 23.5% higher productivity than the KR, even at comparable <span class="hlt">eddy</span> intensity. Upward nutrient transport prevails near the surface due to predominant cyclonic <span class="hlt">eddies</span>, particularly to the north of the KE, where the downward transport barely occurs, except at depths deeper than 400 m and to a much smaller degree than in the KR. The <span class="hlt">eddy</span> energy conversion analysis reveals that the combination of shear instability around the mainstream of the Kuroshio with prominent baroclinic instability near the Kuroshio front is essential for the generation of <span class="hlt">eddies</span> in the KR, leading to the increase of the <span class="hlt">eddy</span>-induced vertical nitrate transport around the Kuroshio.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE14A1382W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE14A1382W"><span>Pathways of Atlantic Waters in the Nordic seas: locally <span class="hlt">eddy</span>-permitting ocean simulation in a global setup</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wekerle, C.; Wang, Q.; Danilov, S.; Jung, T.; Schourup-Kristensen, V.</p> <p>2016-02-01</p> <p>Atlantic Water (AW) passes through the Nordic Seas and enters the Arctic Ocean through the shallow Barents Sea and the deep Fram Strait. Since the 1990's, observations indicate a series of anomalously <span class="hlt">warm</span> pulses of Atlantic Water that entered the Arctic Ocean. In fact, poleward oceanic heat transport may even increase in the future, which might have implications for the heat uptake in the Arctic Ocean as well as for the sea ice cover. The ability of models to faithfully simulate the pathway of the AW and accompanying dynamics is thus of high climate relevance. In this study, we explore the potential of a global multi-resolution sea ice-ocean model with a locally <span class="hlt">eddy</span>-permitting resolution (around 4.5 km) in the Nordic seas region and Arctic Ocean in improving the representation of Atlantic Water inflow, and more broadly, the dynamics of the circulation in the Northern North Atlantic and Arctic. The simulation covers the time period 1969-2009. We find that locally increased resolution improves the localization and thickness of the Atlantic Water layer in the Nordic seas, compared with a 20 km resolution reference simulation. In particular, the inflow of Atlantic Waters through the Greenland Scotland Ridge and the narrow branches of the Norwegian Atlantic Current can be realistically represented. Lateral spreading due to simulated <span class="hlt">eddies</span> essentially reduces the bias in the surface temperature. In addition, a qualitatively good agreement of the simulated <span class="hlt">eddy</span> kinetic energy field with observations can be achieved. This study indicates that a substantial improvement in representing local ocean dynamics can be reached through the local refinement, which requires a rather moderate computational effort. The successful model assessment allows us to further investigate the variability and mechanisms behind Atlantic Water transport into the Arctic Ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPP21B1327O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPP21B1327O"><span>Ice <span class="hlt">Core</span> Records of Recent Northwest Greenland Climate</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Osterberg, E. C.; Wong, G. J.; Ferris, D.; Lutz, E.; Howley, J. A.; Kelly, M. A.; Axford, Y.; Hawley, R. L.</p> <p>2014-12-01</p> <p>Meteorological station data from NW Greenland indicate a 3oC temperature rise since 1990, with most of the <span class="hlt">warming</span> occurring in fall and winter. According to remote sensing data, the NW Greenland ice sheet (GIS) and coastal ice caps are responding with ice mass loss and margin retreat, but the cryosphere's response to previous climate variability is poorly constrained in this region. We are developing multi-proxy records (lake sediment <span class="hlt">cores</span>, ice <span class="hlt">cores</span>, glacial geologic data, glaciological models) of Holocene climate change and cryospheric response in NW Greenland to improve projections of future ice loss and sea level rise in a <span class="hlt">warming</span> climate. As part of our efforts to develop a millennial-length ice <span class="hlt">core</span> paleoclimate record from the Thule region, we collected and analyzed snow pit samples and short firn <span class="hlt">cores</span> (up to 21 m) from the coastal region of the GIS (2Barrel site; 76.9317o N, 63.1467o W, 1685 m el.) and the summit of North Ice Cap (76.938o N, 67.671o W, 1273 m el.) in 2011, 2012 and 2014. The 2Barrel ice <span class="hlt">core</span> record has statistically significant relationships with regional spring and fall Baffin Bay sea ice extent, summertime temperature, and annual precipitation. Here we evaluate relationships between the 2014 North Ice Cap firn <span class="hlt">core</span> glaciochemical record and climate variability from regional instrumental stations and reanalysis datasets. We compare the coastal North Ice Cap record to more inland records from 2Barrel, Camp Century and NEEM to evaluate spatial and elevational gradients in recent NW Greenland climate change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..4312234A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..4312234A"><span>Oceanic <span class="hlt">eddy</span> detection and lifetime forecast using machine learning methods</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ashkezari, Mohammad D.; Hill, Christopher N.; Follett, Christopher N.; Forget, Gaël.; Follows, Michael J.</p> <p>2016-12-01</p> <p>We report a novel altimetry-based machine learning approach for <span class="hlt">eddy</span> identification and characterization. The machine learning models use daily maps of geostrophic velocity anomalies and are trained according to the phase angle between the zonal and meridional components at each grid point. The trained models are then used to identify the corresponding <span class="hlt">eddy</span> phase patterns and to predict the lifetime of a detected <span class="hlt">eddy</span> structure. The performance of the proposed method is examined at two dynamically different regions to demonstrate its robust behavior and region independency.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MAP...128..545W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MAP...128..545W"><span>The inner <span class="hlt">core</span> thermodynamics of the tropical cyclone boundary layer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, Gabriel J.</p> <p>2016-10-01</p> <p>Although considerable progress has been made in understanding the inner-<span class="hlt">core</span> dynamics of the tropical cyclone boundary layer (TCBL), our knowledge of the inner-<span class="hlt">core</span> thermodynamics of the TCBL remains limited. In this study, the inner-<span class="hlt">core</span> budgets of potential temperature (θ), specific humidity ( q), and reversible equivalent potential temperature (θ _e) are examined using a high-resolution multilevel boundary layer model. The potential temperature budgets show that the heat energy is dominated by latent heat release in the eyewall, evaporative cooling along the outer edge of the eyewall, and upward surface fluxes of sensible and latent heat from the underlying <span class="hlt">warm</span> ocean. It is shown that the vertical θ advection overcompensates the sum of radial advective <span class="hlt">warming</span> from the boundary layer outflow jet and latent heating for the development of cooling in the eyewall within the TCBL. The moisture budgets show the dominant upward transport of moisture in the eyewall updrafts, partly by the boundary-layer outflow jet from the bottom eye region, so that the eyewall remains nearly saturated. The θ _e budgets reveal that the TCBL is maintained thermodynamically by the upward surface flux of higher-θ _e air from the underlying <span class="hlt">warm</span> ocean, the radial transport of low-θ _e air from the outer regions of the TCBL, and the dry adiabatic cooling associated by eyewall updrafts. These results underscore the significance of vertical motion and the location of the boundary layer outflow jet in maintaining the inner <span class="hlt">core</span> thermal structure of the TCBL.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22126658-coagulation-size-distribution-pressure-confined-cores','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22126658-coagulation-size-distribution-pressure-confined-cores"><span>ON THE COAGULATION AND SIZE DISTRIBUTION OF PRESSURE CONFINED <span class="hlt">CORES</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Huang Xu; Zhou Tingtao; Lin, D. N. C., E-mail: xuhuang@princeton.edu</p> <p>2013-05-20</p> <p>Observations of the Pipe Nebula have led to the discovery of dense starless <span class="hlt">cores</span>. The mass of most <span class="hlt">cores</span> is too small for their self-gravity to hold them together. Instead, they are thought to be pressure confined. The observed dense <span class="hlt">cores</span>' mass function (CMF) matches well with the initial mass function of stars in young clusters. Similar CMFs are observed in other star forming regions such as the Aquila Nebula, albeit with some dispersion. The shape of these CMF provides important clues to the competing physical processes which lead to star formation and its feedback on the interstellar media. Inmore » this paper, we investigate the dynamical origin of the mass function of starless <span class="hlt">cores</span> which are confined by a <span class="hlt">warm</span>, less dense medium. In order to follow the evolution of the CMF, we construct a numerical method to consider the coagulation between the cold <span class="hlt">cores</span> and their ablation due to Kelvin-Helmholtz instability induced by their relative motion through the <span class="hlt">warm</span> medium. We are able to reproduce the observed CMF among the starless <span class="hlt">cores</span> in the Pipe Nebula. Our results indicate that in environment similar to the Pipe Nebula: (1) before the onset of their gravitational collapse, the mass distribution of the progenitor <span class="hlt">cores</span> is similar to that of the young stars, (2) the observed CMF is a robust consequence of dynamical equilibrium between the coagulation and ablation of <span class="hlt">cores</span>, and (3) a break in the slope of the CMF is due to the enhancement of collisional cross section and suppression of ablation for <span class="hlt">cores</span> with masses larger than the <span class="hlt">cores</span>' Bonnor-Ebert mass.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015BGD....1214175L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015BGD....1214175L"><span>Hidden biosphere in an oxygen-deficient Atlantic open ocean <span class="hlt">eddy</span>: future implications of ocean deoxygenation on primary production in the eastern tropical North Atlantic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Löscher, C. R.; Fischer, M. A.; Neulinger, S. C.; Fiedler, B.; Philippi, M.; Schütte, F.; Singh, A.; Hauss, H.; Karstensen, J.; Körtzinger, A.; Künzel, S.; Schmitz, R. A.</p> <p>2015-08-01</p> <p>The eastern tropical North Atlantic (ETNA) is characterized by a highly productive coastal upwelling system and a moderate oxygen minimum zone with lowest open ocean oxygen (O2) concentrations of around 40 μmol kg-1. Only recently, the discovery of re-occurring mesoscale <span class="hlt">eddies</span> with sometimes close to anoxic O2 concentrations (<1 μmol kg-1) and located just below the mixed layer challenged our understanding of O2 distribution and biogeochemical processes in this area. Here, we present the first metagenomic dataset from a deoxygenated anticyclonic modewater <span class="hlt">eddy</span> in the open waters of the ETNA. In the <span class="hlt">eddy</span>, we observed a significantly lower bacterial diversity compared to surrounding waters, along with a significant community shift. We detected enhanced primary productivity in the surface layer of the <span class="hlt">eddy</span> indicated by elevated chlorophyll concentrations and increased carbon uptake rates up to three times as high as in surrounding waters. Carbon uptake below the euphotic zone correlated to the presence of a specific high-light ecotype of Prochlorococcus, which is usually underrepresented in the ETNA. Our combined data indicate that high primary production in the <span class="hlt">eddy</span> fuels export production and the presence of a specific microbial community responsible for enhanced respiration at shallow depths, below the mixed layer base. Progressively decreasing O2 concentrations in the <span class="hlt">eddy</span> were found to promote transcription of the key gene for denitrification, nirS, in the O2-depleted <span class="hlt">core</span> waters. This process is usually absent from the open ETNA waters. In the light of future ocean deoxygenation our results show exemplarily that even distinct events of anoxia have the potential to alter microbial community structures and with that critically impact primary productivity and biogeochemical processes of oceanic water bodies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6284606','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/6284606"><span><span class="hlt">Eddy</span> current inspection tool. [Patent application</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Petrini, R.R.; Van Lue, D.F.</p> <p>1980-10-29</p> <p>A miniaturized inspection tool, for testing and inspection of metal objects in locations with difficult accessibility, which comprises <span class="hlt">eddy</span> current sensing equipment with a probe coil, and associated coaxial coil cable, oil energizing means, and circuit means responsive to impedance changes in the coil as effected by induced <span class="hlt">eddy</span> currents in a test object to produce a data output signal proportional to such changes. The coil and cable are slideably received in the utility channel of the flexible insertion tube of a fiberoptic scope. The scope is provided with light transmitting and receiving fiberoptics for viewing through the flexible tube, and articulation means for articulating the distal end of the tube and permitting close control of coil placement relative to a test object. The <span class="hlt">eddy</span> current sensing equipment includes a tone generator for generating audible signals responsive to the data output signal. In one selected mode of operation, the tone generator responsive to the output signal above a selected level generates a constant single frequency tone for signalling detection of a discontinuity and, in a second selected mode, generates a tone whose frequency is proportional to the difference between the output signal and a predetermined selected threshold level.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO24B2956R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO24B2956R"><span>Anisotropic Shear Dispersion Parameterization for Mesoscale <span class="hlt">Eddy</span> Transport</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reckinger, S. J.; Fox-Kemper, B.</p> <p>2016-02-01</p> <p>The effects of mesoscale <span class="hlt">eddies</span> are universally treated isotropically in general circulation models. However, the processes that the parameterization approximates, such as shear dispersion, typically have strongly anisotropic characteristics. The Gent-McWilliams/Redi mesoscale <span class="hlt">eddy</span> parameterization is extended for anisotropy and tested using 1-degree Community Earth System Model (CESM) simulations. The sensitivity of the model to anisotropy includes a reduction of temperature and salinity biases, a deepening of the southern ocean mixed-layer depth, and improved ventilation of biogeochemical tracers, particularly in oxygen minimum zones. The parameterization is further extended to include the effects of unresolved shear dispersion, which sets the strength and direction of anisotropy. The shear dispersion parameterization is similar to drifter observations in spatial distribution of diffusivity and high-resolution model diagnosis in the distribution of <span class="hlt">eddy</span> flux orientation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002GeoRL..29.2025B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002GeoRL..29.2025B"><span>Gulf of Aden <span class="hlt">eddies</span> and their impact on Red Sea Water</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bower, Amy S.; Fratantoni, David M.; Johns, William E.; Peters, Hartmut</p> <p>2002-11-01</p> <p>New oceanographic observations in the Gulf of Aden in the northwestern Indian Ocean have revealed large, energetic, deep-reaching mesoscale <span class="hlt">eddies</span> that fundamentally influence the spreading rates and pathways of intermediate-depth Red Sea Water (RSW). Three <span class="hlt">eddies</span> were sampled in February 2001, two cyclonic and one anticyclonic, with diameters 150-250 km. Both cyclones had surface-intensified velocity structure with maxima ~0.5 m s-1, while the equally-energetic anticyclone appeared to be decoupled from the surface circulation. All three <span class="hlt">eddies</span> reached nearly to the 1000-2000 m deep sea floor, with speeds as high as 0.2-0.3 m s-1 extending through the depth range of RSW. Comparison of salinity and direct velocity measurements indicates that the <span class="hlt">eddies</span> advect and stir RSW through the Gulf of Aden. Anomalous water properties in the center of the anticyclonic <span class="hlt">eddy</span> point to a possible formation site in the Somali Current System.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880053846&hterms=diffusion+concept&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddiffusion%2Bconcept','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880053846&hterms=diffusion+concept&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddiffusion%2Bconcept"><span>Venus' superrotation, mixing length theory and <span class="hlt">eddy</span> diffusion - A parametric study</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Harris, I.; Schatten, K. H.; Stevens-Rayburn, D. R.; Chan, K. L.</p> <p>1988-01-01</p> <p>The concept of the Hadley mechanism is adopted to describe the axisymmetric circulation of the Venus atmosphere. It is shown that, for the atmosphere of a slowly rotating planet such as Venus, a form of the nonliner 'closure' (self-consistent solution) of the fluid dynamics system which constrains the magnitude of the <span class="hlt">eddy</span> diffusion coefficients can be postulated. A nonlinear one-layer spectral model of the zonally symmetric circulation was then used to establish the relationship between the heat source, the meridional circulation, and the <span class="hlt">eddy</span> diffusion coefficients, yielding large zonal velocities. Computer experiments indicated that proportional changes in the heat source and <span class="hlt">eddy</span> diffusion coefficients do not significantly change the zonal velocities. It was also found that, for large <span class="hlt">eddy</span> diffusion coefficients, the meridional velocity is virtually constant; below a threshold in the diffusion rate, the meridional velocity decreases; and, for large <span class="hlt">eddy</span> diffusion and small heating rates, the zonal velocities decrease with decreasing planetary rotation rates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1057033','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1057033"><span>Calculation of <span class="hlt">Eddy</span> Currents In the CTH Vacuum Vessel and Coil Frame</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>A. Zolfaghari, A. Brooks, A. Michaels, J. Hanson, and G. Hartwell</p> <p>2012-09-25</p> <p>Knowledge of <span class="hlt">eddy</span> currents in the vacuum vessel walls and nearby conducting support structures can significantly contribute to the accuracy of Magnetohydrodynamics (MHD) equilibrium reconstruction in toroidal plasmas. Moreover, the magnetic fields produced by the <span class="hlt">eddy</span> currents could generate error fields that may give rise to islands at rational surfaces or cause field lines to become chaotic. In the Compact Toroidal Hybrid (CTH) device (R0 = 0.75 m, a = 0.29 m, B ≤ 0.7 T), the primary driver of the <span class="hlt">eddy</span> currents during the plasma discharge is the changing flux of the ohmic heating transformer. Electromagnetic simulations are usedmore » to calculate <span class="hlt">eddy</span> current paths and profile in the vacuum vessel and in the coil frame pieces with known time dependent currents in the ohmic heating coils. MAXWELL and SPARK codes were used for the Electromagnetic modeling and simulation. MAXWELL code was used for detailed 3D finite-element analysis of the <span class="hlt">eddy</span> currents in the structures. SPARK code was used to calculate the <span class="hlt">eddy</span> currents in the structures as modeled with shell/surface elements, with each element representing a current loop. In both cases current filaments representing the <span class="hlt">eddy</span> currents were prepared for input into VMEC code for MHD equilibrium reconstruction of the plasma discharge. __________________________________________________« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1020274','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1020274"><span><span class="hlt">Eddy</span> Correlation Flux Measurement System (ECOR) Handbook</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cook, DR</p> <p>2011-01-31</p> <p>The <span class="hlt">eddy</span> correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the <span class="hlt">eddy</span> covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21370687-casimir-interaction-from-magnetically-coupled-eddy-currents','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21370687-casimir-interaction-from-magnetically-coupled-eddy-currents"><span>Casimir Interaction from Magnetically Coupled <span class="hlt">Eddy</span> Currents</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Intravaia, Francesco; Henkel, Carsten</p> <p>2009-09-25</p> <p>We study the quantum and thermal fluctuations of <span class="hlt">eddy</span> (Foucault) currents in thick metallic plates. A Casimir interaction between two plates arises from the coupling via quasistatic magnetic fields. As a function of distance, the relevant <span class="hlt">eddy</span> current modes cross over from a quantum to a thermal regime. These modes alone reproduce previously discussed thermal anomalies of the electromagnetic Casimir interaction between good conductors. In particular, they provide a physical picture for the Casimir entropy whose nonzero value at zero temperature arises from a correlated, glassy state.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A53D2277H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A53D2277H"><span>Mesoscale Air-Sea Interactions along the Gulf Stream: An <span class="hlt">Eddy</span>-Resolving and Convection-Permitting Coupled Regional Climate Model Study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hsieh, J. S.; Chang, P.; Saravanan, R.</p> <p>2017-12-01</p> <p>Frontal and mesoscale air-sea interactions along the Gulf Stream (GS) during boreal winter are investigated using an <span class="hlt">eddy</span>-resolving and convection-permitting coupled regional climate model with atmospheric grid resolutions varying from meso-β (27-km) to -r (9-km and 3-km nest) scales in WRF and a 9-km ocean model (ROMS) that explicitly resolves the ocean mesoscale <span class="hlt">eddies</span> across the North Atlantic basin. The mesoscale wavenumber energy spectra for the simulated surface wind stress and SST demonstrate good agreement with the observed spectra calculated from the observational QuikSCAT and AMSR-E datasets, suggesting that the model well captures the energy cascade of the mesoscale <span class="hlt">eddies</span> in both the atmosphere and the ocean. Intercomparison among different resolution simulations indicates that after three months of integration the simulated GS path tends to overshoot beyond the separation point in the 27-km WRF coupled experiments than the observed climatological path of the GS, whereas the 3-km nested and 9-km WRF coupled simulations realistically simulate GS separation. The GS overshoot in 27-km WRF coupled simulations is accompanied with a significant SST <span class="hlt">warming</span> bias to the north of the GS extension. Such biases are associated with the deficiency of wind stress-SST coupling strengths simulated by the coupled model with a coarser resolution in WRF. It is found that the model at 27-km grid spacing can approximately simulate 72% (62%) of the observed mean coupling strength between surface wind stress curl (divergence) and crosswind (downwind) SST gradient while by increasing the WRF resolutions to 9 km or 3 km the coupled model can much better capture the observed coupling strengths.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C21D1157M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C21D1157M"><span>Observational Inferences of Lateral <span class="hlt">Eddy</span> Diffusivity in the Halocline of the Beaufort Gyre</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meneghello, G.; Marshall, J.; Cole, S. T.; Timmermans, M. L.</p> <p>2017-12-01</p> <p>Using Ekman pumping rates mediated by sea-ice in the Arctic Ocean's Beaufort Gyre (BG), the magnitude of lateral <span class="hlt">eddy</span> diffusivities required to balance downward pumping is inferred. In this limit — that of vanishing residual-mean circulation — <span class="hlt">eddy</span>-induced upwelling exactly balances downward pumping. The implied <span class="hlt">eddy</span> diffusivity varies spatially with values of 50-400 m2/s, and decays with depth. <span class="hlt">Eddy</span> diffusivity estimated using mixing length theory applied to BG mooring data exhibits a similar range of values from 100 m2/s to more than 600 m2/s, and also decays with depth. We conclude that <span class="hlt">eddy</span> diffusivities in the BG are likely large enough to balance downward Ekman pumping, arresting the deepening of the gyre and suggesting that <span class="hlt">eddies</span> play a zero-order role in buoyancy and freshwater budgets of the BG.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4412331M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4412331M"><span>Observational Inferences of Lateral <span class="hlt">Eddy</span> Diffusivity in the Halocline of the Beaufort Gyre</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meneghello, Gianluca; Marshall, John; Cole, Sylvia T.; Timmermans, Mary-Louise</p> <p>2017-12-01</p> <p>Using Ekman pumping rates mediated by sea ice in the Arctic Ocean's Beaufort Gyre (BG), the magnitude of lateral <span class="hlt">eddy</span> diffusivities required to balance downward pumping is inferred. In this limit—that of vanishing residual-mean circulation—<span class="hlt">eddy</span>-induced upwelling exactly balances downward pumping. The implied <span class="hlt">eddy</span> diffusivity varies spatially and decays with depth, with values of 50-400 m2/s. <span class="hlt">Eddy</span> diffusivity estimated using mixing length theory applied to BG mooring data exhibits a similar decay with depth and range of values from 100 m2/s to more than 600 m2/s. We conclude that <span class="hlt">eddy</span> diffusivities in the BG are likely large enough to balance downward Ekman pumping, arresting the deepening of the gyre and suggesting that <span class="hlt">eddies</span> play a zero-order role in buoyancy and freshwater budgets of the BG.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPA....8e6602Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPA....8e6602Y"><span>Influence of magnet <span class="hlt">eddy</span> current on magnetization characteristics of variable flux memory machine</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Hui; Lin, Heyun; Zhu, Z. Q.; Lyu, Shukang</p> <p>2018-05-01</p> <p>In this paper, the magnet <span class="hlt">eddy</span> current characteristics of a newly developed variable flux memory machine (VFMM) is investigated. Firstly, the machine structure, non-linear hysteresis characteristics and <span class="hlt">eddy</span> current modeling of low coercive force magnet are described, respectively. Besides, the PM <span class="hlt">eddy</span> current behaviors when applying the demagnetizing current pulses are unveiled and investigated. The mismatch of the required demagnetization currents between the cases with or without considering the magnet <span class="hlt">eddy</span> current is identified. In addition, the influences of the magnet <span class="hlt">eddy</span> current on the demagnetization effect of VFMM are analyzed. Finally, a prototype is manufactured and tested to verify the theoretical analyses.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26096666','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26096666"><span>PSF mapping-based correction of <span class="hlt">eddy</span>-current-induced distortions in diffusion-weighted echo-planar imaging.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>In, Myung-Ho; Posnansky, Oleg; Speck, Oliver</p> <p>2016-05-01</p> <p>To accurately correct diffusion-encoding direction-dependent <span class="hlt">eddy</span>-current-induced geometric distortions in diffusion-weighted echo-planar imaging (DW-EPI) and to minimize the calibration time at 7 Tesla (T). A point spread function (PSF) mapping based <span class="hlt">eddy</span>-current calibration method is newly presented to determine <span class="hlt">eddy</span>-current-induced geometric distortions even including nonlinear <span class="hlt">eddy</span>-current effects within the readout acquisition window. To evaluate the temporal stability of <span class="hlt">eddy</span>-current maps, calibration was performed four times within 3 months. Furthermore, spatial variations of measured <span class="hlt">eddy</span>-current maps versus their linear superposition were investigated to enable correction in DW-EPIs with arbitrary diffusion directions without direct calibration. For comparison, an image-based <span class="hlt">eddy</span>-current correction method was additionally applied. Finally, this method was combined with a PSF-based susceptibility-induced distortion correction approach proposed previously to correct both susceptibility and <span class="hlt">eddy</span>-current-induced distortions in DW-EPIs. Very fast <span class="hlt">eddy</span>-current calibration in a three-dimensional volume is possible with the proposed method. The measured <span class="hlt">eddy</span>-current maps are very stable over time and very similar maps can be obtained by linear superposition of principal-axes <span class="hlt">eddy</span>-current maps. High resolution in vivo brain results demonstrate that the proposed method allows more efficient <span class="hlt">eddy</span>-current correction than the image-based method. The combination of both PSF-based approaches allows distortion-free images, which permit reliable analysis in diffusion tensor imaging applications at 7T. © 2015 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950052581&hterms=coastal+zone&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dcoastal%2Bzone','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950052581&hterms=coastal+zone&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dcoastal%2Bzone"><span>Variability in pigment concentration in <span class="hlt">warm-core</span> rings as determined by coastal zone color scanner satellite imagery from the Mid-Atlantic Bight</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Garcia-Moliner, Graciela; Yoder, James A.</p> <p>1994-01-01</p> <p>A time series of coastal zone color scanner (CZCS) derived chlorophyll (CZCS-chl) and sea surface temperature (SST) satellite imagery was developed for the Mid-Atlantic Bight (MAB). <span class="hlt">Warm-core</span> rings (WCR) were identified by both the warmer SST signal as well as the low pigment concentrations of their <span class="hlt">cores</span>. The variation in pigment concentrations and SST observed in satellite imagery over the geographic range and life span of four WCRs is investigated. The hypotheses are that pigment concentration increase during the lifetime of the WCR is a response to processes such as convective overturn, upwelling, edge enhancement due to increased vertical mixing, active convergence, or lateral exchange. Empirical orthogonal function analysis (EOF) is used to investigate the relationship between SST and pigment patterns observed in the presence of a WCR. The first two EOF modes explain more than 80% of the variability observed in all four WCRs and in both (SST and pigment) data sets. The results of this study show that, at the synoptic scales of staellite data, the variability observed in the WCRs is greater at the periphery of the rings. These results show that advective entrainment, rather than processes at ring center (e.g., shoaling of the pycnocline/nutricline in response to frictional decay) or at the periphery due to other processes such as vertical mixing, is the mechanism responsible for the observed variability.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996JGR...10120629B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996JGR...10120629B"><span>Cleavage of a Gulf of Mexico Loop Current <span class="hlt">eddy</span> by a deep water cyclone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Biggs, D. C.; Fargion, G. S.; Hamilton, P.; Leben, R. R.</p> <p>1996-09-01</p> <p><span class="hlt">Eddy</span> Triton, an anticyclonic <span class="hlt">eddy</span> shed by the Loop Current in late June 1991, drifted SW across the central Gulf of Mexico in the first 6 months of 1992, along the ``southern'' of the three characteristic drift paths described by Vukovich and Crissman [1986] from their analyses of 13 years of advanced very high resolution radiometer sea surface temperature data. An expendable bathythermograph (XBT) and conductivity-temperature-depth (CTD) transect of opportunity through Triton at <span class="hlt">eddy</span> age 7 months in January 1992 found that <span class="hlt">eddy</span> interior stood 23 dyn. cm higher than periphery; this gradient drove an anticyclonic swirl transport of 9-10 Sv relative to 800 dbar. At <span class="hlt">eddy</span> age 9-10 months and while this <span class="hlt">eddy</span> was in deep water near 94°W, it interacted with a mesoscale cyclonic circulation and was cleaved into two parts. The major (greater dynamic centimeters) piece drifted NW to end up in the ``<span class="hlt">eddy</span> graveyard'' in the NW corner of the gulf, while the minor piece drifted SW and reached the continental margin of the western gulf off Tuxpan. This southern piece of <span class="hlt">Eddy</span> Triton then turned north to follow the 2000-m isobath to about 24°N and later coalesced with what remained of the major fragment. Because <span class="hlt">Eddy</span> Triton's cleavage took place just before the start of marine mammals (GulfCet) and Louisiana-Texas physical oceanography (LATEX) field programs, the closely spaced CTD, XBT, and air dropped XBT (AXBT) data that were gathered on the continental margin north of 26°N in support of these programs allow a detailed look at the northern margin of the larger fragment of this <span class="hlt">eddy</span>. Supporting data from the space-borne altimeters on ERS 1 and TOPEX/POSEIDON allow us to track both pieces of <span class="hlt">Eddy</span> Triton in the western Gulf and follow their spin down in dynamic height, coalescence, and ultimate entrainment in January 1993 into another anticyclonic <span class="hlt">eddy</span> (<span class="hlt">Eddy</span> U).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1896h0016H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1896h0016H"><span>Springback of aluminum alloy brazing sheet in <span class="hlt">warm</span> forming</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Han, Kyu Bin; George, Ryan; Kurukuri, Srihari; Worswick, Michael J.; Winkler, Sooky</p> <p>2017-10-01</p> <p>The use of aluminum is increasing in the automotive industry due to its high strength-to-weight ratio, recyclability and corrosion resistance. However, aluminum is prone to significant springback due to its low elastic modulus coupled with its high strength. In this paper, a <span class="hlt">warm</span> forming process is studied to improve the springback characteristics of 0.2 mm thick brazing sheet with an AA3003 <span class="hlt">core</span> and AA4045 clad. <span class="hlt">Warm</span> forming decreases springback by lowering the flow stress. The parts formed have complex features and geometries that are representative of automotive heat exchangers. The key objective is to utilize <span class="hlt">warm</span> forming to control the springback to improve the part flatness which enables the use of harder temper material with improved strength. The experiments are performed by using heated dies at several different temperatures up to 350 °C and the blanks are pre-heated in the dies. The measured springback showed a reduction in curvature and improved flatness after forming at higher temperatures, particularly for the harder temper material conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS31A1362B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS31A1362B"><span>Impact of Preferred <span class="hlt">Eddy</span> Tracks on Transport and Mixing in the Eastern South Pacific</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Belmadani, A.; Donoso, D.; Auger, P. A.; Chaigneau, A.</p> <p>2017-12-01</p> <p>Mesoscale <span class="hlt">eddies</span>, which play a fundamental role in the transport of mass, heat, nutrients, and biota across the oceans, have been suggested to propagate preferently along specific tracks. These preferred pathways, also called <span class="hlt">eddy</span> trains, are near-zonal due to westward drift of individual vortices, and tend to be polarized (ie alternatively dominated by anticyclonic/cyclonic <span class="hlt">eddies</span>), coinciding with the recently discovered latent striations (quasi-zonal mesoscale jet-like features). While significant effort has been made to understand the dynamics of striations and their interplay with mesoscale <span class="hlt">eddies</span>, the impact of repeated <span class="hlt">eddy</span> tracks on physical (temperature, salinity), biogeochemical (oxygen, carbon, nutrients) and other tracers (e.g. chlorophyll, marine debris) has received little attention. Here we report on the results of numerical modeling experiments that simulate the impact of preferred <span class="hlt">eddy</span> tracks on the transport and mixing of water particles in the Eastern South Pacific off Chile. A 30-year interannual simulation of the oceanic circulation in this region has been performed over 1984-2013 with the ROMS (Regional Oceanic Modeling System) at an <span class="hlt">eddy</span>-resolving resolution (10 km). Objective tracking of mesoscale coherent vortices is obtained using automated methods, allowing to compute the contribution of <span class="hlt">eddies</span> to the ocean circulation. Preferred <span class="hlt">eddy</span> tracks are further isolated from the more random <span class="hlt">eddies</span>, by comparing the distances between individual tracks and the striated pattern in long-term mean <span class="hlt">eddy</span> polarity with a least-squares approach. The remaining non-<span class="hlt">eddying</span> flow may also be decomposed into time-mean and anomalous circulation, and/or small- and large-scale circulation. Neutrally-buoyant Lagrangian floats are then released uniformly into the various flow components as well as the total flow, and tracked forward in time with the ARIANE software. The dispersion patterns of water particles are used to estimate the respective contributions of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRA..120.3097P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRA..120.3097P"><span>Seasonal variability in global <span class="hlt">eddy</span> diffusion and the effect on neutral density</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pilinski, M. D.; Crowley, G.</p> <p>2015-04-01</p> <p>We describe a method for making single-satellite estimates of the seasonal variability in global-average <span class="hlt">eddy</span> diffusion coefficients. <span class="hlt">Eddy</span> diffusion values as a function of time were estimated from residuals of neutral density measurements made by the Challenging Minisatellite Payload (CHAMP) and simulations made using the thermosphere-ionosphere-mesosphere electrodynamics global circulation model (TIME-GCM). The <span class="hlt">eddy</span> diffusion coefficient results are quantitatively consistent with previous estimates based on satellite drag observations and are qualitatively consistent with other measurement methods such as sodium lidar observations and <span class="hlt">eddy</span> diffusivity models. <span class="hlt">Eddy</span> diffusion coefficient values estimated between January 2004 and January 2008 were then used to generate new TIME-GCM results. Based on these results, the root-mean-square sum for the TIME-GCM model is reduced by an average of 5% when compared to density data from a variety of satellites, indicating that the fidelity of global density modeling can be improved by using data from a single satellite like CHAMP. This approach also demonstrates that <span class="hlt">eddy</span> diffusion could be estimated in near real-time from satellite observations and used to drive a global circulation model like TIME-GCM. Although the use of global values improves modeled neutral densities, there are limitations to this method, which are discussed, including that the latitude dependence of the seasonal neutral-density signal is not completely captured by a global variation of <span class="hlt">eddy</span> diffusion coefficients. This demonstrates the need for a latitude-dependent specification of <span class="hlt">eddy</span> diffusion which is also consistent with diffusion observations made by other techniques.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcMod.109...44B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcMod.109...44B"><span>Evaluation of a scalar <span class="hlt">eddy</span> transport coefficient based on geometric constraints</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bachman, S. D.; Marshall, D. P.; Maddison, J. R.; Mak, J.</p> <p>2017-01-01</p> <p>A suite of idealized models is used to evaluate and compare several previously proposed scalings for the <span class="hlt">eddy</span> transport coefficient in downgradient mesoscale <span class="hlt">eddy</span> closures. Of special interest in this comparison is a scaling introduced as part of the <span class="hlt">eddy</span> parameterization framework of Marshall et al. (2012), which is derived using the inherent geometry of the Eliassen-Palm <span class="hlt">eddy</span> flux tensor. The primary advantage of using this coefficient in a downgradient closure is that all dimensional terms are explicitly specified and the only uncertainty is a nondimensional parameter, α, which is bounded by one in magnitude. In each model a set of passive tracers is initialized, whose flux statistics are used to invert for the <span class="hlt">eddy</span>-induced tracer transport. Unlike previous work, where this technique has been employed to diagnose the tensor coefficient of a linear flux-gradient relationship, the idealization of these models allows the lateral <span class="hlt">eddy</span> transport to be described by a scalar coefficient. The skill of the extant scalings is then measured by comparing their predicted values against the coefficients diagnosed using this method. The Marshall et al. (2012), scaling is shown to scale most closely with the diagnosed coefficients across all simulations. It is shown that the skill of this scaling is due to its functional dependence on the total <span class="hlt">eddy</span> energy, and that this scaling provides an excellent match to the diagnosed fluxes even in the limit of constant α. Possible extensions to this work, including how to incorporate the resultant transport coefficient into the Gent and McWilliams parameterization, are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25902494','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25902494"><span>Amplified Arctic <span class="hlt">warming</span> by phytoplankton under greenhouse <span class="hlt">warming</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho</p> <p>2015-05-12</p> <p>Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future <span class="hlt">warming</span> experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse <span class="hlt">warming</span> can amplify Arctic surface <span class="hlt">warming</span> considerably. The <span class="hlt">warming</span>-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton <span class="hlt">warms</span> the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic <span class="hlt">warming</span> further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4434777','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4434777"><span>Amplified Arctic <span class="hlt">warming</span> by phytoplankton under greenhouse <span class="hlt">warming</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho</p> <p>2015-01-01</p> <p>Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future <span class="hlt">warming</span> experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse <span class="hlt">warming</span> can amplify Arctic surface <span class="hlt">warming</span> considerably. The <span class="hlt">warming</span>-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton <span class="hlt">warms</span> the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic <span class="hlt">warming</span> further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes. PMID:25902494</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920000764&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DEddy%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920000764&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DEddy%2Bcurrent"><span>Enhanced <span class="hlt">Eddy</span>-Current Detection Of Weld Flaws</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Van Wyk, Lisa M.; Willenberg, James D.</p> <p>1992-01-01</p> <p>Mixing of impedances measured at different frequencies reduces noise and helps reveal flaws. In new method, one excites <span class="hlt">eddy</span>-current probe simultaneously at two different frequencies; usually, one of which integral multiple of other. Resistive and reactive components of impedance of <span class="hlt">eddy</span>-current probe measured at two frequencies, mixed in computer, and displayed in real time on video terminal of computer. Mixing of measurements obtained at two different frequencies often "cleans up" displayed signal in situations in which band-pass filtering alone cannot: mixing removes most noise, and displayed signal resolves flaws well.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26715361','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26715361"><span><span class="hlt">Eddy</span> current compensated double diffusion encoded (DDE) MRI.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mueller, Lars; Wetscherek, Andreas; Kuder, Tristan Anselm; Laun, Frederik Bernd</p> <p>2017-01-01</p> <p><span class="hlt">Eddy</span> currents might lead to image distortions in diffusion-weighted echo planar imaging. A method is proposed to reduce their effects on double diffusion encoding (DDE) MRI experiments and the thereby derived microscopic fractional anisotropy (μFA). The twice-refocused spin echo scheme was adapted for DDE measurements. To assess the effect of individual diffusion encodings on the image distortions, measurements of a grid of plastic rods in water were performed. The effect of <span class="hlt">eddy</span> current compensation on μFA measurements was evaluated in the brains of six healthy volunteers. The use of an <span class="hlt">eddy</span> current compensation reduced the signal variation. As expected, the distortions caused by the second encoding were larger than those of the first encoding, entailing a stronger need to compensate for them. For an optimal result, however, both encodings had to be compensated. The artifact reduction strongly improved the measurement of the μFA in ventricles and gray matter by reducing the overestimation. An effect of the compensation on absolute μFA values in white matter was not observed. It is advisable to compensate both encodings in DDE measurements for <span class="hlt">eddy</span> currents. Magn Reson Med 77:328-335, 2017. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhDT.........2G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhDT.........2G"><span>Oceanic Controls of North American East Coast Sea Level Rise and Ocean <span class="hlt">Warming</span> of the Antarctic Shelf</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goddard, Paul</p> <p></p> <p>, we use a fine-resolution global climate model (GFDL CM2.6) that resolves an <span class="hlt">eddying</span> ocean. With this state-of-the-art coupled model, we quantify the mechanisms contributing to ocean <span class="hlt">warming</span> on the Antarctic continental shelf in an idealized experiment of doubling of the atmospheric CO2 concentration. The results show that the CO2 forcing leads to the shelf region <span class="hlt">warming</span> both in the upper 100 m ocean and at depths near the sea floor. These <span class="hlt">warming</span> patterns are controlled by different mechanisms. In the upper 100 m, the heat anomalies are primarily controlled by increased heat transport into the shelf region associated with the warmer near-surface waters from lower latitudes. Below 100 m, the heat anomalies develop due to increased onshore intrusions of relatively <span class="hlt">warm</span> Circumpolar Deep Water and reduced vertical mixing of heat in the water column. A complete heat budget analysis is performed for the Antarctic shelf region as well as for six subdomains and three depth ranges (0-100 m, 100-700 m, and 700-1000 m). The results show that certain regions of the Antarctic shelf are more susceptible to large CO2-forced <span class="hlt">warming</span>. These findings have implications for future Antarctic Ice Sheet mass loss and SLR, and can provide more detailed and accurate ocean boundary conditions for dynamical ice sheet models. In Appendix C, we use CM2.6 to examine the connections among ocean freshening and the magnitude and location of ocean <span class="hlt">warming</span> on the Antarctic shelf. We find that CO2 forcing freshens the Antarctic shelf seas via increases in local precipitation, sea ice loss, liquid runoff, and iceberg calving. The freshening induces three heat budget-relevant responses: (1) reduced vertical mixing; (2) strengthening of the Antarctic Slope Front (ASF); and (3) increased <span class="hlt">eddy</span> kinetic energy (EKE) near the ASF. First, heat can accumulate at depth (100-1000 m) as freshening increases the vertical stratification on the shelf and reduces upward mixing of heat associated with diffusion and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27191695','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27191695"><span><span class="hlt">Warm</span>-up Practices in Elite Boxing Athletes: Impact on Power Output.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cunniffe, Brian; Ellison, Mark; Loosemore, Mike; Cardinale, Marco</p> <p>2017-01-01</p> <p>Cunniffe, B, Ellison, M, Loosemore, M, and Cardinale, M. <span class="hlt">Warm</span>-up practices in elite boxing athletes: Iimpact on power output. J Strength Cond Res 31(1): 95-105, 2017-This study evaluated the performance impact of routine <span class="hlt">warm</span>-up strategies in elite Olympic amateur boxing athletes and physiological implications of the time gap (GAP) between <span class="hlt">warm</span>-up and boxing activity. Six male boxers were assessed while performing standardized prefight <span class="hlt">warm</span>-up routines. <span class="hlt">Core</span> and skin temperature measurements (Tcore and Tskin), heart rate, and upper- and lower-body power output (PO) were assessed before and after <span class="hlt">warm</span>-up, during a 25-minutes GAP and after 3 × 2 minutes rounds of sparring. Reflected temperature (Tc) was also determined using high-resolution thermal images at fixed time-points to explore avenues for heat loss. Despite individual differences in <span class="hlt">warm</span>-up duration (range 7.4-18.5 minutes), increases in Tcore and Tskin occurred (p ≤ 0.05). Corresponding increases (4.8%; p ≤ 0.05) in countermovement jump (CMJ) height and upward-rightward shifts in upper-body force-velocity and power-velocity curves were observed. Athletes remained inactive during the 25-minutes GAP with a gradual and significant increase in Tc occurring by the end of GAP suggesting the likelihood of heat loss. Decreases in CMJ height and upper-body PO were observed after 15 minutes and 25 minutes GAP (p ≤ 0.05). By the end of GAP period, all performance variables had returned to pre-<span class="hlt">warm</span>-up values. Results suggest routine <span class="hlt">warm</span>-ups undertaken by elite boxers have acute effects on power-generating capacity. Gradual decreases in performance variables are evident with inactivity and seem related to alterations in body temperature. Considering the constraints of major competitions and time spent in air conditioned holding areas before fights, practitioners should be aware of the potential of nullifying the <span class="hlt">warm</span>-up effects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015066','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015066"><span>Multicompartment Liquid-Cooling/<span class="hlt">Warming</span> Protective Garments</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koscheyev, Victor S.; Leon, Gloria R.; Dancisak, Michael J.</p> <p>2005-01-01</p> <p>Shortened, multicompartment liquid-cooling / <span class="hlt">warming</span> garments (LCWGs) for protecting astronauts, firefighters, and others at risk of exposure to extremes of temperature are undergoing development. Unlike prior liquid-circulation thermal-protection suits that provide either cooling or <span class="hlt">warming</span> but not both, an LCWG as envisioned would provide cooling at some body locations and/or heating at other locations, as needed: For example, sometimes there is a need to cool the body <span class="hlt">core</span> and to heat the extremities simultaneously. An LCWG garment of the type to be developed is said to be shortened because the liquid-cooling and - heating zones would not cover the whole body and, instead, would cover reduced areas selected for maximum heating and cooling effectiveness. Physiological research is under way to provide a rational basis for selection of the liquid-cooling and -heating areas. In addition to enabling better (relative to prior liquid-circulation garments) balancing of heat among different body regions, the use of selective heating and cooling in zones would contribute to a reduction in the amount of energy needed to operate a thermal-protection suit.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6609C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6609C"><span>Detection of subsurface-intensified <span class="hlt">eddies</span> from observations of the sea-surface: a case study for Mediterranean Water <span class="hlt">Eddies</span> in a long-term high-resolution simulation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ciani, Daniele; Carton, Xavier; Barbosa Aguiar, Ana Claudia; Peliz, Alvaro; Bashmachnikov, Igor; Ienna, Federico; Chapron, Bertrand</p> <p>2017-04-01</p> <p>Subsurface-intensified <span class="hlt">eddies</span> are ubiquitous in the world ocean. They can be generated by exchanges of water masses between semi-enclosed evaporation basins and the open ocean or by deep convection. Past and recent studies have shown that these <span class="hlt">eddies</span> are carriers of large amounts of heat and salt, that they are coherent over inter-annual timescales and that they can migrate for several thousands of miles from their origination areas towards the open ocean. Hence, subsurface-intensified <span class="hlt">eddies</span> can influence the three-dimensional distribution of oceanic tracers at global scale. The synoptic knowledge of the <span class="hlt">eddies</span> positions and mean pathways is then crucial for evaluating temperature and salinity budgets in the world ocean. At present day, satellite sensors constitute the ideal tool for the synoptic and global scale observations of the ocean. Since they only provide informations on the oceanic surface, we characterized the signatures that subsurface <span class="hlt">eddies</span> generate at the sea-surface, to determine the extent to which they can be isolated from the surrounding surface turbulence and be considered as a trace of an underlying <span class="hlt">eddy</span>. We studied the surface signature of subsurface-intensified anticyclones (Mediterranean Water <span class="hlt">Eddies</span> - Meddies) in a realistic, long-term (20 years) and high resolution simulation (dx = 3 km) based on the ROMS model. The novelty and advantage of this approach is given by the simultaneous availability of the full 3D <span class="hlt">eddies</span> characteristics, the ones of the background ocean and of the sea-surface (in terms of sea-surface height, temperature and salinity). This also allowed us to speculate on a synergy between different satellite observations for the automatic detection of subsurface <span class="hlt">eddies</span> from space. The along trajectory properties and surface signatures of more than 90 long-lived Meddies were analyzed. We showed that the Meddies constantly generate positive anomalies in sea-surface height and that these anomalies are principally related to the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21458339','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21458339"><span>Software compensation of <span class="hlt">eddy</span> current fields in multislice high order dynamic shimming.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sengupta, Saikat; Avison, Malcolm J; Gore, John C; Brian Welch, E</p> <p>2011-06-01</p> <p>Dynamic B(0) shimming (DS) can produce better field homogeneity than static global shimming by dynamically updating slicewise shim values in a multislice acquisition. The performance of DS however is limited by <span class="hlt">eddy</span> current fields produced by the switching of 2nd and 3rd order unshielded shims. In this work, we present a novel method of <span class="hlt">eddy</span> field compensation (EFC) applied to higher order shim induced <span class="hlt">eddy</span> current fields in multislice DS. This method does not require shim shielding, extra hardware for <span class="hlt">eddy</span> current compensation or subject specific prescanning. The interactions between shim harmonics are modeled assuming steady state of the medium and long time constant, cross and self term <span class="hlt">eddy</span> fields in a DS experiment and 'correction factors' characterizing the entire set of shim interactions are derived. The correction factors for a given time between shim switches are shown to be invariable with object scanned, shim switching pattern and actual shim values, allowing for their generalized prospective use. Phantom and human head, 2nd and 3rd order DS experiments performed without any hardware <span class="hlt">eddy</span> current compensation using the technique show large reductions in field gradients and offsets leading to significant improvements in image quality. This method holds promise as an alternative to expensive hardware based <span class="hlt">eddy</span> current compensation required in 2nd and 3rd order DS. Copyright © 2011 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MMI....23..756S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MMI....23..756S"><span>Correlation of <span class="hlt">eddy</span> current responses between fatigue cracks and electrical-discharge-machining notches</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seo, Sukho; Choi, Gyudong; Eom, Tae Jhoun; Lee, Bokwon; Lee, Soo Yeol</p> <p>2017-07-01</p> <p>The <span class="hlt">eddy</span> current responses of Electrical Discharge Machining (EDM) notches and fatigue cracks are directly compared to verify the reliability of <span class="hlt">eddy</span> current inspection. The fatigue crack growth tests using a constant load range control mode were conducted to obtain a variety of edge crack sizes, ranging from 0.9 to 6.6 mm for Al alloy and from 0.1 to 3 mm for Ti alloy. EDM notch specimens of Al and Ti alloys were accordingly prepared in lengths similar to that of the fatigued specimen. The crack length was determined by optical microscope and scanning electron microscope. The <span class="hlt">eddy</span> current responses between the EDM and fatigued specimens with varying notch/crack length were examined using probe sensors at (100-500) kHz and (1-2) MHz for Al and Ti alloys, respectively. The results show a significant difference in the <span class="hlt">eddy</span> current signal between the two specimens, based on the correlation between the <span class="hlt">eddy</span> current response and notch/crack length. This suggests that <span class="hlt">eddy</span> current inspection using the EDM reference specimen is inaccurate in determining the precise crack size, unless the <span class="hlt">eddy</span> current response data base is obtained from a fatigue-cracked specimen.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011EOSTr..92...56J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011EOSTr..92...56J"><span>Students, Scientists, and Family Commemorate the Life and Diverse Works of Jack <span class="hlt">Eddy</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Judge, Philip</p> <p>2011-02-01</p> <p><span class="hlt">Eddy</span> Cross-Disciplinary Symposium on Sun-Climate Research; Aspen, Colorado, 22-24 October 2010; In 1976, John Allen <span class="hlt">Eddy</span> published a seminal article (see Science, 192(4245), 1189-1202) revealing a link between the Little Ice Age, which occurred during the sixteenth through nineteenth centuries, and a period of low sunspot activity, which <span class="hlt">Eddy</span> called the “Maunder Minimum.” This work placed Sun-climate research on a firm scientific footing. <span class="hlt">Eddy</span> passed away on 10 June 2009. Following <span class="hlt">Eddy</span>'s passions for education and cross-disciplinary research, a symposium was held to expose talented college students to the science and politics of Sun-climate research. Funding from NASA's Living With a Star Targeted Research and Technology program and from the High Altitude Observatory, Advanced Study Program, and Integrated Science Program of the National Center for Atmospheric Research (NCAR) supported keynote speakers and provided scholarships for 30 students (junior year to Ph.D.) from diverse disciplines. <span class="hlt">Eddy</span>'s wife, Barbara, led a session devoted to personal recollections. Spencer Weart (American Institute of Physics) gave an after-dinner tribute using recordings of <span class="hlt">Eddy</span> from a 1999 interview.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23674437','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23674437"><span>3-D residual <span class="hlt">eddy</span> current field characterisation: applied to diffusion weighted magnetic resonance imaging.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>O'Brien, Kieran; Daducci, Alessandro; Kickler, Nils; Lazeyras, Francois; Gruetter, Rolf; Feiweier, Thorsten; Krueger, Gunnar</p> <p>2013-08-01</p> <p>Clinical use of the Stejskal-Tanner diffusion weighted images is hampered by the geometric distortions that result from the large residual 3-D <span class="hlt">eddy</span> current field induced. In this work, we aimed to predict, using linear response theory, the residual 3-D <span class="hlt">eddy</span> current field required for geometric distortion correction based on phantom <span class="hlt">eddy</span> current field measurements. The predicted 3-D <span class="hlt">eddy</span> current field induced by the diffusion-weighting gradients was able to reduce the root mean square error of the residual <span class="hlt">eddy</span> current field to ~1 Hz. The model's performance was tested on diffusion weighted images of four normal volunteers, following distortion correction, the quality of the Stejskal-Tanner diffusion-weighted images was found to have comparable quality to image registration based corrections (FSL) at low b-values. Unlike registration techniques the correction was not hindered by low SNR at high b-values, and results in improved image quality relative to FSL. Characterization of the 3-D <span class="hlt">eddy</span> current field with linear response theory enables the prediction of the 3-D <span class="hlt">eddy</span> current field required to correct <span class="hlt">eddy</span> current induced geometric distortions for a wide range of clinical and high b-value protocols.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18566247','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18566247"><span>High-resolution Greenland ice <span class="hlt">core</span> data show abrupt climate change happens in few years.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Steffensen, Jørgen Peder; Andersen, Katrine K; Bigler, Matthias; Clausen, Henrik B; Dahl-Jensen, Dorthe; Fischer, Hubertus; Goto-Azuma, Kumiko; Hansson, Margareta; Johnsen, Sigfús J; Jouzel, Jean; Masson-Delmotte, Valérie; Popp, Trevor; Rasmussen, Sune O; Röthlisberger, Regine; Ruth, Urs; Stauffer, Bernhard; Siggaard-Andersen, Marie-Louise; Sveinbjörnsdóttir, Arny E; Svensson, Anders; White, James W C</p> <p>2008-08-01</p> <p>The last two abrupt <span class="hlt">warmings</span> at the onset of our present <span class="hlt">warm</span> interglacial period, interrupted by the Younger Dryas cooling event, were investigated at high temporal resolution from the North Greenland Ice <span class="hlt">Core</span> Project ice <span class="hlt">core</span>. The deuterium excess, a proxy of Greenland precipitation moisture source, switched mode within 1 to 3 years over these transitions and initiated a more gradual change (over 50 years) of the Greenland air temperature, as recorded by stable water isotopes. The onsets of both abrupt Greenland <span class="hlt">warmings</span> were slightly preceded by decreasing Greenland dust deposition, reflecting the wetting of Asian deserts. A northern shift of the Intertropical Convergence Zone could be the trigger of these abrupt shifts of Northern Hemisphere atmospheric circulation, resulting in changes of 2 to 4 kelvin in Greenland moisture source temperature from one year to the next.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26708989','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26708989"><span>Meta-analysis of <span class="hlt">warmed</span> versus standard temperature CO2 insufflation for laparoscopic cholecystectomy.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hakeem, Abdul R; Birks, Theodore; Azeem, Qasim; Di Franco, Filippo; Gergely, Szabolcs; Harris, Adrian M</p> <p>2016-06-01</p> <p>There is conflicting evidence for the use of <span class="hlt">warmed</span>, humidified carbon dioxide (CO2) for creating pneumoperitoneum during laparoscopic cholecystectomy. Few studies have reported less post-operative pain and analgesic requirement when <span class="hlt">warmed</span> CO2 was used. This systematic review and meta-analysis aims to analyse the literature on the use of <span class="hlt">warmed</span> CO2 in comparison to standard temperature CO2 during laparoscopic cholecystectomy. Systematic review and meta-analysis carried out in line with the PRISMA guidelines. Primary outcomes of interest were post-operative pain at 6 h, day 1 and day 2 following laparoscopic cholecystectomy. Secondary outcomes were analgesic usage and drop in intra-operative <span class="hlt">core</span> body temperature. Standard Mean Difference (SMD) was calculated for continuous variables. Six randomised controlled trials (RCTs) met the inclusion criteria (n = 369). There was no significant difference in post-operative pain at 6 h [3 RCTs; SMD = -0.66 (-1.33, 0.02) (Z = 1.89) (P = 0.06)], day 1 [4 RCTs; SMD = -0.51 (-1.47, 0.44) (Z = 1.05) (P = 0.29)] and day 2 [2 RCTs; SMD = -0.96 (-2.30, 0.37) (Z = 1.42) (P = 0.16)] between the <span class="hlt">warmed</span> CO2 and standard CO2 group. There was no difference in analgesic usage between the two groups, but pooled analysis was not possible. Two RCTs reported significant drop in intra-operative <span class="hlt">core</span> body temperature, but there were no adverse events related to this. This review showed no difference in post-operative pain and analgesic requirements between the <span class="hlt">warmed</span> and standard CO2 insufflation during laparoscopic cholecystectomy. Currently there is not enough high quality evidence to suggest routine usage of <span class="hlt">warmed</span> CO2 for creating pneumoperitoneum during laparoscopic cholecystectomy. Copyright © 2015 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986DSRA...33.1869C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986DSRA...33.1869C"><span>Nonmigratory, 12-kHz, deep scattering layers of Sargasso Sea origin in <span class="hlt">warm-core</span> rings</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Conte, Maureen H.; Bishop, James B.; Backus, Richard H.</p> <p>1986-11-01</p> <p>Nonmigratory, 12-kHz, deep sound-scattering layers (NMDSLs) were entrained within Sargasso Sea-Gulf Stream waters during the formation of <span class="hlt">warm-core</span> rings 82B and 82H. At night ring water was easily distinguished from Slope Water by the presence of these well-developed features between 200 and 550 m. The distribution of NMDSLs in 82H as a function of temperature and salinity matched Sargasso Sea distributions, indicating that Sargasso Sea water was present in the center of 82H at the time of its formation. However, the distribution of NMDSLs in the center of 82B a few weeks after its formation was more consistent with the distribution found in Gulf Stream-Sargasso Sea edge water. NMDSLs were a persistent feature of the lower thermostad and upper thermocline of 82B. Their distribution in the upper thermocline approximately paralleled the decrease in thickness of the thermostad and became shallower with increasing distance from ring center. The NMDSLs disappeared at the ring edge when the bottom of the thermostad became shallower than about 100 m. Their distribution within 30 km of ring center changed very little between April and June, whereas those found in the thermocline at greater distances from ring center showed greater dispersion with respect to temperature. Following several Gulf Stream interactions in July, the NMDSLs were significantly shallower, and lay in colder water. The continued presence of the deep NMDSLs in the thermocline, even though the latter was nearly 100 m shallower, indicates that the remaining thermocline had not been significantly exchanged with Gulf Stream or Slope Water during the interactions. The changes in the temperature of the water in which the NMDSLs were found in August suggest that <span class="hlt">core</span> waters (30 km from ring center in June) were resorbed by the Gulf Stream and that only waters of 30 km radius remained to reform the ring. We found no evidence that the animals composing the NMDSLs adjusted their vertical distributions in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000750.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000750.html"><span><span class="hlt">Eddies</span> in the Southern Ocean</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-04-08</p> <p>The cloud cover over the Southern Ocean occasionally parts as it did on January 1, 2015 just west of the Drake Passage where the VIIRS instrument on the Suomi NPP satellite glimpsed the above collection of ocean-color delineated <span class="hlt">eddies</span> which have diameters ranging from a couple of kilometers to a couple of hundred kilometers. Recent studies indicate that <span class="hlt">eddy</span> activity has been increasing in the Southern Ocean with possible implications for climate change. Credit: NASA's OceanColor/Suomi NPP/VIIRS NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920030758&hterms=magnetic+shield&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmagnetic%2Bshield','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920030758&hterms=magnetic+shield&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmagnetic%2Bshield"><span><span class="hlt">Eddy</span> current heating in magnetic refrigerators</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kittel, Peter</p> <p>1990-01-01</p> <p><span class="hlt">Eddy</span> current heating can be a significant source of parasitic heating in low temperature magnetic refrigerators. To study this problem a technique to approximate the heating due to <span class="hlt">eddy</span> currents has been developed. A formula is presented for estimating the heating within a variety of shapes commonly found in magnetic refrigerators. These shapes include circular, square, and rectangular rods; cylindrical and split cylindrical shells; wire loops; and 'coil foil. One set of components evaluated are different types of thermal radiation shields. This comparison shows that a simple split shield is almost as effective (only 23 percent more heating) as using a shield, with the same axial thermal conductivity, made of 'coil foil'.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17534904','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17534904"><span>Longitudinal gradient coil optimization in the presence of transient <span class="hlt">eddy</span> currents.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Trakic, A; Liu, F; Lopez, H Sanchez; Wang, H; Crozier, S</p> <p>2007-06-01</p> <p>The switching of magnetic field gradient coils in magnetic resonance imaging (MRI) inevitably induces transient <span class="hlt">eddy</span> currents in conducting system components, such as the cryostat vessel. These secondary currents degrade the spatial and temporal performance of the gradient coils, and compensation methods are commonly employed to correct for these distortions. This theoretical study shows that by incorporating the <span class="hlt">eddy</span> currents into the coil optimization process, it is possible to modify a gradient coil design so that the fields created by the coil and the <span class="hlt">eddy</span> currents combine together to generate a spatially homogeneous gradient that follows the input pulse. Shielded and unshielded longitudinal gradient coils are used to exemplify this novel approach. To assist in the evaluation of transient <span class="hlt">eddy</span> currents induced within a realistic cryostat vessel, a low-frequency finite-difference time-domain (FDTD) method using the total-field scattered-field (TFSF) scheme was performed. The simulations demonstrate the effectiveness of the proposed method for optimizing longitudinal gradient fields while taking into account the spatial and temporal behavior of the <span class="hlt">eddy</span> currents.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=GL-2002-001336&hterms=Dark+web&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DDark%2Bweb','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=GL-2002-001336&hterms=Dark+web&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DDark%2Bweb"><span>Temperature of the Gulf Stream</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>The Gulf Stream is one of the strong ocean currents that carries <span class="hlt">warm</span> water from the sunny tropics to higher latitudes. The current stretches from the Gulf of Mexico up the East Coast of the United States, departs from North America south of the Chesapeake Bay, and heads across the Atlantic to the British Isles. The water within the Gulf Stream moves at the stately pace of 4 miles per hour. Even though the current cools as the water travels thousands of miles, it remains strong enough to moderate the Northern European climate. The image above was derived from the infrared measurements of the Moderate-resolution Imaging Spectroradiometer (MODIS) on a nearly cloud-free day over the east coast of the United States. The coldest waters are shown as purple, with blue, green, yellow, and red representing progressively warmer water. Temperatures range from about 7 to 22 degrees Celsius. The <span class="hlt">core</span> of the Gulf Stream is very apparent as the warmest water, dark red. It departs from the coast at Cape Hatteras, North Carolina. The cool, shelf water from the north entrains the warmer outflows from the Chesapeake and Delaware Bays. The north wall of the Gulf Stream reveals very complex structure associated with frontal instabilities that lead to exchanges between the Gulf Stream and inshore waters. Several clockwise-rotating <span class="hlt">warm</span> <span class="hlt">core</span> <span class="hlt">eddies</span> are evident north of the <span class="hlt">core</span> of the Gulf Stream, which enhance the exchange of heat and water between the coastal and deep ocean. Cold <span class="hlt">core</span> <span class="hlt">eddies</span>, which rotate counter clockwise, are seen south of the Gulf Stream. The one closest to Cape Hatteras is entraining very <span class="hlt">warm</span> Gulf Stream waters on its northwest circumference. Near the coast, shallower waters have <span class="hlt">warmed</span> due to solar heating, while the deeper waters offshore are markedly cooler (dark blue). MODIS made this observation on May 8, 2000, at 11:45 a.m. EDT. For more information, see the MODIS-Ocean web page. The sea surface temperature image was created at the University of Miami using</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A34B2650L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A34B2650L"><span>Baroclinic Instability and Energy Transfer underlying the Kuroshio <span class="hlt">eddy</span> shedding process in Luzon Strait</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, J.</p> <p>2016-02-01</p> <p>The Kuroshio <span class="hlt">eddy</span> shedding in Luzon Strait has been intensively studied, due to its important role in the energy budgets of the special gap-passing western boundary current and its potential influence to South China Sea. In this study, the <span class="hlt">eddy</span>-mean flow interaction is first diagnosed with two classical "stationary" methods. Both show that, in a "time-averaged" sense, baroclinic instability and energy transfer provides the energy source for Kuroshio anticyclonic <span class="hlt">eddy</span> shedding and the accompanied cyclonic <span class="hlt">eddy</span> growth in Luzon Strait (this <span class="hlt">eddy</span> pair will be called AC/C-Es for short). To take into account the "nonstationary and intermittent" nature, the temporal evolutions of energy transfer during a typical Kuroshio <span class="hlt">eddy</span> shedding process are investigated using the localized multi-scale-window energy and vorticity analysis, or MS-EVA for short. Two stages are roughly distinguished according to the evolutionary nature of this process: the growing stage and the shedding stage. In the growing stage, the energy source straddles both the AC/C-Es, indicating mean flow supplies potential energy to both AC/C-Es for growth; the energy transfer hot spot persistently strengthens and expands horizontally as well as vertically from 200-300m to 100-400m depth range, culminating in a maximum of approximately 1.5×10-7 m2s-3. In the shedding stage, the energy source moves onto the accompanied cyclonic <span class="hlt">eddy</span>, i.e., the mean flow now supplies energy mainly to the cyclonic <span class="hlt">eddy</span>, making it strong enough to cut off the anticyclonic <span class="hlt">eddy</span> from Kuroshio, leading to the Kuroshio <span class="hlt">eddy</span> shedding.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..318a2055K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..318a2055K"><span>Formation of Maximum <span class="hlt">Eddy</span> Current Force by Non Ferrous Materials</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kader, M. M. A.; Razali, Z. B.; Yasin, N. S. M.; Daud, M. H.</p> <p>2018-03-01</p> <p>This project is concerned with the study of <span class="hlt">eddy</span> current effects on various materials such as aluminum, copper and magnesium. Two types of magnets used in this study; magnetic ferrite (ZnFe+2O4) and magnetic neodymium (NdFeBN42). <span class="hlt">Eddy</span> current force will be exerted to these materials due to current flows along the magnet. This force depends on the type of magnet, type of material and the gap between the magnet and the material or between the two magnets. The results show that at constant magnet to material gap, the <span class="hlt">eddy</span> current force decreases as the magnet to magnet gap increases. Similarly, at constant magnet to magnet gap, the <span class="hlt">eddy</span> current force decreases as the magnet to material gap increases. The minimum force was achieved when the gap of magnet to material is maximum, similarly to the gap of magnet to magnet. The weakest force was between Copper and Neodymium at a magnet to material gap of 20 mm and magnet to magnet gap of 40 mm; the <span class="hlt">eddy</span> current force was 0.00048 N. The strongest force (maximum) was between Magnesium and Ferrite and 0.42273 N at a magnet to material gap of 3 mm and magnet to magnet gap of 5 mm.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-sl4-137-3608.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-sl4-137-3608.html"><span>View of cold water <span class="hlt">eddies</span> in Falkland Current off southern Argentina</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1973-12-14</p> <p>SL4-137-3608 (14 Dec. 1973) --- A view of cold water <span class="hlt">eddies</span> in the Falkland Current off the South Atlantic coast of southern Argentina as seen from the Skylab space station in Earth orbit. This picture was taken by one of the Skylab 4 crewmen using a hand-held 70mm Hasselblad camera. This land area (left corner) extends south along the coast from Puerto Deseado (center left border) for about 50 miles. Within the ocean, several light blue areas are visible and represent the occurrence of plankton with the Falkland Current. Over the ocean, the cold water <span class="hlt">eddies</span> are identified by the circular cloud-free areas within the cloud street pattern and bordered by cumulus cloud buildup (white). The cloud streets indicate the wind is from the southwest and do not form over <span class="hlt">eddies</span> because energy form the atmosphere is absorbed by the cold ocean water. On the downwind side of the <span class="hlt">eddies</span>, cumulus clouds tend to form as the cold moist air flows over the warmer water. Similar cloud and <span class="hlt">eddy</span> features have been observed by the Skylab 4 crewmen in the Yucatan Current off Yucatan Peninsula and in some parts of the South Pacific. Studies are underway by Dr. George Maul, NOAA, and Dr. Robert Stevenson, ONR, to determine the significance of the cold water <span class="hlt">eddies</span> to ocean dynamics. Photo credit: NASA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150020832&hterms=well+test&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dwell%2Btest','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150020832&hterms=well+test&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dwell%2Btest"><span>Effects of Mesoscale <span class="hlt">Eddies</span> in the Active Mixed Layer: Test of the Parametrisation in <span class="hlt">Eddy</span> Resolving Simulations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Luneva, M. V.; Clayson, C. A.; Dubovikov, Mikhail</p> <p>2015-01-01</p> <p>In <span class="hlt">eddy</span> resolving simulations, we test a mixed layer mesoscale parametrisation, developed recently by Canuto and Dubovikov [Ocean Model., 2011, 39, 200-207]. With no adjustable parameters, the parametrisation yields the horizontal and vertical mesoscale fluxes in terms of coarse-resolution fields and <span class="hlt">eddy</span> kinetic energy (EKE). We compare terms of the parametrisation diagnosed from coarse-grained fields with the <span class="hlt">eddy</span> mesoscale fluxes diagnosed directly from the high resolution model. An expression for the EKE in terms of mean fields has also been found to get a closed parametrisation in terms of the mean fields only. In 40 numerical experiments we simulated two types of flows: idealised flows driven by baroclinic instabilities only, and more realistic flows, driven by wind and surface fluxes as well as by inflow-outflow. The diagnosed quasi-instantaneous horizontal and vertical mesoscale buoyancy fluxes (averaged over 1-2 degrees and 10 days) demonstrate a strong scatter typical for turbulent flows, however, the fluxes are positively correlated with the parametrisation with higher (0.5-0.74) correlations at the experiments with larger baroclinic radius Rossby. After being averaged over 3-4 months, diffusivities diagnosed from the <span class="hlt">eddy</span> resolving simulations are consistent with the parametrisation for a broad range of parameters. Diagnosed vertical mesoscale fluxes restratify mixed layer and are in a good agreement with the parametrisation unless vertical turbulent mixing in the upper layer becomes strong enough in comparison with mesoscale advection. In the latter case, numerical simulations demonstrate that the deviation of the fluxes from the parametrisation is controlled by dimensionless parameter estimating the ratio of vertical turbulent mixing term to mesoscale advection. An analysis using a modified omega-equation reveals that the effects of the vertical mixing of vorticity is responsible for the two-three fold amplification of vertical mesoscale flux</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......157W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......157W"><span>From Phenomena to Objects: Segmentation of Fuzzy Objects and its Application to Oceanic <span class="hlt">Eddies</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Qingling</p> <p></p> <p>A challenging image analysis problem that has received limited attention to date is the isolation of fuzzy objects---i.e. those with inherently indeterminate boundaries---from continuous field data. This dissertation seeks to bridge the gap between, on the one hand, the recognized need for Object-Based Image Analysis of fuzzy remotely sensed features, and on the other, the optimization of existing image segmentation techniques for the extraction of more discretely bounded features. Using mesoscale oceanic <span class="hlt">eddies</span> as a case study of a fuzzy object class evident in Sea Surface Height Anomaly (SSHA) imagery, the dissertation demonstrates firstly, that the widely used region-growing and watershed segmentation techniques can be optimized and made comparable in the absence of ground truth data using the principle of parsimony. However, they both have significant shortcomings, with the region growing procedure creating contour polygons that do not follow the shape of <span class="hlt">eddies</span> while the watershed technique frequently subdivides <span class="hlt">eddies</span> or groups together separate <span class="hlt">eddy</span> objects. Secondly, it was determined that these problems can be remedied by using a novel Non-Euclidian Voronoi (NEV) tessellation technique. NEV is effective in isolating the extrema associated with <span class="hlt">eddies</span> in SSHA data while using a non-Euclidian cost-distance based procedure (based on cumulative gradients in ocean height) to define the boundaries between fuzzy objects. Using this procedure as the first stage in isolating candidate <span class="hlt">eddy</span> objects, a novel "region-shrinking" multicriteria <span class="hlt">eddy</span> identification algorithm was developed that includes consideration of shape and vorticity. <span class="hlt">Eddies</span> identified by this region-shrinking technique compare favorably with those identified by existing techniques, while simplifying and improving existing automated <span class="hlt">eddy</span> detection algorithms. However, it also tends to find a larger number of <span class="hlt">eddies</span> as a result of its ability to separate what other techniques identify as connected</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5509091','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5509091"><span>Healing of Fatigue Crack in 1045 Steel by Using <span class="hlt">Eddy</span> Current Treatment</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yang, Chuan; Xu, Wenchen; Guo, Bin; Shan, Debin; Zhang, Jian</p> <p>2016-01-01</p> <p>In order to investigate the methods to heal fatigue cracks in metals, tubular specimens of 1045 steel with axial and radial fatigue cracks were treated under the <span class="hlt">eddy</span> current. The optical microscope was employed to examine the change of fatigue cracks of specimens before and after the <span class="hlt">eddy</span> current treatment. The results show that the fatigue cracks along the axial direction of the specimen could be healed effectively in the fatigue crack initiation zone and the crack tip zone under the <span class="hlt">eddy</span> current treatment, and the healing could occur within a very short time. The voltage breakdown and the transient thermal compressive stress caused by the detouring of <span class="hlt">eddy</span> current around the fatigue crack were the main factors contributing to the healing in the fatigue crack initiation zone and the crack tip zone, respectively. <span class="hlt">Eddy</span> current treatment may be a novel and effective method for crack healing. PMID:28773761</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28773761','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28773761"><span>Healing of Fatigue Crack in 1045 Steel by Using <span class="hlt">Eddy</span> Current Treatment.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Chuan; Xu, Wenchen; Guo, Bin; Shan, Debin; Zhang, Jian</p> <p>2016-07-29</p> <p>In order to investigate the methods to heal fatigue cracks in metals, tubular specimens of 1045 steel with axial and radial fatigue cracks were treated under the <span class="hlt">eddy</span> current. The optical microscope was employed to examine the change of fatigue cracks of specimens before and after the <span class="hlt">eddy</span> current treatment. The results show that the fatigue cracks along the axial direction of the specimen could be healed effectively in the fatigue crack initiation zone and the crack tip zone under the <span class="hlt">eddy</span> current treatment, and the healing could occur within a very short time. The voltage breakdown and the transient thermal compressive stress caused by the detouring of <span class="hlt">eddy</span> current around the fatigue crack were the main factors contributing to the healing in the fatigue crack initiation zone and the crack tip zone, respectively. <span class="hlt">Eddy</span> current treatment may be a novel and effective method for crack healing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915563C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915563C"><span>Contribution of mesoscale <span class="hlt">eddies</span> to Black Sea ventilation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Capet, Arthur; Mason, Evan; Pascual, Ananda; Grégoire, Marilaure</p> <p>2017-04-01</p> <p>The shoaling of the Black Sea oxycline is one of the most urgent environmental issues in the Black Sea. The permanent oxycline derives directly from the Black Sea permanent stratification and has shoaled alarmingly in the last decades, due to a shifting balance between oxygen consumption and ventilation processes (Capet et al. 2016). The understanding of this balance is thus of the utmost importance and requires to quantify 1) the export of nutrients and organic materials from the shelf regions to the open sea and 2) the ventilation processes. These two processes being influenced by mesoscale features, it is critical to understand the role of the semi-permanent mesoscale structures in horizontal (center/periphery) and vertical (diapycnal and isopycnal) exchanges. A useful insight can be obtained by merging observations from satellite altimeter and in situ profilers (ARGO). In such composite analyses, <span class="hlt">eddies</span> are first automatically identified and tracked from altimeter data (Mason et al. 2014, py-<span class="hlt">eddy</span>-tracker). Vertical ARGO profiles are then expressed in terms of their position relative to <span class="hlt">eddy</span> centers and radii. Derived statistics indicate how consistently mesoscale <span class="hlt">eddies</span> alter the vertical structure, and provide a deeper understanding of the associated horizontal and vertical fluxes. However, this data-based approach is limited in the Black Sea due to the lower quality of gridded altimetric products in the vicinity of the coast, where semi-permanent mesoscale structures prevail. To complement the difficult analysis of this sparse dataset, a compositing methodology. is also applied to model outputs from the 5km GHER-BHAMBI Black Sea implementation (CMEMS BS-MFC). Characteristic biogeochemical anomalies associated with <span class="hlt">eddies</span> in the model are analyzed per se, and compared to the observation-based analysis. Capet, A., Stanev, E. V., Beckers, J.-M., Murray, J. W., and Grégoire, M.: Decline of the Black Sea oxygen inventory, Biogeosciences, 13, 1287-1297, doi:10</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850000225&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DEddy%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850000225&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DEddy%2Bcurrent"><span>Inexpensive <span class="hlt">Eddy</span>-Current Standard</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Berry, Robert F., Jr.</p> <p>1985-01-01</p> <p>Radial crack replicas serve as evaluation standards. Technique entails intimately joining two pieces of appropriate aluminum alloy stock and centering drilled hole through and along interface. Bore surface of hole presents two vertical stock interface lines 180 degrees apart. These lines serve as radial crack defect replicas during <span class="hlt">eddy</span>-current technique setup and verification.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1413277','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1413277"><span>System for evaluating weld quality using <span class="hlt">eddy</span> currents</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Todorov, Evgueni I.; Hay, Jacob</p> <p>2017-12-12</p> <p>Electromagnetic and <span class="hlt">eddy</span> current techniques for fast automated real-time and near real-time inspection and monitoring systems for high production rate joining processes. An <span class="hlt">eddy</span> current system, array and method for the fast examination of welds to detect anomalies such as missed seam (MS) and lack of penetration (LOP) the system, array and methods capable of detecting and sizing surface and slightly subsurface flaws at various orientations in connection with at least the first and second weld pass.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160005936','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160005936"><span>Design and Application of Hybrid Magnetic Field-<span class="hlt">Eddy</span> Current Probe</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wincheski, Buzz; Wallace, Terryl; Newman, Andy; Leser, Paul; Simpson, John</p> <p>2013-01-01</p> <p>The incorporation of magnetic field sensors into <span class="hlt">eddy</span> current probes can result in novel probe designs with unique performance characteristics. One such example is a recently developed electromagnetic probe consisting of a two-channel magnetoresistive sensor with an embedded single-strand <span class="hlt">eddy</span> current inducer. Magnetic flux leakage maps of ferrous materials are generated from the DC sensor response while high-resolution <span class="hlt">eddy</span> current imaging is simultaneously performed at frequencies up to 5 megahertz. In this work the design and optimization of this probe will be presented, along with an application toward analysis of sensory materials with embedded ferromagnetic shape-memory alloy (FSMA) particles. The sensory material is designed to produce a paramagnetic to ferromagnetic transition in the FSMA particles under strain. Mapping of the stray magnetic field and <span class="hlt">eddy</span> current response of the sample with the hybrid probe can thereby image locations in the structure which have experienced an overstrain condition. Numerical modeling of the probe response is performed with good agreement with experimental results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=global+AND+warming+AND+effects&pg=7&id=EJ391198','ERIC'); return false;" href="https://eric.ed.gov/?q=global+AND+warming+AND+effects&pg=7&id=EJ391198"><span>Global <span class="hlt">Warming</span>.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Hileman, Bette</p> <p>1989-01-01</p> <p>States the foundations of the theory of global <span class="hlt">warming</span>. Describes methodologies used to measure the changes in the atmosphere. Discusses steps currently being taken in the United States and the world to slow the <span class="hlt">warming</span> trend. Recognizes many sources for the <span class="hlt">warming</span> and the possible effects on the earth. (MVL)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED086442.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED086442.pdf"><span>Nondestructive Testing <span class="hlt">Eddy</span> Current Basic Principles RQA/M1-5330.12 (V-I).</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.</p> <p></p> <p>As one in the series of programmed instruction handbooks, prepared by the U.S. space program, home study material is presented in this volume concerning familiarization and orientation on basic <span class="hlt">eddy</span> current principles. The subject is presented under the following headings: Basic <span class="hlt">Eddy</span> Current Concepts, <span class="hlt">Eddy</span> Current Generation and Distribution,…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP13A2045V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP13A2045V"><span>A High-Resolution Record of <span class="hlt">Warm</span> Water Inflow and Iceberg Calving in Upernavik Isfjord During the Past 150 Years.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vermassen, F.; Andresen, C. S.; Sabine, S.; Holtvoeth, J.; Cordua, A. E.; Wangner, D. J.; Dyke, L. M.; Kjaer, K. H.; Kokfelt, U.; Haubner, K.</p> <p>2016-12-01</p> <p>There is a growing body of evidence demonstrating that changes in <span class="hlt">warm</span> water inflow to Greenlandic fjords are linked to the rapid retreat of marine-terminating outlet glaciers. This process is thought to be responsible for a substantial component of the increased mass loss from the Greenland Ice Sheet over the last two decades. Sediment <span class="hlt">cores</span> from glaciated fjords provide high-resolution sedimentological and biological proxy records which can be used to evaluate the interplay of <span class="hlt">warm</span> water inflow and glacier calving over recent time scales. In this study, multiple short <span class="hlt">cores</span> ( 2 m) from Upernavik Isfjord, West Greenland, were analysed to establish a multi-proxy record of glacier behaviour and oceanographic conditions that spans the past 150 years. The down-<span class="hlt">core</span> variation in the amount of ice-rafted debris reveals periods of increased glacier calving, and biomarker proxies are used to reconstruct variability in the inflow of <span class="hlt">warm</span>, Atlantic-sourced water to the fjord. Measurements of the sortable silt grain size are used to reconstruct bottom-current strength; periods of vigorous current flow are assumed to be due to enhanced <span class="hlt">warm</span> water inflow. Finally, a record of glacier terminus position changes, derived from historical observations and satellite imagery, allows comparison of our new proxy records with the retreat of the ice margin from 1849 onwards. We use these data to assess the relative importance of mechanisms controlling the (rapid) retreat of marine-terminating glaciers in Upernavik Isfjord.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.6352P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.6352P"><span>Importance of ocean mesoscale variability for air-sea interactions in the Gulf of Mexico</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Putrasahan, D. A.; Kamenkovich, I.; Le Hénaff, M.; Kirtman, B. P.</p> <p>2017-06-01</p> <p>Mesoscale variability of currents in the Gulf of Mexico (GoM) can affect oceanic heat advection and air-sea heat exchanges, which can influence climate extremes over North America. This study is aimed at understanding the influence of the oceanic mesoscale variability on the lower atmosphere and air-sea heat exchanges. The study contrasts global climate model (GCM) with 0.1° ocean resolution (high resolution; HR) with its low-resolution counterpart (1° ocean resolution with the same 0.5° atmosphere resolution; LR). The LR simulation is relevant to current generation of GCMs that are still unable to resolve the oceanic mesoscale. Similar to observations, HR exhibits positive correlation between sea surface temperature (SST) and surface turbulent heat flux anomalies, while LR has negative correlation. For HR, we decompose lateral advective heat fluxes in the upper ocean into mean (slowly varying) and mesoscale-<span class="hlt">eddy</span> (fast fluctuations) components. We find that the <span class="hlt">eddy</span> flux divergence/convergence dominates the lateral advection and correlates well with the SST anomalies and air-sea latent heat exchanges. This result suggests that oceanic mesoscale advection supports <span class="hlt">warm</span> SST anomalies that in turn feed surface heat flux. We identify anticyclonic <span class="hlt">warm-core</span> circulation patterns (associated Loop Current and rings) which have an average diameter of 350 km. These <span class="hlt">warm</span> anomalies are sustained by <span class="hlt">eddy</span> heat flux convergence at submonthly time scales and have an identifiable imprint on surface turbulent heat flux, atmospheric circulation, and convective precipitation in the northwest portion of an averaged anticyclone.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1079867.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1079867.pdf"><span>Interview with <span class="hlt">Eddie</span> Reisch</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Owen, Hazel</p> <p>2013-01-01</p> <p><span class="hlt">Eddie</span> Reisch is currently working as a policy advisor for Te Reo Maori Operational Policy within the Student Achievement group with the Ministry of Education in New Zealand, where he has implemented and led a range of e-learning initiatives and developments, particularly the Virtual Learning Network (VLN). He is regarded as one of the leading…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70044270','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70044270"><span>Deep Arctic Ocean <span class="hlt">warming</span> during the last glacial cycle</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cronin, T. M.; Dwyer, G.S.; Farmer, J.; Bauch, H.A.; Spielhagen, R.F.; Jakobsson, M.; Nilsson, J.; Briggs, W.M.; Stepanova, A.</p> <p>2012-01-01</p> <p>In the Arctic Ocean, the cold and relatively fresh water beneath the sea ice is separated from the underlying warmer and saltier Atlantic Layer by a halocline. Ongoing sea ice loss and <span class="hlt">warming</span> in the Arctic Ocean have demonstrated the instability of the halocline, with implications for further sea ice loss. The stability of the halocline through past climate variations is unclear. Here we estimate intermediate water temperatures over the past 50,000 years from the Mg/Ca and Sr/Ca values of ostracods from 31 Arctic sediment <span class="hlt">cores</span>. From about 50 to 11 kyr ago, the central Arctic Basin from 1,000 to 2,500 m was occupied by a water mass we call Glacial Arctic Intermediate Water. This water mass was 1–2 °C warmer than modern Arctic Intermediate Water, with temperatures peaking during or just before millennial-scale Heinrich cold events and the Younger Dryas cold interval. We use numerical modelling to show that the intermediate depth <span class="hlt">warming</span> could result from the expected decrease in the flux of fresh water to the Arctic Ocean during glacial conditions, which would cause the halocline to deepen and push the <span class="hlt">warm</span> Atlantic Layer into intermediate depths. Although not modelled, the reduced formation of cold, deep waters due to the exposure of the Arctic continental shelf could also contribute to the intermediate depth <span class="hlt">warming</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26401427','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26401427"><span><span class="hlt">Eddy</span> Current Rail Inspection Using AC Bridge Techniques.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Ze; Koffman, Andrew D; Waltrip, Bryan C; Wang, Yicheng</p> <p>2013-01-01</p> <p>AC bridge techniques commonly used for precision impedance measurements have been adapted to develop an <span class="hlt">eddy</span> current sensor for rail defect detection. By using two detection coils instead of just one as in a conventional sensor, we can balance out the large baseline signals corresponding to a normal rail. We have significantly enhanced the detection sensitivity of the <span class="hlt">eddy</span> current method by detecting and demodulating the differential signal of the two coils induced by rail defects, using a digital lock-in amplifier algorithm. We have also explored compensating for the lift-off effect of the <span class="hlt">eddy</span> current sensor due to vibrations by using the summing signal of the detection coils to measure the lift-off distance. The dominant component of the summing signal is a constant resulting from direct coupling from the excitation coil, which can be experimentally determined. The remainder of the summing signal, which decreases as the lift-off distance increases, is induced by the secondary <span class="hlt">eddy</span> current. This dependence on the lift-off distance is used to calibrate the differential signal, allowing for a more accurate characterization of the defects. Simulated experiments on a sample rail have been performed using a computer controlled X-Y moving table with the X-axis mimicking the train's motion and the Y-axis mimicking the train's vibrational bumping. Experimental results demonstrate the effectiveness of the new detection method.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4813873','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4813873"><span>Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive <span class="hlt">Eddy</span> Current Testing Applications</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rifai, Damhuji; Abdalla, Ahmed N.; Ali, Kharudin; Razali, Ramdan</p> <p>2016-01-01</p> <p>Non-destructive <span class="hlt">eddy</span> current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of <span class="hlt">eddy</span> current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in <span class="hlt">eddy</span> current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing <span class="hlt">eddy</span> current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of <span class="hlt">eddy</span> current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in <span class="hlt">eddy</span> current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in <span class="hlt">eddy</span> current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive <span class="hlt">eddy</span> current testing also be given at the end of this paper. PMID:26927123</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26927123','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26927123"><span>Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive <span class="hlt">Eddy</span> Current Testing Applications.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rifai, Damhuji; Abdalla, Ahmed N; Ali, Kharudin; Razali, Ramdan</p> <p>2016-02-26</p> <p>Non-destructive <span class="hlt">eddy</span> current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of <span class="hlt">eddy</span> current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in <span class="hlt">eddy</span> current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing <span class="hlt">eddy</span> current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of <span class="hlt">eddy</span> current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in <span class="hlt">eddy</span> current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in <span class="hlt">eddy</span> current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive <span class="hlt">eddy</span> current testing also be given at the end of this paper.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3813327','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3813327"><span>Global <span class="hlt">warming</span> triggers the loss of a key Arctic refugium</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rühland, K. M.; Paterson, A. M.; Keller, W.; Michelutti, N.; Smol, J. P.</p> <p>2013-01-01</p> <p>We document the rapid transformation of one of the Earth's last remaining Arctic refugia, a change that is being driven by global <span class="hlt">warming</span>. In stark contrast to the amplified <span class="hlt">warming</span> observed throughout much of the Arctic, the Hudson Bay Lowlands (HBL) of subarctic Canada has maintained cool temperatures, largely due to the counteracting effects of persistent sea ice. However, since the mid-1990s, climate of the HBL has passed a tipping point, the pace and magnitude of which is exceptional even by Arctic standards, exceeding the range of regional long-term variability. Using high-resolution, palaeolimnological records of algal remains in dated lake sediment <span class="hlt">cores</span>, we report that, within this short period of intense <span class="hlt">warming</span>, striking biological changes have occurred in the region's freshwater ecosystems. The delayed and intense <span class="hlt">warming</span> in this remote region provides a natural observatory for testing ecosystem resilience under a rapidly changing climate, in the absence of direct anthropogenic influences. The environmental repercussions of this climate change are of global significance, influencing the huge store of carbon in the region's extensive peatlands, the world's southern-most polar bear population that depends upon Hudson Bay sea ice and permafrost for survival, and native communities who rely on this landscape for sustenance. PMID:24107529</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24107529','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24107529"><span>Global <span class="hlt">warming</span> triggers the loss of a key Arctic refugium.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rühland, K M; Paterson, A M; Keller, W; Michelutti, N; Smol, J P</p> <p>2013-12-07</p> <p>We document the rapid transformation of one of the Earth's last remaining Arctic refugia, a change that is being driven by global <span class="hlt">warming</span>. In stark contrast to the amplified <span class="hlt">warming</span> observed throughout much of the Arctic, the Hudson Bay Lowlands (HBL) of subarctic Canada has maintained cool temperatures, largely due to the counteracting effects of persistent sea ice. However, since the mid-1990s, climate of the HBL has passed a tipping point, the pace and magnitude of which is exceptional even by Arctic standards, exceeding the range of regional long-term variability. Using high-resolution, palaeolimnological records of algal remains in dated lake sediment <span class="hlt">cores</span>, we report that, within this short period of intense <span class="hlt">warming</span>, striking biological changes have occurred in the region's freshwater ecosystems. The delayed and intense <span class="hlt">warming</span> in this remote region provides a natural observatory for testing ecosystem resilience under a rapidly changing climate, in the absence of direct anthropogenic influences. The environmental repercussions of this climate change are of global significance, influencing the huge store of carbon in the region's extensive peatlands, the world's southern-most polar bear population that depends upon Hudson Bay sea ice and permafrost for survival, and native communities who rely on this landscape for sustenance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMS...182...56C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMS...182...56C"><span>Phytoplankton response to the contrasting physical regimes in the eastern Arabian Sea during north east monsoon</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chndrasekhararao, A. V.; Kurian, Siby; Vidya, P. J.; Gauns, Mangesh; Shenoy, Damodar M.; Mulla, Amara; Naik, Hema; Reddy, T. Venugopal; Naqvi, S. W. A.</p> <p>2018-06-01</p> <p>Phytoplankton abundance and composition in two contrasting physical regimes - convective mixing in the northeastern Arabian Sea (NEAS) and Arabian Sea mini <span class="hlt">warm</span> pool (ASMWP) in the southeastern Arabian Sea (SEAS) - were investigated during the northeast monsoon (NEM) of 2015 and 2017. Observations in 2015 were carried out late during the season, and only one station in the north (at 21°N latitude) fell within the zone of convective mixing where microplankton was dominated by diatoms. In 2017, convective mixing occurred even at 16°N latitude, but the microplankton contribution was low, presumably due to low Si/N ratios. Within the convective mixing regime of the NEAS, chlorophyll (Chl) a concentrations were higher in 2015 (maximum 1080 ng L-1; average 493 ng L-1) than in 2017 (maximum 673 ng L-1; average 263 ng L-1). In contrast, picophytoplankton were dominant in the ASMWP of the SEAS with peak abundance associated with the subsurface chlorophyll maximum. A <span class="hlt">warm</span> <span class="hlt">core</span> <span class="hlt">eddy</span> was present in 2015 in the SEAS where four times higher Prochlorococcus counts were found within the <span class="hlt">core</span> of the <span class="hlt">eddy</span> than at its periphery. This study provides the first description of the phytoplankton community in the ASMWP. Our results clearly demonstrate phytoplankton response to the contrasting physical conditions, highlighting the role of bio-physical coupling in the productivity of the Arabian Sea.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011DSRII..58.2533B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011DSRII..58.2533B"><span>Fronts, meanders and <span class="hlt">eddies</span> in Drake Passage during the ANT-XXIII/3 cruise in January-February 2006: A satellite perspective</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barré, Nicolas; Provost, Christine; Renault, Alice; Sennéchael, Nathalie</p> <p>2011-12-01</p> <p>We used satellite altimetric data to provide a context for the results of the ANT-XXIII/3 cruise in January-February 2006 both in time (16 years) and space (the whole of Drake Passage). The repeat of the hydrographical section within 3 weeks permitted different comparisons between the in-situ datasets and the satellite data products. Comparisons suggested that the multi-satellite product improved the temporal resolution on a Jason-1 track. A detailed analysis of the four absolute dynamic topography maps contemporaneous with the ANT-XXIII/3 cruise permitted identification of the location of the frontal branches of the Antarctic Circumpolar Current, of the major meanders and <span class="hlt">eddies</span>. This spatial context proved particularly valuable for the interpretation of the in-situ data (see companion papers of Provost et al., 2011; Renault et al., 2011; Sudre et al., 2011). The altimetric time-series documented the long-term trends in sea-surface height, the recurrence of major frontal meanders and <span class="hlt">eddies</span> and the statistical links between them. Negative trends in the Yaghan Basin indicated that both the Subantarctic Front and the Polar Front have shifted to the north of their climatological location. This northward shift in the Yaghan Basin contrasts with the large-scale southward shift in the Polar Front current <span class="hlt">core</span> described in the literature, and is probably related to the local bottom topography in Drake Passage. Sea-level anomaly patterns observed during the cruise were related to statistical modes of the corresponding variations in Drake Passage. For example, the southward meander of the Subantarctic Front at the entrance to Drake Passage was part of a dipole comprising an adjacent Polar Front meander and occurred with a close to annual periodicity. A census of <span class="hlt">eddies</span> in the Ona Basin revealed that the spatial distribution of anticyclonic <span class="hlt">eddies</span> was consistent with generation from a meander of the Polar and Southern ACC Fronts over the Ona Seafloor Depression, while</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JMMM..320E1053A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JMMM..320E1053A"><span>Numerical evaluation of spatial time-varying magnetisation of ferritic tubes excited with a C-<span class="hlt">core</span> magnet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Augustyniak, M.; Augustyniak, B.; Chmielewski, M.; Sadowski, W.</p> <p></p> <p>The study concerns ferritic steel tubes of varying thickness magnetised with a C-<span class="hlt">core</span> magnet. Modelling of the internal time- and space-field distribution is carried out. A finite element (FE) time-transient solution is applied, taking into account the material nonlinear B( H) characteristics, <span class="hlt">eddy</span> currents and a saw-tooth form of the driving voltage.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019682','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019682"><span>Distribution of seabirds in the northern Gulf of Mexico in relation to mesoscale features: Initial observations</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ribic, C.A.; Davis, R.; Hess, N.; Peake, D.</p> <p>1997-01-01</p> <p>The presence of seabirds was related to offshore surface <span class="hlt">eddies</span> and the freshwater plume of the Mississippi River in the northern Gulf of Mexico during autumn, winter, spring, and summer 1992-1993. Skuas (Stercorarius spp.) were the most common bird seen in autumn, whereas skuas and gulls (Larus spp.) were the most common in winter. Few birds were seen in the spring, and terns (Sterna spp.) were the most common birds seen in late summer. During summer, terns were associated with the freshwater plume of the Mississippi River. In the winter, herring (Larus argentatus) and laughing gulls (L. artricilla) were associated with areas with steep thermoclines, while pomarine skuas (Stercorarius pomarinus) were found in areas of low productivity. Herring and laughing gulls in the winter, all birds in the spring, and terns in the summer were more common outside <span class="hlt">eddies</span>. Only pomarine skuas in the winter were seen more commonly inside <span class="hlt">warm-core</span> <span class="hlt">eddies</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004APS..DFD.GD001M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004APS..DFD.GD001M"><span>Large <span class="hlt">Eddy</span> Simulation of Engineering Flows: A Bill Reynolds Legacy.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moin, Parviz</p> <p>2004-11-01</p> <p>The term, Large <span class="hlt">eddy</span> simulation, LES, was coined by Bill Reynolds, thirty years ago when he and his colleagues pioneered the introduction of LES in the engineering community. Bill's legacy in LES features his insistence on having a proper mathematical definition of the large scale field independent of the numerical method used, and his vision for using numerical simulation output as data for research in turbulence physics and modeling, just as one would think of using experimental data. However, as an engineer, Bill was pre-dominantly interested in the predictive capability of computational fluid dynamics and in particular LES. In this talk I will present the state of the art in large <span class="hlt">eddy</span> simulation of complex engineering flows. Most of this technology has been developed in the Department of Energy's ASCI Program at Stanford which was led by Bill in the last years of his distinguished career. At the <span class="hlt">core</span> of this technology is a fully implicit non-dissipative LES code which uses unstructured grids with arbitrary elements. A hybrid Eulerian/ Largangian approach is used for multi-phase flows, and chemical reactions are introduced through dynamic equations for mixture fraction and reaction progress variable in conjunction with flamelet tables. The predictive capability of LES is demonstrated in several validation studies in flows with complex physics and complex geometry including flow in the combustor of a modern aircraft engine. LES in such a complex application is only possible through efficient utilization of modern parallel super-computers which was recognized and emphasized by Bill from the beginning. The presentation will include a brief mention of computer science efforts for efficient implementation of LES.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=alternative+AND+medicine+AND+effective&pg=2&id=EJ445277','ERIC'); return false;" href="https://eric.ed.gov/?q=alternative+AND+medicine+AND+effective&pg=2&id=EJ445277"><span>Efficient <span class="hlt">Warm</span>-ups: Creating a <span class="hlt">Warm</span>-up That Works.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lauffenburger, Sandra Kay</p> <p>1992-01-01</p> <p>Proper <span class="hlt">warm</span>-up is important for any activity, but designing an effective <span class="hlt">warm</span>-up can be time consuming. An alternative approach is to take a cue from Laban Movement Analysis (LMA) and consider movement design from the perspective of space and planes of motion. Efficient <span class="hlt">warm</span>-up exercises using LMA are described. (SM)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...48..987Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...48..987Z"><span>Relative roles of differential SST <span class="hlt">warming</span>, uniform SST <span class="hlt">warming</span> and land surface <span class="hlt">warming</span> in determining the Walker circulation changes under global <span class="hlt">warming</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Lei; Li, Tim</p> <p>2017-02-01</p> <p>Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) <span class="hlt">warming</span>, extra land surface <span class="hlt">warming</span> and differential SST <span class="hlt">warming</span>, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST <span class="hlt">warming</span> is through so-called "richest-get-richer" mechanism. In response to a uniform surface <span class="hlt">warming</span>, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface <span class="hlt">warming</span> than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST <span class="hlt">warming</span> also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28273897','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28273897"><span>Daytime <span class="hlt">warming</span> has stronger negative effects on soil nematodes than night-time <span class="hlt">warming</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui</p> <p>2017-03-07</p> <p><span class="hlt">Warming</span> of the climate system is unequivocal, that is, stronger <span class="hlt">warming</span> during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric <span class="hlt">warming</span>. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three <span class="hlt">warming</span> modes, i.e. daytime <span class="hlt">warming</span>, night-time <span class="hlt">warming</span> and diurnal <span class="hlt">warming</span>, were taken to perform the asymmetric <span class="hlt">warming</span> condition. Our results showed that the daytime and diurnal <span class="hlt">warming</span> treatment significantly decreased soil nematodes density, and night-time <span class="hlt">warming</span> treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental <span class="hlt">warming</span> showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and <span class="hlt">warming</span> induced drying are most important factors affecting soil nematode community under the current global asymmetric <span class="hlt">warming</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28317914','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28317914"><span>Daytime <span class="hlt">warming</span> has stronger negative effects on soil nematodes than night-time <span class="hlt">warming</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui</p> <p>2017-03-20</p> <p><span class="hlt">Warming</span> of the climate system is unequivocal, that is, stronger <span class="hlt">warming</span> during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric <span class="hlt">warming</span>. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three <span class="hlt">warming</span> modes, i.e. daytime <span class="hlt">warming</span>, night-time <span class="hlt">warming</span> and diurnal <span class="hlt">warming</span>, were taken to perform the asymmetric <span class="hlt">warming</span> condition. Our results showed that the daytime and diurnal <span class="hlt">warming</span> treatment significantly decreased soil nematodes density, and night-time <span class="hlt">warming</span> treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental <span class="hlt">warming</span> showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and <span class="hlt">warming</span> induced drying are most important factors affecting soil nematode community under the current global asymmetric <span class="hlt">warming</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5358016','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5358016"><span>Daytime <span class="hlt">warming</span> has stronger negative effects on soil nematodes than night-time <span class="hlt">warming</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui</p> <p>2017-01-01</p> <p><span class="hlt">Warming</span> of the climate system is unequivocal, that is, stronger <span class="hlt">warming</span> during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric <span class="hlt">warming</span>. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three <span class="hlt">warming</span> modes, i.e. daytime <span class="hlt">warming</span>, night-time <span class="hlt">warming</span> and diurnal <span class="hlt">warming</span>, were taken to perform the asymmetric <span class="hlt">warming</span> condition. Our results showed that the daytime and diurnal <span class="hlt">warming</span> treatment significantly decreased soil nematodes density, and night-time <span class="hlt">warming</span> treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental <span class="hlt">warming</span> showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and <span class="hlt">warming</span> induced drying are most important factors affecting soil nematode community under the current global asymmetric <span class="hlt">warming</span>. PMID:28317914</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatSR...744888Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatSR...744888Y"><span>Daytime <span class="hlt">warming</span> has stronger negative effects on soil nematodes than night-time <span class="hlt">warming</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui</p> <p>2017-03-01</p> <p><span class="hlt">Warming</span> of the climate system is unequivocal, that is, stronger <span class="hlt">warming</span> during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric <span class="hlt">warming</span>. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three <span class="hlt">warming</span> modes, i.e. daytime <span class="hlt">warming</span>, night-time <span class="hlt">warming</span> and diurnal <span class="hlt">warming</span>, were taken to perform the asymmetric <span class="hlt">warming</span> condition. Our results showed that the daytime and diurnal <span class="hlt">warming</span> treatment significantly decreased soil nematodes density, and night-time <span class="hlt">warming</span> treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental <span class="hlt">warming</span> showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and <span class="hlt">warming</span> induced drying are most important factors affecting soil nematode community under the current global asymmetric <span class="hlt">warming</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP24A..07D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP24A..07D"><span>Greenland ice <span class="hlt">cores</span> tell tales on past sea level changes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dahl-Jensen, D.</p> <p>2017-12-01</p> <p>All the deep ice <span class="hlt">cores</span> drilled to the base of the Greenland ice sheet contain ice from the previous <span class="hlt">warm</span> climate period, the Eemian 130-115 thousand years before present. This demonstrates the resilience of the Greenland ice sheet to a <span class="hlt">warming</span> of 5 oC. Studies of basal material further reveal the presence of boreal forest over Greenland before ice covered Greenland. Conditions for Boreal forest implies temperatures at this time has been more than 10 oC warmer than the present. To compare the paleo-behavior of the Greenland ice sheet to the present in relation to sea level rise knowledge gabs include the reaction of ice streams to climate changes. To address this the international EGRIP-project is drilling an ice <span class="hlt">core</span> in the center of the North East Greenland Ice Stream (NEGIS). The first results will be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121.3517L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121.3517L"><span>Dynamical analysis of a satellite-observed anticyclonic <span class="hlt">eddy</span> in the northern Bering Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Yineng; Li, Xiaofeng; Wang, Jia; Peng, Shiqiu</p> <p>2016-05-01</p> <p>The characteristics and evolution of a satellite-observed anticyclonic <span class="hlt">eddy</span> in the northern Bering Sea during March and April 1999 are investigated using a three-dimensional Princeton Ocean Model (POM). The anticyclonic-like current pattern and asymmetric feature of the <span class="hlt">eddy</span> were clearly seen in the synthetic aperture radar (SAR), sea surface temperature, and ocean color images in April 1999. The results from model simulation reveal the three-dimensional structure of the anticyclonic <span class="hlt">eddy</span>, its movement, and dissipation. Energy analysis indicates that the barotropic instability (BTI) is the main energy source for the growth of the anticyclonic <span class="hlt">eddy</span>. The momentum analysis further reveals that the larger magnitude of the barotropic pressure gradient in the meridional direction causes the asymmetry of the anticyclonic <span class="hlt">eddy</span> in the zonal and meridional directions, while the different magnitudes of the meridional baroclinic pressure gradient are responsible for the different intensity of currents between the northern and southern parts of the anticyclonic <span class="hlt">eddy</span>. This article was corrected on 23 JUL 2016. See the end of the full text for details.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14..858K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14..858K"><span>Role of mesoscale <span class="hlt">eddies</span> on exchanges between coastal regions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kersalé, M.; Petrenko, A. A.; Doglioli, A. M.; Nencioli, F.; Bouffard, J.; Dekeyser, I.</p> <p>2012-04-01</p> <p>The general circulation in the northwestern Mediterranean Sea is characterized by a cyclonic circulation. The northern part of this gyre is formed by the Northern Current (NC), which flows along the continental slope from the Ligurian Sea towards the Catalan Shelf. The NC has an important influence on the Gulf of Lion (GoL), a large continental margin in the northern part of the basin. The NC constitutes an effective dynamical barrier which blocks coastal waters on the continental shelf. The western part of the GoL is a key region for regulating the outflow from the continental shelf to the Catalan Basin. These exchanges are mainly induced by partially ageostrophic processes originating from the interaction between the NC and mesoscale activity like meanders, filaments and <span class="hlt">eddies</span>. Both GoL and Catalan shelf are characterized by an intense mesoscale activity. <span class="hlt">Eddies</span> in the GoL are baroclinic structures extending throughout the mixed layer (30 to 50m), often elliptic in shape and about 20-30km in diameter. Catalan <span class="hlt">eddies</span> are characterized by a vertical extension between 70 and 100m and a diameter of about 45km. The LAgrangian Transport EXperiment (LATEX, 2008-2011) was designed to study the mechanisms of formation of anticyclones in the western part of the GoL and their influence on cross-shelf exchanges. Mesoscale anticyclones have been observed in the western part of the GoL and over the Catalan shelf by the combined use of data from satellite observations, in situ measurements and numerical modeling. Recent numerical experiments show an anticyclonic circulation extending over a large part of the coastal area (latitudinal range : 41°50' to 43°N ; longitudinal range : 3°10' to 4°10'E). Interaction with a meander of the NC induces the separation of this circulation in two different <span class="hlt">eddies</span>, one in the GoL and the other in the Catalan shelf. These <span class="hlt">eddies</span> exhibit strong interaction between them, resulting in important exchanges between the two coastal regions. On</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7678M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7678M"><span>Antarctic <span class="hlt">warming</span> driven by internal Southern Ocean deep convection oscillations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, Torge; Pedro, Joel B.; Steig, Eric J.; Jochum, Markus; Park, Wonsun; Rasmussen, Sune O.</p> <p>2016-04-01</p> <p>Simulations with the free-running, complex coupled Kiel Climate Model (KCM) show that heat release associated with recurring Southern Ocean deep convection can drive centennial-scale Antarctic temperature variations of 0.5-2.0 °C. We propose a mechanism connecting the intrinsic ocean variability with Antarctic <span class="hlt">warming</span> that involves the following three steps: Preconditioning: heat supplied by the lower branch of the Atlantic Meridional Overturning Circulation (AMOC) accumulates at depth in the Southern Ocean, trapped by the Weddell Gyre circulation; Convection onset: wind and/or sea-ice changes tip the preconditioned, thermally unstable system into the convective state; Antarctic <span class="hlt">warming</span>: fast sea-ice-albedo feedbacks (on annual to decadal timescales) and slower Southern Ocean frontal and sea-surface temperature adjustments to the convective heat release (on multi-decadal to centennial timescales), drive an increase in atmospheric heat and moisture transport towards Antarctica resulting in <span class="hlt">warming</span> over the continent. Further, we discuss the potential role of this mechanism to explain climate variability observed in Antarctic ice-<span class="hlt">core</span> records.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4247373','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4247373"><span>Electrically generated <span class="hlt">eddies</span> at an eightfold stagnation point within a nanopore</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sherwood, J. D.; Mao, M.; Ghosal, S.</p> <p>2014-01-01</p> <p>Electrically generated flows around a thin dielectric plate pierced by a cylindrical hole are computed numerically. The geometry represents that of a single nanopore in a membrane. When the membrane is uncharged, flow is due solely to induced charge electroosmosis, and <span class="hlt">eddies</span> are generated by the high fields at the corners of the nanopore. These <span class="hlt">eddies</span> meet at stagnation points. If the geometry is chosen correctly, the stagnation points merge to form a single stagnation point at which four streamlines cross at a point and eight <span class="hlt">eddies</span> meet. PMID:25489206</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSA54A..08P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSA54A..08P"><span>Seasonal Variability in Global <span class="hlt">Eddy</span> Diffusion and the Effect on Thermospheric Neutral Density</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pilinski, M.; Crowley, G.</p> <p>2014-12-01</p> <p>We describe a method for making single-satellite estimates of the seasonal variability in global-average <span class="hlt">eddy</span> diffusion coefficients. <span class="hlt">Eddy</span> diffusion values as a function of time between January 2004 and January 2008 were estimated from residuals of neutral density measurements made by the CHallenging Minisatellite Payload (CHAMP) and simulations made using the Thermosphere Ionosphere Mesosphere Electrodynamics - Global Circulation Model (TIME-GCM). The <span class="hlt">eddy</span> diffusion coefficient results are quantitatively consistent with previous estimates based on satellite drag observations and are qualitatively consistent with other measurement methods such as sodium lidar observations and <span class="hlt">eddy</span>-diffusivity models. The <span class="hlt">eddy</span> diffusion coefficient values estimated between January 2004 and January 2008 were then used to generate new TIME-GCM results. Based on these results, the RMS difference between the TIME-GCM model and density data from a variety of satellites is reduced by an average of 5%. This result, indicates that global thermospheric density modeling can be improved by using data from a single satellite like CHAMP. This approach also demonstrates how <span class="hlt">eddy</span> diffusion could be estimated in near real-time from satellite observations and used to drive a global circulation model like TIME-GCM. Although the use of global values improves modeled neutral densities, there are some limitations of this method, which are discussed, including that the latitude-dependence of the seasonal neutral-density signal is not completely captured by a global variation of <span class="hlt">eddy</span> diffusion coefficients. This demonstrates the need for a latitude-dependent specification of <span class="hlt">eddy</span> diffusion consistent with diffusion observations made by other techniques.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.5186H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.5186H"><span>Automated detection of Lagrangian <span class="hlt">eddies</span> and coherent transport of heat and salinity in the Agulhas leakage</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huhn, Florian; Haller, George</p> <p>2014-05-01</p> <p>Haller and Beron-Vera(2013) have recently introduced a new objective method to detect coherent Lagrangian <span class="hlt">eddies</span> in turbulence. They find that closed null-geodesics of a generalized Green-Lagrange strain tensor act as coherent Lagrangian <span class="hlt">eddy</span> boundaries, showing near-zero and uniform material stretching. We make use of this method to develop an automated detection procedure for coherent Lagrangian <span class="hlt">eddies</span> in large-scale ocean data. We apply our results to a recent 3D general circulation model, the Southern Ocean State Estimate (SOSE), with focus on the South Atlantic Ocean and the inter-ocean exchange between the Indian and Atlantic ocean. We detect a large number of coherent Lagrangian <span class="hlt">eddies</span> and present statistics of their properties. The largest and most circular <span class="hlt">eddy</span> boundaries represent Lagrangian Agulhas rings. Circular regions inside these rings with higher temperature and salinity than the surrounding waters can be explained by the coherent <span class="hlt">eddy</span> boundaries that enclose and isolate the <span class="hlt">eddy</span> interiors. We compare <span class="hlt">eddy</span> boundaries at different depths with <span class="hlt">eddy</span> boundaries obtained from geostrophic velocities derived from the model's sea surface height (SSH). The transport of mass, heat and salinity enclosed by coherent <span class="hlt">eddies</span> through a section in the Cape basin is quantified and compared to the non-coherent transport by the background flow.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/sciencecinema/biblio/1187776','SCIGOVIMAGE-SCICINEMA'); return false;" href="http://www.osti.gov/sciencecinema/biblio/1187776"><span>Experiment Provides the Best Look Yet at '<span class="hlt">Warm</span> Dense Matter' at <span class="hlt">Cores</span> of Giant Planets</span></a></p> <p><a target="_blank" href="http://www.osti.gov/sciencecinema/">ScienceCinema</a></p> <p>None</p> <p>2018-05-24</p> <p>In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as it transitions into a superhot, highly compressed concoction known as “<span class="hlt">warm</span> dense matter.”</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1439712-accelerated-increase-arctic-tropospheric-warming-events-surpassing-stratospheric-warming-events-during-winter-accelerated-increase-arctic-warming','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1439712-accelerated-increase-arctic-tropospheric-warming-events-surpassing-stratospheric-warming-events-during-winter-accelerated-increase-arctic-warming"><span>Accelerated increase in the Arctic tropospheric <span class="hlt">warming</span> events surpassing stratospheric <span class="hlt">warming</span> events during winter: Accelerated Increase in Arctic <span class="hlt">Warming</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, S. -Y. Simon; Lin, Yen-Heng; Lee, Ming-Ying</p> <p></p> <p>In January 2016, a robust reversal of the Arctic Oscillation (AO) took place associated with a rapid tropospheric <span class="hlt">warming</span> in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric <span class="hlt">warming</span> in March-April. The succession of these two distinct Arctic <span class="hlt">warming</span> events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic <span class="hlt">warming</span> were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as well as those documented in previous studies. Our results indicate a recent and accelerated increasemore » in the tropospheric <span class="hlt">warming</span> type versus a flat trend in stratospheric <span class="hlt">warming</span> type. Given that tropospheric <span class="hlt">warming</span> events occur twice as fast than the stratospheric <span class="hlt">warming</span> type, the noted increase in the former implies further intensification in midlatitude winter weather extremes similar to those experienced in early 2016. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric <span class="hlt">warming</span> events and associated impact on the anomalously cold Siberia.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp...26L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp...26L"><span>Response of <span class="hlt">eddy</span> activities to localized diabatic heating in Held-Suarez simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, Yanluan; Zhang, Jishi; Li, Xingrui; Deng, Yi</p> <p>2018-01-01</p> <p>Widespread air pollutions, such as black carbon over East Asia in recent years, could induce a localized diabatic heating, and thus lead to localized static stability and meridional temperature gradient (MTG) changes. Although effect of static stability and MTG on <span class="hlt">eddies</span> has been addressed by the linear baroclinic instability theory, impacts of a localized heating on mid-latitude <span class="hlt">eddy</span> activities have not been well explored and quantified. Via a series of idealized global Held-Suarez simulations with different magnitudes of localized heating at different altitudes and latitudes, responses of mid-latitude <span class="hlt">eddy</span> activity and circulation to these temperature perturbations are systematically investigated. Climatologically, the localized heating in the lower atmosphere induces a wave-like response of <span class="hlt">eddy</span> activity near the mid-latitude jet stream. Over the heating region, <span class="hlt">eddy</span> activity tends to be weakening due to the increased static stability. However, there are cyclonic anomalies over the upstream and downstream of the heating region. The zonal mean <span class="hlt">eddy</span> activity weakens along the baroclinic zone due to reduced MTG and increased static stability. Furthermore, the response of <span class="hlt">eddy</span> activity increased as the heating magnitude is increased and moved to higher altitudes. The influence of the heating decreases as the heating is prescribed further away from the climatological mid-latitude jet. This implies that the localized heating is most effective over the region with the maximum baroclinicity. Besides, enhanced storm track downstream of the localized heating area found here suggests that increased aerosols over East Asia might strengthen the North Pacific storm track.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcMod.124....1P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcMod.124....1P"><span>Parameterized and resolved Southern Ocean <span class="hlt">eddy</span> compensation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poulsen, Mads B.; Jochum, Markus; Nuterman, Roman</p> <p>2018-04-01</p> <p>The ability to parameterize Southern Ocean <span class="hlt">eddy</span> effects in a forced coarse resolution ocean general circulation model is assessed. The transient model response to a suite of different Southern Ocean wind stress forcing perturbations is presented and compared to identical experiments performed with the same model in 0.1° <span class="hlt">eddy</span>-resolving resolution. With forcing of present-day wind stress magnitude and a thickness diffusivity formulated in terms of the local stratification, it is shown that the Southern Ocean residual meridional overturning circulation in the two models is different in structure and magnitude. It is found that the difference in the upper overturning cell is primarily explained by an overly strong subsurface flow in the parameterized <span class="hlt">eddy</span>-induced circulation while the difference in the lower cell is mainly ascribed to the mean-flow overturning. With a zonally constant decrease of the zonal wind stress by 50% we show that the absolute decrease in the overturning circulation is insensitive to model resolution, and that the meridional isopycnal slope is relaxed in both models. The agreement between the models is not reproduced by a 50% wind stress increase, where the high resolution overturning decreases by 20%, but increases by 100% in the coarse resolution model. It is demonstrated that this difference is explained by changes in surface buoyancy forcing due to a reduced Antarctic sea ice cover, which strongly modulate the overturning response and ocean stratification. We conclude that the parameterized <span class="hlt">eddies</span> are able to mimic the transient response to altered wind stress in the high resolution model, but partly misrepresent the unperturbed Southern Ocean meridional overturning circulation and associated heat transports.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21106418','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21106418"><span>Finite element analysis of gradient z-coil induced <span class="hlt">eddy</span> currents in a permanent MRI magnet.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Xia; Xia, Ling; Chen, Wufan; Liu, Feng; Crozier, Stuart; Xie, Dexin</p> <p>2011-01-01</p> <p>In permanent magnetic resonance imaging (MRI) systems, pulsed gradient fields induce strong <span class="hlt">eddy</span> currents in the conducting structures of the magnet body. The gradient field for image encoding is perturbed by these <span class="hlt">eddy</span> currents leading to MR image distortions. This paper presents a comprehensive finite element (FE) analysis of the <span class="hlt">eddy</span> current generation in the magnet conductors. In the proposed FE model, the hysteretic characteristics of ferromagnetic materials are considered and a scalar Preisach hysteresis model is employed. The developed FE model was applied to study gradient z-coil induced <span class="hlt">eddy</span> currents in a 0.5 T permanent MRI device. The simulation results demonstrate that the approach could be effectively used to investigate <span class="hlt">eddy</span> current problems involving ferromagnetic materials. With the knowledge gained from this <span class="hlt">eddy</span> current model, our next step is to design a passive magnet structure and active gradient coils to reduce the <span class="hlt">eddy</span> current effects. Copyright © 2010 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22113500-eddy-current-nde-performance-demonstrations-using-simulation-tools','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22113500-eddy-current-nde-performance-demonstrations-using-simulation-tools"><span><span class="hlt">Eddy</span> current NDE performance demonstrations using simulation tools</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Maurice, L.; Costan, V.; Guillot, E.</p> <p>2013-01-25</p> <p>To carry out performance demonstrations of the <span class="hlt">Eddy</span>-Current NDE processes applied on French nuclear power plants, EDF studies the possibility of using simulation tools as an alternative to measurements on steam generator tube mocks-up. This paper focuses on the strategy led by EDF to assess and use code{sub C}armel3D and Civa, on the case of <span class="hlt">Eddy</span>-Current NDE on wears problem which may appear in the U-shape region of steam generator tubes due to the rubbing of anti-vibration bars.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003IJCFD..17..433C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003IJCFD..17..433C"><span>Detached-<span class="hlt">Eddy</span> Simulations of Attached and Detached Boundary Layers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caruelle, B.; Ducros, F.</p> <p>2003-12-01</p> <p>This article presents Detached-<span class="hlt">Eddy</span> Simulations (DESs) of attached and detached turbulent boundary layers. This hybrid Reynolds Averaged Navier-Stokes (RANS) / Large <span class="hlt">Eddy</span> Simulation (LES) model goes continuously from RANS to LES according to the mesh definition. We propose a parametric study of the model over two "academic" configurations, in order to get information on the influence of the mesh to correctly treat complex flow with attached and detached boundary layers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMPP31D1895P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMPP31D1895P"><span>Southern ocean winds during past (and future) <span class="hlt">warm</span> periods and their affect on Agulhas Leakage and the Atlantic Merdional Overturning Circulation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patel, N. P.; Deconto, R. M.; Condron, A.</p> <p>2013-12-01</p> <p>The leakage of Agulhas Current water into the South Atlantic is now thought to be a major player in global climate change. The volume of Agulhas Leakage is linked to the strength and position of southern westerlies. Past changes in the westerly winds over the southern ocean have been noted on glacial-interglacial timescales, in response to both Northern Hemispheric conditions and more proximal changes in Antarctic ice volume. Over recent decades, a southward shift in the southern ocean westerlies has been observed and is expected to continue with projected climate <span class="hlt">warming</span>. The resulting increase in Agulhas Leakage is thought to allow more <span class="hlt">warm</span>, salty water from the Indian Ocean into the Atlantic, with the potential to impact the Atlantic Meridional Overturning circulation (AMOC). Some climate models have predicted global <span class="hlt">warming</span> will result in a slowdown and weakening of the AMOC. A strengthening of the Agulhas Leakage therefore has the potential to counteract that slowdown. Much of the Agulhas leakage is carried in small <span class="hlt">eddies</span> rotating off the main flow south of Cape Horn. High ocean model resolution (< 1/2°) is therefore required to simulate their response to the overlying wind field. However the majority of previous model studies have been too coarse in resolution to quantify the link between the Agulhas Leakage the AMOC. Here we run a series of global high-resolution ocean model (1/6°) experiments using the MITgcm to test the effect of a shift in the southern hemisphere westerlies on the Agulhas Leakage. A prescribed perturbation of the winds near South Africa shows a significant increase in Agulhas <span class="hlt">eddies</span> into the Atlantic. Following this, we have conducted longer simulations with the winds over the Southern Ocean perturbed to reflect both past and possible future shifts in the wind field to quantify changes in North Atlantic Deep Water formation and the overall response of the AMOC to this perturbation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3663W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3663W"><span>Improved Climate Simulations through a Stochastic Parameterization of Ocean <span class="hlt">Eddies</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, Paul; Howe, Nicola; Gregory, Jonathan; Smith, Robin; Joshi, Manoj</p> <p>2017-04-01</p> <p>In climate simulations, the impacts of the subgrid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the subgrid variability in a computationally inexpensive manner. This study shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean <span class="hlt">eddies</span> into a coupled atmosphere-ocean general circulation model. Simulations from a high-resolution, <span class="hlt">eddy</span>-permitting ocean model are used to calculate the <span class="hlt">eddy</span> statistics needed to inject realistic stochastic noise into a low-resolution, non-<span class="hlt">eddy</span>-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a nonzero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean <span class="hlt">eddies</span> have the potential to significantly improve climate simulations. Reference Williams PD, Howe NJ, Gregory JM, Smith RS, and Joshi MM (2016) Improved Climate Simulations through a Stochastic Parameterization of Ocean <span class="hlt">Eddies</span>. Journal of Climate, 29, 8763-8781. http://dx.doi.org/10</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2290W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2290W"><span>Improved Climate Simulations through a Stochastic Parameterization of Ocean <span class="hlt">Eddies</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, Paul; Howe, Nicola; Gregory, Jonathan; Smith, Robin; Joshi, Manoj</p> <p>2016-04-01</p> <p>In climate simulations, the impacts of the sub-grid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the sub-grid variability in a computationally inexpensive manner. This presentation shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean <span class="hlt">eddies</span> into a coupled atmosphere-ocean general circulation model. Simulations from a high-resolution, <span class="hlt">eddy</span>-permitting ocean model are used to calculate the <span class="hlt">eddy</span> statistics needed to inject realistic stochastic noise into a low-resolution, non-<span class="hlt">eddy</span>-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition, by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a non-zero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean <span class="hlt">eddies</span> have the potential to significantly improve climate simulations. Reference PD Williams, NJ Howe, JM Gregory, RS Smith, and MM Joshi (2016) Improved Climate Simulations through a Stochastic Parameterization of Ocean <span class="hlt">Eddies</span>. Journal of Climate, under revision.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.1314Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.1314Z"><span>Fall season atypically <span class="hlt">warm</span> weather event leads to substantial CH4 loss in Arctic ecosystems?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zona, Donatella; Moreaux, Virginie; Liljedahl, Anna; Losacco, Salvatore; Murphy, Patrick; Oechel, Walter</p> <p>2014-05-01</p> <p>In the last century (during 1875-2008) high-latitudes are <span class="hlt">warming</span> at a rate of 1.360C century-1, almost 2 times faster than the Northern Hemisphere trend (Bekryaev et al., 2010). This <span class="hlt">warming</span> has been more intense outside of the summer season, with anomalies of 1.09, 1.59, 1.730C in the fall, winter, and spring season respectively (Bekryaev et al., 2010). This substantial temperature anomalies have the potential to increase the emission of greenhouse gas (CO2 and CH4) fluxes from arctic tundra ecosystems. In particular, CH4 emissions, which are primarily controlled by temperature (in addition to water table), can steeply increase with <span class="hlt">warming</span>. Despite the potential relevance of CH4 emissions, very few measurements have been performed outside of the growing season across the entire Arctic, due to logistic constrains. Importantly, no flux measurements achieved a temporal and spatial data coverage sufficient to estimate with confidence an annual CH4 emissions from tundra ecosystem in Alaska, and its sensitivity to <span class="hlt">warming</span>. Fall 2013 was unusually <span class="hlt">warm</span> in central and northern Alaska. Following a relatively <span class="hlt">warm</span> summer with dramatically above-average rainfall, the October mean monthly temperatures was the 4th and top warmest in Barrow (1949-2013) and Ivotuk (1998-2013), respectively. As we just upgraded several <span class="hlt">eddy</span> covariance towers to measure CO2 and CH4 fluxes year-round, the atypical weather conditions of fall 2013 represented a unique chance for testing the sensitivity of CH4 loss to these atypically <span class="hlt">warm</span> temperatures. All our sites across a latitudinal gradient (from the northern site, Barrow, to the southern site, Ivotuk), presented substantial CH4 loss in the fall. Importantly, in two of these sites (Barrow, Ivotuk) where the fall weather was substantially warmer than the long term trend, fall CH4 emission represented between 44-63% of the June-November cumulative emission. Surprisingly, in the southernmost site (Ivotuk), when the temperature anomaly was the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032682','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032682"><span>The importance of <span class="hlt">warm</span> season <span class="hlt">warming</span> to western U.S. streamflow changes</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Das, T.; Pierce, D.W.; Cayan, D.R.; Vano, J.A.; Lettenmaier, D.P.</p> <p>2011-01-01</p> <p><span class="hlt">Warm</span> season climate <span class="hlt">warming</span> will be a key driver of annual streamflow changes in four major river basins of the western U.S., as shown by hydrological model simulations using fixed precipitation and idealized seasonal temperature changes based on climate projections with SRES A2 forcing. <span class="hlt">Warm</span> season (April-September) <span class="hlt">warming</span> reduces streamflow throughout the year; streamflow declines both immediately and in the subsequent cool season. Cool season (October-March) <span class="hlt">warming</span>, by contrast, increases streamflow immediately, partially compensating for streamflow reductions during the subsequent <span class="hlt">warm</span> season. A uniform <span class="hlt">warm</span> season <span class="hlt">warming</span> of 3C drives a wide range of annual flow declines across the basins: 13.3%, 7.2%, 1.8%, and 3.6% in the Colorado, Columbia, Northern and Southern Sierra basins, respectively. The same <span class="hlt">warming</span> applied during the cool season gives annual declines of only 3.5%, 1.7%, 2.1%, and 3.1%, respectively. Copyright 2011 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27498449','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27498449"><span>Efficacy of external <span class="hlt">warming</span> in attenuation of hypothermia in surgical patients.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zeba, Snjezana; Surbatović, Maja; Marjanović, Milan; Jevdjić, Jasna; Hajduković, Zoran; Karkalić, Radovan; Jovanović, Dalibor; Radaković, Sonja</p> <p>2016-06-01</p> <p>Hypothermia in surgical patients can be the consequence of long duration of surgical intervention, general anaesthesia and low temperature in operating room. Postoperative hypothermia contributes to a number of postoperative complications such as arrhythmia, myocardial ischemia, hypertension, bleeding, wound infection, coagulopathy, and prolonged effect of muscle relaxants. External heating procedures are used to prevent this condition. The aim of this study was to evaluate the efficiency of external <span class="hlt">warming</span> system in alleviation of cold stress and hypothermia in patients who underwent major surgical procedures. The study was conducted in the Military Medical Academy in Belgrade. A total of 30 patients of both genders underwent abdominal surgical procedures, randomly divided into two equal groups: the one was externally <span class="hlt">warmed</span> using <span class="hlt">warm</span> air mattress (W), while in the control group (C) surgical procedure was performed in regular conditions, without additional <span class="hlt">warming</span>. Oesophageal temperature (Te) was used as indicator of changes in <span class="hlt">core</span> temperature, during surgery and awakening postoperative period, and temperature of control sites on the right hand (Th) and the right foot (Tf) reflected the changes in skin temperatures during surgery. Te and skin temperatures were monitored during the intraoperative period, with continuous measurement of Te during the following 90 minutes of the postoperative period. Heart rates and blood pressures were monitored continuously during the intraoperative and awakening period. In the W group, the average Te, Tf and Th did not change significantly during the intraoperative as well as the postoperative period. In the controls, the average Te significantly decreased during the intraoperative period (from 35.61 ± 0.35 °C at 0 minute to 33.86 ± 0.51°C at 120th minute). Compared to the W group, Te in the C group was significantly lower in all the observed periods. Average values of Tf and Th significantly decreased in the C group (from</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911565K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911565K"><span>Dansgaard-Oeschger cycles observed in the Greenland ReCAP ice <span class="hlt">core</span> project</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kjær, Helle Astrid; Vallelonga, Paul; Vinther, Bo; Simonsen, Marius; Maffezzoli, Niccoló; Gkinis, Vasileios; Svensson, Anders; Jensen, Camilla Marie; Dallmayr, Remi; Spolaor, Andrea; Edwards, Ross</p> <p>2017-04-01</p> <p>The new REnland ice CAP (RECAP) ice <span class="hlt">core</span> was drilled in summer 2015 in Greenland and measured by means of Continuous flow analysis (CFA) during the last 3 months of 2015. The Renland ice <span class="hlt">core</span> was obtained as part of the ReCAP project, extending 584.11 meters to the bottom of the Renland ice cap located in east Greenland. The unique position on a mountain saddle above 2000 meters altitude, but close to the coast, ensures that the Renland ice <span class="hlt">core</span> offers high accumulation, but also reaches far back in time. Results show that despite the short length the RECAP ice <span class="hlt">core</span> holds ice all the way back to the past <span class="hlt">warm</span> interglacial period, the Eemian. The glacial section is strongly thinned and covers on 20 meters of the ReCAP <span class="hlt">core</span>, but nonetheless due to the high resolution of the measurements all 25 expected DO events could be identified. The record was analyzed for multiple elements including the water isotopes, forest fire tracers NH4+ and black carbon, insoluble dust particles by means of Abakus laser particle counter and the dust ion Ca2+, sea salt Na+, and sea ice proxies as well as acidity useful for finding volcanic layers to date the <span class="hlt">core</span>. Below the glacial section another 20 meters of <span class="hlt">warm</span> Eemian ice have been analysed. Here we present the chemistry results as obtained by continuous flow analysis (CFA) and compare the glacial section with the chemistry profile from other Greenland ice <span class="hlt">cores</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880067914&hterms=Good+Reasons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DGood%2BReasons','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880067914&hterms=Good+Reasons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DGood%2BReasons"><span>The <span class="hlt">eddy</span> transport of nonconserved trace species derived from satellite data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Anne K.; Lyjak, Lawrence V.; Gille, John C.</p> <p>1988-01-01</p> <p>Using the approach of the Garcia and Solomon (1983) model and data obtained by the LIMS instrument on Nimbus 7, the chemical <span class="hlt">eddy</span> transport matrix for planetary waves was calculated, and the chemical <span class="hlt">eddy</span> contribution to the components of the matrix obtained from the LIMS satellite observations was computed using specified photochemical damping time scales. The dominant component of the transport matrices for several winter months were obtained for ozone, nitric acid, and quasi-geostrophic potential vorticity (PV), and the parameterized transports of these were compared with the 'exact' transports, computed directly from the <span class="hlt">eddy</span> LIMS data. The results indicate that the chemical <span class="hlt">eddy</span> effect can account for most of the observed ozone transport in early winter, decreasing to less than half in late winter. The agreement between the parameterized and observed nitric acid and PV was not as good. Reasons for this are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003JAP....93.7211K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003JAP....93.7211K"><span>Magnetic properties of FeCuNbSiB nanocrystalline alloy powder <span class="hlt">cores</span> using ball-milled powder</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, G. H.; Noh, T. H.; Choi, G. B.; Kim, K. Y.</p> <p>2003-05-01</p> <p>Cold-pressed nanocrystalline powder <span class="hlt">cores</span> were fabricated using powders of nanocrystalline ribbons which were ball milled for short time. Their magnetic properties at high frequency were measured. The powder size ranges from 20 to 850 μm and the contents of the glass binder are between 1 and 8 wt %. For <span class="hlt">cores</span> composed of large particles of 300-850 μm with 5 wt % glass binder, we obtained a stable permeability of 100 up to 800 kHz, a maximum level 31 of quality factor at frequency of 50 kHz, and 320 mW/cm3 <span class="hlt">core</span> loss at f=50 kHz and Bm=0.1 T. This is mainly due to the good soft magnetic properties of the powders and the higher insulation of powder <span class="hlt">cores</span> which cause low <span class="hlt">eddy</span> current losses.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150020950','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150020950"><span>Process Specification for <span class="hlt">Eddy</span> Current Inspection</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshti, Ajay</p> <p>2011-01-01</p> <p>This process specification establishes the minimum requirements for <span class="hlt">eddy</span> current inspection of flat surfaces, fastener holes, threaded fasteners and seamless and welded tubular products made from nonmagnetic alloys such as aluminum and stainless steel.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25640748','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25640748"><span>Design and performance of combined infrared canopy and belowground <span class="hlt">warming</span> in the B4<span class="hlt">WarmED</span> (Boreal Forest <span class="hlt">Warming</span> at an Ecotone in Danger) experiment.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B</p> <p>2015-06-01</p> <p>Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves <span class="hlt">warming</span> of both plants and soils to depth. We describe the design and performance of an open-air <span class="hlt">warming</span> experiment called Boreal Forest <span class="hlt">Warming</span> at an Ecotone in Danger (B4<span class="hlt">WarmED</span>) that addresses the potential for projected climate <span class="hlt">warming</span> to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil <span class="hlt">warming</span> (ambient, +1.7°C, +3.4°C). <span class="hlt">Warming</span> was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed <span class="hlt">warming</span>. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil <span class="hlt">warming</span> to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the <span class="hlt">warming</span> approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall). © 2015 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1358666-equilibrium-reconstruction-eddy-currents-lithium-tokamak-experiment','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1358666-equilibrium-reconstruction-eddy-currents-lithium-tokamak-experiment"><span>Equilibrium reconstruction with 3D <span class="hlt">eddy</span> currents in the Lithium Tokamak eXperiment</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Hansen, C.; Boyle, D. P.; Schmitt, J. C.; ...</p> <p>2017-04-18</p> <p>Axisymmetric free-boundary equilibrium reconstructions of tokamak plasmas in the Lithium Tokamak eXperiment (LTX) are performed using the PSI-Tri equilibrium code. Reconstructions in LTX are complicated by the presence of long-lived non-axisymmetric <span class="hlt">eddy</span> currents generated by a vacuum vessel and first wall structures. To account for this effect, reconstructions are performed with additional toroidal current sources in these conducting regions. The <span class="hlt">eddy</span> current sources are fixed in their poloidal distributions, but their magnitude is adjusted as part of the full reconstruction. <span class="hlt">Eddy</span> distributions are computed by toroidally averaging currents, generated by coupling to vacuum field coils, from a simplified 3D filamentmore » model of important conducting structures. The full 3D <span class="hlt">eddy</span> current fields are also used to enable the inclusion of local magnetic field measurements, which have strong 3D <span class="hlt">eddy</span> current pick-up, as reconstruction constraints. Using this method, equilibrium reconstruction yields good agreement with all available diagnostic signals. Here, an accompanying field perturbation produced by 3D <span class="hlt">eddy</span> currents on the plasma surface with a primarily n = 2, m = 1 character is also predicted for these equilibria.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890050570&hterms=Functional+Decompositions&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DFunctional%2BDecompositions','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890050570&hterms=Functional+Decompositions&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DFunctional%2BDecompositions"><span>Characteristic-<span class="hlt">eddy</span> decomposition of turbulence in a channel</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moin, Parviz; Moser, Robert D.</p> <p>1989-01-01</p> <p>Lumley's proper orthogonal decomposition technique is applied to the turbulent flow in a channel. Coherent structures are extracted by decomposing the velocity field into characteristic <span class="hlt">eddies</span> with random coefficients. A generalization of the shot-noise expansion is used to determine the characteristic <span class="hlt">eddies</span> in homogeneous spatial directions. Three different techniques are used to determine the phases of the Fourier coefficients in the expansion: (1) one based on the bispectrum, (2) a spatial compactness requirement, and (3) a functional continuity argument. Similar results are found from each of these techniques.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1408588','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1408588"><span>Continuum Modeling of Inductor Hysteresis and <span class="hlt">Eddy</span> Current Loss Effects in Resonant Circuits</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pries, Jason L.; Tang, Lixin; Burress, Timothy A.</p> <p></p> <p>This paper presents experimental validation of a high-fidelity toroid inductor modeling technique. The aim of this research is to accurately model the instantaneous magnetization state and <span class="hlt">core</span> losses in ferromagnetic materials. Quasi–static hysteresis effects are captured using a Preisach model. <span class="hlt">Eddy</span> currents are included by coupling the associated quasi-static Everett function to a simple finite element model representing the inductor cross sectional area. The modeling technique is validated against the nonlinear frequency response from two different series RLC resonant circuits using inductors made of electrical steel and soft ferrite. The method is shown to accurately model shifts in resonant frequencymore » and quality factor. The technique also successfully predicts a discontinuity in the frequency response of the ferrite inductor resonant circuit.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990JGR....9518177M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990JGR....9518177M"><span>The Weddell-Scotia Confluence in midwinter</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muench, Robin D.; Gunn, John T.; Husby, David M.</p> <p>1990-10-01</p> <p>The southern central Scotia Sea, site of the Weddell-Scotia Confluence where outflowing Weddell Sea waters converge with the eastward flowing waters of the Scotia Sea, was sampled during June-August (austral winter) 1988 with respect to temperature and salinity. Both drogued and ice-mounted drifters, tracked by Argos, were deployed in the region and yielded Lagrangian drift tracks of ice and water motion. The data substantiate past accounts of the region, based upon summer field research, as dominated by eastward flow upon which a complex array of mesoscale features is superimposed. Weddell-Scotia Confluence Water, documented by past summer work in the region and characterized by decreased static stability, was not detected, and the Scotia Front was not well defined. The region was one of intense mixing activity and primarily anticyclonic mesoscale features. Two such features, one an <span class="hlt">eddy</span> and the other either an <span class="hlt">eddy</span> or a meander in the Scotia Front, dominated the mesoscale field. With <span class="hlt">warm</span> <span class="hlt">cores</span> and containing Polar Front Water, they may have been advected eastward from Drake Passage or may have formed as detached <span class="hlt">eddies</span> from a sharp northward bend in the Polar Front which typically lies just west of the study region. Several smaller <span class="hlt">eddies</span>, primarily anticyclonic and some having <span class="hlt">warm</span> <span class="hlt">cores</span>, were also detected. There was no evidence of the deep convective mixing which has been hypothesized, on the basis of past summer data, to occur in winter, and vigorous vertical mixing was limited to a 100-m-thick upper mixed layer. Vertical stability in the upper layers was enhanced by low-salinity water derived from melting ice. Temperature-salinity analyses show that winter water in the study region can be derived through isopycnal mixing between waters from the Scotia Sea and waters from the northwestern Weddell Sea. This is in apparent contrast with summer conditions, wherein conditioning of water either through vertical mixing or via lateral mixing on continental margins</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DyAtO..76..240H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DyAtO..76..240H"><span>Observational evidence of seasonality in the timing of loop current <span class="hlt">eddy</span> separation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hall, Cody A.; Leben, Robert R.</p> <p>2016-12-01</p> <p>Observational datasets, reports and analyses over the time period from 1978 through 1992 are reviewed to derive pre-altimetry Loop Current (LC) <span class="hlt">eddy</span> separation dates. The reanalysis identified 20 separation events in the 15-year record. Separation dates are estimated to be accurate to approximately ± 1.5 months and sufficient to detect statistically significant LC <span class="hlt">eddy</span> separation seasonality, which was not the case for previously published records because of the misidentification of separation events and their timing. The reanalysis indicates that previously reported LC <span class="hlt">eddy</span> separation dates, determined for the time period before the advent of continuous altimetric monitoring in the early 1990s, are inaccurate because of extensive reliance on satellite sea surface temperature (SST) imagery. Automated LC tracking techniques are used to derive LC <span class="hlt">eddy</span> separation dates in three different altimetry-based sea surface height (SSH) datasets over the time period from 1993 through 2012. A total of 28-30 LC <span class="hlt">eddy</span> separation events were identified in the 20-year record. Variations in the number and dates of <span class="hlt">eddy</span> separation events are attributed to the different mean sea surfaces and objective-analysis smoothing procedures used to produce the SSH datasets. Significance tests on various altimetry and pre-altimetry/altimetry combined date lists consistently show that the seasonal distribution of separation events is not uniform at the 95% confidence level. Randomization tests further show that the seasonal peak in LC <span class="hlt">eddy</span> separation events in August and September is highly unlikely to have occurred by chance. The other seasonal peak in February and March is less significant, but possibly indicates two seasons of enhanced probability of <span class="hlt">eddy</span> separation centered near the spring and fall equinoxes. This is further quantified by objectively dividing the seasonal distribution into two seasons using circular statistical techniques and a k-means clustering algorithm. The estimated</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29870948','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29870948"><span>Trends in historical mercury deposition inferred from lake sediment <span class="hlt">cores</span> across a climate gradient in the Canadian High Arctic.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Korosi, Jennifer B; Griffiths, Katherine; Smol, John P; Blais, Jules M</p> <p>2018-06-02</p> <p>Recent climate change may be enhancing mercury fluxes to Arctic lake sediments, confounding the use of sediment <span class="hlt">cores</span> to reconstruct histories of atmospheric deposition. Assessing the independent effects of climate <span class="hlt">warming</span> on mercury sequestration is challenging due to temporal overlap between <span class="hlt">warming</span> temperatures and increased long-range transport of atmospheric mercury following the Industrial Revolution. We address this challenge by examining mercury trends in short <span class="hlt">cores</span> (the last several hundred years) from eight lakes centered on Cape Herschel (Canadian High Arctic) that span a gradient in microclimates, including two lakes that have not yet been significantly altered by climate <span class="hlt">warming</span> due to continued ice cover. Previous research on subfossil diatoms and inferred primary production indicated the timing of limnological responses to climate <span class="hlt">warming</span>, which, due to prevailing ice cover conditions, varied from ∼1850 to ∼1990 for lakes that have undergone changes. We show that climate <span class="hlt">warming</span> may have enhanced mercury deposition to lake sediments in one lake (Moraine Pond), while another (West Lake) showed a strong signal of post-industrial mercury enrichment without any corresponding limnological changes associated with <span class="hlt">warming</span>. Our results provide insights into the role of climate <span class="hlt">warming</span> and organic carbon cycling as drivers of mercury deposition to Arctic lake sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013QSRv...73...93S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013QSRv...73...93S"><span>Is the 20th century <span class="hlt">warming</span> unprecedented in the Siberian north?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sidorova, Olga V.; Saurer, Matthias; Andreev, Andrei; Fritzsche, Diedrich; Opel, Thomas; Naurzbaev, Mukhtar M.; Siegwolf, Rolf</p> <p>2013-08-01</p> <p>To answer the question "Has the recent <span class="hlt">warming</span> no analogues in the Siberian north?" we analyzed larch tree samples (Larix gmelinii Rupr.) from permafrost zone in the eastern Taimyr (TAY) (72°N, 102°E) using tree-ring and stable isotope analyses for the Climatic Optimum Period (COP) 4111-3806 BC and Medieval <span class="hlt">Warm</span> Period (MWP) 917-1150 AD, in comparison to the recent period (RP) 1791-2008 AD. We developed a description of the climatic and environmental changes in the eastern Taimyr using tree-ring width and stable isotope (δ13C, δ18O) data based on statistical verification of the relationships to climatic parameters (temperature and precipitation). Additionally, we compared our new tree-ring and stable isotope data sets with earlier published July temperature and precipitation reconstructions inferred from pollen data of the Lama Lake, Taimyr Peninsula, δ18O ice <span class="hlt">core</span> data from Akademii Nauk ice cap on Severnaya Zemlya (SZ) and δ18O ice <span class="hlt">core</span> data from Greenland (GISP2), as well as tree-ring width and stable carbon and oxygen isotope data from northeastern Yakutia (YAK). We found that the COP in TAY was warmer and drier compared to the MWP but rather similar to the RP. Our results indicate that the MWP in TAY started earlier and was wetter than in YAK. July precipitation reconstructions obtained from pollen data of the Lama Lake, oxygen isotope data from SZ and our carbon isotopes in tree cellulose agree well and indicate wetter climate conditions during the MWP. Consistent large-scale patterns were reflected in significant links between oxygen isotope data in tree cellulose from TAY and YAK, and oxygen isotope data from SZ and GISP2 during the MWP and the RP. Finally, we showed that the recent <span class="hlt">warming</span> is not unprecedented in the Siberian north. Similar climate conditions were recorded by tree-rings, stable isotopes, pollen, and ice <span class="hlt">core</span> data 6000 years ago.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD0775990','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD0775990"><span><span class="hlt">Eddy</span> Viscosity for Variable Density Coflowing Streams,</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p></p> <p><span class="hlt">EDDY</span> CURRENTS, *JET MIXING FLOW, *VISCOSITY, *AIR FLOW, MATHEMATICAL MODELS, INCOMPRESSIBLE FLOW, AXISYMMETRIC FLOW, MATHEMATICAL PREDICTION, THRUST AUGMENTATION , EJECTORS , COMPUTER PROGRAMMING, SECONDARY FLOW, DENSITY, MODIFICATION.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/10996','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/10996"><span>Test and Evaluation of an <span class="hlt">Eddy</span> Current Clutch/Brake Propulsion System</span></a></p> <p><a target="_blank" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1975-01-01</p> <p>This report covers the Phase II effort of a program to develop and test a 15 hp <span class="hlt">eddy</span>-current clutch propulsion system. Included in the Phase 2 effort are the test and evaluation of the <span class="hlt">eddy</span>-current clutch propulsion system on board a test vehicle. Th...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9987E..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9987E..05S"><span>Non-destructive testing of composite materials used in military applications by <span class="hlt">eddy</span> current thermography method</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Swiderski, Waldemar</p> <p>2016-10-01</p> <p><span class="hlt">Eddy</span> current thermography is a new NDT-technique for the detection of cracks in electro conductive materials. It combines the well-established inspection techniques of <span class="hlt">eddy</span> current testing and thermography. The technique uses induced <span class="hlt">eddy</span> currents to heat the sample being tested and defect detection is based on the changes of induced <span class="hlt">eddy</span> currents flows revealed by thermal visualization captured by an infrared camera. The advantage of this method is to use the high performance of <span class="hlt">eddy</span> current testing that eliminates the known problem of the edge effect. Especially for components of complex geometry this is an important factor which may overcome the increased expense for inspection set-up. The paper presents the possibility of applying <span class="hlt">eddy</span> current thermography method for detecting defects in ballistic covers made of carbon fiber reinforced composites used in the construction of military vehicles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008DSRII..55.1473N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008DSRII..55.1473N"><span>Cobalt, manganese, and iron near the Hawaiian Islands: A potential concentrating mechanism for cobalt within a cyclonic <span class="hlt">eddy</span> and implications for the hybrid-type trace metals</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Noble, Abigail E.; Saito, Mak A.; Maiti, Kanchan; Benitez-Nelson, Claudia R.</p> <p>2008-05-01</p> <p>The vertical distributions of cobalt, iron, and manganese in the water column were studied during the E-Flux Program (E-Flux II and III), which focused on the biogeochemistry of cold-<span class="hlt">core</span> cyclonic <span class="hlt">eddies</span> that form in the lee of the Hawaiian Islands. During E-Flux II (January 2005) and E-Flux III (March 2005), 17 stations were sampled for cobalt ( n=147), all of which demonstrated nutrient-like depletion in surface waters. During E-Flux III, two depth profiles collected from within a mesoscale cold-<span class="hlt">core</span> <span class="hlt">eddy</span>, Cyclone Opal, revealed small distinct maxima in cobalt at ˜100 m depth and a larger inventory of cobalt within the <span class="hlt">eddy</span>. We hypothesize that this was due to a cobalt concentrating effect within the <span class="hlt">eddy</span>, where upwelled cobalt was subsequently associated with sinking particulate organic carbon (POC) via biological activity and was released at a depth coincident with nearly complete POC remineralization [Benitez-Nelson, C., Bidigare, R.R., Dickey, T.D., Landry, M.R., Leonard, C.L., Brown, S.L., Nencioli, F., Rii, Y.M., Maiti, K., Becker, J.W., Bibby, T.S., Black, W., Cai, W.J., Carlson, C.A., Chen, F., Kuwahara, V.S., Mahaffey, C., McAndrew, P.M., Quay, P.D., Rappe, M.S., Selph, K.E., Simmons, M.P., Yang, E.J., 2007. Mesoscale <span class="hlt">eddies</span> drive increased silica export in the subtropical Pacific Ocean. Science 316, 1017-1020]. There is also evidence for the formation of a correlation between cobalt and soluble reactive phosphorus during E-Flux III relative to the E-Flux II cruise that we suggest is due to increased productivity, implying a minimum threshold of primary production below which cobalt-phosphate coupling does not occur. Dissolved iron was measured in E-Flux II and found in somewhat elevated concentrations (˜0.5 nM) in surface waters relative to the iron depleted waters of the surrounding Pacific [Fitzwater, S.E., Coale, K.H., Gordon, M.R., Johnson, K.S., Ondrusek, M.E., 1996. Iron deficiency and phytoplankton growth in the equatorial Pacific. Deep</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20071120','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20071120"><span>Double-spin-echo diffusion weighting with a modified <span class="hlt">eddy</span> current adjustment.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Finsterbusch, Jürgen</p> <p>2010-04-01</p> <p>Magnetic field inhomogeneities like <span class="hlt">eddy</span> current-related gradient fields cause geometric distortions in echo-planar imaging (EPI). This in particular affects diffusion-weighted imaging where these distortions vary with the direction of the diffusion weighting and hamper the accurate determination of diffusion parameters. The double-spin-echo preparation often used aims to reduce the cumulative <span class="hlt">eddy</span> current effect by adjusting the diffusion-weighting gradient pulse durations to the time constant of the dominant <span class="hlt">eddy</span> current contribution. However, <span class="hlt">eddy</span> currents with a variety of time constants may be present and cause residual distortions. Here, a modification is proposed where the two bipolar gradient pairs of the preparation are adjusted independently to different time constants. At the expense of a slightly prolonged echo time, residual geometric distortions and correspondingly increased values of the diffusion anisotropy can be reduced as is demonstrated in phantoms and the human brain. Thus, it may help to improve the reliability of diffusion-weighted EPI. Copyright 2010 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24998887','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24998887"><span>Using <span class="hlt">eddy</span> currents for noninvasive in vivo pH monitoring for bone tissue engineering.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Beck-Broichsitter, Benedicta E; Daschner, Frank; Christofzik, David W; Knöchel, Reinhard; Wiltfang, Jörg; Becker, Stephan T</p> <p>2015-03-01</p> <p>The metabolic processes that regulate bone healing and bone induction in tissue engineering models are not fully understood. <span class="hlt">Eddy</span> current excitation is widely used in technical approaches and in the food industry. The aim of this study was to establish <span class="hlt">eddy</span> current excitation for monitoring metabolic processes during heterotopic osteoinduction in vivo. Hydroxyapatite scaffolds were implanted into the musculus latissimus dorsi of six rats. Bone morphogenetic protein 2 (BMP-2) was applied 1 and 2 weeks after implantation. Weekly <span class="hlt">eddy</span> current excitation measurements were performed. Additionally, invasive pH measurements were obtained from the scaffolds using fiber optic detection devices. Correlations between the <span class="hlt">eddy</span> current measurements and the metabolic values were calculated. The <span class="hlt">eddy</span> current measurements and pH values decreased significantly in the first 2 weeks of the study, followed by a steady increase and stabilization at higher levels towards the end of the study. The measurement curves and statistical evaluations indicated a significant correlation between the resonance frequency values of the <span class="hlt">eddy</span> current excitation measurements and the observed pH levels (p = 0.0041). This innovative technique was capable of noninvasively monitoring metabolic processes in living tissues according to pH values, showing a direct correlation between <span class="hlt">eddy</span> current excitation and pH in an in vivo tissue engineering model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012BGeo....9.1159G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012BGeo....9.1159G"><span>Understanding why the volume of suboxic waters does not increase over centuries of global <span class="hlt">warming</span> in an Earth System Model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gnanadesikan, A.; Dunne, J. P.; John, J.</p> <p>2012-03-01</p> <p>Global <span class="hlt">warming</span> is expected to reduce oxygen solubility and vertical exchange in the ocean, changes which would be expected to result in an increase in the volume of hypoxic waters. A simulation made with a full Earth System model with dynamical atmosphere, ocean, sea ice and biogeochemical cycling (the Geophysical Fluid Dynamics Laboratory's Earth System Model 2.1) shows that this holds true if the condition for hypoxia is set relatively high. However, the volume of the most hypoxic (i.e., suboxic) waters does not increase under global <span class="hlt">warming</span>, as these waters actually become more oxygenated. We show that the rise in dissolved oxygen in the tropical Pacific is associated with a drop in ventilation time. A term-by-term analysis within the least oxygenated waters shows an increased supply of dissolved oxygen due to lateral diffusion compensating an increase in remineralization within these highly hypoxic waters. This lateral diffusive flux is the result of an increase of ventilation along the Chilean coast, as a drying of the region under global <span class="hlt">warming</span> opens up a region of wintertime convection in our model. The results highlight the potential sensitivity of suboxic waters to changes in subtropical ventilation as well as the importance of constraining lateral <span class="hlt">eddy</span> transport of dissolved oxygen in such waters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020036221&hterms=nitrogen+production&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dnitrogen%2Bproduction','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020036221&hterms=nitrogen+production&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dnitrogen%2Bproduction"><span>Mesoscale <span class="hlt">Eddies</span>, Satellite Altimetry, and New Production in the Sargasso Sea</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Siegel, David A.; McGillicuddy, Dennis J., Jr.; Fields, Erik A.</p> <p>1999-01-01</p> <p>Satellite altimetry and hydrographic observations are used to characterize the mesoscale <span class="hlt">eddy</span> field in the Sargasso Sea near Bermuda and to address the role of physical processes on the supply of new nutrients to the euphotic zone. The observed sea level anomaly (SLA) field is dominated by the occurrence of westward propagating features with SLA signatures as large as 25 cm, Eulerian temporal scales of roughly a month, lifetimes of several months, spatial scales of approximately 200 km, and a propagation of approximately 5 cm/s. Hydrographic estimates of dynamic height anomaly (referenced to 4000 dbar) are well correlated with satellite SLA (r(exp 2) = 0.65), and at least 85% of the observed dynamic height variability is associated with the first baroclinic mode of motion. This allows us to apply the satellite observations to remotely sensed estimate isopycnal displacements and the flux of nutrients into the euphotic zone due to <span class="hlt">eddy</span> pumping. <span class="hlt">Eddy</span> pumping is the process by which mesoscale <span class="hlt">eddies</span> induce isopycnal displacements that lift nutrient-replete waters into the euphotic zone, driving new primary production. A kinematic approach to the estimation of the <span class="hlt">eddy</span> pumping results in a flux of 0.24 +/- 0.1 mol N/sq m (including a scale estimate for the small contribution due to 18 deg water <span class="hlt">eddies</span>). This flux is more than an order of magnitude larger than the diapycnal diffusive flux as well as scale estimates for the vertical transport due to isopycnal mixing along sloping isopycnal surfaces. <span class="hlt">Eddy</span> pumping and wintertime convection are the two dominant mechanisms transporting new nutrients into the euphotic zone, and the sum of all physical new nutrient supply fluxes effectively balances previous geochemical estimates of annual new production for this site. However, if biological transports (e.g., nitrogen fixation, etc.) are significant, the new nitrogen supply budget will be in excess of geochemical new production estimates. This suggests that the various physical</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020071048&hterms=nitrogen+production&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dnitrogen%2Bproduction','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020071048&hterms=nitrogen+production&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dnitrogen%2Bproduction"><span>Mesoscale <span class="hlt">Eddies</span>, Satellite Altimetry, and New Production in the Sargasso Sea</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Siegel, David A.; McGillicuddy, Dennis J., Jr.; Fields, Erik A.</p> <p>1999-01-01</p> <p>Satellite altimetry and hydrographic observations are used to characterize the mesoscale <span class="hlt">eddy</span> field in the Sargasso Sea near Bermuda and to address the role of physical processes on the supply of new nutrients to the euphotic zone. The observed sea level anomaly (SLA) field is dominated by the occurrence of westward propagating features with SLA signatures as large as 25 cm, Eulerian temporal scales of roughly a month, lifetimes of several months, spatial scales of approximately 200 km, and a propagation of approximately 5 cm/s . Hydrographic estimates of dynamic height anomaly (referenced to 4000 dbar) are well correlated with satellite SLA (r(sup 2) = 0.65), and at least 85% of the observed dynamic height variability is associated with the first baroclinic mode of motion. This allows us to apply the satellite observations to remotely estimate isopycnal displacements and the flux of nutrients into the euphotic zone due to <span class="hlt">eddy</span> pumping. <span class="hlt">Eddy</span> pumping is the process by which mesoscale <span class="hlt">eddies</span> induce isopycnal displacements that lift nutrient- replete waters into the euphotic zone, driving new primary production. A kinematic approach to the estimation of the <span class="hlt">eddy</span> pumping results in a flux of 0.24+/-0.1 mol N/sq m/yr (including a scale estimate for the small contribution due to 18 deg water <span class="hlt">eddies</span>). This flux is more than an order of magnitude larger than the diapycnal diffusive flux as well as scale estimates for the vertical transport due to isopycnal mixing along sloping isopycnal surfaces. <span class="hlt">Eddy</span> pumping and wintertime convection are the two dominant mechanisms transporting new nutrients into the euphotic zone, and the sum of all physical new nutrient supply fluxes effectively balances previous geochemical estimates of annual new production for this site. However, if biological transports (e.g., nitrogen fixation, etc.) are significant, the new nitrogen supply budget will be in excess of geochemical new production estimates. This suggests that the various physical and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..307..150H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..307..150H"><span>Detection of Northern Hemisphere transient <span class="hlt">eddies</span> at Gale Crater Mars</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haberle, Robert M.; Juárez, Manuel de la Torre; Kahre, Melinda A.; Kass, David M.; Barnes, Jeffrey R.; Hollingsworth, Jeffery L.; Harri, Ari-Matti; Kahanpää, Henrik</p> <p>2018-06-01</p> <p>The Rover Environmental Monitoring Station (REMS) on the Curiosity Rover is operating in the Southern Hemisphere of Mars and is detecting synoptic period oscillations in the pressure data that we attribute to Northern Hemisphere transient <span class="hlt">eddies</span>. We base this interpretation on the similarity in the periods of the <span class="hlt">eddies</span> and their seasonal variations with those observed in northern midlatitudes by Viking Lander 2 (VL-2) 18 Mars years earlier. Further support for this interpretation comes from global circulation modeling which shows similar behavior in the transient <span class="hlt">eddies</span> at the grid points closest to Curiosity and VL-2. These observations provide the first in situ evidence that the frontal systems often associated with "Flushing Dust Storms" do cross the equator and extend into the Southern Hemisphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V43F..04P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V43F..04P"><span><span class="hlt">Eddy</span> Flow during Magma Emplacement: The Basemelt Sill, Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petford, N.; Mirhadizadeh, S.</p> <p>2014-12-01</p> <p>The McMurdo Dry Valleys magmatic system, Antarctica, forms part of the Ferrar dolerite Large Igneous Province. Comprising a vertical stack of interconnected sills, the complex provides a world-class example of pervasive lateral magma flow on a continental scale. The lowermost intrusion (Basement Sill) offers detailed sections through the now frozen particle macrostructure of a congested magma slurry1. Image-based numerical modelling where the intrusion geometry defines its own unique finite element mesh allows simulations of the flow regime to be made that incorporate realistic magma particle size and flow geometries obtained directly from field measurements. One testable outcome relates to the origin of rhythmic layering where analytical results imply the sheared suspension intersects the phase space for particle Reynolds and Peclet number flow characteristic of macroscopic structures formation2. Another relates to potentially novel crystal-liquid segregation due to the formation of <span class="hlt">eddies</span> locally at undulating contacts at the floor and roof of the intrusion. The <span class="hlt">eddies</span> are transient and mechanical in origin, unrelated to well-known fluid dynamical effects around obstacles where flow is turbulent. Numerical particle tracing reveals that these low Re number <span class="hlt">eddies</span> can both trap (remove) and eject particles back into the magma at a later time according to their mass density. This trapping mechanism has potential to develop local variations in structure (layering) and magma chemistry that may otherwise not occur where the contact between magma and country rock is linear. Simulations indicate that <span class="hlt">eddy</span> formation is best developed where magma viscosity is in the range 1-102 Pa s. Higher viscosities (> 103 Pa s) tend to dampen the effect implying <span class="hlt">eddy</span> development is most likely a transient feature. However, it is nice to think that something as simple as a bumpy contact could impart physical and by implication chemical diversity in igneous rocks. 1Marsh, D.B. (2004), A</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHI54A1836M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHI54A1836M"><span><span class="hlt">Eddy</span> Generation and Shedding in a Tidally Energetic Channel</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McIlvenny, J.; Gillibrand, P. A.; Walters, R. A.</p> <p>2016-02-01</p> <p>The Pentland Firth in northern Scotland, and its subsidiary channel the Inner Sound, are currently under scrutiny as the first tidal energy array in the world is installed during 2016. The tidal flows in the channel and sound have been intensively observed and modelled in recent years, and the turbulent nature of the flow, with features of <span class="hlt">eddy</span> generation and shedding, is becoming increasingly well known. Turbulence and <span class="hlt">eddies</span> pose potential risks to the turbine infrastructure through enhanced stress on the blades, while understanding environmental effects of energy extraction also requires accurate simulation of the hydrodynamics of the flow. Here, we apply a mixed finite element/finite volume hydrodynamic model to the northern Scottish shelf, with a particular focus on flows through the Pentland Firth and the Inner Sound. We use an unstructured grid model, which allows the open boundaries to be far removed from the region of interest, while still allowing a grid spacing of 40m in the Inner Sound. The model employs semi-implicit techniques to solve the momentum and free surface equations, and semi-Lagrangian methods to solve the material derivative in the momentum equation, making it fast, robust and accurate and suitable for simulating flows in irregular coastal ocean environments. The model is well suited to address questions relating to tidal energy potential. We present numerical simulations of tidal currents in The Pentland Firth and Inner Sound. Observed velocities in the Inner Sound, measured by moored ADCP deployments, reach speeds of up to 5 m s-1 and the model successfully reproduces these strong currents. In the simulations, <span class="hlt">eddies</span> are formed by interactions between the strong flow and the northern and southern headlands on the island of Stroma; some of these <span class="hlt">eddies</span> are trapped and remain locked in position, whereas others are shed and transported away from the generation zone. We track the development and advection of <span class="hlt">eddies</span> in relation to the site of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910015372','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910015372"><span>The impact of greenhouse climate change on the energetics and hydrologic processes of mid-latitude transient <span class="hlt">eddies</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Branscome, Lee E.; Gutowski, William J., Jr.</p> <p>1991-01-01</p> <p>Atmospheric transient <span class="hlt">eddies</span> contribute significantly to mid-latitude energy and water vapor transports. Changes in the global climate, as induced by greenhouse enhancement, will likely alter transient <span class="hlt">eddy</span> behavior. Unraveling all the feedbacks that occur in general circulation models (GCMs) can be difficult. The transient <span class="hlt">eddies</span> are isolated from the feedbacks and are focused on the response of the <span class="hlt">eddies</span> to zonal-mean climate changes that result from CO2-doubling. Using a primitive-equation spectral model, the impact of climate change on the life cycles of transient <span class="hlt">eddies</span> is examined. Transient <span class="hlt">eddy</span> behavior in experiments is compared with initial conditions that are given by the zonal-mean climates of the GCMs with current and doubled amounts of CO2. The smaller meridional temperature gradient in a doubled CO2 climate leads to a reduction in <span class="hlt">eddy</span> kinetic energy, especially in the subtropics. The decrease in subtropical <span class="hlt">eddy</span> energy is related to a substantial reduction in equatorward flux of <span class="hlt">eddy</span> activity during the latter part of the life cycle. The reduction in equatorward energy flux alters the moisture cycle. <span class="hlt">Eddy</span> meridional transport of water vapor is shifted slightly poleward and subtropical precipitation is reduced. The water vapor transport exhibits a relatively small change in magnitude, compared to changes in <span class="hlt">eddy</span> energy, due to the compensating effect of higher specific humidity in the doubled-CO2 climate. An increase in high-latitude precipitation is related to the poleward shift in <span class="hlt">eddy</span> water vapor flux. Surface evaporation amplifies climatic changes in water vapor transport and precipitation in the experiments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B41C0056M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B41C0056M"><span>Modeling the Impacts of Long-Term <span class="hlt">Warming</span> Trends on Gross Primary Productivity Across North America</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mekonnen, Z. A.; Grant, R. F.</p> <p>2014-12-01</p> <p>There is evidence of <span class="hlt">warming</span> over recent decades in most regions of North America (NA) that affects ecosystem productivity and the past decade has been the warmest since instrumental records of global surface temperatures began. In this study, we examined the spatial and temporal variability and trends of <span class="hlt">warming</span> across NA using climate data from the North America Regional Reanalysis (NARR) from 1979 to 2010 with a 3-hourly time-step and 0.250 x 0.250 spatial resolution as part of the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP). A comprehensive mathematical process model, ecosys was used to simulate impacts of this variability in <span class="hlt">warming</span> on gross primary productivity (GPP). In a test of model results, annual GPP modeled for pixels which corresponded to the locations of 25 <span class="hlt">eddy</span> covariance towers correlated well (R2=0.76) with annual GPP derived from the flux towers in 2005. At the continental scale long-term (2000 - 2010) annual average modeled GPP for NA correlated well (geographically weighed regression R2 = 0.8) with MODIS GPP, demonstrating close similarities in spatial patterns. Results from the NARR indicated that most areas of NA, particularly high latitude regions, have experienced <span class="hlt">warming</span> but changes in precipitation vary spatially over the last three decades. GPP modeled in most areas with lower mean annual air temperature (Ta), such as those in boreal climate zones, increased due to early spring and late autumn <span class="hlt">warming</span> observed in NARR. However modeled GPP declined in most southwestern regions of NA, due to water stress from rising Ta and declining precipitation. Overall, GPP modeled across NA had a positive trend of +0.025 P g C yr-1 with a range of -1.16 to 0.87 P g C yr-1 from the long-term mean. Interannual variability of GPP was the greatest in southwest of US and part of the Great Plains, which could be as a result of frequent El Niño-Southern Oscillation' (ENSO) events that led to major droughts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFDG30007R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFDG30007R"><span>Anisotropic shear dispersion parameterization for ocean <span class="hlt">eddy</span> transport</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reckinger, Scott; Fox-Kemper, Baylor</p> <p>2015-11-01</p> <p>The effects of mesoscale <span class="hlt">eddies</span> are universally treated isotropically in global ocean general circulation models. However, observations and simulations demonstrate that the mesoscale processes that the parameterization is intended to represent, such as shear dispersion, are typified by strong anisotropy. We extend the Gent-McWilliams/Redi mesoscale <span class="hlt">eddy</span> parameterization to include anisotropy and test the effects of varying levels of anisotropy in 1-degree Community Earth System Model (CESM) simulations. Anisotropy has many effects on the simulated climate, including a reduction of temperature and salinity biases, a deepening of the southern ocean mixed-layer depth, impacts on the meridional overturning circulation and ocean energy and tracer uptake, and improved ventilation of biogeochemical tracers, particularly in oxygen minimum zones. A process-based parameterization to approximate the effects of unresolved shear dispersion is also used to set the strength and direction of anisotropy. The shear dispersion parameterization is similar to drifter observations in spatial distribution of diffusivity and high-resolution model diagnosis in the distribution of <span class="hlt">eddy</span> flux orientation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1031984','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1031984"><span>Effects of Angular Variation on Split D Differential <span class="hlt">Eddy</span> Current Probe Response (Postprint)</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-02-10</p> <p>AFRL-RX-WP-JA-2016-0327 EFFECTS OF ANGULAR VARIATION ON SPLIT D DIFFERENTIAL <span class="hlt">EDDY</span> CURRENT PROBE RESPONSE (POSTPRINT) Ryan D...March 2014 – 22 September 2015 4. TITLE AND SUBTITLE EFFECTS OF ANGULAR VARIATION ON SPLIT D DIFFERENTIAL <span class="hlt">EDDY</span> CURRENT PROBE RESPONSE (POSTPRINT...last few years have seen increased levels of complexity added to push the state-of-the-art modeling software used in <span class="hlt">eddy</span> current NDE today. The added</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1814108V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1814108V"><span>Biogeochemical characteristics of mesoscale <span class="hlt">eddies</span> in the generation zone off Valparaíso, Chile</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Villegas, Valerie; Cornejo, Marcela; Molina, Verónica; Silva, Nelson; Hormazábal, Samuel</p> <p>2016-04-01</p> <p>The coastal area off Valparaiso is characterized by an intense mesoscale activity associated with <span class="hlt">eddies</span>, which transport highly productive-coastal waters to the oligotrophic areas of the Subtropical Gyre. Among these, the Intrathermocline Anticyclonic <span class="hlt">Eddies</span> (ITE's) which are forming in the eastern South Pacific, transport low oxygen- and high nutrients- subsurface water of Equatorial Subsurface Water (ESSW). These <span class="hlt">eddies</span> have been well characterized in terms of generation rate, direction, speed and water transport. However, biogeochemical conditions in their origin and its temporal variability are not well assessed. The present study aims to determine the variability, spatially and temporally, of the biogeochemical properties in the water column at the <span class="hlt">eddies</span> generation zone, off Punta Ángeles, Valparaíso (33° S). For this, a monthly time series was conducted between January and August 2016 where a cross-shore transect with six-stations was deployed (from coast to 16 nm). Each station was sampled with CTD-OF, while only in station 5 (1300 m depth) was sampled in 16 depth for biogeochemical variables: nutrients (NO3-, NO2-, PO4-3, Si(OH)4), greenhouse gases (CO2, CH4 and N2O), chlorophyll a, stable isotopes in particulate organic material (13C, 15N), content of organic carbon and nitrogen in POM. The spatial and temporal distribution shows the presence of subsurface <span class="hlt">cores</span> (100 - 300 m) with water with high salinity (> 34.7 psu) and low oxygen content (< 0.5 mLṡL-1), associated with mesoscale subsurface structures. The largest vertical and horizontal extension of these structures was observed in January 2015. These subsurface structures showed a significant deficit of reactive nitrogen (N* < -10 μM), nitrite accumulation (> 0.6 μM) and the highest supersaturations of CO2 (110 - 344%) and N2O (107 - 407%). Along with this, the <span class="hlt">eddies</span> generation zone presented a temporal variability of air-sea gases fluxes with the highest in the austral summer and autumn</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHI14A1761S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHI14A1761S"><span>Countering Ice Ages: Re-directing Public Concern from Global <span class="hlt">Warming</span> (GW) to Global Cooling (GC)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singer, S. F.</p> <p>2016-02-01</p> <p>I present here three arguments in favor of such a drastic shift - which involves also a shift in current policies, such as mitigation of the greenhouse (GH) gas carbon dioxide. 1. Historical evidence shows that cooling, even on a regional or local scale, is much more damaging than <span class="hlt">warming</span>. The key threat is to agriculture, leading to failure of harvests, followed by famine, starvation, disease, and mass deaths. 2. Also, GC is reasonably sure, while GW is iffy. The evidence from deep-sea sediment <span class="hlt">cores</span> and ice <span class="hlt">cores</span> shows some 17 (Milankovitch-style) glaciations in the past 2 million years, each typically lasting 100,000 years, interrupted by <span class="hlt">warm</span> inter-glacials, typically around 10,000-yr duration. The most recent glaciation ended rather suddenly about 12,000 years ago. We are now in the <span class="hlt">warm</span> Holocene, which is expected to end soon. Most of humanity may not survive the next, inevitable glaciation. We need to consider also the <span class="hlt">warming</span>-cooling (Dansgaard-Oeschger-Bond - DOB) cycles, which seem solar-controlled and have a period of approx 1000-1500 years; its most recent cooling phase, the "Little Ice Age" (LIA), ended about 200 years ago. For details, see Unstoppable Global <span class="hlt">Warming</span>: Every 1500 years by Singer &Avery [2007]. 3. Available technology seems adequate to assure human survival - at least in industrialized nations. The main threat is warfare, driven by competition for food and other essential resources. With nuclear weapons and delivery systems widely dispersed, the outcome of future wars is difficult to predict. Using geo-engineering to overcome a future cooling looks promising for both types of ice ages - with relatively low cost and low risk to the physical and biological environment. I will describe how to neutralize the "trigger" of major glaciations, and propose a particular greenhouse scheme that may counter the cooling phase of DOB cycles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4593881','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4593881"><span>The Effects of Local <span class="hlt">Warming</span> on Surgical Site Infection</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dellinger, E. Patchen; Weber, James; Swenson, Ron Edward; Kent, Christopher D.; Swanson, Paul E.; Harmon, Kurt; Perrin, Margot</p> <p>2015-01-01</p> <p>Abstract Background: Surgical site infections (SSI) account for a major proportion of hospital-acquired infections. They are associated with longer hospital stay, readmissions, increased costs, mortality, and morbidity. Reducing SSI is a goal of the Surgical Care Improvement Project and identifying interventions that reduce SSI effectively is of interest. In a single-blinded randomized controlled trial (RCT) we evaluated the effect of localized <span class="hlt">warming</span> applied to surgical incisions on SSI development and selected cellular (immune, endothelial) and tissue responses (oxygenation, collagen). Methods: After Institutional Review Board approval and consent, patients having open bariatric, colon, or gynecologic-oncologic related operations were enrolled and randomly assigned to local incision <span class="hlt">warming</span> (6 post-operative treatments) or non-<span class="hlt">warming</span>. A prototype surgical bandage was used for all patients. The study protocol included intra-operative <span class="hlt">warming</span> to maintain <span class="hlt">core</span> temperature ≥36°C and administration of 0.80 FIO2. Patients were followed for 6 wks for the primary outcome of SSI determined by U.S. Centers for Disease Control (CDC) criteria and ASEPSIS scores (additional treatment; presence of serous discharge, erythema, purulent exudate, and separation of the deep tissues; isolation of bacteria; and duration of inpatient stay). Tissue oxygen (PscO2) and samples for cellular analyses were obtained using subcutaneous polytetrafluoroethylene (ePTFE) tubes and oxygen micro-electrodes implanted adjacent to the incision. Cellular and tissue ePTFE samples were evaluated using flow cytometry, immunohistochemistry, and Sircol™ collagen assay (Biocolor Ltd., Carrickfergus, United Kingdom). Results: One hundred forty-six patients participated (n=73 per group). Study groups were similar on demographic parameters and for intra-operative management factors. The CDC defined rate of SSI was 18%; occurrence of SSI between groups did not differ (p=0.27). At 2 wks, <span class="hlt">warmed</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005OcMod...8....1C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005OcMod...8....1C"><span>Modeling mesoscale <span class="hlt">eddies</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Canuto, V. M.; Dubovikov, M. S.</p> <p></p> <p>Mesoscale <span class="hlt">eddies</span> are not resolved in coarse resolution ocean models and must be modeled. They affect both mean momentum and scalars. At present, no generally accepted model exists for the former; in the latter case, mesoscales are modeled with a bolus velocity u∗ to represent a sink of mean potential energy. However, comparison of u∗(model) vs. u∗ (<span class="hlt">eddy</span> resolving code, [J. Phys. Ocean. 29 (1999) 2442]) has shown that u∗(model) is incomplete and that additional terms, "unrelated to thickness source or sinks", are required. Thus far, no form of the additional terms has been suggested. To describe mesoscale <span class="hlt">eddies</span>, we employ the Navier-Stokes and scalar equations and a turbulence model to treat the non-linear interactions. We then show that the problem reduces to an eigenvalue problem for the mesoscale Bernoulli potential. The solution, which we derive in analytic form, is used to construct the momentum and thickness fluxes. In the latter case, the bolus velocity u∗ is found to contain two types of terms: the first type entails the gradient of the mean potential vorticity and represents a positive contribution to the production of mesoscale potential energy; the second type of terms, which is new, entails the velocity of the mean flow and represents a negative contribution to the production of mesoscale potential energy, or equivalently, a backscatter process whereby a fraction of the mesoscale potential energy is returned to the original reservoir of mean potential energy. This type of terms satisfies the physical description of the additional terms given by [J. Phys. Ocean. 29 (1999) 2442]. The mesoscale flux that enters the momentum equations is also contributed by two types of terms of the same physical nature as those entering the thickness flux. The potential vorticity flux is also shown to contain two types of terms: the first is of the gradient-type while the other terms entail the velocity of the mean flow. An expression is derived for the mesoscale</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26635077','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26635077"><span>Distant Influence of Kuroshio <span class="hlt">Eddies</span> on North Pacific Weather Patterns?</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ma, Xiaohui; Chang, Ping; Saravanan, R; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao</p> <p>2015-12-04</p> <p>High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean <span class="hlt">eddies</span> and near-surface atmospheric flow over <span class="hlt">eddy</span>-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient <span class="hlt">eddy</span> energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean <span class="hlt">eddy</span>-atmosphere interaction in forecast and climate models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/880240','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/880240"><span>Contoured Surface <span class="hlt">Eddy</span> Current Inspection System</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Batzinger, Thomas James; Fulton, James Paul; Rose, Curtis Wayne; Perocchi, Lee Cranford</p> <p>2003-04-08</p> <p><span class="hlt">Eddy</span> current inspection of a contoured surface of a workpiece is performed by forming a backing piece of flexible, resiliently yieldable material with a contoured exterior surface conforming in shape to the workpiece contoured surface. The backing piece is preferably cast in place so as to conform to the workpiece contoured surface. A flexible <span class="hlt">eddy</span> current array probe is attached to the contoured exterior surface of the backing piece such that the probe faces the contoured surface of the workpiece to be inspected when the backing piece is disposed adjacent to the workpiece. The backing piece is then expanded volumetrically by inserting at least one shim into a slot in the backing piece to provide sufficient contact pressure between the probe and the workpiece contoured surface to enable the inspection of the workpiece contoured surface to be performed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1122319-tidal-residual-eddies-effect-water-exchange-puget-sound','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1122319-tidal-residual-eddies-effect-water-exchange-puget-sound"><span>Tidal Residual <span class="hlt">Eddies</span> and their Effect on Water Exchange in Puget Sound</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yang, Zhaoqing; Wang, Taiping</p> <p></p> <p>Tidal residual <span class="hlt">eddies</span> are one of the important hydrodynamic features in tidally dominant estuaries and coastal bays, and they could have significant effects on water exchange in a tidal system. This paper presents a modeling study of tides and tidal residual <span class="hlt">eddies</span> in Puget Sound, a tidally dominant fjord-like estuary in the Pacific Northwest coast, using a three-dimensional finite-volume coastal ocean model. Mechanisms of vorticity generation and asymmetric distribution patterns around an island/headland were analyzed using the dynamic vorticity transfer approach and numerical experiments. Model results of Puget Sound show that a number of large twin tidal residual <span class="hlt">eddies</span> existmore » in the Admiralty Inlet because of the presence of major headlands in the inlet. Simulated residual vorticities near the major headlands indicate that the clockwise tidal residual <span class="hlt">eddy</span> (negative vorticity) is generally stronger than the anticlockwise <span class="hlt">eddy</span> (positive vorticity) because of the effect of Coriolis force. The effect of tidal residual <span class="hlt">eddies</span> on water exchange in Puget Sound and its sub-basins were evaluated by simulations of dye transport. It was found that the strong transverse variability of residual currents in the Admiralty Inlet results in a dominant seaward transport along the eastern shore and a dominant landward transport along the western shore of the Inlet. A similar transport pattern in Hood Canal is caused by the presence of tidal residual <span class="hlt">eddies</span> near the entrance of the canal. Model results show that tidal residual currents in Whidbey Basin are small in comparison to other sub-basins. A large clockwise residual circulation is formed around Vashon Island near entrance of South Sound, which can potentially constrain the water exchange between the Central Basin and South Sound.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22918621','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22918621"><span><span class="hlt">Eddy</span> current compensation for delta relaxation enhanced MR by dynamic reference phase modulation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hoelscher, Uvo Christoph; Jakob, Peter M</p> <p>2013-04-01</p> <p><span class="hlt">Eddy</span> current compensation by dynamic reference phase modulation (eDREAM) is a compensation method for <span class="hlt">eddy</span> current fields induced by B 0 field-cycling which occur in delta relaxation enhanced MR (dreMR) imaging. The presented method is based on a dynamic frequency adjustment and prevents <span class="hlt">eddy</span> current related artifacts. It is easy to implement and can be completely realized in software for any imaging sequence. In this paper, the theory of eDREAM is derived and two applications are demonstrated. The theory describes how to model the behavior of the <span class="hlt">eddy</span> currents and how to implement the compensation. Phantom and in vivo measurements are carried out and demonstrate the benefits of eDREAM. A comparison of images acquired with and without eDREAM shows a significant improvement in dreMR image quality. Images without eDREAM suffer from severe artifacts and do not allow proper interpretation while images with eDREAM are artifact free. In vivo experiments demonstrate that dreMR imaging without eDREAM is not feasible as artifacts completely change the image contrast. eDREAM is a flexible <span class="hlt">eddy</span> current compensation for dreMR. It is capable of completely removing the influence of <span class="hlt">eddy</span> currents such that the dreMR images do not suffer from artifacts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22482816-measurement-toroidal-vessel-eddy-current-during-plasma-disruption-text','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22482816-measurement-toroidal-vessel-eddy-current-during-plasma-disruption-text"><span>Measurement of toroidal vessel <span class="hlt">eddy</span> current during plasma disruption on J-TEXT</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Liu, L. J.; Yu, K. X.; Zhang, M., E-mail: zhangming@hust.edu.cn</p> <p>2016-01-15</p> <p>In this paper, we have employed a thin, printed circuit board <span class="hlt">eddy</span> current array in order to determine the radial distribution of the azimuthal component of the <span class="hlt">eddy</span> current density at the surface of a steel plate. The <span class="hlt">eddy</span> current in the steel plate can be calculated by analytical methods under the simplifying assumptions that the steel plate is infinitely large and the exciting current is of uniform distribution. The measurement on the steel plate shows that this method has high spatial resolution. Then, we extended this methodology to a toroidal geometry with the objective of determining the poloidal distributionmore » of the toroidal component of the <span class="hlt">eddy</span> current density associated with plasma disruption in a fusion reactor called J-TEXT. The preliminary measured result is consistent with the analysis and calculation results on the J-TEXT vacuum vessel.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26827315','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26827315"><span>Measurement of toroidal vessel <span class="hlt">eddy</span> current during plasma disruption on J-TEXT.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, L J; Yu, K X; Zhang, M; Zhuang, G; Li, X; Yuan, T; Rao, B; Zhao, Q</p> <p>2016-01-01</p> <p>In this paper, we have employed a thin, printed circuit board <span class="hlt">eddy</span> current array in order to determine the radial distribution of the azimuthal component of the <span class="hlt">eddy</span> current density at the surface of a steel plate. The <span class="hlt">eddy</span> current in the steel plate can be calculated by analytical methods under the simplifying assumptions that the steel plate is infinitely large and the exciting current is of uniform distribution. The measurement on the steel plate shows that this method has high spatial resolution. Then, we extended this methodology to a toroidal geometry with the objective of determining the poloidal distribution of the toroidal component of the <span class="hlt">eddy</span> current density associated with plasma disruption in a fusion reactor called J-TEXT. The preliminary measured result is consistent with the analysis and calculation results on the J-TEXT vacuum vessel.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1362279','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1362279"><span>Flux Tower <span class="hlt">Eddy</span> Covariance and Meteorological Measurements for Barrow, Alaska: 2012-2016</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Dengel, Sigrid; Torn, Margaret; Billesbach, David</p> <p>2017-08-24</p> <p>The dataset contains half-hourly <span class="hlt">eddy</span> covariance flux measurements and determinations, companion meteorological measurements, and ancillary data from the flux tower (US-NGB) on the Barrow Environmental Observatory at Barrow (Utqiagvik), Alaska for the period 2012 through 2016. Data have been processed using <span class="hlt">Eddy</span>Pro software and screened by the contributor. The flux tower sits in an Arctic coastal tundra ecosystem. This dataset updates a previous dataset by reprocessing a longer period of record in the same manner. Related dataset "<span class="hlt">Eddy</span>-Covariance and auxiliary measurements, NGEE-Barrow, 2012-2013" DOI:10.5440/1124200.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27553908','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27553908"><span>Key factors of <span class="hlt">eddy</span> current separation for recovering aluminum from crushed e-waste.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ruan, Jujun; Dong, Lipeng; Zheng, Jie; Zhang, Tao; Huang, Mingzhi; Xu, Zhenming</p> <p>2017-02-01</p> <p>Recovery of e-waste in China had caused serious pollutions. <span class="hlt">Eddy</span> current separation is an environment-friendly technology of separating nonferrous metallic particles from crushed e-waste. However, due to complex particle characters, separation efficiency of traditional <span class="hlt">eddy</span> current separator was low. In production, controllable operation factors of <span class="hlt">eddy</span> current separation are feeding speed, (ωR-v), and S p . There is little special information about influencing mechanism and critical parameters of these factors in <span class="hlt">eddy</span> current separation. This paper provided the special information of these key factors in <span class="hlt">eddy</span> current separation of recovering aluminum particles from crushed waste refrigerator cabinets. Detachment angles increased as the increase of (ωR-v). Separation efficiency increased with the growing of detachment angles. Aluminum particles were completely separated from plastic particles in critical parameters of feeding speed 0.5m/s and detachment angles greater than 6.61deg. S p /S m of aluminum particles in crushed waste refrigerators ranged from 0.08 to 0.51. Separation efficiency increased as the increase of S p /S m . This enlightened us to develop new separator to separate smaller nonferrous metallic particles in e-waste recovery. High feeding speed destroyed separation efficiency. However, greater S p of aluminum particles brought positive impact on separation efficiency. Greater S p could increase critical feeding speed to offer greater throughput of <span class="hlt">eddy</span> current separation. This paper will guide <span class="hlt">eddy</span> current separation in production of recovering nonferrous metals from crushed e-waste. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27364521','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27364521"><span>Feasibility of conductivity imaging using subject <span class="hlt">eddy</span> currents induced by switching of MRI gradients.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Oran, Omer Faruk; Ider, Yusuf Ziya</p> <p>2017-05-01</p> <p>To investigate the feasibility of low-frequency conductivity imaging based on measuring the magnetic field due to subject <span class="hlt">eddy</span> currents induced by switching of MRI z-gradients. We developed a simulation model for calculating subject <span class="hlt">eddy</span> currents and the magnetic fields they generate (subject <span class="hlt">eddy</span> fields). The inverse problem of obtaining conductivity distribution from subject <span class="hlt">eddy</span> fields was formulated as a convection-reaction partial differential equation. For measuring subject <span class="hlt">eddy</span> fields, a modified spin-echo pulse sequence was used to determine the contribution of subject <span class="hlt">eddy</span> fields to MR phase images. In the simulations, successful conductivity reconstructions were obtained by solving the derived convection-reaction equation, suggesting that the proposed reconstruction algorithm performs well under ideal conditions. However, the level of the calculated phase due to the subject <span class="hlt">eddy</span> field in a representative object indicates that this phase is below the noise level and cannot be measured with an uncertainty sufficiently low for accurate conductivity reconstruction. Furthermore, some artifacts other than random noise were observed in the measured phases, which are discussed in relation to the effects of system imperfections during readout. Low-frequency conductivity imaging does not seem feasible using basic pulse sequences such as spin-echo on a clinical MRI scanner. Magn Reson Med 77:1926-1937, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912842I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912842I"><span>Distribution of the near-inertial kinetic energy inside mesoscale <span class="hlt">eddies</span>: Observations in the Gulf of Mexico</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ixetl Garcia Gomez, Beatriz; Pallas Sanz, Enric; Candela Perez, Julio</p> <p>2017-04-01</p> <p>The near-inertial oscillations (NIOs), generated by the wind stress on the surface mixed layer, are the inertia gravity waves with the lowest frequency and the highest kinetic energy. NIOs are important because they drive vertical mixing in the interior ocean during wave breaking events. Although the interaction between NIOs and mesoscale <span class="hlt">eddies</span> has been reported by several authors, these studies are mostly analytical and numerical, and only few observational studies have attempted to show the differences in near-inertial kinetic energy (KEi) between anticyclonic and cyclonic <span class="hlt">eddies</span>. In this work the spatial structure of the KEi inside the mesoscale <span class="hlt">eddies</span> is computed using daily satellite altimetry and observations of horizontal velocity from 23 moorings equipped with acoustic Doppler current profilers in the western Gulf of Mexico. Consistent to theory, the obtained four-year KEi-composites show two times more KEi inside the anticyclonic <span class="hlt">eddies</span> than inside the cyclonic ones. The vertical and horizontal cross-sections of the KEi-composites show that the KEi is mainly located near to the surface of the cyclonic <span class="hlt">eddies</span> (positive vorticity), whereas the KEi in anticyclonic <span class="hlt">eddies</span> (negative vorticity) is maximum in the <span class="hlt">eddy</span>'s center near to the base of the <span class="hlt">eddy</span> where the NIOs become more inertial, are trapped, and amplified. The mean vertical profiles show that the cyclonic <span class="hlt">eddies</span> present a maximum of KEi near to the surface at 50, while the maximum of KEi in the anticyclonic <span class="hlt">eddies</span> occurs between 900 and 1100 m. Inside anticyclonic <span class="hlt">eddies</span> another two relative maximums are observed, one in the mixed layer and the second at 300 m. In contrast, the mean profile of KEi outside the mesoscale <span class="hlt">eddies</span> has the maximum value at the surface ( 50 m), with high values of KEi in the first 200 m and negligible energy beneath that depth. A different mean distribution of the KEi is observed depending on the type of wind generator: tropical storms or unidirectional wind.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS31H..06T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS31H..06T"><span>Observed and Simulated <span class="hlt">Eddy</span> Diffusivity Upstream of the Drake Passage</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tulloch, R.; Ferrari, R. M.; Marshall, J.</p> <p>2012-12-01</p> <p>Estimates of <span class="hlt">eddy</span> diffusivity in the Southern Ocean are poorly constrained due to lack of observations. We compare the first direct estimate of isopycnal <span class="hlt">eddy</span> diffusivity upstream of the Drake Passage (from Ledwell et al. 2011) with a numerical simulation. The estimate is computed from a point tracer release as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). We find that the observational diffusivity estimate of about 500m^2/s at 1500m depth is close to that computed in a data-constrained, 1/20th of a degree simulation of the Drake Passage region. This tracer estimate also agrees with Lagrangian float calculations in the model. The role of mean flow suppression of <span class="hlt">eddy</span> diffusivity at shallower depths will also be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS1015e2005D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS1015e2005D"><span>Research of Steel-dielectric Transition Using Subminiature <span class="hlt">Eddy</span>-current Transducer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dmitriev, S. F.; Malikov, V. N.; Sagalakov, A. M.; Ishkov, A. V.</p> <p>2018-05-01</p> <p>The research aims to develop a subminiature transducer for electrical steel investigation. The authors determined the capability to study steel characteristics at different depths based on variations of <span class="hlt">eddy</span>-current transducer amplitude at the steel-dielectric boundary. A subminiature transformer-type transducer was designed, which enables to perform local investigations of ferromagnetic materials using an <span class="hlt">eddy</span>-current method based on local studies of the steel electrical conductivity. Having the designed transducer as a basis, a hardware-software complex was built to perform experimental studies of steel at the interface boundary. Test results are reported for a specimen with continuous and discrete measurements taken at different frequencies. The article provides the key technical information about the <span class="hlt">eddy</span> current transformer used and describes the methodology of measurements that makes it possible to control steel to dielectric transition.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..43.3897B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..43.3897B"><span>Annular modes and apparent <span class="hlt">eddy</span> feedbacks in the Southern Hemisphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Byrne, Nicholas J.; Shepherd, Theodore G.; Woollings, Tim; Plumb, R. Alan</p> <p>2016-04-01</p> <p>Lagged correlation analysis is often used to infer intraseasonal dynamical effects but is known to be affected by nonstationarity. We highlight a pronounced quasi 2 year peak in the anomalous zonal wind and <span class="hlt">eddy</span> momentum flux convergence power spectra in the Southern Hemisphere, which is prima facie evidence for nonstationarity. We then investigate the consequences of this nonstationarity for the Southern Annular Mode and for <span class="hlt">eddy</span> momentum flux convergence. We argue that positive lagged correlations previously attributed to the existence of an <span class="hlt">eddy</span> feedback are more plausibly attributed to nonstationary interannual variability external to any potential feedback process in the midlatitude troposphere. The findings have implications for the diagnosis of feedbacks in both models and reanalysis data as well as for understanding the mechanisms underlying variations in the zonal wind.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27667877','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27667877"><span>Annular modes and apparent <span class="hlt">eddy</span> feedbacks in the Southern Hemisphere.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Byrne, Nicholas J; Shepherd, Theodore G; Woollings, Tim; Plumb, R Alan</p> <p>2016-04-28</p> <p>Lagged correlation analysis is often used to infer intraseasonal dynamical effects but is known to be affected by nonstationarity. We highlight a pronounced quasi 2 year peak in the anomalous zonal wind and <span class="hlt">eddy</span> momentum flux convergence power spectra in the Southern Hemisphere, which is prima facie evidence for nonstationarity. We then investigate the consequences of this nonstationarity for the Southern Annular Mode and for <span class="hlt">eddy</span> momentum flux convergence. We argue that positive lagged correlations previously attributed to the existence of an <span class="hlt">eddy</span> feedback are more plausibly attributed to nonstationary interannual variability external to any potential feedback process in the midlatitude troposphere. The findings have implications for the diagnosis of feedbacks in both models and reanalysis data as well as for understanding the mechanisms underlying variations in the zonal wind.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPA....7h5105W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPA....7h5105W"><span>Motion-induced <span class="hlt">eddy</span> current thermography for high-speed inspection</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Jianbo; Li, Kongjing; Tian, Guiyun; Zhu, Junzhen; Gao, Yunlai; Tang, Chaoqing; Chen, Xiaotian</p> <p>2017-08-01</p> <p>This letter proposes a novel motion-induced <span class="hlt">eddy</span> current based thermography (MIECT) for high-speed inspection. In contrast to conventional <span class="hlt">eddy</span> current thermography (ECT) based on a time-varying magnetic field created by an AC coil, the motion-induced <span class="hlt">eddy</span> current is induced by the relative motion between magnetic field and inspected objects. A rotating magnetic field created by three-phase windings is used to investigate the heating principle and feasibility of the proposed method. Firstly, based on Faraday's law the distribution of MIEC is investigated, which is then validated by numerical simulation. Further, experimental studies are conducted to validate the proposed method by creating rotating magnetic fields at different speeds from 600 rpm to 6000 rpm, and it is verified that rotating speed will increase MIEC intensity and thereafter improve the heating efficiency. The conclusion can be preliminarily drawn that the proposed MIECT is a platform suitable for high-speed inspection.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>