Sample records for warm fuel gas

  1. Replacing coal with natural gas would reduce warming

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-08-01

    A debate has raged in the past couple of years as to whether natural gas is better or worse overall than coal and oil from a global warming perspective. The back-and-forth findings have been due to the timelines taken into consideration, the details of natural gas extraction, and the electricity-generating efficiency of various fuels. An analysis by Cathles, which focuses exclusively on potential warming and ignores secondary considerations, such as economic, political, or other environmental concerns, finds that natural gas is better for electricity generation than coal and oil under all realistic circumstances. To come to this conclusion, the author considered three different future fuel consumption scenarios: (1) a business-as-usual case, which sees energy generation capacity continue at its current pace with its current energy mix until the middle of the century, at which point the implementation of low-carbon energy sources dominates and fossil fuel-derived energy production declines; (2) a gas substitution scenario, where natural gas replaces all coal power production and any new oil-powered facilities, with the same midcentury shift; and (3) a low-carbon scenario, where all electricity generation is immediately and aggressively switched to non-fossil fuel sources such as solar, wind, and nuclear.

  2. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C.

    PubMed

    McGlade, Christophe; Ekins, Paul

    2015-01-08

    Policy makers have generally agreed that the average global temperature rise caused by greenhouse gas emissions should not exceed 2 °C above the average global temperature of pre-industrial times. It has been estimated that to have at least a 50 per cent chance of keeping warming below 2 °C throughout the twenty-first century, the cumulative carbon emissions between 2011 and 2050 need to be limited to around 1,100 gigatonnes of carbon dioxide (Gt CO2). However, the greenhouse gas emissions contained in present estimates of global fossil fuel reserves are around three times higher than this, and so the unabated use of all current fossil fuel reserves is incompatible with a warming limit of 2 °C. Here we use a single integrated assessment model that contains estimates of the quantities, locations and nature of the world's oil, gas and coal reserves and resources, and which is shown to be consistent with a wide variety of modelling approaches with different assumptions, to explore the implications of this emissions limit for fossil fuel production in different regions. Our results suggest that, globally, a third of oil reserves, half of gas reserves and over 80 per cent of current coal reserves should remain unused from 2010 to 2050 in order to meet the target of 2 °C. We show that development of resources in the Arctic and any increase in unconventional oil production are incommensurate with efforts to limit average global warming to 2 °C. Our results show that policy makers' instincts to exploit rapidly and completely their territorial fossil fuels are, in aggregate, inconsistent with their commitments to this temperature limit. Implementation of this policy commitment would also render unnecessary continued substantial expenditure on fossil fuel exploration, because any new discoveries could not lead to increased aggregate production.

  3. Reduction of Greenhouse Gas and Criteria Pollutant Emissions by Direct Conversion of Associated Flare Gas to Synthetic Fuels at Oil Wellheads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric C; Zhang, Yi Min; Schuetzle, Dennis

    This study describes the results of a 'well-to-wheel' life cycle assessment (LCA) carried out to determine the potential greenhouse gas and criteria pollutant emission reductions that could be achieved by converting associated flare gas directly to synthetic fuels at oil wellheads in the US and globally. A Greyrock Flare Gas-to-Fuels(TM) conversion process at an Ohio oil well was used as the base case for this LCA. The liquid fuel produced directly from associated gas is comprised primarily of premium synthetic diesel with a small amount of synthetic gasoline. In this LCA scenario, the synthetic diesel and synthetic gasoline are blendedmore » at 20 and 10 vol% with petroleum diesel and gasoline, respectively. While the synthetic diesel fuel can be used as is (100%), the 20 vol% synthetic diesel blend (with petroleum diesel) was found to significantly improve engine performance, increase fuel economy, and reduce emissions. The direct conversion of associated gas to synthetic diesel fuels globally could reduce emissions of CO2 and CH4 by up to 356 and 5.96 million metric tons/year, respectively, resulting in the reduction of greenhouse gases (GHGs) by about 113.3 and 92.2% (20 year global warming potential) and 73.8 and 50.7% (100 year global warming potential) for synthetic diesel and gasoline fuels when compared to petroleum-derived gasoline fuels, respectively. Likewise, diesel criteria emissions could be reduced globally by up to 23.3, 0.374, 42.4, and 61.3 million metric tons/year globally for CO, particulates, NOx, and hydrocarbons, respectively. The potential economic benefit of this approach is that up to 5.30 and 71.1 billion liters of synthetic fuels could be produced each year in the US and globally from associated gas, respectively.« less

  4. The effects of reduced ambient temperatures on the warm-up fuel consumption behavior of gasoline fueled automobiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pucher, G.R.; Gardiner, D.P.; Mallory, R.W.

    Warm-up fuel consumption behavior as affected by ambient temperature was evaluated for five OEM gasoline fueled automobiles. Multiple EPA FTP 75 tests were performed with each vehicle at ambient test cell soak temperatures of 25 C and {minus}7 C. Fuel consumption measured during the warm-up (Bag 1, Cold Transient) test segments at these two temperature conditions was compared to the fully warmed Hot Transient (Bag 3) fuel consumption from the 25 C ambient temperature tests (the Bag 1 and Bag 3 segments involve identical speed curves). Fuel consumption increases over the 25 C Bag 3 tests for the two warm-upmore » test conditions were differentiated as those caused by increased drivetrain losses and those caused by intake charge enrichment. Results show wide variations in warm-up behavior among the five vehicles with respect to the relative increases in fuel consumption, and the proportion of the fuel consumption increases attributable to drivetrain losses and enrichment. It was discovered that the most sophisticated vehicle systems do not necessarily facilitate the least degradation in fuel consumption with respect to baseline conditions for the group of vehicles tested.« less

  5. Control of Fossil-Fuel Particulate Black Carbon and Organic Matter, the Most Effective Method of Slowing Global Warming

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2001-12-01

    Under the 1997 Kyoto Protocol, no control of black carbon (BC) was considered. Here, it is found, through simulations in which seven new particles feedbacks to climate are identified, that any emission reduction of fossil-fuel (f.f.) particulate BC plus associated organic matter (OM) will slow global warming more than will any emission reduction of CO2 or CH4 for a definite time period. When all f.f. BC+OM and anthropogenic CO2 and CH4 emissions are eliminated together, that period is 20-90 years. It is also found that historical net global warming can be attributed roughly to greenhouse-gas plus f.f. BC+OM warming minus anthropogenic sulfate cooling. Eliminating all f.f. BC+OM could eliminate more than 40 percent of such net warming within three years if no other changes occurred. Reducing CO2 emissions by a third would have the same effect, but after 50-200 years. Finally, diesel cars warm climate more than do equivalent gasoline cars; thus, fuel- and carbon-tax laws that favor diesel promote global warming.

  6. Effects of Fuel and Nozzle Characteristics on Micro Gas Turbine System: A Review

    NASA Astrophysics Data System (ADS)

    Akasha Hashim, Muhammad; Khalid, Amir; Salleh, Hamidon; Sunar, Norshuhaila Mohamed

    2017-08-01

    For many decades, gas turbines have been used widely in the internal combustion engine industry. Due to the deficiency of fossil fuel and the concern of global warming, the used of bio-gas have been recognized as one of most clean fuels in the application of engine to improve performance of lean combustion and minimize the production of NOX and PM. This review paper is to understand the combustion performance using dual-fuel nozzle for a micro gas turbine that was basically designed as a natural gas fuelled engine, the nozzle characteristics of the micro gas turbine has been modelled and the effect of multi-fuel used were investigated. The used of biogas (hydrogen) as substitute for liquid fuel (methane) at constant fuel injection velocity, the flame temperature is increased, but the fuel low rate reduced. Applying the blended fuel at constant fuel rate will increased the flame temperature as the hydrogen percentages increased. Micro gas turbines which shows the uniformity of the flow distribution that can be improved without the increase of the pressure drop by applying the variable nozzle diameters into the fuel supply nozzle design. It also identifies the combustion efficiency, better fuel mixing in combustion chamber using duel fuel nozzle with the largest potential for the future. This paper can also be used as a reference source that summarizes the research and development activities on micro gas turbines.

  7. C1-carbon sources for chemical and fuel production by microbial gas fermentation.

    PubMed

    Dürre, Peter; Eikmanns, Bernhard J

    2015-12-01

    Fossil resources for production of fuels and chemicals are finite and fuel use contributes to greenhouse gas emissions and global warming. Thus, sustainable fuel supply, security, and prices necessitate the implementation of alternative routes to the production of chemicals and fuels. Much attention has been focussed on use of cellulosic material, particularly through microbial-based processes. However, this is still costly and proving challenging, as are catalytic routes to biofuels from whole biomass. An alternative strategy is to directly capture carbon before incorporation into lignocellulosic biomass. Autotrophic acetogenic, carboxidotrophic, and methanotrophic bacteria are able to capture carbon as CO, CO2, or CH4, respectively, and reuse that carbon in products that displace their fossil-derived counterparts. Thus, gas fermentation represents a versatile industrial platform for the sustainable production of commodity chemicals and fuels from diverse gas resources derived from industrial processes, coal, biomass, municipal solid waste (MSW), and extracted natural gas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Alternative Fuels Data Center: Natural Gas Fueling Stations

    Science.gov Websites

    Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Google Bookmark

  9. Demand thrust pumped propulsion with automatic warm gas valving

    NASA Astrophysics Data System (ADS)

    Whitehead, J. C.

    1992-06-01

    Operation of a thrust-on-demand, monopropellant rocket propulsion system which uses lightweight low-pressure tankage, free-piston pumps, and a small high-pressure thrust chamber, is explained. The pump intake-exhaust valves use warm gas pneumatic signals to ensure that two reciprocating pumps are alternately pressurized, with overlap during switchover to permit uninterrupted propellant flow. Experiments demonstrate that the miniature pumps operate at any speed depending on downstream demand, and can deliver nearly their own mass in hydrazine per second, at 7 MPa (1000 psi). The valves, which use the alternating layers of metal and graphite to mitigate the effects of differential thermal expansion, have been warm-gas tested for thousands of cycles. For biopropellant operation, a pair of reciprocating oxidizer pumps would be slaved to the fuel pumps' pneumatic oscillator, to provide for pulsed or continuous demand-driven flow of both liquids. Mass ratios and thrust-to-weight ratios of demand-thrust pumped propulsion systems compare quite favorably to those of pressure-fed and turbo-pumped systems. Due to the relatively high densities of storable propellants, liquid mass fractions greater than 0.95 are attainable with these novel pumps, with thrust/weight ratios above 10. The high performance potential of small propulsion systems which use reciprocating pumps suggests that this technology can significantly increase the capability of many types of small spacecraft.

  10. Radiative Cooling of Warm Molecular Gas

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Kaufman, Michael J.

    1993-01-01

    We consider the radiative cooling of warm (T >= 100 K), fully molecular astrophysical gas by rotational and vibrational transitions of the molecules H2O, CO, and H2. Using an escape probability method to solve for the molecular level populations, we have obtained the cooling rate for each molecule as a function of temperature, density, and an optical depth parameter. A four-parameter expression proves useful in fitting the run of cooling rate with density for any fixed values of the temperature and optical depth parameter. We identify the various cooling mechanisms which are dominant in different regions of the astrophysically relevant parameter space. Given the assumption that water is very abundant in warm regions of the interstellar medium, H2O rotational transitions are found to dominate the cooling of warm interstellar gas over a wide portion of the parameter space considered. While chemical models for the interstellar medium make the strong prediction that water will be produced copiously at temperatures above a few hundred degrees, our assumption of a high water abundance has yet to be tested observationally. The Infrared Space Observatory and the Submillimeter Wave Astronomy Satellite will prove ideal instruments for testing whether water is indeed an important coolant of interstellar and circumstellar gas.

  11. Alternative Fuels Data Center: Natural Gas Fueling Infrastructure

    Science.gov Websites

    Development Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center : Natural Gas Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center : Natural Gas Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Natural

  12. Fuel gas conditioning process

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  13. Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems

    NASA Astrophysics Data System (ADS)

    Ally, Jamie; Pryor, Trevor

    The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The LCAs of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.

  14. Alternative Fuels Data Center: Natural Gas

    Science.gov Websites

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Natural Gas on

  15. SOFIA Observations of S106: Dynamics of the Warm Gas

    NASA Technical Reports Server (NTRS)

    Simon, R.; Schneider, N.; Stutzki, J.; Gusten, R.; Graf, U. U.; Hartogh, P.; Guan, X.; Staguhn, J. G.; Benford, D. J.

    2012-01-01

    Context The H II region/PDR/molecular cloud complex S106 is excited by a single O-star. The full extent of the warm and dense gas close to the star has not been mapped in spectrally resolved high-J CO or [C II] lines, so the kinematics of the warm. partially ionized gas, are unknown. Whether the prominent dark lane bisecting the hourglass-shaped nebula is due solely to the shadow cast by a small disk around the exciting star or also to extinction in high column foreground gas was an open question until now. Aims. To disentangle the morphology and kinematics of warm neutral and ionized gas close to the star, study their relation to the bulk of the molecular gas. and to investigate the nature of the dark lane. Methods. We use the heterodyne receiver GREAT on board SOFIA to observe velocity resolved spectral lines of [C II] and CO 11 yields 10 in comparison with so far unpublished submm continuum data at 350 micron (8HARC-Il) and complementary molecular line data. Results. The high angular and spectral resolution observations show a very complex morphology and kinematics of the inner S106 region, with many different components at different excitation conditions contributing to the observed emission. The [C II] lines are found to be bright and very broad. tracing high velocity gas close to the interface of molecular cloud and H II region. CO 11 yields 10 emission is more confined.. both spatially and in velocity, to the immediate surroundings of S 106 IR showing the presence of warm, high density (clumpy) gas. Our high angular resolution submm continuum observations rule out the scenario where the dark lane separating the two lobes is due solely to the shadow cast by a small disk close to the star. The lane is clearly seen also as warm, high column density gas at the boundary of the molecular cloud and H II region.

  16. Net global warming potential and greenhouse gas intensity

    USDA-ARS?s Scientific Manuscript database

    Various methods exist to calculate global warming potential (GWP) and greenhouse gas intensity (GHG) as measures of net greenhouse gas (GHG) emissions from agroecosystems. Little is, however, known about net GWP and GHGI that account for all sources and sinks of GHG emissions. Sources of GHG include...

  17. Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.

    2002-10-01

    Under the 1997 Kyoto Protocol, no control of black carbon (BC) was considered. Here, it is found, through simulations in which 12 identifiable effects of aerosol particles on climate are treated, that any emission reduction of fossil-fuel (f.f.) particulate BC plus associated organic matter (OM) may slow global warming more than may any emission reduction of CO2 or CH4 for a specific period. When all f.f. BC + OM and anthropogenic CO2 and CH4 emissions are eliminated together, the period is 25-100 years. It is also estimated that historical net global warming can be attributed roughly to greenhouse gas plus f.f. BC + OM warming minus substantial cooling by other particles. Eliminating all f.f. BC + OM could eliminate 20-45% of net warming (8-18% of total warming before cooling is subtracted out) within 3-5 years if no other change occurred. Reducing CO2 emissions by a third would have the same effect, but after 50-200 years. Finally, diesel cars emitting continuously under the most recent U.S. and E.U. particulate standards (0.08 g/mi; 0.05 g/km) may warm climate per distance driven over the next 100+ years more than equivalent gasoline cars. Thus, fuel and carbon tax laws that favor diesel appear to promote global warming. Toughening vehicle particulate emission standards by a factor of 8 (0.01 g/mi; 0.006 g/km) does not change this conclusion, although it shortens the period over which diesel cars warm to 13-54 years. Although control of BC + OM can slow warming, control of greenhouse gases is necessary to stop warming. Reducing BC + OM will not only slow global warming but also improve human health.

  18. Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition.

    PubMed

    Ward, Susan E; Ostle, Nicholas J; Oakley, Simon; Quirk, Helen; Henrys, Peter A; Bardgett, Richard D

    2013-10-01

    Understanding the effects of warming on greenhouse gas feedbacks to climate change represents a major global challenge. Most research has focused on direct effects of warming, without considering how concurrent changes in plant communities may alter such effects. Here, we combined vegetation manipulations with warming to investigate their interactive effects on greenhouse gas emissions from peatland. We found that although warming consistently increased respiration, the effect on net ecosystem CO2 exchange depended on vegetation composition. The greatest increase in CO2 sink strength after warming was when shrubs were present, and the greatest decrease when graminoids were present. CH4 was more strongly controlled by vegetation composition than by warming, with largest emissions from graminoid communities. Our results show that plant community composition is a significant modulator of greenhouse gas emissions and their response to warming, and suggest that vegetation change could alter peatland carbon sink strength under future climate change. © 2013 John Wiley & Sons Ltd/CNRS.

  19. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.

    PubMed

    Budsberg, Erik; Crawford, Jordan T; Morgan, Hannah; Chin, Wei Shan; Bura, Renata; Gustafson, Rick

    2016-01-01

    Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platform. Unique to the biorefinery designs in this research is an acetogen fermentation step. Following dilute acid pretreatment and enzymatic hydrolysis, poplar biomass is fermented to acetic acid and then distilled, hydroprocessed, and oligomerized to jet fuel. Natural gas steam reforming and lignin gasification are proposed to meet hydrogen demands at the biorefineries. Separate well to wake simulations are performed using the hydrogen production processes to obtain life cycle data. Both biorefinery designs are assessed using natural gas and hog fuel to meet excess heat demands. Global warming potential of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from CO2 equivalences of 60 to 66 and 32 to 73 g MJ(-1), respectively. Fossil fuel usage of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from 0.78 to 0.84 and 0.71 to 1.0 MJ MJ(-1), respectively. Lower values for each impact category result from using hog fuel to meet excess heat/steam demands. Higher values result from using natural gas to meet the excess heat demands. Bio-jet fuels produced from the bioconversion of poplar biomass reduce the global warming potential and fossil fuel use compared with petroleum-based jet fuel. Production of hydrogen is identified as a major source of greenhouse gas emissions and fossil fuel use in both the natural gas steam reforming and lignin gasification bio-jet simulations. Using hog fuel instead of natural gas to meet heat demands can help lower the global warming potential and fossil fuel use at the biorefineries.

  20. Alternative Fuels Data Center: Natural Gas Benefits

    Science.gov Websites

    Benefits to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Benefits on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Benefits on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Benefits on Google Bookmark Alternative Fuels Data Center: Natural Gas

  1. Alternative Fuels Data Center: Natural Gas Production

    Science.gov Websites

    Production to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Production on Google Bookmark Alternative Fuels Data Center: Natural Gas

  2. Fuel processing device

    DOEpatents

    Ahluwalia, Rajesh K [Burr Ridge, IL; Ahmed, Shabbir [Naperville, IL; Lee, Sheldon H. D. [Willowbrook, IL

    2011-08-02

    An improved fuel processor for fuel cells is provided whereby the startup time of the processor is less than sixty seconds and can be as low as 30 seconds, if not less. A rapid startup time is achieved by either igniting or allowing a small mixture of air and fuel to react over and warm up the catalyst of an autothermal reformer (ATR). The ATR then produces combustible gases to be subsequently oxidized on and simultaneously warm up water-gas shift zone catalysts. After normal operating temperature has been achieved, the proportion of air included with the fuel is greatly diminished.

  3. Automotive gas turbine fuel control

    NASA Technical Reports Server (NTRS)

    Gold, H. (Inventor)

    1978-01-01

    A fuel control system is reported for automotive-type gas turbines and particulary advanced gas turbines utilizing variable geometry components to improve mileage and reduce pollution emission. The fuel control system compensates for fuel density variations, inlet temperature variations, turbine vane actuation, acceleration, and turbine braking. These parameters are utilized to control various orifices, spool valves and pistons.

  4. Alternative Fuels Data Center: How Do Bi-fuel Natural Gas Vehicles Work?

    Science.gov Websites

    AddThis.com... How Do Bi-fuel Natural Gas Vehicles Work? A bi-fuel natural gas vehicle can use either gasoline or natural gas in the same internal combustion engine. Both fuels are stored on board and the driver Components of a Bi-fuel Natural Gas Vehicle Battery: The battery provides electricity to start the engine and

  5. Warm Pressurant Gas Effects on the Liquid Hydrogen Bubble Point

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents experimental results for the liquid hydrogen bubble point tests using warm pressurant gases conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested in liquid hydrogen using cold and warm noncondensible (gaseous helium) and condensable (gaseous hydrogen) pressurization schemes. Gases were conditioned from 0 to 90 K above the liquid temperature. Results clearly indicate a degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensible pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  6. Alternative Fuels Data Center: Conventional Natural Gas Production

    Science.gov Websites

    Conventional Natural Gas Production to someone by E-mail Share Alternative Fuels Data Center : Conventional Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Conventional Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Conventional Natural Gas Production

  7. Fuel gas from biodigestion

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. C.; Wolverton, B. C.

    1979-01-01

    Biodigestion apparatus produces fuel gas (primarily methane) for domestic consumption, by anaerobic bacterial digestion of organic matter such as aquatic vegetation. System includes 3,786-1 cylindrical container, mechanical agitator, and simple safe gas collector for short term storage.

  8. Alternative Fuels Data Center: Renewable Natural Gas (Biomethane)

    Science.gov Websites

    Production Renewable Natural Gas (Biomethane) Production to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas (Biomethane) Production on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas (Biomethane) Production on Twitter Bookmark Alternative Fuels

  9. Fuels Containing Methane of Natural Gas in Solution

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.

    2004-01-01

    While exploring ways of producing better fuels for propulsion of a spacecraft on the Mars sample return mission, a researcher at Johnson Space Center (JSC) devised a way of blending fuel by combining methane or natural gas with a second fuel to produce a fuel that can be maintained in liquid form at ambient temperature and under moderate pressure. The use of such a blended fuel would be a departure for both spacecraft engines and terrestrial internal combustion engines. For spacecraft, it would enable reduction of weights on long flights. For the automotive industry on Earth, such a fuel could be easily distributed and could be a less expensive, more efficient, and cleaner-burning alternative to conventional fossil fuels. The concept of blending fuels is not new: for example, the production of gasoline includes the addition of liquid octane enhancers. For the future, it has been commonly suggested to substitute methane or compressed natural gas for octane-enhanced gasoline as a fuel for internal-combustion engines. Unfortunately, methane or natural gas must be stored either as a compressed gas (if kept at ambient temperature) or as a cryogenic liquid. The ranges of automobiles would be reduced from their present values because of limitations on the capacities for storage of these fuels. Moreover, technical challenges are posed by the need to develop equipment to handle these fuels and, especially, to fill tanks acceptably rapidly. The JSC alternative to provide a blended fuel that can be maintained in liquid form at moderate pressure at ambient temperature has not been previously tried. A blended automotive fuel according to this approach would be made by dissolving natural gas in gasoline. The autogenous pressure of this fuel would eliminate the need for a vehicle fuel pump, but a pressure and/or flow regulator would be needed to moderate the effects of temperature and to respond to changing engine power demands. Because the fuel would flash as it entered engine

  10. Alternative Fuels Data Center: Natural Gas Distribution

    Science.gov Websites

    . Gas is distributed using 305,000 miles of transmission pipelines (see map), while an additional 2.2 Natural Gas Distribution to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Distribution on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Distribution on Twitter

  11. Alternative Fuels Data Center: Natural Gas Vehicle Conversions

    Science.gov Websites

    Conversions to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Google Bookmark Alternative

  12. 49 CFR 393.68 - Compressed natural gas fuel containers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Compressed natural gas fuel containers. 393.68... AND ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.68 Compressed natural gas fuel containers. (a) Applicability. The rules in this section apply to compressed natural gas (CNG) fuel...

  13. 49 CFR 393.68 - Compressed natural gas fuel containers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Compressed natural gas fuel containers. 393.68... AND ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.68 Compressed natural gas fuel containers. (a) Applicability. The rules in this section apply to compressed natural gas (CNG) fuel...

  14. Enhanced greenhouse gas emissions from the Arctic with experimental warming

    NASA Astrophysics Data System (ADS)

    Voigt, Carolina; Lamprecht, Richard E.; Marushchak, Maija E.; Lind, Saara E.; Novakovskiy, Alexander; Aurela, Mika; Martikainen, Pertti J.; Biasi, Christina

    2017-04-01

    Temperatures in the Arctic are projected to increase more rapidly than in lower latitudes. With temperature being a key factor for regulating biogeochemical processes in ecosystems, even a subtle temperature increase might promote the release of greenhouse gases (GHGs) to the atmosphere. Usually, carbon dioxide (CO2) and methane (CH4) are the GHGs dominating the climatic impact of tundra. However, bare, patterned ground features in the Arctic have recently been identified as hot spots for nitrous oxide (N2O). N2O is a potent greenhouse gas, which is almost 300 times more effective in its global warming potential than CO2; but studies on arctic N2O fluxes are rare. In this study we examined the impact of temperature increase on the seasonal GHG balance of all three important GHGs (CO2, CH4 and N2O) from three tundra surface types (vegetated peat soils, unvegetated peat soils, upland mineral soils) in the Russian Arctic (67˚ 03' N 62˚ 55' E), during the course of two growing seasons. We deployed open-top chambers (OTCs), inducing air and soil surface warming, thus mimicking predicted warming scenarios. We combined detailed CO2, CH4 and N2O flux studies with concentration measurements of these gases within the soil profile down to the active layer-permafrost interface, and complemented these GHG measurements with detailed soil nutrient (nitrate and ammonium) and dissolved organic carbon (DOC) measurements in the soil pore water profile. In our study, gentle air warming (˜1.0 ˚ C) increased the seasonal GHG release of all dominant surface types: the GHG budget of vegetated peat and mineral soils, which together cover more than 80 % of the land area in our study region, shifted from a sink to a source of -300 to 144 g CO2-eq m-2 and from -198 to 105 g CO2-eq m-2, respectively. While the positive warming response was governed by CO2, we provide here the first in situ evidence that warming increases arctic N2O emissions: Warming did not only enhance N2O emissions from

  15. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOEpatents

    Vogt, Robert L.

    1981-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  16. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOEpatents

    Vogt, Robert L.

    1985-02-12

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  17. Fuel flexibility via real-time Raman fuel-gas analysis for turbine system control

    NASA Astrophysics Data System (ADS)

    Buric, M.; Woodruff, S.; Chorpening, B.; Tucker, D.

    2015-06-01

    The modern energy production base in the U.S. is increasingly incorporating opportunity fuels such as biogas, coalbed methane, coal syngas, solar-derived hydrogen, and others. In many cases, suppliers operate turbine-based generation systems to efficiently utilize these diverse fuels. Unfortunately, turbine engines are difficult to control given the varying energy content of these fuels, combined with the need for a backup natural gas supply to provide continuous operation. Here, we study the use of a specially designed Raman Gas Analyzer based on capillary waveguide technology with sub-second response time for turbine control applications. The NETL Raman Gas Analyzer utilizes a low-power visible pump laser, and a capillary waveguide gas-cell to integrate large spontaneous Raman signals, and fast gas-transfer piping to facilitate quick measurements of fuel-gas components. A U.S. Department of Energy turbine facility known as HYPER (hybrid performance system) serves as a platform for apriori fuel composition measurements for turbine speed or power control. A fuel-dilution system is used to simulate a compositional upset while simultaneously measuring the resultant fuel composition and turbine response functions in real-time. The feasibility and efficacy of system control using the spontaneous Raman-based measurement system is then explored with the goal of illustrating the ability to control a turbine system using available fuel composition as an input process variable.

  18. SOLID GAS SUSPENSION NUCLEAR FUEL ASSEMBLY

    DOEpatents

    Schluderberg, D.C.; Ryon, J.W.

    1962-05-01

    A fuel assembly is designed for use in a gas-suspension cooled nuclear fuel reactor. The coolant fluid is an inert gas such as nitrogen or helium with particles such as carbon suspended therein. The fuel assembly is contained within an elongated pressure vessel extending down into the reactor. The fuel portion is at the lower end of the vessel and is constructed of cylindrical segments through which the coolant passes. Turbulence promotors within the passageways maintain the particles in agitation to increase its ability to transfer heat away from the outer walls. Shielding sections and alternating passageways above the fueled portion limit the escape of radiation out of the top of the vessel. (AEC)

  19. Method for treatment of tar-bearing fuel gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frauen, L.L.; Kasper, S.

    1986-01-07

    A process is described of producing a fuel gas which contains condensable tar vapor when it leaves a gasifier, the improvement wherein the tar-bearing gases are treated to remove tar therefrom. The process consists of: (a) continuously conducting hot fuel gas from a gasifier to and discharging it into a spray chamber where the hot tar-bearing gas is contacted with a fine spray of water thereby cooling the tar vapor and evaporating the water to produce a fog-like dispersion of tar in an atmosphere of fuel gas with the temperature in the spray chamber maintained above the dew point ofmore » water; (b) continuously transferring the fuel gas and the dispersion of tar and water to an electrostatic precipitator and precipitating therein at least most of the condensed tar as a liquid; (c) removing the liquid tar so precipitated and conducting at least most of it to a tar burner; (d) burning the tar with no more than the stoichiometric supply of oxygen provided by air to produce oxygen-free and tar-free hot combustion gases; (e) conducting the hot combustion gases directly into a mixer into which the fuel gas and water vapor flows from the precipitator, thereby adding to the fuel gas the sensible heat of the combustion gases; and (f) conducting the mixture so produced to a place of use as a hot fuel gas mixture.« less

  20. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming

    PubMed Central

    Hong, Wei-Li; Torres, Marta E.; Carroll, JoLynn; Crémière, Antoine; Panieri, Giuliana; Yao, Haoyi; Serov, Pavel

    2017-01-01

    Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ∼380 m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. Results of temperature modelling suggest limited impact of short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site. PMID:28589962

  1. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming

    DOE PAGES

    Hong, Wei-Li; Torres, Marta E.; Carroll, JoLynn; ...

    2017-06-07

    Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ~380m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. The results of temperature modelling suggest limited impact ofmore » short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site.« less

  2. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming.

    PubMed

    Hong, Wei-Li; Torres, Marta E; Carroll, JoLynn; Crémière, Antoine; Panieri, Giuliana; Yao, Haoyi; Serov, Pavel

    2017-06-07

    Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ∼380 m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. Results of temperature modelling suggest limited impact of short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site.

  3. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Wei-Li; Torres, Marta E.; Carroll, JoLynn

    Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ~380m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. The results of temperature modelling suggest limited impact ofmore » short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site.« less

  4. Compressed gas fuel storage system

    DOEpatents

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  5. Indirect-fired gas turbine dual fuel cell power cycle

    DOEpatents

    Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  6. Alternative Fuels Data Center: Natural Gas Related Links

    Science.gov Websites

    , AGA provides services to member natural gas pipelines, marketers, gatherers, international gas Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas Related Links to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Related

  7. Gas only nozzle fuel tip

    DOEpatents

    Bechtel, William Theodore; Fitts, David Orus; DeLeonardo, Guy Wayne

    2002-01-01

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  8. Global warming

    NASA Astrophysics Data System (ADS)

    Houghton, John

    2005-06-01

    'Global warming' is a phrase that refers to the effect on the climate of human activities, in particular the burning of fossil fuels (coal, oil and gas) and large-scale deforestation, which cause emissions to the atmosphere of large amounts of 'greenhouse gases', of which the most important is carbon dioxide. Such gases absorb infrared radiation emitted by the Earth's surface and act as blankets over the surface keeping it warmer than it would otherwise be. Associated with this warming are changes of climate. The basic science of the 'greenhouse effect' that leads to the warming is well understood. More detailed understanding relies on numerical models of the climate that integrate the basic dynamical and physical equations describing the complete climate system. Many of the likely characteristics of the resulting changes in climate (such as more frequent heat waves, increases in rainfall, increase in frequency and intensity of many extreme climate events) can be identified. Substantial uncertainties remain in knowledge of some of the feedbacks within the climate system (that affect the overall magnitude of change) and in much of the detail of likely regional change. Because of its negative impacts on human communities (including for instance substantial sea-level rise) and on ecosystems, global warming is the most important environmental problem the world faces. Adaptation to the inevitable impacts and mitigation to reduce their magnitude are both necessary. International action is being taken by the world's scientific and political communities. Because of the need for urgent action, the greatest challenge is to move rapidly to much increased energy efficiency and to non-fossil-fuel energy sources.

  9. The uniform electron gas at warm dense matter conditions

    NASA Astrophysics Data System (ADS)

    Dornheim, Tobias; Groth, Simon; Bonitz, Michael

    2018-05-01

    Motivated by the current high interest in the field of warm dense matter research, in this article we review the uniform electron gas (UEG) at finite temperature and over a broad density range relevant for warm dense matter applications. We provide an exhaustive overview of different simulation techniques, focusing on recent developments in the dielectric formalism (linear response theory) and quantum Monte Carlo (QMC) methods. Our primary focus is on two novel QMC methods that have recently allowed us to achieve breakthroughs in the thermodynamics of the warm dense electron gas: Permutation blocking path integral MC (PB-PIMC) and configuration path integral MC (CPIMC). In fact, a combination of PB-PIMC and CPIMC has allowed for a highly accurate description of the warm dense UEG over a broad density-temperature range. We are able to effectively avoid the notorious fermion sign problem, without invoking uncontrolled approximations such as the fixed node approximation. Furthermore, a new finite-size correction scheme is presented that makes it possible to treat the UEG in the thermodynamic limit without loss of accuracy. In addition, we in detail discuss the construction of a parametrization of the exchange-correlation free energy, on the basis of these data - the central thermodynamic quantity that provides a complete description of the UEG and is of crucial importance as input for the simulation of real warm dense matter applications, e.g., via thermal density functional theory. A second major aspect of this review is the use of our ab initio simulation results to test previous theories, including restricted PIMC, finite-temperature Green functions, the classical mapping by Perrot and Dharma-wardana, and various dielectric methods such as the random phase approximation, or the Singwi-Tosi-Land-Sjölander (both in the static and quantum versions), Vashishta-Singwi and the recent Tanaka scheme for the local field correction. Thus, for the first time, thorough

  10. Alternative Fuels Data Center: Natural Gas Laws and Incentives

    Science.gov Websites

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Laws and Incentives

  11. Application of game theory in decision making strategy: Does gas fuel industry need to kill oil based fuel industry?

    NASA Astrophysics Data System (ADS)

    Azmi, Abdul Luky Shofi'ul; Prabandari, Dyah Lusiana; Hakim, Muhammad Lintang Islami

    2017-03-01

    Even though conversion of oil based fuel (Bahan Bakar Minyak) into gas fuel (Bahan Bakar Gas) for transportation (both land and sea) is one of the priority programs of the government of Indonesia, rules that have been established merely basic rules of gas fuel usage license for transportation, without discussing position of gas fuel related to oil based fuel in detail. This paper focus on possible strategic behavior of the key players in the oil-gas fuel conversion game, who will be impacted by the position of gas fuel as complement or substitution of oil based fuel. These players include industry of oil based fuel, industry of gas fuel, and the government. Modeling is made based on two different conditions: government plays a passive role and government plays an active role in legislating additional rules that may benefit industry of gas fuel. Results obtained under a passive government is that industry of oil based fuel need to accommodate the presence of industry of gas fuel, and industry of gas fuel does not kill/ eliminate the oil based fuel, or gas fuel serves as a complement. While in an active government, the industry of oil based fuel need to increase its negotiation spending in the first phase so that the additional rule that benefitting industry of gas fuel would not be legislated, while industry of gas fuel chooses to indifferent; however, in the last stage, gas fuel turned to be competitive or choose its role to be substitution.

  12. C+ detection of warm dark gas in diffuse clouds

    NASA Astrophysics Data System (ADS)

    Langer, W. D.; Velusamy, T.; Pineda, J. L.; Goldsmith, P. F.; Li, D.; Yorke, H. W.

    2010-10-01

    We present the first results of the Herschel open time key program, Galactic Observations of Terahertz C+ (GOT C+) survey of the [CII] 2P3/2-2P1/2 fine-structure line at 1.9 THz (158 μm) using the HIFI instrument on Herschel. We detected 146 interstellar clouds along sixteen lines-of-sight towards the inner Galaxy. We also acquired HI and CO isotopologue data along each line-of-sight for analysis of the physical conditions in these clouds. Here we analyze 29 diffuse clouds (AV < 1.3 mag) in this sample characterized by having [CII] and HI emission, but no detectable CO. We find that [CII] emission is generally stronger than expected for diffuse atomic clouds, and in a number of sources is much stronger than anticipated based on their HI column density. We show that excess [CII] emission in these clouds is best explained by the presence of a significant diffuse warm H2, dark gas, component. This first [CII] 158 μm detection of warm dark gas demonstrates the value of this tracer for mapping this gas throughout the Milky Way and in galaxies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  13. Fuel development for gas-cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Meyer, M. K.; Fielding, R.; Gan, J.

    2007-09-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High-Temperature Reactor (VHTR), as well as actinide burning concepts [A Technology Roadmap for Generation IV Nuclear Energy Systems, US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the US and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic 'honeycomb' structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  14. Solid fuel combustion system for gas turbine engine

    DOEpatents

    Wilkes, Colin; Mongia, Hukam C.

    1993-01-01

    A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

  15. Safety considerations in testing a fuel-rich aeropropulsion gas generator

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. James; Hulligan, David D.

    1991-01-01

    A catalyst containing reactor is being tested using a fuel-rich mixture of Jet A fuel and hot input air. The reactor product is a gaseous fuel that can be utilized in aeropropulsion gas turbine engines. Because the catalyst material is susceptible to damage from high temperature conditions, fuel-rich operating conditions are attained by introducing the fuel first into an inert gas stream in the reactor and then displacing the inert gas with reaction air. Once a desired fuel-to-air ratio is attained, only limited time is allowed for a catalyst induced reaction to occur; otherwise the inert gas is substituted for the air and the fuel flow is terminated. Because there presently is not a gas turbine combustor in which to burn the reactor product gas, the gas is combusted at the outlet of the test facility flare stack. This technique in operations has worked successfully in over 200 tests.

  16. Method and apparatus for fuel gas moisturization and heating

    DOEpatents

    Ranasinghe, Jatila; Smith, Raub Warfield

    2002-01-01

    Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

  17. Warm Pressurant Gas Effects on the Static Bubble Point Pressure for Cryogenic LADs

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John; Chato, Daniel J.

    2014-01-01

    This paper presents experimental results for the liquid hydrogen and nitrogen bubble point tests using warm pressurant gases conducted at the NASA Glenn Research Center. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device (LAD). Three fine mesh screen samples (325x2300, 450x2750, 510x3600) were tested in liquid hydrogen and liquid nitrogen using cold and warm non-condensable (gaseous helium) and condensable (gaseous hydrogen or nitrogen) pressurization schemes. Gases were conditioned from 0K - 90K above the liquid temperature. Results clearly indicate degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over non-condensable pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  18. Alternative Fuels Data Center: Natural Gas Fuel Safety

    Science.gov Websites

    intentionally added when put into the local distribution network of pipelines. This is to give it a distinctive when the fueling nozzle is being connected or disconnected during the refueling process. This is normal and should quickly dissipate when fueling has been completed. Natural gas is lighter than air, so

  19. 76 FR 52652 - National Fuel Gas Supply Corporation; Tennessee Gas Pipeline Company; Notice of Availability of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... gas-fired turbines for compressor units A2 and A3 and restaging of centrifugal compressors for units.... CP11-133-000] National Fuel Gas Supply Corporation; Tennessee Gas Pipeline Company; Notice of... assessment (EA) for National Fuel Gas Supply Corporation's (National Fuel) proposed Northern Access Project...

  20. Method for fast start of a fuel processor

    DOEpatents

    Ahluwalia, Rajesh K [Burr Ridge, IL; Ahmed, Shabbir [Naperville, IL; Lee, Sheldon H. D. [Willowbrook, IL

    2008-01-29

    An improved fuel processor for fuel cells is provided whereby the startup time of the processor is less than sixty seconds and can be as low as 30 seconds, if not less. A rapid startup time is achieved by either igniting or allowing a small mixture of air and fuel to react over and warm up the catalyst of an autothermal reformer (ATR). The ATR then produces combustible gases to be subsequently oxidized on and simultaneously warm up water-gas shift zone catalysts. After normal operating temperature has been achieved, the proportion of air included with the fuel is greatly diminished.

  1. A natural-gas fuel processor for a residential fuel cell system

    NASA Astrophysics Data System (ADS)

    Adachi, H.; Ahmed, S.; Lee, S. H. D.; Papadias, D.; Ahluwalia, R. K.; Bendert, J. C.; Kanner, S. A.; Yamazaki, Y.

    A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500 kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor - namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor - were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing ∼48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored.

  2. Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2000-01-01

    A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer 10 is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel 18 and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone 24 within the first vessel 18. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone 24 to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone 24 directed into a steam reforming zone 26. High- and low-temperature shift reaction zones 64,76 may be employed for further fuel processing.

  3. HOT CELL SYSTEM FOR DETERMINING FISSION GAS RETENTION IN METALLIC FUELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sell, D. A.; Baily, C. E.; Malewitz, T. J.

    2016-09-01

    A system has been developed to perform measurements on irradiated, sodium bonded-metallic fuel elements to determine the amount of fission gas retained in the fuel material after release of the gas to the element plenum. During irradiation of metallic fuel elements, most of the fission gas developed is released from the fuel and captured in the gas plenums of the fuel elements. A significant amount of fission gas, however, remains captured in closed porosities which develop in the fuel during irradiation. Additionally, some gas is trapped in open porosity but sealed off from the plenum by frozen bond sodium aftermore » the element has cooled in the hot cell. The Retained fission Gas (RFG) system has been designed, tested and implemented to capture and measure the quantity of retained fission gas in characterized cut pieces of sodium bonded metallic fuel. Fuel pieces are loaded into the apparatus along with a prescribed amount of iron powder, which is used to create a relatively low melting, eutectic composition as the iron diffuses into the fuel. The apparatus is sealed, evacuated, and then heated to temperatures in excess of the eutectic melting point. Retained fission gas release is monitored by pressure transducers during the heating phase, thus monitoring for release of fission gas as first the bond sodium melts and then the fuel. A separate hot cell system is used to sample the gas in the apparatus and also characterize the volume of the apparatus thus permitting the calculation of the total fission gas release from the fuel element samples along with analysis of the gas composition.« less

  4. Alternative Fuels Data Center: How Do Natural Gas Vehicles Work?

    Science.gov Websites

    Natural Gas Vehicles Work? to someone by E-mail Share Alternative Fuels Data Center: How Do Natural Gas Vehicles Work? on Facebook Tweet about Alternative Fuels Data Center: How Do Natural Gas Vehicles Work? on Twitter Bookmark Alternative Fuels Data Center: How Do Natural Gas Vehicles Work? on Google

  5. STAR FORMATION SUPPRESSION DUE TO JET FEEDBACK IN RADIO GALAXIES WITH SHOCKED WARM MOLECULAR GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanz, Lauranne; Ogle, Patrick M.; Appleton, Philip N.

    2016-07-20

    We present Herschel observations of 22 radio galaxies, selected for the presence of shocked, warm molecular hydrogen emission. We measured and modeled spectral energy distributions in 33 bands from the ultraviolet to the far-infrared to investigate the impact of jet feedback on star formation activity. These galaxies are massive, early-type galaxies with normal gas-to-dust ratios, covering a range of optical and infrared colors. We find that the star formation rate (SFR) is suppressed by a factor of ∼3–6, depending on how molecular gas mass is estimated. We suggest that this suppression is due to the shocks driven by the radiomore » jets injecting turbulence into the interstellar medium (ISM), which also powers the luminous warm H{sub 2} line emission. Approximately 25% of the sample shows suppression by more than a factor of 10. However, the degree of SFR suppression does not correlate with indicators of jet feedback including jet power, diffuse X-ray emission, or intensity of warm molecular H{sub 2} emission, suggesting that while injected turbulence likely impacts star formation, the process is not purely parameterized by the amount of mechanical energy dissipated into the ISM. Radio galaxies with shocked warm molecular gas cover a wide range in SFR–stellar mass space, indicating that these galaxies are in a variety of evolutionary states, from actively star-forming and gas-rich to quiescent and gas-poor. SFR suppression appears to have the largest impact on the evolution of galaxies that are moderately gas-rich.« less

  6. Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2003-08-19

    Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  7. High quality fuel gas from biomass pyrolysis with calcium oxide.

    PubMed

    Zhao, Baofeng; Zhang, Xiaodong; Chen, Lei; Sun, Laizhi; Si, Hongyu; Chen, Guanyi

    2014-03-01

    The removal of CO2 and tar in fuel gas produced by biomass thermal conversion has aroused more attention due to their adverse effects on the subsequent fuel gas application. High quality fuel gas production from sawdust pyrolysis with CaO was studied in this paper. The results of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments indicate that the mass ratio of CaO to sawdust (Ca/S) remarkably affects the behavior of sawdust pyrolysis. On the basis of Py-GC/MS results, one system of a moving bed pyrolyzer coupled with a fluid bed combustor has been developed to produce high quality fuel gas. The lower heating value (LHV) of the fuel gas was above 16MJ/Nm(3) and the content of tar was under 50mg/Nm(3), which is suitable for gas turbine application to generate electricity and heat. Therefore, this technology may be a promising route to achieve high quality fuel gas for biomass utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Gas pre-warming for improving performances of heated humidifiers in neonatal ventilation.

    PubMed

    Schena, E; De Paolis, E; Silvestri, S

    2011-01-01

    Adequate temperature and humidification of gas delivered must be performed during long term neonatal ventilation to avoid potential adverse health effects. Literature shows that performances of heated humidifiers are, at least in some cases, quite poor. In this study, a novel approach to gas conditioning, consisting of gas warming upstream the humidification chamber, is presented. Gas pre-warming, in combination with a control strategy based on a mathematical model taking into account a number of parameters, allows to significantly improve the heated humidifier performances. The theoretical model has been validated and experimental trials have been carried out in the whole volumetric flow-rate (Q) range of neonatal ventilation (lower than 10 L · min(-1)). Experimental results (temperature values ranging from 36 °C to 38 °C and relative humidity values from 90 % to 98 % in the whole range of Q) show values very close to the ideal thermo-hygrometric conditions. The proposed solution allows to avoid vapor condensation at low flow rates and decrease of relative humidity at high flow rates.

  9. Hot Water and Warm Homes from Sunlight. Teacher's Guide.

    ERIC Educational Resources Information Center

    Gould, Alan

    A basic understanding of the potential of solar energy is increasingly relevant given the pollution caused by the burning of fossil fuel, health problems associated with that pollution, the possibility of global warming, and the complex issues raised by the dependence of industrialized nations on oil and natural gas. This teacher's guide presents…

  10. Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2004-10-19

    Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  11. Cover and startup gas supply system for solid oxide fuel cell generator

    DOEpatents

    Singh, P.; George, R.A.

    1999-07-27

    A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell. 4 figs.

  12. Cover and startup gas supply system for solid oxide fuel cell generator

    DOEpatents

    Singh, Prabhakar; George, Raymond A.

    1999-01-01

    A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell.

  13. Committed warming inferred from observations

    NASA Astrophysics Data System (ADS)

    Mauritsen, Thorsten; Pincus, Robert

    2017-09-01

    Due to the lifetime of CO2, the thermal inertia of the oceans, and the temporary impacts of short-lived aerosols and reactive greenhouse gases, the Earth’s climate is not equilibrated with anthropogenic forcing. As a result, even if fossil-fuel emissions were to suddenly cease, some level of committed warming is expected due to past emissions as studied previously using climate models. Here, we provide an observational-based quantification of this committed warming using the instrument record of global-mean warming, recently improved estimates of Earth’s energy imbalance, and estimates of radiative forcing from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Compared with pre-industrial levels, we find a committed warming of 1.5 K (0.9-3.6, 5th-95th percentile) at equilibrium, and of 1.3 K (0.9-2.3) within this century. However, when assuming that ocean carbon uptake cancels remnant greenhouse gas-induced warming on centennial timescales, committed warming is reduced to 1.1 K (0.7-1.8). In the latter case there is a 13% risk that committed warming already exceeds the 1.5 K target set in Paris. Regular updates of these observationally constrained committed warming estimates, although simplistic, can provide transparent guidance as uncertainty regarding transient climate sensitivity inevitably narrows and the understanding of the limitations of the framework is advanced.

  14. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

    PubMed

    Stettler, Marc E J; Midgley, William J B; Swanson, Jacob J; Cebon, David; Boies, Adam M

    2016-02-16

    Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles.

  15. VENTED FUEL ELEMENT FOR GAS-COOLED NEUTRONIC REACTORS

    DOEpatents

    Furgerson, W.T.

    1963-12-17

    A hollow, porous-walled fuel element filled with fissionable fuel and provided with an outlet port through its wall is described. In operation in a gas-cooled reactor, the element is connected, through its outlet port, to the vacuum side of a pump that causes a portion of the coolant gas flowing over the exterior surface of the element to be drawn through the porous walls thereof and out through the outlet port. This continuous purging gas flow sweeps away gaseous fission products as they are released by the fissioning fuel. (AEC) A fuel element for a nuclear reactor incorporating a body of metal of melting point lower than the temperature of operation of the reactor and a nuclear fuel in finely divided form dispersed in the body of metal as a settled slurry is presented. (AEC)

  16. Indirect-fired gas turbine bottomed with fuel cell

    DOEpatents

    Micheli, P.L.; Williams, M.C.; Parsons, E.L.

    1995-09-12

    An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes. 1 fig.

  17. Indirect-fired gas turbine bottomed with fuel cell

    DOEpatents

    Micheli, Paul L.; Williams, Mark C.; Parsons, Edward L.

    1995-01-01

    An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes.

  18. USING LANDFILL GAS IN FUEL CELLS - A STEP CLOSER TO COMMERICAL REALITY

    EPA Science Inventory

    The article discusses Phase II and Phase III results of a U.S. EPA program underway at International Fuel Cells Corporation. The program involves controlling methane emissions from landfills using a fuel cell. The fuel cell would reduce air emissions affecting global warming, aci...

  19. Natural gas the new locomotive fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuskey, L.W.

    1984-01-01

    This is a report on modification of a locomotive diesel engine to a dual-fuel engine to determine if the dual fuel engine in railway service will provide high performance, lower fuel and maintenance costs. After the locomotive was modified and the new governor and linkage were installed by General Motors at the BN's Northtown Diesel Shop near Minneapolis, the locomotive went through startup procedures. General Motors participated in startup. Some calibration, adjustments and minor piping changes were required but in general the problems encountered in startups were quite insignificant. The locomotive was connected to the load box (static test) duringmore » startup and at 720 RPM exceeded the required output for this test as established by the parties. Operation on straight oil over the range from idle through No. 8 throttle notch and on dual fuel from No. 5 through No. 8 throttle notch was smooth as was the transfer from oil to gas and from gas to oil. The engine exhaust on straight oil was almost clear but on gas it was totally clear. 16 references, 3 figures, 4 tables.« less

  20. Coaxial fuel and air premixer for a gas turbine combustor

    DOEpatents

    York, William D; Ziminsky, Willy S; Lacy, Benjamin P

    2013-05-21

    An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.

  1. Fuel cell gas management system

    DOEpatents

    DuBose, Ronald Arthur

    2000-01-11

    A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  2. Models to predict emissions of health-damaging pollutants and global warming contributions of residential fuel/stove combinations in China.

    PubMed

    Edwards, Rufus D; Smith, Kirk R; Zhang, Junfeng; Ma, Yuqing

    2003-01-01

    Residential energy use in developing countries has traditionally been associated with combustion devices of poor energy efficiency, which have been shown to produce substantial health-damaging pollution, contributing significantly to the global burden of disease, and greenhouse gas (GHG) emissions. Precision of these estimates in China has been hampered by limited data on stove use and fuel consumption in residences. In addition limited information is available on variability of emissions of pollutants from different stove/fuel combinations in typical use, as measurement of emission factors requires measurement of multiple chemical species in complex burn cycle tests. Such measurements are too costly and time consuming for application in conjunction with national surveys. Emissions of most of the major health-damaging pollutants (HDP) and many of the gases that contribute to GHG emissions from cooking stoves are the result of the significant portion of fuel carbon that is diverted to products of incomplete combustion (PIC) as a result of poor combustion efficiencies. The approximately linear increase in emissions of PIC with decreasing combustion efficiencies allows development of linear models to predict emissions of GHG and HDP intrinsically linked to CO2 and PIC production, and ultimately allows the prediction of global warming contributions from residential stove emissions. A comprehensive emissions database of three burn cycles of 23 typical fuel/stove combinations tested in a simulated village house in China has been used to develop models to predict emissions of HDP and global warming commitment (GWC) from cooking stoves in China, that rely on simple survey information on stove and fuel use that may be incorporated into national surveys. Stepwise regression models predicted 66% of the variance in global warming commitment (CO2, CO, CH4, NOx, TNMHC) per 1 MJ delivered energy due to emissions from these stoves if survey information on fuel type was available

  3. On general features of warm dark matter with reduced relativistic gas

    NASA Astrophysics Data System (ADS)

    Hipólito-Ricaldi, W. S.; vom Marttens, R. F.; Fabris, J. C.; Shapiro, I. L.; Casarini, L.

    2018-05-01

    Reduced relativistic gas (RRG) is a useful approach to describe the warm dark matter (WDM) or the warmness of baryonic matter in the approximation when the interaction between the particles is irrelevant. The use of Maxwell distribution leads to the complicated equation of state of the Jüttner model of relativistic ideal gas. The RRG enables one to reproduce the same physical situation but in a much simpler form. For this reason RRG can be a useful tool for the theories with some sort of a "new Physics". On the other hand, even without the qualitatively new physical implementations, the RRG can be useful to describe the general features of WDM in a model-independent way. In this sense one can see, in particular, to which extent the cosmological manifestations of WDM may be dependent on its Particle Physics background. In the present work RRG is used as a complementary approach to derive the main observational features for the WDM in a model-independent way. The only assumption concerns a non-negligible velocity v for dark matter particles which is parameterized by the warmness parameter b. The relatively high values of b ( b^2˜ 10^{-6}) erase the radiation (photons and neutrinos) dominated epoch and cause an early warm matter domination after inflation. Furthermore, RRG approach enables one to quantify the lack of power in linear matter spectrum at small scales and in particular, reproduces the relative transfer function commonly used in context of WDM with accuracy of ≲ 1%. A warmness with b^2≲ 10^{-6} (equivalent to v≲ 300 km/s) does not alter significantly the CMB power spectrum and is in agreement with the background observational tests.

  4. Alternative Fuels Data Center: Phoenix Cleans Up with Natural Gas

    Science.gov Websites

    Phoenix Cleans Up with Natural Gas to someone by E-mail Share Alternative Fuels Data Center : Phoenix Cleans Up with Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Phoenix Cleans Up with Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Phoenix Cleans Up with Natural

  5. Fuel gas desulfurization

    DOEpatents

    Yang, Ralph T.; Shen, Ming-Shing

    1981-01-01

    A method for removing sulfurous gases such as H.sub.2 S and COS from a fuel gas is disclosed wherein limestone particulates containing iron sulfide provide catalytic absorption of the H.sub.2 S and COS by the limestone. The method is effective at temperatures of 400.degree. C. to 700.degree. C. in particular.

  6. FUEL CELL ENERGY RECOVERY FROM LANDFILL GAS

    EPA Science Inventory

    International Fuel Cells Corporation is conducting a US Environmental Protection Agency (EPA) sponsored program to demonstrate energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The US EPA is interested in fuel cells for this application b...

  7. A fission gas release correlation for uranium nitride fuel pins

    NASA Technical Reports Server (NTRS)

    Weinstein, M. B.; Davison, H. W.

    1973-01-01

    A model was developed to predict fission gas releases from UN fuel pins clad with various materials. The model was correlated with total release data obtained by different experimentors, over a range of fuel temperatures primarily between 1250 and 1660 K, and fuel burnups up to 4.6 percent. In the model, fission gas is transported by diffusion mechanisms to the grain boundaries where the volume grows and eventually interconnects with the outside surface of the fuel. The within grain diffusion coefficients are found from fission gas release rate data obtained using a sweep gas facility.

  8. Assessing Rates of Global Warming Emissions from Port- Fuel Injection and Gasoline Direct Injection Engines in Light-Duty Passenger Vehicles

    NASA Astrophysics Data System (ADS)

    Short, D.; , D., Vi; Durbin, T.; Karavalakis, G.; Asa-Awuku, A. A.

    2013-12-01

    Passenger vehicles are known emitters of climate warming pollutants. CO2 from automobile emissions are an anthropogenic greenhouse gas (GHG) and a large contributor to global warming. Worldwide, CO2 emissions from passenger vehicles are responsible for 11% of the total CO2 emissions inventory. Black Carbon (BC), another common vehicular emission, may be the second largest contributor to global warming (after CO2). Currently, 52% of BC emissions in the U.S are from the transportation sector, with ~10% originating from passenger vehicles. The share of pollutants from passenger gasoline vehicles is becoming larger due to the reduction of BC from diesel vehicles. Currently, the majority of gasoline passenger vehicles in the United States have port- fuel injection (PFI) engines. Gasoline direct injection (GDI) engines have increased fuel economy compared to the PFI engine. GDI vehicles are predicted to dominate the U.S. passenger vehicle market in the coming years. The method of gasoline injection into the combustion chamber is the primary difference between these two technologies, which can significantly impact primary emissions from light-duty vehicles (LDV). Our study will measure LDV climate warming emissions and assess the impact on climate due to the change in U.S vehicle technologies. Vehicles were tested on a light- duty chassis dynamometer for emissions of CO2, methane (CH4), and BC. These emissions were measured on F3ederal and California transient test cycles and at steady-state speeds. Vehicles used a gasoline blend of 10% by volume ethanol (E10). E10 fuel is now found in 95% of gasoline stations in the U.S. Data is presented from one GDI and one PFI vehicle. The 2012 Kia Optima utilizes GDI technology and has a large market share of the total GDI vehicles produced in the U.S. In addition, The 2012 Toyota Camry, equipped with a PFI engine, was the most popular vehicle model sold in the U.S. in 2012. Methane emissions were ~50% lower for the GDI technology

  9. Integrated production of fuel gas and oxygenated organic compounds from synthesis gas

    DOEpatents

    Moore, Robert B.; Hegarty, William P.; Studer, David W.; Tirados, Edward J.

    1995-01-01

    An oxygenated organic liquid product and a fuel gas are produced from a portion of synthesis gas comprising hydrogen, carbon monoxide, carbon dioxide, and sulfur-containing compounds in a integrated feed treatment and catalytic reaction system. To prevent catalyst poisoning, the sulfur-containing compounds in the reactor feed are absorbed in a liquid comprising the reactor product, and the resulting sulfur-containing liquid is regenerated by stripping with untreated synthesis gas from the reactor. Stripping offgas is combined with the remaining synthesis gas to provide a fuel gas product. A portion of the regenerated liquid is used as makeup to the absorber and the remainder is withdrawn as a liquid product. The method is particularly useful for integration with a combined cycle coal gasification system utilizing a gas turbine for electric power generation.

  10. Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming.

    PubMed

    Wallmann, Klaus; Riedel, M; Hong, W L; Patton, H; Hubbard, A; Pape, T; Hsu, C W; Schmidt, C; Johnson, J E; Torres, M E; Andreassen, K; Berndt, C; Bohrmann, G

    2018-01-08

    Methane seepage from the upper continental slopes of Western Svalbard has previously been attributed to gas hydrate dissociation induced by anthropogenic warming of ambient bottom waters. Here we show that sediment cores drilled off Prins Karls Foreland contain freshwater from dissociating hydrates. However, our modeling indicates that the observed pore water freshening began around 8 ka BP when the rate of isostatic uplift outpaced eustatic sea-level rise. The resultant local shallowing and lowering of hydrostatic pressure forced gas hydrate dissociation and dissolved chloride depletions consistent with our geochemical analysis. Hence, we propose that hydrate dissociation was triggered by postglacial isostatic rebound rather than anthropogenic warming. Furthermore, we show that methane fluxes from dissociating hydrates were considerably smaller than present methane seepage rates implying that gas hydrates were not a major source of methane to the oceans, but rather acted as a dynamic seal, regulating methane release from deep geological reservoirs.

  11. Alternative Fuels Data Center: Natural Gas Safety after a Traffic Accident

    Science.gov Websites

    Natural Gas Safety after a Traffic Accident to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Safety after a Traffic Accident on Facebook Tweet about Alternative Fuels Data Center : Natural Gas Safety after a Traffic Accident on Twitter Bookmark Alternative Fuels Data Center: Natural Gas

  12. Fuel property effects on USN gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Mosier, S. A.; Nowack, C. J.

    1984-01-01

    For several years the Department of Defense has been sponsoring fuel accommodation investigations with gas turbine engine manufacturers and supporting organizations to quantify the effect of changes in fuel properties and characteristics on the operation and performance of military engine components and systems. Inasmuch as there are many differences in hardware between the operational engines in the military inventories, due to differences in design philosophy and requirements, efforts were initially expended to acquire fuel effects data from rigs simulating the hot sections of these different engines. Correlations were then sought using the data acquired to produce more general, generic relationships that could be applied to all military gas turbine engines regardless of their origin. Finally, models could be developed from these correlations that could predict the effect of fuel property changes on current and future engines. This presentation describes some of the work performed by Pratt and Whitney Aircraft, under Naval Air Propulsion Center sponsorship, to determine the effect of fuel properties on the hot section and fuel system of the Navy's TF30-P-414 gas turbine engine.

  13. Alternative Fuels Data Center: How Do Liquefied Natural Gas Trucks Work?

    Science.gov Websites

    Liquefied Natural Gas Trucks Work? to someone by E-mail Share Alternative Fuels Data Center: How Do Liquefied Natural Gas Trucks Work? on Facebook Tweet about Alternative Fuels Data Center: How Do Liquefied Natural Gas Trucks Work? on Twitter Bookmark Alternative Fuels Data Center: How Do Liquefied Natural Gas

  14. Global warming and obesity: a systematic review.

    PubMed

    An, R; Ji, M; Zhang, S

    2018-02-01

    Global warming and the obesity epidemic are two unprecedented challenges mankind faces today. A literature search was conducted in the PubMed, Web of Science, EBSCO and Scopus for articles published until July 2017 that reported findings on the relationship between global warming and the obesity epidemic. Fifty studies were identified. Topic-wise, articles were classified into four relationships - global warming and the obesity epidemic are correlated because of common drivers (n = 21); global warming influences the obesity epidemic (n = 13); the obesity epidemic influences global warming (n = 13); and global warming and the obesity epidemic influence each other (n = 3). We constructed a conceptual model linking global warming and the obesity epidemic - the fossil fuel economy, population growth and industrialization impact land use and urbanization, motorized transportation and agricultural productivity and consequently influences global warming by excess greenhouse gas emission and the obesity epidemic by nutrition transition and physical inactivity; global warming also directly impacts obesity by food supply/price shock and adaptive thermogenesis, and the obesity epidemic impacts global warming by the elevated energy consumption. Policies that endorse deployment of clean and sustainable energy sources, and urban designs that promote active lifestyles, are likely to alleviate the societal burden of global warming and obesity. © 2017 World Obesity Federation.

  15. 77 FR 60972 - National Fuel Gas Supply Corporation; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... Gas Supply Corporation; Notice of Application Take notice that on September 18, 2012, National Fuel Gas Supply Corporation (National Fuel), 6363 Main Street, Williamsville, New York 14221, filed in... Fuel Gas Supply Corporation, 6363 Main Street, Williamsville, New York 14221, or call 716-857-7949...

  16. Performance and Exhaust Emissions in a Natural-Gas Fueled Dual-Fuel Engine

    NASA Astrophysics Data System (ADS)

    Shioji, Masahiro; Ishiyama, Takuji; Ikegami, Makoto; Mitani, Shinichi; Shibata, Hiroaki

    In order to establish the optimum fueling in a natural gas fueled dual fuel engine, experiments were done for some operational parameters on the engine performances and the exhaust emissions. The results show that the pilot fuel quantity should be increased and its injection timing should be advanced to suppress unburned hydrocarbon emission in the middle and low output range, while the quantity should be reduced and the timing retarded to avoid onset of knock at high loads. Unburned hydrocarbon emission and thermal efficiency are improved by avoiding too lean natural gas mixture by restricting intake charge air. However, the improvement is limited because the ignition of pilot fuel deteriorates with excessive throttling. It is concluded that an adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation.

  17. The Effects of Fuel and Cylinder Gas Densities on the Characteristics of Fuel Sprays for Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, W F; Beardsley, Edward G

    1928-01-01

    This investigation was conducted as a part of a general research on fuel-injection engines for aircraft. The purpose of the investigation was to determine the effects of fuel and cylinder gas densities with several characteristics of fuel sprays for oil engines. The start, growth, and cut-off of single fuel sprays produced by automatic injection valves were recorded on photographic film by means of special high-speed motion-picture apparatus. This equipment, which has been described in previous reports, is capable of taking twenty-five consecutive pictures of the moving spray at the rate of 4,000 per second. The penetrations of the fuel sprays increased and the cone angles and relative distributions decreased with increase in the specific gravity of the fuel. The density of the gas into which the fuel sprays were injected controlled their penetration. This was the only characteristic of the chamber gas that had a measurable effect upon the fuel sprays. Application of fuel-spray penetration data to the case of an engine, in which the pressure is rising during injection, indicated that fuel sprays may penetrate considerably farther than when injected into a gas at a density equal to that of the gas in an engine cylinder at top center.

  18. Alternative Fuels Data Center: DeKalb County Turns Trash to Gas

    Science.gov Websites

    DeKalb County Turns Trash to Gas to someone by E-mail Share Alternative Fuels Data Center: DeKalb County Turns Trash to Gas on Facebook Tweet about Alternative Fuels Data Center: DeKalb County Turns Trash to Gas on Twitter Bookmark Alternative Fuels Data Center: DeKalb County Turns Trash to Gas on

  19. Evaluation of Ultra Clean Fuels from Natural Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Abbott; Edward Casey; Etop Esen

    2006-02-28

    ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-cleanmore » burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also

  20. Combustion characteristics of gas turbine alternative fuels

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. James

    1987-01-01

    An experimental investigation was conducted to obtain combustion performance values for specific heavyend, synthetic hydrocarbon fuels. A flame tube combustor modified to duplicate an advanced gas turbine engine combustor was used for the tests. Each fuel was tested at steady-state operating conditions over a range of mass flow rates, fuel-to-air mass ratio, and inlet air temperatures. The combustion pressure, as well as the hardware, were kept nearly constant over the program test phase. Test results were obtained in regards to geometric temperature pattern factors as a function of combustor wall temperatures, the combustion gas temperature, and the combustion emissions, both as affected by the mass flow rate and fuel-to-air ratio. The synthetic fuels were reacted in the combustor such that for most tests their performance was as good, if not better, than the baseline gasoline or diesel fuel tests. The only detrimental effects were that at high inlet air temperature conditions, fuel decomposition occurred in the fuel atomizing nozzle passages resulting in blockage. And the nitrogen oxide emissions were above EPA limits at low flow rate and high operating temperature conditions.

  1. Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have beenmore » designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.« less

  2. PROJECTIONS OF REGIONAL FUEL OIL AND NATURAL GAS PRICES

    EPA Science Inventory

    The report presents delivered regional oil and natural gas price forecasts for the industrial and electric utility sectors. Delivered energy price projections by Federal region through the year 2045 are provided for distillate fuel oil, residual fuel oil, and natural gas. Methodo...

  3. Gas block mechanism for water removal in fuel cells

    DOEpatents

    Issacci, Farrokh; Rehg, Timothy J.

    2004-02-03

    The present invention is directed to apparatus and method for cathode-side disposal of water in an electrochemical fuel cell. There is a cathode plate. Within a surface of the plate is a flow field comprised of interdigitated channels. During operation of the fuel cell, cathode gas flows by convection through a gas diffusion layer above the flow field. Positioned at points adjacent to the flow field are one or more porous gas block mediums that have pores sized such that water is sipped off to the outside of the flow field by capillary flow and cathode gas is blocked from flowing through the medium. On the other surface of the plate is a channel in fluid communication with each porous gas block mediums. The method for water disposal in a fuel cell comprises installing the cathode plate assemblies at the cathode sides of the stack of fuel cells and manifolding the single water channel of each of the cathode plate assemblies to the coolant flow that feeds coolant plates in the stack.

  4. 76 FR 18749 - National Fuel Gas Supply Corporation; Notice Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-128-000] National Fuel Gas Supply Corporation; Notice Application Take notice that on March 7, 2011, National Fuel Gas Supply Corporation (National Fuel), filed an application in Docket No. CP11- 128-000 pursuant to section 7(c) of the...

  5. Properties of Fuels Employed in a Gas Turbine Combustor Program.

    DTIC Science & Technology

    1983-09-01

    potence nateonale PROPERTIES OF FUELS EMPLOYED IN A GAS TURBINE COMBUSTOR PROGRAM by .J.R. Coleman and L.D. Gallop JAN 1O t84’ La.I DEFENCE ROSOARCH...ESTABLISHMENT OTTAWA T~INCAMNTE M4 1-05 - ottwa , National Dibense3 Detence nationale PROPERTIES OF FUELS EMPLOYED IN A GAS TURBINE COMBUSTOR PROGRAM by...made of the physical and chemical properties of sixteen fuels employed in an aircraft gas turbine combustor programme. Several of these are specification

  6. Combustion gas properties. 2: Natural gas fuel and dry air

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.; Trout, A. M.; Mcbride, B. J.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for natural gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only samples tables and figures are provided in this report. The complete set of tables and figures is provided on four microfiche films supplied with this report.

  7. Long time management of fossil fuel resources to limit global warming and avoid ice age onsets

    NASA Astrophysics Data System (ADS)

    Shaffer, Gary

    2009-02-01

    There are about 5000 billion tons of fossil fuel carbon in accessible reserves. Combustion of all this carbon within the next few centuries would force high atmospheric CO2 content and extreme global warming. On the other hand, low atmospheric CO2 content favors the onset of an ice age when changes in the Earth's orbit lead to low summer insolation at high northern latitudes. Here I present Earth System Model projections showing that typical reduction targets for fossil fuel use in the present century could limit ongoing global warming to less than one degree Celcius above present. Furthermore, the projections show that combustion pulses of remaining fossil fuel reserves could then be tailored to raise atmospheric CO2 content high and long enough to parry forcing of ice age onsets by summer insolation minima far into the future. Our present interglacial period could be extended by about 500,000 years in this way.

  8. Alternative Fuels Data Center: Ryder Opens Natural Gas Vehicle Maintenance

    Science.gov Websites

    Facility Ryder Opens Natural Gas Vehicle Maintenance Facility to someone by E-mail Share Alternative Fuels Data Center: Ryder Opens Natural Gas Vehicle Maintenance Facility on Facebook Tweet about Alternative Fuels Data Center: Ryder Opens Natural Gas Vehicle Maintenance Facility on Twitter Bookmark

  9. Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers

    Science.gov Websites

    Refuse Vehicles Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse

  10. Alternative Fuels Data Center: How Do Natural Gas Class 8 Trucks Work?

    Science.gov Websites

    Natural Gas Class 8 Trucks Work? to someone by E-mail Share Alternative Fuels Data Center: How Do Natural Gas Class 8 Trucks Work? on Facebook Tweet about Alternative Fuels Data Center: How Do Natural Gas Class 8 Trucks Work? on Twitter Bookmark Alternative Fuels Data Center: How Do Natural Gas Class 8

  11. Biomass & Natural Gas Based Hydrogen Fuel For Gas Turbine (Power Generation)

    EPA Science Inventory

    Significant progress has been made by major power generation equipment manufacturers in the development of market applications for hydrogen fuel use in gas turbines in recent years. Development of a new application using gas turbines for significant reduction of power plant CO2 e...

  12. Thermomechanics of candidate coatings for advanced gas reactor fuels

    NASA Astrophysics Data System (ADS)

    Nosek, A.; Conzen, J.; Doescher, H.; Martin, C.; Blanchard, J.

    2007-09-01

    Candidate fuel/coating combinations for an advanced, coated-fuel particle for a gas-cooled fast reactor (GFR) have been evaluated. These all-ceramic fuel forms consist of a fuel kernel made of UC or UN, surrounded with two shells (a buffer and a coating) made of TiC, SiC, ZrC, TiN, or ZrN. These carbides and nitrides are analyzed with finite element models to determine the stresses produced in the micro fuel particles from differential thermal expansion, fission gas release, swelling, and creep during particle fabrication and reactor operation. This study will help determine the feasibility of different fuel and coating combinations and identify the critical loads. The analysis shows that differential thermal expansion of the fuel and coating dictate the amount of stress for changing temperatures (such as during fabrication), and that the coating creep is able to mitigate an otherwise overwhelming amount of stress from fuel swelling. Because fracture is a likely mode of failure, a fracture mechanics study is also included to identify the relative likelihood of catastrophic fracture of the coating and resulting gas release. Overall, the analysis predicts that UN/ZrC is the best thermomechanical fuel/coating combination for mitigating the stress within the new fuel particle, but UN/TiN and UN/ZrN could also be strong candidates if their unknown creep rates are sufficiently large.

  13. Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and

    Science.gov Websites

    Fueling Infrastructure in the Midwest Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest to someone by E-mail Share Alternative Fuels Data Center: Smith Dairy Deploys Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on

  14. LANDFILL GAS PRETREATMENT FOR FUEL CELL APPLICATIONS

    EPA Science Inventory

    The paper discusses the U.S. EPA's program, underway at International Fuel Cells Corporation, to demonstrate landfill methane control and the fuel cell energy recovery concept. In this program, two critical issues are being addressed: (1) a landfill gas cleanup method that would ...

  15. Correlation of Chemical Characteristics with Fuel Properties by Gas Chromatography.

    DTIC Science & Technology

    1981-12-01

    Ai2i 788 CORRELATION OF CHEMICAL CHARACTERISTICS WITH FUEL / PROPERTIES BY GAS CHROM ..(U) SOUTHWEST RESEARCH INST SAN ANTONIO TX ARMY FUELS AND...to provide peak resolution comparable to, but somewhat improved over those currently in use at the Aero Propulsion Labora- * tory where similar fuels...Chromatographic Science, Vol. 13, February 1975. 18. Stavinoha, L.L., "Boiling Point Distribution of Gasoline by Gas Chrom - atography," U.S. Army Fuels

  16. Alternative Fuels Data Center: Natural Gas Street Sweepers Improve Air

    Science.gov Websites

    Quality in New York Natural Gas Street Sweepers Improve Air Quality in New York to someone by E -mail Share Alternative Fuels Data Center: Natural Gas Street Sweepers Improve Air Quality in New York on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Street Sweepers Improve Air

  17. Fuel burner and combustor assembly for a gas turbine engine

    DOEpatents

    Leto, Anthony

    1983-01-01

    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  18. Research on Surfactant Warm Mix Asphalt Construction Technology

    NASA Astrophysics Data System (ADS)

    Li, Guoliang; Sun, Jingxin; Guo, Xiufeng

    Discharging temperature of hot asphalt mixture is about 150°C-185°C, volatilization of asphalt fume harms people's health and fuel cost is high. Jinan Urban Construction Group applies PTL/01 asphalt warm mix agent to produce warm mix asphalt to construction of urban roads' asphalt bituminous pavement. After comparing it with performance of traditional hot asphalt mixture, mixing temperature may be reduced by 30°C-60°C, emission of poisonous gas is reduced, energy conservation and environmental protection are satisfied, construction quality reaches requirements of construction specifications and economic, social and environmental benefits are significant. Thus, it can be used for reference for green construction of urban roads.

  19. Quantum memory in warm rubidium vapor with buffer gas.

    PubMed

    Bashkansky, Mark; Fatemi, Fredrik K; Vurgaftman, Igor

    2012-01-15

    The realization of quantum memory using warm atomic vapor cells is appealing because of their commercial availability and the perceived reduction in experimental complexity. In spite of the ambiguous results reported in the literature, we demonstrate that quantum memory can be implemented in a single cell with buffer gas using the geometry where the write and read beams are nearly copropagating. The emitted Stokes and anti-Stokes photons display cross-correlation values greater than 2, characteristic of quantum states, for delay times up to 4 μs.

  20. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    PubMed

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-07

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process.

  1. 76 FR 45240 - National Fuel Gas Supply Corporation; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-512-000] National Fuel Gas Supply Corporation; Notice of Application Take notice that on July 8, 2011, National Fuel Gas Supply Corporation (National Fuel), 6363 Main Street, Williamsville, New York 14221, filed in Docket No...

  2. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOEpatents

    Zafred, Paolo R.; Dederer, Jeffrey T.; Gillett, James E.; Basel, Richard A.; Antenucci, Annette B.

    1996-01-01

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas, (O) and pressurized fuel gas, (F), into fuel cell modules, (10 and 12), containing fuel cells, where the modules are each enclosed by a module housing (18), surrounded by an axially elongated pressure vessel (64), where there is a purge gas volume, (62), between the module housing and pressure vessel; passing pressurized purge gas, (P), through the purge gas volume, (62), to dilute any unreacted fuel gas from the modules; and passing exhaust gas, (82), and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transpatable when the pressure vessel (64) is horizontally disposed, providing a low center of gravity.

  3. SMALL SCALE BIOMASS FUELED GAS TURBINE ENGINE

    EPA Science Inventory

    A new generation of small scale (less than 20 MWe) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The n...

  4. Alternative Fuels Data Center: New Hampshire Fleet Revs up With Natural Gas

    Science.gov Websites

    New Hampshire Fleet Revs up With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: New Hampshire Fleet Revs up With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: New Hampshire Fleet Revs up With Natural Gas on Twitter Bookmark Alternative Fuels Data Center

  5. 75 FR 39010 - National Fuel Gas Supply Corporation; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. CP10-457-000; CP10-458-000; PF10-1-000] National Fuel Gas Supply Corporation; Notice of Application June 29, 2010. Take notice that on June 11, 2010, National Fuel Gas Supply Corporation (National Fuel), 363 Main Street...

  6. Middle East fuel supply & gas exports for power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, G.K.; Newendorp, T.

    1995-12-31

    The Middle East countries that border on, or are near, the Persian Gulf hold over 65% of the world`s estimated proven crude oil reserves and 32% of the world`s estimated proven natural gas reserves. In fact, approximately 5% of the world`s total proven gas reserves are located in Qatar`s offshore North Field. This large natural gas/condensate field is currently under development to supply three LNG export projects, as well as a sub-sea pipeline proposal to export gas to Pakistan. The Middle East will continue to be a major source of crude oil and oil products to world petroleum markets, includingmore » fuel for existing and future base load, intermediate cycling and peaking electric generation plants. In addition, as the Persian Gulf countries turn their attention to exploiting their natural gas resources, the fast-growing need for electricity in the Asia-Pacific and east Africa areas offers a potential market for both pipeline and LNG export opportunities to fuel high efficiency, gas-fired combustion turbine power plants. Mr. Mitchell`s portion of this paper will discuss the background, status and timing of several Middle Eastern gas export projects that have been proposed. These large gas export projects are difficult and costly to develop and finance. Consequently, any IPP developers that are considering gas-fired projects which require Mid-East LNG as a fuel source, should understand the numerous sources and timing to securing project debt, loan terms and conditions, and, restrictions/credit rating issues associated with securing financing for these gas export projects. Mr. Newendorp`s section of the paper will cover the financing aspects of these projects, providing IPP developers with additional considerations in selecting the primary fuel supply for an Asian-Pacific or east African electric generation project.« less

  7. Methods, systems, and devices for deep desulfurization of fuel gases

    DOEpatents

    Li, Liyu [Richland, WA; King, David L [Richland, WA; Liu, Jun [Richland, WA; Huo, Qisheng [Richland, WA

    2012-04-17

    A highly effective and regenerable method, system and device that enables the desulfurization of warm fuel gases by passing these warm gasses over metal-based sorbents arranged in a mesoporous substrate. This technology will protect Fischer-Tropsch synthesis catalysts and other sulfur sensitive catalysts, without drastic cooling of the fuel gases. This invention can be utilized in a process either alone or alongside other separation processes, and allows the total sulfur in such a gas to be reduced to less than 500 ppb and in some instances as low as 50 ppb.

  8. The history and future trends of ocean warming-induced gas hydrate dissociation in the SW Barents Sea

    NASA Astrophysics Data System (ADS)

    Vadakkepuliyambatta, Sunil; Chand, Shyam; Bünz, Stefan

    2017-01-01

    The Barents Sea is a major part of the Arctic where the Gulf Stream mixes with the cold Arctic waters. Late Cenozoic uplift and glacial erosion have resulted in hydrocarbon leakage from reservoirs, evolution of fluid flow systems, shallow gas accumulations, and hydrate formation throughout the Barents Sea. Here we integrate seismic data observations of gas hydrate accumulations along with gas hydrate stability modeling to analyze the impact of warming ocean waters in the recent past and future (1960-2060). Seismic observations of bottom-simulating reflectors (BSRs) indicate significant thermogenic gas input into the hydrate stability zone throughout the SW Barents Sea. The distribution of BSR is controlled primarily by fluid flow focusing features, such as gas chimneys and faults. Warming ocean bottom temperatures over the recent past and in future (1960-2060) can result in hydrate dissociation over an area covering 0.03-38% of the SW Barents Sea.

  9. Alternative Fuels Data Center: Onboard Idle Reduction Equipment for

    Science.gov Websites

    generator to provide electricity and heat. Cab or Bunk Heaters These diesel-fired heaters supply warm air to fuel and have very low emissions because they supply heat directly from a small combustion flame to a heat exchanger. Standard diesel fuel is generally used, but natural gas-fired heaters are also

  10. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOEpatents

    Zafred, P.R.; Dederer, J.T.; Gillett, J.E.; Basel, R.A.; Antenucci, A.B.

    1996-11-12

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas and pressurized fuel gas into modules containing fuel cells, where the modules are each enclosed by a module housing surrounded by an axially elongated pressure vessel, and where there is a purge gas volume between the module housing and pressure vessel; passing pressurized purge gas through the purge gas volume to dilute any unreacted fuel gas from the modules; and passing exhaust gas and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transportable when the pressure vessel is horizontally disposed, providing a low center of gravity. 11 figs.

  11. Intermediate-sized natural gas fueled carbonate fuel cell power plants

    NASA Astrophysics Data System (ADS)

    Sudhoff, Frederick A.; Fleming, Donald K.

    1994-04-01

    This executive summary of the report describes the accomplishments of the joint US Department of Energy's (DOE) Morgantown Energy Technology Center (METC) and M-C POWER Corporation's Cooperative Research and Development Agreement (CRADA) No. 93-013. This study addresses the intermediate power plant size between 2 megawatt (MW) and 200 MW. A 25 MW natural-gas, fueled-carbonate fuel cell power plant was chosen for this purpose. In keeping with recent designs, the fuel cell will operate under approximately three atmospheres of pressure. An expander/alternator is utilized to expand exhaust gas to atmospheric conditions and generate additional power. A steam-bottoming cycle is not included in this study because it is not believed to be cost effective for this system size. This study also addresses the simplicity and accuracy of a spreadsheet-based simulation with that of a full Advanced System for Process Engineering (ASPEN) simulation. The personal computer can fully utilize the simple spreadsheet model simulation. This model can be made available to all users and is particularly advantageous to the small business user.

  12. Greenhouse-gas emission targets for limiting global warming to 2 degrees C.

    PubMed

    Meinshausen, Malte; Meinshausen, Nicolai; Hare, William; Raper, Sarah C B; Frieler, Katja; Knutti, Reto; Frame, David J; Allen, Myles R

    2009-04-30

    More than 100 countries have adopted a global warming limit of 2 degrees C or below (relative to pre-industrial levels) as a guiding principle for mitigation efforts to reduce climate change risks, impacts and damages. However, the greenhouse gas (GHG) emissions corresponding to a specified maximum warming are poorly known owing to uncertainties in the carbon cycle and the climate response. Here we provide a comprehensive probabilistic analysis aimed at quantifying GHG emission budgets for the 2000-50 period that would limit warming throughout the twenty-first century to below 2 degrees C, based on a combination of published distributions of climate system properties and observational constraints. We show that, for the chosen class of emission scenarios, both cumulative emissions up to 2050 and emission levels in 2050 are robust indicators of the probability that twenty-first century warming will not exceed 2 degrees C relative to pre-industrial temperatures. Limiting cumulative CO(2) emissions over 2000-50 to 1,000 Gt CO(2) yields a 25% probability of warming exceeding 2 degrees C-and a limit of 1,440 Gt CO(2) yields a 50% probability-given a representative estimate of the distribution of climate system properties. As known 2000-06 CO(2) emissions were approximately 234 Gt CO(2), less than half the proven economically recoverable oil, gas and coal reserves can still be emitted up to 2050 to achieve such a goal. Recent G8 Communiqués envisage halved global GHG emissions by 2050, for which we estimate a 12-45% probability of exceeding 2 degrees C-assuming 1990 as emission base year and a range of published climate sensitivity distributions. Emissions levels in 2020 are a less robust indicator, but for the scenarios considered, the probability of exceeding 2 degrees C rises to 53-87% if global GHG emissions are still more than 25% above 2000 levels in 2020.

  13. Greenhouse gas contribution of municipal solid waste collection: A case study in the city of Istanbul, Turkey.

    PubMed

    Korkut, Nafiz E; Yaman, Cevat; Küçükağa, Yusuf; Jaunich, Megan K; Demir, İbrahim

    2018-02-01

    This article estimates greenhouse gas emissions and global warming factors resulting from collection of municipal solid waste to the transfer stations or landfills in Istanbul for the year of 2015. The aim of this study is to quantify and compare diesel fuel consumption and estimate the greenhouse gas emissions and global warming factors associated with municipal solid waste collection of the 39 districts of Istanbul. Each district's greenhouse gas emissions resulting from the provision and combustion of diesel fuel was estimated by considering the number of collection trips and distances to municipal solid waste facilities. The estimated greenhouse gases and global warming factors for the districts varied from 61.2 to 2759.1 t CO 2 -eq and from 4.60 to 15.20 kg CO 2 -eq t -1 , respectively. The total greenhouse gas emission was estimated as 46.4E3 t CO 2 -eq. Lastly, the collection data from the districts was used to parameterise a collection model that can be used to estimate fuel consumption associated with municipal solid waste collection. This mechanistic model can then be used to predict future fuel consumption and greenhouse gas emissions associated with municipal solid waste collection based on projected population, waste generation, and distance to transfer stations and landfills. The greenhouse gas emissions can be reduced by decreasing the trip numbers and trip distances, building more transfer stations around the city, and making sure that the collection trucks are full in each trip.

  14. The warming effect of the flare of natural gas on soil biological activity

    NASA Astrophysics Data System (ADS)

    Yevdokimov, Ilya; Yusupov, Irek; Shavnin, Sergey

    2017-04-01

    Simulation of global warming is one of the key issues of international efforts to study climatic changes. A number of manipulation experiments with soil warming have been established throughout the world in the last decades. We used warming with natural gas flare near the pine forest as a kind of manipulation experiment to assess the synergistic effect of drying and warming on plant-soil-microbial interactions. The experimental area is situated in a pine forest subzone of the forest zone of the Western Siberia near Pokachi, Yugra (61o73'N, 75o49'E). The experimental plots were established in a young Scotch pine forest on sandy podzolic soil at three distances of 70, 90 and 130 m from the flare of natural gas, with trees exposed to strong (S) moderate (M), and weak (W) impact, respectively. Increase of soil temperature in summer time were moderate: on average 0.7oC and 1.3oC for the plots M and S, respectively, compared to the plot W. The plot S demonstrated increase in CO2 efflux from the soil surface, mainly due to intensifying plant root respiration, by 18% compared to the plot W as well as increase in SOM content by 31%, with intensive accumulation of recalcitrant humus. By contrast, microbial biomass, labile SOM pool and basal respiration were higher in soil with weak flaring impact by 74%, 33% and 24%, respectively. Thus, three trends in plant-soil-microbe system exposed to warming and drying were revealed: i) SOM accumulation, ii) suppression of microbial activity, and iii) stimulation of root respiration. The research was supported by the Russian Science Foundation and Russian Foundation for Basic Researches.

  15. Combustion of coal gas fuels in a staged combustor

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.; Mcvey, J. B.; Sederquist, R. A.; Schultz, D. F.

    1982-01-01

    Gaseous fuels produced from coal resources generally have heating values much lower than natural gas; the low heating value could result in unstable or inefficient combustion. Coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable nitrogen oxide exhaust emission levels. Previous investigations indicate that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low nitrogen oxide emission operation for coal-derived liquid fuels contaning up to 0.8-wt pct nitrogen. An experimental program was conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7 pct ammonia are presented.

  16. Method of cooling gas only nozzle fuel tip

    DOEpatents

    Bechtel, William Theodore; Fitts, David Orus; DeLeonardo, Guy Wayne

    2002-01-01

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  17. ISO New England Dual Fuel Capabilities to Limit Natural Gas and Electricity Interdependencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adder, Justin M.

    Since 2000, natural gas has seen tremendous growth as a fuel source for electricity generation in the United States (U.S.) with annual installations exceeding 20 GW in all but four years. It also accounts for an increasingly significant share of the nation’s electricity generation, growing from around 15 percent in the early part of the 2000s to between 26 and 29 percent in the last three years. (1) Increasing reliance on natural gas has led to concerns that an extreme weather event – which may cause curtailments in gas delivery – or a natural gas infrastructure failure could lead tomore » local or regional electric reliability issues. (2) These concerns stem from differences in delivery methods of natural gas to electric generating units (EGUs) contrasted with the fuel delivery and storage methods for traditional baseload power systems (i.e. coal and nuclear units).1 (3) Although it seems that there is an abundance of natural gas in a post-shale gas world, infrastructure limitations and differences in electric and natural gas markets persist that differentiate natural gas-fired generators from traditional baseload power generators. Such concerns can be partially mitigated by modifying natural gas EGUs for operation on secondary fuels and installing on-site fuel storage for the secondary fuel, thus ensuring continuity of operation in the case of a gas delivery problem.2 This report examines technical, regulatory, and market issues associated with operating power plants primarily fueled with natural gas, on a secondary fuel, such as fuel oil or liquefied natural gas (LNG). In addition, a regional case study was completed to identify the current and near-term potential for dual fuel operation in New England, along with a market impact analysis of potential cost savings during an extreme weather event. The New England Independent System Operator (ISO-NE) was selected as the study area based on a preponderance of natural gas-fired generators contributing to the

  18. Gas detection for alternate-fuel vehicle facilities.

    PubMed

    Ferree, Steve

    2003-05-01

    Alternative fuel vehicles' safety is driven by local, state, and federal regulations in which fleet owners in key metropolitan [table: see text] areas convert much of their fleet to cleaner-burning fuels. Various alternative fuels are available to meet this requirement, each with its own advantages and requirements. This conversion to alternative fuels leads to special requirements for safety monitoring in the maintenance facilities and refueling stations. A comprehensive gas and flame monitoring system needs to meet the needs of both the user and the local fire marshal.

  19. Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas

    Science.gov Websites

    Santa Fe Metro Fleet Runs on Natural Gas to someone by E-mail Share Alternative Fuels Data Center : Santa Fe Metro Fleet Runs on Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Santa Fe Metro Fleet

  20. Cosmic Origins Spectrograph Observations of Warm Intervening Gas at z ~ 0.325 toward 3C 263

    NASA Astrophysics Data System (ADS)

    Narayanan, Anand; Savage, Blair D.; Wakker, Bart P.

    2012-06-01

    We present HST/COS high-S/N observations of the z = 0.32566 multiphase absorber toward 3C 263. The Cosmic Origins Spectrograph (COS) data show absorption from H I (Lyα to Lyθ), O VI, C III, N III, Si III, and C II. The Ne VIII in this absorber is detected in the FUSE spectrum along with O III, O IV, and N IV. The low and intermediate ions are kinematically aligned with each other and H I and display narrow line widths of b ~ 6-8 km s-1. The O VI λλ1031, 1037 lines are kinematically offset by Δv ~ 12 km s-1 from the low ions and are a factor of ~4 broader. All metal ions except O VI and Ne VIII are consistent with an origin in gas photoionized by the extragalactic background radiation. The bulk of the observed H I is also traced by this photoionized medium. The metallicity in this gas phase is Z >~ 0.15 Z ⊙ with carbon having near-solar abundances. The O VI and Ne VIII favor an origin in collisionally ionized gas at T = 5.2 × 105 K. The H I absorption associated with this warm absorber is a broad-Lyα absorber (BLA) marginally detected in the COS spectrum. This warm gas phase has a metallicity of [X/H] ~-0.12 dex, and a total hydrogen column density of N( H) ~ 3 × 1019 cm-2, which is ~2 dex higher than what is traced by the photoionized gas. Simultaneous detection of O VI, Ne VIII, and BLAs in an absorber can be a strong diagnostic of gas with T ~ 105-106 K corresponding to the warm phase of the warm-hot intergalactic medium or shock-heated gas in the extended halos of galaxies. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 05-26555, and the NASA-CNES/ESA Far Ultraviolet Spectroscopic Explorer mission, operated by the Johns Hopkins University, supported by NASA contract NAS 05-32985.

  1. Test results for fuel cell operation on anaerobic digester gas

    NASA Astrophysics Data System (ADS)

    Spiegel, R. J.; Preston, J. L.

    EPA, in conjunction with ONSI, embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the process of treating sewage anaerobically to reduce solids. ADG is primarily comprised of methane (57-66%), carbon dioxide (33-39%), nitrogen (1-10%), and a small amount of oxygen (<0.5%). Additionally, ADG contains trace amounts of fuel cell catalyst contaminants consisting of sulfur-bearing compounds (principally hydrogen sulfide) and halogen compounds (chlorides). The project has addressed two major issues: development of a cleanup system to remove fuel cell contaminants from the gas and testing/assessing of a modified ONSI PC25 C fuel cell power plant operating on the cleaned, but dilute, ADG. Results to date demonstrate that the ADG fuel cell power plant can, depending on the energy content of the gas, produce electrical output levels close to full power (200 kW) with measured air emissions comparable to those obtained by a natural gas fuel cell. The cleanup system results show that the hydrogen sulfide levels are reduced to below 10 ppbv and halides to approximately 30 ppbv.

  2. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    DOT National Transportation Integrated Search

    1998-11-15

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation G...

  3. Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse

    Science.gov Websites

    Trucks Virginia Cleans up With Natural Gas Refuse Trucks to someone by E-mail Share Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Facebook Tweet about Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Twitter Bookmark Alternative

  4. Considering time in LCA: dynamic LCA and its application to global warming impact assessments.

    PubMed

    Levasseur, Annie; Lesage, Pascal; Margni, Manuele; Deschênes, Louise; Samson, Réjean

    2010-04-15

    The lack of temporal information is an important limitation of life cycle assessment (LCA). A dynamic LCA approach is proposed to improve the accuracy of LCA by addressing the inconsistency of temporal assessment. This approach consists of first computing a dynamic life cycle inventory (LCI), considering the temporal profile of emissions. Then, time-dependent characterization factors are calculated to assess the dynamic LCI in real-time impact scores for any given time horizon. Although generally applicable to any impact category, this approach is developed here for global warming, based on the radiative forcing concept. This case study demonstrates that the use of global warming potentials for a given time horizon to characterize greenhouse gas emissions leads to an inconsistency between the time frame chosen for the analysis and the time period covered by the LCA results. Dynamic LCA is applied to the US EPA LCA on renewable fuels, which compares the life cycle greenhouse gas emissions of different biofuels with fossil fuels including land-use change emissions. The comparison of the results obtained with both traditional and dynamic LCA approaches shows that the difference can be important enough to change the conclusions on whether or not a biofuel meets some given global warming reduction targets.

  5. Simulation modelling for new gas turbine fuel controller creation.

    NASA Astrophysics Data System (ADS)

    Vendland, L. E.; Pribylov, V. G.; Borisov, Yu A.; Arzamastsev, M. A.; Kosoy, A. A.

    2017-11-01

    State of the art gas turbine fuel flow control systems are based on throttle principle. Major disadvantage of such systems is that they require high pressure fuel intake. Different approach to fuel flow control is to use regulating compressor. And for this approach because of controller and gas turbine interaction a specific regulating compressor is required. Difficulties emerge as early as the requirement definition stage. To define requirements for new object, his properties must be known. Simulation modelling helps to overcome these difficulties. At the requirement definition stage the most simplified mathematical model is used. Mathematical models will get more complex and detailed as we advance in planned work. If future adjusting of regulating compressor physical model to work with virtual gas turbine and physical control system is planned.

  6. 29 CFR 1910.253 - Oxygen-fuel gas welding and cutting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... prohibited in outside generator houses or inside generator rooms. (D) Water shall not be supplied through a... chamber shall always be flushed out with water, renewing the water supply in accordance with the.... Workmen in charge of the oxygen or fuel-gas supply equipment, including generators, and oxygen or fuel-gas...

  7. Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in

    Science.gov Websites

    ConnecticutA> Liquefied Natural Gas Powers Trucks in Connecticut to someone by E-mail Share , fuels vehicles with natural gas. For information about this project, contact Connecticut Southwestern . Provided by Maryland Public Television Related Videos Photo of a car Hydrogen Powers Fuel Cell Vehicles in

  8. Hydrogen generation from natural gas for the fuel cell systems of tomorrow

    NASA Astrophysics Data System (ADS)

    Dicks, Andrew L.

    In most cases hydrogen is the preferred fuel for use in the present generation of fuel cells being developed for commercial applications. Of all the potential sources of hydrogen, natural gas offers many advantages. It is widely available, clean, and can be converted to hydrogen relatively easily. When catalytic steam reforming is used to generate hydrogen from natural gas, it is essential that sulfur compounds in the natural gas are removed upstream of the reformer and various types of desulfurisation processes are available. In addition, the quality of fuel required for each type of fuel cell varies according to the anode material used, and the cell temperature. Low temperature cells will not tolerate high concentrations of carbon monoxide, whereas the molten fuel cell (MCFC) and solid oxide fuel cell (SOFC) anodes contain nickel on which it is possible to electrochemically oxidise carbon monoxide directly. The ability to internally reform fuel gas is a feature of the MCFC and SOFC. Internal reforming can give benefits in terms of increased electrical efficiency owing to the reduction in the required cell cooling and therefore parasitic system losses. Direct electrocatalysis of hydrocarbon oxidation has been the elusive goal of fuel cell developers over many years and recent laboratory results are encouraging. This paper reviews the principal methods of converting natural gas into hydrogen, namely catalytic steam reforming, autothermic reforming, pyrolysis and partial oxidation; it reviews currently available purification techniques and discusses some recent advances in internal reforming and the direct use of natural gas in fuel cells.

  9. 49 CFR 571.304 - Standard No. 304; Compressed natural gas fuel container integrity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Standard No. 304; Compressed natural gas fuel... natural gas fuel container integrity. S1. Scope. This standard specifies requirements for the integrity of compressed natural gas (CNG), motor vehicle fuel containers. S2. Purpose. The purpose of this standard is to...

  10. 49 CFR 571.304 - Standard No. 304; Compressed natural gas fuel container integrity.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Standard No. 304; Compressed natural gas fuel... natural gas fuel container integrity. S1. Scope. This standard specifies requirements for the integrity of compressed natural gas (CNG), motor vehicle fuel containers. S2. Purpose. The purpose of this standard is to...

  11. Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City

    Science.gov Websites

    Save Money Natural Gas School Buses Help Kansas City Save Money to someone by E-mail Share Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City Save Money on Facebook Tweet about Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City Save Money on Twitter Bookmark

  12. Positive feedback of greenhouse gas balances to warming is determined by non-growing season emissions in an alpine meadow

    NASA Astrophysics Data System (ADS)

    Niu, S.; Wang, J.; Quan, Q.; Chen, W.; Wen, X.; Yu, G.

    2017-12-01

    Large uncertainties exist in the sources and sinks of greenhouse gases (CO2, CH4, N2O) in response to climate warming and human activity. So far, numerous previous studies have evaluated the CO2 budget, but little attention has paid to CH4 and N2O budgets and the concurrent balance of these three gases in combination, especially in the non-growing season. Here, we synthesized eddy covariance measurement with the automatic chamber measurements of CO2, CH4, and N2O exposed to three levels of temperature treatments (ambient, +1.5 °C, +2.5 °C) and two disturbance treatments (ummowing, mowing) in an alpine meadow on the Tibetan Plateau. We have found that warming caused increase in CH4 uptake and decrease in N2O emission offset little of the enhancement in CO2 emission, triggering a positive feedback to climate warming. Warming switches the ecosystem from a net sink (-17 ± 14 g CO2-eq m-2 yr-1) in the control to a net source of greenhouse gases of 94 ± 36 gCO2-eq m-2 yr-1 in the plots with +1.5 °C warming treatment, and 177 ± 6 gCO2-eq m-2 yr-1 in the plots with +2.5 °C warming treatment. The changes in the non-growing season balance, rather than those in the growing season, dominate the warming responses of annual greehouse gas balance. And this is not changed by mowing. The dominant role of responses of winter greenhouse gas balance in the positive feedback of ecosystem to climate warming highlights that greenhouse gas balance in cold season has to be considered when assessing climate-carbon cycle feedback.

  13. Reactant gas composition for fuel cell potential control

    DOEpatents

    Bushnell, Calvin L.; Davis, Christopher L.

    1991-01-01

    A fuel cell (10) system in which a nitrogen (N.sub.2) gas is used on the anode section (11) and a nitrogen/oxygen (N.sub.2 /O.sub.2) gaseous mix is used on the cathode section (12) to maintain the cathode at an acceptable voltage potential during adverse conditions occurring particularly during off-power conditions, for example, during power plant shutdown, start-up and hot holds. During power plant shutdown, the cathode section is purged with a gaseous mixture of, for example, one-half percent (0.5%) oxygen (O.sub.2) and ninety-nine and a half percent (99.5%) nitrogen (N.sub.2) supplied from an ejector (21) bleeding in air (24/28) into a high pressure stream (27) of nitrogen (N.sub.2) as the primary or majority gas. Thereafter the fuel gas in the fuel processor (31) and the anode section (11) is purged with nitrogen gas to prevent nickel (Ni) carbonyl from forming from the shift catalyst. A switched dummy electrical load (30) is used to bring the cathode potential down rapidly during the start of the purges. The 0.5%/99.5% O.sub.2 /N.sub.2 mixture maintains the cathode potential between 0.3 and 0.7 volts, and this is sufficient to maintain the cathode potential at 0.3 volts for the case of H.sub.2 diffusing to the cathode through a 2 mil thick electrolyte filled matrix and below 0.8 volts for no diffusion at open circuit conditions. The same high pressure gas source (20) is used via a "T" juncture ("T") to purge the anode section and its associated fuel processor (31).

  14. Compressed Natural Gas Technology for Alternative Fuel Power Plants

    NASA Astrophysics Data System (ADS)

    Pujotomo, Isworo

    2018-02-01

    Gas has great potential to be converted into electrical energy. Indonesia has natural gas reserves up to 50 years in the future, but the optimization of the gas to be converted into electricity is low and unable to compete with coal. Gas is converted into electricity has low electrical efficiency (25%), and the raw materials are more expensive than coal. Steam from a lot of wasted gas turbine, thus the need for utilizing exhaust gas results from gas turbine units. Combined cycle technology (Gas and Steam Power Plant) be a solution to improve the efficiency of electricity. Among other Thermal Units, Steam Power Plant (Combined Cycle Power Plant) has a high electrical efficiency (45%). Weakness of the current Gas and Steam Power Plant peak burden still using fuel oil. Compressed Natural Gas (CNG) Technology may be used to accommodate the gas with little land use. CNG gas stored in the circumstances of great pressure up to 250 bar, in contrast to gas directly converted into electricity in a power plant only 27 bar pressure. Stored in CNG gas used as a fuel to replace load bearing peak. Lawyer System on CNG conversion as well as the power plant is generally only used compressed gas with greater pressure and a bit of land.

  15. Liquid Fuels and Natural Gas in the Americas Analysis Brief

    EIA Publications

    2014-01-01

    This report examines the major energy trends and developments of the past decade in the Americas, focusing on liquid fuels and natural gas—particularly, reserves and resources, production, consumption, trade, and investment. The Americas, which include North America, Central America, the Caribbean, and South America, account for a significant portion of global supply, demand, and trade of both liquid fuels and natural gas. Liquid fuels include all petroleum and petroleum products, natural gas liquids, biofuels, and liquids derived from other hydrocarbon sources.

  16. Alternative Fuels Data Center: Ozinga Adds 14 Natural Gas Concrete Mixers

    Science.gov Websites

    to Its Fleet Ozinga Adds 14 Natural Gas Concrete Mixers to Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Ozinga Adds 14 Natural Gas Concrete Mixers to Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Ozinga Adds 14 Natural Gas Concrete Mixers to Its Fleet on Twitter Bookmark

  17. Committed warming inferred from observations and an energy balance model

    NASA Astrophysics Data System (ADS)

    Pincus, R.; Mauritsen, T.

    2017-12-01

    Due to the lifetime of CO2 and thermal inertia of the ocean, the Earth's climate is not equilibrated with anthropogenic forcing. As a result, even if fossil fuel emissions were to suddenly cease, some level of committed warming is expected due to past emissions. Here, we provide an observational-based quantification of this committed warming using the instrument record of global-mean warming, recently-improved estimates of Earth's energy imbalance, and estimates of radiative forcing from the fifth IPCC assessment report. Compared to pre-industrial levels, we find a committed warming of 1.5K [0.9-3.6, 5-95 percentile] at equilibrium, and of 1.3K [0.9-2.3] within this century. However, when assuming that ocean carbon uptake cancels remnant greenhouse gas-induced warming on centennial timescales, committed warming is reduced to 1.1K [0.7-1.8]. Conservatively, there is a 32% risk that committed warming already exceeds the 1.5K target set in Paris, and that this will likely be crossed prior to 2053. Regular updates of these observationally-constrained committed warming estimates, though simplistic, can provide transparent guidance as uncertainty regarding transient climate sensitivity inevitably narrows and understanding the limitations of the framework is advanced.

  18. Fuel injection assembly for gas turbine engine combustor

    NASA Technical Reports Server (NTRS)

    Candy, Anthony J. (Inventor); Glynn, Christopher C. (Inventor); Barrett, John E. (Inventor)

    2002-01-01

    A fuel injection assembly for a gas turbine engine combustor, including at least one fuel stem, a plurality of concentrically disposed tubes positioned within each fuel stem, wherein a cooling supply flow passage, a cooling return flow passage, and a tip fuel flow passage are defined thereby, and at least one fuel tip assembly connected to each fuel stem so as to be in flow communication with the flow passages, wherein an active cooling circuit for each fuel stem and fuel tip assembly is maintained by providing all active fuel through the cooling supply flow passage and the cooling return flow passage during each stage of combustor operation. The fuel flowing through the active cooling circuit is then collected so that a predetermined portion thereof is provided to the tip fuel flow passage for injection by the fuel tip assembly.

  19. Spray Characterization of Gas-to-Liquid Synthetic Jet Fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza; GTL jet fuel Consortium Team

    2012-11-01

    Gas-to-Liquid (GTL) Synthetic Paraffinic Kerosene (SPK) fuel obtained from Fischer-Tropsch synthesis has grabbed the global attention due to its cleaner combustion characteristics. GTL fuels are expected to meet the vital qualities such as atomization, combustion and emission characteristics of conventional jet fuels. It is imperative to understand fuel atomization in order to gain insights on the combustion and emission aspects of an alternative fuel. In this work spray characteristics of GTL-SPK, which could be used as a drop-in fuel in aircraft gas turbine engines, is studied. This work outlines the spray experimental facility, the methodology used and the results obtained using two SPK's with different chemical compositions. The spray characteristics, such as droplet size and distribution, are presented at three differential pressures across a simplex nozzle and compared with that of the conventional Jet A-1 fuel. Experimental results clearly show that although the chemical composition is significantly different between SPK's, the spray characteristics are not very different. This could be attributed to the minimal difference in fluid properties between the SPK's. Also, the spray characteristics of SPK's show close resemblance to the spray characteristics of Jet A-1 fuel.

  20. Alternative Fuels Data Center: Natural Gas Vehicle Emissions

    Science.gov Websites

    , and Policy More Natural Gas Publications | All Publications Tools Vehicle Cost Calculator GREET Fleet Footprint Calculator Heavy-Duty Vehicle Emissions All Tools Vehicle Cost Calculator Choose a vehicle to compare fuel cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid

  1. In-ground operation of Geothermic Fuel Cells for unconventional oil and gas recovery

    NASA Astrophysics Data System (ADS)

    Sullivan, Neal; Anyenya, Gladys; Haun, Buddy; Daubenspeck, Mark; Bonadies, Joseph; Kerr, Rick; Fischer, Bernhard; Wright, Adam; Jones, Gerald; Li, Robert; Wall, Mark; Forbes, Alan; Savage, Marshall

    2016-01-01

    This paper presents operating and performance characteristics of a nine-stack solid-oxide fuel cell combined-heat-and-power system. Integrated with a natural-gas fuel processor, air compressor, reactant-gas preheater, and diagnostics and control equipment, the system is designed for use in unconventional oil-and-gas processing. Termed a ;Geothermic Fuel Cell; (GFC), the heat liberated by the fuel cell during electricity generation is harnessed to process oil shale into high-quality crude oil and natural gas. The 1.5-kWe SOFC stacks are packaged within three-stack GFC modules. Three GFC modules are mechanically and electrically coupled to a reactant-gas preheater and installed within the earth. During operation, significant heat is conducted from the Geothermic Fuel Cell to the surrounding geology. The complete system was continuously operated on hydrogen and natural-gas fuels for ∼600 h. A quasi-steady operating point was established to favor heat generation (29.1 kWth) over electricity production (4.4 kWe). Thermodynamic analysis reveals a combined-heat-and-power efficiency of 55% at this condition. Heat flux to the geology averaged 3.2 kW m-1 across the 9-m length of the Geothermic Fuel Cell-preheater assembly. System performance is reviewed; some suggestions for improvement are proposed.

  2. Greenhouse gas impacts of natural gas: Influence of deployment choice, methane leak rate, and methane GWP

    NASA Astrophysics Data System (ADS)

    Cohan, D. S.

    2015-12-01

    Growing supplies of natural gas have heightened interest in the net impacts of natural gas on climate. Although its production and consumption result in greenhouse gas emissions, natural gas most often substitutes for other fossil fuels whose emission rates may be higher. Because natural gas can be used throughout the sectors of the energy economy, its net impacts on greenhouse gas emissions will depend not only on the leak rates of production and distribution, but also on the use for which natural gas is substituted. Here, we present our estimates of the net greenhouse gas emissions impacts of substituting natural gas for other fossil fuels for five purposes: light-duty vehicles, transit buses, residential heating, electricity generation, and export for electricity generation overseas. Emissions are evaluated on a fuel cycle basis, from production and transport of each fuel through end use combustion, based on recent conditions in the United States. We show that displacement of existing coal-fired electricity and heating oil furnaces yield the largest reductions in emissions. The impact of compressed natural gas replacing petroleum-based vehicles is highly uncertain, with the sign of impact depending on multiple assumptions. Export of liquefied natural gas for electricity yields a moderate amount of emissions reductions. We further show how uncertainties in upstream emission rates for natural gas and in the global warming potential of methane influence the net greenhouse gas impacts. Our presentation will make the case that how natural gas is deployed is crucial to determining how it will impact climate.

  3. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  4. Theoretical Investigation For The Effect of Fuel Quality on Gas Turbine Power Plants

    NASA Astrophysics Data System (ADS)

    AbdulRazzak khudair, Omar; Alwan Abass, Khetam; Saadi Abed, Noor; Hussain Ali, Khalid; AbdulAziz, Saad; Chlaib Shaboot, Ali

    2018-05-01

    Gas turbine engine power generation is declined dramatically because of the reduction in thermodynamic parameters as a work of turbine, compressor ratio, compressor work, and air mass flow rate and fuel consumption. There are two main objectives of this work, the first is related with the effect of fuel kinds and their quality on the operation of fuel flow divider and its performance specifically gear pump displacement and fuel flow rate to the combustion chambers of gas power plant. AL-DORA gas turbine power plant 35MW was chosen to predict these effects on its performance MATLAB Software program is used to perform thermodynamic calculations. Fuel distribution stage before the process of combustion and as a result of the kind and its quality, chemical reaction will occur between the fuel and the parts of the gear system of each pump of the flow divider, which causes the erosion of the internal pump wall and the teeth of the gear system, thus hampering the pump operation in terms of fuel discharge. The discharge of fuel form the eight external gates of flow divider is decreased and varied when going to the combustion chambers, so that, flow divider does not give reliable mass flow rate due to absence of accurate pressure in each of eight exit pipes. The second objective deals with the stage of fuel combustion process inside the combustion chamber. A comparative study based upon performance parameters, such as specific fuel consumption for gas and gasoil and power generation. Fuel poor quality causes incomplete combustion and increased its consumption, so that combustion products are interacted with the surface of the turbine blades, causing the erosion and create surface roughness of the blade and disruption of gas flow. As a result of this situation, turbulence flow of these gases will increase causing the separation of gas boundary layers over the suction surface of the blade. Therefore the amount of extracted gas will decrease causing retreat work done by

  5. Sectoral combustor for burning low-BTU fuel gas

    DOEpatents

    Vogt, Robert L.

    1980-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

  6. 76 FR 52650 - National Fuel Gas Supply Corporation; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... Gas Supply Corporation; Notice of Application Take notice that on August 15, 2011, National Fuel Gas Supply Corporation (National Fuel), 6363 Main Street, Williamsville, New York 14221, filed an application... Supply Corporation, 6363 Main Street, Williamsville, New York 14221, at (716) 857-7949. There are two...

  7. Method for making hydrogen rich gas from hydrocarbon fuel

    DOEpatents

    Krumpelt, M.; Ahmed, S.; Kumar, R.; Doshi, R.

    1999-07-27

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400 C for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide. 4 figs.

  8. Method for making hydrogen rich gas from hydrocarbon fuel

    DOEpatents

    Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv

    1999-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  9. Solid fuel volatilization to produce synthesis gas

    DOEpatents

    Schmidt, Lanny D.; Dauenhauer, Paul J.; Degenstein, Nick J.; Dreyer, Brandon J.; Colby, Joshua L.

    2014-07-29

    A method comprising contacting a carbon and hydrogen-containing solid fuel and a metal-based catalyst in the presence of oxygen to produce hydrogen gas and carbon monoxide gas, wherein the contacting occurs at a temperature sufficiently high to prevent char formation in an amount capable of stopping production of the hydrogen gas and the carbon monoxide gas is provided. In one embodiment, the metal-based catalyst comprises a rhodium-cerium catalyst. Embodiments further include a system for producing syngas. The systems and methods described herein provide shorter residence time and high selectivity for hydrogen and carbon monoxide.

  10. Simulation of fuel demand for wood-gas in combustion engine

    NASA Astrophysics Data System (ADS)

    Botwinska, Katarzyna; Mruk, Remigiusz; Tucki, Karol; Wata, Mateusz

    2017-10-01

    In the era of the oil crisis and proceeding contamination of the natural environment, it is attempted to substitute fossil raw materials with alternative carriers. For many years, road transport has been considered as one of the main sources of the substances deteriorating air quality. Applicable European directives oblige the member states to implement biofuels and biocomponents into the general fuel market, however, such process is proceeding gradually and relatively slowly. So far, alternative fuels have been used on a large scale to substitute diesel fuel or petrol. Derivatives of vegetable raw materials, such as vegetable oils or their esters and ethanol extracted from biomass, are used to that end. It has been noticed that there is no alternative to LPG which, due to financial reasons, is more and more popular as fuel in passenger cars. In relation to solutions adopted in the past, it has been decided to analyse the option of powering a modern passenger car with wood gas - syngas. Such fuel has been practically used since the 1920's. To that end, a computer simulation created in SciLab environment was carried out. Passenger car Fiat Seicento, fitted with Fire 1.1 8V petrol engine with power of 40kW, whose parameters were used to prepare the model, was selected as the model vehicle. The simulation allows the determination of engine demand on the given fuel. Apart from the wood gas included in the title, petrol, methane and LPG were used. Additionally, the created model enables the determination of the engine power at the time of the indicated fuels supply. The results obtained in the simulation revealed considerable decrease in the engine power when the wood gas was supplied and the increased consumption of this fuel. On the basis of the analysis of the professional literature describing numerous inconveniences connected with the use of this fuel as well as the obtained results, it has been established that using the wood gas as alternative fuel is currently

  11. Climate Effect of Greenhouse Gas: Warming or Cooling is Determined by Temperature Gradient

    NASA Astrophysics Data System (ADS)

    Shia, R.

    2011-12-01

    The instantaneous radiative forcing (IRF) at the top of the atmosphere (ToA) is the initial change of the total energy in the climate system when the concentration of greenhouse gas (GHG) increases. In my previous presentation at the 2010 Fall AGU meeting (A11J-02, "Mechanism of Radiative Forcing of Greenhouse Gas its Implication to the Global Warming"), it was demonstrated that IRF at TOA is generated by moving up of the emission weighting function. Thus, the temperature gradient plays a critical role in determining the climate effect of GHG. In this presentation the change of the outgoing infrared radiation flux at ToA is studied from a perturbation point of view. After the cancellation between the changes in the outgoing radiation flux from the surface emission and from the reemission of the atmosphere, the derivative of the outgoing flux to the concentration of GHG is found to be proportional to the temperature gradients below the level where the concentration of GHG changes. Therefore, the greenhouse gas contribute only to the magnitude of the radiative forcing, the temperature gradients decide the direction of the radiative forcing, i.e. warming or cooling, in addition to contributing to its magnitude. In response to the question "Does the negative IRF at ToA lead to the surface cooling or it only cools the upper part of the atmosphere?" the Eddington grey radiative equilibrium model is modified to simulate different scenarios. The original model has been used to illustrate the warming effect of GHG in textbooks of the atmospheric physics. It is modified by adding source terms from the absorption of the solar flux and the internal energy exchange in the atmosphere. In two cases the modified model generates atmospheres with a large and warm stratosphere and negative IRF at ToA when GHG increases by 25%. This negative radiative forcing can lead to the cooling of the atmosphere all the way down to the surface. The implications of the cooling effect of GHG to the

  12. Fixed bed gasification for production of industrial fuel gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-10-01

    This report summarizes the results of technical and economic evaluations of six commercially available, fixed-bed coal gasification processes for the production of industrial fuel gas. The study was performed for DOE and is intended to assist industrial companies in exploring the feasibility of producing gaseous fuels for both retrofit and new industrial plant situations. The report includes a technical analysis of the physical configuration, performance capabilities, and commercial experiments to-date for both air-blown and oxygen-blown fixed bed gasifiers. The product gas from these gasifiers is analyzed economically for three different degrees of cleanliness: (1) hot raw gas, (2) dust-, tar-,more » and oil-free gas, and (3) dust-, tar-, oil-free and desulfurized gas. The evaluations indicate that low-Btu gases produced from fixed bed gasifiers constitute one of the most logical short-term solutions for helping ease the shortage of natural gas for industrial fuel applications because the technology is well-proven and has been utilized on a commercial scale for several decades both in this country and overseas; time from initiation of design to commercial operation is about two years; the technology is not complicated to construct, operate, or maintain; and a reliable supply of product gas can be generated on-site. The advantages and disadvantages of fixed bed gasification technology are listed. The cost of the low Btu gas is estimated at $2 to $4 per MM Btu depending on gas purity, cost of coal ($20 to $50 per ton) and a number of specified assumptions with respect to financing, reliability, etc. (LTN)« less

  13. Preparation of high temperature gas-cooled reactor fuel element

    DOEpatents

    Bradley, Ronnie A.; Sease, John D.

    1976-01-01

    This invention relates to a method for the preparation of high temperature gas-cooled reactor (HTGR) fuel elements wherein uncarbonized fuel rods are inserted in appropriate channels of an HTGR fuel element block and the entire block is inserted in an autoclave for in situ carbonization under high pressure. The method is particularly applicable to remote handling techniques.

  14. 40 CFR 600.314-08 - Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economy for...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cost, Gas Guzzler Tax, and range of fuel economy for comparable automobiles. 600.314-08 Section 600.314... label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economy for comparable automobiles... economies of comparable automobiles based upon all label data supplied to the Administrator. (e) The...

  15. 40 CFR 600.314-08 - Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economy for...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cost, Gas Guzzler Tax, and range of fuel economy for comparable automobiles. 600.314-08 Section 600.314... label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economy for comparable automobiles... economies of comparable automobiles based upon all label data supplied to the Administrator. (e) The...

  16. 40 CFR 600.314-08 - Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economy for...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cost, Gas Guzzler Tax, and range of fuel economy for comparable automobiles. 600.314-08 Section 600.314... label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economy for comparable automobiles... economies of comparable automobiles based upon all label data supplied to the Administrator. (e) The...

  17. 78 FR 63976 - National Fuel Gas Supply Corporation; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Docket No. CP14-5-000] National Fuel..., 2013, National Fuel Gas Supply Corporation (National Fuel), 6363 Main Street, Williamsville, New York... the Commission's regulations under the Natural Gas Act (NGA). National Fuel seeks authorization to...

  18. Global Warming and Energy Transition: A Public Policy Imperative

    NASA Astrophysics Data System (ADS)

    Stone, G. T.

    2006-12-01

    The historic transition from fossil fuels to alternative energy resources has begun. This development is commonly attributed to increasing energy costs and the need for energy security. Looming ever larger, however, is the issue that will soon drive the third energy revolution: global warming. A preponderance of evidence documents accelerating warming, enlarging impacts, and human causes -- principally combustion of fossil fuels. The carbon dioxide (C02) content of Earth's atmosphere has increased more than 35 percent since the beginning of the industrial revolution and is the highest in 650,000 years. This dramatic rise of C02 and attendant positive feedbacks are already forcing significant impacts worldwide. These include atmospheric warming with shifting climatic and habitat zones, spreading tropical disease, and more extreme weather events; rapid ice loss at high latitude and high altitude; ocean warming and acidification with coral reef bleaching and intensifying tropical storms; rising sea level; and accelerating extinction rates. The 2007 draft report of the Intergovernmental Panel on Climate Change (IPCC) predicts greater warming than in previous models. A tipping point to abrupt climate change may be imminent. It is incumbent upon geoscientists and geoscience educators to assume leadership in addressing this challenge through public outreach and general education. The following topics should be integrated into all appropriate courses: the evidence of global warming and its causes; observed present and predicted future impacts of global warming; mitigation and adaptation strategies; and implications for energy policies and economic opportunities. New entry-level science and general education courses -- such as Climate Change Fundamentals and Energy in Nature, Technology, and Society -- are proving to be effective should be widely developed In addition, by workshops and presentations to civic and business organizations and by demonstrated examples of

  19. 40 CFR 600.314-01 - Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economies for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cost, Gas Guzzler Tax, and range of fuel economies for comparable automobiles. 600.314-01 Section 600... Model Year Automobiles-Labeling § 600.314-01 Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economies for comparable automobiles. (a) The label values established in § 600.312...

  20. 40 CFR 600.314-86 - Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economies for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cost, Gas Guzzler Tax, and range of fuel economies for comparable automobiles. 600.314-86 Section 600... Model Year Automobiles-Labeling § 600.314-86 Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economies for comparable automobiles. (a) The label values established in § 600.312...

  1. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for fuel gas combustion devices. 60.107a Section 60.107a Protection of Environment ENVIRONMENTAL... Commenced After May 14, 2007 § 60.107a Monitoring of emissions and operations for fuel gas combustion devices. (a) Fuel gas combustion devices subject to SO 2 or H 2 S limit. The owner or operator of a fuel...

  2. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for fuel gas combustion devices. 60.107a Section 60.107a Protection of Environment ENVIRONMENTAL... Commenced After May 14, 2007 § 60.107a Monitoring of emissions and operations for fuel gas combustion devices. (a) Fuel gas combustion devices subject to SO 2 or H 2 S limit. The owner or operator of a fuel...

  3. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for fuel gas combustion devices. 60.107a Section 60.107a Protection of Environment ENVIRONMENTAL... Commenced After May 14, 2007 § 60.107a Monitoring of emissions and operations for fuel gas combustion devices. (a) Fuel gas combustion devices subject to SO 2 or H 2 S limit. The owner or operator of a fuel...

  4. 40 CFR 600.314-08 - Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economy for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cost, Gas Guzzler Tax, and range of fuel economy for comparable automobiles. 600.314-08 Section 600.314... Model Year Automobiles-Labeling § 600.314-08 Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economy for comparable automobiles. (a) The label values established in § 600.312...

  5. Fuel-air mixing apparatus for reducing gas turbine combustor exhaust emissions

    NASA Technical Reports Server (NTRS)

    Zupanc, Frank J. (Inventor); Yankowich, Paul R. (Inventor)

    2006-01-01

    A fuel-air mixer for use in a combustion chamber of a gas turbine engine is provided. The fuel air mixing apparatus comprises an annular fuel injector having a plurality of discrete plain jet orifices, a first swirler wherein the first swirler is located upstream from the fuel injector and a second swirler wherein the second swirler is located downstream from the fuel injector. The plurality of discrete plain jet orifices are situated between the highly swirling airstreams generated by the two radial swirlers. The distributed injection of the fuel between two highly swirling airstreams results in rapid and effective mixing to the desired fuel-air ratio and prevents the formation of local hot spots in the combustor primary zone. A combustor and a gas turbine engine comprising the fuel-air mixer of the present invention are also provided as well as a method using the fuel-air mixer of the present invention.

  6. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    DOEpatents

    Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pacoima, CA; Benander, Robert E [Pacoima, CA

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  7. Gas exchange and water relations responses of spring wheat to full-season infrared warming

    USDA-ARS?s Scientific Manuscript database

    Gas exchange and water relations responses to full-season in situ infrared (IR) warming were evaluated for hard red spring wheat (Triticum aestivum L. cv. Yecora Rojo) grown in an open field in a semi-arid desert region of the Southwest USA. A Temperature Free-Air Controlled Enhancement (T-FACE) ap...

  8. Gas Exchange and Water Relations Responses of Spring Wheat to Full-Season Infrared Warming

    USDA-ARS?s Scientific Manuscript database

    Gas exchange and water relations were evaluated under full-season in situ infrared (IR) warming for hard red spring wheat (Triticum aestivum L. cv. Yecora Rojo) grown in an open field in a semiarid desert region of the southwest USA. A temperature free-air controlled enhancement (T-FACE) apparatus u...

  9. 78 FR 9679 - National Fuel Gas Supply Corporation; Prior Notice of Activity Under Blanket Certificate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... Gas Supply Corporation; Prior Notice of Activity Under Blanket Certificate On January 24, 2013, National Fuel Gas Supply Corporation (National Fuel) filed with the Federal Energy Regulatory Commission... this application may be directed to David W. Reitz, Deputy General Counsel, National Fuel Gas Supply...

  10. Flex fuel polygeneration: Integrating renewable natural gas

    NASA Astrophysics Data System (ADS)

    Kieffer, Matthew

    Flex Fuel Polygeneration (FFPG) is the use of multiple primary energy sources for the production of multiple energy carriers to achieve increased market opportunities. FFPG allows for adjustments in energy supply to meet market fluctuations and increase resiliency to contingencies such as weather disruptions, technological changes, and variations in supply of energy resources. In this study a FFPG plant is examined that uses a combination of the primary energy sources natural gas and renewable natural gas (RNG) derived from MSW and livestock manure and converts them into energy carriers of electricity and fuels through anaerobic digestion (AD), Fischer-Tropsch synthesis (FTS), and gas turbine cycles. Previous techno-economic analyses of conventional energy production plants are combined to obtain equipment and operating costs, and then the 20-year NPVs of the FFPG plant designs are evaluated by static and stochastic simulations. The effects of changing operating parameters are investigated, as well as the number of anaerobic digestion plants on the 20-year NPV of the FTS and FFPG systems.

  11. Low NO sub x heavy fuel combustor concept program phase 1A gas tests

    NASA Technical Reports Server (NTRS)

    Cutrone, M. B.; Beebe, K. W.; Cutrone, M. B.

    1982-01-01

    The emissions performance of a rich lean combustor (developed for liquid fuels) for combustion of simulated coal gases ranging in heating value from 167 to 244 Btu/scf were assessed. The 244 Btu/scf gas is typical of the product gas from an oxygen blown gasifier, while the 167 Btu/scf gas is similar to that from an air blown gasifier. Although meeting NOx goals for the 167 Btu/scf gas, NOx performance of the rich lean combustor did not meet program goals with the 244 Btu/scf gas because of high thermal NOx, similar to levels expected from conventional lean burning combustors. The NOx emissions are attributed to inadequate fuel air mixing in the rich stage resulting from the design of the large central fuel nozzle delivering 71% of the total gas flow. NOx generation from NH3 was significant at ammonia concentrations significantly less tha 0.5%. These levels occur depending on fuel gas cleanup system design, However, NOx yield from ammonia injected into the fuel gas decreased rapidly with increasing ammonia level, and is projected to be less than 10% at NH3 levels of 0.5% or higher.

  12. Fuel cell generator containing a gas sealing means

    DOEpatents

    Makiel, J.M.

    1987-02-03

    A high temperature solid electrolyte electrochemical generator is made, operating with flowing fuel gas and oxidant gas, the generator having a thermal insulation layer, and a sealing means contacting or contained within the insulation, where the sealing means is effective to control the contact of the various gases utilized in the generator. 5 figs.

  13. Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application.

    PubMed

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2018-01-01

    Global warming will likely enhance greenhouse gas (GHG) emissions from soils. Due to its slow decomposability, biochar is widely recognized as effective in long-term soil carbon (C) sequestration and in mitigation of soil GHG emissions. In a long-term soil warming experiment (+2.5 °C, since July 2008) we studied the effect of applying high-temperature Miscanthus biochar (0, 30 t/ha, since August 2013) on GHG emissions and their global warming potential (GWP) during 2 years in a temperate agroecosystem. Crop growth, physical and chemical soil properties, temperature sensitivity of soil respiration (R s ), and metabolic quotient (qCO 2 ) were investigated to yield further information about single effects of soil warming and biochar as well as on their interactions. Soil warming increased total CO 2 emissions by 28% over 2 years. The effect of warming on soil respiration did not level off as has often been observed in less intensively managed ecosystems. However, the temperature sensitivity of soil respiration was not affected by warming. Overall, biochar had no effect on most of the measured parameters, suggesting its high degradation stability and its low influence on microbial C cycling even under elevated soil temperatures. In contrast, biochar × warming interactions led to higher total N 2 O emissions, possibly due to accelerated N-cycling at elevated soil temperature and to biochar-induced changes in soil properties and environmental conditions. Methane uptake was not affected by soil warming or biochar. The incorporation of biochar-C into soil was estimated to offset warming-induced elevated GHG emissions for 25 years. Our results highlight the suitability of biochar for C sequestration in cultivated temperate agricultural soil under a future elevated temperature. However, the increased N 2 O emissions under warming limit the GHG mitigation potential of biochar. © 2017 John Wiley & Sons Ltd.

  14. BIOMASS AND NATURAL GAS AS CO-FEEDSTOCKS FOR PRODUCTION OF FUEL FOR FUEL-CELL VEHICLES

    EPA Science Inventory

    The article gives results of an examination of prospects for utilizing renewable energy crops as a source of liquid fuel to mitigate greenhouse gas emissions from mobile sources and reduce dependence on imported petroleum. Fuel cells would provide an optimum vehicle technology fo...

  15. 75 FR 51032 - National Fuel Gas Distribution Corporation; Notice of Baseline Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-79-000] National Fuel Gas Distribution Corporation; Notice of Baseline Filing August 12, 2010. Take notice that on August 10, 2010, National fuel Gas Distribution Corporation submitted a baseline filing of its Statement of...

  16. Unitized Regenerative Fuel Cell System Gas Dryer/Humidifier Analytical Model Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian

    2004-01-01

    A lightweight Unitized Regenerative Fuel Cell (URFC) Energy Storage System concept is being developed at the NASA Glenn Research Center (GRC). This Unitized Regenerative Fuel Cell System (URFCS) is unique in that it uses Regenerative Gas Dryers/Humidifiers (RGD/H) that are mounted on the surface of the gas storage tanks that act as the radiators for thermal control of the Unitized Regenerative Fuel Cell System (URFCS). As the gas storage tanks cool down during URFCS charging the RGD/H dry the hydrogen and oxygen gases produced by electrolysis. As the gas storage tanks heat up during URFCS discharging, the RGD/H humidify the hydrogen and oxygen gases used by the fuel cell. An analytical model was developed to simulate the URFCS RGD/H. The model is in the form of a Microsoft (registered trademark of Microsoft Corporation) Excel worksheet that allows the investigation of the RGD/H performance. Finite Element Analysis (FEA) modeling of the RGD/H and the gas storage tank wall was also done to analyze spatial temperature distribution within the RGD/H and the localized tank wall. Test results obtained from the testing of the RGD/H in a thermal vacuum environment were used to corroborate the analyses.

  17. Fuel composition and secondary organic aerosol formation: gas-turbine exhaust and alternative aviation fuels.

    PubMed

    Miracolo, Marissa A; Drozd, Greg T; Jathar, Shantanu H; Presto, Albert A; Lipsky, Eric M; Corporan, Edwin; Robinson, Allen L

    2012-08-07

    A series of smog chamber experiments were performed to investigate the effects of fuel composition on secondary particulate matter (PM) formation from dilute exhaust from a T63 gas-turbine engine. Tests were performed at idle and cruise loads with the engine fueled on conventional military jet fuel (JP-8), Fischer-Tropsch synthetic jet fuel (FT), and a 50/50 blend of the two fuels. Emissions were sampled into a portable smog chamber and exposed to sunlight or artificial UV light to initiate photo-oxidation. Similar to previous studies, neat FT fuel and a 50/50 FT/JP-8 blend reduced the primary particulate matter emissions compared to neat JP-8. After only one hour of photo-oxidation at typical atmospheric OH levels, the secondary PM production in dilute exhaust exceeded primary PM emissions, except when operating the engine at high load on FT fuel. Therefore, accounting for secondary PM production should be considered when assessing the contribution of gas-turbine engine emissions to ambient PM levels. FT fuel substantially reduced secondary PM formation in dilute exhaust compared to neat JP-8 at both idle and cruise loads. At idle load, the secondary PM formation was reduced by a factor of 20 with the use of neat FT fuel, and a factor of 2 with the use of the blend fuel. At cruise load, the use of FT fuel resulted in no measured formation of secondary PM. In every experiment, the secondary PM was dominated by organics with minor contributions from sulfate when the engine was operated on JP-8 fuel. At both loads, FT fuel produces less secondary organic aerosol than JP-8 because of differences in the composition of the fuels and the resultant emissions. This work indicates that fuel reformulation may be a viable strategy to reduce the contribution of emissions from combustion systems to secondary organic aerosol production and ultimately ambient PM levels.

  18. Fuel premixing module for gas turbine engine combustor

    NASA Technical Reports Server (NTRS)

    Chin, Jushan (Inventor); Rizk, Nader K. (Inventor); Razdan, Mohan K. (Inventor); Marshall, Andre W. (Inventor)

    2005-01-01

    A fuel-air premixing module is designed to reduce emissions from a gas turbine engine. In one form, the premixing module includes a central pilot premixer module with a main premixer module positioned thereround. Each of the portions of the fuel-air premixing module include an axial inflow swirler with a plurality of fixed swirler vanes. Fuel is injected into the main premixer module between the swirler vanes of the axial inflow swirler and at an acute angle relative to the centerline of the premixing module.

  19. Shock wave induced condensation in fuel-rich gaseous and gas-particles mixtures

    NASA Astrophysics Data System (ADS)

    Fomin, P. A.

    2018-03-01

    The possibility of fuel vapor condensation in shock waves in fuel-rich (cyclohexane-oxygen) gaseous mixtures and explosion safety aspects of this effect are discussed. It is shown, that condensation process can essentially change the chemical composition of the gas. For example, the molar fraction of the oxidizer can increase in a few times. As a result, mixtures in which the initial concentration of fuel vapor exceeds the Upper Flammability Limit can, nevertheless, explode, if condensation shifts the composition of the mixture into the ignition region. The rate of the condensation process is estimated. This process can be fast enough to significantly change the chemical composition of the gas and shift it into the flammable range during the compression phase of blast waves, generated by explosions of fuel-vapor clouds or rapture of pressurized chemical reactors, with characteristic size of a few meters. It is shown that the presence of chemically inert microparticles in the gas mixtures under consideration increases the degree of supercooling and the mass of fuel vapors that have passed into the liquid and reduces the characteristic condensation time in comparison with the gas mixture without microparticles. The fuel vapor condensation should be taken into account in estimation the explosion hazard of chemical reactors, industrial and civil constructions, which may contain fuel-rich gaseous mixtures of heavy hydrocarbons with air.

  20. Open-Cycle Gas Turbine/Steam Turbine Combined Cycles with synthetic fuels from coal

    NASA Technical Reports Server (NTRS)

    Shah, R. P.; Corman, J. C.

    1977-01-01

    The Open-Cycle Gas Turbine/Steam Turbine Combined Cycle can be an effective energy conversion system for converting coal to electricity. The intermediate step in this energy conversion process is to convert the coal into a fuel acceptable to a gas turbine. This can be accomplished by producing a synthetic gas or liquid, and by removing, in the fuel conversion step, the elements in the fuel that would be harmful to the environment if combusted. In this paper, two open-cycle gas turbine combined systems are evaluated: one employing an integrated low-Btu gasifier, and one utilizing a semi-clean liquid fuel. A consistent technical/economic information base is developed for these two systems, and is compared with a reference steam plant burning coal directly in a conventional furnace.

  1. Gas turbine engine fuel control

    NASA Technical Reports Server (NTRS)

    Gold, H. S. (Inventor)

    1973-01-01

    A variable orifice system is described that is responsive to compressor inlet pressure and temperature, compressor discharge pressure and rotational speed of a gas-turbine engine. It is incorporated into a hydraulic circuit that includes a zero gradient pump driven at a speed proportional to the speed of the engine. The resulting system provides control of fuel rate for starting, steady running, acceleration and deceleration under varying altitudes and flight speeds.

  2. Miniature fuel cells relieve gas pressure in sealed batteries

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1971-01-01

    Miniature fuel cells within sealed silver zinc batteries consume evolved hydrogen and oxygen rapidly, preventing pressure rupturing. They do not significantly increase battery weight and they operate in all battery life phases. Complete gas pressure control requires two fuel cells during all phases of operation of silver zinc batteries.

  3. 78 FR 53745 - National Fuel Gas Supply Corporation; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP13-530-000] National Fuel Gas Supply Corporation; Notice of Request Under Blanket Authorization Take notice that on August 12, 2013, National Fuel Gas Supply Corporation (National Fuel), 6363 Main Street, Williamsville, New York...

  4. 78 FR 55250 - National Fuel Gas Supply Corporation; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP13-536-000] National Fuel..., 2013, National Fuel Gas Supply Corporation (National Fuel), 6363 Main Street, Williamsville, New York... Commission's Regulations under the Natural Gas Act (NGA) as amended, to convert one injection/withdrawal well...

  5. Fuel Use and Greenhouse Gas Emissions from Offshore Fisheries of the Republic of Korea

    PubMed Central

    Park, Jeong-A; Gardner, Caleb; Chang, Myo-In; Kim, Do-Hoon; Jang, Young-Soo

    2015-01-01

    Greenhouse Gas (GHG) emissions from the offshore fisheries industry in the Republic of Korea (Korea) were examined in response to growing concerns about global warming and the contribution of emissions from different industrial sectors. Fuel usage and GHG emissions (CO2, CH4, N2O) were analysed using the ‘Tier 1’ method provided by the Intergovernmental Panel on Climate Change (IPCC) from the offshore fishery, which is the primary domestic seafood production sector in Korea. In 2013, fuel usage in the offshore fishery accounted for 59.7% (557,463 KL) of total fuel consumption of fishing vessels in Korea. Fuel consumption and thus GHG emissions were not stable through time in this industry, increasing by 2.4% p.a. for three consecutive years, from 2011 to 2013, despite a decrease in the number of vessels operating. GHG emissions generated in offshore fisheries also changed through time and increased from 1,442,975 tCO2e/year in 2011 to 1,477,279 tCO2e/year in 2013. Changes in both fuel use and GHG emissions per kg offshore fish production appeared to be associated with decreasing catch rates by the fleet, which in turn were a reflection of decrease in fish biomass. Another important feature of GHG emissions in this industry was the high variation in GHG emission per kg fish product among different fishing methods. The long line fishery had approximately three times the emissions of the average production while the jigging fishery was more than two times higher than the average. Lowest emissions were from the trawl sector, which is regarded as having greatest environmental impact using traditional biodiversity metrics although had lowest environmental impact in terms of fuel and GHG emission metrics used in this study. The observed deterioration in fuel efficiency of the offshore fishery each year is of concern but also demonstrates that fuel efficiency can change, which shows there is opportunity to improve efficiency with changes to fishery management and

  6. Fuel Use and Greenhouse Gas Emissions from Offshore Fisheries of the Republic of Korea.

    PubMed

    Park, Jeong-A; Gardner, Caleb; Chang, Myo-In; Kim, Do-Hoon; Jang, Young-Soo

    2015-01-01

    Greenhouse Gas (GHG) emissions from the offshore fisheries industry in the Republic of Korea (Korea) were examined in response to growing concerns about global warming and the contribution of emissions from different industrial sectors. Fuel usage and GHG emissions (CO2, CH4, N2O) were analysed using the 'Tier 1' method provided by the Intergovernmental Panel on Climate Change (IPCC) from the offshore fishery, which is the primary domestic seafood production sector in Korea. In 2013, fuel usage in the offshore fishery accounted for 59.7% (557,463 KL) of total fuel consumption of fishing vessels in Korea. Fuel consumption and thus GHG emissions were not stable through time in this industry, increasing by 2.4% p.a. for three consecutive years, from 2011 to 2013, despite a decrease in the number of vessels operating. GHG emissions generated in offshore fisheries also changed through time and increased from 1,442,975 tCO2e/year in 2011 to 1,477,279 tCO2e/year in 2013. Changes in both fuel use and GHG emissions per kg offshore fish production appeared to be associated with decreasing catch rates by the fleet, which in turn were a reflection of decrease in fish biomass. Another important feature of GHG emissions in this industry was the high variation in GHG emission per kg fish product among different fishing methods. The long line fishery had approximately three times the emissions of the average production while the jigging fishery was more than two times higher than the average. Lowest emissions were from the trawl sector, which is regarded as having greatest environmental impact using traditional biodiversity metrics although had lowest environmental impact in terms of fuel and GHG emission metrics used in this study. The observed deterioration in fuel efficiency of the offshore fishery each year is of concern but also demonstrates that fuel efficiency can change, which shows there is opportunity to improve efficiency with changes to fishery management and

  7. 49 CFR 393.68 - Compressed natural gas fuel containers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... containers. (a) Applicability. The rules in this section apply to compressed natural gas (CNG) fuel... auxiliary equipment installed on, or used in connection with commercial motor vehicles. (b) CNG containers... equipped with a CNG fuel tank must meet the CNG container requirements of FMVSS No. 304 (49 CFR 571.304) in...

  8. 49 CFR 393.68 - Compressed natural gas fuel containers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... containers. (a) Applicability. The rules in this section apply to compressed natural gas (CNG) fuel... auxiliary equipment installed on, or used in connection with commercial motor vehicles. (b) CNG containers... equipped with a CNG fuel tank must meet the CNG container requirements of FMVSS No. 304 (49 CFR 571.304) in...

  9. 49 CFR 393.68 - Compressed natural gas fuel containers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... containers. (a) Applicability. The rules in this section apply to compressed natural gas (CNG) fuel... auxiliary equipment installed on, or used in connection with commercial motor vehicles. (b) CNG containers... equipped with a CNG fuel tank must meet the CNG container requirements of FMVSS No. 304 (49 CFR 571.304) in...

  10. TEST RESULTS FOR FUEL-CELL OPERATION ON LANDFILL GAS

    EPA Science Inventory

    Test results from a demonstration of fuel-cell (FC) energy recovery and control of landfill gas emissions are presented. The project addressed two major issues: (i) the design, construction, and testing of a landfill-gas cleanup system; and (ii) a field test of a commercial phos...

  11. Method And Apparatus For Converting Hydrocarbon Fuel Into Hydrogen Gas And Carbon Dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2001-03-27

    A hydrocarbon fuel reforming method is disclosed suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first mixture of an oxygen-containing gas and a first fuel is directed into a first tube 108 to produce a first reaction reformate. A second mixture of steam and a second fuel is directed into a second tube 116 annularly disposed about the first tube 108 to produce a second reaction reformate. The first and second reaction reformates are then directed into a reforming zone 144 and subject to a catalytic reforming reaction. In another aspect of the method, a first fuel is combusted with an oxygen-containing gas in a first zone 108 to produce a reformate stream, while a second fuel under steam reforming in a second zone 116. Heat energy from the first zone 108 is transferred to the second zone 116.

  12. Low NO sub x heavy fuel combustor concept program. Phase 1A: Combustion technology generation coal gas fuels

    NASA Technical Reports Server (NTRS)

    Sherlock, T. P.

    1982-01-01

    Combustion tests of two scaled burners using actual coal gas from a 25 ton/day fluidized bed coal gasifier are described. The two combustor configurations studied were a ceramic lined, staged rich/lean burner and an integral, all metal multiannual swirl burner (MASB). The tests were conducted over a range of temperature and pressures representative of current industrial combustion turbine inlet conditions. Tests on the rich lean burner were conducted at three levels of product gas heating values: 104, 197 and 254 btu/scf. Corresponding levels of NOx emissions were 5, 20 and 70 ppmv. Nitrogen was added to the fuel in the form of ammonia, and conversion efficiencies of fuel nitrogen to NOx were on the order of 4 percent to 12 percent, which is somewhat lower than the 14 percent to 18 percent conversion efficiency when src-2 liquid fuel was used. The MASB was tested only on medium btu gas (220 to 270 btu/scf), and produced approximately 80 ppmv NOx at rated engine conditions. Both burners operated similarly on actual coal gas and erbs fuel, and all heating values tested can be successfully burned in current machines.

  13. Proper accounting for time increases crop-based biofuels' greenhouse gas deficit versus petroleum

    NASA Astrophysics Data System (ADS)

    O'Hare, M.; Plevin, R. J.; Martin, J. I.; Jones, A. D.; Kendall, A.; Hopson, E.

    2009-04-01

    The global warming intensities of crop-based biofuels and fossil fuels differ not only in amount but also in their discharge patterns over time. Early discharges, for example, from market-mediated land use change, will have created more global warming by any time in the future than later discharges, owing to the slow decay of atmospheric CO2. A spreadsheet model of this process, BTIME, captures this important time pattern effect using the Bern CO2 decay model to allow fuels to be compared for policy decisions on the basis of their real warming effects with a variety of user-supplied parameter values. The model also allows economic discounting of climate effects extended far into the future. Compared to approaches that simply sum greenhouse gas emissions over time, recognizing the physics of atmospheric CO2 decay significantly increases the deficit relative to fossil fuel of any biofuel causing land use change.

  14. Optical Fuel Injector Patternation Measurements in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. For one injector, further comparison is also made with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  15. Effect of increased fuel temperature on emissions of oxides of nitrogen from a gas turbine combustor burning natural gas

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1973-01-01

    An annular gas turbine combustor was tested with heated natural gas fuel to determine the effect of increasing fuel temperature on the formation of oxides of nitrogen. Fuel temperatures ranged from ambient to 800 K (980 F). Combustor pressure was 6 atmospheres and the inlet air temperature ranged from 589 to 894 K (600 to 1150 F). The NOx emission index increased with fuel temperature at a rate of 4 to 9 percent per 100 K (180 F), depending on the inlet air temperature. The rate of increase in NOx was lowest at the highest inlet air temperature tested.

  16. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOEpatents

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  17. Anesthetic gases and global warming: Potentials, prevention and future of anesthesia.

    PubMed

    Gadani, Hina; Vyas, Arun

    2011-01-01

    Global warming refers to an average increase in the earth's temperature, which in turn causes changes in climate. A warmer earth may lead to changes in rainfall patterns, a rise in sea level, and a wide range of impacts on plants, wildlife, and humans. Greenhouse gases make the earth warmer by trapping energy inside the atmosphere. Greenhouse gases are any gas that absorbs infrared radiation in the atmosphere and include: water vapor, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), halogenated fluorocarbons (HCFCs), ozone (O3), perfluorinated carbons (PFCs), and hydrofluorocarbons (HFCs). Hazardous chemicals enter the air we breathe as a result of dozens of activities carried out during a typical day at a healthcare facility like processing lab samples, burning fossil fuels etc. We sometimes forget that anesthetic agents are also greenhouse gases (GHGs). Anesthetic agents used today are volatile halogenated ethers and the common carrier gas nitrous oxide known to be aggressive GHGs. With less than 5% of the total delivered halogenated anesthetic being metabolized by the patient, the vast majority of the anesthetic is routinely vented to the atmosphere through the operating room scavenging system. The global warming potential (GWP) of a halogenated anesthetic is up to 2,000 times greater than CO2. Global warming potentials are used to compare the strength of different GHGs to trap heat in the atmosphere relative to that of CO2. Here we discuss about the GWP of anesthetic gases, preventive measures to decrease the global warming effects of anesthetic gases and Xenon, a newer anesthetic gas for the future of anesthesia.

  18. Climate and health relevant emissions from in-use Indian three-wheelers fueled by natural gas and gasoline.

    PubMed

    Reynolds, Conor C O; Grieshop, Andrew P; Kandlikar, Milind

    2011-03-15

    Auto-rickshaws in India use different fuels and engine technologies, with varying emissions and implications for air quality and climate change. Chassis dynamometer emission testing was conducted on 30 in-use auto-rickshaws to quantify the impact of switching from gasoline to compressed natural gas (CNG) in spark-ignition engines. Thirteen test vehicles had two-stroke CNG engines (CNG-2S) and 17 had four-stroke CNG engines (CNG-4S), of which 11 were dual-fuel and operable on a back-up gasoline (petrol) system (PET-4S). Fuel-based emission factors were determined for gaseous pollutants (CO(2), CH(4), NO(X), THC, and CO) and fine particulate matter (PM(2.5)). Intervehicle variability was high, and for most pollutants there was no significant difference (95% confidence level) between "old" (1998-2001) and "new" (2007-2009) age-groups within a given fuel-technology class. Mean fuel-based PM(2.5) emission factor (mean (95% confidence interval)) for CNG-2S (14.2 g kg(-1) (6.2-26.7)) was almost 30 times higher than for CNG-4S (0.5 g kg(-1) (0.3-0.9)) and 12 times higher than for PET-4S (1.2 g kg(-1) (0.8-1.7)). Global warming commitment associated with emissions from CNG-2S was more than twice that from CNG-4S or PET-4S, due mostly to CH(4) emissions. Comprehensive measurements and data should drive policy interventions rather than assumptions about the impacts of clean fuels.

  19. Comparison of net global warming potential and greenhouse gas intensity affected by management practices in two dryland cropping sites

    USDA-ARS?s Scientific Manuscript database

    Little is known about the effect of management practices on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of greenhouse gas (GHG) emissions in dryland cropping systems. The objective of this study was to compare the effect of a combinat...

  20. Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2001-01-01

    A hydrocarbon fuel reformer (200) is disclosed suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. The reformer (200) comprises first and second tubes (208,218). The first tube (208) includes a first catalyst (214) and receives a first mixture of steam and a first fuel. The second tube (218) is annularly disposed about the first tube (208) and receives a second mixture of an oxygen-containing gas and a second fuel. In one embodiment, a third tube (224) is annularly disposed about the second tube (218) and receives a first reaction reformate from the first tube (208) and a second reaction reformate from the second tube (218). A catalyst reforming zone (260) annularly disposed about the third tube (224) may be provided to subject reformate constituents to a shift reaction. In another embodiment, a fractionator is provided to distill first and second fuels from a fuel supply source.

  1. Effects of fuel nozzle design on performance of an experimental annular combustor using natural gas fuel

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Schultz, D. F.

    1972-01-01

    Tests of various fuel nozzles were conducted with natural gas fuel in a full-annulus combustor. The nozzles were designed to provide either axial, angled, or radial fuel injection. Each fuel nozzle was evaluated by measuring combustion efficiency at relatively severe combustor operating conditions. Combustor blowout and altitude ignition tests were also used to evaluate nozzle designs. Results indicate that angled injection gave higher combustion efficiency, less tendency toward combustion instability, and altitude relight characteristics equal to or superior to those of the other fuel nozzles that were tested.

  2. The Measurement of Fuel-Air Ratio by Analysis for the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C.; Meem, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy fuel Specification No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs for the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124.

  3. The Measurement of Fuel-air Ratio by Analysis of the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Memm, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy Fuel Specification, No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs or the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124

  4. Solid recovered fuels in the steel industry.

    PubMed

    Kepplinger, Werner L; Tappeiner, Tamara

    2012-04-01

    By using waste materials as alternative fuels in metallurgical plants it is possible to minimize the traditionally used reducing agents, such as coke, coal, oil or natural gas. Moreover, by using waste materials in the metallurgical industry it is feasible to recover these materials as far as possible. This also represents another step towards environmental protection because carbon dioxide emissions can be reduced, if the H(2) content of the waste material is greater in comparison with that of the substituted fuel and the effects of global warming can therefore be reduced. In the present article various solid recovered fuels and their applications in the metallurgical industry are detailed.

  5. Comparison of combustion characteristics of ASTM A-1, propane, and natural-gas fuels in an annular turbojet combustor

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.

    1973-01-01

    The performance of an annular turbojet combustor using natural-gas fuel is compared with that obtained using ASTM A-1 and propane fuels. Propane gas was used to simulate operation with vaporized kerosene fuels. The results obtained at severe operating conditions and altitude relight conditions show that natural gas is inferior to both ASTM A-1 and propane fuels. Combustion efficiencies were significantly lower and combustor pressures for relight were higher with natural-gas fuel than with the other fuels. The inferior performance of natural gas is shown to be caused by the chemical stability of the methane molecule.

  6. Hybrid life-cycle assessment of natural gas based fuel chains for transportation.

    PubMed

    Strømman, Anders Hammer; Solli, Christian; Hertwich, Edgar G

    2006-04-15

    This research compares the use of natural gas, methanol, and hydrogen as transportation fuels. These three fuel chains start with the extraction and processing of natural gas in the Norwegian North Sea and end with final use in Central Europe. The end use is passenger transportation with a sub-compact car that has an internal combustion engine for the natural gas case and a fuel cell for the methanol and hydrogen cases. The life cycle assessment is performed by combining a process based life-cycle inventory with economic input-output data. The analysis shows that the potential climate impacts are lowest for the hydrogen fuel scenario with CO2 deposition. The hydrogen fuel chain scenario has no significant environmental disadvantage compared to the other fuel chains. Detailed analysis shows that the construction of the car contributes significantly to most impact categories. Finally, it is shown how the application of a hybrid inventory model ensures a more complete inventory description compared to standard process-based life-cycle assessment. This is particularly significant for car construction which would have been significantly underestimated in this study using standard process life-cycle assessment alone.

  7. Bioconversion of natural gas to liquid fuel: opportunities and challenges.

    PubMed

    Fei, Qiang; Guarnieri, Michael T; Tao, Ling; Laurens, Lieve M L; Dowe, Nancy; Pienkos, Philip T

    2014-01-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Bioconversion of Natural Gas to Liquid Fuel. Opportunities and Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Qiang; Guarnieri, Michael T.; Tao, Ling

    2014-05-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Moreover, methanotrophic bacteria are capable of convertingmore » methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. Our review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel.« less

  9. Bioconversion of natural gas to liquid fuel: Opportunities and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Q; Guarnieri, MT; Tao, L

    2014-05-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methanemore » into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. (C) 2014 The Authors. Published by Elsevier Inc.« less

  10. Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

  11. Fuel-Flexible Gas Turbine Combustor Flametube Facility

    NASA Technical Reports Server (NTRS)

    Little, James E.; Nemets, Stephen A.; Tornabene, Robert T.; Smith, Timothy D.; Frankenfield, Bruce J.; Manning, Stephen D.; Thompson, William K.

    2004-01-01

    Facility modifications have been completed to an existing combustor flametube facility to enable testing with gaseous hydrogen propellants at the NASA Glenn Research Center. The purpose of the facility is to test a variety of fuel nozzle and flameholder hardware configurations for use in aircraft combustors. Facility capabilities have been expanded to include testing with gaseous hydrogen, along with the existing hydrocarbon-based jet fuel. Modifications have also been made to the facility air supply to provide heated air up to 350 psig, 1100 F, and 3.0 lbm/s. The facility can accommodate a wide variety of flametube and fuel nozzle configurations. Emissions and performance data are obtained via a variety of gas sample probe configurations and emissions measurement equipment.

  12. Alternative Fuels Data Center: Natural Gas Vehicle Availability

    Science.gov Websites

    options for converting conventional vehicles to run on natural gas. Pre-Owned Vehicles Learn about buying and selling pre-owned alternative fuel and advanced technology vehicles. More Information For more

  13. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline-fueled, natural gas-fueled, liquefied petroleum gas-fueled or methanol-fueled engines. In the CVS... test period. (2) Engine exhaust to CVS duct. For methanol-fueled engines, reactions of the exhaust... samples for the bag sample, the methanol sample (Figure N90-2), and the formaldehyde sample (Figure N90-3...

  14. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...

  15. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...

  16. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...

  17. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...

  18. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...

  19. The MASSIVE Survey. VI. The Spatial Distribution and Kinematics of Warm Ionized Gas in the Most Massive Local Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Pandya, Viraj; Greene, Jenny E.; Ma, Chung-Pei; Veale, Melanie; Ene, Irina; Davis, Timothy A.; Blakeslee, John P.; Goulding, Andy D.; McConnell, Nicholas J.; Nyland, Kristina; Thomas, Jens

    2017-03-01

    We present the first systematic investigation of the existence, spatial distribution, and kinematics of warm ionized gas as traced by the [O II] 3727 Å emission line in 74 of the most massive galaxies in the local universe. All of our galaxies have deep integral-field spectroscopy from the volume- and magnitude-limited MASSIVE survey of early-type galaxies with stellar mass {log}({M}* /{M}⊙ )> 11.5 (M K < -25.3 mag) and distance D < 108 Mpc. Of the 74 galaxies in our sample, we detect warm ionized gas in 28, which yields a global detection fraction of 38 ± 6% down to a typical [O II] equivalent width limit of 2 Å. MASSIVE fast rotators are more likely to have gas than MASSIVE slow rotators with detection fractions of 80 ± 10% and 28 ± 6%, respectively. The spatial extents span a wide range of radii (0.6-18.2 kpc; 0.1-4R e ), and the gas morphologies are diverse, with 17/28 ≈ 61 ± 9% being centrally concentrated, 8/28 ≈ 29 ± 9% exhibiting clear rotation out to several kiloparsecs, and 3/28 ≈ 11 ± 6% being extended but patchy. Three out of four fast rotators show kinematic alignment between the stars and gas, whereas the two slow rotators with robust kinematic measurements available exhibit kinematic misalignment. Our inferred warm ionized gas masses are roughly ˜105 M ⊙. The emission line ratios and radial equivalent width profiles are generally consistent with excitation of the gas by the old underlying stellar population. We explore different gas origin scenarios for MASSIVE galaxies and find that a variety of physical processes are likely at play, including internal gas recycling, cooling out of the hot gaseous halo, and gas acquired via mergers.

  20. Novel characterization of the aerosol and gas-phase composition of aerosolized jet fuel.

    PubMed

    Tremblay, Raphael T; Martin, Sheppard A; Fisher, Jeffrey W

    2010-04-01

    Few robust methods are available to characterize the composition of aerosolized complex hydrocarbon mixtures. The difficulty in separating the droplets from their surrounding vapors and preserving their content is challenging, more so with fuels, which contain hydrocarbons ranging from very low to very high volatility. Presented here is a novel method that uses commercially available absorbent tubes to measure a series of hydrocarbons in the vapor and droplets from aerosolized jet fuels. Aerosol composition and concentrations were calculated from the differential between measured total (aerosol and gas-phase) and measured gas-phase concentrations. Total samples were collected directly, whereas gas-phase only samples were collected behind a glass fiber filter to remove droplets. All samples were collected for 1 min at 400 ml min(-1) and quantified using thermal desorption-gas chromatography-mass spectrometry. This method was validated for the quantification of the vapor and droplet content from 4-h aerosolized jet fuel exposure to JP-8 and S-8 at total concentrations ranging from 200 to 1000 mg/m(3). Paired samples (gas-phase only and total) were collected every approximately 40 min. Calibrations were performed with neat fuel to calculate total concentration and also with a series of authentic standards to calculate specific compound concentrations. Accuracy was good when compared to an online GC-FID (gas chromatography-flame ionization detection) technique. Variability was 15% or less for total concentrations, the sum of all gas-phase compounds, and for most specific compound concentrations in both phases. Although validated for jet fuels, this method can be adapted to other hydrocarbon-based mixtures.

  1. Fuel economy screening study of advanced automotive gas turbine engines

    NASA Technical Reports Server (NTRS)

    Klann, J. L.

    1980-01-01

    Fuel economy potentials were calculated and compared among ten turbomachinery configurations. All gas turbine engines were evaluated with a continuously variable transmission in a 1978 compact car. A reference fuel economy was calculated for the car with its conventional spark ignition piston engine and three speed automatic transmission. Two promising engine/transmission combinations, using gasoline, had 55 to 60 percent gains over the reference fuel economy. Fuel economy sensitivities to engine design parameter changes were also calculated for these two combinations.

  2. Swelling and gas release in oxide fuels during fast temperature transients

    NASA Astrophysics Data System (ADS)

    Dollins, C. C.; Jursich, M.

    1982-05-01

    A previously reported intergranular swelling and gas release model for oxide fuels has been modified to predict fission gas behavior during fast temperature transients. Under steady state or slowly varying conditions it has been assumed in the previous model that the pressure caused by the fission gas within the gas bubbles is in equilibrium with the surface tension of the bubbles. During a fast transient, however, net vacancy migration to the bubbles may be insufficient to maintain this equilibrium. In order to ascertain the net vacancy flow, it is necessary to model the point defect behavior in the fuel. Knowing the net flow of vacancies to the bubble and the bubble size, the bubble diffusivity can be determined and the long range migration of the gas out of the fuel can be calculated. The model has also been modified to allow release of all the gas on the grain boundaries during a fast temperature transient. The gas release predicted by the revised model shows good agreement to fast transient gas release data from an EBR-II TREAT H-3 (Transient Reactor Test Facility) test. Agreement has also been obtained between predictions using the model and gas release data obtained by Argonne National Laboratory from out-of-reactor transient heating experiments on irradiated UO 2. It was found necessary to increase the gas bubble diffusivity used in the model by a factor of thirty during the transient to provide agreement between calculations and measurements. Other workers have also found that such an increase is necessary for agreement and attribute the increased diffusivity to yielding at the bubble surface due to the increased pressure.

  3. Gas may be answer to world`s fuel needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakicenovic, N.; Nolan, L.

    1995-08-01

    Natural gas could become the major energy source of the 21st century, serving as a {open_quotes}bridge{close_quotes} fuel from the use of fossil fuels today to renewable energy sources tomorrow, say Nebojsa Nakicenovic and Lucy Nolan. Nakicenovic is a project leader and Nolan is a former research assistant for the Environmentally Compatible Energy Strategies Project at an Austrian research institute. The use of nuclear energy will by stymied by public opposition, costs, and waste-storage problems; renewable energy technology, on the other hand, must still overcome many technological barriers. Natural gas, then, is likely to become our next dominant energy source. {open_quotes}Themore » development of a methane economy, led by increased use of natural gas, could provide another important step in the world`s century-old stride toward a carbon-free economy,{close_quotes} the authors conclude.« less

  4. Air/fuel supply system for use in a gas turbine engine

    DOEpatents

    Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico

    2014-06-17

    A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

  5. 49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... compressed natural gas vehicles. 571.303 Section 571.303 Transportation Other Regulations Relating to... system integrity of compressed natural gas vehicles. S1. Scope. This standard specifies requirements for the integrity of motor vehicle fuel systems using compressed natural gas (CNG), including the CNG fuel...

  6. How much would five trillion tonnes of carbon warm the climate?

    NASA Astrophysics Data System (ADS)

    Tokarska, Katarzyna Kasia; Gillett, Nathan P.; Weaver, Andrew J.; Arora, Vivek K.

    2016-04-01

    While estimates of fossil fuel reserves and resources are very uncertain, and the amount which could ultimately be burnt under a business as usual scenario would depend on prevailing economic and technological conditions, an amount of five trillion tonnes of carbon (5 EgC), corresponding to the lower end of the range of estimates of the total fossil fuel resource, is often cited as an estimate of total cumulative emissions in the absence of mitigation actions. The IPCC Fifth Assessment Report indicates that an approximately linear relationship between warming and cumulative carbon emissions holds only up to around 2 EgC emissions. It is typically assumed that at higher cumulative emissions the warming would tend to be less than that predicted by such a linear relationship, with the radiative saturation effect dominating the effects of positive carbon-climate feedbacks at high emissions, as predicted by simple carbon-climate models. We analyze simulations from four state-of-the-art Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and seven Earth System Models of Intermediate Complexity (EMICs), driven by the Representative Concentration Pathway 8.5 Extension scenario (RCP 8.5 Ext), which represents a very high emission scenario of increasing greenhouse gas concentrations in absence of climate mitigation policies. Our results demonstrate that while terrestrial and ocean carbon storage varies between the models, the CO2-induced warming continues to increase approximately linearly with cumulative carbon emissions even for higher levels of cumulative emissions, in all four ESMs. Five of the seven EMICs considered simulate a similarly linear response, while two exhibit less warming at higher cumulative emissions for reasons we discuss. The ESMs simulate global mean warming of 6.6-11.0°C, mean Arctic warming of 15.3-19.7°C, and mean regional precipitation increases and decreases by more than a factor of four, in response to 5Eg

  7. 29 CFR 1926.350 - Gas welding and cutting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or valve protection caps to pry cylinders loose when frozen. Warm, not boiling, water shall be used... fuel gas cylinder is opened, there is found to be a leak around the valve stem, the valve shall be closed and the gland nut tightened. If this action does not stop the leak, the use of the cylinder shall...

  8. A primer on the geological occurrence of gas hydrate

    USGS Publications Warehouse

    Kvenvolden, K.A.

    1998-01-01

    This paper is part of the special publication Gas hydrates: relevance to world margin stability and climatic change (eds J.P. Henriet and J. Mienert).Natural gas hydrates occur world-wide in polar regions, usually associated with onshore and offshore permafrost, and in sediment of outer continental and insular margins. The total amount of methane in gas hydrates probably exceeds 1019 g of methane carbon. Three aspects of gas hydrates are important: their fossil fuel resource potential; their role as a submarine geohazard; and their effects on global climate change. Because gas hydrates represent a large amount of methane within 2000 m of the Earth's surface, they are considered to be an unconventional, unproven source of fossil fuel. Because gas hydrates are metastable, changes of pressure and temperature affect their stability. Destabilized gas hydrates beneath the sea floor lead to geological hazards such as submarine slumps and slides, examples of which are found world-wide. Destabilized gas hydrates may also affect climate through the release of methane, a 'greenhouse' gas, which may enhance global warming and be a factor in global climate change.

  9. Gas density effect on dropsize of simulated fuel sprays

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1989-01-01

    Two-phase flow in pneumatic two-fluid fuel nozzles was investigated experimentally to determine the effect of atomizing-gas density and gas mass-flux on liquid-jet breakup in sonic-velocity gas-flow. Dropsize data were obtained for the following atomizing-gases: nitrogen; argon; carbon dioxide; and helium. They were selected to cover a gas molecular-weight range of 4 to 44. Atomizing-gas mass-flux ranged from 6 to 50 g/sq cm-sec and four differently sized two-fluid fuel nozzles were used having orifice diameters that varied from 0.32 to 0.56 cm. The ratio of liquid-jet diameter to SMD, D sub o/D sub 32, was correlated with aerodynamic and liquid-surface forces based on the product of the Weber and Reynolds number, We*Re, and gas-to-liquid density ratio, rho sub g/rho sub l. To correlate spray dropsize with breakup forces produced by using different atomizing-gases, a new molecular-scale dimensionless group was derived. The derived dimensionless group was used to obtain an expression for the ratio of liquid-jet diameter to SMD, D sub o/D sub 32. The mathematical expression of this phenomenon incorporates the product of the Weber and Reynolds number, liquid viscosity, surface tension, acoustic gas velocity, the RMS velocity of gas molecules, the acceleration of gas molecules due to gravity, and gas viscosity. The mathematical expression encompassing these parameters agrees well with the atomization theory for liquid-jet breakup in high velocity gas flow. Also, it was found that at the same gas mass-flux, helium was considerably more effective than nitrogen in producing small droplet sprays with SMD's in the order of 5 micrometers.

  10. 30 CFR 250.1629 - Additional production and fuel gas system requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (4) Fire- and gas-detection system. (i) Fire (flame, heat, or smoke) sensors shall be installed in all enclosed classified areas. Gas sensors shall be installed in all inadequately ventilated, enclosed... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Additional production and fuel gas system...

  11. 30 CFR 250.1629 - Additional production and fuel gas system requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... structure. (4) Fire- and gas-detection system. (i) Fire (flame, heat, or smoke) sensors shall be installed in all enclosed classified areas. Gas sensors shall be installed in all inadequately ventilated... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Additional production and fuel gas system...

  12. Global Energy Issues and Alternate Fueling

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.

    2007-01-01

    This viewgraph presentation describes world energy issues and alternate fueling effects on aircraft design. The contents include: 1) US Uses about 100 Quad/year (1 Q = 10(exp 15) Btu) World Energy Use: about 433 Q/yr; 2) US Renewable Energy about 6%; 3) Nuclear Could Grow: Has Legacy Problems; 4) Energy Sources Primarily NonRenewable Hydrocarbon; 5) Notes; 6) Alternate Fuels Effect Aircraft Design; 7) Conventional-Biomass Issue - Food or Fuel; 8) Alternate fuels must be environmentally benign; 9) World Carbon (CO2) Emissions Problem; 10) Jim Hansen s Global Warming Warnings; 11) Gas Hydrates (Clathrates), Solar & Biomass Locations; 12) Global Energy Sector Response; 13) Alternative Renewables; 14) Stratospheric Sulfur Injection Global Cooling Switch; 15) Potential Global Energy Sector Response; and 16) New Sealing and Fluid Flow Challenges.

  13. Abundance and Utility: For Military Operations, Liquid Fuels Remain a Solid Choice over Natural Gas

    DTIC Science & Technology

    2014-08-01

    and combat support vehicles, ships, and aircraft, the adoption of natural gas —whether as compressed natural gas (CNG) or liquefied natural gas (LNG...dangers to U.S. forces and vehicles. Natural gas has different flammability properties than traditional liquid fuels, and as CNG tanks are under high...tacticaldefensemedia.com16 | DoD Power & Energy Fall 2014 For Military Operations, Liquid Fuels Remain a Solid Choice over Natural Gas By Bret

  14. Respiratory involvements among women exposed to the smoke of traditional biomass fuel and gas fuel in a district of Bangladesh.

    PubMed

    Alim, Md Abdul; Sarker, Mohammad Abul Bashar; Selim, Shahjada; Karim, Md Rizwanul; Yoshida, Yoshitoku; Hamajima, Nobuyuki

    2014-03-01

    Burning of biomass fuel (cow-dung, crop residue, dried leaves, wood, etc.) in the kitchen releases smoke, which may impair the respiratory functions of women cooking there. This paper aimed to compare the respiratory symptoms between biomass fuel users and gas fuel users in Bangladesh. A cross-sectional survey was conducted through face-to-face interviews and chest examination of 224 adult women using biomass fuel in a rural village and 196 adult women using gas fuel in an urban area. The prevalence of respiratory involvement (at least one among nine symptoms and two diseases) was significantly higher among biomass users than among gas users (29.9 vs. 11.2 %). After adjustment for potential confounders by a logistic model, the odds ratio (OR) of the biomass users for the respiratory involvement was significantly higher (OR = 3.23, 95 % confidence interval 1.30-8.01). The biomass fuel use elevated symptoms/diseases significantly; the adjusted OR was 3.04 for morning cough, 7.41 for nasal allergy, and 5.94 for chronic bronchitis. The mean peak expiratory flow rate of biomass users (253.83 l/min) was significantly lower than that of gas users (282.37 l/min). The study shows significant association between biomass fuel use and respiratory involvement among rural women in Bangladesh, although the potential confounding of urban/rural residency could not be ruled out in the analysis. The use of smoke-free stoves and adequate ventilation along with health education to the rural population to increase awareness about the health effects of indoor biomass fuel use might have roles to prevent these involvements.

  15. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    NASA Astrophysics Data System (ADS)

    Schiro, Fabio; Stoppato, Anna; Benato, Alberto

    2017-11-01

    The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen). Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will contribute to achieve the renewable production targets, but the impact on whole fuel gas production-to-consumption chain must be evaluated. In the first part of this study, the Authors present the future scenario of the grid gas composition and the implications on gas fed appliances. Given that the widely used premixed burners are currently designed mainly by trial and error, a broader fuel gas quality range means an additional hitch on this design process. A better understanding and structuring of this process is helpful for future appliance-oriented developments. The Authors present an experimental activity on a premixed condensing boiler setup. A test protocol highlighting the burners' flexibility in terms of mixture composition is adopted and the system fuel flexibility is characterized around multiple reference conditions.

  16. A thermodynamic approach for advanced fuels of gas-cooled reactors

    NASA Astrophysics Data System (ADS)

    Guéneau, C.; Chatain, S.; Gossé, S.; Rado, C.; Rapaud, O.; Lechelle, J.; Dumas, J. C.; Chatillon, C.

    2005-09-01

    For both high temperature reactor (HTR) and gas cooled fast reactor (GFR) systems, the high operating temperature in normal and accidental conditions necessitates the assessment of the thermodynamic data and associated phase diagrams for the complex system constituted of the fuel kernel, the inert materials and the fission products. A classical CALPHAD approach, coupling experiments and thermodynamic calculations, is proposed. Some examples of studies are presented leading with the CO and CO 2 gas formation during the chemical interaction of [UO 2± x/C] in the HTR particle, and the chemical compatibility of the couples [UN/SiC], [(U, Pu)N/SiC], [(U, Pu)N/TiN] for the GFR system. A project of constitution of a thermodynamic database for advanced fuels of gas-cooled reactors is proposed.

  17. Net global warming potential and greenhouse gas intensity influenced by irrigation, tillage, crop rotation, and nitrogen fertilization

    USDA-ARS?s Scientific Manuscript database

    Little information exists about sources and sinks of greenhouse gases (GHGs) affected by management practices to account for net emissions from agroecosystems. We evaluated the effects of irrigation, tillage, crop rotation, and N fertilization on net global warming potential (GWP) and greenhouse gas...

  18. A combined gas cooled nuclear reactor and fuel cell cycle

    NASA Astrophysics Data System (ADS)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  19. Gas dispersion concentration of trace inorganic contaminants from fuel gas and analysis using head-column field-amplified sample stacking capillary electrophoresis.

    PubMed

    Yang, Jianmin; Li, Hai-Fang; Li, Meilan; Lin, Jin-Ming

    2012-08-21

    The presence of inorganic elements in fuel gas generally accelerates the corrosion and depletion of materials used in the fuel gas industry, and even leads to serious accidents. For identification of existing trace inorganic contaminants in fuel gas in a portable way, a highly efficient gas-liquid sampling collection system based on gas dispersion concentration is introduced in this work. Using the constructed dual path gas-liquid collection setup, inorganic cations and anions were simultaneously collected from real liquefied petroleum gas (LPG) and analyzed by capillary electrophoresis (CE) with indirect UV absorbance detection. The head-column field-amplified sample stacking technique was applied to improve the detection limits to 2-25 ng mL(-1). The developed collection and analytical methods have successfully determined existing inorganic contaminants in a real LPG sample in the range of 4.59-138.69 μg m(-3). The recoveries of cations and anions with spiked LPG samples were between 83.98 and 105.63%, and the relative standard deviations (RSDs) were less than 7.19%.

  20. Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas in the Thermodynamic Limit

    DOE PAGES

    Dornheim, Tobias; Groth, Simon; Sjostrom, Travis; ...

    2016-10-07

    Here we perform ab initio quantum Monte Carlo (QMC) simulations of the warm dense uniform electron gas in the thermodynamic limit. By combining QMC data with the linear response theory, we are able to remove finite-size errors from the potential energy over the substantial parts of the warm dense regime, overcoming the deficiencies of the existing finite-size corrections by Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)]. Extensive new QMC results for up to N = 1000 electrons enable us to compute the potential energy V and the exchange-correlation free energy F xc of the macroscopic electron gas withmore » an unprecedented accuracy of | Δ V | / | V | , | Δ F xc | / | F | xc ~ 10 $-$3. Finally, a comparison of our new data to the recent parametrization of F xc by Karasiev et al. [Phys. Rev. Lett. 112, 076403 (2014)] reveals significant deviations to the latter.« less

  1. Ecosystem Warming Affects Vertical Distribution of Leaf Gas Exchange Properties and Water Relations of Spring Wheat

    USDA-ARS?s Scientific Manuscript database

    The vertical distribution of gas exchange and water relations responses to full-season in situ infrared (IR) warming were evaluated for hard red spring wheat (Triticum aestivum L. cv. Yecora Rojo) grown in an open field in a semiarid desert region of the Southwest USA. A Temperature Free-Air Contro...

  2. Detection of unburned fuel as contaminant in engine oil by a gas microsensor array

    NASA Astrophysics Data System (ADS)

    Capone, Simonetta; Zuppa, Marzia; Presicce, Dominique S.; Epifani, Mauro; Francioso, Luca; Siciliano, Pietro; Distante, C.

    2007-05-01

    We developed a novel method to detect the presence of unburned diesel fuel in used diesel fuel engine oil. The method is based on the use of an array of different gas microsensors based on metal oxide thin films deposited by sol-gel technique on Si substrates. The sensor array, exposed to the volatile chemical species of different diesel fuel engine oil samples contaminated in different percentages by diesel fuel, resulted to be appreciable sensitive to them. Principal Component Analysis (PCA) and Self-Organizing Map (SOM) applied to the sensor response data-set gave a first proof of the sensor array ability to discriminate among the different diesel fuel diluted lubricating oils. Moreover, in order to get information about the headspace composition of the diesel fuel-contaminated engine oils used for gas-sensing tests, we analyzed the engine oil samples by Static Headspace Solid Phase Micro Extraction/Gas Chromatograph/Mass Spectrometer (SHS-SPME/ GC/MS).

  3. 40 CFR 600.306-12 - Fuel economy label-special requirements for compressed natural gas vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Fuel economy label-special requirements for compressed natural gas vehicles. 600.306-12 Section 600.306-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Labeling §...

  4. 40 CFR 600.306-12 - Fuel economy label-special requirements for compressed natural gas vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Fuel economy label-special requirements for compressed natural gas vehicles. 600.306-12 Section 600.306-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Labeling §...

  5. 40 CFR 600.306-12 - Fuel economy label-special requirements for compressed natural gas vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Fuel economy label-special requirements for compressed natural gas vehicles. 600.306-12 Section 600.306-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Labeling §...

  6. Effect of water injection on nitric oxide emissions of a gas turbine combustor burning natural gas fuel

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    The effect of direct water injection on the exhaust gas emissions of a turbojet combustor burning natural gas fuel was investigated. The results are compared with the results from similar tests using ASTM Jet-A fuel. Increasing water injection decreased the emissions of oxides of nitrogen (NOX) and increased the emissions of carbon monoxide and unburned hydrocarbons. The greatest percentage decrease in NOX with increasing water injection was at the lowest inlet-air temperature tested. The effect of increasing inlet-air temperature was to decrease the effect of the water injection. The reduction in NOX due to water injection was almost identical to the results obtained with Jet-A fuel. However, the emission indices of unburned hydrocarbons, carbon monoxide, and percentage nitric oxide in NOX were not.

  7. Laboratory Measurements of Gas Phase Pyrolysis Products from Southern Wildland Fuels using Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Scharko, N.; Safdari, S.; Danby, T. O.; Howarth, J.; Beiswenger, T. N.; Weise, D.; Myers, T. L.; Fletcher, T. H.; Johnson, T. J.

    2017-12-01

    Combustion is an oxidation reaction that occurs when there is less fuel available than oxidizers, while pyrolysis is a thermal decomposition process that occurs under "fuel rich" conditions where all of the available oxidizers are consumed leaving some fuel(s) either unreacted or partially reacted. Gas-phase combustion products from biomass burning experiments have been studied extensively; less is known, however, about pyrolysis processes and products. Pyrolysis is the initial reaction occurring in the burning process and generates products that are subsequently oxidized during combustion, yielding highly-oxidized chemicals. This laboratory study investigates the pyrolysis processes by using an FTIR spectrometer to detect and quantify the gas-phase products from thermal decomposition of intact understory fuels from forests in the southeastern United States. In particular, a laboratory flat-flame burner operating under fuel rich conditions (no oxygen) was used to heat individual leaves to cause decomposition. The gas-phase products were introduced to an 8 meter gas cell coupled to an infrared spectrometer were used to monitor the products. Trace gas emissions along with emission ratios, which are calculated by dividing the change in the amount of the trace gas by the change in the amount of CO, for the plant species, gallberry (Ilex glabra) and swampbay (Persea palustris) were determined. Preliminary measurements observed species such as CO2, CO, C2H2, C2H4, HCHO, CH3OH, isoprene, 1,3-butadiene, phenol and NH3 being produced as part of the thermal decomposition process. It is important to note that FTIR will not detect H2.

  8. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... natural gas or petroleum. 503.38 Section 503.38 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS... mixtures containing natural gas or petroleum. (a) Eligibility. Section 212(d) of the Act provides for a... proposes to use a mixture of natural gas or petroleum and an alternate fuel as a primary energy source; (2...

  9. Dual-fuel natural gas/diesel engines: Technology, performance, and emissions

    NASA Astrophysics Data System (ADS)

    Turner, S. H.; Weaver, C. S.

    1994-11-01

    An investigation of current dual-fuel natural gas/diesel engine design, performance, and emissions was conducted. The most pressing technological problems associated with dual-fuel engine use were identified along with potential solutions. It was concluded that dual-fuel engines can achieve low NO(sub x) and particulate emissions while retaining fuel-efficiency and BMEP levels comparable to those of diesel engines. The investigation also examined the potential economic impact of dual-fuel engines in diesel-electric locomotives, marine vessels, farm equipment, construction, mining, and industrial equipment, and stand-alone electricity generation systems. Recommendations for further additional funding to support research, development, and demonstration in these applications were then presented.

  10. Real-Time Optical Fuel-to-Air Ratio Sensor for Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Mongia, Rajiv K.; Dibble, Robert W.

    1999-01-01

    The measurement of the temporal distribution of fuel in gas turbine combustors is important in considering pollution, combustion efficiency and combustor dynamics and acoustics. Much of the previous work in measuring fuel distributions in gas turbine combustors has focused on the spatial aspect of the distribution. The temporal aspect however, has often been overlooked, even though it is just as important. In part, this is due to the challenges of applying real-time diagnostic techniques in a high pressure and high temperature environment. A simple and low-cost instrument that non-intrusively measures the real-time fuel-to-air ratio (FAR) in a gas turbine combustor has been developed. The device uses a dual wavelength laser absorption technique to measure the concentration of most hydrocarbon fuels such as jet fuel, methane, propane, etc. The device can be configured to use fiber optics to measure the local FAR inside a high pressure test rig without the need for windows. Alternatively, the device can readily be used in test rigs that have existing windows without modifications. An initial application of this instrument was to obtain time-resolved measurements of the FAR in the premixer of a lean premixed prevaporized (LPP) combustor at inlet air pressures and temperatures as high as 17 atm at 800 K, with liquid JP-8 as the fuel. Results will be presented that quantitatively show the transient nature of the local FAR inside a LPP gas turbine combustor at actual operating conditions. The high speed (kHz) time resolution of this device, combined with a rugged fiber optic delivery system, should enable the realization of a flight capable active-feedback and control system for the abatement of noise and pollutant emissions in the future. Other applications that require an in-situ and time-resolved measurement of fuel vapor concentrations should also find this device to be of use.

  11. Interface ring for gas turbine fuel nozzle assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Timothy A.; Schilp, Reinhard

    A gas turbine combustor assembly including a combustor liner and a plurality of fuel nozzle assemblies arranged in an annular array extending within the combustor liner. The fuel nozzle assemblies each include fuel nozzle body integral with a swirler assembly, and the swirler assemblies each include a bellmouth structure to turn air radially inwardly for passage into the swirler assemblies. A radially outer removed portion of each of the bellmouth structures defines a periphery diameter spaced from an inner surface of the combustor liner, and an interface ring is provided extending between the combustor liner and the removed portions ofmore » the bellmouth structures at the periphery diameter.« less

  12. Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas

    Science.gov Websites

    electric car. College Students Engineer Efficient Vehicles in EcoCAR 2 Competition Aug. 2, 2014 Photo of a Fueling StationsA> Colorado Airport Relies on Natural Gas Fueling Stations to someone by E-mail system. For information about this project, contact Denver Metro Clean Cities Coalition. Download

  13. Alternative Fuels Data Center: Natural Gas Delivery Vans Support McShan

    Science.gov Websites

    FloristA> Natural Gas Delivery Vans Support McShan Florist to someone by E-mail Share Alternative Natural Gas Delivery Vans Support McShan Florist Watch how a Dallas, Texas, florist reduces emissions and saves money fueling delivery vans with compressed natural gas. For information about this project

  14. Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas

    Science.gov Websites

    TrucksA> Wisconsin Reduces Emissions With Natural Gas Trucks to someone by E-mail Share reduces emissions and greenhouse gases with compressed natural gas trucks. For information about this and FuelEconomy.gov. Provided by Maryland Public Television Related Videos Photo of a car Hydrogen

  15. High density fuel qualification for a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macleod, J.D.; Orbanski, B.; Hastings, P.R.

    1992-01-01

    A program for the evaluation of gas turbine engine performance, carried out in the Engine Laboratory of the National Research Council of Canada, is described. Problems under consideration include performance alteration between JP-4 fuel and a high energy density fuel, called strategic military fuel (SMF); performance deterioration during the accelerated endurance test; and emission analysis. The T56 fuel control system is found to be capable of operation on the higher energy density fuel with no detrimental effects regarding control of the engine's normal operating regime. The deterioration of the engine performance during 150-hour endurance tests on SMF was very high,more » which was caused by an increase in turbine nozzle effective flow area and turbine blade untwist. The most significant performance losses during the endurance tests were on corrected output power, fuel flow, specific fuel consumption and compressor and turbine presure ratio. 9 refs.« less

  16. Responses of greenhouse gas fluxes to experimental warming in wheat season under conventional tillage and no-tillage fields.

    PubMed

    Tu, Chun; Li, Fadong

    2017-04-01

    Understanding the effects of warming on greenhouse gas (GHG, such as N 2 O, CH 4 and CO 2 ) feedbacks to climate change represents the major environmental issue. However, little information is available on how warming effects on GHG fluxes in farmland of North China Plain (NCP). An infrared warming simulation experiment was used to assess the responses of N 2 O, CH 4 and CO 2 to warming in wheat season of 2012-2014 from conventional tillage (CT) and no-tillage (NT) systems. The results showed that warming increased cumulative N 2 O emission by 7.7% in CT but decreased it by 9.7% in NT fields (p<0.05). Cumulative CH 4 uptake and CO 2 emission were increased by 28.7%-51.7% and 6.3%-15.9% in both two tillage systems, respectively (p<0.05). The stepwise regressions relationship between GHG fluxes and soil temperature and soil moisture indicated that the supply soil moisture due to irrigation and precipitation would enhance the positive warming effects on GHG fluxes in two wheat seasons. However, in 2013, the long-term drought stress due to infrared warming and less precipitation decreased N 2 O and CO 2 emission in warmed treatments. In contrast, warming during this time increased CH 4 emission from deep soil depth. Across two years wheat seasons, warming significantly decreased by 30.3% and 63.9% sustained-flux global warming potential (SGWP) of N 2 O and CH 4 expressed as CO 2 equivalent in CT and NT fields, respectively. However, increase in soil CO 2 emission indicated that future warming projection might provide positive feedback between soil C release and global warming in NCP. Copyright © 2016. Published by Elsevier B.V.

  17. Selective catalytic oxidation: a new catalytic approach to the desulfurization of natural gas and liquid petroleum gas for fuel cell reformer applications

    NASA Astrophysics Data System (ADS)

    Lampert, J.

    In both natural gas and liquid petroleum gas (LPG), sulfur degrades the performance of the catalysts used in fuel reformers and fuel cells. In order to improve system performance, the sulfur must be removed to concentrations of less than 200 ppbv (in many applications to less than 20 ppbv) before the fuel reforming operation. Engelhard Corporation presents a unique approach to the desulfurization of natural gas and LPG. This new method catalytically converts the organic and inorganic sulfur species to sulfur oxides. The sulfur oxides are then adsorbed on a high capacity adsorbent. The sulfur compounds in the fuel are converted to sulfur oxides by combining the fuel with a small amount of air. The mixture is then heated from 250 to 270 °C, and contacted with a monolith supported sulfur tolerant catalyst at atmospheric pressure. When Engelhard Corporation demonstrated this catalytic approach in the laboratory, the result showed sulfur breakthrough to be less than 10 ppbv in the case of natural gas, and less than 150 ppbv for LPG. We used a simulated natural gas and LPG mixture, doped with a 50-170 ppmv sulfur compound containing equal concentrations of COS, ethylmercaptan, dimethylsulfide, methylethylsulfide and tetrahydrothiophene. There is no need for recycled H 2 as in the case for hydrodesulfurization.

  18. Low-Carbon Fuel and Chemical Production by Anaerobic Gas Fermentation.

    PubMed

    Daniell, James; Nagaraju, Shilpa; Burton, Freya; Köpke, Michael; Simpson, Séan Dennis

    World energy demand is expected to increase by up to 40% by 2035. Over this period, the global population is also expected to increase by a billion people. A challenge facing the global community is not only to increase the supply of fuel, but also to minimize fossil carbon emissions to safeguard the environment, at the same time as ensuring that food production and supply is not detrimentally impacted. Gas fermentation is a rapidly maturing technology which allows low carbon fuel and commodity chemical synthesis. Unlike traditional biofuel technologies, gas fermentation avoids the use of sugars, relying instead on gas streams rich in carbon monoxide and/or hydrogen and carbon dioxide as sources of carbon and energy for product synthesis by specialized bacteria collectively known as acetogens. Thus, gas fermentation enables access to a diverse array of novel, large volume, and globally available feedstocks including industrial waste gases and syngas produced, for example, via the gasification of municipal waste and biomass. Through the efforts of academic labs and early stage ventures, process scale-up challenges have been surmounted through the development of specialized bioreactors. Furthermore, tools for the genetic improvement of the acetogenic bacteria have been reported, paving the way for the production of a spectrum of ever-more valuable products via this process. As a result of these developments, interest in gas fermentation among both researchers and legislators has grown significantly in the past 5 years to the point that this approach is now considered amongst the mainstream of emerging technology solutions for near-term low-carbon fuel and chemical synthesis.

  19. Warm gas towards young stellar objects in Corona Australis. Herschel/PACS observations from the DIGIT key programme

    NASA Astrophysics Data System (ADS)

    Lindberg, Johan E.; Jørgensen, Jes K.; Green, Joel D.; Herczeg, Gregory J.; Dionatos, Odysseas; Evans, Neal J.; Karska, Agata; Wampfler, Susanne F.

    2014-05-01

    Context. The effects of external irradiation on the chemistry and physics in the protostellar envelope around low-mass young stellar objects are poorly understood. The Corona Australis star-forming region contains the R CrA dark cloud, comprising several low-mass protostellar cores irradiated by an intermediate-mass young star. Aims: We study the effects of the irradiation coming from the young luminous Herbig Be star R CrA on the warm gas and dust in a group of low-mass young stellar objects. Methods: Herschel/PACS far-infrared datacubes of two low-mass star-forming regions in the R CrA dark cloud are presented. The distributions of CO, OH, H2O, [C ii], [O i], and continuum emission are investigated. We have developed a deconvolution algorithm which we use to deconvolve the maps, separating the point-source emission from the extended emission. We also construct rotational diagrams of the molecular species. Results: By deconvolution of the Herschel data, we find large-scale (several thousand AU) dust continuum and spectral line emission not associated with the point sources. Similar rotational temperatures are found for the warm CO (282 ± 4 K), hot CO (890 ± 84 K), OH (79 ± 4 K), and H2O (197 ± 7 K) emission in the point sources and the extended emission. The rotational temperatures are also similar to those found in other more isolated cores. The extended dust continuum emission is found in two ridges similar in extent and temperature to molecular millimetre emission, indicative of external heating from the Herbig Be star R CrA. Conclusions: Our results show that nearby luminous stars do not increase the molecular excitation temperatures of the warm gas around young stellar objects (YSOs). However, the emission from photodissociation products of H2O, such as OH and O, is enhanced in the warm gas associated with these protostars and their surroundings compared to similar objects not subjected to external irradiation. Table 9 and appendices are available in

  20. Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) System for Long-Haul Rail Application

    NASA Astrophysics Data System (ADS)

    Chow, Justin Jeff

    Freight movement of goods is the artery for America's economic health. Long-haul rail is the premier mode of transport on a ton-mile basis. Concerns regarding greenhouse gas and criteria pollutant emissions, however, have motivated the creation of annually increasing locomotive emissions standards. Health issues from diesel particulate matter, especially near rail yards, have also been on the rise. These factors and the potential to raise conventional diesel-electric locomotive performance warrants the investigation of using future fuels in a more efficient system for locomotive application. This research evaluates the dynamic performance of a Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) Hybrid system operating on hydrogen fuel to power a locomotive over a rail path starting from the Port of Los Angeles and ending in the City of Barstow. Physical constraints, representative locomotive operation logic, and basic design are used from a previous feasibility study and simulations are performed in the MATLAB Simulink environment. In-house controls are adapted to and expanded upon. Results indicate high fuel-to-electricity efficiencies of at least 54% compared to a conventional diesel-electric locomotive efficiency of 35%. Incorporation of properly calibrated feedback and feed-forward controls enables substantial load following of difficult transients that result from train kinematics while maintaining turbomachinery operating requirements and suppressing thermal stresses in the fuel cell stack. The power split between the SOFC and gas turbine is deduced to be a deterministic factor in the balance between capital and operational costs. Using hydrogen results in no emissions if renewable and offers a potential of 24.2% fuel energy savings for the rail industry.

  1. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices and flares.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for fuel gas combustion devices and flares. 60.107a Section 60.107a Protection of Environment... combustion devices and flares. (a) Fuel gas combustion devices subject to SO2 or H2S limit and flares subject to H2S concentration requirements. The owner or operator of a fuel gas combustion device that is...

  2. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices and flares.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for fuel gas combustion devices and flares. 60.107a Section 60.107a Protection of Environment... combustion devices and flares. (a) Fuel gas combustion devices subject to SO2 or H2S limit and flares subject to H2S concentration requirements. The owner or operator of a fuel gas combustion device that is...

  3. Environmental implications of alternative-fueled automobiles: Air quality and greenhouse gas tradeoffs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MaClean, H.L.; Lave, L.B.

    The authors analyze alternative fuel-powerstrain options for internal combustion engine automobiles. Fuel/engine efficiency, energy use, pollutant discharges, and greenhouse gas emissions are estimated for spark and compression ignited, direct injected (DI), and indirect injected (II) engines fueled by conventional and reformulated gasoline, reformulated diesel, compressed natural gas (CNG), and alcohols. Since comparisons of fuels and technologies in dissimilar vehicles are misleading, the authors hold emissions level, range, vehicle size class, and style constant. At present, CNG vehicles have the best exhaust emissions performance while DI diesels have the worst. Compared to a conventional gasoline fueled II automobile, greenhouse gases couldmore » be reduced by 40% by a DI CNG automobile and by 25% by a DI diesel. Gasoline- and diesel-fueled automobiles are able to attain long ranges with little weight or fuel economy penalty. CNG vehicles have the highest penalty for increasing range, due to their heavy fuel storage systems, but are the most attractive for a 160-km range. DI engines, particularly diesels, may not be able to meet strict emissions standards, at least not without lowering efficiency.« less

  4. Online gas composition estimation in solid oxide fuel cell systems with anode off-gas recycle configuration

    NASA Astrophysics Data System (ADS)

    Dolenc, B.; Vrečko, D.; Juričić, Ð.; Pohjoranta, A.; Pianese, C.

    2017-03-01

    Degradation and poisoning of solid oxide fuel cell (SOFC) stacks are continuously shortening the lifespan of SOFC systems. Poisoning mechanisms, such as carbon deposition, form a coating layer, hence rapidly decreasing the efficiency of the fuel cells. Gas composition of inlet gases is known to have great impact on the rate of coke formation. Therefore, monitoring of these variables can be of great benefit for overall management of SOFCs. Although measuring the gas composition of the gas stream is feasible, it is too costly for commercial applications. This paper proposes three distinct approaches for the design of gas composition estimators of an SOFC system in anode off-gas recycle configuration which are (i.) accurate, and (ii.) easy to implement on a programmable logic controller. Firstly, a classical approach is briefly revisited and problems related to implementation complexity are discussed. Secondly, the model is simplified and adapted for easy implementation. Further, an alternative data-driven approach for gas composition estimation is developed. Finally, a hybrid estimator employing experimental data and 1st-principles is proposed. Despite the structural simplicity of the estimators, the experimental validation shows a high precision for all of the approaches. Experimental validation is performed on a 10 kW SOFC system.

  5. Probabilistic Analysis of Solid Oxide Fuel Cell Based Hybrid Gas Turbine System

    NASA Technical Reports Server (NTRS)

    Gorla, Rama S. R.; Pai, Shantaram S.; Rusick, Jeffrey J.

    2003-01-01

    The emergence of fuel cell systems and hybrid fuel cell systems requires the evolution of analysis strategies for evaluating thermodynamic performance. A gas turbine thermodynamic cycle integrated with a fuel cell was computationally simulated and probabilistically evaluated in view of the several uncertainties in the thermodynamic performance parameters. Cumulative distribution functions and sensitivity factors were computed for the overall thermal efficiency and net specific power output due to the uncertainties in the thermodynamic random variables. These results can be used to quickly identify the most critical design variables in order to optimize the design and make it cost effective. The analysis leads to the selection of criteria for gas turbine performance.

  6. TESTING OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS: GROTON LANDFILL

    EPA Science Inventory

    The report summarizes the results of follow-on tests following a four-phase EPA program. The environmental impact of widespread use of this concept would be a significant reduction of global warming gas emissions (methane and carbon dioxide). The follow-on testing, conducted by N...

  7. Fuel Flexible Gas Turbine Combustor Flametube Facility Upgraded

    NASA Technical Reports Server (NTRS)

    Little, James E.; Nemets, Steve A.; Tornabene, Robert T.; Smith, Timothy D.; Frankenfeld, Bruce J.

    2004-01-01

    In fiscal year 2003, test cell 23 of the Research Combustion Laboratory (RCL 23) at the NASA Glenn Research Center was upgraded with the addition of gaseous hydrogen as a working propellant and the addition of a 450-psig air-supply system. Test flexibility was further enhanced by upgrades to the facility control systems. RCL 23 can now test with gaseous hydrogen flow rates up to 0.05 lbm/sec and jet fuel flow rates up to 0.62 lbm/sec. Research airflow rates up to 3 lbm/sec are possible with the 450-psig supply system over a range of inlet temperatures. Nonvitiated, heated air is supplied from a shell and tube heat exchanger. The maximum nonvitiated facility air temperature is 1100 F at 1.5 lbm/sec. Research-section exhaust temperatures are limited to 3200 F because of material and cooling capacity limits. A variety of support systems are available depending on the research hardware configuration. Test section ignition can be provided via either a hydrogen air torch system or an electronic spark system. Emissions measurements are obtained with either pneumatically or electromechanically actuated gas sample probes, and the electromechanical system allows for radial measurements at a user-specified axial location for measurement of emissions profiles. Gas analysis data can be obtained for a variety of species, including carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NO and NOx), oxygen (O2), unburnt hydrocarbons, and unburnt hydrogen. Facility control is accomplished with a programmable logic control system. Facility operations have been upgraded to a system based on graphical user interface control screens. A data system is available for real-time acquisition and monitoring of both measurements in engineering units and performance calculations. The upgrades have made RCL 23 a highly flexible facility for research into low emissions gas turbine combustor concepts, and the flame tube configuration inherently allows for a variety of fuel nozzle

  8. Waste-to-Fuel: A Case Study of Converting Food Waste to Renewable Natural Gas as a Transportation Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mintz, Marianne; Tomich, Matthew

    This case study explores the production and use of renewable compressed natural gas (R-CNG)—derived from the anaerobic digestion (AD) of organic waste—to fuel heavy-duty refuse trucks and other natural gas vehicles in Sacramento, California.

  9. Design Guidelines for Bus Transit Systems Using Liquefied Petroleum Gas (LPG) as an Alternative Fuel.

    DOT National Transportation Integrated Search

    1996-09-01

    The use of alternative fuels to power transit buses is steadily increasing. Several fuels, including Liquefied Petroleum Gas (LPG), Compressed Natural Gas (CNG), and Methanol/Ethanol, are already being used in buses. At present, there do not exist co...

  10. Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2002-01-01

    Hydrocarbon fuel reformer 100 suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first tube 108 has a first tube inlet 110 and a first tube outlet 112. The first tube inlet 110 is adapted for receiving a first mixture including an oxygen-containing gas and a first fuel. A partially oxidized first reaction reformate is directed out of the first tube 108 into a mixing zone 114. A second tube 116 is annularly disposed about the first tube 108 and has a second tube inlet 118 and a second tube outlet 120. The second tube inlet 118 is adapted for receiving a second mixture including steam and a second fuel. A steam reformed second reaction reformate is directed out of the second tube 116 and into the mixing zone 114. From the mixing zone 114, the first and second reaction reformates may be directed into a catalytic reforming zone 144 containing a reforming catalyst 147.

  11. Indirect chemical effects of methane on climate warming

    NASA Astrophysics Data System (ADS)

    Lelieveld, Jos; Crutzen, Paul J.

    1992-01-01

    METHANE concentrations in the atmosphere have increased from about 0.75 to 1.7 p.p.m.v. since pre-industrial times1,2. The current annual rate of increase of about 0.8% yr-1 (ref. 2) is due to increases in industrial and agricultural emissions. This increase in atmospheric methane concentrations not only influences the climate directly, but also indirectly through chemical reactions. Here we show that the climate effects of methane's atmospheric chemistry have previously been overestimated, notably by the Inter-governmental Panel on Climate Change (IPCC)3, largely owing to neglect of the height dependence of certain atmospheric radiative processes. Using available estimates of fossil-fuel-related leaks of methane, our results show that switching from coal and oil to natural gas as an energy source would reduce climate warming. A significant fraction of methane emissions cannot, however, be accounted for by known sources; should leakages from gas production and distribution be underestimated for some countries, then it might be unwise to switch to using natural gas.

  12. Controlling mechanism and resulting spray characteristics of injection of fuel containing dissolved gas

    NASA Astrophysics Data System (ADS)

    Huang, Zhen; Shao, Yiming; Shiga, Seiichi; Nakamura, Hisao

    1994-09-01

    This paper presents a recent advance in the study of injection of fuel containing dissolved gas (IFCDG). Using diesel fuel containing dissolved CO2, experiments were performed under atmospheric conditions on a diesel hole-type nozzle and simple nozzles. The effects of gas concentration in the fuel, injection pressure and the nozzle L/D ratio were examined. In order to reveal the controlling mechanism of IFCDG, the orifice flow pattern, pressure characteristics and their effects were also investigated. The result shows that IFCDG can produce a parabolic-shaped spray pattern with good atomization, which suggests the existence of a new atomization mechanism. In terms of atomization, the beneficial effect of the IFCDG is obtained at the dissolved gas concentration above the transition and in the region of larger nozzle L/D ratio. However, under unfavorable conditions, IFCDG will lead to deterioration of atomization with coarse fuel droplets. It is found that the big difference of the orifice pressure characteristics caused by the variation of the nozzle L/D ratio has a dominant influence on the separation of the dissolved gas from the fuel inside the orifice and is verified to account for a dramatic change in the spray pattern and determine the effect of IFCDG. It is considered that the concept of IFCDG could be attractive in producing more efficient, clean engine and find use in a wide range of application.

  13. Compatibility of alternative fuels with advanced automotive gas turbine and stirling engines. A literature survey

    NASA Technical Reports Server (NTRS)

    Cairelli, J.; Horvath, D.

    1981-01-01

    The application of alternative fuels in advanced automotive gas turbine and Stirling engines is discussed on the basis of a literature survey. These alternative engines are briefly described, and the aspects that will influence fuel selection are identified. Fuel properties and combustion properties are discussed, with consideration given to advanced materials and components. Alternative fuels from petroleum, coal, oil shale, alcohol, and hydrogen are discussed, and some background is given about the origin and production of these fuels. Fuel requirements for automotive gas turbine and Stirling engines are developed, and the need for certain reseach efforts is discussed. Future research efforts planned at Lewis are described.

  14. Power Gas and Combined Cycles: Clean Power From Fossil Fuels

    ERIC Educational Resources Information Center

    Metz, William D.

    1973-01-01

    The combined-cycle system is currently regarded as a useful procedure for producing electricity. This system can burn natural gas and oil distillates in addition to coal. In the future when natural gas stocks will be low, coal may become an important fuel for such systems. Considerable effort must be made for research on coal gasification and…

  15. Alternative Fuels Data Center: Natural Gas Minibuses Help New Jersey

    Science.gov Websites

    Recover From Hurricane SandyA> Natural Gas Minibuses Help New Jersey Recover From Hurricane Sandy natural gas to recover from Hurricane Sandy. For information about this project, contact New Jersey Clean Photo of a car Hydrogen Powers Fuel Cell Vehicles in California Nov. 18, 2017 Photo of a car Smart Car

  16. Methods for manufacturing porous nuclear fuel elements for high-temperature gas-cooled nuclear reactors

    DOEpatents

    Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pocoima, CA; Benander, Robert E [Pacoima, CA

    2010-02-23

    Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.

  17. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    DOEpatents

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  18. Aviation Gas Turbine Engine Emissions: Drop in Alternative Fuel and its Challenges

    NASA Astrophysics Data System (ADS)

    Noh, H. Mohd; Rodrigo, G. A.; Rahman, N. A. Abdul; Ismail, S.; Shafie, M. A.; Zainal Ariffin, M. W.; Ahmad, A. A.; Basit, R.; Khalid, A.; Yahaya, N. H. R.; Yusoff, M. R.; Othman, J.

    2018-05-01

    The growing demand of air travel in aviation industries contributes to increases in carbon emissions. As far as technological, infrastructure and operation is concerned, carbon-neutral growth (CNG) cannot be achieved due to fossil fuel usage. The involvement of biojet fuel is the only measures that can be adapted to reduce up to -50% of Carbon emissions. This paper will discuss the gas emissions from the aircraft engine and the challenges it poses to Airlines and operation as well as adapting the Alternative drop-in fuel as its solutions. Alternative fuel using biomass has been approved by American Society for Testing and Materials (ASTM) to be a drop-in fuel with no alteration on the gas turbine engine, hence will ease and generate cost saving for the Airlines. The challenges remain, as the concern on the fuel properties and characteristics, distributions, environment and economic, have been the focal point for policymakers and researchers. As a conclusion, the authority and the government need to join hand in creating the opportunity for alternative fuel in the aviation industries to ensure the reduction in aviation carbon emissions.

  19. 76 FR 51027 - National Fuel Gas Supply Corporation; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-17

    ... horizontal injection/withdrawal wells within the Colden Storage Field in Erie, New York, under National Fuel... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-530-000] National Fuel..., 2011, National Fuel Gas Corporation (National Fuel), 6363 Main Street, Williamsville, New York 14221...

  20. Hardware simulation of fuel cell/gas turbine hybrids

    NASA Astrophysics Data System (ADS)

    Smith, Thomas Paul

    Hybrid solid oxide fuel cell/gas turbine (SOFC/GT) systems offer high efficiency power generation, but face numerous integration and operability challenges. This dissertation addresses the application of hardware-in-the-loop simulation (HILS) to explore the performance of a solid oxide fuel cell stack and gas turbine when combined into a hybrid system. Specifically, this project entailed developing and demonstrating a methodology for coupling a numerical SOFC subsystem model with a gas turbine that has been modified with supplemental process flow and control paths to mimic a hybrid system. This HILS approach was implemented with the U.S. Department of Energy Hybrid Performance Project (HyPer) located at the National Energy Technology Laboratory. By utilizing HILS the facility provides a cost effective and capable platform for characterizing the response of hybrid systems to dynamic variations in operating conditions. HILS of a hybrid system was accomplished by first interfacing a numerical model with operating gas turbine hardware. The real-time SOFC stack model responds to operating turbine flow conditions in order to predict the level of thermal effluent from the SOFC stack. This simulated level of heating then dynamically sets the turbine's "firing" rate to reflect the stack output heat rate. Second, a high-speed computer system with data acquisition capabilities was integrated with the existing controls and sensors of the turbine facility. In the future, this will allow for the utilization of high-fidelity fuel cell models that infer cell performance parameters while still computing the simulation in real-time. Once the integration of the numeric and the hardware simulation components was completed, HILS experiments were conducted to evaluate hybrid system performance. The testing identified non-intuitive transient responses arising from the large thermal capacitance of the stack that are inherent to hybrid systems. Furthermore, the tests demonstrated the

  1. Method of generating hydrocarbon reagents from diesel, natural gas and other logistical fuels

    DOEpatents

    Herling, Darrell R [Richland, WA; Aardahl, Chris L [Richland, WA; Rozmiarek, Robert T [Middleton, WI; Rappe, Kenneth G [Richland, WA; Wang, Yong [Richland, WA; Holladay, Jamelyn D [Kennewick, WA

    2010-06-29

    The present invention provides a process for producing reagents for a chemical reaction by introducing a fuel containing hydrocarbons into a flash distillation process wherein the fuel is separated into a first component having a lower average molecular weight and a second component having a higher average molecular weight. The first component is then reformed to produce synthesis gas wherein the synthesis gas is reacted catalytically to produce the desire reagent.

  2. Method of Generating Hydrocarbon Reagents from Diesel, Natural Gas and Other Logistical Fuels

    DOEpatents

    Herling, Darrell R [Richland, WA; Aardahl, Chris L [Richland, WA; Rozmiarek, Robert T [Middleton, WI; Rappe, Kenneth G [Richland, WA; Wang, Yong [Richland, WA; Holladay, Jamelyn D [Kennewick, WA

    2008-10-14

    The present invention provides a process for producing reagents for a chemical reaction by introducing a fuel containing hydrocarbons into a flash distillation process wherein the fuel is separated into a first component having a lower average molecular weight and a second component having a higher average molecular weight. The first component is then reformed to produce synthesis gas wherein the synthesis gas is reacted catalytically to produce the desire reagent.

  3. A global meta-analysis on the impact of management practices on net global warming potential and greenhouse gas intensity from cropland soils

    USDA-ARS?s Scientific Manuscript database

    Agricultural practices contribute significant amount of greenhouse gas (GHG) emissions, but little is known about their effects on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of carbon dioxide emissions per unit area or crop yield. Se...

  4. 76 FR 30339 - National Fuel Gas Supply Corporation; Notice of Public Scoping Meeting for the Proposed Northern...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-128-000] National Fuel Gas Supply Corporation; Notice of Public Scoping Meeting for the Proposed Northern Access Project On... related to the environmental analysis of National Fuel Gas Supply Corporation's (National Fuel) Northern...

  5. Effect of increased fuel temperature on emissions of oxides of nitrogen from a gas turbine combustor burning ASTM jet-A fuel

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1974-01-01

    An annular gas turbine combustor was tested with heated ASTM Jet-A fuel to determine the effect of increased fuel temperature on the formation of oxides of nitrogen. Fuel temperature ranged from ambient to 700 K. The NOx emission index increased at a rate of 6 percent per 100 K increase in fuel temperature.

  6. Relative importance of thermal versus carbon dioxide induced warming from fossil-fuel combustion

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Caldeira, K.

    2015-12-01

    The Earth is heated both when reduced carbon is oxidized to carbon dioxide and when outgoing longwave radiation is trapped by carbon dioxide in the atmosphere (CO2 greenhouse effect). The purpose of this study is to improve our understanding of time scales and relative magnitudes of climate forcing increase over time from pulse, continuous, and historical CO2 and thermal emissions. To estimate the amount of global warming that would be produced by thermal and CO2 emissions from fossil fuel combustion, we calculate thermal emissions with thermal contents of fossil fuels and estimate CO2 emissions with emission factors from Intergovernmental Panel on Climate Change (IPCC) AR5. We then use a schematic climate model mimicking Coupled Model Intercomparison Project Phase 5 to investigate the climate forcing and the time-integrated climate forcing. We show that, considered globally, direct thermal forcing from fossil fuel combustion is about 1.71% the radiative forcing from CO2 that has accumulated in the atmosphere from past fossil fuel combustion. When a new power plant comes on line, the radiative forcing from the accumulation of released CO2 exceeds the thermal emissions from the power plant in less than half a year (and about 3 months for coal plants). Due to the long lifetime of CO2 in the atmosphere, CO2 radiative forcing greatly overwhelms direct thermal forcing on longer time scales. Ultimately, the cumulative radiative forcing from the CO2 exceeds the direct thermal forcing by a factor of ~100,000.

  7. Combustion Gas Properties I-ASTM Jet a Fuel and Dry Air

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Trout, A. M.; Wear, J. D.; Mcbride, B. J.

    1984-01-01

    A series of computations was made to produce the equilibrium temperature and gas composition for ASTM jet A fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0.

  8. Consideration of black carbon and primary organic carbon emissions in life-cycle analysis of Greenhouse gas emissions of vehicle systems and fuels.

    PubMed

    Cai, Hao; Wang, Michael Q

    2014-10-21

    The climate impact assessment of vehicle/fuel systems may be incomplete without considering short-lived climate forcers of black carbon (BC) and primary organic carbon (POC). We quantified life-cycle BC and POC emissions of a large variety of vehicle/fuel systems with an expanded Greenhouse gases, Regulated Emissions, and Energy use in Transportation model developed at Argonne National Laboratory. Life-cycle BC and POC emissions have small impacts on life-cycle greenhouse gas (GHG) emissions of gasoline, diesel, and other fuel vehicles, but would add 34, 16, and 16 g CO2 equivalent (CO2e)/mile, or 125, 56, and 56 g CO2e/mile with the 100 or 20 year Global Warming Potentials of BC and POC emissions, respectively, for vehicles fueled with corn stover-, willow tree-, and Brazilian sugarcane-derived ethanol, mostly due to BC- and POC-intensive biomass-fired boilers in cellulosic and sugarcane ethanol plants for steam and electricity production, biomass open burning in sugarcane fields, and diesel-powered agricultural equipment for biomass feedstock production/harvest. As a result, life-cycle GHG emission reduction potentials of these ethanol types, though still significant, are reduced from those without considering BC and POC emissions. These findings, together with a newly expanded GREET version, help quantify the previously unknown impacts of BC and POC emissions on life-cycle GHG emissions of U.S. vehicle/fuel systems.

  9. High burnup fuel behavior related to fission gas effects under reactivity initiated accidents (RIA) conditions

    NASA Astrophysics Data System (ADS)

    Lemoine, F.

    1997-09-01

    Specific aspects of irradiated fuel result from the increasing retention of gaseous and volatile fission products with burnup, which, under overpower conditions, can lead to solid fuel pressurization and swelling causing severe PCMI (pellet clad mechanical interaction). In order to assess the reliability of high burnup fuel under RIAs, experimental programs have been initiated which have provided important data concerning the transient fission gas behavior and the clad loading mechanisms. The importance of the rim zone is demonstrated based on three experiments resulting in clad failure at low enthalpy, which are explained by energetic considerations. High gas release in non-failure tests with low energy deposition underlines the importance of grain boundary and porosity gas. Measured final releases are strongly correlated to the microstructure evolution, depending on energy deposition, pulse width, initial and refabricated fuel rod design. Observed helium release can also increase internal pressure and gives hints to the gas behavior understanding.

  10. The effect of exhaust-to-coolant heat transfer on warm-up time and fuel consumption of two automobile engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goettler, H.J.; Vidger, L.J.; Majkrzak

    A 1977 Buick V-6 engine and a 1981 Ford Granada automobile were equipped with heat exchangers to transfer energy from the exhaust gases to the cooling water after cold starts in order to shorten engine warm-up periods and improve fuel economy. A parallel concern was the time required to reach satisfactory heat delivery to the passenger compartment. The Buick engine was investigated in the laboratory. The Ford automobile was tested during driving over a 12.4 km length of freeway and over an 8.6 km test route including both in-town and highway segments. Prior to each test run the engines weremore » exposed to ambient air for at least 8 hours at temperatures ranging from -26/sup 0/C to +2/sup 0/C. The use of the heat exchangers resulted in average reductions of fuel consumption of 2.8% during a 7 minute warm-up period for the engine, and of 2.2% for the automobile when tested on the above test routes. The corresponding times for the coolant in the automobile compartment heater to reach maximum temperature were reduced by 16% and 7%. While fuel savings were achieved, their economic value is questionable, particularly in light of a possible retrofit of an existing automobile with an exhaust-to-coolant heat exchanger and the necessary control equipment.« less

  11. Economics of liquefied natural gas production, transport and distribution for end use as a transportation fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adkins, R.E.; Sutton, H.E.

    1994-12-31

    Natural gas vehicles have been operating in the United States for over 30 years. With few exceptions, these vehicles are owned and operated by local gas utilities that utilize the natural gas in the compressed form (CNG), at pressures of up to 3,600 psi. However, the limited range, system weight and the high cost of fueling facilities presents a serious handicap for these compressed fuel systems. Liquefied natural gas (LNG) automotive fuel systems, on the other hand, are a relatively new player in the emerging clean fuels market. While the technical feasibility, safety, and operational suitability of LNG fuel systemsmore » have been demonstrated during the past 20 years, in a variety of test projects including automotive, marine, aviation, and rail systems, little has been done to commercialize or promote this technology. Recent independent cost comparisons and technical evaluations have been conducted by several major transit organizations and national truck fleets with interesting results. They have concluded that LNG automotive fuel systems can meet the performance and operational criteria of their gasoline and diesel fuel systems without compromising vehicle range or imposing unacceptable weight and payload penalties on their vehicles. The purpose of this paper is to further define the economics of LNG production, transportation and distribution costs. The liquefaction of natural gas is a mature technology and was first accomplished by Faraday in 1855. The first large scale plants were installed in the United States in 1941 and this paper provides a summary of the issues and costs associated with the procurement, installation, and operation of modern day natural gas liquefaction systems. There are no technical barriers to building LNG plants where needed. In addition to these {open_quotes}peak shaving{close_quotes} liquefaction plants, operated by utilities, there are many liquefaction plants owned and operated by the industrial gas business sector.« less

  12. Apparatus for hot-gas desulfurization of fuel gases

    DOEpatents

    Bissett, Larry A.

    1992-01-01

    An apparatus for removing sulfur values from a hot fuel gas stream in a fdized bed contactor containing particulate sorbent material by employing a riser tube regeneration arrangement. Sulfur-laden sorbent is continuously removed from the fluidized bed through a stand pipe to the riser tube and is rapidly regenerated in the riser tube during transport of the sorbent therethrough by employing an oxygen-containing sorbent regenerating gas stream. The riser tube extends from a location below the fluidized bed to an elevation above the fluidized bed where a gas-solid separating mechanism is utilized to separate the regenerated particulate sorbent from the regeneration gases and reaction gases so that the regenerated sorbent can be returned to the fluidized bed for reuse.

  13. Axisymmetric whole pin life modelling of advanced gas-cooled reactor nuclear fuel

    NASA Astrophysics Data System (ADS)

    Mella, R.; Wenman, M. R.

    2013-06-01

    Thermo-mechanical contributions to pellet-clad interaction (PCI) in advanced gas-cooled reactors (AGRs) are modelled in the ABAQUS finite element (FE) code. User supplied sub-routines permit the modelling of the non-linear behaviour of AGR fuel through life. Through utilisation of ABAQUS's well-developed pre- and post-processing ability, the behaviour of the axially constrained steel clad fuel was modelled. The 2D axisymmetric model includes thermo-mechanical behaviour of the fuel with time and condition dependent material properties. Pellet cladding gap dynamics and thermal behaviour are also modelled. The model treats heat up as a fully coupled temperature-displacement study. Dwell time and direct power cycling was applied to model the impact of online refuelling, a key feature of the AGR. The model includes the visco-plastic behaviour of the fuel under the stress and irradiation conditions within an AGR core and a non-linear heat transfer model. A multiscale fission gas release model is applied to compute pin pressure; this model is coupled to the PCI gap model through an explicit fission gas inventory code. Whole pin, whole life, models are able to show the impact of the fuel on all segments of cladding including weld end caps and cladding pellet locking mechanisms (unique to AGR fuel). The development of this model in a commercial FE package shows that the development of a potentially verified and future-proof fuel performance code can be created and used. The usability of a FE based fuel performance code would be an enhancement over past codes. Pre- and post-processors have lowered the entry barrier for the development of a fuel performance model to permit the ability to model complicated systems. Typical runtimes for a 5 year axisymmetric model takes less than one hour on a single core workstation. The current model has implemented: Non-linear fuel thermal behaviour, including a complex description of heat flow in the fuel. Coupled with a variety of

  14. Analysis of transient fission gas behaviour in oxide fuel using BISON and TRANSURANUS

    NASA Astrophysics Data System (ADS)

    Barani, T.; Bruschi, E.; Pizzocri, D.; Pastore, G.; Van Uffelen, P.; Williamson, R. L.; Luzzi, L.

    2017-04-01

    The modelling of fission gas behaviour is a crucial aspect of nuclear fuel performance analysis in view of the related effects on the thermo-mechanical performance of the fuel rod, which can be particularly significant during transients. In particular, experimental observations indicate that substantial fission gas release (FGR) can occur on a small time scale during transients (burst release). To accurately reproduce the rapid kinetics of the burst release process in fuel performance calculations, a model that accounts for non-diffusional mechanisms such as fuel micro-cracking is needed. In this work, we present and assess a model for transient fission gas behaviour in oxide fuel, which is applied as an extension of conventional diffusion-based models to introduce the burst release effect. The concept and governing equations of the model are presented, and the sensitivity of results to the newly introduced parameters is evaluated through an analytic sensitivity analysis. The model is assessed for application to integral fuel rod analysis by implementation in two structurally different fuel performance codes: BISON (multi-dimensional finite element code) and TRANSURANUS (1.5D code). Model assessment is based on the analysis of 19 light water reactor fuel rod irradiation experiments from the OECD/NEA IFPE (International Fuel Performance Experiments) database, all of which are simulated with both codes. The results point out an improvement in both the quantitative predictions of integral fuel rod FGR and the qualitative representation of the FGR kinetics with the transient model relative to the canonical, purely diffusion-based models of the codes. The overall quantitative improvement of the integral FGR predictions in the two codes is comparable. Moreover, calculated radial profiles of xenon concentration after irradiation are investigated and compared to experimental data, illustrating the underlying representation of the physical mechanisms of burst release.

  15. Analysis of transient fission gas behaviour in oxide fuel using BISON and TRANSURANUS

    DOE PAGES

    Barani, T.; Bruschi, E.; Pizzocri, D.; ...

    2017-01-03

    The modelling of fission gas behaviour is a crucial aspect of nuclear fuel analysis in view of the related effects on the thermo-mechanical performance of the fuel rod, which can be particularly significant during transients. Experimental observations indicate that substantial fission gas release (FGR) can occur on a small time scale during transients (burst release). To accurately reproduce the rapid kinetics of burst release in fuel performance calculations, a model that accounts for non-diffusional mechanisms such as fuel micro-cracking is needed. In this work, we present and assess a model for transient fission gas behaviour in oxide fuel, which ismore » applied as an extension of diffusion-based models to allow for the burst release effect. The concept and governing equations of the model are presented, and the effect of the newly introduced parameters is evaluated through an analytic sensitivity analysis. Then, the model is assessed for application to integral fuel rod analysis. The approach that we take for model assessment involves implementation in two structurally different fuel performance codes, namely, BISON (multi-dimensional finite element code) and TRANSURANUS (1.5D semi-analytic code). The model is validated against 19 Light Water Reactor fuel rod irradiation experiments from the OECD/NEA IFPE (International Fuel Performance Experiments) database, all of which are simulated with both codes. The results point out an improvement in both the qualitative representation of the FGR kinetics and the quantitative predictions of integral fuel rod FGR, relative to the canonical, purely diffusion-based models, with both codes. The overall quantitative improvement of the FGR predictions in the two codes is comparable. Furthermore, calculated radial profiles of xenon concentration are investigated and compared to experimental data, demonstrating the representation of the underlying mechanisms of burst release by the new model.« less

  16. 40 CFR 600.314-86 - Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economies for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economies for comparable automobiles. 600.314-86 Section 600.314-86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR...

  17. 40 CFR 600.314-01 - Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economies for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economies for comparable automobiles. 600.314-01 Section 600.314-01 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR...

  18. 40 CFR 600.314-08 - Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economy for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economy for comparable automobiles. 600.314-08 Section 600.314-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR...

  19. Flame holding tolerant fuel and air premixer for a gas turbine combustor

    DOEpatents

    York, William David; Johnson, Thomas Edward; Ziminsky, Willy Steve

    2012-11-20

    A fuel nozzle with active cooling is provided. It includes an outer peripheral wall, a nozzle center body concentrically disposed within the outer wall in a fuel and air pre-mixture. The fuel and air pre-mixture includes an air inlet, a fuel inlet and a premixing passage defined between the outer wall in the center body. A gas fuel flow passage is provided. A first cooling passage is included within the center body in a second cooling passage is defined between the center body and the outer wall.

  20. Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas.

    PubMed

    Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott

    2008-10-15

    Liquid transportation fuels derived from coal and natural gas could helpthe United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTLfuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow.

  1. Clean Air Program : Design Guidelines for Bus Transit Systems Using Liquefied Natural Gas (LNG) as an Alternative Fuel

    DOT National Transportation Integrated Search

    1997-03-01

    The use of alternative fuels to power transit buses is steadily increasing. Several fuels, including Liquefied Natural Gas (LNG), Compressed Natural Gas (CNG), Liquefied Petroleum Gas (LPG), and Methanol/Ethanol, are already being used. At present, t...

  2. Fuel control for gas turbine with continuous pilot flame

    DOEpatents

    Swick, Robert M.

    1983-01-01

    An improved fuel control for a gas turbine engine having a continuous pilot flame and a fuel distribution system including a pump drawing fuel from a source and supplying a line to the main fuel nozzle of the engine, the improvement being a control loop between the pump outlet and the pump inlet to bypass fuel, an electronically controlled throttle valve to restrict flow in the control loop when main nozzle demand exists and to permit substantially unrestricted flow without main nozzle demand, a minimum flow valve in the control loop downstream of the throttle valve to maintain a minimum pressure in the loop ahead of the flow valve, a branch tube from the pilot flame nozzle to the control loop between the throttle valve and the minimum flow valve, an orifice in the branch tube, and a feedback tube from the branch tube downstream of the orifice to the minimum flow valve, the minimum flow valve being operative to maintain a substantially constant pressure differential across the orifice to maintain constant fuel flow to the pilot flame nozzle.

  3. Greater focus needed on methane leakage from natural gas infrastructure.

    PubMed

    Alvarez, Ramón A; Pacala, Stephen W; Winebrake, James J; Chameides, William L; Hamburg, Steven P

    2012-04-24

    Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH(4) leakage were capped at a level 45-70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH(4) losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas.

  4. Greater focus needed on methane leakage from natural gas infrastructure

    PubMed Central

    Alvarez, Ramón A.; Pacala, Stephen W.; Winebrake, James J.; Chameides, William L.; Hamburg, Steven P.

    2012-01-01

    Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH4 leakage were capped at a level 45–70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH4 losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas. PMID:22493226

  5. Investigation of Transmission Warming Technologies at Various Ambient Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jehlik, Forrest; Iliev, Simeon; Wood, Eric

    This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a 2011 Ford Fusion. The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the Fusion was tested cold and with the transmission pre-heated prior to completing themore » test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions. For the Taurus, the fuel consumption variability within one standard deviation was shown to be under 0.5% for eight repeat Urban Dynamometer Driving Cycles (UDDS). These results were valid with the transmission warming system active or passive. Using the transmission warming system under 22 degrees C ambient temperature, fuel consumption reduction was shown to be 1.4%. For the Fusion, pre-warming the transmission reduced fuel consumption 2.5% for an urban drive cycle at -7 degrees C ambient temperature, with 1.5% of the 2.5% gain associated with the transmission, while consumption for the US06 test was shown to be reduced by 7% with 5.5% of the 7% gain associated with the transmission. It was found that engine warming due to conduction between the pre-heated transmission and the engine resulted in the remainder of the benefit. For +22 degrees C ambient tests, the pre-heated transmission was shown to reduce fuel consumption approximately 1% on an urban cycle, while no benefit was seen for the US06 cycle. The simplified modeling results showed gains in efficiency ranging from 0-1.5% depending on the ambient

  6. Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in

    Science.gov Websites

    Money With Propane Vans Feb. 1, 2014 Photo of an electric vehicle at a charging station Companies Power School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles Relies on Natural Gas Fueling Stations July 1, 2010 Hybrid Electric Shuttle Buses Offer Free Rides in

  7. Gas Conversion Systems Reclaim Fuel for Industry

    NASA Technical Reports Server (NTRS)

    2015-01-01

    A human trip to Mars will require astronauts to utilize resources on the Red Planet to generate oxygen and fuel for the ride home, among other things. Lakewood, Colorado-based Pioneer Energy has worked under SBIR agreements with Johnson Space Center to develop technology for those purposes, and now uses a commercialized version of the technology to recover oil and gas that would otherwise be wasted at drilling sites.

  8. Improving the fuel economy of stoichiometrically fueled S.I. engines by means of EGR and enhanced ignition -- A comparison of gasoline, methanol and natural gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neame, G.R.; Gardiner, D.P.; Mallory, R.W.

    1995-12-31

    This paper describes an experimental study in which the potential for fuel economy improvements with EGR was investigated using an automotive V6 engine. Steady state engine dynamometer tests were run at 2,000 rpm and 200 kPa Brake Mean Effective Pressure (BMEP). The engine was fueled with gasoline, methanol or natural gas. Plasma jet ignition was evaluated as a means of improving EGR tolerance. EGR tolerance with methanol was found to be better than with gasoline, while natural gas showed the poorest EGR tolerance. Plasma jet ignition extended EGR limits for all three fuels. Fuel economy benefits were realized with naturalmore » gas and gasoline at low EGR rates and without EGR but plasma jet ignition provided no improvements with methanol until over 10% EGR was used. Plasma jet ignition made stable operation possible with methanol at 40% EGR, where fuel economy improvements were ultimately limited by the slow burning associated with the high EGR rate. Both slow burning and high cyclic variation affected gasoline at high EGR rates, while stability limits to spark advance with natural gas caused fuel economy to degrade at relatively low EGR rates.« less

  9. Alternative Fuels Data Center: Little Rock Gains Momentum with Natural Gas

    Science.gov Websites

    BusesA> Little Rock Gains Momentum with Natural Gas Buses to someone by E-mail Share Alternative on compressed natural gas. For information about this project, contact Arkansas Clean Cities Public Television Related Videos Photo of a car Hydrogen Powers Fuel Cell Vehicles in California Nov. 18

  10. Criteria Development for Gas Turbine Premixer Flameholding Tendencies of Natural Gas and High Hydrogen Content Fuels

    NASA Astrophysics Data System (ADS)

    Sullivan-Lewis, Elliot Gregory

    Due to increasingly stringent air quality requirements, stationary power gas turbines have moved to lean-premixed operation, which reduces pollutant emissions but can result in flashback. Flashback can cause serious damage to the premixer hardware. Curtailing flashback can be difficult with hydrocarbon fuels and becomes even more challenging when the fuel contains hydrogen. The two main approaches for coping with flashback are either to design a combustor that is resistant to flashback, or to design a premixer that will not anchor a flame if flashback occurs. Even with a well-designed combustor, flashback can occur under certain circumstances. Thus it is necessary to determine how to avoid flameholding within the premixer passageways of a gas turbine. To this end, an experiment was designed that would determine the flameholding propensities at elevated pressures and temperatures of three different classes of geometric features commonly found in gas turbine premixers, with both natural gas and hydrogen containing fuel. Experiments to find the equivalence ratio at blow off were conducted within an optically accessible test apparatus with four flameholders: 0.25 and 0.50 inch diameter cylinders, a reverse facing step with a height of 0.25 inches, and a symmetric airfoil with a thickness of 0.25 inches and a chord length of one inch. Tests were carried out at temperatures between 300 K and 750 K, at pressures up to 9 atmospheres. Typical bulk velocities were between 40 and 100 m/s. The effect of the airfoil's angle of rotation was also investigated. Blow off for hydrogen reactions was found to occur at much lower adiabatic flame temperatures than natural gas reactions. Additionally it was observed that at high pressures and high turbulence intensities, reactant velocity does not have a noticeable effect on the point of blow off due in large part to corresponding increases in turbulent flame speed. Finally a semi empirical correlation was developed that predicts flame

  11. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels

    NASA Astrophysics Data System (ADS)

    Crutzen, P. J.; Mosier, A. R.; Smith, K. A.; Winiwarter, W.

    2007-08-01

    The relationship, on a global basis, between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N2O), has been re-examined, using known global atmospheric removal rates and concentration growth of N2O as a proxy for overall emissions. The relationship, in both the pre-industrial period and in recent times, after taking into account the large-scale changes in synthetic N fertiliser production and deforestation, is consistent, showing an overall conversion factor of 3-5%. This factor is covered only in part by the ~1% of "direct" emissions from agricultural crop lands estimated by IPCC (2006), or the "indirect" emissions cited therein. This means that the extra N2O entering the atmosphere as a result of using N to produce crops for biofuels will also be correspondingly greater than that estimated just on the basis of IPCC (2006). When the extra N2O emission from biofuel production is calculated in "CO2-equivalent" global warming terms, and compared with the quasi-cooling effect of "saving" emissions of fossil fuel derived CO2, the outcome is that the production of commonly used biofuels, such as biodiesel from rapeseed and bioethanol from corn (maize), can contribute as much or more to global warming by N2O emissions than cooling by fossil fuel savings. Crops with less N demand, such as grasses and woody coppice species have more favourable climate impacts. This analysis only considers the conversion of biomass to biofuel. It does not take into account the use of fossil fuel on the farms and for fertilizer and pesticide production, but it also neglects the production of useful co-products. Both factors partially compensate each other. This needs to be analyzed in a full life cycle assessment.

  12. 40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of... exempting large engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all the... natural gas or liquefied petroleum gas. (2) The engine must have maximum engine power at or above 250 kW...

  13. 40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of... exempting large engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all the... natural gas or liquefied petroleum gas. (2) The engine must have maximum engine power at or above 250 kW...

  14. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    DOE PAGES

    Pastore, Giovanni; Swiler, L. P.; Hales, Jason D.; ...

    2014-10-12

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code and a recently implemented physics-based model for the coupled fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO2 single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information from the open literature. The study leads to an initial quantitative assessment of the uncertaintymore » in fission gas behavior modeling with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.« less

  15. Warming Mars Using Artificial Super-Greenhouse Gases

    NASA Astrophysics Data System (ADS)

    Marinova, M. M.; McKay, C. P.; Hashimoto, H.

    Artificial super-greenhouse gases will be needed in terraforming Mars. They could be used to initiate warming and also to supplement the greenhouse effect of a breathable oxygen/nitrogen atmosphere containing a limited amount of carbon dioxide. The leading super-greenhouse gas candidates are SF6 and perfluorocarbons (PFCs) such as CF4 and C2F6. The transmission spectra of C2F6, CF2Cl2, and CF3Cl were analyzed, and their specific absorption bands quantitatively assessed. A detailed band model was used to accurately calculate and compare the greenhouse warming of Earth and Mars given different temperature profiles and concentrations of the gases. The results show that for the current Mars, 0.1 Pa (10-6 atm) of a single super-greenhouse gas will result in a warming of about 3 K. The synthesis of this amount of gas requires about 1020 J, equivalent to ~ 70 minutes of the total solar energy reaching Mars. Super-greenhouse gases are a viable method for warming up a planet alone and are certainly practical in combination with other methods.

  16. Comparing extraction rates of fossil fuel producers against global climate goals

    NASA Astrophysics Data System (ADS)

    Rekker, Saphira A. C.; O'Brien, Katherine R.; Humphrey, Jacquelyn E.; Pascale, Andrew C.

    2018-06-01

    Meeting global and national climate goals requires action and cooperation from a multitude of actors1,2. Current methods to define greenhouse gas emission targets for companies fail to acknowledge the unique influence of fossil fuel producers: combustion of reported fossil fuel reserves has the potential to push global warming above 2 °C by 2050, regardless of other efforts to mitigate climate change3. Here, we introduce a method to compare the extraction rates of individual fossil fuel producers against global climate targets, using two different approaches to quantify a burnable fossil fuel allowance (BFFA). BFFAs are calculated and compared with cumulative extraction since 2010 for the world's ten largest investor-owned companies and ten largest state-owned entities (SOEs), for oil and for gas, which together account for the majority of global oil and gas reserves and production. The results are strongly influenced by how BFFAs are quantified; allocating based on reserves favours SOEs over investor-owned companies, while allocating based on production would require most reduction to come from SOEs. Future research could refine the BFFA to account for equity, cost-effectiveness and emissions intensity.

  17. Experimental evaluation of two premixing-prevaporizing fuel injection concepts for a gas turbine catalytic combustor

    NASA Technical Reports Server (NTRS)

    Tacina, R.

    1976-01-01

    A premixing-prevaporizing fuel system for a gas turbine catalytic combustor has been developed and evaluated. Spatial fuel distribution and degree of vaporization were measured at inlet temperatures up to 800 K and fuel-air ratios of 0.01 and 0.025. The test pressure was 0.5 MPa; velocity was 20 m/sec. Both a multiple-jet cross-stream injector and a splash-groove injector with a 30 deg air swirler exhibited a uniform fuel distribution and a high degree of vaporization with little total pressure drop. Fuel oxidation reactions were observed at the 800 K inlet air temperature, indicating that a different design concept is necessary for application with an automotive gas turbine.

  18. Lean burn natural gas fueled S.I. engine and exhaust emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varde, K.S.; Patro, N.; Drouillard, K.

    1995-12-31

    An experimental study was undertaken to study exhaust emission from a lean-burn natural gas spark ignition engine. The possibility that such an engine may help to reduce exhaust emissions substantially by taking advantage of natural gas fuel properties, such as its antiknock properties and extended lean flammability limit compared to gasoline, was the main motivation behind the investigation. A four cylinder, automotive type spark ignition engine was used in the investigation. The engine was converted to operate on natural gas by replacing its fuel system with a gaseous carburetion system. A 3-way metal metrix catalytic converter was used in themore » engine exhaust system to reduce emission levels. The engine operated satisfactorily at an equivalence ratio as lean as 0.6, at all speeds and loads. As a result NOx emissions were significantly reduced. However, hydrocarbon emissions were high, particularly at very lean conditions and light loads. Most of these hydrocarbons were made up of methane with small concentrations of ethane and propane. Coefficient of variations in hydrocarbons were generally high at very lean operating conditions and light loads, but decreased with increasing equivalence ratio and engine speed. Methane concentrations in the engine exhaust decreased with increasing load and equivalence ratio. At lean air-to-fuel ratios and light loads oxidation of methane in the catalyst was substantially limited and no NOx reduction was achieved. In addition, the proportion of nitric oxide in oxides of nitrogen increased with increasing amount of NOx in the engine exhaust. A major problem encountered in the study was the inability of the fuel system to maintain near constant air-to-fuel ratios at steady operating conditions.« less

  19. Mathematical modeling of synthesis gas fueled electrochemistry and transport including H2/CO co-oxidation and surface diffusion in solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Bao, Cheng; Jiang, Zeyi; Zhang, Xinxin

    2015-10-01

    Fuel flexibility is a significant advantage of solid oxide fuel cell (SOFC). A comprehensive macroscopic framework is proposed for synthesis gas (syngas) fueled electrochemistry and transport in SOFC anode with two main novelties, i.e. analytical H2/CO electrochemical co-oxidation, and correction of gas species concentration at triple phase boundary considering competitive absorption and surface diffusion. Staring from analytical approximation of the decoupled charge and mass transfer, we present analytical solutions of two defined variables, i.e. hydrogen current fraction and enhancement factor. Giving explicit answer (rather than case-by-case numerical calculation) on how many percent of the current output contributed by H2 or CO and on how great the water gas shift reaction plays role on, this approach establishes at the first time an adaptive superposition mechanism of H2-fuel and CO-fuel electrochemistry for syngas fuel. Based on the diffusion equivalent circuit model, assuming series-connected resistances of surface diffusion and bulk diffusion, the model predicts well at high fuel utilization by keeping fixed porosity/tortuosity ratio. The model has been validated by experimental polarization behaviors in a wide range of operation on a button cell for H2-H2O-CO-CO2-N2 fuel systems. The framework could be helpful to narrow the gap between macro-scale and meso-scale SOFC modeling.

  20. Warm and cold molecular gas conditions modeled in 87 galaxies observed by the Herschel SPIRE FTS

    NASA Astrophysics Data System (ADS)

    Kamenetzky, Julia; Rangwala, Naseem; Glenn, Jason

    2018-01-01

    Molecular gas is the raw material for star formation, and like the interstellar medium (ISM) in general, it can exist in regions of higher and lower excitation. Rotational transitions of the CO molecule are bright and sensitive to cold molecular gas. While the majority of the molecular gas exists in the very cold component traced by CO J=1-0, the higher-J lines trace the highly excited gas that may be more indicative of star formation processes. The atmosphere is opaque to these lines, but the launch of the Herschel Space Observatory made them accessible for study of Galactic and extragalactic sources. We have conducted two-component, non-local thermodynamic equilibrium (non-LTE) modeling of the CO lines from J=1‑0 through J=13‑12 in 87 galaxies observed by the Herschel SPIRE Fourier Transform Spectrometer (FTS). We used the nested sampling algorithm Multinest to compare the measured CO spectral line energy distributions (SLEDs) to the ones produced by a custom version of the non-LTE code RADEX. This allowed us to fully examine the degeneracies in parameter space for kinetic temperature, molecular gas density, CO column density, and area filling factor.Here we discuss the major findings of our study, as well as the important implications of two-component molecular gas modeling. The average pressure of the warm gas is slightly correlated with galaxy LFIR, but that of the cold gas is not. A high-J (such as J=11-10) to J=1-0 line ratio is diagnostic of warm component pressure. We find a very large spread in our derived values of "alpha-CO," with no discernable trend with LFIR, and average molecular gas depletion times that decrease with LFIR. If only a few molecular lines are available in a galaxy's SLED, the limited ability to model only one component will change the results. A one-component fit often underestimates the flux of carbon monoxide (CO) J=1‑0 and the mass. If low-J lines are not included, mass is underestimated by an order of magnitude. Even when

  1. Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Technology for Auxiliary Aerospace Power

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.; Freeh, Joshua E.; Larosiliere, Louis M.

    2005-01-01

    A notional 440 kW auxiliary power unit has been developed for 300 passenger commercial transport aircraft in 2015AD. A hybrid engine using solid-oxide fuel cell stacks and a gas turbine bottoming cycle has been considered. Steady-state performance analysis during cruise operation has been presented. Trades between performance efficiency and system mass were conducted with system specific energy as the discriminator. Fuel cell performance was examined with an area specific resistance. The ratio of fuel cell versus turbine power was explored through variable fuel utilization. Area specific resistance, fuel utilization, and mission length had interacting effects upon system specific energy. During cruise operation, the simple cycle fuel cell/gas turbine hybrid was not able to outperform current turbine-driven generators for system specific energy, despite a significant improvement in system efficiency. This was due in part to the increased mass of the hybrid engine, and the increased water flow required for on-board fuel reformation. Two planar, anode-supported cell design concepts were considered. Designs that seek to minimize the metallic interconnect layer mass were seen to have a large effect upon the system mass estimates.

  2. Numerical Simulation and Industrial Experimental Research on the Coherent Jet with "CH4 + N2" Mixed Fuel Gas

    NASA Astrophysics Data System (ADS)

    Hu, Shaoyan; Zhu, Rong; Dong, Kai; Liu, Runzao

    2018-06-01

    Coherent jet technology is widely used in the electric arc furnace (EAF) steelmaking process to deliver more energy and momentum into the molten steel bath. Meanwhile, the characteristics of a coherent jet using pure CH4 as the fuel gas have been well investigated in previous studies. To reduce the consumption of CH4, coherent jet technology using "CH4 + N2" mixed fuel gas instead of pure CH4 was proposed and studied in detail by numerical simulation in the present work. The Eddy Dissipation Concept model, which has detailed chemical kinetic mechanisms, was adopted to model the fuel gas combustion reactions. Experimental measurements were carried out to validate the accuracy of the computational model. The present study shows that the jet characteristics of the main oxygen improve along with the increase of the CH4 ratio in fuel gas and with the increase of the flow rate of fuel gas. When the CH4 ratio in the fuel gas is 25 pct, the fuel gas flow rate only has a limited influence on the jet characteristics, unlike the rest of the fuel gas compositions, because a high N2 proportion deteriorates the combustion performance and leads to severe incomplete combustion. Moreover, a false potential core phenomenon was observed and explained in the present study. Based on the average values, the jet length of a coherent jet with 75 pct CH4 can achieve 89.8 pct of that with 100 pct CH4. Finally, an industrial experiment was carried out on a commercial 100t EAF using coherent jet with 75 pct CH4, showing that the average CH4 consumption was reduced from 3.84 to 3.05 Nm3 t-1 under the premise of no obvious changes in the other production indexes.

  3. Alternative Fuels Data Center: Central Ohio Turns Trash Into Natural Gas

    Science.gov Websites

    electric car. College Students Engineer Efficient Vehicles in EcoCAR 2 Competition Aug. 2, 2014 Photo of a Authority of Central Ohio turns trash into compressed natural gas for fleet fuel. For information about this FuelEconomy.gov. Provided by Maryland Public Television Related Videos Photo of a car Electric Vehicles Charge up

  4. A spatially resolved fuel-based inventory of Utah and Colorado oil and natural gas emissions

    NASA Astrophysics Data System (ADS)

    Gorchov Negron, A.; McDonald, B. C.; De Gouw, J. A.; Frost, G. J.

    2015-12-01

    A fuel-based approach is presented for estimating emissions from US oil and natural gas production that utilizes state-level fuel surveys of oil and gas engine activity, well-level production data, and emission factors for oil and gas equipment. Emissions of carbon dioxide (CO2) and nitrogen oxides (NOx) are mapped on a 4 km x 4 km horizontal grid for 2013-14 in Utah and Colorado. Emission sources include combustion from exploration (e.g., drilling), production (e.g., heaters, dehydrators, and compressor engines), and natural gas processing plants, which comprise a large fraction of the local combustion activity in oil and gas basins. Fuel-based emission factors of NOx are from the U.S. Environmental Protection Agency, and applied to spatially-resolved maps of CO2 emissions. Preliminary NOx emissions from this study are estimated for the Uintah Basin, Utah, to be ~5300 metric tons of NO2-equivalent in 2013. Our result compares well with an observations-based top-down emissions estimate of NOx derived from a previous study, ~4200 metric tons of NO2-equivalent. By contrast, the 2011 National Emissions Inventory estimates oil and gas emissions of NOx to be ~3 times higher than our study in the Uintah Basin. We intend to expand our fuel-based approach to map combustion-related emissions in other U.S. oil and natural gas basins and compare with additional observational datasets.

  5. Blodgett Forest Warming Experiment 1

    DOE Data Explorer

    Pries, Caitlin Hicks (ORCID:0000000308132211); Castanha, Cristina; Porras, Rachel; Torn, Margaret

    2017-03-24

    Carbon stocks and density fractions from soil pits used to characterize soils of the Blodgett warming experiment as well as gas well CO2, 13C, and 14C data from experimental plots. The experiment consisted of 3 control and heated plot pairs. The heated plots are warmed +4°C above the control from 10 to 100 cm.

  6. Gas phase carbonyl compounds in ship emissions: Differences between diesel fuel and heavy fuel oil operation

    NASA Astrophysics Data System (ADS)

    Reda, Ahmed A.; Schnelle-Kreis, J.; Orasche, J.; Abbaszade, G.; Lintelmann, J.; Arteaga-Salas, J. M.; Stengel, B.; Rabe, R.; Harndorf, H.; Sippula, O.; Streibel, T.; Zimmermann, R.

    2014-09-01

    Gas phase emission samples of carbonyl compounds (CCs) were collected from a research ship diesel engine at Rostock University, Germany. The ship engine was operated using two different types of fuels, heavy fuel oil (HFO) and diesel fuel (DF). Sampling of CCs was performed from diluted exhaust using cartridges and impingers. Both sampling methods involved the derivatization of CCs with 2,4-Dinitrophenylhydrazine (DNPH). The CCs-hydrazone derivatives were analyzed by two analytical techniques: High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) and Gas Chromatography-Selective Ion Monitoring-Mass Spectrometry (GC-SIM-MS). Analysis of DNPH cartridges by GC-SIM-MS method has resulted in the identification of 19 CCs in both fuel operations. These CCs include ten aliphatic aldehydes (formaldehyde, acetaldehyde, propanal, isobutanal, butanal, isopentanal, pentanal, hexanal, octanal, nonanal), three unsaturated aldehydes (acrolein, methacrolein, crotonaldehyde), three aromatic aldehyde (benzaldehyde, p-tolualdehyde, m,o-molualdehyde), two ketones (acetone, butanone) and one heterocyclic aldehyde (furfural). In general, all CCs under investigation were detected with higher emission factors in HFO than DF. The total carbonyl emission factor was determined and found to be 6050 and 2300 μg MJ-1 for the operation with HFO and DF respectively. Formaldehyde and acetaldehyde were found to be the dominant carbonyls in the gas phase of ship engine emission. Formaldehyde emissions factor varied from 3500 μg MJ-1 in HFO operation to 1540 μg MJ-1 in DF operation, which is 4-30 times higher than those of other carbonyls. Emission profile contribution of CCs showed also a different pattern between HFO and DF operation. The contribution of formaldehyde was found to be 58% of the emission profile of HFO and about 67% of the emission profile of DF. Acetaldehyde showed opposite behavior with higher contribution of 16% in HFO compared to 11% for DF. Heavier carbonyls

  7. Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives

    PubMed Central

    Bose, Himadri; Satyanarayana, Tulasi

    2017-01-01

    All the leading cities in the world are slowly becoming inhospitable for human life with global warming playing havoc with the living conditions. Biomineralization of carbon dioxide using carbonic anhydrase (CA) is one of the most economical methods for mitigating global warming. The burning of fossil fuels results in the emission of large quantities of flue gas. The temperature of flue gas is quite high. Alkaline conditions are necessary for CaCO3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential. CAs must be stable in the presence of various flue gas contaminants too. The extreme environments on earth harbor a variety of polyextremophilic microbes that are rich sources of thermo-alkali-stable CAs. CAs are the fastest among the known enzymes, which are of six basic types with no apparent sequence homology, thus represent an elegant example of convergent evolution. The current review focuses on the utility of thermo-alkali-stable CAs in biomineralization based strategies. A variety of roles that CAs play in various living organisms, the use of CA inhibitors as drug targets and strategies for overproduction of CAs to meet the demand are also briefly discussed. PMID:28890712

  8. Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives.

    PubMed

    Bose, Himadri; Satyanarayana, Tulasi

    2017-01-01

    All the leading cities in the world are slowly becoming inhospitable for human life with global warming playing havoc with the living conditions. Biomineralization of carbon dioxide using carbonic anhydrase (CA) is one of the most economical methods for mitigating global warming. The burning of fossil fuels results in the emission of large quantities of flue gas. The temperature of flue gas is quite high. Alkaline conditions are necessary for CaCO 3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential. CAs must be stable in the presence of various flue gas contaminants too. The extreme environments on earth harbor a variety of polyextremophilic microbes that are rich sources of thermo-alkali-stable CAs. CAs are the fastest among the known enzymes, which are of six basic types with no apparent sequence homology, thus represent an elegant example of convergent evolution. The current review focuses on the utility of thermo-alkali-stable CAs in biomineralization based strategies. A variety of roles that CAs play in various living organisms, the use of CA inhibitors as drug targets and strategies for overproduction of CAs to meet the demand are also briefly discussed.

  9. Fuel cell-gas turbine hybrid system design part II: Dynamics and control

    NASA Astrophysics Data System (ADS)

    McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott

    2014-05-01

    Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

  10. LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raymond Drnevich; James Meagher; Vasilis Papavassiliou

    2004-08-01

    In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter,more » and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.« less

  11. 40 CFR 86.209-94 - Exhaust gas sampling system; gasoline-fueled vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas sampling system; gasoline... Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty... sampling system; gasoline-fueled vehicles. The provisions of § 86.109-90 apply to this subpart. ...

  12. 40 CFR 86.209-94 - Exhaust gas sampling system; gasoline-fueled vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Exhaust gas sampling system; gasoline... Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty... sampling system; gasoline-fueled vehicles. The provisions of § 86.109-90 apply to this subpart. ...

  13. 40 CFR 86.209-94 - Exhaust gas sampling system; gasoline-fueled vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas sampling system; gasoline... Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty... sampling system; gasoline-fueled vehicles. The provisions of § 86.109-90 apply to this subpart. ...

  14. 40 CFR 86.209-94 - Exhaust gas sampling system; gasoline-fueled vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Exhaust gas sampling system; gasoline... Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty... sampling system; gasoline-fueled vehicles. The provisions of § 86.109-90 apply to this subpart. ...

  15. Systems and methods for detecting a flame in a fuel nozzle of a gas turbine

    DOEpatents

    Kraemer, Gilbert Otto; Storey, James Michael; Lipinski, John; Mestroni, Julio Enrique; Williamson, David Lee; Marshall, Jason Randolph; Krull, Anthony

    2013-05-07

    A system may detect a flame about a fuel nozzle of a gas turbine. The gas turbine may have a compressor and a combustor. The system may include a first pressure sensor, a second pressure sensor, and a transducer. The first pressure sensor may detect a first pressure upstream of the fuel nozzle. The second pressure sensor may detect a second pressure downstream of the fuel nozzle. The transducer may be operable to detect a pressure difference between the first pressure sensor and the second pressure sensor.

  16. Evaluation of gas cooling for pressurized phosphoric acid fuel cell stacks

    NASA Technical Reports Server (NTRS)

    Farooque, M.; Skok, A. J.; Maru, H. C.; Kothmann, R. E.; Harry, R. W.

    1983-01-01

    Gas cooling is a more reliable, less expensive and a more simple alternative to conventional liquid cooling for heat removal from the phosphoric acid fuel cell (PAFC). The feasibility of gas cooling has already been demonstrated in atmospheric pressure stacks. This paper presents theoretical and experimental investigation of gas cooling for pressurized PAFC. Two approaches to gas cooling, Distributed Gas Cooling (DIGAS) and Separated Gas Cooling (SGC) were considered, and a theoretical comparison on the basis of cell performance indicated SGC to be superior to DIGAS. The feasibility of SGC was experimentally demonstrated by operating a 45-cell stack for 700 hours at pressure, and determining thermal response and the effect of other related parameters.

  17. Fuel composition effect on cathode airflow control in fuel cell gas turbine hybrid systems

    NASA Astrophysics Data System (ADS)

    Zhou, Nana; Zaccaria, Valentina; Tucker, David

    2018-04-01

    Cathode airflow regulation is considered an effective means for thermal management in solid oxide fuel cell gas turbine (SOFC-GT) hybrid system. However, performance and controllability are observed to vary significantly with different fuel compositions. Because a complete system characterization with any possible fuel composition is not feasible, the need arises for robust controllers. The sufficiency of robust control is dictated by the effective change of operating state given the new composition used. It is possible that controller response could become unstable without a change in the gains from one state to the other. In this paper, cathode airflow transients are analyzed in a SOFC-GT system using syngas as fuel composition, comparing with previous work which used humidified hydrogen. Transfer functions are developed to map the relationship between the airflow bypass and several key variables. The impact of fuel composition on system control is quantified by evaluating the difference between gains and poles in transfer functions. Significant variations in the gains and the poles, more than 20% in most cases, are found in turbine rotational speed and cathode airflow. The results of this work provide a guideline for the development of future control strategies to face fuel composition changes.

  18. Fuel Injector Patternation Evaluation in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors, Using Nonintrusive Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three diverse fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. Further comparison is also made for one injector with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  19. Understanding Methane Emission from Natural Gas Activities Using Inverse Modeling Techniques

    NASA Astrophysics Data System (ADS)

    Abdioskouei, M.; Carmichael, G. R.

    2015-12-01

    Natural gas (NG) has been promoted as a bridge fuel that can smooth the transition from fossil fuels to zero carbon energy sources by having lower carbon dioxide emission and lower global warming impacts in comparison to other fossil fuels. However, the uncertainty around the estimations of methane emissions from NG systems can lead to underestimation of climate and environmental impacts of using NG as a replacement for coal. Accurate estimates of methane emissions from NG operations is crucial for evaluation of environmental impacts of NG extraction and at larger scale, adoption of NG as transitional fuel. However there is a great inconsistency within the current estimates. Forward simulation of methane from oil and gas operation sites for the US is carried out based on NEI-2011 using the WRF-Chem model. Simulated values are compared against measurements of observations from different platforms such as airborne (FRAPPÉ field campaign) and ground-based measurements (NOAA Earth System Research Laboratory). A novel inverse modeling technique is used in this work to improve the model fit to the observation values and to constrain methane emission from oil and gas extraction sites.

  20. Documentation for the Waste Reduction Model (WARM)

    EPA Pesticide Factsheets

    This page describes the WARM documentation files and provides links to all documentation files associated with EPA’s Waste Reduction Model (WARM). The page includes a brief summary of the chapters documenting the greenhouse gas emission and energy factors.

  1. Fuel treatments, fire suppression, and their interaction with wildfire and its impacts: the Warm Lake experience during the Cascade Complex of wildfires in central Idaho, 2007

    Treesearch

    Russell T. Graham; Theresa B. Jain; Mark Loseke

    2009-01-01

    Wildfires during the summer of 2007 burned over 500,000 acres within central Idaho. These fires burned around and through over 8,000 acres of fuel treatments designed to offer protection from wildfire to over 70 summer homes and other buildings located near Warm Lake. This area east of Cascade, Idaho, exemplifies the difficulty of designing and implementing fuel...

  2. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-08-13

    Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projectedmore » costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging

  3. Wells to wheels: Environmental implications of natural gas as a transportation fuel

    DOE PAGES

    Cai, Hao; Burnham, Andrew; Chen, Rui; ...

    2017-07-25

    Expanded use of natural gas (NG) as a transportation fuel in the United States requires understanding its environmental, technological, and economic performance. We analyzed water consumption for NG production in major U.S. shale gas plays from recent reports and studies. Also, we assessed the water consumption, greenhouse gas (GHG) emissions, and air emissions of using compressed and liquefied NG as transportation fuels by three heavyduty NG vehicles (NGV) types from a wells-to-wheels (WTW) perspective, using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model developed at Argonne National Laboratory. We reviewed recent work on quantifying methane leakagemore » in the NG supply chain and vehicle use to improve the estimates of this important factor to GHG emissions of NGVs. These results show that the NGVs could reduce water consumption significantly and offer air emissions reduction benefits compared to their diesel counterparts. WTW GHG emissions of NGVs are largely driven by the vehicle fuel efficiency, and methane leakage rates of the NG supply chain and vehicle end use, and are slightly higher than those of the diesel counterparts with the estimated WTW methane leakage. We also analyzed costs of operating NGVs relative to diesel vehicles and found that the cost-effectiveness of NGVs is impacted by incremental cost of NG storage tanks and price difference between NG and diesel fuels. Our findings for NG as a transportation fuel for different vehicle technologies shed light on their environmental impacts and the economics from the WTW holistic point of view.« less

  4. Alternative Fuels Data Center: Natural Gas Vehicles Make a Difference in

    Science.gov Websites

    District built a clean fuel alliance for natural gas vehicles in Tennessee. For information about this car. College Students Engineer Efficient Vehicles in EcoCAR 2 Competition Aug. 2, 2014 Photo of a TennesseeA> Natural Gas Vehicles Make a Difference in Tennessee to someone by E-mail Share

  5. THE JAMES CLERK MAXWELL TELESCOPE NEARBY GALAXIES LEGACY SURVEY. II. WARM MOLECULAR GAS AND STAR FORMATION IN THREE FIELD SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, B. E.; Wilson, C. D.; Sinukoff, E.

    2010-05-01

    We present the results of large-area {sup 12}CO J = 3-2 emission mapping of three nearby field galaxies, NGC 628, NGC 3521, and NGC 3627, completed at the James Clerk Maxwell Telescope as part of the Nearby Galaxies Legacy Survey. These galaxies all have moderate to strong {sup 12}CO J = 3-2 detections over large areas of the fields observed by the survey, showing resolved structure and dynamics in their warm/dense molecular gas disks. All three galaxies were part of the Spitzer Infrared Nearby Galaxies Survey sample, and as such have excellent published multiwavelength ancillary data. These data sets allowmore » us to examine the star formation properties, gas content, and dynamics of these galaxies on sub-kiloparsec scales. We find that the global gas depletion time for dense/warm molecular gas in these galaxies is consistent with other results for nearby spiral galaxies, indicating this may be independent of galaxy properties such as structures, gas compositions, and environments. Similar to the results from The H I Nearby Galaxy Survey, we do not see a correlation of the star formation efficiency with the gas surface density consistent with the Schmidt-Kennicutt law. Finally, we find that the star formation efficiency of the dense molecular gas traced by {sup 12}CO J = 3-2 is potentially flat or slightly declining as a function of molecular gas density, the {sup 12}CO J = 3-2/J = 1-0 ratio (in contrast to the correlation found in a previous study into the starburst galaxy M83), and the fraction of total gas in molecular form.« less

  6. Workshop on an Assessment of Gas-Side Fouling in Fossil Fuel Exhaust Environments

    NASA Technical Reports Server (NTRS)

    Marner, W. J. (Editor); Webb, R. L. (Editor)

    1982-01-01

    The state of the art of gas side fouling in fossil fuel exhaust environments was assessed. Heat recovery applications were emphasized. The deleterious effects of gas side fouling including increased energy consumption, increased material losses, and loss of production were identified.

  7. Effects of Alternative Fuels and Aromatics on Gas-Turbine Particle Emissions

    NASA Astrophysics Data System (ADS)

    Thornhill, K. L., II; Moore, R.; Winstead, E.; Anderson, B. E.; Klettlinger, J. L.; Ross, R. C.; Surgenor, A.

    2015-12-01

    This presentation describes experiments conducted with a Honeywell GTCP36-150 Auxiliary Power Unit (APU) to evaluate the effects of varying fuel composition on particle emissions. The APU uses a single-stage compressor stage, gas turbine engine with a can-type combustor to generate bypass flow and electrical power for supporting small aircraft and helicopters. It is installed in a "hush-house" at NASA Glenn Research Center and is configured as a stand-alone unit that can be fueled from an onboard tank or external supply. It operates at constant RPM, but its fuel flow can be varied by changing the electrical load or volume of bypass flow. For these tests, an external bank of resistors were attached to the APU's DC and AC electrical outlets and emissions measurements were made at low, medium and maximum electrical current loads. Exhaust samples were drawn from several points downstream in the exhaust duct and fed to an extensive suite of gas and aerosol sensors installed within a mobile laboratory parked nearby. Aromatic- and sulfur-free synthetic kerosenes from Rentech, Gevo, UOP, Amyris and Sasol were tested and their potential to reduce PM emissions evaluated against a single Jet A1 base fuel. The role of aromatic compounds in regulating soot emissions was also evaluated by adding metered amounts of aromatic blends (Aro-100, AF-Blend, SAK) and pure compounds (tetracontane and 1-methylnaphthalene) to a base alternative fuel (Sasol). Results show that, relative to Jet A1, alternative fuels reduce nonvolatile particle number emissions by 50-80% and--by virtue of producing much smaller particles—mass emissions by 65-90%; fuels with the highest hydrogen content produced the greatest reductions. Nonvolatile particle emissions varied in proportion to fuel aromatic content, with additives containing the most complex ring structures producing the greatest emission enhancements.

  8. Gas/Water and Heat Management of PEM-Based Fuel Cell and Electrolyzer Systems for Space Applications

    NASA Astrophysics Data System (ADS)

    Guo, Qing; Ye, Fang; Guo, Hang; Ma, Chong Fang

    2017-02-01

    Hydrogen/oxygen fuel cells were successfully utilized in the field of space applications to provide electric energy and potable water in human-rated space mission since the 1960s. Proton exchange membrane (PEM) based fuel cells, which provide high power/energy densities, were reconsidered as a promising space power equipment for future space exploration. PEM-based water electrolyzers were employed to provide life support for crews or as major components of regenerative fuel cells for energy storage. Gas/water and heat are some of the key challenges in PEM-based fuel cells and electrolytic cells, especially when applied to space scenarios. In the past decades, efforts related to gas/water and thermal control have been reported to effectively improve cell performance, stability lifespan, and reduce mass, volume and costs of those space cell systems. This study aimed to present a primary review of research on gas/water and waste thermal management for PEM-based electrochemical cell systems applied to future space explorations. In the fuel cell system, technologies related to reactant supplement, gas humidification, water removal and active/passive water separation were summarized in detail. Experimental studies were discussed to provide a direct understanding of the effect of the gas-liquid two-phase flow on product removal and mass transfer for PEM-based fuel cell operating in a short-term microgravity environment. In the electrolyzer system, several active and static passive phaseseparation methods based on diverse water supplement approaches were discussed. A summary of two advanced passive thermal management approaches, which are available for various sizes of space cell stacks, was specifically provided

  9. Method for improving the fuel efficiency of a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A. (Inventor)

    1985-01-01

    An energy recovery system is provided for an aircraft gas turbine engine of the type in which some of the pneumatic energy developed by the engine is made available to support systems such as an environmental control system. In one such energy recovery system, some of the pneumatic energy made available to but not utilized by the support system is utilized to heat the engine fuel immediately prior to the consumption of the fuel by the engine. Some of the recovered energy may also be utilized to heat the fuel in the fuel tanks. Provision is made for multiengine applications wherein energy recovered from one engine may be utilized by another one of the engines or systems associated therewith.

  10. Apparatus for improving the fuel efficiency of a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A. (Inventor)

    1983-01-01

    An energy recovery system is provided for an aircraft gas turbine engine of the type in which some of the pneumatic energy developed by the engine is made available to support systems such as an environmental control system. In one such energy recovery system, some of the pneumatic energy made available to but not utilized by the support system is utilized to heat the engine fuel immediately prior to the consumption of the fuel by the engine. Some of the recovered energy may also be utilized to heat the fuel in the fuel tanks. Provision is made for multiengine applications wherein energy recovered from one engine may be utilized by another one of the engines or systems associated therewith.

  11. Quantification of aldehydes emissions from alternative and renewable aviation fuels using a gas turbine engine

    NASA Astrophysics Data System (ADS)

    Li, Hu; Altaher, Mohamed A.; Wilson, Chris W.; Blakey, Simon; Chung, Winson; Rye, Lucas

    2014-02-01

    In this research three renewable aviation fuel blends including two HEFA (Hydrotreated Ester and Fatty Acid) blends and one FAE (Fatty Acids Ethyl Ester) blend with conventional Jet A-1 along with a GTL (Gas To Liquid) fuel have been tested for their aldehydes emissions on a small gas turbine engine. Three strong ozone formation precursors: formaldehyde, acetaldehyde and acrolein were measured in the exhaust at different operational modes and compared to neat Jet A-1. The aim is to assess the impact of renewable and alternative aviation fuels on aldehydes emissions from aircraft gas turbine engines so as to provide informed knowledge for the future deployment of new fuels in aviation. The results show that formaldehyde was a major aldehyde species emitted with a fraction of around 60% of total measured aldehydes emissions for all fuels. Acrolein was the second major emitted aldehyde species with a fraction of ˜30%. Acetaldehyde emissions were very low for all the fuels and below the detention limit of the instrument. The formaldehyde emissions at cold idle were up to two to threefold higher than that at full power. The fractions of formaldehyde were 6-10% and 20% of total hydrocarbon emissions in ppm at idle and full power respectively and doubled on a g kg-1-fuel basis.

  12. Automobiles and global warming: Alternative fuels and other options for carbon dioxide emissions reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagar, A.D.

    Automobiles are a source of considerable pollution at the global level, including a significant fraction of the total greenhouse gas emissions. Alternative fuels have received some attention as potential options to curtail the carbon dioxide emissions from motor vehicles. This article discusses the feasibility and desirability (from a technical as well as a broader environmental perspective) of the large-scale production and use of alternative fuels as a strategy to mitigate automotive carbon dioxide emissions. Other options such as improving vehicle efficiency and switching to more efficient modes of passenger transportation are also discussed. These latter options offer an effective andmore » immediate way to tackle the greenhouse and other pollutant emission from automobiles, especially as the limitations of currently available alternative fuels and the technological and other constraints for potential future alternatives are revealed.« less

  13. Dependence of the radiative forcing of the climate system on fossil fuel type

    NASA Astrophysics Data System (ADS)

    Nunez, L. I.

    2015-12-01

    Climate change mitigation strategies are greatly directed towards the reduction of CO2 emissions and other greenhouse gases from fossil fuel combustion to limit warming to 2º C in this century. For example, the Clean Power Plan aims to reduce CO2 emissions from the power sector by 32% of 2005 levels by 2030 by increasing power plant efficiency but also by switching from coal-fired power plants to natural gas-fired power plants. It is important to understand the impact of such fuel switching on climate change. While all fossil fuels emit CO2, they also emit other pollutants with varying effects on climate, health and agriculture. First, The emission of CO2 per joule of energy produced varies significantly between coal, oil and natural gas. Second, the complexity that the co-emitted pollutants add to the perturbations in the climate system necessitates the detangling of radiative forcing for each type of fossil fuel. The historical (1850-2011) net radiative forcing of climate as a function of fuel type (coal, oil, natural gas and biofuel) is reconstructed. The results reveal the significant dependence of the CO2 and the non-CO2 forcing on fuel type. The CO2 forcing per joule of energy is largest for coal. Radiative forcing from the co-emitted pollutants (black carbon, methane, nitrogen oxides, organic carbon, sulfate aerosols) changes the global mean CO2 forcing attributed to coal and oil significantly. For natural gas, the CO2-only radiative forcing from gas is increased by about 60% when the co-emitted pollutants are included.

  14. Gas separation process using membranes with permeate sweep to remove CO.sub.2 from gaseous fuel combustion exhaust

    DOEpatents

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA

    2012-05-15

    A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.

  15. Magnetic resonance imaging (MRI) of PEM dehydration and gas manifold flooding during continuous fuel cell operation

    NASA Astrophysics Data System (ADS)

    Minard, Kevin R.; Viswanathan, Vilayanur V.; Majors, Paul D.; Wang, Li-Qiong; Rieke, Peter C.

    Magnetic resonance imaging (MRI) was employed for visualizing water inside a proton exchange membrane (PEM) fuel cell during 11.4 h of continuous operation with a constant load. Two-dimensional images acquired every 128 s revealed the formation of a dehydration front that propagated slowly over the surface of the fuel cell membrane-starting from gas inlets and progressing toward gas outlets. After traversing the entire PEM surface, channels in the gas manifold began to flood on the cathode side. To establish a qualitative understanding of these observations, acquired images were correlated to the current output and the operating characteristics of the fuel cell. Results demonstrate the power of MRI for visualizing changing water distributions during PEM fuel cell operation, and highlight its potential utility for studying the causes of cell failure and/or strategies of water management.

  16. THETRIS: A MICRO-SCALE TEMPERATURE AND GAS RELEASE MODEL FOR TRISO FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Ortensi; A.M. Ougouag

    2011-12-01

    The dominating mechanism in the passive safety of gas-cooled, graphite-moderated, high-temperature reactors (HTRs) is the Doppler feedback effect. These reactor designs are fueled with sub-millimeter sized kernels formed into TRISO particles that are imbedded in a graphite matrix. The best spatial and temporal representation of the feedback effect is obtained from an accurate approximation of the fuel temperature. Most accident scenarios in HTRs are characterized by large time constants and slow changes in the fuel and moderator temperature fields. In these situations a meso-scale, pebble and compact scale, solution provides a good approximation of the fuel temperature. Micro-scale models aremore » necessary in order to obtain accurate predictions in faster transients or when parameters internal to the TRISO are needed. Since these coated particles constitute one of the fundamental design barriers for the release of fission products, it becomes important to understand the transient behavior inside this containment system. An explicit TRISO fuel temperature model named THETRIS has been developed and incorporated into the CYNOD-THERMIX-KONVEK suite of coupled codes. The code includes gas release models that provide a simple predictive capability of the internal pressure during transients. The new model yields similar results to those obtained with other micro-scale fuel models, but with the added capability to analyze gas release, internal pressure buildup, and effects of a gap in the TRISO. The analyses show the instances when the micro-scale models improve the predictions of the fuel temperature and Doppler feedback. In addition, a sensitivity study of the potential effects on the transient behavior of high-temperature reactors due to the presence of a gap is included. Although the formation of a gap occurs under special conditions, its consequences on the dynamic behavior of the reactor can cause unexpected responses during fast transients. Nevertheless, the

  17. Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolly, Stephen; Ghezel-Ayagh, Hossein; Willman, Carl

    To address concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed the Combined Electric Power and Carbon-dioxide Separation (CEPACS) system concept. The CEPACS system utilizes Electrochemical Membrane (ECM) technology derived from the Company’s Direct FuelCell® products. The system separates the CO2 from the flue gas of other plants and produces electric power using a supplementary fuel. FCE is currently evaluating the use of ECM to cost effectively separate CO2 from the flue gas of Pulverized Coal (PC) power plants under a U.S. Department of Energy contract. The overarching objective of themore » project is to verify that the ECM can achieve at least 90% CO2 capture from the flue gas with no more than 35% increase in the cost of electricity. The project activities include: 1) laboratory scale operational and performance tests of a membrane assembly, 2) performance tests of the membrane to evaluate the effects of impurities present in the coal plant flue gas, in collaboration with Pacific Northwest National Laboratory, 3) techno-economic analysis for an ECM-based CO2 capture system applied to a 550 MW existing PC plant, in partnership with URS Corporation, and 4) bench scale (11.7 m2 area) testing of an ECM-based CO2 separation and purification system.« less

  18. Method And Apparatus For Converting Hydrocarbon Fuel Into Hydrogen Gas And Carbon Dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2000-09-26

    A method is disclosed for synthesizing hydrogen gas from hydrocarbon fuel. A first mixture of steam and a first fuel is directed into a first tube 208 to subject the first mixture to a first steam reforming reaction in the presence of a first catalyst 214. A stream of oxygen-containing gas is pre-heated by transferring heat energy from product gases. A second mixture of the pre-heated oxygen-containing gas and a second fuel is directed into a second tube 218 disposed about the first tube 208 to subject the second mixture to a partial oxidation reaction and to provide heat energy for transfer to the first tube 208. A first reaction reformate from the first tube 208 and a second reaction reformate from the second tube 218 are directed into a third tube 224 disposed about the second tube 218 to subject the first and second reaction reformates to a second steam reforming reaction, wherein heat energy is transferred to the third tube 224 from the second tube 218.

  19. Control rod system useable for fuel handling in a gas-cooled nuclear reactor

    DOEpatents

    Spurrier, Francis R.

    1976-11-30

    A control rod and its associated drive are used to elevate a complete stack of fuel blocks to a position above the core of a gas-cooled nuclear reactor. A fuel-handling machine grasps the control rod and the drive is unlatched from the rod. The stack and rod are transferred out of the reactor, or to a new location in the reactor, by the fuel-handling machine.

  20. Gas Turbine Engine Staged Fuel Injection Using Adjacent Bluff Body and Swirler Fuel Injectors

    NASA Technical Reports Server (NTRS)

    Snyder, Timothy S. (Inventor)

    2015-01-01

    A fuel injection array for a gas turbine engine includes a plurality of bluff body injectors and a plurality of swirler injectors. A control operates the plurality of bluff body injectors and swirler injectors such that bluff body injectors are utilized without all of the swirler injectors at least at low power operation. The swirler injectors are utilized at higher power operation.

  1. Global Warming and the Neglected Greenhouse Gas: A Cross-National Study of the Social Causes of Methane Emissions Intensity, 1995

    ERIC Educational Resources Information Center

    Jorgenson, Andrew

    2006-01-01

    The human dimensions of greenhouse gas emissions and global warming attract considerable attention in macrosociology. However, cross-national analyses generally neglect greenhouse gases other than carbon dioxide. The current study addresses this paucity through the testing of theoretically derived models for the social structural causes of the…

  2. TEST RESULTS FOR FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS

    EPA Science Inventory

    EPA, in conjunction with ONSI Corp., embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the proce...

  3. Detection of two intervening Ne viii absorbers probing warm gas at z ˜ 0.6

    NASA Astrophysics Data System (ADS)

    Pachat, Sachin; Narayanan, Anand; Khaire, Vikram; Savage, Blair D.; Muzahid, Sowgat; Wakker, Bart P.

    2017-10-01

    We report on the detection of two Ne viii absorbers, at z = 0.619 07 and 0.570 52 in the Hubble Space Telescope/Cosmic Origins Spectrograph spectrum of background quasars SDSS J080908.13 + 461925.6 and SBS 1122 + 594, respectively. The Ne viii 770 line is at ˜3σ significance. In both instances, the Ne viii is found to be tracing gas with T ≳ 105 K, predominantly collisionally ionized, with moderate densities of n_{H} ≲ 10^{-4} cm-3, sub-solar metallicities and total hydrogen column densities of N(H) ≳ 1019 cm-2. In the z = 0.619 07 absorber, the low, intermediate ions and O VI are consistent with origin in photoionized gas, with the O VI potentially having some contribution from the warm collisional phase traced by Ne viii. The z = 0.570 52 system has H I absorption in at least three kinematically distinct components, with one of them having b({H I}) = 49 {± } 11 km s-1. The intermediate-ionization lines, O VI and Ne viii, are coincident in velocity with this component. Their different line widths suggest warm temperatures of T = (0.5-1.5) × 105 K. Both absorbers are residing in regions where there are several luminous (≳L★) galaxies. The absorber at z = 0.570 52 is within the virial radius of a 2.6L★ galaxy, possibly associated with shock-heated circumgalactic material.

  4. Assessing the Greenhouse Gas Emissions from Natural Gas Fired Power Plants

    NASA Astrophysics Data System (ADS)

    Hajny, K. D.; Shepson, P. B.; Rudek, J.; Stirm, B. H.; Kaeser, R.; Stuff, A. A.

    2017-12-01

    Natural gas is often discussed as a "bridge fuel" to transition to renewable energy as it only produces 51% the amount of CO2 per unit energy as coal. This, coupled with rapid increases in production fueled by technological advances, has led to a near tripling of natural gas used for electricity generation since 2005. One concern with this idea of a "bridge fuel" is that methane, the primary component of natural gas, is itself a potent greenhouse gas with 28 and 84 times the global warming potential of CO2 based on mass over a 100 and 20 year period, respectively. Studies have estimated that leaks from the point of extraction to end use of 3.2% would offset the climate benefits of natural gas. Previous work from our group saw that 3 combined cycle power plants emitted unburned CH4 from the stacks and leaked additional CH4 from equipment on site, but total loss rates were still less than 2.2%. Using Purdue's Airborne Laboratory for Atmospheric Research (ALAR) we completed additional aircraft based mass balance experiments combined with passes directly over power plant stacks to expand on the previous study. In this work, we have measured at 12 additional natural gas fired power plants including a mix of operation types (baseload, peaking, intermediate) and firing methods (combined cycle, simple thermal, combustion turbine). We have also returned to the 3 plants previously sampled to reinvestigate emissions for each of those, to assess reproducibility of the results. Here we report the comparison of reported continuous emissions monitoring systems (CEMS) data for CO2 to our emission rates calculated from mass balance experiments, as well as a comparison of calculated CH4 emission rates to estimated emission rates based on the EPA emission factor of 1 g CH4/mmbtu natural gas and CEMS reported heat input. We will also discuss emissions from a coal-fired plant which has been sampled by the group in the past and has since converted to natural gas. Lastly, we discuss the

  5. Effects of experimental warming and mowing on greenhouse gas fluxes in an alpine meadow on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Jinsong; Quan, Quan; Sun, Jian; Niu, Shuli

    2017-04-01

    Rapid climate change and intensified human activities on the Tibetan Plateau may alter the magnitude and direction of greenhouse gas (GHG) emissions, affecting the climate change impact on these fragile ecosystems. We conducted a controlled experiment to investigate the effects of warming and mowing (simulation of grazing) on soil CO2, CH4 and N2O fluxes in an alpine meadow in eastern Tibetan Plateau between August 2015 and July 2016. Three levels of temperature (C, ambient temperature; W1, < 2 °C warming at 5 cm soil depth by infrared heaters; and W2, > 2 °C warming) were combined with two levels of mowing treatment (UM, un-mowing; and M, mowing). GHG fluxes were measured once an hour using static chamber. Both CO2 emission and CH4 uptake rates showed a seasonal fluctuation, with the maximum value occurred in late summer and the minimum in winter. However, N2O flux did not show a strong seasonal pattern. High level of warming (W2) regardless of mowing significantly increased CO2 emission and CH4 uptake by 15.4 % and 38.2 % averaged over the year, compared with no-warming (C). Moderate warming (W1) did not have significant effects on either CO2 or CH4 fluxes. N2O flux was reduced by 54.1% by W2 and 15.7% by W1 warming. Mowing alone increased CH4 uptake and N2O emission by 18.0 % and 12.7%, respectively, but had no significant effect on CO2 flux. The interactions between warming and mowing were detected in CO2 and CH4 fluxes. Among all treatments, W2UM in general had the highest rates of CO2 emission and CH4 uptake but the lowest rate of N2O flux, while CUM and CM showed the opposite. In addition, warming induced increase in CH4 uptake and decline in N2O release had very limited ability to offset the enhanced CO2 emission, resulting in a net positive feedback of the three GHGs to climate warming. Furthermore, daily CO2 flux increased exponentially with soil temperature at 5 cm. CH4 flux correlated negatively with soil temperature but positively with soil moisture.

  6. Evaluation of the application of some gas chromatographic methods for the determination of properties of synthetic fuels

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.

    1979-01-01

    The purpose of the investigation was to evaluate the applicability, to some synthetic fuels, of some gas chromatographic methods now under development for use with petroleum based fuels. Thirty-two jet and diesel fuel samples which were prepared from oil shale and coal syncrudes were examined. The boiling range distribution of each was determined by gas chromatography, and from that data distillation properties were calculated. The calculated results gave sufficient agreement with the measured values that the equations could be useable in their present form. Bulk fuel properties were calculated for the sixteen JP-5 and Diesel No. 2 type fuels. The results show that the equations would not give useable results. Capillary column gas chromatography was used to determine the n-alkane content of the eight JP-5 type samples and the results related to the observed freezing points. The results show that the concentrations of the long straight chain molecules in the fuels exert influence on the freezing point but are not the complete controlling factor.

  7. Evaluation of the application of some gas chromatographic methods for the determination of properties of synthetic fuels

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.

    1978-01-01

    The purpose of the investigation was to evaluate the applicability, to some synthetic fuels, of some gas chromatographic methods now under development for use with petroleum based fuels. Thirty-two jet and diesel fuel samples which were prepared from oil shale and coal syncrudes were examined. The boiling range distribution of each was determined by gas chromatography, and from that data distillation properties were calculated. The calculated results gave sufficient agreement with the measured values that the equations could be useable in their present form. Bulk fuel properties were calculated for the 16 JP-5 and Diesel No. 2 type fuels. The results show that the equations would not give useable results. Capillary column gas chromatography was used to determine the n-alkane content of the eight JP-5 type samples and the results related to the observed freezing points. The results show that the concentrations of the long straight chain molecules in the fuels exert influence on the freezing point but are not the complete controlling factor.

  8. Fuel leak detection apparatus for gas cooled nuclear reactors

    DOEpatents

    Burnette, Richard D.

    1977-01-01

    Apparatus is disclosed for detecting nuclear fuel leaks within nuclear power system reactors, such as high temperature gas cooled reactors. The apparatus includes a probe assembly that is inserted into the high temperature reactor coolant gaseous stream. The probe has an aperture adapted to communicate gaseous fluid between its inside and outside surfaces and also contains an inner tube for sampling gaseous fluid present near the aperture. A high pressure supply of noncontaminated gas is provided to selectively balance the pressure of the stream being sampled to prevent gas from entering the probe through the aperture. The apparatus includes valves that are operable to cause various directional flows and pressures, which valves are located outside of the reactor walls to permit maintenance work and the like to be performed without shutting down the reactor.

  9. The Case for Natural Gas Fueled Solid Oxide Fuel Cell Power Systems for Distributed Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chick, Lawrence A.; Weimar, Mark R.; Whyatt, Greg A.

    2015-02-01

    Natural-gas-fueled solid oxide fuel cell (NGSOFC) power systems yield electrical conversion efficiencies exceeding 60% and may become a viable alternative for distributed generation (DG) if stack life and manufacturing economies of scale can be realized. Currently, stacks last approximately 2 years and few systems are produced each year because of the relatively high cost of electricity from the systems. If mass manufacturing (10,000 units per year) and a stack life of 15 years can be reached, the cost of electricity from an NGSOFC system is estimated to be about 7.7 ¢/kWh, well within the price of commercial and residential retailmore » prices at the national level (9.9-10¢/kWh and 11-12 ¢/kWh, respectively). With an additional 5 ¢/kWh in estimated additional benefits from DG, NGSOFC could be well positioned to replace the forecasted 59-77 gigawatts of capacity loss resulting from coal plant closures due to stricter emissions regulations and low natural gas prices.« less

  10. Fault tree analysis of fire and explosion accidents for dual fuel (diesel/natural gas) ship engine rooms

    NASA Astrophysics Data System (ADS)

    Guan, Yifeng; Zhao, Jie; Shi, Tengfei; Zhu, Peipei

    2016-09-01

    In recent years, China's increased interest in environmental protection has led to a promotion of energy-efficient dual fuel (diesel/natural gas) ships in Chinese inland rivers. A natural gas as ship fuel may pose dangers of fire and explosion if a gas leak occurs. If explosions or fires occur in the engine rooms of a ship, heavy damage and losses will be incurred. In this paper, a fault tree model is presented that considers both fires and explosions in a dual fuel ship; in this model, dual fuel engine rooms are the top events. All the basic events along with the minimum cut sets are obtained through the analysis. The primary factors that affect accidents involving fires and explosions are determined by calculating the degree of structure importance of the basic events. According to these results, corresponding measures are proposed to ensure and improve the safety and reliability of Chinese inland dual fuel ships.

  11. FUEL CELL OPERATION ON LANDFILL GAS AT PENROSE POWER STATION

    EPA Science Inventory

    This demonstration test successfully demonstrated operation of a commercial phosphoric acid fuel cell (FC) on landfill gas (LG) at the Penrose Power Station in Sun Valley, CA. Demonstration output included operation up to 137 kW; 37.1% efficiency at 120 kW; exceptionally low sec...

  12. A review of integration strategies for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongwen; Chan, S. H.; Li, Guojun; Ho, H. K.; Li, Jun; Feng, Zhenping

    Due to increasing oil and gas demand, the depletion of fossil resources, serious global warming, efficient energy systems and new energy conversion processes are urgently needed. Fuel cells and hybrid systems have emerged as advanced thermodynamic systems with great promise in achieving high energy/power efficiency with reduced environmental loads. In particular, due to the synergistic effect of using integrated solid oxide fuel cell (SOFC) and classical thermodynamic cycle technologies, the efficiency of the integrated system can be significantly improved. This paper reviews different concepts/strategies for SOFC-based integration systems, which are timely transformational energy-related technologies available to overcome the threats posed by climate change and energy security.

  13. Shock wave calibration of under-expanded natural gas fuel jets

    NASA Astrophysics Data System (ADS)

    White, T. R.; Milton, B. E.

    2008-10-01

    Natural gas, a fuel abundant in nature, cannot be used by itself in conventional diesel engines because of its low cetane number. However, it can be used as the primary fuel with ignition by a pilot diesel spray. This is called dual-fuelling. The gas may be introduced either into the inlet manifold or, preferably, directly into the cylinder where it is injected as a short duration, intermittent, sonic jet. For accurate delivery in the latter case, a constant flow-rate from the injector is required into the constantly varying pressure in the cylinder. Thus, a sonic (choked) jet is required which is generally highly under-expanded. Immediately at the nozzle exit, a shock structure develops which can provide essential information about the downstream flow. This shock structure, generally referred to as a “barrel” shock, provides a key to understanding the full injection process. It is examined both experimentally and numerically in this paper.

  14. Performance gains by using heated natural-gas fuel in an annular turbojet combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1973-01-01

    A full-scale annular turbojet combustor was tested with natural gas fuel heated from ambient temperature to 800 K (980 F). In all tests, heating the fuel improved combustion efficiency. Two sets of gaseous fuel nozzles were tested. Combustion instabilities occurred with one set of nozzles at two conditions: one where the efficiency approached 100 percent with the heated fuel; the other where the efficiency was very poor with the unheated fuel. The second set of nozzles exhibited no combustion instability. Altitude relight tests with the second set showed that relight was improved and was achievable at essentially the same condition as blowout when the fuel temperature was 800 K (980 F).

  15. Development of a Solid-Oxide Fuel Cell/Gas Turbine Hybrid System Model for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Freeh, Joshua E.; Pratt, Joseph W.; Brouwer, Jacob

    2004-01-01

    Recent interest in fuel cell-gas turbine hybrid applications for the aerospace industry has led to the need for accurate computer simulation models to aid in system design and performance evaluation. To meet this requirement, solid oxide fuel cell (SOFC) and fuel processor models have been developed and incorporated into the Numerical Propulsion Systems Simulation (NPSS) software package. The SOFC and reformer models solve systems of equations governing steady-state performance using common theoretical and semi-empirical terms. An example hybrid configuration is presented that demonstrates the new capability as well as the interaction with pre-existing gas turbine and heat exchanger models. Finally, a comparison of calculated SOFC performance with experimental data is presented to demonstrate model validity. Keywords: Solid Oxide Fuel Cell, Reformer, System Model, Aerospace, Hybrid System, NPSS

  16. Influence of carbonation under oxy-fuel combustion flue gas on the leachability of heavy metals in MSWI fly ash.

    PubMed

    Ni, Peng; Xiong, Zhuo; Tian, Chong; Li, Hailong; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang

    2017-09-01

    Due to the high cost of pure CO 2 , carbonation of MSWI fly ash has not been fully developed. It is essential to select a kind of reaction gas with rich CO 2 instead of pure CO 2 . The CO 2 uptake and leaching toxicity of heavy metals in three typical types of municipal solid waste incinerator (MSWI) fly ash were investigated with simulated oxy-fuel combustion flue gas under different reaction temperatures, which was compared with both pure CO 2 and simulated air combustion flue gas. The CO 2 uptake under simulated oxy-fuel combustion flue gas were similar to that of pure CO 2 . The leaching concentration of heavy metals in all MSWI fly ash samples, especially in ash from Changzhou, China (CZ), decreased after carbonation. Specifically, the leached Pb concentration of the CZ MSWI fly ash decreased 92% under oxy-fuel combustion flue gas, 95% under pure CO 2 atmosphere and 84% under the air combustion flue gas. After carbonation, the leaching concentration of Pb was below the Chinese legal limit. The leaching concentration of Zn from CZ sample decreased 69% under oxy-fuel combustion flue gas, which of Cu, As, Cr and Hg decreased 25%, 33%, 11% and 21%, respectively. In the other two samples of Xuzhou, China (XZ) and Wuhan, China (WH), the leaching characteristics of heavy metals were similar to the CZ sample. The speciation of heavy metals was largely changed from the exchangeable to carbonated fraction because of the carbonation reaction under simulated oxy-fuel combustion flue gas. After carbonation reaction, most of heavy metals bound in carbonates became more stable and leached less. Therefore, oxy-fuel combustion flue gas could be a low-cost source for carbonation of MSWI fly ash. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications

    NASA Astrophysics Data System (ADS)

    Welaya, Yousri M. A.; Mosleh, M.; Ammar, Nader R.

    2013-12-01

    Strong restrictions on emissions from marine power plants (particularly SOx, NOx) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and gas turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. It includes a study of a heatrecovery system for 18 MW SOFC fuelled by natural gas, to provide the electric power demand onboard commercial vessels. Feasible heat-recovery systems are investigated, taking into account different operating conditions of the combined system. Two types of SOFC are considered, tubular and planar SOFCs, operated with either natural gas or hydrogen fuels. This paper includes a detailed thermodynamic analysis for the combined system. Mass and energy balances are performed, not only for the whole plant but also for each individual component, in order to evaluate the thermal efficiency of the combined cycle. In addition, the effect of using natural gas as a fuel on the fuel cell voltage and performance is investigated. It is found that a high overall efficiency approaching 70% may be achieved with an optimum configuration using SOFC system under pressure. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

  18. High-Temperature Desulfurization of Heavy Fuel-Derived Reformate Gas Streams for SOFC Applications

    NASA Technical Reports Server (NTRS)

    Flytzani-Stephanopoulos, Maria; Surgenor, Angela D.

    2007-01-01

    Desulfurization of the hot reformate gas produced by catalytic partial oxidation or autothermal reforming of heavy fuels, such as JP-8 and jet fuels, is required prior to using the gas in a solid oxide fuel cell (SOFC). Development of suitable sorbent materials involves the identification of sorbents with favorable sulfidation equilibria, good kinetics, and high structural stability and regenerability at the SOFC operating temperatures (650 to 800 C). Over the last two decades, a major barrier to the development of regenerable desulfurization sorbents has been the gradual loss of sorbent performance in cyclic sulfidation and regeneration at such high temperatures. Mixed oxide compositions based on ceria were examined in this work as regenerable sorbents in simulated reformate gas mixtures and temperatures greater than 650 C. Regeneration was carried out with dilute oxygen streams. We have shown that under oxidative regeneration conditions, high regeneration space velocities (greater than 80,000 h(sup -1)) can be used to suppress sulfate formation and shorten the total time required for sorbent regeneration. A major finding of this work is that the surface of ceria and lanthanan sorbents can be sulfided and regenerated completely, independent of the underlying bulk sorbent. This is due to reversible adsorption of H2S on the surface of these sorbents even at temperatures as high as 800 C. La-rich cerium oxide formulations are excellent for application to regenerative H2S removal from reformate gas streams at 650 to 800 C. These results create new opportunities for compact sorber/regenerator reactor designs to meet the requirements of solid oxide fuel cell systems at any scale.

  19. A Massive Warm Baryonic Halo in the Coma Cluster

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimiliano; Joy, Marshall K.; Lieu, Richard

    2003-01-01

    Several deep PSPC observations of the Coma Cluster reveal a very large scale halo of soft X-ray emission, substantially in excess of the well-known radiation from the hot intracluster medium. The excess emission, previously reported in the central region of the cluster using lower sensitivity Extreme Ultraviolet Explorer (EUVE) and ROSAT data, is now evident out to a radius of 2.6 Mpc, demonstrating that the soft excess radiation from clusters is a phenomenon of cosmological significance. The X-ray spectrum at these large radii cannot be modeled nonthermally but is consistent with the original scenario of thermal emission from warm gas at approx. 10(exp 6) K. The mass of the warm gas is on par with that of the hot X-ray-emitting plasma and significantly more massive if the warm gas resides in low-density filamentary structures. Thus, the data lend vital support to current theories of cosmic evolution, which predict that at low redshift approx. 30%-40% of the baryons reside in warm filaments converging at clusters of galaxies.

  20. Thermodynamic analysis of fuels in gas phase: ethanol, gasoline and ethanol - gasoline predicted by DFT method.

    PubMed

    Neto, A F G; Lopes, F S; Carvalho, E V; Huda, M N; Neto, A M J C; Machado, N T

    2015-10-01

    This paper presents a theoretical study using density functional theory to calculate thermodynamics properties of major molecules compounds at gas phase of fuels like gasoline, ethanol, and gasoline-ethanol mixture in thermal equilibrium on temperature range up to 1500 K. We simulated a composition of gasoline mixture with ethanol for a thorough study of thermal energy, enthalpy, Gibbs free energy, entropy, heat capacity at constant pressure with respect to temperature in order to study the influence caused by ethanol as an additive to gasoline. We used semi-empirical computational methods as well in order to know the efficiency of other methods to simulate fuels through this methodology. In addition, the ethanol influence through the changes in percentage fractions of chemical energy released in combustion reaction and the variations on thermal properties for autoignition temperatures of fuels was analyzed. We verified how ethanol reduces the chemical energy released by gasoline combustion and how at low temperatures the gas phase fuels in thermal equilibrium have similar thermodynamic behavior. Theoretical results were compared with experimental data, when available, and showed agreement. Graphical Abstract Thermodynamic analysis of fuels in gas phase.

  1. Role of natural gas in meeting an electric sector emissions ...

    EPA Pesticide Factsheets

    With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but uncertainties exist in the amount of methane leakage occurring upstream in the extraction and production of natural gas. At high leakage levels, these methane emissions could outweigh the benefits of switching from coal to natural gas. This analysis uses the MARKAL linear optimization model to compare the carbon emissions profiles and system-wide global warming potential of the U.S. energy system over a series of model runs in which the power sector is asked to meet a specific CO2 reduction target and the availability of natural gas changes. Scenarios are run with a range of upstream methane emission leakage rates from natural gas production. While the total CO2 emissions are reduced in most scenarios, total greenhouse gas emissions show an increase or no change when both natural gas availability and methane emissions from natural gas production are high. Article presents summary of results from an analyses of natural gas resource availability and power sector emissions reduction strategies under different estimates of methane leakage rates during natural gas extraction and production. This was study was undertaken as part of the Energy Modeling Forum Study #31:

  2. The State of the Warm and Cold Gas in the Extreme Starburst at the Core of the Phoenix Galaxy Cluster (SPT-CLJ2344-4243)

    NASA Astrophysics Data System (ADS)

    McDonald, Michael; Swinbank, Mark; Edge, Alastair C.; Wilner, David J.; Veilleux, Sylvain; Benson, Bradford A.; Hogan, Michael T.; Marrone, Daniel P.; McNamara, Brian R.; Wei, Lisa H.; Bayliss, Matthew B.; Bautz, Marshall W.

    2014-03-01

    We present new optical integral field spectroscopy (Gemini South) and submillimeter spectroscopy (Submillimeter Array) of the central galaxy in the Phoenix cluster (SPT-CLJ2344-4243). This cluster was previously reported to have a massive starburst (~800 M ⊙ yr-1) in the central, brightest cluster galaxy, most likely fueled by the rapidly cooling intracluster medium. These new data reveal a complex emission-line nebula, extending for >30 kpc from the central galaxy, detected at [O II]λλ3726, 3729, [O III]λλ4959, 5007, Hβ, Hγ, Hδ, [Ne III]λ3869, and He II λ4686. The total Hα luminosity, assuming Hα/Hβ = 2.85, is L Hα = 7.6 ± 0.4 ×1043 erg s-1, making this the most luminous emission-line nebula detected in the center of a cool core cluster. Overall, the relative fluxes of the low-ionization lines (e.g., [O II], Hβ) to the UV continuum are consistent with photoionization by young stars. In both the center of the galaxy and in a newly discovered highly ionized plume to the north of the galaxy, the ionization ratios are consistent with both shocks and active galactic nucleus (AGN) photoionization. We speculate that this extended plume may be a galactic wind, driven and partially photoionized by both the starburst and central AGN. Throughout the cluster we measure elevated high-ionization line ratios (e.g., He II/Hβ, [O III]/Hβ), coupled with an overall high-velocity width (FWHM gsim 500 km s-1), suggesting that shocks are likely important throughout the interstellar medium of the central galaxy. These shocks are most likely driven by a combination of stellar winds from massive young stars, core-collapse supernovae, and the central AGN. In addition to the warm, ionized gas, we detect a substantial amount of cold, molecular gas via the CO(3-2) transition, coincident in position with the galaxy center. We infer a molecular gas mass of M_{H_2} = 2.2 ± 0.6 × 1010 M ⊙, which implies that the starburst will consume its fuel in ~30 Myr if it is not

  3. A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools

    NASA Astrophysics Data System (ADS)

    Pizzocri, D.; Pastore, G.; Barani, T.; Magni, A.; Luzzi, L.; Van Uffelen, P.; Pitts, S. A.; Alfonsi, A.; Hales, J. D.

    2018-04-01

    The description of intra-granular fission gas behaviour is a fundamental part of any model for the prediction of fission gas release and swelling in nuclear fuel. In this work we present a model describing the evolution of intra-granular fission gas bubbles in terms of bubble number density and average size, coupled to gas release to grain boundaries. The model considers the fundamental processes of single gas atom diffusion, gas bubble nucleation, re-solution and gas atom trapping at bubbles. The model is derived from a detailed cluster dynamics formulation, yet it consists of only three differential equations in its final form; hence, it can be efficiently applied in engineering fuel performance codes while retaining a physical basis. We discuss improvements relative to previous single-size models for intra-granular bubble evolution. We validate the model against experimental data, both in terms of bubble number density and average bubble radius. Lastly, we perform an uncertainty and sensitivity analysis by propagating the uncertainties in the parameters to model results.

  4. Fuel Cell Power Plants Renewable and Waste Fuels

    DTIC Science & Technology

    2011-01-13

    of FuelCell Energy, Inc. Fuels Resources for DFC • Natural Gas and LNG • Propane • Biogas (by Anaerobicnaerobic Digestion) - Municipal Waste...FUEL RESOURCES z NATURAL GAS z PROPANE z DFC H2 (50-60%) z ETHANOL zWASTE METHANE z BIOGAS z COAL GAS Diversity of Fuels plus High Efficiency...trademarks (®) of FuelCell Energy, Inc. DFC Advantages for Biogas • More power for given amount of biogas : Higher efficiency than

  5. Light-duty vehicle greenhouse gas emission standards and corporate average fuel economy standards : final rule

    DOT National Transportation Integrated Search

    2010-05-07

    Final Rule to establish a National Program consisting of new standards for light-duty vehicles that will reduce greenhouse gas emissions and improve fuel economy. This joint : Final Rule is consistent with the National Fuel Efficiency Policy announce...

  6. Fuel use and greenhouse gas emissions of world fisheries

    NASA Astrophysics Data System (ADS)

    Parker, Robert W. R.; Blanchard, Julia L.; Gardner, Caleb; Green, Bridget S.; Hartmann, Klaas; Tyedmers, Peter H.; Watson, Reg A.

    2018-04-01

    Food production is responsible for a quarter of anthropogenic greenhouse gas (GHG) emissions globally. Marine fisheries are typically excluded from global assessments of GHGs or are generalized based on a limited number of case studies. Here we quantify fuel inputs and GHG emissions for the global fishing fleet from 1990-2011 and compare emissions from fisheries to those from agriculture and livestock production. We estimate that fisheries consumed 40 billion litres of fuel in 2011 and generated a total of 179 million tonnes of CO2-equivalent GHGs (4% of global food production). Emissions from the global fishing industry grew by 28% between 1990 and 2011, with little coinciding increase in production (average emissions per tonne landed grew by 21%). Growth in emissions was driven primarily by increased harvests from fuel-intensive crustacean fisheries. The environmental benefit of low-carbon fisheries could be further realized if a greater proportion of landings were directed to human consumption rather than industrial uses.

  7. Ensuring Reliable Natural Gas-Fired Generation with Fuel Contracts and Storage - DOE/NETL-2017/1816

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myles, Paul T.; Labarbara, Kirk A.; Logan, Cecilia Elise

    This report finds that natural gas-fired power plants purchase fuel both on the spot market and through firm supply contracts; there do not appear to be clear drivers propelling power plants toward one or the other type. Most natural gas-fired power generators are located near major natural gas transmission pipelines, and most natural gas contracts are currently procured on the spot market. Although there is some regional variation in the type of contract used, a strong regional pattern does not emerge. Whether gas prices are higher with spot or firm contracts varies by both region and year. Natural gas pricesmore » that push the generators higher in the supply curve would make them less likely to dispatch. Most of the natural gas generators discussed in this report would be unlikely to enter firm contracts if the agreed price would decrease their dispatch frequency. The price points at which these generators would be unlikely to enter a firm contract depends upon the region that the generator is in, and how dependent that region is on natural gas. The Electric Reliability Council of Texas (ERCOT) is more dependent on natural gas than either Eastern Interconnection or Western Interconnection. This report shows that above-ground storage is prohibitively expensive with respect to providing storage for an extended operational fuel reserve comparable to the amount of on-site fuel storage used for coal-fired plants. Further, both pressurized and atmospheric tanks require a significant amount of land for storage, even to support one day’s operation at full output. Underground storage offers the only viable option for 30-day operational storage of natural gas, and that is limited by the location of suitable geologic formations and depleted fields.« less

  8. Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alleman, T. L.; Eudy, L.; Miyasato, M.

    A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

  9. FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS: CONCEPTUAL DESIGN AND ASSESSMENT

    EPA Science Inventory

    The conceptual design of a fuel cell (FC) system for operation on anaerobic digester gas (ADG) is described and its economic and environmental feasibility is projected. ADG is produced at water treatment plants during the process of treating sewage anaerobically to reduce solids....

  10. A critical review of noise production models for turbulent, gas-fueled burners

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.

    1984-01-01

    The combustion noise literature for the period between 1952 and early 1984 is critically reviewed. Primary emphasis is placed on past theoretical and semi-empirical attempts to predict or explain observed direct combustion noise characteristics of turbulent, gas-fueled burners; works involving liquid-fueled burners are reviewed only when ideas equally applicable to gas-fueled burners are pesented. The historical development of the most important contemporary direct combustion noise theories is traced, and the theories themselves are compared and criticized. While most theories explain combustion noise production by turbulent flames in terms of randomly distributed acoustic monopoles produced by turbulent mixing of products and reactants, none is able to predict the sound pressure in the acoustic farfield of a practical burner because of the lack of a proven model which relates the combustion noise source strenght at a given frequency to the design and operating parameters of the burner. Recommendations are given for establishing a benchmark-quality data base needed to support the development of such a model.

  11. Role of nuclear energy to a future society of shortage of energy resources and global warming

    NASA Astrophysics Data System (ADS)

    Saito, Shinzo

    2010-03-01

    Human society entered into the society of large energy consumption since the industrial revolution and consumes more than 10 billion tons of oil equivalent energy a year in the world in the present time, in which over 80% is provided by fossil fuels such as coal, oil and natural gas. Total energy consumption is foreseen to increase year by year from now on due to significant economical and population growth in the developing countries such as China and India. However, fossil fuel resources are limited with conventional crude oil estimated to last about 40 years, and it is said that the peak oil production time has come now. On the other hand, global warming due to green house gases (GHG) emissions, especially carbon dioxide, has become a serious issue. Nuclear energy plays an important role as means to resolve energy security and global warming issues. Four hundred twenty-nine nuclear power plants are operating world widely producing 16% of the total electric power with total plant capacity of 386 GWe without emission of CO 2 as of 2006. It is estimated that another 250 GWe nuclear power is needed to keep the same level contribution of electricity generation in 2030. On the other hand, the Japan Atomic Energy Research Institute (JAERI) developed the very high temperature gas-cooled reactor (HTGR) named high temperature gas-cooled engineering test reactor (HTTR) and carbon free hydrogen production process (IS process). Nuclear energy utilization will surely widen in, not only electricity generation, but also various industries such as steel making, chemical industries, together with hydrogen production for transportation by introduction of HTGRs. The details of development of the HTTR and IS process are also described.

  12. Characterization of fission gas bubbles in irradiated U-10Mo fuel

    DOE PAGES

    Casella, Andrew M.; Burkes, Douglas E.; MacFarlan, Paul J.; ...

    2017-06-06

    A simple, repeatable method for characterization of fission gas bubbles in irradiated U-Mo fuels has been developed. This method involves mechanical potting and polishing of samples along with examination with a scanning electron microscope located outside of a hot cell. The commercially available software packages CellProfiler, MATLAB, and Mathematica are used to segment and analyze the captured images. The results are compared and contrasted. Finally, baseline methods for fission gas bubble characterization are suggested for consideration and further development.

  13. Edge seal for a porous gas distribution plate of a fuel cell

    DOEpatents

    Feigenbaum, Haim; Pudick, Sheldon; Singh, Rajindar

    1984-01-01

    In an improved seal for a gas distribution plate of a fuel cell, a groove is provided extending along an edge of the plate. A member of resinous material is arranged within the groove and a paste comprising an immobilized acid is arranged surrounding the member and substantially filling the groove. The seal, which is impervious to the gas being distributed, is resistant to deterioration by the electrolyte of the cell.

  14. Assessment of institutional barriers to the use of natural gas fuel in automotive vehicle fleets

    NASA Technical Reports Server (NTRS)

    Jablonski, J.; Lent, L.; Lawrence, M.; White, L.

    1983-01-01

    Institutional barriers to the use of natural gas as a fuel for motor vehicle fleets were identified. Recommendations for barrier removal were developed. Eight types of institutional barriers were assessed: (1) lack of a national standard for the safe design and certification of natural gas vehicles and refueling stations; (2) excessively conservative or misapplied state and local regulations, including bridge and tunnel restrictions, restrictions on types of vehicles that may be fueled by natural gas, zoning regulations that prohibit operation of refueling stations, parking restrictions, application of LPG standards to LNG vehicles, and unintentionally unsafe vehicle or refueling station requirements; (3) need for clarification of EPA's tampering enforcement policy; (4) the U.S. hydrocarbon standard; (5) uncertainty concerning state utility commission jurisdiction; (6) sale for resale prohibitions imposed by natural gas utility companies or state utility commissions; (7) uncertainty of the effects of conversions to natural gas on vehicle manufactures warranties; and (8) need for a natural gas to gasoline equivalent units conversion factor for use in calculation of state road use taxes.

  15. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels

    NASA Astrophysics Data System (ADS)

    Crutzen, P. J.; Mosier, A. R.; Smith, K. A.; Winiwarter, W.

    2008-01-01

    The relationship, on a global basis, between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N2O), has been re-examined, using known global atmospheric removal rates and concentration growth of N2O as a proxy for overall emissions. For both the pre-industrial period and in recent times, after taking into account the large-scale changes in synthetic N fertiliser production, we find an overall conversion factor of 3-5% from newly fixed N to N2O-N. We assume the same factor to be valid for biofuel production systems. It is covered only in part by the default conversion factor for "direct" emissions from agricultural crop lands (1%) estimated by IPCC (2006), and the default factors for the "indirect" emissions (following volatilization/deposition and leaching/runoff of N: 0.35-0.45%) cited therein. However, as we show in the paper, when additional emissions included in the IPCC methodology, e.g. those from livestock production, are included, the total may not be inconsistent with that given by our "top-down" method. When the extra N2O emission from biofuel production is calculated in "CO2-equivalent" global warming terms, and compared with the quasi-cooling effect of "saving" emissions of fossil fuel derived CO2, the outcome is that the production of commonly used biofuels, such as biodiesel from rapeseed and bioethanol from corn (maize), depending on N fertilizer uptake efficiency by the plants, can contribute as much or more to global warming by N2O emissions than cooling by fossil fuel savings. Crops with less N demand, such as grasses and woody coppice species, have more favourable climate impacts. This analysis only considers the conversion of biomass to biofuel. It does not take into account the use of fossil fuel on the farms and for fertilizer and pesticide production, but it also neglects the production of useful co-products. Both factors partially compensate

  16. Geoengineering the Climate: Approaches to Counterbalancing Global Warming

    NASA Astrophysics Data System (ADS)

    MacCracken, M. C.

    2005-12-01

    For the past two hundred years, the inadvertent release of carbon dioxide and other radiatively active gases and aerosols, particularly as a result of combustion of fossil fuels and changes in land cover, have been contributing to global climate change. Global warming to date is approaching 1°C, and this is being accompanied by reduced sea ice, rising sea level, shifting ecosystems and more. Rather than sharply curtailing use of fossil fuels in order to reduce CO2 emissions and eventually eliminate the net human influence on global climate, a number of approaches have been suggested that are intended to advertently modify the climate in a manner to counter-balance the warming influence of greenhouse gas emissions. One general type of approach is carbon sequestration, which focuses on capturing the CO2 and then sequestering it underground or in the ocean. This can be done at the source of emission, by pulling the CO2 out of the atmosphere through some chemical process, or by enhancing the natural processes that remove CO2 from the atmosphere, for example by fertilizing the oceans with iron. A second general approach to geoengineering the climate is to lower the warming influence of the incoming solar radiation by an amount equivalent to the energy captured by the CO2-induced enhancement of the greenhouse effect. Proposals have been made to do this by locating a deflector at the Earth-Sun Lagrange point, lofting many thousands of near-Earth mirrors, injecting aerosols into the stratosphere, or by increasing the surface albedo. A third general approach is to alter natural Earth system processes in ways that would counterbalance the effects of the warming. Among suggested approaches are constructing dams to block various ocean passages, oceanic films to limit evaporation and water vapor feedback, and even, at small scale, to insulate mountain glaciers to prevent melting. Each of these approaches has its advantages, ranging from simplicity to reversibility, and

  17. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby S. Chapman; Amar Patil

    2007-06-30

    Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the leanmore » operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas

  18. Switching to a U.S. hydrogen fuel cell vehicle fleet: The resultant change in emissions, energy use, and greenhouse gases

    NASA Astrophysics Data System (ADS)

    Colella, W. G.; Jacobson, M. Z.; Golden, D. M.

    This study examines the potential change in primary emissions and energy use from replacing the current U.S. fleet of fossil-fuel on-road vehicles (FFOV) with hybrid electric fossil fuel vehicles or hydrogen fuel cell vehicles (HFCV). Emissions and energy usage are analyzed for three different HFCV scenarios, with hydrogen produced from: (1) steam reforming of natural gas, (2) electrolysis powered by wind energy, and (3) coal gasification. With the U.S. EPA's National Emission Inventory as the baseline, other emission inventories are created using a life cycle assessment (LCA) of alternative fuel supply chains. For a range of reasonable HFCV efficiencies and methods of producing hydrogen, we find that the replacement of FFOV with HFCV significantly reduces emission associated with air pollution, compared even with a switch to hybrids. All HFCV scenarios decrease net air pollution emission, including nitrogen oxides, volatile organic compounds, particulate matter, ammonia, and carbon monoxide. These reductions are achieved with hydrogen production from either a fossil fuel source such as natural gas or a renewable source such as wind. Furthermore, replacing FFOV with hybrids or HFCV with hydrogen derived from natural gas, wind or coal may reduce the global warming impact of greenhouse gases and particles (measured in carbon dioxide equivalent emission) by 6, 14, 23, and 1%, respectively. Finally, even if HFCV are fueled by a fossil fuel such as natural gas, if no carbon is sequestered during hydrogen production, and 1% of methane in the feedstock gas is leaked to the environment, natural gas HFCV still may achieve a significant reduction in greenhouse gas and air pollution emission over FFOV.

  19. Laboratory evaluation of warm mix asphalt.

    DOT National Transportation Integrated Search

    2011-09-14

    "Hot Mix Asphalt (HMA) has been traditionally produced at a discharge temperature of between : 280F (138C) and 320 F (160C), resulting in high energy (fuel) costs and generation of greenhouse : gases. The goal for Warm Mix Asphalt (WMA) is to...

  20. Herschel-spire Fourier transform spectrometer observations of excited CO and [C I] in the antennae (NGC 4038/39): Warm and cold molecular gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schirm, Maximilien R. P.; Wilson, Christine D.; Parkin, Tara J.

    2014-02-01

    We present Herschel Spectral and Photometric Imaging Receiver (SPIRE) Fourier Transform Spectrometer (FTS) observations of the Antennae (NGC 4038/39), a well-studied, nearby (22 Mpc), ongoing merger between two gas-rich spiral galaxies. The SPIRE-FTS is a low spatial ( FWHM ∼ 19''-43'') and spectral (∼1.2 GHz) resolution mapping spectrometer covering a large spectral range (194-671 μm, 450-1545 GHz). We detect five CO transitions (J = 4-3 to J = 8-7), both [C I] transitions, and the [N II] 205 μm transition across the entire system, which we supplement with ground-based observations of the CO J = 1-0, J = 2-1, andmore » J = 3-2 transitions and Herschel Photodetecting Array Camera and Spectrometer (PACS) observations of [C II] and [O I] 63 μm. Using the CO and [C I] transitions, we perform both a local thermodynamic equilibrium (LTE) analysis of [C I] and a non-LTE radiative transfer analysis of CO and [C I] using the radiative transfer code RADEX along with a Bayesian likelihood analysis. We find that there are two components to the molecular gas: a cold (T {sub kin} ∼ 10-30 K) and a warm (T {sub kin} ≳ 100 K) component. By comparing the warm gas mass to previously observed values, we determine a CO abundance in the warm gas of x {sub CO} ∼ 5 × 10{sup –5}. If the CO abundance is the same in the warm and cold gas phases, this abundance corresponds to a CO J = 1-0 luminosity-to-mass conversion factor of α{sub CO} ∼ 7 M {sub ☉} pc{sup –2} (K km s{sup –1}){sup –1} in the cold component, similar to the value for normal spiral galaxies. We estimate the cooling from H{sub 2}, [C II], CO, and [O I] 63 μm to be ∼0.01 L {sub ☉}/M {sub ☉}. We compare photon-dominated region models to the ratio of the flux of various CO transitions, along with the ratio of the CO flux to the far-infrared flux in NGC 4038, NGC 4039, and the overlap region. We find that the densities recovered from our non-LTE analysis are consistent with a background far

  1. Ducted fuel injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Charles J.

    Various technologies presented herein relate to enhancing mixing inside a combustion chamber to form one or more locally premixed mixtures comprising fuel and charge-gas with low peak fuel to charge-gas ratios to enable minimal, or no, generation of soot and other undesired emissions during ignition and subsequent combustion of the locally premixed mixtures. To enable sufficient mixing of the fuel and charge-gas, a jet of fuel can be directed to pass through a bore of a duct causing charge-gas to be drawn into the bore creating turbulence to mix the fuel and the drawn charge-gas. The duct can be locatedmore » proximate to an opening in a tip of a fuel injector. The duct can comprise of one or more holes along its length to enable charge-gas to be drawn into the bore, and further, the duct can cool the fuel and/or charge-gas prior to combustion.« less

  2. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons.

    PubMed

    Olah, George A; Goeppert, Alain; Prakash, G K Surya

    2009-01-16

    Nature's photosynthesis uses the sun's energy with chlorophyll in plants as a catalyst to recycle carbon dioxide and water into new plant life. Only given sufficient geological time can new fossil fuels be formed naturally. In contrast, chemical recycling of carbon dioxide from natural and industrial sources as well as varied human activities or even from the air itself to methanol or dimethyl ether (DME) and their varied products can be achieved via its capture and subsequent reductive hydrogenative conversion. The present Perspective reviews this new approach and our research in the field over the last 15 years. Carbon recycling represents a significant aspect of our proposed Methanol Economy. Any available energy source (alternative energies such as solar, wind, geothermal, and atomic energy) can be used for the production of needed hydrogen and chemical conversion of CO(2). Improved new methods for the efficient reductive conversion of CO(2) to methanol and/or DME that we have developed include bireforming with methane and ways of catalytic or electrochemical conversions. Liquid methanol is preferable to highly volatile and potentially explosive hydrogen for energy storage and transportation. Together with the derived DME, they are excellent transportation fuels for internal combustion engines (ICE) and fuel cells as well as convenient starting materials for synthetic hydrocarbons and their varied products. Carbon dioxide thus can be chemically transformed from a detrimental greenhouse gas causing global warming into a valuable, renewable and inexhaustible carbon source of the future allowing environmentally neutral use of carbon fuels and derived hydrocarbon products.

  3. STATUS OF TRISO FUEL IRRADIATIONS IN THE ADVANCED TEST REACTOR SUPPORTING HIGH-TEMPERATURE GAS-COOLED REACTOR DESIGNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davenport, Michael; Petti, D. A.; Palmer, Joe

    2016-11-01

    The United States Department of Energy’s Advanced Reactor Technologies (ART) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experimentsmore » are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and completed in October 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and completed in April 2014. Since the purpose of this experiment was to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment was significantly different from the first two experiments, though the

  4. Gas phase recovery of hydrogen sulfide contaminated polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kakati, Biraj Kumar; Kucernak, Anthony R. J.

    2014-04-01

    The effect of hydrogen sulfide (H2S) on the anode of a polymer electrolyte membrane fuel cell (PEMFC) and the gas phase recovery of the contaminated PEMFC using ozone (O3) were studied. Experiments were performed on fuel cell electrodes both in an aqueous electrolyte and within an operating fuel cell. The ex-situ analyses of a fresh electrode; a H2S contaminated electrode (23 μmolH2S cm-2); and the contaminated electrode cleaned with O3 shows that all sulfide can be removed within 900 s at room temperature. Online gas analysis of the recovery process confirms the recovery time required as around 720 s. Similarly, performance studies of an H2S contaminated PEMFC shows that complete rejuvenation occurs following 600-900 s O3 treatment at room temperature. The cleaning process involves both electrochemical oxidation (facilitated by the high equilibrium potential of the O3 reduction process) and direct chemical oxidation of the contaminant. The O3 cleaning process is more efficient than the external polarization of the single cell at 1.6 V. Application of O3 at room temperature limits the amount of carbon corrosion. Room temperature O3 treatment of poisoned fuel cell stacks may offer an efficient and quick remediation method to recover otherwise inoperable systems.

  5. Fuel property effects on USAF gas turbine engine combustors and afterburners

    NASA Technical Reports Server (NTRS)

    Reeves, C. M.

    1984-01-01

    Since the early 1970s, the cost and availability of aircraft fuel have changed drastically. These problems prompted a program to evaluate the effects of broadened specification fuels on current and future aircraft engine combustors employed by the USAF. Phase 1 of this program was to test a set of fuels having a broad range of chemical and physical properties in a select group of gas turbine engine combustors currently in use by the USAF. The fuels ranged from JP4 to Diesel Fuel number two (DF2) with hydrogen content ranging from 14.5 percent down to 12 percent by weight, density ranging from 752 kg/sq m to 837 kg/sq m, and viscosity ranging from 0.830 sq mm/s to 3.245 sq mm/s. In addition, there was a broad range of aromatic content and physical properties attained by using Gulf Mineral Seal Oil, Xylene Bottoms, and 2040 Solvent as blending agents in JP4, JP5, JP8, and DF2. The objective of Phase 2 was to develop simple correlations and models of fuel effects on combustor performance and durability. The major variables of concern were fuel chemical and physical properties, combustor design factors, and combustor operating conditions.

  6. Hydrogen Gas as a Fuel in Direct Injection Diesel Engine

    NASA Astrophysics Data System (ADS)

    Dhanasekaran, Chinnathambi; Mohankumar, Gabriael

    2016-04-01

    Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.

  7. Ecodriving and carbon footprinting : understanding how public education can reduce greenhouse gas emissions and fuel use.

    DOT National Transportation Integrated Search

    2012-04-01

    Ecodriving is a collection of changes to driving behavior and vehicle maintenance designed to impact fuel consumption and greenhouse gas (GHG) emissions in existing vehicles. Because of its promise to improve fuel economy within the existing fleet, e...

  8. Catalyst for converting synthesis gas to liquid motor fuels

    DOEpatents

    Coughlin, Peter K.

    1986-01-01

    The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  9. Spectrophotometric determination of vanadium and its application to gas-turbine fuel-oils.

    PubMed

    Banerjee, S; Sinha, B P; Dutta, R K

    1975-08-01

    A very sensitive spectrophotometric method for the determination of vanadium in furnace oils is described. The intense indigo-blue colour developed by the reaction of vanadium with tannin and thioglycollic acid is measured at a wavelength of 600 nm at pH 4 and obeys Beer's law between 0.5 and 5 ppm vanadium. The method is applicable to gas-turbine fuel-oil and special navy fuel-oils. The common mineral constituents usually present in such oils do not interfere.

  10. Green-house gas mitigation capacity of a small scale rural biogas plant calculations for Bangladesh through a general life cycle assessment.

    PubMed

    Rahman, Khondokar M; Melville, Lynsey; Fulford, David; Huq, Sm Imamul

    2017-10-01

    Calculations towards determining the greenhouse gas mitigation capacity of a small-scale biogas plant (3.2 m 3 plant) using cow dung in Bangladesh are presented. A general life cycle assessment was used, evaluating key parameters (biogas, methane, construction materials and feedstock demands) to determine the net environmental impact. The global warming potential saving through the use of biogas as a cooking fuel is reduced from 0.40 kg CO 2 equivalent to 0.064 kg CO 2 equivalent per kilogram of dung. Biomethane used for cooking can contribute towards mitigation of global warming. Prior to utilisation of the global warming potential of methane (from 3.2 m 3 biogas plant), the global warming potential is 13 t of carbon dioxide equivalent. This reduced to 2 t as a result of complete combustion of methane. The global warming potential saving of a bioenergy plant across a 20-year life cycle is 217 t of carbon dioxide equivalent, which is 11 t per year. The global warming potential of the resultant digestate is zero and from construction materials is less than 1% of total global warming potential. When the biogas is used as a fuel for cooking, the global warming potential will reduce by 83% compare with the traditional wood biomass cooking system. The total 80 MJ of energy that can be produced from a 3.2 m 3 anaerobic digestion plant would replace 1.9 t of fuel wood or 632 kg of kerosene currently used annually in Bangladesh. The digestate can also be used as a nutrient rich fertiliser substituting more costly inorganic fertilisers, with no global warming potential impact.

  11. Integral gas seal for fuel cell gas distribution assemblies and method of fabrication

    DOEpatents

    Dettling, Charles J.; Terry, Peter L.

    1985-03-19

    A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.

  12. Method of fabricating an integral gas seal for fuel cell gas distribution assemblies

    DOEpatents

    Dettling, Charles J.; Terry, Peter L.

    1988-03-22

    A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.

  13. Five Year Follow-Up of a Randomized Controlled Trial on Warming and Humidification of Insufflation Gas in Laparoscopic Colonic Surgery—Impact on Small Bowel Obstruction and Oncologic Outcomes

    PubMed Central

    Sammour, Tarik; Hill, Andrew G.

    2015-01-01

    Warming and humidification of insufflation gas has been shown to reduce adhesion formation and tumor implantation in the laboratory setting, but clinical evidence is lacking. We aimed to test the hypothesis that warming and humidification of insufflation CO2 would lead to reduced adhesion formation, and improve oncologic outcomes in laparoscopic colonic surgery. This was a 5-year follow-up of a multicenter, double-blinded, randomized, controlled trial investigating warming and humidification of insufflation gas. The study group received warmed (37°C), humidified (98%) insufflation carbon dioxide, and the control group received standard gas (19°C, 0%). All other aspects of patient care were standardized. Admissions for small bowel obstruction were recorded, as well as whether management was operative or nonoperative. Local and systemic cancer recurrence, 5-year overall survival, and cancer specific survival rates were also recorded. Eighty two patients were randomized, with 41 in each arm. Groups were well matched at baseline. There was no difference between the study and control groups in the rate of clinical small bowel obstruction (5.7% versus 0%, P 0.226); local recurrence (6.5% versus 6.1%, P 1.000); overall survival (85.7% versus 82.1%, P 0.759); or cancer-specific survival (90.3% versus 87.9%, P 1.000). Warming and humidification of insufflation CO2 in laparoscopic colonic surgery does not appear to confer a clinically significant long term benefit in terms of adhesion reduction or oncological outcomes, although a much larger randomized controlled trial (RCT) would be required to confirm this. ClinicalTrials.gov Trial identifier: NCT00642005; US National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA. PMID:25875541

  14. Five year follow-up of a randomized controlled trial on warming and humidification of insufflation gas in laparoscopic colonic surgery--impact on small bowel obstruction and oncologic outcomes.

    PubMed

    Sammour, Tarik; Hill, Andrew G

    2015-04-01

    Warming and humidification of insufflation gas has been shown to reduce adhesion formation and tumor implantation in the laboratory setting, but clinical evidence is lacking. We aimed to test the hypothesis that warming and humidification of insufflation CO2 would lead to reduced adhesion formation, and improve oncologic outcomes in laparoscopic colonic surgery. This was a 5-year follow-up of a multicenter, double-blinded, randomized, controlled trial investigating warming and humidification of insufflation gas. The study group received warmed (37°C), humidified (98%) insufflation carbon dioxide, and the control group received standard gas (19°C, 0%). All other aspects of patient care were standardized. Admissions for small bowel obstruction were recorded, as well as whether management was operative or nonoperative. Local and systemic cancer recurrence, 5-year overall survival, and cancer specific survival rates were also recorded. Eighty two patients were randomized, with 41 in each arm. Groups were well matched at baseline. There was no difference between the study and control groups in the rate of clinical small bowel obstruction (5.7% versus 0%, P 0.226); local recurrence (6.5% versus 6.1%, P 1.000); overall survival (85.7% versus 82.1%, P 0.759); or cancer-specific survival (90.3% versus 87.9%, P 1.000). Warming and humidification of insufflation CO2 in laparoscopic colonic surgery does not appear to confer a clinically significant long term benefit in terms of adhesion reduction or oncological outcomes, although a much larger randomized controlled trial (RCT) would be required to confirm this. ClinicalTrials.gov Trial identifier: NCT00642005; US National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA.

  15. A Model of Carbon Capture and Storage with Demonstration of Global Warming Potential and Fossil Fuel Resource Use Efficiency

    NASA Astrophysics Data System (ADS)

    Suebsiri, Jitsopa

    Increasing greenhouse gas concentration in the atmosphere influences global climate change even though the level of impact is still unclear. Carbon dioxide capture and storage (CCS) is increasingly seen as an important component of broadly based greenhouse gas reduction measures. Although the other greenhouse gases are more potent, the sheer volume of CO 2 makes it dominant in term of its effect in the atmosphere. To understand the implications, CCS activities should be studied from a full life cycle perspective. This thesis outlines the successful achievement of the objectives of this study in conducting life cycle assessment (LCA), reviewing the carbon dioxide implications only, combining two energy systems, coal-fired electrical generations and CO2 used for enhanced oil recovery (EOR). LCA is the primary approach used in this study to create a tool for CCS environmental evaluation. The Boundary Dam Power Station (BDPS) and the Weyburn-Midale CO 2 EOR Project in Saskatchewan, Canada, are studied and adopted as case scenarios to find the potential for effective application of CCS in both energy systems. This study demonstrates two levels of retrofitting of the BDPS, retrofit of unit 3 or retrofit of all units, combined with three options for CO 2 geological storage: deep saline aquifer, CO2 EOR, and a combination of deep saline aquifer storage and CO2 EOR. Energy output is considered the product of combining these two energy resources (coal and oil). Gigajoules (GJ) are used as the fundamental unit of measurement in comparing the combined energy types. The application of this tool effectively demonstrates the results of application of a CCS system concerning global warming potential (GWP) and fossil fuel resource use efficiency. Other environmental impacts could be analyzed with this tool as well. In addition, the results demonstrate that the GWP reduction is directly related to resource use efficiency. This means the lower the GWP of CCS, the lower resource use

  16. Characterization of fission gas bubbles in irradiated U-10Mo fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casella, Andrew M.; Burkes, Douglas E.; MacFarlan, Paul J.

    2017-09-01

    Irradiated U-10Mo fuel samples were prepared with traditional mechanical potting and polishing methods with in a hot cell. They were then removed and imaged with an SEM located outside of a hot cell. The images were then processed with basic imaging techniques from 3 separate software packages. The results were compared and a baseline method for characterization of fission gas bubbles in the samples is proposed. It is hoped that through adoption of or comparison to this baseline method that sample characterization can be somewhat standardized across the field of post irradiated examination of metal fuels.

  17. Communicating the Dangers of Global Warming

    NASA Astrophysics Data System (ADS)

    Hansen, J. E.

    2006-12-01

    So far, in my opinion, we scientists have not done a good job of communicating the imminent threat posed by global warming, yet I believe there is still time for that if we work efficiently now to overcome existing obstacles. Several of those obstacles are illustrated by contrasting the roles of scientists, the media, special interests, politicians and the public in the ozone depletion and global warming crises. Scientists in America are further challenged by a decline in public science education, a perceived gap between science and religion, increasing politicization of public affairs offices in the government, and accumulation of power by a unitary executive. First order communication tasks are illustrated by a need for improved exchange and understanding, among scientists as well as with the public, of fundamental climate facts: (1) additional global warming exceeding 1C will yield large climate effects, (2) paleoclimate changes contain quantitatively specific information about climate sensitivity that is not widely appreciated, (3) carbon cycle facts, such as the substantial portion of carbon dioxide emissions that will remain in the air "forever", for practical purposes, (4) fossil fuel facts such as the dominant role of coal and unconventional fuels in all business-as-usual scenarios for future energy sources. The facts graphically illustrate the need for prompt actions to avoid disastrous climate change, yet they also reveal the feasibility of a course that minimizes global warming and yields other benefits. Perhaps the greatest challenge is posed by an inappropriate casting of the topic as a dichotomy between those who deny that there is a global warming problem and those who either are exceedingly pessimistic about the prospects for minimizing climate change or believe that solutions would be very expensive. Sensible evaluation of the situation, in my opinion, suggests a strategy for dealing with global warming that is not costly and has many subsidiary

  18. Performance of PEM fuel cells stack as affected by number of cell and gas flow-rate

    NASA Astrophysics Data System (ADS)

    Syampurwadi, A.; Onggo, H.; Indriyati; Yudianti, R.

    2017-03-01

    The proton exchange membrane fuel cell (PEMFC) is a promising technology as an alternative green energy due to its high power density, low operating temperatures, low local emissions, quiet operation and fast start up-shutdown. In order to apply fuel cell as portable power supply, the performance investigation of small number of cells is needed. In this study, PEMFC stacks consisting of 1, 3, 5 and 7-cells with an active area of 25 cm2 per cell have been designed and developed. Their was evaluated in variation of gas flow rate. The membrane electrode assembly (MEA) was prepared by hot-pressing commercial gas diffusion electrodes (Pt loading 0.5 mg/cm2) on pre-treated Nafion 117 membrane. The stacks were constructed using bipolar plates in serpentine pattern and Z-type gas flow configuration. The experimental results were presented as polarization and power output curves which show the effects of varying number of cells and H2/O2 flow-rates on the PEMFC performance. The experimental results showed that not only number of cells and gas flow-rates affected the fuel cells performance, but also the operating temperature as a result of electrochemistry reaction inside the cell.

  19. Can a fermentation gas mainly produced by rumen Isotrichidae ciliates be a potential source of biohydrogen and a fuel for a chemical fuel cell?

    PubMed

    Piela, Piotr; Michałowski, Tadeusz; Miltko, Renata; Szewczyk, Krzysztof; Sikora, Radosław; Grzesiuk, Elzbieta; Sikora, Anna

    2010-07-01

    Bacteria, fungi and protozoa inhabiting the rumen, the largest chamber of the ruminants' stomach, release large quantities of hydrogen during the fermentation of carbohydrates. The hydrogen is used by coexisting methanogens to produce methane in energy-yielding processes. This work shows, for the first time, a fundamental possibility of using a hydrogen-rich fermentation gas produced by selected rumen ciliates to feed a low-temperature hydrogen fuel cell. A biohydrogen fuel cell (BHFC) was constructed consisting of (i) a bioreactor, in which a hydrogen-rich gas was produced from glucose by rumen ciliates, mainly of the Isotrichidae family, deprived of intra- and extracellular bacteria, methanogens, and fungi, and (ii) a chemical fuel cell of the polymer-electrolyte type (PEFC). The fuel cell was used as a tester of the technical applicability of the fermentation gas produced by the rumen ciliates for power generation. The average estimated hydrogen yield was ca. 1.15 mol H2 per mol of fermented glucose. The BHFC performance was equal to the performance of the PEFC running on pure hydrogen. No fuel cell poisoning effects were detected. A maximum power density of 1.66 kW/m2 (PEFC geometric area) was obtained at room temperature. The maximum volumetric power density was 128 W/m3 but the coulombic efficiency was only ca. 3.8%. The configuration of the bioreactor limited the continuous operation time of this BHFC to ca. 14 hours.

  20. The Gonzaga desulfurization flue gas process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelleher, R.L.; O'Leary, T.J.; Shirk, I.A.

    1984-01-01

    The Gonzaga desulfurization flue gas process removes sulfur dioxide from a flue by cold water scrubbing. Sulfur dioxide is significantly more soluable in cold water (35/sup 0/F to 60/sup 0/F) than in warm water (100/sup 0/F). Sulfur dioxide reacts in water similarly as carbon dioxide reacts in water, in that both gasses are released from the water as the temperature of the water increases. The researchers at the Gonzaga University developed this process from the observations and techniques used in studying the acid and aldehyde concentrations in flue gasses with varying of fuel to air ratios. The apparatus was fixedmore » to a stationary engine and a gas/oil fired boiler. The flue gas was cooled to the dew point temperature of the air entering the combustion chamber on the pre-air heater. The system is described in two parts: the energies required for cooling in the scrubbing section and the energies required in the treatment section. The cold flue gas is utilized in cooling the scrubber section.« less

  1. Rapid fuel switching from coal to natural gas through effective carbon pricing

    NASA Astrophysics Data System (ADS)

    Wilson, I. A. Grant; Staffell, Iain

    2018-05-01

    Great Britain's overall carbon emissions fell by 6% in 2016, due to cleaner electricity production. This was not due to a surge in low-carbon nuclear or renewable sources; instead it was the much-overlooked impact of fuel switching from coal to natural gas generation. This Perspective considers the enabling conditions in Great Britain and the potential for rapid fuel switching in other coal-reliant countries. We find that spare generation and fuel supply-chain capacity must already exist for fuel switching to deliver rapid carbon savings, and to avoid further high-carbon infrastructure lock-in. More important is the political will to alter the marketplace and incentivize this switch, for example, through a stable and strong carbon price. With the right incentives, fuel switching in the power sector could rapidly achieve on the order of 1 GtCO2 saving per year worldwide (3% of global emissions), buying precious time to slow the growth in cumulative carbon emissions.

  2. Fuel Performance Experiments and Modeling: Fission Gas Bubble Nucleation and Growth in Alloy Nuclear Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDeavitt, Sean; Shao, Lin; Tsvetkov, Pavel

    2014-04-07

    Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. Many mechanistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, research, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development suchmore » that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.« less

  3. Selective oxidation of carbon monoxide in fuel processor gas

    NASA Astrophysics Data System (ADS)

    Manasilp, Akkarat

    The trace amount of CO present in the hydrogen-rich stream coming from fuel reformers poisons the platinum anode electrode of proton exchange membrane (PEM) fuel cells and reduces the power output. Removal of low levels of CO present in the reformed gas must take place before the gas enters the fuel cell. The tolerable level of CO is around 10 ppm. We investigated the performance of single step sol-gel prepared Pt/alumina catalyst and Pt supported on sol gel made alumina. The effect of water vapor, carbon dioxide, CO and oxygen concentrations, temperature, and Pt loading on the activity and selectivity are presented. Our results showed that a 2%Pt/alumina sol-gel catalyst can selectively oxide CO down to a few ppm with constant selectivity and high space velocity. Water vapor in the feed increases the activity of catalysts dramatically and in the absence of water vapor, CO2 in the feed stream decreases the activity of the catalysts significantly. We also found that the presence of potassium as an electron donor did not improve the performance of Pt/alumina catalyst to the selective CO oxidation. For Pt supported on sol gel made alumina, we found that the combination of CO2 and H2O in the gas feed has a strong effect on selective CO oxidation over Pt/Al2O3. It could be a positive or negative effect depending upon Pt loading in the catalyst. With high Pt loading, the CO2 effect tends to dominate the H2O effect resulting in the decrease in CO conversion. Moreover, the presence of CeO2 as an oxygen storage compound promotes the performance of Pt supported on alumina at low temperature ˜90°C when Pt loading was 5%. Amongst the examined catalysts, the 5%Pt/15%CeO2/Al 2O3 catalyst showed the highest selectivity, with high CO conversion at a low temperature ˜90°C. The beneficial effect of the addition of CeO2 is most likely due to spillover of O2 from CeO2 to Pt at the Pt sites at the interface of Pt and CeO 2.

  4. Predicted exhaust emissions from a methanol and jet fueled gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Adelman, H. G.; Browning, L. H.; Pefley, R. K.

    1975-01-01

    A computer model of a gas turbine combustor has been used to predict the kinetic combustion and pollutant formation processes for methanol and simulated jet fuel. Use of the kinetic reaction mechanisms has also allowed a study of ignition delay and flammability limit of these two fuels. The NOX emissions for methanol were predicted to be from 69 to 92% lower than those for jet fuel at the same equivalence ratio which is in agreement with experimentally observed results. The high heat of vaporization of methanol lowers both the combustor inlet mixture temperatures and the final combustion temperatures. The lower combustion temperatures lead to low NOX emissions while the lower inlet mixture temperatures increase methanol's ignition delay. This increase in ignition delay dictates the lean flammability limit of methanol to be 0.8, while jet fuel is shown to combust at 0.4.

  5. Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, I.; Anthony, R.V.; Gabrielson, J.

    1995-08-01

    Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologiesmore » because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.« less

  6. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    DOEpatents

    Ruka, Roswell J [Pittsburgh, PA; Basel, Richard A [Pittsburgh, PA; Zhang, Gong [Murrysville, PA

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  7. HS 1603+3820 and its Warm Absorber

    NASA Astrophysics Data System (ADS)

    Nikołajuk, M.; Różańska, A.; Czerny, B.; Dobrzycki, A.

    2009-07-01

    We use photoionization codes CLOUDY and TITAN to obtain physical conditions in the absorbing medium close to the nucleus of a distant quasar (z = 2.54) HS 1603+3820. We found that the total column density of this Warm Absorber is 2 x 1022 cm-2. Due to the softness of the quasars spectrum the modelling allowed us also to determine uniquely the volume hydrogen density of this warm gas (n = 1010 cm-3) which combined with the other quasar parameters leads to a distance determination to the Warm Absorber from the central source which is ~ 1.5 x 1016 cm.

  8. Performance of gas diffusion layer from coconut waste for proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Widodo, H.; Destyorini, F.; Insiyanda, D. R.; Subhan, A.

    2017-04-01

    The performance of Gas Diffusion Layer (GDL) synthesized from coconut waste. Gas Diffusion Layer (GDL), produced from coconut waste, as a part of Proton Exchange Membrane Fuel Cell (PEMFC) component, has been characterized. In order to know the performance, the commercial products were used as the remaining parts of PEMFC. The proposed GDL possesses 69% porosity for diffusion of Hydrogen fuel and Oxygen, as well as for transporting electron. With the electrical conductivity of 500 mS.cm-1, it also has hydrophobic properties, which is important to avoid the reaction with water, with the contact angle of 139°. The 5 × 5 cm2 GDL paper was co-assembled with the catalyst, Nafion membrane, bipolar plate, current collector, end plate to obtain single Stack PEMFC. The performance was examined by flowing fuel and gas with the flow rate of 500 and 1000 ml.min-1, respectively, and analyse the I-V polarization curve. The measurements were carried out at 30, 35, and 40°C for 5 cycles to ensure the repeatability. The results shows that the current density and the maximum power density reaches 203 mA.cm-2 and 143 mW.cm-2, respectively, with a given voltage 0.6 V, at 40°C.

  9. Conceptual Mean-Line Design of Single and Twin-Shaft Oxy-Fuel Gas Turbine in a Semiclosed Oxy-Fuel Combustion Combined Cycle.

    PubMed

    Sammak, Majed; Thorbergsson, Egill; Grönstedt, Tomas; Genrup, Magnus

    2013-08-01

    The aim of this study was to compare single- and twin-shaft oxy-fuel gas turbines in a semiclosed oxy-fuel combustion combined cycle (SCOC-CC). This paper discussed the turbomachinery preliminary mean-line design of oxy-fuel compressor and turbine. The conceptual turbine design was performed using the axial through-flow code luax-t, developed at Lund University. A tool for conceptual design of axial compressors developed at Chalmers University was used for the design of the compressor. The modeled SCOC-CC gave a net electrical efficiency of 46% and a net power of 106 MW. The production of 95% pure oxygen and the compression of CO 2 reduced the gross efficiency of the SCOC-CC by 10 and 2 percentage points, respectively. The designed oxy-fuel gas turbine had a power of 86 MW. The rotational speed of the single-shaft gas turbine was set to 5200 rpm. The designed turbine had four stages, while the compressor had 18 stages. The turbine exit Mach number was calculated to be 0.6 and the calculated value of AN 2 was 40 · 10 6 rpm 2 m 2 . The total calculated cooling mass flow was 25% of the compressor mass flow, or 47 kg/s. The relative tip Mach number of the compressor at the first rotor stage was 1.15. The rotational speed of the twin-shaft gas generator was set to 7200 rpm, while that of the power turbine was set to 4800 rpm. A twin-shaft turbine was designed with five turbine stages to maintain the exit Mach number around 0.5. The twin-shaft turbine required a lower exit Mach number to maintain reasonable diffuser performance. The compressor turbine was designed with two stages while the power turbine had three stages. The study showed that a four-stage twin-shaft turbine produced a high exit Mach number. The calculated value of AN 2 was 38 · 10 6 rpm 2 m 2 . The total calculated cooling mass flow was 23% of the compressor mass flow, or 44 kg/s. The compressor was designed with 14 stages. The preliminary design parameters of the turbine and

  10. Evaluation of Gas-Cooled Pressurized Phosphoric Acid Fuel Cells for Electric Utility Power Generation

    NASA Technical Reports Server (NTRS)

    Faroque, M.

    1983-01-01

    Gas cooling is a more reliable, less expensive and a more simple alternative to conventional liquid cooling for heat removal from the phosphoric acid fuel cell (PAFC). The feasibility of gas-cooling was already demonstrated in atmospheric pressure stacks. Theoretical and experimental investigations of gas-cooling for pressurized PAFC are presented. Two approaches to gas cooling, Distributed Gas-Cooling (DIGAS) and Separated Gas-Cooling (SGC) were considered, and a theoretical comparison on the basis of cell performance indicated SGC to be superior to DIGAS. The feasibility of SGC was experimentally demonstrated by operating a 45-cell stack for 700 hours at pressure, and determining thermal response and the effect of other related parameters.

  11. 40 CFR 600.206-93 - Calculation and use of fuel economy values for gasoline-fueled, diesel-fueled, electric, alcohol...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation and use of fuel economy values for gasoline-fueled, diesel-fueled, electric, alcohol-fueled, natural gas-fueled, alcohol dual fuel, and natural gas dual fuel vehicle configurations. 600.206-93 Section 600.206-93 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY ...

  12. Modeling the effects of auxiliary gas injection and fuel injection rate shape on diesel engine combustion and emissions

    NASA Astrophysics Data System (ADS)

    Mather, Daniel Kelly

    1998-11-01

    The effect of auxiliary gas injection and fuel injection rate-shaping on diesel engine combustion and emissions was studied using KIVA a multidimensional computational fluid dynamics code. Auxiliary gas injection (AGI) is the injection of a gas, in addition to the fuel injection, directly into the combustion chamber of a diesel engine. The objective of AGI is to influence the diesel combustion via mixing to reduce emissions of pollutants (soot and NO x). In this study, the accuracy of modeling high speed gas jets on very coarse computational grids was addressed. KIVA was found to inaccurately resolve the jet flows near walls. The cause of this inaccuracy was traced to the RNG k - ɛ turbulence model with the law-of-the-wall boundary condition used by KIVA. By prescribing the lengthscale near the nozzle exit, excellent agreement between computed and theoretical jet penetration was attained for a transient gas jet into a quiescent chamber at various operating conditions. The effect of AGI on diesel engine combustion and emissions was studied by incorporating the coarse grid gas jet model into a detailed multidimensional simulation of a Caterpillar 3401 heavy-duty diesel engine. The effects of AGI timing, composition, amount, orientation, and location were investigated. The effects of AGI and split fuel injection were also investigated. AGI was found to be effective at reducing soot emissions by increasing mixing within the combustion chamber. AGI of inert gas was found to be effective at reducing emissions of NOx by depressing the peak combustion temperatures. Finally, comparison of AGI simulations with experiments were conducted for a TACOM-LABECO engine. The results showed that AGI improved soot oxidation throughout the engine cycle. Simulation of fuel injection rate-shaping investigated the effects of three injection velocity profiles typical of unit-injector type, high-pressure common-rail type, and accumulator-type fuel injectors in the Caterpillar 3401 heavy

  13. Probing the cold and warm molecular gas in the Whirlpool Galaxy: Herschel SPIRE-FTS observations of the central region of M51 (NGC 5194)

    NASA Astrophysics Data System (ADS)

    Schirm, M. R. P.; Wilson, C. D.; Kamenetzky, J.; Parkin, T. J.; Glenn, J.; Maloney, P.; Rangwala, N.; Spinoglio, L.; Baes, M.; Boselli, A.; Cooray, A.; De Looze, I.; Fernández-Ontiveros, J. A.; Karczewski, O. Ł.; Wu, R.

    2017-10-01

    We present Herschel Spectral and Photometric Imaging Receiver (SPIRE)-Fourier Transform Spectrometer (FTS) intermediate-sampled mapping observations of the central ˜8 kpc (˜150 arcsec) of M51, with a spatial resolution of 40 arcsec. We detect four 12CO transitions (J = 4-3 to J = 7-6) and the [C I] 3P2-3P1 and 3P1-3P0 transitions. We supplement these observations with ground-based observations of 12CO J = 1-0 to J = 3-2 and perform a two-component non-local thermodynamic equilibrium analysis. We find that the molecular gas in the nucleus and centre regions has a cool component (Tkin ˜ 10-20 K) with a moderate but poorly constrained density (n(H2) ˜ 103-106 cm-3), as well as significant molecular gas in a warmer (Tkin ˜ 300-3000 K), lower density (n(H2) ˜ 101.6-102.5 cm-3) component. We compare our CO line ratios and calculated densities along with ratios of CO to total infrared luminosity to a grid of photon-dominated region (PDR) models and find that the cold molecular gas likely resides in PDRs with a field strength of G0 ˜ 102. The warm component likely requires an additional source of mechanical heating, from supernovae and stellar winds or possibly shocks produced in the strong spiral density wave. When compared to similar two-component models of other star-forming galaxies published as part of the Very Nearby Galaxies Survey (Arp 220, M82 and NGC 4038/39), M51 has the lowest density for the warm component, while having a warm gas mass fraction that is comparable to those of Arp 220 and M82, and significantly higher than that of NGC 4038/39.

  14. Organic fuel cells and fuel cell conducting sheets

    DOEpatents

    Masel, Richard I.; Ha, Su; Adams, Brian

    2007-10-16

    A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.

  15. Cryogenic and Simulated Fuel Jet Breakup in Argon, Helium and Nitrogen Gas Flows

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1995-01-01

    Two-phase flow atomization of liquid nitrogen jets was experimentally investigated. They were co-axially injected into high-velocity gas flows of helium, nitrogen and argon, respectively, and atomized internally inside a two-fluid fuel nozzle. Cryogenic sprays with relatively high specific surface areas were produced, i.e., ratios of surface area to volume were fairly high. This was indicated by values of reciprocal Sauter mean diameters, RSMD's, as measured with a scattered- light scanning instrument developed at NASA Lewis Research Center. Correlating expressions were derived for the three atomizing gases over a gas temperature range of 111 to 422 K. Also, the correlation was extended to include waterjet breakup data that had been previously obtained in simulating fuel jet breakup in sonic velocity gas flow. The final correlating expression included a new dimensionless molecular-scale acceleration group. It was needed to correlate RSMD data, for LN2 and H2O sprays, with the fluid properties of the liquid jets and atomizing gases used in this investigation.

  16. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS - PHASE I FINAL REPORT: CONCEPTUAL STUDY

    EPA Science Inventory

    The report discusses results of a conceptual design, cost, and evaluation study of energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The conceptual design of the fuel cell energy recovery system is described, and its economic and environm...

  17. Dependency of black-carbon-induced atmospheric warming on the concentration of sulphate and organic aerosols

    NASA Astrophysics Data System (ADS)

    Kim, S.; Yoon, S.; in-Jin, C.; Ramanathan, V.; Ramana, M.

    2010-12-01

    Previous modeling studies have showed that the net radiative effect of black carbon (BC) and organic aerosols generated by fossil-fuel combustion and biomass-fuel cooking contribute to a warming by absorbing solar radiation, and the warming effect of fossil-fuel BC is larger than that of biomass-fuel cooking [Ramana et al., Nature Geoscience, 2010]. However, the extent of BC warming is regulated by the ambient concentrations of sulphate and organic carbon (OC) aerosols, which reflect the solar radiation and cool the surface, thus enhancing the net warming caused by BC and GHGs. This is because the major sources of BC also emit CO2 and other greenhouse gases (GHGs) (that warm the climate), and sulfates, nitrates, organics and other particles (that cool the climate). In this study, we present the impact of BC-to-sulphate and BC-to-OC ratios on atmospheric warming on the basis of surface-based filter and in-situ measurements at Gosan climate observatory in Jeju, South Korea and radiative transfer calculations with AERONET Cimel sun/sky radiometer and micro-pulse lidar measurements as a model input. We investigate (1) BC-to-sulphate and BC-to-OC ratios, (2) aerosol solar-absorption efficiency (i.e., co-single scattering albedo) and (3) corresponding atmospheric direct radiative forcing and heating rate of aerosol plumes from N. China (Beijing), S. China (Shanghai) and clean marine sources during ACE-Asia (April-May 2001), ABC-EAREX2005 (March-April 2005) and CAMPEX (August-September 2008), and discuss their relationships.

  18. Fuel Fraction Analysis of 500 MWth Gas Cooled Fast Reactor with Nitride (UN-PuN) Fuel without Refueling

    NASA Astrophysics Data System (ADS)

    Dewi Syarifah, Ratna; Su'ud, Zaki; Basar, Khairul; Irwanto, Dwi

    2017-01-01

    Nuclear Power Plant (NPP) is one of candidates which can support electricity demand in the world. The Generation IV NPP has fourth main objective, i.e. sustainability, economics competitiveness, safety and reliability, and proliferation and physical protection. One of Gen-IV reactor type is Gas Cooled Fast Reactor (GFR). In this study, the analysis of fuel fraction in small GFR with nitride fuel has been done. The calculation was performed by SRAC code, both Pij and CITATION calculation. SRAC2002 system is a code system applicable to analyze the neutronics of variety reactor type. And for the data library used JENDL-3.2. The step of SRAC calculation is fuel pin calculated by Pij calculation until the data homogenized, after it homogenized we calculate core reactor. The variation of fuel fraction is 40% up to 65%. The optimum design of 500MWth GFR without refueling with 10 years burn up time reach when radius F1:F2:F3 = 50cm:30cm:30cm and height F1:F2:F3 = 50cm:40cm:30cm, variation percentage Plutonium in F1:F2:F3 = 7%:10%:13%. The optimum fuel fraction is 41% with addition 2% Plutonium weapon grade mix in the fuel. The excess reactivity value in this case 1.848% and the k-eff value is 1.01883. The high burn up reached when the fuel fraction is low. In this study 41% fuel fraction produce faster fissile fuel, so it has highest burn-up level than the other fuel fraction.

  19. A simplified fuel control approach for low cost aircraft gas turbines

    NASA Technical Reports Server (NTRS)

    Gold, H.

    1973-01-01

    Reduction in the complexity of gas turbine fuel controls without loss of control accuracy, reliability, or effectiveness as a method for reducing engine costs is discussed. A description and analysis of hydromechanical approach are presented. A computer simulation of the control mechanism is given and performance of a physical model in engine test is reported.

  20. Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas

    Science.gov Websites

    reduce petroleum use and save money. For information about this project, contact Eastern Pennsylvania Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus Michigan Transports Students Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels

  1. Do mitigation strategies reduce global warming potential in the northern U.S. corn belt?

    PubMed

    Johnson, Jane M-F; Archer, David W; Weyers, Sharon L; Barbour, Nancy W

    2011-01-01

    Agricultural management practices that enhance C sequestration, reduce greenhouse gas emission (nitrous oxide [N₂O], methane [CH₄], and carbon dioxide [CO₂]), and promote productivity are needed to mitigate global warming without sacrificing food production. The objectives of the study were to compare productivity, greenhouse gas emission, and change in soil C over time and to assess whether global warming potential and global warming potential per unit biomass produced were reduced through combined mitigation strategies when implemented in the northern U.S. Corn Belt. The systems compared were (i) business as usual (BAU); (ii) maximum C sequestration (MAXC); and (iii) optimum greenhouse gas benefit (OGGB). Biomass production, greenhouse gas flux change in total and organic soil C, and global warming potential were compared among the three systems. Soil organic C accumulated only in the surface 0 to 5 cm. Three-year average emission of N₂O and CH was similar among all management systems. When integrated from planting to planting, N₂O emission was similar for MAXC and OGGB systems, although only MAXC was fertilized. Overall, the three systems had similar global warming potential based on 4-yr changes in soil organic C, but average rotation biomass was less in the OGGB systems. Global warming potential per dry crop yield was the least for the MAXC system and the most for OGGB system. This suggests management practices designed to reduce global warming potential can be achieved without a loss of productivity. For example, MAXC systems over time may provide sufficient soil C sequestration to offset associated greenhouse gas emission. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. The economic production of alcohol fuels from coal-derived synthesis gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kugler, E.L.; Dadyburjor, D.B.; Yang, R.Y.K.

    1995-12-31

    The objectives of this project are to discover, (1) study and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. Specifically, alternative methods of preparing catalysts are to be investigated, and novel catalysts, including sulfur-tolerant ones, are to be pursued. (Task 1); (2) explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (Task 1); (3) simulate by computer the most energy efficient and economically efficient process for converting coal to energy, with primary focus on converting syngas to fuel alcohols. (Task 2);more » (4) develop on the bench scale the best holistic combination of chemistry, catalyst, reactor and total process configuration integrated with the overall coal conversion process to achieve economic optimization for the conversion of syngas to liquid products within the framework of achieving the maximum cost effective transformation of coal to energy equivalents. (Tasks 1 and 2); and (5) evaluate the combustion, emission and performance characteristics of fuel alcohols and blends of alcohols with petroleum-based fuels. (Task 2)« less

  3. Multi-fuel combustor for gas turbine engines: Phase 1, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melconian, J.O.; Marden, W.W., III

    An innovative can combustor configuration has been developed for gas turbine engines which has the potential of burning fuels ranging from gasoline to coal/water slurries at high efficiencies. The design is based on a Variable Residence Time (VRT) concept which allows large and agglomerated fuel particles adequate time to completely burn. High durability of the combustor is achieved by dual function use of the incoming air. For applications which require the burning of coal/water slurries, the design has the capability of removing the ash particles directly from the primary zone of the combustor. It is anticipated that because of themore » small size requirement of this combustor design, existing gas turbine engines could be retrofitted within the confines of the current engine envelope. In Phase 1, the feasibility of the concept was successfully demonstrated by three-dimensional mathematical modeling and water analogue tests. The Plexiglas model used in the water analogue tests was designed to fit the current production engine of a major manufacturer. 19 figs., 2 tabs.« less

  4. Global Inventory of Gas Geochemistry Data from Fossil Fuel, Microbial and Burning Sources, version 2017

    NASA Astrophysics Data System (ADS)

    Sherwood, Owen A.; Schwietzke, Stefan; Arling, Victoria A.; Etiope, Giuseppe

    2017-08-01

    The concentration of atmospheric methane (CH4) has more than doubled over the industrial era. To help constrain global and regional CH4 budgets, inverse (top-down) models incorporate data on the concentration and stable carbon (δ13C) and hydrogen (δ2H) isotopic ratios of atmospheric CH4. These models depend on accurate δ13C and δ2H end-member source signatures for each of the main emissions categories. Compared with meticulous measurement and calibration of isotopic CH4 in the atmosphere, there has been relatively less effort to characterize globally representative isotopic source signatures, particularly for fossil fuel sources. Most global CH4 budget models have so far relied on outdated source signature values derived from globally nonrepresentative data. To correct this deficiency, we present a comprehensive, globally representative end-member database of the δ13C and δ2H of CH4 from fossil fuel (conventional natural gas, shale gas, and coal), modern microbial (wetlands, rice paddies, ruminants, termites, and landfills and/or waste) and biomass burning sources. Gas molecular compositional data for fossil fuel categories are also included with the database. The database comprises 10 706 samples (8734 fossil fuel, 1972 non-fossil) from 190 published references. Mean (unweighted) δ13C signatures for fossil fuel CH4 are significantly lighter than values commonly used in CH4 budget models, thus highlighting potential underestimation of fossil fuel CH4 emissions in previous CH4 budget models. This living database will be updated every 2-3 years to provide the atmospheric modeling community with the most complete CH4 source signature data possible. Database digital object identifier (DOI): https://doi.org/10.15138/G3201T.

  5. Numerical Investigation of Fuel Distribution Effect on Flow and Temperature Field in a Heavy Duty Gas Turbine Combustor

    NASA Astrophysics Data System (ADS)

    Deng, Xiaowen; Xing, Li; Yin, Hong; Tian, Feng; Zhang, Qun

    2018-03-01

    Multiple-swirlers structure is commonly adopted for combustion design strategy in heavy duty gas turbine. The multiple-swirlers structure might shorten the flame brush length and reduce emissions. In engineering application, small amount of gas fuel is distributed for non-premixed combustion as a pilot flame while most fuel is supplied to main burner for premixed combustion. The effect of fuel distribution on the flow and temperature field related to the combustor performance is a significant issue. This paper investigates the fuel distribution effect on the combustor performance by adjusting the pilot/main burner fuel percentage. Five pilot fuel distribution schemes are considered including 3 %, 5 %, 7 %, 10 % and 13 %. Altogether five pilot fuel distribution schemes are computed and deliberately examined. The flow field and temperature field are compared, especially on the multiple-swirlers flow field. Computational results show that there is the optimum value for the base load of combustion condition. The pilot fuel percentage curve is calculated to optimize the combustion operation. Under the combustor structure and fuel distribution scheme, the combustion achieves high efficiency with acceptable OTDF and low NOX emission. Besides, the CO emission is also presented.

  6. Expert system for identification of simultaneous and sequential reactor fuel failures with gas tagging

    DOEpatents

    Gross, Kenny C.

    1994-01-01

    Failure of a fuel element in a nuclear reactor core is determined by a gas tagging failure detection system and method. Failures are catalogued and characterized after the event so that samples of the reactor's cover gas are taken at regular intervals and analyzed by mass spectroscopy. Employing a first set of systematic heuristic rules which are applied in a transformed node space allows the number of node combinations which must be processed within a barycentric algorithm to be substantially reduced. A second set of heuristic rules treats the tag nodes of the most recent one or two leakers as "background" gases, further reducing the number of trial node combinations. Lastly, a "fuzzy" set theory formalism minimizes experimental uncertainties in the identification of the most likely volumes of tag gases. This approach allows for the identification of virtually any number of sequential leaks and up to five simultaneous gas leaks from fuel elements.

  7. Expert system for identification of simultaneous and sequential reactor fuel failures with gas tagging

    DOEpatents

    Gross, K.C.

    1994-07-26

    Failure of a fuel element in a nuclear reactor core is determined by a gas tagging failure detection system and method. Failures are catalogued and characterized after the event so that samples of the reactor's cover gas are taken at regular intervals and analyzed by mass spectroscopy. Employing a first set of systematic heuristic rules which are applied in a transformed node space allows the number of node combinations which must be processed within a barycentric algorithm to be substantially reduced. A second set of heuristic rules treats the tag nodes of the most recent one or two leakers as background'' gases, further reducing the number of trial node combinations. Lastly, a fuzzy'' set theory formalism minimizes experimental uncertainties in the identification of the most likely volumes of tag gases. This approach allows for the identification of virtually any number of sequential leaks and up to five simultaneous gas leaks from fuel elements. 14 figs.

  8. 40 CFR 86.1513 - Fuel specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...

  9. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-cycle and non-petroleum-fueled engines. 86.1309-90 Section 86.1309-90 Protection of Environment... HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty...-cycle and non-petroleum-fueled engines. (a)(1) General. The exhaust gas sampling system described in...

  10. Artificial warming of arctic meadow under pollution stress: Experimental design

    USDA-ARS?s Scientific Manuscript database

    Boreal and arctic terrestrial ecosystems are central to the climate change debate, notably because future warming is expected to be disproportionate as compared to world averages. Likewise, greenhouse gas (GHG) release from terrestrial ecosystems exposed to climate warming is expected to be the larg...

  11. Lifecycle analysis of renewable natural gas and hydrocarbon fuels from wastewater treatment plants’ sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Uisung; Han, Jeongwoo; Urgun Demirtas, Meltem

    Wastewater treatment plants (WWTPs) produce sludge as a byproduct when they treat wastewater. In the United States, over 8 million dry tons of sludge are produced annually just from publicly owned WWTPs. Sludge is commonly treated in anaerobic digesters, which generate biogas; the biogas is then largely flared to reduce emissions of methane, a potent greenhouse gas. Because sludge is quite homogeneous and has a high energy content, it is a good potential feedstock for other conversion processes that make biofuels, bioproducts, and power. For example, biogas from anaerobic digesters can be used to generate renewable natural gas (RNG), whichmore » can be further processed to produce compressed natural gas (CNG) and liquefied natural gas (LNG). Sludge can be directly converted into hydrocarbon liquid fuels via thermochemical processes such as hydrothermal liquefaction (HTL). Currently, the environmental impacts of converting sludge into energy are largely unknown, and only a few studies have focused on the environmental impacts of RNG produced from existing anaerobic digesters. As biofuels from sludge generate high interest, however, existing anaerobic digesters could be upgraded to technology with more economic potential and more environmental benefits. The environmental impacts of using a different anaerobic digestion (AD) technology to convert sludge into energy have yet to be analyzed. In addition, no studies are available about the direct conversion of sludge into liquid fuels. In order to estimate the energy consumption and greenhouse gas (GHG) emissions impacts of these alternative pathways (sludge-to-RNG and sludge-to-liquid), this study performed a lifecycle analysis (LCA) using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. The energy uses and GHG emissions associated with the RNG and hydrocarbon liquid are analyzed relative to the current typical sludge management case, which consists of a single

  12. Thermodynamic Modeling and Dispatch of Distributed Energy Technologies including Fuel Cell -- Gas Turbine Hybrids

    NASA Astrophysics Data System (ADS)

    McLarty, Dustin Fogle

    Distributed energy systems are a promising means by which to reduce both emissions and costs. Continuous generators must be responsive and highly efficiency to support building dynamics and intermittent on-site renewable power. Fuel cell -- gas turbine hybrids (FC/GT) are fuel-flexible generators capable of ultra-high efficiency, ultra-low emissions, and rapid power response. This work undertakes a detailed study of the electrochemistry, chemistry and mechanical dynamics governing the complex interaction between the individual systems in such a highly coupled hybrid arrangement. The mechanisms leading to the compressor stall/surge phenomena are studied for the increased risk posed to particular hybrid configurations. A novel fuel cell modeling method introduced captures various spatial resolutions, flow geometries, stack configurations and novel heat transfer pathways. Several promising hybrid configurations are analyzed throughout the work and a sensitivity analysis of seven design parameters is conducted. A simple estimating method is introduced for the combined system efficiency of a fuel cell and a turbine using component performance specifications. Existing solid oxide fuel cell technology is capable of hybrid efficiencies greater than 75% (LHV) operating on natural gas, and existing molten carbonate systems greater than 70% (LHV). A dynamic model is calibrated to accurately capture the physical coupling of a FC/GT demonstrator tested at UC Irvine. The 2900 hour experiment highlighted the sensitivity to small perturbations and a need for additional control development. Further sensitivity studies outlined the responsiveness and limits of different control approaches. The capability for substantial turn-down and load following through speed control and flow bypass with minimal impact on internal fuel cell thermal distribution is particularly promising to meet local demands or provide dispatchable support for renewable power. Advanced control and dispatch

  13. Fuel processors for fuel cell APU applications

    NASA Astrophysics Data System (ADS)

    Aicher, T.; Lenz, B.; Gschnell, F.; Groos, U.; Federici, F.; Caprile, L.; Parodi, L.

    The conversion of liquid hydrocarbons to a hydrogen rich product gas is a central process step in fuel processors for auxiliary power units (APUs) for vehicles of all kinds. The selection of the reforming process depends on the fuel and the type of the fuel cell. For vehicle power trains, liquid hydrocarbons like gasoline, kerosene, and diesel are utilized and, therefore, they will also be the fuel for the respective APU systems. The fuel cells commonly envisioned for mobile APU applications are molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Since high-temperature fuel cells, e.g. MCFCs or SOFCs, can be supplied with a feed gas that contains carbon monoxide (CO) their fuel processor does not require reactors for CO reduction and removal. For PEMFCs on the other hand, CO concentrations in the feed gas must not exceed 50 ppm, better 20 ppm, which requires additional reactors downstream of the reforming reactor. This paper gives an overview of the current state of the fuel processor development for APU applications and APU system developments. Furthermore, it will present the latest developments at Fraunhofer ISE regarding fuel processors for high-temperature fuel cell APU systems on board of ships and aircrafts.

  14. Modelling of the combustion velocity in UIT-85 on sustainable alternative gas fuel

    NASA Astrophysics Data System (ADS)

    Smolenskaya, N. M.; Korneev, N. V.

    2017-05-01

    The flame propagation velocity is one of the determining parameters characterizing the intensity of combustion process in the cylinder of an engine with spark ignition. Strengthening of requirements for toxicity and efficiency of the ICE contributes to gradual transition to sustainable alternative fuels, which include the mixture of natural gas with hydrogen. Currently, studies of conditions and regularities of combustion of this fuel to improve efficiency of its application are carried out in many countries. Therefore, the work is devoted to modeling the average propagation velocities of natural gas flame front laced with hydrogen to 15% by weight of the fuel, and determining the possibility of assessing the heat release characteristics on the average velocities of the flame front propagation in the primary and secondary phases of combustion. Experimental studies, conducted the on single cylinder universal installation UIT-85, showed the presence of relationship of the heat release characteristics with the parameters of the flame front propagation. Based on the analysis of experimental data, the empirical dependences for determination of average velocities of flame front propagation in the first and main phases of combustion, taking into account the change in various parameters of engine operation with spark ignition, were obtained. The obtained results allow to determine the characteristics of heat dissipation and to assess the impact of addition of hydrogen to the natural gas combustion process, that is needed to identify ways of improvement of the combustion process efficiency, including when you change the throttling parameters.

  15. Low-Emission combustion of fuel in aeroderivative gas turbines

    NASA Astrophysics Data System (ADS)

    Bulysova, L. A.; Vasil'ev, V. D.; Berne, A. L.

    2017-12-01

    The paper is the first of a planned set of papers devoted to the world experience in development of Low Emission combustors (LEC) for industrial Gas Turbines (GT). The purpose of the article is to summarize and analyze the most successful experience of introducing the principles of low-emission combustion of the so-called "poor" (low fuel concentration in air when the excess air ratio is about 1.9-2.1) well mixed fuelair mixtures in the LEC for GTs and ways to reduce the instability of combustion. The consideration examples are the most successful and widely used aero-derivative GT. The GT development meets problems related to the difference in requirements and operation conditions between the aero, industrial, and power production GT. One of the main problems to be solved is the LEC development to mitigate emissions of the harmful products first of all the Nitrogen oxides NOx. The ways to modify or convert the initial combustors to the LEC are shown. This development may follow location of multiburner mixers within the initial axial envelope dimensions or conversion of circular combustor to the can type one. The most interesting are Natural Gas firing GT without water injection into the operating process or Dry Low emission (DLE) combustors. The current GT efficiency requirement may be satisfied at compressor exit pressure above 3 MPa and Turbine Entry temperature (TET) above 1500°C. The paper describes LEC examples based on the concept of preliminary prepared air-fuel mixtures' combustion. Each combustor employs its own fuel supply control concept based on the fuel flow-power output relation. In the case of multiburner combustors, the burners are started subsequently under a specific scheme. The can type combustors have combustion zones gradually ignited following the GT power change. The combustion noise problem experienced in lean mixtures' combustion is also considered, and the problem solutions are described. The GT test results show wide ranges of stable

  16. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS: PHASE II. PRETREATMENT SYSTEM PERFORMANCE MEASUREMENT

    EPA Science Inventory

    The report describes Phase II of a demonstration of the utilization of commercial phosphoric acid fuel cells to recover energy from landfill gas. This phase consisted primarily of the construction and testing of a Gas Pretreatment Unit (GPU) whose function is to remove those impu...

  17. 46 CFR 154.709 - Cargo boil-off as fuel: Gas detection equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.709 Cargo boil-off as fuel: Gas detection equipment... alarm at the machinery control station and in the wheelhouse if the methane concentration reaches 1.5...

  18. 46 CFR 154.709 - Cargo boil-off as fuel: Gas detection equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.709 Cargo boil-off as fuel: Gas detection equipment... alarm at the machinery control station and in the wheelhouse if the methane concentration reaches 1.5...

  19. 46 CFR 154.709 - Cargo boil-off as fuel: Gas detection equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.709 Cargo boil-off as fuel: Gas detection equipment... alarm at the machinery control station and in the wheelhouse if the methane concentration reaches 1.5...

  20. 46 CFR 154.709 - Cargo boil-off as fuel: Gas detection equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.709 Cargo boil-off as fuel: Gas detection equipment... alarm at the machinery control station and in the wheelhouse if the methane concentration reaches 1.5...

  1. 46 CFR 154.709 - Cargo boil-off as fuel: Gas detection equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.709 Cargo boil-off as fuel: Gas detection equipment... alarm at the machinery control station and in the wheelhouse if the methane concentration reaches 1.5...

  2. Fuel injector for use in a gas turbine engine

    DOEpatents

    Wiebe, David J.

    2012-10-09

    A fuel injector in a combustor apparatus of a gas turbine engine. An outer wall of the injector defines an interior volume in which an intermediate wall is disposed. A first gap is formed between the outer wall and the intermediate wall. The intermediate wall defines an internal volume in which an inner wall is disposed. A second gap is formed between the intermediate wall and the inner wall. The second gap receives cooling fluid that cools the injector. The cooling fluid provides convective cooling to the intermediate wall as it flows within the second gap. The cooling fluid also flows through apertures in the intermediate wall into the first gap where it provides impingement cooling to the outer wall and provides convective cooling to the outer wall. The inner wall defines a passageway that delivers fuel into a liner downstream from a main combustion zone.

  3. Analysis of the impact of the use of broad specification fuels on combustors for commercial aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Szetela, E. J.; Lehmann, R. P.; Smith, A. L.

    1979-01-01

    An analytical study was conducted to assess the impact of the use of broad specification fuels with reduced hydrogen content on the design, performance, durability, emissions and operational characteristics of combustors for commercial aircraft gas turbine engines. The study was directed at defining necessary design revisions to combustors designed for use of Jet A when such are operated on ERBS (Experimental Referee Broad Specification Fuel) which has a nominal hydrogen content of 12.8 percent as opposed to 13.7 percent in current Jet A. The results indicate that improvements in combustor liner cooling, and/or materials, and methods of fuel atomization will be required if the hydrogen content of aircraft gas turbine fuel is decreased.

  4. Interaction of coal-derived synthesis gas impurities with solid oxide fuel cell metallic components

    NASA Astrophysics Data System (ADS)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Edwards, Danny J.; Chou, Yeong-Shyung; Cramer, Carolyn N.

    Oxidation-resistant alloys find use as interconnect materials, heat exchangers, and gas supply tubing in solid oxide fuel cell (SOFC) systems, especially when operated at temperatures below ∼800 °C. If fueled with synthesis gas derived from coal or biomass, such metallic components could be exposed to impurities contained in those fuel sources. In this study, coupons of ferritic stainless steels Crofer 22 APU and SS 441, austenitic nickel-chromium superalloy Inconel 600, and an alumina-forming high nickel alloy alumel were exposed to synthesis gas containing ≤2 ppm phosphorus, arsenic and antimony, and reaction products were tested. Crofer 22 APU coupons coated with a (Mn,Co) 3O 4 protective layer were also evaluated. Phosphorus was found to be the most reactive. On Crofer 22 APU, the (Mn,Cr) 3O 4 passivation layer reacted to form an Mn-P-O product, predicted to be manganese phosphate from thermochemical calculations, and Cr 2O 3. On SS 441, reaction of phosphorus with (Mn,Cr) 3O 4 led to the formation of manganese phosphate as well as an Fe-P product, predicted from thermochemical calculations to be Fe 3P. Minimal interactions with antimony or arsenic in synthesis gas were limited to Fe-Sb and Fe-As solid solution formation. Though not intended for use on the anode side, a (Mn,Co) 3O 4 spinel coating on Crofer 22 APU reacted with phosphorus in synthesis gas to produce products consistent with Mn 3(PO 4) 2 and Co 2P. A thin Cr 2O 3 passivation layer on Inconel 600 did not prevent the formation of nickel phosphides and arsenides and of iron phosphides and arsenides, though no reaction with Cr 2O 3 was apparent. On alumel, an Al 2O 3 passivation layer rich in Ni did not prevent the formation of nickel phosphides, arsenides, and antimonides, though no reaction with Al 2O 3 occurred. This work shows that unprotected metallic components of an SOFC stack and system can provide a sink for P, As and Sb impurities that may be present in fuel gases, and thus complicate

  5. Impact of fuel quality regulation and speed reductions on shipping emissions: implications for climate and air quality.

    PubMed

    Lack, Daniel A; Cappa, Christopher D; Langridge, Justin; Bahreini, Roya; Buffaloe, Gina; Brock, Charles; Cerully, Kate; Coffman, Derek; Hayden, Katherine; Holloway, John; Lerner, Brian; Massoli, Paola; Li, Shao-Meng; McLaren, Robert; Middlebrook, Ann M; Moore, Richard; Nenes, Athanasios; Nuaaman, Ibraheem; Onasch, Timothy B; Peischl, Jeff; Perring, Anne; Quinn, Patricia K; Ryerson, Tom; Schwartz, Joshua P; Spackman, Ryan; Wofsy, Steven C; Worsnop, Doug; Xiang, Bin; Williams, Eric

    2011-10-15

    Atmospheric emissions of gas and particulate matter from a large ocean-going container vessel were sampled as it slowed and switched from high-sulfur to low-sulfur fuel as it transited into regulated coastal waters of California. Reduction in emission factors (EFs) of sulfur dioxide (SO₂), particulate matter, particulate sulfate and cloud condensation nuclei were substantial (≥ 90%). EFs for particulate organic matter decreased by 70%. Black carbon (BC) EFs were reduced by 41%. When the measured emission reductions, brought about by compliance with the California fuel quality regulation and participation in the vessel speed reduction (VSR) program, are placed in a broader context, warming from reductions in the indirect effect of SO₄ would dominate any radiative changes due to the emissions changes. Within regulated waters absolute emission reductions exceed 88% for almost all measured gas and particle phase species. The analysis presented provides direct estimations of the emissions reductions that can be realized by California fuel quality regulation and VSR program, in addition to providing new information relevant to potential health and climate impact of reduced fuel sulfur content, fuel quality and vessel speed reductions.

  6. Composite nuclear fuel fabrication methodology for gas fast reactors

    NASA Astrophysics Data System (ADS)

    Vasudevamurthy, Gokul

    An advanced fuel form for use in Gas Fast Reactors (GFR) was investigated. Criteria for the fuel includes operation at high temperature (˜1400°C) and high burnup (˜150 MWD/MTHM) with effective retention of fission products even during transient temperatures exceeding 1600°C. The GFR fuel is expected to contain up to 20% transuranics for a closed fuel cycle. Earlier evaluations of reference fuels for the GFR have included ceramic-ceramic (cercer) dispersion type composite fuels of mixed carbide or nitride microspheres coated with SiC in a SiC matrix. Studies have indicated that ZrC is a potential replacement for SiC on account of its higher melting point, increased fission product corrosion resistance and better chemical stability. The present work investigated natural uranium carbide microspheres in a ZrC matrix instead of SiC. Known issues of minor actinide volatility during traditional fabrication procedures necessitated the investigation of still high temperature but more rapid fabrication techniques to minimize these anticipated losses. In this regard, fabrication of ZrC matrix by combustion synthesis from zirconium and graphite powders was studied. Criteria were established to obtain sufficient matrix density with UC microsphere volume fractions up to 30%. Tests involving production of microspheres by spark erosion method (similar to electrodischarge machining) showed the inability of the method to produce UC microspheres in the desired range of 300 to 1200 mum. A rotating electrode device was developed using a minimum current of 80A and rotating at speeds up to 1500 rpm to fabricate microspheres between 355 and 1200 mum. Using the ZrC process knowledge, UC electrodes were fabricated and studied for use in the rotating electrode device to produce UC microspheres. Fabrication of the cercer composite form was studied using microsphere volume fractions of 10%, 20%, and 30%. The macrostructure of the composite and individual components at various stages were

  7. Effects of miles per gallon feedback on fuel efficiency in gas-powered cars.

    DOT National Transportation Integrated Search

    2009-10-01

    This study tested the impact of continuous miles per gallon (MPG) feedback on driving : behavior and fuel efficiency in gas-powered cars. We compared an experimental condition, : where drivers received real-time MPG feedback and a tip sheet, to a con...

  8. Public Notice: 2016-06, In the matter of National Fuel Gas Supply Corporation

    EPA Pesticide Factsheets

    National Fuel Gas Supply Corporation, 6363 Main Street, Williamsville, New York 14221 has applied to the U.S. Environmental Protection Agency (EPA) under the provisions of the Safe Drinking Water Act, 42 U.S.C. 300f et. seq (the Act)

  9. The influence of cladding on fission gas release from irradiated U-Mo monolithic fuel

    NASA Astrophysics Data System (ADS)

    Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.

    2017-04-01

    The monolithic uranium-molybdenum (U-Mo) alloy has been proposed as a fuel design capable of converting the world's highest power research reactors from use of high enriched uranium to low enriched uranium. However, a zirconium (Zr) diffusion barrier must be used to eliminate interactions that form between the U-Mo monolith and aluminum alloy 6061 (AA6061) cladding during fabrication and are enhanced during irradiation. One aspect of fuel development and qualification is to demonstrate an appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. An exothermic reaction has previously been observed between the AA6061 cladding and Zr diffusion layer. In this paper, two fuel segments with different irradiation history were subjected to specified thermal profiles under a controlled atmosphere using a thermogravimetric/differential thermal analyzer coupled with a mass spectrometer inside a hot cell. Samples from each segment were tested with cladding and without cladding to investigate the effect, if any, that the exothermic reaction has on fission gas release mechanisms. Measurements revealed there is an instantaneous effect of the cladding/Zr exothermic reaction, but not necessarily a cumulative effect above approximately 973 K (700 °C). The mechanisms responsible for fission gas release events are discussed.

  10. The influence of cladding on fission gas release from irradiated U-Mo monolithic fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.

    2017-04-01

    The monolithic uranium-molybdenum (U-Mo) alloy has been proposed as a fuel design capable of converting the world’s highest power research reactors from use of high enriched uranium to low enriched uranium. However, a zirconium (Zr) diffusion barrier must be used to eliminate interactions that form during fabrication and are enhanced during irradiation between the U-Mo monolith and aluminum alloy 6061 (AA6061) cladding. One aspect of fuel development and qualification is to demonstrate appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. An exothermic reaction has previously been observed between the AA6061 cladding andmore » Zr diffusion layer. In this paper, two fuel segments with different irradiation history were subjected to specified thermal profiles under a controlled atmosphere using a thermogravimetric/differential thermal analyzer coupled with a mass spectrometer inside a hot cell. Samples from each segment were tested with cladding and without cladding to investigate the effect, if any, that the exothermic reaction has on fission gas release mechanisms. Measurements revealed there is an instantaneous effect of the cladding/Zr exothermic reaction, but not necessarily a cumulative effect above approximately 973 K (700 oC). The mechanisms responsible for fission gas release events are discussed.« less

  11. Sustainable Transportation Fuels from Natural Gas (H{sub 2}), Coal and Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huffman, Gerald

    2012-12-31

    This research program is focused primarily on the conversion of coal, natural gas (i.e., methane), and biomass to liquid fuels by Fischer-Tropsch synthesis (FTS), with minimum production of carbon dioxide. A complementary topic also under investigation is the development of novel processes for the production of hydrogen with very low to zero production of CO{sub 2}. This is in response to the nation's urgent need for a secure and environmentally friendly domestic source of liquid fuels. The carbon neutrality of biomass is beneficial in meeting this goal. Several additional novel approaches to limiting carbon dioxide emissions are also being explored.

  12. Preliminary Design Study of Medium Sized Gas Cooled Fast Reactor with Natural Uranium as Fuel Cycle Input

    NASA Astrophysics Data System (ADS)

    Meriyanti, Su'ud, Zaki; Rijal, K.; Zuhair, Ferhat, A.; Sekimoto, H.

    2010-06-01

    In this study a fesibility design study of medium sized (1000 MWt) gas cooled fast reactors which can utilize natural uranium as fuel cycle input has been conducted. Gas Cooled Fast Reactor (GFR) is among six types of Generation IV Nuclear Power Plants. GFR with its hard neuron spectrum is superior for closed fuel cycle, and its ability to be operated in high temperature (850° C) makes various options of utilizations become possible. To obtain the capability of consuming natural uranium as fuel cycle input, modified CANDLE burn-up scheme[1-6] is adopted this GFR system by dividing the core into 10 parts of equal volume axially. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. As an optimization results, a design of 1000 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input is discussed. The average discharge burn-up is about 280 GWd/ton HM. Enough margin for criticallity was obtained for this reactor.

  13. Committing to coal and gas: Long-term contracts, regulation, and fuel switching in power generation

    NASA Astrophysics Data System (ADS)

    Rice, Michael

    Fuel switching in the electricity sector has important economic and environmental consequences. In the United States, the increased supply of gas during the last decade has led to substantial switching in the short term. Fuel switching is constrained, however, by the existing infrastructure. The power generation infrastructure, in turn, represents commitments to specific sources of energy over the long term. This dissertation explores fuel contracts as the link between short-term price response and long-term plant investments. Contracting choices enable power plant investments that are relationship-specific, often regulated, and face uncertainty. Many power plants are subject to both hold-up in investment and cost-of-service regulation. I find that capital bias is robust when considering either irreversibility or hold-up due to the uncertain arrival of an outside option. For sunk capital, the rental rate is inappropriate for determining capital bias. Instead, capital bias depends on the regulated rate of return, discount rate, and depreciation schedule. If policies such as emissions regulations increase fuel-switching flexibility, this can lead to capital bias. Cost-of-service regulation can shorten the duration of a long-term contract. From the firm's perspective, the existing literature provides limited guidance when bargaining and writing contracts for fuel procurement. I develop a stochastic programming framework to optimize long-term contracting decisions under both endogenous and exogenous sources of hold-up risk. These typically include policy changes, price shocks, availability of fuel, and volatility in derived demand. For price risks, the optimal contract duration is the moment when the expected benefits of the contract are just outweighed by the expected opportunity costs of remaining in the contract. I prove that imposing early renegotiation costs decreases contract duration. Finally, I provide an empirical approach to show how coal contracts can limit

  14. Compatibilized Immiscible Polymer Blends for Gas Separations

    PubMed Central

    Panapitiya, Nimanka; Wijenayake, Sumudu; Nguyen, Do; Karunaweera, Chamaal; Huang, Yu; Balkus, Kenneth; Musselman, Inga; Ferraris, John

    2016-01-01

    Membrane-based gas separation has attracted a great deal of attention recently due to the requirement for high purity gasses in industrial applications like fuel cells, and because of environment concerns, such as global warming. The current methods of cryogenic distillation and pressure swing adsorption are energy intensive and costly. Therefore, polymer membranes have emerged as a less energy intensive and cost effective candidate to separate gas mixtures. However, the use of polymeric membranes has a drawback known as the permeability-selectivity tradeoff. Many approaches have been used to overcome this limitation including the use of polymer blends. Polymer blending technology synergistically combines the favorable properties of different polymers like high gas permeability and high selectivity, which are difficult to attain with a single polymer. During polymer mixing, polymers tend to uncontrollably phase separate due to unfavorable thermodynamics, which limits the number of completely miscible polymer combinations for gas separations. Therefore, compatibilizers are used to control the phase separation and to obtain stable membrane morphologies, while improving the mechanical properties. In this review, we focus on immiscible polymer blends and the use of compatibilizers for gas separation applications. PMID:28773766

  15. Performance of a natural gas fuel processor for residential PEFC system using a novel CO preferential oxidation catalyst

    NASA Astrophysics Data System (ADS)

    Echigo, Mitsuaki; Shinke, Norihisa; Takami, Susumu; Tabata, Takeshi

    Natural gas fuel processors have been developed for 500 W and 1 kW class residential polymer electrolyte fuel cell (PEFC) systems. These fuel processors contain all the elements—desulfurizers, steam reformers, CO shift converters, CO preferential oxidation (PROX) reactors, steam generators, burners and heat exchangers—in one package. For the PROX reactor, a single-stage PROX process using a novel PROX catalyst was adopted. In the 1 kW class fuel processor, thermal efficiency of 83% at HHV was achieved at nominal output assuming a H 2 utilization rate in the cell stack of 76%. CO concentration below 1 ppm in the product gas was achieved even under the condition of [O 2]/[CO]=1.5 at the PROX reactor. The long-term durability of the fuel processor was demonstrated with almost no deterioration in thermal efficiency and CO concentration for 10,000 h, 1000 times start and stop cycles, 25,000 cycles of load change.

  16. Why Hasn't Earth Warmed as Much as Expected?

    NASA Technical Reports Server (NTRS)

    Schwartz, Stephen E.; Charlson, Robert J.; Kahn, Ralph A.; Ogren, John A.; Rodhe, Henning

    2010-01-01

    The observed increase in global mean surface temperature (GMST) over the industrial era is less than 40% of that expected from observed increases in long-lived greenhouse gases together with the best-estimate equilibrium climate sensitivity given by the 2007 Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Possible reasons for this warming discrepancy are systematically examined here. The warming discrepancy is found to be due mainly to some combination of two factors: the IPCC best estimate of climate sensitivity being too high and/or the greenhouse gas forcing being partially offset by forcing by increased concentrations of atmospheric aerosols; the increase in global heat content due to thermal disequilibrium accounts for less than 25% of the discrepancy, and cooling by natural temperature variation can account for only about 15 %. Current uncertainty in climate sensitivity is shown to preclude determining the amount of future fossil fuel CO2 emissions that would be compatible with any chosen maximum allowable increase in GMST; even the sign of such allowable future emissions is unconstrained. Resolving this situation, by empirical determination of the earth's climate sensitivity from the historical record over the industrial period or through use of climate models whose accuracy is evaluated by their performance over this period, is shown to require substantial reduction in the uncertainty of aerosol forcing over this period.

  17. Rate of warming affects temperature sensitivity of anaerobic peat decomposition and greenhouse gas production.

    PubMed

    Sihi, Debjani; Inglett, Patrick W; Gerber, Stefan; Inglett, Kanika S

    2018-01-01

    Temperature sensitivity of anaerobic carbon mineralization in wetlands remains poorly represented in most climate models and is especially unconstrained for warmer subtropical and tropical systems which account for a large proportion of global methane emissions. Several studies of experimental warming have documented thermal acclimation of soil respiration involving adjustments in microbial physiology or carbon use efficiency (CUE), with an initial decline in CUE with warming followed by a partial recovery in CUE at a later stage. The variable CUE implies that the rate of warming may impact microbial acclimation and the rate of carbon-dioxide (CO 2 ) and methane (CH 4 ) production. Here, we assessed the effects of warming rate on the decomposition of subtropical peats, by applying either a large single-step (10°C within a day) or a slow ramping (0.1°C/day for 100 days) temperature increase. The extent of thermal acclimation was tested by monitoring CO 2 and CH 4 production, CUE, and microbial biomass. Total gaseous C loss, CUE, and MBC were greater in the slow (ramp) warming treatment. However, greater values of CH 4 -C:CO 2 -C ratios lead to a greater global warming potential in the fast (step) warming treatment. The effect of gradual warming on decomposition was more pronounced in recalcitrant and nutrient-limited soils. Stable carbon isotopes of CH 4 and CO 2 further indicated the possibility of different carbon processing pathways under the contrasting warming rates. Different responses in fast vs. slow warming treatment combined with different endpoints may indicate alternate pathways with long-term consequences. Incorporations of experimental results into organic matter decomposition models suggest that parameter uncertainties in CUE and CH 4 -C:CO 2 -C ratios have a larger impact on long-term soil organic carbon and global warming potential than uncertainty in model structure, and shows that particular rates of warming are central to understand the

  18. Fuel cell system modeling for solid oxide fuel cell/gas turbine hybrid power plants, Part I: Modeling and simulation framework

    NASA Astrophysics Data System (ADS)

    Leucht, Florian; Bessler, Wolfgang G.; Kallo, Josef; Friedrich, K. Andreas; Müller-Steinhagen, H.

    A sustainable future power supply requires high fuel-to-electricity conversion efficiencies even in small-scale power plants. A promising technology to reach this goal is a hybrid power plant in which a gas turbine (GT) is coupled with a solid oxide fuel cell (SOFC). This paper presents a dynamic model of a pressurized SOFC system consisting of the fuel cell stack with combustion zone and balance-of-plant components such as desulphurization, humidification, reformer, ejector and heat exchangers. The model includes thermal coupling between the different components. A number of control loops for fuel and air flows as well as power management are integrated in order to keep the system within the desired operation window. Models and controls are implemented in a MATLAB/SIMULINK environment. Different hybrid cycles proposed earlier are discussed and a preferred cycle is developed. Simulation results show the prospects of the developed modeling and control system.

  19. 46 CFR 154.706 - Cargo boil-off as fuel: Fuel lines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.706 Cargo boil-off as fuel: Fuel lines. (a) Gas fuel lines must not pass through accommodation, service, or control spaces. Each gas fuel line passing...

  20. 46 CFR 154.706 - Cargo boil-off as fuel: Fuel lines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.706 Cargo boil-off as fuel: Fuel lines. (a) Gas fuel lines must not pass through accommodation, service, or control spaces. Each gas fuel line passing...