Sample records for warm nuclei nuclear

  1. Nuclear Computational Low Energy Initiative (NUCLEI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Sanjay K.

    This is the final report for University of Washington for the NUCLEI SciDAC-3. The NUCLEI -project, as defined by the scope of work, will develop, implement and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics to be studied include the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques to be used include Quantum Monte Carlo, Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program will emphasize areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS andmore » FRIB (nuclear structure and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrino-less double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less

  2. Nuclear Shell Structure and Beta Decay I. Odd A Nuclei II. Even A Nuclei

    DOE R&D Accomplishments Database

    Mayer, M.G.; Moszkowski, S.A.; Nordheim, L.W.

    1951-05-01

    In Part I a systematics is given of all transitions for odd A nuclei for which sufficiently reliable data are available. The allowed or forbidden characters of the transitions are correlated with the positions of the initial and final odd nucleon groups in the nuclear shell scheme. The nuclear shells show definite characteristics with respect to parity of the ground states. The latter is the same as the one obtained from known spins and magnetic moments in a one-particle interpretation. In Part II a systematics of the beta transitions of even-A nuclei is given. An interpretation of the character of the transitions in terms of nuclear shell structure is achieved on the hypothesis that the odd nucleon groups have the same structure as in odd-A nuclei, together with a simple coupling rule between the neutron and proton groups in odd-odd nuclei.

  3. Quark-Meson-Coupling (QMC) model for finite nuclei, nuclear matter and beyond

    NASA Astrophysics Data System (ADS)

    Guichon, P. A. M.; Stone, J. R.; Thomas, A. W.

    2018-05-01

    The Quark-Meson-Coupling model, which self-consistently relates the dynamics of the internal quark structure of a hadron to the relativistic mean fields arising in nuclear matter, provides a natural explanation to many open questions in low energy nuclear physics, including the origin of many-body nuclear forces and their saturation, the spin-orbit interaction and properties of hadronic matter at a wide range of densities up to those occurring in the cores of neutron stars. Here we focus on four aspects of the model (i) a full comprehensive survey of the theory, including the latest developments, (ii) extensive application of the model to ground state properties of finite nuclei and hypernuclei, with a discussion of similarities and differences between the QMC and Skyrme energy density functionals, (iii) equilibrium conditions and composition of hadronic matter in cold and warm neutron stars and their comparison with the outcome of relativistic mean-field theories and, (iv) tests of the fundamental idea that hadron structure changes in-medium.

  4. A Contribution by Ice Nuclei to Global Warming

    NASA Technical Reports Server (NTRS)

    Zeng, Xiping; Tao, Wei-Kuo; Zhang, Minghua; Hou, Arthur Y.; Xie, Shaocheng; Lang, Stephen; Li, Xiaowen; Starr, David O.; Li, Xiaofan

    2009-01-01

    Ice nuclei (IN) significantly affect clouds via supercooled droplets, that in turn modulate atmospheric radiation and thus climate change. Since the IN effect is relatively strong in stratiform clouds but weak in convective ones, the overall effect depends on the ratio of stratiform to convective cloud amount. In this paper, 10 years of TRMM (Tropical Rainfall Measuring Mission) satellite data are analyzed to confirm that stratiform precipitation fraction increases with increasing latitude, which implies that the IN effect is stronger at higher latitudes. To quantitatively evaluate the IN effect versus latitude, large-scale forcing data from ten field campaigns are used to drive a CRM (cloud-resolving model) to generate longterm cloud simulations. As revealed in the simulations, the increase in the net downward radiative flux at the TOA (top of the atmosphere) from doubling the current IN concentrations is larger at higher latitude, which is attributed to the meridional tendency in the stratiform precipitation fraction. Surface warming from doubling the IN concentrations, based on the radiative balance of the globe, is compared with that from anthropogenic COZ . It is found that the former effect is stronger than the latter in middle and high latitudes but not in the Tropics. With regard to the impact of IN on global warming, there are two factors to consider: the radiative effect from increasing the IN concentration and the increase in IN concentration itself. The former relies on cloud ensembles and thus varies mainly with latitude. In contrast, the latter relies on IN sources (e.g., the land surface distribution) and thus varies not only with latitude but also longitude. Global desertification and industrialization provide clues on the geographic variation of the increase in IN concentration since pre-industrial times. Thus, their effect on global warming can be inferred and then be compared with observations. A general match in geographic and seasonal

  5. Fragmentation of relativistic nuclei in peripheral interactions in nuclear track emulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artemenkov, D. A., E-mail: artemenkov@lhe.jinr.ru; Bradnova, V.; Chernyavsky, M. M.

    2008-09-15

    The technique of nuclear track emulsions is used to explore the fragmentation of light relativistic nuclei down to the most peripheral interactions: nuclear 'white' stars. A complete pattern of the relativistic dissociation of a 8B nucleus with target fragment accompaniment is presented. Relativistic dissociation {sup 9}Be {yields} 2{alpha} is explored using significant statistics, and a relative contribution of {sup 8}Be decays from 0+ and 2+ states is established. Target fragment accompaniments are shown for relativistic fragmentation {sup 14}N {yields} 3He +H and {sup 22}Ne {yields} 5He. The leading role of the electromagnetic dissociation on heavy nuclei with respect to breakupsmore » on target protons is demonstrated in all these cases. It is possible to conclude that the peripheral dissociation of relativistic nuclei in nuclear track emulsion is a unique tool to study many-body systems composed of the lightest nuclei and nucleons in the energy scale relevant for nuclear astrophysics.« less

  6. Leading twist nuclear shadowing phenomena in hard processes with nuclei

    DOE PAGES

    L. Franfurt; Guzey, V.; Strikman, M.

    2012-01-08

    We present and discuss the theory and phenomenology of the leading twist theory of nuclear shadowing which is based on the combination of the generalization of Gribov-Glauber theory, QCD factorization theorems, and HERA QCD analysis of diffraction in lepton-proton deep inelastic scattering (DIS). We apply this technique for the analysis of a wide range of hard processes with nuclei-inclusive DIS on deuterons, medium-range and heavy nuclei, coherent and incoherent diffractive DIS with nuclei, and hard diffraction in proton-nucleus scattering - and make predictions for the effect of nuclear shadowing in the corresponding sea quark and gluon parton distributions. We alsomore » analyze the role of the leading twist nuclear shadowing in generalized parton distributions in nuclei and certain characteristics of final states in nuclear DIS. We discuss the limits of applicability of the leading twist approximation for small x scattering off nuclei and the onset of the black disk regime and methods of detecting it. It will be possible to check many of our predictions in the near future in the studies of the ultraperipheral collisions at the Large Hadron Collider (LHC). Further checks will be possible in pA collisions at the LHC and forward hadron production at Relativistic Heavy Ion Collider (RHIC). As a result, detailed tests will be possible at an Electon-Ion Collider (EIC) in USA and at the Large Hadron-Electron Collider (LHeC) at CERN.« less

  7. THE COVERING FACTOR OF WARM DUST IN WEAK EMISSION-LINE ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xudong; Liu, Yuan, E-mail: zhangxd@ihep.ac.cn, E-mail: liuyuan@ihep.ac.cn

    2016-10-20

    Weak emission-line active galactic nuclei (WLAGNs) are radio-quiet active galactic nuclei (AGNs) that have nearly featureless optical spectra. We investigate the ultraviolet to mid-infrared spectral energy distributions of 73 WLAGNs (0.4 < z < 3) and find that most of them are similar to normal AGNs. We also calculate the covering factor of warm dust of these 73 WLAGNs. No significant difference is indicated by a KS test between the covering factor of WLAGNs and normal AGNs in the common range of bolometric luminosity. The implication for several models of WLAGNs is discussed. The super-Eddington accretion is unlikely to bemore » the dominant reason for the featureless spectrum of a WLAGN. The present results are still consistent with the evolution scenario, i.e., WLAGNs are in a special stage of AGNs.« less

  8. KIDS Nuclear Energy Density Functional: 1st Application in Nuclei

    NASA Astrophysics Data System (ADS)

    Gil, Hana; Papakonstantinou, Panagiota; Hyun, Chang Ho; Oh, Yongseok

    We apply the KIDS (Korea: IBS-Daegu-Sungkyunkwan) nuclear energy density functional model, which is based on the Fermi momentum expansion, to the study of properties of lj-closed nuclei. The parameters of the model are determined by the nuclear properties at the saturation density and theoretical calculations on pure neutron matter. For applying the model to the study of nuclei, we rely on the Skyrme force model, where the Skyrme force parameters are determined through the KIDS energy density functional. Solving Hartree-Fock equations, we obtain the energies per particle and charge radii of closed magic nuclei, namely, 16O, 28O, 40Ca, 48Ca, 60Ca, 90Zr, 132Sn, and 208Pb. The results are compared with the observed data and further improvement of the model is shortly mentioned.

  9. NMR of insensitive nuclei enhanced by dynamic nuclear polarization.

    PubMed

    Miéville, Pascal; Jannin, Sami; Helm, Lothar; Bodenhausen, Geoffrey

    2011-01-01

    Despite the powerful spectroscopic information it provides, Nuclear Magnetic Resonance (NMR) spectroscopy suffers from a lack of sensitivity, especially when dealing with nuclei other than protons. Even though NMR can be applied in a straightforward manner when dealing with abundant protons of organic molecules, it is very challenging to address biomolecules in low concentration and/or many other nuclei of the periodic table that do not provide as intense signals as protons. Dynamic Nuclear Polarization (DNP) is an important technique that provides a way to dramatically increase signal intensities in NMR. It consists in transferring the very high electron spin polarization of paramagnetic centers (usually at low temperature) to the surrounding nuclear spins with appropriate microwave irradiation. DNP can lead to an enhancement of the nuclear spin polarization by up to four orders of magnitude. We present in this article some basic concepts of DNP, describe the DNP apparatus at EPFL, and illustrate the interest of the technique for chemical applications by reporting recent measurements of the kinetics of complexation of 89Y by the DOTAM ligand.

  10. Outer nuclear membrane fusion of adjacent nuclei in varicella-zoster virus-induced syncytia.

    PubMed

    Wang, Wei; Yang, Lianwei; Huang, Xiumin; Fu, Wenkun; Pan, Dequan; Cai, Linli; Ye, Jianghui; Liu, Jian; Xia, Ningshao; Cheng, Tong; Zhu, Hua

    2017-12-01

    Syncytia formation has been considered important for cell-to-cell spread and pathogenesis of many viruses. As a syncytium forms, individual nuclei often congregate together, allowing close contact of nuclear membranes and possibly fusion to occur. However, there is currently no reported evidence of nuclear membrane fusion between adjacent nuclei in wild-type virus-induced syncytia. Varicella-zoster virus (VZV) is one typical syncytia-inducing virus that causes chickenpox and shingles in humans. Here, we report, for the first time, an interesting observation of apparent fusion of the outer nuclear membranes from juxtaposed nuclei that comprise VZV syncytia both in ARPE-19 human epithelial cells in vitro and in human skin xenografts in the SCID-hu mouse model in vivo. This work reveals a novel aspect of VZV-related cytopathic effect in the context of multinucleated syncytia. Additionally, the information provided by this study could be helpful for future studies on interactions of viruses with host cell nuclei. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The nuclear contacts and short range correlations in nuclei

    NASA Astrophysics Data System (ADS)

    Weiss, R.; Cruz-Torres, R.; Barnea, N.; Piasetzky, E.; Hen, O.

    2018-05-01

    Atomic nuclei are complex strongly interacting systems and their exact theoretical description is a long-standing challenge. An approximate description of nuclei can be achieved by separating its short and long range structure. This separation of scales stands at the heart of the nuclear shell model and effective field theories that describe the long-range structure of the nucleus using a mean-field approximation. We present here an effective description of the complementary short-range structure using contact terms and stylized two-body asymptotic wave functions. The possibility to extract the nuclear contacts from experimental data is presented. Regions in the two-body momentum distribution dominated by high-momentum, close-proximity, nucleon pairs are identified and compared to experimental data. The amount of short-range correlated (SRC) nucleon pairs is determined and compared to measurements. Non-combinatorial isospin symmetry for SRC pairs is identified. The obtained one-body momentum distributions indicate dominance of SRC pairs above the nuclear Fermi-momentum.

  12. Proton elastic scattering from stable and unstable nuclei - Extraction of nuclear densities

    NASA Astrophysics Data System (ADS)

    Sakaguchi, H.; Zenihiro, J.

    2017-11-01

    Progress in proton elastic scattering at intermediate energies to determine nuclear density distributions is reviewed. After challenges of about 15 years to explain proton elastic scattering and associated polarization phenomena at intermediate energies, we have reached to some conclusions regarding proton elastic scattering as a means of obtaining nuclear densities. During this same period, physics of unstable nuclei has become of interest, and the density distributions of protons and neutrons play more important roles in unstable nuclei, since the differences in proton and neutron numbers and densities are expected to be significant. As such, proton elastic scattering experiments at intermediate energies using the inverse kinematic method have started to determine density distributions of unstable nuclei. In the region of unstable nuclei, we are confronted with a new problem when attempting to find proton and neutron densities separately from elastic proton scattering data, since electron scattering data for unstable nuclei are not presently available. We introduce a new means of determining proton and neutron densities separately by double-energy proton elastic scattering at intermediate energies.

  13. Constraining the astrophysical origin of the p-nuclei through nuclear physics and meteoritic data.

    PubMed

    Rauscher, T; Dauphas, N; Dillmann, I; Fröhlich, C; Fülöp, Zs; Gyürky, Gy

    2013-06-01

    A small number of naturally occurring, proton-rich nuclides (the p-nuclei) cannot be made in the s- and r-processes. Their origin is not well understood. Massive stars can produce p-nuclei through photodisintegration of pre-existing intermediate and heavy nuclei. This so-called γ-process requires high stellar plasma temperatures and occurs mainly in explosive O/Ne burning during a core-collapse supernova. Although the γ-process in massive stars has been successful in producing a large range of p-nuclei, significant deficiencies remain. An increasing number of processes and sites has been studied in recent years in search of viable alternatives replacing or supplementing the massive star models. A large number of unstable nuclei, however, with only theoretically predicted reaction rates are included in the reaction network and thus the nuclear input may also bear considerable uncertainties. The current status of astrophysical models, nuclear input and observational constraints is reviewed. After an overview of currently discussed models, the focus is on the possibility to better constrain those models through different means. Meteoritic data not only provide the actual isotopic abundances of the p-nuclei but can also put constraints on the possible contribution of proton-rich nucleosynthesis. The main part of the review focuses on the nuclear uncertainties involved in the determination of the astrophysical reaction rates required for the extended reaction networks used in nucleosynthesis studies. Experimental approaches are discussed together with their necessary connection to theory, which is especially pronounced for reactions with intermediate and heavy nuclei in explosive nuclear burning, even close to stability.

  14. Stopping of 200-GeV gold nuclei in nuclear emulsions

    NASA Technical Reports Server (NTRS)

    Waddington, C.J.; Freier, P. S.; Fixsen, D. J.

    1983-01-01

    The residual ranges of Au-197(79) nuclei stopping in nuclear emulsions has been measured for nuclei with an incident energy of 991 MeV/amu. The mean ranges observed are appreciably less than those predicted from measurements made on energetic particles of lower charge. However, by the consideration of higher-order correction terms to the rate of energy loss, good agreement can be obtained between the predicted and observed ranges.

  15. Sigma omega meson coupling and properties of nuclei and nuclear matter

    NASA Astrophysics Data System (ADS)

    Haidari, Maryam M.; Sharma, Madan M.

    2008-05-01

    We have constructed a Lagrangian model with a coupling of σ and ω mesons in the relativistic mean-field theory. Properties of finite nuclei and nuclear matter are explored with the new Lagrangian model SIG-OM. The study shows that an excellent description of binding energies and charge radii of nuclei over a large range of isospin is achieved with SIG-OM. With an incompressibility of nuclear matter K=265 MeV, it is also able to describe the breathing-mode isoscalar giant monopole resonance energies appropriately. It is shown that the high-density behaviour of the equation of state of nuclear and neutron matter with the σ-ω coupling is much softer than that of the non-linear scalar coupling model.

  16. Exotic nuclear systems with strangeness: Hypernuclei and Kaonic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dote, Akinobu

    2010-05-12

    Nuclear systems with strangeness, hypernuclei and kaonic nuclei, are expected to have lots of interesting properties. In this article, after the recent development of hypernuclear study is reviewed, we report two results of our study of hypernuclei with antisymmetrized molecular dynamics; 1) impurity effect of LAMBDA on {sub L}AMBDA{sup 20}Ne, and 2){sub X}I{sup 12}Be studied with three kinds of XIN potentials. The current status of studies of kaonic nuclei is also introduced and our study with a phenomenological and a chiral-based K-barN potential are reported.

  17. Particle induced nuclear reaction calculations of Boron target nuclei

    NASA Astrophysics Data System (ADS)

    Tel, Eyyup; Sahan, Muhittin; Sarpün, Ismail Hakki; Kavun, Yusuf; Gök, Ali Armagan; Poyraz, Meltem

    2017-09-01

    Boron is usable element in many areas such as health, industry and energy. Especially, Boron neutron capture therapy (BNCT) is one of the medical applications. Boron target is irradiated with low energy thermal neutrons and at the end of reactions alpha particles occur. After this process recoiling lithium-7 nuclei is composed. In this study, charge particle induced nuclear reactions calculations of Boron target nuclei were investigated in the incident proton and alpha energy range of 5-50 MeV. The excitation functions for 10B target nuclei reactions have been calculated by using PCROSS Programming code. The semi-empirical calculations for (p,α) reactions have been done by using cross section formula with new coefficient obtained by Tel et al. The calculated results were compared with the experimental data from the literature.

  18. Nuclear inertia and the decay modes of superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Poenaru, D. N.; Gherghescu, R. A.; Greiner, Walter

    2013-10-01

    Superheavy nuclei produced up to now decay mainly by α emission and spontaneous fission. For atomic numbers larger than 121 cluster decay has a good chance to compete. While calculated α decay half-lives are in agreement with experimental data within one order of magnitude and cluster decay experiments are also very well accounted for, the discrepancy between theory and experiment can be as high as ten orders of magnitude for spontaneous fission. We analyze some ways of improving the accuracy: using a semiempirical formula for α decay and changing the parameters of analytical superasymmetric fission and of the universal curve for cluster decay. For spontaneous fission we act on nuclear dynamics based on potential barriers computed by the macroscopic-microscopic method and employing various nuclear inertia variation laws. Applications are illustrated for 284Cn and Z = 118-124 even-even parent nuclei. Communicated by Steffen Bass

  19. Equilibrium nuclear ensembles taking into account vaporization of hot nuclei in dense stellar matter

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Mishustin, Igor

    2018-02-01

    We investigate the high-temperature effect on the nuclear matter that consists of mixture of nucleons and all nuclei in the dense and hot stellar environment. The individual nuclei are described within the compressible-liquid-drop model that is based on Skyrme interactions for bulk energies and that takes into account modifications of the surface and Coulomb energies at finite temperatures and densities. The free-energy density is minimized with respect to the individual equilibrium densities of all heavy nuclei and the nuclear composition. We find that their optimized equilibrium densities become smaller and smaller at high temperatures because of the increase in thermal contributions to bulk free energies and the reduction of surface energies. The neutron-rich nuclei become unstable and disappear one after another at given temperatures. The calculations are performed for two sets of model parameters leading to different values of the slope parameter in the nuclear-symmetry energy. It is found that the larger slope parameter reduces the equilibrium densities and the melting temperatures. We also compare the proposed model with some other approaches and find that the mass fractions of heavy nuclei in the previous calculations that omit vaporization are underestimated at T ≲10 MeV and overestimated at T ≳10 MeV. The further sophistication of calculations of nuclear vaporization and of light clusters would be required to construct the equation of state for explosive astrophysical phenomena.

  20. Nuclear equation of state from ground and collective excited state properties of nuclei

    NASA Astrophysics Data System (ADS)

    Roca-Maza, X.; Paar, N.

    2018-07-01

    This contribution reviews the present status on the available constraints to the nuclear equation of state (EoS) around saturation density from nuclear structure calculations on ground and collective excited state properties of atomic nuclei. It concentrates on predictions based on self-consistent mean-field calculations, which can be considered as an approximate realization of an exact energy density functional (EDF). EDFs are derived from effective interactions commonly fitted to nuclear masses, charge radii and, in many cases, also to pseudo-data such as nuclear matter properties. Although in a model dependent way, EDFs constitute nowadays a unique tool to reliably and consistently access bulk ground state and collective excited state properties of atomic nuclei along the nuclear chart as well as the EoS. For comparison, some emphasis is also given to the results obtained with the so called ab initio approaches that aim at describing the nuclear EoS based on interactions fitted to few-body data only. Bridging the existent gap between these two frameworks will be essential since it may allow to improve our understanding on the diverse phenomenology observed in nuclei. Examples on observations from astrophysical objects and processes sensitive to the nuclear EoS are also briefly discussed. As the main conclusion, the isospin dependence of the nuclear EoS around saturation density and, to a lesser extent, the nuclear matter incompressibility remain to be accurately determined. Experimental and theoretical efforts in finding and measuring observables specially sensitive to the EoS properties are of paramount importance, not only for low-energy nuclear physics but also for nuclear astrophysics applications.

  1. The major nucleoside triphosphatase in pea (Pisum sativum L.) nuclei and in rat liver nuclei share common epitopes also present in nuclear lamins

    NASA Technical Reports Server (NTRS)

    Tong, C. G.; Dauwalder, M.; Clawson, G. A.; Hatem, C. L.; Roux, S. J.

    1993-01-01

    The major nucleoside triphosphatase (NTPase) activities in mammalian and pea (Pisum sativum L.) nuclei are associated with enzymes that are very similar both biochemically and immunochemically. The major NTPase from rat liver nuclei appears to be a 46-kD enzyme that represents the N-terminal portion of lamins A and C, two lamina proteins that apparently arise from the same gene by alternate splicing. Monoclonal antibody (MAb) G2, raised to human lamin C, both immunoprecipitates the major (47 kD) NTPase in pea nuclei and recognizes it in western blot analyses. A polyclonal antibody preparation raised to the 47-kD pea NTPase (pc480) reacts with the same lamin bands that are recognized by MAb G2 in mammalian nuclei. The pc480 antibodies also bind to the same lamin-like bands in pea nuclear envelope-matrix preparations that are recognized by G2 and three other MAbs known to bind to mammalian lamins. In immunofluorescence assays, pc480 and anti-lamin antibodies stain both cytoplasmic and nuclear antigens in plant cells, with slightly enhanced staining along the periphery of the nuclei. These results indicate that the pea and rat liver NTPases are structurally similar and that, in pea nuclei as in rat liver nuclei, the major NTPase is probably derived from a lamin precursor by proteolysis.

  2. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, Jeffry Todd

    Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics.more » The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an

  3. Nuclear electromagnetic cascades from nuclei with Z larger than or equal to 3

    NASA Technical Reports Server (NTRS)

    Jones, W. V.

    1971-01-01

    A Monte Carlo simulation method was developed for studying nuclear-electromagnetic cascades initiated by high energy nuclei with Z or = 3 incident on heavy absorbers. The calculations are based on a cascade model which was first adjusted until it agreed with measurements made with protons at an accelerator. Modifications of the model used for protons include the incorporation of the probabilities for fragmentation of heavy nuclei into lighter nuclei, alpha particles, and nucleons. Mean values and fluctuations of the equivalent numbers of particles in the cascades at various depths in an iron absorber are presented for protons, carbon, and iron nuclei over the 30 to 300 GeV/nucleon energy range.

  4. New proton drip-line nuclei relevant to nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Ferreira, L. S.

    2018-02-01

    We discuss recent results on decay of exotic proton rich nuclei at the proton drip line for Z < 50, that are of great importance for nuclear astrophysics models. From the interpretation of the data, we assign their properties, and impose a constraint on the separation energy which has strong implications in the network calculations.

  5. Probing particle and nuclear physics models of neutrinoless double beta decay with different nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogli, G. L.; Rotunno, A. M.; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari

    2009-07-01

    Half-life estimates for neutrinoless double beta decay depend on particle physics models for lepton-flavor violation, as well as on nuclear physics models for the structure and transitions of candidate nuclei. Different models considered in the literature can be contrasted - via prospective data - with a 'standard' scenario characterized by light Majorana neutrino exchange and by the quasiparticle random phase approximation, for which the theoretical covariance matrix has been recently estimated. We show that, assuming future half-life data in four promising nuclei ({sup 76}Ge, {sup 82}Se, {sup 130}Te, and {sup 136}Xe), the standard scenario can be distinguished from a fewmore » nonstandard physics models, while being compatible with alternative state-of-the-art nuclear calculations (at 95% C.L.). Future signals in different nuclei may thus help to discriminate at least some decay mechanisms, without being spoiled by current nuclear uncertainties. Prospects for possible improvements are also discussed.« less

  6. Nuclear Masses in the A=80 Region of Nuclei

    NASA Astrophysics Data System (ADS)

    Cuka, N.; Gadala-Maria, A.; Aprahamian, A.

    1996-05-01

    Nucleosynthesis in explosive hydrogen burning at high temperatures above 8x10^8 K is characterized by the rp-process. A recent study^1 of the reaction flow and their associated time scales showed that the reaction path may in fact proceed well beyond the A=80 region of nuclei. An accurate simulation of the nucleosynthesis and energy generation of this process strongly depends on reliable nuclear physics input parameters such as masses, lifetimes, and reaction rates. We have extended the use of the simple P-parametrization^2,3 that had been applied to the characterization of the structure contributions to the nuclear masses in the actinides to include the A=80 region. The results will be presented along with predictions of masses for presently unknown masses of nuclei along the rp-process path. ^1 R. Wallace and S. Woosley, Ap. J. Suppl. 45, 389 (81). ^2 R. F. Casten, D.S. Brenner and P.E. Haustein, Phys. Rev. Lett. 58, 658 (87). ^3 P. Haustein, D.S. Brenner and R.F. Casten, Phys. Rev. C 38, 467 (88).

  7. The Dominant Snow-forming Process in Warm and Cold Mixed-phase Orographic Clouds: Effects of Cloud Condensation Nuclei and Ice Nuclei

    NASA Astrophysics Data System (ADS)

    Fan, J.; Rosenfeld, D.; Leung, L. R.; DeMott, P. J.

    2014-12-01

    Mineral dust aerosols often observed over California in winter and spring from long-range transport can be efficient ice nuclei (IN) and enhance snow precipitation in mixed-phase orographic clouds. On the other hand, local pollution particles can serve as good CCN and suppress warm rain, but their impacts on cold rain processes are uncertain. The main snow-forming mechanism in warm and cold mixed-phase orographic clouds (refer to as WMOC and CMOC, respectively) could be very different, leading to different precipitation response to CCN and IN. We have conducted 1-km resolution model simulations using the Weather Research and Forecasting (WRF) model coupled with a spectral-bin cloud microphysical model for WMOC and CMOC cases from CalWater2011. We investigated the response of cloud microphysical processes and precipitation to CCN and IN with extremely low to extremely high concentrations using ice nucleation parameterizations that connect with dust and implemented based on observational evidences. We find that riming is the dominant process for producing snow in WMOC while deposition plays a more important role than riming in CMOC. Increasing IN leads to much more snow precipitation mainly due to an increase of deposition in CMOC and increased rimming in WMOC. Increasing CCN decreases precipitation in WMOC by efficiently suppressing warm rain, although snow is increased. In CMOC where cold rain dominates, increasing CCN significantly increases snow, leading to a net increase in precipitation. The sensitivity of supercooled liquid to CCN and IN has also been analyzed. The mechanism for the increased snow by CCN and caveats due to uncertainties in ice nucleation parameterizations will be discussed.

  8. In-medium effects via nuclear stopping in asymmetric colliding nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Mandeep

    2016-05-06

    The nuclear stopping is studied using isospin-dependent quantum molecular dynamics (IQMD) model in asymmetric colliding nuclei by varying mass asymmetry. The calculations have been done at incident energies varying between 50 and 400 MeV/nucleon for different impact parameters. We investigate the relative role of constant scaled and density-dependent scaled cross-sections. Our study reveals that nuclear stopping depends on the mass asymmetry, incident energy and impact parameter, however, it is independent of the way of scaling the cross-section.

  9. STUDIES ON ISOLATED NUCLEI. I. ISOLATION AND CHEMICAL CHARACTERIZATION OF A NUCLEAR FRACTION FROM GUINEA PIG LIVER.

    PubMed

    MAGGIO, R; SIEKEVITZ, P; PALADE, G E

    1963-08-01

    This article describes a method for the isolation of nuclei from guinea pig liver. It involves the homogenization of the tissue in 0.88 M sucrose-1.5 mM CaCl(2) followed by centrifugation in a discontinuous density gradient in which the upper phase is the homogenate and the lower phase is 2.2 M sucrose-0.5 mM CaCl(2). Based on DNA recovery, the isolated fraction contains 25 to 30 per cent of the nuclei of the original homogenate. Electron microscopical observations showed that approximately 88 per cent of the isolated nuclei come from liver cells (the rest from von Kupffer cells and leucocytes) and that approximately 90 per cent of the nuclei appear intact, with well preserved nucleoli, nucleoplasm, nuclear envelope, and pores. Cytoplasmic contamination is minimal and consists primarily of the nuclear envelope and its attached ribosomes. The nuclear fraction consists of approximately 22.3 per cent DNA, approximately 4.7 per cent RNA, and approximately 73 per cent protein, the DNA/RNA ratio being 4.7. Data on RNA extractibility by phosphate and salt and on the base composition of total nuclear RNA are included.

  10. Age-related retention of fiber cell nuclei and nuclear fragments in the lens cortices of multiple species

    PubMed Central

    Pendergrass, William; Zitnik, Galynn; Urfer, Silvan R.

    2011-01-01

    Purpose To determine the differences between species in the retention of lens fiber cell nuclei and nuclear fragments in the aging lens cortex and the relationship of nuclear retention to lens opacity. For this purpose old human, monkey, dog, and rat lenses were compared to those of three strains of mouse. We also investigated possible mechanisms leading to nuclear retention. Methods Fixed specimens of the species referred to above were obtained from immediate on site sacrifice of mice and rats, or from recently fixed lenses of other species, dogs, monkeys, and humans, obtained from collaborators. The retention of undegraded nuclei and nuclear fragments was graded 1–4 from histologic observation. All species lenses were examined microscopically in fixed sections stained with hematoxylin and eosin (H&E) or 4',6-diamidino-2-phenylindole (DAPI). Slit lamp observations were made only on the mice and rats before sacrifice and lens fixation. Values of 0 to 4 (clear lens to cataract) were given to degree of opacity. MRNA content in young versus old C57BL/6 mouse lenses was determined by quantitative PCR (qPCR) for DNase II-like acid DNase (DLAD) and other proteins. DLAD protein was determined by immunofluorescence of fixed eye sections. Results In old C57BL/6 and DBA mice and, to a lesser degree, in old CBA mice and old Brown Norway (BN) rats lenses were seen to contain a greatly expanded pool of unresolved whole nuclei or fragments of nuclei in differentiating lens fiber cells. This generally correlated with increased slit lamp opacities in these mice. Most old dog lenses also had an increase in retained cortical nuclei, as did a few old humans. However, a second rat strain, BNF1, in which opacity was quite high had no increase in retained nuclei with age nor did any of the old monkeys, indicating that retained nuclei could not be a cause of opacity in these animals. The nuclei and nuclear fragments were located at all levels in the outer cortex extending inward from

  11. PRESTO polarization transfer to quadrupolar nuclei: Implications for dynamic nuclear polarization

    DOE PAGES

    Perras, Frederic A.; Kobayashi, Takeshi; Pruski, Marek

    2015-08-04

    In this study, we show both experimentally and numerically on a series of model systems that in experiments involving transfer of magnetization from 1H to the quadrupolar nuclei under magic-angle-spinning (MAS), the PRESTO technique consistently outperforms traditionally used cross polarization (CP), affording more quantitative intensities, improved lineshapes, better overall sensitivity, and straightforward optimization. This advantage derives from the fact that PRESTO circumvents the convoluted and uncooperative spin dynamics during the CP transfer under MAS, by replacing the spin-locking of quadrupolar nuclei with a single central transition selective 90° pulse and using a symmetry-based recoupling sequence in the 1H channel. Thismore » is important in the context of dynamic nuclear polarization (DNP) NMR of quadrupolar nuclei, where the efficient transfer of enhanced 1H polarization is desired to obtain the highest sensitivity.« less

  12. Scalar pseudo-Nambu-Goldstone boson in nuclei and dense nuclear matter

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Kyu; Paeng, Won-Gi; Rho, Mannque

    2015-12-01

    The notion that the scalar listed as f0(500 ) in the particle data booklet is a pseudo-Nambu-Goldstone (NG) boson of spontaneously broken scale symmetry, explicitly broken by a small departure from an infrared fixed point, is explored in nuclear dynamics. This notion—which puts the scalar (which we shall identify as the "dilaton") on the same footing as the pseudoscalar pseudo-NG bosons, i.e., octet π , while providing a simple explanation for the Δ I =1 /2 rule for kaon decay—generalizes the standard chiral perturbation theory (χ PT ) to "scale chiral perturbation theory," denoted χPT σ , with one infrared mass scale for both symmetries, with the σ figuring as a chiral singlet NG mode in the nonstrange sector. Applied to nuclear dynamics, it is seen to provide answers to various hitherto unclarified nuclear phenomena, such as the success of one-boson-exchange potentials, the large cancellation of a strongly attractive scalar potential by a strongly repulsive vector potential in relativistic mean-field theory of nuclear systems and in-medium QCD sum rules, the interplay of the dilaton and the vector meson ω in dense Skyrmion matter, the Bogomol'nyi-Prasad-Sommerfeld Skyrmion structure of nuclei accounting for small binding energies of medium-heavy nuclei, and the suppression of hyperon degrees of freedom in compact-star matter.

  13. Analytical mass formula and nuclear surface properties in the ETF approximation. Part II: asymmetric nuclei

    NASA Astrophysics Data System (ADS)

    Aymard, François; Gulminelli, Francesca; Margueron, Jérôme

    2016-08-01

    We have recently addressed the problem of the determination of the nuclear surface energy for symmetric nuclei in the framework of the extended Thomas-Fermi (ETF) approximation using Skyrme functionals. We presently extend this formalism to the case of asymmetric nuclei and the question of the surface symmetry energy. We propose an approximate expression for the diffuseness and the surface energy. These quantities are analytically related to the parameters of the energy functional. In particular, the influence of the different equation of state parameters can be explicitly quantified. Detailed analyses of the different energy components (local/non-local, isoscalar/isovector, surface/curvature and higher order) are also performed. Our analytical solution of the ETF integral improves previous models and leads to a precision of better than 200 keV per nucleon in the determination of the nuclear binding energy for dripline nuclei.

  14. The role of nuclear energy in mitigating greenhouse warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krakowski, R.A.

    1997-12-31

    A behavioral, top-down, forced-equilibrium market model of long-term ({approximately} 2,100) global energy-economics interactions has been modified with a bottom-up nuclear energy model and used to construct consistent scenarios describing future impacts of civil nuclear materials flows in an expanding, multi-regional (13) world economy. The relative measures and tradeoffs between economic (GNP, tax impacts, productivity, etc.), environmental (greenhouse gas accumulations, waste accumulation, proliferation risk), and energy (resources, energy mixes, supply-side versus demand-side attributes) interactions that emerge from these analyses are focused herein on advancing understanding of the role that nuclear energy (and other non-carbon energy sources) might play in mitigating greenhousemore » warming. Two ostensibly opposing scenario drivers are investigated: (a) demand-side improvements in (non-price-induced) autonomous energy efficiency improvements; and (b) supply-side carbon-tax inducements to shift energy mixes towards reduced- or non-carbon forms. In terms of stemming greenhouse warming for minimal cost of greenhouse-gas abatement, and with the limitations of the simplified taxing schedule used, a symbiotic combination of these two approaches may offer advantages not found if each is applied separately.« less

  15. Nuclear transition moment measurements of neutron rich nuclei

    NASA Astrophysics Data System (ADS)

    Starosta, Krzysztof

    2009-10-01

    The Recoil Distance Method (RDM) and related Doppler Shift Attenuation Method (DSAM) are well-established tools for lifetime measurements following nuclear reactions near the Coulomb barrier. Recently, the RDM was implemented at National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University using NSCL/K"oln plunger device and a unique combination of the state-of-the-art instruments available there. Doppler-shift lifetime measurements following Coulomb excitation, knock-out, and fragmentation at intermediate energies of ˜100 MeV/u hold the promise of providing lifetime information for excited states in a wide range of unstable nuclei. So far, the method was used to investigate the collectivity of the neutron-rich ^16,18,20C, ^62,64,66Fe, ^70,72Ni, ^110,114Pd isotopes and also of the neutron-deficient N=Z ^64Ge. A significant fraction of these experiments was performed using NSCL's Segmented Germanium Array instrumented with the Digital Data Acquisition System which enables gamma-ray tracking. The impact of GRETINA and gamma-ray tracking on RDM and DSAM studies of neutron-rich nuclei will be discussed.

  16. Mass predictions of atomic nuclei in the infinite nuclear matter model

    NASA Astrophysics Data System (ADS)

    Nayak, R. C.; Satpathy, L.

    2012-07-01

    We present here the mass excesses, binding energies, one- and two-neutron, one- and two-proton and α-particle separation energies of 6727 nuclei in the ranges 4≤Z≤120 and 8≤A≤303 calculated in the infinite nuclear matter model. Compared to our predictions of 1999 mass table, the present ones are obtained using larger data base of 2003 mass table of Wapstra and Audi and resorting to higher accuracy in the solutions of the η-differential equations of the INM model. The local energy η's supposed to carry signature of the characteristic properties of nuclei are found to possess the predictive capability. In fact η-systematics reveal new magic numbers in the drip-line regions giving rise to new islands of stability supported by relativistic mean field theoretic calculations. This is a manifestation of a new phenomenon where shell-effect overcomes the instability due to repulsive components of the nucleon-nucleon force broadening the stability peninsula. The two-neutron separation energy-systematics derived from the present mass predictions reveal a general new feature for the existence of islands of inversion in the exotic neutron-rich regions of nuclear landscape, apart from supporting the presently known islands around 31Na and 62Ti. The five global parameters representing the properties of infinite nuclear matter, the surface, the Coulomb and the pairing terms are retained as per our 1999 mass table. The root-mean-square deviation of the present mass-fit to 2198 known masses is 342 keV, while the mean deviation is 1.3 keV, reminiscent of no left-over systematic effects. This is a substantive improvement over our 1999 mass table having rms deviation of 401 keV and mean deviation of 9 keV for 1884 data nuclei.

  17. Mass predictions of atomic nuclei in the infinite nuclear matter model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, R.C., E-mail: rcnayak00@yahoo.com; Satpathy, L., E-mail: satpathy@iopb.res.in

    We present here the mass excesses, binding energies, one- and two-neutron, one- and two-proton and {alpha}-particle separation energies of 6727 nuclei in the ranges 4{<=}Z{<=}120 and 8{<=}A{<=}303 calculated in the infinite nuclear matter model. Compared to our predictions of 1999 mass table, the present ones are obtained using larger data base of 2003 mass table of Wapstra and Audi and resorting to higher accuracy in the solutions of the {eta}-differential equations of the INM model. The local energy {eta}'s supposed to carry signature of the characteristic properties of nuclei are found to possess the predictive capability. In fact {eta}-systematics revealmore » new magic numbers in the drip-line regions giving rise to new islands of stability supported by relativistic mean field theoretic calculations. This is a manifestation of a new phenomenon where shell-effect overcomes the instability due to repulsive components of the nucleon-nucleon force broadening the stability peninsula. The two-neutron separation energy-systematics derived from the present mass predictions reveal a general new feature for the existence of islands of inversion in the exotic neutron-rich regions of nuclear landscape, apart from supporting the presently known islands around {sup 31}Na and {sup 62}Ti. The five global parameters representing the properties of infinite nuclear matter, the surface, the Coulomb and the pairing terms are retained as per our 1999 mass table. The root-mean-square deviation of the present mass-fit to 2198 known masses is 342 keV, while the mean deviation is 1.3 keV, reminiscent of no left-over systematic effects. This is a substantive improvement over our 1999 mass table having rms deviation of 401 keV and mean deviation of 9 keV for 1884 data nuclei.« less

  18. Coherent dissociation of relativistic {sup 9}C nuclei in nuclear track emulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krivenkov, D. O.; Artemenkov, D. A.; Bradnova, V.

    2010-04-30

    For the first time nuclear track emulsion is exposed to relativistic {sup 9}C nuclei. A systematic pattern of the distributions of charge combinations of fragments in the peripheral interactions of {sup 9}C nuclei in a nuclear track emulsion has been obtained. The main conclusion is that the contribution of the channel {sup 9}C->{sup 8}B+p and {sup 9}C->{sup 7}Be+2p is most important in events that do not involve the production of target-nucleus fragments or mesons (coherent dissociation). It can be concluded that in the peripheral {sup 9}C dissociation the picture hitherto obtained for {sup 8}B and {sup 7}Be with the additionmore » of one or two protons, respectively, is reproduced. Three coherent dissociation events {sup 9}C->3{sup 3}He accompanied by neither target fragments of the nucleus target nor charged mesons are identified.« less

  19. Quantization of Differences Between Atomic and Nuclear Rest Masses and Self-organization of Atoms and Nuclei

    NASA Astrophysics Data System (ADS)

    Gareev, F. A.; Zhidkova, I. E.

    2007-03-01

    We come to the conclusion that all atomic models based on either the Newton equation and the Kepler laws, or the Maxwell equations, or the Schrodinger and Dirac equations are in reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principle(s) which is (are) not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in the whole system nuclei + atoms + condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies than the corresponding ones on free constituents. We were able to quantize phenomenologically the first time the differences between atomic and nuclear rest masses by the formula: δδM =n1/n2 X 0.0076294 (in MeV/ c^2), ni=1,2,3,.... Note that this quantization rule is justified for atoms and nuclei with different A, N and Z and the nuclei and atoms represent a coherent synchronized systems - a complex of coupled oscillators (resonators). The cooperative resonance synchronization mechanisms can explain how electron volt (atomic-) scale processes can induce and control nuclear MeV (nuclear-) scale processes and reactions., F.A. Gareev, I.E. Zhidkova, E-print arXiv Nucl-th/ 0610002 2006.

  20. The Structure of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.

    1997-01-01

    We are continuing our systematic investigation of the nuclear structure of nearby active galactic nuclei (AGN). Upon completion, our study will characterize hypothetical constructs such as narrow-line clouds, obscuring tori, nuclear gas disks. and central black holes with physical measurements for a complete sample of nearby AGN. The major scientific goals of our program are: (1) the morphology of the NLR; (2) the physical conditions and dynamics of individual clouds in the NLR; (3) the structure and physical conditions of the warm reflecting gas; (4) the structure of the obscuring torus; (5) the population and morphology of nuclear disks/tori in AGN; (6) the physical conditions in nuclear disks; and (7) the masses of central black holes in AGN. We will use the Hubble Space Telescope (HST) to obtain high-resolution images and spatially resolved spectra. Far-UV spectroscopy of emission and absorption in the nuclear regions using HST/FOS and the Hopkins Ultraviolet Telescope (HUT) will help establish physical conditions in the absorbing and emitting gas. By correlating the dynamics and physical conditions of the gas with the morphology revealed through our imaging program, we will be able to examine mechanisms for fueling the central engine and transporting angular momentum. The kinematics of the nuclear gas disks may enable us to measure the mass of the central black hole. Contemporaneous X-ray observations using ASCA will further constrain the ionization structure of any absorbing material. Monitoring of variability in the UV and X-ray absorption will be used to determine the location of the absorbing gas, possibly in the outflowing warm reflecting gas, or the broad-line region, or the atmosphere of the obscuring torus. Supporting ground-based observations in the optical, near-IR, imaging polarimetry, and the radio will complete our picture of the nuclear structures. With a comprehensive survey of these characteristics in a complete sample of nearby AGN, our

  1. Organization of projections from the raphe nuclei to the vestibular nuclei in rats

    NASA Technical Reports Server (NTRS)

    Halberstadt, A. L.; Balaban, C. D.

    2003-01-01

    Previous anatomic and electrophysiological evidence suggests that serotonin modulates processing in the vestibular nuclei. This study examined the organization of projections from serotonergic raphe nuclei to the vestibular nuclei in rats. The distribution of serotonergic axons in the vestibular nuclei was visualized immunohistochemically in rat brain slices using antisera directed against the serotonin transporter. The density of serotonin transporter-immunopositive fibers is greatest in the superior vestibular nucleus and the medial vestibular nucleus, especially along the border of the fourth ventricle; it declines in more lateral and caudal regions of the vestibular nuclear complex. After unilateral iontophoretic injections of Fluoro-Gold into the vestibular nuclei, retrogradely labeled neurons were found in the dorsal raphe nucleus (including the dorsomedial, ventromedial and lateral subdivisions) and nucleus raphe obscurus, and to a minor extent in nucleus raphe pallidus and nucleus raphe magnus. The combination of retrograde tracing with serotonin immunohistofluorescence in additional experiments revealed that the vestibular nuclei receive both serotonergic and non-serotonergic projections from raphe nuclei. Tracer injections in densely innervated regions (especially the medial and superior vestibular nuclei) were associated with the largest numbers of Fluoro-Gold-labeled cells. Differences were observed in the termination patterns of projections from the individual raphe nuclei. Thus, the dorsal raphe nucleus sends projections that terminate predominantly in the rostral and medial aspects of the vestibular nuclear complex, while nucleus raphe obscurus projects relatively uniformly throughout the vestibular nuclei. Based on the topographical organization of raphe input to the vestibular nuclei, it appears that dense projections from raphe nuclei are colocalized with terminal fields of flocculo-nodular lobe and uvula Purkinje cells. It is hypothesized that

  2. A study of nuclear structure for 244Cm, 241Am, 238Pu, 210Po, 147Pm, 137Cs, 90Sr and 63Ni nuclei used in nuclear battery

    NASA Astrophysics Data System (ADS)

    Artun, Ozan

    2017-07-01

    In this paper, we intend to extend the nuclear data of 244Cm, 241Am, 238Pu, 210Po, 147Pm, 137Cs, 90Sr and 63Ni nuclei used in nuclear battery technology, because, these nuclei are quite important for space investigations in radioisotope thermoelectric generator (RTG) and for microelectronic technologies in betavoltaic batteries. Therefore, the nuclear structure properties of nuclei such as separation energies, neutron skin thicknesses, proton, charge and neutron density distributions as a function of radius, the root mean square (rms) proton, charge and neutron radii, binding energies per particle, have been investigated by Hartree-Fock with eight different Skyrme forces. The obtained results have been compared with the experimental data in literature and relativistic mean field theory (RMFT) results.

  3. Magnetic equivalence of terminal nuclei in the azide anion broken by nuclear spin relaxation

    NASA Astrophysics Data System (ADS)

    Bernatowicz, P.; Szymański, S.

    NMR spectra of water solution of sodium azide selectively 15N labelled in the central position were studied using an iterative least-squares method. In agreement with predictions based on Bloch-Wangsness-Redfield nuclear spin relaxation theory, it is demonstrated that quadrupolar relaxation of the magnetically equivalent terminal 14N (spin-1) nuclei in the azide anion renders the J coupling between these nuclei an observable quantity. In isotropic fluids, this seems to be the first experimental evidence of relaxation-broken magnetic equivalence symmetry.

  4. Nuclear Technology, Global Warming, and the Politicization of Science

    NASA Astrophysics Data System (ADS)

    Weart, Spencer

    2016-03-01

    Since the mid 20th century physical scientists have engaged in two fierce public debates on issues that posed existential risks to modern society: nuclear weapons and global warming. The two overlapped with a third major debate over the deployment of nuclear power reactors. Each controversy included technical disagreements raised by a minority among the scientists themselves. Despite efforts to deal with the issues objectively, the scientists became entangled in left vs. right political polarization. All these debates, but particularly the one over climate change, resulted in a deterioration of public faith in the objectivity and integrity of scientists.

  5. Contributions to the NUCLEI SciDAC-3 Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogner, Scott; Nazarewicz, Witek

    This is the Final Report for Michigan State University for the NUCLEI SciDAC-3 project. The NUCLEI project, as defined by the scope of work, has developed, implemented and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics studied included the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques used included Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program emphasized areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS at ANL and FRIB at MSU (nuclear structuremore » and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrinoless double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less

  6. Incompressibility in finite nuclei and nuclear matter

    NASA Astrophysics Data System (ADS)

    Stone, J. R.; Stone, N. J.; Moszkowski, S. A.

    2014-04-01

    The incompressibility (compression modulus) K0 of infinite symmetric nuclear matter at saturation density has become one of the major constraints on mean-field models of nuclear many-body systems as well as of models of high density matter in astrophysical objects and heavy-ion collisions. It is usually extracted from data on the giant monopole resonance (GMR) or calculated using theoretical models. We present a comprehensive reanalysis of recent data on GMR energies in even-even 112-124Sn and 106,100-116Cd and earlier data on 58≤A≤208 nuclei. The incompressibility of finite nuclei KA is calculated from experimental GMR energies and expressed in terms of A-1/3 and the asymmetry parameter β =(N-Z)/A as a leptodermous expansion with volume, surface, isospin, and Coulomb coefficients Kvol, Ksurf, Kτ, and KCoul. Only data consistent with the scaling approximation, leading to a fast converging leptodermous expansion, with negligible higher-order-term contributions to KA, were used in the present analysis. Assuming that the volume coefficient Kvol is identified with K0, the KCoul=-(5.2±0.7) MeV and the contribution from the curvature term KcurvA-2/3 in the expansion is neglected, compelling evidence is found for K0 to be in the range 250 nuclear surface properties in determination of K0 from fits to the leptodermous expansion of KA. A self-consistent simple (toy) model has been

  7. Energetic Nuclei, Superdensity and Biomedicine

    ERIC Educational Resources Information Center

    Baldin, A. M.

    1977-01-01

    High-energy, relativistic nuclei were first observed in cosmic rays. Studing these nuclei has provided an opportunity for analyzing the composition of cosmic rays and for experimentally verifying principles governing the behavior of nuclear matter at high and super-high temperatures. Medical research using accelerated nuclei is suggested.…

  8. Study of Analytic Statistical Model for Decay of Light and Medium Mass Nuclei in Nuclear Fragmentation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.

    1996-01-01

    The angular momentum independent statistical decay model is often applied using a Monte-Carlo simulation to describe the decay of prefragment nuclei in heavy ion reactions. This paper presents an analytical approach to the decay problem of nuclei with mass number less than 60, which is important for galactic cosmic ray (GCR) studies. This decay problem of nuclei with mass number less than 60 incorporates well-known levels of the lightest nuclei (A less than 11) to improve convergence and accuracy. A sensitivity study of the model level density function is used to determine the impact on mass and charge distributions in nuclear fragmentation. This angular momentum independent statistical decay model also describes the momentum and energy distribution of emitted particles (n, p, d, t, h, and a) from a prefragment nucleus.

  9. The role of atmospheric nuclear explosions on the stagnation of global warming in the mid 20th century

    NASA Astrophysics Data System (ADS)

    Fujii, Yoshiaki

    2011-04-01

    This study suggests that the cause of the stagnation in global warming in the mid 20th century was the atmospheric nuclear explosions detonated between 1945 and 1980. The estimated GST drop due to fine dust from the actual atmospheric nuclear explosions based on the published simulation results by other researchers (a single column model and Atmosphere-Ocean General Circulation Model) has served to explain the stagnation in global warming. Atmospheric nuclear explosions can be regarded as full-scale in situ tests for nuclear winter. The non-negligible amount of GST drop from the actual atmospheric explosions suggests that nuclear winter is not just a theory but has actually occurred, albeit on a small scale. The accuracy of the simulations of GST by IPCC would also be improved significantly by introducing the influence of fine dust from the actual atmospheric nuclear explosions into their climate models; thus, global warming behavior could be more accurately predicted.

  10. Neutrino Spectra from Nuclear Weak Interactions in sd-Shell Nuclei under Astrophysical Conditions

    NASA Astrophysics Data System (ADS)

    Misch, G. Wendell; Sun, Yang; Fuller, George M.

    2018-01-01

    We present shell model calculations of nuclear neutrino energy spectra for 70 sd-shell nuclei over the mass number range A = 21–35. Our calculations include nuclear excited states as appropriate for the hot and dense conditions characteristic of pre-collapse massive stars. We consider neutrinos produced by charged lepton captures and decays, and for the first time in tabular form, neutral current nuclear deexcitation, providing neutrino energy spectra on the Fuller–Fowler–Newman temperature–density grid for these interaction channels for each nucleus. We use the full sd-shell model space to compute initial nuclear states up to 20 MeV excitation with transitions to final states up to 35–40 MeV, employing a modification of the Brink-Axel hypothesis to handle high-temperature population factors and the nuclear partition functions.

  11. Coupled-cluster computations of atomic nuclei

    NASA Astrophysics Data System (ADS)

    Hagen, G.; Papenbrock, T.; Hjorth-Jensen, M.; Dean, D. J.

    2014-09-01

    In the past decade, coupled-cluster theory has seen a renaissance in nuclear physics, with computations of neutron-rich and medium-mass nuclei. The method is efficient for nuclei with product-state references, and it describes many aspects of weakly bound and unbound nuclei. This report reviews the technical and conceptual developments of this method in nuclear physics, and the results of coupled-cluster calculations for nucleonic matter, and for exotic isotopes of helium, oxygen, calcium, and some of their neighbors.

  12. Fine Structure of Beta Decay Strength Function and Anisotropy of Isovector Nuclear Dencity Component Oscillations in Deformed Nuclei

    NASA Astrophysics Data System (ADS)

    Izosimov, I. N.; Solnyshkin, A. A.; Khushvaktov, J. H.; Vaganov, Yu. A.

    2018-05-01

    The experimental measurement data on the fine structure of beta-decay strength function S β( E) in spherical, transitional, and deformed nuclei are analyzed. Modern high-resolution nuclear spectroscopy methods made it possible to identify the splitting of peaks in S β( E) for deformed nuclei. By analogy with splitting of the peak of E1 giant dipole resonance (GDR) in deformed nuclei, the peaks in S β( E) are split into two components from the axial nuclear deformation. In this report, the fine structure of S β( E) is discussed. Splitting of the peaks connected with the oscillations of neutrons against protons (E1GDR), of proton holes against neutrons (peaks in S β( E) of β+/ EC-decay), and of protons against neutron holes (peaks in S β( E) of β--decay) is discussed.

  13. Review of metastable states in heavy nuclei

    DOE PAGES

    Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.

    2016-05-31

    Here, the structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A ≳ 150. The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.

  14. [Nuclear protein matrix from giant nuclei of Chironomus plumosus determinates polythene chromosome organization].

    PubMed

    Makarov, M S; Chentsov, Iu S

    2010-01-01

    Giant nuclei from salivary glands of Chironomus plumosus were treated in situ with detergent, 2 M NaCl and nucleases in order to reveal residual nuclear matrix proteins (NMP). It was shown, that preceding stabilization of non-histone proteins with 2 mM CuCl2 allowed to visualize the structure of polythene chromosomes at every stage of the extraction of histones and DNA. Stabilized NPM of polythene chromosomes maintains their morphology and banding patterns, which is observed by light and electron microscopy, whereas internal fibril net or residual nucleoli are not found. In stabilized NPM of polythene chromosomes, topoisomerase IIalpha and SMC1 retain their localization that is typical of untreated chromosomes. NPM of polythene chromosomes also includes sites of DNA replication, visualized with BrDU incubation, and some RNA-components. So, we can conclude that structure of NPM from giant nuclei is equal to NPM from normal interphase nuclei, and that morphological features of polythene chromosomes depend on the presence of NMP.

  15. Clustering of nuclei in multinucleated hyphae is prevented by dynein-driven bidirectional nuclear movements and microtubule growth control in Ashbya gossypii.

    PubMed

    Grava, Sandrine; Keller, Miyako; Voegeli, Sylvia; Seger, Shanon; Lang, Claudia; Philippsen, Peter

    2011-07-01

    During filamentous fungus development, multinucleated hyphae employ a system for long-range nuclear migration to maintain an equal nuclear density. A decade ago the microtubule motor dynein was shown to play a central role in this process. Previous studies with Ashbya gossypii revealed extensive bidirectional movements and bypassings of nuclei, an autonomous cytoplasmic microtubule (cMT) cytoskeleton emanating from each nucleus, and pulling of nuclei by sliding of cMTs along the cortex. Here, we show that dynein is the sole motor for bidirectional movements and bypassing because these movements are concomitantly decreased in mutants carrying truncations of the dynein heavy-chain DYN1 promoter. The dynactin component Jnm1, the accessory proteins Dyn2 and Ndl1, and the potential dynein cortical anchor Num1 are also involved in the dynamic distribution of nuclei. In their absence, nuclei aggregate to different degrees, whereby the mutants with dense nuclear clusters grow extremely long cMTs. As in budding yeast, we found that dynein is delivered to cMT plus ends, and its activity or processivity is probably controlled by dynactin and Num1. Together with its role in powering nuclear movements, we propose that dynein also plays (directly or indirectly) a role in the control of cMT length. Those combined dynein actions prevent nuclear clustering in A. gossypii and thus reveal a novel cellular role for dynein.

  16. Extracting nuclear sizes of medium to heavy nuclei from total reaction cross sections

    NASA Astrophysics Data System (ADS)

    Horiuchi, W.; Hatakeyama, S.; Ebata, S.; Suzuki, Y.

    2016-04-01

    Background: Proton and neutron radii are fundamental quantities of atomic nuclei. To study the sizes of short-lived unstable nuclei, there is a need for an alternative to electron scattering. Purpose: The recent paper by Horiuchi et al. [Phys. Rev. C 89, 011601(R) (2014)], 10.1103/PhysRevC.89.011601 proposed a possible way of extracting the matter and neutron-skin thickness of light- to medium-mass nuclei using total reaction cross section, σR. The analysis is extended to medium to heavy nuclei up to lead isotopes with due attention to Coulomb breakup contributions as well as density distributions improved by paring correlation. Methods: We formulate a quantitative calculation of σR based on the Glauber model including the Coulomb breakup. To substantiate the treatment of the Coulomb breakup, we also evaluate the Coulomb breakup cross section due to the electric dipole field in a canonical-basis-time-dependent-Hartree-Fock-Bogoliubov theory in the three-dimensional coordinate space. Results: We analyze σR's of 103 nuclei with Z =20 , 28, 40, 50, 70, and 82 incident on light targets, H,21, 4He, and 12C. Three kinds of Skyrme interactions are tested to generate those wave functions. To discuss possible uncertainty due to the Coulomb breakup, we examine its dependence on the target, the incident energy, and the Skyrme interaction. The proton is a most promising target for extracting the nuclear sizes as the Coulomb excitation can safely be neglected. We find that the so-called reaction radius, aR=√{σR/π } , for the proton target is very well approximated by a linear function of two variables, the matter radius and the skin thickness, in which three constants depend only on the incident energy. We quantify the accuracy of σR measurements needed to extract the nuclear sizes. Conclusions: The proton is the best target because, once the incident energy is set, its aR is very accurately determined by only the matter radius and neutron-skin thickness. If σR's at

  17. α-Amanitin-Resistant Viral RNA Synthesis in Nuclei Isolated from Nuclear Polyhedrosis Virus-Infected Heliothis zea Larvae and Spodoptera frugiperda Cells

    PubMed Central

    Grula, Marjori A.; Buller, Patricia L.; Weaver, Robert F.

    1981-01-01

    [3H]RNA was synthesized in nuclei isolated at various times postinfection from the fat bodies of Heliothis zea larvae infected with H. zea nuclear polyhedrosis virus and from cultured Spodoptera frugiperda cells infected with Autographa californica nuclear polyhedrosis virus. To detect virus-specific RNA synthesis, the [3H]RNA was hybridized to denatured viral DNA immobilized on nitrocellulose filters. Nuclear polyhedrosis virus-specific RNA synthesis in the infected nuclei isolated from H. zea larval fat bodies and S. frugiperda cells was only inhibited 20 to 25% by concentrations of α-amanitin sufficient to inhibit the host RNA polymerase II. In addition, a productive nuclear polyhedrosis virus infection was obtained in S. frugiperda cells grown in the presence of an α-amanitin concentration that inhibited 90% of the cellular RNA polymerase II activity. The cellular RNA polymerase II enzyme remained sensitive to α-amanitin during infection, and there was no evidence that a virus-coded, α-amanitin-resistant enzyme was synthesized after the onset of infection. The data suggest that the bulk of nuclear polyhedrosis virus-specific RNA synthesis in isolated nuclei is transcribed by an enzyme other than the host RNA polymerase II. PMID:16789208

  18. Stopping relativistic Xe, Ho, Au, and U nuclei in nuclear emulsions

    NASA Technical Reports Server (NTRS)

    Waddington, C. J.; Fixsen, D. J.; Freier, P. S.

    1985-01-01

    Nuclei of Xe-54, Ho-67, Au-79 and U-92 accelerated at the Bevalac to energies between 1200 and 900 MeV/n were stopped in nuclear emulsions. The observed residual ranges were compared with those calculated from various models of energy loss and shown to be most consistent with a calculation that includes those higher order correction terms proposed previously to describe the energy loss of highly changed particles, for which the first Born approximation is not valid.

  19. Stopping relativistic Xe, Ho, Au and U nuclei in nuclear emulsions

    NASA Technical Reports Server (NTRS)

    Waddington, C. J.; Fixsen, D. J.; Freier, P. S.

    1985-01-01

    Nuclei of Xe-54, Ho-67, Au-79 and U-92 accelerated at the Bevalac to energies between 1200 and 900 MeV/n were stopped in nuclear emulsions. The observed residual ranges were compared with those calculated from various models of energy loss and shown to be most consistent with a calculation that includes those higher order correction terms proposed previously to describe the energy loss of highly charged particles, for which the first Born approximation is not valid.

  20. Exposure of nuclear track emulsion to a mixed beam of relativistic {sup 12}N, {sup 10}C, and {sup 7}Be nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kattabekov, R. R.; Mamatkulov, K. Z.; Artemenkov, D. A.

    2010-12-15

    A nuclear track emulsion was exposed to a mixed beam of relativistic {sup 12}N, {sup 10}C, and {sup 7}Be nuclei having a momentum of 2 GeV/c per nucleon. The beam was formed upon charge exchange processes involving {sup 12}C primary nuclei and their fragmentation. An analysis indicates that {sup 10}C nuclei are dominant in the beam and that {sup 12}N nuclei are present in it. The charge topology of relativistic fragments in the coherent dissociation of these nuclei is presented.

  1. Nuclear structure and weak rates of heavy waiting point nuclei under rp-process conditions

    NASA Astrophysics Data System (ADS)

    Nabi, Jameel-Un; Böyükata, Mahmut

    2017-01-01

    The structure and the weak interaction mediated rates of the heavy waiting point (WP) nuclei 80Zr, 84Mo, 88Ru, 92Pd and 96Cd along N = Z line were studied within the interacting boson model-1 (IBM-1) and the proton-neutron quasi-particle random phase approximation (pn-QRPA). The energy levels of the N = Z WP nuclei were calculated by fitting the essential parameters of IBM-1 Hamiltonian and their geometric shapes were predicted by plotting potential energy surfaces (PESs). Half-lives, continuum electron capture rates, positron decay rates, electron capture cross sections of WP nuclei, energy rates of β-delayed protons and their emission probabilities were later calculated using the pn-QRPA. The calculated Gamow-Teller strength distributions were compared with previous calculation. We present positron decay and continuum electron capture rates on these WP nuclei under rp-process conditions using the same model. For the rp-process conditions, the calculated total weak rates are twice the Skyrme HF+BCS+QRPA rates for 80Zr. For remaining nuclei the two calculations compare well. The electron capture rates are significant and compete well with the corresponding positron decay rates under rp-process conditions. The finding of the present study supports that electron capture rates form an integral part of the weak rates under rp-process conditions and has an important role for the nuclear model calculations.

  2. Strongly deformed nuclear shapes at ultra-high spin and shape coexistence in N ~ 90 nuclei

    DOE PAGES

    Riley, M. A.; Aguilar, A.; Evans, A. O.; ...

    2009-01-01

    The N ~ 90 region of the nuclear chart has featured prominently as the spectroscopy of nuclei at extreme spin has progressed. This talk will present recent discoveries from investigations of high spin behavior in the N ~ 90 Er, Tm and Yb nuclei utilizing the Gammasphere gamma-ray spectrometer. In particular it will include discussion of the beautiful shape evolution and coexistence observed in these nuclei along with the identification of a remarkable new family of band structures. The latter are very weakly populated rotational sequences with high moment of inertia that bypass the classic terminating configurations near spin 40-50h,more » marking a return to collectivity that extends discrete γ-ray spectroscopy to well over 60h. Establishing the nature of the yrast states in these nuclei beyond the oblate band-termination states has been a major goal for the past two decades. Cranking calculations suggest that these new structures most likely represent stable triaxial strongly deformed bands that lie in a valley of favored shell energy in deformation and particle-number space.« less

  3. Nuclear spin warm up in bulk n -GaAs

    NASA Astrophysics Data System (ADS)

    Kotur, M.; Dzhioev, R. I.; Vladimirova, M.; Jouault, B.; Korenev, V. L.; Kavokin, K. V.

    2016-08-01

    We show that the spin-lattice relaxation in n -type insulating GaAs is dramatically accelerated at low magnetic fields. The origin of this effect, which cannot be explained in terms of well-known diffusion-limited hyperfine relaxation, is found in the quadrupole relaxation, induced by fluctuating donor charges. Therefore, quadrupole relaxation, which governs low field nuclear spin relaxation in semiconductor quantum dots, but was so far supposed to be harmless to bulk nuclei spins in the absence of optical pumping, can be studied and harnessed in the much simpler model environment of n -GaAs bulk crystal.

  4. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, W. Udo

    2016-07-28

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the “boiling” and “vaporization” of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, “head-on” collisions, targetmore » nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (“neck”) between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.« less

  5. Mechanical positioning of multiple nuclei in muscle cells.

    PubMed

    Manhart, Angelika; Windner, Stefanie; Baylies, Mary; Mogilner, Alex

    2018-06-01

    Many types of large cells have multiple nuclei. In skeletal muscle fibers, the nuclei are distributed along the cell to maximize their internuclear distances. This myonuclear positioning is crucial for cell function. Although microtubules, microtubule associated proteins, and motors have been implicated, mechanisms responsible for myonuclear positioning remain unclear. We used a combination of rough interacting particle and detailed agent-based modeling to examine computationally the hypothesis that a force balance generated by microtubules positions the muscle nuclei. Rather than assuming the nature and identity of the forces, we simulated various types of forces between the pairs of nuclei and between the nuclei and cell boundary to position the myonuclei according to the laws of mechanics. We started with a large number of potential interacting particle models and computationally screened these models for their ability to fit biological data on nuclear positions in hundreds of Drosophila larval muscle cells. This reverse engineering approach resulted in a small number of feasible models, the one with the best fit suggests that the nuclei repel each other and the cell boundary with forces that decrease with distance. The model makes nontrivial predictions about the increased nuclear density near the cell poles, the zigzag patterns of the nuclear positions in wider cells, and about correlations between the cell width and elongated nuclear shapes, all of which we confirm by image analysis of the biological data. We support the predictions of the interacting particle model with simulations of an agent-based mechanical model. Taken together, our data suggest that microtubules growing from nuclear envelopes push on the neighboring nuclei and the cell boundaries, which is sufficient to establish the nearly-uniform nuclear spreading observed in muscle fibers.

  6. Clustering of Nuclei in Multinucleated Hyphae Is Prevented by Dynein-Driven Bidirectional Nuclear Movements and Microtubule Growth Control in Ashbya gossypii ▿ †

    PubMed Central

    Grava, Sandrine; Keller, Miyako; Voegeli, Sylvia; Seger, Shanon; Lang, Claudia; Philippsen, Peter

    2011-01-01

    During filamentous fungus development, multinucleated hyphae employ a system for long-range nuclear migration to maintain an equal nuclear density. A decade ago the microtubule motor dynein was shown to play a central role in this process. Previous studies with Ashbya gossypii revealed extensive bidirectional movements and bypassings of nuclei, an autonomous cytoplasmic microtubule (cMT) cytoskeleton emanating from each nucleus, and pulling of nuclei by sliding of cMTs along the cortex. Here, we show that dynein is the sole motor for bidirectional movements and bypassing because these movements are concomitantly decreased in mutants carrying truncations of the dynein heavy-chain DYN1 promoter. The dynactin component Jnm1, the accessory proteins Dyn2 and Ndl1, and the potential dynein cortical anchor Num1 are also involved in the dynamic distribution of nuclei. In their absence, nuclei aggregate to different degrees, whereby the mutants with dense nuclear clusters grow extremely long cMTs. As in budding yeast, we found that dynein is delivered to cMT plus ends, and its activity or processivity is probably controlled by dynactin and Num1. Together with its role in powering nuclear movements, we propose that dynein also plays (directly or indirectly) a role in the control of cMT length. Those combined dynein actions prevent nuclear clustering in A. gossypii and thus reveal a novel cellular role for dynein. PMID:21642510

  7. Proton bombarded reactions of Calcium target nuclei

    NASA Astrophysics Data System (ADS)

    Tel, Eyyup; Sahan, Muhittin; Sarpün, Ismail Hakki; Kavun, Yusuf; Gök, Ali Armagan; Depedelen, Mesut

    2017-09-01

    In this study, proton bombarded nuclear reactions calculations of Calcium target nuclei have been investigated in the incident proton energy range of 1-50 MeV. The excitation functions for 40Ca target nuclei reactions have been calculated by using PCROSS nuclear reaction calculation code. Weisskopf-Ewing and the full exciton models were used for equilibrium and for pre-equilibrium calculations, respectively. The excitation functions for 40Ca target nuclei reactions (p,α), (p,n), (p,p) have been calculated using the semi-empirical formula Tel et al. [5].

  8. Nuclear Data Evaluation for Mass Chain A=217:Odd-Proton Nuclei

    PubMed Central

    Nafee, Sherif S.; Shaheen, Salem A.; Al-Ramady, Amir M.

    2016-01-01

    Thallium (Tl81217), Bismuth (Bi83217), Astatine (At85217), Francium (Fr87217), Actinium (Ac89217) and Protactinium (Pa91217) are of odd-proton numbers among the mass chain A = 217. In the present work, the half-lives and gamma transitions for the six nuclei have been studied and adopted based on the recently published interactions or unevaluated nuclear data sets XUNDL. The Q (α) has been updated based on the recent published work of the Atomic Mass Evaluation AME2012 as well. Moreover, the total conversion electrons as well as the K-Shell to L-Shell, L-Shell to M-Shell and L-Shell to N-Shell Conversion Electron Ratios have been calculated using BrIcc code v2.3. An updated skeleton decay scheme for each of the above nuclei has been presented here. The decay hindrance factors (HF) calculated using the ALPHAD program, which is available from Brookhaven National Laboratory’s website, have been calculated for the α- decay data sets for 221Fr-, 221Ac- and 221Pa- α-decays. PMID:26761207

  9. Fundamental Physics with Electroweak Probes of Nuclei

    NASA Astrophysics Data System (ADS)

    Pastore, Saori

    2018-02-01

    The past decade has witnessed tremendous progress in the theoretical and computational tools that produce our understanding of nuclei. A number of microscopic calculations of nuclear electroweak structure and reactions have successfully explained the available experimental data, yielding a complex picture of the way nuclei interact with electroweak probes. This achievement is of great interest from the pure nuclear-physics point of view. But it is of much broader interest too, because the level of accuracy and confidence reached by these calculations opens up the concrete possibility of using nuclei to address open questions in other sub-fields of physics, such as, understanding the fundamental properties of neutrinos, or the particle nature of dark matter. In this talk, I will review recent progress in microscopic calculations of electroweak properties of light nuclei, including electromagnetic moments, form factors and transitions in between lowlying nuclear states along with preliminary studies for single- and double-beta decay rates. I will illustrate the key dynamical features required to explain the available experimental data, and, if time permits, present a novel framework to calculate neutrino-nucleus cross sections for A > 12 nuclei.

  10. New Results on Short-Range Correlations in Nuclei

    DOE PAGES

    Fomin, Nadia; Higinbotham, Douglas; Sargsian, Misak; ...

    2017-10-12

    Nuclear dynamics at short distances is one of the most fascinating topics of strong interaction physics. The physics of it is closely related to the understanding of the role of the QCD in generating nuclear forces at short distances, as well as of the dynamics of the superdense cold nuclear matter relevant to the interior of neutron stars. The emergence of high-energy electron and proton beams has led to significant recent progress in high-energy nuclear scattering experiments investigating the short-range structure of nuclei. These experiments, in turn, have stimulated new theoretical studies resulting in the observation of several new phenomenamore » specific to the short-range structure of nuclei. In this article, we review recent theoretical and experimental progress in studies of short-range correlations in nuclei and discuss their importance for advancing our understanding of the dynamics of nuclear interactions at short distances.« less

  11. New Results on Short-Range Correlations in Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fomin, Nadia; Higinbotham, Douglas; Sargsian, Misak

    Nuclear dynamics at short distances is one of the most fascinating topics of strong interaction physics. The physics of it is closely related to the understanding of the role of the QCD in generating nuclear forces at short distances, as well as of the dynamics of the superdense cold nuclear matter relevant to the interior of neutron stars. The emergence of high-energy electron and proton beams has led to significant recent progress in high-energy nuclear scattering experiments investigating the short-range structure of nuclei. These experiments, in turn, have stimulated new theoretical studies resulting in the observation of several new phenomenamore » specific to the short-range structure of nuclei. In this article, we review recent theoretical and experimental progress in studies of short-range correlations in nuclei and discuss their importance for advancing our understanding of the dynamics of nuclear interactions at short distances.« less

  12. SLOW $pi$$sup +$-MESON CAPTURE BY LIGHT NUCLEI IN THE CORRELATIONAL NUCLEAR MODEL (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shklyarevskii, G.M.

    Absorption of slow pi /sup +/-mesons by light nuclei in the pi /sup +/ + A yields A' + 2p reaction is considered. It is shown that an investigation of the proton spectra permits one to study small range pair correlation between nuclear nucleons. Conditions in which the corresponding experiments should be carried out are indicated. (auth)

  13. The origin of the mid-infrared nuclear polarization of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Lopez-Rodriguez, E.; Alonso-Herrero, A.; Diaz-Santos, T.; Gonzalez-Martin, O.; Ichikawa, K.; Levenson, N. A.; Martinez-Paredes, M.; Nikutta, R.; Packham, C.; Perlman, E.; Almeida, C. Ramos; Rodriguez-Espinosa, J. M.; Telesco, C. M.

    2018-05-01

    We combine new (NGC 1275, NGC 4151, and NGC 5506) and previously published (Cygnus A, Mrk 231, and NGC 1068) sub-arcsecond resolution mid-infrared (MIR; 8-13 μm) imaging- and spectro-polarimetric observations of six Seyfert galaxies using CanariCam on the 10.4-m Gran Telescopio CANARIAS. These observations reveal a diverse set of physical processes responsible for the nuclear polarization, and permit characterization of the origin of the MIR nuclear polarimetric signature of active galactic nuclei (AGN). For all radio quiet objects, we found that the nuclear polarization is low (<1 per cent), and the degree of polarization is often a few per cent over extended regions of the host galaxy where we have sensitivity to detect such extended emission (i.e., NGC 1068 and NGC 4151). We suggest that the higher degree of polarization previously found in lower resolution data arises only on the larger-than-nuclear scales. Only the radio-loud Cygnus A exhibits significant nuclear polarization (˜11 per cent), attributable to synchrotron emission from the pc-scale jet close to the core. We present polarization models that suggest that the MIR nuclear polarization for highly obscured objects arises from a self-absorbed MIR polarized clumpy torus and/or dichroism from the host galaxy, while for unabsorbed cores, MIR polarization arises from dust scattering in the torus and/or surrounding nuclear dust.

  14. New relativistic effective interaction for finite nuclei, infinite nuclear matter, and neutron stars

    NASA Astrophysics Data System (ADS)

    Kumar, Bharat; Patra, S. K.; Agrawal, B. K.

    2018-04-01

    We carry out the study of finite nuclei, infinite nuclear matter, and neutron star properties with the newly developed relativistic force, the Institute of Physics Bhubaneswar-I (IOPB-I). Using this force, we calculate the binding energies, charge radii, and neutron-skin thickness for some selected nuclei. From the ground-state properties of superheavy nuclei (Z =120 ), it is noticed that considerable shell gaps appear at neutron numbers N =172 , 184, and 198, manifesting the magicity at these numbers. The low-density behavior of the equation of state for pure neutron matter is compatible with other microscopic models. Along with the nuclear symmetry energy, its slope and curvature parameters at the saturation density are consistent with those extracted from various experimental data. We calculate the neutron star properties with the equation of state composed of nucleons and leptons in β -equilibrium, which are in good agreement with the x-ray observations by Steiner [Astrophys. J. 722, 33 (2010), 10.1088/0004-637X/722/1/33] and Nättilä [Astron. Astrophys. 591, A25 (2016), 10.1051/0004-6361/201527416]. Based on the recent observation of GW170817 with a quasi-universal relation, Rezzolla et al. [Astrophys. J. Lett. 852, L25 (2018), 10.3847/2041-8213/aaa401] have set a limit for the maximum mass that can be supported against gravity by a nonrotating neutron star in the range 2.01 ±0.04 ≲M (M⊙)≲2.16 ±0.03 . We find that the maximum mass of the neutron star for the IOPB-I parametrization is 2.15 M⊙ . The radius and tidal deformability of a canonical neutron star of mass 1.4 M⊙ are 13.2 km and 3.9 ×1036g cm2s2 , respectively.

  15. Accurate Detection of Dysmorphic Nuclei Using Dynamic Programming and Supervised Classification.

    PubMed

    Verschuuren, Marlies; De Vylder, Jonas; Catrysse, Hannes; Robijns, Joke; Philips, Wilfried; De Vos, Winnok H

    2017-01-01

    A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND), which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows.

  16. Accurate Detection of Dysmorphic Nuclei Using Dynamic Programming and Supervised Classification

    PubMed Central

    Verschuuren, Marlies; De Vylder, Jonas; Catrysse, Hannes; Robijns, Joke; Philips, Wilfried

    2017-01-01

    A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND), which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows. PMID:28125723

  17. Beta decay rates of neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Marketin, Tomislav; Huther, Lutz; Petković, Jelena; Paar, Nils; Martínez-Pinedo, Gabriel

    2016-06-01

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei. Aside from the astrophysical applications, the results of this calculation can also be employed in the modeling of the electron and antineutrino spectra from nuclear reactors.

  18. EMC effect for light nuclei: New results from Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aji Daniel

    High energy lepton scattering has been the primary tool for mapping out the quark distributions of nucleons and nuclei. Measurements of deep inelastic scattering in nuclei show that the quark distributions in heavy nuclei are not simply the sum of the quark distributions of the constituent proton and neutron, as one might expect for a weakly bound system. This modification of the quark distributions in nuclei is known as the EMC effect. I will discuss the results from Jefferson Lab (JLab) experiment E03-103, a precise measurement of the EMC effect in few-body nuclei with emphasis on the large x region.more » Data from the light nuclei suggests that the nuclear dependence of the high x quark distribution may depend on the nucleon's local environment, rather than being a purely bulk effect. In addition, I will also discuss about a future experiment at the upgraded 12 GeV Jefferson Lab facility which will further investigate the role of the local nuclear environment and the influence of detailed nuclear structure to the modification of quark distributions.« less

  19. Determination of the nuclear level densities and radiative strength function for 43 nuclei in the mass interval 28≤A≤200

    NASA Astrophysics Data System (ADS)

    Knezevic, David; Jovancevic, Nikola; Sukhovoj, Anatoly M.; Mitsyna, Ludmila V.; Krmar, Miodrag; Cong, Vu D.; Hambsch, Franz-Josef; Oberstedt, Stephan; Revay, Zsolt; Stieghorst, Christian; Dragic, Aleksandar

    2018-03-01

    The determination of nuclear level densities and radiative strength functions is one of the most important tasks in low-energy nuclear physics. Accurate experimental values of these parameters are critical for the study of the fundamental properties of nuclear structure. The step-like structure in the dependence of the level densities p on the excitation energy of nuclei Eex is observed in the two-step gamma cascade measurements for nuclei in the 28 ≤ A ≤ 200 mass region. This characteristic structure can be explained only if a co-existence of quasi-particles and phonons, as well as their interaction in a nucleus, are taken into account in the process of gamma-decay. Here we present a new improvement to the Dubna practical model for the determination of nuclear level densities and radiative strength functions. The new practical model guarantees a good description of the available intensities of the two step gamma cascades, comparable to the experimental data accuracy.

  20. Physics of Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Khoa, Dao Tien; Egelhof, Peter; Gales, Sydney; Giai, Nguyen Van; Motobayashi, Tohru

    2008-04-01

    Studies at the RIKEN RI beam factory / T. Motobayashi -- Dilute nuclear states / M. Freer -- Studies of exotic systems using transfer reactions at GANIL / D. Beaumel et al. -- First results from the Magnex large-acceptance spectrometer / A. Cunsolo et al. -- The ICHOR project and spin-isospin physics with unstable beams / H. Sakai -- Structure and low-lying states of the [symbol]He exotic nucleus via direct reactions on proton / V. Lapoux et al. -- Shell gap below [symbol]Sn based on the excited states in [symbol]Cd and [symbol]In / M. Górska -- Heavy neutron-rich nuclei produced in the fragmentation of a [symbol]Pb beam / Zs. Podolyák et al. -- Breakup and incomplete fusion in reactions of weakly-bound nuclei / D.J. Hinde et al. -- Excited states of [symbol]B and [symbol]He and their cluster aspect / Y. Kanada-En'yo et al. -- Nuclear reactions with weakly-bound systems: the treatment of the continuum / C. H. Dasso, A. Vitturi -- Dynamic evolution of three-body decaying resonances / A. S. Jensen et al. -- Prerainbow oscillations in [symbol]He scattering from the Hoyle state of [symbol]C and alpha particle condensation / S. Ohkubo, Y. Hirabayashi -- Angular dispersion behavior in heavy ion elastic scattering / Q. Wang et al. -- Microscopic optical potential in relativistic approach / Z.Yu. Ma et al. -- Exotic nuclei studied in direct reactions at low momentum transfer - recent results and future perspectives at fair / P. Egelhof -- Isotopic temperatures and symmetry energy in spectator fragmentation / M. De Napoli et al. -- Multi-channel algebraic scattering theory and the structure of exotic compound nuclei / K. Amos et al. -- Results for the first feasibility study for the EXL project at the experimental storage ring at GSI / N. Kalantar-Nayestanaki et al. -- Coulomb excitation of ISOLDE neutron-rich beams along the Z = 28 chain / P. Van Duppen -- The gamma decay of the pygmy resonance far from stability and the GDR at finite temperature / G. Benzoni et al

  1. Zeeman perturbed nuclear quadrupole spin echo envelope modulations for spin 3/2 nuclei in polycrystalline specimens

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Narasimhan, P. T.

    The results of theoretical and experimental studies of Zeeman-perturbed nuclear quadrupole spin echo envelope modulations (ZSEEM) for spin 3/2 nuclei in polycrystalline specimens are presented. The response of the Zeeman-perturbed spin ensemble to resonant two pulse excitations has been calculated using the density matrix formalism. The theoretical calculation assumes a parallel orientation of the external r.f. and static Zeeman fields and an arbitrary orientation of these fields to the principal axes system of the electric field gradient. A numerical powder averaging procedure has been adopted to simulate the response of the polycrystalline specimens. Using a coherent pulsed nuclear quadrupole resonance spectrometer the ZSEEM patterns of the 35Cl nuclei have been recorded in polycrystalline specimens of potassium chlorate, barium chlorate, mercuric chloride (two sites) and antimony trichloride (two sites) using the π/2-τ-π/2 sequence. The theoretical and experimental ZSEEM patterns have been compared. In the case of mercuric chloride, the experimental 35Cl ZSEEM patterns are found to be nearly identical for the two sites and correspond to a near-zero value of the asymmetry parameter, η, of the electric field gradient tensor. The difference in the η values for the two 35Cl sites (η ˜0·06 and η˜0·16) in antimony trichloride is clearly reflected in the experimental and theoretical ZSEEM patterns. The present study indicates the feasibility of evaluating η for spin 3/2 nuclei in polycrystalline specimens from ZSEEM investigations.

  2. Computer Model Of Fragmentation Of Atomic Nuclei

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.

    1995-01-01

    High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.

  3. Nuclear spin imaging with hyperpolarized nuclei created by brute force method

    NASA Astrophysics Data System (ADS)

    Tanaka, Masayoshi; Kunimatsu, Takayuki; Fujiwara, Mamoru; Kohri, Hideki; Ohta, Takeshi; Utsuro, Masahiko; Yosoi, Masaru; Ono, Satoshi; Fukuda, Kohji; Takamatsu, Kunihiko; Ueda, Kunihiro; Didelez, Jean-P.; Prossati, Giorgio; de Waard, Arlette

    2011-05-01

    We have been developing a polarized HD target for particle physics at the SPring-8 under the leadership of the RCNP, Osaka University for the past 5 years. Nuclear polarizaton is created by means of the brute force method which uses a high magnetic field (~17 T) and a low temperature (~ 10 mK). As one of the promising applications of the brute force method to life sciences we started a new project, "NSI" (Nuclear Spin Imaging), where hyperpolarized nuclei are used for the MRI (Magnetic Resonance Imaging). The candidate nuclei with spin ½hslash are 3He, 13C, 15N, 19F, 29Si, and 31P, which are important elements for the composition of the biomolecules. Since the NMR signals from these isotopes are enhanced by orders of magnitudes, the spacial resolution in the imaging would be much more improved compared to the practical MRI used so far. Another advantage of hyperpolarized MRI is that the MRI is basically free from the radiation, while the problems of radiation exposure caused by the X-ray CT or PET (Positron Emission Tomography) cannot be neglected. In fact, the risk of cancer for Japanese due to the radiation exposure through these diagnoses is exceptionally high among the advanced countries. As the first step of the NSI project, we are developing a system to produce hyperpolarized 3He gas for the diagnosis of serious lung diseases, for example, COPD (Chronic Obstructive Pulmonary Disease). The system employs the same 3He/4He dilution refrigerator and superconducting solenoidal coil as those used for the polarized HD target with some modification allowing the 3He Pomeranchuk cooling and the following rapid melting of the polarized solid 3He to avoid the depolarization. In this report, the present and future steps of our project will be outlined with some latest experimental results.

  4. Chaos in nuclei: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Muñoz, L.; Molina, R. A.; Gómez, J. M. G.

    2018-05-01

    During the last three decades the quest for chaos in nuclei has been quite intensive, both with theoretical calculations using nuclear models and with detailed analyses of experimental data. In this paper we outline the concept and characteristics of quantum chaos in two different approaches, the random matrix theory fluctuations and the time series fluctuations. Then we discuss the theoretical and experimental evidence of chaos in nuclei. Theoretical calculations, especially shell-model calculations, have shown a strongly chaotic behavior of bound states in regions of high level density. The analysis of experimental data has shown a strongly chaotic behavior of nuclear resonances just above the one-nucleon emission threshold. For bound states, combining experimental data of a large number of nuclei, a tendency towards chaotic motion is observed in spherical nuclei, while deformed nuclei exhibit a more regular behavior associated to the collective motion. On the other hand, it had never been possible to observe chaos in the experimental bound energy levels of any single nucleus. However, the complete experimental spectrum of the first 151 states up to excitation energies of 6.20 MeV in the 208Pb nucleus have been recently identified and the analysis of its spectral fluctuations clearly shows the existence of chaotic motion.

  5. Reaction Studies With Light, Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Ernst Rehm, K.

    2006-10-01

    The availability of beams of exotic nuclei allows us for the first time to study in a terrestrial laboratory reactions, which occur in stellar explosions, such as Novae, Supernovae or X-ray bursts. In this talk I will present results from recent experiments performed with beams of light, unstable nuclei, which are produced via the in-flight technique at the ATLAs accelerator at Argonne. This work was supported by the US Department of Energy, Nuclear Physics Division, under contract No. W-31-109-ENG-38 and by the NSF Grant No. PHY-02-16783 (Joint Institute for Nuclear Astrophysics).

  6. Chiral electroweak currents in nuclei

    DOE PAGES

    Riska, D. O.; Schiavilla, R.

    2017-01-10

    Here, the development of the chiral dynamics based description of nuclear electroweak currents is reviewed. Gerald E. (Gerry) Brown’s role in basing theoretical nuclear physics on chiral Lagrangians is emphasized. Illustrative examples of the successful description of electroweak observables of light nuclei obtained from chiral effective field theory are presented.

  7. Coherent fragmentation of 12C nuclei of momentum 4.5 GeV/ c per nucleon through the 8Beg.s.+4He channel in a nuclear photoemulsion containing lead nuclei

    NASA Astrophysics Data System (ADS)

    Belaga, V. V.; Gerasimov, S. G.; Dronov, V. A.; Peresadko, N. G.; Pisetskaya, A. V.; Rusakova, V. V.; Fetisov, V. N.; Kharlamov, S. P.; Shesterkina, L. N.

    2017-07-01

    A two-particle channel in which an unbound nucleus of 8Be in the ground state (8Beg.s.) was one of the fragments was selected among events where 12C nuclei of momentum 4.5 GeV/c per nucleon undergo coherent dissociation into three alpha particles. The events in question were detected in a track nuclear photoemulsion containing lead nuclei, which was irradiated at the synchrophasotron of the Laboratory of High Energies at the Joint Institute for Nuclear Research (JINR, Dubna). The average transverse momentum of alpha particles produced upon the decay of 8Beg.s. nuclei was 87±6 MeV/ c, while that for "single" alpha (αs) particles was 123±15 MeV/ c. The average value of the transverse-momentum transfer in the reaction being considered, Pt(12C), was 223 ± 20 MeV/ c. The average value of the cross section for this channel involving Ag and Br target nuclei was 13 ± 4 mb, while the cross section for the reaction on the Pb nucleus was 40 ± 15 mb. The Coulomb dissociation contribution evaluated on the basis of the number of events where the momentum P t(12C) did not exceed 0.1 GeV/c saturated about 20%. In nine events, the measured total transverse energy of the fragments in the reference frame comoving with the decaying carbon nucleus did not exceed 0.45 MeV, which did not contradict the excitation of the participant 12C nucleus to the level at 7.65 MeV. The average value of the transverse momentum in those events was 234 ± 25 MeV/ c.

  8. Beta decay rates of neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Marketin, Tomislav; Huther, Lutz; Martínez-Pinedo, Gabriel

    2015-10-01

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. Currently, a single large-scale calculation is available based on a QRPA calculation with a schematic interaction on top of the Finite Range Droplet Model. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei.

  9. Hyperheavy nuclei in covariant density functional theory: the existence and stability

    NASA Astrophysics Data System (ADS)

    Gyawali, Abhinaya; Agbemava, Sylvester; Afanasjev, Anatoli

    2017-09-01

    The limits of existence of finite nuclei is one of interesting questions of modern low-energy nuclear physics. A lot of theoretical efforts have been dedicated to the study of superheavy nuclei with Z < 126. However, very little is known about existence and stability of hyperheavy nuclei with proton numbers Z > 126 . Almost all investigations of such nuclei consider only spherical shapes for the ground states. However, the study of superheavy nuclei indicates that such assumption leads in many cases to misinterpretation of the situation. Thus, we performed a systematic investigation of such nuclei for proton numbers from 122 up to 184 and from two-proton drip line up to two-neutron one within the axial relativistic Hartree-Bogoliubov theory. The calculations are carried out in large deformation space extending from megadeformed oblate shapes via spherical ones up to scission configuration. The stability of such nuclei against fission (including triaxial and octupole shapes) and beta-decays have been investigated and the islands of their stability have been defined. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC0013037 and by Department of Energy, National Nuclear Security Administration under Award Number DE-NA0002925.

  10. Nuclei and Fundamental Symmetries

    NASA Astrophysics Data System (ADS)

    Haxton, Wick

    2016-09-01

    Nuclei provide marvelous laboratories for testing fundamental interactions, often enhancing weak processes through accidental degeneracies among states, and providing selection rules that can be exploited to isolate selected interactions. I will give an overview of current work, including the use of parity violation to probe unknown aspects of the hadronic weak interaction; nuclear electric dipole moment searches that may shed light on new sources of CP violation; and tests of lepton number violation made possible by the fact that many nuclei can only decay by rare second-order weak interactions. I will point to opportunities in both theory and experiment to advance the field. Based upon work supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics and SciDAC under Awards DE-SC00046548 (Berkeley), DE-AC02-05CH11231 (LBNL), and KB0301052 (LBNL).

  11. Electromagnetic structure of light nuclei

    DOE PAGES

    Pastore, Saori

    2016-03-25

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  12. Electromagnetic structure of light nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastore, Saori

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  13. Detection of high-grade atypia nuclei in breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Noël, Henri; Roux, Ludovic; Lu, Shijian; Boudier, Thomas

    2015-03-01

    Along with mitotic count, nuclear pleomorphism or nuclear atypia is an important criterion for the grading of breast cancer in histopathology. Though some works have been done in mitosis detection (ICPR 2012,1 MICCAI 2013,2 and ICPR 2014), not much work has been dedicated to automated nuclear atypia grading, especially the most difficult task of detection of grade 3 nuclei. We propose the use of Convolutional Neural Networks for the automated detection of cell nuclei, using images from the three grades of breast cancer for training. The images were obtained from ICPR contests. Additional manual annotation was performed to classify pixels into five classes: stroma, nuclei, lymphocytes, mitosis and fat. At total of 3,000 thumbnail images of 101 × 101 pixels were used for training. By dividing this training set in an 80/20 ratio we could obtain good training results (around 90%). We tested our CNN on images of the three grades which were not in the training set. High grades nuclei were correctly classified. We then thresholded the classification map and performed basic analysis to keep only rounded objects. Our results show that mostly all atypical nuclei were correctly detected.

  14. Nuclear structure study for the neutron-rich nuclei beyond 132Sn: In-beam gamma-ray spectroscopy of 136Sn and 132Cd

    NASA Astrophysics Data System (ADS)

    Wang, He; Aoi, Nori; Takeuchi, Satoshi; Matsushita, Masafumi; Doornenbal, Pieter; Motobayashi, Tohru; Steppenbeck, David; Yoneda, Kenichiro; Baba, Hidetada; Dombrádi, Zsolt; Kobayashi, Kota; Kondo, Yosuke; Lee, Jenny; Liu, Hong-Na; Minakata, Ryogo; Nishimura, Daiki; Otsu, Hideaki; Sakurai, Hiroyoshi; Sohler, Dora; Sun, Ye-Lei; Tian, Zheng-Yang; Tanaka, Ryuki; Vajta, Zsolt; Yang, Zai-Hong; Yamamoto, Tetsuya; Ye, Yan-Lin; Yokoyama, Rin

    2018-05-01

    The neutron-rich nuclei 136Sn and 132Cd have been studied in the purpose of nuclear structure for the nuclei beyond the doubly-magic nucleus 132Sn. The 2+1 → 0+ gs transitions were identified for these two nuclei using in-beam γ-ray spectroscopy in coincidence with one- and two-proton removal reactions, respectively, at the RIKEN Radioactive Isotope Beam Factory. The 2+ 1 state in 136Sn is found to be similar to that for 134Sn indicating the seniority scheme may also hold for the heavy tin isotopes beyond N = 82. For 132Cd, the 2+ 1 state provides the first spectroscopic information in the even-even nuclei locating in the region "southeast" of 132Sn and the result is discussed in terms of proton-neutron configuration mixing. In both these two nuclei, it was found that the valence neutrons play an essential role in their low-lying excitations.

  15. Selective nuclear export of specific classes of mRNA from mammalian nuclei is promoted by GANP

    PubMed Central

    Wickramasinghe, Vihandha O.; Andrews, Robert; Ellis, Peter; Langford, Cordelia; Gurdon, John B.; Stewart, Murray; Venkitaraman, Ashok R.; Laskey, Ronald A.

    2014-01-01

    The nuclear phase of the gene expression pathway culminates in the export of mature messenger RNAs (mRNAs) to the cytoplasm through nuclear pore complexes. GANP (germinal- centre associated nuclear protein) promotes the transfer of mRNAs bound to the transport factor NXF1 to nuclear pore complexes. Here, we demonstrate that GANP, subunit of the TRanscription-EXport-2 (TREX-2) mRNA export complex, promotes selective nuclear export of a specific subset of mRNAs whose transport depends on NXF1. Genome-wide gene expression profiling showed that half of the transcripts whose nuclear export was impaired following NXF1 depletion also showed reduced export when GANP was depleted. GANP-dependent transcripts were highly expressed, yet short-lived, and were highly enriched in those encoding central components of the gene expression machinery such as RNA synthesis and processing factors. After injection into Xenopus oocyte nuclei, representative GANP-dependent transcripts showed faster nuclear export kinetics than representative transcripts that were not influenced by GANP depletion. We propose that GANP promotes the nuclear export of specific classes of mRNAs that may facilitate rapid changes in gene expression. PMID:24510098

  16. FACTORS INFLUENCING THE ABILITY OF ISOLATED CELL NUCLEI TO FORM GELS IN DILUTE ALKALI

    PubMed Central

    Dounce, Alexander L.; Monty, Kenneth J.

    1955-01-01

    1. Known methods for isolating cell nuclei are divided into two classes, depending on whether or not the nuclei are capable of forming gels in dilute alkali or strong saline solutions. Methods which produce nuclei that can form gels apparently prevent the action of an intramitochondrial enzyme capable of destroying the gel-forming capacity of the nuclei. Methods in the other class are believed to permit this enzyme to act on the nuclei during the isolation procedure, causing detachment of DNA from some nuclear constituent (probably protein). 2. It is shown that heating in alkaline solution and x-irradiation can destroy nuclear gels. Heating in acid or neutral solutions can destroy the capacity of isolated nuclei to form gels. 3. Chemical and biological evidence is summarized in favor of the hypothesis that DNA is normally bound firmly to some nuclear component by non-ionic linkages. PMID:14381437

  17. Heavy neutron rich nuclei: production and investigation

    NASA Astrophysics Data System (ADS)

    Zemlyanoy, S.; Avvakumov, K.; Kazarinov, N.; Fedosseev, V.; Bark, R.; Blazczak, Z.; Janas, Z.

    2018-05-01

    For production and investigation of heavy neutron rich nuclei devoted the new setup, which is under construction at Flerov Laboratory for Nuclear Reactions (FLNR) - JINR, Dubna now. This setup is planned to exploit available beams from the U-400M cyclotron in low energy multi-nucleon transfer reactions to study exotic neutron-rich nuclei located in the “north-east” region of nuclear map. Products from 4.5 to 9 MeV/nucleon heavy-ion collisions, such as 136Xe on 208Pb, are to be captured in a gas cell and selectively laser-ionized in a sextupole (quadrupole) ion guide extraction system.

  18. Cluster preformation law for heavy and superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Wei, K.; Zhang, H. F.

    2017-08-01

    The concept of cluster radioactivity has been extended to allow emitted particles with ZC>28 for superheavy nuclei by nuclear theory [Poenaru et al., Phys. Rev. Lett. 107, 062503 (2011), 10.1103/PhysRevLett.107.062503]. The preformation and emission mechanics of heavy-ion particles must be examined again before the fascinating radioactivity is observed for superheavy nuclei in laboratory. We extract the cluster preformation factor for heavy and superheavy nuclei within a preformed cluster model, in which the decay constant is the product of the preformation factor, assault frequency, and penetration probability. The calculated results show that the cluster penetration probability for superheavy nuclei is larger than that for actinide elements. The preformation factor depends on the nuclear structures of the emitted cluster and mother nucleus, and the well-known cluster preformation law S (AC) =S (α) (AC-1 )/3 [Blendowske and Walliser, Phys. Rev. Lett. 61, 1930 (1988), 10.1103/PhysRevLett.61.1930] will break down when the mass number of the emitted cluster Ac>28 , and new preformation formulas are proposed to estimate the preformation factor for heavy and superheavy nuclei.

  19. A comment on the validity of fragmentation parameters measured in nuclear emulsions. [cosmic ray nuclei

    NASA Technical Reports Server (NTRS)

    Waddington, C. J.

    1978-01-01

    Evidence is reexamined which has been cited as suggesting serious errors in the use of fragmentation parameters appropriate to an airlike medium deduced from measurements made in nuclear emulsions to evaluate corrections for certain effects in balloon-borne observations of cosmic-ray nuclei. Fragmentation parameters for hydrogenlike interactions are calculated and shown to be in overall good agreement with those obtained previously for air. Experimentally measured fragmentation parameters in emulsion are compared with values computed semiempirically, and reasonable agreement is indicated.

  20. Brueckner-AMD Study of Light Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Kiyoshi; Yamamoto, Yuhei; Togashi, Tomoaki

    2011-06-28

    We applied the Brueckner theory to the Antisymmetrized Molecular Dynamics (AMD) and examined the reliability of the AMD calculations based on realistic nuclear interactions. In this method, the Bethe-Goldstone equation in the Brueckner theory is solved for every nucleon pair described by wave packets of AMD, and the G-matrix is calculated with single-particle orbits in AMD self-consistently. We apply this framework to not only {alpha}-nuclei but also N{ne}Z nuclei with A{approx}10. It is confirmed that these results present the description of reasonable cluster structures and energy-level schemes comparable with the experimental ones in light nuclei.

  1. A microscopic derivation of nuclear collective rotation-vibration model and its application to nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulshani, P., E-mail: matlap@bell.net

    We derive a microscopic version of the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for collective rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude. The nuclear Schrodinger equation is canonically transformed to collective co-ordinates, which is then linearized using a constrained variational method. The associated constraints are imposed on the wavefunction rather than on the particle co-ordinates. The approach yields three self-consistent, time-reversal invariant, cranking-type Schrodinger equations for the rotation-vibration and intrinsic motions, and a self-consistency equation. For harmonic oscillator mean-field potentials, these equations are solved in closed forms for excitation energy,more » cut-off angular momentum, and other nuclear properties for the ground-state rotational band in some deformed nuclei. The results are compared with measured data.« less

  2. Energy choices and risk beliefs: is it just global warming and fear of a nuclear power plant accident?

    PubMed

    Greenberg, Michael; Truelove, Heather Barnes

    2011-05-01

    A survey of 3,200 U.S. residents focused on two issues associated with the use of nuclear and coal fuels to produce electrical energy. The first was the association between risk beliefs and preferences for coal and nuclear energy. As expected, concern about nuclear power plant accidents led to decreased support for nuclear power, and those who believed that coal causes global warming preferred less coal use. Yet other risk beliefs about the coal and nuclear energy fuel cycles were stronger or equal correlates of public preferences. The second issue is the existence of what we call acknowledged risk takers, respondents who favored increased reliance on nuclear energy, although also noting that there could be a serious nuclear plant accident, and those who favored greater coal use, despite acknowledging a link to global warming. The pro-nuclear group disproportionately was affluent educated white males, and the pro-coal group was relatively poor less educated African-American and Latino females. Yet both shared four similarities: older age, trust in management, belief that the energy facilities help the local economy, and individualistic personal values. These findings show that there is no single public with regard to energy preferences and risk beliefs. Rather, there are multiple populations with different viewpoints that surely would benefit by hearing a clear and comprehensive national energy life cycle policy from the national government. © 2010 Society for Risk Analysis.

  3. Germany-US Nuclear Theory Exchange Program for QCD Studies of Hadrons & Nuclei 'GAUSTEQ'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudek, Jozef; Melnitchouk, Wally

    GAUSTEQ was a Germany-U.S. exchange program in nuclear theory whose purpose was to focus research efforts on QCD studies of hadrons and nuclei, centered around the current and future research programs of Jefferson Lab and the Gesellschaft fur Schwerionenforschung (GSI) in Germany. GAUSTEQ provided travel support for theoretical physicists at US institutions conducting collaborative research with physicists in Germany. GSI (with its Darmstadt and Helmholtz Institute Mainz braches) served as the German “hub” for visits of U.S. physicists, while Jefferson Lab served as the corresponding “hub” for visits of German physicists visiting U.S. institutions through the reciprocal GUSTEHP (German-US Theorymore » Exchange in Hadron Physics) program. GAUSTEQ was funded by the Office of Nuclear Physics of the U.S. Department of Energy, under Contract No.DE-SC0006758 and officially managed through Old Dominion University in Norfolk, Virginia. The program ran between 2011 and 2015.« less

  4. Fission and Properties of Neutron-Rich Nuclei

    NASA Astrophysics Data System (ADS)

    Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.

    2008-08-01

    Opening session. Nuclear processes in stellar explosions / M. Wiescher. In-beam [symbol]-ray spectroscopy of neutron-rich nuclei at NSCL / A. Gade -- Nuclear structure I. Shell-model structure of neutron-rich nuclei beyond [symbol]Sn / A. Covello ... [et al.]. Shell structure and evolution of collectivity in nuclei above the [symbol]Sn core / S. Sarkar and M. S. Sarkar. Heavy-ion fusion using density-constrained TDHF / A. S. Umar and V. E. Oberacker. Towards an extended microscopic theory for upper-fp shell nuclei / K. P. Drumev. Properties of the Zr and Pb isotopes near the drip-line / V. N. Tarasov ... [et al.]. Identification of high spin states in [symbol] Cs nuclei and shell model calculations / K. Li ... [et al.]. Recent measurements of spherical and deformed isomers using the Lohengrin fission-fragment spectrometer / G. S. Simpson ... [et al.] -- Nuclear structure II. Nuclear structure investigation with rare isotope spectroscopic investigations at GSI / P. Boutachkov. Exploring the evolution of the shell structures by means of deep inelastic reactions / G. de Anaelis. Probing shell closures in neutron-rich nuclei / R. Krücken for the S277 and REX-ISOLDEMINIBALL collaborations. Structure of Fe isotopes at the limits of the pf-shell / N. Hoteling ... [et al.]. Spectroscopy of K isomers in shell-stabilized trans-fermium nuclei / S. K. Tandel ... [et al.] -- Radioactive ion beam facilities. SPIRAL2 at GANIL: a world leading ISOL facility for the next decade / S. Gales. New physics at the International Facility for Antiproton and Ion Research (FAIR) next to GSI / I. Augustin ... [et al.]. Radioactive beams from a high powered ISOL system / A. C. Shotter. RlKEN RT beam factory / T. Motobayashi. NSCL - ongoing activities and future perspectives / C. K. Gelbke. Rare isotope beams at Argonne / W. F. Henning. HRIBF: scientific highlights and future prospects / J. R. Beene. Radioactive ion beam research done in Dubna / G. M. Ter-Akopian ... [et al.] -- Fission I

  5. Multiple CP non-conserving mechanisms of ( ββ)0 ν -decay and nuclei with largely different nuclear matrix elements

    NASA Astrophysics Data System (ADS)

    Meroni, A.; Petcov, S. T.; Šimkovic, F.

    2013-02-01

    We investigate the possibility to discriminate between different pairs of CP non-conserving mechanisms inducing the neutrinoless double beta ( ββ)0 ν -decay by using data on ( ββ)0 ν -decay half-lives of nuclei with largely different nuclear matrix elements (NMEs). The mechanisms studied are: light Majorana neutrino exchange, heavy left-handed (LH) and heavy right-handed (RH) Majorana neutrino exchanges, lepton charge non-conserving couplings in SUSY theories with R-parity breaking giving rise to the "dominant gluino exchange" and the "squark-neutrino" mechanisms. The nuclei considered are 76Ge, 82Se, 100Mo, 130Te and 136Xe. Four sets of nuclear matrix elements (NMEs) of the decays of these five nuclei, derived within the Self-consistent Renormalized Quasiparticle Random Phase Approximation (SRQRPA), were employed in our analysis. While for each of the five single mechanisms discussed, the NMEs for 76Ge, 82Se, 100Mo and 130Te differ relatively little, the relative difference between the NMEs of any two nuclei not exceeding 10%, the NMEs for 136 Xe differ significantly from those of 76Ge, 82 Se, 100Mo and 130Te, being by a factor ~ (1.3 - 2.5) smaller. This allows, in principle, to draw conclusions about the pair of non-interfering (interfering) mechanisms possibly inducing the ( ββ)0 ν -decay from data on the half-lives of 136 Xe and of at least one (two) more isotope(s) which can be, e.g., any of the four, 76 Ge, 82 Se, 100 Mo and 130 Te. Depending on the sets of mechanisms considered, the conclusion can be independent of, or can depend on, the NMEs used in the analysis. The implications of the EXO lower bound on the half-life of 136 Xe for the problem studied are also exploited.

  6. Evolution of Structure in Nuclei: Meditation by Sub-Shell Modifications and Relation to Binding Energies

    NASA Astrophysics Data System (ADS)

    Casten, R. F.; Cakirli, R. B.

    2009-03-01

    Understanding the development of configuration mixing, coherence, collectivity, and deformation in nuclei is one of the crucial challenges in nuclear structure physics, and one which has become all the more important with the advent of next generation facilities for the study of exotic nuclei. We will discuss recent work on phase/shape transitional behavior in nuclei, and the role of changes in sub-shell structure in mediating such transitional regions. We will also discuss a newly found, much deeper, link between nuclear structure and nuclear binding energies.

  7. Production and investigation of heavy neutron rich nuclei

    NASA Astrophysics Data System (ADS)

    Zemlyanoy, Sergey; Avvakumov, Konstantin; Kozulin, Eduard; Fedosseev, Valentin; Bark, Robert; Janas, Zenon

    2017-11-01

    A project devoted to the production and study of neutron rich heavy nuclei (GALS - project) is being realized at Flerov Laboratory for Nuclear Reactions (FLNR) - JINR. GALS is planned to exploit available beams from the U-400M cyclotron in low energy multi-nucleon transfer reactions to study exotic neutron rich nuclei located in the "north-east" region of nuclear map. Products from 4.5 to 9 MeV/nucleon heavy-ion collisions, such as 136Xe on 208Pb, are to be captured in a gas cell and selectively laser-ionized in a sextupole (quadrupole) ion guide extraction system.

  8. Magnetic moments of excited states in nuclei far from stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, A.; Berant, Z.; Gill, R.L.

    1985-01-01

    Magnetic moments of excited states in nuclei far from stability have been measured by gamma-gamma angular correlation at the output of the fission product separators TRISTAN and JOSEF. The results obtained until now will be reviewed. They provide important nuclear structure information about nuclei around closed shells, and transitional nuclei in the A = 100 and 150 regions. 22 refs., 3 figs., 3 tabs.

  9. Age of heart disease presentation and dysmorphic nuclei in patients with LMNA mutations

    PubMed Central

    Core, Jason Q.; Mehrabi, Mehrsa; Robinson, Zachery R.; Ochs, Alexander R.; McCarthy, Linda A.; Zaragoza, Michael V.

    2017-01-01

    Nuclear shape defects are a distinguishing characteristic in laminopathies, cancers, and other pathologies. Correlating these defects to the symptoms, mechanisms, and progression of disease requires unbiased, quantitative, and high-throughput means of quantifying nuclear morphology. To accomplish this, we developed a method of automatically segmenting fluorescently stained nuclei in 2D microscopy images and then classifying them as normal or dysmorphic based on three geometric features of the nucleus using a package of Matlab codes. As a test case, cultured skin-fibroblast nuclei of individuals possessing LMNA splice-site mutation (c.357-2A>G), LMNA nonsense mutation (c.736 C>T, pQ246X) in exon 4, LMNA missense mutation (c.1003C>T, pR335W) in exon 6, Hutchinson-Gilford Progeria Syndrome, and no LMNA mutations were analyzed. For each cell type, the percentage of dysmorphic nuclei, and other morphological features such as average nuclear area and average eccentricity were obtained. Compared to blind observers, our procedure implemented in Matlab codes possessed similar accuracy to manual counting of dysmorphic nuclei while being significantly more consistent. The automatic quantification of nuclear defects revealed a correlation between in vitro results and age of patients for initial symptom onset. Our results demonstrate the method’s utility in experimental studies of diseases affecting nuclear shape through automated, unbiased, and accurate identification of dysmorphic nuclei. PMID:29149195

  10. Age of heart disease presentation and dysmorphic nuclei in patients with LMNA mutations.

    PubMed

    Core, Jason Q; Mehrabi, Mehrsa; Robinson, Zachery R; Ochs, Alexander R; McCarthy, Linda A; Zaragoza, Michael V; Grosberg, Anna

    2017-01-01

    Nuclear shape defects are a distinguishing characteristic in laminopathies, cancers, and other pathologies. Correlating these defects to the symptoms, mechanisms, and progression of disease requires unbiased, quantitative, and high-throughput means of quantifying nuclear morphology. To accomplish this, we developed a method of automatically segmenting fluorescently stained nuclei in 2D microscopy images and then classifying them as normal or dysmorphic based on three geometric features of the nucleus using a package of Matlab codes. As a test case, cultured skin-fibroblast nuclei of individuals possessing LMNA splice-site mutation (c.357-2A>G), LMNA nonsense mutation (c.736 C>T, pQ246X) in exon 4, LMNA missense mutation (c.1003C>T, pR335W) in exon 6, Hutchinson-Gilford Progeria Syndrome, and no LMNA mutations were analyzed. For each cell type, the percentage of dysmorphic nuclei, and other morphological features such as average nuclear area and average eccentricity were obtained. Compared to blind observers, our procedure implemented in Matlab codes possessed similar accuracy to manual counting of dysmorphic nuclei while being significantly more consistent. The automatic quantification of nuclear defects revealed a correlation between in vitro results and age of patients for initial symptom onset. Our results demonstrate the method's utility in experimental studies of diseases affecting nuclear shape through automated, unbiased, and accurate identification of dysmorphic nuclei.

  11. New Equations of State Based on the Liquid Drop Model of Heavy Nuclei and Quantum Approach to Light Nuclei for Core-collapse Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki

    2013-08-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to ~1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes.

  12. Filopodia-like Actin Cables Position Nuclei in Association with Perinuclear Actin in Drosophila Nurse Cells

    PubMed Central

    Huelsmann, Sven; Ylänne, Jari; Brown, Nicholas H.

    2013-01-01

    Summary Controlling the position of the nucleus is vital for a number of cellular processes from yeast to humans. In Drosophila nurse cells, nuclear positioning is crucial during dumping, when nurse cells contract and expel their contents into the oocyte. We provide evidence that in nurse cells, continuous filopodia-like actin cables, growing from the plasma membrane and extending to the nucleus, achieve nuclear positioning. These actin cables move nuclei away from ring canals. When nurse cells contract, actin cables associate laterally with the nuclei, in some cases inducing nuclear turning so that actin cables become partially wound around the nuclei. Our data suggest that a perinuclear actin meshwork connects actin cables to nuclei via actin-crosslinking proteins such as the filamin Cheerio. We provide a revised model for how actin structures position nuclei in nurse cells, employing evolutionary conserved machinery. PMID:24091012

  13. Iowa State University – Final Report for SciDAC3/NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vary, James P

    The Iowa State University (ISU) contributions to the NUCLEI project are focused on developing, implementing and running an efficient and scalable configuration interaction code (Many-Fermion Dynamics – nuclear or MFDn) for leadership class supercomputers addressing forefront research problems in low-energy nuclear physics. We investigate nuclear structure and reactions with realistic nucleon-nucleon (NN) and three-nucleon (3N) interactions. We select a few highlights from our work that has produced a total of more than 82 refereed publications and more than 109 invited talks under SciDAC3/NUCLEI.

  14. Analysis of growth of tetraploid nuclei in roots of Vicia faba.

    PubMed

    Bansal, J; Davidson, D

    1978-03-01

    Growth of nuclei of a marked population of cells was determined from G1 to prophase in roots of Vicia faba. The cells were marked by inducing them to become tetraploid by treatment with 0.002% colchicine for 1 hr. Variation in nuclear volume is large; it is established in early G1 and maintained through interphase and into prophase. One consequence of this variation is that there is considerable overlap between volumes of nuclei of different ages in the cell cycle; nuclear volume, we suggest, cannot be used as an accurate indicator of the age of the cell in its growth cycle. Nuclei exhibit considerable variation in their growth rate through the cell cycle. Of the marked population of cells, about 65% had completed a cell cycle 14--15 hr after they were formed. These tetraploid nuclei have a cell cycle duration similar to that of fast cycling diploid cells of the same roots. Since they do complete a cell cycle, at least 65% of the nuclei studied must come from rapidly proliferating cells, showing that variability in nuclear volumes must be present in growing cells and cannot be attributed solely to the presence, in our samples, of non-cycling cells.

  15. Attribution of the United States "warming hole": aerosol indirect effect and precipitable water vapor.

    PubMed

    Yu, Shaocai; Alapaty, Kiran; Mathur, Rohit; Pleim, Jonathan; Zhang, Yuanhang; Nolte, Chris; Eder, Brian; Foley, Kristen; Nagashima, Tatsuya

    2014-11-06

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20(th) century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) (termed the U.S. "warming hole"). Here we used observations of temperature, shortwave cloud forcing (SWCF), longwave cloud forcing (LWCF), aerosol optical depth and precipitable water vapor as well as global coupled climate models to explore the attribution of the "warming hole". We find that the observed cooling trend in summer Tmax can be attributed mainly to SWCF due to aerosols with offset from the greenhouse effect of precipitable water vapor. A global coupled climate model reveals that the observed "warming hole" can be produced only when the aerosol fields are simulated with a reasonable degree of accuracy as this is necessary for accurate simulation of SWCF over the region. These results provide compelling evidence of the role of the aerosol indirect effect in cooling regional climate on the Earth. Our results reaffirm that LWCF can warm both winter Tmax and Tmin.

  16. Elusive active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Maiolino, R.; Comastri, A.; Gilli, R.; Nagar, N. M.; Bianchi, S.; Böker, T.; Colbert, E.; Krabbe, A.; Marconi, A.; Matt, G.; Salvati, M.

    2003-10-01

    A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically `elusive'. X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtain a first estimate of the fraction of elusive active galactic nuclei (AGN) in local galaxies and to constrain their nature. Our results suggest that elusive AGN have a local density comparable to or even higher than optically classified Seyfert nuclei. Most elusive AGN are heavily absorbed in the X-rays, with gas column densities exceeding 1024 cm-2, suggesting that their peculiar nature is associated with obscuration. It is likely that in elusive AGN the nuclear UV source is completely embedded and the ionizing photons cannot escape, which prevents the formation of a classical narrow-line region. Elusive AGN may contribute significantly to the 30-keV bump of the X-ray background.

  17. Influence of nuclear basic data on the calculation of production cross sections of superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Bao, X. J.; Gao, Y.; Li, J. Q.; Zhang, H. F.

    2015-07-01

    The center of the predicted island of stability of superheavy nuclei (SHN) has not yet been observed experimentally. Many theories are being developed to understand the synthesizing mechanism of superheavy nuclei. However, all of them have to use some basic nuclear data. Three data tables, FRDM1995 [P. Möller et al., At. Data Nucl. Data Tables 59, 185 (1995), 10.1006/adnd.1995.1002], KTUY2005 [H. Koura et al., Prog. Theor. Phys. 113, 305 (2005), 10.1143/PTP.113.305], and WS2010 [Ning Wang et al., Phys. Rev. C 82, 044304 (2010), 10.1103/PhysRevC.82.044304], are used to investigate the SHN production. Based on the dinuclear system concept, the evaporation residue cross sections of SHN for Z =112-118 are calculated for the 48Ca -induced hot fusion reactions. It turns out that unlike the predictions made with the KTUY2005 and WS2010 data, the magic numbers Z =114 and N =184 predicted with the FRDM1995 data do not contradict the experimental data obtained so far.

  18. Nuclear rainbow in elastic scattering of {sup 9}Be nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glukhov, Yu. A., E-mail: gloukhov@inbox.ru; Ogloblin, A. A.; Artemov, K. P.

    2010-01-15

    A systematic investigation of the elastic scattering of the {sup 9}Be nucleus, which is among themost loosely bound stable nuclei was performed.Differential cross sections for elastic {sup 9}Be + {sup 16}O scattering were measured at a c.m. energy of 47.5 MeV (beam of 132-MeV {sup 16}O nuclei). Available data at different energy values and data for neighboring nuclei were included in our analysis. As a result, the very fact of rainbow scattering was reliably established for the first time in systems involving {sup 9}Be. In addition, the analysis in question made it possible to identify Airy minima and to determinemore » unambiguously the nucleus-nucleus potential with a high probability.« less

  19. Role of ANC-1 in tethering nuclei to the actin cytoskeleton.

    PubMed

    Starr, Daniel A; Han, Min

    2002-10-11

    Mutations in anc-1 (nuclear anchorage defective) disrupt the positioning of nuclei and mitochondria in Caenorhabditis elegans. ANC-1 is shown to consist of mostly coiled regions with a nuclear envelope localization domain (called the KASH domain) and an actin-binding domain; this structure was conserved with the Drosophila protein Msp-300 and the mammalian Syne proteins. Antibodies against ANC-1 localized cytoplasmically and were enriched at the nuclear periphery in an UNC-84-dependent manner. Overexpression of the KASH domain or the actin-binding domain caused a dominant negative anchorage defect. Thus, ANC-1 may connect nuclei to the cytoskeleton by interacting with UNC-84 at the nuclear envelope and with actin in the cytoplasm.

  20. Coulomb Excitation of Exotic Nuclei

    NASA Astrophysics Data System (ADS)

    Macchiavelli, Augusto O.

    2017-09-01

    The structure of nuclei far from the stability line is a central theme of research in nuclear physics. Key to this program has been the worldwide development of radioactive beam facilities and novel detector systems, which provide the tools needed to produce and study these exotic nuclei. Coulomb Excitation provides a unique probe to characterize the interplay of collective and single-particle degrees of freedom of the atomic nucleus. In particular, the combination of state-of-the-art charged particle detectors and gamma-ray spectroscopy plays a vital and ubiquitous role in these studies. As an introduction to this Mini-Symposium, I will present a short overview of this powerful technique and selected examples of recent experiments. Future opportunities with a 4 π gamma-ray tracking array like GRETA will be discussed. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC02-05CH11231 (LBNL).

  1. β-Decay half-lives and nuclear structure of exotic proton-rich waiting point nuclei under rp-process conditions

    NASA Astrophysics Data System (ADS)

    Nabi, Jameel-Un; Böyükata, Mahmut

    2016-03-01

    We investigate even-even nuclei in the A ∼ 70 mass region within the framework of the proton-neutron quasi-particle random phase approximation (pn-QRPA) and the interacting boson model-1 (IBM-1). Our work includes calculation of the energy spectra and the potential energy surfaces V (β , γ) of Zn, Ge, Se, Kr and Sr nuclei with the same proton and neutron number, N = Z. The parametrization of the IBM-1 Hamiltonian was performed for the calculation of the energy levels in the ground state bands. Geometric shape of the nuclei was predicted by plotting the potential energy surfaces V (β , γ) obtained from the IBM-1 Hamiltonian in the classical limit. The pn-QRPA model was later used to compute half-lives of the neutron-deficient nuclei which were found to be in very good agreement with the measured ones. The pn-QRPA model was also used to calculate the Gamow-Teller strength distributions and was found to be in decent agreement with the measured data. We further calculate the electron capture and positron decay rates for these N = Z waiting point (WP) nuclei in the stellar environment employing the pn-QRPA model. For the rp-process conditions, our total weak rates are within a factor two compared with the Skyrme HF +BCS +QRPA calculation. All calculated electron capture rates are comparable to the competing positron decay rates under rp-process conditions. Our study confirms the finding that electron capture rates form an integral part of the weak rates under rp-process conditions and should not be neglected in the nuclear network calculations.

  2. Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology Images.

    PubMed

    Xu, Jun; Xiang, Lei; Liu, Qingshan; Gilmore, Hannah; Wu, Jianzhong; Tang, Jinghai; Madabhushi, Anant

    2016-01-01

    Automated nuclear detection is a critical step for a number of computer assisted pathology related image analysis algorithms such as for automated grading of breast cancer tissue specimens. The Nottingham Histologic Score system is highly correlated with the shape and appearance of breast cancer nuclei in histopathological images. However, automated nucleus detection is complicated by 1) the large number of nuclei and the size of high resolution digitized pathology images, and 2) the variability in size, shape, appearance, and texture of the individual nuclei. Recently there has been interest in the application of "Deep Learning" strategies for classification and analysis of big image data. Histopathology, given its size and complexity, represents an excellent use case for application of deep learning strategies. In this paper, a Stacked Sparse Autoencoder (SSAE), an instance of a deep learning strategy, is presented for efficient nuclei detection on high-resolution histopathological images of breast cancer. The SSAE learns high-level features from just pixel intensities alone in order to identify distinguishing features of nuclei. A sliding window operation is applied to each image in order to represent image patches via high-level features obtained via the auto-encoder, which are then subsequently fed to a classifier which categorizes each image patch as nuclear or non-nuclear. Across a cohort of 500 histopathological images (2200 × 2200) and approximately 3500 manually segmented individual nuclei serving as the groundtruth, SSAE was shown to have an improved F-measure 84.49% and an average area under Precision-Recall curve (AveP) 78.83%. The SSAE approach also out-performed nine other state of the art nuclear detection strategies.

  3. Cirrus Susceptibility to Changes in Ice Nuclei: Physical Processes, Model Uncertainties, and Measurement Needs

    NASA Technical Reports Server (NTRS)

    Jensen, Eric

    2018-01-01

    One of the proposed concepts for mitigating the warming effect of increasing greenhouse gases is seeding cirrus cloud with ice nuclei (IN) in order to reduce the lifetime and coverage of cold cirrus that have a net warming impact on the earth's surface. Global model simulations of the net impact of changing upper tropospheric IN have given widely disparate results, partly as a result of poor understanding of ice nucleation processes in the current atmosphere, and partly as a result of poor representation of these processes in global models. Here, we present detailed process-model simulations of tropical tropopause layer (TTL) transport and cirrus formation with ice nuclei properties based on recent laboratory nucleation experiments and field measurements of aerosol composition. The model is used to assess the sensitivity of TTL cirrus occurrence frequency and microphysical properties to the abundance and efficacy of ice nuclei. The simulated cloud properties compared with recent high-altitude aircraft measurements of TTL cirrus and ice supersaturation. We find that abundant effective IN (either from glassy organic aerosols or crystalline ammonium sulfate with concentrations greater than about 100/L) prevent the occurrences of large ice concentration and large ice supersaturations, both of which are clearly indicated by the in situ observations. We find that concentrations of effective ice nuclei larger than about 50/L can drive significant changes in cirrus microphysical properties and occurrence frequency. However, the cloud occurrence frequency can either increase or decrease, depending on the efficacy and abundance of IN added to the TTL. We suggest that our lack of information about ice nuclei properties in the current atmosphere, as well as uncertainties in ice nucleation processes and their representations in global models, preclude meaningful estimates of climate impacts associated with addition of ice nuclei in the upper troposphere. We will briefly discuss

  4. Occurrence of Partial Nuclei in Eggs of the Sand Dollar, Clypeaster japonicus.

    PubMed

    Yoneda, M; Nemoto, S I

    1990-10-01

    Females of Clypeaster japonicus bearing eggs with multiple nuclei were occasionally found. DAPI (4'-6-diamidino-2-phenylindole) stained all these nuclei. The summed volume of the two nuclei in binucleate eggs was similar to the nuclear volume in mononucleate eggs from the same batch. On fertilization, two partial nuclei migrated to the center of the egg with a time-course similar to that taken by a single nucleus; they then participated in forming the zygote nucleus, which subsequently formed a single mitotic spindle. These multiple nuclei thus appear to function as genuine nuclei. Possibly they result from the failure of a single nucleus to form during oogenesis.

  5. Flavanol binding of nuclei from tree species.

    PubMed

    Feucht, W; Treutter, D; Polster, J

    2004-01-01

    Light microscopy was used to examine the nuclei of five tree species with respect to the presence of flavanols. Flavanols develop a blue colouration in the presence of a special p-dimethylaminocinnamaldehyde (DMACA) reagent that enables those nuclei loaded with flavanols to be recognized. Staining of the nuclei was most pronounced in both Tsuga canadensis and Taxus baccata, variable in Metasequoia glyptostroboides, faint in Coffea arabica and minimal in Prunus avium. HPLC analysis showed that the five species contained substantial amounts of different flavanols such as catechin, epicatechin and proanthocyanidins. Quantitatively, total flavanols were quite different among the species. The nuclei themselves, as studied in Tsuga seed wings, were found to contain mainly catechin, much lower amounts of epicatechin and traces of proanthocyanidins. Blue-coloured nuclei located centrally in small cells were often found to maximally occupy up to 90% of a cell's radius, and the surrounding small rim of cytoplasm was visibly free of flavanols. A survey of 34 gymnosperm and angiosperm species indicated that the first group has much higher nuclear binding capacities for flavanols than the second group.

  6. Preparation of isolated nuclei from K 562 haemopoietic cell line for high resolution scanning electron microscopy.

    PubMed

    Reipert, S; Reipert, B M; Allen, T D

    1994-09-01

    The aim of the work is to visualise nuclear pore complexes (NPCs) in mammalian cells by high resolution scanning electron microscopy. A detergent-free isolation protocol was employed to obtain clean nuclei from the haemopoietic cell line K 562. Nuclear isolation was performed by mechanical homogenisation under hypotonic conditions followed by purification of the nuclear fraction. The isolated nuclei were attached to silicon chips, fixed, critical point dried, and sputter coated with a thin film (3-4 nm) of tantalum. Analysis of the nuclear surface by scanning electron microscopy (SEM) revealed a strong sensitivity of the outer nuclear membrane (ONM) to disruption during the isolation procedure. A significant reduction of the characteristic pattern of damage to the ONM was achieved by means of an isopicnic centrifugation on an isoosmolar balanced Percoll gradient. Analysis of the population of isolated nuclei by flow cytometry showed no signs of cell cycle specific losses of nuclei during isolation. The SEM investigations of the morphology of the nuclear envelope (NE) and of substructural details of NPCs and polyribosomes were performed using an in-lens field emission scanning electron microscope.

  7. Formation environment of cometary nuclei in the primordial solar nebula

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.

    1985-01-01

    The formation environment of comets in the primordial solar nebula is investigated from the point of view of the chemical composition of the ices of cometary nuclei. A sublimation sequence for various species of possible constituents of the nuclear ice, which would have condensed on the grain surface in the parent interstellar cloud was obtained by calculating the temperature of grains in the solar nebula. On this basis, an allowed range of the nebular temperature in the formation region of cometary nuclei is obtained from a condition for retention of the ices of the nuclear composition. Combining this result with models of the solar nebula, the region for the formation of cometary nuclei in the solar nebula is discussed. It is shown that cometary nuclei formed at least beyond the region between the formation regions of Saturn and Uranus. Finally, an upper limit is estimated for the grain temperature in the region of comet formation at an earlier stage of the solar nebula. The grain temperature is shown to be less than 60 K at this stage.

  8. Neutron-antineutron oscillations in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dover, C.B.; Gal, A.; Richard, J.M.

    1983-03-01

    We present calculations of the neutron-antineutron (n-n-bar) annihilation lifetime T in deuterium, /sup 16/O, and /sup 56/Fe in terms of the free-space oscillation time tau/sub n/n-bar. The coupled Schroedinger equations for the n and n-bar wave functions in a nucleus are solved numerically, using a realistic shell-model potential which fits the empirical binding energies of the neu- p tron orbits, and a complex n-bar-nucleus optical potential obtained from fits to p-bar-atom level shifts. Most previous estimates of T in nuclei, which exhibit large variations, are found to be quite inaccurate. When the nuclear-physics aspects of the problem are handled properlymore » (in particular, the finite neutron binding, the nuclear radius, and the surface diffuseness), the results are found to be rather stable with respect to allowable changes in the parameters of the nuclear model. We conclude that experimental limits on T in nuclei can be used to give reasonably precise constraints on tau/sub n/n-bar: T>10/sup 30/ or 10/sup 31/ yr leads to tau/sub n/n-bar>(1.5--2) x 10/sup 7/ or (5--6) x 10/sup 7/ sec, respectively.« less

  9. Electron-capture Rates for pf-shell Nuclei in Stellar Environments and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Honma, Michio; Mori, Kanji; Famiano, Michael A.; Kajino, Toshitaka; Hidakai, Jun; Otsuka, Takaharu

    Gamow-Teller strengths in pf-shell nuclei obtained by a new shell-model Hamltonian, GXPF1J, are used to evaluate electron-capture rates in pf-shell nuclei at stellar environments. The nuclear weak rates with GXPF1J, which are generally smaller than previous evaluations for proton-rich nuclei, are applied to nucleosynthesis in type Ia supernova explosions. The updated rates are found to lead to less production of neutron-rich nuclei such as 58Ni and 54Cr, thus toward a solution of the problem of over-production of neutron-rich isotopes of iron-group nuclei compared to the solar abundance.

  10. Direct observation of light focusing by single photoreceptor cell nuclei.

    PubMed

    Błaszczak, Zuzanna; Kreysing, Moritz; Guck, Jochen

    2014-05-05

    The vertebrate retina is inverted with respect to its optical function, which requires light to pass through the entire tissue prior to detection. The last significant barrier for photons to overcome is the outer nuclear layer formed by photoreceptor cell (PRC) nuclei. Here we experimentally characterise the optical properties of PRC nuclei using bright-field defocusing microscopy to capture near-field intensity distributions behind individual nuclei. We find that some nuclei efficiently focus incident light confirming earlier predictions based on comparative studies of chromatin organisation in nocturnal and diurnal mammals. The emergence of light focusing during the development of mouse nuclei highlights the acquired nature of the observed lens-like behaviour. Optical characterisation of these nuclei is an important first step towards an improved understanding of how light transmission through the retina is influenced by its constituents.

  11. Studies of neutron-rich nuclei far from stability at TRISTAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, R.L.

    The ISOL facility, TRISTAN, is a user facility located at Brookhaven National Laboratory's High Flux Beam Reactor. Short-lived, neutron-rich nuclei, far from stability, are produced by thermal neutron fission of /sup 235/U. An extensive array of experimental end stations are available for nuclear structure studies. These studies are augmented by a variety of long-lived ion sources suitable for use at a reactor facility. Some recent results at TRISTAN are presented as examples of using an ISOL facility to study series of nuclei, whereby an effective means of conducting nuclear structure investigations is available.

  12. Analytical mass formula and nuclear surface properties in the ETF approximation. Part I: symmetric nuclei

    NASA Astrophysics Data System (ADS)

    Aymard, François; Gulminelli, Francesca; Margueron, Jérôme

    2016-08-01

    The problem of determination of nuclear surface energy is addressed within the framework of the extended Thomas Fermi (ETF) approximation using Skyrme functionals. We propose an analytical model for the density profiles with variationally determined diffuseness parameters. In this first paper, we consider the case of symmetric nuclei. In this situation, the ETF functional can be exactly integrated, leading to an analytical formula expressing the surface energy as a function of the couplings of the energy functional. The importance of non-local terms is stressed and it is shown that they cannot be deduced simply from the local part of the functional, as it was suggested in previous works.

  13. Teaching Global Warming

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    2004-05-01

    Every citizen's education should include socially relevant science courses because, as the American Association for the Advancement of Science puts it, "Without a scientifically literate population, the outlook for a better world is not promising." I have developed a conceptual liberal-arts physics course that covers the major principles of classical physics, emphasizes modern/contemporary physics, and includes societal topics such as global warming, ozone depletion, transportation, exponential growth, scientific methodology, risk assessment, nuclear weapons, nuclear power, and the energy future. The societal topics, occupying only about 15% of the class time, appear to be the main cause of the surprising popularity of this course among non-scientists. I will outline some ideas for incorporating global warming into such a course or into any other introductory physics course. For further details, see my textbook Physics: Concepts and Connections (Prentice Hall, 3rd edition 2003).

  14. A generic nuclei detection method for histopathological breast images

    NASA Astrophysics Data System (ADS)

    Kost, Henning; Homeyer, André; Bult, Peter; Balkenhol, Maschenka C. A.; van der Laak, Jeroen A. W. M.; Hahn, Horst K.

    2016-03-01

    The detection of cell nuclei plays a key role in various histopathological image analysis problems. Considering the high variability of its applications, we propose a novel generic and trainable detection approach. Adaption to specific nuclei detection tasks is done by providing training samples. A trainable deconvolution and classification algorithm is used to generate a probability map indicating the presence of a nucleus. The map is processed by an extended watershed segmentation step to identify the nuclei positions. We have tested our method on data sets with different stains and target nuclear types. We obtained F1-measures between 0.83 and 0.93.

  15. Quantitative proteomics analysis by iTRAQ in human nuclear cataracts of different ages and normal lens nuclei.

    PubMed

    Zhou, Hai Yan; Yan, Hong; Wang, Li Li; Yan, Wei Jia; Shui, Ying Bo; Beebe, David C

    2015-08-01

    The goal of this study was to quantitatively identify the differentially expressed proteins in nuclear cataracts of different ages and normal lens nuclei in humans. Forty-eight human lens nucleus samples with hardness grades III, IV were obtained during cataract surgery by extracapsular cataract extraction. Seven normal transparent human lens nuclei were obtained from fresh normal cadaver eyes during corneal transplantation surgery. Lens nuclei were divided into seven groups according to age and optic axis: Group A (average age 80.8 ± 1.2 years), Group B (average age 57.0 ± 4.0 years), Group C average age 80.3 ± 4.5 years), Group D (average age 56.9 ± 4.2 years), Group E (average age 78.1 ± 2.5 years), Group F (average age 57.6 ± 3.3 years) and Group G (seven normal transparent human lenses from normal cadaver eyes, average age 34.7 ± 4.2 years). Water-soluble, water-insoluble, and water-insoluble-urea-soluble protein fractions were extracted from samples. The three-part protein fractions from the individual lenses were combined to form the total proteins of each sample. The proteomic profiles of each group were further analyzed using 8-plex iTRAQ labeling combined with 2D-LC-MS/MS. The data were analyzed with the ProteinPilot software for peptide matching, protein identification, and quantification. Differentially expressed proteins were validated by Western blotting. We employed biological and technical replicates and selected the intersection of the two results, which included 80 proteins. Nine proteins were differentially expressed among the 80 proteins identified using proteomic techniques. In age-related nuclear cataracts (ARNC), the expression levels of fatty acid-binding protein and pterin-4-alpha-carbinolamine dehydratase were upregulated, whereas the levels of alpha-crystallin B chain (CRYAB), GSH synthetase, phakinin, gamma-crystallin C, phosphoglycerate kinase 1, betaine-homocysteine S-methyltransferase 1 (BHMT1), and spectrin beta chain were

  16. Transverse momenta of fragments of relativistic sulfur and lead nuclei after their interaction with track-emulsion nuclei at energies of 200 and 160 GeV per nucleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepekhin, F. G., E-mail: lepfed@yandex.ru; Tkach, L. N.

    2011-05-15

    Transverse-momentum distributions of doubly charged fragments of sulfur and lead nuclei having energies of 200 and 160 GeV per nucleon and interacting with nuclei in a track emulsion were investigated. No trace of compression or heating of nuclear matter in the interaction of these nuclei with track-emulsion nuclei was revealed experimentally. Transverse momenta of fragments of relativistic nuclei were found to obey a normal distribution that corresponds to a degenerate momentum distribution of nucleons in the ground state of a nucleus before its interaction with a track-emulsion nucleus. There is no piece of evidence that fragments of relativistic nuclei originatemore » from some excited state of an intermediate nucleus. This picture of the fragmentation of relativistic nuclei complies with the naive parton model proposed by Feynman and Gribov. In summary, the fragmentation of relativistic nuclei at energies of 160 and 200 GeV per nucleon is cold and fast.« less

  17. Microscopic calculations of the characteristics of radiative nuclear reactions for double-magic nuclei

    NASA Astrophysics Data System (ADS)

    Achakovskiy, Oleg; Kamerdzhiev, Sergei; Tselyaev, Victor; Shitov, Mikhail

    2016-01-01

    The neutron capture cross sections and average radiative widths Γγ of neutron resonances for two double-magic nuclei 132Sn and 208Pb have been calculated using the microscopic photon strength functions (PSF), which were obtained within the microscopic self-consistent version of the extended theory of finite Fermi systems in the time blocking approximation. For the first time, the microscopic PSFs have been obtained within the fully self-consistent approach with exact accounting for the single particle continuum (for 208Pb). The approach includes phonon coupling effects in addition to the standard RPA approach. The known Skyrme force has been used. The calculations of nuclear reaction characteristics have been performed with the EMPIRE 3.1 nuclear reaction code. Here, three nuclear level density (NLD) models have been used: the so-called phenomenological GSM, the EMPIRE specific (or Enhanced GSM) and the microscopical combinatorial HFB NLD models. For both considered characteristics we found a significant disagreement between the results obtained with the GSM and HFB NLD models. For 208Pb, a reasonable agreement has been found with systematic for the Γγ values with HFB NLD and with the experimental data for the HFB NLD average resonance spacing D0, while for these two quantities the differences between the values obtained with GSM and HFB NLD are of several orders of magnitude. The discrepancies between the results with the phenomenological EGLO PSF and microscopic RPA or TBA are much less for the same NLD model.

  18. Surface properties of neutron-rich exotic nuclei within relativistic mean field formalisms

    NASA Astrophysics Data System (ADS)

    Bhuyan, M.; Carlson, B. V.; Patra, S. K.; Zhou, Shan-Gui

    2018-02-01

    In this theoretical study, we establish a correlation between the neutron skin thickness and the nuclear symmetry energy for the even-even isotopes of Fe, Ni, Zn, Ge, Se, and Kr within the framework of the axially deformed self-consistent relativistic mean field for the nonlinear NL 3* and density-dependent DD-ME1 interactions. The coherent density functional method is used to formulate the symmetry energy, the neutron pressure, and the curvature of finite nuclei as a function of the nuclear radius. We have performed broad studies for the mass dependence on the symmetry energy in terms of the neutron-proton asymmetry for mass 70 ≤A ≤96 . From this analysis, we found a notable signature of a shell closure at N =50 in the isotopic chains of Fe, Ni, Zn, Ge, Se, and Kr nuclei. The present study reveals a interrelationship between the characteristics of infinite nuclear matter and the neutron skin thickness of finite nuclei.

  19. Repulsive four-body interactions of α particles and quasistable nuclear α -particle condensates in heavy self-conjugate nuclei

    NASA Astrophysics Data System (ADS)

    Bai, Dong; Ren, Zhongzhou

    2018-05-01

    We study the effects of repulsive four-body interactions of α particles on nuclear α -particle condensates in heavy self-conjugate nuclei using a semianalytic approach, and find that the repulsive four-body interactions could decrease the critical number of α particles, beyond which quasistable α -particle condensate states can no longer exist, even if these four-body interactions make only tiny contributions to the total energy of the Hoyle-like state of 16O. Explicitly, we study eight benchmark parameter sets, and find that the critical number Ncr decreases by |Δ Ncr|˜1 -4 from Ncr˜11 with vanishing four-body interactions. We also discuss the effects of four-body interactions on energies and radii of α -particle condensates. Our study can be useful for future experiments to study α -particle condensates in heavy self-conjugate nuclei. Also, the experimental determination of Ncr will eventually help establish a better understanding on the α -particle interactions, especially the four-body interactions.

  20. Alternative method for evaluating the pair energy of nucleons in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurmukhamedov, A. M., E-mail: fattah52@mail.ru

    2015-12-15

    An alternative method for determining the odd–even effect parameter related to special features of the Casimir operator in Wigner’s mass formula for nuclei is proposed. A procedure for calculating this parameter is presented. The proposed method relies on a geometric interpretation of the Casimir operator, experimental data concerning the contribution of spin–orbit interaction to the nuclear mass for even–even and odd–odd nuclei, and systematics of energy gaps in the spectra of excited states of even–even nuclei.

  1. Dissociation of {sup 10}C nuclei in a track nuclear emulsion at an energy of 1.2 GeV per nucleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamatkulov, K. Z.; Kattabekov, R. R.; Alikulov, S. S.

    2013-10-15

    The charge topology in the fragmentation of {sup 10}C nuclei in a track nuclear emulsion at an energy of 1.2 GeV per nucleon is studied. In the coherent dissociation of {sup 10}C nuclei, about 82% of events are associated with the channel {sup 10}C {yields} 2{alpha}+ 2p. The angular distributions and correlations of product fragments are presented for this channel. It is found that among {sup 10}C {yields} 2{alpha}+ 2p events, about 30% are associated with the process in which dissociation through the ground state of the unstable {sup 9}Be{sub g.s.} nucleus is followed by {sup 8}Be{sub g.s.} + pmore » decays.« less

  2. New Horizon in Nuclear Physics and Astrophysics Using Radioactive Nuclear Beams

    NASA Astrophysics Data System (ADS)

    Tanihata, Isao

    Beams of β- radioactive nuclei, having a lifetime as short as 1 ms have been used for studies of the nuclear structure and reaction relevant to nucleosynthesis in the universe. In nuclear-structure studies, decoupling of the proton and neutron distributions in nuclei has been discovered. The decoupling appeared as neutron halos and neutron skins on the surface of neutron-rich unstable nuclei. In astrophysics, reaction cross sections have been determined for many key reactions of nucleosynthesis involving short-lived nuclei in the initial and final states. One such important reaction, 13N+p → 14O +γ, has been studied using beams of unstable 13N nuclei. Such studies became possible after the invention of beams of radioactive nuclei in the mid-80's. Before that, the available ion beams were restricted to ions of stable nuclei for obvious reasons. In the next section the production method of radioactive beams is presented, then a few selected studies using radioactive beams are discussed in the following sections. In the last section, some useful properties of radioactive nuclei for other applications is shown.

  3. Identification of a nuclear-localized nuclease from wheat cells undergoing programmed cell death that is able to trigger DNA fragmentation and apoptotic morphology on nuclei from human cells

    PubMed Central

    Domínguez, Fernando; Cejudo, Francisco J.

    2006-01-01

    PCD (programmed cell death) in plants presents important morphological and biochemical differences compared with apoptosis in animal cells. This raises the question of whether PCD arose independently or from a common ancestor in plants and animals. In the present study we describe a cell-free system, using wheat grain nucellar cells undergoing PCD, to analyse nucleus dismantling, the final stage of PCD. We have identified a Ca2+/Mg2+ nuclease and a serine protease localized to the nucleus of dying nucellar cells. Nuclear extracts from nucellar cells undergoing PCD triggered DNA fragmentation and other apoptotic morphology in nuclei from different plant tissues. Inhibition of the serine protease did not affect DNA laddering. Furthermore, we show that the nuclear extracts from plant cells triggered DNA fragmentation and apoptotic morphology in nuclei from human cells. The inhibition of the nucleolytic activity with Zn2+ or EDTA blocked the morphological changes of the nucleus. Moreover, nuclear extracts from apoptotic human cells triggered DNA fragmentation and apoptotic morphology in nuclei from plant cells. These results show that degradation of the nucleus is morphologically and biochemically similar in plant and animal cells. The implication of this finding on the origin of PCD in plants and animals is discussed. PMID:16613587

  4. Probing superfast quarks in nuclei through dijet production at the LHC

    DOE PAGES

    Freese, Adam J.; Sargsian, Misak M.; Strikman, Mark I.

    2015-11-12

    We investigate dijet production from proton-nucleus collisions at the Large Hadron Collider (LHC) as a means for observing superfast quarks in nuclei with Bjorken x>1 . Kinematically, superfast quarks can be identified through directly measurable jet kinematics. Dynamically, their description requires understanding several elusive properties of nuclear QCD, such as nuclear forces at very short distances, as well as medium modification of parton distributions in nuclei. In the present work, we develop a model for nuclear parton distributions at large x in which the nuclear dynamics at short distance scales are described by two- and three-nucleon short range correlations (SRCs).more » Nuclear modifications are accounted for using the color screening model, and an improved description of the EMC effect is reached by using a structure function parametrization that includes higher-twist contributions. We apply QCD evolution at the leading order to obtain nuclear parton distributions in the kinematic regime of the LHC, and based on the obtained distributions calculate the cross section for dijet production. We find that the rates of the dijet production in pA collisions at kinematics accessible by ATLAS and CMS are sufficient not only to observe superfast quarks but also to get information about the practically unexplored three-nucleon SRCs in nuclei. Additionally, the LHC can extend our knowledge of the EMC effect to large Q 2 where higher-twist effects are negligible.« less

  5. Probing superfast quarks in nuclei through dijet production at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freese, Adam J.; Sargsian, Misak M.; Strikman, Mark I.

    2015-11-01

    We investigate dijet production from proton-nucleus collisions at the Large Hadron Collider (LHC) as a means for observing superfast quarks in nuclei with Bjorken x>1 . Kinematically, superfast quarks can be identified through directly measurable jet kinematics. Dynamically, their description requires understanding several elusive properties of nuclear QCD, such as nuclear forces at very short distances, as well as medium modification of parton distributions in nuclei. In the present work, we develop a model for nuclear parton distributions at large x in which the nuclear dynamics at short distance scales are described by two- and three-nucleon short range correlations (SRCs).more » Nuclear modifications are accounted for using the color screening model, and an improved description of the EMC effect is reached by using a structure function parametrization that includes higher-twist contributions. We apply QCD evolution at the leading order to obtain nuclear parton distributions in the kinematic regime of the LHC, and based on the obtained distributions calculate the cross section for dijet production. We find that the rates of the dijet production in pA collisions at kinematics accessible by ATLAS and CMS are sufficient not only to observe superfast quarks but also to get information about the practically unexplored three-nucleon SRCs in nuclei. Additionally, the LHC can extend our knowledge of the EMC effect to large Q2 where higher-twist effects are negligible.« less

  6. [Properties and localization of Mg- and Ca-ATpase activities in wheat embryo cell nuclei].

    PubMed

    Vasil'eva, N A; Belkina, G G; Stepanenko, S Y; Atalykova, F I; Oparin, A I

    1978-05-01

    The isolated nuclei of wheat embryo possess the ATPase activity. The addition of Mg2+ and Ca2+ significantly increases the activities of nuclear ATPases, whereas Hg2+, Cu2+ and Mn2+ inhibit the activity. The activating effect of Mg2+ is enhanced by an addition of Na and K ions. The activity of wheat embryo nuclear Mg-ATPase is higher than its Ca-ATPase activity; both ATPases also differ in their pH optima. Separation of total nuclear protein according to the solubility of its individual protein components in wheat and strong salt solutions, using the detergents, as well as ammonium sulfate precipitation and dialysis do not result in separation of Mg-activated and Ca-activated ATPases, although their levels of activities and ratios change in the course of fractionation. The Mg- and Ca-ATPase activities of the wheat embryo nuclei were found in the nuclear fraction of albumin, in nonhistone proteins and nuclear membranes. In the albumin nuclear fraction and subfractions of non-histone proteins the higher level of activity is observed in Ca-ATPase, whereas in the nuclei and soluble fractions of residual proteins in Mg-ATPase.

  7. Isolation of the constitutive heterochromatin from mouse liver nuclei.

    PubMed

    Zatsepina, Olga V; Zharskaya, Oxana O; Prusov, Andrei N

    2008-01-01

    A method for isolation of constitutive heterochromatin (chromocenters) from nuclei of mouse liver cells is described. This method is based on the higher resistance of chromocenters to low ionic strength treatment as compared with that of nucleoli and euchromatin. The method allows separation of chromocenters that are essentially free of nucleoli and other nuclear contaminants. In contrast to nuclei and nucleoli, isolated chromocenters are characterized by a simpler protein composition and contain a smaller number of proteins (especially of high molecular weight proteins). They possess telomeric DNA and telomerase activity that suggests a tight association of chromocenters with the telomerase complex in mouse hepatocyte nuclei.

  8. Role of nuclear energy to a future society of shortage of energy resources and global warming

    NASA Astrophysics Data System (ADS)

    Saito, Shinzo

    2010-03-01

    Human society entered into the society of large energy consumption since the industrial revolution and consumes more than 10 billion tons of oil equivalent energy a year in the world in the present time, in which over 80% is provided by fossil fuels such as coal, oil and natural gas. Total energy consumption is foreseen to increase year by year from now on due to significant economical and population growth in the developing countries such as China and India. However, fossil fuel resources are limited with conventional crude oil estimated to last about 40 years, and it is said that the peak oil production time has come now. On the other hand, global warming due to green house gases (GHG) emissions, especially carbon dioxide, has become a serious issue. Nuclear energy plays an important role as means to resolve energy security and global warming issues. Four hundred twenty-nine nuclear power plants are operating world widely producing 16% of the total electric power with total plant capacity of 386 GWe without emission of CO 2 as of 2006. It is estimated that another 250 GWe nuclear power is needed to keep the same level contribution of electricity generation in 2030. On the other hand, the Japan Atomic Energy Research Institute (JAERI) developed the very high temperature gas-cooled reactor (HTGR) named high temperature gas-cooled engineering test reactor (HTTR) and carbon free hydrogen production process (IS process). Nuclear energy utilization will surely widen in, not only electricity generation, but also various industries such as steel making, chemical industries, together with hydrogen production for transportation by introduction of HTGRs. The details of development of the HTTR and IS process are also described.

  9. Investigation of the structure of light exotic nuclei by proton elastic scattering in inverse kinematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alkhazov, G. D.; Vorobyov, A. A.; Dobrovolsky, A. V., E-mail: dobrov@pnpi.spb.ru

    2015-05-15

    In order to study the spatial structure of exotic nuclei, it was proposed at the Petersburg Nuclear Physics Institute (PNPI) to measure the differential cross section for small-angle proton elastic scattering in inverse kinematics. Several experiments in beams of 0.7-GeV/nucleon exotic nuclei were performed at the heavy-ion accelerator facility of GSI (Gesellschaft für Schwerionenforschung, Darmstadt, Germany) by using the IKAR ionization spectrometer developed at PNPI. The IKAR ionization chamber filled with hydrogen at a pressure of 10 bar served simultaneously as a target and as a recoil-proton detector, which measured the recoil-proton energy. The beam-particle scattering angle was also measured.more » The results obtained for the cross sections in question were analyzed on the basis of the Glauber-Sitenko theory using phenomenological nuclear-density distributions with two free parameters. Nuclear-matter distributions and root-mean-square radii were found for the nuclei under investigation. The size of the halo in the {sup 6}He, {sup 8}He, {sup 11}Li, and {sup 14}Be nuclei was determined among other things. Information about neutron distributions in nuclei was deduced by combining the data obtained here with the known values of the radii of proton distributions. A sizable neutron skin was revealed in the {sup 8}Li, {sup 9}Li, and {sup 12}Be nuclei.« less

  10. FUSTIPEN—the France-U.S. Theory Institute for Physics with Exotic Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papenbrock, Thomas

    FUSTIPEN, the France-U.S. Theory Institute for Physics with Exotic Nuclei, was an international venue for theoretical research on the physics of nuclei during an era of particularly active experimental investigations of rare isotopes, see http://fustipen.ganil.fr/. It was dedicated to collaborative research between U.S.-based and French nuclear physicists, drawing on the complementary expertise in the two countries. The grant provided travel and local support for visits by U.S. nuclear physicists to GANIL, where the FUSTIPEN offices are located, and also supported collateral travel to other French research institutions.

  11. STORMVEX. Ice Nuclei and Cloud Condensation Nuclei Characterization Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cziczo, D.

    2016-03-01

    The relationship between aerosol particles and the formation of clouds is among the most uncertain aspects in our current understanding of climate change. Warm clouds have been the most extensively studied, in large part because they are normally close to the Earth’s surface and only contain large concentrations of liquid droplets. Ice and mixed-phase clouds have been less studied even though they have extensive global coverage and dominate precipitation formation. Because they require low temperatures to form, both cloud types are infrequently found at ground level, resulting in more difficult field studies. Complex mixtures of liquid and ice elements, normallymore » at much lower concentrations than found in warm clouds, require precise separation techniques and accurate identification of phase. Because they have proved so difficult to study, the climatic impact of ice-containing clouds remains unresolved. In this study, cloud condensation nuclei (CCN) concentrations and associated single particles’ composition and size were measured at a high-elevation research site—Storm Peak Lab, east of Steamboat Springs, Colorado, operated by the Desert Research Institute. Detailed composition analyses were presented to compare CCN activation with single-particle composition. In collaboration with the scientists of the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), our goal was to relate these findings to the cloud characteristics and the effect of anthropogenic activities.« less

  12. Magnesium and Calcium in Isolated Cell Nuclei

    PubMed Central

    Naora, H.; Naora, H.; Mirsky, A. E.; Allfrey, V. G.

    1961-01-01

    The calcium and magnesium contents of thymus nuclei have been determined and the nuclear sites of attachment of these two elements have been studied. The nuclei used for these purposes were isolated in non-aqueous media and in sucrose solutions. Non-aqueous nuclei contain 0.024 per cent calcium and 0.115 per cent magnesium. Calcium and magnesium are held at different sites. The greater part of the magnesium is bound to DNA, probably to its phosphate groups. Evidence is presented that the magnesium atoms combined with the phosphate groups of DNA are also attached to mononucleotides. There is reason to believe that those DNA-phosphate groups to which magnesium is bound, less than 1/10th of the total, are metabolically active, while those to which histones are attached seem to be inactive. PMID:13727745

  13. Experimental data on ground- and excited-state properties for all nuclei with mass number A=144 have been compiled and evaluated. States populated in radioactive decay as well as in nuclear reactions have been considered. For these nuclei, level and decay schemes have been built, as well as tables of nuclear properties. This work supersedes the 1989 evaluation by J.K. Tuli (1989Tu02). Manuscripts published before December 2000 have been included in this work

    NASA Astrophysics Data System (ADS)

    Sonzogni, A. A.

    2001-07-01

    Experimental data on ground- and excited-state properties for all nuclei with mass number A = 144 have been compiled and evaluated. States populated in radioactive decay as well as in nuclear reactions have been considered. For these nuclei, level and decay schemes have been built, as well as tables of nuclear properties. This work supersedes the 1989 evaluation by J.K. Tuli (1989Tu02). Manuscripts published before December 2000 have been included in this work.

  14. ISOLATION OF SKELETAL MUSCLE NUCLEI

    PubMed Central

    Edelman, Jean C.; Edelman, P. Michael; Knigge, Karl M.; Schwartz, Irving L.

    1965-01-01

    A method employing aqueous media for isolation of nuclei from rat skeletal muscle is described. The technique involves (a) mincing and then homogenizing in a 0.32 M sucrose-salt solution with a Potter-Elvehjem type homogenizer using a Delrin (an acetal resin) pestle and a carefully controlled, relatively large pestle-to-glass clearance, (b) filtering through fiberglass and stainless steel screens of predetermined mesh size to remove myofibrils and connective tissue, and (c) centrifuging in a 2.15 M sucrose-salt solution containing 0.7 mM ATP. Electron and phase-contrast microscopic observations show that the nuclei are intact, unencumbered by cytoplasmic tags, and possess well preserved distinct nucleoli, nucleoplasm, and nuclear membranes. Cytoplasmic contamination is minimal and mainly mitochondrial. Chemical assays of the nuclear fraction show that the DNA/protein and RNA/DNA ratios are comparable to those obtained in other tissues. These ratios, as well as the low specific activity obtained for cytochrome c oxidase and the virtual absence of myofibrillar ATPase, indicate a high degree of purity with minimal mitochondrial and myofibrillar contamination. The steps comprising the technique and the reasons for their selection are discussed. PMID:4287141

  15. Nuclear spectroscopy of r-process nuclei around N = 126 using KISS

    NASA Astrophysics Data System (ADS)

    Hirayama, Y.; Watanabe, Y. X.; Miyatake, H.; Schury, P.; Wada, M.; Oyaizu, M.; Kakiguchi, Y.; Mukai, M.; Kimura, S.; Ahmed, M.; Jeong, S. C.; Moon, J. Y.; Park, J. H.

    2017-09-01

    The beta-decay properties and atomic mass of nuclei with neutron magic number of N = 126 are considered critical for understanding the production of heavy elements such as gold and platinum at astrophysical sites. We will produce and measure the half-lives and masses of the nuclei with Z = 74-77 around N = 126 by using the multinucleon transfer (MNT) reaction of ^{136} Xe/ ^{238} U beams and ^{198} Pt target system. For this purpose, we have constructed the KEK Isotope Separation System (KISS) at RIKEN RIBF facility. KISS consists of an argon gas cell based laser ion source (atomic number selection) and an isotope separation on-line (ISOL) (mass number selection), to produce pure low-energy beams of neutron-rich isotopes around N = 126 . We performed the on-line tests to study the basic properties of the KISS and, successfully extracted laser-ionized nuclei around N = 126.

  16. The tethering of chromatin to the nuclear envelope supports nuclear mechanics

    PubMed Central

    Schreiner, Sarah M.; Koo, Peter K.; Zhao, Yao; Mochrie, Simon G. J.; King, Megan C.

    2015-01-01

    The nuclear lamina is thought to be the primary mechanical defence of the nucleus. However, the lamina is integrated within a network of lipids, proteins and chromatin; the interdependence of this network poses a challenge to defining the individual mechanical contributions of these components. Here, we isolate the role of chromatin in nuclear mechanics by using a system lacking lamins. Using novel imaging analyses, we observe that untethering chromatin from the inner nuclear membrane results in highly deformable nuclei in vivo, particularly in response to cytoskeletal forces. Using optical tweezers, we find that isolated nuclei lacking inner nuclear membrane tethers are less stiff than wild-type nuclei and exhibit increased chromatin flow, particularly in frequency ranges that recapitulate the kinetics of cytoskeletal dynamics. We suggest that modulating chromatin flow can define both transient and long-lived changes in nuclear shape that are biologically important and may be altered in disease. PMID:26074052

  17. Finite Nuclei in the Quark-Meson Coupling Model.

    PubMed

    Stone, J R; Guichon, P A M; Reinhard, P G; Thomas, A W

    2016-03-04

    We report the first use of the effective quark-meson coupling (QMC) energy density functional (EDF), derived from a quark model of hadron structure, to study a broad range of ground state properties of even-even nuclei across the periodic table in the nonrelativistic Hartree-Fock+BCS framework. The novelty of the QMC model is that the nuclear medium effects are treated through modification of the internal structure of the nucleon. The density dependence is microscopically derived and the spin-orbit term arises naturally. The QMC EDF depends on a single set of four adjustable parameters having a clear physics basis. When applied to diverse ground state data the QMC EDF already produces, in its present simple form, overall agreement with experiment of a quality comparable to a representative Skyrme EDF. There exist, however, multiple Skyrme parameter sets, frequently tailored to describe selected nuclear phenomena. The QMC EDF set of fewer parameters, derived in this work, is not open to such variation, chosen set being applied, without adjustment, to both the properties of finite nuclei and nuclear matter.

  18. Enhancing NMR of insensitive nuclei by transfer of SABRE spin hyperpolarization

    NASA Astrophysics Data System (ADS)

    Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Zimmermann, Herbert; Vieth, Hans-Martin; Ivanov, Konstantin L.

    2016-09-01

    We describe the performance of methods for enhancing NMR (Nuclear Magnetic Resonance) signals of "insensitive", but important NMR nuclei, which are based on the SABRE (Signal Amplification By Reversible Exchange) technique, i.e., on spin order transfer from parahydrogen (H2 molecule in its nuclear singlet spin state) to a substrate in a transient organometallic complex. Here such transfer is performed at high magnetic fields by INEPT-type NMR pulse sequences, modified for SABRE. Signal enhancements up to three orders of magnitude are obtained for 15N nuclei; the possibility of sensitive detection of 2D-NMR 1H-15N spectra of SABRE complexes and substrates is demonstrated.

  19. Effect of Long-Term Exposure of Donor Nuclei to the Oocyte Cytoplasm on Production of Cloned Mice Using Serial Nuclear Transfer.

    PubMed

    Wakayama, Sayaka; Tanabe, Yoshiaki; Nagatomo, Hiroaki; Mizutani, Eiji; Kishigami, Satoshi; Wakayama, Teruhiko

    2016-11-01

    Although animal cloning is becoming increasingly practicable, cloned embryos possess many abnormalities and so there has been a low success rate for producing live animals. This is most likely due to incomplete reprogramming of somatic cell nuclei before they start to develop as the donor nuclei are usually only exposed to the oocyte cytoplasm for 1-2 hours before reconstructed oocytes are activated to avoid oocyte aging. Therefore, in this study, we attempted to extend the exposure period of somatic cell nuclei to the oocyte cytoplasm to determine whether this could enhance reprogramming of donor nuclei. Donor nuclei were transferred into oocytes, following which pseudo-MII spindles (pMIIs) derived from these were extracted and injected into newly collected enucleated oocytes 24 hours after the first nuclear transfer (NT). These serial NT oocytes were then activated and their developmental potential was examined to full term. There was no obvious difference in the pMIIs of reconstructed oocytes at 6 and 24 hours after donor nucleus injection; however, in both of these, the chromosomes were more widely spread inside the spindle than in fresh intact oocytes. Furthermore, a few chromosomes remained in 25% and 47% of these enucleated oocytes at 6 and 24 hours after donor nucleus injection, respectively. When these pMIIs were injected into fresh enucleated oocytes, the developmental rate to blastocyst was significantly lower, but we could still obtain several healthy cloned offspring. Thus, serial NT at intervals of 24 hours using fresh oocytes is possible, but the success rate could not be improved due to loss of chromosomes during the second NT.

  20. Quantum Monte Carlo methods for nuclear physics

    DOE PAGES

    Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; ...

    2014-10-19

    Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-bodymore » interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less

  1. Nucleon Isovector Pairing in Nuclei: Microscopic Approach, Boson Representation, and Collective Model

    NASA Astrophysics Data System (ADS)

    Jolos, R. V.; Kartavenko, V. G.; Kolganova, E. A.

    2018-03-01

    Nucleon pair correlations in atomic nuclei are analyzed within a nuclear microscopic model with residual isovector pairing forces. These are formulated in the boson representation of fermion operators whereby the collective mode of pair excitations can be isolated without restricting the size of the one-particle basis. This method allows one to analyze the fluctuations in the nonsuperfluid phase of nuclear matter, its phase transition to the superfluid phase, and strong pair correlations. The performance of the method is exemplified by numerical results for the nuclei in the vicinity of the doubly magic 56Ni nucleus.

  2. Nuclear envelope: positioning nuclei and organizing synapses

    PubMed Central

    Razafsky, David; Hodzic, Didier

    2015-01-01

    The nuclear envelope plays an essential role in nuclear positioning within cells and tissues. This review highlights advances in understanding the mechanisms of nuclear positioning during skeletal muscle and central nervous system development. New findings, particularly about Atype lamins and Nesprin1, may link nuclear envelope integrity to synaptic integrity. Thus synaptic defects, rather than nuclear mispositioning, may underlie human pathologies associated with mutations of nuclear envelope proteins. PMID:26079712

  3. Warm Absorber Diagnostics of AGN Dynamics

    NASA Astrophysics Data System (ADS)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  4. Pocket formula for nuclear deformations of actinides

    NASA Astrophysics Data System (ADS)

    Manjunatha, H. C.; Sridhar, K. N.

    2018-06-01

    We have formulated a pocket formula for quadrupole (β2), octupole (β3), hexadecapole (β4) and hexacontatetrapole (β6) deformation of the nuclear ground state of all isotopes of actinide nuclei (89 < Z < 103). This formula is first of its kind and produces a nuclear deformation of all isotopes actinide nuclei 89 < Z < 103 with simple inputs of Z and A. Hence, this formula is useful in the fields of nuclear physics to study the structure and interaction of nuclei.

  5. Study of hot thermally fissile nuclei using relativistic mean field theory

    NASA Astrophysics Data System (ADS)

    Quddus, Abdul; Naik, K. C.; Patra, S. K.

    2018-07-01

    We have studied the properties of hot 234,236U and 240Pu nuclei in the framework of relativistic mean field formalism. The recently developed FSUGarnet and IOPB-I parameter sets are implemented for the first time to deform nuclei at finite temperature. The results are compared with the well known NL3 set. The said isotopes are structurally important because of the thermally fissile nature of 233,235U and 239Pu as these nuclei (234,236U and 240Pu) are formed after the absorption of a thermal neutron, which undergoes fission. Here, we have evaluated the nuclear properties, such as shell correction energy, neutron-skin thickness, quadrupole and hexadecapole deformation parameters and asymmetry energy coefficient for these nuclei as a function of temperature.

  6. Investigating the spectral characteristics of backscattering from heterogeneous spherical nuclei using broadband finite-difference time-domain simulations

    NASA Astrophysics Data System (ADS)

    Chao, Guo-Shan; Sung, Kung-Bin

    2010-01-01

    Reflectance spectra measured from epithelial tissue have been used to extract size distribution and refractive index of cell nuclei for noninvasive detection of precancerous changes. Despite many in vitro and in vivo experimental results, the underlying mechanism of sizing nuclei based on modeling nuclei as homogeneous spheres and fitting the measured data with Mie theory has not been fully explored. We describe the implementation of a three-dimensional finite-difference time-domain (FDTD) simulation tool using a Gaussian pulse as the light source to investigate the wavelength-dependent characteristics of backscattered light from a nuclear model consisting of a nucleolus and clumps of chromatin embedded in homogeneous nucleoplasm. The results show that small-sized heterogeneities within the nuclei generate about five times higher backscattering than homogeneous spheres. More interestingly, backscattering spectra from heterogeneous spherical nuclei show periodic oscillations similar to those from homogeneous spheres, leading to high accuracy of estimating the nuclear diameter by comparison with Mie theory. In addition to the application in light scattering spectroscopy, the reported FDTD method could be adapted to study the relations between measured spectral data and nuclear structures in other optical imaging and spectroscopic techniques for in vivo diagnosis.

  7. Integrity of chromatin and replicating DNA in nuclei released from fission yeast by semi-automated grinding in liquid nitrogen

    PubMed Central

    2011-01-01

    Background Studies of nuclear function in many organisms, especially those with tough cell walls, are limited by lack of availability of simple, economical methods for large-scale preparation of clean, undamaged nuclei. Findings Here we present a useful method for nuclear isolation from the important model organism, the fission yeast, Schizosaccharomyces pombe. To preserve in vivo molecular configurations, we flash-froze the yeast cells in liquid nitrogen. Then we broke their tough cell walls, without damaging their nuclei, by grinding in a precision-controlled motorized mortar-and-pestle apparatus. The cryo-ground cells were resuspended and thawed in a buffer designed to preserve nuclear morphology, and the nuclei were enriched by differential centrifugation. The washed nuclei were free from contaminating nucleases and have proven well-suited as starting material for genome-wide chromatin analysis and for preparation of fragile DNA replication intermediates. Conclusions We have developed a simple, reproducible, economical procedure for large-scale preparation of endogenous-nuclease-free, morphologically intact nuclei from fission yeast. With appropriate modifications, this procedure may well prove useful for isolation of nuclei from other organisms with, or without, tough cell walls. PMID:22088094

  8. Integrity of chromatin and replicating DNA in nuclei released from fission yeast by semi-automated grinding in liquid nitrogen.

    PubMed

    Givens, Robert M; Mesner, Larry D; Hamlin, Joyce L; Buck, Michael J; Huberman, Joel A

    2011-11-16

    Studies of nuclear function in many organisms, especially those with tough cell walls, are limited by lack of availability of simple, economical methods for large-scale preparation of clean, undamaged nuclei. Here we present a useful method for nuclear isolation from the important model organism, the fission yeast, Schizosaccharomyces pombe. To preserve in vivo molecular configurations, we flash-froze the yeast cells in liquid nitrogen. Then we broke their tough cell walls, without damaging their nuclei, by grinding in a precision-controlled motorized mortar-and-pestle apparatus. The cryo-ground cells were resuspended and thawed in a buffer designed to preserve nuclear morphology, and the nuclei were enriched by differential centrifugation. The washed nuclei were free from contaminating nucleases and have proven well-suited as starting material for genome-wide chromatin analysis and for preparation of fragile DNA replication intermediates. We have developed a simple, reproducible, economical procedure for large-scale preparation of endogenous-nuclease-free, morphologically intact nuclei from fission yeast. With appropriate modifications, this procedure may well prove useful for isolation of nuclei from other organisms with, or without, tough cell walls.

  9. Influence of the Pauli exclusion principle and the polarization of nuclei on the nuclear part of the interaction potential in the 40Ca +40Ca system

    NASA Astrophysics Data System (ADS)

    Nesterov, V. O.

    2018-06-01

    In the framework of the energy density method with the use of the wave function of the two-center shell model, the influence of the simultaneous account for the Pauli exclusion principle and the monopole and quadrupole polarizations of nuclei on the nuclear part of the potential of their interaction by the example of the 40Ca +40Ca system is considered. The calculations performed in the framework of the adiabatic approximation show that the consideration of the Pauli exclusion principle and the polarization of nuclei, especially the quadrupole one, essentially affects the nucleus-nucleus interaction potential.

  10. Theoretical investigation of α -like quasimolecules in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Delion, D. S.; Dumitrescu, A.; Baran, V. V.

    2018-06-01

    Quasimolecular α -like ground rotational bands were evidenced a long time ago in light nuclei, but they cannot be detected in heavy nuclei due to large Coulomb barriers. In order to search for rotational bands built on excited states in these nuclei, we investigate the shape of an α -nucleus quasimolecular potential matched to a realistic external α -daughter interaction by using as input data α -decay widths. It turns out that its Gaussian length parameter lies in a narrow interval, b0∈[0.6 ,0.8 ] fm, and the equilibrium radius is slightly larger than the predicted Mott transition point from nucleonic to the α -cluster phase in finite nuclei, confirming that α clusters are born on the nuclear surface at low densities. We point out that the α emitters above magic nuclei have the largest spectroscopic factors Sα˜10 % . In addition, we predict that for nuclei with b0>0.75 fm, the first excited vibrational resonant state in the quasimolecular potential is close to the Coulomb barrier and therefore the rotational band built on it can be evidenced by the structure of the α -scattering cross section versus energy. Moreover, its detection by a highly sensitive γ -ray beam produced by laser facilities would provide an additional proof for the existence of α molecules in heavy nuclei.

  11. Octupole deformation in neutron-rich actinides and superheavy nuclei and the role of nodal structure of single-particle wavefunctions in extremely deformed structures of light nuclei

    NASA Astrophysics Data System (ADS)

    Afanasjev, A. V.; Abusara, H.; Agbemava, S. E.

    2018-03-01

    Octupole deformed shapes in neutron-rich actinides and superheavy nuclei as well as extremely deformed shapes of the N∼ Z light nuclei have been investigated within the framework of covariant density functional theory. We confirmed the presence of new region of octupole deformation in neutron-rich actinides with the center around Z∼ 96,N∼ 196 but our calculations do not predict octupole deformation in the ground states of superheavy Z≥slant 108 nuclei. As exemplified by the study of 36Ar, the nodal structure of the wavefunction of occupied single-particle orbitals in extremely deformed structures allows to understand the formation of the α-clusters in very light nuclei, the suppression of the α-clusterization with the increase of mass number, the formation of ellipsoidal mean-field type structures and nuclear molecules.

  12. Charge topology of the coherent dissociation of relativistic 11C and 12N nuclei

    NASA Astrophysics Data System (ADS)

    Artemenkov, D. A.; Bradnova, V.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.; Kattabekov, R. R.; Kornegrutsa, N. K.; Mamatkulov, K. Z.; Rukoyatkin, P. A.; Rusakova, V. V.; Stanoeva, R.

    2015-09-01

    The charge topology of coherent-dissociation events is presented for 11С and 12N nuclei of energy 1.2 GeV per nucleon bombarding nuclear track emulsions. This topology is compared with respective data for 7Be, 8,10B, 9,10C, and 14N nuclei.

  13. Binding energies and modelling of nuclei in semiclassical simulations

    NASA Astrophysics Data System (ADS)

    Pérez-García, M. Ángeles; Tsushima, K.; Valcarce, A.

    2008-03-01

    We study the binding energies of spin isospin saturated nuclei with nucleon number 8⩽A⩽100 in semiclassical Monte Carlo many-body simulations. The model Hamiltonian consists of (i) nucleon kinetic energy, (ii) a nucleon nucleon interaction potential, and (iii) an effective Pauli potential which depends on density. The basic ingredients of the nucleon nucleon potential are a short-range repulsion, and a medium-range attraction. Our results demonstrate that one can always expect to obtain the empirical binding energies for a set of nuclei by introducing a proper density dependent Pauli potential in terms of a single variable, the nucleon number, A. The present work shows that in the suggested procedure there is a delicate counterbalance of kinetic and potential energetic contributions allowing a good reproduction of the experimental nuclear binding energies. This type of calculations may be of interest in further reproduction of other properties of nuclei such as radii and also exotic nuclei.

  14. Discovery of Associated Absorption Lines in an X-Ray Warm Absorber: Hubble Space Telescope Faint Object Spectrograph Observations of MR 2251-178

    NASA Technical Reports Server (NTRS)

    Monier, Eric M.; Mathur, Smita; Wilkes, Belinda; Elvis, Martin

    2001-01-01

    The presence of a 'warm absorber' was first suggested to explain spectral variability in an X-ray spectrum of the radio-quiet quasi-stellar object (QSO) MR 2251-178. A unified picture, in which X-ray warm absorbers and 'intrinsic' UV absorbers are the same, offers the opportunity to probe the nuclear environment of active galactic nuclei. To test this scenario and understand the physical properties of the absorber, we obtained a UV spectrum of MR 2251-178 with the Faint Object Spectrograph on board the Hubble Space Telescope (HST). The HST spectrum clearly shows absorption due to Lyalpha, N v, and C IV, blueshifted by 300 km s(exp -1) from the emission redshift of the QSO. The rarity of both X-ray and UV absorbers in radio-quiet QSOs suggests these absorbers are physically related, if not identical. Assuming the unified scenario, we place constraints on the physical parameters of the absorber and conclude the mass outflow rate is essentially the same as the accretion rate in MR 2251-178.

  15. Geomagnetically trapped carbon, nitrogen, and oxygen nuclei.

    NASA Technical Reports Server (NTRS)

    Mogro-Campero, A.

    1972-01-01

    Results of measurements carried out with the University of Chicago nuclear composition telescope on the Ogo 5 satellite, establishing the presence of 13- to 33-MeV/nucleon geomagnetically trapped C and O nuclei, with some evidence for N nuclei. These trapped nuclei were found at L less than or equal to 5 and near the geomagnetic equator. The data cover the period from Mar. 3, 1968, to Dec. 31, 1969. The distribution of CNO flux as a function of L is given. No change in the intensity of the average trapped CNO flux was detected by comparing data for 1968 and 1969. The results reported set a new value for the observed high energy limit of trapping as described by the critical adiabaticity parameter. The penetration of solar flare CNO up to L = 4 was observed twice in 1968, in disagreement with Stormer theory predictions. The effects of these results on some models for the origin of the trapped radiation are discussed.

  16. Towards automated segmentation of cells and cell nuclei in nonlinear optical microscopy.

    PubMed

    Medyukhina, Anna; Meyer, Tobias; Schmitt, Michael; Romeike, Bernd F M; Dietzek, Benjamin; Popp, Jürgen

    2012-11-01

    Nonlinear optical (NLO) imaging techniques based e.g. on coherent anti-Stokes Raman scattering (CARS) or two photon excited fluorescence (TPEF) show great potential for biomedical imaging. In order to facilitate the diagnostic process based on NLO imaging, there is need for an automated calculation of quantitative values such as cell density, nucleus-to-cytoplasm ratio, average nuclear size. Extraction of these parameters is helpful for the histological assessment in general and specifically e.g. for the determination of tumor grades. This requires an accurate image segmentation and detection of locations and boundaries of cells and nuclei. Here we present an image processing approach for the detection of nuclei and cells in co-registered TPEF and CARS images. The algorithm developed utilizes the gray-scale information for the detection of the nuclei locations and the gradient information for the delineation of the nuclear and cellular boundaries. The approach reported is capable for an automated segmentation of cells and nuclei in multimodal TPEF-CARS images of human brain tumor samples. The results are important for the development of NLO microscopy into a clinically relevant diagnostic tool. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Emergent properties of nuclei from ab initio coupled-cluster calculations

    NASA Astrophysics Data System (ADS)

    Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.; Papenbrock, T.

    2016-06-01

    Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. This endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. This paper reviews some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO{}{{sat}} is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon-nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. The coupling to the continuum impacts the energies of the {J}π =1/{2}-,3/{2}-,7/{2}-,3/{2}+ states in {}{17,23,25}O, and—contrary to naive shell-model expectations—the level ordering of the {J}π =3/{2}+,5/{2}+,9/{2}+ states in {}{53,55,61}Ca. ).

  18. Quantum Monte Carlo methods for nuclear physics

    DOE PAGES

    Carlson, J.; Gandolfi, S.; Pederiva, F.; ...

    2015-09-09

    Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit,more » and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less

  19. Aphidicolin-induced nuclear elongation in tobacco BY-2 cells.

    PubMed

    Yasuhara, Hiroki; Kitamoto, Kazuki

    2014-05-01

    Plant nuclei are known to differentiate into various shapes within a single plant. However, little is known about the mechanisms of nuclear morphogenesis. We found that nuclei of tobacco BY-2 cells were highly elongated on long-term treatment with 5 mg l⁻¹ aphidicolin, an inhibitor of DNA polymerase α. In aphidicolin-treated cells, the nuclear length was correlated with the cell length. During culture in the presence of aphidicolin, the nuclei were elongated in parallel with cell elongation. Nuclear elongation was inhibited by the inhibition of cell elongation with 2,6-dichlorobenzonitrile, a cellulose synthesis inhibitor. However, cell elongation induced in the auxin-depleted medium in the absence of aphidicolin did not cause nuclear elongation, indicating that cell elongation alone is not sufficient for nuclear elongation. Treatment with either latrunculin B or propyzamide inhibited the aphidicolin-induced nuclear elongation, indicating that both actin filaments and microtubules (MTs) are required for nuclear elongation. Observations using BY-YTHCLR2 cells, in which actin filaments, MTs and nuclei were simultaneously visualized, revealed that the longitudinally arranged MT bundles associated with the nucleus play an important role in nuclear elongation, and that actin filaments affect the formation of these MT bundles. In aphidicolin-treated cells, the nuclear DNA contents of the elongated nuclei exceeded 4C, and the nuclear length was highly correlated with the nuclear DNA content. In cells treated with 50 mg l⁻¹ aphidicolin, cells were elongated and nucleus-associated longitudinal MT bundles were formed, but the nuclear DNA contents did not exceed 4C and the nuclei did not elongate. These results indicate that an increase in the nuclear DNA content above 4C is also required for nuclear elongation.

  20. Quantum simulations of nuclei and nuclear pasta with the multiresolution adaptive numerical environment for scientific simulations

    NASA Astrophysics Data System (ADS)

    Sagert, I.; Fann, G. I.; Fattoyev, F. J.; Postnikov, S.; Horowitz, C. J.

    2016-05-01

    Background: Neutron star and supernova matter at densities just below the nuclear matter saturation density is expected to form a lattice of exotic shapes. These so-called nuclear pasta phases are caused by Coulomb frustration. Their elastic and transport properties are believed to play an important role for thermal and magnetic field evolution, rotation, and oscillation of neutron stars. Furthermore, they can impact neutrino opacities in core-collapse supernovae. Purpose: In this work, we present proof-of-principle three-dimensional (3D) Skyrme Hartree-Fock (SHF) simulations of nuclear pasta with the Multi-resolution ADaptive Numerical Environment for Scientific Simulations (MADNESS). Methods: We perform benchmark studies of 16O, 208Pb, and 238U nuclear ground states and calculate binding energies via 3D SHF simulations. Results are compared with experimentally measured binding energies as well as with theoretically predicted values from an established SHF code. The nuclear pasta simulation is initialized in the so-called waffle geometry as obtained by the Indiana University Molecular Dynamics (IUMD) code. The size of the unit cell is 24 fm with an average density of about ρ =0.05 fm-3 , proton fraction of Yp=0.3 , and temperature of T =0 MeV. Results: Our calculations reproduce the binding energies and shapes of light and heavy nuclei with different geometries. For the pasta simulation, we find that the final geometry is very similar to the initial waffle state. We compare calculations with and without spin-orbit forces. We find that while subtle differences are present, the pasta phase remains in the waffle geometry. Conclusions: Within the MADNESS framework, we can successfully perform calculations of inhomogeneous nuclear matter. By using pasta configurations from IUMD it is possible to explore different geometries and test the impact of self-consistent calculations on the latter.

  1. Predictions of nuclear charge radii

    NASA Astrophysics Data System (ADS)

    Bao, M.; Lu, Y.; Zhao, Y. M.; Arima, A.

    2016-12-01

    The nuclear charge radius is a fundamental property of an atomic nucleus. In this article we study the predictive power of empirical relations for experimental nuclear charge radii of neighboring nuclei and predict the unknown charge radii of 1085 nuclei based on the experimental CR2013 database within an uncertainty of 0.03 fm.

  2. The Structure of 34Mg Nuclei

    NASA Astrophysics Data System (ADS)

    Luna, Benjamin

    2017-09-01

    In the chart of nuclei below the beta-stability line, there are regions called islands of inversion where nuclei are expected have a spherical ground state, but it has been determined that these nuclei have a deformed ground state. This project was part of an ongoing investigation with the goal of obtaining new information about 34Mg and 34Al, which lie near an island of inversion. A beam of 34Mg was sent to the center of an array of plastic scintillators and HPGe detectors to collect data from the isotope's beta decay. This isotope beta decays to 34Al and to 34Si. The analysis softwares ROOT and GRSISort were used to sort the data into analysis trees, from which certain histograms were extracted. These histograms were used to determine an initial list of gamma ray transitions associated with the relatively fast decays of 34Mg and 34Al. Since the efficiencies of gamma ray detection are known, the true number of counts from each transition can be determined. This was done to order the gamma ray transitions into a nuclear level scheme. Future work on this subject will include the analysis of the angular correlations of the transitions found to determine spins of states populated in the 34Al and Si daughter nuclei as well as shedding light on the isomer in 34Al.

  3. Scissors mode of Gd nuclei studied from resonance neutron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroll, J.; Baramsai, B.; Becker, J. A.

    2012-10-20

    Spectra of {gamma} rays following the neutron capture at isolated resonances of stable Gd nuclei were measured. The objectives were to get new information on photon strength of {sup 153,155-159}Gd with emphasis on the role of the M1 scissors-mode vibration. An analysis of the data obtained clearly indicates that the scissors mode is coupled not only to the ground state, but also to all excited levels of the nuclei studied. The specificity of our approach ensures unbiasedness in estimating the sumed scissors-mode strength {Sigma}B(M1){up_arrow}, even for odd product nuclei, for which conventional nuclear resonance fluorescence measurements yield only limited information.more » Our analysis indicates that for these nuclei the sum {Sigma}B(M1){up_arrow} increases with A and for {sup 157,159}Gd it is significantly higher compared to {sup 156,158}Gd.« less

  4. Nuclear exoticism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penionzhkevich, Yu. E., E-mail: pyuer@mail.ru

    2016-07-15

    Extreme states of nuclearmatter (such that feature high spins, large deformations, high density and temperature, or a large excess of neutrons and protons) play an important role in studying fundamental properties of nuclei and are helpful in solving the problem of constructing the equation of state for nuclear matter. The synthesis of neutron-rich nuclei near the nucleon drip lines and investigation of their properties permit drawing conclusions about the positions of these boundaries and deducing information about unusual states of such nuclei and about their decays. At the present time, experimental investigations along these lines can only be performed viamore » the cooperation of leading research centers that possess powerful heavy-ion accelerators, such as the Large Hadron Collider (LHC) at CERN and the heavy-ion cyclotrons at the Joint Institute for Nuclear Research (JINR, Dubna), where respective experiments are being conducted by physicists from about 20 JINR member countries. The present article gives a survey of the most recent results in the realms of super neutron-rich nuclei. Implications of the change in the structure of such nuclei near the nucleon drip lines are discussed. Information about the results obtained by measuring the masses (binding energies) of exotic nuclei, the nucleon-distribution radii (neutron halo) and momentum distributions in them, and their deformations and quantum properties is presented. It is shown that the properties of nuclei lying near the stability boundaries differ strongly from the properties of other nuclei. The problem of the stability of nuclei that is associated with the magic numbers of 20 and 28 is discussed along with the effect of new magic numbers.« less

  5. Replication labeling patterns and chromosome territories typical of mammalian nuclei are conserved in the early metazoan Hydra.

    PubMed

    Alexandrova, Olga; Solovei, Irina; Cremer, Thomas; David, Charles N

    2003-12-01

    To investigate the evolutionary conservation of higher order nuclear architecture previously described for mammalian cells we have analyzed the nuclear architecture of the simple polyp Hydra. These diploblastic organisms have large nuclei (8-10 microm) containing about 3x10(9) bp of DNA organized in 15 chromosome pairs. They belong to the earliest metazoan phylum and are separated from mammals by at least 600 million years. Single and double pulse labeling with halogenated nucleotides (bromodeoxyuridine, iododeoxyuridine and chlorodeoxyuridine) revealed striking similarities to the known sequence of replication labeling patterns in mammalian nuclei. These patterns reflect a persistent nuclear arrangement of early, mid-, and late replicating chromatin foci that could be identified during all stages of interphase over at least 5-10 cell generations. Segregation of labeled chromatids led after several cell divisions to nuclei with single or a few labeled chromosome territories. In such nuclei distinct clusters of labeled chromatin foci were separated by extended nuclear areas with non-labeled chromatin, which is typical of a territorial arrangement of interphase chromosomes. Our results indicate the conservation of fundamental features of higher order chromatin arrangements throughout the evolution of metazoan animals and suggest the existence of conserved mechanism(s) controlling this architecture.

  6. Symmetry Energy and Its Components in Finite Nuclei

    NASA Astrophysics Data System (ADS)

    Antonov, A. N.; Gaidarov, M. K.; Kadrev, D. N.; Sarriguren, P.; Moya de Guerra, E.

    2018-05-01

    We derive the volume and surface components of the nuclear symmetry energy (NSE) and their ratio within the coherent density fluctuation model. The estimations use the results of the model for the NSE in finite nuclei based on the Brueckner and Skyrme energy-density functionals for nuclear matter. The obtained values of the volume and surface contributions to the NSE and their ratio for the Ni, Sn, and Pb isotopic chains are compared with estimations of other approaches which have used available experimental data on binding energies, neutron-skin thicknesses, and excitation energies to isobaric analog states (IAS). Apart from the density dependence investigated in our previous works, we study also the temperature dependence of the symmetry energy in finite nuclei in the framework of the local density approximation combining it with the self-consistent Skyrme-HFB method using the cylindrical transformed deformed harmonic-oscillator basis. The results for the thermal evolution of the NSE in the interval T = 0–4 MeV show that its values decrease with temperature. The investigations of the T-dependence of the neutron and proton root-mean-square radii and the corresponding neutron skin thickness point out that the effect of temperature leads mainly to a substantial increase of the neutron radii and skins, especially in nuclei which are more rich of neutrons.

  7. Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Gambhir, Arjun S.; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Wagman, Michael L.; Winter, Frank; Nplqcd Collaboration

    2018-04-01

    Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion mass mπ˜806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elements of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O (10 %), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.

  8. Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Emmanuel; Davoudi, Zohreh; Detmold, William

    Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion mass m π~806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elementsmore » of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O(10%), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.« less

  9. First lattice QCD study of the gluonic structure of light nuclei

    NASA Astrophysics Data System (ADS)

    Winter, Frank; Detmold, William; Gambhir, Arjun S.; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Wagman, Michael L.; Nplqcd Collaboration

    2017-11-01

    The role of gluons in the structure of the nucleon and light nuclei is investigated using lattice quantum chromodynamics (QCD) calculations. The first moment of the unpolarized gluon distribution is studied in nuclei up to atomic number A =3 at quark masses corresponding to pion masses of mπ˜450 and 806 MeV. Nuclear modification of this quantity defines a gluonic analogue of the EMC effect and is constrained to be less than ˜10 % in these nuclei. This is consistent with expectations from phenomenological quark distributions and the momentum sum rule. In the deuteron, the combination of gluon distributions corresponding to the b1 structure function is found to have a small first moment compared with the corresponding momentum fraction. The first moment of the gluon transversity structure function is also investigated in the spin-1 deuteron, where a nonzero signal is observed at mπ˜806 MeV . This is the first indication of gluon contributions to nuclear structure that can not be associated with an individual nucleon.

  10. Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD

    DOE PAGES

    Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; ...

    2018-04-13

    Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion mass m π~806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elementsmore » of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O(10%), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.« less

  11. First lattice QCD study of the gluonic structure of light nuclei

    DOE PAGES

    Winter, Frank; Detmold, William; Gambhir, Arjun S.; ...

    2017-11-28

    The role of gluons in the structure of the nucleon and light nuclei is investigated using lattice quantum chromodynamics (QCD) calculations. The first moment of the unpolarised gluon distribution is studied in nuclei up to atomic numbermore » $A=3$ at quark masses corresponding to pion masses of $$m_\\pi\\sim 450$$ and $806$ MeV. Nuclear modification of this quantity defines a gluonic analogue of the EMC effect and is constrained to be less than $$\\sim 10$$% in these nuclei. This is consistent with expectations from phenomenological quark distributions and the momentum sum rule. In the deuteron, the combination of gluon distributions corresponding to the $$b_1$$ structure function is found to have a small first moment compared with the corresponding momentum fraction. The first moment of the gluon transversity structure function is also investigated in the spin-1 deuteron, where a non-zero signal is observed at $$m_\\pi \\sim 806$$ MeV. In conclusion, this is the first indication of gluon contributions to nuclear structure that can not be associated with an individual nucleon.« less

  12. Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD.

    PubMed

    Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Gambhir, Arjun S; Orginos, Kostas; Savage, Martin J; Shanahan, Phiala E; Wagman, Michael L; Winter, Frank

    2018-04-13

    Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and ^{3}He at SU(3)-symmetric values of the quark masses corresponding to a pion mass m_{π}∼806  MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elements of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O(10%), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.

  13. Tables of E2 transition probabilities from the first 2 + states in even-even nuclei [B(E2) evaluation for 0 + 1 → 2 + 1 transitions in even-even nuclei

    DOE PAGES

    Pritychenko, B.; Birch, M.; Singh, B.; ...

    2015-11-03

    A complete B(E2)↑ evaluation and compilation for even-even nuclei has been presented. The present paper is a continuation of P.H. Stelson and L. Grodzins, and S. Raman et al. nuclear data evaluations and was motivated by a large number of new measurements. It extends the list of evaluated nuclides from 328 to 452, includes an extended list of nuclear reaction kinematics parameters and comprehensive shell model analysis. Evaluation policies for analysis of experimental data have been discussed and conclusions are given. Moreover, future plans for B(E2)↑ systematics and experimental technique analyses of even-even nuclei are outlined.

  14. Shell model description of heavy nuclei and abnormal collective motions

    NASA Astrophysics Data System (ADS)

    Qi, Chong

    2018-05-01

    In this contribution I present systematic calculations on the spectroscopy and electromagnetic transition properties of intermediate-mass and heavy nuclei around 100Sn and 208Pb. We employed the large-scale configuration interaction shell model approach with realistic interactions. Those nuclei are the longest isotopic chains that can be studied by the nuclear shell model. I will show that the yrast spectra of Te isotopes show a vibrational-like equally spaced pattern but the few known E2 transitions show rotational-like behaviour. These kinds of abnormal collective behaviors cannot be reproduced by standard collective models and provide excellent background to study the competition of single-particle and various collective degrees of freedom. Moreover, the calculated B(E2) values for neutron-deficient and heavier Te isotopes show contrasting different behaviours along the yrast line, which may be related to the enhanced neutron-proton correlation when approaching N=50. The deviations between theory and experiment concerning the energies and E2 transition properties of low-lying 0+ and 2+ excited states and isomeric states in those nuclei may provide a constraint on our understanding of nuclear deformation and intruder configuration in that region.

  15. Axial-Current Matrix Elements in Light Nuclei from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Savage, M.; Beane, S.; Chang, E.; Davoudi, Z.; Detmold, W.; Orginos, K.; Shanahan, P.; Tiburzi, B.; Wagman, M.; Winter, F.; Nplqcd Collaboration

    I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and $\\beta\\beta$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $g_A$ that is required in nuclear many-body calculations.

  16. Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei

    DOE PAGES

    Perras, Frederic A.

    2015-12-15

    Here, nuclear magnetic resonance (NMR) spectroscopy is one of the most important characterization tools in chemistry, however, 3/4 of the NMR active nuclei are underutilized due to their quadrupolar nature. This short review centers on the development of methods that use solid-state NMR of quadrupolar nuclei for obtaining quantitative structural information. Namely, techniques using dipolar recoupling as well as the resolution afforded by double-rotation are presented for the measurement of spin–spin coupling between quadrupoles, enabling the measurement of internuclear distances and connectivities.

  17. On the existence of Rydberg nuclear molecules

    NASA Astrophysics Data System (ADS)

    Bertulani, C. A.; Frederico, T.; Hussein, M. S.

    2017-11-01

    Present nuclear detection techniques prevents us from determining if the analogue of a Rydberg molecule exists for the nuclear case. But nothing in nature disallows their existence. As in the atomic case, Rydberg nuclear molecules would be a laboratory for new aspects and applications of nuclear physics. We propose that Rydberg nuclear molecules, which represent the exotic, halo nuclei version, such as 11Be +11Be, of the well known quasimolecules observed in stable nuclei such as 12C +12C, might be common structures that could manifest their existence along the dripline. A study of possible candidates and the expected structure of such exotic clustering of two halo nuclei: the Rydberg nuclear molecules, is made on the basis of three different methods. It is shown that such cluster structures might be stable and unexpectedly common.

  18. Penning Trap Experiments with the Most Exotic Nuclei on Earth: Precision Mass Measurements of Halo Nuclei

    NASA Astrophysics Data System (ADS)

    Brodeur, M.; Brunner, T.; Ettenauer, S.; Lapierre, A.; Ringle, R.; Delheij, P.; Dilling, J.

    2009-05-01

    Exotic nuclei are characterized with an extremely unbalanced protons-neutrons ratio (p/n) where for instance, the halo isotopes of He and Li have up to 3X more n than p (compared to p/n = 1 in ^12C). The properties of these exotic halo nuclei have long been recognized as the most stringent tests of our understanding of the strong force. ^11Li belongs to a special category of halos called Borromean, bound as a three-body family, while the two-body siblings, ^10Li and 2 n, are unbound as separate entities. Last year, a first mass measurement of the radioisotope ^11Li using a Penning trap spectrometer was carried out at the TITAN (Triumf's Ion Trap for Atomic and Nuclear science) facility at TRIUMF-ISAC. Penning traps are proven to be the most precise device to make mass measurements, yet until now they were unable to reach these nuclei. At TRIUMF we managed to measure the mass of ^11Li to an unprecedented precision of dm/m = 60 ppb, which is remarkable since it has a half-life of only 8.8 ms which it the shortest-lived nuclide to be measured with this technique. Furthermore, new and improved masses for the 2 and 4 n halo ^6,8He, as well has the 1 n halo ^11Be have been performed. An overview of the TITAN mass measurement program and its impact in understanding the most exotic nuclei will be given.

  19. Distinct development of the trigeminal sensory nuclei in platypus and echidna.

    PubMed

    Ashwell, Ken W S; Hardman, Craig D

    2012-01-01

    Both lineages of the modern monotremes have been reported to be capable of electroreception using the trigeminal pathways and it has been argued that electroreception arose in an aquatic platypus-like ancestor of both modern monotreme groups. On the other hand, the trigeminal sensory nuclear complex of the platypus is highly modified for processing tactile and electrosensory information from the bill, whereas the trigeminal sensory nuclear complex of the short-beaked echidna (Tachyglossus aculeatus) is not particularly specialized. If the common ancestor for both platypus and echidna were an electroreceptively and trigeminally specialized aquatic feeder, one would expect the early stages of development of the trigeminal sensory nuclei in both species to show evidence of structural specialization from the outset. To determine whether this is the case, we examined the development of the trigeminal sensory nuclei in the platypus and short-beaked echidna using the Hill and Hubrecht embryological collections. We found that the highly specialized features of the platypus trigeminal sensory nuclei (i.e. the large size of the principal nucleus and oral part of the spinal trigeminal nuclear complex, and the presence of a dorsolateral parvicellular segment in the principal nucleus) appear around the time of hatching in the platypus, but are never seen at any stage in the echidna. Our findings support the proposition that the modern echidna and platypus are derived from a common ancestor with only minimal trigeminal specialization and that the peculiar anatomy of the trigeminal sensory nuclei in the modern platypus emerged in the ornithorhynchids after divergence from the tachyglossids. Copyright © 2012 S. Karger AG, Basel.

  20. Modeling studying on ice formation by bacteria in warm-based convective cloud

    NASA Astrophysics Data System (ADS)

    Sun, J.

    2005-12-01

    Bacteria have been recognized as cloud condensation nuclei (CCN), and certain bacteria, commonly found in plants, have exhibited capacity to act as ice nuclei (IN) at temperatures as warm as -2 °C. These ice nucleating bacteria are readily disseminated into the atmosphere and have been observed in clouds at altitudes of several kilometres. It is noteworthy that over 20 years ago, one assumed the possibility of bacterial transport and their importance into cloud formation process, rain and precipitation, as well as causing disease in plants and animal kingdom. We used a 1-D cumulus cloud model with the CCOPE 19th July 1981 case and the observed field profile of bacterial concentration, to simulate the significance of bacteria as IN through condensation freezing mechanism. In this paper, we will present our results on the role of bacteria as active ice nuclei in the developing stage of cumulus clouds, and their potential significance in atmospheric sciences.

  1. Eta-mesic nuclei: Past, present, future

    DOE PAGES

    Haider, Q.; Liu, Lon -Chang

    2015-09-23

    Eta-mesic nucleus or the quasibound nuclear state of an eta (η) meson in a nucleus is caused by strong interaction force alone. This new type of nuclear species, which extends the landscape of nuclear physics, has been extensively studied since its prediction in 1986. We review and analyze in great detail the models of the fundamental η–nucleon interaction leading to the formation of an η–mesic nucleus, the methods used in calculating the properties of a bound η, and the approaches employed in the interpretation of the pertinent experimental data. In view of the successful observation of the η–mesic nucleus 25Mgmore » η and other promising experimental results, future direction in searching for more η–mesic nuclei is suggested.« less

  2. Modification of cirrus clouds to reduce global warming

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.

    2009-12-01

    Since both greenhouse gases and cirrus clouds strongly affect outgoing longwave radiation (OLR) with no affect or less affect on solar radiation, respectively, an attempt to delay global warming to buy time for emission reduction strategies to work might naturally target cirrus clouds. Cirrus having optical depths < 3.6 cover 13% of the globe and have a net warming effect on climate, with the coldest cirrus having the strongest warming effect. Roughly 2/3 of predicted global warming is due to the feedback effect of water vapor and clouds from an initial greenhouse gas forcing, and a recent study indicates water vapor and clouds in the upper troposphere (UT) have the greatest impact on climate sensitivity (the equilibrium response of global-mean surface temperature to a CO2 doubling). Thus altering UT water vapor and cirrus may be a good strategy for climate engineering. Cirrus cloud coverage is predicted to be sensitive to the ice fall speed which depends on ice crystal size. The higher the cirrus, the greater their impact is on OLR. Thus by changing ice crystal size in the coldest cirrus, OLR and climate might be modified. Fortunately the coldest cirrus have the highest ice supersaturation due to the dominance of homogeneous freezing nucleation. Seeding such cirrus with very efficient heterogeneous ice nuclei should produce larger ice crystals due to vapor competition effects, thus increasing OLR and surface cooling. Preliminary estimates of this global net cloud forcing via GCM simulations are more negative than -2.8 W m-2 and could neutralize the radiative forcing due to a CO2 doubling (3.7 W m-2). This cirrus engineered net forcing is due to (1) reduced cirrus coverage and (2) reduced upper tropospheric water vapor, due to enhanced ice sedimentation. The implementation of this climate engineering could use the airline industry to disperse the seeding material. Commercial airliners typically fly at temperatures between -40 and -60 deg. C (where homogeneous

  3. Target fragments in collisions of 1.8 GeV/nucleon Fe-56 nuclei with photoemulsion nuclei, and the cascade-evaporation model

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Kovalev, E. E.; Nefedov, N. A.; Antonchik, V. A.; Bogdanov, S. D.; Ostroumov, V. I.; Benton, E. V.; Crawford, H. J.

    1995-01-01

    Nuclear photographic emulsion is used to study the dependence of the characteristics of target-nucleus fragments on the masses and impact parameters of interacting nuclei. The data obtained are compared in all details with the calculation results made in terms of the Dubna version of the cascade-evaporation model (DCM).

  4. Emergent properties of nuclei from ab initio coupled-cluster calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.

    Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. Our endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. We review some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLOmore » $${}_{{\\rm{sat}}}$$ is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon–nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. Finally, the coupling to the continuum impacts the energies of the $${J}^{\\pi }=1/{2}^{-},3/{2}^{-},7/{2}^{-},3/{2}^{+}$$ states in $${}^{\\mathrm{17,23,25}}$$O, and—contrary to naive shell-model expectations—the level ordering of the $${J}^{\\pi }=3/{2}^{+},5/{2}^{+},9/{2}^{+}$$ states in $${}^{\\mathrm{53,55,61}}$$Ca.« less

  5. Emergent properties of nuclei from ab initio coupled-cluster calculations

    DOE PAGES

    Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.; ...

    2016-05-17

    Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. Our endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. We review some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLOmore » $${}_{{\\rm{sat}}}$$ is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon–nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. Finally, the coupling to the continuum impacts the energies of the $${J}^{\\pi }=1/{2}^{-},3/{2}^{-},7/{2}^{-},3/{2}^{+}$$ states in $${}^{\\mathrm{17,23,25}}$$O, and—contrary to naive shell-model expectations—the level ordering of the $${J}^{\\pi }=3/{2}^{+},5/{2}^{+},9/{2}^{+}$$ states in $${}^{\\mathrm{53,55,61}}$$Ca.« less

  6. Comparison of Muon Capture in Light and in Heavy Nuclei

    NASA Astrophysics Data System (ADS)

    Measday, David F.; Stocki, Trevor J.

    2007-10-01

    We have recently completed an experimental study at TRIUMF of muon capture in the following elements, N, Al, Si, Ca, Fe, Ni, I, Au, and Bi. We detected the nuclear gamma rays emitted by the product nuclei after muon capture. The energy of the gamma ray identifies the source nuclide, and thus the reaction which has occurred. Our data are of better quality, and more comprehensive than any other data set in the literature. The (μ-,νn) reaction is always dominant. In light nuclei, reactions such as (μ-,νp) and (μ-,νpn) can occur, but not for heavy nuclei. However the reverse is true for reactions such as (μ-,ν3n) and (μ-,ν4n), which are very rare in light nuclei, but easily detected in heavy elements. We shall discuss how such information can be useful in calculations of neutrino-nucleus interactions, and of electron-capture in supernovae.

  7. Light element production by low energy nuclei from massive stars

    NASA Technical Reports Server (NTRS)

    Vangioni-Flam, E.; Casse, M.; Ramaty, R.

    1997-01-01

    The Orion complex is a source of gamma rays attributed to the de-excitation of fast carbon and oxygen nuclei excited through interactions with ambient hydrogen and helium. This has consequences for the production and evolution of light isotopes in the Galaxy, as massive stars appear as prolific sources of C-O rich low energy nuclei. The different stages of massive star evolution are considered in relation to the acceleration of nuclei to moderate energies. It is concluded that the low energy nuclear component originating from massive stars plays a larger role than the usual Galactic cosmic rays in shaping the evolution of Li-6, Be-9, B-10 and B-11, especially in the early Galactic evolution. The enhancement of the B-11/B-10 ratio observed in meteorites and in the interstellar medium is attributed to the interaction of low energy carbon nuclei with ambient H and to a lesser degree, to neutrino spallation.

  8. Stability of superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The potential-energy surfaces of an extended set of heavy and superheavy even-even nuclei with 92 ≤Z ≤126 and isospins 40 ≤N -Z ≤74 are evaluated within the recently developed Fourier shape parametrization. Ground-state and decay properties are studied for 324 different even-even isotopes in a four-dimensional deformation space, defined by nonaxiality, quadrupole, octupole, and hexadecapole degrees of freedom. Nuclear deformation energies are evaluated in the framework of the macroscopic-microscopic approach, with the Lublin-Strasbourg drop model and a Yukawa-folded mean-field potential. The evolution of the ground-state equilibrium shape (and possible isomeric, metastable states) is studied as a function of Z and N . α -decay Q values and half-lives, as well as fission-barrier heights, are deduced. In order to understand the transition from asymmetric to symmetric fission along the Fm isotopic chain, the properties of all identified fission paths are investigated. Good agreement is found with experimental data wherever available. New interesting features about the population of different fission modes for nuclei beyond Fm are predicted.

  9. New dimensions of the periodic system: superheavy, superneutronic, superstrange, antimatter nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiner, Walter

    2010-12-23

    The possibilities for the extension of the periodic system into the islands of superheavy (SH) elements, to and beyond the neutron drip line and to the sectors of strangeness and antimatter are discussed. The multi-nucleon transfer processes in low-energy damped collisions of heavy actinide nuclei may help us to fill the gap between the nuclei produced in the ''hot'' fusion reactions and the continent of known nuclei. In these reactions we may also investigate the ''island of stability''. In many such collisions the lifetime of the composite giant system consisting of two touching nuclei turns out to be rather longmore » ({>=}10{sup -20} s); sufficient for observing line structure in spontaneous positron emission from super-strong electric fields (vacuum decay), a fundamental QED process not observed yet experimentally. At the neutron-rich sector near the drip line islands and extended ridges of quasistable nuclei are predicted by HF calculations. Such nuclei, as well as very long living superheavy nuclei may be provided in double atomic bomb explosions. A tremendously rich scenario of new nuclear structure emerges with new magic numbers in the strangeness domain. Various production mechanisms are discussed for these objects and for antinuclei in high energy heavy-ion collisions.« less

  10. In-medium similarity renormalization group for closed and open-shell nuclei

    NASA Astrophysics Data System (ADS)

    Hergert, H.

    2017-02-01

    We present a pedagogical introduction to the in-medium similarity renormalization group (IMSRG) framework for ab initio calculations of nuclei. The IMSRG performs continuous unitary transformations of the nuclear many-body Hamiltonian in second-quantized form, which can be implemented with polynomial computational effort. Through suitably chosen generators, it is possible to extract eigenvalues of the Hamiltonian in a given nucleus, or drive the Hamiltonian matrix in configuration space to specific structures, e.g., band- or block-diagonal form. Exploiting this flexibility, we describe two complementary approaches for the description of closed- and open-shell nuclei: the first is the multireference IMSRG (MR-IMSRG), which is designed for the efficient calculation of nuclear ground-state properties. The second is the derivation of non-empirical valence-space interactions that can be used as input for nuclear shell model (i.e., configuration interaction (CI)) calculations. This IMSRG+shell model approach provides immediate access to excitation spectra, transitions, etc, but is limited in applicability by the factorial cost of the CI calculations. We review applications of the MR-IMSRG and IMSRG+shell model approaches to the calculation of ground-state properties for the oxygen, calcium, and nickel isotopic chains or the spectroscopy of nuclei in the lower sd shell, respectively, and present selected new results, e.g., for the ground- and excited state properties of neon isotopes.

  11. Synthesis of Superheavy Nuclei in 48CA-INDUCED Reactions

    NASA Astrophysics Data System (ADS)

    Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Voinov, A. A.; Gulbekian, G. G.; Bogomolov, S. L.; Gikal, B. N.; Mezentsev, A. N.; Iliev, S.; Subbotin, V. G.; Sukhov, A. M.; Subotic, K.; Zagrebaev, V. I.; Vostokin, G. K.; Itkis, M. G.; Moody, K. J.; Patin, J. B.; Shaughnessy, D. A.; Stoyer, M. A.; Stoyer, N. J.; Wilk, P. A.; Kenneally, J. M.; Landrum, J. H.; Wild, J. F.; Lougheed, R. W.

    2008-11-01

    Thirty-four new nuclides with Z = 104-116, 118 and N = 161-177 have been synthesized in the complete-fusion reactions of 238U, 237Np, 242,244Pu, 243Am, 245,248Cm, and 249Cf targets with 48Ca beams. The masses of evaporation residues were identified through measurements of the excitation functions of the xn-evaporation channels and from cross bombardments. The decay properties of the new nuclei agree with those of previously known heavy nuclei and with predictions from different theoretical models. A discussion of self-consistent interpretations of all observed decay chains originating from the parent isotopes 282,283112, 282113, 286-289114, 287,288115, 290-293116, and 294118 is presented. Decay energies and lifetimes of the neutron-rich superheavy nuclei as well as their production cross sections indicate a considerable increase in the stability of nuclei with an increasing number of neutrons, which agrees with the predictions of theoretical models concerning the decisive dependence of the structure and radioactive properties of superheavy elements on their proximity to the nuclear shells with N = 184 and Z = 114.

  12. From aerosol-limited to invigoration of warm convective clouds.

    PubMed

    Koren, Ilan; Dagan, Guy; Altaratz, Orit

    2014-06-06

    Among all cloud-aerosol interactions, the invigoration effect is the most elusive. Most of the studies that do suggest this effect link it to deep convective clouds with a warm base and cold top. Here, we provide evidence from observations and numerical modeling of a dramatic aerosol effect on warm clouds. We propose that convective-cloud invigoration by aerosols can be viewed as an extension of the concept of aerosol-limited clouds, where cloud development is limited by the availability of cloud-condensation nuclei. A transition from pristine to slightly polluted atmosphere yields estimated negative forcing of ~15 watts per square meter (cooling), suggesting that a substantial part of this anthropogenic forcing over the oceans occurred at the beginning of the industrial era, when the marine atmosphere experienced such transformation. Copyright © 2014, American Association for the Advancement of Science.

  13. Axial-Current Matrix Elements in Light Nuclei from Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Martin; Shanahan, Phiala E.; Tiburzi, Brian C.

    2016-12-01

    I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections andmore » $$\\beta\\beta$$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $$g_A$$ that is required in nuclear many-body calculations.« less

  14. Nuclear spectroscopic studies. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.

    1994-02-18

    The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research).

  15. A high-resolution study of ultra-heavy cosmic-ray nuclei (A0178)

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Oceallaigh, C.; Domingo, V.; Wenzel, K. P.

    1984-01-01

    The main objective of the experiment is a detailed study of the charge spectra of ultraheavy cosmic-ray nuclei from zinc (Z = 30) to uranium (Z = 92) and beyond using solid-state track detectors. Special emphasis will be placed on the relative abundances in the region Z or - 65, which is thought to be dominated by r-process nucleosynthesis. Subsidiary objectives include the study of the cosmic-ray transiron spectrum a search for the postulated long-lived superheavy (SH) nuclei (Z or = 110), such as (110) SH294, in the contemporary cosmic radiation. The motivation behind the search for super-heavy nuclei is based on predicted half-lives that are short compared to the age of the Earth but long compared to the age of cosmic rays. The detection of such nuclei would have far-reaching consequences for nuclear structure theory. The sample of ultraheavy nuclei obtained in this experiment will provide unique opportunities for many tests concerning element nucleosynthesis, cosmic-ray acceleration, and cosmic-ray propagation.

  16. Stabilization of the electron-nuclear spin orientation in quantum dots by the nuclear quadrupole interaction.

    PubMed

    Dzhioev, R I; Korenev, V L

    2007-07-20

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  17. Stabilization of the Electron-Nuclear Spin Orientation in Quantum Dots by the Nuclear Quadrupole Interaction

    NASA Astrophysics Data System (ADS)

    Dzhioev, R. I.; Korenev, V. L.

    2007-07-01

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  18. Electromagnetic and neutral-weak response functions of light nuclei

    NASA Astrophysics Data System (ADS)

    Lovato, Alessandro

    2015-10-01

    A major goal of nuclear theory is to understand the strong interaction in nuclei as it manifests itself in terms of two- and many-body forces among the nuclear constituents, the protons and neutrons, and the interactions of these constituents with external electroweak probes via one- and many-body currents. Using imaginary-time projection technique, quantum Monte Carlo allows for solving the time-independent Schrödinger equation even for Hamiltonians including highly spin-isospin dependent two- and three- body forces. I will present a recent Green's function Monte Carlo calculation of the quasi-elastic electroweak response functions in light nuclei, needed to describe electron and neutrino scattering. We found that meson-exchange two-body currents generate excess transverse strength from threshold to the quasielastic to the dip region and beyond. These results challenge the conventional picture of quasi elastic inclusive scattering as being largely dominated by single-nucleon knockout processes. These findings are of particular interest for the interpretation of neutrino oscillation signals.

  19. Intracellular angiotensin II directly induces in vitro transcription of TGF-β1, MCP-1 and NHE-3 mRNAs in isolated rat renal cortical nuclei via activation of nuclear AT1 receptors

    PubMed Central

    Li, Xiao C.; Zhuo, Jia L.

    2008-01-01

    The present study tested the hypothesis that intracellular angiotensin II (Ang II) directly induces transcriptional effects by stimulating AT1 receptors in the nucleus of rat renal cortical cells. Intact nuclei were freshly isolated from the rat renal cortex and transcriptional responses to Ang II were studied using in vitro RNA transcription assays and semi-quantitative RT-PCR. High power phase contrast micrographs showed that isolated nuclei were encircled by an intact nuclear envelop, stained strongly by the DNA marker DAPI, but not by the membrane or endosomal markers. FITC-labeled Ang II and [125I]-Val5-Ang II binding confirmed the presence of Ang II receptors in the nuclei with a predominance of AT1 receptors. RT-PCR showed that AT1a mRNA expression was 3-fold greater than AT1b receptor mRNAs in these nuclei. In freshly isolated nuclei, Ang II increased in vitro [α-32P]CTP incorporation in a concentration manner, and the effect was confirmed by autoradiography and RNA electrophoresis. Ang II markedly increased in vitro transcription of mRNAs for transforming growth factor-β1 by 143% (p < 0.01), macrophage chemoattractant protein-1 by 89% (p < 0.01), and the sodium and hydrogen exchanger-3 by 110% (p < 0.01). These transcriptional effects of Ang II on the nuclei were completely blocked by the AT1 receptor antagonist losartan (p < 0.01). By contrast, Ang II had no effects on transcription of angiotensinogne and GAPDH mRNAs. Since these transcriptional effects of Ang II in isolated nuclei were induced by Ang II in the absence of cell surface receptor-mediated signaling and completely blocked by losartan, we concluded that Ang II may directly stimulate nuclear AT1a receptors to induce transcriptional responses that are associated with tubular epithelial sodium transport, cellular growth and hypertrophy, and proinflammatory cytokines. PMID:18256274

  20. Mirror energy difference and the structure of loosely bound proton-rich nuclei around A =20

    NASA Astrophysics Data System (ADS)

    Yuan, Cenxi; Qi, Chong; Xu, Furong; Suzuki, Toshio; Otsuka, Takaharu

    2014-04-01

    The properties of loosely bound proton-rich nuclei around A =20 are investigated within the framework of the nuclear shell model. In these nuclei, the strength of the effective interactions involving the loosely bound proton s1/2 orbit is significantly reduced in comparison with that of those in their mirror nuclei. We evaluate the reduction of the effective interaction by calculating the monopole-based-universal interaction (VMU) in the Woods-Saxon basis. The shell-model Hamiltonian in the sd shell, such as USD, can thus be modified to reproduce the binding energies and energy levels of the weakly bound proton-rich nuclei around A =20. The effect of the reduction of the effective interaction on the structure and decay properties of these nuclei is also discussed.

  1. Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Memon, A. R.; Thompson, G. A. Jr; Roux, S. J.

    1993-01-01

    Three GTP-binding proteins with apparent molecular masses of 27, 28 and 30 kDa have been detected in isolated nuclei of etiolated pea plumules. After LDS-PAGE and transfer to nitrocellulose these proteins bind [32P]GTP in the presence of excess ATP, suggesting that they are monomeric G proteins. When nuclei are disrupted, three proteins co-purify with the nuclear envelope fraction and are highly enriched in this fraction. The level of [32P]GTP-binding for all three protein bands is significantly increased when harvested pea plumules are irradiated by red light, and this effect is reversed by far-red light. The results indicate that GTP-binding activity associated with the nuclear envelope of plant cells is photoreversibly regulated by the pigment phytochrome.

  2. The study of structure in 224-234 thorium nuclei within the framework IBM

    NASA Astrophysics Data System (ADS)

    Lee, Su Youn; Lee, Young Jun; Lee, J. H.

    2017-09-01

    An investigation has been made of the behaviour of nuclear structure as a function of an increase in neutron number from 224Th to 234Th. Thorium of mass number 234 is a typical rotor nucleus that can be explained by the SU(3) limit of the interacting boson model(IBM) in the algebraic nuclear model. Furthermore, 224-232Th lie on the path of the symmetry-breaking phase transition. Moreover, the nuclear structure of 224Th can be explained using X(5) symmetry. However, as 226-230Th nuclei are not fully symmetrical nuclei, they can be represented by adding a perturbed term to express symmetry breaking. Through the following three calculation steps, we identified the tendency of change in nuclear structure. Firstly, the structure of 232Th is described using the matrix elements of the Hamiltonian and the electric quadrupole operator between basis states of the SU(3) limit in IBM. Secondly, the low-lying energy levels and E2 transition ratios corresponding to the observable physical values are calculated by adding a perturbed term with the first-order Casimir operator of the U(5) limit to the SU(3) Hamiltonian in IBM. We compared the results with experimental data of 224-234Th. Lastly, the potential of the Bohr Hamiltonian is represented by a harmonic oscillator, as a result of which the structure of 224-234Th could be expressed in closed form by an approximate separation of variables. The results of these theoretical predictions clarify nuclear structure changes in Thorium nuclei over mass numbers of practical significance.

  3. Biological Ice Nuclei: They are Everywhere, What are Their Roles? (Invited)

    NASA Astrophysics Data System (ADS)

    Schnell, R. C.

    2009-12-01

    Biological ice nuclei active at temperatures warmer than -2C were first observed in the late 1960s associated with decaying grass and tree leaves; discovered more by accident than in a planned experiment. The active component of the decaying leaves was subsequently found to be produced by a few living bacteria, the two most ubiquitous being strains of P. syringae and E. herbicola. The active bacterial ice nuclei are easily deactivated by anaerobic, chemical and heat stresses. The same grass and tree leaves, when well decayed, generally contain less active ice nuclei (threshold temperatures of -5C to - 6C) in the 0.1 micron diameter range compared to the larger (1 micron) bacteria associated ice nuclei. The well decayed leaf litter ice nuclei are stable over a wide range of stresses and time; some samples of leaf derived nuclei stored at room temperature have exhibited the same ice nucleus concentration for over 30 years. Fungi also have active ice nuclei that are stable over many decades. Active ice nuclei are found in marine waters associated with plankton, and are produced by at least one marine dinoflagellate (Heterocapsa niei) that expresses ice nucleus activity almost as warm as terrestrial bacteria ice nuclei. Living ice nucleus bacteria have been found in marine fogs far at sea, in precipitation in Antarctica as well as over many continental areas, in air in the high Arctic, on vegetation around the world, on remote ice bound islands, and growing on and inside water storing vegetation on isolated tropical mountain peaks. But why? What is the evolutionary advantage for the ice nucleus gene to be expressed in such a wide range of environments, by greatly different species? There is an energy cost for bacteria and fungi to support the ice gene, so it probably is not a genetic anomaly. Possibly the ice nuclei play many roles? These could include damaging plants to acquire a food source, an aid in survival and dispersal in clouds, initiation of precipitation to

  4. AMS with light nuclei at small accelerators

    NASA Astrophysics Data System (ADS)

    Stan-Sion, C.; Enachescu, M.

    2017-06-01

    AMS applications with lighter nuclei are presented. It will be shown how Carbon-14, Boron-10, Beryllium-10, and Tritium-3 can be used to provide valuable information in forensic science, environmental physics, nuclear pollution, in material science and for diagnose of the plasma confinement in fusion reactors. Small accelerators are reliable, efficient and possess the highest ion beam transmissions that confer high precision in measurements.

  5. MC generator HARDPING: Nuclear effects in hard interactions of leptons and hadrons with nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berdnikov, Ya. A.; Ivanov, A. E.; Kim, V. T.

    2016-01-22

    Hadron and lepton production in hard interaction of high-energy particles with nuclei are considered in context of developing of Monte Carlo generator HARDPING (Hard Probe Interaction Generator). Such effects as energy losses and multiple re-scattering initial and produced hadrons and their constituents are taken into account. These effects are implemented in current version of generator HARDPING. Data of experiments HERMES on hadron production in lepton-nuclei collisions and E866 on muon pair production in proton-nuclei collisions were described with current version of generator HARDPING. Predictions from recent version HARPING 3.0 for lepton pairs production at proton beam energy I20 GeV aremore » presented.« less

  6. Systematics of ground state multiplets of atomic nuclei in the delta-interaction approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imasheva, L. T.; Ishkhanov, B. S.; Stepanov, M. E., E-mail: stepanov@depni.sinp.msu.ru

    2015-12-15

    Pairing forces between nucleons in an atomic nucleus strongly influence its structure. One of the manifestations of pair interaction is the ground state multiplet (GSM) formation in the spectrum of low-lying excited states of even–even nuclei. The value of GSM splitting is determined by the value of pair interaction of nucleons; for each isotope, it can be estimated on the basis of experimental nuclear masses. The quality of this estimate is characterized by the degree of reproduction of GSM levels in the nucleus. The GSM systematics in even–even nuclei with a pair of identical nucleons in addition to the filledmore » nuclear core is considered on the basis of delta interaction.« less

  7. Antiproton Production by CR on Air Nuclei

    NASA Technical Reports Server (NTRS)

    Maskalenko, I. V.; Mashnik, S. G.

    2003-01-01

    Recent measurements of the cosmic ray (CR) antiproton flux have been shown to challenge existing CR propagation models. In particular, the conventional reacceleration model designed to match secondary/primary nuclei ratios produces too few antiprotons. Recently there appear some indications that the atmospheric contribution to antiproton production is considerably underestimated, which implies that antiproton CR flux might be lower. This may be the primary reason of the discrepancy discovered in CR propagation. We use the Los Alamos version of the Quark-Gluon String Model code LAQGSM together with available data on antiproton production on nuclei to analyse the accuracy of existing parameterizations of antiproton production cross section. The LAQGSM model has been shown to reproduce well nuclear reactions and hadronic data in the range 0.01-800 GeV/nucleon.

  8. Involvement of microtubules and 10-nm filaments in the movement and positioning of nuclei in syncytia

    PubMed Central

    1979-01-01

    Previous studies (Holmes, K.V., and P.W. Choppin. J. Exp. Med. 124:501- 520; J. Cell Biol. 39:526-543) showed that infection of baby hamster kidney (BHK21-F) cells with the parainfluenza virus SV5 causes extensive cell fusion, that nuclei migrate in the syncytial cytoplasm and align in tightly-packed rows, and that microtubules are involved in nuclear movement and alignment. The role of microtubules, 10-nm filaments, and actin-containing microfilaments in this process has been investigated by immunofluorescence microscopy using specific antisera, time-lapse cinematography, and electron microscopy. During cell fusion, micro tubules and 10-nm filaments from many cells form large bundles which are localized between rows of nuclei. No organized bundles of actin fibers were detected in these areas, although actin fibers were observed in regions away from the aligned nuclei. Although colchicine disrupts microtubules and inhibits nuclear movement, cytochalasin B (CB; 20-50 microgram/ml) does not inhibit cell fusion or nuclear movement. However, CB alters the shape of the syncytium, resulting in long filamentous processes extending from a central region. When these processes from neighboring cells make contact, fusion occurs, and nuclei migrate through the channels which are formed. Electron and immunofluorescence microscopy reveal bundles of microtubules and 10-nm filaments in parallel arrays within these processes, but no bundles of microfilaments were detected. The effect of CB on the structural integrity of microfilaments at this high concentration (20 microgram/ml) was demonstrated by the disappearance of filaments interacting with heavy meromyosin. Cycloheximide (20 microgram/ml) inhibits protein synthesis but does not affect cell fusion, the formation of microtubules and 10-nm filament bundles, or nuclear migration and alignment; thus, continued protein synthesis is not required. The association of microtubules and 10-nm filaments with nuclear migration and

  9. Fatty acid binding proteins have the potential to channel dietary fatty acids into enterocyte nuclei[S

    PubMed Central

    Esteves, Adriana; Knoll-Gellida, Anja; Canclini, Lucia; Silvarrey, Maria Cecilia; André, Michèle; Babin, Patrick J.

    2016-01-01

    Intracellular lipid binding proteins, including fatty acid binding proteins (FABPs) 1 and 2, are highly expressed in tissues involved in the active lipid metabolism. A zebrafish model was used to demonstrate differential expression levels of fabp1b.1, fabp1b.2, and fabp2 transcripts in liver, anterior intestine, and brain. Transcription levels of fabp1b.1 and fabp2 in the anterior intestine were upregulated after feeding and modulated according to diet formulation. Immunofluorescence and electron microscopy immunodetection with gold particles localized these FABPs in the microvilli, cytosol, and nuclei of most enterocytes in the anterior intestinal mucosa. Nuclear localization was mostly in the interchromatin space outside the condensed chromatin clusters. Native PAGE binding assay of BODIPY-FL-labeled FAs demonstrated binding of BODIPY-FLC12 but not BODIPY-FLC5 to recombinant Fabp1b.1 and Fabp2. The binding of BODIPY-FLC12 to Fabp1b.1 was fully displaced by oleic acid. In vivo experiments demonstrated, for the first time, that intestinal absorption of dietary BODIPY-FLC12 was followed by colocalization of the labeled FA with Fabp1b and Fabp2 in the nuclei. These data suggest that dietary FAs complexed with FABPs are able to reach the enterocyte nucleus with the potential to modulate nuclear activity. PMID:26658423

  10. Effect of nuclear-reaction mechanisms on the population of excited nuclear states and isomeric ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skobelev, N. K., E-mail: skobelev@jinr.ru

    2016-07-15

    Experimental data on the cross sections for channels of fusion and transfer reactions induced by beams of radioactive halo nuclei and clustered and stable loosely bound nuclei were analyzed, and the results of this analysis were summarized. The interplay of the excitation of single-particle states in reaction-product nuclei and direct reaction channels was established for transfer reactions. Respective experiments were performed in stable ({sup 6}Li) and radioactive ({sup 6}He) beams of the DRIBs accelerator complex at the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, and in deuteron and {sup 3}He beams of the U-120M cyclotron at themore » Nuclear Physics Institute, Academy Sciences of Czech Republic (Řež and Prague, Czech Republic). Data on subbarrier and near-barrier fusion reactions involving clustered and loosely bound light nuclei ({sup 6}Li and {sup 3}He) can be described quite reliably within simple evaporation models with allowance for different reaction Q-values and couple channels. In reactions involving halo nuclei, their structure manifests itself most strongly in the region of energies below the Coulomb barrier. Neutron transfer occurs with a high probability in the interactions of all loosely bound nuclei with light and heavy stable nuclei at positive Q-values. The cross sections for such reactions and the respective isomeric ratios differ drastically for nucleon stripping and nucleon pickup mechanisms. This is due to the difference in the population probabilities for excited single-particle states.« less

  11. Improved and Robust Detection of Cell Nuclei from Four Dimensional Fluorescence Images

    PubMed Central

    Bashar, Md. Khayrul; Yamagata, Kazuo; Kobayashi, Tetsuya J.

    2014-01-01

    Segmentation-free direct methods are quite efficient for automated nuclei extraction from high dimensional images. A few such methods do exist but most of them do not ensure algorithmic robustness to parameter and noise variations. In this research, we propose a method based on multiscale adaptive filtering for efficient and robust detection of nuclei centroids from four dimensional (4D) fluorescence images. A temporal feedback mechanism is employed between the enhancement and the initial detection steps of a typical direct method. We estimate the minimum and maximum nuclei diameters from the previous frame and feed back them as filter lengths for multiscale enhancement of the current frame. A radial intensity-gradient function is optimized at positions of initial centroids to estimate all nuclei diameters. This procedure continues for processing subsequent images in the sequence. Above mechanism thus ensures proper enhancement by automated estimation of major parameters. This brings robustness and safeguards the system against additive noises and effects from wrong parameters. Later, the method and its single-scale variant are simplified for further reduction of parameters. The proposed method is then extended for nuclei volume segmentation. The same optimization technique is applied to final centroid positions of the enhanced image and the estimated diameters are projected onto the binary candidate regions to segment nuclei volumes.Our method is finally integrated with a simple sequential tracking approach to establish nuclear trajectories in the 4D space. Experimental evaluations with five image-sequences (each having 271 3D sequential images) corresponding to five different mouse embryos show promising performances of our methods in terms of nuclear detection, segmentation, and tracking. A detail analysis with a sub-sequence of 101 3D images from an embryo reveals that the proposed method can improve the nuclei detection accuracy by 9 over the previous methods

  12. Depletion of nuclear import protein karyopherin alpha 7 (KPNA7) induces mitotic defects and deformation of nuclei in cancer cells.

    PubMed

    Vuorinen, Elisa M; Rajala, Nina K; Ihalainen, Teemu O; Kallioniemi, Anne

    2018-03-27

    Nucleocytoplasmic transport is a tightly regulated process carried out by specific transport machinery, the defects of which may lead to a number of diseases including cancer. Karyopherin alpha 7 (KPNA7), the newest member of the karyopherin alpha nuclear importer family, is expressed at a high level during embryogenesis, reduced to very low or absent levels in most adult tissues but re-expressed in cancer cells. We used siRNA-based knock-down of KPNA7 in cancer cell lines, followed by functional assays (proliferation and cell cycle) and immunofluorescent stainings to determine the role of KPNA7 in regulation of cancer cell growth, proper mitosis and nuclear morphology. In the present study, we show that the silencing of KPNA7 results in a dramatic reduction in pancreatic and breast cancer cell growth, irrespective of the endogenous KPNA7 expression level. This growth inhibition is accompanied by a decrease in the fraction of S-phase cells as well as aberrant number of centrosomes and severe distortion of the mitotic spindles. In addition, KPNA7 depletion leads to reorganization of lamin A/C and B1, the main nuclear lamina proteins, and drastic alterations in nuclear morphology with lobulated and elongated nuclei. Taken together, our data provide new important evidence on the contribution of KPNA7 to the regulation of cancer cell growth and the maintenance of nuclear envelope environment, and thus deepens our understanding on the impact of nuclear transfer proteins in cancer pathogenesis.

  13. Studies of the shapes of heavy pear-shaped nuclei at ISOLDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, P. A., E-mail: peter.butler@liverpool.ac.uk

    2016-07-07

    For certain combinations of protons and neutrons there is a theoretical expectation that the shape of nuclei can assume octupole deformation, which would give rise to reflection asymmetry or a ”pear-shape” in the intrinsic frame, either dynamically (octupole vibrations) or statically (permanent octupole deformation). I will briefly review the historic evidence for reflection asymmetry in nuclei and describe how recent experiments carried out at REX-ISOLDE have constrained nuclear theory and how they contribute to tests of extensions of the Standard Model. I will also discuss future prospects for measuring nuclear shapes from Coulomb Excitation: experiments are being planned that willmore » exploit beams from HIE-ISOLDE that are cooled in the TSR storage ring and injected into a solenoidal spectrometer similar to the HELIOS device developed at the Argonne National Laboratory.« less

  14. The neutron skin thickness in nuclei with clustering at low densities

    NASA Astrophysics Data System (ADS)

    Nooraihan, A.; Usmani, Q. N.; Sauli, Z.; Anwar, K.

    2016-11-01

    This study concentrates on searching for a dependable, fully microscopic theory to find out new behaviours and understand their consequences for theoretical pictures. The models for nuclear structure are tested, refined and developed by acquiring new data [1][2][3]. This data is useful for astrophysical calculations and predictions. In density functional theories, including the ETF theory, the equation of state (EOS) of symmetric nuclear matter (SNM), is an important measure. Empirically, we receive information about quantities relating to SNM, all these measures are thoroughly tested. In the absence of any unswerving knowledge below this density we shall take that energy still rises up to some density, neglecting possible small fluctuations, as the density is brought down. Our discussion at the moment is without the Coulomb forces applicable only for the hypothetical nuclear matter; they are added finally to correctly portray the actual picture in nuclei. Our approach in this study is macroscopic. This work concludes that the neutron skin thickness in nuclei is found to reduce significantly, for the reason of clustering.

  15. Hybrid theory and calculation of e-N2 scattering. [quantum mechanics - nuclei (nuclear physics)

    NASA Technical Reports Server (NTRS)

    Chandra, N.; Temkin, A.

    1975-01-01

    A theory of electron-molecule scattering was developed which was a synthesis of close coupling and adiabatic-nuclei theories. The theory is shown to be a close coupling theory with respect to vibrational degrees of freedom but is a adiabatic-nuclei theory with respect to rotation. It can be applied to any number of partial waves required, and the remaining ones can be calculated purely in one or the other approximation. A theoretical criterion based on fixed-nuclei calculations and not on experiment can be given as to which partial waves and energy domains require the various approximations. The theory allows all cross sections (i.e., pure rotational, vibrational, simultaneous vibration-rotation, differential and total) to be calculated. Explicit formulae for all the cross sections are presented.

  16. Isospin Conservation in Neutron Rich Systems of Heavy Nuclei

    NASA Astrophysics Data System (ADS)

    Jain, Ashok Kumar; Garg, Swati

    2018-05-01

    It is generally believed that isospin would diminish in its importance as we go towards heavy mass region due to isospin mixing caused by the growing Coulomb forces. However, it was realized quite early that isospin could become an important and useful quantum number for all nuclei including heavy nuclei due to neutron richness of the systems [1]. Lane and Soper [2] also showed in a theoretical calculation that isospin indeed remains quite good in heavy mass neutron rich systems. In this paper, we present isospin based calculations [3, 4] for the fission fragment distributions obtained from heavy-ion fusion fission reactions. We discuss in detail the procedure adopted to assign the isospin values and the role of neutron multiplicity data in obtaining the total fission fragment distributions. We show that the observed fragment distributions can be reproduced rather reasonably well by the calculations based on the idea of conservation of isospin. This is a direct experimental evidence of the validity of isospin in heavy nuclei, which arises largely due to the neutron-rich nature of heavy nuclei and their fragments. This result may eventually become useful for the theories of nuclear fission and also in other practical applications.

  17. Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Volk, Tyler

    1988-01-01

    The possible climatic effects of a drastic decrease in cloud condensation nuclei (CCN) associated with a severe reduction in the global marine phytoplankton abundance are investigated. Calculations suggest that a reduction in CCN of more than 80 percent and the resulting decrease in marine cloud albedo could have produced a rapid global warming of 6 C or more. Oxygen isotope analyses of marine sediments from many parts of the world have been interpreted as indicating a marked warming coincident with the demise of calcareous nannoplankton at the K/T boundary. Decreased marine cloud albedo and resulting high sea surface temperatures could have been a factor in the maintenance of low productivity in the 'Strangelove Ocean' period following the K/T extinctions.

  18. Low-luminosity gamma-ray bursts as the sources of ultrahigh-energy cosmic ray nuclei

    NASA Astrophysics Data System (ADS)

    Zhang, B. Theodore; Murase, Kohta; Kimura, Shigeo S.; Horiuchi, Shunsaku; Mészáros, Peter

    2018-04-01

    Recent results from the Pierre Auger Collaboration have shown that the composition of ultrahigh-energy cosmic rays (UHECRs) becomes gradually heavier with increasing energy. Although gamma-ray bursts (GRBs) have been promising sources of UHECRs, it is still unclear whether they can account for the Auger results because of their unknown nuclear composition of ejected UHECRs. In this work, we revisit the possibility that low-luminosity GRBs (LL GRBs) act as the sources of UHECR nuclei and give new predictions based on the intrajet nuclear composition models considering progenitor dependencies. We find that the nuclear component in the jet can be divided into two groups according to the mass fraction of silicon nuclei, Si-free and Si-rich. Motivated by the connection between LL GRBs and transrelativistic supernovae, we also consider the hypernova ejecta composition. Then, we discuss the survivability of UHECR nuclei in the jet base and internal shocks of the jets, and show that it is easier for nuclei to survive for typical LL GRBs. Finally, we numerically propagate UHECR nuclei ejected from LL GRBs with different composition models and compare the resulting spectra and composition to Auger data. Our results show that both the Si-rich progenitor and hypernova ejecta models match the Auger data well, while the Si-free progenitor models have more difficulty in fitting the spectrum. We argue that our model is consistent with the newly reported cross-correlation between the UHECRs and starburst galaxies, since both LL GRBs and hypernovae are expected to be tracers of the star-formation activity. LL GRBs have also been suggested as the dominant origin of IceCube neutrinos in the PeV range, and the LL GRB origin of UHECRs can be critically tested by near-future multimessenger observations.

  19. Atomic Mass and Nuclear Binding Energy for U-287 (Uranium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope U-287 (Uranium, atomic number Z = 92, mass number A = 287).

  20. Atomic Mass and Nuclear Binding Energy for Ac-212 (Actinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Ac-212 (Actinium, atomic number Z = 89, mass number A = 212).

  1. Vertical uniformity of cells and nuclei in epithelial monolayers.

    PubMed

    Neelam, Srujana; Hayes, Peter Robert; Zhang, Qiao; Dickinson, Richard B; Lele, Tanmay P

    2016-01-22

    Morphological variability in cytoskeletal organization, organelle position and cell boundaries is a common feature of cultured cells. Remarkable uniformity and reproducibility in structure can be accomplished by providing cells with defined geometric cues. Cells in tissues can also self-organize in the absence of directing extracellular cues; however the mechanical principles for such self-organization are not understood. We report that unlike horizontal shapes, the vertical shapes of the cell and nucleus in the z-dimension are uniform in cells in cultured monolayers compared to isolated cells. Apical surfaces of cells and their nuclei in monolayers were flat and heights were uniform. In contrast, isolated cells, or cells with disrupted cell-cell adhesions had nuclei with curved apical surfaces and variable heights. Isolated cells cultured within micron-sized square wells displayed flat cell and nuclear shapes similar to cells in monolayers. Local disruption of nuclear-cytoskeletal linkages resulted in spatial variation in vertical uniformity. These results suggest that competition between cell-cell pulling forces that expand and shorten the vertical cell cross-section, thereby widening and flattening the nucleus, and the resistance of the nucleus to further flattening results in uniform cell and nuclear cross-sections. Our results reveal the mechanical principles of self-organized vertical uniformity in cell monolayers.

  2. Nuclear Data Sheets for A = 136

    NASA Astrophysics Data System (ADS)

    Sonzogni, A. A.

    2002-04-01

    Experimental data on ground-- and excited--state properties for all known nuclei with mass number A=136 have been compiled and evaluated. States populated in radioactive decay as well as in nuclear reactions have been considered. For these nuclei, level and decay schemes, as well as tables of nuclear properties are presented. This work supersedes the 1994 evaluation by J.K. Tuli (1994Tu01).

  3. A relationship between isobaric analog states and shape coexistence in nuclei

    NASA Astrophysics Data System (ADS)

    Rowe, D. J.; Wood, J. L.

    2018-06-01

    Two well-known examples of states of very different symmetry in nuclei to those of their neighbours are given by the phenomena of isobaric analog states and nuclear shape coexistence. We show in this letter that they are intimately related.

  4. The quest for novel modes of excitation in exotic nuclei

    NASA Astrophysics Data System (ADS)

    Paar, N.

    2010-06-01

    This paper provides an insight into several open problems in the quest for novel modes of excitation in nuclei with isospin asymmetry, deformation and finite-temperature characteristics in stellar environments. Major unsolved problems include the nature of pygmy dipole resonances, the quest for various multipole and spin-isospin excitations both in neutron-rich and proton drip-line nuclei mainly driven by loosely bound nucleons, excitations in unstable deformed nuclei and evolution of their properties with the shape phase transition. Exotic modes of excitation in nuclei at finite temperatures characteristic of supernova evolution present open problems with a possible impact in modeling astrophysically relevant weak interaction rates. All these issues challenge self-consistent many-body theory frameworks at the frontiers of on-going research, including nuclear energy density functionals, both phenomenological and constrained by the strong interaction physics of QCD, models based on low-momentum two-nucleon interaction Vlow-k and correlated realistic nucleon-nucleon interaction VUCOM, supplemented by three-body force, as well as two-nucleon and three-nucleon interactions derived from the chiral effective field theory. Joined theoretical and experimental efforts, including research with radioactive isotope beams, are needed to provide insight into dynamical properties of nuclei away from the valley of stability, involving the interplay of isospin asymmetry, deformation and finite temperature.

  5. Three-Dimensional Maps of All Chromosomes in Human Male Fibroblast Nuclei and Prometaphase Rosettes

    PubMed Central

    Bolzer, Andreas; Kreth, Gregor; Solovei, Irina; Koehler, Daniela; Saracoglu, Kaan; Fauth, Christine; Müller, Stefan; Eils, Roland; Cremer, Christoph; Speicher, Michael R

    2005-01-01

    Studies of higher-order chromatin arrangements are an essential part of ongoing attempts to explore changes in epigenome structure and their functional implications during development and cell differentiation. However, the extent and cell-type-specificity of three-dimensional (3D) chromosome arrangements has remained controversial. In order to overcome technical limitations of previous studies, we have developed tools that allow the quantitative 3D positional mapping of all chromosomes simultaneously. We present unequivocal evidence for a probabilistic 3D order of prometaphase chromosomes, as well as of chromosome territories (CTs) in nuclei of quiescent (G0) and cycling (early S-phase) human diploid fibroblasts (46, XY). Radial distance measurements showed a probabilistic, highly nonrandom correlation with chromosome size: small chromosomes—independently of their gene density—were distributed significantly closer to the center of the nucleus or prometaphase rosette, while large chromosomes were located closer to the nuclear or rosette rim. This arrangement was independently confirmed in both human fibroblast and amniotic fluid cell nuclei. Notably, these cell types exhibit flat-ellipsoidal cell nuclei, in contrast to the spherical nuclei of lymphocytes and several other human cell types, for which we and others previously demonstrated gene-density-correlated radial 3D CT arrangements. Modeling of 3D CT arrangements suggests that cell-type-specific differences in radial CT arrangements are not solely due to geometrical constraints that result from nuclear shape differences. We also found gene-density-correlated arrangements of higher-order chromatin shared by all human cell types studied so far. Chromatin domains, which are gene-poor, form a layer beneath the nuclear envelope, while gene-dense chromatin is enriched in the nuclear interior. We discuss the possible functional implications of this finding. PMID:15839726

  6. HAMLET interacts with histones and chromatin in tumor cell nuclei.

    PubMed

    Düringer, Caroline; Hamiche, Ali; Gustafsson, Lotta; Kimura, Hiroshi; Svanborg, Catharina

    2003-10-24

    HAMLET is a folding variant of human alpha-lactalbumin in an active complex with oleic acid. HAMLET selectively enters tumor cells, accumulates in their nuclei and induces apoptosis-like cell death. This study examined the interactions of HAMLET with nuclear constituents and identified histones as targets. HAMLET was found to bind histone H3 strongly and to lesser extent histones H4 and H2B. The specificity of these interactions was confirmed using BIAcore technology and chromatin assembly assays. In vivo in tumor cells, HAMLET co-localized with histones and perturbed the chromatin structure; HAMLET was found associated with chromatin in an insoluble nuclear fraction resistant to salt extraction. In vitro, HAMLET bound strongly to histones and impaired their deposition on DNA. We conclude that HAMLET interacts with histones and chromatin in tumor cell nuclei and propose that this interaction locks the cells into the death pathway by irreversibly disrupting chromatin organization.

  7. Radioprotective Thiolamines WR-1065 and WR-33278 Selectively Denature Nonhistone Nuclear Proteins

    NASA Technical Reports Server (NTRS)

    Booth, Valerie K.; Roberts, Jeanette C.; Warters, Raymond L.; Wilmore, Britta H.; Lepock, James R.

    2000-01-01

    Differential scanning calorimetry was used to study the interactions of nuclei isolated from Chinese hamster V79 cells with the radioprotector WR-1065, other thiol compounds, and polyamines. Differential scanning calorimetry monitors denaturation of macromolecules and resolves the major nuclear components (e.g. constrained and relaxed DNA, nucleosome core, and nuclear matrix) of intact nuclei on the basis of thermal stability. WR-1065 treatment (0.5-10 mM) of isolated nuclei led to the irreversible denaturation of nuclear proteins, a fraction of which are nuclear matrix proteins. Denaturation of 50% of the total nonhistone nuclear protein content of isolated nuclei occurred after exposure to 4.7 mM WR-1065 for 20 min at 23 C. In addition, a 22% increase in the insoluble protein content of nuclei isolated from V79 cells that had been treated with 4 mM WR-1065 for 30 min at 37 C was observed, indicating that WR-1065-induced protein denaturation occurs not only in isolated nuclei but also in the nuclei of intact cells. From the extent of the increase in insoluble protein in the nucleus, protein denaturation by WR-1065 is expected to contribute to drug toxicity at concentrations greater than approximately 4 mM. WR-33278, the disulfide form of WR1065, was approximately twice as effective as the free thiol at denaturing nuclear proteins. The proposed mechanism for nucleoprotein denaturation is through direct interactions with protein cysteine groups with the formation of destabilizing protein-WR-1065 disulfides. In comparison to its effect on nuclear proteins in isolated nuclei, WR-1065 had only a very small effect on non-nuclear proteins of whole cells, isolated nuclear matrix, or the thiol-rich Ca (2+) ATPase of sarcoplasmic reticulum, indicating that WR-1065 can effectively denature protein only inside an intact nucleus, probably due to the increased concentration of the positively charged drug in the vicinity of DNA.

  8. Light scattering microscopy measurements of single nuclei compared with GPU-accelerated FDTD simulations

    NASA Astrophysics Data System (ADS)

    Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin

    2016-04-01

    Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.

  9. Light scattering microscopy measurements of single nuclei compared with GPU-accelerated FDTD simulations.

    PubMed

    Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin

    2016-04-07

    Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.

  10. Inheritance of gene density–related higher order chromatin arrangements in normal and tumor cell nuclei

    PubMed Central

    Cremer, Marion; Küpper, Katrin; Wagler, Babett; Wizelman, Leah; Hase, Johann v.; Weiland, Yanina; Kreja, Ludwika; Diebold, Joachim; Speicher, Michael R.; Cremer, Thomas

    2003-01-01

    A gene density–related difference in the radial arrangement of chromosome territories (CTs) was previously described for human lymphocyte nuclei with gene-poor CT #18 located toward the nuclear periphery and gene-dense CT #19 in the nuclear interior (Croft, J.A., J.M. Bridger, S. Boyle, P. Perry, P. Teague, and W.A. Bickmore. 1999. J. Cell Biol. 145:1119–1131). Here, we analyzed the radial distribution of chromosome 18 and 19 chromatin in six normal cell types and in eight tumor cell lines, some of them with imbalances and rearrangements of the two chromosomes. Our findings demonstrate that a significant difference in the radial distribution of #18 and #19 chromatin is a common feature of higher order chromatin architecture in both normal and malignant cell types. However, in seven of eight tumor cell lines, the difference was less pronounced compared with normal cell nuclei due to a higher fraction of nuclei showing an inverted CT position, i.e., a CT #18 located more internally than a CT #19. This observation emphasizes a partial loss of radial chromatin order in tumor cell nuclei. PMID:12952935

  11. Analogous Gamow-Teller and M1 Transitions in Tz = ±½ Mirror Nuclei and in Tz = ±1, 0 Triplet Nuclei relevant to Low-energy Super GT state

    NASA Astrophysics Data System (ADS)

    Fujita, Yoshitaka; Fujita, Hirohiko; Tanumura, Yusuke

    2018-05-01

    Nuclei have spin- and isospin-degrees of freedom. Therefore, Gamow-Teller (GT) transitions caused by the στ operator (spin-isospin operator) are unique tools for the studies of nuclear structure as well as nuclear interactions. They can be studied in β decays as well as charge-exchange (CE) reactions. Similarly, M1 γ decays are mainly caused by the στ operator. Combined studies of these transitions caused by Weak, Strong, and Electro-Magnetic interactions provide us a deeper understanding of nuclear spin-isospin-type transitions. We first compare the strengths of analogous GT and M1 transitions in the A = 27, Tz = ±½ mirror nuclei 27Al and 27Si. The comparison is extended to the Tz = ±1, 0 nuclei. The strength of GT transition from the ground state (g.s.) of 42Ca to the 0.611 MeV first Jπ = 1+ state in 42Sc is compared with that of the analogous M1 transition from the 0.611 MeV state to the T = 1, 0+ g.s. (isobaric analog state: IAS) in 42Sc. The 0.611 MeV state has the property of Low-energy Super GT (LeSGT) state, because it carries the main part of the GT strength of all available transitions from the g.s. of 42Ca (and 42Ti) to the Jπ = 1+ GT states in 42Sc.

  12. Study of nuclear multifragmentation induced by ultrarelativistic μ-mesons in nuclear track emulsion

    NASA Astrophysics Data System (ADS)

    Artemenkov, D. A.; Bradnova, V.; Firu, E.; Kornegrutsa, N. K.; Haiduc, M.; Mamatkulov, K. Z.; Kattabekov, R. R.; Neagu, A.; Rukoyatkin, P. A.; Rusakova, V. V.; Stanoeva, R.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.

    2016-02-01

    Exposures of test samples of nuclear track emulsion were analyzed. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsions with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three α-particles are indicative of the nuclear-diffraction interaction mechanism.

  13. Symmetry remnants in the face of competing interactions in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leviatan, A., E-mail: ami@phys.huji.ac.il; Macek, M., E-mail: michal.macek@yale.edu

    2015-10-15

    Detailed description of nuclei necessitates model Hamiltonians which break most dynamical symmetries. Nevertheless, generalized notions of partial and quasi dynamical symmetries may still be applicable to selected subsets of states, amidst a complicated environment of other states. We examine such scenarios in the context of nuclear shape-phase transitions.

  14. [Some morphometric parameters of nucleoli and nuclei in invasive ductal breast carcinomas in women].

    PubMed

    Karpinska-Kaczmarczyk, Katarzyna

    2009-01-01

    The purpose of this study was to correlate seven morphometric parameters of nucleoli and nuclei of invasive ductal cancer cells with some clinico-pathological factors such as age, tumor size, axillary lymph node status, MIB-1 proliferation index, and estrogen receptor expression in tumor cells. Methyl green-pyronin Y (MG-PY) was used for simultaneous staining of nuclei and nucleoli in histological sections of 150 invasive ductal breast carcinomas. Next, morphometric parameters of nucleoli and nuclei of tumor cells were measured with computerized image analysis. Nuclear area and number of nucleoli in breast tumor cells were greater in younger axillary node-negative patients. The number of nucleoli and nucleolar shape polymorphism were reduced in tumors measuring 20 mm or less or with lower histological grade. Nuclear area, nucleolar number, and nucleolar polymorphism in carcinomas with low proliferation index and estrogen receptor expression were smaller than in carcinomas with high proliferation index and no estrogen receptor expression. Nucleolar area in primary tumors without axillary node involvement was greater than in tumors with more than three axillary nodes positive. MG-PY selectively and simultaneously stains nucleoli and nuclei of tumor cells enabling standardized and reproducible examination of these structures with computerized image analysis. Univariate statistical analysis disclosed that some morphometric parameters of nucleoli and nuclei of tumor cells correlated with several established clinico-pathological prognostic factors. Therefore, the prognostic significance of these parameters should be studied in a larger group of patients with invasive ductal breast carcinomas.

  15. Surface symmetry energy of nuclear energy density functionals

    NASA Astrophysics Data System (ADS)

    Nikolov, N.; Schunck, N.; Nazarewicz, W.; Bender, M.; Pei, J.

    2011-03-01

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals (EDFs). Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band heads in Hg and Pb isotopes and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear EDFs. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  16. Nuclear Data Sheets for A = 69

    NASA Astrophysics Data System (ADS)

    Nesaraja, C. D.

    2014-01-01

    Experimental data on ground- and excited-state properties for all known nuclei with mass number A = 69 have been compiled and evaluated. States populated in radioactive decay, as well as in nuclear reactions, have been considered. For these nuclei, level and decay schemes, as well as tables of nuclear properties, are given in detail. This work supersedes the 2000 evaluation by M.R. Bhat and J.K. Tuli (2000Bh05).

  17. Nuclear Data Sheets for A=69

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesaraja, C.D.

    Experimental data on ground– and excited–state properties for all known nuclei with mass number A=69 have been compiled and evaluated. States populated in radioactive decay, as well as in nuclear reactions, have been considered. For these nuclei, level and decay schemes, as well as tables of nuclear properties, are given in detail. This work supersedes the 2000 evaluation by M.R. Bhat and J.K. Tuli (2000Bh05)

  18. Study of nuclear matter in hard proton-nuclei and nuclei-nuclei collisions at the U70 accelerator (FLUKTON project proposal)

    NASA Astrophysics Data System (ADS)

    Antonov, N. N.; Baldin, A. A.; Viktorov, V. A.; Gapienko, V. A.; Gapienko, G. S.; Gres, V. N.; Ilyushin, M. A.; Korotkov, V. A.; Mysnik, A. I.; Prudkoglyad, A. F.; Pryanikov, D. S.; Semak, A. A.; Stavinsky, A. V.; Terekhov, V. I.; Uglekov, V. Ya.; Ukhanov, M. N.; Chuiko, B. V.; Shimansky, S. S.

    2017-11-01

    A two-arm spectrometer FLUKTON for investigations in the field of relativistic nuclear physics at U70 energies is proposed to be constructed on base of the existing detector SPIN (IHEP, Protvino). The main objective is to obtain new data on clusters of cold superdense nuclear matter. Interaction of a high intensity proton beam with nuclear targets and an ion beam with liquid hydrogen and nuclear targets will be studied.

  19. Nuclear migration events throughout development

    PubMed Central

    Bone, Courtney R.

    2016-01-01

    ABSTRACT Moving the nucleus to a specific position within the cell is an important event during many cell and developmental processes. Several different molecular mechanisms exist to position nuclei in various cell types. In this Commentary, we review the recent progress made in elucidating mechanisms of nuclear migration in a variety of important developmental models. Genetic approaches to identify mutations that disrupt nuclear migration in yeast, filamentous fungi, Caenorhabditis elegans, Drosophila melanogaster and plants led to the identification of microtubule motors, as well as Sad1p, UNC-84 (SUN) domain and Klarsicht, ANC-1, Syne homology (KASH) domain proteins (LINC complex) that function to connect nuclei to the cytoskeleton. We focus on how these proteins and various mechanisms move nuclei during vertebrate development, including processes related to wound healing of fibroblasts, fertilization, developing myotubes and the developing central nervous system. We also describe how nuclear migration is involved in cells that migrate through constricted spaces. On the basis of these findings, it is becoming increasingly clear that defects in nuclear positioning are associated with human diseases, syndromes and disorders. PMID:27182060

  20. A new equation of state for core-collapse supernovae based on realistic nuclear forces and including a full nuclear ensemble

    NASA Astrophysics Data System (ADS)

    Furusawa, S.; Togashi, H.; Nagakura, H.; Sumiyoshi, K.; Yamada, S.; Suzuki, H.; Takano, M.

    2017-09-01

    We have constructed a nuclear equation of state (EOS) that includes a full nuclear ensemble for use in core-collapse supernova simulations. It is based on the EOS for uniform nuclear matter that two of the authors derived recently, applying a variational method to realistic two- and three-body nuclear forces. We have extended the liquid drop model of heavy nuclei, utilizing the mass formula that accounts for the dependences of bulk, surface, Coulomb and shell energies on density and/or temperature. As for light nuclei, we employ a quantum-theoretical mass evaluation, which incorporates the Pauli- and self-energy shifts. In addition to realistic nuclear forces, the inclusion of in-medium effects on the full ensemble of nuclei makes the new EOS one of the most realistic EOSs, which covers a wide range of density, temperature and proton fraction that supernova simulations normally encounter. We make comparisons with the FYSS EOS, which is based on the same formulation for the nuclear ensemble but adopts the relativistic mean field theory with the TM1 parameter set for uniform nuclear matter. The new EOS is softer than the FYSS EOS around and above nuclear saturation densities. We find that neutron-rich nuclei with small mass numbers are more abundant in the new EOS than in the FYSS EOS because of the larger saturation densities and smaller symmetry energy of nuclei in the former. We apply the two EOSs to 1D supernova simulations and find that the new EOS gives lower electron fractions and higher temperatures in the collapse phase owing to the smaller symmetry energy. As a result, the inner core has smaller masses for the new EOS. It is more compact, on the other hand, due to the softness of the new EOS and bounces at higher densities. It turns out that the shock wave generated by core bounce is a bit stronger initially in the simulation with the new EOS. The ensuing outward propagations of the shock wave in the outer core are very similar in the two simulations, which

  1. The compression-mode giant resonances and nuclear incompressibility

    NASA Astrophysics Data System (ADS)

    Garg, Umesh; Colò, Gianluca

    2018-07-01

    The compression-mode giant resonances, namely the isoscalar giant monopole and isoscalar giant dipole modes, are examples of collective nuclear motion. Their main interest stems from the fact that one hopes to extrapolate from their properties the incompressibility of uniform nuclear matter, which is a key parameter of the nuclear Equation of State (EoS). Our understanding of these issues has undergone two major jumps, one in the late 1970s when the Isoscalar Giant Monopole Resonance (ISGMR) was experimentally identified, and another around the turn of the millennium since when theory has been able to start giving reliable error bars to the incompressibility. However, mainly magic nuclei have been involved in the deduction of the incompressibility from the vibrations of finite nuclei. The present review deals with the developments beyond all this. Experimental techniques have been improved, and new open-shell, and deformed, nuclei have been investigated. The associated changes in our understanding of the problem of the nuclear incompressibility are discussed. New theoretical models, decay measurements, and the search for the evolution of compressional modes in exotic nuclei are also discussed.

  2. Triangle Universities Nuclear Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    This report contains brief papers that discusses the following topics: Fundamental Symmetries in the Nucleus; Internucleon Interactions; Dynamics of Very Light Nuclei; Facets of the Nuclear Many-Body Problem; and Nuclear Instruments and Methods.

  3. Pairing and (9/2)n configuration in nuclei in the 208Pb region

    NASA Astrophysics Data System (ADS)

    Stepanov, M.; Imasheva, L.; Ishkhanov, B.; Tretyakova, T.

    2018-04-01

    Excited states in low-energy spectra in nuclei near 208Pb are considered. The pure (j = 9/2)n configuration approximation with delta-force is used for ground state multiplet calculations. The multiplet splitting is determined by the pairing energy, which can be defined from the even-odd straggering of the nuclear masses. For the configurations with more than two valence nucleons, the seniority scheme is used. The results of the calculations agree with the experimental data for both stable and exotic nuclei within 0.06-6.16%. Due to simplicity and absence of the fitted parameters, the model can be easily applied for studies of nature of the excited states in a wide range of nuclei.

  4. Proflavine sensitivity of RNA processing in isolated nuclei.

    PubMed Central

    Yannarell, A; Niemann, M; Schumm, D E; Webb, T E

    1977-01-01

    The intercalating agent proflavine inhibits the processing and subsequent release of preformed messenger RNA and ribosomal RNA from isolated liver nuclei to surrogate cytoplasm. The direct effect of proflavine on these processes, as monitored in a reconstituted cell-free system, supports the theory that base-paired segments (i.e. hairpin loops) in the precursor RNA's are involved as recognition sites in nuclear RNA processing. PMID:866181

  5. Neuronal nuclei isolation from human postmortem brain tissue.

    PubMed

    Matevossian, Anouch; Akbarian, Schahram

    2008-10-01

    Neurons in the human brain become postmitotic largely during prenatal development, and thus maintain their nuclei throughout the full lifespan. However, little is known about changes in neuronal chromatin and nuclear organization during the course of development and aging, or in chronic neuropsychiatric disease. However, to date most chromatin and DNA based assays (other than FISH) lack single cell resolution. To this end, the considerable cellular heterogeneity of brain tissue poses a significant limitation, because typically various subpopulations of neurons are intermingled with different types of glia and other non-neuronal cells. One possible solution would be to grow cell-type specific cultures, but most CNS cells, including neurons, are ex vivo sustainable, at best, for only a few weeks and thus would provide an incomplete model for epigenetic mechanisms potentially operating across the full lifespan. Here, we provide a protocol to extract and purify nuclei from frozen (never fixed) human postmortem brain. The method involves extraction of nuclei in hypotonic lysis buffer, followed by ultracentrifugation and immunotagging with anti-NeuN antibody. Labeled neuronal nuclei are then collected separately using fluorescence-activated sorting. This method should be applicable to any brain region in a wide range of species and suitable for chromatin immunoprecipitation studies with site- and modification-specific anti-histone antibodies, and for DNA methylation and other assays.

  6. Energy-weighted sum rules connecting ΔZ = 2 nuclei within the SO(8) model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Štefánik, Dušan; Šimkovic, Fedor; Faessler, Amand

    2013-12-30

    Energy-weighted sum rules associated with ΔZ = 2 nuclei are obtained for the Fermi and the Gamow-Teller operators within the SO(8) model. It is found that there is a dominance of contribution of a single state of the intermediate nucleus to the sum rule. The results confirm founding obtained within the SO(5) model that the energy-weighted sum rules of ΔZ = 2 nuclei are governed by the residual interactions of nuclear Hamiltonian. A short discussion concerning some aspects of energy weighted sum rules in the case of realistic nuclei is included.

  7. Heaviest Nuclei: New Element with Atomic Number 117

    ScienceCinema

    Oganessian, Yuri

    2018-01-24

    One of the fundamental outcomes of the nuclear shell model is the prediction of the 'stability islands' in the domain of the hypothetical super heavy elements. The talk is devoted to the experimental verification of these predictions - the synthesis and study of both the decay and chemical properties of the super heavy elements. The discovery of a new chemical element with atomic number Z=117 is reported. The isotopes 293117 and 294117 were produced in fusion reactions between 48Ca and 249Bk. Decay chains involving 11 new nuclei were identified by means of the Dubna gas-filled recoil separator. The measured decay properties show a strong rise of stability for heavier isotopes with Z =111, validating the concept of the long sought island of enhanced stability for heaviest nuclei.

  8. Study of ^{14}C Cluster Decay Half-Lives of Heavy Deformed Nuclei

    NASA Astrophysics Data System (ADS)

    Shamami, S. Rahimi; Pahlavani, M. R.

    2018-01-01

    A theoretical model based on deformed Woods-Saxon, Coulomb and centrifugal terms are constructed to evaluate the half-lives for the cluster radioactivity of various super heavy nuclei. Deformation have been applied on all parts of their potential containing nuclear barrier for cluster decay. Also, both parent and daughter nuclei are considered to be deformed. The calculated results of ^{14}C cluster radioactivity half-lives are compared with available experimental data. A satisfactory agreement between theoretical and measured data is achieved. Also, obtained half-lives for each decay family is agreed with Geiger-Nuttall law.

  9. Near-threshold J/ψ-meson photoproduction on nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paryev, E. Ya.; Kiselev, Yu. T., E-mail: yurikis@itep.ru

    On the basis of the first-collision model that relies on the nuclear spectral function and which includes incoherent processes involving charmonium production in proton–nucleon collisions, the photoproduction of J/ψ mesons on nuclei is considered at energies close to the threshold for their production on a nucleon. The absorption of final J/ψ mesons, their formation length, and the binding and Fermi motion of target nucleons are taken into account in this model along with the effect of the nuclear potential on these processes. The A dependences of the absolute and relative charmonium yields are calculated together with absolute and relative excitationmore » functions under various assumptions on the magnitude of the cross section for J/ψN absorption, the J/ψ-meson formation length, and their inmedium modification. It is shown that, at energies above the threshold, these features are virtually independent of the formation length and the change in the J/ψ-meson mass in nuclear matter but are rather highly sensitive to the cross section for J/ψN interaction. The calculations performed in the present study can be used to determine the unknown cross section for J/ψ-meson absorption in nuclei from a comparison of their results with data expected from experiments in the Hall C of the CEBAF (USA) facility upgraded to the energy of 12 GeV. It is also shown that the absolute and relative excitation functions for J/ψ mesons in photon–nucleus reactions at subthreshold energies are sensitive to the change in the meson mass and, hence, carry information about the properties of charmonium in nuclear matter.« less

  10. On the way to a microscopic derivation of covariant density functionals in nuclei

    NASA Astrophysics Data System (ADS)

    Ring, Peter

    2018-02-01

    Several methods are discussed to derive covariant density functionals from the microscopic input of bare nuclear forces. In a first step there are semi-microscopic functionals, which are fitted to ab-initio calculations of nuclear matter and depend in addition on very few phenomenological parameters. They are able to describe nuclear properties with the same precision as fully phenomenological functionals. In a second step we present first relativistic Brueckner-Hartree-Fock calculations in finite nuclei in order to study properties of such functionals, which cannot be obtained from nuclear matter calculations.

  11. Immunological and biochemical evidence for nuclear localization of annexin in peas

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Dauwalder, M.; Roux, S. J.

    1998-01-01

    Immunofluorescent localization of annexins using an anti-pea annexin polyclonal antibody (anti-p35) in pea (Pisum sativum) leaf and stem epidermal peels showed staining of the nuclei and the cell periphery. Nuclear staining was also seen in cell teases prepared from pea plumules. The amount of nuclear stain was reduced both by fixation time and by dehydration and organic solvent treatment. Observation with confocal microscopy demonstrated that the anti-p35 stain was diffusely distributed throughout the nuclear structure. Immunoblots of purified nuclei, nuclear envelope matrix, nucleolar, and chromatin fractions showed a cross-reactive protein band of 35 kDa. These data are the first to show annexins localized in plant cell nuclei where they may play a role in nuclear function.

  12. Microspore development of three coniferous species: affinity of nuclei for flavonoids.

    PubMed

    Feucht, Walter; Treutter, Dieter; Dithmar, Heike; Polster, Jürgen

    2008-12-01

    The nuclear localization of blue-staining flavanols was investigated histochemically throughout microsporogenesis in yellow cypress (Callitropsis nootkatensis (D. Don) Oerst., formerly Cupressus nootkatensis), juniper (Juniperus communis L.) and yew (Taxus baccata L.). During meiotic development, both the cytoplasm and nuclei of microspores of all species contained varying amounts of flavanols; however, the flavanols were largely confined to the nuclei in microspores just released from tetrads. Quantification by HPLC analysis indicated that, in all species, catechin and epicatechin were the dominant nuclear flavanols. At the early free microspore stage, the nuclear flavanols were barely detectable in all species, but they increased fivefold on incubation in the presence of 0.1 mM benzylaminopurine (BA) or zeatin. Histochemical studies revealed that, in addition to non-fluorescing flavanols, microspores contained yellow-fluorescing flavonoids, which yielded a distinct HPLC flavonoid profile for each species. In yellow cypress, the hydrolyzed flavonoids were identified as quercetin, apigenin, kaempferol and luteolin, whereas only quercetin and myricetin were found in microspores of juniper and in anthers of yew. Application of a UV-VIS titration technique revealed that the aglycone quercetin seems to interact more strongly with histone H3 than either glycoside rutin or kaempferol.

  13. Boundary-to-Marker Evidence-Controlled Segmentation and MDL-Based Contour Inference for Overlapping Nuclei.

    PubMed

    Song, Jie; Xiao, Liang; Lian, Zhichao

    2017-03-01

    This paper presents a novel method for automated morphology delineation and analysis of cell nuclei in histopathology images. Combining the initial segmentation information and concavity measurement, the proposed method first segments clusters of nuclei into individual pieces, avoiding segmentation errors introduced by the scale-constrained Laplacian-of-Gaussian filtering. After that a nuclear boundary-to-marker evidence computing is introduced to delineate individual objects after the refined segmentation process. The obtained evidence set is then modeled by the periodic B-splines with the minimum description length principle, which achieves a practical compromise between the complexity of the nuclear structure and its coverage of the fluorescence signal to avoid the underfitting and overfitting results. The algorithm is computationally efficient and has been tested on the synthetic database as well as 45 real histopathology images. By comparing the proposed method with several state-of-the-art methods, experimental results show the superior recognition performance of our method and indicate the potential applications of analyzing the intrinsic features of nuclei morphology.

  14. Critical insights into nuclear collectivity from complementary nuclear spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.; Wood, J. L.; Yates, S. W.

    2018-06-01

    Low-energy collectivity of nuclei has been, and is being, characterized in a critical manner using data from a variety of spectroscopic methods, including Coulomb excitation, β decay, inelastic scattering of charged and uncharged particles, transfer reactions, etc. In addition to level energies and spins, transition multipolarities and intensities, lifetimes, and nuclear moments are available. The totality of information from these probes must be considered in achieving an accurate vision of the excitations in nuclei and determining the applicability of nuclear models. From these data, major changes in our view of low-energy collectivity in nuclei have emerged; most notable is the demise of the long-held view of low-energy quadrupole collectivity near closed shells as due to vibrations about a spherical equilibrium shape. In this contribution, we focus on the basic predictions of the spherical harmonic vibrator limit of the Bohr Hamiltonian. Properties such as B(E2) values, quadrupole moments, E0 strengths, etc are outlined. Using the predicted properties as a guide, evidence is cited for and against the existence of vibrational states, and especially multi-phonon states, in nuclei that are, or historically were considered to be, spherical or have a nearly spherical shape in their ground state. It is found that very few of the nuclei that were identified in the last major survey seeking nearly spherical harmonic vibrators satisfy the more stringent guidelines presented herein. Details of these fundamental shifts in our view of low-energy collectivity in nuclei are presented.

  15. Current Status of Nuclear Physics Research

    NASA Astrophysics Data System (ADS)

    Bertulani, Carlos A.; Hussein, Mahir S.

    2015-12-01

    In this review, we discuss the current status of research in nuclear physics which is being carried out in different centers in the world. For this purpose, we supply a short account of the development in the area which evolved over the last nine decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data became available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as 4He, 7Li, 9Be, etc. and up the ladder to heavier bound nuclei containing up to more than 200 nucleons. Clearly, statistical mechanics, usually employed in systems with very large number of particles, would seemingly not work for such finite systems as the nuclei, neither do other theories which are applicable to condensed matter. The richness of nuclear physics stems from these restrictions. New theories and models are presently being developed. Theories of the structure and reactions of neutron-rich and proton-rich nuclei, called exotic nuclei, halo nuclei, or Borromean nuclei, deal with the wealth of experimental data that became available in the last 35 years. Furthermore, nuclear astrophysics and stellar and Big Bang nucleosynthesis have become a more mature subject. Due to limited space, this review only covers a few selected topics, mainly those with which the authors have worked on. Our aimed potential readers of this review are nuclear physicists and physicists in other areas, as well as graduate students interested in

  16. Atomic Mass and Nuclear Binding Energy for I-131 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-131 (Iodine, atomic number Z = 53, mass number A = 131).

  17. Atomic Mass and Nuclear Binding Energy for F-22 (Fluorine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope F-22 (Fluorine, atomic number Z = 9, mass number A = 22).

  18. Dual origin of pairing in nuclei

    NASA Astrophysics Data System (ADS)

    Idini, A.; Potel, G.; Barranco, F.; Vigezzi, E.; Broglia, R. A.

    2016-11-01

    The pairing correlations of the nucleus 120Sn are calculated by solving the Nambu-Gor'kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong 1 S 0 short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- ( v p bare) and long-range ( v p ind) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.

  19. Nuclear Structure Aspects in Nuclear Astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Michael Scott

    2006-12-01

    Nuclear Astrophysics as a broad and diverse field of study can be viewed as a magnifier of the impact of microscopic processes on the evolution of macroscopic events. One of the primary goals in Nuclear Astrophysics is the understanding of the nucleosynthesis processes that take place in the cosmos and the simulation of the correlated stellar and explosive burning scenarios. These simulations are strongly dependent on the input from Nuclear Physics which sets the time scale for all stellar dynamic processes--from giga-years of stellar evolution to milliseconds of stellar explosions--and provides the basis for most of the signatures that wemore » have for the interpretation of these events--from stellar luminosities, elemental and isotopic abundances to neutrino flux from distant supernovae. The Nuclear Physics input comes through nuclear structure, low energy reaction rates, nuclear masses, and decay rates. There is a common perception that low energy reaction rates are the most important component of the required nuclear physics input; however, in this article we take a broader approach and present an overview of the close correlation between various nuclear structure aspects and their impact on nuclear astrophysics. We discuss the interplay between the weak and the strong forces on stellar time scales due to the limitations they provide for the evolution of slow and rapid burning processes. The effects of shell structure in nuclei on stellar burning processes as well as the impact of clustering in nuclei is outlined. Furthermore we illustrate the effects of the various nuclear structure aspects on the major nucleosynthesis processes that have been identified in the last few decades. We summarize and provide a coherent overview of the impact of all aspects of nuclear structure on nuclear astrophysics.« less

  20. The effect of polychlorinated naphthalenes and tributyltin on the occurrence of aberrant nuclei in erythroid cells of medaka

    USGS Publications Warehouse

    Talykina, Melaniya G.; Papoulias, Diana M.; Allert, J. Alan; Izyuov, Y.U.; Villalobos, Sergio A.; Giesy, John P.; Tillitt, Donald E.

    2003-01-01

    The micronucleus test using erythrocytes of the peripheral blood of fish is often conducted to evaluate the genotoxic effects of pollutants under experimental and natural conditions. This report presents information on the production of micronuclei and other nuclear anomalies in erythrocytes of medaka (Oryzias latipes) exposed to three polychlorinated naphthalene (PCN) formulations (Halowaxes 1014, 1031 and 1051) or tributyltin (TBT). Three types of deviation in the morphology of interphase nuclei were observed in medaka erythrocytes: micronuclei, nuclei fragmented into two equal or unequal parts, and nuclei at different stages of invagination. The number of erythrocytes with nuclear anomalies typically increased after chemical exposure. However, differential dose-response patterns were observed with exposures to PCNs or TBT. Polychlorinated naphthalenes caused genotoxicity, while TBT caused an amitotic effect. Gender did not influence the frequency of nuclear anomalies. This is the first report on the application of the piscine micronuclear test with medaka and is the first study that investigated the potential for detecting micronuclei in erythrocytes from adult medaka exposed in ovo to mutagens.

  1. Resource Letter NSM-1: New insights into the nuclear shell model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, David Jarvis; Hamilton, J. H.

    2011-01-01

    This Resource Letter provides a guide to the literature on the spherical shell model as applied to nuclei. The nuclear shell model describes the structure of nuclei starting with a nuclear core developed by the classical neutron and proton magic numbers N,Z=2,8,20,28,50,82, 126, where gaps occur in the single-particle energies as a shell is filled, and the interactions of valence nucleons that reside beyond that core. Various modern extensions of this model for spherical nuclei are likewise described. Significant extensions of the nuclear shell model include new magic numbers for spherical nuclei and now for deformed nuclei as well. Whenmore » both protons and neutrons have shell gaps at the same spherical or deformed shapes, they can reinforce each other to give added stability to that shape and lead to new magic numbers. The vanishings of the classical spherical shell model energy gaps and magic numbers in new neutron-rich nuclei are described. Spherical and deformed shell gaps are seen to be critical for the existence of elements with Z > 100.« less

  2. Nuclear Data Sheets for A = 138

    NASA Astrophysics Data System (ADS)

    Sonzogni, A. A.

    2003-03-01

    Experimental data on ground- and excited-state properties for all known nuclei with mass number A=138 have been compiled and evaluated. States populated in radioactive decay as well as in nuclear reactions have been considered. For these nuclei, level and decay schemes, as well as tables of nuclear properties are given. This work supersedes the 1995 evaluation by J.K. Tuli (1995Tu01). Manuscripts published before December 2002 have been included in this work.

  3. Nuclear characteristics of the endometrial cytology: liquid-based versus conventional preparation.

    PubMed

    Norimatsu, Yoshiaki; Shigematsu, Yumie; Sakamoto, Shingo; Ohsaki, Hiroyuki; Yanoh, Kenji; Kawanishi, Namiki; Kobayashi, Tadao K

    2013-02-01

    The aim of this study was to assess the utility of liquid-based cytologic preparation (LP) compared with conventional preparation (CP) for the assessment of nuclear findings in endometrial glandular and stromal breakdown (EGBD) which may be misdiagnosed as carcinoma in EGBD cases. The material consists of cytologic smears including 20 cases of proliferative endometrium (PE), 20 cases of EGBD, and 20 cases of endometrioid adenocarcinoma grade1 (G1) for which histopathological diagnosis was obtained by endometrial curettage at the JA Suzuka General Hospital. Nuclear findings were examined in PE cells, EGBD-stromal cells, EGBD-metaplastic cells, and G1 cells, respectively. It was examined about the following items; (1) nuclear shape; (2) A long/minor axis ratio in cell nuclei; (3) an area of cell nuclei; (4) overlapping nuclei. Results are as follows: (1) nuclear shape; as for the reniform shape of EGBD-stromal cells and spindle shape of EGBD-metaplastic cells, the ratio of the LP method was a higher value than the CP method. (2) The long axis and area of cell nuclei; LP in all groups was a recognizable tendency for nuclear shrinkage. (3) The long/minor axis ratio in cell nuclei; only EGBD-metaplastic cells recognize a significant difference between CP and LP. (4) Overlapping nuclei; LP was a higher value in comparison with CP in the other groups except PE cells, and the degree of overlapping nuclei was enhanced about three times. Therefore, although a cell of LP has a shrinking tendency, (1) it is excellent that LP preserves a characteristic of nuclear shape than CP; (2) a cellular characteristic becomes clearer, because three-dimensional architecture of LP is preserved of than CP. As for the standard preparation method for endometrial cytology samples, we considered that a concrete introduction of the LP method poses no problems. Copyright © 2011 Wiley Periodicals, Inc.

  4. Phase transition dynamics for hot nuclei

    NASA Astrophysics Data System (ADS)

    Borderie, B.; Le Neindre, N.; Rivet, M. F.; Désesquelles, P.; Bonnet, E.; Bougault, R.; Chbihi, A.; Dell'Aquila, D.; Fable, Q.; Frankland, J. D.; Galichet, E.; Gruyer, D.; Guinet, D.; La Commara, M.; Lombardo, I.; Lopez, O.; Manduci, L.; Napolitani, P.; Pârlog, M.; Rosato, E.; Roy, R.; St-Onge, P.; Verde, G.; Vient, E.; Vigilante, M.; Wieleczko, J. P.; Indra Collaboration

    2018-07-01

    An abnormal production of events with almost equal-sized fragments was theoretically proposed as a signature of spinodal instabilities responsible for nuclear multifragmentation in the Fermi energy domain. On the other hand finite size effects are predicted to strongly reduce this abnormal production. High statistics quasifusion hot nuclei produced in central collisions between Xe and Sn isotopes at 32 and 45 A MeV incident energies have been used to definitively establish, through the experimental measurement of charge correlations, the presence of spinodal instabilities. N/Z influence was also studied.

  5. Large-scale evaluation of β -decay rates of r -process nuclei with the inclusion of first-forbidden transitions

    NASA Astrophysics Data System (ADS)

    Marketin, T.; Huther, L.; Martínez-Pinedo, G.

    2016-02-01

    Background: r -process nucleosynthesis models rely, by necessity, on nuclear structure models for input. Particularly important are β -decay half-lives of neutron-rich nuclei. At present only a single systematic calculation exists that provides values for all relevant nuclei making it difficult to test the sensitivity of nucleosynthesis models to this input. Additionally, even though there are indications that their contribution may be significant, the impact of first-forbidden transitions on decay rates has not been systematically studied within a consistent model. Purpose: Our goal is to provide a table of β -decay half-lives and β -delayed neutron emission probabilities, including first-forbidden transitions, calculated within a fully self-consistent microscopic theoretical framework. The results are used in an r -process nucleosynthesis calculation to asses the sensitivity of heavy element nucleosynthesis to weak interaction reaction rates. Method: We use a fully self-consistent covariant density functional theory (CDFT) framework. The ground state of all nuclei is calculated with the relativistic Hartree-Bogoliubov (RHB) model, and excited states are obtained within the proton-neutron relativistic quasiparticle random phase approximation (p n -RQRPA). Results: The β -decay half-lives, β -delayed neutron emission probabilities, and the average number of emitted neutrons have been calculated for 5409 nuclei in the neutron-rich region of the nuclear chart. We observe a significant contribution of the first-forbidden transitions to the total decay rate in nuclei far from the valley of stability. The experimental half-lives are in general well reproduced for even-even, odd-A , and odd-odd nuclei, in particular for short-lived nuclei. The resulting data table is included with the article as Supplemental Material. Conclusions: In certain regions of the nuclear chart, first-forbidden transitions constitute a large fraction of the total decay rate and must be

  6. Self-consistent calculation of the nuclear composition in hot and dense stellar matter

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Mishustin, Igor

    2017-03-01

    We investigate the mass fractions and in-medium properties of heavy nuclei in stellar matter at characteristic densities and temperatures for supernova (SN) explosions. The individual nuclei are described within the compressible liquid-drop model taking into account modifications of bulk, surface, and Coulomb energies. The equilibrium properties of nuclei and the full ensemble of heavy nuclei are calculated self-consistently. It is found that heavy nuclei in the ensemble are either compressed or decompressed depending on the isospin asymmetry of the system. The compression or decompression has a little influence on the binding energies, total mass fractions, and average mass numbers of heavy nuclei, although the equilibrium densities of individual nuclei themselves are changed appreciably above one-hundredth of normal nuclear density. We find that nuclear structure in the single-nucleus approximation deviates from the actual one obtained in the multinucleus description, since the density of free nucleons is different between these two descriptions. This study indicates that a multinucleus description is required to realistically account for in-medium effects on the nuclear structure in supernova matter.

  7. Transition between nuclear and quark-gluon descriptions of hadrons and light nuclei

    NASA Astrophysics Data System (ADS)

    Holt, R. J.; Gilman, R.

    2012-08-01

    We provide a perspective on studies aimed at observing the transition between hadronic and quark-gluonic descriptions of reactions involving light nuclei. We begin by summarizing the results for relatively simple reactions such as the pion form factor and the neutral pion transition form factor as well as that for the nucleon and end with exclusive photoreactions in our simplest nuclei. A particular focus will be on reactions involving the deuteron. It is noted that a firm understanding of these issues is essential for unravelling important structure information from processes such as deeply virtual Compton scattering as well as deeply virtual meson production. The connection to exotic phenomena such as color transparency will be discussed. A number of outstanding challenges will require new experiments at modern facilities on the horizon as well as further theoretical developments.

  8. An N-terminal nuclear localization sequence but not the calmodulin-binding domain mediates nuclear localization of nucleomorphin, a protein that regulates nuclear number in Dictyostelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myre, Michael A.; O'Day, Danton H.

    2005-06-24

    Nucleomorphin is a novel nuclear calmodulin (CaM)-binding protein (CaMBP) containing an extensive DEED (glu/asp repeat) domain that regulates nuclear number. GFP-constructs of the 38 kDa NumA1 isoform localize as intranuclear patches adjacent to the inner nuclear membrane. The translocation of CaMBPs into nuclei has previously been shown by others to be mediated by both classic nuclear localization sequences (NLSs) and CaM-binding domains (CaMBDs). Here we show that NumA1 possesses a CaMBD ({sup 171}EDVSRFIKGKLLQKQQKIYKDLERF{sup 195}) containing both calcium-dependent-binding motifs and an IQ-like motif for calcium-independent binding. GFP-constructs containing only NumA1 residues 1-129, lacking the DEED and CaMBDs, still localized as patchesmore » at the internal periphery of nuclei thus ruling out a direct role for the CaMBD in nuclear import. These constructs contained the amino acid residues {sup 48}KKSYQDPEIIAHSRPRK{sup 64} that include both a putative bipartite and classical NLS. GFP-bipartite NLS constructs localized uniformly within nuclei but not as patches. As with previous work, removal of the DEED domain resulted in highly multinucleate cells. However as shown here, multinuclearity only occurred when the NLS was present allowing the protein to enter nuclei. Site-directed mutation analysis in which the NLS was changed to {sup 48}EF{sup 49} abolished the stability of the GFP fusion at the protein but not RNA level preventing subcellular analyses. Cells transfected with the {sup 48}EF{sup 49} construct exhibited slowed growth when compared to parental AX3 cells and other GFP-NumA1 deletion mutants. In addition to identifying an NLS that is sufficient for nuclear translocation of nucleomorphin and ruling out CaM-binding in this event, this work shows that the nuclear localization of NumA1 is crucial to its ability to regulate nuclear number in Dictyostelium.« less

  9. An assessment of warm fog: Nucleation, control, and recommended research

    NASA Technical Reports Server (NTRS)

    Corrin, M. L.; Connell, J. R.; Gero, A. J.

    1974-01-01

    A state-of-the-art survey is given of warm fog research which has been performed up to, and including, 1974. Topics covered are nucleation, growth, coalescence, fog structures and visibility, effects of surface films, drop size spectrum, optical properties, instrumentation, liquid water content, condensation nuclei. Included is a summary of all reported fog modification experiments. Additional data is provided on air flow, turbulence, a summary of recommendations on instruments to be developed for determining turbulence, air flow, etc., as well as recommendations of various fog research tasks which should be performed for a better understanding of fog microphysics.

  10. Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation.

    PubMed

    van Zanten, Martijn; Koini, Maria A; Geyer, Regina; Liu, Yongxiu; Brambilla, Vittoria; Bartels, Dorothea; Koornneef, Maarten; Fransz, Paul; Soppe, Wim J J

    2011-12-13

    Most plant species rely on seeds for their dispersal and survival under unfavorable environmental conditions. Seeds are characterized by their low moisture content and significantly reduced metabolic activities. During the maturation phase, seeds accumulate storage reserves and become desiccation-tolerant and dormant. Growth is resumed after release of dormancy and the occurrence of favorable environmental conditions. Here we show that embryonic cotyledon nuclei of Arabidopsis thaliana seeds have a significantly reduced nuclear size, which is established at the beginning of seed maturation. In addition, the chromatin of embryonic cotyledon nuclei from mature seeds is highly condensed. Nuclei regain their size and chromatin condensation level during germination. The reduction in nuclear size is controlled by the seed maturation regulator ABSCISIC ACID-INSENSITIVE 3, and the increase during germination requires two predicted nuclear matrix proteins, LITTLE NUCLEI 1 and LITTLE NUCLEI 2. Our results suggest that the specific properties of nuclei in ripe seeds are an adaptation to desiccation, independent of dormancy. We conclude that the changes in nuclear size and chromatin condensation in seeds are independent, developmentally controlled processes.

  11. Derivation of an optical potential for statically deformed rare-earth nuclei from a global spherical potential

    DOE PAGES

    Nobre, G. P. A.; Palumbo, A.; Herman, M.; ...

    2015-02-25

    The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations characterized by nuclear deformations. A proper treatment of such excitations is often essential to the accurate description of experimental nuclear-reaction data and to the prediction of a wide variety of scattering observables. Stimulated by recent work substantiating the near validity of the adiabatic approximation in coupled-channel calculations for scattering on statically deformed nuclei, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coupled-channel calculations on this class of nuclei. To do this, wemore » have deformed the Koning-Delaroche global spherical potential for neutrons, coupling a sufficient number of states of the ground state band to ensure convergence. We present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions for neutron-induced reactions on statically deformed nuclei in the rare-earth region. We choose isotopes of three rare-earth elements (Gd, Ho, W), which are known to be nearly perfect rotors, to exemplify the results of the proposed method. Predictions from our model for total, elastic and inelastic cross sections, as well as for elastic and inelastic angular distributions, are in reasonable agreement with measured experimental data. In conclusion, these results suggest that the deformed Koning-Delaroche potential provides a useful regional neutron optical potential for the statically deformed rare earth nuclei.« less

  12. Nuclear inner membrane fusion facilitated by yeast Jem1p is required for spindle pole body fusion but not for the first mitotic nuclear division during yeast mating.

    PubMed

    Nishikawa, Shuh-ichi; Hirata, Aiko; Endo, Toshiya

    2008-11-01

    During mating of budding yeast, Saccharomyces cerevisiae, two haploid nuclei fuse to produce a diploid nucleus. The process of nuclear fusion requires two J proteins, Jem1p in the endoplasmic reticulum (ER) lumen and Sec63p, which forms a complex with Sec71p and Sec72p, in the ER membrane. Zygotes of mutants defective in the functions of Jem1p or Sec63p contain two haploid nuclei that were closely apposed but failed to fuse. Here we analyzed the ultrastructure of nuclei in jem1 Delta and sec71 Delta mutant zygotes using electron microscope with the freeze-substituted fixation method. Three-dimensional reconstitution of nuclear structures from electron microscope serial sections revealed that Jem1p facilitates nuclear inner-membrane fusion and spindle pole body (SPB) fusion while Sec71p facilitates nuclear outer-membrane fusion. Two haploid SPBs that failed to fuse could duplicate, and mitotic nuclear division of the unfused haploid nuclei started in jem1 Delta and sec71 Delta mutant zygotes. This observation suggests that nuclear inner-membrane fusion is required for SPB fusion, but not for SPB duplication in the first mitotic cell division.

  13. Time-dependent theoretical treatments of the dynamics of electrons and nuclei in molecular systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deumens, E.; Diz, A.; Longo, R.

    1994-07-01

    An overview is presented of methods for time-dependent treatments of molecules as systems of electrons and nuclei. The theoretical details of these methods are reviewed and contrasted in the light of a recently developed time-dependent method called electron-nuclear dynamics. Electron-nuclear dynamics (END) is a formulation of the complete dynamics of electrons and nuclei of a molecular system that eliminates the necessity of constructing potential-energy surfaces. Because of its general formulation, it encompasses many aspects found in other formulations and can serve as a didactic device for clarifying many of the principles and approximations relevant in time-dependent treatments of molecular systems.more » The END equations are derived from the time-dependent variational principle applied to a chosen family of efficiently parametrized approximate state vectors. A detailed analysis of the END equations is given for the case of a single-determinantal state for the electrons and a classical treatment of the nuclei. The approach leads to a simple formulation of the fully nonlinear time-dependent Hartree-Fock theory including nuclear dynamics. The nonlinear END equations with the [ital ab] [ital initio] Coulomb Hamiltonian have been implemented at this level of theory in a computer program, ENDyne, and have been shown feasible for the study of small molecular systems. Implementation of the Austin Model 1 semiempirical Hamiltonian is discussed as a route to large molecular systems. The linearized END equations at this level of theory are shown to lead to the random-phase approximation for the coupled system of electrons and nuclei. The qualitative features of the general nonlinear solution are analyzed using the results of the linearized equations as a first approximation. Some specific applications of END are presented, and the comparison with experiment and other theoretical approaches is discussed.« less

  14. Formation of {eta}-mesic nuclei by the ({pi},N) reaction and properties of N*(1535) in medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagahiro, Hideko; Jido, Daisuke; Hirenzaki, Satoru

    2009-08-15

    We calculate formation spectra of the {eta}-nucleus systems in the ({pi},N) reactions with nuclear targets, which can be performed at existing and/or forthcoming facilities, including the Japan Proton Accelerator Research Complex, to investigate the {eta}-nucleus interaction. Based on the N*(1535) dominance in the {eta}N system, the {eta}-mesic nuclei are suitable systems for the study of in-medium properties of the N*(1535) baryon resonance, such as reduction of the mass difference of N and N* in the nuclear medium, which affects the level structure of the {eta} and N*-hole modes. We find that clear information on the in-medium N*- and {eta}-nucleus interactionsmore » can be obtained through the formation spectra of the {eta}-mesic nuclei. We also discuss the experimental feasibilities by showing several spectra of the ({pi},N) reactions calculated with possible experimental settings. Coincident measurements of the N{pi} pairs from the N* decays in nuclei help us to reduce backgrounds.« less

  15. Dynamics of a nuclear invasion

    NASA Astrophysics Data System (ADS)

    Roper, Marcus; Simonin, Anna; Glass, N. Louise

    2009-11-01

    Filamentous fungi grow as a network of continuous interconnected tubes, containing nuclei that move freely through a shared cytoplasm. Wild fungi are frequently chimerical: two nuclei from the same physiological individual may be genetically different. Such internal diversity can arise either from spontaneous mutations during nuclear division, or by nuclear exchange when two individuals fuse, sharing their resources and organelles to become a single individual. This diversity is thought to be essential to adaptation in plant pathogens, allowing, for instance, an invading fungus to present many different genetic identities against its host's immune response. However, it is clear that the presence of multiple genetic lineages within the same physiological individual can also pose challenges - lineages that are present in growing hyphal tips will multiply preferentially. Nuclei must therefore be kept well mixed across a growing front. By applying models developed to describe mixing of fluids in microfluidic reactors to experimental observations of lineage mixing in a growing Neurospora crassa colony, we show how this mixing is achieved. In particular we analyze the individual contributions from interdigitation of hyphae and from nuclear transport.

  16. Glioma grading using cell nuclei morphologic features in digital pathology images

    NASA Astrophysics Data System (ADS)

    Reza, Syed M. S.; Iftekharuddin, Khan M.

    2016-03-01

    This work proposes a computationally efficient cell nuclei morphologic feature analysis technique to characterize the brain gliomas in tissue slide images. In this work, our contributions are two-fold: 1) obtain an optimized cell nuclei segmentation method based on the pros and cons of the existing techniques in literature, 2) extract representative features by k-mean clustering of nuclei morphologic features to include area, perimeter, eccentricity, and major axis length. This clustering based representative feature extraction avoids shortcomings of extensive tile [1] [2] and nuclear score [3] based methods for brain glioma grading in pathology images. Multilayer perceptron (MLP) is used to classify extracted features into two tumor types: glioblastoma multiforme (GBM) and low grade glioma (LGG). Quantitative scores such as precision, recall, and accuracy are obtained using 66 clinical patients' images from The Cancer Genome Atlas (TCGA) [4] dataset. On an average ~94% accuracy from 10 fold crossvalidation confirms the efficacy of the proposed method.

  17. Dual origin of pairing in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idini, A.; Potel, G.; Barranco, F.

    The pairing correlations of the nucleus {sup 120}Sn are calculated by solving the Nambu–Gor’kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairingmore » interaction. The first is the strong {sup 1}S{sub 0} short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- (v{sub p}{sup bare}) and long-range (v{sub p}{sup ind}) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.« less

  18. Alpha-cluster preformation factor within cluster-formation model for odd-A and odd-odd heavy nuclei

    NASA Astrophysics Data System (ADS)

    Saleh Ahmed, Saad M.

    2017-06-01

    The alpha-cluster probability that represents the preformation of alpha particle in alpha-decay nuclei was determined for high-intensity alpha-decay mode odd-A and odd-odd heavy nuclei, 82 < Z < 114, 111 < N < 174. This probability was calculated using the energy-dependent formula derived from the formulation of clusterisation states representation (CSR) and the hypothesised cluster-formation model (CFM) as in our previous work. Our previous successful determination of phenomenological values of alpha-cluster preformation factors for even-even nuclei motivated us to expand the work to cover other types of nuclei. The formation energy of interior alpha cluster needed to be derived for the different nuclear systems with considering the unpaired-nucleon effect. The results showed the phenomenological value of alpha preformation probability and reflected the unpaired nucleon effect and the magic and sub-magic effects in nuclei. These results and their analyses presented are very useful for future work concerning the calculation of the alpha decay constants and the progress of its theory.

  19. Quantified Gamow shell model interaction for p s d -shell nuclei

    NASA Astrophysics Data System (ADS)

    Jaganathen, Y.; Betan, R. M. Id; Michel, N.; Nazarewicz, W.; Płoszajczak, M.

    2017-11-01

    Background: The structure of weakly bound and unbound nuclei close to particle drip lines is one of the major science drivers of nuclear physics. A comprehensive understanding of these systems goes beyond the traditional configuration interaction approach formulated in the Hilbert space of localized states (nuclear shell model) and requires an open quantum system description. The complex-energy Gamow shell model (GSM) provides such a framework as it is capable of describing resonant and nonresonant many-body states on equal footing. Purpose: To make reliable predictions, quality input is needed that allows for the full uncertainty quantification of theoretical results. In this study, we carry out the optimization of an effective GSM (one-body and two-body) interaction in the p s d f -shell-model space. The resulting interaction is expected to describe nuclei with 5 ≤A ≲12 at the p -s d -shell interface. Method: The one-body potential of the 4He core is modeled by a Woods-Saxon + spin-orbit + Coulomb potential, and the finite-range nucleon-nucleon interaction between the valence nucleons consists of central, spin-orbit, tensor, and Coulomb terms. The GSM is used to compute key fit observables. The χ2 optimization is performed using the Gauss-Newton algorithm augmented by the singular value decomposition technique. The resulting covariance matrix enables quantification of statistical errors within the linear regression approach. Results: The optimized one-body potential reproduces nucleon-4He scattering phase shifts up to an excitation energy of 20 MeV. The two-body interaction built on top of the optimized one-body field is adjusted to the bound and unbound ground-state binding energies and selected excited states of the helium, lithium, and beryllium isotopes up to A =9 . A very good agreement with experimental results was obtained for binding energies. First applications of the optimized interaction include predictions for two-nucleon correlation densities

  20. Quantified Gamow shell model interaction for p s d -shell nuclei

    DOE PAGES

    Jaganathen, Y.; Betan, R. M. Id; Michel, N.; ...

    2017-11-20

    Background: The structure of weakly bound and unbound nuclei close to particle drip lines is one of the major science drivers of nuclear physics. A comprehensive understanding of these systems goes beyond the traditional configuration interaction approach formulated in the Hilbert space of localized states (nuclear shell model) and requires an open quantum system description. The complex-energy Gamow shell model (GSM) provides such a framework as it is capable of describing resonant and nonresonant many-body states on equal footing. Purpose: To make reliable predictions, quality input is needed that allows for the full uncertainty quantification of theoretical results. In thismore » study, we carry out the optimization of an effective GSM (one-body and two-body) interaction in the psdf-shell-model space. The resulting interaction is expected to describe nuclei with 5 ≤ A ≲ 12 at the p-sd-shell interface. Method: The one-body potential of the 4He core is modeled by a Woods-Saxon + spin-orbit + Coulomb potential, and the finite-range nucleon-nucleon interaction between the valence nucleons consists of central, spin-orbit, tensor, and Coulomb terms. The GSM is used to compute key fit observables. The χ 2 optimization is performed using the Gauss-Newton algorithm augmented by the singular value decomposition technique. The resulting covariance matrix enables quantification of statistical errors within the linear regression approach. Results: The optimized one-body potential reproduces nucleon- 4He scattering phase shifts up to an excitation energy of 20 MeV. The two-body interaction built on top of the optimized one-body field is adjusted to the bound and unbound ground-state binding energies and selected excited states of the helium, lithium, and beryllium isotopes up to A = 9 . A very good agreement with experimental results was obtained for binding energies. First applications of the optimized interaction include predictions for two-nucleon correlation

  1. History of the Nuclei Important for Cosmochemistry

    NASA Technical Reports Server (NTRS)

    Meyer, Bradley S.

    2004-01-01

    An essential aspect of studying the nuclei important for cosmochemistry is their production in stars. Over the grant period, we have further developed the Clemson/American University of Beirut stellar evolution code. Through use of a biconjugate-gradient matrix solver, we now routinely solve l0(exp 6) x l0(exp 6) sparse matrices on our desktop computers. This has allowed us to couple nucleosynthesis and convection fully in the 1-D star, which, in turn, provides better estimates of nuclear yields when the mixing and nuclear burning timescales are comparable. We also have incorporated radiation transport into our 1-D supernova explosion code. We used the stellar evolution and explosion codes to compute iron abundances in a 25 Solar mass star and compared the results to data from RIMS.

  2. Synthesis, Decay Properties, and Identification of Superheavy Nuclei Produced in 48Ca-induced Reactions

    NASA Astrophysics Data System (ADS)

    Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Voinov, A. A.; Iliev, S.; Subbotin, V. G.; Sukhov, A. M.; Gulbekian, G. G.; Bogomolov, S. L.; Gikal, B. N.; Mezentsev, A. N.; Subotic, K.; Zagrebaev, V. I.; Itkis, M. G.; Moody, K. J.; Henderson, R. A.; Patin, J. B.; Shaughnessy, D. A.; Stoyer, M. A.; Stoyer, N. J.; Wilk, P. A.; Kenneally, J. M.; Landrum, J. H.; Wild, J. F.; Lougheed, R. W.

    2007-10-01

    Thirty-four new nuclides with Z = 104-116, 118 and N = 161-177 have been synthesized in the complete-fusion reactions of 238U, 237Np, 242,244Pu, 243Am, 245,248Cm, and 249Cf targets with 48Ca beams. The masses of evaporation residues were identified through measurements of the excitation functions of the xn-evaporation channels and from cross bombardments. The decay properties of the new nuclei agree with those of previously known heavy nuclei and with predictions from different theoretical models. A discussion of self-consistent interpretations of all observed decay chains originating from the parent isotopes 282,283112, 282113, 286-289114, 287,288115, 290-293116, and 294118 is presented. Decay energies and lifetimes of the neutron-rich superheavy nuclei as well as their production cross sections indicate a considerable increase in the stability of nuclei with the approach to the theoretically predicted nuclear shells with N = 184 and Z = 114.

  3. Synthesis, Decay Properties, and Identification of Superheavy Nuclei Produced in 48CA-INDUCED Reactions

    NASA Astrophysics Data System (ADS)

    Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Voinov, A. A.; Iliev, S.; Subbotin, V. G.; Sukhov, A. M.; Gulbekian, G. G.; Bogomolov, S. L.; Gikal, B. N.; Mezentsev, A. N.; Subotic, K.; Zagrebaev, V. I.; Itkis, M. G.; Moody, K. J.; Henderson, R. A.; Patin, J. B.; Shaughnessy, D. A.; Stoyer, M. A.; Stoyer, N. J.; Wilk, P. A.; Kenneally, J. M.; Landrum, J. H.; Wild, J. F.; Lougheed, R. W.

    2008-04-01

    Thirty-four new nuclides with Z = 104-116, 118 and N = 161-177 have been synthesized in the complete-fusion reactions of 238U, 237Np, 242,244Pu, 243Am, 245,248Cm, and 249Cf targets with 48Ca beams. The masses of evaporation residues were identified through measurements of the excitation functions of the xn-evaporation channels and from cross bombardments. The decay properties of the new nuclei agree with those of previously known heavy nuclei and with predictions from different theoretical models. A discussion of self-consistent interpretations of all observed decay chains originating from the parent isotopes 282,283112, 282113, 286-289114, 287,288115, 290-293116, and 294118 is presented. Decay energies and lifetimes of the neutron-rich superheavy nuclei as well as their production cross sections indicate a considerable increase in the stability of nuclei with the approach to the theoretically predicted nuclear shells with N = 184 and Z = 114.

  4. Nuclear choices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfson, R.

    This book contains part of the series New Liberal Arts, which is intended to make science and technology more accessible to students of the liberal arts. Volume in hand provides a comprehensive, multifaceted examination of nuclear energy, in nontechnical terms. Wolfson explains the basics of nuclear energy and radiation, nuclear power..., and nuclear weapons..., and he invites readers to make their own judgments on controversial nuclear issues. Illustrated with photos and diagrams. Each chapter contains suggestions for additional reading and a glossary. For policy, science, and general collections in all libraries. (ES) Topics contained include Atoms and nuclei. Effects andmore » uses of radiation. Energy and People. Reactor safety. Nuclear strategy. Defense in the nuclear age. Nuclear power, nuclear weapons, and nuclear futures.« less

  5. Nuclear Fuel Cycle Introductory Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpius, Peter Joseph

    2017-02-02

    The nuclear fuel cycle is a complex entity, with many stages and possibilities, encompassing natural resources, energy, science, commerce, and security, involving a host of nations around the world. This overview describes the process for generating nuclear power using fissionable nuclei.

  6. Spin-locking of half-integer quadrupolar nuclei in nuclear magnetic resonance of solids: creation and evolution of coherences.

    PubMed

    Ashbrook, Sharon E; Wimperis, Stephen

    2004-02-08

    Spin-locking of half-integer quadrupolar nuclei, such as 23Na (I=3/2) and 27Al (I=5/2), is of renewed interest owing to the development of variants of the multiple-quantum and satellite-transition magic angle spinning (MAS) nuclear magnetic resonance experiments that either utilize spin-locking directly or offer the possibility that spin-locked states may arise. However, the large magnitude and, under MAS, the time dependence of the quadrupolar interaction often result in complex spin-locking phenomena that are not widely understood. Here we show that, following the application of a spin-locking pulse, a variety of coherence transfer processes occur on a time scale of approximately 1/omegaQ before the spin system settles down into a spin-locked state which may itself be time dependent if MAS is performed. We show theoretically for both spin I=3/2 and 5/2 nuclei that the spin-locked state created by this initial rapid dephasing typically consists of a variety of single- and multiple-quantum coherences and nonequilibrium population states and we discuss the subsequent evolution of these under MAS. In contrast to previous work, we consider spin-locking using a wide range of radio frequency field strengths, i.e., a range that covers both the "strong-field" (omega1 > omegaQPAS and "weak-field" (omega1 < omegaQPAS limits. Single- and multiple-quantum filtered spin-locking experiments on NaNO2, NaNO3, and Al(acac)3, under both static and MAS conditions, are used to illustrate and confirm the results of the theoretical discussion.

  7. Does flat epithelial atypia have rounder nuclei than columnar cell change/hyperplasia? A morphometric approach to columnar cell lesions of the breast.

    PubMed

    Yamashita, Yoshiko; Ichihara, Shu; Moritani, Suzuko; Yoon, Han-Seung; Yamaguchi, Masahiro

    2016-06-01

    Columnar cell lesions of the breast encompass columnar cell change/hyperplasia (CCC/CCH) and flat epithelial atypia (FEA). These have attracted researchers because emerging data suggest that FEA may represent the earliest histologically detectable non-obligate precursor of breast cancer. However, it is occasionally difficult to distinguish FEA from CCC/CCH because of similar histology. Although the nuclei of FEA are frequently described as relatively round compared with those of CCC/CCH, there are few morphometric studies to support this statement. The aim of this study was to provide objective data as to the nuclear shape in columnar cell lesions. As a shape descriptor, we adopted ellipticity that is defined by the formula 2b/2a, where a is the length of the long axis of the ellipse and b is the length of the short axis. Contrary to circularity, ellipticity reflects the overall configuration of an ellipse irrespective of surface irregularity. Our image analysis included generating whole slide images, extracting glandular cell nuclei, measuring nuclear ellipticity, and superimposing graded colors based on execution of results on the captured images. A total of 7917 nuclei extracted from 22 FEA images and 5010 nuclei extracted from 13 CCC/CCH images were analyzed. There was a significant difference in nuclear roundness between FEA and CCC/CCH with mean ellipticity values of 0.723 and 0.679, respectively (p < 0.001, Welch's t test). Furthermore, FEA with malignancy had significantly rounder nuclei than FEA without malignancy (p < 0.001). Our preliminary results suggest that nuclear ellipticity is a key parameter in reproducibly classifying columnar cell lesions of the breast.

  8. Development of activity pencil beam algorithm using measured distribution data of positron emitter nuclei generated by proton irradiation of targets containing (12)C, (16)O, and (40)Ca nuclei in preparation of clinical application.

    PubMed

    Miyatake, Aya; Nishio, Teiji; Ogino, Takashi

    2011-10-01

    The purpose of this study is to develop a new calculation algorithm that is satisfactory in terms of the requirements for both accuracy and calculation time for a simulation of imaging of the proton-irradiated volume in a patient body in clinical proton therapy. The activity pencil beam algorithm (APB algorithm), which is a new technique to apply the pencil beam algorithm generally used for proton dose calculations in proton therapy to the calculation of activity distributions, was developed as a calculation algorithm of the activity distributions formed by positron emitter nuclei generated from target nuclear fragment reactions. In the APB algorithm, activity distributions are calculated using an activity pencil beam kernel. In addition, the activity pencil beam kernel is constructed using measured activity distributions in the depth direction and calculations in the lateral direction. (12)C, (16)O, and (40)Ca nuclei were determined as the major target nuclei that constitute a human body that are of relevance for calculation of activity distributions. In this study, "virtual positron emitter nuclei" was defined as the integral yield of various positron emitter nuclei generated from each target nucleus by target nuclear fragment reactions with irradiated proton beam. Compounds, namely, polyethylene, water (including some gelatin) and calcium oxide, which contain plenty of the target nuclei, were irradiated using a proton beam. In addition, depth activity distributions of virtual positron emitter nuclei generated in each compound from target nuclear fragment reactions were measured using a beam ON-LINE PET system mounted a rotating gantry port (BOLPs-RGp). The measured activity distributions depend on depth or, in other words, energy. The irradiated proton beam energies were 138, 179, and 223 MeV, and measurement time was about 5 h until the measured activity reached the background level. Furthermore, the activity pencil beam data were made using the activity pencil

  9. Shell-model method for Gamow-Teller transitions in heavy deformed odd-mass nuclei

    NASA Astrophysics Data System (ADS)

    Wang, Long-Jun; Sun, Yang; Ghorui, Surja K.

    2018-04-01

    A shell-model method for calculating Gamow-Teller (GT) transition rates in heavy deformed odd-mass nuclei is presented. The method is developed within the framework of the projected shell model. To implement the computation requirement when many multi-quasiparticle configurations are included in the basis, a numerical advancement based on the Pfaffian formula is introduced. With this new many-body technique, it becomes feasible to perform state-by-state calculations for the GT nuclear matrix elements of β -decay and electron-capture processes, including those at high excitation energies in heavy nuclei which are usually deformed. The first results, β- decays of the well-deformed A =153 neutron-rich nuclei, are shown as the example. The known log(f t ) data corresponding to the B (GT- ) decay rates of the ground state of 153Nd to the low-lying states of 153Pm are well described. It is further shown that the B (GT) distributions can have a strong dependence on the detailed microscopic structure of relevant states of both the parent and daughter nuclei.

  10. Production of neutron-rich nuclei approaching r-process by gamma-induced fission of 238U at ELI-NP

    NASA Astrophysics Data System (ADS)

    Mei, Bo; Balabanski, Dimiter; Constantin, Paul; Anh Le, Tuan; Viet Cuong, Phan

    2018-05-01

    The investigation of neutron-rich exotic nuclei is crucial not only for nuclear physics but also for nuclear astrophysics. Experimentally, only few neutron-rich nuclei near the stability have been studied, however, most neutron-rich nuclei have not been measured due to their small production cross sections as well as short half-lives. At ELI-NP, gamma beams with high intensities will open new opportunities to investigate very neutron-rich fragments produced by photofission of 238U targets in a gas cell. Based on some simulations, a novel gas cell has been designed to produce, stop and extract 238U photofission fragments. The extraction time and efficiency of photofission fragments have been optimized by using SIMION simulations. According to these simulations, a high extraction efficiency and a short extraction time can be achieved for 238U photofission fragments in the gas cell, which will allow one to measure very neutron-rich fragments with short half-lives by using the IGISOL facility proposed at ELI-NP.

  11. (12)CO (3-2) & (1-0) emission line observations of nearby starburst galaxy nuclei

    NASA Technical Reports Server (NTRS)

    Devereux, Nicholas; Taniguchi, Yoshiaki; Sanders, D. B.; Nakai, N.; Young, J. S.

    1994-01-01

    New measurements of the (12)CO (1-0) and (12)CO (3-2) line emission are presented for the nuclei of seven nearby starburst galaxies selected from a complete sample of 21 nearby starburst galaxies for which the nuclear star formation rates are measured to be comparable to the archetype starburst galaxies M82 and NGC 253. The new observations capitalize on the coincidence between the beam size of the 45 m Nobeyama telescope at 115 GHz and that of the 15 m James Clerk Maxwell Telescope at 345 GHz to measure the value of the (12)CO (3-2)/(1-0) emission line ratio in a 15 sec (less than or equal to 2.5 kpc) diameter region centered on the nuclear starburst. In principle, the (12)CO (3-2)/(1-0) emission line ratio provides a measure of temperature and optical depth for the (12)CO gas. The error weighted mean value of the (12)CO (3-2)/(1-0) emission line ratio measured for the seven starburst galaxy nuclei is -0.64 +/- 0.06. The (12)CO (3-2)/(1-0) emission line ratio measured for the starburst galaxy nuclei is significantly higher than the average value measured for molecular gas in the disk of the Galaxy, implying warmer temperatures for the molecular gas in starburst galaxy nuclei. On the other hand, the (12)CO (3-2)/(1-0) emission line ratio measured for the starburst galaxy nuclei is not as high as would be expected if the molecular gas were hot, greater than 20 K, and optically thin, tau much less than 1. The total mass of molecular gas contained within the central 1.2-2.8 kpc diameter region of the starburst galaxy nuclei ranges from 10(exp 8) to 10(exp 9) solar mass. While substantial, the molecular gas mass represents only a small percentage, approximately 9%-16%, of the dynamical mass in the same region.

  12. Nucleus Z=126 with magic neutron number N=184 may be related to the measured Maruhn-Greiner maximum at A/2=155 from compound nuclei at low energy nuclear reactions

    NASA Astrophysics Data System (ADS)

    Prelas, M. A.; Hora, H.; Miley, G. H.

    2014-07-01

    Evaluation of nuclear binding energies from theory close to available measurements of a very high number of superheavy elements (SHE) based on α-decay energies Qα, arrived at a closing shell with a significant neutron number 184. Within the option of several discussed magic numbers for protons of around 120, Bagge's numbers 126 and 184 fit well and are supported by the element generation measurements by low energy nuclear reactions (LENR) discovered in deuterium loaded host metals. These measurements were showing a Maruhn-Greiner maximum from fission of compound nuclei in an excited state with double magic numbers for mutual confirmation.

  13. Nuclear magnetic moment of {sup 69}As from on-line {beta}-NMR on oriented nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovko, V.V.; Kraev, I.S.; Phalet, T.

    2005-12-15

    A precise value for the magnetic moment of the {sup 69}As 5/2{sup -} ground state has been obtained from nuclear magnetic resonance on oriented nuclei (NMR/ON) using the NICOLE {sup 3}He-{sup 4}He dilution refrigerator setup at ISOLDE/CERN. The NMR/ON signal was observed by monitoring the anisotropy of the {sup 69}As {beta} particles. The center frequency {nu}[B{sub ext}=0.0994(10)T]=169.98(9) MHz corresponds to {mu}[{sup 69}As]=+1.6229(16){mu}{sub N}. This result differs considerably from the {pi}f{sub 5/2} single-particle value obtained with g factors for a free proton but is in reasonable agreement with the value obtained with effective g factors and with values from a coremore » polarization calculation and from calculations in the framework of the interacting boson-fermion model. Assuming a single exponential spin-lattice relaxation behavior a relaxation time T{sub 1}{sup '}=10(25) s was observed for {sup 69}AsFe{sub -bar} at a temperature of about 20 mK in a magnetic field B=0.1 T.« less

  14. Clustering and pasta phases in nuclear density functional theory

    DOE PAGES

    Schuetrumpf, Bastian; Zhang, Chunli; Nazarewicz, Witold

    2017-05-23

    Nuclear density functional theory is the tool of choice in describing properties of complex nuclei and intricate phases of bulk nucleonic matter. It is a microscopic approach based on an energy density functional representing the nuclear interaction. An attractive feature of nuclear DFT is that it can be applied to both finite nuclei and pasta phases appearing in the inner crust of neutron stars. While nuclear pasta clusters in a neutron star can be easily characterized through their density distributions, the level of clustering of nucleons in a nucleus can often be difficult to assess. To this end, we usemore » the concept of nucleon localization. We demonstrate that the localization measure provides us with fingerprints of clusters in light and heavy nuclei, including fissioning systems. Furthermore we investigate the rod-like pasta phase using twist-averaged boundary conditions, which enable calculations in finite volumes accessible by state of the art DFT solvers.« less

  15. Nuclear Chemistry: Include It in Your Curriculum.

    ERIC Educational Resources Information Center

    Atwood, Charles H.; Sheline, R. K.

    1989-01-01

    Some of the topics that might be included in a nuclear chemistry section are explored. Offers radioactivity, closed shells in nuclei, energy of nuclear processes, nuclear reactions, and fission and fusion as topics of interest. Provided are ideas and examples for each. (MVL)

  16. Radiation-induced association of beta-glucuronidase with purified nuclei from irradiated MOLT-4 and HeLa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClain, D.E.; Kalinich, J.F.; Poplack, J.K.

    1989-02-01

    Beta-glucuronidase, a lysosomal marker enzyme, associates with purified nuclei from HeLa and MOLT-4 cell lines in a radiation dose-dependent manner, up to 300 cGy in MOLT-4 cells, and 1000 cGy in HeLa cells. In MOLT-4 cells (200-cGy exposure), there is a significant increase in beta-glucuronidase activity detected in the nuclear fraction 24 h postirradiation with a maximum association occurring at 72 h. In HeLa cells (1000-cGy exposure), a significant association is first detected 24 h postirradiation with a maximum association at 48 h. The association is not the result of nonspecific contamination occurring during nuclei purification since nuclei from irradiatedmore » cells show no greater levels of plasma membrane marker and mitochondrial marker than controls. The nature of the association remains unclear, but activity is not removed by detergents used in the nuclei isolation procedure, and incubation of the nuclei with EDTA reverses the association only modestly. Exposure of nuclei from irradiated cells to anisotonic buffers also results in only a small decrease in beta-glucuronidase activity associated with the nuclei. These observations suggest that lysosomal hydrolases become intimately associated with the nuclei of irradiated cells.« less

  17. Ultrahigh energy cosmic ray nuclei from remnants of dead quasars

    NASA Astrophysics Data System (ADS)

    Moncada, Roberto J.; Colon, Rafael A.; Guerra, Juan J.; O'Dowd, Matthew J.; Anchordoqui, Luis A.

    2017-03-01

    We re-examine the possibility of ultrahigh energy cosmic rays being accelerated in nearby dormant quasars. We particularize our study to heavy nuclei to accommodate the spectrum and nuclear composition recently reported by the Pierre Auger Collaboration. Particle acceleration is driven by the Blandford-Znajek mechanism, which wires the dormant spinning black holes as Faraday unipolar dynamos. We demonstrate that energy losses are dominated by photonuclear interactions on the ambient photon fields. We argue that the local dark fossils of the past quasar activity can be classified on the basis of how source parameters (mass of the central engine and photon background surrounding the accelerator) impact the photonuclear interaction. In this classification it is possible to distinguish two unequivocal type of sources: those in which nuclei are completely photodisintegrated before escaping the acceleration region and those in which photopion production is the major energy damping mechanism. We further argue that the secondary nucleons from the photodisintegrated nuclei (which have a steep spectral index at injection) can populate the energy region below ;the ankle; feature in the cosmic ray spectrum, whereas heavy and medium mass nuclei (with a harder spectral index) populate the energy region beyond ;the ankle;, all the way to the high energy end of the spectrum. In addition, we show that five potential quasar remnants from our cosmic backyard correlate with the hot-spot observed by the Telescope Array.

  18. Plant nuclei can contain extensive grooves and invaginations

    NASA Technical Reports Server (NTRS)

    Collings, D. A.; Carter, C. N.; Rink, J. C.; Scott, A. C.; Wyatt, S. E.; Allen, N. S.; Brown, C. S. (Principal Investigator)

    2000-01-01

    Plant cells can exhibit highly complex nuclear organization. Through dye-labeling experiments in untransformed onion epidermal and tobacco culture cells and through the expression of green fluorescent protein targeted to either the nucleus or the lumen of the endoplasmic reticulum/nuclear envelope in these cells, we have visualized deep grooves and invaginations into the large nuclei of these cells. In onion, these structures, which are similar to invaginations seen in some animal cells, form tubular or planelike infoldings of the nuclear envelope. Both grooves and invaginations are stable structures, and both have cytoplasmic cores containing actin bundles that can support cytoplasmic streaming. In dividing tobacco cells, invaginations seem to form during cell division, possibly from strands of the endoplasmic reticulum trapped in the reforming nucleus. The substantial increase in nuclear surface area resulting from these grooves and invaginations, their apparent preference for association with nucleoli, and the presence in them of actin bundles that support vesicle motility suggest that the structures might function both in mRNA export from the nucleus and in protein import from the cytoplasm to the nucleus.

  19. Ground-state properties of light kaonic nuclei signaling symmetry energy at high densities

    NASA Astrophysics Data System (ADS)

    Yang, Rongyao; Wei, Sina; Jiang, Weizhou

    2018-01-01

    A sensitive correlation between the ground-state properties of light kaonic nuclei and the symmetry energy at high densities is constructed under the framework of relativistic mean-field theory. Taking oxygen isotopes as an example, we see that a high-density core is produced in kaonic oxygen nuclei, due to the strongly attractive antikaon-nucleon interaction. It is found that the 1{S}1/2 state energy in the high-density core of kaonic nuclei can directly probe the variation of the symmetry energy at supranormal nuclear density, and a sensitive correlation between the neutron skin thickness and the symmetry energy at supranormal density is established directly. Meanwhile, the sensitivity of the neutron skin thickness to the low-density slope of the symmetry energy is greatly increased in the corresponding kaonic nuclei. These sensitive relationships are established upon the fact that the isovector potential in the central region of kaonic nuclei becomes very sensitive to the variation of the symmetry energy. These findings might provide another perspective to constrain high-density symmetry energy, and await experimental verification in the future. Supported by National Natural Science Foundation of China (11775049, 11275048) and the China Jiangsu Provincial Natural Science Foundation (BK20131286)

  20. Heavy nuclei as thermal insulation for protoneutron stars

    NASA Astrophysics Data System (ADS)

    Nakazato, Ken'ichiro; Suzuki, Hideyuki; Togashi, Hajime

    2018-03-01

    A protoneutron star (PNS) is a newly formed compact object in a core collapse supernova. In this paper, the neutrino emission from the cooling process of a PNS is investigated using two types of nuclear equation of state (EOS). It is found that the neutrino signal is mainly determined by the high-density EOS. The neutrino luminosity and mean energy are higher and the cooling time scale is longer for the softer EOS. Meanwhile, the neutrino mean energy and the cooling time scale are also affected by the low-density EOS because of the difference in the population of heavy nuclei. Heavy nuclei have a large scattering cross section with neutrinos owing to the coherent effects and act as thermal insulation near the surface of a PNS. The neutrino mean energy is higher and the cooling time scale is longer for an EOS with a large symmetry energy at low densities, namely a small density derivative coefficient of the symmetry energy, L .

  1. Three-Dimensional Nuclear Chart--Understanding Nuclear Physics and Nucleosynthesis in Stars

    ERIC Educational Resources Information Center

    Koura, Hiroyuki

    2014-01-01

    Three-dimensional (3D) nuclear charts were created using toy blocks, which represent the atomic masses per nucleon number and the total half-lives for each nucleus in the entire region of the nuclear mass. The bulk properties of the nuclei can be easily understood by using these charts. Subsequently, these charts were used in outreach activities…

  2. Learning Nuclear Science with Marbles

    ERIC Educational Resources Information Center

    Constan, Zach

    2010-01-01

    Nuclei are "small": if an atom was the size of a football field, the nucleus would be an apple sitting on the 50-yd line. At the same time, nuclei are "dense": the Earth, compressed to nuclear density, could fit inside four Sears Towers. The subatomic level is strange and exotic. For that reason, it's not hard to get young minds excited about…

  3. Heterogeneity Between Ducts of the Same Nuclear Grade Involved by Duct Carcinoma In Situ (DCIS) of the Breast

    PubMed Central

    Miller, Naomi A.; Chapman, Judith-Anne W.; Qian, Jin; Christens-Barry, William A.; Fu, Yuejiao; Yuan, Yan; Lickley, H. Lavina A.; Axelrod, David E.

    2010-01-01

    Purpose Nuclear grade of breast DCIS is considered during patient management decision-making although it may have only a modest prognostic association with therapeutic outcome. We hypothesized that visual inspection may miss substantive differences in nuclei classified as having the same nuclear grade. To test this hypothesis, we measured subvisual nuclear features by quantitative image cytometry for nuclei with the same grade, and tested for statistical differences in these features. Experimental design and statistical analysis Thirty-nine nuclear digital image features of about 100 nuclei were measured in digital images of H&E stained slides of 81 breast biopsy specimens. One field with at least 5 ducts was evaluated for each patient. We compared features of nuclei with the same grade in multiple ducts of the same patient with ANOVA (or Welch test), and compared features of nuclei with the same grade in two ducts of different patients using 2-sided t-tests (P ≤ 0.05). Also, we compared image features for nuclei in patients with single grade to those with the same grade in patients with multiple grades using t-tests. Results Statistically significant differences were detected in nuclear features between ducts with the same nuclear grade, both in different ducts of the same patient, and between ducts in different patients with DCIS of more than one grade. Conclusion Nuclei in ducts visually described as having the same nuclear grade had significantly different subvisual digital image features. These subvisual differences may be considered additional manifestations of heterogeneity over and above differences that can be observed microscopically. This heterogeneity may explain the inconsistency of nuclear grading as a prognostic factor. PMID:20981137

  4. Influence of nuclei segmentation on breast cancer malignancy classification

    NASA Astrophysics Data System (ADS)

    Jelen, Lukasz; Fevens, Thomas; Krzyzak, Adam

    2009-02-01

    Breast Cancer is one of the most deadly cancers affecting middle-aged women. Accurate diagnosis and prognosis are crucial to reduce the high death rate. Nowadays there are numerous diagnostic tools for breast cancer diagnosis. In this paper we discuss a role of nuclear segmentation from fine needle aspiration biopsy (FNA) slides and its influence on malignancy classification. Classification of malignancy plays a very important role during the diagnosis process of breast cancer. Out of all cancer diagnostic tools, FNA slides provide the most valuable information about the cancer malignancy grade which helps to choose an appropriate treatment. This process involves assessing numerous nuclear features and therefore precise segmentation of nuclei is very important. In this work we compare three powerful segmentation approaches and test their impact on the classification of breast cancer malignancy. The studied approaches involve level set segmentation, fuzzy c-means segmentation and textural segmentation based on co-occurrence matrix. Segmented nuclei were used to extract nuclear features for malignancy classification. For classification purposes four different classifiers were trained and tested with previously extracted features. The compared classifiers are Multilayer Perceptron (MLP), Self-Organizing Maps (SOM), Principal Component-based Neural Network (PCA) and Support Vector Machines (SVM). The presented results show that level set segmentation yields the best results over the three compared approaches and leads to a good feature extraction with a lowest average error rate of 6.51% over four different classifiers. The best performance was recorded for multilayer perceptron with an error rate of 3.07% using fuzzy c-means segmentation.

  5. Description of nuclear systems with a self-consistent configuration-mixing approach. II. Application to structure and reactions in even-even s d -shell nuclei

    NASA Astrophysics Data System (ADS)

    Robin, C.; Pillet, N.; Dupuis, M.; Le Bloas, J.; Peña Arteaga, D.; Berger, J.-F.

    2017-04-01

    Background: The variational multiparticle-multihole configuration mixing approach to nuclei has been proposed about a decade ago. While the first applications followed rapidly, the implementation of the full formalism of this method has only been recently completed and applied in C. Robin, N. Pillet, D. Peña Arteaga, and J.-F. Berger, [Phys. Rev. C 93, 024302 (2016)], 10.1103/PhysRevC.93.024302 to 12C as a test-case. Purpose: The main objective of the present paper is to carry on the study that was initiated in that reference, in order to put the variational multiparticle-multihole configuration mixing method to more stringent tests. To that aim we perform a systematic study of even-even s d -shell nuclei. Method: The wave function of these nuclei is taken as a configuration mixing built on orbitals of the s d -shell, and both the mixing coefficients of the nuclear state and the single-particle wave functions are determined consistently from the same variational principle. As in the previous works, the calculations are done using the D1S Gogny force. Results: Various ground-state properties are analyzed. In particular, the correlation content and composition of the wave function as well as the single-particle orbitals and energies are examined. Binding energies and charge radii are also calculated and compared to experiment. The description of the first excited state is also examined and the corresponding transition densities are used as input for the calculation of reaction processes such as inelastic electron and proton scattering. Special attention is paid to the effect of the optimization of the single-particle states consistently with the correlations of the system. Conclusions: The variational multiparticle-multihole configuration mixing approach is systematically applied to the description of even-even s d -shell nuclei. Globally, the results are satisfying and encouraging. In particular, charge radii and excitation energies are nicely reproduced. However

  6. Compton scattering from nuclei and photo-absorption sum rules

    NASA Astrophysics Data System (ADS)

    Gorchtein, Mikhail; Hobbs, Timothy; Londergan, J. Timothy; Szczepaniak, Adam P.

    2011-12-01

    We revisit the photo-absorption sum rule for real Compton scattering from the proton and from nuclear targets. In analogy with the Thomas-Reiche-Kuhn sum rule appropriate at low energies, we propose a new “constituent quark model” sum rule that relates the integrated strength of hadronic resonances to the scattering amplitude on constituent quarks. We study the constituent quark model sum rule for several nuclear targets. In addition, we extract the α=0 pole contribution for both proton and nuclei. Using the modern high-energy proton data, we find that the α=0 pole contribution differs significantly from the Thomson term, in contrast with the original findings by Damashek and Gilman.

  7. Nuclear Photonics

    NASA Astrophysics Data System (ADS)

    Nedorezov, V. G.; Savel'ev-Trofimov, A. B.

    2017-12-01

    A review of works performed at the Institute for Nuclear Research of the Russian Academy of Sciences and at the International Laser Center of the Moscow State University in the context of the new research area called "nuclear photonics" is presented. Nuclear photonics is based on creation of the new-generation gamma-ray sources which make it possible to solve a number of fundamental and applied problems, including research of low-energy photonuclear reactions, namely, investigation of collective excitations of nuclei near the threshold (pygmy resonances); nuclear safety assurance; production of low-energy positron beams; and phase-contrast X-ray imaging.

  8. Chromatin states and nuclear organization in development--a view from the nuclear lamina.

    PubMed

    Mattout, Anna; Cabianca, Daphne S; Gasser, Susan M

    2015-08-25

    The spatial distribution of chromatin domains in interphase nuclei changes dramatically during development in multicellular organisms. A crucial question is whether nuclear organization is a cause or a result of differentiation. Genetic perturbation of lamina-heterochromatin interactions is helping to reveal the cross-talk between chromatin states and nuclear organization.

  9. Overhauser shift and dynamic nuclear polarization on carbon fibers

    NASA Astrophysics Data System (ADS)

    Herb, Konstantin; Denninger, Gert

    2018-06-01

    We report on the first experimental magnetic resonance determination of the coupling between electrons and nuclear spins (1H, 13C) in carbon fibers. Our results strongly support the assumption that the electronic spins are delocalized on graphene like structures in the fiber. The coupling between these electrons and the nuclei of the lattice results in dynamic nuclear polarization of the nuclei (DNP), enabling very sensitive NMR experiments on these nuclear spins. For possible applications of graphene in spintronics devices the coupling between nuclei and electrons is essential. We were able to determine the interactions down to 30 × 10-9(30 ppb) . We were even able to detect the coupling of the electrons to 13C (in natural abundance). These experiments open the way for a range of new double resonance investigations with possible applications in the field of material science.

  10. Resolved Structure of the Arp 220 Nuclei at λ ≈ 3 mm

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kazushi; Aalto, Susanne; Barcos-Muñoz, Loreto; Costagliola, Francesco; Evans, Aaron S.; Harada, Nanase; Martín, Sergio; Wiedner, Martina; Wilner, David

    2017-11-01

    We analyze the 3 mm emission of the ultraluminous infrared galaxy Arp 220 for the spatially resolved structure and the spectral properties of the merger nuclei. ALMA archival data at ˜0.″05 resolution are used for extensive visibility fitting and deep imaging of the continuum emission. The data are fitted well by two concentric components for each nucleus, such as two Gaussians or one Gaussian plus one exponential disk. The larger components in the individual nuclei are similar in shape and extent, ˜100-150 pc, to the centimeter wave emission due to supernovae. They are therefore identified with the known starburst nuclear disks. The smaller components in both nuclei have about a few 10 pc sizes and peak brightness temperatures ({T}{{b}}) more than twice higher than those in previous single-Gaussian fitting. They correspond to the dust emission that we find centrally concentrated in both nuclei by subtracting the plasma emission measured at 33 GHz. The dust emission in the western nucleus is found to have a peak {T}{{b}}≈ 530 K and an FWHM of about 20 pc. This component is estimated to have a bolometric luminosity on the order of {10}12.5 {L}⊙ and a 20 pc scale luminosity surface density {10}15.5 {{L}}⊙ {{{k}}{{p}}{{c}}}-2. A luminous active galactic nucleus is a plausible energy source for these high values while other explanations remain to be explored. Our continuum image also reveals a third structural component of the western nucleus—a pair of faint spurs perpendicular to the disk major axis. We attribute it to a bipolar outflow from the highly inclined (I≈ 60^\\circ ) western nuclear disk.

  11. Nuclear Deformation at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Alhassid, Y.; Gilbreth, C. N.; Bertsch, G. F.

    2014-12-01

    Deformation, a key concept in our understanding of heavy nuclei, is based on a mean-field description that breaks the rotational invariance of the nuclear many-body Hamiltonian. We present a method to analyze nuclear deformations at finite temperature in a framework that preserves rotational invariance. The auxiliary-field Monte Carlo method is used to generate a statistical ensemble and calculate the probability distribution associated with the quadrupole operator. Applying the technique to nuclei in the rare-earth region, we identify model-independent signatures of deformation and find that deformation effects persist to temperatures higher than the spherical-to-deformed shape phase-transition temperature of mean-field theory.

  12. Landscape of α preformation probability for even-even nuclei in medium mass region

    NASA Astrophysics Data System (ADS)

    Qian, Yibin; Ren, Zhongzhou

    2018-03-01

    The behavior of α cluster preformation probability, in α decay, is a rich source of the structural information, such as the clustering, pairing, and shell evolution in heavy nuclei. Meanwhile, the experimental α decay data have been very recently compiled in the newest table NUBASE2016. Through a least square fit to the available experimental data of nuclear charge radii plus the neutron skin thickness, we obtain a new set of parameters for the two-parameter Fermi nucleon density distributions in target nuclei. Subsequently, we make use of these refreshed inputs, involved in the density-dependent cluster model, to extract α preformation factor ({P}α ) for a large range of medium α emitters with N < 126 from the newest data table. Besides checking the supposed smooth pattern of P α in the open-shell region, the special attention has been paid to those exotic α-decaying nuclei around the Z = 50 and N = 82 shell closures. Moreover, the correlation between the α preformation factor and the microscopic correction of nuclear mass, corresponding to the effect of shell and pairing plus deformation, is in particular investigated, to pursue the valuable knowledge of the P α pattern over the nuclide chart. The feature of α preformation factor along with the neutron-proton asymmetry is then detected and discussed to some extent.

  13. Fields in laser-ablated plasmas generalized to degenerate electrons and to Fermi energy in nuclei with change to quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Hora, Heinrich; Miley, George H.; Osman, Frederick; Hammerling, Peter X.

    2004-09-01

    The studies of laser ablation have lead to a new theory of nuclei, endothermic nuclei generation and quark-gluon plasmas. The surface of ablated plasma expanding into vacuum after high power laser irradiation of targets, contains an electric double layer having the thickness of the Debye length. This led to the discovery of surface tension of plasmas and to the internal dynamic electric fields in all inhomogeneous plasmas. The surface causes stabilization by short length surface waves smoothing the expanding plasma plume. Generalizing this to the degenerate electrons in a metal with the Fermi energy instead of the temperature, resulted in the surface tension of metals in agreement with measurements. Taking then the Fermi energy in the Debye length for nucleons results in a theory of nuclei with stable confinement of protons and neutrons just at the well known nuclear density, and in the Debye length equal to Hofstadter's decay of the nuclear surface. Increasing the nuclear density by a factor of 6 leads to the change of the Fermi energy into its relativistic branch where no surface energy is possible and the particle mass is not defined, permitting the quark-gluon plasma. Expansion of this higher density at the big band or in a supernova results in nucleation and element generation. The Boltzmann equilibrium permits the synthesis of nuclei even in the endothermic range limited to about uranium.

  14. Spin-locking of half-integer quadrupolar nuclei in nuclear magnetic resonance of solids: second-order quadrupolar and resonance offset effects.

    PubMed

    Ashbrook, Sharon E; Wimperis, Stephen

    2009-11-21

    Spin-locking of spin I=3/2 and I=5/2 nuclei in the presence of small resonance offset and second-order quadrupolar interactions has been investigated using both exact and approximate theoretical and experimental nuclear magnetic resonance (NMR) approaches. In the presence of second-order quadrupolar interactions, we show that the initial rapid dephasing that arises from the noncommutation of the state prepared by the first pulse and the spin-locking Hamiltonian gives rise to tensor components of the spin density matrix that are antisymmetric with respect to inversion, in addition to those symmetric with respect to inversion that are found when only a first-order quadrupolar interaction is considered. We also find that spin-locking of multiple-quantum coherence in a static solid is much more sensitive to resonance offset than that of single-quantum coherence and show that good spin-locking of multiple-quantum coherence can still be achieved if the resonance offset matches the second-order shift of the multiple-quantum coherence in the appropriate reference frame. Under magic angle spinning (MAS) conditions, and in the "adiabatic" limit, we demonstrate that rotor-driven interconversion of central-transition single- and three-quantum coherences for a spin I=3/2 nucleus can be best achieved by performing the spin-locking on resonance with the three-quantum coherence in the three-quantum frame. Finally, in the "sudden" MAS limit, we show that spin I=3/2 spin-locking behavior is generally similar to that found in static solids, except when the central-transition nutation rate matches a multiple of the MAS rate and a variety of rotary resonance phenomena are observed depending on the internal spin interactions present. This investigation should aid in the application of spin-locking techniques to multiple-quantum NMR of quadrupolar nuclei and of cross-polarization and homonuclear dipolar recoupling experiments to quadrupolar nuclei such as (7)Li, (11)B, (17)O, (23)Na, and

  15. Nuclear structure studies with gamma-ray beams

    DOE PAGES

    Tonchev, Anton; Bhatia, Chitra; Kelley, John; ...

    2015-05-28

    In stable and weakly bound neutron-rich nuclei, a resonance-like concentration of dipole states has been observed for excitation energies below the neutron-separation energy. This clustering of strong dipole states has been named the Pygmy Dipole Resonance (PDR) in contrast to the Giant Dipole Resonance (GDR) that dominates the E1 response. Understanding the PDR is presently of great interest in nuclear structure and nuclear astrophysics. High-sensitivity studies of E1 and M1 transitions in closed-shell nuclei using monoenergetic and 100% linearly-polarized photon beams are presented.

  16. Nuclear Structure Studies with Gamma-Ray Beams

    NASA Astrophysics Data System (ADS)

    Tonchev, Anton; Bhatia, Chitra; Kelley, John; Raut, Rajarshi; Rusev, Gencho; Tornow, Werner; Tsoneva, Nadia

    2015-05-01

    In stable and weakly bound neutron-rich nuclei, a resonance-like concentration of dipole states has been observed for excitation energies below the neutron-separation energy. This clustering of strong dipole states has been named the Pygmy Dipole Resonance (PDR) in contrast to the Giant Dipole Resonance (GDR) that dominates the E1 response. Understanding the PDR is presently of great interest in nuclear structure and nuclear astrophysics. High-sensitivity studies of E1 and M1 transitions in closed-shell nuclei using monoenergetic and 100% linearly-polarized photon beams are presented.

  17. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; hide

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 1011 M that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) approx < 1.1 10(exp 22)/sq cm) X-ray nuclei are relatively common (8/12), but the detections are too faint (< 40 counts per nucleus; (sub -10) keV approx < 1.2 10(exp -13) erg/s/sq cm) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  18. Mims electron-nuclear double resonance in LiYF4:Ce3+ crystal

    NASA Astrophysics Data System (ADS)

    Gafurov, M.; Mamin, G.; Kurkin, I.; Orlinskii, S.

    2018-05-01

    We report the observation of the pulsed electron-nuclear double resonance (ENDOR) spectra from 19F and 7Li nuclei on impurity Ce3+ ions in LiYF4 crystal. The resolved structure from the nearby and remote nuclei in spectra is observed. The outcome shows that LiYF4:Ce3+ system can be exploited as a convenient matrix for performing spin manipulations and adjusting quantum computation protocols while ENDOR technique is usable for the investigation of electron-nuclear interaction with all the nuclei of the system.

  19. Basic Proteins of Plant Nuclei during Normal and Pathological Cell Growth

    PubMed Central

    Rasch, Ellen; Woodard, John W.

    1959-01-01

    Histone proteins were studied by microphotometry of plant tissue sections stained with fast green at pH 8.1. For comparative purposes the Feulgen reaction was used for deoxyribose nuclei acid (DNA); the Sakaguchi reaction for arginine; and the Millon reaction for estimates of total protein. Analysis of Tradescantia tissues indicated that amounts of nuclear histone fell into approximate multiples of the gametic (egg or sperm) quantity except in dividing tissues, where amounts intermediate between multiples were found. In differentiated tissues of lily, corn, onion, and broad bean, histones occurred in constant amounts per nucleus, characteristic of the species, as was found also for DNA. Unlike the condition in several animal species, the basic proteins of sperm nuclei in these higher plants were of the histone type; no evidence of protamine was found. In a plant neoplasm, crown gall of broad bean, behavior of the basic nuclear proteins closely paralleled that of DNA. Thus, alterations of DNA levels in tumor tissues were accompanied by quantitatively similar changes in histone levels to maintain the same Feulgen/fast green ratios found in homologous normal tissues. PMID:14436319

  20. Nuclear spin circular dichroism.

    PubMed

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-04-07

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

  1. Dynamic nuclear polarization assisted spin diffusion for the solid effect case.

    PubMed

    Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon

    2011-02-21

    The dynamic nuclear polarization (DNP) process in solids depends on the magnitudes of hyperfine interactions between unpaired electrons and their neighboring (core) nuclei, and on the dipole-dipole interactions between all nuclei in the sample. The polarization enhancement of the bulk nuclei has been typically described in terms of a hyperfine-assisted polarization of a core nucleus by microwave irradiation followed by a dipolar-assisted spin diffusion process in the core-bulk nuclear system. This work presents a theoretical approach for the study of this combined process using a density matrix formalism. In particular, solid effect DNP on a single electron coupled to a nuclear spin system is considered, taking into account the interactions between the spins as well as the main relaxation mechanisms introduced via the electron, nuclear, and cross-relaxation rates. The basic principles of the DNP-assisted spin diffusion mechanism, polarizing the bulk nuclei, are presented, and it is shown that the polarization of the core nuclei and the spin diffusion process should not be treated separately. To emphasize this observation the coherent mechanism driving the pure spin diffusion process is also discussed. In order to demonstrate the effects of the interactions and relaxation mechanisms on the enhancement of the nuclear polarization, model systems of up to ten spins are considered and polarization buildup curves are simulated. A linear chain of spins consisting of a single electron coupled to a core nucleus, which in turn is dipolar coupled to a chain of bulk nuclei, is considered. The interaction and relaxation parameters of this model system were chosen in a way to enable a critical analysis of the polarization enhancement of all nuclei, and are not far from the values of (13)C nuclei in frozen (glassy) organic solutions containing radicals, typically used in DNP at high fields. Results from the simulations are shown, demonstrating the complex dependences of the DNP

  2. Spatial pattern analysis of nuclear migration in remodelled muscles during Drosophila metamorphosis.

    PubMed

    Kuleesha; Feng, Lin; Wasser, Martin

    2017-07-10

    Many human muscle wasting diseases are associated with abnormal nuclear localization. During metamorphosis in Drosophila melanogaster, multi-nucleated larval dorsal abdominal muscles either undergo cell death or are remodeled to temporary adult muscles. Muscle remodeling is associated with anti-polar nuclear migration and atrophy during early pupation followed by polar migration and muscle growth during late pupation. Muscle remodeling is a useful model to study genes involved in myonuclear migration. Previously, we showed that loss of Cathepsin-L inhibited anti-polar movements, while knockdown of autophagy-related genes affected nuclear positioning along the medial axis in late metamorphosis. To compare the phenotypic effects of gene perturbations on nuclear migration more objectively, we developed new descriptors of myonuclear distribution. To obtain nuclear pattern features, we designed an algorithm to detect and track nuclear regions inside live muscles. Nuclear tracks were used to distinguish between fast moving nuclei associated with fragments of dead muscles (sarcolytes) and slow-moving nuclei inside remodelled muscles. Nuclear spatial pattern features, such as longitudinal (lonNS) and lateral nuclear spread (latNS), allowed us to compare nuclear migration during muscle remodelling in different genetic backgrounds. Anti-polar migration leads to a lonNS decrease. As expected, lack of myonuclear migration caused by the loss of Cp1 was correlated with a significantly lower lonNS decrease. Unexpectedly, the decrease in lonNS was significantly enhanced by Atg9, Atg5 and Atg18 silencing, indicating that the loss of autophagy promotes the migration and clustering of nuclei. Loss of autophagy also caused a scattering of nuclei along the lateral axis, leading to a two-row as opposed to single row distribution in control muscles. Increased latNS resulting from knockdown of Atg9 and Atg18 was correlated with increased muscle diameter, suggesting that the wider muscle

  3. Reexamining cluster radioactivity in trans-lead nuclei with consideration of specific density distributions in daughter nuclei and clusters

    NASA Astrophysics Data System (ADS)

    Qian, Yibin; Ren, Zhongzhou; Ni, Dongdong

    2016-08-01

    We further investigate the cluster emission from heavy nuclei beyond the lead region in the framework of the preformed cluster model. The refined cluster-core potential is constructed by the double-folding integral of the density distributions of the daughter nucleus and the emitted cluster, where the radius or the diffuseness parameter in the Fermi density distribution formula is determined according to the available experimental data on the charge radii and the neutron skin thickness. The Schrödinger equation of the cluster-daughter relative motion is then solved within the outgoing Coulomb wave-function boundary conditions to obtain the decay width. It is found that the present decay width of cluster emitters is clearly enhanced as compared to that in the previous case, which involved the fixed parametrization for the density distributions of daughter nuclei and clusters. Among the whole procedure, the nuclear deformation of clusters is also introduced into the calculations, and the degree of its influence on the final decay half-life is checked to some extent. Moreover, the effect from the bubble density distribution of clusters on the final decay width is carefully discussed by using the central depressed distribution.

  4. Mechanism regulating nuclear calcium signaling.

    PubMed

    Malviya, Anant N; Klein, Christian

    2006-01-01

    Although the outer nuclear membrane is continuous with the endoplasmic reticulum, it is possible to isolate nuclei both intact and free from endoplasmic reticulum contaminants. The outer and the inner nuclear membranes can be purified free from cross-contamination. Evidence in support of autonomous regulation of nuclear calcium signaling relies upon the investigations with isolated nuclei. Mechanisms for generating calcium signaling in the nucleus have been identified. Two calcium transporting systems, an ATP-dependant nuclear Ca(2+)-ATPase and an IP4-mediated inositol 1,3,4,5-tetrakisphosphate receptor, are located on the outer nuclear membrane. Thus, ATP and IP4, depending on external free calcium concentrations, are responsible for filling the nuclear envelope calcium pool. The inositol 1,4,5-trisphosphate receptor is located on the inner nuclear membrane with its ligand binding domain facing toward the nucleoplasm. Likewise, the ryanodine receptor is located on the inner nuclear membrane and its ligand cADP-ribose is generated within the nucleus. A 120 kDa protein fragment of nuclear PLC-gamma1 is stimulated in vivo by epidermal growth factor nuclear signaling coincident with the time course of nuclear membrane epidermal growth factor receptor activation. Stimulated 120 kDa protein fragment interacts with PIKE, a nuclear GTPase, and together they form a complex with PI[3]kinase serving as a module for nuclear PI[3]K stimulation. Thus, the nucleus has its own IP(3) generating system.

  5. Nuclear technologies for explosives detection

    NASA Astrophysics Data System (ADS)

    Bell, Curtis J.

    1992-12-01

    This paper presents an exploration of several techniques for detection of Improvised Explosive Devices (IED) using interactions of specific nuclei with gammarays or fast neutrons. Techniques considered use these interactions to identify the device by measuring the densities and/or relative concentrations of the elemental constituents of explosives. These techniques are to be compared with selected other nuclear and non-nuclear methods. Combining of nuclear and non-nuclear techniques will also be briefly discussed.

  6. 94 Mo(γ,n) and 90Zr(γ,n) cross-section measurements towards understanding the origin of p-nuclei

    NASA Astrophysics Data System (ADS)

    Meekins, E.; Banu, A.; Karwowski, H.; Silano, J.; Zimmerman, W.; Muller, J.; Rich, G.; Bhike, M.; Tornow, W.; McClesky, M.; Travaglio, C.

    2014-09-01

    The nucleosynthesis beyond iron of the rarest stable isotopes in the cosmos, the so-called p-nuclei, is one of the forefront topics in nuclear astrophysics. Recently, a stellar source was found that, for the first time, was able to produce both light and heavy p-nuclei almost at the same level as 56Fe, including the most debated 92,94Mo and 96,98Ru; it was also found that there is an important contribution from the p-process nucleosynthesis to the neutron magic nucleus 90Zr. We focus here on constraining the origin of p-nuclei through nuclear physics by studying two key astrophysical photoneutron reaction cross sections for 94Mo(γ,n) and 90Zr(γ,n). Their energy dependencies were measured using quasi-monochromatic photon beams from Duke University's High Intensity Gamma-ray Source facility at the respective neutron threshold energies up to 18 MeV. Preliminary results of these experimental cross sections will be presented along with their comparison to predictions by a statistical model based on the Hauser-Feshbach formalism implemented in codes like TALYS and SMARAGD. The nucleosynthesis beyond iron of the rarest stable isotopes in the cosmos, the so-called p-nuclei, is one of the forefront topics in nuclear astrophysics. Recently, a stellar source was found that, for the first time, was able to produce both light and heavy p-nuclei almost at the same level as 56Fe, including the most debated 92,94Mo and 96,98Ru; it was also found that there is an important contribution from the p-process nucleosynthesis to the neutron magic nucleus 90Zr. We focus here on constraining the origin of p-nuclei through nuclear physics by studying two key astrophysical photoneutron reaction cross sections for 94Mo(γ,n) and 90Zr(γ,n). Their energy dependencies were measured using quasi-monochromatic photon beams from Duke University's High Intensity Gamma-ray Source facility at the respective neutron threshold energies up to 18 MeV. Preliminary results of these experimental cross

  7. Search for long lived heaviest nuclei beyond the valley of stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, P. Roy; Samanta, C.; Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284-2000

    2008-04-15

    The existence of long lived superheavy nuclei (SHN) is controlled mainly by spontaneous fission and {alpha}-decay processes. According to microscopic nuclear theory, spherical shell effects at Z=114, 120, 126 and N=184 provide the extra stability to such SHN to have long enough lifetime to be observed. To investigate whether the so-called 'stability island' could really exist around the above Z, N values, the {alpha}-decay half-lives along with the spontaneous fission and {beta}-decay half-lives of such nuclei are studied. The {alpha}-decay half-lives of SHN with Z=102-120 are calculated in a quantum tunneling model with DDM3Y effective nuclear interaction using Q{sub {alpha}}more » values from three different mass formulas prescribed by Koura-Uno-Tachibana-Yamada (KUTY), Myers-Swiatecki (MS), and Muntian-Hofmann-Patyk-Sobiczewski (MMM). Calculation of spontaneous fission (SF) half-lives for the same SHN are carried out using a phenomenological formula and compared with SF half-lives predicted by Smolanczuk et al. A possible source of discrepancy between the calculated {alpha}-decay half-lives of some nuclei and the experimental data of GSI, JINR-FLNR, RIKEN, is discussed. In the region of Z=106-108 with N{approx}160-164, the {beta}-stable SHN {sub 106}{sup 268}Sg{sub 162} is predicted to have highest {alpha}-decay half-life (T{sub {alpha}}{approx}3.2 h) using Q{sub {alpha}} value from MMM. Interestingly, it is much greater than the recently measured T{sub {alpha}} ({approx}22 s) of deformed doubly magic {sub 108}{sup 270}Hs{sub 162} nucleus. A few fission-survived long-lived SHN which are either {beta}-stable or having large {beta}-decay half-lives are predicted to exist near {sup 294}110{sub 184}, {sup 293}110{sub 183}, {sup 296}112{sub 184}, and {sup 298}114{sub 184}. These nuclei might decay predominantly through {alpha}-particle emission.« less

  8. Multiplicities of secondaries in interactions of 1.8 GeV/nucleon Fe-56 nuclei with photoemulsion and the cascade evaporation model

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E; Kovalev, E. E.; Nefedov, N. A.; Antonchik, V. A.; Bogdanov, S. D.; Ostroumov, V. I.; Crawford, H. J.; Benton, E. V.

    1995-01-01

    A nuclear photographic emulsion method was used to study the charge-state, ionization, and angular characteristics of secondaries produced in inelastic interactions of Fe-56 nuclei at 1.8 GeV/nucleon with H, CNO, and AgBr nuclei. The data obtained are compared with the results of calculations made in terms of the Dubna version of the cascade evaporation model (DCM). The DCM has been shown to satisfactorily describe most of the interaction characteristics for two nuclei in the studied reactions. At the same time, quantitative differences are observed in some cases.

  9. Impact of biofuels on contrail warming

    NASA Astrophysics Data System (ADS)

    Caiazzo, Fabio; Agarwal, Akshat; Speth, Raymond L.; Barrett, Steven R. H.

    2017-11-01

    Contrails and contrail-cirrus may be the largest source of radiative forcing (RF) attributable to aviation. Biomass-derived alternative jet fuels are a potentially major way to mitigate the climate impacts of aviation by reducing lifecycle CO2 emissions. Given the up to 90% reduction in soot emissions from paraffinic biofuels, the potential for a significant impact on contrail RF due to the reduction in contrail-forming ice nuclei (IN) remains an open question. We simulate contrail formation and evolution to quantify RF over the United States under different emissions scenarios. Replacing conventional jet fuels with paraffinic biofuels generates two competing effects. First, the higher water emissions index results in an increase in contrail occurrence (~ +8%). On the other hand, these contrails are composed of larger diameter crystals (~ +58%) at lower number concentrations (~ -75%), reducing both contrail optical depth (~ -29%) and albedo (~ -32%). The net changes in contrail RF induced by switching to biofuels range from -4% to +18% among a range of assumed ice crystal habits (shapes). In comparison, cleaner burning engines (with no increase in water emissions index) result in changes to net contrail RF ranging between -13% and +5% depending on habit. Thus, we find that even 67% to 75% reductions in aircraft soot emissions are insufficient to substantially reduce warming from contrails, and that the use of biofuels may either increase or decrease contrail warming—contrary to previous expectations of a significant decrease in warming.

  10. Nuclear Energy Policy

    DTIC Science & Technology

    2010-05-27

    small modular reactors and extend the lives and improve the operation of existing commercial nuclear power plants. 40 Interdisciplinary MIT Study, The Future of Nuclear Power, Massachusetts Institute of Technology, 2003, p. 79. 41 Gronlund, Lisbeth, David Lochbaum, and Edwin Lyman, Nuclear Power in a Warming World, Union of Concerned Scientists, December 2007. 42 Travis Madsen, Tony Dutzik, and Bernadette Del Chiaro, et al., Generating Failure: How Building Nuclear Power Plants

  11. Light Collection Efficiency in Thin Strip Plastic Scintillator for the Study of ISGMR in Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Shafer, Jacob

    2011-10-01

    The compressibility of nuclear matter (KA) is one of the constituent of the equation of state for nuclear matter which is important in the study Neutron Stars and Super Novae. The KA is proportional to the Giant Monopole Resonance (GMR) energy and is related by the equation EGMR = (h2/mr2) 1/2 *(AKA)1/2 , where ``m'' is the mass of a nucleon and ``r'' is the radius of the nucleus. The GMR in unstable nuclei is important because the KA is related to the ratio of protons to neutrons. For this reason, it is desirable to study unstable nuclei as well as stable nuclei. The study of the GMR in unstable nuclei will be done using inverse kinematics on a target of Lithium (6Li). A detector composed of two layers of thin strip scintillators and one layer of large block scintillators has been designed and constructed to give adequate energy and angular distribution over a large portion of the solid angle where decay particles from the ISGMR can be found. Attenuation of the light signal in the strip scintillators was measured using an Americium (241Am) alpha source. Gains in light collection efficiency due to various wrapping techniques were also measured. The thin strip scintillators are connected to the photomultiplier tube (PMT) via bundles of optical fiber. Losses in light calculation efficiency due to fiber bundles were measured as well. Funded by DOE and NSF-REU.

  12. Compton Scattering and Photo-absorption Sum Rules on Nuclei

    NASA Astrophysics Data System (ADS)

    Gorshteyn, Mikhail; Hobbs, Timothy; Londergan, J. Timothy; Szczepaniak, Adam P.

    2012-03-01

    We revisit the photo-absorption sum rule for real Compton scattering from the proton and from nuclear targets. In analogy with the Thomas-Reiche-Kuhn sum rule appropriate at low energies, we propose a new ``constituent quark model'' sum rule that relates the integrated strength of hadronic resonances to the scattering amplitude on constituent quarks. We study the constituent quark model sum rule for several nuclear targets. In addition we extract the J=0 pole contribution for both proton and nuclei. Using the modern high energy proton data we find that the J=0 pole contribution differs significantly from the Thomson term, in contrast with the original findings by Damashek and Gilman. We discuss phenomenological implications of this new result.

  13. Nuclear rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertsch, G.F.; Janssens, R.V.

    1997-07-01

    An analysis of the gamma-ray spectra produced using the quantum mechanical rotational energy formula is presented for nuclei with large angular momentum. This analysis is suitable for quantum mechanics, modern physics, or nuclear physics courses. (AIP) {copyright}{ital 1997 American Institute of Physics}

  14. Pasta nucleosynthesis: Molecular dynamics simulations of nuclear statistical equilibrium

    NASA Astrophysics Data System (ADS)

    Caplan, M. E.; Schneider, A. S.; Horowitz, C. J.; Berry, D. K.

    2015-06-01

    Background: Exotic nonspherical nuclear pasta shapes are expected in nuclear matter at just below saturation density because of competition between short-range nuclear attraction and long-range Coulomb repulsion. Purpose: We explore the impact nuclear pasta may have on nucleosynthesis during neutron star mergers when cold dense nuclear matter is ejected and decompressed. Methods: We use a hybrid CPU/GPU molecular dynamics (MD) code to perform decompression simulations of cold dense matter with 51 200 and 409 600 nucleons from 0.080 fm-3 down to 0.00125 fm-3 . Simulations are run for proton fractions YP= 0.05, 0.10, 0.20, 0.30, and 0.40 at temperatures T = 0.5, 0.75, and 1.0 MeV. The final composition of each simulation is obtained using a cluster algorithm and compared to a constant density run. Results: Size of nuclei in the final state of decompression runs are in good agreement with nuclear statistical equilibrium (NSE) models for temperatures of 1 MeV while constant density runs produce nuclei smaller than the ones obtained with NSE. Our MD simulations produces unphysical results with large rod-like nuclei in the final state of T =0.5 MeV runs. Conclusions: Our MD model is valid at higher densities than simple nuclear statistical equilibrium models and may help determine the initial temperatures and proton fractions of matter ejected in mergers.

  15. Nuclear Physics in a biological context

    NASA Astrophysics Data System (ADS)

    Discher, Dennis

    2012-02-01

    A solid tissue can be soft like fat or brain, stiff like striated muscle and heart, or rigid like bone -- and of course every cell has a nucleus that contributes in some way small or large to tissue mechanics. Indeed, nuclei generally exhibit rheology and plasticity that reflects both the chromatin and the nuclear envelope proteins called lamins, all of which change in differentiation. Profiling of tissue nuclei shows that the nuclear intermediate filament protein Lamin-A/C varies over 30-fold between adult tissues and scales strongly with micro-elasticity of tissue, while other nuclear envelope components such as Lamin-B exhibit small variations. Lamin-A/C has been implicated in aging syndromes that affect muscle and fat but not brain, and we find nuclei in brain-derived cells are indeed dominated by Lamin-B and are much softer than nuclei derived from muscle cells with predominantly Lamin-A/C. In vitro, matrix elasticity can affect expression of nuclear envelope components in adult stem cells, and major changes in Lamin-A/C are indeed shown to direct lineage with lower levels favoring soft tissue and higher levels promoting rigid tissue lineage. Further molecular studies provide evidence that the nucleus transduces physical stress. References: (1) J.D. Pajerowski, K.N. Dahl, F.L. Zhong, P.J. Sammak, and D.E. Discher. Physical plasticity of the nucleus in stem cell differentiation. PNAS 104: 15619-15624 (2007). (2) A. Buxboim, I. Ivanova, and D.E. Discher. Matrix Elasticity, Cytoskeletal Forces, and Physics of the Nucleus: how deeply do cells `feel' outside and in? Journal of Cell Science 123: 297-308 (2010).

  16. Nuclear removal during terminal lens fiber cell differentiation requires CDK1 activity: appropriating mitosis-related nuclear disassembly

    PubMed Central

    Chaffee, Blake R.; Shang, Fu; Chang, Min-Lee; Clement, Tracy M.; Eddy, Edward M.; Wagner, Brad D.; Nakahara, Masaki; Nagata, Shigekazu; Robinson, Michael L.; Taylor, Allen

    2014-01-01

    Lens epithelial cells and early lens fiber cells contain the typical complement of intracellular organelles. However, as lens fiber cells mature they must destroy their organelles, including nuclei, in a process that has remained enigmatic for over a century, but which is crucial for the formation of the organelle-free zone in the center of the lens that assures clarity and function to transmit light. Nuclear degradation in lens fiber cells requires the nuclease DNase IIβ (DLAD) but the mechanism by which DLAD gains access to nuclear DNA remains unknown. In eukaryotic cells, cyclin-dependent kinase 1 (CDK1), in combination with either activator cyclins A or B, stimulates mitotic entry, in part, by phosphorylating the nuclear lamin proteins leading to the disassembly of the nuclear lamina and subsequent nuclear envelope breakdown. Although most post-mitotic cells lack CDK1 and cyclins, lens fiber cells maintain these proteins. Here, we show that loss of CDK1 from the lens inhibited the phosphorylation of nuclear lamins A and C, prevented the entry of DLAD into the nucleus, and resulted in abnormal retention of nuclei. In the presence of CDK1, a single focus of the phosphonuclear mitotic apparatus is observed, but it is not focused in CDK1-deficient lenses. CDK1 deficiency inhibited mitosis, but did not prevent DNA replication, resulting in an overall reduction of lens epithelial cells, with the remaining cells possessing an abnormally large nucleus. These observations suggest that CDK1-dependent phosphorylations required for the initiation of nuclear membrane disassembly during mitosis are adapted for removal of nuclei during fiber cell differentiation. PMID:25139855

  17. Muon, photon and nuclear CERs for ββ - ν response studies

    NASA Astrophysics Data System (ADS)

    Ejiri, H.

    2015-10-01

    Neutrino nuclear responses for neutrino-less double beta decays (0νββ DBD) are studied by muon, photon and nuclear charge exchange reactions (CER) and β-EC transitions. These experimental responses with low and medium momentum transfers are used to evaluate 0νββ nuclear matrix elements and the solar neutrino interactions with atoms and nuclei of DBD detectors. Gamma-ray measurements from residual RI nuclei produced by (µ, νµxn) reactions on 100Mo shows a giant resonance around 12-15 MeV for µ- capture strength. Single β Gamow-Teller (GT) and spin-dipole (SD) strengths are reduced with respect to pnQRPA calculations by gAe f f≈0.5 -0.6 gA , suggesting considerable reductions of the axial vector responses for DBD. Solar neutrino nuclear interactions with nuclei of the DBD isotopes and atoms of liquid scintillators used for DBD experiments are shown to be the serious backgrounds at the ROI (region of interest) of 0νββ.

  18. Effective field theory description of halo nuclei

    NASA Astrophysics Data System (ADS)

    Hammer, H.-W.; Ji, C.; Phillips, D. R.

    2017-10-01

    Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of 4He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFT's encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.

  19. Interspecies somatic cell nuclear transfer in Asiatic cheetah using nuclei derived from post-mortem frozen tissue in absence of cryo-protectant and in vitro matured domestic cat oocytes.

    PubMed

    Moulavi, F; Hosseini, S M; Tanhaie-Vash, N; Ostadhosseini, S; Hosseini, S H; Hajinasrollah, M; Asghari, M H; Gourabi, H; Shahverdi, A; Vosough, A D; Nasr-Esfahani, M H

    2017-03-01

    Recent accomplishments in the field of somatic cell nuclear transfer (SCNT) hold tremendous promise to prevent rapid loss of animal genetic resources using ex situ conservation technology. Most of SCNT studies use viable cells for nuclear transfer into recipient oocytes. However, preparation of live cells in extreme circumstances, in which post-mortem material of endangered/rare animals is improperly retained frozen, is difficult, if not impossible. This study investigated the possibility of interspecies-SCNT (iSCNT) in Asiatic cheetah (Acinonyx jubatus venaticus), a critically endangered subspecies, using nuclei derived from frozen tissue in absence of cryo-protectant at -20 °C and in vitro matured domestic cat oocytes. No cells growth was detected in primary culture of skin and tendon pieces or following culture of singled cells prepared by enzymatic digestion. Furthermore, no live cells were detected following differential viable staining and almost all cells had ruptured membrane. Therefore, direct injection of donor nuclei into enucleated cat oocytes matured in vitro was carried out for SCNT experiments. Early signs of nuclear remodeling were observed as early as 2 h post-iSCNT and significantly increased at 4 h post-iSCNT. The percentages of iSCNT reconstructs that cleaved and developed to 4-16 cell and morula stages were 32.3 ± 7.3, 18.2 ± 9.8 and 5.9 ± 4.3%, respectively. However, none of the iSCNT reconstructs developed to the blastocyst stage. When domestic cat somatic and oocytes were used for control SCNT and parthenogenetic activation, the respective percentages of oocytes that cleaved (51.3 ± 13.9 and 77.3 ± 4.0%) and further developed to the blastocyst stage (11.3 ± 3.3 and 16.8 ± 3.8%) were comparable. In summary, this study demonstrated that enucleated cat oocytes can partially remodel and reactivate non-viable nuclei of Asiatic cheetah and support its reprogramming back to the embryonic stage. To our knowledge, this is

  20. Clustering in light nuclei and their effects on fusion and pre - equilibrium processes.

    NASA Astrophysics Data System (ADS)

    Gramegna, Fabiana; Cicerchia, Magda; Fabris, Daniela; Marchi, Tommaso; Cinausero, Marco; Degerlier, Meltem; Mabiala, Justin; Mantovani, Giorgia; Morelli, Luca; D'Agostino, Michela; Bruno, Mauro; Barlini, Sandro; Bini, Maurizio; Pasquali, Gabriele; Piantelli, Silvia; Casini, Giovanni; Pastore, Giuseppe; Gruyer, Diego; Ottanelli, Pietro; Valdré, Simone; Gelli, Nicla; Olmi, Alessandro; Poggi, Giacomo; Vardaci, Emanuele; Lombardo, Ivano; Dell'Aquila, Daniele; Leoni, Silvia; Cieplicka-Orynczak, Natalya; Fornal, Bogdan; Mengoni, Daniele; Collazuol, Gianmaria; Caciolli, Antonio; Colonna, Maria; Ono, Akira; Baiocco, Giorgio

    2017-11-01

    The study of nuclear cluster states bound by valence neutrons is a field of recent large interest. In particular, it is important to study the pre-formation of α-clusters in α-conjugate nuclei and the dynamical condensation of clusters during nuclear reactions [1-5]. The NUCL-EX collaboration has recently initiated an experimental campaign of exclusive measurements of fusion-evaporation reactions with light nuclei as interacting partners. In collisions involving light systems, the low expected multiplicity of fragments increases the probability of achieving a quasi-complete reconstruction of the event. In particular the formation and decay modes of an excited 24Mg system have been studied through two different reactions, 12C (95 MeV)+ 12C and 14N (80.7 MeV)+ 10B, which have been used to produce fused systems with nearly the same mass and excitation energy ( 60 MeV). In particular, even the de-excitation of the Hoyle state in 12C have been studied, both in peripheral (projectiles de-excitation) and in central collisions (six α-particles channel). Moreover, a research campaign studying pre-equilibrium emission of light charged particles and cluster properties of light and medium-mass nuclei has been carried out. For this purpose, a comparative study of the three nuclear systems 18O+28Si, 16O+30Si and 19F+27Al has been recently studied using the GARFIELD+RCo 4π setup [6]. The experimental data are compared with the predictions of simulated events generated with the statistical models (GEMINI++ and HFl) and through dynamical models like Stochastic Mean Field (SMF) and Antisymmetrized Molecular Dynamics (AMD) and filtered with a software replica of our apparatus in order to take into account the experimental conditions.

  1. Are there any narrow K--nuclear states?

    NASA Astrophysics Data System (ADS)

    Hrtánková, Jaroslava; Mareš, Jiří

    2017-07-01

    We performed self-consistent calculations of K--nuclear quasi-bound states using a single-nucleon K- optical potential derived from chiral meson-baryon coupled-channel interaction models, supplemented by a phenomenological K- multinucleon potential introduced recently to achieve good fits to kaonic atom data [1]. Our calculations show that the effect of K- multinucleon interactions on K- widths in nuclei is decisive. The resulting widths are considerably larger than corresponding binding energies. Moreover, when the density dependence of the K--multinucleon interactions derived in the fits of kaonic atoms is extended to the nuclear interior, the only two models acceptable after imposing as additional constraint the single-nucleon fraction of K- absorption at rest do not yield any kaonic nuclear bound state in majority of considered nuclei.

  2. Correlation of individual cosmic ray nuclei with the observation of light flashes by Apollo astronauts. [nuclear emulsion detector design and operation

    NASA Technical Reports Server (NTRS)

    Pinsky, L. S.; Osborne, W. Z.; Bailey, J. V.

    1975-01-01

    A nuclear emulsion detector known as the Apollo Light Flash Moving Emulsion Detector (ALFMED) was designed: (1) to record tracks of primary cosmic rays; (2) to provide time-of-passage information via a relative plate translation technique; (3) to provide particle trajectory information; and (4) to fit into a masklike device that could be located about the head and eyes of an astronaut. An ALFMED device was worn by an astronaut observing light flashes for 60 minutes on each of the last two Apollo missions. During the Apollo 17 experiment seventeen separate flashes were reported by the observer. With one-third of the total plate area completely analyzed, two definite correlations have been found between Z greater than 8 cosmic ray nuclei traversing an eye and the reports of visual sensations.

  3. Prognostic significance of morphometric parameters of nucleoli and nuclei of invasive ductal breast carcinomas.

    PubMed

    Karpińska-Kaczmarczyk, Katarzyna; Kram, Andrzej; Kaczmarczyk, Mariusz; Domagała, Wenancjusz

    2009-01-01

    The aim of this study was to evaluate associations between seven morphometric parameters of the nucleoli and nuclei of methyl green and pyronin Y (MG-PY) stained tumour cells of invasive ductal breast carcinoma with relapse-free survival (RFS) and overall survival (OS) time. Histological sections from 150 invasive ductal breast cancers were stained with MG-PY and the following parameters were evaluated by computer image analysis: the nucleolar area, long to short nucleolar axis ratio, nucleolar shape parameter assessing the degree of nucleolar roundness, long to short nuclear axis ratio, number of nucleoli in the nucleus and the percentage of the nuclear cross-section surface area occupied by the nucleoli. A statistically significant association between a nucleolar shape polymorphism and the number of nucleoli in the nuclei of tumour cells and the RFS but not OS was found in the entire group of patients as well as patients with axillary lymph node metastases. A higher polymorphism of nucleolar shape and a higher number of nucleoli in the nuclei of breast cancer cells were associated with decreased relapse-free survival (p < 0.05). The remaining morphometric parameters showed no statistically significant association with RFS or OS. The results indicate that morphometry of nucleoli in MG-PY stained histological sections can be useful in the analysis of associations between nucleolar parameters and prognosis of patients with invasive breast cancer.

  4. Experimental level densities of atomic nuclei

    DOE PAGES

    Guttormsen, M.; Aiche, M.; Bello Garrote, F. L.; ...

    2015-12-23

    It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. Furthermore, trom the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least upmore » to the neutron threshold.« less

  5. Effects of medium on nuclear properties in multifragmentation

    NASA Astrophysics Data System (ADS)

    De, J. N.; Samaddar, S. K.; Viñas, X.; Centelles, M.; Mishustin, I. N.; Greiner, W.

    2012-08-01

    In multifragmentation of hot nuclear matter, properties of fragments embedded in a soup of nucleonic gas and other fragments should be modified as compared with isolated nuclei. Such modifications are studied within a simple model where only nucleons and one kind of heavy nuclei are considered. The interaction between different species is described with a momentum-dependent two-body potential whose parameters are fitted to reproduce properties of cold isolated nuclei. The internal energy of heavy fragments is parametrized according to a liquid-drop model with density- and temperature-dependent parameters. Calculations are carried out for several subnuclear densities and moderate temperatures, for isospin-symmetric and asymmetric systems. We find that the fragments get stretched due to interactions with the medium and their binding energies decrease with increasing temperature and density of nuclear matter.

  6. Effects of inactivating individual cerebellar nuclei on the performance and retention of an operantly conditioned forelimb movement.

    PubMed

    Milak, M S; Shimansky, Y; Bracha, V; Bloedel, J R

    1997-08-01

    These experiments were designed to examine the effects of inactivating separately each of the major cerebellar nuclear regions in cats on the execution and retention of a previously learned, operantly conditioned volitional forelimb movement. The experiments test the postulates that the cerebellar nuclei, and particularly the interposed nuclei, contribute substantially to the spatial and temporal features of the interjoint coordination required to execute the task and that the engram necessary for the retention of this task is not located in any one of the cerebellar nuclei. All cats were trained to perform a task in which they were required to reach for and grasp a vertical bar at the sound of a tone and move the bar to a reward zone through a template consisting of two straight grooves in the shape of an inverted "L." After the task was learned, the effects of inactivating separately each nuclear region (the fastigial, interposed, and dentate nuclei) using muscimol microinjections were determined. Data were analyzed by quantifying several features of the movement's kinematics and by determining changes in the organization of the reaching component of the movement using an application of dimensionality analysis, an analysis that examines the correlation among the changes in joint angles and limb segment positions during the task. The retention of the previously learned task also was assessed after each injection. Injections of each nuclear region affected temporal and spatial features of the learned movement. However, the largest effects resulted from inactivating the interposed nuclei. These effects included an increased length of the reach trajectory, an accentuated deviation of the wrist trajectory from a straight line, cyclic movement of the distal extremity as the target was approached, a difficulty in grasping the bar, altered temporal features of the movement, and a highly characteristic change in the dimensionality measurements. The changes in

  7. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  8. Localization of 14-3-3 proteins in the nuclei of arabidopsis and maize.

    PubMed

    Bihn, E A; Paul, A L; Wang, S W; Erdos, G W; Ferl, R J

    1997-12-01

    It has been demonstrated that 14-3-3 proteins are present in the nuclei of Arabidopsis thaliana and Zea mays cells using laser scanning confocal microscopy and immunocytochemistry with monoclonal antibodies against plant 14-3-3 proteins. Confirmation of nuclear localization provides insight into the range of functions normally attributed to 14-3-3 proteins, especially since the association of 14-3-3s with transcription factors is (thus far) a phenomenon unique to plants, and since 14-3-3 proteins do not possess a recognizable nuclear targeting sequence.

  9. Nuclei and the Unitary Limit

    NASA Astrophysics Data System (ADS)

    Hammer, H.-W.

    2018-07-01

    Few-body systems with large scattering length display universal properties which are independent of the details of short-distance dynamics. These features include universal correlations between few-body observables and a geometric spectrum of three- and higher-body bound states. They can be observed in a wide range of systems from ultracold atoms to hadrons and nuclei. In this contribution, we review universality in nuclei dominated by few-body physics. In particular, we discuss halo nuclei and the description of light nuclei in a strict expansion around the unitary limit of infinite scattering length.

  10. Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability.

    PubMed

    Takaki, Tohru; Montagner, Marco; Serres, Murielle P; Le Berre, Maël; Russell, Matt; Collinson, Lucy; Szuhai, Karoly; Howell, Michael; Boulton, Simon J; Sahai, Erik; Petronczki, Mark

    2017-07-24

    Altered nuclear shape is a defining feature of cancer cells. The mechanisms underlying nuclear dysmorphia in cancer remain poorly understood. Here we identify PPP1R12A and PPP1CB, two subunits of the myosin phosphatase complex that antagonizes actomyosin contractility, as proteins safeguarding nuclear integrity. Loss of PPP1R12A or PPP1CB causes nuclear fragmentation, nuclear envelope rupture, nuclear compartment breakdown and genome instability. Pharmacological or genetic inhibition of actomyosin contractility restores nuclear architecture and genome integrity in cells lacking PPP1R12A or PPP1CB. We detect actin filaments at nuclear envelope rupture sites and define the Rho-ROCK pathway as the driver of nuclear damage. Lamin A protects nuclei from the impact of actomyosin activity. Blocking contractility increases nuclear circularity in cultured cancer cells and suppresses deformations of xenograft nuclei in vivo. We conclude that actomyosin contractility is a major determinant of nuclear shape and that unrestrained contractility causes nuclear dysmorphia, nuclear envelope rupture and genome instability.

  11. Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability

    PubMed Central

    Takaki, Tohru; Montagner, Marco; Serres, Murielle P.; Le Berre, Maël; Russell, Matt; Collinson, Lucy; Szuhai, Karoly; Howell, Michael; Boulton, Simon J.; Sahai, Erik; Petronczki, Mark

    2017-01-01

    Altered nuclear shape is a defining feature of cancer cells. The mechanisms underlying nuclear dysmorphia in cancer remain poorly understood. Here we identify PPP1R12A and PPP1CB, two subunits of the myosin phosphatase complex that antagonizes actomyosin contractility, as proteins safeguarding nuclear integrity. Loss of PPP1R12A or PPP1CB causes nuclear fragmentation, nuclear envelope rupture, nuclear compartment breakdown and genome instability. Pharmacological or genetic inhibition of actomyosin contractility restores nuclear architecture and genome integrity in cells lacking PPP1R12A or PPP1CB. We detect actin filaments at nuclear envelope rupture sites and define the Rho-ROCK pathway as the driver of nuclear damage. Lamin A protects nuclei from the impact of actomyosin activity. Blocking contractility increases nuclear circularity in cultured cancer cells and suppresses deformations of xenograft nuclei in vivo. We conclude that actomyosin contractility is a major determinant of nuclear shape and that unrestrained contractility causes nuclear dysmorphia, nuclear envelope rupture and genome instability. PMID:28737169

  12. Supernova equations of state including full nuclear ensemble with in-medium effects

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki

    2017-01-01

    We construct new equations of state for baryons at sub-nuclear densities for the use in core-collapse supernova simulations. The abundance of various nuclei is obtained together with thermodynamic quantities. The formulation is an extension of the previous model, in which we adopted the relativistic mean field theory with the TM1 parameter set for nucleons, the quantum approach for d, t, h and α as well as the liquid drop model for the other nuclei under the nuclear statistical equilibrium. We reformulate the model of the light nuclei other than d, t, h and α based on the quasi-particle description. Furthermore, we modify the model so that the temperature dependences of surface and shell energies of heavy nuclei could be taken into account. The pasta phases for heavy nuclei and the Pauli- and self-energy shifts for d, t, h and α are taken into account in the same way as in the previous model. We find that nuclear composition is considerably affected by the modifications in this work, whereas thermodynamical quantities are not changed much. In particular, the washout of shell effect has a great impact on the mass distribution above T ∼ 1 MeV. This improvement may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores.

  13. Possibility of a crossed-beam experiment involving slow-neutron capture by unstable nuclei - ``rapid-process tron''

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Katayama, I.; Uwamino, Y.

    1993-02-01

    The possibility of a crossed beam facility of slow neutrons capturing unstable nuclei is examined in connection with the Japanese Hadron Project. With a pulsed proton beam of 50 Hz repetition and with a 100 μA average beam current, one obtains a spallation neutron source of 2.4 × 10 8 thermal neutrons/cm 3/spill over a 60 cm length with a 3 ms average duration time by using a D 2O moderator. By confining radioactive nuclei of 10 9 ions in a beam circulation ring of 0.3 MHz revolution frequency, so that nuclei pass through the neutron source, one obtains a collision luminosity of 3.9 × 10 24/cm 2/s. A new research domain aimed at studying rapid processes in nuclear genetics in a laboratory will be created.

  14. Hit rates and radiation doses to nuclei of bone lining cells from alpha-particle-emitting radionuclides

    NASA Technical Reports Server (NTRS)

    Polig, E.; Jee, W. S.; Kruglikov, I. L.

    1992-01-01

    Factors relating the local concentration of a bone-seeking alpha-particle emitter to the mean hit rate have been determined for nuclei of bone lining cells using a Monte Carlo procedure. Cell nuclei were approximated by oblate spheroids with dimensions and location taken from a previous histomorphometric study. The Monte Carlo simulation is applicable for planar and diffuse labels at plane or cylindrical bone surfaces. Additionally, the mean nuclear dose per hit, the dose mean per hit, the mean track segment length and its second moment, the percentage of stoppers, and the frequency distribution of the dose have been determined. Some basic features of the hit statistics for bone lining cells have been outlined, and the consequences of existing standards of radiation protection with regard to the hit frequency to cell nuclei are discussed.

  15. Dependence of weak interaction rates on the nuclear composition during stellar core collapse

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Nagakura, Hiroki; Sumiyoshi, Kohsuke; Kato, Chinami; Yamada, Shoichi

    2017-02-01

    We investigate the influences of the nuclear composition on the weak interaction rates of heavy nuclei during the core collapse of massive stars. The nuclear abundances in nuclear statistical equilibrium (NSE) are calculated by some equation of state (EOS) models including in-medium effects on nuclear masses. We systematically examine the sensitivities of electron capture and neutrino-nucleus scattering on heavy nuclei to the nuclear shell effects and the single-nucleus approximation. We find that the washout of the shell effect at high temperatures brings significant change to weak rates by smoothing the nuclear abundance distribution: the electron capture rate decreases by ˜20 % in the early phase and increases by ˜40 % in the late phase at most, while the cross section for neutrino-nucleus scattering is reduced by ˜15 % . This is because the open-shell nuclei become abundant instead of those with closed neutron shells as the shell effects disappear. We also find that the single-nucleus description based on the average values leads to underestimations of weak rates. Electron captures and neutrino coherent scattering on heavy nuclei are reduced by ˜80 % in the early phase and by ˜5 % in the late phase, respectively. These results indicate that NSE like EOS accounting for shell washout is indispensable for the reliable estimation of weak interaction rates in simulations of core-collapse supernovae.

  16. Liquid-state nuclear spin comagnetometers.

    PubMed

    Ledbetter, M P; Pustelny, S; Budker, D; Romalis, M V; Blanchard, J W; Pines, A

    2012-06-15

    We discuss nuclear spin comagnetometers based on ultralow-field nuclear magnetic resonance in mixtures of miscible solvents, each rich in a different nuclear spin. In one version thereof, Larmor precession of protons and 19F nuclei in a mixture of thermally polarized pentane and hexafluorobenzene is monitored via a sensitive alkali-vapor magnetometer. We realize transverse relaxation times in excess of 20 s and suppression of magnetic field fluctuations by a factor of 3400. We estimate it should be possible to achieve single-shot sensitivity of about 5×10(-9)  Hz, or about 5×10(-11)  Hz in ≈1 day of integration. In a second version, spin precession of protons and 129Xe nuclei in a mixture of pentane and hyperpolarized liquid xenon is monitored using superconducting quantum interference devices. Application to spin-gravity experiments, electric dipole moment experiments, and sensitive gyroscopes is discussed.

  17. Multiphase environment of compact galactic nuclei: the role of the nuclear star cluster

    NASA Astrophysics Data System (ADS)

    Różańska, A.; Kunneriath, D.; Czerny, B.; Adhikari, T. P.; Karas, V.

    2017-01-01

    We study the conditions for the onset of thermal instability in the innermost regions of compact galactic nuclei, where the properties of the interstellar environment are governed by the interplay of quasi-spherical accretion on to a supermassive black hole (SMBH) and the heating/cooling processes of gas in a dense nuclear star cluster (NSC). Stellar winds are the source of material for radiatively inefficient (quasi-spherical, non-magnetized) inflow/outflow on to the central SMBH, where a stagnation point develops within the Bondi-type accretion. We study the local thermal equilibrium to determine the parameter space that allows cold and hot phases in mutual contact to co-exist. We include the effects of mechanical heating by stellar winds and radiative cooling/heating by the ambient field of the dense star cluster. We consider two examples: the NSC in the Milky Way central region (including the gaseous mini-spiral of Sgr A*), and the ultracompact dwarf galaxy M60-UCD1. We find that the two systems behave in different ways because they are placed in different areas of parameter space in the instability diagram: gas temperature versus dynamical ionization parameter. In the case of Sgr A*, stellar heating prevents the spontaneous formation of cold clouds. The plasma from stellar winds joins the hot X-ray emitting phase and forms an outflow. In M60-UCD1, our model predicts spontaneous formation of cold clouds in the inner part of the galaxy. These cold clouds may survive since the cooling time-scale is shorter than the inflow/outflow time-scale.

  18. Quantitative microscopy uncovers ploidy changes during mitosis in live Drosophila embryos and their effect on nuclear size.

    PubMed

    Puah, Wee Choo; Chinta, Rambabu; Wasser, Martin

    2017-03-15

    Time-lapse microscopy is a powerful tool to investigate cellular and developmental dynamics. In Drosophila melanogaster , it can be used to study division cycles in embryogenesis. To obtain quantitative information from 3D time-lapse data and track proliferating nuclei from the syncytial stage until gastrulation, we developed an image analysis pipeline consisting of nuclear segmentation, tracking, annotation and quantification. Image analysis of maternal-haploid ( mh ) embryos revealed that a fraction of haploid syncytial nuclei fused to give rise to nuclei of higher ploidy (2n, 3n, 4n). Moreover, nuclear densities in mh embryos at the mid-blastula transition varied over threefold. By tracking synchronized nuclei of different karyotypes side-by-side, we show that DNA content determines nuclear growth rate and size in early interphase, while the nuclear to cytoplasmic ratio constrains nuclear growth during late interphase. mh encodes the Drosophila ortholog of human Spartan, a protein involved in DNA damage tolerance. To explore the link between mh and chromosome instability, we fluorescently tagged Mh protein to study its subcellular localization. We show Mh-mKO2 localizes to nuclear speckles that increase in numbers as nuclei expand in interphase. In summary, quantitative microscopy can provide new insights into well-studied genes and biological processes. © 2017. Published by The Company of Biologists Ltd.

  19. Huntington’s disease (HD): Degeneration of select nuclei and widespread occurrence of neuronal nuclear and axonal inclusions in the brainstem

    PubMed Central

    Rüb, U; Hentschel, M; Stratmann, K; Brunt, ER; Heinsen, H; Seidel, K; Bouzrou, M; Auburger, G; Paulson, HL; Vonsattel, JP; Lange, HW; Korf, HW; den Dunnen, WF

    2014-01-01

    Huntington’s disease (HD) is a progressive polyglutamine disease that leads to a severe striatal and layer-specific neuronal loss in the cerebral neo-and allocortex. Since some of the clinical symptoms (e.g. oculomotor dysfunctions) suggested a degeneration of select brainstem nuclei we performed a systematic investigation of the brainstem of eight clinically diagnosed and genetically confirmed HD patients. This postmortem investigation revealed a consistent neuronal loss in the substantia nigra, pontine nuclei, reticulotegmental nucleus of the pons, superior and inferior olives, in the area of the excitatory burst neurons for horizontal saccades, raphe interpositus nucleus, and vestibular nuclei. Immunoreactive intranuclear neuronal inclusions were present in all degenerated and apparently spared brainstem nuclei, and immunoreactive axonal inclusions were observed in all brainstem fiber tracts of the HD patients. Degeneration of brainstem nuclei can account for a number of less well understood clinical HD symptoms (i.e. cerebellar, oculomotor and vestibular symptoms), while the formation of axonal aggregates may represent a crucial event in the cascades of pathological events leading to neurodegeneration in HD. PMID:24779419

  20. Nuclear CD38 in retinoic acid-induced HL-60 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yalcintepe, Leman; Albeniz, Isil; Adin-Cinar, Suzan

    2005-02-01

    The cell surface antigen, CD38, is a 45-kDa transmembrane protein which is predominantly expressed on hematopoietic cells during differentiation. As a bifunctional ectoenzyme, it catalyzes the synthesis of cyclic ADP-ribose (cADPR) from NAD{sup +} and hydrolysis of either NAD{sup +} or cADPR to ADP-ribose. All-trans-retinoic acid (RA) is a potent and specific inducer of CD38 in myeloid cells. In this report, we demonstrate that the nuclei of RA-treated human HL-60 myeloblastic cells reveal enzymatic activities inherent to CD38. Thus, GDP-ribosyl cyclase and NAD{sup +} glycohydrolase activities in the nuclear fraction increased very significantly in response to incubation with RA. Withmore » Western blotting, we detected in the nuclear protein fraction from RA-treated cells a {approx}43-kDa protein band which was reactive with the CD38-specific monoclonal antibody OKT10. The expression of CD38 in HL-60 nuclei was also shown with FACScan analysis. RA treatment gave rise to an increase in in vitro ADP ribosylation of the {approx}43-kDa nuclear protein. Moreover, nuclei isolated from RA-treated HL-60 cells revealed calcium release in response to cADPR, whereas a similar response was not observed in control nuclei. These results suggest that CD38 is expressed in HL-60 cell nuclei during RA-induced differentiation.« less

  1. Difference in proton radii of mirror nuclei as a possible surrogate for the neutron skin

    NASA Astrophysics Data System (ADS)

    Yang, Junjie; Piekarewicz, J.

    2018-01-01

    It has recently been suggested that differences in the charge radii of mirror nuclei are proportional to the neutron-skin thickness of neutron-rich nuclei and to the slope of the symmetry energy L [Brown, Phys. Rev. Lett. 102, 122502 (2009), 10.1103/PhysRevLett.102.122502]. The determination of the neutron skin has important implications for nuclear physics and astrophysics. Although the use of electroweak probes provides a largely model-independent determination of the neutron skin, the experimental challenges are enormous. Thus, the possibility that differences in the charge radii of mirror nuclei may be used as a surrogate for the neutron skin is a welcome alternative. To test the validity of this assumption we perform calculations based on a set of relativistic energy density functionals that span a wide region of values of L . Our results confirm that the difference in charge radii between various neutron-deficient nickel isotopes and their corresponding mirror nuclei is indeed strongly correlated to both the neutron-skin thickness and L . Moreover, given that various neutron-star properties are also sensitive to L , a data-to-data relation emerges between the difference in charge radii of mirror nuclei and the radius of low-mass neutron stars.

  2. Nuclear traffic and peloton formation in fungal networks

    NASA Astrophysics Data System (ADS)

    Roper, Marcus; Hickey, Patrick; Lewkiewicz, Stephanie; Dressaire, Emilie; Read, Nick

    2013-11-01

    Hyphae, the network of microfluidic pipes that make up a growing fungal cell, must balance their function as conduits for the transport of nuclei with other cellular functions including secretion and growth. Constant flow of nuclei may interfere with the protein traffic that enables other functions to be performed. Live-cell imaging reveals that nuclear flows are anti-congestive; that groups of nuclei flow faster than single nuclei, and that nuclei sweep through the colony in dense clumps. We call these clumps pelotons, after the term used to describe groups of cycle racers slip-streaming off each other. Because of the pelotons, individual hyphae transport nuclei only intermittently, producing long intervals in which hyphae can perform their other functions. Modeling reveals how pelotons are created by interactions between nuclei and the hyphal cytoskeleton, and reveal the control that the fungus enjoys over peloton assembly and timing.

  3. β-decay studies of r-process nuclei at NSCL

    NASA Astrophysics Data System (ADS)

    Pereira, J.; Aprahamian, A.; Arndt, O.; Becerril, A.; Elliot, T.; Estrade, A.; Galaviz, D.; Hennrich, S.; Hosmer, P.; Schnorrenberger, L.; Kessler, R.; Kratz, K.-L.; Lorusso, G.; Mantica, P. F.; Matos, M.; Montes, F.; Pfeiffer, B.; Quinn, M.; Santi, P.; Schatz, H.; Schertz, F.; Smith, E.; Tomlin, B. E.; Walters, W. B.; Wöhr, A.

    2008-06-01

    Observed neutron-capture elemental abundances in metal-poor stars, along with ongoing analysis of the extremely metal-poor Eu-enriched sub-class provide new guidance for astrophysical models aimed at finding the r-process sites. The present paper emphasizes the importance of nuclear physics parameters entering in these models, particularly β-decay properties of neutron-rich nuclei. In this context, several r-process motivated β-decay experiments performed at the National Superconducting Cyclotron Laboratory (NSCL) are presented, including a summary of results and impact on model calculations.

  4. Warming-Induced Changes to the Molecular Composition of Soil Organic Matter

    NASA Astrophysics Data System (ADS)

    Feng, X.; Simpson, M. J.; Simpson, A. J.; Wilson, K. P.; Williams, D.

    2007-12-01

    Soil organic matter (SOM) contains two times more carbon than the atmosphere and the potential changes to SOM quantity and quality with global warming are a major concern. It is commonly believed that global warming will accelerate the decomposition of labile SOM compounds while refractory SOM constituents will remain stable. However, experimental evidence of molecular-level changes to SOM composition with global warming is currently lacking. Here we employ SOM biomarkers and nuclear magnetic resonance (NMR) spectroscopy to study SOM composition and degradation in a soil warming experiment in southern Ontario, Canada. The soil warming experiment consisted of a control and a treatment plot in a mixed forest that had a temperature difference of about 5 degrees C for 14 months. Before soil warming the control and treatment plots had the same organic carbon (OC) content and SOM composition. Soil warming significantly increased soil OC content and the abundance of cutin-derived carbon originating from leaf tissues and decreased carbohydrates that are regarded as easily degradable. Lignin components, which are believed to be part of the stable and slowly-cycling SOM, were observed to be in an advanced stage of degradation. This observation is corroborated by increases in fungal biomass in the warmed soil because fungi are considered the primary decomposer of lignin in the soil environment. An NMR study of SOM in the warmed and control plots indicates that alkyl carbon, mainly originating from plant cuticles in the soil, increased in the warmed soil while O-alkyl carbon, primarily occurring in carbohydrates, decreased. Aromatic and phenolic carbon regions, which include the main structures found in lignin, decreased in the warmed soil. These data collectively suggest that there is a great potential for lignin degradation with soil warming, and that the refractory (aromatic) soil carbon storage may be reduced as a result of increased fungal growth in a warmer climate.

  5. KEWPIE2: A cascade code for the study of dynamical decay of excited nuclei

    NASA Astrophysics Data System (ADS)

    Lü, Hongliang; Marchix, Anthony; Abe, Yasuhisa; Boilley, David

    2016-03-01

    KEWPIE-a cascade code devoted to investigating the dynamical decay of excited nuclei, specially designed for treating very low probability events related to the synthesis of super-heavy nuclei formed in fusion-evaporation reactions-has been improved and rewritten in C++ programming language to become KEWPIE2. The current version of the code comprises various nuclear models concerning the light-particle emission, fission process and statistical properties of excited nuclei. General features of the code, such as the numerical scheme and the main physical ingredients, are described in detail. Some typical calculations having been performed in the present paper clearly show that theoretical predictions are generally in accordance with experimental data. Furthermore, since the values of some input parameters cannot be determined neither theoretically nor experimentally, a sensibility analysis is presented. To this end, we systematically investigate the effects of using different parameter values and reaction models on the final results. As expected, in the case of heavy nuclei, the fission process has the most crucial role to play in theoretical predictions. This work would be essential for numerical modeling of fusion-evaporation reactions.

  6. CHANDRA OBSERVATIONS OF GALAXY ZOO MERGERS: FREQUENCY OF BINARY ACTIVE NUCLEI IN MASSIVE MERGERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10{sup 11} M{sub Sun} that already have optical active galactic nucleus (AGN) signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N{sub H} {approx}< 1.1 Multiplication-Sign 10{sup 22} cm{sup -2}) X-ray nuclei are relatively common (8/12), but the detections are too faint (<40 counts per nucleus; f{sub 2-10keV} {approx}< 1.2 Multiplication-Sign 10{sup -13} erg s{sup -1} cm{sup -2})more » to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGNs in these mergers are rare (0%-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.« less

  7. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Schwainski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; hide

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10(sup 11) solar mass that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) less than or approximately 1.1 x 10(exp 22) per square centimeter) X-ray nuclei are relatively common (8/12), but the detections are too faint (less than 40 counts per nucleus; f(sub 2-10 keV) less than or approximately 1.2 x 10(exp -13) ergs per second per square centimeter) to separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  8. Multiplicities of secondaries in nuclear interactions, induced by 20Ne, 40Ar and 56Fe nuclei at 0.1-0.5 GeV/nucleon

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Kovalev, E. E.; Nefedov, N. A.; Antonchik, V. A.; Bogdanov, S. D.; Kosmach, V. F.; Hassan, J.; Benton, E. V.; Crawford, H. J.

    1994-01-01

    Multiplicities of various species of charged secondaries produced in inelastic interactions of 20Ne, 40Ar and 56Fe nuclei with emulsion nuclei at 0.1-0.5 GeV/nucleon have been measured. The data obtained are compared with the results for interactions of higher energy nuclei with emulsion nuclei. The dependences of the nucleus-nucleus interaction parameters on masses and energies of colliding nuclei are examined.

  9. Testing warm Comptonization models for the origin of the soft X-ray excess in AGNs

    NASA Astrophysics Data System (ADS)

    Petrucci, P.-O.; Ursini, F.; De Rosa, A.; Bianchi, S.; Cappi, M.; Matt, G.; Dadina, M.; Malzac, J.

    2018-03-01

    The X-ray spectra of many active galactic nuclei (AGNs) show a soft X-ray excess below 1-2 keV on top of the extrapolated high-energy power law. The origin of this component is uncertain. It could be a signature of relativistically blurred, ionized reflection or the high-energy tail of thermal Comptonization in a warm (kT 1 keV), optically thick (τ ≃ 10-20) corona producing the optical/UV to soft X-ray emission. The purpose of the present paper is to test the warm corona model on a statistically significant sample of unabsorbed, radio-quiet AGNs with XMM-Newton archival data, providing simultaneous optical/UV and X-ray coverage. The sample has 22 objects and 100 observations. We use two thermal Comptonization components to fit the broadband spectra, one for the warm corona emission and one for the high-energy continuum. In the optical/UV, we also include the reddening, the small blue bump, and the Galactic extinction. In the X-rays, we include a warm absorber and a neutral reflection. The model gives a good fit (reduced χ2 < 1.5) to more than 90% of the sample. We find the temperature of the warm corona to be uniformly distributed in the 0.1-1 keV range, while the optical depth is in the range 10-40. These values are consistent with a warm corona covering a large fraction of a quasi-passive accretion disk, i.e., that mostly reprocesses the warm corona emission. The disk intrinsic emission represents no more than 20% of the disk total emission. According to this interpretation, most of the accretion power would be released in the upper layers of the accretion flow.

  10. Towards a self-consistent dynamical nuclear model

    NASA Astrophysics Data System (ADS)

    Roca-Maza, X.; Niu, Y. F.; Colò, G.; Bortignon, P. F.

    2017-04-01

    Density functional theory (DFT) is a powerful and accurate tool, exploited in nuclear physics to investigate the ground-state and some of the collective properties of nuclei along the whole nuclear chart. Models based on DFT are not, however, suitable for the description of single-particle dynamics in nuclei. Following the field theoretical approach by A Bohr and B R Mottelson to describe nuclear interactions between single-particle and vibrational degrees of freedom, we have taken important steps towards the building of a microscopic dynamic nuclear model. In connection with this, one important issue that needs to be better understood is the renormalization of the effective interaction in the particle-vibration approach. One possible way to renormalize the interaction is by the so-called subtraction method. In this contribution, we will implement the subtraction method in our model for the first time and study its consequences.

  11. Masses and β -Decay Spectroscopy of Neutron-Rich Odd-Odd Eu,162160 Nuclei: Evidence for a Subshell Gap with Large Deformation at N =98

    NASA Astrophysics Data System (ADS)

    Hartley, D. J.; Kondev, F. G.; Orford, R.; Clark, J. A.; Savard, G.; Ayangeakaa, A. D.; Bottoni, S.; Buchinger, F.; Burkey, M. T.; Carpenter, M. P.; Copp, P.; Gorelov, D. A.; Hicks, K.; Hoffman, C. R.; Hu, C.; Janssens, R. V. F.; Klimes, J. W.; Lauritsen, T.; Sethi, J.; Seweryniak, D.; Sharma, K. S.; Zhang, H.; Zhu, S.; Zhu, Y.

    2018-05-01

    The structure of deformed neutron-rich nuclei in the rare-earth region is of significant interest for both the astrophysics and nuclear structure fields. At present, a complete explanation for the observed peak in the elemental abundances at A ˜160 eludes astrophysicists, and models depend on accurate quantities, such as masses, lifetimes, and branching ratios of deformed neutron-rich nuclei in this region. Unusual nuclear structure effects are also observed, such as the unexpectedly low energies of the first 2+ levels in some even-even nuclei at N =98 . In order to address these issues, mass and β -decay spectroscopy measurements of the Eu97 160 and Eu99 162 nuclei were performed at the Californium Rare Isotope Breeder Upgrade radioactive beam facility at Argonne National Laboratory. Evidence for a gap in the single-particle neutron energies at N =98 and for large deformation (β2˜0.3 ) is discussed in relation to the unusual phenomena observed at this neutron number.

  12. Global Distribution of Solid Ammonium Sulfate Aerosols and their Climate Impact Acting as Ice Nuclei

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Penner, J.

    2017-12-01

    Laboratory experiments show that liquid ammonium sulfate particles effloresce when RHw is below 34% to become solid and dissolve when RHw is above 79%. Solid ammonium sulfate aerosols can act as heterogeneous ice nuclei particles (INPs) to form ice particles in deposition mode when the relative humidity over ice is above 120%. In this study we used the coupled IMPACT/CAM5 model to track the efflorescence and deliquescence processes of ammonium sulfate. Results show that about 20% of the total simulated pure sulfate aerosol mass is in the solid state and is mainly distributed in the northern hemisphere (NH) from 50 hPa to 200 hPa. When these solid ammonium sulfate aerosols are allowed to act as ice nuclei particles, they act to increase the ice water path in the NH and reduce ice water path in the tropics. The addition of these particles leads to a positive net radiative effect at the TOA ranging from 0.5-0.9 W/m2 depending on the amounts of other ice nuclei particles (e.g., dust, soot) used in the ice nucleation process. The short-term climate feedback shows that the ITCZ shifts northwards and precipitation increases in the NH. There is also an average warming of 0.05-0.1 K near the surface (at 2 meter) in the NH which is most obvious in the Arctic region.

  13. Amplified Arctic warming by phytoplankton under greenhouse warming.

    PubMed

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  14. Amplified Arctic warming by phytoplankton under greenhouse warming

    PubMed Central

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-01-01

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes. PMID:25902494

  15. The QSE-Reduced Nuclear Reaction Network for Silicon Burning

    NASA Astrophysics Data System (ADS)

    Hix, W. Raphael; Parete-Koon, Suzanne T.; Freiburghaus, Christian; Thielemann, Friedrich-Karl

    2007-09-01

    Iron and neighboring nuclei are formed in massive stars shortly before core collapse and during their supernova outbursts, as well as during thermonuclear supernovae. Complete and incomplete silicon burning are responsible for the production of a wide range of nuclei with atomic mass numbers from 28 to 64. Because of the large number of nuclei involved, accurate modeling of silicon burning is computationally expensive. However, examination of the physics of silicon burning has revealed that the nuclear evolution is dominated by large groups of nuclei in mutual equilibrium. We present a new hybrid equilibrium-network scheme which takes advantage of this quasi-equilibrium in order to reduce the number of independent variables calculated. This allows accurate prediction of the nuclear abundance evolution, deleptonization, and energy generation at a greatly reduced computational cost when compared to a conventional nuclear reaction network. During silicon burning, the resultant QSE-reduced network is approximately an order of magnitude faster than the full network it replaces and requires the tracking of less than a third as many abundance variables, without significant loss of accuracy. These reductions in computational cost and the number of species evolved make QSE-reduced networks well suited for inclusion within hydrodynamic simulations, particularly in multidimensional applications.

  16. NUCLEAR AND HEAVY ION PHYSICS: α-decay half-lives of superheavy nuclei and general predictions

    NASA Astrophysics Data System (ADS)

    Dong, Jian-Min; Zhang, Hong-Fei; Wang, Yan-Zhao; Zuo, Wei; Su, Xin-Ning; Li, Jun-Qing

    2009-08-01

    The generalized liquid drop model (GLDM) and the cluster model have been employed to calculate the α-decay half-lives of superheavy nuclei (SHN) using the experimental α-decay Q values. The results of the cluster model are slightly poorer than those from the GLDM if experimental Q values are used. The prediction powers of these two models with theoretical Q values from Audi et al. (QAudi) and Muntian et al. (QM) have been tested to find that the cluster model with QAudi and QM could provide reliable results for Z > 112 but the GLDM with QAudi for Z <= 112. The half-lives of some still unknown nuclei are predicted by these two models and these results may be useful for future experimental assignment and identification.

  17. Valence p-n interactions and sufficient conditions for the development of collectivity in heavy nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharon, Y.Y.

    1988-04-01

    The P scheme of Casten, Brenner, and Haustein is used to suggest that nuclei will always become deformed when there are more than 10 valence nucleons of each type (protons and neutrons). Utilizing this scheme, necessary and sufficient conditions are also suggested for the onset of nuclear collectivity.

  18. Experimental evidence of the decrease of kinetic energy of hadrons in passing through atomic nuclei

    NASA Technical Reports Server (NTRS)

    Strugalski, Z.

    1985-01-01

    Hadrons with kinetic energies higher than the pion production threshold lose their kinetic energies monotonically in traversing atomic nuclei, due to the strong interactions in nuclear matter. This phenomenon is a crude analogy to the energy loss of charged particles in their passage through materials. Experimental evidence is presented.

  19. Nuclear Structure of 186Re

    DTIC Science & Technology

    2016-12-24

    D population-depopulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 AME Atomic Mass Evaluation...this mass region are important for validating models of nuclear structure and reactions. The ENSDF feeds a specific data library relevant to nuclear...spherically asymmetric. Spherical asymmetry is common for nuclei between shell closures, such as those in the mid-shell 150  A  190 mass range of interest

  20. Production of cumulative particles and light nuclear fragments at high p T values beyond the fragmentation region of nuclei in pA collisions at a proton energy of 50 GeV

    NASA Astrophysics Data System (ADS)

    Antonov, N. N.; Viktorov, V. A.; Gapienko, V. A.; Gapienko, G. S.; Gres', V. N.; Ilyushin, M. A.; Korotkov, V. A.; Mysnik, A. I.; Prudkoglyad, A. F.; Semak, A. A.; Terekhov, V. I.; Uglekov, V. Ya.; Ukhanov, M. N.; Chuiko, B. V.; Shimanskii, S. S.

    2015-05-01

    The first data on the production of cumulative π+, p, and light nuclear fragments d and t emitted from a nucleus with a high transverse momentum at an angle of 35° in the laboratory system have been reported. The data have been obtained at the SPIN setup at the interaction of a 50-GeV proton beam extracted from the U-70 accelerator (IHEP, Protvino) with C, Al, Cu, and W nuclei.

  1. Nuclear spectroscopy of doubly-even130,132Ba

    NASA Astrophysics Data System (ADS)

    Gupta, Anuradha; Gupta, Surbhi; Singh, Suram; Bharti, Arun

    2018-05-01

    A comparative study of some high-spin characteristic nuclear structure properties of doubly-even 130,132Ba nuclei has been made using two microscopic frameworks - CHFB and PSM. The yrast spectra, intrinsic quadrupole moment and deformation systematics of these nuclei have been successfully calculated. Further, the calculated data from both the frameworks is also compared with the available experimental data and a good agreement has been obtained. The present CHFB calculations describes very well the low spin structure of even-even 130,132Ba nuclei whereas PSM calculations provide a qualitative description of the high-spin band structure of doubly-even 130,132Ba nuclei.

  2. NRV web knowledge base on low-energy nuclear physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpov, V., E-mail: karpov@jinr.ru; Denikin, A. S.; Alekseev, A. P.

    Principles underlying the organization and operation of the NRV web knowledge base on low-energy nuclear physics (http://nrv.jinr.ru) are described. This base includes a vast body of digitized experimental data on the properties of nuclei and on cross sections for nuclear reactions that is combined with a wide set of interconnected computer programs for simulating complex nuclear dynamics, which work directly in the browser of a remote user. Also, the current situation in the realms of application of network information technologies in nuclear physics is surveyed. The potential of the NRV knowledge base is illustrated in detail by applying it tomore » the example of an analysis of the fusion of nuclei that is followed by the decay of the excited compound nucleus formed.« less

  3. Probing Neutron-Skin Thickness of Unstable Nuclei with Total Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Horiuchi, Wataru; Suzuki, Yasuyuki; Inakura, Tsunenori

    We present our recent analysis of the total reaction cross sections, σR, of unstable nuclei and discuss their sensitivity to the neutron-skin thickness. The σR is calculated with the Glauber model using projectile densities obtained with the Skyrme-Hartree-Fock method on the three-dimensional coordinate space. We cover 91 nuclei of O, Ne, Mg, Si, S, Ca, and Ni isotopes. Defining a reaction radius, aR = √{σ R/π } , to characterize the nuclear size and target (proton or 12C) dependence, we see the 12C target probes the matter radius while the proton target is sensitive to the skin-thickness. We find an empirical formula for expressing aR with the point matter radius and the skin thickness, which can be used to determine the skin thickness.

  4. DNA methylation profiles of donor nuclei cells and tissues of cloned bovine fetuses.

    PubMed

    Kremenskoy, Maksym; Kremenska, Yuliya; Suzuki, Masako; Imai, Kei; Takahashi, Seiya; Hashizume, Kazuyoshi; Yagi, Shintaro; Shiota, Kunio

    2006-04-01

    Methylation of DNA in CpG islands plays an important role during fetal development and differentiation because CpG islands are preferentially located in upstream regions of mammalian genomic DNA, including the transcription start site of housekeeping genes and are also associated with tissue-specific genes. Somatic nuclear transfer (NT) technology has been used to generate live clones in numerous mammalian species, but only a low percentage of nuclear transferred animals develop to term. Abnormal epigenetic changes in the CpG islands of donor nuclei after nuclear transfer could contribute to a high rate of abortion during early gestation and increase perinatal death. These changes have yet to be explored. Thus, we investigated the genome-wide DNA methylation profiles of CpG islands in nuclei donor cells and NT animals. Using Restriction Landmark Genomic Scanning (RLGS), we showed, for the first time, the epigenetic profile formation of tissues from NT bovine fetuses produced from cumulus cells. From approximately 2600 unmethylated NotI sites visualized on the RLGS profile, at least 35 NotI sites showed different methylation statuses. Moreover, we proved that fetal and placental tissues from artificially inseminated and cloned cattle have tissue-specific differences in the genome-wide methylation profiles of the CpG islands. We also found that possible abnormalities occurred in the fetal brain and placental tissues of cloned animals.

  5. Energy spectrum of 50-250 MeV/nucleon iron nuclei inside the MIR space craft.

    PubMed

    Gunther, W; Leugner, D; Becker, E; Heinrich, W; Reitz, G

    2002-10-01

    Stacks of CR-39 plastic nuclear track detectors were mounted inside the MIR spacecraft during the EUROMIR95 space mission for a period of 6 months. This long exposure time resulted in a large number of tracks of HZE-particles in the detector foils. All trajectories of stopping iron nuclei could be reconstructed by optimizing the etching conditions so that an automatic track measurement using image analysis techniques was possible. We found 185 stopping iron nuclei and used the énergy-range relation to calculate their energies at the stack surface. The measured spectrum of iron nuclei inside the MIR station is compared to results of model predictions considering the effect of the solar modulation for the mission period, the geomagnetic shielding effect for the MIR orbit and the shielding by material of the spacecraft walls and its instrumentation. c2002 Elsevier Science Ltd. All rights reserved.

  6. Medium effects in λK+ pair production by 2.83 GeV protons on nuclei

    NASA Astrophysics Data System (ADS)

    Paryev, E. Ya.; Hartmann, M.; Kiselev, Yu. T.

    2017-12-01

    We study ΛK+ pair production in the interaction of protons of 2.83 GeV kinetic energy with C, Cu, Ag, and Au target nuclei in the framework of the nuclear spectral function approach for incoherent primary proton-nucleon and secondary pion-nucleon production processes, and processes associated with the creation of intermediate Σ0K+ pairs. The approach accounts for the initial proton and final Λ hyperon absorption, final K+ meson distortion in nuclei, target nucleon binding, and Fermi motion, as well as nuclear mean-field potential effects on these processes. We calculate the Λ momentum dependence of the absolute ΛK+ yield from the target nuclei considered, in the kinematical conditions of the ANKE experiment, performed at COSY, within the different scenarios for the Λ-nucleus effective scalar potential. We show that the above observable is appreciably sensitive to this potential in the low-momentum region. Therefore, direct comparison of the results of our calculations with the data from the ANKE-at-COSY experiment can help to determine the above potential at finite momenta. We also demonstrate that the two-step pion-nucleon production channels dominate in the low-momentum ΛK+ production in the chosen kinematics and, therefore, they have to be taken into account in the analysis of these data. Supported by the Ministry of Education and Science of the Russian Federation

  7. Stage-specific appearance of cytoplasmic microtubules around the surviving nuclei during the third prezygotic division of Paramecium.

    PubMed

    Wang, Yi-Wen; Yuan, Jin-Qiang; Gao, Xin; Yang, Xian-Yu

    2012-12-01

    There are six micronuclear divisions during conjugation of Paramecium caudatum: three prezygotic and three postzygotic divisions. Four haploid nuclei are formed during the first two meiotic prezygotic divisions. Usually only one meiotic product is located in the paroral cone (PC) region at the completion of meiosis, which survives and divides mitotically to complete the third prezygotic division to yield a stationary and a migratory pronucleus. The remaining three located outside of the PC degenerate. The migratory pronuclei are then exchanged between two conjugants and fuse with the stationary pronuclei to form synkarya, which undergo three successive divisions (postzygotic divisions). However, little is known about the surviving mechanism of the PC nuclei. In the current study, stage-specific appearance of cytoplasmic microtubules (cMTs) was indicated during the third prezygotic division by immunofluorescence labeling with anti-alpha tubulin antibodies surrounding the surviving nuclei, including the PC nuclei and the two types of prospective pronuclei. This suggested that cMTs were involved in the formation of a physical barrier, whose function may relate to sequestering and protecting the surviving nuclei from the major cytoplasm, where degeneration of extra-meiotic products occurs, another important nuclear event during the third prezygotic division.

  8. Isolation of Nuclei and Nucleoli.

    PubMed

    Pendle, Alison F; Shaw, Peter J

    2017-01-01

    Here we describe methods for producing nuclei from Arabidopsis suspension cultures or root tips of Arabidopsis, wheat, or pea. These methods could be adapted for other species and cell types. The resulting nuclei can be further purified for use in biochemical or proteomic studies, or can be used for microscopy. We also describe how the nuclei can be used to obtain a preparation of nucleoli.

  9. Sensitizing solid state nuclear magnetic resonance of dilute nuclei by spin-diffusion assisted polarization transfers.

    PubMed

    Lupulescu, Adonis; Frydman, Lucio

    2011-10-07

    Recent years have witnessed efforts geared at increasing the sensitivity of NMR experiments, by relying on the suitable tailoring and exploitation of relaxation phenomena. These efforts have included the use of paramagnetic agents, enhanced (1)H-(1)H incoherent and coherent transfers processes in 2D liquid state spectroscopy, and homonuclear (13)C-(13)C spin diffusion effects in labeled solids. The present study examines some of the opportunities that could open when exploiting spontaneous (1)H-(1)H spin-diffusion processes, to enhance relaxation and to improve the sensitivity of dilute nuclei in solid state NMR measurements. It is shown that polarization transfer experiments executed under sufficiently fast magic-angle-spinning conditions, enable a selective polarization of the dilute low-γ spins by their immediate neighboring protons. Repolarization of the latter can then occur during the time involved in monitoring the signal emitted by the low-γ nuclei. The basic features involved in the resulting approach, and its potential to improve the effective sensitivity of solid state NMR measurements on dilute nuclei, are analyzed. Experimental tests witness the advantages that could reside from utilizing this kind of approach over conventional cross-polarization processes. These measurements also highlight a number of limitations that will have to be overcome for transforming selective polarization transfers of this kind into analytical methods of choice. © 2011 American Institute of Physics

  10. Plant Nuclei Can Contain Extensive Grooves and InvaginationsW⃞W⃞

    PubMed Central

    Collings, David A.; Carter, Crystal N.; Rink, Jochen C.; Scott, Amie C.; Wyatt, Sarah E.; Allen, Nina Strömgren

    2000-01-01

    Plant cells can exhibit highly complex nuclear organization. Through dye-labeling experiments in untransformed onion epidermal and tobacco culture cells and through the expression of green fluorescent protein targeted to either the nucleus or the lumen of the endoplasmic reticulum/nuclear envelope in these cells, we have visualized deep grooves and invaginations into the large nuclei of these cells. In onion, these structures, which are similar to invaginations seen in some animal cells, form tubular or planelike infoldings of the nuclear envelope. Both grooves and invaginations are stable structures, and both have cytoplasmic cores containing actin bundles that can support cytoplasmic streaming. In dividing tobacco cells, invaginations seem to form during cell division, possibly from strands of the endoplasmic reticulum trapped in the reforming nucleus. The substantial increase in nuclear surface area resulting from these grooves and invaginations, their apparent preference for association with nucleoli, and the presence in them of actin bundles that support vesicle motility suggest that the structures might function both in mRNA export from the nucleus and in protein import from the cytoplasm to the nucleus. PMID:11148288

  11. Collective and non-collective structures in nuclei of mass region A ≈ 125

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, A. K.; Collaboration: INGA Collaboration; Gammasphere Collaboration

    Generation of angular momentum in nuclei is a key question in nuclear structure studies. In single particle model, it is due to alignment of spin of individual nucleon available in the valence space, whereas coherent motion of nucleons are assumed in the collective model. The nuclei near the closed shell at Z = 50 with mass number A ≈ 120-125 represent ideal cases to explore the interplay between these competing mechanisms and the transition from non-collective to collective behavior or vice versa. Recent spectroscopic studies of nuclei in this region reveal several non-collective maximally aligned states representing the first kindmore » of excitation mechanism, where 8-12 particles above the {sup 114}Sn align their spins to generate these states. Deformed rotational bands feeding the non-collective states in the spin range I=20-25 and excitation energies around 10 MeV have also been observed. Structure of the collective and non-collective states are discussed in the framework of Cranked-Nilsson-Strutinsky model.« less

  12. Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons

    PubMed Central

    Krishnaswami, Suguna Rani; Grindberg, Rashel V; Novotny, Mark; Venepally, Pratap; Lacar, Benjamin; Bhutani, Kunal; Linker, Sara B; Pham, Son; Erwin, Jennifer A; Miller, Jeremy A; Hodge, Rebecca; McCarthy, James K; Kelder, Martin; McCorrison, Jamison; Aevermann, Brian D; Fuertes, Francisco Diez; Scheuermann, Richard H; Lee, Jun; Lein, Ed S; Schork, Nicholas; McConnell, Michael J; Gage, Fred H; Lasken, Roger S

    2016-01-01

    A protocol is described for sequencing the transcriptome of a cell nucleus. Nuclei are isolated from specimens and sorted by FACS, cDNA libraries are constructed and RNA-seq is performed, followed by data analysis. Some steps follow published methods (Smart-seq2 for cDNA synthesis and Nextera XT barcoded library preparation) and are not described in detail here. Previous single-cell approaches for RNA-seq from tissues include cell dissociation using protease treatment at 30 °C, which is known to alter the transcriptome. We isolate nuclei at 4 °C from tissue homogenates, which cause minimal damage. Nuclear transcriptomes can be obtained from postmortem human brain tissue stored at −80 °C, making brain archives accessible for RNA-seq from individual neurons. The method also allows investigation of biological features unique to nuclei, such as enrichment of certain transcripts and precursors of some noncoding RNAs. By following this procedure, it takes about 4 d to construct cDNA libraries that are ready for sequencing. PMID:26890679

  13. Attempt to probe nuclear charge radii by cluster and proton emissions

    NASA Astrophysics Data System (ADS)

    Qian, Yibin; Ren, Zhongzhou; Ni, Dongdong

    2013-05-01

    We deduce the rms nuclear charge radii for ground states of light and medium-mass nuclei from experimental data of cluster radioactivity and proton emission in a unified framework. On the basis of the density-dependent cluster model, the calculated decay half-lives are obtained within the modified two-potential approach. The charge distribution of emitted clusters in the cluster decay and that of daughter nuclei in the proton emission are determined to correspondingly reproduce the experimental half-lives within the folding model. The obtained charge distribution is then employed to give the rms charge radius of the studied nuclei. Satisfactory agreement between theory and experiment is achieved for available experimental data, and the present results are found to be consistent with theoretical estimations. This study is expected to be helpful in the future detection of nuclear sizes, especially for these exotic nuclei near the proton dripline.

  14. Nuclear Data Sheets for A = 143

    NASA Astrophysics Data System (ADS)

    Browne, E.; Tuli, J. K.

    2012-03-01

    The evaluators present in this publication spectroscopic data and level schemes from radioactive decay and nuclear reaction studies for all nuclei with mass number A = 143. The evaluation, which includes all data received by May 2011, supersedes the 2001 evaluation by J.K. Tuli, published in Nuclear Data Sheets94, 605 (2001).

  15. Nuclear Data Sheets for A=143

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browne E.; Tuli J.; Browne,E.

    The evaluators present in this publication spectroscopic data and level schemes from radioactive decay and nuclear reaction studies for all nuclei with mass number A = 143. The evaluation, which includes all data received by May 2011, supersedes the 2001 evaluation by J.K. Tuli, published in Nuclear Data Sheets94, 605 (2001).

  16. Global Warming.

    ERIC Educational Resources Information Center

    Hileman, Bette

    1989-01-01

    States the foundations of the theory of global warming. Describes methodologies used to measure the changes in the atmosphere. Discusses steps currently being taken in the United States and the world to slow the warming trend. Recognizes many sources for the warming and the possible effects on the earth. (MVL)

  17. Quantitative analyses of the 3D nuclear landscape recorded with super-resolved fluorescence microscopy.

    PubMed

    Schmid, Volker J; Cremer, Marion; Cremer, Thomas

    2017-07-01

    Recent advancements of super-resolved fluorescence microscopy have revolutionized microscopic studies of cells, including the exceedingly complex structural organization of cell nuclei in space and time. In this paper we describe and discuss tools for (semi-) automated, quantitative 3D analyses of the spatial nuclear organization. These tools allow the quantitative assessment of highly resolved different chromatin compaction levels in individual cell nuclei, which reflect functionally different regions or sub-compartments of the 3D nuclear landscape, and measurements of absolute distances between sites of different chromatin compaction. In addition, these tools allow 3D mapping of specific DNA/RNA sequences and nuclear proteins relative to the 3D chromatin compaction maps and comparisons of multiple cell nuclei. The tools are available in the free and open source R packages nucim and bioimagetools. We discuss the use of masks for the segmentation of nuclei and the use of DNA stains, such as DAPI, as a proxy for local differences in chromatin compaction. We further discuss the limitations of 3D maps of the nuclear landscape as well as problems of the biological interpretation of such data. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Central depression in nucleonic densities: Trend analysis in the nuclear density functional theory approach

    NASA Astrophysics Data System (ADS)

    Schuetrumpf, B.; Nazarewicz, W.; Reinhard, P.-G.

    2017-08-01

    Background: The central depression of nucleonic density, i.e., a reduction of density in the nuclear interior, has been attributed to many factors. For instance, bubble structures in superheavy nuclei are believed to be due to the electrostatic repulsion. In light nuclei, the mechanism behind the density reduction in the interior has been discussed in terms of shell effects associated with occupations of s orbits. Purpose: The main objective of this work is to reveal mechanisms behind the formation of central depression in nucleonic densities in light and heavy nuclei. To this end, we introduce several measures of the internal nucleonic density. Through the statistical analysis, we study the information content of these measures with respect to nuclear matter properties. Method: We apply nuclear density functional theory with Skyrme functionals. Using the statistical tools of linear least square regression, we inspect correlations between various measures of central depression and model parameters, including nuclear matter properties. We study bivariate correlations with selected quantities as well as multiple correlations with groups of parameters. Detailed correlation analysis is carried out for 34Si for which a bubble structure has been reported recently, 48Ca, and N =82 , 126, and 184 isotonic chains. Results: We show that the central depression in medium-mass nuclei is very sensitive to shell effects, whereas for superheavy systems it is firmly driven by the electrostatic repulsion. An appreciable semibubble structure in proton density is predicted for 294Og, which is currently the heaviest nucleus known experimentally. Conclusion: Our correlation analysis reveals that the central density indicators in nuclei below 208Pb carry little information on parameters of nuclear matter; they are predominantly driven by shell structure. On the other hand, in the superheavy nuclei there exists a clear relationship between the central nucleonic density and symmetry energy.

  19. Delayed fission of atomic nuclei (To the 50th anniversary of the discovery)

    NASA Astrophysics Data System (ADS)

    Skobelev, N. K.

    2017-09-01

    The history of the discovery of delayed nuclear fission is presented, and the retrospective of investigations into this phenomenon that were performed at various research centers worldwide is outlined. The results obtained by measuring basic delayed-fission features, including the fission probability, the total kinetic energy of fission fragments, and their mass distributions, are analyzed. Recommendations concerning further studies in various regions of nuclear map with the aim of searches for and investigation of atomic nuclei undergoing delayed fission are given. Lines of further research into features of delayed fission with the aim of solving current problems of fission physics are discussed.

  20. Evolvement of preformation probability of alpha cluster decay of parent nuclei 84≤Z≤92 having N=126

    NASA Astrophysics Data System (ADS)

    Kaur, Rupinder; Singh, Bir Bikram; Kaur, Mandeep; Sandhu, B. S.; Kaur, Maninder

    2018-05-01

    The preformed cluster decay model (PCM) based on collective clusterisation approach of quantum mechanical fragmentation theory (QMFT) has been applied to study the ground state decay of trans-lead parent nuclei 84≤Z≤92 with N=126 emitting α cluster. Within PCM, the α cluster is assumed to be preborn with certain preformation probability P0α before tunneling the potential barrier with penetrability Pα. The nuclear structure information of the emitted α cluster is carried out by P0α . The present work reveals that the relative P0α found to increase as the Z number of parent nuclei moves away from magic proton shell closure i.e. Z=82. It is observed that Pα also increases, consequently, shorter half life T1/2 α of α cluster decay of parent nuclei with increasing Z. The PCM calculated results for the T1/2 α of parent nuclei under study are very well compared with available experimental data.

  1. Vector Meson Photoproduction on Nuclei

    NASA Astrophysics Data System (ADS)

    Djalali, Chaden

    2011-10-01

    Chiral symmetry, which is spontaneously broken in vacuum, is predicted to be partially restored in ordinary nuclear matter. The properties of vector mesons, such as their masses and/or widths are expected to change in the medium. The photoproduction reaction off nuclei is a very clean way of producing the ρ, ω and φ mesons, and detect them via their hadronic or leptonic decays. The leptonic decay to e+e- has a small branching ratio but has the advantage of being free from final state interactions. One critical aspect in all these experiments is the correct determination of the shape and magnitude of the combinatorial background. The in-medium mass distributions and yields are compared to those measured in vacuum. No significant shift is observed in the masses of the mesons, however substantial increase in their widths is reported.

  2. Correlation Of Giant Nuclei With Cloud Droplet Concentration

    NASA Astrophysics Data System (ADS)

    Jha, V.; Hudson, J. G.; Noble, S.

    2011-12-01

    The effect of giant nuclei (GN; larger than 1 micrometer particles produced by wind on the ocean surface) on warm rain has been debated for decades. During RICO (Rain in Cumulus over the Ocean) Hudson et al. (2011) found a negative correlation (R) between CCN concentrations at 1% supersaturation (S) and large cloud droplet concentrations (Fig. 1A). This reversal from positive R for CCN with total (or small) cloud droplet concentrations (left side of Fig. 1A) was explained by the greater competition for condensate, which thus limits droplet sizes when CCN concentrations are higher. The negative R increased in magnitude with altitude, and the droplet size where the maximum negative R occurred increased with altitude (Fig. 1A). However, at all altitudes this negative R decreased in magnitude for even larger cloud and drizzle drops (right side of Fig. 1A except highest altitude). The decrease in magnitude of the negative R was greater for increasing drop sizes at higher altitudes. Thus, at the higher altitudes, R for CCN with large drizzle drops was of low negative magnitude and even positive at the highest RICO altitudes. The disparity between CCN and drizzle drop concentrations precluded a causal relationship. But the high R between GN and drizzle drop concentrations at the highest altitudes (Fig. 1B) and the comparable concentrations indicated that GN were engendering drizzle. This is supported by the increasing R with altitude of the GN-drizzle drop R (right side of Fig. 1B). The conclusion of a GN-drizzle connection is also supported by the fact that CCN concentrations should inhibit drizzle. This analysis of Hudson et al. (2011) is here expanded to include correlations of CCN concentrations at lower S with cloud and drizzle drop concentrations to investigate intermediate relationships; i.e., between large nuclei (i.e., 0.1-1 micrometer; critical S 0.1-0.01%) and drizzle drop concentrations. A shortcoming of Hudson et al. (2011) was the small number of high

  3. Geiger-Nuttall Law for Nuclei in Strong Electromagnetic Fields.

    PubMed

    Delion, D S; Ghinescu, S A

    2017-11-17

    We investigate the influence of a strong laser electromagnetic field on the α-decay rate by using the Hennenberger frame of reference. We introduce an adimensional parameter D=S_{0}/R_{0}, where R_{0} is the geometrical nuclear radius and S_{0}∼sqrt[I]/ω^{2} is a length parameter depending on the laser intensity I and frequency ω. We show that the barrier penetrability has a strong increase for intensities corresponding to D>D_{crit}=1, due to the fact that the resulting Coulomb potential becomes strongly anisotropic even for spherical nuclei. As a consequence, the contribution of the monopole term increases the barrier penetrability by 2 orders of magnitude, while the total contribution has an effect of 6 orders of magnitude at D∼3D_{crit}. In the case of deformed nuclei, the electromagnetic field increases the penetrability by an additional order of magnitude for a quadrupole deformation β_{2}∼0.3. The influence of the electromagnetic field can be expressed in terms of a shifted Geiger-Nuttal law by a term depending on S_{0} and deformation.

  4. Geiger-Nuttall Law for Nuclei in Strong Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Delion, D. S.; Ghinescu, S. A.

    2017-11-01

    We investigate the influence of a strong laser electromagnetic field on the α -decay rate by using the Hennenberger frame of reference. We introduce an adimensional parameter D =S0/R0, where R0 is the geometrical nuclear radius and S0˜√{I }/ω2 is a length parameter depending on the laser intensity I and frequency ω . We show that the barrier penetrability has a strong increase for intensities corresponding to D >Dcrit=1 , due to the fact that the resulting Coulomb potential becomes strongly anisotropic even for spherical nuclei. As a consequence, the contribution of the monopole term increases the barrier penetrability by 2 orders of magnitude, while the total contribution has an effect of 6 orders of magnitude at D ˜3 Dcrit. In the case of deformed nuclei, the electromagnetic field increases the penetrability by an additional order of magnitude for a quadrupole deformation β2˜0.3 . The influence of the electromagnetic field can be expressed in terms of a shifted Geiger-Nuttal law by a term depending on S0 and deformation.

  5. Physical insight into light scattering by photoreceptor cell nuclei.

    PubMed

    Kreysing, Moritz; Boyde, Lars; Guck, Jochen; Chalut, Kevin J

    2010-08-01

    A recent study showed that the rod photoreceptor cell nuclei in the retina of nocturnal and diurnal mammals differ considerably in architecture: the location of euchromatin and heterochromatin in the nucleus is interchanged. This inversion has significant implications for the refractive index distribution and the light scattering properties of the nucleus. Here, we extend previous two-dimensional analysis to three dimensions (3D) by using both a numerical finite-difference time-domain and an analytic Mie theory approach. We find that the specific arrangement of the chromatin phases in the nuclear core-shell models employed have little impact on the far-field scattering cross section. However, scattering in the near field, which is the relevant regime inside the retina, shows a significant difference between the two architectures. The "inverted" photoreceptor cell nuclei of nocturnal mammals act as collection lenses, with the lensing effect being much more pronounced in 3D than in two dimensions. This lensing helps to deliver light efficiently to the light-sensing outer segments of the rod photoreceptor cells and thereby improve night vision.

  6. Star formation around active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Keel, William C.

    1987-01-01

    Active galactic nuclei (Seyfert nuclei and their relatives) and intense star formation can both deliver substantial amounts of energy to the vicinity of a galactic nucleus. Many luminous nuclei have energetics dominated by one of these mechanisms, but detailed observations show that some have a mixture. Seeing both phenomena at once raises several interesting questions: (1) Is this a general property of some kinds of nuclei? How many AGNs have surround starbursts, and vice versa? (2) As in 1, how many undiscovered AGNs or starbursts are hidden by a more luminous instance of the other? (3) Does one cause the other, and by what means, or do both reflect common influences such as potential well shape or level of gas flow? (4) Can surrounding star formation tell us anything about the central active nuclei, such as lifetimes, kinetic energy output, or mechanical disturbance of the ISM? These are important points in the understanding of activity and star formation in galactic nuclei. Unfortunately, the observational ways of addressing them are as yet not well formulated. Some preliminary studies are reported, aimed at clarifying the issues involved in study of the relationships between stellar and nonstellar excitement in galactic nuclei.

  7. Fission Dynamics with Microscopic Level Densities

    DOE PAGES

    Ward, D.; Carlsson, B. G.; Dossing, Th.; ...

    2017-01-01

    We present a consistent framework for treating the energy and angularmomentum dependence of the shape evolution in the nuclear fission. It combines microscopically calculated level densities with the Metropolis-walk method, has no new parameters, and can elucidate the energy-dependent influence of pairing and shell effects on the dynamics of warm nuclei.

  8. Efficient Warm-ups: Creating a Warm-up That Works.

    ERIC Educational Resources Information Center

    Lauffenburger, Sandra Kay

    1992-01-01

    Proper warm-up is important for any activity, but designing an effective warm-up can be time consuming. An alternative approach is to take a cue from Laban Movement Analysis (LMA) and consider movement design from the perspective of space and planes of motion. Efficient warm-up exercises using LMA are described. (SM)

  9. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Tim

    2017-02-01

    Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.

  10. Daytime warming has stronger negative effects on soil nematodes than night-time warming.

    PubMed

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-07

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  11. Daytime warming has stronger negative effects on soil nematodes than night-time warming.

    PubMed

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-20

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  12. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    PubMed Central

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-01-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming. PMID:28317914

  13. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    NASA Astrophysics Data System (ADS)

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  14. Investigations of Nuclear Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarantites, Demetrios; Reviol, W.

    The proposal addresses studies of nuclear structure at low-energies and development of instrumentation for that purpose. The structure studies deal with features of neutron-rich nuclei with unexplored shapes (football- or pear-shaped nuclei). The regions of interest are: neutron rich nuclei like 132-138Sn, or 48-54Ca, and the Zr, Mo, and Ru isotopes. The tools used can be grouped as follows: either Gammasphere or Gretina multi-gamma detector arrays and auxiliary detectors (Microball, Neutron Shell, and the newly completed Phoswich Wall).The neutron-rich nuclei are accessed by radioactive-beam binary reactions or by 252Cf spontaneous fission. The experiments with heavy radioactive beams aim at excitingmore » the beam nuclei by pick-up or transfer a neutron or a proton from a light target like 13C, 9Be, 11B or 14N .For these binary-reaction studies the Phoswich Wall detector system is essential. It is based on four multi-anode photomultiplier tubes on which CsI and thin fast-timing plastic scintillators are attached. Their signals are digitized with a high density microchip system.« less

  15. Weizsäcker-Skyrme-type nuclear mass formula incorporating two combinatorial radial basis function prescriptions and their application

    NASA Astrophysics Data System (ADS)

    Ma, Na Na; Zhang, Hai Fei; Yin, Peng; Bao, Xiao Jun; Zhang, Hong Fei

    2017-08-01

    Within the improved Weizsäcker-Skyrme (WS)-type nuclear mass formulas, we systematically calculated one-nucleon and two-nucleon separated energy, α-decay and β-decay energies, and the odd-even staggering (OES) of nuclear binding energies. As a result, the root-mean-square (rms) deviations of 2267 nuclei within the new improved WS-type mass formula are dropped from 493 to 167 keV, where 2267 nuclei are extracted from the atomic mass evaluation of 2012. Simultaneously, all the rms deviations of one-nucleon and two-nucleon separation energies and decay energies Qα,Qβ-,Qβ+, and QEC for more than 3000 nuclei are cut down by about 100-400 keV. Further, some basic physical observations of 988 boundary nuclei are predicted for providing reference to experiments. Finally, the overall neutron OESs and proton OESs have been systemically investigated and the residual error satisfies a normal distribution. The pairing gaps Δn and Δp of the isotopes of O, Ca, Ni, Zr, Sn, Gd, Qs, Pb, Pa, Ds and the isotonic magic chains of N =28 ,50 ,82 ,126 and even-even nuclei are also studied with dramatic improvements obtained. Especially, the rms of Δn and Δp in these nuclei have been reduced by about 200 keV. The above physical quantities show important information for nuclear charts and the features of nuclear structure.

  16. Signatures of α clustering in ultrarelativistic collisions with light nuclei

    NASA Astrophysics Data System (ADS)

    Rybczyński, Maciej; Piotrowska, Milena; Broniowski, Wojciech

    2018-03-01

    We explore possible observable signatures of α clustering of light nuclei in ultrarelativistic nuclear collisions involving Be,97, 12C, and 16O. The clustering leads to specific spatial correlations of the nucleon distributions in the ground state, which are manifest in the earliest stage of the ultrahigh energy reaction. The formed initial state of the fireball is sensitive to these correlations, and the effect influences, after the collective evolution of the system, the hadron production in the final stage. Specifically, we study effects on the harmonic flow in collisions of light clustered nuclei with a heavy target (208Pb), showing that measures of the elliptic flow are sensitive to clusterization in Be,97, whereas triangular flow is sensitive to clusterization in 12C and 16O. Specific predictions are made for model collisions at energies available at the CERN Super Proton Synchrotron. In another exploratory development we also examine proton-beryllium collisions, where the 3 /2- ground state of Be,97 nuclei is polarized by an external magnetic field. Clusterization leads to multiplicity distributions of participant nucleons which depend on the orientation of the polarization with respect to the collision axis, as well as on the magnetic number of the state. The obtained effects on multiplicities reach a factor of a few for collisions with a large number of participant nucleons.

  17. Measurement of the spin temperature of optically cooled nuclei and GaAs hyperfine constants in GaAs/AlGaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Chekhovich, E. A.; Ulhaq, A.; Zallo, E.; Ding, F.; Schmidt, O. G.; Skolnick, M. S.

    2017-10-01

    Deep cooling of electron and nuclear spins is equivalent to achieving polarization degrees close to 100% and is a key requirement in solid-state quantum information technologies. While polarization of individual nuclear spins in diamond and SiC (ref. ) reaches 99% and beyond, it has been limited to 50-65% for the nuclei in quantum dots. Theoretical models have attributed this limit to formation of coherent `dark' nuclear spin states but experimental verification is lacking, especially due to the poor accuracy of polarization degree measurements. Here we measure the nuclear polarization in GaAs/AlGaAs quantum dots with high accuracy using a new approach enabled by manipulation of the nuclear spin states with radiofrequency pulses. Polarizations up to 80% are observed--the highest reported so far for optical cooling in quantum dots. This value is still not limited by nuclear coherence effects. Instead we find that optically cooled nuclei are well described within a classical spin temperature framework. Our findings unlock a route for further progress towards quantum dot electron spin qubits where deep cooling of the mesoscopic nuclear spin ensemble is used to achieve long qubit coherence. Moreover, GaAs hyperfine material constants are measured here experimentally for the first time.

  18. Nuclear import of glucokinase in pancreatic beta-cells is mediated by a nuclear localization signal and modulated by SUMOylation.

    PubMed

    Johansson, Bente Berg; Fjeld, Karianne; Solheim, Marie Holm; Shirakawa, Jun; Zhang, Enming; Keindl, Magdalena; Hu, Jiang; Lindqvist, Andreas; Døskeland, Anne; Mellgren, Gunnar; Flatmark, Torgeir; Njølstad, Pål Rasmus; Kulkarni, Rohit N; Wierup, Nils; Aukrust, Ingvild; Bjørkhaug, Lise

    2017-10-15

    The localization of glucokinase in pancreatic beta-cell nuclei is a controversial issue. Although previous reports suggest such a localization, the mechanism for its import has so far not been identified. Using immunofluorescence, subcellular fractionation and mass spectrometry, we present evidence in support of glucokinase localization in beta-cell nuclei of human and mouse pancreatic sections, as well as in human and mouse isolated islets, and murine MIN6 cells. We have identified a conserved, seven-residue nuclear localization signal ( 30 LKKVMRR 36 ) in the human enzyme. Substituting the residues KK 31,32 and RR 35,36 with AA led to a loss of its nuclear localization in transfected cells. Furthermore, our data indicates that SUMOylation of glucokinase modulates its nuclear import, while high glucose concentrations do not significantly alter the enzyme nuclear/cytosolic ratio. Thus, for the first time, we provide data in support of a nuclear import of glucokinase mediated by a redundant mechanism, involving a nuclear localization signal, and which is modulated by its SUMOylation. These findings add new knowledge to the functional role of glucokinase in the pancreatic beta-cell. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effect of Wigner energy on the symmetry energy coefficient in nuclei

    NASA Astrophysics Data System (ADS)

    Tian, Jun-Long; Cui, Hai-Tao; Gao, Teng; Wang, Ning

    2016-09-01

    The nuclear symmetry energy coefficient (including the coefficient of the I4 term) of finite nuclei is extracted by using the differences of available experimental binding energies of isobaric nuclei. It is found that the extracted symmetry energy coefficient decreases with increasing isospin asymmetry I, which is mainly caused by Wigner correction, since is the summation of the traditional symmetry energy esym and the Wigner energy eW. We obtain the optimal values J = 30.25 ± 0.10 MeV, ass = 56.18 ± 1.25 MeV, and the Wigner parameter x = 2.38 ± 0.12 through a polynomial fit to 2240 measured binding energies for nuclei with 20 ⩽ A ⩽ 261 with an rms deviation of 23.42 keV. We also find that the volume symmetry coefficient J ≃ 30 MeV is insensitive to the value x, whereas the surface symmetry coefficient ass and the coefficient are very sensitive to the value of x in the range 1 ⩽ x ⩽ 4. The contribution of the term increases rapidly with increasing isospin asymmetry I. For very neutron-rich nuclei, the contribution of the term will play an important role. Supported by National Natural Science Foundation of China (11475004, 11275052, 11305003, 11375094 and 11465005), Natural Science Foundation of He'nan Educational Committee (2011A140001 and 2011GGJS-147), Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences (Y4KF041CJ1)

  20. Uncertainty quantification and propagation in nuclear density functional theory

    DOE PAGES

    Schunck, N.; McDonnell, J. D.; Higdon, D.; ...

    2015-12-23

    Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going eff orts seek to better root nuclear DFT in the theory of nuclear forces, energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in fi nite nuclei. In this study, we review recent eff orts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statisticalmore » analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature.« less

  1. Systematic study of α preformation probability of nuclear isomeric and ground states

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Dong; Wu, Xi-Jun; Zheng, Bo; Xiang, Dong; Guo, Ping; Li, Xiao-Hua

    2017-01-01

    In this paper, based on the two-potential approach combining with the isospin dependent nuclear potential, we systematically compare the α preformation probabilities of odd-A nuclei between nuclear isomeric states and ground states. The results indicate that during the process of α particle preforming, the low lying nuclear isomeric states are similar to ground states. Meanwhile, in the framework of single nucleon energy level structure, we find that for nuclei with nucleon number below the magic numbers, the α preformation probabilities of high-spin states seem to be larger than low ones. For nuclei with nucleon number above the magic numbers, the α preformation probabilities of isomeric states are larger than those of ground states. Supported by National Natural Science Foundation of China (11205083), Construct Program of Key Discipline in Hunan Province, Research Foundation of Education Bureau of Hunan Province, China (15A159), Natural Science Foundation of Hunan Province, China (2015JJ3103, 2015JJ2123), Innovation Group of Nuclear and Particle Physics in USC, Hunan Provincial Innovation Foundation for Postgraduate (CX2015B398)

  2. Accelerated increase in the Arctic tropospheric warming events surpassing stratospheric warming events during winter: Accelerated Increase in Arctic Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S. -Y. Simon; Lin, Yen-Heng; Lee, Ming-Ying

    In January 2016, a robust reversal of the Arctic Oscillation (AO) took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March-April. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as well as those documented in previous studies. Our results indicate a recent and accelerated increasemore » in the tropospheric warming type versus a flat trend in stratospheric warming type. Given that tropospheric warming events occur twice as fast than the stratospheric warming type, the noted increase in the former implies further intensification in midlatitude winter weather extremes similar to those experienced in early 2016. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated impact on the anomalously cold Siberia.« less

  3. The nuclear Thomas-Fermi model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, W.D.; Swiatecki, W.J.

    1994-08-01

    The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear mattermore » and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.« less

  4. The Nuclear Thomas-Fermi Model

    DOE R&D Accomplishments Database

    Myers, W. D.; Swiatecki, W. J.

    1994-08-01

    The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear matter and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.

  5. Experimental results on antiproton-nuclei annihilation cross section at very low energies

    NASA Astrophysics Data System (ADS)

    Aghai-Khozani, H.; Barna, D.; Corradini, M.; Hayano, R.; Hori, M.; Kobayashi, T.; Leali, M.; Lodi-Rizzini, E.; Mascagna, V.; Prest, M.; Soter, A.; Todoroki, K.; Vallazza, E.; Venturelli, L.; Zurlo, N.

    2014-03-01

    Investigating the antiproton cross section on nuclei at low energies (1 eV - 1 MeV) is of great interest for fundamental cosmology and nuclear physics as well. The process is of great relevance for the models which try to explain the matter/antimatter asymmetry in the universe assuming the existence of the so-called "island" where antinucleon-nucleon annihilations occur in the border region [1]. For the nuclear physics point of view, the annihilation process is considered a useful tool to evaluate the neutron/proton ratio probing the external region of the nucleus. Moreover, the cross section measured at LEAR in the 80s-90s showed an unexpected behaviour for energies below 1 MeV. The results showed a saturation with the atomic mass number against the A2/3 trend which is known for higher energies. The ASACUSA collaboration at CERN measured 5.3 MeV antiproton annihilation cross section on different nuclei whose results demonstrated to be consistent with the black-disk model with the Coulomb correction [2]. So far, experimental limits prevented the data acquisition for energies below 1 MeV. In 2012 the 100 keV region has been investigated for the first time [3]. We present here the results of the experiment.

  6. Clustering Aspects in Nuclear Structure and Collisions

    NASA Astrophysics Data System (ADS)

    Horiuchi, H.

    Four topics on nuclear clustering are discussed. The first subject is about the cluster formation in dilute matter which we think is now observed in heavy ion collisions at hundreds MeV/nucleon. The second subject is about our new proposal of the existense of alpha condensed states in light nuclei. Two other subjects are both about the clustering in neutron-rich nuclei. One is the cluster structures in neutron-rich Be and B isotopes. In these isotopes, the clustering prevails as fundamental characters of nuclear structure. The other is the report of our recent study about the possible relation of the clustering with the breaking of the neutron magic number N=20 in 32Mg and 30Ne.

  7. Subcellular localization of celery mannitol dehydrogenase. A cytosolic metabolic enzyme in nuclei.

    PubMed Central

    Yamamoto, Y T; Zamski, E; Williamson, J D; Conkling, M A; Pharr, D M

    1997-01-01

    Mannitol dehydrogenase (MTD) is the first enzyme in mannitol catabolism in celery (Apium graveolens L. var dulce [Mill] Pers. cv Florida 638). Mannitol is an important photoassimilate, as well as providing plants with resistance to salt and osmotic stress. Previous work has shown that expression of the celery Mtd gene is regulated by many factors, such as hexose sugars, salt and osmotic stress, and salicylic acid. Furthermore, MTD is present in cells of sink organs, phloem cells, and mannitol-grown suspension cultures. Immunogold localization and biochemical analyses presented here demonstrate that celery MTD is localized in the cytosol and nuclei. Although the cellular density of MTD varies among different cell types, densities of nuclear and cytosolic MTD in a given cell are approximately equal. Biochemical analyses of nuclear extracts from mannitol-grown cultured cells confirmed that the nuclear-localized MTD is enzymatically active. The function(s) of nuclear-localized MTD is unknown. PMID:9414553

  8. The importance of warm season warming to western U.S. streamflow changes

    USGS Publications Warehouse

    Das, T.; Pierce, D.W.; Cayan, D.R.; Vano, J.A.; Lettenmaier, D.P.

    2011-01-01

    Warm season climate warming will be a key driver of annual streamflow changes in four major river basins of the western U.S., as shown by hydrological model simulations using fixed precipitation and idealized seasonal temperature changes based on climate projections with SRES A2 forcing. Warm season (April-September) warming reduces streamflow throughout the year; streamflow declines both immediately and in the subsequent cool season. Cool season (October-March) warming, by contrast, increases streamflow immediately, partially compensating for streamflow reductions during the subsequent warm season. A uniform warm season warming of 3C drives a wide range of annual flow declines across the basins: 13.3%, 7.2%, 1.8%, and 3.6% in the Colorado, Columbia, Northern and Southern Sierra basins, respectively. The same warming applied during the cool season gives annual declines of only 3.5%, 1.7%, 2.1%, and 3.1%, respectively. Copyright 2011 by the American Geophysical Union.

  9. Nuclear Data Sheets for A = 133

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khazov, Yu.; Rodionov, A.; Kondev, F.G.

    2011-04-15

    Evaluated nuclear structure and decay data for all nuclei within the A=133 mass chain are presented. The experimental data are evaluated and best values for level and gamma-ray energies, quantum numbers, lifetimes, gamma-ray intensities, and other nuclear properties are recommended. Inconsistencies and discrepancies that exist in the literature are noted. This work supersedes the earlier evaluation by S. Raab (1995Ra12), published in Nuclear Data Sheets75, 491 (1995).

  10. Intramolecular Nuclear Flux Densities

    NASA Astrophysics Data System (ADS)

    Barth, I.; Daniel, C.; Gindensperger, E.; Manz, J.; PéRez-Torres, J. F.; Schild, A.; Stemmle, C.; Sulzer, D.; Yang, Y.

    The topic of this survey article has seen a renaissance during the past couple of years. Here we present and extend the results for various phenomena which we have published from 2012-2014, with gratitude to our coauthors. The new phenomena include (a) the first reduced nuclear flux densities in vibrating diatomic molecules or ions which have been deduced from experimental pump-probe spectra; these "experimental" nuclear flux densities reveal several quantum effects including (b) the "quantum accordion", i.e., during the turn from bond stretch to bond compression, the diatomic system never stands still — instead, various parts of it with different bond lengths flow into opposite directions. (c) Wavepacket interferometry has been extended from nuclear densities to flux densities, again revealing new phenomena: For example, (d) a vibrating nuclear wave function with compact initial shape may split into two partial waves which run into opposite directions, thus causing interfering flux densities. (e) Tunneling in symmetric 1-dimensional double-well systems yields maximum values of the associated nuclear flux density just below the potential barrier; this is in marked contrast with negligible values of the nuclear density just below the barrier. (f) Nuclear flux densities of pseudorotating nuclei may induce huge magnetic fields. A common methodologic theme of all topics is the continuity equation which connects the time derivative of the nuclear density to the divergence of the flux density, subject to the proper boundary conditions. (g) Nearly identical nuclear densities with different boundary conditions may be related to entirely different flux densities, e.g., during tunneling in cyclic versus non-cyclic systems. The original continuity equation, density and flux density of all nuclei, or of all nuclear degrees of freedom, may be reduced to the corresponding quantities for just a single nucleus, or just a single degree of freedom.

  11. Large scale shell model study of nuclear spectroscopy in nuclei around 132Sn

    NASA Astrophysics Data System (ADS)

    Lo Iudice, N.; Bianco, D.; Andreozzi, F.; Porrino, A.; Knapp, F.

    2012-10-01

    The properties of low-lying 2+ states in chains of nuclei in the proximity of the magic number N=82 are investigated within a new shell model approach exploiting an iterative algorithm alternative to Lanczos. The calculation yields levels and transition strengths in overall good agreement with experiments. The comparative analysis of the E2 and M1 transitions supports, in many cases, the scheme provided by the interacting boson model.

  12. Progressive supranuclear palsy: neuronal and glial cytoskeletal pathology in the higher order processing autonomic nuclei of the lower brainstem.

    PubMed

    Rüb, U; Del Tredici, K; Schultz, C; de Vos, R A I; Jansen Steur, E N H; Arai, K; Braak, H

    2002-02-01

    The medial and lateral parabrachial nuclei (MPB, LPB), the gigantocellular reticular nucleus (GI), the raphes magnus (RMG) and raphes obscurus nuclei (ROB), as well as the intermediate reticular zone (IRZ) represent pivotal subordinate brainstem centres, all of which control autonomic functions. In this study, we investigated the occurrence and severity of the neuronal and glial cytoskeletal pathology in these six brainstem nuclei from 17 individuals with clinically diagnosed and neuropathologically confirmed progressive supranuclear palsy (PSP). The association between the severity of the pathology and the duration of the disease was investigated by means of correlation analysis. The brainstem nuclei in all of the PSP cases were affected by the neuronal cytoskeletal pathology, with the IRZ and GI regularly showing severe involvement, the MPB, RMG, and ROB marked involvement, and the LPB mild involvement. In the six nuclear greys studied, glial cells undergo alterations of their cytoskeleton on an irregular basis, whereby diseased oligodendrocytes predominantly presented as coiled bodies and affected astrocytes as thorn-shaped astrocytes. In all six nuclei, the severity of the neuronal or glial cytoskeletal pathology showed no correlation with the duration of PSP. In view of their functional role, the neuronal pathology in the nuclei studied offers a possible explanation for the autonomic dysfunctions that eventually develop in the course of PSP.

  13. Identification of cardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover.

    PubMed

    Bergmann, Olaf; Zdunek, Sofia; Alkass, Kanar; Druid, Henrik; Bernard, Samuel; Frisén, Jonas

    2011-01-15

    Assays to quantify myocardial renewal rely on the accurate identification of cardiomyocyte nuclei. We previously ¹⁴C birth dated human cardiomyocytes based on the nuclear localization of cTroponins T and I. A recent report by Kajstura et al. suggested that cTroponin I is only localized to the nucleus in a senescent subpopulation of cardiomyocytes, implying that ¹⁴C birth dating of cTroponin T and I positive cell populations underestimates cardiomyocyte renewal in humans. We show here that the isolation of cell nuclei from the heart by flow cytometry with antibodies against cardiac Troponins T and I, as well as pericentriolar material 1 (PCM-1), allows for isolation of close to all cardiomyocyte nuclei, based on ploidy and marker expression. We also present a reassessment of cardiomyocyte ploidy, which has important implications for the analysis of cell turnover, and iododeoxyuridine (IdU) incorporation data. These data provide the foundation for reliable analysis of cardiomyocyte turnover in humans. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.

    PubMed

    Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B

    2015-06-01

    Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall). © 2015 John Wiley & Sons Ltd.

  15. Nuclear inheritance and genetic exchange without meiosis in the binucleate parasite Giardia intestinalis

    PubMed Central

    Carpenter, Meredith L.; Assaf, Zoe June; Gourguechon, Stéphane; Cande, W. Zacheus

    2012-01-01

    The protozoan parasite Giardia intestinalis (also known as Giardia lamblia) is a major waterborne pathogen. During its life cycle, Giardia alternates between the actively growing trophozoite, which has two diploid nuclei with low levels of allelic heterozygosity, and the infectious cyst, which has four nuclei and a tough outer wall. Although the formation of the cyst wall has been studied extensively, we still lack basic knowledge about many fundamental aspects of the cyst, including the sources of the four nuclei and their distribution during the transformation from cyst into trophozoite. In this study, we tracked the identities of the nuclei in the trophozoite and cyst using integrated nuclear markers and immunofluorescence staining. We demonstrate that the cyst is formed from a single trophozoite by a mitotic division without cytokinesis and not by the fusion of two trophozoites. During excystation, the cell completes cytokinesis to form two daughter trophozoites. The non-identical nuclear pairs derived from the parent trophozoite remain associated in the cyst and are distributed to daughter cells during excystation as pairs. Thus, nuclear sorting (such that each daughter cell receives a pair of identical nuclei) does not appear to be a mechanism by which Giardia reduces heterozygosity between its nuclei. Rather, we show that the cyst nuclei exchange chromosomal genetic material, perhaps as a way to reduce heterozygosity in the absence of meiosis and sex, which have not been described in Giardia. These results shed light on fundamental aspects of the Giardia life cycle and have implications for our understanding of the population genetics and cell biology of this binucleate parasite. PMID:22366460

  16. Three-dimensional positioning of B chromosomes in fibroblast nuclei of the red fox and the chinese raccoon dog.

    PubMed

    Kociucka, B; Sosnowski, J; Kubiak, A; Nowak, A; Pawlak, P; Szczerbal, I

    2013-01-01

    Great progress has been achieved over the last years in studies on chromosome arrangement in mammalian cell nuclei. Growing evidence indicates that the genome's spatial organization is of functional relevance. So far, no attention has been paid to the nuclear organization of B chromosomes (Bs). In this study we have examined nuclear positioning of Bs in 2 species from the Canidae family--the red fox and the Chinese raccoon dog. Using 2D and 3D fluorescence in situ hybridization and 2 gene-specific probes (C-KIT and PDGFRA), we analyzed the location of Bs in fibroblast nuclei. We found that small Bs of the red fox occupied mostly the interior of the nucleus, while medium-sized Bs of the Chinese raccoon dog were observed in the peripheral area of the nucleus as well as in intermediate and interior locations. The more uniform distribution of B chromosomes in the Chinese raccoon dog may be the result of differences in their size, since 3 morphological types of Bs are distinguished in this species. Our results indicate that 3D positioning of B chromosomes in fibroblast nuclei of the 2 canid species is in agreement with the chromosome size-dependent theory. Copyright © 2013 S. Karger AG, Basel.

  17. Chaotic dynamics around cometary nuclei

    NASA Astrophysics Data System (ADS)

    Lages, José; Shevchenko, Ivan I.; Rollin, Guillaume

    2018-06-01

    We apply a generalized Kepler map theory to describe the qualitative chaotic dynamics around cometary nuclei, based on accessible observational data for five comets whose nuclei are well-documented to resemble dumb-bells. The sizes of chaotic zones around the nuclei and the Lyapunov times of the motion inside these zones are estimated. In the case of Comet 1P/Halley, the circumnuclear chaotic zone seems to engulf an essential part of the Hill sphere, at least for orbits of moderate to high eccentricity.

  18. Investigation of the particle-core structure of odd-mass nuclei in the NpNn scheme

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Cata, G.; Cutoiu, D.; Dragulescu, E.; Ivasu, M.; Zamfir, N. V.; Gizon, A.; Gizon, J.

    1989-10-01

    The NpNn scheme is applied to data related to collective band structures determined by the unique parity shell model orbitals in odd-A nuclei from the mass regions A≌80-100 and A≌130. Simple systematics are obtained which give a synthetic picture of the evolution of the particle-core coupling in these nuclear regions.

  19. Lifetime measurements in A˜100 nuclei using LaBr3(Ce) arrays.

    NASA Astrophysics Data System (ADS)

    Bruce, A. M.

    2018-05-01

    The region of the nuclear chart around neutron-rich A˜100 nuclei is one where prolate and oblate nuclear shapes are predicted to be in close competition. An indirect measurement of the shape of the nucleus can be obtained from measuring level lifetimes which relate, via transition rates, to β2 deformation. In order to make measurements of level lifetimes in the sub nanosecond range an array of 36 LaBr3(Ce) detectors has been constructed for use at the FAIR facility in Darmstadt, Germany. This presentation will give an overview of the array and examples of its use in commissioning experiments at the RIKEN Nishina Center in Japan and the Argonne National Laboratory in the USA.

  20. Projected shell model study on nuclei near the N = Z line

    NASA Astrophysics Data System (ADS)

    Sun, Y.

    2003-04-01

    Study of the N ≈ Z nuclei in the mass-80 region is not only interesting due to the existence of abundant nuclear-structure phenomena, but also important in understanding the nucleosynthesis in the rp-process. It is difficult to apply a conventional shell model due to the necessary involvement of the g 9/2 sub-shell. In this paper, the projected shell model is introduced to this study. Calculations are systematically performed for the collective levels as well as the quasi-particle excitations. It is demonstrated that calculations with this truncation scheme can achieve a comparable quality as the large-scale shell model diagonalizations for 48 Cr, but the present method can be applied to much heavier mass regions. While the known experimental data of the yrast bands in the N ≈ Z nuclei (from Se to Ru) are reasonably described, the present calculations predict the existence of high- K states, some of which lie low in energy under certain structure conditions.

  1. Recruitment of phosphorylated small heat shock protein Hsp27 to nuclear speckles without stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryantsev, A.L.; Chechenova, M.B.; Shelden, E.A.

    During stress, the mammalian small heat shock protein Hsp27 enters cell nuclei. The present study examines the requirements for entry of Hsp27 into nuclei of normal rat kidney (NRK) renal epithelial cells, and for its interactions with specific nuclear structures. We find that phosphorylation of Hsp27 is necessary for the efficient entry into nuclei during heat shock but not sufficient for efficient nuclear entry under control conditions. We further report that Hsp27 is recruited to an RNAse sensitive fraction of SC35 positive nuclear speckles, but not other intranuclear structures, in response to heat shock. Intriguingly, Hsp27 phosphorylation, in the absencemore » of stress, is sufficient for recruitment to speckles found in post-anaphase stage mitotic cells. Additionally, pseudophosphorylated Hsp27 fused to a nuclear localization peptide (NLS) is recruited to nuclear speckles in unstressed interphase cells, but wildtype and nonphosphorylatable Hsp27 NLS fusion proteins are not. The expression of NLS-Hsp27 mutants does not enhance colony forming abilities of cells subjected to severe heat shock, but does regulate nuclear speckle morphology. These data demonstrate that phosphorylation, but not stress, mediates Hsp27 recruitment to an RNAse soluble fraction of nuclear speckles and support a site-specific role for Hsp27 within the nucleus.« less

  2. Generation of a transgenic medaka (Oryzias latipes) strain for visualization of nuclear dynamics in early developmental stages.

    PubMed

    Inoue, Takanobu; Iida, Atsuo; Maegawa, Shingo; Sehara-Fujisawa, Atsuko; Kinoshita, Masato

    2016-12-01

    In this study, we verified nuclear transport activity of an artificial nuclear localization signal (aNLS) in medaka fish (Oryzias latipes). We generated a transgenic medaka strain expresses the aNLS tagged enhanced green fluorescent protein (EGFP) driven by a medaka beta-actin promoter. The aNLS-EGFP was accumulated in the nuclei of somatic tissues and yolk nuclei of oocytes, but undetectable in the spermatozoa. The fluorescent signal was observed from immediately after fertilization by a maternal contribution. Furthermore, male and female pronuclei were visualized in fertilized eggs, and nuclear dynamics of pronuclear fusion and subsequent cleavage were captured by time-lapse imaging. In contrast, SV40NLS exhibited no activity of nuclear transport in early embryos. In conclusion, the aNLS possesses a strong nuclear localization activity and is a useful probe for fluorescent observation of the pronuclei and nuclei in early developmental stage of medaka. © 2016 Japanese Society of Developmental Biologists.

  3. Colloquium: Laser probing of neutron-rich nuclei in light atoms

    NASA Astrophysics Data System (ADS)

    Lu, Z.-T.; Mueller, P.; Drake, G. W. F.; Nörtershäuser, W.; Pieper, Steven C.; Yan, Z.-C.

    2013-10-01

    The neutron-rich He6 and He8 isotopes exhibit an exotic nuclear structure that consists of a tightly bound He4-like core with additional neutrons orbiting at a relatively large distance, forming a halo. Recent experimental efforts have succeeded in laser trapping and cooling these short-lived, rare helium atoms and have measured the atomic isotope shifts along the He4-He6-He8 chain by performing laser spectroscopy on individual trapped atoms. Meanwhile, the few-electron atomic structure theory, including relativistic and QED corrections, has reached a comparable degree of accuracy in the calculation of the isotope shifts. In parallel efforts, also by measuring atomic isotope shifts, the nuclear charge radii of lithium and beryllium isotopes have been studied. The techniques employed were resonance ionization spectroscopy on neutral, thermal lithium atoms and collinear laser spectroscopy on beryllium ions. Combining advances in both atomic theory and laser spectroscopy, the charge radii of these light halo nuclei have now been determined for the first time independent of nuclear structure models. The results are compared with the values predicted by a number of nuclear structure calculations and are used to guide our understanding of the nuclear forces in the extremely neutron-rich environment.

  4. Chromatin decompaction by the nucleosomal binding protein HMGN5 impairs nuclear sturdiness

    NASA Astrophysics Data System (ADS)

    Furusawa, Takashi; Rochman, Mark; Taher, Leila; Dimitriadis, Emilios K.; Nagashima, Kunio; Anderson, Stasia; Bustin, Michael

    2015-01-01

    In most metazoan nuclei, heterochromatin is located at the nuclear periphery in contact with the nuclear lamina, which provides mechanical stability to the nucleus. We show that in cultured cells, chromatin decompaction by the nucleosome binding protein HMGN5 decreases the sturdiness, elasticity and rigidity of the nucleus. Mice overexpressing HMGN5, either globally or only in the heart, are normal at birth but develop hypertrophic heart with large cardiomyoctyes, deformed nuclei and disrupted lamina and die of cardiac malfunction. Chromatin decompaction is seen in cardiomyocytes of newborn mice but misshaped nuclei with disrupted lamina are seen only in adult cardiomyocytes, suggesting that loss of heterochromatin diminishes the ability of the nucleus to withstand the mechanical forces of the contracting heart. Thus, heterochromatin enhances the ability of the nuclear lamina to maintain the sturdiness and shape of the eukaryotic nucleus; a structural role for chromatin that is distinct from its genetic functions.

  5. Cavitation inception from bubble nuclei

    PubMed Central

    Mørch, K. A.

    2015-01-01

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure–time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes. PMID:26442138

  6. Black-sphere approximation to nuclei and its application to reactions with neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Kohama, Akihisa; Iida, Kei; Oyamatsu, Kazuhiro

    2013-09-01

    We briefly review our formula for a proton-nucleus total reaction cross section, σR, constructed in the black-sphere approximation of nuclei, in which a nucleus is viewed as a "black" sphere of radius "a". An extension to reactions involving neutron-rich nuclei is also reported.

  7. Roles of nuclear weak rates on the evolution of degenerate cores in stars

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Tsunodaa, Naofumi; Tsunoda, Yuhsuke; Shimizu, Noritaka; Otsuka, Takaharu

    2018-01-01

    Electron-capture and β-decay rates in stellar environments are evaluated with the use of new shell-model Hamiltonians for sd-shell and pf-shell nuclei as well as for nuclei belonging to the island of inversion. Important role of the nuclear weak rates on the final evolution of stellar degenerate cores is presented. The weak interaction rates for sd-shell nuclei are calculated to study nuclear Urca processes in O-Ne-Mg cores of stars with 8-10 M⊙ (solar mass) and their effects on the final fate of the stars. Nucleosynthesis of iron-group elements in Type Ia supernova explosions are studied with the weak rates for pf-shell nuclei. The problem of the neutron-rich iron-group isotope over-production compared to the solar abundances is shown to be nearly solved with the use of the new rates and explosion model of slow defraglation with delayed detonation. Evaluation of the weak rates is extended to the island of inversion and the region of neutron-rich nuclei near 78Ni, where two major shells contribute to their configurations.

  8. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses.

    PubMed

    Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik

    2015-12-01

    Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it.

  9. Nuclear Data Sheets for A = 146

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khazov, Yu.; Rodionov, A.; Shulyak, G.

    Evaluated nuclear structure and decay data for all nuclei within the A = 146 mass chain are presented. The experimental data are evaluated and best values for level and gamma-ray energies, quantum numbers, lifetimes, gamma-ray intensities, and other nuclear properties are recommended. Inconsistencies and discrepancies that exist in the literature are noted. This work supersedes the earlier evaluation by L.K. Peker, J.K. Tuli (1997Pe22), published in Nuclear Data Sheets82, 187 (1997).

  10. Nuclear Data Sheets for A = 146

    NASA Astrophysics Data System (ADS)

    Khazov, Yu.; Rodionov, A.; Shulyak, G.

    2016-09-01

    Evaluated nuclear structure and decay data for all nuclei within the A = 146 mass chain are presented. The experimental data are evaluated and best values for level and gamma-ray energies, quantum numbers, lifetimes, gamma-ray intensities, and other nuclear properties are recommended. Inconsistencies and discrepancies that exist in the literature are noted. This work supersedes the earlier evaluation by L.K. Peker, J.K. Tuli (1997Pe22), published in Nuclear Data Sheets82, 187 (1997).

  11. Nuclear astrophysics and electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwenk, A.

    Electron beams provide important probes and constraints for nuclear astrophysics. This is especially exciting at energies within the regime of chiral effective field theory (EFT), which provides a systematic expansion for nuclear forces and electroweak operators based on quantum chromodynamics. This talk discusses some recent highlights and future directions based on chiral EFT, including nuclear structure and reactions for astrophysics, the neutron skin and constraints for the properties of neutron-rich matter in neutron stars and core-collapse supernovae, and the dark matter response of nuclei.

  12. Nuclear Neutrino Spectra in Late Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Misch, G. Wendell; Sun, Yang; Fuller, George

    2018-05-01

    Neutrinos are the principle carriers of energy in massive stars, beginning from core carbon burning and continuing through core collapse and after the core bounce. In fact, it may be possible to detect neutrinos from nearby pre-supernova stars. Therefore, it is of great interest to understand the neutrino energy spectra from these stars. Leading up to core collapse, beginning around core silicon burning, nuclei become dominant producers of neutrinos, particularly at high neutrino energy, so a systematic study of nuclear neutrino spectra is desirable. We have done such a study, and we present our sd-shell model calculations of nuclear neutrino energy spectra for nuclei in the mass number range A = 21 - 35. Our study includes neutrinos produced by charged lepton capture, charged lepton emission, and neutral current nuclear deexcitation. Previous authors have tabulated the rates of charged current nuclear weak interactions in astrophysical conditions, but the present work expands on this not only by providing neutrino energy spectra, but also by including the heretofore untabulated neutral current de-excitation neutrino pairs.

  13. Essential Roles for Caenorhabditis elegans Lamin Gene in Nuclear Organization, Cell Cycle Progression, and Spatial Organization of Nuclear Pore Complexes

    PubMed Central

    Liu, Jun; Ben-Shahar, Tom Rolef; Riemer, Dieter; Treinin, Millet; Spann, Perah; Weber, Klaus; Fire, Andrew; Gruenbaum, Yosef

    2000-01-01

    Caenorhabditis elegans has a single lamin gene, designated lmn-1 (previously termed CeLam-1). Antibodies raised against the lmn-1 product (Ce-lamin) detected a 64-kDa nuclear envelope protein. Ce-lamin was detected in the nuclear periphery of all cells except sperm and was found in the nuclear interior in embryonic cells and in a fraction of adult cells. Reductions in the amount of Ce-lamin protein produce embryonic lethality. Although the majority of affected embryos survive to produce several hundred nuclei, defects can be detected as early as the first nuclear divisions. Abnormalities include rapid changes in nuclear morphology during interphase, loss of chromosomes, unequal separation of chromosomes into daughter nuclei, abnormal condensation of chromatin, an increase in DNA content, and abnormal distribution of nuclear pore complexes (NPCs). Under conditions of incomplete RNA interference, a fraction of embryos escaped embryonic arrest and continue to develop through larval life. These animals exhibit additional phenotypes including sterility and defective segregation of chromosomes in germ cells. Our observations show that lmn-1 is an essential gene in C. elegans, and that the nuclear lamins are involved in chromatin organization, cell cycle progression, chromosome segregation, and correct spacing of NPCs. PMID:11071918

  14. Shape coexistence, shape evolution and Gamow-Teller {beta}-decay of neutron-rich A Asymptotically-Equal-To 100 nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovici, A.; Schmid, K. W.; Faessler, A.

    The structure of neutron-rich nuclei in the A Asymptotically-Equal-To 100 mass region relevant for the astrophysical r process manifests drastic changes in some isotopic chains and often sudden variations of particular nuclear properties have been identified. For a realistic description of the evolution in structure with increasing energy, spin, and isospin determined by shape coexistence and mixing beyond-mean-field approaches are required. Our recent studies represent an attempt to the self-consistent description of the shape coexistence phenomena in neutron-rich A Asymptotically-Equal-To 100 nuclei within the complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction basedmore » on the Bonn A potential in a large model space. Results concerning the triple shape coexistence and the shape evolution in the N=58 Sr and Zr isotopes, the shape evolution in a chain of Zr nuclei, as well as the Gamow-Teller {beta}-decay properties of neutron-rich Zr and Tc nuclei are presented.« less

  15. Precision measurement of the mass difference between light nuclei and anti-nuclei

    NASA Astrophysics Data System (ADS)

    Alice Collaboration; Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmed, I.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, S.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; D'Erasmo, G.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erhardt, F.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hippolyte, B.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, K. H.; Khan, M. Mohisin; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, Mimae.; Kim, Minwoo; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kour, M.; Kouzinopoulos, C.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, A.; Kumar, J.; Kumar, L.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luparello, G.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Müller, H.; Mulligan, J. D.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S. K.; Pan, J.; Pandey, A. K.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira da Costa, H.; Pereira de Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Seeder, K. S.; Seger, J. E.; Sekiguchi, Y.; Selyuzhenkov, I.; Senosi, K.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tanaka, N.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yano, S.; Yasnopolskiy, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2015-10-01

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons (), and 3He and nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T).

  16. Precision measurement of the mass difference between light nuclei and anti-nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, J.

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. Also, this force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons (more » $$-\\atop{d}$$), and 3He and 3$$-\\atop{He}$$nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb–Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T).« less

  17. Precision measurement of the mass difference between light nuclei and anti-nuclei

    DOE PAGES

    Adam, J.

    2015-08-17

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. Also, this force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons (more » $$-\\atop{d}$$), and 3He and 3$$-\\atop{He}$$nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb–Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T).« less

  18. Basic physics of nuclear magnetic resonance.

    PubMed

    Patz, S

    1986-01-01

    This review of basic physics of nuclear magnetic resonance (NMR) discusses precession of magnetic nuclei in a static external field, introduces the concept of the rotating frame, and describes excitation of nuclei by an RF field. Treats subject of T1 and T2 relaxation from the dual viewpoints of (1) phenomena of relaxation times for both the longitudinal and transverse magnetization and (2) relaxation resulting from local field fluctuations. It describes practical ways in which T1 and T2 are measured (i.e., inversion recovery and spin-echo) and gives the value of the nuclear magnetization in thermodynamic equilibrium with a static external field. It discusses the reduction of NMR signal resulting from saturation. These concepts are related to clinical use with a set of four spin-echo images of a human head.

  19. Nuclear localization signal targeting to macronucleus and micronucleus in binucleated ciliate Tetrahymena thermophila.

    PubMed

    Iwamoto, Masaaki; Mori, Chie; Osakada, Hiroko; Koujin, Takako; Hiraoka, Yasushi; Haraguchi, Tokuko

    2018-06-08

    Ciliated protozoa possess two morphologically and functionally distinct nuclei: a macronucleus (MAC) and a micronucleus (MIC). The MAC is transcriptionally active and functions in all cellular events. The MIC is transcriptionally inactive during cell growth, but functions in meiotic events to produce progeny nuclei. Thus, these two nuclei must be distinguished by the nuclear proteins required for their distinct functions during cellular events such as cell proliferation and meiosis. To understand the mechanism of the nuclear transport specific to either MAC or MIC, we identified specific nuclear localization signals (NLSs) in two MAC- and MIC-specific nuclear proteins, macronuclear histone H1 and micronuclear linker histone-like protein (Mlh1), respectively. By expressing GFP-fused fragments of these proteins in Tetrahymena thermophila cells, two distinct regions in macronuclear histone H1 protein were assigned as independent MAC-specific NLSs and two distinct regions in Mlh1 protein were assigned as independent MIC-specific NLSs. These NLSs contain several essential lysine residues responsible for the MAC- and MIC-specific nuclear transport, but neither contains any consensus sequence with known monopartite or bipartite NLSs in other model organisms. Our findings contribute to understanding how specific nuclear targeting is achieved to perform distinct nuclear functions in binucleated ciliates. © 2018 The Authors. Genes to Cells published by Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  20. γ-radiation of excited nuclear discrete levels in peripheral heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Korotkikh, V. L.; Chikin, K. A.

    A new process of a nuclear excitation to discrete states in peripheral heavy ion collisions is studied. High-energy photons are emitted by the exited nuclei with energies up to a few tens of GeV at angles of a few hundred microradians with respect to the beam direction. We show that a two-stage process, where an electron-positron pair is produced by virtual photons emitted by nuclei and then the electron or positron excites the nucleus, has a large cross-section. It is equal to about 5 b for CaCa collisions. On the one hand, it produces a significant γ-rays background in the nuclear fragmentation region but, on the other hand, it could be used for monitoring the nuclear beam intensity at the LHC. These secondary nuclear photons could be a good signal for triggering peripheral nuclear collisions.

  1. Nuclear Physics Meets the Sources of the Ultra-High Energy Cosmic Rays.

    PubMed

    Boncioli, Denise; Fedynitch, Anatoli; Winter, Walter

    2017-07-07

    The determination of the injection composition of cosmic ray nuclei within astrophysical sources requires sufficiently accurate descriptions of the source physics and the propagation - apart from controlling astrophysical uncertainties. We therefore study the implications of nuclear data and models for cosmic ray astrophysics, which involves the photo-disintegration of nuclei up to iron in astrophysical environments. We demonstrate that the impact of nuclear model uncertainties is potentially larger in environments with non-thermal radiation fields than in the cosmic microwave background. We also study the impact of nuclear models on the nuclear cascade in a gamma-ray burst radiation field, simulated at a level of complexity comparable to the most precise cosmic ray propagation code. We conclude with an isotope chart describing which information is in principle necessary to describe nuclear interactions in cosmic ray sources and propagation.

  2. Estradiol-promoted accumulation of receptor in nuclei of porcine endometrium cells. Immunogold electron microscopy of resting and estradiol-stimulated cells.

    PubMed

    Sierralta, W D; Jakob, F; Thole, H; Engel, P; Jungblut, P W

    1992-01-01

    Endometrium was collected by curettage from castrated pigs, either untreated or exposed to estradiol in vivo by intrauterine injection, and processed for electron microscopy. The resin LR Gold was used for embedding, and sections were floated on droplets of 10 nm diameter gold particles, coated with the immunoglobulin-G1 (IgG1) fraction or its Fab2 fragment of a monospecific polyclonal antiserum raised in goats against the C-terminal half of the estradiol receptor. On average, only one gold particle per microns 2 became attached in the cytoplasmic area of untreated cells, whereas four were found over the nuclear area. These figures rose to 2-3/microns 2 and 15-26/microns 2, respectively, within 10 min after exposure to estradiol. The labeling intensities of nuclei in cell clusters and of coprocessed nuclei released from cells ruptured during curettage were identical in all situations. Nuclear pores were frequently tagged after estradiol treatment. The proportions of tagging densities in nuclei of untreated and estradiol-exposed cells corresponded to those of receptor contents measured in extracts of isolated nuclei by ligand binding. This correlation was not seen for the cytoplasmic compartment of untreated cells, the scarce tagging of which is interpreted by hidden antigenic determinants. Our morphological analyses support the conclusions drawn from biochemical data (Sierralta et al., 1992) of an estradiol-promoted translocation of receptor from the cytoplasm into the nucleus.

  3. Observation of coherent diffractive charged current interactions of antineutrinos on neon nuclei

    NASA Astrophysics Data System (ADS)

    Marage, P.; Aderholz, M.; Armenise, N.; Azemoon, T.; Barnham, K. W. J.; Bartley, J. H.; Baton, J. P.; Bertrand, D.; Brisson, V.; Bullock, F. W.; Calicchio, M.; Cooper, A. M.; Chwastowski, J.; Clayton, E. F.; Coghen, T.; Erriquez, O.; Fitch, P. J.; Gerbier, G.; Guy, J.; Hulth, P. O.; Jones, G. T.; Kasper, P.; Kochowski, C.; Leighton-Davies, S.; Middleton, R. P.; Mobayyen, M. M.; Morrison, D. R. O.; Neveu, M.; Nuzzo, S.; O'Neale, S. W.; Parker, M. A.; Petiau, P.; Ruggieri, F.; Sacton, J.; Sansum, R. A.; Simopoulou, E.; Talebzadeh, M.; Vallee, C.; Varvell, K.; Vayaki, A.; Venus, W.; Wells, J.; Wernhard, K. L.; Wittek, W.; Zevgolatakos, E.; WA59 Collaboration

    1984-05-01

    First observation is reported of semi-inclusive coherent diffractive charged current interactions of antineutrinos on neon nuclei. A sharp peaking towards zero is observed in the | t| distribution of interactions for which the final state charge is 0 and from which only one negative hadron is emitted, unaccompanied by any evidence of nuclear fragmentation or reinteraction. This peak is correlated with high momentum of the outgoing charged hadron and with small values of Q2 and x.

  4. Large-scale configuration interaction description of the structure of nuclei around 100Sn and 208Pb

    NASA Astrophysics Data System (ADS)

    Qi, Chong

    2016-08-01

    In this contribution I would like to discuss briefly the recent developments of the nuclear configuration interaction shell model approach. As examples, we apply the model to calculate the structure and decay properties of low-lying states in neutron-deficient nuclei around 100Sn and 208Pb that are of great experimental and theoretical interests.

  5. Influence of the bud neck on nuclear envelope fission in Saccharomyces cerevisiae.

    PubMed

    Melloy, Patricia G; Rose, Mark D

    2017-09-15

    Studies have shown that nuclear envelope fission (karyokinesis) in budding yeast depends on cytokinesis, but not distinguished whether this was a direct requirement, indirect, because of cell cycle arrest, or due to bud neck-localized proteins impacting both processes. To determine the requirements for karyokinesis, we examined mutants conditionally defective for bud emergence and/or nuclear migration. The common mutant phenotype was completion of the nuclear division cycle within the mother cell, but karyokinesis did not occur. In the cdc24 swe1 mutant, at the non-permissive temperature, multiple nuclei accumulated within the unbudded cell, with connected nuclear envelopes. Upon return to the permissive temperature, the cdc24 swe1 mutant initiated bud emergence, but only the nucleus spanning the neck underwent fission suggesting that the bud neck region is important for fission initiation. The neck may be critical for either mechanical reasons, as the contractile ring might facilitate fission, or for regulatory reasons, as the site of a protein network regulating nuclear envelope fission, mitotic exit, and cytokinesis. We also found that 77-85% of pairs of septin mutant nuclei completed nuclear envelope fission. In addition, 27% of myo1Δ mutant nuclei completed karyokinesis. These data suggested that fission is not dependent on mechanical contraction at the bud neck, but was instead controlled by regulatory proteins there. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Rhodamine B induces long nucleoplasmic bridges and other nuclear anomalies in Allium cepa root tip cells.

    PubMed

    Tan, Dehong; Bai, Bing; Jiang, Donghua; Shi, Lin; Cheng, Shunchang; Tao, Dongbing; Ji, Shujuan

    2014-03-01

    The cytogenetic toxicity of rhodamine B on root tip cells of Allium cepa was investigated. A. cepa were cultured in water (negative control), 10 ppm methyl methanesulfonate (positive control), and three concentrations of rhodamine B (200, 100, and 50 ppm) for 7 days. Rhodamine B inhibited mitotic activity; increased nuclear anomalies, including micronuclei, nuclear buds, and bridged nuclei; and induced oxidative stress in A. cepa root tissues. Furthermore, a substantial amount of long nucleoplasmic bridges were entangled together, and some nuclei were simultaneously linked to several other nuclei and to nuclear buds with nucleoplasmic bridges in rhodamine B-treated cells. In conclusion, rhodamine B induced cytogenetic effects in A. cepa root tip cells, which suggests that the A. cepa root is an ideal model system for detecting cellular interactions.

  7. Nuclear gamma rays from energetic particle interactions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1978-01-01

    Gamma ray line emission from nuclear deexcitation following energetic particle reactions is evaluated. The compiled nuclear data and the calculated gamma ray spectra and intensities can be used for the study of astrophysical sites which contain large fluxes of energetic protons and nuclei. A detailed evaluation of gamma ray line production in the interstellar medium is made.

  8. Precerebellar and vestibular nuclei of the short-beaked echidna (Tachyglossus aculeatus).

    PubMed

    Ashwell, K W S; Paxinos, G; Watson, C R R

    2007-09-01

    The monotremes are a unique group of living mammals, which diverged from the line leading to placental mammals at least 125 million years ago. We have examined the organization of pontine, inferior olivary, lateral reticular and vestibular nuclei in the brainstem of the short-beaked echidna (Tachyglossus aculeatus) to determine if the cyto- and chemoarchitecture of these nuclei are similar to that in placental mammals and marsupials. We have used Nissl staining in conjunction with enzyme-histochemistry for acetylcholinesterase, cytochrome oxidase and NADPH diaphorase as well as immunohistochemistry for non-phosphorylated neurofilament protein (SMI-32 antibody) and calcium binding proteins (parvalbumin, calbindin, calretinin). Homologies could be established between the arch shaped inferior olivary complex of the echidna and the principal, dorsal and medial accessory subdivisions of the therian inferior olivary complex. The pontine nuclei of the echidna included basilar and reticulotegmental components with similar cyto- and chemarchitectural features to therians and there were magnocellular and subtrigeminal components of the lateral reticular nucleus, also as seen in therians. Subdivisions and chemoarchitecture of the vestibular complex of the echidna were both similar to that region in rodents. In all three precerebellar nuclear groups studied and in the vestibular nucleus organization, the cyto- and chemoarchitecture of the echidna was very similar to that seen in therian mammals and no "primitive" or "reptilian" features were evident.

  9. Estimation of M 1 scissors mode strength for deformed nuclei in the medium- to heavy-mass region by statistical Hauser-Feshbach model calculations

    NASA Astrophysics Data System (ADS)

    Mumpower, M. R.; Kawano, T.; Ullmann, J. L.; Krtička, M.; Sprouse, T. M.

    2017-08-01

    Radiative neutron capture is an important nuclear reaction whose accurate description is needed for many applications ranging from nuclear technology to nuclear astrophysics. The description of such a process relies on the Hauser-Feshbach theory which requires the nuclear optical potential, level density, and γ -strength function as model inputs. It has recently been suggested that the M 1 scissors mode may explain discrepancies between theoretical calculations and evaluated data. We explore statistical model calculations with the strength of the M 1 scissors mode estimated to be dependent on the nuclear deformation of the compound system. We show that the form of the M 1 scissors mode improves the theoretical description of evaluated data and the match to experiment in both the fission product and actinide regions. Since the scissors mode occurs in the range of a few keV to a few MeV, it may also impact the neutron capture cross sections of neutron-rich nuclei that participate in the rapid neutron capture process of nucleosynthesis. We comment on the possible impact to nucleosynthesis by evaluating neutron capture rates for neutron-rich nuclei with the M 1 scissors mode active.

  10. Age- and sex-related differences in nuclear lipid content and nucleoside triphosphatase activity in the JCR:LA-cp corpulent rat.

    PubMed

    Czubryt, M P; Russell, J C; Sarantopoulos, J; Gilchrist, J S; Pierce, G N

    1997-11-01

    The putative role of the nuclear nucleoside triphosphatase (NTPase) is to provide energy to the nuclear pore complex for poly A(+) mRNA export. Previous work has demonstrated that liver nuclear NTPase activity is greater in 6 month old corpulent (cp/cp) female JCR:LA rats, a hyperlipidemic rat model, compared to lean (+/?) animals. This increase appeared to be related to increases in nuclear membrane cholesterol content. The current study extended these initial data to compare NTPase activity as a function of age and sex in isolated JCR:LA-cp rat liver nuclei, to further test the hypothesis that nuclear membrane cholesterol may modulate NTPase activity. NTPase activity was increased in cp/cp female animals compared to +/? females at all ages studied, with Vmax values increased by 60-176%. Membrane integrity of cp/cp female nuclei was reduced compared to +/? female nuclei. Nuclear membrane cholesterol levels increased linearly with age by 50, 150 and 250% in 3, 6 and 9 month old cp/cp females over leans. In contrast, nuclei from cp/cp males exhibited only minor, isolated changes in NTPase activity. Furthermore, there were no significant changes in nuclear cholesterol content or membrane integrity in the less hyperlipidemic male animals at any age. These data suggest that altered lipid metabolism may lead to changes in nuclear membrane structure, which in turn may alter NTPase activity and functioning of the nuclear pore complex.

  11. Nuclear charge radii: density functional theory meets Bayesian neural networks

    NASA Astrophysics Data System (ADS)

    Utama, R.; Chen, Wei-Chia; Piekarewicz, J.

    2016-11-01

    The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. The aim of this study is to explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonstrated the ability of the BNN approach to significantly increase the accuracy of nuclear models in the predictions of nuclear charge radii. However, as many before us, we failed to uncover the underlying physics behind the intriguing behavior of charge radii along the calcium isotopic chain.

  12. Systematic study of the isotopic dependence of fusion dynamics for neutron- and proton-rich nuclei using a proximity formalism

    NASA Astrophysics Data System (ADS)

    Ghodsi, O. N.; Gharaei, R.; Lari, F.

    2012-08-01

    The behaviors of barrier characteristics and fusion cross sections are analyzed by changing neutrons over a wide range of colliding systems. For this purpose, we have extended our previous study [Ghodsi and Gharaei, Eur. Phys. J. AEPJAFV1434-600110.1140/epja/i2012-12021-x 48, 21 (2012), it is devoted to the colliding systems with neutron-rich nuclei] to 125 isotopic systems with the condition of 0.5⩽N/Z⩽1.6 for their compound nuclei. The AW 95, Bass 80, Denisov DP, and Prox. 2010 potentials are used to calculate the nuclear part of the interacting potential. The obtained results show that the trend of barrier heights VB and positions RB as well as nuclear VN and Coulomb VC potentials (at R=RB) as a function of (N/Z-1) quantity are nonlinear (second order) whereas the fusion cross sections follow a linear dependence.

  13. Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN

    NASA Astrophysics Data System (ADS)

    Aalto, S.; Martín, S.; Costagliola, F.; González-Alfonso, E.; Muller, S.; Sakamoto, K.; Fuller, G. A.; García-Burillo, S.; van der Werf, P.; Neri, R.; Spaans, M.; Combes, F.; Viti, S.; Mühle, S.; Armus, L.; Evans, A.; Sturm, E.; Cernicharo, J.; Henkel, C.; Greve, T. R.

    2015-12-01

    We present high resolution (0.̋4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (ν2 = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r< 17-70 pc) nuclei that have very high implied mid-infrared surface brightness > 5 × 1013 L⊙ kpc-2. These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, ν2 = 1, lines of HCN are excited by intense 14 μm mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H2 column densities exceed 1024 cm-2. It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (ν = 0), J = 3-2and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self- and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions - possibly in the form of in- or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback. Based on observations carried out with the IRAM Plateau de Bure and ALMA Interferometers. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). ALMA is a partnership of ESO (representing its member states

  14. Maria Goeppert Mayer, the Nuclear Shell Structure, and Magic Numbers

    Science.gov Websites

    dropdown arrow Site Map A-Z Index Menu Synopsis Maria Goeppert-Mayer, the Nuclear Shell Model, and Magic explanation of how neutrons and protons within atomic nuclei are structured. Called the "nuclear shell American husband, chemical physicist Joseph Mayer. At Argonne, Goeppert-Mayer learned most of her nuclear

  15. What was I thinking? Eye-tracking experiments underscore the bias that architecture exerts on nuclear grading in prostate cancer.

    PubMed

    Bombari, Dario; Mora, Braulio; Schaefer, Stephan C; Mast, Fred W; Lehr, Hans-Anton

    2012-01-01

    We previously reported that nuclear grade assignment of prostate carcinomas is subject to a cognitive bias induced by the tumor architecture. Here, we asked whether this bias is mediated by the non-conscious selection of nuclei that "match the expectation" induced by the inadvertent glance at the tumor architecture. 20 pathologists were asked to grade nuclei in high power fields of 20 prostate carcinomas displayed on a computer screen. Unknown to the pathologists, each carcinoma was shown twice, once before a background of a low grade, tubule-rich carcinoma and once before the background of a high grade, solid carcinoma. Eye tracking allowed to identify which nuclei the pathologists fixated during the 8 second projection period. For all 20 pathologists, nuclear grade assignment was significantly biased by tumor architecture. Pathologists tended to fixate on bigger, darker, and more irregular nuclei when those were projected before kigh grade, solid carcinomas than before low grade, tubule-rich carcinomas (and vice versa). However, the morphometric differences of the selected nuclei accounted for only 11% of the architecture-induced bias, suggesting that it can only to a small part be explained by the unconscious fixation on nuclei that "match the expectation". In conclusion, selection of « matching nuclei » represents an unconscious effort to vindicate the gravitation of nuclear grades towards the tumor architecture.

  16. What Was I Thinking? Eye-Tracking Experiments Underscore the Bias that Architecture Exerts on Nuclear Grading in Prostate Cancer

    PubMed Central

    Schaefer, Stephan C.; Mast, Fred W.; Lehr, Hans-Anton

    2012-01-01

    We previously reported that nuclear grade assignment of prostate carcinomas is subject to a cognitive bias induced by the tumor architecture. Here, we asked whether this bias is mediated by the non-conscious selection of nuclei that “match the expectation” induced by the inadvertent glance at the tumor architecture. 20 pathologists were asked to grade nuclei in high power fields of 20 prostate carcinomas displayed on a computer screen. Unknown to the pathologists, each carcinoma was shown twice, once before a background of a low grade, tubule-rich carcinoma and once before the background of a high grade, solid carcinoma. Eye tracking allowed to identify which nuclei the pathologists fixated during the 8 second projection period. For all 20 pathologists, nuclear grade assignment was significantly biased by tumor architecture. Pathologists tended to fixate on bigger, darker, and more irregular nuclei when those were projected before kigh grade, solid carcinomas than before low grade, tubule-rich carcinomas (and vice versa). However, the morphometric differences of the selected nuclei accounted for only 11% of the architecture-induced bias, suggesting that it can only to a small part be explained by the unconscious fixation on nuclei that “match the expectation”. In conclusion, selection of « matching nuclei » represents an unconscious effort to vindicate the gravitation of nuclear grades towards the tumor architecture. PMID:22666438

  17. PREFACE: Nuclear Cluster Conference; Cluster'07

    NASA Astrophysics Data System (ADS)

    Freer, Martin

    2008-05-01

    The Cluster Conference is a long-running conference series dating back to the 1960's, the first being initiated by Wildermuth in Bochum, Germany, in 1969. The most recent meeting was held in Nara, Japan, in 2003, and in 2007 the 9th Cluster Conference was held in Stratford-upon-Avon, UK. As the name suggests the town of Stratford lies upon the River Avon, and shortly before the conference, due to unprecedented rainfall in the area (approximately 10 cm within half a day), lay in the River Avon! Stratford is the birthplace of the `Bard of Avon' William Shakespeare, and this formed an intriguing conference backdrop. The meeting was attended by some 90 delegates and the programme contained 65 70 oral presentations, and was opened by a historical perspective presented by Professor Brink (Oxford) and closed by Professor Horiuchi (RCNP) with an overview of the conference and future perspectives. In between, the conference covered aspects of clustering in exotic nuclei (both neutron and proton-rich), molecular structures in which valence neutrons are exchanged between cluster cores, condensates in nuclei, neutron-clusters, superheavy nuclei, clusters in nuclear astrophysical processes and exotic cluster decays such as 2p and ternary cluster decay. The field of nuclear clustering has become strongly influenced by the physics of radioactive beam facilities (reflected in the programme), and by the excitement that clustering may have an important impact on the structure of nuclei at the neutron drip-line. It was clear that since Nara the field had progressed substantially and that new themes had emerged and others had crystallized. Two particular topics resonated strongly condensates and nuclear molecules. These topics are thus likely to be central in the next cluster conference which will be held in 2011 in the Hungarian city of Debrechen. Martin Freer Participants and Cluster'07

  18. The structure of nuclei far from stability. [Dept. of Physics and Astronomy, Louisiana State Univ. , Baton Rouge, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zganjar, E.F.

    1993-01-01

    Studies on nuclei near Z=82 contributed to the establishment of a new region of nuclear deformation and a new class of nuclear structure at closed shells. A important aspect of this work is the establishment of the connection between low-lying 0[sup +] states in even[endash]even nuclei and the occurrence of shape coexistence in the odd-mass neighbors (E0 transitions in [sup 185]Pt, shape coexistence in [sup 184]Pt and [sup 187]Au). A new type of picosecond lifetime measurement system capable of measuring the lifetime of states that decay only by internal conversion was developed and applied to the [sup 186,188]Tl decay tomore » determine the lifetime of the 0[sub 2][sup +] and 2[sub 2][sup +] deformed states in [sup 186,188]Hg. A search for the population of superdeformed states in [sup 192]Hg by the radioactive decay of [sup 192]Tl was accomplished by using a prototype internal pair formation spectrometer.« less

  19. Systematics of nuclear deformation in large regions

    NASA Astrophysics Data System (ADS)

    Zhao, Y. M.; Arima, A.; Casten, R. F.

    2001-06-01

    In this paper we present the systematics of nuclear deformation for even-even, even-odd, odd-even, and doubly odd nuclei in four regions: the 50nuclei previously studied with the P factor, and the other classes of nuclei included here. This may suggest that the pairing interaction strength of even-even nuclei is very close to that in their odd A and doubly odd neighbors. Strong anomalies around the Z~80 region are highlighted.

  20. Advances toward fully automated in vivo assessment of oral epithelial dysplasia by nuclear endomicroscopy-A pilot study.

    PubMed

    Liese, Jan; Winter, Karsten; Glass, Änne; Bertolini, Julia; Kämmerer, Peer Wolfgang; Frerich, Bernhard; Schiefke, Ingolf; Remmerbach, Torsten W

    2017-11-01

    Uncertainties in detection of oral epithelial dysplasia (OED) frequently result from sampling error especially in inflammatory oral lesions. Endomicroscopy allows non-invasive, "en face" imaging of upper oral epithelium, but parameters of OED are unknown. Mucosal nuclei were imaged in 34 toluidine blue-stained oral lesions with a commercial endomicroscopy. Histopathological diagnosis showed four biopsies in "dys-/neoplastic," 23 in "inflammatory," and seven in "others" disease groups. Strength of different assessment strategies of nuclear scoring, nuclear count, and automated nuclear analysis were measured by area under ROC curve (AUC) to identify histopathological "dys-/neoplastic" group. Nuclear objects from automated image analysis were visually corrected. Best-performing parameters of nuclear-to-image ratios were the count of large nuclei (AUC=0.986) and 6-nearest neighborhood relation (AUC=0.896), and best parameters of nuclear polymorphism were the count of atypical nuclei (AUC=0.996) and compactness of nuclei (AUC=0.922). Excluding low-grade OED, nuclear scoring and count reached 100% sensitivity and 98% specificity for detection of dys-/neoplastic lesions. In automated analysis, combination of parameters enhanced diagnostic strength. Sensitivity of 100% and specificity of 87% were seen for distances of 6-nearest neighbors and aspect ratios even in uncorrected objects. Correction improved measures of nuclear polymorphism only. The hue of background color was stronger than nuclear density (AUC=0.779 vs 0.687) to detect dys-/neoplastic group indicating that macroscopic aspect is biased. Nuclear-to-image ratios are applicable for automated optical in vivo diagnostics for oral potentially malignant disorders. Nuclear endomicroscopy may promote non-invasive, early detection of dys-/neoplastic lesions by reducing sampling error. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.