Sample records for warm salt water

  1. Potential impacts of global warming on water resources in southern California.

    PubMed

    Beuhler, M

    2003-01-01

    Global warming will have a significant impact on water resources within the 20 to 90-year planning period of many water projects. Arid and semi-arid regions such as Southern California are especially vulnerable to anticipated negative impacts of global warming on water resources. Long-range water facility planning must consider global climate change in the recommended mix of new facilities needed to meet future water requirements. The generally accepted impacts of global warming include temperature, rising sea levels, more frequent and severe floods and droughts, and a shift from snowfall to rain. Precipitation changes are more difficult to predict. For Southern California, these impacts will be especially severe on surface water supplies. Additionally, rising sea levels will exacerbate salt-water intrusion into freshwater and impact the quality of surface water supplies. Integrated water resources planning is emerging as a tool to develop water supplies and demand management strategies that are less vulnerable to the impacts of global warming. These tools include water conservation, conjunctive use of surface and groundwater and desalination of brackish water and possibly seawater. Additionally, planning for future water needs should include explicit consideration of the potential range of global warming impacts through techniques such as scenario planning.

  2. Water purification using organic salts

    DOEpatents

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  3. Temperature inverted haloclines provide winter warm-water refugia for manatees in southwest Florida

    USGS Publications Warehouse

    Stith, Bradley M.; Reid, James P.; Langtimm, Catherine A.; Swain, Eric D.; Doyle, Terry J.; Slone, Daniel H.; Decker, Jeremy D.; Soderqvist, Lars E.

    2010-01-01

    Florida manatees (Trichechus manatus latirostris) overwintering in the Ten Thousand Islands and western Everglades have no access to power plants or major artesian springs that provide warm-water refugia in other parts of Florida. Instead, hundreds of manatees aggregate at artificial canals, basins, and natural deep water sites that act as passive thermal refugia (PTR). Monitoring at two canal sites revealed temperature inverted haloclines, which provided warm salty bottom layers that generally remained above temperatures considered adverse for manatees. At the largest PTR, the warmer bottom layer disappeared unless significant salt stratification was maintained by upstream freshwater inflow over a persistent tidal wedge. A detailed three-dimensional hydrology model showed that salinity stratification inhibited vertical convection induced by atmospheric cooling. Management or creation of temperature inverted haloclines may be a feasible and desirable option for resource managers to provide passive thermal refugia for manatees and other temperature sensitive aquatic species.

  4. Discharge, water temperature, and water quality of Warm Mineral Springs, Sarasota County, Florida: A retrospective analysis

    USGS Publications Warehouse

    Metz, Patricia A.

    2016-09-27

    Warm Mineral Springs, located in southern Sarasota County, Florida, is a warm, highly mineralized, inland spring. Since 1946, a bathing spa has been in operation at the spring, attracting vacationers and health enthusiasts. During the winter months, the warm water attracts manatees to the adjoining spring run and provides vital habitat for these mammals. Well-preserved late Pleistocene to early Holocene-age human and animal bones, artifacts, and plant remains have been found in and around the spring, and indicate the surrounding sinkhole formed more than 12,000 years ago. The spring is a multiuse resource of hydrologic importance, ecological and archeological significance, and economic value to the community.The pool of Warm Mineral Springs has a circular shape that reflects its origin as a sinkhole. The pool measures about 240 feet in diameter at the surface and has a maximum depth of about 205 feet. The sinkhole developed in the sand, clay, and dolostone of the Arcadia Formation of the Miocene-age to Oligocene-age Hawthorn Group. Underlying the Hawthorn Group are Oligocene-age to Eocene-age limestones and dolostones, including the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. Mineralized groundwater, under artesian pressure in the underlying aquifers, fills the remnant sink, and the overflow discharges into Warm Mineral Springs Creek, to Salt Creek, and subsequently into the Myakka River. Aquifers described in the vicinity of Warm Mineral Springs include the surficial aquifer system, the intermediate aquifer system within the Hawthorn Group, and the Upper Floridan aquifer in the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. The Hawthorn Group acts as an upper confining unit of the Upper Floridan aquifer.Groundwater flow paths are inferred from the configuration of the potentiometric surface of the Upper Floridan aquifer for September 2010. Groundwater flow models indicate the downward flow of water into the Upper Floridan aquifer

  5. Water and salt balance of Great Salt Lake, Utah, and simulation of water and salt movement through the causeway

    USGS Publications Warehouse

    Wold, Steven R.; Thomas, Blakemore E.; Waddell, Kidd M.

    1997-01-01

    The water and salt balance of Great Salt Lake primarily depends on the amount of inflow from tributary streams and the conveyance properties of a causeway constructed during 1957-59 that divides the lake into the south and north parts. The conveyance properties of the causeway originally included two culverts, each 15 feet wide, and the permeable rock-fill material.During 1980-86, the salt balance changed as a result of record high inflow that averaged 4,627,000 acre-feet annually and modifications made to the conveyance properties of the causeway that included opening a 300-foot-wide breach. In this study, a model developed in 1973 by Waddell and Bolke to simulate the water and salt balance of the lake was revised to accommodate the high water-surface altitude and modifications made to the causeway. This study, done by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of State Lands and Forestry, updates the model with monitoring data collected during 1980-86. This report describes the calibration of the model and presents the results of simulations for three hypothetical 10-year periods.During January 1, 1980, to July 31, 1984, a net load of 0.5 billion tons of dissolved salt flowed from the south to the north part of the lake primarily as a result of record inflows. From August 1, 1984, when the breach was opened, to December 31,1986, a net load of 0.3 billion tons of dissolved salt flowed from the north to the south part of the lake primarily as a result of the breach.For simulated inflow rates during a hypothetical 10-year period resulting in the water-surface altitude decreasing from about 4,200 to 4,192 feet, there was a net movement of about 1.0 billion tons of dissolved salt from the south to the north part, and about 1.7 billion tons of salt precipitated in the north part. For simulated inflow rates during a hypothetical 10-year period resulting in a rise in water-surface altitude from about 4,200 to 4

  6. 46 CFR 45.37 - Salt water load lines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water marks...

  7. 46 CFR 45.37 - Salt water load lines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water marks...

  8. 46 CFR 45.37 - Salt water load lines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water marks...

  9. 46 CFR 45.37 - Salt water load lines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water marks...

  10. 46 CFR 45.37 - Salt water load lines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water marks...

  11. Warming of Water in a Glass

    ERIC Educational Resources Information Center

    Paulins, Paulis; Krauze, Armands; Ozolinsh, Maris; Muiznieks, Andris

    2016-01-01

    The article focuses on the process of water warming from 0 °C in a glass. An experiment is performed that analyzes the temperature in the top and bottom layers of water during warming. The experimental equipment is very simple and can be easily set up using devices available in schools. The temperature curves obtained from the experiment help us…

  12. Comparison of formation mechanism of fresh-water and salt-water lacustrine organic-rich shale

    NASA Astrophysics Data System (ADS)

    Lin, Senhu

    2017-04-01

    Based on the core and thin section observation, major, trace and rare earth elements test, carbon and oxygen isotopes content analysis and other geochemical methods, a detailed study was performed on formation mechanism of lacustrine organic-rich shale by taking the middle Permian salt-water shale in Zhungaer Basin and upper Triassic fresh-water shale in Ordos Basin as the research target. The results show that, the middle Permian salt-water shale was overall deposited in hot and dry climate. Long-term reductive environment and high biological abundance due to elevated temperature provides favorable conditions for formation and preservation of organic-rich shale. Within certain limits, the hotter climate, the organic-richer shale formed. These organic-rich shale was typically distributed in the area where palaeosalinity is relatively high. However, during the upper Triassic at Ordos Basin, organic-rich shale was formed in warm and moist environment. What's more, if the temperature, salinity or water depth rises, the TOC in shale decreases. In other words, relatively low temperature and salinity, stable lake level and strong reducing conditions benefits organic-rich shale deposits in fresh water. In this sense, looking for high-TOC shale in lacustrine basin needs to follow different rules depends on the palaeoclimate and palaeoenvironment during sedimentary period. There is reason to believe that the some other factors can also have significant impact on formation mechanism of organic-rich shale, which increases the complexity of shale oil and gas prediction.

  13. Changes of minimal erythema dose after water and salt water baths.

    PubMed

    Gambichler, T; Schröpl, F

    1998-01-01

    Knowledge about the influence of salt water baths on UV irradiation, especially balneophototherapy, is incomplete. The aim of this study was to investigate the influence of various concentrated salt solutions on the minimal erythema dose (MED). We determined the MEDdry (UVB) in 24 healthy, previously UV unexposed subjects on the inner forearm. Subjects were divided randomly into two groups of 12. Subsequently, the MEDwet was assessed on each forearm after 30 min tap water or 5% salt water bath (group A), respectively, or after 30 min 10% or 20% salt water bath (group B), respectively. Compared with the MEDdry, a significantly decreased MEDwet, was observed after all exposures (group A==>F = 18.94; P < 0.001; group B==>F = 11.73; P < 0.006). A maximal relative decrease in MEDdry of about 51.4% was observed after the 10% salt water bath. The 5% salt solution caused a modest relative decrease in MEDwet of 23.4%. We observed a markedly increased photosensitivity to UVB after all exposures, without a linear correlation between the MED and the salt water concentration. A determination of MED during balneophototherapy should be carried out after bathing in order to reduce the cumulative UV dose and to prevent acute photodamage.

  14. A universal salt model based on under-ground precipitation of solid salts due to supercritical water `out-salting'

    NASA Astrophysics Data System (ADS)

    Rueslåtten, H.; Hovland, M. T.

    2010-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth’s surface-environment can be regarded as ‘water-friendly’ and ‘salt hostile’, the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, ‘salt-friendly’. The riddle as to how the salt accumulated in various locations on those two planets, is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed ‘evaporites’, meaning that they formed as a consequence of the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, as an ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will attain the phase of supercritical water vapor (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (T>400°C, P>300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the Red Sea indicates that a

  15. High-Performance Computing Data Center Warm-Water Liquid Cooling |

    Science.gov Websites

    Computational Science | NREL Warm-Water Liquid Cooling High-Performance Computing Data Center Warm-Water Liquid Cooling NREL's High-Performance Computing Data Center (HPC Data Center) is liquid water Liquid cooling technologies offer a more energy-efficient solution that also allows for effective

  16. Warming ancient Mars with water clouds

    NASA Astrophysics Data System (ADS)

    Hartwick, V.; Toon, B.

    2017-12-01

    High clouds in the present day Mars atmosphere nucleate on interplanetary dust particles (IDPs) that burn up on entry into the Mars atmosphere. Clouds form when superstaturated water vapor condenses on suspended aerosols. Radiatively active water ice clouds may play a crucial role in warming the early Mars climate. Urata and Toon (2011) simulate a stable warm paleo-climate for Mars if clouds form high in the atmosphere and if particles are sufficiently large (r > 10 μm). The annual fluence of micrometeoroids at Mars was larger early on in the evolution of our solar system. Additionally, the water vapor budget throughout the middle and high atmosphere was likely heightened . Both factors should contribute to enhanced nucleation and growth of water ice cloud particles at high altitudes. Here, we use the MarsCAM-CARMA general circulation model (GCM) to examine the radiative impact of high altitude water ice clouds on the early Mars climate and as a possible solution to the faint young sun problem for Mars.

  17. Salt water and its relation to fresh ground water in Harris County, Texas

    USGS Publications Warehouse

    Winslow, Allen G.; Doyel, William Watson; Wood, L.A.

    1957-01-01

    Other less probable potential sources of salt-water contamination which are discussed include upward movement of salt water from below, vertical movement around salt domes or along faults, downward seepage from surface sources, and contamination through leaking wells.

  18. Usefulness of warm water and oil assistance in colonoscopy by trainees.

    PubMed

    Park, Sung Chul; Keum, Bora; Kim, Eun Sun; Jung, Eun Suk; Lee, Sehe Dong; Park, Sanghoon; Seo, Yeon Seok; Kim, Yong Sik; Jeen, Yoon Tae; Chun, Hoon Jai; Um, Soon Ho; Kim, Chang Duck; Ryu, Ho Sang

    2010-10-01

    Success rate of cecal intubation, endoscopist's difficulty, and procedure-related patient pain are still problems for beginners performing colonoscopy. New methods to aid colonoscopic insertion such as warm water instillation and oil lubrication have been proposed. The aim of this study is to evaluate the feasibility of using warm water or oil in colonoscopy. Colonoscopy was performed in 117 unsedated patients by three endoscopists-in-training. Patients were randomly allocated to three groups, using a conventional method with administration of antispasmodics, warm water instillation, and oil lubrication, respectively. Success rate of total intubation within time limit (15 min), cecal intubation time, degree of endoscopist's difficulty, and level of patient discomfort were compared among the three groups. Cecal intubation time was shorter in the warm water group than in the conventional and oil groups. Degree of procedural difficulty was lower in the warm water group, and patient pain score was higher in the oil lubrication group, compared with the other groups. However, there was no significant difference in success rate of intubation within time limit among the three groups. The warm water method is a simple, safe, and feasible method for beginners. Oil lubrication may not be a useful method compared with conventional and warm water method.

  19. Multidecadal warming of Antarctic waters.

    PubMed

    Schmidtko, Sunke; Heywood, Karen J; Thompson, Andrew F; Aoki, Shigeru

    2014-12-05

    Decadal trends in the properties of seawater adjacent to Antarctica are poorly known, and the mechanisms responsible for such changes are uncertain. Antarctic ice sheet mass loss is largely driven by ice shelf basal melt, which is influenced by ocean-ice interactions and has been correlated with Antarctic Continental Shelf Bottom Water (ASBW) temperature. We document the spatial distribution of long-term large-scale trends in temperature, salinity, and core depth over the Antarctic continental shelf and slope. Warming at the seabed in the Bellingshausen and Amundsen seas is linked to increased heat content and to a shoaling of the mid-depth temperature maximum over the continental slope, allowing warmer, saltier water greater access to the shelf in recent years. Regions of ASBW warming are those exhibiting increased ice shelf melt. Copyright © 2014, American Association for the Advancement of Science.

  20. Is Europa's Subsurface Water Ocean Warm?

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.; Ekholm, A. G.; Showman, A. P.; Lorenz, R. D.

    2002-01-01

    Europa's subsurface water ocean may be warm: that is, at the temperature of water's maximum density. This provides a natural explanation of chaos melt-through events and leads to a correct estimate of the age of its surface. Additional information is contained in the original extended abstract.

  1. Lessons: Science: "Sinkholes." Students Observe What Happens When Ice-Cold Water Mingles with Warm Water.

    ERIC Educational Resources Information Center

    VanCleave, Janice

    2000-01-01

    This intermediate-level science activity has students observe the effect of ice-cold water mingling with warm water. Water's behavior and movement alters with shifts in temperature. Students must try to determine how temperature affects the movement of water. Necessary materials include a pencil, cup, glass jar, masking tape, warm water, ice…

  2. Harvesting Water from Air: Using Anhydrous Salt with Sunlight.

    PubMed

    Li, Renyuan; Shi, Yusuf; Shi, Le; Alsaedi, Mossab; Wang, Peng

    2018-05-01

    Atmospheric water is an abundant alternative water resource, equivalent to 6 times the water in all rivers on Earth. This work screens 14 common anhydrous and hydrated salt couples in terms of their physical and chemical stability, water vapor harvesting, and release capacity under relevant application scenarios. Among the salts screened, copper chloride (CuCl 2 ), copper sulfate (CuSO 4 ), and magnesium sulfate (MgSO 4 ) distinguish themselves and are further made into bilayer water collection devices, with the top layer being the photothermal layer, while the bottom layer acts as a salt-loaded fibrous membrane. The water collection devices are capable of capturing water vapor out of the air with low relative humidity (down to 15%) and releasing water under regular and even weakened sunlight (i.e., 0.7 kW/m 2 ). The work shines light on the potential use of anhydrous salt toward producing drinking water in water scarce regions.

  3. Greenhouse warming and the tropical water budget

    NASA Technical Reports Server (NTRS)

    Betts, Alan K.

    1990-01-01

    The present work takes issue with some of the theses of Lindzen's (1990) work on global warming, arguing in particular that Lindzen's work is hampered by the use of oversimplified models. Lindzen then presents a detailed reply to these arguments, emphasizing the fundamental importance of the upper tropospheric water-vapor budget to the question of global warming.

  4. Comparison of Distal Limb Warming With Fluidotherapy and Warm Water Immersion for Mild Hypothermia Rewarming.

    PubMed

    Kumar, Parveen; McDonald, Gerren K; Chitkara, Radhika; Steinman, Alan M; Gardiner, Phillip F; Giesbrecht, Gordon G

    2015-09-01

    The purpose of the study was to determine the effectiveness of Fluidotherapy rewarming through the distal extremities for mildly hypothermic, vigorously shivering subjects. Fluidotherapy is a dry heat modality in which cellulose particles are suspended by warm air circulation. Seven subjects (2 female) were cooled on 3 occasions in 8˚C water for 60 minutes, or to a core temperature of 35°C. They were then dried and rewarmed in a seated position by 1) shivering only; 2) Fluidotherapy applied to the distal extremities (46 ± 1°C, mean ± SD); or 3) water immersion of the distal extremities (44 ± 1°C). The order of rewarming followed a balanced design. Esophageal temperature, skin temperature, heart rate, oxygen consumption, and heat flux were measured. The warm water produced the highest rewarming rate, 6.1°C·h(-1), 95% CI: 5.3-6.9, compared with Fluidotherapy, 2.2°C·h(-1), 95% CI: 1.4-3.0, and shivering only, 2.0°C·h(-1), 95% CI: 1.2-2.8. The Fluidotherapy and warm water conditions increased skin temperature and inhibited shivering heat production, thus reducing metabolic heat production (166 ± 42 W and 181 ± 45 W, respectively), compared with shivering only (322 ± 142 W). Warm water provided a significantly higher net heat gain (398.0 ± 52 W) than shivering only (288.4 ± 115 W). Fluidotherapy was not as effective as warm water for rewarming mildly hypothermic subjects. Although Fluidotherapy is more portable and technically simpler, it provides a lower rate of rewarming that is similar to shivering only. It does help decrease shivering heat production, lowering energy expenditure and cardiac work, and could be considered in a hospital setting, if convenient. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  5. Estimation of water turnover rates of captive West Indian manatees (Trichechus manatus) held in fresh and salt water

    NASA Technical Reports Server (NTRS)

    Ortiz, R. M.; Worthy, G. A.; Byers, F. M.

    1999-01-01

    The ability of West Indian manatees (Trichechus manatus) to move between fresh and salt water raises the question of whether manatees drink salt water. Water turnover rates were estimated in captive West Indian manatees using the deuterium oxide dilution technique. Rates were quantified in animals using four experimental treatments: (1) held in fresh water and fed lettuce (N=4), (2) held in salt water and fed lettuce (N=2), (3) acutely exposed to salt water and fed lettuce (N=4), and (4) chronically exposed to salt water with limited access to fresh water and fed sea grass (N=5). Animals held in fresh water had the highest turnover rates (145+/-12 ml kg-1 day-1) (mean +/- s.e.m.). Animals acutely exposed to salt water decreased their turnover rate significantly when moved into salt water (from 124+/-15 to 65+/-15 ml kg-1 day-1) and subsequently increased their turnover rate upon re-entry to fresh water (146+/-19 ml kg-1 day-1). Manatees chronically exposed to salt water had significantly lower turnover rates (21+/-3 ml kg-1 day-1) compared with animals held in salt water and fed lettuce (45+/-3 ml kg-1 day-1). Manatees chronically exposed to salt water and fed sea grass had very low turnover rates compared with manatees held in salt water and fed lettuce, which is consistent with a lack of mariposia. Manatees in fresh water drank large volumes of water, which may make them susceptible to hyponatremia if access to a source of Na+ is not provided.

  6. Estimation of water turnover rates of captive West Indian manatees (Trichechus manatus) held in fresh and salt water.

    PubMed

    Ortiz, R M; Worthy, G A; Byers, F M

    1999-01-01

    The ability of West Indian manatees (Trichechus manatus) to move between fresh and salt water raises the question of whether manatees drink salt water. Water turnover rates were estimated in captive West Indian manatees using the deuterium oxide dilution technique. Rates were quantified in animals using four experimental treatments: (1) held in fresh water and fed lettuce (N=4), (2) held in salt water and fed lettuce (N=2), (3) acutely exposed to salt water and fed lettuce (N=4), and (4) chronically exposed to salt water with limited access to fresh water and fed sea grass (N=5). Animals held in fresh water had the highest turnover rates (145+/-12 ml kg-1 day-1) (mean +/- s.e.m.). Animals acutely exposed to salt water decreased their turnover rate significantly when moved into salt water (from 124+/-15 to 65+/-15 ml kg-1 day-1) and subsequently increased their turnover rate upon re-entry to fresh water (146+/-19 ml kg-1 day-1). Manatees chronically exposed to salt water had significantly lower turnover rates (21+/-3 ml kg-1 day-1) compared with animals held in salt water and fed lettuce (45+/-3 ml kg-1 day-1). Manatees chronically exposed to salt water and fed sea grass had very low turnover rates compared with manatees held in salt water and fed lettuce, which is consistent with a lack of mariposia. Manatees in fresh water drank large volumes of water, which may make them susceptible to hyponatremia if access to a source of Na+ is not provided.

  7. Innovative methods to reduce salt water intrusion in harbours

    NASA Astrophysics Data System (ADS)

    Groenenboom, J.; Uittenbogaard, R.; Hulsen, L.; van der Kaaij, T.; Kielen, N.

    2017-12-01

    The availability of fresh water in densely populated estuarine environments will in the future more often be threatened due to both human (e.g. channel deepening) and natural (sea-level rise, storm surges, extremely low river discharges) causes. Here, the salt water intrusion into the New Waterway, the main navigation channel of the port of Rotterdam, is used as a case study to elaborate on two innovative ways to mitigate the effects of salt water intrusion. The first method is based on the concept that vertical mixing of a salt wedge reduces its intrusion length. The idea is to equip a vessel with cranes that hold perforated tubes close to the bed alongside the vessel. By connecting compressors to the perforated tubes, a bubble screen with an adjustable vertical location can be created. Since the horizontal location of the bubble screens is not fixed, the vessel can sail in the vicinity of the moving salt wedge therewith increasing the effectiveness of the method. Another advantage of this intervention is that it can be deployed temporarily when the urgency for the prevention of salt water intrusion is high. The second method originates from the Port of Rotterdam Authority and is inspired by a small bypass that is present between two parallel channels (New Waterway and Caland Canal) connecting the North Sea to the Port of Rotterdam. Due to the different hydrodynamic characteristics of the hinterland of both channels, a difference in salinity and water level is present between both ends of the bypass. As a result, a lateral inflow of water into the New Waterway occurs at the same moment that the flood velocities transport saline water landwards. The lateral inflow of water into this channel has no momentum in the landward direction and therefore decreases the landward flow velocity and therewith the salt water intrusion. In addition, the inflow drives a vertical circulation that mixes the water column close to the bypass. Similar to the bubble screens mentioned

  8. Ecosystem responses to warming and watering in typical and desert steppes.

    PubMed

    Xu, Zhenzhu; Hou, Yanhui; Zhang, Lihua; Liu, Tao; Zhou, Guangsheng

    2016-10-10

    Global warming is projected to continue, leading to intense fluctuations in precipitation and heat waves and thereby affecting the productivity and the relevant biological processes of grassland ecosystems. Here, we determined the functional responses to warming and altered precipitation in both typical and desert steppes. The results showed that watering markedly increased the aboveground net primary productivity (ANPP) in a typical steppe during a drier year and in a desert steppe over two years, whereas warming manipulation had no significant effect. The soil microbial biomass carbon (MBC) and the soil respiration (SR) were increased by watering in both steppes, but the SR was significantly decreased by warming in the desert steppe only. The inorganic nitrogen components varied irregularly, with generally lower levels in the desert steppe. The belowground traits of soil total organic carbon (TOC) and the MBC were more closely associated with the ANPP in the desert than in the typical steppes. The results showed that the desert steppe with lower productivity may respond strongly to precipitation changes, particularly with warming, highlighting the positive effect of adding water with warming. Our study implies that the habitat- and year-specific responses to warming and watering should be considered when predicting an ecosystem's functional responses under climate change scenarios.

  9. Ecosystem responses to warming and watering in typical and desert steppes

    PubMed Central

    Xu, Zhenzhu; Hou, Yanhui; Zhang, Lihua; Liu, Tao; Zhou, Guangsheng

    2016-01-01

    Global warming is projected to continue, leading to intense fluctuations in precipitation and heat waves and thereby affecting the productivity and the relevant biological processes of grassland ecosystems. Here, we determined the functional responses to warming and altered precipitation in both typical and desert steppes. The results showed that watering markedly increased the aboveground net primary productivity (ANPP) in a typical steppe during a drier year and in a desert steppe over two years, whereas warming manipulation had no significant effect. The soil microbial biomass carbon (MBC) and the soil respiration (SR) were increased by watering in both steppes, but the SR was significantly decreased by warming in the desert steppe only. The inorganic nitrogen components varied irregularly, with generally lower levels in the desert steppe. The belowground traits of soil total organic carbon (TOC) and the MBC were more closely associated with the ANPP in the desert than in the typical steppes. The results showed that the desert steppe with lower productivity may respond strongly to precipitation changes, particularly with warming, highlighting the positive effect of adding water with warming. Our study implies that the habitat- and year-specific responses to warming and watering should be considered when predicting an ecosystem’s functional responses under climate change scenarios. PMID:27721480

  10. Ecosystem responses to warming and watering in typical and desert steppes

    NASA Astrophysics Data System (ADS)

    Xu, Zhenzhu; Hou, Yanhui; Zhang, Lihua; Liu, Tao; Zhou, Guangsheng

    2016-10-01

    Global warming is projected to continue, leading to intense fluctuations in precipitation and heat waves and thereby affecting the productivity and the relevant biological processes of grassland ecosystems. Here, we determined the functional responses to warming and altered precipitation in both typical and desert steppes. The results showed that watering markedly increased the aboveground net primary productivity (ANPP) in a typical steppe during a drier year and in a desert steppe over two years, whereas warming manipulation had no significant effect. The soil microbial biomass carbon (MBC) and the soil respiration (SR) were increased by watering in both steppes, but the SR was significantly decreased by warming in the desert steppe only. The inorganic nitrogen components varied irregularly, with generally lower levels in the desert steppe. The belowground traits of soil total organic carbon (TOC) and the MBC were more closely associated with the ANPP in the desert than in the typical steppes. The results showed that the desert steppe with lower productivity may respond strongly to precipitation changes, particularly with warming, highlighting the positive effect of adding water with warming. Our study implies that the habitat- and year-specific responses to warming and watering should be considered when predicting an ecosystem’s functional responses under climate change scenarios.

  11. The SALT NORM : a quantitative chemical-mineralogical characterization of natural waters

    USGS Publications Warehouse

    Bodine, Marc W.; Jones, Blair F.

    1986-01-01

    The new computer program SNORM calculates the salt norm from the chemical composition of a natural water. The salt norm is the quantitative ideal equilibrium assemblage that would crystallize if the water evaporated to dryness at 25 C and 1 bar pressure under atmospheric partial pressure of CO2. SNORM proportions solute concentrations to achieve charge balance. It quantitatively distributes the 18 acceptable solutes into normative salts that are assigned from 63 possible normative salts to allow only stable associations based on the Gibbs Phase Rule, available free energy values, and observed low-temperature mineral associations. Although most natural water compositions represent multiple solute origins, results from SNORM identify three major categories: meteoric or weathering waters that are characterized by normative alkali-bearing sulfate and carbonate salts: connate marine-like waters that are chloride-rich with a halite-bischofite-carnallite-kieserite-anhydrite association; and diagenetic waters that are frequently of marine origin but yield normative salts, such as Ca-bearing chlorides (antarcticite and tachyhydrite) and sylvite, which suggest solute alteration by secondary mineral reactions. The solute source or reaction process within each of the above categories is commonly indicated by the presence or absence of diagnostic normative salts and their relative abundance in the normative salt assemblage. For example, salt norms: (1) may identify lithologic source; (2) may identify the relative roles of carbonic and sulfuric acid hydrolysis in the evolution of weathering waters; (3) may identify the origin of connate water from normal marine, hypersaline, or evaporite salt resolution processes; and (4) may distinguish between dolomitization and silicate hydrolysis or exchange for the origin of diagenetic waters. (Author 's abstract)

  12. The Significance of Interfacial Water Structure in Soluble Salt Flotation Systems.

    PubMed

    Hancer, M.; Celik, M. S.; Miller, J. D.

    2001-03-01

    Flotation of soluble salts with dodecyl amine hydrochloride (DAH) and sodium dodecyl sulfate (SDS) collectors has demonstrated that the interfacial water structure and hydration states of soluble salt surfaces together with the precipitation tendency of the corresponding collector salts are of considerable importance in explaining their flotation behavior. In particular, the high concentration of ions in these soluble salt brines and their hydration appear to modify the bulk and interfacial structure of water as revealed by contact angle measurements and this effect is shown to be an important feature in the flotation chemistry of soluble salt minerals including alkali halide and alkali oxyanion salts. Depending on characteristic chemical features (salt type), the salt can serve either as a structure maker, in which intermolecular hydrogen bonding between water molecules is facilitated, or as a structure breaker, in which intermolecular hydrogen bonding between water molecules is disrupted. For structure making salts the brine completely wets the salt surface and no contact angle can be measured. For structure breaking salts the brine does not completely wet the salt surface and a finite contact angle is measured. In this regard it has been found that soluble salt flotation either with the cationic DAH or anionic SDS collector is possible only if the salt is a structure breaker. Copyright 2001 Academic Press.

  13. Wetting and evaporation of salt-water nanodroplets: A molecular dynamics investigation.

    PubMed

    Zhang, Jun; Borg, Matthew K; Sefiane, Khellil; Reese, Jason M

    2015-11-01

    We employ molecular dynamics simulations to study the wetting and evaporation of salt-water nanodroplets on platinum surfaces. Our results show that the contact angle of the droplets increases with the salt concentration. To verify this, a second simulation system of a thin salt-water film on a platinum surface is used to calculate the various surface tensions. We find that both the solid-liquid and liquid-vapor surface tensions increase with salt concentration and as a result these cause an increase in the contact angle. However, the evaporation rate of salt-water droplets decreases as the salt concentration increases, due to the hydration of salt ions. When the water molecules have all evaporated from the droplet, two forms of salt crystals are deposited, clump and ringlike, depending on the solid-liquid interaction strength and the evaporation rate. To form salt crystals in a ring, it is crucial that there is a pinned stage in the evaporation process, during which salt ions can move from the center to the rim of the droplets. With a stronger solid-liquid interaction strength, a slower evaporation rate, and a higher salt concentration, a complete salt crystal ring can be deposited on the surface.

  14. Increased salt consumption induces body water conservation and decreases fluid intake.

    PubMed

    Rakova, Natalia; Kitada, Kento; Lerchl, Kathrin; Dahlmann, Anke; Birukov, Anna; Daub, Steffen; Kopp, Christoph; Pedchenko, Tetyana; Zhang, Yahua; Beck, Luis; Johannes, Bernd; Marton, Adriana; Müller, Dominik N; Rauh, Manfred; Luft, Friedrich C; Titze, Jens

    2017-05-01

    The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. Over the course of 2 separate space flight simulation studies of 105 and 205 days' duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology Foundation. Food products were donated by APETITO

  15. Warm water and cool nests are best. How global warming might influence hatchling green turtle swimming performance.

    PubMed

    Booth, David T; Evans, Andrew

    2011-01-01

    For sea turtles nesting on beaches surrounded by coral reefs, the most important element of hatchling recruitment is escaping predation by fish as they swim across the fringing reef, and as a consequence hatchlings that minimize their exposure to fish predation by minimizing the time spent crossing the fringing reef have a greater chance of surviving the reef crossing. One way to decrease the time required to cross the fringing reef is to maximize swimming speed. We found that both water temperature and nest temperature influence swimming performance of hatchling green turtles, but in opposite directions. Warm water increases swimming ability, with hatchling turtles swimming in warm water having a faster stroke rate, while an increase in nest temperature decreases swimming ability with hatchlings from warm nests producing less thrust per stroke.

  16. Localized rapid warming of West Antarctic subsurface waters by remote winds

    NASA Astrophysics Data System (ADS)

    Spence, Paul; Holmes, Ryan M.; Hogg, Andrew Mcc.; Griffies, Stephen M.; Stewart, Kial D.; England, Matthew H.

    2017-08-01

    The highest rates of Antarctic glacial ice mass loss are occurring to the west of the Antarctica Peninsula in regions where warming of subsurface continental shelf waters is also largest. However, the physical mechanisms responsible for this warming remain unknown. Here we show how localized changes in coastal winds off East Antarctica can produce significant subsurface temperature anomalies (>2 °C) around much of the continent. We demonstrate how coastal-trapped barotropic Kelvin waves communicate the wind disturbance around the Antarctic coastline. The warming is focused on the western flank of the Antarctic Peninsula because the circulation induced by the coastal-trapped waves is intensified by the steep continental slope there, and because of the presence of pre-existing warm subsurface water offshore. The adjustment to the coastal-trapped waves shoals the subsurface isotherms and brings warm deep water upwards onto the continental shelf and closer to the coast. This result demonstrates the vulnerability of the West Antarctic region to a changing climate.

  17. Numerical Modeling and Optimization of Warm-water Heat Sinks

    NASA Astrophysics Data System (ADS)

    Hadad, Yaser; Chiarot, Paul

    2015-11-01

    For cooling in large data-centers and supercomputers, water is increasingly replacing air as the working fluid in heat sinks. Utilizing water provides unique capabilities; for example: higher heat capacity, Prandtl number, and convection heat transfer coefficient. The use of warm, rather than chilled, water has the potential to provide increased energy efficiency. The geometric and operating parameters of the heat sink govern its performance. Numerical modeling is used to examine the influence of geometry and operating conditions on key metrics such as thermal and flow resistance. This model also facilitates studies on cooling of electronic chip hot spots and failure scenarios. We report on the optimal parameters for a warm-water heat sink to achieve maximum cooling performance.

  18. Increased salt consumption induces body water conservation and decreases fluid intake

    PubMed Central

    Rakova, Natalia; Kitada, Kento; Lerchl, Kathrin; Dahlmann, Anke; Birukov, Anna; Daub, Steffen; Kopp, Christoph; Pedchenko, Tetyana; Zhang, Yahua; Beck, Luis; Marton, Adriana; Müller, Dominik N.; Rauh, Manfred; Luft, Friedrich C.

    2017-01-01

    BACKGROUND. The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. METHODS. Over the course of 2 separate space flight simulation studies of 105 and 205 days’ duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. RESULTS. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. CONCLUSION. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. FUNDING. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology

  19. Identification and Control of Pollution from Salt Water Intrusion.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This document contains informational guidelines for identifying and evaluating the nature and extent of pollution from salt water intrusion. The intent of these guidelines is to provide a basic framework for assessing salt water intrusion problems and their relationship to the total hydrologic system, and to provide assistance in developing…

  20. Bidet toilet seats with warm-water tanks: residual chlorine, microbial community, and structural analyses.

    PubMed

    Iyo, Toru; Asakura, Keiko; Nakano, Makiko; Yamada, Mutsuko; Omae, Kazuyuki

    2016-02-01

    Despite the reported health-related advantages of the use of warm water in bidets, there are health-related disadvantages associated with the use of these toilet seats, and the bacterial research is sparse. We conducted a survey on the hygienic conditions of 127 warm-water bidet toilet seats in restrooms on a university campus. The spray water from the toilet seats had less residual chlorine than their tap water sources. However, the total viable microbial count was below the water-quality standard for tap water. In addition, the heat of the toilet seats' warm-water tanks caused heterotrophic bacteria in the source tap water to proliferate inside the nozzle pipes and the warm-water tanks. Escherichia coli was detected on the spray nozzles of about 5% of the toilet seats, indicating that the self-cleaning mechanism of the spray nozzles was largely functioning properly. However, Pseudomonas aeruginosa was detected on about 2% of the toilet seats. P. aeruginosa was found to remain for long durations in biofilms that formed inside warm-water tanks. Infection-prevention measures aimed at P. aeruginosa should receive full consideration when managing warm-water bidet toilet seats in hospitals in order to prevent opportunistic infections in intensive care units, hematology wards, and other hospital locations.

  1. Fat loss in thawed breast milk: comparison between refrigerator and warm water.

    PubMed

    Thatrimontrichai, A; Janjindamai, W; Puwanant, M

    2012-11-01

    To compare the fat loss between refrigerator and warm water thawed breast milk. Experimental. Tertiary-care pediatric university hospital. Ninety samples of expressed breast milk were collected from mothers with singleton babies of a gestational age 32-42 weeks. Fat content in fresh breast milk (FM); thawed breast milk by refrigeration (RM); and thawed breast milk by warm water (WM). The mean (SD) total fat content in FM, RM and WM were 2.98 (0.97), 2.76 (0.99) and 2.66 (0.88) g/100 mL, respectively. The mean difference (SD) of the total fat in FM declined significantly after the frozen milk was thawed by refrigeration or warm water at -0.22 (0.50) g/100 mL (P=0.0001) and -0.32 (0.45) g/100 mL (P<0.0001), respectively. The mean (SD) total fat loss of frozen breast milk thawed by refrigeration was less than thawing in warm water at 0.094 (0.38) g/100 mL (P=0.02). The fat loss of thawed breast milk by refrigeration was significantly less than placing it in warm water.

  2. Potentials and problems of sustainable irrigation with water high in salts

    NASA Astrophysics Data System (ADS)

    Ben-Gal, Alon

    2015-04-01

    Water scarcity and need to expand agricultural productivity have led to ever growing utilization of poor quality water for irrigation of crops. Almost in all cases, marginal or alternative water sources for irrigation contain relatively high concentrations of dissolved salts. When salts are present, irrigation water management, especially in the dry regions where water requirements are highest, must consider leaching in addition to crop evapotranspiration requirements. Leaching requirements for agronomic success are calculable and functions of climate, soil, and very critically, of crop sensitivity and the actual salinity of the irrigation water. The more sensitive the crop and more saline the water, the higher the agronomic cost and the greater the quantitative need for leaching. Israel is a forerunner in large-scale utilization of poor quality water for irrigation and can be used as a case study looking at long term repercussions of policy alternatively encouraging irrigation with recycled water or brackish groundwater. In cases studied in desert conditions of Israel, as much of half of the water applied to crops including bell peppers in greenhouses and date palms is actually used to leach salts from the root zone. The excess water used to leach salts and maintain agronomic and economic success when irrigating with water containing salts can become an environmental hazard, especially in dry areas where natural drainage is non-existent. The leachate often contains not only salts but also agrochemicals including nutrients, and natural contaminants can be picked up and transported as well. This leachate passes beyond the root zone and eventually reaches ground or surface water resources. This, together with evidence of ongoing increases in sodium content of fresh produce and increased SAR levels of soils, suggest that the current policy and practice in Israel of utilization of high amounts of low quality irrigation water is inherently non- sustainable. Current

  3. Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water

    NASA Astrophysics Data System (ADS)

    Norwood, Zack; Kammen, Daniel

    2012-12-01

    We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of 0.25 kWh-1 electricity and 0.03 kWh-1 thermal, for a system with a life cycle global warming potential of ˜80 gCO2eq kWh-1 of electricity and ˜10 gCO2eq kWh-1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of 1.40 m-3, water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that 0.40-1.90 m-3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions.

  4. Localized Rapid Warming of West Antarctic Subsurface Waters by Remote Winds

    NASA Astrophysics Data System (ADS)

    Griffies, S. M.; Spence, P.; Holmes, R.; Hogg, A. M.; Stewart, K. D.; England, M. H.

    2017-12-01

    The largest rates of Antarctic glacial ice mass loss are occurring tothe west of the Antarctica Peninsula in regions where warming ofsubsurface continental shelf waters is also largest. However, thephysical mechanisms responsible for this warming remain unknown. Herewe show how localized changes in coastal winds off East Antarctica canproduce significant subsurface temperature anomalies (>2C) around theentire continent. We demonstrate how coastal-trapped Kelvin wavescommunicate the wind disturbance around the Antarctic coastline. Thewarming is focused on the western flank of the Antarctic Peninsulabecause the anomalous circulation induced by the coastal-trapped wavesis intensified by the steep continental slope there, and because ofthe presence of pre-existing warm subsurface water. Thecoastal-trapped waves leads to an adjustment of the flow that shoalsisotherms and brings warm deep water upwards onto the continentalshelf and closer to the coast. This result demonstrates the uniquevulnerability of the West Antarctic region to a changing climate.

  5. Warming will alter water resources

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    Drastic changes in water resources in all regions of the United States will be the most severe effect of global warming, according to a study reported January 16 at the meeting of the American Association for the Advancement of Science in San Francisco. However, said the scientists on the AAAS panel on climate and U.S. water resources, strong governmental involvement can greatly reduce the water supply problems climate change will bring.The natural variability of present and future climate was the starting point for the AAAS study. The panel pointed out that it is difficult to identify the direction of potential change for many of the possible consequences of the greenhouse effect, partly because recent history provides little evidence of strong responses to such changes.

  6. Freshwater lake to salt-water sea causing widespread hydrate dissociation in the Black Sea.

    PubMed

    Riboulot, Vincent; Ker, Stephan; Sultan, Nabil; Thomas, Yannick; Marsset, Bruno; Scalabrin, Carla; Ruffine, Livio; Boulart, Cédric; Ion, Gabriel

    2018-01-09

    Gas hydrates, a solid established by water and gas molecules, are widespread along the continental margins of the world. Their dynamics have mainly been regarded through the lens of temperature-pressure conditions. A fluctuation in one of these parameters may cause destabilization of gas hydrate-bearing sediments below the seafloor with implications in ocean acidification and eventually in global warming. Here we show throughout an example of the Black Sea, the world's most isolated sea, evidence that extensive gas hydrate dissociation may occur in the future due to recent salinity changes of the sea water. Recent and forthcoming salt diffusion within the sediment will destabilize gas hydrates by reducing the extension and thickness of their thermodynamic stability zone in a region covering at least 2800 square kilometers which focus seepages at the observed sites. We suspect this process to occur in other world regions (e.g., Caspian Sea, Sea of Marmara).

  7. Water structure and its influence on the flotation of carbonate and bicarbonate salts.

    PubMed

    Ozdemir, O; Celik, M S; Nickolov, Z S; Miller, J D

    2007-10-15

    Interfacial water structure is a most important parameter that influences the collector adsorption by salt minerals such as borax, potash and trona. According to previous studies, salts can be classified as water structure makers and water structure breakers. Water structure making and breaking properties of salt minerals in their saturated brine solutions are essential to explain their flotation behavior. In this work, water structure making-breaking studies in solutions of carbonate and bicarbonate salts (Na(2)CO(3), K(2)CO(3), NaHCO(3) and NH(4)HCO(3)) in 4 wt% D(2)O in H(2)O mixtures have been performed by FTIR analysis of the OD stretching band. This method reveals a microscopic picture of the water structure making/breaking character of the salts in terms of the hydrogen bonding between the water molecules in solution. The results from the vibrational spectroscopic studies demonstrate that carbonate salts (Na(2)CO(3) and K(2)CO(3)) act as strong structure makers, whereas bicarbonate salts (NaHCO(3) and NH(4)HCO(3)) act as weak structure makers. In addition, the changes in the OD band parameters of carbonate and bicarbonate salt solutions are in agreement with the viscosity characteristics of their solutions.

  8. First-aid with warm water delays burn progression and increases skin survival.

    PubMed

    Tobalem, M; Harder, Y; Tschanz, E; Speidel, V; Pittet-Cuénod, B; Wettstein, R

    2013-02-01

    First aid treatment for thermal injuries with cold water removes heat and decreases inflammation. However, perfusion in the ischemic zone surrounding the coagulated core can be compromised by cold-induced vasoconstriction and favor burn progression. The aim of this study is to evaluate the effect of local warming on burn progression in the rat comb burn model. 24 male Wistar rats were randomly assigned to either no treatment (control) or application of cold (17 °C) or warm (37 °C) water applied for 20 min. Evolution of burn depth, interspace necrosis, and microcirculatory perfusion were assessed with histology, planimetry, respectively with Laser Doppler flowmetry after 1 h, as well as 1, 4, and 7 days. Consistent conversion from a superficial to a deep dermal burn within 24 h was obtained in control animals. Warm and cold water significantly delayed burn depth progression, however after 4 days the burn depth was similar in all groups. Interspace necrosis was significantly reduced by warm water treatment (62±4% vs. 69±5% (cold water) and 82±3% (control); p<0.05). This was attributed to the significantly improved perfusion after warming, which was present 1 h after burn induction and was maintained thereafter (103±4% of baseline vs. 91±3% for cold water and 80±2% for control, p<0.05). In order to limit damage after burn injury, burn progression has to be prevented. Besides delaying burn progression, the application of warm water provided an additional benefit by improving the microcirculatory perfusion, which translated into increased tissue survival. Copyright © 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. The chemistry of salt-affected soils and waters

    USDA-ARS?s Scientific Manuscript database

    Knowledge of the chemistry of salt affected soils and waters is necessary for management of irrigation in arid and semi-arid regions. In this chapter we review the origin of salts in the landscape, the major chemical reactions necessary for prediction of the soil solution composition, and the use of...

  10. Protic Salt Polymer Membranes: High-Temperature Water-Free Proton-Conducting Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gervasio, Dominic Francis

    2010-09-30

    This research on proton-containing (protic) salts directly addresses proton conduction at high and low temperatures. This research is unique, because no water is used for proton ionization nor conduction, so the properties of water do not limit proton fuel cells. A protic salt is all that is needed to give rise to ionized proton and to support proton mobility. A protic salt forms when proton transfers from an acid to a base. Protic salts were found to have proton conductivities that are as high as or higher than the best aqueous electrolytes at ambient pressures and comparable temperatures without ormore » with water present. Proton conductivity of the protic salts occurs providing two conditions exist: i) the energy difference is about 0.8 eV between the protic-salt state versus the state in which the acid and base are separated and 2) the chemical constituents rotate freely. The physical state of these proton-conducting salts can be liquid, plastic crystal as well as solid organic and inorganic polymer membranes and their mixtures. Many acids and bases can be used to make a protic salt which allows tailoring of proton conductivity, as well as other properties that affect their use as electrolytes in fuel cells, such as, stability, adsorption on catalysts, environmental impact, etc. During this project, highly proton conducting (~ 0.1S/cm) protic salts were made that are stable under fuel-cell operating conditions and that gave highly efficient fuel cells. The high efficiency is attributed to an improved oxygen electroreduction process on Pt which was found to be virtually reversible in a number of liquid protic salts with low water activity (< 1% water). Solid flexible non-porous composite membranes, made from inorganic polymer (e.g., 10%indium 90%tin pyrophosphate, ITP) and organic polymer (e.g., polyvinyl pyridinium phosphate, PVPP), were found that give conductivity and fuel cell performances similar to phosphoric acid electrolyte with no need for hydration

  11. Salt water and skin interactions: new lines of evidence

    NASA Astrophysics Data System (ADS)

    Carbajo, Jose Manuel; Maraver, Francisco

    2018-04-01

    In Health Resort Medicine, both balneotherapy and thalassotherapy, salt waters and their peloids, or mud products are mainly used to treat rheumatic and skin disorders. These therapeutic agents act jointly via numerous mechanical, thermal, and chemical mechanisms. In this review, we examine a new mechanism of action specific to saline waters. When topically administered, this water rich in sodium and chloride penetrates the skin where it is able to modify cellular osmotic pressure and stimulate nerve receptors in the skin via cell membrane ion channels known as "Piezo" proteins. We describe several models of cutaneous adsorption/desorption and penetration of dissolved ions in mineral waters through the skin (osmosis and cell volume mechanisms in keratinocytes) and examine the role of these resources in stimulating cutaneous nerve receptors. The actions of salt mineral waters are mediated by a mechanism conditioned by the concentration and quality of their salts involving cellular osmosis-mediated activation/inhibition of cell apoptotic or necrotic processes. In turn, this osmotic mechanism modulates the recently described mechanosensitive piezoelectric channels.

  12. Warm fog dissipation using large volume water sprays

    NASA Technical Reports Server (NTRS)

    Keller, Vernon W. (Inventor)

    1988-01-01

    To accomplish the removal of warm fog about an area such as an airport runway, a plurality of nozzles along a line adjacent the area propelled water jets through the fog to heights of approximately twenty-five meters. Each water jet breaks up forming a water drop size distribution that falls through the fog overtaking, colliding, and coalescing with individual fog droplets and thereby removes the fog. A water retrieval system is used to collect the water and return it to reservoirs for pumping it to the nozzles once again.

  13. The Summertime Warming Trends in Surface Water Temperature of the Great Lakes

    NASA Astrophysics Data System (ADS)

    Sugiyama, N.; Kravtsov, S.; Roebber, P.

    2014-12-01

    Over the past 30 years, the Laurentian Great Lakes have exhibited summertime warming trends in surface water temperature which were greater than those in surface air temperature of the surrounding land, by as much as an order of magnitude over some of the regions. For the years 1995-2012, Lake Superior exhibited the most dramatic warming trend in July-mean temperature, of 0.27±0.15 deg. C yr-1, based on the NOAA's GLSEA satellite observations. Shallower lakes, such as Lake Erie, exhibited smaller warming trends. In addition, within each lake, the warming was also the greatest in the regions of larger water depth; for example, some regions of Lake Superior deeper than 200m exhibited surface-water July-mean warming trends which exceeded 0.3 deg. C yr-1. We used a three-column lake model based on the one developed by Hostetler and Barnstein (1990) coupled with a two-layer atmospheric energy balance model to explore the physics behind these warming trends. We found that, as suggested by Austin and Colman (2007), the ice-albedo feedback plays an important role in amplifying the overlake warming trends. Our particular emphasis was on the question of whether the ice-albedo feedback alone is enough to account for lacustrine amplification of surface warming observed over the Great Lakes region. We found that the answer to this question depends on a number of model parameters, including the diffusion and light attenuation coefficients, which greatly affect the model's skill in reproducing the observed ice coverage of the deep lakes.

  14. Tree water dynamics in a drying and warming world: Future tree water dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossiord, Charlotte; Sevanto, Sanna; Borrego, Isaac

    Disentangling the relative impacts of precipitation reduction and vapour pressure deficit (VPD) on plant water dynamics and determining whether acclimation may influence these patterns in the future is an important challenge. Here, we report sap flux density (FD), stomatal conductance (Gs), hydraulic conductivity (KL) and xylem anatomy in piñon pine (Pinus edulis) and juniper (Juniperus monosperma) trees subjected to five years of precipitation reduction, atmospheric warming (elevated VPD) and their combined effects. No acclimation occurred under precipitation reduction: lower Gs and FD were found for both species compared to ambient conditions. Warming reduced the sensibility of stomata to VPD formore » both species but resulted in the maintenance of Gs and FD to ambient levels only for piñon. For juniper, reduced soil moisture under warming negated benefits of stomatal adjustments and resulted in reduced FD, Gs and KL. Although reduced stomatal sensitivity to VPD also occurred under combined stresses, reductions in Gs, FD and KL took place to similar levels as under single stresses for both species. Our results show that stomatal conductance adjustments to high VPD could minimize but not entirely prevent additive effects of warming and drying on water use and carbon acquisition of trees in semi-arid regions.« less

  15. Tree water dynamics in a drying and warming world

    DOE PAGES

    Grossiord, Charlotte; Sevanto, Sanna Annika; Borrego, Isaac Anthony; ...

    2017-05-26

    Disentangling the relative impacts of precipitation reduction and vapour pressure deficit ( VPD) on plant water dynamics and determining whether acclimation may influence these patterns in the future is an important challenge. Here, we report sap flux density ( FD), stomatal conductance ( Gs), hydraulic conductivity ( KL) and xylem anatomy in piñon pine ( Pinus edulis) and juniper ( Juniperus monosperma) trees subjected to five years of precipitation reduction, atmospheric warming (elevated VPD) and their combined effects. No acclimation occurred under precipitation reduction: lower Gs and FD were found for both species compared to ambient conditions. Warming reduced themore » sensibility of stomata to VPD for both species but resulted in the maintenance of Gs and FD to ambient levels only for piñon. For juniper, reduced soil moisture under warming negated benefits of stomatal adjustments and resulted in reduced FD, Gs and KL. Although reduced stomatal sensitivity to VPD also occurred under combined stresses, reductions in Gs, FD and KL took place to similar levels as under single stresses for both species. Here our results show that stomatal conductance adjustments to high VPD could minimize but not entirely prevent additive effects of warming and drying on water use and carbon acquisition of trees in semi-arid regions.« less

  16. Tree water dynamics in a drying and warming world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossiord, Charlotte; Sevanto, Sanna Annika; Borrego, Isaac Anthony

    Disentangling the relative impacts of precipitation reduction and vapour pressure deficit ( VPD) on plant water dynamics and determining whether acclimation may influence these patterns in the future is an important challenge. Here, we report sap flux density ( FD), stomatal conductance ( Gs), hydraulic conductivity ( KL) and xylem anatomy in piñon pine ( Pinus edulis) and juniper ( Juniperus monosperma) trees subjected to five years of precipitation reduction, atmospheric warming (elevated VPD) and their combined effects. No acclimation occurred under precipitation reduction: lower Gs and FD were found for both species compared to ambient conditions. Warming reduced themore » sensibility of stomata to VPD for both species but resulted in the maintenance of Gs and FD to ambient levels only for piñon. For juniper, reduced soil moisture under warming negated benefits of stomatal adjustments and resulted in reduced FD, Gs and KL. Although reduced stomatal sensitivity to VPD also occurred under combined stresses, reductions in Gs, FD and KL took place to similar levels as under single stresses for both species. Here our results show that stomatal conductance adjustments to high VPD could minimize but not entirely prevent additive effects of warming and drying on water use and carbon acquisition of trees in semi-arid regions.« less

  17. [Simulation of effect of irrigation with reclaimed water on soil water-salt movement by ENVIRO-GRO model].

    PubMed

    Lü, Si-Dan; Chen, Wei-Ping; Wang, Mei-E

    2012-12-01

    As the conflict between water supply and demand, wastewater reuse has become an important measure, which can relieve the water shortage in Beijing. In order to promote safe irrigation with reclaimed water and prevent soil salinisation, the dynamic transport of salts in urban soils of Beijing, a city of water shortage, under irrigation of reclaimed water was simulated by ENVIRO-GRO model in this research. The accumulation trends of soil salinity were predicted. Simultaneously, it investigated the effects of different irrigation practices on soil water-salt movement and salt accumulation. Results indicated that annual averages of soil salinity (EC(e)) increased 29.5%, 97.2%, 197.8% respectively, with the higher irrigation, normal irrigation, and low irrigation under equilibrium conditions. Irrigation frequency had little effect on soil salt-water movement, and soil salt accumulation was in a downward trend with low frequency of irrigation. Under equilibrium conditions, annual averages of EC(e) increased 23.7%, 97.2%, 208.5% respectively, with irrigation water salinity (EC(w)) 0.6, 1.2, 2.4 dS x m(-1). Soil salinity increased slightly with EC(w) = 0.6 dS x m(-1), while soil salinization did not appear. Totally, the growth of Blue grass was not influenced by soil salinity under equilibrium conditions with the regular irrigation in Beijing, but mild soil salinization appeared.

  18. Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity

    USGS Publications Warehouse

    Rose, Kevin C.; Winslow, Luke A.; Read, Jordan S.; Hansen, Gretchen J. A.

    2016-01-01

    Climate change is rapidly warming aquatic ecosystems including lakes and reservoirs. However, variability in lake characteristics can modulate how lakes respond to climate. Water clarity is especially important both because it influences the depth range over which heat is absorbed, and because it is changing in many lakes. Here, we show that simulated long-term water clarity trends influence how both surface and bottom water temperatures of lakes and reservoirs respond to climate change. Clarity changes can either amplify or suppress climate-induced warming, depending on lake depth and the direction of clarity change. Using a process-based model to simulate 1894 north temperate lakes from 1979 to 2012, we show that a scenario of decreasing clarity at a conservative yet widely observed rate of 0.92% yr−1 warmed surface waters and cooled bottom waters at rates comparable in magnitude to climate-induced warming. For lakes deeper than 6.5 m, decreasing clarity was sufficient to fully offset the effects of climate-induced warming on median whole-lake mean temperatures. Conversely, a scenario increasing clarity at the same rate cooled surface waters and warmed bottom waters relative to baseline warming rates. Furthermore, in 43% of lakes, increasing clarity more than doubled baseline bottom temperature warming rates. Long-term empirical observations of water temperature in lakes with and without clarity trends support these simulation results. Together, these results demonstrate that water clarity trends may be as important as rising air temperatures in determining how waterbodies respond to climate change.

  19. Transpiration Dominates Ecosystem Water-Use Efficiency in Response to Warming in an Alpine Meadow

    NASA Astrophysics Data System (ADS)

    Quan, Quan; Zhang, Fangyue; Tian, Dashuan; Zhou, Qingping; Wang, Lixin; Niu, Shuli

    2018-02-01

    As a key linkage of C and water cycles, water-use efficiency (WUE) quantifies how much water an ecosystem uses for carbon gain. Although ecosystem C and water fluxes have been intensively studied, yet it remains unclear how ecosystem WUE responds to climate warming and which processes dominate the response of WUE. To answer these questions, we examined canopy WUE (WUEc), ecosystem WUE (WUEe) and their components including gross ecosystem productivity, ecosystem evapotranspiration (ET), soil evaporation (E), and plant canopy transpiration (T), in response to warming in an alpine meadow by using a manipulative warming experiment in 2015 and 2016. As expected, low- and high-level warming treatments increased soil temperature (Tsoil) at 10 cm on average by 1.65 and 2.77°C, but decreased soil moisture (Msoil) by 2.52 and 7.6 vol %, respectively, across the two years. Low- and high-level warming increased WUEe by 7.7 and 9.3% over the two years, but rarely changed WUEc in either year. T/ET ratio determined the differential responses of WUEc and WUEe. Larger T/ET led to less difference between WUEc and WUEe. By partitioning WUEc and WUEe into different carbon and water fluxes, we found that T rather than gross ecosystem productivity or E dominated the responses of WUEc and WUEe to warming. This study provides empirical insights into how ecosystem WUE responds to warming and illustrates the importance of plant transpiration in regulating ecosystem WUE under future climate change.

  20. Warming by immersion or exercise affects initial cooling rate during subsequent cold water immersion.

    PubMed

    Scott, Chris G; Ducharme, Michel B; Haman, François; Kenny, Glen P

    2004-11-01

    We examined the effect of prior heating, by exercise and warm-water immersion, on core cooling rates in individuals rendered mildly hypothermic by immersion in cold water. There were seven male subjects who were randomly assigned to one of three groups: 1) seated rest for 15 min (control); 2) cycling ergometry for 15 min at 70% Vo2 peak (active warming); or 3) immersion in a circulated bath at 40 degrees C to an esophageal temperature (Tes) similar to that at the end of exercise (passive warming). Subjects were then immersed in 7 degrees C water to a Tes of 34.5 degrees C. Initial Tes cooling rates (initial approximately 6 min cooling) differed significantly among the treatment conditions (0.074 +/- 0.045, 0.129 +/- 0.076, and 0.348 +/- 0.117 degrees C x min(-1) for control, active, and passive warming conditions, respectively); however, secondary cooling rates (rates following initial approximately 6 min cooling to the end of immersion) were not different between treatments (average of 0.102 +/- 0.085 degrees C x min(-1)). Overall Tes cooling rates during the full immersion period differed significantly and were 0.067 +/- 0.047, 0.085 +/- 0.045, and 0.209 +/- 0.131 degrees C x min(-1) for control, active, and passive warming, respectively. These results suggest that prior warming by both active and, to a greater extent, passive warming, may predispose a person to greater heat loss and to experience a larger decline in core temperature when subsequently exposed to cold water. Thus, functional time and possibly survival time could be reduced when cold water immersion is preceded by whole-body passive warming, and to a lesser degree by active warming.

  1. A prospective clinical evaluation of the effects of chlorhexidine, warm saline mouth washes and microbial growth on intraoral sutures.

    PubMed

    Fomete, B; Saheeb, B D; Obiadazie, A C

    2015-06-01

    Post operative care of sutured wound is important after surgery. Sutured wounds within the oral cavity are kept clean through frequent rinses with either normal saline, chlorhexidine mouth rinses, hydrogen peroxide diluted with saline, or fresh tap water. The patients were randomised into 3 groups (A, B and C). The container used had 34 chlorhexidine, 34 warm saline and 32 warm water mouth rinses. The latter served as control. All selected patients had scaling and polishing done preoperatively when needed. All participants in each group did not receive antibiotics but received analgesics (paracetamol 1 g 8 h for 5 days,). There were 49 females and 51 males, in the age range between 18 and 50 years. Microorganisms were found to grow on sutures with streptococcus viridians predominating followed by staphylococcus epidermides. The effects of chlorhexidine, warm saline and warm tap water mouth washes were not statistically significant. Chlorhexidine, warm salt water and warm tap water averagely produced the same number of colony forming units of bacteria, which shows that the three different mouth washes are equally effective as post-operative mouth rinses after oral surgery.

  2. Rapid and highly variable warming of lake surface waters around the globe

    USGS Publications Warehouse

    O'Reilly, Catherine; Sharma, Sapna; Gray, Derek; Hampton, Stephanie; Read, Jordan S.; Rowley, Rex J.; Schneider, Philipp; Lenters, John D.; McIntyre, Peter B.; Kraemer, Benjamin M.; Weyhenmeyer, Gesa A.; Straile, Dietmar; Dong, Bo; Adrian, Rita; Allan, Mathew G.; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John L.; Baron, Jill S.; Brookes, Justin D; de Eyto, Elvira; Dokulil, Martin T.; Hamilton, David P.; Havens, Karl; Hetherington, Amy L.; Higgins, Scott N.; Hook, Simon; Izmest'eva, Lyubov R.; Jöhnk, Klaus D.; Kangur, Külli; Kasprzak, Peter; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; Livingstone, David M.; MacIntyre, Sally; May, Linda; Melack, John M.; Mueller-Navara, Doerthe C.; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; North, Ryan P.; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars G.; Rusak, James A.; Salmaso, Nico; Samal, Nihar R.; Schindler, Daniel E.; Schladow, Geoffrey; Schmid, Martin; Schmidt, Silke R.; Silow, Eugene A.; Soylu, M. Evren; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Williamson, Craig E.; Zhang, Guoqing

    2015-01-01

    In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade−1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors—from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade−1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade−1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes.

  3. Watering cattle (young bulls) with brackish water--a hazard due to its salt content?

    PubMed

    Visscher, C F; Witzmann, S; Beyerbach, M; Kamphues, J

    2013-01-01

    The aim of this experimental study was primarily to test the effects and reactions of cattle offered salty water as the only source of drinking water. Mineral balance studies were carried out on three bull, continuously fed a ration based on hay, hay cobs, barley, soybean meal and a vitamin/mineral supplement. The salt content of the drinking water varied between the trials (trials I/II/III: 0.10/5.00/10.0 g/l; town water supplemented by different amounts of an additive containing 95.4% sodium chloride and 4.6% potassium chloride). Rising salt concentration of the drinking water led to significantly higher sodium, potassium and chloride intake (sodium: trial I/II/III = 5.42/59.5/ 157 g/day; potassium: trials I/II/III = 108/117/121 g/day; chloride: trials I/II/III = 22.8/112/266 g/day) mainly caused by a significantly higher water intake (trials I/II/III: 21.8 ± 2.03/30.4 ± 3.08/41.5 ± 5.89 kg/day). Amounts of urine increased significantly (trials I/II/III: 3.99 ± 0.46/ 9.66 ± 1.34/20.2 ± 3.14 kg/day). The concentrations of minerals in the urine (sodium: trials I/II/III = 123/3729/6705 mg/kg; potassium: trials I/II/III = 17345/9996/ 5496 mg/kg; chloride: trials I/II/III = 2020/ 9672/11870 mg/kg) and faeces (sodium: trials I/II/III = 1299/6544/ 7653 mg/kg; potassium: trials I/II/III = 6343/3719/3490 mg/kg; chloride: trials I/II/III = 3851/4580/4693 mg/kg) also changed significantly over time. Serum values of sodium tended to decrease (trials I/II/III: 142/137/137 mmol/l) within the physiological range, whereas those of chloride increased (trials I/II/III: 91.5/95.6/97.5 mmol/l) at higher salt concentrations in drinking water. The haematocrit, pH-value as well as urea content in blood were not affected by the higher salt intake. In balance trial III (highest salt load: 10.0 g/l), sodium intake of the bulls reached 0.57 ± 0.03 g/kg BW (~22.1 ± 0.9 g sodium/kg dry matter feed). An increase of salinity in drinking water up to 10 g/l--with otherwise harmless water

  4. Investigation of indigenous water, salt and soil for solar ponds

    NASA Astrophysics Data System (ADS)

    Marsh, H. E.

    The existence of salt-gradient solar ponds in nature is a strong indication that the successful exploitation of this phenomenon must account adequately for the influences of the local setting. Sun, weather and other general factors are treated elsewhere. This paper deals with water, salt, and soil. A general methodology for evaluating and, where feasible, adjusting the effects of these elements is under development. Eight essential solar pond characteristics have been identified, along with a variety of their dependencies upon properties of water, salt and soil. The comprehensive methodology, when fully developed, will include laboratory investigation in such diverse areas as brine physical chemistry, light transmission, water treatment, brine-soil interactions, sealants, and others. With the Salton Sea solar pond investigation as an example, some methods under development will be described.

  5. Investigation of indigenous water, salt and soil for solar ponds

    NASA Technical Reports Server (NTRS)

    Marsh, H. E.

    1983-01-01

    The existence of salt-gradient solar ponds in nature is a strong indication that the successful exploitation of this phenomenon must account adequately for the influences of the local setting. Sun, weather and other general factors are treated elsewhere. This paper deals with water, salt, and soil. A general methodology for evaluating and, where feasible, adjusting the effects of these elements is under development. Eight essential solar pond characteristics have been identified, along with a variety of their dependencies upon properties of water, salt and soil. The comprehensive methodology, when fully developed, will include laboratory investigation in such diverse areas as brine physical chemistry, light transmission, water treatment, brine-soil interactions, sealants, and others. With the Salton Sea solar pond investigation as an example, some methods under development will be described.

  6. Salt-water-freshwater transient upconing - An implicit boundary-element solution

    USGS Publications Warehouse

    Kemblowski, M.

    1985-01-01

    The boundary-element method is used to solve the set of partial differential equations describing the flow of salt water and fresh water separated by a sharp interface in the vertical plane. In order to improve the accuracy and stability of the numerical solution, a new implicit scheme was developed for calculating the motion of the interface. The performance of this scheme was tested by means of numerical simulation. The numerical results are compared to experimental results for a salt-water upconing under a drain problem. ?? 1985.

  7. Hot water, fresh beer, and salt

    NASA Astrophysics Data System (ADS)

    Crawford, Frank S.

    1990-11-01

    In the ``hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO2) provided you first (a) get rid of much of the excess CO2 so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, ``Do ionizing particles produce bubbles in fresh beer?'' is answered experimentally.

  8. Water-Surface Elevations, Discharge, and Water-Quality Data for Selected Sites in the Warm Springs Area near Moapa, Nevada

    USGS Publications Warehouse

    Beck, David A.; Ryan, Roslyn; Veley, Ronald J.; Harper, Donald P.; Tanko, Daron J.

    2006-01-01

    The U.S. Geological Survey, in cooperation with Southern Nevada Water Authority and the Nevada Division of Water Resources, operates and maintains a surface-water monitoring network of 6 continuous-record stream-flow gaging stations and 11 partial-record stations in the Warm Springs area near Moapa, Nevada. Permanent land-surface bench marks were installed within the Warm Springs area by the Las Vegas Valley Water District, the Southern Nevada Water Authority, and the U.S. Geological Survey to determine water-surface elevations at all network monitoring sites. Vertical datum elevation and horizontal coordinates were established for all bench marks through a series of Differential Global Positioning System surveys. Optical theodolite surveys were made to transfer Differential Global Positioning System vertical datums to reference marks installed at each monitoring site. The surveys were completed in June 2004 and water-surface elevations were measured on August 17, 2004. Water-surface elevations ranged from 1,810.33 feet above North American Vertical Datum of 1988 at a stream-gaging station in the Pederson Springs area to 1,706.31 feet at a station on the Muddy River near Moapa. Discharge and water-quality data were compiled for the Warm Springs area and include data provided by the U.S. Geological Survey, Nevada Division of Water Resources, U.S. Fish and Wildlife Service, Moapa Valley Water District, Desert Research Institute, and Converse Consultants. Historical and current hydrologic data-collection networks primarily are related to changes in land- and water-use activities in the Warm Springs area. These changes include declines in ranching and agricultural use, the exportation of water to other areas of Moapa Valley, and the creation of a national wildlife refuge. Water-surface elevations, discharge, and water-quality data compiled for the Warm Springs area will help identify (1) effects of changing vegetation within the former agricultural lands, (2) effects

  9. Warming of the Global Ocean: Spatial Structure and Water-Mass Trends

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.

    2016-01-01

    This study investigates the multidecadal warming and interannual-to-decadal heat content changes in the upper ocean (0-700 m), focusing on vertical and horizontal patterns of variability. These results support a nearly monotonic warming over much of the World Ocean, with a shift toward Southern Hemisphere warming during the well-observed past decade. This is based on objectively analyzed gridded observational datasets and on a modeled state estimate. Besides the surface warming, a warming climate also has a subsurface effect manifesting as a strong deepening of the midthermocline isopycnals, which can be diagnosed directly from hydrographic data. This deepening appears to be a result of heat entering via subduction and spreading laterally from the high-latitude ventilation regions of subtropical mode waters. The basin-average multidecadal warming mainly expands the subtropical mode water volume, with weak changes in the temperature-salinity (u-S) relationship (known as ''spice'' variability). However, the spice contribution to the heat content can be locally large, for example in Southern Hemisphere. Multidecadal isopycnal sinking has been strongest over the southern basins and weaker elsewhere with the exception of the Gulf Stream/North Atlantic Current/subtropical recirculation gyre. At interannual to decadal time scales, wind-driven sinking and shoaling of density surfaces still dominate ocean heat content changes, while the contribution from temperature changes along density surfaces tends to decrease as time scales shorten.

  10. Hydrogeology and Simulated Ground-Water Flow in the Salt Pond Region of Southern Rhode Island

    USGS Publications Warehouse

    Masterson, John P.; Sorenson, Jason R.; Stone, Janet R.; Moran, S. Bradley; Hougham, Andrea

    2007-01-01

    The Salt Pond region of southern Rhode Island extends from Westerly to Narragansett Bay and forms the natural boundary between the Atlantic Ocean and the shallow, highly permeable freshwater aquifer of the South Coastal Basin. Large inputs of fresh ground water coupled with the low flushing rates to the open ocean make the salt ponds particularly susceptible to eutrophication and bacterial contamination. Ground-water discharge to the salt ponds is an important though poorly quantified source of contaminants, such as dissolved nutrients. A ground-water-flow model was developed and used to delineate the watersheds to the salt ponds, including the areas that contribute ground water directly to the ponds and the areas that contribute ground water to streams that flow into ponds. The model also was used to calculate ground-water fluxes to these coastal areas for long-term average conditions. As part of the modeling analysis, adjustments were made to model input parameters to assess potential uncertainties in model-calculated watershed delineations and in ground-water discharge to the salt ponds. The results of the simulations indicate that flow to the salt ponds is affected primarily by the ease with which water is transmitted through a glacial moraine deposit near the regional ground-water divide, and by the specified recharge rate used in the model simulations. The distribution of the total freshwater flow between direct ground-water discharge and ground-water-derived surface-water (streamflow) discharge to the salt ponds is affected primarily by simulated stream characteristics, including the streambed-aquifer connection and the stream stage. The simulated position of the ground-water divide and, therefore, the model-calculated watershed delineations for the salt ponds, were affected only by changes in the transmissivity of the glacial moraine. Selected changes in other simulated hydraulic parameters had substantial effects on total freshwater discharge and the

  11. Plant osmoregulation as an emergent water-saving adaptation under salt-stress conditions

    NASA Astrophysics Data System (ADS)

    Perri, S.; Entekhabi, D.; Molini, A.

    2017-12-01

    Ecohydrological models have been widely used in studying plant-environment relations and hydraulic traits in response to water, light and nutrient limitations. In this context, models become a tool to investigate how plants exploit available resources to maximize transpiration and growth, eventually pointing out possible pathways to adaptation. In contrast, ecohydrologists have rarely focused on the effects of salinity on plant transpiration, which are commonly considered marginal in terrestrial biomes. The effect of salinity, however, cannot be neglected in the case of salt affected soils - estimated to cover over 9 billion ha worldwide - and in intertidal and coastal ecosystems. The objective of this study is to model the effects of salinity on plant-water relations in order to better understand the interplay of soil hyperosmotic conditions and osmoregulation strategies in determining different transpiration patterns. Salinity reduces the water potential, therefore is expected to affect the plant hydraulics and reduce plant conductance (eventually leading to cavitation for very high salt concentrations). Also, plant adaptation to short and long-term exposure to salinity comes into place to maintain an efficient water and nutrients uptake. We introduce a parsimonious soil-plant-atmosphere continuum (SPAC) model that incorporates parameterizations for morphological, physiological and biochemical mechanisms involving varying salt concentrations in the soil water solution. Transpiration is expressed as a function of soil water salinity and salt-mediated water flows within the SPAC (the conceptual representation of the model is shown in Figure c). The model is used to explain a paradox observed in salt-tolerant plants where maximum transpiration occurs at an intermediate value of salinity (CTr,max), and is lower in more fresh (CTr,max) and more saline (C>CTr,max) conditions (Figure a and b). In particular, we show that - in salt-tolerant species - osmoregulation

  12. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.

    PubMed

    Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick

    2016-01-07

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments.

  13. Warming combined with more extreme precipitation regimes modifies the water sources used by trees.

    PubMed

    Grossiord, Charlotte; Sevanto, Sanna; Dawson, Todd E; Adams, Henry D; Collins, Adam D; Dickman, Lee T; Newman, Brent D; Stockton, Elizabeth A; McDowell, Nate G

    2017-01-01

    The persistence of vegetation under climate change will depend on a plant's capacity to exploit water resources. We analyzed water source dynamics in piñon pine and juniper trees subjected to precipitation reduction, atmospheric warming, and to both simultaneously. Piñon and juniper exhibited different and opposite shifts in water uptake depth in response to experimental stress and background climate over 3 yr. During a dry summer, juniper responded to warming with a shift to shallow water sources, whereas piñon pine responded to precipitation reduction with a shift to deeper sources in autumn. In normal and wet summers, both species responded to precipitation reduction, but juniper increased deep water uptake and piñon increased shallow water uptake. Shifts in the utilization of water sources were associated with reduced stomatal conductance and photosynthesis, suggesting that belowground compensation in response to warming and water reduction did not alleviate stress impacts for gas exchange. We have demonstrated that predicted climate change could modify water sources of trees. Warming impairs juniper uptake of deep sources during extended dry periods. Precipitation reduction alters the uptake of shallow sources following extended droughts for piñon. Shifts in water sources may not compensate for climate change impacts on tree physiology. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Surface water and climatologic data, Salt Lake County, Utah, water year 1981, with selected data for water years 1980 and 1982

    USGS Publications Warehouse

    McCormack, H.F.; Christensen, R.C.; Stephens, D.W.; Pyper, G.E.; Weigel, J.F.; Conroy, L.S.

    1983-01-01

    This report contains precipitation, atmospheric-deposition, water- discharge and water-quality data collected in Salt Lake County as part of two investigations by the U.S. Geological Survey. The purpose of this report is to release data collected mainly during the 1981 water year. Selected data collected during the 1980 water year not previously published or revised and the 1982 water year also are included in this report.The first investigation, which was carried out from September 1979 to August 1982, was an urban-runoff study done in cooperation with the Salt Lake County Division of Flood Control and Water Quality. The objectives of the urban-runoff study were to identify the impact of urban runoff on the quantity and quality of the water in the canals east of the Jordan River and on the major tributaries to the river.The second investigation, which was carried out from December 1979 to September 1983, is a study of water-quality problems in the Jordan River. The study was done primarily to provide information about toxic substances, dissolved-oxygen depletion, sanitary quality, and turbidity and suspended sediment in the Jordan River. It also was funded in part by the Salt Lake County Division of Flood Control and Water Quality.Several Salt Lake County employees assisted in the collection of water- quality samples from storm runoff. Of those employees, Lee R. Armstrong, Gilbert H. Heal, Steven J. Mitckes, and Ben Santistevan worked on a daily basis with the authors and made a significant contribution in the collection of the data contained in this report. Organizations that furnished data are acknowledged in the station descriptions in tables 1 and 4.Information for previously published water-discharge, water-quality, atmospheric-deposition, and precipitation data for Salt Lake County are reported by Pyper and others (1981); Dustin (1977); Hely and others (1971) and references that they cited; and Feth and others (1964). Additional water- discharge and water

  15. Warm waters, bleached corals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, L.

    1990-10-12

    Two researchers, Tom Goreau of the Discovery Laboratory in Jamaica and Raymond Hayes of Howard University, claim that they have evidence that nearly clinches the temperature connection to the bleached corals in the Caribbean and that the coral bleaching is an indication of Greenhouse warming. The incidents of scattered bleaching of corals, which have been reported for decades, are increasing in both intensity and frequency. The researchers based their theory on increased temperature of the seas measured by satellites. However, some other scientists feel that the satellites measure the temperature of only the top few millimeters of the water andmore » that since corals lie on reefs perhaps 60 to 100 feet below the ocean surface, the elevated temperatures are not significant.« less

  16. Hot water, fresh beer, and salt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, F.S.

    1990-11-01

    In the hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO{sub 2}) provided you first (a) get rid of much of the excess CO{sub 2} so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, Domore » ionizing particles produce bubbles in fresh beer '' is answered experimentally.« less

  17. Salt

    USGS Publications Warehouse

    Franson, J.C.; Friend, M.

    1999-01-01

    Animals become victims of salt poisoning or toxicosis when toxic levels of sodium and chloride accumulate in the blood after they ingest large amounts of salt or, in some species, are deprived of water. For birds, salt sources may include saline water and road salt.Normally, the salt glands of birds (Fig. 47.1) excrete sodium and chloride to maintain the proper physiologic chemical balance. However, when there has been insufficient time for acclimation of the salt gland to the saline environment, or when salt gland function is compromised by exposure to certain pesticides or oil, the electrolyte balance of the blood may be upset by the excess sodium and chloride, resulting in toxicosis. Salt accumulation on the outside of the body, or salt encrustation, is a greater problem for waterbirds that use very saline waters than is salt toxicosis. Salt encrustation can lead to exertion, acute muscle degeneration, and eventual drowning during the struggle to escape entrapment.

  18. Functioning of a Shallow-Water Sediment System during Experimental Warming and Nutrient Enrichment

    PubMed Central

    Alsterberg, Christian; Sundbäck, Kristina; Hulth, Stefan

    2012-01-01

    Effects of warming and nutrient enrichment on intact unvegetated shallow-water sediment were investigated for 5 weeks in the autumn under simulated natural field conditions, with a main focus on trophic state and benthic nitrogen cycling. In a flow-through system, sediment was exposed to either seawater at ambient temperature or seawater heated 4°C above ambient, with either natural or nutrient enriched water. Sediment–water fluxes of oxygen and inorganic nutrients, nitrogen mineralization, and denitrification were measured. Warming resulted in an earlier shift to net heterotrophy due to increased community respiration; primary production was not affected by temperature but (slightly) by nutrient enrichment. The heterotrophic state was, however, not further strengthened by warming, but was rather weakened, probably because increased mineralization induced a shortage of labile organic matter. Climate-related warming of seawater during autumn could therefore, in contrast to previous predictions, induce shorter but more intensive heterotrophic periods in shallow-water sediments, followed by longer autotrophic periods. Increased nitrogen mineralization and subsequent effluxes of ammonium during warming suggested a preferential response of organisms driving nitrogen mineralization when compared to sinks of ammonium such as nitrification and algal assimilation. Warming and nutrient enrichment resulted in non-additive effects on nitrogen mineralization and denitrification (synergism), as well as on benthic fluxes of phosphate (antagonism). The mode of interaction appears to be related to the trophic level of the organisms that are the main drivers of the affected processes. Despite the weak response of benthic microalgae to both warming and nutrient enrichment, the assimilation of nitrogen by microalgae was similar in magnitude to rates of nitrogen mineralization. This implies a sustained filter function and retention capacity of nutrients by the sediment. PMID

  19. Anthropogenic contamination of tap water, beer, and sea salt

    PubMed Central

    2018-01-01

    Plastic pollution has been well documented in natural environments, including the open waters and sediments within lakes and rivers, the open ocean and even the air, but less attention has been paid to synthetic polymers in human consumables. Since multiple toxicity studies indicate risks to human health when plastic particles are ingested, more needs to be known about the presence and abundance of anthropogenic particles in human foods and beverages. This study investigates the presence of anthropogenic particles in 159 samples of globally sourced tap water, 12 brands of Laurentian Great Lakes beer, and 12 brands of commercial sea salt. Of the tap water samples analyzed, 81% were found to contain anthropogenic particles. The majority of these particles were fibers (98.3%) between 0.1–5 mm in length. The range was 0 to 61 particles/L, with an overall mean of 5.45 particles/L. Anthropogenic debris was found in each brand of beer and salt. Of the extracted particles, over 99% were fibers. After adjusting for particles found in lab blanks for both salt and beer, the average number of particles found in beer was 4.05 particles/L with a range of 0 to 14.3 particles/L and the average number of particles found in each brand of salt was 212 particles/kg with a range of 46.7 to 806 particles/kg. Based on consumer guidelines, our results indicate the average person ingests over 5,800 particles of synthetic debris from these three sources annually, with the largest contribution coming from tap water (88%). PMID:29641556

  20. The water supply-water environment nexus in salt Intrusion area under the climate change

    NASA Astrophysics Data System (ADS)

    Liu, D.

    2017-12-01

    Water resources are critical problems in in salt Intrusion area for the increasing water supply and water quality deterioration. And the climate change exacerbates these problems. In order to balance the relationship between water supply and water environment requirements, the water supply-water environment nexus should be understood well. Based on the de Saint-Venant system of equations and the convection diffusion equation, which can be used to reflect the laws of water quality, the water supply- water environment nexus equation has be determined. And the nexus is dynamic with the climate change factors. The methods of determined the nexus have then been applied to a case study of the water supply-water environment nexus for the Pearl River Delta in China. The results indicate that the water supply-water environment nexus is trade off each other and are mainly affected by the fresh water flow from the upstream, salt water intrusion will reduce the resilience of the water supply system in this area. Our methods provides a useful framework to quantify the nexus according to the mechanisms of the water quantity and water quality, which will useful freshwater allocation and management in this saltwater intrusion area.

  1. Enhanced water transport and salt rejection through hydrophobic zeolite pores.

    PubMed

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N

    2017-12-15

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  2. Enhanced water transport and salt rejection through hydrophobic zeolite pores

    NASA Astrophysics Data System (ADS)

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N.

    2017-12-01

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  3. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems

    PubMed Central

    Rix, Laura; de Goeij, Jasper M.; Mueller, Christina E.; Struck, Ulrich; Middelburg, Jack J.; van Duyl, Fleur C.; Al-Horani, Fuad A.; Wild, Christian; Naumann, Malik S.; van Oevelen, Dick

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21–40% of the mucus carbon and 32–39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments. PMID:26740019

  4. TOPEX/El Nino Watch - El Nino Warm Water Pool Decreasing, Jan, 08, 1998

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Jan. 8, 1998, and sea surface height is an indicator of the heat content of the ocean. The volume of the warm water pool related to the El Nino has decreased by about 40 percent since its maximum in early November, but the area of the warm water pool is still about one and a half times the size of the continental United States. The volume measurements are computed as the sum of all the sea surface height changes as compared to normal ocean conditions. In addition, the maximum water temperature in the eastern tropical Pacific, as measured by the National Oceanic and Atmospheric Administration (NOAA), is still higher than normal. Until these high temperatures diminish, the El Nino warm water pool still has great potential to disrupt global weather because the high water temperatures directly influence the atmosphere. Oceanographers believe the recent decrease in the size of the warm water pool is a normal part of El Nino's natural rhythm. TOPEX/Poseidon has been tracking these fluctuations of the El Nino warm pool since it began in early 1997. These sea surface height measurements have provided scientists with their first detailed view of how El Nino's warm pool behaves because the TOPEX/Poseidon satellite measures the changing sea surface height with unprecedented precision. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level.

    The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds

  5. 46 CFR 46.10-45 - Nonsubmergence subdivision load lines in salt water.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Nonsubmergence subdivision load lines in salt water. 46.10-45 Section 46.10-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES SUBDIVISION LOAD LINES FOR PASSENGER VESSELS Administration § 46.10-45 Nonsubmergence subdivision load lines in salt water. (a) Passenger vessels...

  6. Investigation of iodine concentration in salt, water and soil along the coast of Zhejiang, China*

    PubMed Central

    Lu, Ying-li; Wang, Ning-jian; Zhu, Lan; Wang, Guo-xing; Wu, Hui; Kuang, Lin; Zhu, Wen-ming

    2005-01-01

    Objective: We aim to describe the environment iodine concentration in salt, water and soil along Zhejiang Province coast in the China foreland. It will be helpful for us to judge whether this area is insufficient in iodine and universal iodized salt is necessary or not. Methods: We collected iodized salt samples, drinking water samples (tap water in the towns, and well water or spring water in the villages), water samples from different sources (ditches, lakes, rivers) and soil samples through random sampling in June, 2005. Salt, water and soil iodine was detected by arsenic-cerium redox method. Statistical analysis was expressed as mean±SEM by Windows SPSS 13.0. Results: (1) The iodine concentration in salt was 27.9±4.33 mg/kg (n=108). (2) Seventy-five water samples were collected. The water iodine value was 0.6~84.8 μg/L (mean of 11.66 μg/L). The watershed along the Qiantang River has significantly higher iodine content than the water in Lin’an in mountain area (P<0.01). The iodine content and mean iodine content of tap water, well or spring water and natural water sources were 4.30±2.43 μg/L (n=34), 23.59±27.74 μg/L (n=19) and 12.72±10.72 μg/L (n=22) respectively. This indicated that among environmental water sources, the ditch iodine content was the highest with river water iodine being the lowest (P<0.01). (3) Soil iodine value was 0.11~2.93 mg/kg (mean of 1.32 mg/kg). Though there was no statistical difference of soil iodine in different districts (P=0.131), soil iodine content correlated positively with water iodine content. Conclusion: Iodine concentration in salt accords with national policy of adding iodine in salt. Foreland has more iodine in water than mountain area. The data reflected that water and soil iodine in foreland area was not high, which suggests universal iodized salt should be necessary. Environment iodine has relatively close association with pollution. PMID:16358379

  7. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOEpatents

    Tsai, S.P.

    1997-07-08

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants-containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid. 6 figs.

  8. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOEpatents

    Tsai, Shih-Perng

    1997-01-01

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid.

  9. Are Sierran Lakes Warming as a Result of Climate Change? The Effects of Climate Warming and Variation in Precipitation on Water Temperature in a Snowmelt-Dominated Lake

    NASA Astrophysics Data System (ADS)

    Sadro, S.; Melack, J. M.; Sickman, J. O.; Skeen, K.

    2016-12-01

    Water temperature regulates a broad range of fundamental ecosystem processes in lakes. While climate can be an important factor regulating lake temperatures, heterogeneity in the warming response of lakes is large, and variation in precipitation is rarely considered. We analyzed three decades of climate and water temperature data from a high-elevation catchment in the southern Sierra Nevada of California to illustrate the magnitude of warming taking place during different seasons and the role of precipitation in regulating lake temperatures. Significant climate warming trends were evident during all seasons except spring. Nighttime rates of climate warming were approximately 25% higher than daytime rates. Spatial patterns in warming were elevation dependent, with rates of temperature increase higher at sites above 2800 m.a.s.l. than below. Although interannual variation in snow deposition was high, the frequency and severity of recent droughts has contributed to a significant 3.4 mm year -1 decline in snow water equivalent over the last century. Snow accumulation, more than any other climate factor, regulated lake temperature; 94% of variation in summer lake temperature was regulated by precipitation as snow. For every 100 mm decrease in snow water equivalent there was a 0.62 ° increase in lake temperature. Drought years amplify warming in lakes by reducing the role of cold spring meltwaters in lake energy budgets and prolonging the ice-free period during which lakes warm. The combination of declining winter snowpack and warming air temperatures has the capacity to amplify the effect of climate warming on lake temperatures during drought years. Interactions among climatic factors need to be considered when evaluating ecosystem level effects, especially in mountain regions. For mountain lakes already affected by drought, continued climate warming during spring and autumn has the greatest potential to impact mean lake temperatures.

  10. Quantum Calculations on Salt Bridges with Water: Potentials, Structure, and Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Sing; Green, Michael E.

    2011-01-01

    Salt bridges are electrostatic links between acidic and basic amino acids in a protein; quantum calculations are used here to determine the energetics and other properties of one form of these species, in the presence of water molecules. The acidic groups are carboxylic acids (aspartic and glutamic acids); proteins have two bases with pK above physiological pH: one, arginine, with a guanidinium basic group, the other lysine, which is a primary amine. Only arginine is modeled here, by ethyl guanidinium, while propionic acid is used as a model for either carboxylic acid. The salt bridges are accompanied by 0-12 watermore » molecules; for each of the 13 systems, the energy-bond distance relation, natural bond orbitals (NBO), frequency calculations allowing thermodynamic corrections to room temperature, and dielectric constant dependence, were all calculated. The water molecules were found to arrange themselves in hydrogen bonded rings anchored to the oxygens of the salt bridge components. This was not surprising in itself, but it was found that the rings lead to a periodicity in the energy, and to a 'water addition' rule. The latter shows that the initial rings, with four oxygen atoms, become five member rings when an additional water molecule becomes available, with the additional water filling in at the bond with the lowest Wiberg index, as calculated using NBO. The dielectric constant dependence is the expected hyperbola, and the fit of the energy to the inverse dielectric constant is determined. There is an energy periodicity related to ring formation upon addition of water molecules. When 10 water molecules have been added, all spaces near the salt bridge are filled, completing the first hydration shell, and a second shell starts to form. The potentials associated with salt bridges depend on their hydration, and potentials assigned without regard to local hydration are likely to cause errors as large as or larger than kBT, thus suggesting a serious problem if

  11. Fluid-loading solutions and plasma volume: Astro-ade and salt tablets with water

    NASA Technical Reports Server (NTRS)

    Fortney, Suzanne M.; Seinmann, Laura; Young, Joan A.; Hoskin, Cherylynn N.; Barrows, Linda H.

    1994-01-01

    Fluid loading with salt and water is a countermeasure used after space flight to restore body fluids. However, gastrointestinal side effects have been frequently reported in persons taking similar quantities of salt and water in ground-based studies. The effectiveness of the Shuttle fluid-loading countermeasure (8 gms salt, 0.97 liters of water) was compared to Astro-ade (an isotonic electrolyte solution), to maintain plasma volume (PV) during 4.5 hrs of resting fluid restriction. Three groups of healthy men (n=6) were studied: a Control Group (no drinking), an Astro-ade Group, and a Salt Tablet Group. Changes in PV after drinking were calculated from hematocrit and hemoglobin values. Both the Salt Tablet and Astro-ade Groups maintained PV at 2-3 hours after ingestion compared to the Control Group, which had a 6 percent decline. Side effects (thirst, stomach cramping, and diarrhea) were noted in at least one subject in both the Astro-ade and Salt Tablet Groups. Nausea and vomiting were reported in one subject in the Salt Tablet Group. It was concluded that Astro-ade may be offered as an alternate fluid-loading countermeasure but further work is needed to develop a solution that is more palatable and has fewer side effects.

  12. Water Quality Outlet Works Prototype Tests, Warm Springs Dam Dry Creek, Russian River Basin Sonoma County, California

    DTIC Science & Technology

    1989-03-01

    34.4* TECHNICAL REPORT HL-89-4 WATER QUALITY OUTLET WORKS PROTOTYPE TESTS, WARM SPRINGS DAM DRY CREEK, RUSSIAN RIVER BASIN AD-A207 058 SONOMA COUNTY , CALIFORNIA...Clawflcation) [7 Water Quality Outlet Works Prototype Tests, Warm Springs Dam, Dry Creek, Russian River Basin, Sonoma County , California 12. PERSONAL...Cointogobvil Be,,pesso Figur 1. iciniyama Pealm WATER QUALITY OUTLET WORKS PROTOTYPE TESTS WARM SPRINGS DAM, DRY CREEK, RUSSIAN RIVER BASIN SONOMA COUNTY , CALIFORNIA

  13. Extratropical Influence of Upper Tropospheric Water Vapor on Greenhouse Warming

    NASA Technical Reports Server (NTRS)

    Hu, H.; Liu, W.

    1998-01-01

    The purpose of this paper is to re-examine the impact of upper tropospheric water vapor on greenhouse warming in midlatitudes by analyzing the recent observations of the upper tropospheric water vapor from the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS), in conjuction with other space-based measurement and model simulation products.

  14. Water Availability in a Warming World

    NASA Astrophysics Data System (ADS)

    Aminzade, Jennifer

    As climate warms during the 21st century, the resultant changes in water availability are a vital issue for society, perhaps even more important than the magnitude of warming itself. Yet our climate models disagree in their forecasts of water availability, limiting our ability to plan accordingly. This thesis investigates future water availability projections from Coupled Ocean-Atmosphere General Circulation Models (GCMs), primarily using two water availability measures: soil moisture and the Supply Demand Drought Index (SDDI). Chapter One introduces methods of measuring water availability and explores some of the fundamental differences between soil moisture, SDDI and the Palmer Drought Severity Index (PDSI). SDDI and PDSI tend to predict more severe future drought conditions than soil moisture; 21st century projections of SDDI show conditions rivaling North American historic mega-droughts. We compare multiple potential evapotranspiration (EP) methods in New York using input from the GISS Model ER GCM and local station data from Rochester, NY, and find that they compare favorably with local pan evaporation measurements. We calculate SDDI and PDSI values using various EP methods, and show that changes in future projections are largest when using EP methods most sensitive to global warming, not necessarily methods producing EP values with the largest magnitudes. Chapter Two explores the characteristics and biases of the five GCMs and their 20th and 21st century climate projections. We compare atmospheric variables that drive water availability changes globally, zonally, and geographically among models. All models show increases in both dry and wet extremes for SDDI and soil moisture, but increases are largest for extreme drying conditions using SDDI. The percentage of gridboxes that agree on the sign of change of soil moisture and SDDI between models is very low, but does increase in the 21st century. Still, differences between models are smaller than differences

  15. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    NASA Astrophysics Data System (ADS)

    Jing, Bo; Wang, Zhen; Tan, Fang; Guo, Yucong; Tong, Shengrui; Wang, Weigang; Zhang, Yunhong; Ge, Maofa

    2018-04-01

    While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO3)2) and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA). The nitrate salt / organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH), the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  16. The Synthesis of Calcium Salt from Brine Water by Partial Evaporation and Chemical Precipitation

    NASA Astrophysics Data System (ADS)

    Lalasari, L. H.; Widowati, M. K.; Natasha, N. C.; Sulistiyono, E.; Prasetyo, A. B.

    2017-02-01

    In this study would be investigated the effects of partial evaporation and chemical precipitation in the formation of calcium salt from brine water resources. The chemical reagents used in the study was oxalate acid (C2H2O4), ammonium carbonate (NH4)2CO3) and ammonium hydroxide (NH4OH) with reagent concentration of 2 N, respectively. The procedure was 10 liters brine water evaporated until 20% volume and continued with filtration process to separate brine water filtrate from residue (salt). Salt resulted from evaporation process was characterized by Scanning Electron Microscopy (SEM), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) techniques. Filtrate then was reacted with C2H2O4, (NH4)2CO3 and NH4OH reagents to get salt products in atmospheric condition and variation ratio volume brine water/chemicals (v/v) [10/1; 10/5; 10/10; 10/20; 10/30; 10:50; 20/1; 20/5; 20/10; 20/20; 20/30; 20:50]. The salt product than were filtered, dried, measured weights and finally characterized by SEM/EDS and XRD techniques. The result of experiment showed the chemical composition of brine water from Tirta Sanita, Bogor was 28.87% Na, 9.17% Mg, 2.94% Ca, 22.33% O, 0.71% Sr, 30.02% Cl, 1.51% Si, 1.23% K, 0.55% S, 1.31% Al. The chemical composition of salt resulted by partial evaporation was 53.02% Ca, 28.93%O, 9.50% Na, 2.10% Mg, 1.53% Sr, 1.20% Cl, 1.10% Si, 0.63% K, 0.40% S, 0.39% Al. The salt resulted by total evaporation was indicated namely as NaCl. Whereas salt resulted by partial evaporation was CaCO3 with a purity of 90 % from High Score Plus analysis. In the experiment by chemical precipitation was reported that the reagents of ammonium carbonate were more reactive for synthesizing calcium salt from brine water compared to reagents of oxalate acid and ammonium hydroxide. The salts precipitated by NH4OH, (NH4)2CO3, and H2C2O4 reagents were indicated as NaCl, CaCO3 and CaC2O4.H2O, respectively. The techniques of partial evaporation until 20% volume sample of brine water and

  17. TOPEX/El Nino Watch - Warm Water Pool is Increasing, Nov. 10, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S./French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Nov. 10, 1997. The volume of extra warm surface water (shown in white) in the core of the El Nino continues to increase, especially in the area between 15 degrees south latitude and 15 degrees north latitude in the eastern Pacific Ocean. The area of low sea level (shown in purple) has decreased somewhat from late October. The white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 centimeters and 32 cm (6 inches to 13 inches) above normal; in the red areas, it is about 10 centimeters (4 inches) above normal. The surface area covered by the warm water mass is about one-and-one-half times the size of the continental United States. The added amount of oceanic warm water near the Americas, with a temperature between 21 to 30 degrees Celsius (70 to 85 degrees Fahrenheit), is about 30 times the volume of water in all the U.S. Great Lakes combined. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level.

    The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white areas) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using these global data, limited regional measurements from buoys and ships, and a forecasting model of the ocean-atmospheric system, the National Centers for Environmental Prediction (NCEP) of the National Oceanic and

  18. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America.

    PubMed

    Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia

    2014-10-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period - a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI - high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to

  19. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America

    PubMed Central

    Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia

    2014-01-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period – a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI – high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to

  20. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Yuanyuan; Xiang, Feng; Wang, Hong, E-mail: hwang@mail.xjtu.edu.cn, E-mail: suo@seas.harvard.edu

    2014-10-13

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels becomemore » possible.« less

  1. [Collagen fractions, obtained by water-salt extraction from animal fats].

    PubMed

    Nekliudov, A D; Berdutina, A V; Ivankin, A N; Mitaleva, S I; Evstaf'eva, E A

    2003-01-01

    Collagen fractions have been isolated by water-salt extraction from raw materials of animal origin (various tendon types or subcutaneous tissues of cattle, or porcine skin). Collagen fractions with maximum capacity for water and fat retention were isolated with high efficiency by water-salt solutions containing 1-10% sodium chloride at temperatures below 50 degrees C. The values of the effective constant of extraction rate (min-1) at pH 6.5, 9.0, and 12.0 were equal to (2.7 +/- 0.1) x 10(-3), (6.2 +/- 0.5) x 10(-3), and (15.4 +/- 0.7) x 10(-3), respectively. The optimum conditions found made it possible to isolate collagen those proteinaceous fractions that are of practical use in food industry.

  2. Preliminary Evidence for the Amplification of Global Warming in Shallow, Intertidal Estuarine Waters

    EPA Science Inventory

    Over the past 50 years, mean annual water temperature in northeastern U.S. estuaries has increased by approximately 1.2°C, with most of the warming recorded in the winter and early spring. We hypothesize that this warming may be amplified in the shallow (<2m), nearshore portions ...

  3. Water isotope tracers of tropical hydroclimate in a warming world

    NASA Astrophysics Data System (ADS)

    Konecky, B. L.; Noone, D.; Nusbaumer, J. M.; Cobb, K. M.; Di Nezio, P. N.; Otto-Bliesner, B. L.

    2016-12-01

    The tropical water cycle is projected to undergo substantial changes under a warming climate, but direct meteorological observations to contextualize these changes are rare prior to the 20th century. Stable oxygen and hydrogen isotope ratios (δ18O, δD) of environmental waters preserved in geologic archives are increasingly being used to reconstruct terrestrial rainfall over many decades to millions of years. However, a rising number of new, modern-day observations and model simulations have challenged previous interpretations of these isotopic signatures. This presentation systematically evaluates the three main influences on the δ18O and δD of modern precipitation - rainfall amount, cloud type, and moisture transport - from terrestrial stations throughout the tropics, and uses this interpretive framework to understand past changes in terrestrial tropical rainfall. Results indicate that cloud type and moisture transport have a larger influence on modern δ18O and δD of tropical precipitation than previously believed, indicating that isotope records track changes in cloud characteristics and circulation that accompany warmer and cooler climate states. We use our framework to investigate isotopic records of the land-based tropical rain belt during the Last Glacial Maximum, the period of warming following the Little Ice Age, and the 21st century. Proxy and observational data are compared with water isotope-enabled simulations with the Community Earth System Model in order to discuss how global warming and cooling may influence tropical terrestrial hydroclimate.

  4. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America

    Treesearch

    Irena F. Creed; Adam T. Spargo; Julia A. Jones; Jim M. Buttle; Mary B. Adams; Fred D. Beall; Eric G. Booth; John L. Campbell; Dave Clow; Kelly Elder; Mark B. Green; Nancy B. Grimm; Chelcy Miniat; Patricia Ramlal; Amartya Saha; Stephen Sebestyen; Dave Spittlehouse; Shannon Sterling; Mark W. Williams; Rita Winkler; Huaxia Yao

    2014-01-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary.We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm...

  5. Acute vascular effects of carbonated warm water lower leg immersion in healthy young adults.

    PubMed

    Ogoh, Shigehiko; Nagaoka, Ryohei; Mizuno, Takamasa; Kimura, Shohei; Shidahara, Yasuhiro; Ishii, Tomomi; Kudoh, Michinari; Iwamoto, Erika

    2016-12-01

    Endothelial dysfunction is associated with increased cardiovascular mortality and morbidity; however, this dysfunction may be ameliorated by several therapies. For example, it has been reported that heat-induced increases in blood flow and shear stress enhance endothelium-mediated vasodilator function. Under these backgrounds, we expect that carbon dioxide (CO 2 )-rich water-induced increase in skin blood flow improves endothelium-mediated vasodilation with less heat stress. To test our hypothesis, we measured flow-mediated dilation (FMD) before and after acute immersion of the lower legs and feet in mild warm (38°C) normal or CO 2 -rich tap water (1000 ppm) for 20 min in 12 subjects. Acute immersion of the lower legs and feet in mild warm CO 2 -rich water increased FMD (P < 0.01) despite the lack of change in this parameter upon mild warm normal water immersion. In addition, FMD was positively correlated with change in skin blood flow regardless of conditions (P < 0.01), indicating that an increase in skin blood flow improves endothelial-mediated vasodilator function. Importantly, the temperature of normal tap water must reach approximately 43°C to achieve the same skin blood flow level as that obtained during mild warm CO 2 -rich water immersion (38°C). These findings suggest that CO 2 -rich water-induced large increases in skin blood flow may improve endothelial-mediated vasodilator function while causing less heat stress. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  6. Extraction and LC determination of lysine clonixinate salt in water/oil microemulsions.

    PubMed

    Pineros, I; Ballesteros, P; Lastres, J L

    2002-02-01

    A new reversed-phase high performance liquid chromatography method has been developed and validated for the quantitative determination of lysine clonixinate salt in water/oil microemulsions. The mobile phase was acetonitrile-buffer phosphate pH 3.3. Detection was UV absorbance at 252 nm. The precision and accurately of the method were excellent. The established linearity range was 5-60 microg ml(-1) (r(2)=0.999). Microemulsions samples were dispersed with chloroform and extracted lysine clonixinate salt with water. This easy method employing chloroformic extraction has been done three times. The recovery of lysine clonixinate salt from spiked placebo and microemulsion were >90% over the linear range.

  7. Winter cold of eastern continental boundaries induced by warm ocean waters.

    PubMed

    Kaspi, Yohai; Schneider, Tapio

    2011-03-31

    In winter, northeastern North America and northeastern Asia are both colder than other regions at similar latitudes. This has been attributed to the effects of stationary weather systems set by elevated terrain (orography), and to a lack of maritime influences from the prevailing westerly winds. However, the differences in extent and orography between the two continents suggest that further mechanisms are involved. Here we show that this anomalous winter cold can result in part from westward radiation of large-scale atmospheric waves--nearly stationary Rossby waves--generated by heating of the atmosphere over warm ocean waters. We demonstrate this mechanism using simulations with an idealized general circulation model, with which we show that the extent of the cold region is controlled by properties of Rossby waves, such as their group velocity and its dependence on the planetary rotation rate. Our results show that warm ocean waters contribute to the contrast in mid-latitude winter temperatures between eastern and western continental boundaries not only by warming western boundaries, but also by cooling eastern boundaries.

  8. Is Detrusor Contraction during Rapid Bladder Filling Caused by Cold or Warm Water? A Randomized, Controlled, Double-Blind Trial.

    PubMed

    Kozomara, Marko; Mehnert, Ulrich; Seifert, Burkhardt; Kessler, Thomas M

    2018-01-01

    We investigated whether detrusor contraction during rapid bladder filling is provoked by cold or warm water. Patients with neurogenic lower urinary tract dysfunction were included in this randomized, controlled, double-blind trial. At the end of a standard urodynamic investigation patients underwent 2 bladder fillings using a 4C ice water test or a 36C warm water test saline solution at a filling speed of 100 ml per minute. The order was randomly selected, and patients and investigators were blinded to the order. The primary outcome measure was detrusor overactivity, maximum detrusor pressure and maximum bladder filling volume during the ice and warm water tests. Nine women and 31 men were the subject of data analysis. Neurogenic lower urinary tract dysfunction was caused by spinal cord injury in 33 patients and by another neurological disorder in 7. Irrespective of test order detrusor overactivity occurred significantly more often during the ice water test than during the warm water test (30 of 40 patients or 75% vs 25 of 40 or 63%, p = 0.02). When comparing the ice water test to the warm water test, maximum detrusor pressure was significantly higher and maximum bladder filling volume was significantly lower during the ice water test (each p <0.001). The order of performing the tests (ice water first vs warm water first) had no effect on the parameters. Our findings imply that the more frequent detrusor overactivity, higher maximum detrusor pressure and lower bladder filling volume during the ice water test compared to the warm water test were caused by cold water. This underlies the theory of a C-fiber mediated bladder cooling reflex in humans. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  9. Perovskite nickelates as electric-field sensors in salt water

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Schwanz, Derek; Narayanan, Badri; Kotiuga, Michele; Dura, Joseph A.; Cherukara, Mathew; Zhou, Hua; Freeland, John W.; Li, Jiarui; Sutarto, Ronny; He, Feizhou; Wu, Chongzhao; Zhu, Jiaxin; Sun, Yifei; Ramadoss, Koushik; Nonnenmann, Stephen S.; Yu, Nanfang; Comin, Riccardo; Rabe, Karin M.; Sankaranarayanan, Subramanian K. R. S.; Ramanathan, Shriram

    2018-01-01

    Designing materials to function in harsh environments, such as conductive aqueous media, is a problem of broad interest to a range of technologies, including energy, ocean monitoring and biological applications. The main challenge is to retain the stability and morphology of the material as it interacts dynamically with the surrounding environment. Materials that respond to mild stimuli through collective phase transitions and amplify signals could open up new avenues for sensing. Here we present the discovery of an electric-field-driven, water-mediated reversible phase change in a perovskite-structured nickelate, SmNiO3. This prototypical strongly correlated quantum material is stable in salt water, does not corrode, and allows exchange of protons with the surrounding water at ambient temperature, with the concurrent modification in electrical resistance and optical properties being capable of multi-modal readout. Besides operating both as thermistors and pH sensors, devices made of this material can detect sub-volt electric potentials in salt water. We postulate that such devices could be used in oceanic environments for monitoring electrical signals from various maritime vessels and sea creatures.

  10. Response of salt-marsh carbon accumulation to climate change.

    PubMed

    Kirwan, Matthew L; Mudd, Simon M

    2012-09-27

    About half of annual marine carbon burial takes place in shallow water ecosystems where geomorphic and ecological stability is driven by interactions between the flow of water, vegetation growth and sediment transport. Although the sensitivity of terrestrial and deep marine carbon pools to climate change has been studied for decades, there is little understanding of how coastal carbon accumulation rates will change and potentially feed back on climate. Here we develop a numerical model of salt marsh evolution, informed by recent measurements of productivity and decomposition, and demonstrate that competition between mineral sediment deposition and organic-matter accumulation determines the net impact of climate change on carbon accumulation in intertidal wetlands. We find that the direct impact of warming on soil carbon accumulation rates is more subtle than the impact of warming-driven sea level rise, although the impact of warming increases with increasing rates of sea level rise. Our simulations suggest that the net impact of climate change will be to increase carbon burial rates in the first half of the twenty-first century, but that carbon-climate feedbacks are likely to diminish over time.

  11. Partitioning the effects of Global Warming on the Hydrological Cycle with Stable Isotopes in Water Vapor

    NASA Astrophysics Data System (ADS)

    Dee, S. G.; Russell, J. M.; Nusbaumer, J. M.; Konecky, B. L.; Buenning, N. H.; Lee, J. E.; Noone, D.

    2016-12-01

    General circulation models (GCMs) suggest that much of the global hydrological cycle's response to anthropogenic warming will be caused by increased lower-tropospheric water vapor concentrations and associated feedbacks. However, fingerprinting changes in the global hydrological cycle due to anthropogenic warming remains challenging. Held and Soden (2006) predicted that as lower-tropospheric water vapor increases, atmospheric circulation will weaken as climate warms to maintain the surface energy budget. Unfortunately, the strength of this feedback and the fallout for other branches of the hydrological cycle is difficult to constrain in situ or with GCMs alone. We demonstrate the utility of stable hydrogen isotope ratios in atmospheric water vapor to quantitatively trace changes in atmospheric circulation and convective mass flux in a warming world. We compare water isotope-enabled GCM experiments for control (present-day) CO2 vs. high CO2(2x, 4x) atmospheres in two GCMs, IsoGSM and iCAM5. We evaluate changes in the distribution of water vapor, vertical velocity (omega), and the stream function between these experiments in order to identify spatial patterns of circulation change over the tropical Pacific (where vertical motion is strong) and map the δD of water vapor associated with atmospheric warming. We also probe the simulations to isolate isotopic signatures associated with water vapor residence time, precipitation efficiency, divergence, and cloud physics. We show that there are robust mechanisms that moisten the troposphere and weaken convective mass flux, and that these mechanisms can be tracked using the δD of water vapor. Further, we find that these responses are most pronounced in the upper troposphere. These findings provide a framework to develop new metrics for the detection of global warming impacts to the hydrological cycle. Further, currently available satellite missions measure δD in the atmospheric boundary layer, the free atmosphere, or the

  12. Effects of warm water inflows on the dispersion of pollutants in small reservoirs.

    PubMed

    Palancar, María C; Aragón, José M; Sánchez, Fernando; Gil, Roberto

    2006-11-01

    The effects of the warm water discharged by a nuclear power plant (NPP) into a small reservoir are studied. A case study is presented (José Cabrera NPP-Zorita Hidráulica Reservoir) with experimental data of the reservoir stratification and predicted data of the dispersion of radioactive pollutants from operative or accidental releases. The vertical and longitudinal temperature profiles, electrical conductivity and transparency of the reservoir water were measured for an annual cycle. The results indicate that the continuous warm water discharge from the NPP causes permanent and artificial reservoir stratification. The stratification is significant within 1500 m upstream and 1000 m downstream from the warm water outfall. The pollutant dispersion has been predicted by using a flow model based on N(T) perfect-mixing compartments in series with feedback. The model parameter, N(T), is calculated from the longitudinal diffusion coefficient. The prediction of pollutant dispersion by means of this model shows that the stratification slows down the vertical mixing in the whole water body, and reduces the reservoir volume that is effective for the dilution and dispersion of pollutants. This means that, in the case of a radioactive pollutant release, the reservoir radioactivity level could increase significantly.

  13. Intake of dietary salt and drinking water: Implications for the development of age-related macular degeneration

    PubMed Central

    Hollborn, Margrit; Kohen, Leon; Wiedemann, Peter

    2016-01-01

    Purpose Systemic hypertension is a risk factor of age-related retinal diseases such as diabetic retinopathy and age-related macular degeneration. High intake of dietary salt and low intake of water increase extracellular osmolality resulting in hypertension, in particular in salt-sensitive individuals. This review summarizes the present knowledge regarding the impact of salt and water intake on the regulation of blood pressure, retinal function, and the development of age-related retinal diseases. Methods A literature search of the Medline database and a summary of recent studies that used human RPE cells. Results The salt sensitivity of the blood pressure and plasma osmolality increase with age, and body water deficits are common in older individuals. High plasma osmolality has adverse effects in the retina. In RPE cells, high osmolality induces expression and secretion of angiogenic factors, such as vascular endothelial growth factor (VEGF), placental growth factor, and basic fibroblast growth factor, and expression of aquaporin-5, a water channel implicated in transepithelial water transport. The transcriptional activities of hypoxia-inducible factor-1 (HIF-1) and nuclear factor of activated T cell 5 (NFAT5) are critical for the production of VEGF in response to salt-induced osmotic stress. Salt-induced osmotic stress also induces priming of the NLRP3 inflammasome and activates inflammatory enzymes in RPE cells. Conclusions Raised plasma osmolality may aggravate age-related retinal diseases by stimulation of local inflammation and angiogenic factor production in the RPE. Alterations in salt and water consumption, and of minerals that stimulate renal salt excretion, may offer nutritional approaches to prevent age-related retinal disorders, in particular in salt-sensitive individuals and individuals who show signs of body dehydration. PMID:28031693

  14. Intake of dietary salt and drinking water: Implications for the development of age-related macular degeneration.

    PubMed

    Bringmann, Andreas; Hollborn, Margrit; Kohen, Leon; Wiedemann, Peter

    2016-01-01

    Systemic hypertension is a risk factor of age-related retinal diseases such as diabetic retinopathy and age-related macular degeneration. High intake of dietary salt and low intake of water increase extracellular osmolality resulting in hypertension, in particular in salt-sensitive individuals. This review summarizes the present knowledge regarding the impact of salt and water intake on the regulation of blood pressure, retinal function, and the development of age-related retinal diseases. A literature search of the Medline database and a summary of recent studies that used human RPE cells. The salt sensitivity of the blood pressure and plasma osmolality increase with age, and body water deficits are common in older individuals. High plasma osmolality has adverse effects in the retina. In RPE cells, high osmolality induces expression and secretion of angiogenic factors, such as vascular endothelial growth factor (VEGF), placental growth factor, and basic fibroblast growth factor, and expression of aquaporin-5, a water channel implicated in transepithelial water transport. The transcriptional activities of hypoxia-inducible factor-1 (HIF-1) and nuclear factor of activated T cell 5 (NFAT5) are critical for the production of VEGF in response to salt-induced osmotic stress. Salt-induced osmotic stress also induces priming of the NLRP3 inflammasome and activates inflammatory enzymes in RPE cells. Raised plasma osmolality may aggravate age-related retinal diseases by stimulation of local inflammation and angiogenic factor production in the RPE. Alterations in salt and water consumption, and of minerals that stimulate renal salt excretion, may offer nutritional approaches to prevent age-related retinal disorders, in particular in salt-sensitive individuals and individuals who show signs of body dehydration.

  15. Designing the optimal semi-warm NIR spectrograph for SALT via detailed thermal analysis

    NASA Astrophysics Data System (ADS)

    Wolf, Marsha J.; Sheinis, Andrew I.; Mulligan, Mark P.; Wong, Jeffrey P.; Rogers, Allen

    2008-07-01

    The near infrared (NIR) upgrade to the Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT), RSS/NIR, extends the spectral coverage of all modes of the optical spectrograph. The RSS/NIR is a low to medium resolution spectrograph with broadband, spectropolarimetric, and Fabry-Perot imaging capabilities. The optical and NIR arms can be used simultaneously to extend spectral coverage from 3200 Å to approximately 1.6 μm. Both arms utilize high efficiency volume phase holographic gratings via articulating gratings and cameras. The NIR camera incorporates a HAWAII-2RG detector with an Epps optical design consisting of 6 spherical elements and providing subpixel rms image sizes of 7.5 +/- 1.0 μm over all wavelengths and field angles. The NIR spectrograph is semi-warm, sharing a common slit plane and partial collimator with the optical arm. A pre-dewar, cooled to below ambient temperature, houses the final NIR collimator optic, the grating/Fabry-Perot etalon, the polarizing beam splitter, and the first three camera optics. The last three camera elements, blocking filters, and detector are housed in a cryogenically cooled dewar. The semi-warm design concept has long been proposed as an economical way to extend optical instruments into the NIR, however, success has been very limited. A major portion of our design effort entails a detailed thermal analysis using non-sequential ray tracing to interactively guide the mechanical design and determine a truly realizable long wavelength cutoff over which astronomical observations will be sky-limited. In this paper we describe our thermal analysis, design concepts for the staged cooling scheme, and results to be incorporated into the overall mechanical design and baffling.

  16. Water runoff vs modern climatic warming in mountainous cryolithic zone in North-East Russia

    NASA Astrophysics Data System (ADS)

    Glotov, V. E.; Glotova, L. P.

    2018-01-01

    The article presents the results of studying the effects of current climatic warming for both surface and subsurface water runoffs in North-East Russia, where the Main Watershed of the Earth separates it into the Arctic and Pacific continental slopes. The process of climatic warming is testified by continuous weather records during 80-100 years and longer periods. Over the Arctic slope and in the northern areas of the Pacific slope, climatic warming results in a decline in a total runoff of rivers whereas the ground-water recharge becomes greater in winter low-level conditions. In the southern Pacific slope and in the Sea of Okhotsk basin, the effect of climatic warming is an overall increase in total runoff including its subsurface constituents. We believe these peculiar characters of river runoff there to be related to the cryolithic zone environments. Over the Arctic slope and the northern Pacific slope, where cryolithic zone is continuous, the total runoff has its subsurface constituent as basically resulting from discharge of ground waters hosted in seasonally thawing rocks. Warmer climatic conditions favor growth of vegetation that needs more water for the processes of evapotranspiration and evaporation from rocky surfaces in summer seasons. In the Sea of Okhotsk basin, where the cryolithic zone is discontinuous, not only ground waters in seasonally thawing layers, but also continuous taliks and subpermafrost waters participate in processes of river recharges. As a result, a greater biological productivity of vegetation cover does not have any effect on ground-water supply and river recharge processes. If a steady climate warming is provided, a continuous cryolithic zone can presumably degrade into a discontinuous and then into an island-type permafrost layer. Under such a scenario, there will be a general increase in the total runoff and its subsurface constituent. From geoecological viewpoints, a greater runoff will have quite positive effects, whereas some

  17. Effect of salts on the water sorption kinetics of dried pasta.

    PubMed

    Ogawa, Takenobu; Adachi, Shuji

    2013-01-01

    The water sorption kinetics of dried pasta were measured in the 20-90 °C range in 1.83 mol/L of NaCl and at 80 °C in 1.83 mol/L of LiCl, KCl, NaBr and NaI solutions in order to elucidate the role of salt in the kinetics. At the temperatures higher than 70.8 °C, the change in the enthalpy of sorption, ΔH, in the 1.83 mol/L NaCl solution was 33.1 kJ/mol, which was greater than the ΔH value in water, and the activation energy for the sorption, E, in the salt solution was 25.6 kJ/mol, which was slightly lower than the E value in water. The Hofmeister series of ions was an index for their effect on the equilibrium amount of the sorbed solution of pasta. The apparent diffusion coefficient of water into pasta was not correlated with the crystal radius of the salts, but was with the Stokes radius of the hydrated ions. Equations were formulated to predict the amount of sorbed solution under any condition of temperature and NaCl concentration.

  18. Passive thermal refugia provided warm water for Florida manatees during the severe winter of 2009-2010

    USGS Publications Warehouse

    Stith, B.M.; Slone, D.H.; de Wit, M.; Edwards, H.H.; Langtimm, C.A.; Swain, E.D.; Soderqvist, L.E.; Reid, J.P.

    2012-01-01

    Haloclines induced by freshwater inflow over tidal water have been identified as an important mechanism for maintaining warm water in passive thermal refugia (PTR) used by Florida manatees Trichechus manatus latirostris during winter in extreme southwestern Florida. Record-setting cold during winter 2009–2010 resulted in an unprecedented number of manatee deaths, adding to concerns that PTR may provide inadequate thermal protection during severe cold periods. Hydrological data from 2009–2010 indicate that 2 canal systems in the Ten Thousand Islands (TTI) region acted as PTR and maintained warm bottom-water temperatures, even during severe and prolonged cold periods. Aerial survey counts of live and dead manatees in TTI during the winter of 2009–2010 suggest that these PTR were effective at preventing mass mortality from hypothermia, in contrast to the nearby Everglades region, which lacks similar artificial PTR and showed high manatee carcass counts. Hydrological data from winter 2008–2009 confirmed earlier findings that without haloclines these artificial PTR may become ineffective as warm-water sites. Tidal pumping of groundwater appears to provide additional heat to bottom water during low tide cycles, but the associated thermal inversion is not observed unless salinity stratification is present. The finding that halocline-driven PTR can maintain warm water even under extreme winter conditions suggests that they may have significant potential as warm-water sites. However, availability and conflicting uses of freshwater and other management issues may make halocline-driven PTR unreliable or difficult to manage during winter.

  19. Chlorine-containing salts as water ice nucleating particles on Mars

    NASA Astrophysics Data System (ADS)

    Santiago-Materese, D. L.; Iraci, L. T.; Clapham, M. E.; Chuang, P. Y.

    2018-03-01

    Water ice cloud formation on Mars largely is expected to occur on the most efficient ice nucleating particle available. Salts have been observed on the Martian surface and have been known to facilitate water cloud formation on Earth. We examined heterogeneous ice nucleation onto sodium chloride and sodium perchlorate substrates under Martian atmospheric conditions, in the range of 150 to 180 K and 10-7 to 10-5 Torr water partial pressure. Sub-155 K data for the critical saturation ratio (Scrit) suggests an exponential model best describes the temperature-dependence of nucleation onset of water ice for all substrates tested. While sodium chloride does not facilitate water ice nucleation more easily than bare silicon, sodium perchlorate does support depositional nucleation at lower saturation levels than other substrates shown and is comparable to smectite-rich clay in its ability to support cloud initiation. Perchlorates could nucleate water ice at partial pressures up to 40% lower than other substrates examined to date under Martian atmospheric conditions. These findings suggest air masses on Mars containing uplifted salts such as perchlorates could form water ice clouds at lower saturation ratios than in air masses absent similar particles.

  20. Direct evidence of warm water access to the Totten Glacier sub-ice shelf cavity

    NASA Astrophysics Data System (ADS)

    Orsi, A. H.; Rintoul, S. R.; Silvano, A.; van Wijk, E.; Pena-Molino, B.; Rosenberg, M. A.

    2015-12-01

    The Totten Glacier holds enough ice to raise global sea level by 3.5 m, is thinning according to (some) satellite data, and is grounded well below sea level on a retrograde bed and hence is potentially unstable. Basal melt driven by ocean heat flux has been linked to ice shelf thinning elsewhere in Antarctica, but no oceanographic measurements had been made near the Totten. In January 2015 the RSV Aurora Australis was the first ship to reach the Totten calving front. Observations from ship-board CTD, moorings and profiling floats provide direct confirmation that warm water reaches the ice shelf cavity. Warm water is present near the sea floor at every station deeper than 300 m depth, with maximum temperatures at mid-shelf >0.5°C. Mooring data confirm that the warm water is present year-round. A deep (>1100 m) channel at the calving front allows warm water (-0.4°C, >2°C above the local freezing point) to access the ice shelf cavity. The contrast between the oceanographic conditions near the Totten and near the Mertz Glacier is stark, although they are separated by only 30 degrees of longitude. East Antarctic ice shelves have often been assumed to behave in a similar manner and to be invulnerable to ocean change; these measurements suggest these assumptions need to be reconsidered.

  1. Warm water vapour in the sooty outflow from a luminous carbon star.

    PubMed

    Decin, L; Agúndez, M; Barlow, M J; Daniel, F; Cernicharo, J; Lombaert, R; De Beck, E; Royer, P; Vandenbussche, B; Wesson, R; Polehampton, E T; Blommaert, J A D L; De Meester, W; Exter, K; Feuchtgruber, H; Gear, W K; Gomez, H L; Groenewegen, M A T; Guélin, M; Hargrave, P C; Huygen, R; Imhof, P; Ivison, R J; Jean, C; Kahane, C; Kerschbaum, F; Leeks, S J; Lim, T; Matsuura, M; Olofsson, G; Posch, T; Regibo, S; Savini, G; Sibthorpe, B; Swinyard, B M; Yates, J A; Waelkens, C

    2010-09-02

    The detection of circumstellar water vapour around the ageing carbon star IRC +10216 challenged the current understanding of chemistry in old stars, because water was predicted to be almost absent in carbon-rich stars. Several explanations for the water were postulated, including the vaporization of icy bodies (comets or dwarf planets) in orbit around the star, grain surface reactions, and photochemistry in the outer circumstellar envelope. With a single water line detected so far from this one carbon-rich evolved star, it is difficult to discriminate between the different mechanisms proposed. Here we report the detection of dozens of water vapour lines in the far-infrared and sub-millimetre spectrum of IRC +10216 using the Herschel satellite. This includes some high-excitation lines with energies corresponding to approximately 1,000 K, which can be explained only if water is present in the warm inner sooty region of the envelope. A plausible explanation for the warm water appears to be the penetration of ultraviolet photons deep into a clumpy circumstellar envelope. This mechanism also triggers the formation of other molecules, such as ammonia, whose observed abundances are much higher than hitherto predicted.

  2. Warming trend in the western Mediterranean deep water

    NASA Astrophysics Data System (ADS)

    Bethoux, J. P.; Gentili, B.; Raunet, J.; Tailliez, D.

    1990-10-01

    THE western Mediterranean Sea comprises three water masses: a surface layer (from 0 to ~150 m depth), an intermediate layer (~150-400 m) issuing from the eastern basin, and a deep water mass at depths below 400 m. The deep water is homogeneous and has maintained a more or less constant temperature and salinity from the start of the century until recently1. Here we report measurements from the Medatlante cruises of December 1988 and August 1989, which show the deep layer to be 0.12 °C warmer and ~0.03 p.s.u. more saline than in 1959. Taking these data together with those from earlier cruises, we find a trend of continuously increasing temperatures over the past three decades. These deep-water records reflect the averaged evolution of climate conditions at the surface during the winter, when the deep water is formed. Consideration of the heat budget and water flux in the Mediterranean2,3 leads to the possibility that the deep-water temperature trend may be the result of greenhouse-gas-induced local warming.

  3. Pathways of warm water to the Northeast Greenland outlet glaciers

    NASA Astrophysics Data System (ADS)

    Schaffer, Janin; Timmermann, Ralph; Kanzow, Torsten; Arndt, Jan Erik; Mayer, Christoph; Schauer, Ursula

    2015-04-01

    The ocean plays an important role in modulating the mass balance of the Greenland Ice Sheet by delivering heat to the marine-terminating outlet glaciers surrounding the Greenland coast. The warming and accumulation of Atlantic Water in the subpolar North Atlantic has been suggested to be a potential driver of the glaciers' retreat over the last decades. The shelf regions thus play a critical role for the transport of Atlantic Water towards the glaciers, but also for the transfer of freshwater towards the deep ocean. A key region for the mass balance of the Greenland Ice Sheet is the Northeast Greenland Ice Stream. This large ice stream drains the second-largest basin of the Greenland Ice Sheet and feeds three outlet glaciers. The largest one is Nioghalvfjerdsfjorden (79°N-Glacier) featuring an 80 km long floating ice tongue. Both the ocean circulation on the continental shelf off Northeast Greenland and the circulation in the cavity below the ice tongue are weakly constrained so far. In order to study the relevant processes of glacier-ocean interaction we combine observations and model work. Here we focus on historic and recent hydrographic observations and on the complex bathymetry in the Northeast Greenland shelf region, which is thought to steer the flux of warm Atlantic water onto the continental shelf and into the sub-ice cavity beneath the 79°N-Glacier. We present a new global topography data set, RTopo-2, which includes the most recent surveys on the Northeast Greenland continental shelf and provides a detailed bathymetry for all around Greenland. In addition, RTopo-2 contains ice and bedrock surface topographies for Greenland and Antarctica. Based on the updated ocean bathymetry and a variety of hydrographic observations we show the water mass distribution on the continental shelf off Northeast Greenland. These maps enable us to discuss possible supply pathways of warm modified Atlantic waters on the continental shelf and thus potential ways of heat

  4. An alternating voltage battery with two salt-water oscillators

    NASA Astrophysics Data System (ADS)

    Cervellati, Rinaldo; Soldà, Roberto

    2001-05-01

    We built a simple alternating voltage battery that periodically reverses value and sign of its electromotive force (emf). This battery consists of two coupled concentration salt-water oscillators that are phase shifted by initially extracting some drops of salt solution from one of the two oscillators. Although the actual frequency (period: ˜30 s) and emf (˜±55 mV) is low, our battery is suitable to demonstrate a practical application of oscillating systems in the physical, chemical, or biological laboratory for undergraduates. Interpretation of the phenomenon is given.

  5. Understanding the causes of recent warming of mediterranean waters. How much could be attributed to climate change?

    PubMed

    Macias, Diego; Garcia-Gorriz, Elisa; Stips, Adolf

    2013-01-01

    During the past two decades, Mediterranean waters have been warming at a rather high rate resulting in scientific and social concern. This warming trend is observed in satellite data, field data and model simulations, and affects both surface and deep waters throughout the Mediterranean basin. However, the warming rate is regionally different and seems to change with time, which has led to the question of what causes underlie the observed trends. Here, we analyze available satellite information on sea surface temperature (SST) from the last 25 years using spectral techniques and find that more than half of the warming tendency during this period is due to a non-linear, wave-like tendency. Using a state of the art hydrodynamic model, we perform a hindcast simulation and obtain the simulated SST evolution of the Mediterranean basin for the last 52 years. These SST results show a clear sinusoidal tendency that follows the Atlantic Multidecadal Oscillation (AMO) during the simulation period. Our results reveal that 58% of recent warming in Mediterranean waters could be attributed to this AMO-like oscillation, being anthropogenic-induced climate change only responsible for 42% of total trend. The observed acceleration of water warming during the 1990s therefore appears to be caused by a superimposition of anthropogenic-induced warming with the positive phase of the AMO, while the recent slowdown of this tendency is likely due to a shift in the AMO phase. It has been proposed that this change in the AMO phase will mask the effect of global warming in the forthcoming decades, and our results indicate that the same could also be applicable to the Mediterranean Sea. Henceforth, natural multidecadal temperature oscillations should be taken into account to avoid underestimation of the anthropogenic-induced warming of the Mediterranean basin in the future.

  6. Examination of Liquid Fluoride Salt Heat Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets,more » and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat

  7. Secondary Confinement of Water Observed in Eutectic Melting of Aqueous Salt Systems in Nanopores.

    PubMed

    Meissner, Jens; Prause, Albert; Findenegg, Gerhard H

    2016-05-19

    Freezing and melting of aqueous solutions of alkali halides confined in the cylindrical nanopores of MCM-41 and SBA-15 silica was probed by differential scanning calorimetry (DSC). We find that the confinement-induced shift of the eutectic temperature in the pores can be significantly greater than the shift of the melting temperature of pure water. Greatest shifts of the eutectic temperature are found for salts that crystallize as oligohydrates at the eutectic point. This behavior is explained by the larger fraction of pore volume occupied by salt hydrates as compared to anhydrous salts, on the assumption that precipitated salt constitutes an additional confinement for ice/water in the pores. A model based on this secondary confinement effect gives a good representation of the experimental data. Salt-specific secondary confinement may play a role in a variety of fields, from salt-impregnated advanced adsorbents and catalysts to the thermal weathering of building materials.

  8. Perovskite nickelates as electric-field sensors in salt water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhen; Schwanz, Derek; Narayanan, Badri

    Designing materials to function in harsh environments, such as conductive aqueous media, is a problem of broad interest to a range of technologies, including energy, ocean monitoring and biological applications(1-4). The main challenge is to retain the stability and morphology of the material as it interacts dynamically with the surrounding environment. Materials that respond to mild stimuli through collective phase transitions and amplify signals could open up new avenues for sensing. Here we present the discovery of an electric-field-driven, water-mediated reversible phase change in a perovskite-structured nickelate, SmNiO35-7. This prototypical strongly correlated quantum material is stable in salt water, doesmore » not corrode, and allows exchange of protons with the surrounding water at ambient temperature, with the concurrent modification in electrical resistance and optical properties being capable of multi-modal readout. Besides operating both as thermistors and pH sensors, devices made of this material can detect sub-volt electric potentials in salt water. We postulate that such devices could be used in oceanic environments for monitoring electrical signals from various maritime vessels and sea creatures« less

  9. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming.

    PubMed

    Yoon, Jin-Ho; Wang, S-Y Simon; Gillies, Robert R; Kravitz, Ben; Hipps, Lawrence; Rasch, Philip J

    2015-10-21

    Since the winter of 2013-2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those associations that pertain to changing climate oscillations under global warming. Both intense drought and excessive flooding are projected to increase by at least 50% towards the end of the twenty-first century; this projected increase in water cycle extremes is associated with a strengthened relation to El Niño and the Southern Oscillation (ENSO)--in particular, extreme El Niño and La Niña events that modulate California's climate not only through its warm and cold phases but also its precursor patterns.

  10. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming

    PubMed Central

    Yoon, Jin-Ho; Wang, S-Y Simon; Gillies, Robert R.; Kravitz, Ben; Hipps, Lawrence; Rasch, Philip J.

    2015-01-01

    Since the winter of 2013–2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those associations that pertain to changing climate oscillations under global warming. Both intense drought and excessive flooding are projected to increase by at least 50% towards the end of the twenty-first century; this projected increase in water cycle extremes is associated with a strengthened relation to El Niño and the Southern Oscillation (ENSO)—in particular, extreme El Niño and La Niña events that modulate California's climate not only through its warm and cold phases but also its precursor patterns. PMID:26487088

  11. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming

    NASA Astrophysics Data System (ADS)

    Yoon, Jin-Ho; Wang, S.-Y. Simon; Gillies, Robert R.; Kravitz, Ben; Hipps, Lawrence; Rasch, Philip J.

    2015-10-01

    Since the winter of 2013-2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those associations that pertain to changing climate oscillations under global warming. Both intense drought and excessive flooding are projected to increase by at least 50% towards the end of the twenty-first century; this projected increase in water cycle extremes is associated with a strengthened relation to El Niño and the Southern Oscillation (ENSO)--in particular, extreme El Niño and La Niña events that modulate California's climate not only through its warm and cold phases but also its precursor patterns.

  12. Effects of a Circulating-water Garment and Forced-air Warming on Body Heat Content and Core Temperature

    PubMed Central

    Taguchi, Akiko; Ratnaraj, Jebadurai; Kabon, Barbara; Sharma, Neeru; Lenhardt, Rainer; Sessler, Daniel I.

    2005-01-01

    Background: Forced-air warming is sometimes unable to maintain perioperative normothermia. We therefore compared heat transfer, regional heat distribution, and core rewarming of forced-air warming with a novel circulating-water garment. Methods: Nine volunteers were each evaluated on two randomly ordered study days. They were anesthetized and cooled to a core temperature near 34°C. The volunteers were subsequently warmed for 2.5 hours with either a circulating-water garment or forced-air cover. Overall, heat balance was determined from the difference between cutaneous heat loss (thermal flux transducers) and metabolic heat production (oxygen consumption). Average arm and leg (peripheral) tissue temperatures were determined from 18 intramuscular needle thermocouples, 15 skin thermal flux transducers, and “deep” arm and foot thermometers. Results: Heat production (≈ 60 kcal/h) and loss (≈45 kcal/h) were similar with each treatment before warming. The increase in heat transfer across anterior portions of the skin surface was similar with each warming system (≈65 kcal/h). Forced-air warming had no effect on posterior heat transfer whereas circulating-water transferred 21 ± 9 kcal/h through the posterior skin surface after a half hour of warming. Over 2.5 h, circulating-water thus increased body heat content 56% more than forced air. Core temperatures thus increased faster than with circulating water than forced air, especially during the first hour, with the result that core temperature was 1.1 ± 0.7°C greater after 2.5 h (P < 0.001). Peripheral tissue heat content increased twice as much as core heat content with each device, but the core-to-peripheral tissue temperature gradient remained positive throughout the study. Conclusions: The circulating-water system transferred more heat than forced air, with the difference resulting largely from posterior heating. Circulating water rewarmed patients 0.4°C/h faster than forced air. A substantial peripheral

  13. The dynamic monitoring of warm-water discharge based on the airborne high-resolution thermal infrared remote sensing data

    NASA Astrophysics Data System (ADS)

    Shao, Honglan; Xie, Feng; Liu, Chengyu; Liu, Zhihui; Zhang, Changxing; Yang, Gui; Wang, Jianyu

    2016-04-01

    The cooling water discharged from the coastal plants flow into the sea continuously, whose temperature is higher than original sea surface temperature (SST). The fact will have non-negligible influence on the marine environment in and around where the plants site. Hence, it's significant to monitor the temporal and spatial variation of the warm-water discharge for the assessment of the effect of the plant on its surrounding marine environment. The paper describes an approach for the dynamic monitoring of the warm-water discharge of coastal plants based on the airborne high-resolution thermal infrared remote sensing technology. Firstly, the geometric correction was carried out for the thermal infrared remote sensing images acquired on the aircraft. Secondly, the atmospheric correction method was used to retrieve the sea surface temperature of the images. Thirdly, the temperature-rising districts caused by the warm-water discharge were extracted. Lastly, the temporal and spatial variations of the warm-water discharge were analyzed through the geographic information system (GIS) technology. The approach was applied to Qinshan nuclear power plant (NPP), in Zhejiang Province, China. In considering with the tide states, the diffusion, distribution and temperature-rising values of the warm-water discharged from the plant were calculated and analyzed, which are useful to the marine environment assessment.

  14. Soil warming increased whole-tree water use of Pinus cembra at the treeline in the Central Tyrolean Alps

    PubMed Central

    Wieser, Gerhard; Grams, Thorsten E.E.; Matysssek, Rainer; Oberhuber, Walter; Gruber, Andreas

    2016-01-01

    The study quantified the effect of soil warming on sap flow density (Qs) of Pinus cembra at treeline in the Central Tyrolean Alps. To enhance soil temperature we installed a transparent roof construction above the forest floor around six trees. Six other trees served as controls in the absence of any manipulation. Roofing enhanced growing season mean soil temperature by 1.6, 1.3, and 1.0 °C at 5, 10, and 20 cm soil depth, respectively, while soil water availability was not affected. Sap flow density (using Granier-type thermal dissipation probes) and environmental parameters were monitored throughout three growing seasons. During the first year of treatment, no warming effect was detected on Qs. However, soil warming caused Qs to increase significantly by 11 and 19% above levels in control trees during the second and third year, respectively. This effect appeared to result from warming-induced root production, a reduction in viscosity and perhaps an increase also in root hydraulic conductivity. Hardly affected were leaf-level net CO2 uptake rate and conductance for water vapor, so that water-use efficiency stayed unchanged as confirmed by needle δ13C analysis. We conclude that tree water loss will increase with soil warming, which may alter the water balance within the treeline ecotone of the Central Austrian Alps in a future warming environment. PMID:25737326

  15. Contact Freezing of Water by Salts.

    PubMed

    Niehaus, Joseph; Cantrell, Will

    2015-09-03

    Water is unlikely to crystallize homogeneously at temperatures greater than -34 °C. Freezing at higher temperatures is heterogeneous-catalyzed by the presence of a second substance. If that substance is at an air-water interface, then the mode is called contact freezing, and it typically will trigger nucleation at a higher temperature than if the substance were wholly immersed within the liquid. We find that the impact of salt particles initiates freezing in experiments using water droplets at supercoolings of 9 to 16 °C. These results show that contact freezing nuclei need not be effective as immersion mode nuclei. We discuss our results in the context of proposed mechanisms of contact freezing. Finally, we use the time scales for diffusion of heat and of ions and the propagation of a sound wave through the droplet to estimate that contact freezing occurs within 10 ns of impact.

  16. COLD WATER PATCHES IN WARM STREAMS: PHYSICOCHEMICAL CHARACTERISTICS AND THE INFLUENCE OF SHADING

    EPA Science Inventory

    Discrete coldwater patches within the surface waters of summer-warm streams afford potential thermal refuge for coldwater fishes during periods of heat stress. This analysis focused on reach-scale heterogeneity in water temperatures as influenced by local influx of cooler subsur...

  17. Assessing water quality of the Chesapeake Bay by the impact of sea level rise and warming

    NASA Astrophysics Data System (ADS)

    Wang, P.; Linker, L.; Wang, H.; Bhatt, G.; Yactayo, G.; Hinson, K.; Tian, R.

    2017-08-01

    The influence of sea level rise and warming on circulation and water quality of the Chesapeake Bay under projected climate conditions in 2050 were estimated by computer simulation. Four estuarine circulation scenarios in the estuary were run using the same watershed load in 1991-2000 period. They are, 1) the Base Scenario, which represents the current climate condition, 2) a Sea Level Rise Scenario, 3) a Warming Scenario, and 4) a combined Sea Level Rise and Warming Scenario. With a 1.6-1.9°C increase in monthly air temperatures in the Warming Scenario, water temperature in the Bay is estimated to increase by 0.8-1°C. Summer average anoxic volume is estimated to increase 1.4 percent compared to the Base Scenario, because of an increase in algal blooms in the spring and summer, promotion of oxygen consumptive processes, and an increase of stratification. However, a 0.5-meter Sea Level Rise Scenario results in a 12 percent reduction of anoxic volume. This is mainly due to increased estuarine circulation that promotes oxygen-rich sea water intrusion in lower layers. The combined Sea Level Rise and Warming Scenario results in a 10.8 percent reduction of anoxic volume. Global warming increases precipitation and consequently increases nutrient loads from the watershed by approximately 5-7 percent. A scenario that used a 10 percent increase in watershed loads and current estuarine circulation patterns yielded a 19 percent increase in summer anoxic volume, while a scenario that used a 10 percent increase in watershed loads and modified estuarine circulation patterns by the aforementioned sea level rise and warming yielded a 6 percent increase in summer anoxic volume. Impacts on phytoplankton, sediments, and water clarity were also analysed.

  18. Global Warming In A Regional Model of The Atlantic Ocean - Echam4/opyc3 In Flame 4/3

    NASA Astrophysics Data System (ADS)

    Schweckendiek, U.; Willebrand, J.

    The reaction of the Thermohaline Circulation (THC) in most climate models on global warming scenarios is a weakening of the THC. An exception is the ECHAM4/OPYC3 simulation whose stable behaviour is traced back to a strongly enhanced evaporation and as a consequence to a development of a salt anomaly in the tropics and subtropics of the Atlantic Ocean (Latif et al.,2000). This salt signal is advected into convection regions and compensates the reduction of surface density due to surface heating and freshening. To examine this scenario for a more realistic ocean model, data from this model is used to drive a reginal model of the Atlantic Ocean. In order to test the crucial mechanisms for the maintainance of the meridional overturning, we have performed sensitivity studies by focussing on different combinations of the anomalous freshwater and heat fluxes. The results demonstrate that for the stabilising effect to become effective the salt sig- nal has to enter the GIN-Seas and subsequently the overflow waters, underlining the importance of the overflows for the THC. The Labrador Sea Convection is however uneffected by this stabilising salt signal and its convection ultimatly breaks down un- der surface warming and freshening.

  19. WATER LEVEL AND OXYGEN DELIVERY/UTILIZATION IN POROUS SALT MARSH SEDIMENTS

    EPA Science Inventory

    Increasing terrestrial nutrient inputs to coastal waters is a global water quality issue worldwide, and salt marshes may provide a valuable nutrient buffer, either by direct removal or by smoothing out pulse inputs between sources and sensitive estuarine habitats. A major challen...

  20. Preliminary Evidence for the Amplification of Global Warming in Shallow, Intertidal Estuarine Waters.

    PubMed

    Oczkowski, Autumn; McKinney, Richard; Ayvazian, Suzanne; Hanson, Alana; Wigand, Cathleen; Markham, Erin

    2015-01-01

    Over the past 50 years, mean annual water temperature in northeastern U.S. estuaries has increased by approximately 1.2°C, with most of the warming recorded in the winter and early spring. A recent survey and synthesis of data from four locations in Southern Rhode Island has led us to hypothesize that this warming may be amplified in the shallow (<1 m), nearshore portions of these estuaries. While intertidal areas are not typically selected as locations for long-term monitoring, we compiled data from published literature, theses, and reports that suggest that enhanced warming may be occurring, perhaps at rates three times higher than deeper estuarine waters. Warmer spring waters may be one of the factors influencing biota residing in intertidal regions both in general as well as at our specific sites. We observed greater abundance of fish, and size of Menidia sp., in recent (2010-2012) seine surveys compared to similar collections in 1962. While any linkages are speculative and data are preliminary, taken together they suggest that shallow intertidal portions of estuaries may be important places to look for the effects of climate change.

  1. Plasmachemical synthesis of nanopowders of yttria and zirconia from dispersed water-salt-organic mixtures

    NASA Astrophysics Data System (ADS)

    Novoselov, Ivan; Karengin, Alexander; Shamanin, Igor; Alyukov, Evgeny; Gusev, Alexander

    2018-03-01

    Article represents results on theoretical and experimental research of yttria and zirconia plasmachemical synthesis in air plasma from water-salt-organic mixtures "yttrium nitrate-water-acetone" and "zirconyl nitrate-water-acetone". On the basis of thermotechnical calculations the influence of organic component on lower heat value and adiabatic combustion temperature of water-salt-organic mixtures as well as compositions of mixtures providing their energy-efficient plasma treatment were determined. The calculations found the influence of mass fraction and temperature of air plasma supporting gas on the composition of plasma treatment products. It was determined the conditions providing yttria and zirconia plasmachemical synthesis in air plasma. During experiments it was b eing carried out the plasmachemical synthesis of yttria and zirconia powders in air plasma flow from water -salt-organic mixtures. Analysis of the results for obtained powders (scanning electron microscopy, X-ray diffraction analysis, BET analysis) confirm nanostructure of yttria and zirconia.

  2. Water vapor changes under global warming and the linkage to present-day interannual variabilities in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Takahashi, Hanii; Su, Hui; Jiang, Jonathan H.

    2016-12-01

    The fractional water vapor changes under global warming across 14 Coupled Model Intercomparison Project Phase 5 simulations are analyzed. We show that the mean fractional water vapor changes under global warming in the tropical upper troposphere between 300 and 100 hPa range from 12.4 to 28.0 %/K across all models while the fractional water vapor changes are about 5-8 %/K in other regions and at lower altitudes. The "upper-tropospheric amplification" of the water vapor change is primarily driven by a larger temperature increase in the upper troposphere than in the lower troposphere per degree of surface warming. The relative contributions of atmospheric temperature and relative humidity changes to the water vapor change in each model vary between 71.5 to 131.8 % and 24.8 to -20.1 %, respectively. The inter-model differences in the water vapor change is primarily caused by differences in temperature change, except over the inter-tropical convergence zone within 10°S-10°N where the model differences due to the relative humidity change are significant. Furthermore, we find that there is generally a positive correlation between the rates of water vapor change for long-tem surface warming and those on the interannual time scales. However, the rates of water vapor change under long-term warming have a systematic offset from those on the inter-annual time scales and the dominant contributor to the differences also differs for the two time scales, suggesting caution needs to be taken when inferring long-term water vapor changes from the observed interannual variations.

  3. Attribution of the United States "warming hole": aerosol indirect effect and precipitable water vapor.

    PubMed

    Yu, Shaocai; Alapaty, Kiran; Mathur, Rohit; Pleim, Jonathan; Zhang, Yuanhang; Nolte, Chris; Eder, Brian; Foley, Kristen; Nagashima, Tatsuya

    2014-11-06

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20(th) century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) (termed the U.S. "warming hole"). Here we used observations of temperature, shortwave cloud forcing (SWCF), longwave cloud forcing (LWCF), aerosol optical depth and precipitable water vapor as well as global coupled climate models to explore the attribution of the "warming hole". We find that the observed cooling trend in summer Tmax can be attributed mainly to SWCF due to aerosols with offset from the greenhouse effect of precipitable water vapor. A global coupled climate model reveals that the observed "warming hole" can be produced only when the aerosol fields are simulated with a reasonable degree of accuracy as this is necessary for accurate simulation of SWCF over the region. These results provide compelling evidence of the role of the aerosol indirect effect in cooling regional climate on the Earth. Our results reaffirm that LWCF can warm both winter Tmax and Tmin.

  4. Water in embedded low-mass protostars: cold envelopes and warm outflows

    NASA Astrophysics Data System (ADS)

    Kristensen, Lars E.; van Dishoeck, Ewine; Mottram, Joseph; Schmalzl, Markus; Visser, Ruud

    2015-08-01

    As stars form, gas from the parental cloud is transported through the molecular envelope to the protostellar disk from which planets eventually form. Water plays a crucial role in such systems: it forms the backbone of the oxygen chemistry, it is a unique probe of warm and hot gas, and it provides a unique link between the grain surface and gas-phase chemistries. The distribution of water, both as ice and gas, is a fundamental question to our understanding of how planetary systems, such as the Solar System, form.The Herschel Space Observatory observed many tens of embedded low-mass protostars in a suite of gas-phase water transitions in several programs (e.g. Water in Star-forming regions with Herschel, WISH, and the William Herschel Line Legacy Survey, WILL), and related species (e.g. CO in Protostars with HIFI, COPS-HIFI). I will summarize what Herschel has revealed about the water distribution in the cold outer molecular envelope of low-mass protostars, and the warm gas in outflows, the two components predominantly traced by Herschel observations. I will present our current understanding of where the water vapor is in protostellar systems and the underlying physical and chemical processes leading to this distribution. Through these dedicated observational surveys and complementary modeling efforts, we are now at a stage where we can quantify where the water is during the early stages of star formation.

  5. Iron clad wetlands: Soil iron-sulfur buffering determines coastal wetland response to salt water incursion

    NASA Astrophysics Data System (ADS)

    Schoepfer, Valerie A.; Bernhardt, Emily S.; Burgin, Amy J.

    2014-12-01

    Coastal freshwater wetland chemistry is rapidly changing due to increased frequency of salt water incursion, a consequence of global change. Seasonal salt water incursion introduces sulfate, which microbially reduces to sulfide. Sulfide binds with reduced iron, producing iron sulfide (FeS), recognizable in wetland soils by its characteristic black color. The objective of this study is to document iron and sulfate reduction rates, as well as product formation (acid volatile sulfide (AVS) and chromium reducible sulfide (CRS)) in a coastal freshwater wetland undergoing seasonal salt water incursion. Understanding iron and sulfur cycling, as well as their reduction products, allows us to calculate the degree of sulfidization (DOS), from which we can estimate how long soil iron will buffer against chemical effects of sea level rise. We show that soil chloride, a direct indicator of the degree of incursion, best predicted iron and sulfate reduction rates. Correlations between soil chloride and iron or sulfur reduction rates were strongest in the surface layer (0-3 cm), indicative of surface water incursion, rather than groundwater intrusion at our site. The interaction between soil moisture and extractable chloride was significantly related to increased AVS, whereas increased soil chloride was a stronger predictor of CRS. The current DOS in this coastal plains wetland is very low, resulting from high soil iron content and relatively small degree of salt water incursion. However, with time and continuous salt water exposure, iron will bind with incoming sulfur, creating FeS complexes, and DOS will increase.

  6. Highway deicing salt dynamic runoff to surface water and subsequent infiltration to groundwater during severe UK winters.

    PubMed

    Rivett, Michael O; Cuthbert, Mark O; Gamble, Richard; Connon, Lucy E; Pearson, Andrew; Shepley, Martin G; Davis, John

    2016-09-15

    Dynamic impact to the water environment of deicing salt application at a major highway (motorway) interchange in the UK is quantitatively evaluated for two recent severe UK winters. The contaminant transport pathway studied allowed controls on dynamic highway runoff and storm-sewer discharge to a receiving stream and its subsequent leakage to an underlying sandstone aquifer, including possible contribution to long-term chloride increases in supply wells, to be evaluated. Logged stream electrical-conductivity (EC) to estimate chloride concentrations, stream flow, climate and motorway salt application data were used to assess salt fate. Stream loading was responsive to salt applications and climate variability influencing salt release. Chloride (via EC) was predicted to exceed the stream Environmental Quality Standard (250mg/l) for 33% and 18% of the two winters. Maximum stream concentrations (3500mg/l, 15% sea water salinity) were ascribed to salt-induced melting and drainage of highway snowfall without dilution from, still frozen, catchment water. Salt persistance on the highway under dry-cold conditions was inferred from stream observations of delayed salt removal. Streambed and stream-loss data demonstrated chloride infiltration could occur to the underlying aquifer with mild and severe winter stream leakage estimated to account for 21 to 54% respectively of the 70t of increased chloride (over baseline) annually abstracted by supply wells. Deicing salt infiltration lateral to the highway alongside other urban/natural sources were inferred to contribute the shortfall. Challenges in quantifying chloride mass/fluxes (flow gauge accuracy at high flows, salt loading from other roads, weaker chloride-EC correlation at low concentrations), may be largely overcome by modest investment in enhanced data acquisition or minor approach modification. The increased understanding of deicing salt dynamic loading to the water environment obtained is relevant to improved

  7. THE ACUTE TOXICITY OF MAJOR ION SALTS TO CERIODAPHNIA DUBIA: I. INFLUENCE OF BACKGROUND WATER CHEMISTRY

    PubMed Central

    Mount, David R.; Erickson, Russell J.; Highland, Terry L.; Hockett, J. Russell; Hoff, Dale J.; Jenson, Correne T.; Norberg-King, Teresa J.; Peterson, Kira N.; Polaske, Zach; Wisniewski, Stephanie

    2018-01-01

    The ions Na+, K+, Ca2+, Mg2+, Cl−, SO42−, and HCO3−/CO32− (referred to here as “major ions”) are present in all fresh waters and are physiologically required by aquatic organisms, but can increase to harmful levels from a variety of anthropogenic activities. It is also known that the toxicities of major ion salts can vary depending on the concentrations of other ions, and understanding these relationships is key to establishing appropriate environmental limits. In this paper we present a series of experiments with Ceriodaphnia dubia to evaluate the acute toxicity of twelve major ion salts and to determine how toxicity of these salts varies as a function of background water chemistry. All salts except CaSO4 and CaCO3 were acutely toxic below saturation, with the lowest LC50s found for K salts. All ten salts that showed toxicity also showed some degree of reduced toxicity as the ionic content of the background water increased. Experiments that independently varied Ca:Mg ratio, Na:K ratio, Cl:SO4 ratio, and alkalinity/pH demonstrated that Ca concentration was the primary factor influencing the toxicities of Na and Mg salts, while the toxicities of K salts were primarily influenced by the concentration of Na. These experiments also indicated multiple mechanisms of toxicity and suggested important aspects of dosimetry: the toxicities of K, Mg, and Ca salts were best related to the chemical activity of the cation, while the toxicities of Na salts also reflected an influence of the anions and were well correlated with osmolarity. Understanding these relationships between major ion toxicity and background water chemistry should aid in the development of sensible risk assessment and regulatory standards. PMID:27167636

  8. Modeling of Dense Water Production and Salt Transport from Alaskan Coastal Polynyas

    NASA Technical Reports Server (NTRS)

    Signorini, Sergio R.; Cavalieri, Donald J.

    2000-01-01

    The main significance of this paper is that a realistic, three-dimensional, high-resolution primitive equation model has been developed to study the effects of dense water formation in Arctic coastal polynyas. The model includes realistic ambient stratification, realistic bottom topography, and is forced by time-variant surface heat flux, surface salt flux, and time-dependent coastal flow. The salt and heat fluxes, and the surface ice drift, are derived from satellite observations (SSM/I and NSCAT sensors). The model is used to study the stratification, salt transport, and circulation in the vicinity of Barrow Canyon during the 1996/97 winter season. The coastal flow (Alaska coastal current), which is an extension of the Bering Sea throughflow, is formulated in the model using the wind-transport regression. The results show that for the 1996/97 winter the northeastward coastal current exports 13% to 26% of the salt produced by coastal polynyas upstream of Barrow Canyon in 20 to 30 days. The salt export occurs more rapidly during less persistent polynyas. The inclusion of ice-water stress in the model makes the coastal current slightly weaker and much wider due to the combined effects of surface drag and offshore Ekman transport.

  9. Chapter 3: Providing water and forage in the Salt-Verde River Basin

    Treesearch

    Leonard F. DeBano; Malchus B. Baker; Gerald J. Gottfried

    1999-01-01

    The Salt-Verde River Basin, covering about 8.4 million acres of the Central Arizona Highlands, supplies most of the water for the Salt River Valley in addition to providing other multiple use values. Mixed conifer, ponderosa pine forests, and a portion of the pinyon-juniper woodlands predominantly occupy the higher-elevation watersheds. Chaparral shrublands occupy a...

  10. Combined Theoretical and Experimental Study of Refractive Indices of Water-Acetonitrile-Salt Systems.

    PubMed

    An, Ni; Zhuang, Bilin; Li, Minglun; Lu, Yuyuan; Wang, Zhen-Gang

    2015-08-20

    We propose a simple theoretical formula for describing the refractive indices in binary liquid mixtures containing salt ions. Our theory is based on the Clausius-Mossotti equation; it gives the refractive index of the mixture in terms of the refractive indices of the pure liquids and the polarizability of the ionic species, by properly accounting for the volume change upon mixing. The theoretical predictions are tested by extensive experimental measurements of the refractive indices for water-acetonitrile-salt systems for several liquid compositions, different salt species, and a range of salt concentrations. Excellent agreement is obtained in all cases, especially at low salt concentrations, with no fitting parameters. A simplified expression of the refractive index for low salt concentration is also given, which can be the theoretical basis for determination of salt concentration using refractive index measurements.

  11. Formation of well-mixed warm water column in central Bohai Sea during summer: Role of high-frequency atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Ma, Weiwei; Wan, Xiuquan; Wang, Zhankun; Liu, Yulong; Wan, Kai

    2017-12-01

    The influence of high-frequency atmospheric forcing on the formation of a well-mixed summer warm water column in the central Bohai Sea is investigated comparing model simulations driven by daily surface forcing and those using monthly forcing data. In the absence of high-frequency atmospheric forcing, numerical simulations have repeatedly failed to reproduce this vertically uniform column of warm water measured over the past 35 years. However, high-frequency surface forcing is found to strongly influence the structure and distribution of the well-mixed warm water column, and simulations are in good agreement with observations. Results show that high frequency forcing enhances vertical mixing over the central bank, intensifies downward heat transport, and homogenizes the water column to form the Bohai central warm column. Evidence presented shows that high frequency forcing plays a dominant role in the formation of the well-mixed warm water column in summer, even without the effects of tidal and surface wave mixing. The present study thus provides a practical and rational way of further improving the performance of oceanic simulations in the Bohai Sea and can be used to adjust parameterization schemes of ocean models.

  12. Study Orientation Ply of Fiberglass on Blade Salt Water Pump Windmill using Abaqus

    NASA Astrophysics Data System (ADS)

    Badruzzaman, B.; Sifa, A.

    2018-02-01

    Windmill is one tool to generate energy from wind energy is converted into energy motion, salt production process still using traditional process by utilizing windmill to move sea water to salt field With a windmill driven water system, a horizontal axis type windmill with an average windmill height of 3-4 m, with a potential wind speed of 5-9 m / s, the amount of blade used for salt water pumps as much as 4 blades, one of the main factor of the windmill component is a blade, blade designed for the needs of a salt water pump by using fiberglass material. On layer orientation 0°,30°,45°,60° and 90° with layer number 10 and layer thickness 2 mm, the purpose of this study was to determine the strength of fiberglass that was influenced by the orientation of the layer, and to determine the orientation of fiberglass layer before making. This method used Finite Element Analysis method using ABAQUS, with homogenous and heterogeneous layer parameters. The simulation result shows the difference in von misses value at an angle of 0°, 30°, 45°,60° homogeneous value is greater than heterogeneous value, whereas in orientation 90 heterogeneous values have value 1,689e9 Pa, greater than homogenous 90 orientation value of 1,296e9 Pa.

  13. Some results of the action of warm waters from thermal stations on the emissaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiriac, V.; Chow, V.T.

    1973-01-01

    Some aspects of thermal pollution studies developed in Romania are exemplified with data concerning the Jiu River and the Siut-Ghiol Lake. Research has shown that the warm water discharged into these waters has a fairly small influence on the physical-chemical and biological characteristics of their waters. (PCS)

  14. Potential of duckweed (Lemna minor) for removal of nitrogen and phosphorus from water under salt stress.

    PubMed

    Liu, Chunguang; Dai, Zheng; Sun, Hongwen

    2017-02-01

    Duckweed plays a major role in the removal of nitrogen (N) and phosphorus (P) from water. To determine the effect of salt stress on the removal of N and P by duckweed, we cultured Lemna minor, a common species of duckweed, in N and P-rich water with NaCl concentrations ranging from 0 to 100 mM for 24 h and 72 h, respectively. The results show that the removal capacity of duckweed for N and P was reduced by salt stress. Higher salt stress with longer cultivation period exerts more injury to duckweed and greater inhibition of N and P removal. Severe salt stress (100 mM NaCl) induced duckweed to release N and P and even resulted in negative removal efficiencies. The results indicate that L. minor should be used to remove N and P from water with salinities below 75 mM NaCl, or equivalent salt stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Warm Water Compress as an Alternative for Decreasing the Degree of Phlebitis.

    PubMed

    Annisa, Fitri; Nurhaeni, Nani; Wanda, Dessie

    Intravenous fluid therapy is an invasive procedure which may increase the risk of patient complications. One of the most common of these is phlebitis, which may cause discomfort and tissue damage. Therefore, a nursing intervention is needed to effectively treat phlebitis. The purpose of this study was to investigate the effectiveness of applying a warm compression intervention to reduce the degree of phlebitis. A quasi-experimental pre-test and post-test design was used, with a non-equivalent control group. The total sample size was 32 patients with degrees of phlebitis ranging from 1 to 4. The total sample was divided into 2 interventional groups: those patients that were given 0.9% NaCl compresses and those given warm water compresses. The results showed that both compresses were effective in reducing the degree of phlebitis, with similar p values (p = .000). However, there was no difference in the average reduction score between the two groups (p = .18). Therefore, a warm water compress is valuable in the treatment of phlebitis, and could decrease the degree of phlebitis both effectively and inexpensively.

  16. 4. VIEW TO NORTHEAST, SKINNER SALT ROASTERS, SAMPLING BUILDING, WATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW TO NORTHEAST, SKINNER SALT ROASTERS, SAMPLING BUILDING, WATER TOWER, AND OFFICE BUILDING. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  17. Soil warming increased whole-tree water use of Pinus cembra at the treeline in the Central Tyrolean Alps.

    PubMed

    Wieser, Gerhard; Grams, Thorsten E E; Matyssek, Rainer; Oberhuber, Walter; Gruber, Andreas

    2015-03-01

    This study quantified the effect of soil warming on sap flow density (Qs) of Pinus cembra L. at the treeline in the Central Tyrolean Alps. To enhance soil temperature we installed a transparent roof construction above the forest floor around six trees. Six other trees served as controls in the absence of any manipulation. Roofing enhanced growing season mean soil temperature by 1.6, 1.3 and 1.0 °C at 5, 10 and 20 cm soil depth, respectively, while soil water availability was not affected. Sap flow density (using Granier-type thermal dissipation probes) and environmental parameters were monitored throughout three growing seasons. During the first year of treatment, no warming effect was detected on Qs. However, soil warming caused Qs to increase significantly by 11 and 19% above levels in control trees during the second and third year, respectively. This effect appeared to result from warming-induced root production, a reduction in viscosity and perhaps an increase also in root hydraulic conductivity. Hardly affected were leaf-level net CO2 uptake rate and conductance for water vapour, so that water-use efficiency stayed unchanged as confirmed by needle δ(13)C analysis. We conclude that tree water loss will increase with soil warming, which may alter the water balance within the treeline ecotone of the Central Austrian Alps in a future warming environment. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Spectral Evidence for Hydrated Salts in Seasonal Brine Flows on Mars

    NASA Astrophysics Data System (ADS)

    Ojha, L.

    2015-12-01

    Recurring Slope Lineae (RSL) are narrow, low-reflectance features forming on present-day Mars that have been hypothesized to be due to the transient flow of liquid water. RSL extend incrementally downslope on steep, warm slopes, fade when inactive, and reappear annually over multiple Mars years as monitored by the HiRISE camera on board the Mars Reconnaissance Orbiter (MRO). In the southern mid-latitudes of Mars, RSL are observed to form most commonly on equator facing slopes, but in equatorial regions RSL often "follow the sun", forming and growing on slopes that receive the greatest insolation during a particular season. The temperature on slopes where RSL are active typically exceeds 250 K and often but not always exceeds 273 K, although sub-surface temperatures would be colder. These characteristics suggest a possible role of salts in lowering the freezing point of water, allowing briny solutions to flow. Confirmation of this wet origin hypothesis for RSL would require either (i) detection of liquid water absorptions on the surface, or (ii) detection of hydrated salts precipitated from that water. The mineralogical composition of RSL and their surroundings can be investigated using orbital data acquired by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) also on board MRO, which acquires spectral cubes with 544 spectral channels in the visible to near-infrared range of ~0.36 μm to 3.92 μm [13], within which both liquid water and hydrated salts have diagnostic absorption bands at ~1.4 μm, ~1.9 μm, ~3.0 μm. Additionally, hydrated salts may have combination of overtones at other wavelengths from 1.7 μm to 2.4 μm. We present results from examination of individual pixels containing RSL at four different sites that confirm the hypothesis that RSL are due to present-day activity of briny water.

  19. Great Salt Lake and Bonneville Salt Flats, UT, USA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This is a view of the Great Salt Lake and nearby Bonneville Salt Flats, UT, (41.0N, 112.5W). A railroad causeway divides the lake with a stark straight line changing the water level and chemistry of the lake as a result. Fresh water runoff enters from the south adding to the depth and reducing the salinity. The north half receives little frsh water and is more saline and shallow. The Bonnieville Salt Flats is the lakebed of a onetime larger lake.

  20. Great Salt Lake and Bonneville Salt Flats, UT, USA

    NASA Image and Video Library

    1992-04-02

    This is a view of the Great Salt Lake and nearby Bonneville Salt Flats, UT, (41.0N, 112.5W). A railroad causeway divides the lake with a stark straight line changing the water level and chemistry of the lake as a result. Fresh water runoff enters from the south adding to the depth and reducing the salinity. The north half receives little frsh water and is more saline and shallow. The Bonnieville Salt Flats is the lakebed of a onetime larger lake.

  1. Effects of salt secretion on psychrometric determinations of water potential of cotton leaves.

    PubMed

    Klepper, B; Barrs, H D

    1968-07-01

    Thermocouple psychrometers gave lower estimates of water potential of cotton leaves than did a pressure chamber. This difference was considerable for turgid leaves, but progressively decreased for leaves with lower water potentials and fell to zero at water potentials below about -10 bars. The conductivity of washings from cotton leaves removed from the psychrometric equilibration chambers was related to the magnitude of this discrepancy in water potential, indicating that the discrepancy is due to salts on the leaf surface which make the psychrometric estimates too low. This error, which may be as great as 400 to 500%, cannot be eliminated by washing the leaves because salts may be secreted during the equilibration period. Therefore, a thermocouple psychrometer is not suitable for measuring the water potential of cotton leaves when it is above about -10 bars.

  2. Role of Stratospheric Water Vapor in Global Warming from GCM Simulations Constrained by MLS Observation

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Stek, P. C.; Su, H.; Jiang, J. H.; Livesey, N. J.; Santee, M. L.

    2014-12-01

    Over the past century, global average surface temperature has warmed by about 0.16°C/decade, largely due to anthropogenic increases in well-mixed greenhouse gases. However, the trend in global surface temperatures has been nearly flat since 2000, raising a question regarding the exploration of the drivers of climate change. Water vapor is a strong greenhouse gas in the atmosphere. Previous studies suggested that the sudden decrease of stratospheric water vapor (SWV) around 2000 may have contributed to the stall of global warming. Since 2004, the SWV observed by Microwave Limb Sounder (MLS) on Aura satellite has shown a slow recovery. The role of recent SWV variations in global warming has not been quantified. We employ a coupled atmosphere-ocean climate model, the NCAR CESM, to address this issue. It is found that the CESM underestimates the stratospheric water vapor by about 1 ppmv due to limited representations of the stratospheric dynamic and chemical processes important for water vapor variabilities. By nudging the modeled SWV to the MLS observation, we find that increasing SWV by 1 ppmv produces a robust surface warming about 0.2°C in global-mean when the model reaches equilibrium. Conversely, the sudden drop of SWV from 2000 to 2004 would cause a surface cooling about -0.08°C in global-mean. On the other hand, imposing the observed linear trend of SWV based on the 10-year observation of MLS in the CESM yields a rather slow surface warming, about 0.04°C/decade. Our model experiments suggest that SWV contributes positively to the global surface temperature variation, although it may not be the dominant factor that drives the recent global warming hiatus. Additional sensitivity experiments show that the impact of SWV on surface climate is mostly governed by the SWV amount at 100 hPa in the tropics. Furthermore, the atmospheric model simulations driven by observed sea surface temperature (SST) show that the inter-annual variation of SWV follows that of SST

  3. Decadal-scale progression of Dansgaard-Oeschger warming events - Are warmings at the end of Heinrich-Stadials different from others?

    NASA Astrophysics Data System (ADS)

    Erhardt, T.; Capron, E.; Rasmussen, S.; Schuepbach, S.; Bigler, M.; Fischer, H.

    2017-12-01

    During the last glacial period proxy records throughout the Northern Hemisphere document a succession of rapid millennial-scale warming events, called Dansgaard Oeschger (DO) events. Marine proxy records from the Atlantic also reveal, that some of the warming events where preceded by large ice rafting events, referred to as Heinrich events. Different mechanisms have been proposed, that can produce DO-like warming in model experiments, however the progression and plausible trigger of the events and their possible interplay with the Heinrich events is still unknown. Because of their fast nature, the progression is challenging to reconstruct from paleoclimate data due to the temporal resolution achievable in many archives and cross-dating uncertainties between records. We use new high-resolution multi-proxy records of sea-salt and terrestrial aerosol concentrations over the period 10-60 ka from two Greenland deep ice cores in conjunction with local precipitation and temperature proxy records from one of the cores to investigate the progression of environmental changes at the onset of the individual warming events. The timing differences are then used to explore whether the DO warming events that terminate Heinrich-Stadials progressed differently in comparison to those after Non-Heinrich-Stadials. Our analysis indicates no difference in the progression of the warming terminating Heinrich-Stadials and Non-Heinrich-Stadials. Combining the evidence from all warming events in the period, our analysis shows a consistent lead of the changes in both local precipitation and terrestrial dust aerosol concentrations over the change in sea-salt aerosol concentrations and local temperature by approximately one decade. This implies that both the moisture transport to Greenland and the intensity of the Asian winter monsoon changed before the sea-ice cover in the North Atlantic was reduced, rendering a collapse of the sea-ice cover as a trigger for the DO events unlikely.

  4. The use of warmed water treatment to induce protective immunity against the bacterial cold-water disease pathogen Flavobacterium psychrophilum in ayu (Plecoglossus altivelis).

    PubMed

    Sugahara, K; Eguchi, M

    2012-03-01

    We investigated the induction of protective immunity against bacterial cold-water disease (BCWD) caused by Flavobacterium psychrophilum by warmed water treatment in ayu (Plecoglossus altivelis). Fish were immersed in a live bacterial suspension (10⁷ CFU mL⁻¹) for 30 min and placed in 700 L concrete tanks. The 28 °C warmed water treatment lasted 3 days and began 1, 6, and 24 h after immersion in the live bacterial suspension. A naïve control fish group was immersed in a sterilized modified Cytophaga (MCY) broth instead of the bacterial suspension. Fourteen days after the immersion, agglutination antibody titers against F. psychrophilum were measured by using micro-titer methods. Fish were then exposed to a bacterial bath to infect them with live F. psychrophilum, and cumulative mortality was monitored. Fish treated with warmed water at 1, 6, and 24 h after immersion in the live bacterial suspension had cumulative mortalities of 36%, 30%, and 18%, respectively, all of which were significantly lower than the cumulative mortality of the naïve control fish (90%). Treated fish also showed high antibody titers against F. psychrophilum in agglutination tests. These results demonstrate that warmed water treatment could not only cure BCWD but also immunize the fish against the causative agent F. psychrophilum. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Recent Warming of Lake Kivu

    PubMed Central

    Katsev, Sergei; Aaberg, Arthur A.; Crowe, Sean A.; Hecky, Robert E.

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient. PMID:25295730

  6. Recent warming of lake Kivu.

    PubMed

    Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  7. Temperature invariance of NaCl solubility in water: inferences from salt-water cluster behavior of NaCl, KCl, and NH4Cl.

    PubMed

    Bharmoria, Pankaj; Gupta, Hariom; Mohandas, V P; Ghosh, Pushpito K; Kumar, Arvind

    2012-09-27

    The growth and stability of salt-water clusters have been experimentally studied in aqueous solutions of NaCl, KCl, and NH(4)Cl from dilute to near-saturation conditions employing dynamic light scattering and zeta potential measurements. In order to examine cluster stability, the changes in the cluster sizes were monitored as a function of temperature. Compared to the other cases, the average size of NaCl-water clusters remained almost constant over the studied temperature range of 20-70 °C. Information obtained from the temperature-dependent solution compressibility (determined from speed of sound and density measurements), multinuclear NMR ((1)H, (17)O, (35)Cl NMR), and FTIR were utilized to explain the cluster behavior. Comparison of NMR chemical shifts of saturated salt solutions with solid-state NMR data of pure salts, and evaluation of spectral modifications in the OH stretch region of saturated salt solutions as compared to that of pure water, provided important clues on ion pair-water interactions and water structure in the clusters. The high stability and temperature independence of the cluster sizes in aqueous NaCl shed light on the temperature invariance of its solubility.

  8. Molecular dynamics study of salt-solution interface: solubility and surface charge of salt in water.

    PubMed

    Kobayashi, Kazuya; Liang, Yunfeng; Sakka, Tetsuo; Matsuoka, Toshifumi

    2014-04-14

    The NaCl salt-solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt-solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt-solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.

  9. Warming combined with more extreme precipitation regimes modifies the water sources used by trees

    DOE PAGES

    Grossiord, Charlotte; Sevanto, Sanna; Dawson, Todd E.; ...

    2016-09-09

    The persistence of vegetation under climate change will depend on a plant's capacity to exploit water resources. In addition, we analyzed water source dynamics in piñon pine and juniper trees subjected to precipitation reduction, atmospheric warming, and to both simultaneously.

  10. Warming combined with more extreme precipitation regimes modifies the water sources used by trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossiord, Charlotte; Sevanto, Sanna; Dawson, Todd E.

    The persistence of vegetation under climate change will depend on a plant's capacity to exploit water resources. In addition, we analyzed water source dynamics in piñon pine and juniper trees subjected to precipitation reduction, atmospheric warming, and to both simultaneously.

  11. Water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine salt domes, northeast Texas salt-dome basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, J.E.; Halasz, S.J.; Liscum, F.

    1980-11-01

    This report contains water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine Salt Domes in the northeast Texas salt-dome basin. Water-quality data were compiled for aquifers in the Wilcox Group, the Carrizo Sand, and the Queen City Sand. The data include analyses for dissolved solids, pH, temperature, hardness, calcium, magnesium, sodium, bicarbonate, chloride, and sulfate. Water-quality and streamflow data were obtained from 63 surface-water sites in the vicinity of the domes. These data include water discharge, specific conductance, pH, water temperature, and dissolved oxygen. Samples were collected at selected sites for analysismore » of principal and selected minor dissolved constituents.« less

  12. Water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine salt domes, northeast Texas salt-dome basin

    USGS Publications Warehouse

    Carr, Jerry E.; Halasz, Stephen J.; Liscum, Fred

    1980-01-01

    This report contains water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine Salt Domes, in the northeast Texas salt-dome basin. Water-quality data were compiled for aquifers in the Wilcox Group, the Carrizo Sand, and the Queen City Sand. The data include analyses for dissolved solids, pH, temperature, hardness, calcium, magnesium, sodium, bicarbonate, chloride, and sulfate. Water-quality and streamflow data were obtained from 63 surface-water sites in the vicinity of the domes. These data include water discharge, specific conductance, pH, water temperature, and dissolved oxygen. Samples were collected at selected sites for analysis of principal and selected minor dissolved constituents.

  13. Century-Long Warming Trends in the Upper Water Column of Lake Tanganyika.

    PubMed

    Kraemer, Benjamin M; Hook, Simon; Huttula, Timo; Kotilainen, Pekka; O'Reilly, Catherine M; Peltonen, Anu; Plisnier, Pierre-Denis; Sarvala, Jouko; Tamatamah, Rashid; Vadeboncoeur, Yvonne; Wehrli, Bernhard; McIntyre, Peter B

    2015-01-01

    Lake Tanganyika, the deepest and most voluminous lake in Africa, has warmed over the last century in response to climate change. Separate analyses of surface warming rates estimated from in situ instruments, satellites, and a paleolimnological temperature proxy (TEX86) disagree, leaving uncertainty about the thermal sensitivity of Lake Tanganyika to climate change. Here, we use a comprehensive database of in situ temperature data from the top 100 meters of the water column that span the lake's seasonal range and lateral extent to demonstrate that long-term temperature trends in Lake Tanganyika depend strongly on depth, season, and latitude. The observed spatiotemporal variation in surface warming rates accounts for small differences between warming rate estimates from in situ instruments and satellite data. However, after accounting for spatiotemporal variation in temperature and warming rates, the TEX86 paleolimnological proxy yields lower surface temperatures (1.46 °C lower on average) and faster warming rates (by a factor of three) than in situ measurements. Based on the ecology of Thaumarchaeota (the microbes whose biomolecules are involved with generating the TEX86 proxy), we offer a reinterpretation of the TEX86 data from Lake Tanganyika as the temperature of the low-oxygen zone, rather than of the lake surface temperature as has been suggested previously. Our analyses provide a thorough accounting of spatiotemporal variation in warming rates, offering strong evidence that thermal and ecological shifts observed in this massive tropical lake over the last century are robust and in step with global climate change.

  14. Century-Long Warming Trends in the Upper Water Column of Lake Tanganyika

    PubMed Central

    Kraemer, Benjamin M.; Hook, Simon; Huttula, Timo; Kotilainen, Pekka; O’Reilly, Catherine M.; Peltonen, Anu; Plisnier, Pierre-Denis; Sarvala, Jouko; Tamatamah, Rashid; Vadeboncoeur, Yvonne; Wehrli, Bernhard; McIntyre, Peter B.

    2015-01-01

    Lake Tanganyika, the deepest and most voluminous lake in Africa, has warmed over the last century in response to climate change. Separate analyses of surface warming rates estimated from in situ instruments, satellites, and a paleolimnological temperature proxy (TEX86) disagree, leaving uncertainty about the thermal sensitivity of Lake Tanganyika to climate change. Here, we use a comprehensive database of in situ temperature data from the top 100 meters of the water column that span the lake’s seasonal range and lateral extent to demonstrate that long-term temperature trends in Lake Tanganyika depend strongly on depth, season, and latitude. The observed spatiotemporal variation in surface warming rates accounts for small differences between warming rate estimates from in situ instruments and satellite data. However, after accounting for spatiotemporal variation in temperature and warming rates, the TEX86 paleolimnological proxy yields lower surface temperatures (1.46 °C lower on average) and faster warming rates (by a factor of three) than in situ measurements. Based on the ecology of Thaumarchaeota (the microbes whose biomolecules are involved with generating the TEX86 proxy), we offer a reinterpretation of the TEX86 data from Lake Tanganyika as the temperature of the low-oxygen zone, rather than of the lake surface temperature as has been suggested previously. Our analyses provide a thorough accounting of spatiotemporal variation in warming rates, offering strong evidence that thermal and ecological shifts observed in this massive tropical lake over the last century are robust and in step with global climate change. PMID:26147964

  15. Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers.

    PubMed

    Xue, Minmin; Qiu, Hu; Guo, Wanlin

    2013-12-20

    Desalination that produces clean freshwater from seawater holds the promise of solving the global water shortage for drinking, agriculture and industry. However, conventional desalination technologies such as reverse osmosis and thermal distillation involve large amounts of energy consumption, and the semipermeable membranes widely used in reverse osmosis face the challenge to provide a high throughput at high salt rejection. Here we find by comprehensive molecular dynamics simulations and first principles modeling that pristine graphyne, one of the graphene-like one-atom-thick carbon allotropes, can achieve 100% rejection of nearly all ions in seawater including Na(+), Cl(-), Mg(2+), K(+) and Ca(2+), at an exceptionally high water permeability about two orders of magnitude higher than those for commercial state-of-the-art reverse osmosis membranes at a salt rejection of ~98.5%. This complete ion rejection by graphyne, independent of the salt concentration and the operating pressure, is revealed to be originated from the significantly higher energy barriers for ions than for water. This intrinsic specialty of graphyne should provide a new possibility for the efforts to alleviate the global shortage of freshwater and other environmental problems.

  16. Effects of Salt Secretion on Psychrometric Determinations of Water Potential of Cotton Leaves

    PubMed Central

    Klepper, Betty; Barrs, H. D.

    1968-01-01

    Thermocouple psychrometers gave lower estimates of water potential of cotton leaves than did a pressure chamber. This difference was considerable for turgid leaves, but progressively decreased for leaves with lower water potentials and fell to zero at water potentials below about −10 bars. The conductivity of washings from cotton leaves removed from the psychrometric equilibration chambers was related to the magnitude of this discrepancy in water potential, indicating that the discrepancy is due to salts on the leaf surface which make the psychrometric estimates too low. This error, which may be as great as 400 to 500%, cannot be eliminated by washing the leaves because salts may be secreted during the equilibration period. Therefore, a thermocouple psychrometer is not suitable for measuring the water potential of cotton leaves when it is above about −10 bars. PMID:16656895

  17. Relating salt marsh pore water geochemistry patterns to vegetation zones and hydrologic influences

    NASA Astrophysics Data System (ADS)

    Moffett, Kevan B.; Gorelick, Steven M.

    2016-03-01

    Physical, chemical, and biological factors influence vegetation zonation in salt marshes and other wetlands, but connections among these factors could be better understood. If salt marsh vegetation and marsh pore water geochemistry coorganize, e.g., via continuous plant water uptake and persistently unsaturated sediments controlling vegetation zone-specific pore water geochemistry, this could complement known physical mechanisms of marsh self-organization. A high-resolution survey of pore water geochemistry was conducted among five salt marsh vegetation zones at the same intertidal elevation. Sampling transects were arrayed both parallel and perpendicular to tidal channels. Pore water geochemistry patterns were both horizontally differentiated, corresponding to vegetation zonation, and vertically differentiated, relating to root influences. The geochemical patterns across the site were less broadly related to marsh hydrology than to vegetation zonation. Mechanisms contributing to geochemical differentiation included: root-induced oxidation and nutrient (P) depletion, surface and creek-bank sediment flushing by rainfall or tides, evapotranspiration creating aerated pore space for partial sediment flushing in some areas while persistently saturated conditions hindered pore water renewal in others, and evapoconcentration of pore water solutes overall. The concentrated pore waters draining to the tidal creeks accounted for 41% of ebb tide solutes (median of 14 elements), including being a potentially toxic source of Ni but a slight sink for Zn, at least during the short, winter study period in southern San Francisco Bay. Heterogeneous vegetation effects on pore water geochemistry are not only significant locally within the marsh but may broadly influence marsh-estuary solute exchange and ecology.

  18. Water in urban planning, Salt Creek Basin, Illinois water management as related to alternative land-use practices

    USGS Publications Warehouse

    Spieker, Andrew Maute

    1970-01-01

    Water management can be an integral part of urban comprehensive planning in a large metropolitan area. Water both imposes constraints on land use and offers opportunities for coordinated land and water management. Salt Creek basin in Cook and Du Page Counties of the Chicago metropolitan area is typical of rapidly developing suburban areas and has been selected to illustrate some of these constraints and opportunities and to suggest the effects of alternative solutions. The present study concentrates on the related problems of ground-water recharge, water quality, management of flood plains, and flood-control measures. Salt Creek basin has a drainage area of 150 square miles. It is in flat to. gently rolling terrain, underlain by glacial drift as much as 200 feet thick which covers a dolomite aquifer. In 1964, the population of the basin was about 400,000, and 40 percent of the land was in urban development. The population is expected to number 550,000 to 650,000 by 1990, and most of the land will be taken by urban development. Salt Creek is a sluggish stream, typical of small drainage channels in the headwaters area of northeastern Illinois. Low flows of 15 to 25 cubic feet per second in the lower part of the basin consist largely of sewage effluent. Nearly all the public water supplies in the basin depend on ground water. Of the total pumpage of 27.5 million gallons per day, 17.5 million gallons per day is pumped from the deep (Cambrian-Ordovician) aquifers and 10 million gallons per day is pumped from the shallow (Silurian dolomite and glacial drift) aquifers. The potential yield of the shallow aquifers, particularly glacial drift in the northern part of the basin, far exceeds present use. The largest concentration of pumpage from the shallow ,aquifers is in the Hinsdale-La Grange area. Salt Creek serves as an important source of recharge to these supplies, particularly just east of Hinsdale. The entire reach of Salt Creek south and east of Elmhurst can be

  19. Asetek's Warm-Water Liquid Cooling System Yields Energy Cost Savings at

    Science.gov Websites

    NREL | Energy Systems Integration Facility | NREL Asetek Asetek's Warm-Water Liquid Cooling System Yields Energy Cost Savings at NREL Asetek's RackCDU liquid cooling system was installed and tested at the Energy Systems Integration Facility's (ESIF's) ultra-energy-efficient high-performance

  20. Using a Cell Phone to Investigate the Skin Depth Effect in Salt Water

    NASA Astrophysics Data System (ADS)

    Rayner, John

    2017-02-01

    This paper describes an experimental investigation of the skin depth effect for electromagnetic waves in salt water using a cell phone that is immersed to a critical depth where it no longer responds when called. We show that this critical depth is directly proportional to the theoretical skin depth for a range of salt concentrations.

  1. Using a Cell Phone to Investigate the Skin Depth Effect in Salt Water

    ERIC Educational Resources Information Center

    Rayner, John

    2017-01-01

    This paper describes an experimental investigation of the skin depth effect for electromagnetic waves in salt water using a cell phone that is immersed to a critical depth where it no longer responds when called. We show that this critical depth is directly proportional to the theoretical skin depth for a range of salt concentrations.

  2. Moving in extreme environments: open water swimming in cold and warm water

    PubMed Central

    2014-01-01

    Open water swimming (OWS), either ‘wild’ such as river swimming or competitive, is a fast growing pastime as well as a part of events such as triathlons. Little evidence is available on which to base high and low water temperature limits. Also, due to factors such as acclimatisation, which disassociates thermal sensation and comfort from thermal state, individuals cannot be left to monitor their own physical condition during swims. Deaths have occurred during OWS; these have been due to not only thermal responses but also cardiac problems. This paper, which is part of a series on ‘Moving in Extreme Environments’, briefly reviews current understanding in pertinent topics associated with OWS. Guidelines are presented for the organisation of open water events to minimise risk, and it is concluded that more information on the responses to immersion in cold and warm water, the causes of the individual variation in these responses and the precursors to the cardiac events that appear to be the primary cause of death in OWS events will help make this enjoyable sport even safer. PMID:24921042

  3. Ultraviolet-B radiation induced cross-linking improves physical properties of cold- and warm-water fish gelatin gels and films.

    PubMed

    Otoni, Caio G; Avena-Bustillos, Roberto J; Chiou, Bor-Sen; Bilbao-Sainz, Cristina; Bechtel, Peter J; McHugh, Tara H

    2012-09-01

    Cold- and warm-water fish gelatin granules were exposed to ultraviolet-B radiation for doses up to 29.7 J/cm(2). Solutions and films were prepared from the granules. Gel electrophoresis and refractive index were used to examine changes in molecular weight of the samples. Also, the gel strength and rheological properties of the solutions as well as the tensile and water vapor barrier properties of the films were characterized. SDS-PAGE and refractive index results indicated cross-linking of gelatin chains after exposure to radiation. Interestingly, UV-B treated samples displayed higher gel strengths, with cold- and warm-water fish gelatin having gel strength increases from 1.39 to 2.11 N and from 7.15 to 8.34 N, respectively. In addition, both gelatin samples exhibited an increase in viscosity for higher UV doses. For gelatin films, the cold-water fish gelatin samples made from irradiated granules showed greater tensile strength. In comparison, the warm-water gelatin films made from irradiated granules had lower tensile strength, but better water vapor barrier properties. This might be due to the UV induced cross-linking in warm-water gelatin that disrupted helical structures. Journal of Food Science copy; 2012 Institute of Food Technologists® No claim to original US government works.

  4. TOPEX/El Nino Watch - Warm Water Pool is Thinning, Feb, 5, 1998

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Feb. 5, 1998 and sea surface height is an indicator of the heat content of the ocean. The area and volume of the El Nino warm water pool that is affecting global weather patterns remains extremely large, but the pool has thinned along the equator and near the coast of South America. This 'thinning' means that the warm water is not as deep as it was a few months ago. Oceanographers indicate this is a classic pattern, typical of a mature El Nino condition that they would expect to see during the ocean's gradual transition back to normal sea level. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level. The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using satellite imagery, buoy and ship data, and a forecasting model of the ocean-atmosphere system, the National Oceanic and Atmospheric Administration, (NOAA), has continued to issue an advisory indicating the so-called El Nino weather conditions that have impacted much of the United States and the world are expected to remain through

  5. Celebrating 50 years of SWIMs (Salt Water Intrusion Meetings)

    NASA Astrophysics Data System (ADS)

    Post, Vincent E. A.; Essink, Gualbert Oude; Szymkiewicz, Adam; Bakker, Mark; Houben, Georg; Custodio, Emilio; Voss, Clifford

    2018-06-01

    The Salt Water Intrusion Meetings, or SWIMs, are a series of meetings that focus on seawater intrusion in coastal aquifers and other salinisation processes. 2018 marks the 50th year of the SWIM and the 25th biennial meeting. The SWIM proceedings record half a century of research progress on site characterisation, geophysical and geochemical techniques, variable-density flow, modelling, and water management. The SWIM is positioning itself to remain a viable platform for discussing the coastal aquifer management challenges of the next 50 years.

  6. Dynamics of Phase Transitions in a Snow Mass Containing Water-Soluble Salt Particles

    NASA Astrophysics Data System (ADS)

    Zelenko, V. L.; Heifets, L. I.; Orlov, Yu. N.; Voskresenskiy, N. M.

    2018-07-01

    A macrokinetic approach is used to describe the dynamics of phase transitions in a snow mass containing water-soluble salt particles. Equations are derived that describe the rate of salt granule dissolution and the change in the phase composition and temperature of a snow mass under the conditions of heat transfer with an isothermal surface. An experimental setup that models the change in the state of a snow mass placed on an isothermal surface is created to verify theoretical conclusions. Experimental observations of the change in temperature of the snow mass are compared to theoretical calculations. The mathematical model that is developed can be used to predict the state of a snow mass on roads treated with a deicing agent, or to analyze the state of snow masses containing water-soluble salt inclusions and resting on mountain slopes.

  7. A global ocean climatological atlas of the Turner angle: implications for double-diffusion and water-mass structure

    NASA Astrophysics Data System (ADS)

    You, Yuzhu

    2002-11-01

    The 1994 Levitus climatological atlas is used to calculate the Turner angle (named after J. Stewart Turner) to examine which oceanic water masses are favorable for double-diffusion in the form of diffusive convection or salt-fingering and which are doubly stable. This atlas complements the Levitus climatology. It reveals the major double-diffusive signals associated with large-scale water-mass structure. In total, about 44% of the oceans display double-diffusion, of which 30% is salt-fingering and 14% is diffusive double-diffusion. Results show that various central and deep waters are favorable for salt-fingering. The former is due to positive evaporation minus precipitation, and the latter is due to thermohaline circulation, i.e. the southward spreading of relatively warm, salty North Atlantic Deep Water (NADW) overlying cold, fresh Antarctic Bottom Water. In the northern Indian Ocean and eastern North Atlantic, favorable conditions for salt-fingering are found throughout the water column. The Red Sea (including the Persian Gulf) and Mediterranean Sea are the sources of warm, salty water for the ocean. As consequence, temperature and salinity in these outflow regions both decrease from the sea surface to the bottom. On the other hand, ocean currents are in general sluggish in these regions. In the polar and subpolar regions of Arctic and Antarctic, Okhotsk Sea, Gulf of Alaska, the subpolar gyre of the North Pacific, the Labrador Sea, and the Norwegian Sea, the upper layer water is favorable for diffusive convection because of high latitude surface cooling and ice melting. Weak and shallow diffusive convection is also found throughout tropical regions and the Bay of Bengal. The former is due to excessive precipitation over evaporation and rain cooling, and the latter is due to both precipitation and river runoff. Diffusive convection in the ocean's interior is unique to the South Atlantic between Antarctic Intermediate Water and upper NADW (uNADW). It is the

  8. Method for excluding salt and other soluble materials from produced water

    DOEpatents

    Phelps, Tommy J [Knoxville, TN; Tsouris, Costas [Oak Ridge, TN; Palumbo, Anthony V [Oak Ridge, TN; Riestenberg, David E [Knoxville, TN; McCallum, Scott D [Knoxville, TN

    2009-08-04

    A method for reducing the salinity, as well as the hydrocarbon concentration of produced water to levels sufficient to meet surface water discharge standards. Pressure vessel and coflow injection technology developed at the Oak Ridge National Laboratory is used to mix produced water and a gas hydrate forming fluid to form a solid or semi-solid gas hydrate mixture. Salts and solids are excluded from the water that becomes a part of the hydrate cage. A three-step process of dissociation of the hydrate results in purified water suitable for irrigation.

  9. Water resources of the Warm Springs Indian Reservation, Oregon

    USGS Publications Warehouse

    Robison, J.H.; Laenen, Antonius

    1976-01-01

    Water-resources data for the 1,000-square-mile Warm Springs Indian Reservation in north-central Oregon were obtained and evaluated. The area is bounded on the west by the crest of the Cascade Range and on the south and east by the Metolius and Deschutes Rivers. The mountainous western part is underlain by young volcanic rocks, and the plateaus and valleys of the eastern part are underlain by basalt, tuff, sand, and gravel of Tertiary and Quaternary ages. There are numerous springs, some developed for stock use, and about 50 domestic and community wells; yields are small, ranging from less than 1 to as much as 25 gallons per minute. Chemical quality of most ground water is suitable for stock or human consumption and for irrigation. Average flows of the Warm Springs River, Metolius River, and Deschutes River are 440, 1,400, and 4,040 cubic feet per second (cfs), respectively. Shitike Creek, which has an average flow of 108 cfs had a peak of 4,000 cfs in January 1974. Most streams have fewer than 100 milligrams per liter (mg/liter) of dissolved solids. Chemical and biological quality of the mountain lakes is also good; of 10 lakes studied, all had fewer than 50 mg/liter of dissolved solids and none had measurable fecal coliform bacteria. (Woodard-USGS)

  10. Environmental refugees in a globally warmed world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, N.

    1993-12-01

    This paper examines the complex problem of environmental refugees as among the most serious of all the effects of global warming. Shoreline erosion, coastal flooding, and agricultural disruption from drought, soil erosion and desertification are factors now and in the future in creating a group of environmental refugees. Estimates are that at least 10 million such refugees exist today. A preliminary analysis is presented here as a first attempt to understand the full character and extent of the problem. Countries with large delta and coastal areas and large populations are at particular risk from sea-level rise of as little asmore » .5 - 1 meter, compounded by storm surge and salt water intrusions. Bangladesh, Egypt, China, and India are discussed in detail along with Island states at risk. Other global warming effects such as shifts in monsoon systems and severe and persistent droughts make agriculture particularly vulnerable. Lack of soil moisture is during the growing season will probably be the primary problem. Additional and compounding environmental problems are discussed, and an overview of the economic, sociocultural and political consequences is given. 96 refs., 1 tab.« less

  11. A cascade of warming impacts brings bluefin tuna to Greenland waters.

    PubMed

    MacKenzie, Brian R; Payne, Mark R; Boje, Jesper; Høyer, Jacob L; Siegstad, Helle

    2014-08-01

    Rising ocean temperatures are causing marine fish species to shift spatial distributions and ranges, and are altering predator-prey dynamics in food webs. Most documented cases of species shifts so far involve relatively small species at lower trophic levels, and consider individual species in ecological isolation from others. Here, we show that a large highly migratory top predator fish species has entered a high latitude subpolar area beyond its usual range. Bluefin tuna, Thunnus thynnus Linnaeus 1758, were captured in waters east of Greenland (65°N) in August 2012 during exploratory fishing for Atlantic mackerel, Scomber scombrus Linnaeus 1758. The bluefin tuna were captured in a single net-haul in 9-11 °C water together with 6 tonnes of mackerel, which is a preferred prey species and itself a new immigrant to the area. Regional temperatures in August 2012 were historically high and contributed to a warming trend since 1985, when temperatures began to rise. The presence of bluefin tuna in this region is likely due to a combination of warm temperatures that are physiologically more tolerable and immigration of an important prey species to the region. We conclude that a cascade of climate change impacts is restructuring the food web in east Greenland waters. © 2014 John Wiley & Sons Ltd.

  12. Tensile properties and translaminar fracture toughness of glass fiber reinforced unsaturated polyester resin composites aged in distilled and salt water

    NASA Astrophysics Data System (ADS)

    Sugiman, Gozali, M. Hulaifi; Setyawan, Paryanto Dwi

    2016-03-01

    Glass fiber reinforced polymer has been widely used in chemical industry and transportation due to lightweight and cost effective manufacturing. However due to the ability to absorb water from the environment, the durability issue is of interest for up to days. This paper investigated the water uptake and the effect of absorbed water on the tensile properties and the translaminar fracture toughness of glass fiber reinforced unsaturated polyester composites (GFRP) aged in distilled and salt water up to 30 days at a temperature of 50°C. It has been shown that GFRP absorbed more water in distilled water than in salt water. In distilled water, the tensile strength of GFRP tends to decrease steeply at 7 days and then slightly recovered for further immersion time. In salt water, the tensile strength tends to decrease continually up to 30 days immersion. The translaminar fracture toughness of GFRP aged in both distilled and salt-water shows the similar behavior. The translaminar fracture toughness increases after 7 days immersion and then tends to decrease beyond that immersion time. In the existence of ionics content in salt water, it causes more detrimental effect on the mechanical properties of fiberglass/unsaturated polyester composites compared to that of distilled water.

  13. Important observations and parameters for a salt water intrusion model

    USGS Publications Warehouse

    Shoemaker, W.B.

    2004-01-01

    Sensitivity analysis with a density-dependent ground water flow simulator can provide insight and understanding of salt water intrusion calibration problems far beyond what is possible through intuitive analysis alone. Five simple experimental simulations presented here demonstrate this point. Results show that dispersivity is a very important parameter for reproducing a steady-state distribution of hydraulic head, salinity, and flow in the transition zone between fresh water and salt water in a coastal aquifer system. When estimating dispersivity, the following conclusions can be drawn about the data types and locations considered. (1) The "toe" of the transition zone is the most effective location for hydraulic head and salinity observations. (2) Areas near the coastline where submarine ground water discharge occurs are the most effective locations for flow observations. (3) Salinity observations are more effective than hydraulic head observations. (4) The importance of flow observations aligned perpendicular to the shoreline varies dramatically depending on distance seaward from the shoreline. Extreme parameter correlation can prohibit unique estimation of permeability parameters such as hydraulic conductivity and flow parameters such as recharge in a density-dependent ground water flow model when using hydraulic head and salinity observations. Adding flow observations perpendicular to the shoreline in areas where ground water is exchanged with the ocean body can reduce the correlation, potentially resulting in unique estimates of these parameter values. Results are expected to be directly applicable to many complex situations, and have implications for model development whether or not formal optimization methods are used in model calibration.

  14. Important observations and parameters for a salt water intrusion model.

    PubMed

    Shoemaker, W Barclay

    2004-01-01

    Sensitivity analysis with a density-dependent ground water flow simulator can provide insight and understanding of salt water intrusion calibration problems far beyond what is possible through intuitive analysis alone. Five simple experimental simulations presented here demonstrate this point. Results show that dispersivity is a very important parameter for reproducing a steady-state distribution of hydraulic head, salinity, and flow in the transition zone between fresh water and salt water in a coastal aquifer system. When estimating dispersivity, the following conclusions can be drawn about the data types and locations considered. (1) The "toe" of the transition zone is the most effective location for hydraulic head and salinity observations. (2) Areas near the coastline where submarine ground water discharge occurs are the most effective locations for flow observations. (3) Salinity observations are more effective than hydraulic head observations. (4) The importance of flow observations aligned perpendicular to the shoreline varies dramatically depending on distance seaward from the shoreline. Extreme parameter correlation can prohibit unique estimation of permeability parameters such as hydraulic conductivity and flow parameters such as recharge in a density-dependent ground water flow model when using hydraulic head and salinity observations. Adding flow observations perpendicular to the shoreline in areas where ground water is exchanged with the ocean body can reduce the correlation, potentially resulting in unique estimates of these parameter values. Results are expected to be directly applicable to many complex situations, and have implications for model development whether or not formal optimization methods are used in model calibration.

  15. Quantification of excess water loss in plant canopies warmed with infrared heating

    USDA-ARS?s Scientific Manuscript database

    Here we investigate the extent to which infrared heating used to warm plant canopies in climate manipulation experiments increases transpiration. Concerns regarding the impact of the infrared heater technique on the water balance have been raised before, but a quantification is lacking. We calculate...

  16. Chronic warming stimulates growth of marsh grasses more than mangroves in a coastal wetland ecotone.

    PubMed

    Coldren, G A; Barreto, C R; Wykoff, D D; Morrissey, E M; Langley, J A; Feller, I C; Chapman, S K

    2016-11-01

    Increasing temperatures and a reduction in the frequency and severity of freezing events have been linked to species distribution shifts. Across the globe, mangrove ranges are expanding toward higher latitudes, likely due to diminishing frequency of freezing events associated with climate change. Continued warming will alter coastal wetland plant dynamics both above- and belowground, potentially altering plant capacity to keep up with sea level rise. We conducted an in situ warming experiment, in northeast Florida, to determine how increased temperature (+2°C) influences co-occurring mangrove and salt marsh plants. Warming was achieved using passive warming with three treatment levels (ambient, shade control, warmed). Avicennia germinans, the black mangrove, exhibited no differences in growth or height due to experimental warming, but displayed a warming-induced increase in leaf production (48%). Surprisingly, Distichlis spicata, the dominant salt marsh grass, increased in biomass (53% in 2013 and 70% in 2014), density (41%) and height (18%) with warming during summer months. Warming decreased plant root mass at depth and changed abundances of anaerobic bacterial taxa. Even while the poleward shift of mangroves is clearly controlled by the occurrences of severe freezes, chronic warming between these freeze events may slow the progression of mangrove dominance within ecotones. © 2016 by the Ecological Society of America.

  17. Warm water aquaculture using waste heat and water from zero discharge power plants in the Great Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckmann, R.A.; Winget, R.N.; Infanger, R.C.

    1984-01-31

    Two series of experiments were completed to determine (a) toxicity of waste water from power plants on warm water fish and (b) multiple use of waste heat and water for aquatic animal and plant production. All three types of waste water from a typical coal-fired power plant are acceptable for growing catfish and tilapia following aeration. This growth was compared with fish raised in spring water. Closed, recirculating polyculture systems using evaporation pond water operated efficiently for plant (duckweed) and animal (fish and freshwater prawns) production. Duckweed is an excellent supplement for fish feed. Tilapia and freshwater prawns grew rapidlymore » in the tanks containing duckweed only. 10 references, 13 tables.« less

  18. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching

    PubMed Central

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China. PMID:27806098

  19. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    PubMed

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  20. Fluoride Increase in Saliva and Dental Biofilm due to a Meal Prepared with Fluoridated Water or Salt: A Crossover Clinical Study.

    PubMed

    Lima, Carolina V; Tenuta, Livia M A; Cury, Jaime A

    2018-06-07

    Knowledge about fluoride delivery to oral fluids from foods cooked with fluoridated water and salt is scarce, and no study has evaluated fluoride concentrations in saliva or biofilm during meal consumption. In this randomized double-blind crossover study, 12 volunteers ingested meals (rice, beans, meat, and legumes) prepared with nonfluoridated water and salt (control group), fluoridated water (0.70 mg F/L; water group), and fluoridated salt (183.7 mg F/kg; salt group). Whole saliva was collected before meal ingestion, during mastication, and up to 2 h after meal ingestion. Dental biofilm was collected before and immediately after meal ingestion. Fluoride concentrations in saliva and dental biofilm were determined by an ion-specific electrode. The mean (±standard deviation; n = 4) fluoride concentrations in meals prepared for the control, water, and salt groups were 0.039 ± 0.01, 0.43 ± 0.04, and 1.71 ± 0.32 μg F/g, respectively. The three groups had significantly different fluoride concentrations in saliva collected during mastication (p < 0.0001) and after meal ingestion (p < 0.04; salt > water > control). The fluoride concentration in saliva returned to baseline 30 min after meal ingestion in the water group but remained high for up to 2 h in the salt group (p = 0.002). The fluoride concentration in biofilm fluid differed only between the salt and control groups (p = 0.008). The mastication of foods cooked with fluoridated water and salt increases fluoride concentrations in oral fluids and may contribute to the local effect of these community-based fluoride interventions on caries control. © 2018 S. Karger AG, Basel.

  1. Potential sea salt aerosol sources from frost flowers in the pan-Arctic region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Li; Russell, Lynn M.; Burrows, Susannah M.

    In order to better represent observed wintertime aerosol concentrations at Barrow, Alaska, we implemented an observationally-based parameterization for estimating sea salt production from frost flowers in the Community Earth System Model (CESM). In this work, we evaluate the potential influence of this sea salt source on the pan-Arctic (60ºN-90ºN) climate. Results show that frost flower salt emissions substantially increase the modeled surface sea salt aerosol concentration in the winter months when new sea ice and frost flowers are present. The parameterization reproduces both the magnitude and seasonal variation of the observed submicron sea salt aerosol concentration at surface in Barrowmore » during winter much better than the standard CESM simulation without a frost-flower salt particle source. Adding these frost flower salt particle emissions increases aerosol optical depth by 10% and results in a small cooling at surface. The increase in salt particle mass concentrations of a factor of 8 provides nearly two times the cloud condensation nuclei concentration, as well as 10% increases in cloud droplet number and 40% increases in liquid water content near coastal regions adjacent to continents. These cloud changes reduce longwave cloud forcing by 3% and cause a small surface warming, increasing the downward longwave flux at the surface by 2 W m-2 in the pan-Arctic under the present-day climate.« less

  2. Warming shifts 'worming': effects of experimental warming on invasive earthworms in northern North America.

    PubMed

    Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A; Rice, Karen; Rich, Roy; Reich, Peter B

    2014-11-03

    Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration.

  3. Subsurface North Atlantic warming as a trigger of rapid cooling events: evidences from the Early Pleistocene (MIS 31-19)

    NASA Astrophysics Data System (ADS)

    Hernández-Almeida, I.; Sierro, F.-J.; Cacho, I.; Flores, J.-A.

    2014-10-01

    Subsurface water column dynamics in the subpolar North Atlantic were reconstructed in order to improve the understanding of the cause of abrupt IRD events during cold periods of the Early Pleistocene. We used Mg / Ca-based temperatures of deep-dwelling (Neogloboquadrina pachyderma sinistral) planktonic foraminifera and paired Mg / Ca-δ18O measurements to estimate the subsurface temperatures and δ18O of seawater at Site U1314. Carbon isotopes on benthic and planktonic foraminifera from the same site provide information about the ventilation and water column nutrient gradient. Mg / Ca-based temperatures and δ18O of seawater suggest increased temperatures and salinities during ice-rafting, likely due to enhanced northward subsurface transport of subtropical waters during periods of AMOC reduction. Planktonic carbon isotopes support this suggestion, showing coincident increased subsurface ventilation during deposition of ice-rafted detritus (IRD). Warm waters accumulated at subsurface would result in basal warming and break-up of ice-shelves, leading to massive iceberg discharges in the North Atlantic. Release of heat and salt stored at subsurface would help to restart the AMOC. This mechanism is in agreement with modelling and proxy studies that observe a subsurface warming in the North Atlantic in response to AMOC slowdown during the MIS3.

  4. Temperature-induced water stress in high-latitude forests in response to natural and anthropogenic warming.

    PubMed

    Trahan, Matthew W; Schubert, Brian A

    2016-02-01

    The Arctic is particularly sensitive to climate change, but the independent effects of increasing atmospheric CO2 concentration (pCO2 ) and temperature on high-latitude forests are poorly understood. Here, we present a new, annually resolved record of stable carbon isotope (δ(13) C) data determined from Larix cajanderi tree cores collected from far northeastern Siberia in order to investigate the physiological response of these trees to regional warming. The tree-ring record, which extends from 1912 through 1961 (50 years), targets early twentieth-century warming (ETCW), a natural warming event in the 1920s to 1940s that was limited to Northern hemisphere high latitudes. Our data show that net carbon isotope fractionation (Δ(13) C), decreased by 1.7‰ across the ETCW, which is consistent with increased water stress in response to climate warming and dryer soils. To investigate whether this signal is present across the northern boreal forest, we compiled published carbon isotope data from 14 high-latitude sites within Europe, Asia, and North America. The resulting dataset covered the entire twentieth century and spanned both natural ETCW and anthropogenic Late Twentieth-Century Warming (~0.7 °C per decade). After correcting for a ~1‰ increase in Δ(13) C in response to twentieth century pCO2 rise, a significant negative relationship (r = -0.53, P < 0.0001) between the average, annual Δ(13) C values and regional annual temperature anomalies is observed, suggesting a strong control of temperature on the Δ(13) C value of trees growing at high latitudes. We calculate a 17% increase in intrinsic water-use efficiency within these forests across the twentieth century, of which approximately half is attributed to a decrease in stomatal conductance in order to conserve water in response to drying conditions, with the other half being attributed to increasing pCO2 . We conclude that annual tree-ring records from northern high-latitude forests record the effects of

  5. Seawater/Saline Agriculture for Energy, Warming, Water, Rainfall, Land, Food and Minerals

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis

    2006-01-01

    The combination of the incipient demise of cheap oil and increasing evidence of Global Warming due to anthropogenic fossil carbon release has reinvigorated the need for and efforts on Renewable energy sources, especially for transportation applications. Biomass/Bio-diesel appears to have many benefits compared to Hydrogen, the only other major renewable transportation fuel candidate. Biomass Production is currently limited by available arable land and fresh water. Halophyte Plants and seawater irrigation proffer a wholly new biomass production mantra using wastelands and very plentiful seawater. Such an approach addresses many-to-most of the major emerging Societal Problems including Land, Water, Food, Warming and Energy. For many reasons, including seawater agriculture, portions of the Sahara appear to be viable candidates for future Biomass Production. The apparent nonlinearity between vegetation cover and atmospheric conditions over North Africa necessitates serious coupled boundary layer Meteorology and Global Circulation Modeling to ensure that this form of Terra Forming is Favorable and to avoid adverse Unintended Consequences.

  6. Evaporation of a sessile water drop and a drop of aqueous salt solution.

    PubMed

    Misyura, S Y

    2017-11-07

    The influence of various factors on the evaporation of drops of water and aqueous salt solution has been experimentally studied. Typically, in the studies of drop evaporation, only the diffusive vapor transfer, radiation and the molecular heat conduction are taken into account. However, vapor-gas convection plays an important role at droplet evaporation. In the absence of droplet boiling, the influence of gas convection turns out to be the prevailing factor. At nucleate boiling, a prevailing role is played by bubbles generation and vapor jet discharge at a bubble collapse. The gas convection behavior for water and aqueous salt solution is substantially different. With a growth of salt concentration over time, the influence of the convective component first increases, reaches an extremum and then significantly decreases. At nucleate boiling in a salt solution it is incorrect to simulate the droplet evaporation and the heat transfer in quasi-stationary approximation. The evaporation at nucleate boiling in a liquid drop is divided into several characteristic time intervals. Each of these intervals is characterized by a noticeable change in both the evaporation rate and the convection role.

  7. Dynamics of salt playa polygons

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Fourrière, A.

    2014-12-01

    In natural salt playa or in evaporation pools for the salt extraction industry, one can sometimes see surprising regular structures formed by ridges of salt. These ridges connect together to form a self-organized network of polygons one to two meters in diameter, which we call salt polygons. Here we propose a mechanism based on porous media convection of salty water in soil to explain the formation and the scaling of the salt polygons. Surface evaporation causes a steady upward flow of salty water, which can cause precipitation near the surface. A vertical salt gradient then builds up in the porous soil, with heavy salt-saturated water lying over the less salty source water. This can drive convection when a threshold is reached, given by a critical Rayleigh number of about 7. We suggest that the salt polygons are the surface expression of the porous medium convection, with salt crystallizing along the positions of the convective downwellings. To study this instability directly, we developed a 2D analogue experiment using a Hele-Shaw cell filled with a porous medium saturated with a salt solution and heated from above. We perform a linear stability analysis of this system, and find that it is unstable to convection, with a most unstable wavelength that is set by a balance between salt diffusion and water evaporation. The Rayleigh number in our experiment is controlled by the particle size of our model soil, and the evaporation rate. We obtain results that scale with the observation of natural salt polygons. Using dye, we observe the convective movement of salty water and find downwelling convective plumes underneath the spots where surface salt ridges form, as shown in the attached figure.

  8. Amino acid and proximate composition of fish bone gelatin from different warm-water species: A comparative study

    NASA Astrophysics Data System (ADS)

    Atma, Y.

    2017-03-01

    Research on fish bone gelatin has been increased in the last decade. The quality of gelatin depends on its physicochemical properties. Fish bone gelatin from warm-water fishes has a superior amino acid composition than cold-water fishes. The composition of amino acid can determine the strength and stability of gelatin. Thus, it is important to analyze the composition of amino acid as well as proximate composition for potential gelatin material. The warm water fish species used in this study were Grass carp, Pangasius catfish, Catfish, Lizard fish, Tiger-toothed croaker, Pink perch, Red snapper, Brown spotted grouper, and King weakfish. There werre five dominant amino acid in fish bone gelatin including glycine (21.2-36.7%), proline (8.7-11.7%), hydroxyproline (5.3-9.6%), alanine (8.48-12.9%), and glutamic acid (7.23-10.15%). Different warm-water species has some differences in amino acid composition. The proximate composition showed that fishbone gelatin from Pangasius catfish has the highest protein content. The water composition of all fishbone gelatin was well suited to the standard. Meanwhile, based on ash content, only gelatin from gelatin Pangasius catfish met the standard for food industries.

  9. Effect of road deicing salt on the susceptibility of amphibian embryos to infection by water molds.

    PubMed

    Karraker, Nancy E; Ruthig, Gregory R

    2009-01-01

    Some causative agents of amphibian declines act synergistically to impact individual amphibians and their populations. In particular, pathogenic water molds (aquatic oomycetes) interact with environmental stressors and increase mortality in amphibian embryos. We documented colonization of eggs of three amphibian species, the wood frog (Rana sylvatica), the green frog (Rana clamitans), and the spotted salamander (Ambystoma maculatum), by water molds in the field and examined the interactive effects of road deicing salt and water molds, two known sources of mortality for amphibian embryos, on two species, R. clamitans and A. maculatum in the laboratory. We found that exposure to water molds did not affect embryonic survivorship in either A. maculatum or R. clamitans, regardless of the concentration of road salt to which their eggs were exposed. Road salt decreased survivorship of A. maculatum, but not R. clamitans, and frequency of malformations increased significantly in both species at the highest salinity concentration. The lack of an effect of water molds on survival of embryos and no interaction between road salt and water molds indicates that observations of colonization of these eggs by water molds in the field probably represent a secondary invasion of unfertilized eggs or of embryos that had died of other causes. Given increasing salinization of freshwater habitats on several continents and the global distribution of water molds, our results suggest that some amphibian species may not be susceptible to the combined effects of these factors, permitting amphibian decline researchers to devote their attention to other potential causes.

  10. Timing of warm water refuge use in Crystal River National Wildlife Refuge by manatees—Results and insights from Global Positioning System telemetry data

    USGS Publications Warehouse

    Slone, Daniel H.; Butler, Susan M.; Reid, James P.; Haase, Catherine G.

    2017-11-21

    Managers at the U.S. Fish and Wildlife Service Crystal River National Wildlife Refuge (CRNWR) desire to update their management plan regarding the operation of select springs including Three Sisters Springs. They wish to refine existing parameters used to predict the presence of federally threatened Trichechus manatus latirostris (Florida manatee) in the springs and thereby improve their manatee management options. The U.S. Geological Survey Sirenia Project has been tracking manatees in the CRNWR area since 2006 with floating Global Positioning System (GPS) satellite-monitored telemetry tags. Analyzing movements of these tagged manatees will provide valuable insight into their habitat use patterns.A total of 136 GPS telemetry bouts were available for this project, representing 730,009 locations generated from 40 manatees tagged in the Gulf of Mexico north of Tampa, Florida. Dates from October through March were included to correspond to the times that cold ambient temperatures were expected, thus requiring a need for manatee thermoregulation and a physiologic need for warm water. Water level (tide) and water temperatures were obtained for the study from Salt River, Crystal River mouth, Bagley Cove, Kings Bay mouth, and Magnolia Spring. Polygons were drawn to subdivide the manatee locations into areas around the most-used springs (Three Sisters/Idiots Delight, House/Hunter/Jurassic, Magnolia and King), Kings Bay, Crystal/Salt Rivers and the Gulf of Mexico.Manatees were found in the Crystal or Salt Rivers or in the Gulf of Mexico when ambient temperatures were warmer (>20 °C), while they were found in or near the springs (especially Three Sisters Springs) at colder ambient water temperatures. There was a trend of manatees entering springs early in the morning and leaving in the afternoon. There was a strong association of manatee movements in and out of the Three Sisters/Idiots Delight polygon with tide cycles: manatees were more likely to enter the Three Sisters

  11. Where in the Marsh is the Water (and When)?: Measuring and modeling salt marsh hydrology for ecological and biogeochemical applications

    EPA Science Inventory

    Salt marsh hydrology presents many difficulties from a measurement and modeling standpoint: the bi-directional flows of tidal waters, variable water densities due to mixing of fresh and salt water, significant influences from vegetation, and complex stream morphologies. Because o...

  12. How Do Changes to the Railroad Causeway in Utah's Great Salt Lake Affect Water and Salt Flow?

    PubMed

    White, James S; Null, Sarah E; Tarboton, David G

    2015-01-01

    Managing terminal lake elevation and salinity are emerging problems worldwide. We contribute to terminal lake management research by quantitatively assessing water and salt flow for Utah's Great Salt Lake. In 1959, Union Pacific Railroad constructed a rock-filled causeway across the Great Salt Lake, separating the lake into a north and south arm. Flow between the two arms was limited to two 4.6 meter wide rectangular culverts installed during construction, an 88 meter opening (referred to locally as a breach) installed in 1984, and the semi porous material of the causeway. A salinity gradient developed between the two arms of the lake over time because the south arm receives approximately 95% of the incoming streamflow entering Great Salt Lake. The north arm is often at, or near, salinity saturation, averaging 317 g/L since 1966, while the south is considerably less saline, averaging 142 g/L since 1966. Ecological and industrial uses of the lake are dependent on long-term salinity remaining within physiological and economic thresholds, although optimal salinity varies for the ecosystem and between diverse stakeholders. In 2013, Union Pacific Railroad closed causeway culverts amid structural safety concerns and proposed to replace them with a bridge, offering four different bridge designs. As of summer 2015, no bridge design has been decided upon. We investigated the effect that each of the proposed bridge designs would have on north and south arm Great Salt Lake elevation and salinity by updating and applying US Geological Survey's Great Salt Lake Fortran Model. Overall, we found that salinity is sensitive to bridge size and depth, with larger designs increasing salinity in the south arm and decreasing salinity in the north arm. This research illustrates that flow modifications within terminal lakes cannot be separated from lake salinity, ecology, management, and economic uses.

  13. Linoleic acid salt with ultrapure soft water as an antibacterial combination against dermato-pathogenic Staphylococcus spp.

    PubMed

    Jang, H; Makita, Y; Jung, K; Ishizaka, S; Karasawa, K; Oida, K; Takai, M; Matsuda, H; Tanaka, A

    2016-02-01

    Skin colonization of Staphylococcus spp. critically affects the severity of dermatitis in humans and animals. We examined different types of fatty acid salts for their antibacterial activity against Staphylococcus spp. when used in ultrapure soft water (UPSW). We also evaluated their therapeutic effect on a spontaneous canine model of dermatitis. UPSW, in which Ca(++) and Mg(++) were replaced with Na(+) , was generated using a water softener with cation-exchange resin. Staphylococcus aureus (Staph. aureus), Staphylococcus intermedius (Staph. intermedius), and Staphylococcus pseudintermedius (Staph. pseudintermedius) were incubated with various fatty acid salts in distilled water (DW) or UPSW and the number of bacteria was counted. Among the fatty acids, oleic acid salt and linoleic acid (LA) salt reduced the number of these bacteria. Also, UPSW enhanced the antibacterial effect of LA on Staph. spp. In spontaneously developed itchy dermatitis in companion dogs, shampoo treatment with liquid soap containing 10% LA in UPSW improved skin conditions. LA salt showed antibacterial activity against Staph. spp. Treatment with soap containing LA with UPSW reduced clinical conditions in dogs with dermatitis. Because colonization of Staph. spp. on the skin exacerbates dermatitis, the use of LA-containing soap in UPSW may reduce unpleasant clinical symptoms of the skin. © 2015 The Society for Applied Microbiology.

  14. Bottom Water Acidification and Warming on the Western Eurasian Arctic Shelves: Dynamical Downscaling Projections

    NASA Astrophysics Data System (ADS)

    Wallhead, P. J.; Bellerby, R. G. J.; Silyakova, A.; Slagstad, D.; Polukhin, A. A.

    2017-10-01

    The impacts of oceanic CO2 uptake and global warming on the surface ocean environment have received substantial attention, but few studies have focused on shelf bottom water, despite its importance as habitat for benthic organisms and demersal fisheries such as cod. We used a downscaling ocean biogeochemical model to project bottom water acidification and warming on the western Eurasian Arctic shelves. A model hindcast produced 14-18 year acidification trends that were largely consistent with observational estimates at stations in the Iceland and Irminger Seas. Projections under SRES A1B scenario revealed a rapid and spatially variable decline in bottom pH by 0.10-0.20 units over 50 years (2.5%-97.5% quantiles) at depths 50-500 m on the Norwegian, Barents, Kara, and East Greenland shelves. Bottom water undersaturation with respect to aragonite occurred over the entire Kara shelf by 2040 and over most of the Barents and East Greenland shelves by 2070. Shelf acidification was predominantly driven by the accumulation of anthropogenic CO2, and was concurrent with warming of 0.1-2.7°C over 50 years. These combined perturbations will act as significant multistressors on the Barents and Kara shelves. Future studies should aim to improve the resolution of shelf bottom processes in models, and should consider the Kara Sea and Russian shelves as possible bellwethers of shelf acidification.

  15. Salt power - Is Neptune's ole salt a tiger in the tank

    NASA Astrophysics Data System (ADS)

    Wick, G. S.

    1980-02-01

    Methods of exploiting the 24 atm osmotic pressure difference between fresh and salt water to generate energy include reverse electrodialysis, wherein 80 millivolts of electricity cross each ion-selective membrane placed between solutions of fresh and salt water. Pressure-retarded osmosis, using pumps and pressure chambers, relies on semipermeable membranes that allow fresh water to flow into saline, with power generated by the permeated water being released through a turbine. In reverse vapor compression, water vapor rapidly transfers from fresh water to salt water in an evacuated chamber (due to the vapor pressure difference between them), and power can be extracted using 24 m diameter turbine blades. Environmental concerns include protecting estuaries from stress, managing sediments, and protecting marine animals, while filtration would be needed to keep the membranes free from corrosion, biological fouling, or silting.

  16. Warming shifts ‘worming': effects of experimental warming on invasive earthworms in northern North America

    PubMed Central

    Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A.; Rice, Karen; Rich, Roy; Reich, Peter B.

    2014-01-01

    Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration. PMID:25363633

  17. Generating Electric Fields in PDMS Microfluidic Devices with Salt Water Electrodes

    PubMed Central

    Sciambi, Adam; Abate, Adam R.

    2014-01-01

    Droplet merging and sorting in microfluidic devices usually rely on electric fields generated by solid metal electrodes. We show that simpler and more reliable salt water electrodes, despite their lower conductivity, can perform the same droplet manipulations at the same voltages. PMID:24671446

  18. Carbon dioxide flux and net primary production of a boreal treed bog: responses to warming and water table manipulations

    NASA Astrophysics Data System (ADS)

    Munir, T. M.; Perkins, M.; Kaing, E.; Strack, M.

    2014-09-01

    Mid-latitude treed bogs are significant carbon (C) stocks and are highly sensitive to global climate change. In a dry continental treed bog, we compared three sites; control, recent (1-3 years; experimental) and older drained (10-13 years; drained) with water levels at 38, 74 and 120 cm below the surface, respectively. At each site we measured carbon dioxide (CO2) fluxes and tree root respiration (Rr) (across hummock-hollow microtopography of the forest floor) and net primary production (NPP) of trees during the growing seasons (May to October) of 2011-2013. The carbon (C) balance was calculated by adding net CO2 exchange of the forest floor (NEff-Rr) to the NPP of the trees. From cooler and wetter 2011 to driest and warmest 2013, The control site was a~C sink of 92, 70 and 76 g m-2, experimental site was a C source of 14, 57 and 135 g m-2, and drained site was a progressively smaller source of 26, 23 and 13 g m-2, respectively. Although all microforms at the experimental site had large net CO2 emissions, the longer-term drainage and deeper water level at the drained site resulted in the replacement of mosses with vascular plants (shrubs) at the hummocks and lichens at the hollows leading to the highest CO2 uptake at drained hummocks and significant losses at hollows. The tree NPP was highest at the drained site. We also quantified the impact of climatic warming at all water table treatments by equipping additional plots with open-top chambers (OTCs) that caused a passive warming on average of ∼1 °C and differential air warming of ∼6 °C (at mid-day full sun) across the study years. Warming significantly enhanced the shrub growth and CO2 sink function of the drained hummocks (exceeding the cumulative respiration losses at hollows induced by the lowered water level × warming). There was an interaction of water level with warming across hummocks that resulted in largest net CO2 uptake at warmed drained hummocks. Thus in 2013, the warming treatment enhanced

  19. Development testing of large volume water sprays for warm fog dispersal

    NASA Technical Reports Server (NTRS)

    Keller, V. W.; Anderson, B. J.; Burns, R. A.; Lala, G. G.; Meyer, M. B.; Beard, K. V.

    1986-01-01

    A new brute-force method of warm fog dispersal is described. The method uses large volume recycled water sprays to create curtains of falling drops through which the fog is processed by the ambient wind and spray induced air flow. Fog droplets are removed by coalescence/rainout. The efficiency of the technique depends upon the drop size spectra in the spray, the height to which the spray can be projected, the efficiency with which fog laden air is processed through the curtain of spray, and the rate at which new fog may be formed due to temperature differences between the air and spray water. Results of a field test program, implemented to develop the data base necessary to assess the proposed method, are presented. Analytical calculations based upon the field test results indicate that this proposed method of warm fog dispersal is feasible. Even more convincingly, the technique was successfully demonstrated in the one natural fog event which occurred during the test program. Energy requirements for this technique are an order of magnitude less than those to operate a thermokinetic system. An important side benefit is the considerable emergency fire extinguishing capability it provides along the runway.

  20. Grey mullet (Mugilidae) as possible indicators of global warming in South African estuaries and coastal waters.

    PubMed

    James, Nicola C; Whitfield, Alan K; Harrison, Trevor D

    2016-12-01

    The grey mullet usually occur in large numbers and biomass in the estuaries of all three South African biogeographic regions, thus making it an ideal family to use in terms of possibly acting as an environmental indicator of global warming. In this analysis the relative estuarine abundance of the dominant three groups of mugilids, namely tropical, warm-water and cool-water endemics, were related to sea surface coastal temperatures. The study suggests a strong link between temperature and the distribution and abundance of the three mullet groups within estuaries and indicates the potential of this family to act as an indicator for future climate change within these systems and adjacent coastal waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis.

    PubMed

    Wang, Lin; Li, Qingtian; Lei, Qiong; Feng, Chao; Gao, Yinan; Zheng, Xiaodong; Zhao, Yu; Wang, Zhi; Kong, Jin

    2015-01-01

    Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant. The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment. The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance.

  2. [Simulation of effects of soil properties and plants on soil water-salt movement with reclaimed water irrigation by ENVIRO-GRO model].

    PubMed

    Lü, Si-Dan; Chen, Wei-Ping; Wang, Mei-E

    2012-12-01

    In order to promote safe irrigation with reclaimed water and prevent soil salinisation, the dynamic transport of salts in urban soils of Beijing under irrigation of reclaimed water was simulated by ENVIRO-GRO model in this study. The accumulation trends and profile distribution of soil salinity were predicted. Simultaneously, the effects of different soil properties and plants on soil water-salt movement and salt accumulation were investigated. Results indicated that soil salinity in the profiles reached uniform equilibrium conditions by repeated simulation, with different initial soil salinity. Under the conditions of loam and clay loam soil, salinity in the profiles increased over time until reaching equilibrium conditions, while under the condition of sandy loam soil, salinity in the profiles decreased over time until reaching equilibrium conditions. The saturated soil salinity (EC(e)) under equilibrium conditions followed an order of sandy loam < loam < clay loam. Salt accumulations in Japan euonymus and Chinese pine were less than that in Blue grass. The temporal and spatial distributions of soil salinity were also different in these three types of plants. In addition, the growth of the plants was not influenced by soil salinity (except clay loam), but mild soil salinization occurred under all conditions (except sandy loam).

  3. Predicting the occurrence of cold water patches at intermittent and ephemeral tributary confluences with warm rivers

    EPA Science Inventory

    Small, cold tributary streams can provide important thermal refuge habitat for cold-water fishes such as Pacific salmon (Oncorhynchus spp.) residing in warm, downstream receiving waters. We investigated the potential function of small perennial and non-perennial tributary stream...

  4. Quality and sources of shallow ground water in areas of recent residential development in Salt Lake Valley, Salt Lake County, Utah

    USGS Publications Warehouse

    Thiros, Susan A.

    2003-01-01

    Residential and commercial development of about 80 square miles that primarily replaced undeveloped and agricultural areas occurred in Salt Lake Valley, Utah, from 1963 to 1994. This study evaluates the occurrence and distribution of natural and anthropogenic compounds in shallow ground water underlying recently developed (post 1963) residential and commercial areas. Monitoring wells from 23 to 153 feet deep were installed at 30 sites. Water-quality data for the monitoring wells consist of analyses of field parameters, major ions, trace elements, nutrients, dissolved organic carbon, pesticides, and volatile organic compounds.Dissolved-solids concentration ranged from 134 to 2,910 milligrams per liter (mg/L) in water from the 30 monitoring wells. Dissolved arsenic concentration in water from 12 wells exceeded the drinking-water maximum contaminant level of 10 micrograms per liter. Water from monitoring wells in the northwestern part of the valley generally contained higher arsenic concentrations than did water from other areas. Nitrate concentration in water sampled from 26 of the 30 monitoring wells (86.7 percent) was higher than a background level of 2 mg/L, indicating a possible human influence. Nitrate concentrations ranged from less than 0.05 to 13.3 mg/L.Fifteen of the 104 pesticides and pesticide degradation products analyzed for were detected in 1 or more water samples from the monitoring wells. No pesticides were detected at concentrations that exceeded U.S. Environmental Protection Agency drinking-water standards or guidelines for 2002. The high detection frequency of atrazine, a restricted-use pesticide, in residential areas on the west side of Salt Lake Valley may be the result of application in agricultural or industrial areas that have been converted to residential uses or application in areas upgradient from the residential areas that was then transported by ground water.Fifteen of the 86 volatile organic compounds analyzed for were detected in 1 or

  5. Effect of salts on the properties of aqueous sugar systems, in relation to biomaterial stabilization. 1. Water sorption behavior and ice crystallization/melting.

    PubMed

    Mazzobre, M F; Longinotti, M P; Corti, H R; Buera, M P

    2001-11-01

    Trehalose and sucrose, two sugars that are involved in the protection of living organisms under extreme conditions, and their mixtures with salts were employed to prepare supercooled or freeze-dried glassy systems. The objective of the present work was to explore the effects of different salts on water sorption, glass transition temperature (T(g)), and formation and melting of ice in aqueous sugar systems. In the sugar-salt mixtures, water adsorption was higher than expected on the basis of the water uptake by each pure component. In systems with a reduced mass fraction of water (w less-than-or-equal 0.4), salts delayed water crystallization, probably due to ion-water interactions. In systems where > 0.6, water crystallization could be explained by the known colligative properties of the solutes. The glass transition temperature of the maximally concentrated matrix (T(g)') was decreased by the presence of salts. However, the actual T(g) values of the systems were not modified. Thus, the effect of salts on sorption behavior and formation of ice may reflect dynamic water-salt-sugar interactions which take place at a molecular level and are related to the charge/mass ratio of the cation present without affecting supramolecular or macroscopic properties. Copyright 2001 Elsevier Science (USA).

  6. Water- and Plant-Mediated Responses of Ecosystem Carbon Fluxes to Warming and Nitrogen Addition on the Songnen Grassland in Northeast China

    PubMed Central

    Jiang, Li; Guo, Rui; Zhu, Tingcheng; Niu, Xuedun; Guo, Jixun; Sun, Wei

    2012-01-01

    Background Understanding how grasslands are affected by a long-term increase in temperature is crucial to predict the future impact of global climate change on terrestrial ecosystems. Additionally, it is not clear how the effects of global warming on grassland productivity are going to be altered by increased N deposition and N addition. Methodology/Principal Findings In-situ canopy CO2 exchange rates were measured in a meadow steppe subjected to 4-year warming and nitrogen addition treatments. Warming treatment reduced net ecosystem CO2 exchange (NEE) and increased ecosystem respiration (ER); but had no significant impacts on gross ecosystem productivity (GEP). N addition increased NEE, ER and GEP. However, there were no significant interactions between N addition and warming. The variation of NEE during the four experimental years was correlated with soil water content, particularly during early spring, suggesting that water availability is a primary driver of carbon fluxes in the studied semi-arid grassland. Conclusion/Significance Ecosystem carbon fluxes in grassland ecosystems are sensitive to warming and N addition. In the studied water-limited grassland, both warming and N addition influence ecosystem carbon fluxes by affecting water availability, which is the primary driver in many arid and semiarid ecosystems. It remains unknown to what extent the long-term N addition would affect the turn-over of soil organic matter and the C sink size of this grassland. PMID:23028848

  7. Chloride dynamics in a restored urban stream and the influence of road salts on water quality

    EPA Science Inventory

    Understanding the connection between road salts and water quality is essential to assess the implications for human health and ecosystem services from these widely used de-icers. Preliminary analysis identified a probable connection between road salt application and a stream wat...

  8. Response of bean cultures' water use efficiency against climate warming in semiarid regions of China.

    PubMed

    Guoju, Xiao; Fengju, Zhang; Juying, Huang; Chengke, Luo; Jing, Wang; Fei, Ma; Yubi, Yao; Runyuan, Wang; Zhengji, Qiu

    2016-07-31

    Farm crop growing and high efficiency water resource utilizing are directly influenced by global warming, and a new challenge will be given to food and water resource security. A simulation experiment by farm warming with infrared ray radiator was carried out, and the result showed photosynthesis of broad bean was significantly faster than transpiration during the seedling stage, ramifying stage, budding stage, blooming stage and podding stage when the temperate was increased by 0.5-1.5 °C. But broad bean transpiration was faster than photosynthesis during the budding stage, blooming stage and podding stage when the temperature was increased by 1.5 °C above. The number of grain per hill and hundred-grain weight were significantly increased when the temperature was increased by 0.5-1.0 °C. But they significantly dropped and finally the yield decreased when the temperature was increased by 1.0 °C above. The broad bean yield decreased by 39.2-88.4% when the temperature was increased by 1.5-2.0 °C. The broad bean water use efficiency increased and then decreased with temperature rising. The water use efficiency increased when the temperature was increased by 1.0 °C below, and it quickly decreased when the temperature was increased by 1.0 °C above. In all, global warming in the future will significantly influence the growth, yield and water use efficiency of bean cultures in China's semiarid regions.

  9. Water potential in soil and Atriplex nummularia (phytoremediator halophyte) under drought and salt stresses.

    PubMed

    de Melo, Hidelblandi Farias; de Souza, Edivan Rodrigues; de Almeida, Brivaldo Gomes; Mulas, Maurizio

    2018-02-23

    Atriplex nummularia is a halophyte widely employed to recover saline soils and was used as a model to evaluate the water potentials in the soil-plant system under drought and salt stresses. Potted plants grown under 70 and 37% of field capacity irrigated with solutions of NaCl and of a mixture of NaCl, KCl, MgCl 2 and CaCl 2 reproducing six electrical conductivity (EC): 0, 5, 10, 20, 30, and 40 dS m -1 . After 100 days, total water (Ψ w, plant ) and osmotic (Ψ o, plant ) potentials at predawn and midday and Ψ o, soil , matric potential (Ψ m, soil ) and Ψ w, soil were determined. The type of ion in the irrigation water did not influence the soil potential, but was altered by EC. The soil Ψ o component was the largest contributor to Ψ w, soil . Atriplex is surviving ECs close to 40 dS m -1 due to the decrease in the Ψ w . The plants reached a Ψ w of approximately -8 MPa. The water potentials determined for different moisture levels, EC levels and salt types showed huge importance for the management of this species in semiarid regions and can be used to recover salt affected soils.

  10. A high-frequency warm shallow water acoustic communications channel model and measurements.

    PubMed

    Chitre, Mandar

    2007-11-01

    Underwater acoustic communication is a core enabling technology with applications in ocean monitoring using remote sensors and autonomous underwater vehicles. One of the more challenging underwater acoustic communication channels is the medium-range very shallow warm-water channel, common in tropical coastal regions. This channel exhibits two key features-extensive time-varying multipath and high levels of non-Gaussian ambient noise due to snapping shrimp-both of which limit the performance of traditional communication techniques. A good understanding of the communications channel is key to the design of communication systems. It aids in the development of signal processing techniques as well as in the testing of the techniques via simulation. In this article, a physics-based channel model for the very shallow warm-water acoustic channel at high frequencies is developed, which are of interest to medium-range communication system developers. The model is based on ray acoustics and includes time-varying statistical effects as well as non-Gaussian ambient noise statistics observed during channel studies. The model is calibrated and its accuracy validated using measurements made at sea.

  11. Mixtures of lecithin and bile salt can form highly viscous wormlike micellar solutions in water.

    PubMed

    Cheng, Chih-Yang; Oh, Hyuntaek; Wang, Ting-Yu; Raghavan, Srinivasa R; Tung, Shih-Huang

    2014-09-02

    The self-assembly of biological surfactants in water is an important topic for study because of its relevance to physiological processes. Two common types of biosurfactants are lecithin (phosphatidylcholine) and bile salts, which are both present in bile and involved in digestion. Previous studies on lecithin-bile salt mixtures have reported the formation of short, rodlike micelles. Here, we show that lecithin-bile salt micelles can be further induced to grow into long, flexible wormlike structures. The formation of long worms and their resultant entanglement into transient networks is reflected in the rheology: the fluids become viscoelastic and exhibit Maxwellian behavior, and their zero-shear viscosity can be up to a 1000-fold higher than that of water. The presence of worms is further confirmed by data from small-angle neutron and X-ray scattering and from cryo-transmission electron microscopy (cryo-TEM). We find that micellar growth peaks at a specific molar ratio (near equimolar) of bile salt:lecithin, which suggests a strong binding interaction between the two species. In addition, micellar growth also requires a sufficient concentration of background electrolyte such as NaCl or sodium citrate that serves to screen the electrostatic repulsion of the amphiphiles and to "salt out" the amphiphiles. We postulate a mechanism based on changes in the molecular geometry caused by bile salts and electrolytes to explain the micellar growth.

  12. Efficient chemical and visible-light-driven water oxidation using nickel complexes and salts as precatalysts.

    PubMed

    Chen, Gui; Chen, Lingjing; Ng, Siu-Mui; Lau, Tai-Chu

    2014-01-01

    Chemical and visible-light-driven water oxidation catalyzed by a number of Ni complexes and salts have been investigated at pH 7-9 in borate buffer. For chemical oxidation, [Ru(bpy)3](3+) (bpy = 2,2'-bipyridine) was used as the oxidant, with turnover numbers (TONs) >65 and a maximum turnover frequency (TOFmax) >0.9 s(-1). Notably, simple Ni salts such as Ni(NO3 )2 are more active than Ni complexes that bear multidentate N-donor ligands. The Ni complexes and salts are also active catalysts for visible-light-driven water oxidation that uses [Ru(bpy)3](2+) as the photosensitizer and S2 O8 (2-) as the sacrificial oxidant; a TON>1200 was obtained at pH 8.5 by using Ni(NO3)2 as the catalyst. Dynamic light scattering measurements revealed the formation of nanoparticles in chemical and visible-light-driven water oxidation by the Ni catalysts. These nanoparticles aggregated during water oxidation to form submicron particles that were isolated and shown to be partially reduced β-NiOOH by various techniques, which include SEM, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, XRD, and IR spectroscopy. These results suggest that the Ni complexes and salts act as precatalysts that decompose under oxidative conditions to form an active nickel oxide catalyst. The nature of this active oxide catalyst is discussed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hydrology of the Bonneville Salt Flats, northwestern Utah, and simulation of ground-water flow and solute transport in the shallow-brine aquifer

    USGS Publications Warehouse

    Mason, James L.; Kipp, Kenneth L.

    1998-01-01

    This report describes the hydrologic system of the Bonneville Salt Flats with emphasis on the mechanisms of solute transport. Variable-density, three-dimensional computer simulations of the near-surface part of the ground-water system were done to quantify both the transport of salt dissolved in subsurface brine that leaves the salt-crust area and the salt dissolved and precipitated on the land surface. The study was designed to define the hydrology of the brine ground-water system and the natural and anthropogenic processes causing salt loss, and where feasible, to quantify these processes. Specific areas of study include the transport of salt in solution by ground-water flow and the transport of salt in solution by wind-driven ponds and the subsequent salt precipitation on the surface of the playa upon evaporation or seepage into the subsurface. In addition, hydraulic and chemical changes in the hydrologic system since previous studies were documented.

  14. A method for determining and exploring the distribution of organic matters and hardness salts in natural waters

    NASA Astrophysics Data System (ADS)

    Sargsyan, Suren

    2017-11-01

    A question regarding how organic matters in water are associated with hardness salts hasn't been completely studied. For partially clarifying this question, a water fractional separation and investigation method has been recommended. The experiments carried out by the recommended method showed that the dynamics of the distribution of total hardness and permanganate oxidation values in the fractions of frozen and melted water samples coincided completely based on which it has been concluded that organic matters in natural waters are associated with hardness salts and always distributed in this form. All these findings are useful information for the deep study of macro- and microelements in water.

  15. Decline of cold-water fish species in the Bay of Somme (English Channel, France) in response to ocean warming

    NASA Astrophysics Data System (ADS)

    Auber, Arnaud; Gohin, Francis; Goascoz, Nicolas; Schlaich, Ivan

    2017-04-01

    A growing number of studies have documented increasing dominance of warm-water fish species ("tropicalisation") in response to ocean warming. Such reorganization of communities is starting to occur in a multitude of local ecosystems, implying that tropicalisation of marine communities could become a global phenomenon. Using 32 years of trawl surveys in the Bay of Somme (English Channel, France), we aimed to investigate the existence of a tropicalisation in the fish community at the local scale of the estuary during the mid-1990s, a period where an exceptional temperature rise occurred in Northeast Atlantic. A long-term response occurred (with a major transition over 6 years) that was characterized by a marked diminution in the abundance of cold-water species in parallel to a temperature rise generated by the ocean-scale phenomenon, the Atlantic Multidecadal Oscillation, which switched from a cool to a warm phase during the late 1990s. Despite finding no significant increase in the dominance of warm-water species, the long-term diminution of cold-water species suggests that the restructuring of the fish community was mainly influenced by global-scale environmental conditions rather than local ones and that indirect effects may also occurred through biological interactions.

  16. The influence of road salts on water quality in a restored urban stream (Columbus, OH)

    EPA Science Inventory

    Understanding the connection between road salts and water quality is essential to assess the implications for human health and ecosystem services. To assess the effects of the restoration on water quality, surface and ground water have been monitored at Minebank Run, MD since 20...

  17. How Do Changes to the Railroad Causeway in Utah’s Great Salt Lake Affect Water and Salt Flow?

    PubMed Central

    White, James S.; Null, Sarah E.; Tarboton, David G.

    2015-01-01

    Managing terminal lake elevation and salinity are emerging problems worldwide. We contribute to terminal lake management research by quantitatively assessing water and salt flow for Utah’s Great Salt Lake. In 1959, Union Pacific Railroad constructed a rock-filled causeway across the Great Salt Lake, separating the lake into a north and south arm. Flow between the two arms was limited to two 4.6 meter wide rectangular culverts installed during construction, an 88 meter opening (referred to locally as a breach) installed in 1984, and the semi porous material of the causeway. A salinity gradient developed between the two arms of the lake over time because the south arm receives approximately 95% of the incoming streamflow entering Great Salt Lake. The north arm is often at, or near, salinity saturation, averaging 317 g/L since 1966, while the south is considerably less saline, averaging 142 g/L since 1966. Ecological and industrial uses of the lake are dependent on long-term salinity remaining within physiological and economic thresholds, although optimal salinity varies for the ecosystem and between diverse stakeholders. In 2013, Union Pacific Railroad closed causeway culverts amid structural safety concerns and proposed to replace them with a bridge, offering four different bridge designs. As of summer 2015, no bridge design has been decided upon. We investigated the effect that each of the proposed bridge designs would have on north and south arm Great Salt Lake elevation and salinity by updating and applying US Geological Survey’s Great Salt Lake Fortran Model. Overall, we found that salinity is sensitive to bridge size and depth, with larger designs increasing salinity in the south arm and decreasing salinity in the north arm. This research illustrates that flow modifications within terminal lakes cannot be separated from lake salinity, ecology, management, and economic uses. PMID:26641101

  18. Ion aggregation in high salt solutions. VII. The effect of cations on the structures of ion aggregates and water hydrogen-bonding network

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Choi, Hyung Ran; Jeon, Jonggu; Cho, Minhaeng

    2017-10-01

    Ions in high salt solutions have a strong propensity to form polydisperse ion aggregates with broad size and shape distributions. In a series of previous comparative investigations using femtosecond IR pump-probe spectroscopy, molecular dynamics simulation, and graph theoretical analysis, we have shown that there exists a morphological difference in the structures of ion aggregates formed in various salt solutions. As salt concentration increases, the ions in high salt solutions form either cluster-like structures excluding water molecules or network-like structures entwined with water hydrogen-bonding networks. Interestingly, such morphological characteristics of the ion aggregates have been found to be in correlation with the solubility limits of salts. An important question that still remains unexplored is why certain salts with different cations have notably different solubility limits in water. Here, carrying out a series of molecular dynamics simulations of aqueous salt solutions and analyzing the distributions and connectivity patterns of ion aggregates with a spectral graph analysis method, we establish the relationship between the salt solubility and the ion aggregate morphology with a special emphasis on the cationic effects on water structures and ion aggregation. We anticipate that the understanding of large scale ion aggregate structures revealed in this study will be critical for elucidating the specific ion effects on the solubility and conformational stability of co-solute molecules such as proteins in water.

  19. To what extent is water responsible for the maintenance of the life for warm-blooded organisms?

    PubMed

    Fisenko, Anatoliy I; Malomuzh, Nikolay P

    2009-05-22

    In this work, attention is mainly focused on those properties of water which are essentially changed in the physiological temperature range of warm-blooded organisms. Studying in detail the half-width of the diffusion peak in the quasi-elastic incoherent neutron scattering, the behavior of the entropy and the kinematic shear viscosity, it is shown that the character of the translational and rotational thermal motions in water radically change near T(H) ~ 315 K, which can be interpreted as the temperature of the smeared dynamic phase transition. These results for bulk pure water are completed by the analysis of the isothermic compressibility and the NMR-spectra for water-glycerol solutions. It was noted that the non-monotone temperature dependence of the isothermic compressibility (beta(T)) takes also place for the water-glycerol solutions until the concentration of glycerol does not exceed 30 mol%. At that, the minimum of beta(T) shifts at left when the concentration increases. All these facts give us some reasons to assume that the properties of the intracellular and extracellular fluids are close to ones for pure water. Namely therefore, we suppose that the upper temperature limit for the life of warm-blooded organisms [T(D) = (315 +/- 3) K] is tightly connected with the temperature of the dynamic phase transition in water. This supposition is equivalent to the assertion that the denaturation of proteins at T > or = T(H) is mainly provoked by the rebuilding of the H-bond network in the intracellular and extracellular fluids, which takes place at T > or = T(H). A question why the heavy water cannot be a matrix for the intracellular and extracellular fluids is considered. The lower physiological pH limit for the life of warm-blooded organisms is discussed.

  20. Environmental aspects of produced-water salt releases in onshore and coastal petroleum-producing areas of the conterminous U.S. - a bibliography

    USGS Publications Warehouse

    Otton, James K.

    2006-01-01

    Environmental effects associated with the production of oil and gas have been reported since the first oil wells were drilled in the Appalachian Basin in Pennsylvania and Kentucky in the early to mid-1800s. The most significant of these effects are the degradation of soils, ground water, surface water, and ecosystems they support by releases of suspended and dissolved hydrocarbons and co-produced saline water. Produced water salts are less likely than hydrocarbons to be adsorbed by mineral phases in the soil and sediment and are not subject to degradation by biologic processes. Sodium is a major dissolved constituent in most produced waters and it causes substantial degradation of soils through altering of clays and soil textures and subsequent erosion. Produced water salts seem to have the most wide-ranging effects on soils, water quality, and ecosystems. Trace elements, including boron, lithium, bromine, fluorine, and radium, also occur in elevated concentrations in some produced waters. Many trace elements are phytotoxic and are adsorbed and may remain in soils after the saline water has been flushed away. Radium-bearing scale and sludge found in oilfield equipment and discarded on soils pose additional hazards to human health and ecosystems. This bibliography includes studies from across the oil- and natural-gas-producing areas of the conterminous United States that were published in the last 80 yrs. The studies describe the effects of produced water salts on soils, water quality, and ecosystems. Also included are reports that describe (1) the inorganic chemistry of produced waters included in studies of formation waters for various purposes, (2) other sources of salt affecting water quality that may be mistaken for produced water effects, (3) geochemical and geophysical techniques that allow discrimination of salt sources, (4) remediation technologies designed to repair damage caused to soils and ground water by produced water salts, and (5) contamination by

  1. Wind effects on water and salt loss in playa lakes

    NASA Astrophysics Data System (ADS)

    Torgersen, T.

    1984-10-01

    The theory behind wind stress induced setup of water surface slope on a playa lake is reviewed. Due to the low gradient of the bottom in most playa lakes (1-20 cm km -1), the advance and retreat of lake waters due to wind stress can expose or cover many square kilometers. It is even possible for the surface slope to exceed the bottom slope and thereby create a "roving" lake. Such water movements can transport lake water over undersaturated "shore" sediments and water can therefore infiltrate and be lost without an increase in lake salinity. This case is demonstrated with data from Lake George, New South Wales, Australia. Such wind effects need to be examined for their relation to the diagenesis of sediments, the composition of the bitterns, and the salt budget of playa lakes.

  2. [Effect of shifting sand burial on evaporation reduction and salt restraint under saline water irrigation in extremely arid region].

    PubMed

    Zhang, Jian-Guo; Zhao, Ying; Xu, Xin-Wen; Lei, Jia-Qiang; Li, Sheng-Yu; Wang, Yong-Dong

    2014-05-01

    The Taklimakan Desert Highway Shelterbelt is drip-irrigated with high saline groundwater (2.58-29.70 g x L(-1)), and shifting sand burial and water-salt stress are most common and serious problems in this region. So it is of great importance to study the effect of shifting sand burial on soil moisture evaporation, salt accumulation and their distribution for water saving, salinity restraint, and suitable utilization of local land and water resources. In this study, Micro-Lysimeters (MLS) were used to investigate dynamics of soil moisture and salt under different thicknesses of sand burial (1, 2, 3, 4, and 5 cm), and field control experiments of drip-irrigation were also carried out to investigate soil moisture and salt distribution under different thicknesses of shifting sand burial (5, 10, 15, 20, 25, 30, 35, and 40 cm). The soil daily and cumulative evaporation decreased with the increase of sand burial thickness in MLS, cumulative evaporation decreased by 2.5%-13.7% compared with control. And evaporative inhibiting efficiency increased with sand burial thickness, evaporative inhibiting efficiency of 1-5 cm sand burial was 16.7%-79.0%. Final soil moisture content beneath the interface of sand burial increased with sand burial thickness, and it increased by 2.5%-13.7% than control. The topsoil EC of shifting sand in MLS decreased by 1.19-6.00 mS x cm(-1) with the increasing sand burial thickness, whereas soil salt content beneath the interface in MLS increased and amplitude of the topsoil salt content was higher than that of the subsoil. Under drip-irrigation with saline groundwater, average soil moisture beneath the interface of shifting sand burial increased by 0.4% -2.0% compare with control, and the highest value of EC was 7.77 mS x cm(-1) when the sand burial thickness was 10 cm. The trend of salt accumulation content at shifting sand surface increased firstly, and then decreased with the increasing sand burial thickness. Soil salt contents beneath the

  3. Characteristics of salt taste and free chlorine or chloramine in drinking water.

    PubMed

    Wiesenthal, K E; McGuire, M J; Suffet, I H

    2007-01-01

    Salty taste with or without chlorine or chloramine flavour is one of the major consumer complaints to water utilities. The flavour profile analysis (FPA) taste panel method determined the average taste threshold concentration for salt (NaCl) in Milli-Q water to be 640 +/- 3 mg/L at pH 8. Chlorine and chloramine disinfectants have no antagonistic or synergistic effects on the taste of NaCl, salt, in Milli-Q water. The flavour threshold concentrations for chlorine or chloramine in Milli-Q water alone or in the presence of NaCl could not be estimated by the Weber-Fechner curves due to the chlorine or chloramine flavour outliers in the 0.2-0.8 mg/L concentration range. Apparently, NaCl is not equilibrated with the concentration of ions in the saliva in the mouth and the concentration of free chlorine or chloramines cannot be tasted correctly. Therefore, dechlorinated tap water may be the best background water to use for a particular drinking water evaluation of chlorine and chloramine thresholds. Laboratory FPA studies of free chlorine found that a 67% dilution of Central Arizona Project (CAP) (Tucson, AZ) water with Milli-O water was required to reduce the free chlorine flavour to a threshold value instead of a theoretical value of 80% (Krasner and Barrett, 1980). No synergistic effect was found for chlorine flavour on the dilution of CAP water with Milli-Q water. When Central Avra Valley (AVRA) groundwater was used for the dilution of CAP water, a synergistic effect of the TDS present was observed for the chlorine flavour. Apparently, the actual mineral content of drinking water, and not just NaCl in Milli-Q water, is needed for comparative flavour tests for chlorine and chloramines.

  4. Oligocene sea water temperatures offshore Wilkes Land (Antarctica) indicate warm and stable glacial-interglacial variation and show no 'late Oligocene warming'

    NASA Astrophysics Data System (ADS)

    Hartman, Julian; Bijl, Peter; Peterse, Francien; Schouten, Stefan; Salabarnada, Ariadna; Bohaty, Steven; Escutia, Carlota; Brinkhuis, Henk; Sangiorgi, Francesca

    2017-04-01

    At present, warming of the waters below the Antarctic ice shelves is a major contributor to the instability of the Antarctic cryosphere. In order to get insight into future melt behavior of the Antarctic ice sheet, it is important to look at past warm periods that can serve as an analogue for the future. The Oligocene ( 34-23 Ma) is a period within the range of CO2 concentrations predicted by the latest IPCC report for the coming century and is characterized by a very dynamic Antarctic ice sheet, as suggested by benthic δ18O records from ice-distal sites. We suspect that, like today, environmental changes in the Southern Ocean are in part responsible for this dynamicity. To gain more insight into this, we have reconstructed sea water temperatures (SWT) based on Thaumarchaeotal lipids (TEX86) for the Oligocene record obtained from the ice-proximal Site U1356 (Integrated Ocean Drilling Program), offshore Wilkes Land. Part of our record shows a strong coupling between the lithology and SWT, which we attribute to glacial-interglacial variation. Our data shows that both glacial and interglacial temperatures are relatively warm throughout the Oligocene: 14°C and 18°C respectively, which is consistent with previously published estimates based on UK'37 and clumped isotopes for the early Oligocene. Our SST records show only a minor decline between 30 and 24 Ma, and thus show no evidence for a 'late Oligocene warming' as was suggested based on benthic δ18O records from low latitudes. Instead, the discrepancy between our SST trend and the δ18O trend suggests that the late-Oligocene benthic δ18O decrease is likely related to a decline in ice volume. After 24 Ma, however, glacial-interglacial temperature variation appears to increase. In particular, some large temperature drops occur, one of which can be related to the Mi-1 event and a major expansion of the Antarctic ice sheet.

  5. Growth decline linked to warming-induced water limitation in hemi-boreal forests.

    PubMed

    Wu, Xiuchen; Liu, Hongyan; Guo, Dali; Anenkhonov, Oleg A; Badmaeva, Natalya K; Sandanov, Denis V

    2012-01-01

    Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii), sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year) over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies.

  6. Surface and ground water quality in a restored urban stream affected by road salts

    EPA Science Inventory

    In 2001 research began in Minebank Run, MD to examine the impact of restoration on water quality. Our research area was to determine if road salts in the surface and ground waters are detrimental to the stream channel restoration. The upstream reach (UP), above the Baltimore I-...

  7. Benefit of warm water immersion on biventricular function in patients with chronic heart failure

    PubMed Central

    Grüner Sveälv, Bente; Cider, Åsa; Täng, Margareta Scharin; Angwald, Eva; Kardassis, Dimitris; Andersson, Bert

    2009-01-01

    Background Regular physical activity and exercise are well-known cardiovascular protective factors. Many elderly patients with heart failure find it difficult to exercise on land, and hydrotherapy (training in warm water) could be a more appropriate form of exercise for such patients. However, concerns have been raised about its safety. The aim of this study was to investigate, with echocardiography and Doppler, the acute effect of warm water immersion (WWI) and effect of 8 weeks of hydrotherapy on biventricular function, volumes and systemic vascular resistance. A secondary aim was to observe the effect of hydrotherapy on brain natriuretic peptide (BNP). Methods Eighteen patients [age 69 ± 8 years, left ventricular ejection fraction 31 ± 9%, peakVO2 14.6 ± 4.5 mL/kg/min] were examined with echocardiography on land and in warm water (34°C). Twelve of these patients completed 8 weeks of control period followed by 8 weeks of hydrotherapy twice weekly. Results During acute WWI, cardiac output increased from 3.1 ± 0.8 to 4.2 ± 0.9 L/min, LV tissue velocity time integral from 1.2 ± 0.4 to 1.7 ± 0.5 cm and right ventricular tissue velocity time integral from 1.6 ± 0.6 to 2.5 ± 0.8 cm (land vs WWI, p < 0.0001, respectively). Heart rate decreased from 73 ± 12 to 66 ± 11 bpm (p < 0.0001), mean arterial pressure from 92 ± 14 to 86 ± 16 mmHg (p < 0.01), and systemic vascular resistance from 31 ± 7 to 22 ± 5 resistant units (p < 0.0001). There was no change in the cardiovascular response or BNP after 8 weeks of hydrotherapy. Conclusion Hydrotherapy was well tolerated by all patients. The main observed cardiac effect during acute WWI was a reduction in heart rate, which, together with a decrease in afterload, resulted in increases in systolic and diastolic biventricular function. Although 8 weeks of hydrotherapy did not improve cardiac function, our data support the concept that exercise in warm water is an acceptable regime for patients with heart failure. PMID

  8. The Effects of Salt Water on the Slow Crack Growth of Soda Lime Silicate Glass

    NASA Technical Reports Server (NTRS)

    Hausmann, Bronson D.; Salem, Jonathan A.

    2016-01-01

    The slow crack growth parameters of soda-lime silicate were measured in distilled and salt water of various concentrations in order to determine if stress corrosion susceptibility is affected by the presence of salt and the contaminate formation of a weak sodium film. Past research indicates that solvents effect the rate of crack growth, however, the effects of salt have not been studied. The results indicate a small but statistically significant effect on the slow crack growth parameters A and n. However, for typical engineering purposes, the effect can be ignored.

  9. Invasive forb benefits from water savings by native plants and carbon fertilization under elevated CO2 and warming.

    PubMed

    Blumenthal, Dana M; Resco, Víctor; Morgan, Jack A; Williams, David G; Lecain, Daniel R; Hardy, Erik M; Pendall, Elise; Bladyka, Emma

    2013-12-01

    As global changes reorganize plant communities, invasive plants may benefit. We hypothesized that elevated CO2 and warming would strongly influence invasive species success in a semi-arid grassland, as a result of both direct and water-mediated indirect effects. To test this hypothesis, we transplanted the invasive forb Linaria dalmatica into mixed-grass prairie treated with free-air CO2 enrichment and infrared warming, and followed survival, growth, and reproduction over 4 yr. We also measured leaf gas exchange and carbon isotopic composition in L. dalmatica and the dominant native C3 grass Pascopyrum smithii. CO2 enrichment increased L. dalmatica biomass 13-fold, seed production 32-fold, and clonal expansion seven-fold, while warming had little effect on L. dalmatica biomass or reproduction. Elevated CO2 decreased stomatal conductance in P. smithii, contributing to higher soil water, but not in L. dalmatica. Elevated CO2 also strongly increased L. dalmatica photosynthesis (87% versus 23% in P. smithii), as a result of both enhanced carbon supply and increased soil water. More broadly, rapid growth and less conservative water use may allow invasive species to take advantage of both carbon fertilization and water savings under elevated CO2 . Water-limited ecosystems may therefore be particularly vulnerable to invasion as CO2 increases. No claim to original US goverment works. New Phytologist © 2013 New Phytologist Trust.

  10. Selected ground-water data, Bonneville Salt Flats and Pilot Valley, western Utah

    USGS Publications Warehouse

    Lines, Gregory C.

    1978-01-01

    This report contains ground-water data collected at wells and springs on the Bonneville Salt Flats and in Pilot Valley, western Utah. Most of the data were collected during a study of the hydrology and surface morphology of these two salt-crust areas during the period July 1975 - June 1977. The study was carried out in cooperation with the U.S. Bureau of Land Management. This report is intended to make the basic data conveniently available and to supplement an interpretive report that will be published separately. Some earlier data that were collected by the Geological Survey and other organizations are also included.

  11. Salt Content in Ready-to-Eat Food and Bottled Spring and Mineral Water Retailed in Novi Sad.

    PubMed

    Paplović, Ljiljana B Trajković; Popović, Milka B; Bijelović, Sanja V; Velicki, Radmila S; Torović, Ljilja D

    2015-01-01

    Salt intake above 5 g/person/day is a strong independent risk factor for hypertension, stroke and cardiovascular diseases. Published studies indicate that the main source of salt in human diet is processed ready-to-eat food, contributing with 65-85% to daily salt intake. The aim of this paper was to present data on salt content of ready-to-eat food retailed in Novi Sad, Serbia, and contribution of the salt contained in 100 g of food to the recommended daily intake of salt for healthy and persons with cardiovascular disease (CVD) risk. In 1,069 samples of ready-to-eat food, salt (sodium chloride) content was calculated based on chloride ion determined by titrimetric method, while in 54 samples of bottled water sodium content was determined using flame-photometry. Food items in each food group were categorized as low, medium or high salt. Average salt content of each food group was expressed as a percentage of recommended daily intake for healthy and for persons with CVD risk. Average salt content (g/100 g) ranged from 0.36 ± 0.48 (breakfast cereals) to 2.32 ± 1.02 (grilled meat). The vast majority of the samples of sandwiches (91.7%), pizza (80.7%), salami (73.9%), sausages (72.9%), grilled meat (70.0%) and hard cheese (69.6%) had a high salt profile. Average amount of salt contained in 100 g of food participated with levels ranging from 7.2% (breakfast cereals) to 46.4% (grilled meat) and from 9.6% to 61.8% in the recommended daily intake for healthy adult and person with CVD risk, respectively. Average sodium content in 100 ml of bottled spring and mineral water was 0.33 ± 0.30 mg and 33 ± 44 mg, respectively. Ready-to-eat food retailed in Novi Sad has high hidden salt content, which could be considered as an important contributor to relatively high salt consumption of its inhabitants.

  12. [Deposition and burial of organic carbon in coastal salt marsh: research progress].

    PubMed

    Cao, Lei; Song, Jin-Ming; Li, Xue-Gang; Yuan, Hua-Mao; Li, Ning; Duan, Li-Qin

    2013-07-01

    Coastal salt marsh has higher potential of carbon sequestration, playing an important role in mitigating global warming, while coastal saline soil is the largest organic carbon pool in the coastal salt marsh carbon budget. To study the carbon deposition and burial in this soil is of significance for clearly understanding the carbon budget of coastal salt marsh. This paper summarized the research progress on the deposition and burial of organic carbon in coastal salt marsh from the aspects of the sources of coastal salt marsh soil organic carbon, soil organic carbon storage and deposition rate, burial mechanisms of soil organic carbon, and the relationships between the carbon sequestration in coastal salt marsh and the global climate change. Some suggestions for the future related researches were put forward: 1) to further study the underlying factors that control the variability of carbon storage in coastal salt marsh, 2) to standardize the methods for measuring the carbon storage and the deposition and burial rates of organic carbon in coastal salt marsh, 3) to quantify the lateral exchange of carbon flux between coastal salt marsh and adjacent ecosystems under the effects of tide, and 4) to approach whether the effects of global warming and the increased productivity could compensate for the increase of the organic carbon decomposition rate resulted from sediment respiration. To make clear the driving factors determining the variability of carbon sequestration rate and how the organic carbon storage is affected by climate change and anthropogenic activities would be helpful to improve the carbon sequestration capacity of coastal salt marshes in China.

  13. Determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium salts.

    PubMed

    Tsukatani, Tadayuki; Suenaga, Hikaru; Ishiyama, Munetaka; Ezoe, Takatoshi; Matsumoto, Kiyoshi

    2011-07-15

    A method for the determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8)} via 2-methyl-1,4-napthoquinone (NQ) was developed. Measurement conditions were optimized for the microbiological determination of water-soluble vitamins, such as vitamin B(6), biotin, folic acid, niacin, and pantothenic acid, using microorganisms that have a water-soluble vitamin requirement. A linear relationship between absorbance and water-soluble vitamin concentration was obtained. The proposed method was applied to determine the concentration of vitamin B(6) in various foodstuffs. There was good agreement between vitamin B(6) concentrations determined after 24h using the WST-8 colorimetric method and those obtained after 48h using a conventional method. The results suggest that the WST-8 colorimetric assay is a useful method for the rapid determination of water-soluble vitamins in a 96-well microtiter plate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Mg-Sulfate Salts as Possible Water Reservoirs in Martian Regolith

    NASA Astrophysics Data System (ADS)

    Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Carey, J. W.; Feldman, W. C.

    2003-12-01

    Neutron spectrometer data from the Mars Odyssey orbiter provide evidence of high water-equivalent hydrogen abundance in some near-equatorial locations on Mars. In broad regions shallow (<1 m) regolith appears to have water abundances of up to ˜13 wt%. Water ice is predicted to be unstable at the present time at all depths below the surface in these equatorial regions. If present in hydrous silicate minerals such as clays or zeolites, which may contain water in abundances of ˜10-20% at Martian surface conditions, the Odyssey data require a regolith very enriched in hydrous silicates - an unlikely proposition. Viking X-ray fluorescence data and alteration assemblages in martian meteorites suggest the presence of sulfate salts in martian regolith. Viking data from excavated duricrust indicate that Mg and S are correlated and that ˜10% of an Mg-sulfate salt is a likely cementing agent. However, the range of possible Mg sulfates is large. Epsomite (7-hydrate, 51% water) and hexahydrite (6-hydrate, 47% water) are the most hydrated; both form structures of isolated SO4 tetrahedra with isolated octahedral sites consisting of Mg coordinated by six H2O molecules (epsomite has an extra H2O in addition to the six required to coordinate with Mg). Pentahydrite (5-hydrate, 43% water) has infinite chains of alternating SO4 tetrahedra and Mg octahedra, with 4/5 of the water forming apices in octahedral sites. Starkeyite (4-hydrate, 37% water) has clusters of two SO4 tetrahedra and two Mg octahedra, linked only by hydrogen bonds. The Mg-sulfate sanderite (2-hydrate, 23% water) is rare and has poorly known structure. Kieserite (1-hydrate, 13% water) is relatively common in evaporite deposits and has a framework structure of infinite tetrahedral-octahedral chains cross-linked by hydrogen bonds. The stability of Mg-sulfate hydrates under martian near-surface conditions depends on their structures; those with excess water beyond that required to form the octahedral Mg site (e

  15. Iodine Intake Estimation from the Consumption of Instant Noodles, Drinking Water and Household Salt in Indonesia

    PubMed Central

    Sutrisna, Aang; Knowles, Jacky; Basuni, Abas; Menon, Ravi; Sugihantono, Anung

    2018-01-01

    The objective of this study was to assess the contribution of iodine intake from iodised household salt, iodised salt in instant noodles, and iodine in ground water in five regions of Indonesia. Secondary data analysis was performed using the 2013 Primary Health Research Survey, the 2014 Total Diet Study, and data from food industry research. Iodine intake was estimated among 2719 children, 10–12 years of age (SAC), 13,233 women of reproductive age (WRA), and 578 pregnant women (PW). Combined estimated iodine intake from the three stated sources met 78%, 70%, and 41% of iodine requirements for SAC, WRA and PW, respectively. Household salt iodine contributed about half of the iodine requirements for SAC (49%) and WRA (48%) and a quarter for PW (28%). The following variations were found: for population group, the percentage of estimated dietary iodine requirements met by instant noodle consumption was significantly higher among SAC; for region, estimated iodine intake was significantly higher from ground water for WRA in Java, and from household salt for SAC and WRA in Kalimantan and Java; and for household socio-economic status (SES), iodine intake from household salt was significantly higher in the highest SES households. Enforcement of clear implementing regulations for iodisation of household and food industry salt will promote optimal iodine intake among all population groups with different diets. PMID:29517995

  16. Iodine Intake Estimation from the Consumption of Instant Noodles, Drinking Water and Household Salt in Indonesia.

    PubMed

    Sutrisna, Aang; Knowles, Jacky; Basuni, Abas; Menon, Ravi; Sugihantono, Anung

    2018-03-08

    The objective of this study was to assess the contribution of iodine intake from iodised household salt, iodised salt in instant noodles, and iodine in ground water in five regions of Indonesia. Secondary data analysis was performed using the 2013 Primary Health Research Survey, the 2014 Total Diet Study, and data from food industry research. Iodine intake was estimated among 2719 children, 10-12 years of age (SAC), 13,233 women of reproductive age (WRA), and 578 pregnant women (PW). Combined estimated iodine intake from the three stated sources met 78%, 70%, and 41% of iodine requirements for SAC, WRA and PW, respectively. Household salt iodine contributed about half of the iodine requirements for SAC (49%) and WRA (48%) and a quarter for PW (28%). The following variations were found: for population group, the percentage of estimated dietary iodine requirements met by instant noodle consumption was significantly higher among SAC; for region, estimated iodine intake was significantly higher from ground water for WRA in Java, and from household salt for SAC and WRA in Kalimantan and Java; and for household socio-economic status (SES), iodine intake from household salt was significantly higher in the highest SES households. Enforcement of clear implementing regulations for iodisation of household and food industry salt will promote optimal iodine intake among all population groups with different diets.

  17. Acute effects of a single warm-water bath on serum adiponectin and leptin levels in healthy men: A pilot study

    NASA Astrophysics Data System (ADS)

    Shimodozono, Megumi; Matsumoto, Shuji; Ninomiya, Koji; Miyata, Ryuji; Ogata, Atsuko; Etoh, Seiji; Watanabe, Satoshi; Kawahira, Kazumi

    2012-09-01

    To preliminarily assess the acute effects of a single warm -water bath (WWB) on serum adipokine activity, we measured serum adiponectin, leptin and other metabolic profiles before, immediately after and 30 minutes after WWB in seven healthy male volunteers (mean age, 39.7 ± 6.0 years; mean body mass index, 21.6 ± 1.8 kg/m2). The subjects were immersed in tap water at 41°C for 10 minutes. Two weeks later, the same subjects underwent a single WWB with a bath additive that included inorganic salts and carbon dioxide (WWB with ISCO2) by the same protocol as for the first WWB. Leptin levels significantly increased immediately after WWB with tap water and ISCO2 (both P < 0.05), and remained significantly higher than those at baseline even 30 minutes after WWB with tap water ( P < 0.05). Adiponectin levels showed a slight, but not significant, increase both immediately after and 30 minutes after WWB with tap water or ISCO2. Some parameters, such as serum total cholesterol, red blood cell count, hemoglobin and hematocrit significantly increased immediately after WWB with tap water or ISCO2 (all P < 0.05), but they all returned to the baseline levels 30 minutes after bathing under both conditions. The sublingual temperature rose significantly after 10 minutes of WWB with tap water (0.96 ± 0.16°C relative to baseline, P < 0.01) and after the same duration of WWB with ISCO2 (1.24 ± 0.34°C relative to baseline, P < 0.01). These findings suggest that a single WWB at 41°C for 10 minutes may modulate leptin and adiponectin profiles in healthy men.

  18. Models for coupling of salt and water transport; Proximal tubular reabsorption in Necturus kidney.

    PubMed

    Sackin, H; Boulpaep, E L

    1975-12-01

    Models for coupling of salt and water transport are developed with two important assumptions appropriate for leaky epithelia. (a) The tight junction is permeable to both sale and water. (b) Active Na transport into the lateral speces is assumed to occur uniformly along the length of the channel. The proposed models deal specifically with the intraepithelial mechanism of proximal tubular resbsorption in the Necturus kidney although they have implications for epithelial transport in the gallbladder and small intestine as well. The first model (continuous version) is similar to the standing gradient model devised by Diamond and Bossert but used different boundary conditions. In contrast to Diamond and Bossert's model, the predicted concentration profiles are relatively flat with no sizable gradients along the interspace. The second model (compartment version) expands Curran's model of epithelial salt and water transport by including additional compartments and considering both electrical and chemical driving forces for individual Na and Cl ions as well as hydraulic and osmotic driving forces for water. In both models, ion and water fluxes are investigated as a function of the transport parameters. The behavior of the models is consistent with previously suggested mechanisms for the control of net transport, particularly during saline diuresis. Under all conditions the predicted ratio of net solute to solvent flux, or emergent concentration, deviates from exact isotonicity (except when the basement membrane has an appreciable salt reflection coefficient). However, the degree of hypertonicity may be small enough to be experimentally indistinguishable from isotonic transport.

  19. Models for coupling of salt and water transport; Proximal tubular reabsorption in Necturus kidney

    PubMed Central

    Sackin, H; Boulpaep, EL

    1975-01-01

    Models for coupling of salt and water transport are developed with two important assumptions appropriate for leaky epithelia. (a) The tight junction is permeable to both sale and water. (b) Active Na transport into the lateral speces is assumed to occur uniformly along the length of the channel. The proposed models deal specifically with the intraepithelial mechanism of proximal tubular resbsorption in the Necturus kidney although they have implications for epithelial transport in the gallbladder and small intestine as well. The first model (continuous version) is similar to the standing gradient model devised by Diamond and Bossert but used different boundary conditions. In contrast to Diamond and Bossert's model, the predicted concentration profiles are relatively flat with no sizable gradients along the interspace. The second model (compartment version) expands Curran's model of epithelial salt and water transport by including additional compartments and considering both electrical and chemical driving forces for individual Na and Cl ions as well as hydraulic and osmotic driving forces for water. In both models, ion and water fluxes are investigated as a function of the transport parameters. The behavior of the models is consistent with previously suggested mechanisms for the control of net transport, particularly during saline diuresis. Under all conditions the predicted ratio of net solute to solvent flux, or emergent concentration, deviates from exact isotonicity (except when the basement membrane has an appreciable salt reflection coefficient). However, the degree of hypertonicity may be small enough to be experimentally indistinguishable from isotonic transport. PMID:1104761

  20. Asynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C.; Oppo, Delia W.; Clark, Peter U.; Jahn, Alexandra; Marcott, Shaun A.; Lindsay, Keith

    2017-10-01

    The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ18O of benthic foraminiferal calcite (δ18Oc). Here, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ18O evolution. Model results suggest that, in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ18Oc likely reflects early warming of the deep northern North Atlantic by ˜1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ18O, and call for caution when inferring water mass changes from δ18Oc records while assuming uniform changes in deep temperatures.

  1. Asynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Liu, Z.; Brady, E. C.; Oppo, D.; Clark, P. U.; Jahn, A.; Marcott, S. A.; Lindsay, K. T.

    2017-12-01

    The large-scale reorganization of deep-ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ18O of benthic foraminiferal calcite (δ18Oc). Here we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ18O evolution. Model results suggest that in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties due to freshwater input as suggested previously, the observed phasing difference of deep δ18Oc likely reflects early warming of the deep northern North Atlantic by 1.4°C while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong mid-depth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way ocean circulation affects heat, a dynamic tracer, is considerably different than how it affects passive tracers like δ18O, and call for caution when inferring water mass changes from δ18Oc records while assuming uniform changes in deep temperatures.

  2. Characterising protein, salt and water interactions with combined vibrational spectroscopic techniques.

    PubMed

    Perisic, Nebojsa; Afseth, Nils Kristian; Ofstad, Ragni; Hassani, Sahar; Kohler, Achim

    2013-05-01

    In this paper a combination of NIR spectroscopy and FTIR and Raman microspectroscopy was used to elucidate the effects of different salts (NaCl, KCl and MgSO(4)) on structural proteins and their hydration in muscle tissue. Multivariate multi-block technique Consensus Principal Component Analysis enabled integration of different vibrational spectroscopic techniques: macroscopic information obtained by NIR spectroscopy is directly related to microscopic information obtained by FTIR and Raman microspectroscopy. Changes in protein secondary structure observed at different concentrations of salts were linked to changes in protein hydration affinity. The evidence for this was given by connecting the underlying FTIR bands of the amide I region (1700-1600 cm(-1)) and the water region (3500-3000 cm(-1)) with water vibrations obtained by NIR spectroscopy. In addition, Raman microspectroscopy demonstrated that different cations affected structures of aromatic amino acid residues differently, which indicates that cation-π interactions play an important role in determination of the final structure of protein molecules. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Role of Salt, Pressure, and Water Activity on Homogeneous Ice Nucleation.

    PubMed

    Espinosa, Jorge R; Soria, Guiomar D; Ramirez, Jorge; Valeriani, Chantal; Vega, Carlos; Sanz, Eduardo

    2017-09-21

    Pure water can be substantially supercooled below the melting temperature without transforming into ice. The achievable supercooling can be enhanced by adding solutes or by applying hydrostatic pressure. Avoiding ice formation is of great importance in the cryopreservation of food or biological samples. In this Letter, we investigate the similarity between the effects of pressure and salt on ice formation using a combination of state-of-the-art simulation techniques. We find that both hinder ice formation by increasing the energetic cost of creating the ice-fluid interface. Moreover, we examine the widely accepted proposal that the ice nucleation rate for different pressures and solute concentrations can be mapped through the activity of water [ Koop , L. ; Tsias , P. Nature , 2000 , 406 , 611 ]. We show that such a proposal is not consistent with the nucleation rates predicted in our simulations because it does not include all parameters affecting ice nucleation. Therefore, even though salt and pressure have a qualitatively similar effect on ice formation, they cannot be quantitatively mapped onto one another.

  4. On the hydrophilicity of polyzwitterion poly (N,N-dimethyl-N-(3-(methacrylamido)propyl)ammoniopropane sulfonate) in water, deuterated water, and aqueous salt solutions.

    PubMed

    Hildebrand, Viet; Laschewsky, André; Zehm, Daniel

    2014-01-01

    A series of zwitterionic model polymers with defined molar masses up to 150,000 Da and defined end groups are prepared from sulfobetaine monomer N,N-dimethyl-N-(3-(methacrylamido)propyl)ammoniopropanesulfonate (SPP). Polymers are synthesized by reversible addition-fragmentation chain transfer polymerization (RAFT) using a functional chain transfer agent labeled with a fluorescent probe. Their upper critical solution temperature-type coil-to-globule phase transition in water, deuterated water, and various salt solutions is studied by turbidimetry. Cloud points increase with polyzwitterion concentration and molar mass, being considerably higher in D2O than in H2O. Moreover, cloud points are strongly affected by the amount and nature of added salts. Typically, they increase with increasing salt concentration up to a maximum value, whereas further addition of salt lowers the cloud points again, mostly down to below freezing point. The different salting-in and salting-out effects of the studied anions can be correlated with the Hofmeister series. In physiological sodium chloride solution and in phosphate buffered saline (PBS), the cloud point is suppressed even for high molar mass samples. Accordingly, SPP-polymers behave strongly hydrophilic under most conditions encountered in biomedical applications. However, the direct transfer of results from model studies in D2O, using, e.g. (1)H NMR or neutron scattering techniques, to 'normal' systems in H2O is not obvious.

  5. A preliminary study of the tropical water cycle and its sensitivity to surface warming

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Sui, C. H.; Tao, W. K.

    1993-01-01

    The Goddard Cumulus Ensemble Model (GCEM) has been used to demonstrate that cumulus-scale dynamics and microphysics play a major role in determining the vertical distribution of water vapor and clouds in the tropical atmosphere. The GCEM is described and is the basic structure of cumulus convection. The long-term equilibrium response to tropical convection to surface warming is examined. A picture of the water cycle within tropical cumulus clusters is developed.

  6. Electromyogram as a measure of heavy metal toxicity in fresh water and salt water mussels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kidder, G.W. III; McCoy, A.A.

    1996-02-01

    The response of bivalves to heavy metals and other toxins has usually been determined by observing valve position. Since mussels close their valves to avoid noxious stimuli, experimental delivery of chemicals ins uncertain. To obtain constant results plastic spacers can be employed to hold the valves apart. This obviates valve position as an index of response and some other method is required. Electromyography of intact mussels is one such index, giving a simple, effective, and quantitative measurement of activity. Experiments are reported in this article on the effects of added mercury on salt water and fresh water species.

  7. Salting Constants of Small Organic Molecules in Aerosol-Relevant Salts and Application to Aerosol Formation in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Carlton, A. M. G.; Ziemann, P. J.; Volkamer, R. M.

    2014-12-01

    Secondary organic aerosol (SOA) formation from small water-soluble molecules such as glyoxal and methyl glyoxal is a topic of emerging interest. Results from recent field campaigns, e.g. Waxman et al. (2013, GRL) and Knote et al. (2014, ACP), show that these molecules can form significant SOA mass as a result of 'salting-in'. Salting-in happens when a molecule's solubility increases with salt concentration and salting-out is the reverse. Salting effects modify the solubility exponentially with increasing salt concentration, and thus the effective Henry's law constant can strongly modify partitioning, and multiphase chemical reaction rates in aerosol water. Moreover, the solubility in aerosol water cannot easily inferred based on the solubility in cloud water, as the salting effects could change the solubility by a factor of 104 or more. In this work, we have devised and applied a novel experimental setup to measure salting constants using an ion trap mass spectrometer. We focus on small, water soluble molecules like methyl glyoxal and similar compounds and measure salting constants for aerosol-relevant salts including ammonium sulfate, ammonium nitrate, and sodium chloride. The Setschenow salting-constant values are then used to parameterize the effects of salting in CMAQ. We present a series of sensitivity studies of the effects that inorganic aerosols have on the SOA formation from small soluble molecules in the southeastern United States.

  8. Understanding why the volume of suboxic waters does not increase over centuries of global warming in an Earth System Model

    NASA Astrophysics Data System (ADS)

    Gnanadesikan, A.; Dunne, J. P.; John, J.

    2012-03-01

    Global warming is expected to reduce oxygen solubility and vertical exchange in the ocean, changes which would be expected to result in an increase in the volume of hypoxic waters. A simulation made with a full Earth System model with dynamical atmosphere, ocean, sea ice and biogeochemical cycling (the Geophysical Fluid Dynamics Laboratory's Earth System Model 2.1) shows that this holds true if the condition for hypoxia is set relatively high. However, the volume of the most hypoxic (i.e., suboxic) waters does not increase under global warming, as these waters actually become more oxygenated. We show that the rise in dissolved oxygen in the tropical Pacific is associated with a drop in ventilation time. A term-by-term analysis within the least oxygenated waters shows an increased supply of dissolved oxygen due to lateral diffusion compensating an increase in remineralization within these highly hypoxic waters. This lateral diffusive flux is the result of an increase of ventilation along the Chilean coast, as a drying of the region under global warming opens up a region of wintertime convection in our model. The results highlight the potential sensitivity of suboxic waters to changes in subtropical ventilation as well as the importance of constraining lateral eddy transport of dissolved oxygen in such waters.

  9. Increasing water cycle extremes in California and relation to ENSO cycle under global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Jin -Ho; Wang, S. -Y. Simon; Gillies, Robert R.

    California has experienced its most severe drought in recorded history since the winter of 2013-2014. The long duration of drought has stressed statewide water resources and the economy, while fueling an extraordinary increase in wildfires. The effects of global warming on the regional climate include a hotter and drier climate, as well as earlier snowmelt, both of which exacerbate drought conditions. However, connections between a changing climate and how climate oscillations modulate regional water cycle extremes are not well understood. Here we analyze large-ensemble simulations of future climate change in California using the Community Earth System Model version 1 (CESM1)more » and multiple climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Both intense drought and excessive flooding are projected to increase by at least 50% toward the end of the 21st century. Furthermore, the projected increase in water cycle extremes is associated with tighter relation to El Niño and Southern Oscillation (ENSO), particularly extreme El Niño and La Niña events, which modulates California’s climate not only through its warm and cold phases, but also ENSO’s precursor patterns.« less

  10. Increasing water cycle extremes in California and relation to ENSO cycle under global warming

    DOE PAGES

    Yoon, Jin -Ho; Wang, S. -Y. Simon; Gillies, Robert R.; ...

    2015-10-21

    California has experienced its most severe drought in recorded history since the winter of 2013-2014. The long duration of drought has stressed statewide water resources and the economy, while fueling an extraordinary increase in wildfires. The effects of global warming on the regional climate include a hotter and drier climate, as well as earlier snowmelt, both of which exacerbate drought conditions. However, connections between a changing climate and how climate oscillations modulate regional water cycle extremes are not well understood. Here we analyze large-ensemble simulations of future climate change in California using the Community Earth System Model version 1 (CESM1)more » and multiple climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Both intense drought and excessive flooding are projected to increase by at least 50% toward the end of the 21st century. Furthermore, the projected increase in water cycle extremes is associated with tighter relation to El Niño and Southern Oscillation (ENSO), particularly extreme El Niño and La Niña events, which modulates California’s climate not only through its warm and cold phases, but also ENSO’s precursor patterns.« less

  11. Receptacle model of salting-in by tetramethylammonium ions.

    PubMed

    Hribar-Lee, Barbara; Dill, Ken A; Vlachy, Vojko

    2010-11-25

    Water is a poor solvent for nonpolar solutes. Water containing ions is an even poorer solvent. According to standard terminology, the tendency of salts to precipitate oils from water is called salting-out. However, interestingly, some salt ions, such as tetramethylammonium (TMA), cause instead the salting-in of hydrophobic solutes. Even more puzzling, there is a systematic dependence on solute size. TMA causes the salting-out of small hydrophobes and the salting-in of larger nonpolar solutes. We study these effects using NPT Monte Carlo simulations of the Mercedes-Benz (MB) + dipole model of water, which was previously shown to account for hydrophobic effects and ion solubilities in water. The present model gives a structural interpretation for the thermodynamics of salting-in. The TMA structure allows deep penetration by a first shell of waters, the dipoles of which interact electrostatically with the ion. This first water shell sets up a second water shell that is shaped to act as a receptacle that binds the nonpolar solute. In this way, a nonpolar solute can actually bind more tightly to the TMA ion than to another hydrophobe, leading to the increased solubility and salting-in. Such structuring may also explain why molecular ions do not follow the same charge density series as atomic ions do.

  12. Quality of water, Quillayute River basin, Washington

    USGS Publications Warehouse

    Fretwell, M.O.

    1984-01-01

    Groundwater in Quillayute River basin is generally of the calcium bicarbonate type, although water from some wells is affected by seawater intrusion and is predominantly of the sodium chloride type. The water is generally of excellent quality for most uses. River-water quality was generally excellent, as evaluated against Washington State water-use and water-quality criteria. Fecal coliform concentrations in all major tributaries met State water-quality criteria; water temperatures occasionally exceeded criteria maximum during periods of warm weather and low streamflow. Nutrient concentrations were generally low to very low. The four largest lakes in the basin were temperature-stratified in summer and one had an algal bloom. The Quillayute estuary had salt-wedge mixing characteristics; pollutants entering the salt wedge tended to spread to the toe of the wedge. Upwelling ocean water was the major cause of the low dissolved-oxygen concentrations observed in the estuary; ammonia concentrations in the estuary, however, were increased by the upwelling ocean waters. As in the rivers, total-coliform bacteria concentrations in the estuary were greater than fecal-coliform concentrations, indicating that many of the bacteria were of nonfecal origin and probably originated from soils. (USGS)

  13. Growth Decline Linked to Warming-Induced Water Limitation in Hemi-Boreal Forests

    PubMed Central

    Wu, Xiuchen; Liu, Hongyan; Guo, Dali; Anenkhonov, Oleg A.; Badmaeva, Natalya K.; Sandanov, Denis V.

    2012-01-01

    Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii), sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year) over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies. PMID:22916142

  14. Hydrogen production from salt water by Marine blue green algae and solar radiation

    NASA Technical Reports Server (NTRS)

    Mitsui, A.; Rosner, D.; Kumazawa, S.; Barciela, S.; Phlips, E.

    1985-01-01

    Two marine bluegreen algae, Oscillatoria sp. Miami BG 7 and Synechococcus sp Miami 041511 have been selected as the result of over 10 years continuous and intensive effort of isolation, growth examination, and the screening of hydrogen photoproduction capability in this laboratory. Both strains photoproduced hydrogen for several days at high rates and a quantity of hydrogen was accumulated in a closed vessel. Overall hydrogen donor substance of the hydrogen photoproduction was found to be salt water. Using strain Miami BG 7, a two step method of hydrogen photoproduction from salt water was successfully developed and this was recycled several times over a one month period using both free cells and immobilized cells in both indoor and outdoor under natural sunlight. According to these experiments, a prototype floating hydrogen production system was designed for further development of the biosolar hydrogen production system.

  15. A High-Resolution Record of Warm Water Inflow and Iceberg Calving in Upernavik Isfjord During the Past 150 Years.

    NASA Astrophysics Data System (ADS)

    Vermassen, F.; Andresen, C. S.; Sabine, S.; Holtvoeth, J.; Cordua, A. E.; Wangner, D. J.; Dyke, L. M.; Kjaer, K. H.; Kokfelt, U.; Haubner, K.

    2016-12-01

    There is a growing body of evidence demonstrating that changes in warm water inflow to Greenlandic fjords are linked to the rapid retreat of marine-terminating outlet glaciers. This process is thought to be responsible for a substantial component of the increased mass loss from the Greenland Ice Sheet over the last two decades. Sediment cores from glaciated fjords provide high-resolution sedimentological and biological proxy records which can be used to evaluate the interplay of warm water inflow and glacier calving over recent time scales. In this study, multiple short cores ( 2 m) from Upernavik Isfjord, West Greenland, were analysed to establish a multi-proxy record of glacier behaviour and oceanographic conditions that spans the past 150 years. The down-core variation in the amount of ice-rafted debris reveals periods of increased glacier calving, and biomarker proxies are used to reconstruct variability in the inflow of warm, Atlantic-sourced water to the fjord. Measurements of the sortable silt grain size are used to reconstruct bottom-current strength; periods of vigorous current flow are assumed to be due to enhanced warm water inflow. Finally, a record of glacier terminus position changes, derived from historical observations and satellite imagery, allows comparison of our new proxy records with the retreat of the ice margin from 1849 onwards. We use these data to assess the relative importance of mechanisms controlling the (rapid) retreat of marine-terminating glaciers in Upernavik Isfjord.

  16. The water balance of the urban Salt Lake Valley: a multiple-box model validated by observations

    NASA Astrophysics Data System (ADS)

    Stwertka, C.; Strong, C.

    2012-12-01

    A main focus of the recently awarded National Science Foundation (NSF) EPSCoR Track-1 research project "innovative Urban Transitions and Arid-region Hydro-sustainability (iUTAH)" is to quantify the primary components of the water balance for the Wasatch region, and to evaluate their sensitivity to climate change and projected urban development. Building on the multiple-box model that we developed and validated for carbon dioxide (Strong et al 2011), mass balance equations for water in the atmosphere and surface are incorporated into the modeling framework. The model is used to determine how surface fluxes, ground-water transport, biological fluxes, and meteorological processes regulate water cycling within and around the urban Salt Lake Valley. The model is used to evaluate the hypotheses that increased water demand associated with urban growth in Salt Lake Valley will (1) elevate sensitivity to projected climate variability and (2) motivate more attentive management of urban water use and evaporative fluxes.

  17. Improving conservation of Florida manatees (Trichechus manatus latirostris): conceptualization and contributions toward a regional warm-water network management strategy for sustainable winter habitat.

    PubMed

    Flamm, Richard Owen; Reynolds, John Elliot; Harmak, Craig

    2013-01-01

    We used southwestern Florida as a case study to lay the groundwork for an intended and organized decision-making process for managing warm-water habitat needed by endangered manatees to survive winters in Florida. Scientists and managers have prioritized (a) projecting how the network of warm-water sites will change over the next 50 years as warmed industrial discharges may expire and as flows of natural springs are reduced through redirection of water for human uses, and (b) mitigating such changes to prevent undue consequences to manatees. Given the complexities introduced by manatee ecology; agency organizational structure; shifting public demands; fluctuating resource availability; and managing within interacting cultural, social, political, and environmental contexts, it was clear that a structured decision process was needed. To help promote such a process, we collected information relevant to future decisions including maps of known and suspected warm-water sites and prototyped a characterization of sites and networks. We propose steps that would lead to models that might serve as core tools in manatee/warm-water decision-making, and we summarized topics relevant for informed decision-making (e.g., manatee spatial cognition, risk of cold-stress morbidity and mortality, and human dimensions). A major impetus behind this effort is to ensure proactively that robust modeling tools are available well in advance of the anticipated need for a critical management decision.

  18. Improving Conservation of Florida Manatees ( Trichechus manatus latirostris): Conceptualization and Contributions Toward a Regional Warm-Water Network Management Strategy for Sustainable Winter Habitat

    NASA Astrophysics Data System (ADS)

    Flamm, Richard Owen; Reynolds, John Elliot; Harmak, Craig

    2013-01-01

    We used southwestern Florida as a case study to lay the groundwork for an intended and organized decision-making process for managing warm-water habitat needed by endangered manatees to survive winters in Florida. Scientists and managers have prioritized (a) projecting how the network of warm-water sites will change over the next 50 years as warmed industrial discharges may expire and as flows of natural springs are reduced through redirection of water for human uses, and (b) mitigating such changes to prevent undue consequences to manatees. Given the complexities introduced by manatee ecology; agency organizational structure; shifting public demands; fluctuating resource availability; and managing within interacting cultural, social, political, and environmental contexts, it was clear that a structured decision process was needed. To help promote such a process, we collected information relevant to future decisions including maps of known and suspected warm-water sites and prototyped a characterization of sites and networks. We propose steps that would lead to models that might serve as core tools in manatee/warm-water decision-making, and we summarized topics relevant for informed decision-making (e.g., manatee spatial cognition, risk of cold-stress morbidity and mortality, and human dimensions). A major impetus behind this effort is to ensure proactively that robust modeling tools are available well in advance of the anticipated need for a critical management decision.

  19. Low flows and water temperature risks to Asian coal power plants in a warming world

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Byers, E.; Parkinson, S.; Wanders, N.; Wada, Y.; Bielicki, J. M.

    2017-12-01

    Thermoelectric power generation requires cooling, normally provided by wet cooling systems. The withdrawal and discharge of cooling water are subject to regulation. Therefore, operation of power plants may be vulnerable to changes in streamflow and rises in water temperatures. In Asia, about 489 GW of coal-fired power plants are currently under construction, permitted, or announced. Using a comprehensive dataset of these planned coal power plants (PCPPs) and cooling water use models, we investigated whether electricity generation at these power plants will be limited by streamflow and water temperature. Daily streamflow and water temperature time series are from the high-resolution (0.08ox0.08o) runs of the PCRGLOBWB hydrological model, driven by downscaled meteorological forcing from five global climate models. We compared three climate change scenarios (1.5oC, 2oC, and 3oC warming in global mean temperature) and three cooling system choice scenarios (freshwater once-through, freshwater cooling tower, and "business-as-usual" - where a PCPP uses the same cooling system as the nearest existing coal power plant). The potential available capacity of the PCPPs increase slightly from the 1.5oC to the 2oC and 3oC warming scenario due to increase in streamflow. The once-through cooling scenario results in virtually zero available capacity at the PCPPs. The other two cooling scenarios result in about 20% of the planned capacity being unavailable under all warming scenarios. Hotspots of the most water-limited PCPPs are in Pakistan, northwestern India, northwestern and north-central China, and northern Vietnam, where most of the PCPPs will face 30% to 90% unavailable nameplate capacity on annual average. Since coal power plants cannot operate effectively when the capacity factor falls below a minimum load level (about 20% to 50%), the actual limitation on generation capacity would be larger. In general, the PCPPs that will have the highest limitation on annual average

  20. A review of environmental impacts of salts from produced waters on aquatic resources

    USGS Publications Warehouse

    Farag, Aïda M.; Harper, David D.

    2014-01-01

    Salts are frequently a major constituent of waste waters produced during oil and gas production. These produced waters or brines must be treated and/or disposed and provide a daily challenge for operators and resource managers. Some elements of salts are regulated with water quality criteria established for the protection of aquatic wildlife, e.g. chloride (Cl−), which has an acute standard of 860 mg/L and a chronic standard of 230 mg/L. However, data for establishing such standards has only recently been studied for other components of produced water, such as bicarbonate (HCO3−), which has acute median lethal concentrations (LC50s) ranging from 699 to > 8000 mg/L and effects on chronic toxicity from 430 to 657 mg/L. While Cl− is an ion of considerable importance in multiple geographical regions, knowledge about the effects of hardness (calcium and magnesium) on its toxicity and about mechanisms of toxicity is not well understood. A multiple-approach design that combines studies of both individuals and populations, conducted both in the laboratory and the field, was used to study toxic effects of bicarbonate (as NaHCO3). This approach allowed interpretations about mechanisms related to growth effects at the individual level that could affect populations in the wild. However, additional mechanistic data for HCO3−, related to the interactions of calcium (Ca2 +) precipitation at the microenvironment of the gill would dramatically increase the scientific knowledge base about how NaHCO3 might affect aquatic life. Studies of the effects of mixtures of multiple salts present in produced waters and more chronic effect studies would give a better picture of the overall potential toxicity of these ions. Organic constituents in hydraulic fracturing fluids, flowback waters, etc. are a concern because of their carcinogenic properties and this paper is not meant to minimize the importance of maintaining vigilance with respect to potential organic contamination.

  1. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    PubMed

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization.

  2. Salting the landscapes in Transbaikalia: natural and technogenic factors

    NASA Astrophysics Data System (ADS)

    Peryazeva, E. G.; Plyusnin, A. M.; Chinavlev, A. M.

    2010-05-01

    Salting the soils, surface and subsurface waters is widespread in Transbaikalia. Hearths of salting occur within intermountain depressions of the Mesozoic and Cenozoic age both in the steppe arid and forest humid landscapes. Total water mineralization reaches 80 g/dm3 in lakes and 4-5 g/dm3 in subsurface waters. The waters belong to hydrocarbonate sodium and sulfate sodium types by chemical composition. The soda type of waters is widely spread through the whole area. Sulfate waters are found in several hearths of salting. Deposition of salts takes place in some lakes. Mirabilite and soda depositions are most commonly observed in muds of salt lakes. Deposition of salts occurs both as a result of evaporative concentrating and during freezing out the solvent. In the winter period, efflorescences of salts, where decawater soda is main mineral, are observed on ice surface. Solonchaks are spread in areas of shallow ground waters (1-2m). Soil salting is most intense in the lower parts of depressions, where surface of ground waters is at depth 0.5-1.0m. In soil cover of solonchaks, salt horizon is of various thicknesses, and it has various morphological forms of occurrence, i.e. as thick deposits of salts on soil surface and salting the surficial horizons. The soil has low alkaline reaction of medium and is characterized by high content of exchangeable bases with significant content of exchangeable sodium in the absorbing complex. Total amount of salts varies from 0.7 to 1.3%. Their maximal quantity (3.1%) is confined to the surficial layer. Sulfate-sodium type of salting is noted in the solonchak upper horizons and sulfate-magnesium-calcium one in the lower ones (Ubugunov et al, 2009). Formation of salting hearths is associated with natural and technogenic conditions. The Mesozoic depressions of Transbaikalia are characterized by intense volcanism. Covers of alkaline and moderately alkaline basalts that are enriched in potassium, sodium, carbon dioxide, fluorine, chlorine

  3. Asynchronous warming and δ 18O evolution of deep Atlantic water masses during the last deglaciation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C.

    The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ 18O of benthic foraminiferal calcite (δ 18Oc). Here in this study, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ 18O evolution. Model results suggest that, in response tomore » North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ 18O c likely reflects early warming of the deep northern North Atlantic by ~1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ 18O, and call for caution when inferring water mass changes from δ 18O c records while assuming uniform changes in deep temperatures.« less

  4. Asynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation.

    PubMed

    Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C; Oppo, Delia W; Clark, Peter U; Jahn, Alexandra; Marcott, Shaun A; Lindsay, Keith

    2017-10-17

    The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ 18 O of benthic foraminiferal calcite (δ 18 O c ). Here, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ 18 O evolution. Model results suggest that, in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ 18 O c likely reflects early warming of the deep northern North Atlantic by ∼1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ 18 O, and call for caution when inferring water mass changes from δ 18 O c records while assuming uniform changes in deep temperatures.

  5. Asynchronous warming and δ 18O evolution of deep Atlantic water masses during the last deglaciation

    DOE PAGES

    Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C.; ...

    2017-10-02

    The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ 18O of benthic foraminiferal calcite (δ 18Oc). Here in this study, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ 18O evolution. Model results suggest that, in response tomore » North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ 18O c likely reflects early warming of the deep northern North Atlantic by ~1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ 18O, and call for caution when inferring water mass changes from δ 18O c records while assuming uniform changes in deep temperatures.« less

  6. The role of succulent halophytes in the water balance of salt marsh rodents.

    PubMed

    Coulombe, Harry N

    1970-09-01

    The role of succulent halophytes in the water balance and ecology of salt marsh rodents is dependent upon an evaluation of the composition of the available sources and the physiological properties of their potential consumers. Studies of the osmotic properties of succulent halophytes from southern California coastal salt marshes are presented, together with experiments regarding the utilization of Common Pickleweed (Salicornia virginica L.) by indigenous populations of cricetid rodents (harvest mouse Reithrodontomys megalotis limicola Von Bloecker, and meadow-mouse Microtus californicus stephensi Von Bloecker). These data are discussed in relation to other available information concerning the ecology of coastal salt marshes, particularly in western North America.Extruded sap of Common Pickleweed was found to have a mean total osmotic pressure (TOP) of 1,450 mOsm/liter, with an average chloride ion content of 876 mEq/liter (about 70% of the TOP). A related species, Salicornia subterminale, had a slightly lower TOP (1,300 mOsm/liter), of which about 29% was accounted for by chloride ion concentration. Sea Blight (Suaeda fruticosa) was the only species in which the TOP correlated with the distance from the tide level; sap TOP increased away from the lagoon's edge. In both Sea Blight and Common Pickle weed, TOP was not directly related to chloride content, indicating the importance of other osmotically active solutes.Harvest mice were placed on three experimental regimes: 1) millet seeds only, 2) pickleweed only, and 3) pickleweed and millet seed. Meadow mice were tested on the last regime only. Harvest mice survived best on a strict millet seed diet; when Salicornia was consumed to a detectable extent, the mice did not survive. Meadow mice, however, could survive using Salicornia as a dietary source in conjunction with seeds. Kidney electrolyte concentrating abilities indicated that harvest mice should be able to utilize pickleweed; this was not confirmed in my

  7. Gas exchange and water relations responses of spring wheat to full-season infrared warming

    USDA-ARS?s Scientific Manuscript database

    Gas exchange and water relations responses to full-season in situ infrared (IR) warming were evaluated for hard red spring wheat (Triticum aestivum L. cv. Yecora Rojo) grown in an open field in a semi-arid desert region of the Southwest USA. A Temperature Free-Air Controlled Enhancement (T-FACE) ap...

  8. Gas Exchange and Water Relations Responses of Spring Wheat to Full-Season Infrared Warming

    USDA-ARS?s Scientific Manuscript database

    Gas exchange and water relations were evaluated under full-season in situ infrared (IR) warming for hard red spring wheat (Triticum aestivum L. cv. Yecora Rojo) grown in an open field in a semiarid desert region of the southwest USA. A temperature free-air controlled enhancement (T-FACE) apparatus u...

  9. Water management can reinforce plant competition in salt-affected semi-arid wetlands

    NASA Astrophysics Data System (ADS)

    Coletti, Janaine Z.; Vogwill, Ryan; Hipsey, Matthew R.

    2017-09-01

    The diversity of vegetation in semi-arid, ephemeral wetlands is determined by niche availability and species competition, both of which are influenced by changes in water availability and salinity. Here, we hypothesise that ignoring physiological differences and competition between species when managing wetland hydrologic regimes can lead to a decrease in vegetation diversity, even when the overall wetland carrying capacity is improved. Using an ecohydrological model capable of resolving water-vegetation-salt feedbacks, we investigate why water surface and groundwater management interventions to combat vegetation decline have been more beneficial to Casuarina obesa than to Melaleuca strobophylla, the co-dominant tree species in Lake Toolibin, a salt-affected wetland in Western Australia. The simulations reveal that in trying to reduce the negative effect of salinity, the management interventions have created an environment favouring C. obesa by intensifying the climate-induced trend that the wetland has been experiencing of lower water availability and higher root-zone salinity. By testing alternative scenarios, we show that interventions that improve M. strobophylla biomass are possible by promoting hydrologic conditions that are less specific to the niche requirements of C. obesa. Modelling uncertainties were explored via a Markov Chain Monte Carlo (MCMC) algorithm. Overall, the study demonstrates the importance of including species differentiation and competition in ecohydrological models that form the basis for wetland management.

  10. Relating road salt to exceedances of the water quality standard for chloride in New Hampshire streams.

    PubMed

    Trowbridge, Philip R; Kahl, J Steve; Sassan, Dari A; Heath, Douglas L; Walsh, Edward M

    2010-07-01

    Six watersheds in New Hampshire were studied to determine the effects of road salt on stream water quality. Specific conductance in streams was monitored every 15 min for one year using dataloggers. Chloride concentrations were calculated from specific conductance using empirical relationships. Stream chloride concentrations were directly correlated with development in the watersheds and were inversely related to streamflow. Exceedances of the EPA water quality standard for chloride were detected in the four watersheds with the most development. The number of exceedances during a year was linearly related to the annual average concentration of chloride. Exceedances of the water quality standard were not predicted for streams with annual average concentrations less than 102 mg L(-1). Chloride was imported into three of the watersheds at rates ranging from 45 to 98 Mg Cl km(-2) yr(-1). Ninety-one percent of the chloride imported was road salt for deicing roadways and parking lots. A simple, mass balance equation was shown to predict annual average chloride concentrations from streamflow and chloride import rates to the watershed. This equation, combined with the apparent threshold for exceedances of the water quality standard, can be used for screening-level TMDLs for road salt in impaired watersheds.

  11. Ground-water data for the Warm Springs Indian Reservation and contiguous areas north-central Oregon

    USGS Publications Warehouse

    Anderson, Donald B.

    1996-01-01

    This report presents well data that were collected and compiled during 1985-86 by the U.S. Geological Survey and used to determine the amount of ground water discharging to the Deschutes River on and near the Warm Springs Indian Reservation. The report contains well-construction data from 171 wells, information from drillers' logs for 66 wells, water-level data for 29 wells, and a map showing well locations.

  12. Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water.

    PubMed

    Darelius, E; Fer, I; Nicholls, K W

    2016-08-02

    The average rate of melting at the base of the large Filchner-Ronne Ice Shelf in the southern Weddell Sea is currently low, but projected to increase dramatically within the next century. In a model study, melt rates increase as changing ice conditions cause a redirection of a coastal current, bringing warm water of open ocean origin through the Filchner Depression and into the Filchner Ice Shelf cavity. Here we present observations from near Filchner Ice Shelf and from the Filchner Depression, which show that pulses of warm water already arrive as far south as the ice front. This southward heat transport follows the eastern flank of the Filchner Depression and is found to be directly linked to the strength of a wind-driven coastal current. Our observations emphasize the potential sensitivity of Filchner-Ronne Ice Shelf melt rates to changes in wind forcing.

  13. Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water

    PubMed Central

    Darelius, E.; Fer, I.; Nicholls, K. W.

    2016-01-01

    The average rate of melting at the base of the large Filchner-Ronne Ice Shelf in the southern Weddell Sea is currently low, but projected to increase dramatically within the next century. In a model study, melt rates increase as changing ice conditions cause a redirection of a coastal current, bringing warm water of open ocean origin through the Filchner Depression and into the Filchner Ice Shelf cavity. Here we present observations from near Filchner Ice Shelf and from the Filchner Depression, which show that pulses of warm water already arrive as far south as the ice front. This southward heat transport follows the eastern flank of the Filchner Depression and is found to be directly linked to the strength of a wind-driven coastal current. Our observations emphasize the potential sensitivity of Filchner-Ronne Ice Shelf melt rates to changes in wind forcing. PMID:27481659

  14. Comparing the Life Cycle Energy Consumption, Global Warming and Eutrophication Potentials of Several Water and Waste Service Options

    EPA Science Inventory

    Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG...

  15. Geology and ground-water features of salt springs, seeps, and plains in the Arkansas and Red River basins of western Oklahoma and adjacent parts of Kansas and Texas

    USGS Publications Warehouse

    Ward, P.E.

    1963-01-01

    The salt springs, seeps, and plains described in this report are in the Arkansas and Red River basins in western Oklahoma and adjacent areas in Kansas and Texas. The springs and seeps contribute significantly to the generally poor water quality of the rivers by bringing salt (HaCI) to the surface at an estimated daily rate of more than 8,000 tons. The region investigated is characterized by low hills and rolling plains. Many of the rivers are eroded 100 feet or more below the .surrounding upland surface and in places the valleys are bordered by steep bluffs. The alluvial plains of the major rivers are wide and the river channels are shallow and unstable. The flow of many surface streams is intermittent, especially in the western part of the area. All the natural salt-contributing areas studied are within the outcrop area of rocks of Permian age. The Permian rocks, commonly termed red beds, are composed principally of red and gray gypsiferous shale, siltstone, sandstone, gypsum, anhydrite, and dolomite. Many of the formations contain halite in the subsurface. The halite occurs mostly as discontinuous lenses in shale, although some of the thicker, more massive beds are extensive. It underlies the entire region studied at depths ranging from about 30 feet to more than 2,000 feet. The salt and associated strata show evidence of extensive removal of salt through solution by ground water. Although the salt generally occurs in relatively impervious shale small joints and fractures ,allow the passage of small quantities of water which dissolves the salt. Salt water occurs in the report area at depths ranging from less than 100 feet to more than 1,000 feet. Salt water occurs both as meteoric and connate, but the water emerging as salt springs is meteoric. Tritium analyses show that the age of the water from several springs is less than 20 years. The salt springs, seeps, and plains are confined to 13 local areas. The flow of the springs and seeps is small, but the chloride

  16. Construction and startup performance of the Miamisburg salt-gradient solar pond

    NASA Astrophysics Data System (ADS)

    Wittenberg, L. J.; Harris, M. J.

    1981-02-01

    An account is given of the construction and 1.5 years of operation of the Miamisburg, Ohio salt-gradient solar pond which, with 2020 sq m, is the largest solar collector in the U.S. The 18% sodium chloride solution pond has reached storage temperatures of 64 C in July and 28 C in February. Under steady-state conditions, conservative heat-yield estimates on the order of 962 million Btu have been made. The heat is used to warm-up a summer outdoor swimming pool and in winter a recreational building. Installation costs were only $35/sq m, and heat costs based on a 15-year depreciation of installation costs is below that of fuel oil heating, at $9.45 per million Btu. Further study is recommended for maintenance of water clarity, metallic component corrosion and assurance of pond water containment.

  17. Diclofenac salts. III. Alkaline and earth alkaline salts.

    PubMed

    Fini, Adamo; Fazio, Giuseppe; Rosetti, Francesca; Angeles Holgado, M; Iruín, Ana; Alvarez-Fuentes, Josefa

    2005-11-01

    Diclofenac salts containing the alkaline and two earth alkaline cations have been prepared and characterized by scanning electron microscopy (SEM) and EDAX spectroscopy; and by thermal and thermogravimetric analysis (TGA): all of them crystallize as hydrate when precipitated from water. The salts dehydrate at room temperature and more easily on heating, but recovery the hydration, when placed in a humid environment. X-ray diffraction spectra suggest that on dehydration new peaks appear on diffractograms and the lattice of the salts partially looses crystallinity. This phenomenon is readily visible in the case of the calcium and magnesium salts, whose thermograms display a crystallization exotherm, before melting or decomposing at temperatures near or above 200 degrees C; these last salts appear to form solvates, when prepared from methanol. The thermogram of each salt shows a complex endotherm of dehydration about 100 degrees C; the calcium salt displays two endotherms, well separated at about 120 and 160 degrees C, which disappear after prolonged heating. Decomposition exotherms, before or soon after the melting, appear below 300 degrees C. The ammonium salt is thermally unstable and, when heated to start dehydration, dissociates and leaves acidic diclofenac.

  18. Multi-species collapses at the warm edge of a warming sea

    PubMed Central

    Rilov, Gil

    2016-01-01

    Even during the current biodiversity crisis, reports on population collapses of highly abundant, non-harvested marine species were rare until very recently. This is starting to change, especially at the warm edge of species’ distributions where populations are more vulnerable to stress. The Levant basin is the southeastern edge of distribution of most Mediterranean species. Coastal water conditions are naturally extreme, and are fast warming, making it a potential hotspot for species collapses. Using multiple data sources, I found strong evidence for major, sustained, population collapses of two urchins, one large predatory gastropod and a reef-building gastropod. Furthermore, of 59 molluscan species once-described in the taxonomic literature as common on Levant reefs, 38 were not found in the present-day surveys, and there was a total domination of non-indigenous species in molluscan assemblages. Temperature trends indicate an exceptional warming of the coastal waters in the past three decades. Though speculative at this stage, the fast rise in SST may have helped pushing these invertebrates beyond their physiological tolerance limits leading to population collapses and possible extirpations. If so, these collapses may indicate the initiation of a multi-species range contraction at the Mediterranean southeastern edge that may spread westward with additional warming. PMID:27853237

  19. Water-in-oil-in-water double emulsion for the delivery of starter cultures in reduced-salt moromi fermentation of soy sauce.

    PubMed

    Devanthi, Putu Virgina Partha; Linforth, Robert; El Kadri, Hani; Gkatzionis, Konstantinos

    2018-08-15

    This study investigated the application of water-oil-water (W 1 /O/W 2 ) double emulsions (DE) for yeast encapsulation and sequential inoculation of Zygosaccharomyces rouxii and Tetragenococcus halophilus in moromi stage of soy sauce fermentation with reduced NaCl and/or substitution with KCl. Z. rouxii and T. halophilus were incorporated in the internal W 1 and external W 2 phase of DE, respectively. NaCl reduction and substitution promoted T. halophilus growth to 8.88 log CFU/mL, accompanied with faster sugar depletion and enhanced lactic acid production. Reducing NaCl without substitution increased the final pH (5.49) and decreased alcohols, acids, esters, furan and phenol content. However, the application of DE resulted in moromi with similar microbiological and physicochemical characteristics to that of high-salt. Principal component analysis of GC-MS data demonstrated that the reduced-salt moromi had identical aroma profile to that obtained in the standard one, indicating the feasibility of producing low-salt soy sauce without compromising its quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Dispersion of Louisiana crude oil in salt water environment by Corexit 9500A in the presence of natural coastal materials

    NASA Astrophysics Data System (ADS)

    Tansel, Berrin; Lee, Mengshan; Berbakov, Jillian; Tansel, Derya Z.; Koklonis, Urpiana

    2014-04-01

    Effectiveness of Corexit 9500A for dispersing Louisiana crude oil was evaluated in salt water solutions containing natural materials in relation to salinity and dispersant-to-oil ratio (DOR). Experimental results showed that both salinity and DOR had significant effects on dispersion of Louisiana crude oil in the presence of different natural materials. The natural materials added to the salt water solutions included sea sand (South Beach, Miami, Florida), red mangrove leaves (Rhizophora mangle), seaweed (Sargassum natans), and sea grass (Halodule wrightii). Dispersant effectiveness (amount of oil dispersed into the water) was reduced significantly with increasing salinity with the minimum effectiveness observed in the salinity range between 30 and 50 ppt in all aqueous samples containing natural materials. When significant amounts of floating oil were present, the partially submerged natural materials enhanced the transfer of oil into the water column, which improved the dispersion effectiveness. However, dispersant effectiveness was significantly reduced when the amount of floating oil was relatively small and could not be released back to the water column. Surface tension may not be an adequate parameter for monitoring the effectiveness of dispersants in salt water environment. When distilled water was used (i.e., zero salinity), surface tension was significantly reduced with increasing dispersant concentration. However, there was no clear trend in the surface tension of the salt water solutions (17-51 ppt) containing crude oil and natural materials with increasing dispersant concentration.

  1. Production and application of O2 enriched air produced by fresh and salt water desorption in chemical plants.

    PubMed

    Galli, F; Previtali, D; Bozzano, G; Bianchi, C L; Manenti, F; Pirola, C

    2018-07-01

    Oxygen enriched air intensifies oxidation processes since smaller reactors reach the same conversion of typical unit operations that employ simple air as reactant. However, the cost to produce pure oxygen or oxygen enriched air with traditional methods, i.e. cryogenic separation or membrane technologies, may be unaffordable. Here, we propose a new continuous technology for gas mixture separation, focusing on the production of oxygen enriched air as a case study. This operation is an absorption-desorption process that takes advantage of the higher oxygen solubility in water compared to nitrogen. In a pressurized solubilisation tank, water absorbs air. Subsequently, reducing pressure desorbs oxygen enriched air. PRO/II 9.3 (Simsci-Scheider Electrics) simulated, optimized, and calculated the capital and operative expenses of this technology. Moreover, we tested for the first time salt water instead of distilled water as appealing possibility for chemical plant near sea and ocean. We varied the inlet water flowrate between 5 and 15 m 3 /h. The optimum operative absortion unit pressure is 15-35 barg. After degassing, water may be recycled. With salt water, the extracted quantity of enriched air decreases compared with the desorption from fresh water (20% less), while the concentration of oxygen is independent from the salt concentration. The cost of enriched air at the optimum condition is 2-3.35 EUR/Nm 3 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Earthquake hazards to domestic water distribution systems in Salt Lake County, Utah

    USGS Publications Warehouse

    Highland, Lynn M.

    1985-01-01

    A magnitude-7. 5 earthquake occurring along the central portion of the Wasatch Fault, Utah, may cause significant damage to Salt Lake County's domestic water system. This system is composed of water treatment plants, aqueducts, distribution mains, and other facilities that are vulnerable to ground shaking, liquefaction, fault movement, and slope failures. Recent investigations into surface faulting, landslide potential, and earthquake intensity provide basic data for evaluating the potential earthquake hazards to water-distribution systems in the event of a large earthquake. Water supply system components may be vulnerable to one or more earthquake-related effects, depending on site geology and topography. Case studies of water-system damage by recent large earthquakes in Utah and in other regions of the United States offer valuable insights in evaluating water system vulnerability to earthquakes.

  3. Comparative effectiveness of water and salt community-based fluoridation methods in preventing dental caries among schoolchildren.

    PubMed

    Fabruccini, A; Alves, L S; Alvarez, L; Alvarez, R; Susin, C; Maltz, M

    2016-12-01

    To compare the effectiveness of water and salt community-based fluoridation methods on caries experience among schoolchildren. Data derived from two population-based oral health surveys of 12-year-old schoolchildren exposed to different community-based fluoridation methods were compared: artificially fluoridated water in Porto Alegre, South Brazil and artificially fluoridated salt in Montevideo, Uruguay. Data on socio-demographic characteristics, maternal education and oral hygiene were collected. Dental caries was defined according to the WHO criteria (cavitated lesions) and to the modified WHO criteria (active noncavitated lesions and cavitated ones). The association between community-based fluoridation methods and dental caries was modelled using logistic (caries prevalence) and Poisson regression (DMFT). Odds ratios (OR), rate ratios (RR), and the 95% confidence intervals (CI) were estimated. A total of 1528 in Porto Alegre and 1154 in Montevideo were examined (response rates: 83.2% and 69.6%, respectively). Adjusted estimates for caries prevalence and DMFT showed that schoolchildren from Porto Alegre were less affected by dental caries than their counterparts from Montevideo, irrespective of the criteria used. After adjusting for important characteristics, schoolchildren exposed to fluoridated salt had significantly higher likelihood of having caries (WHO criteria) than those exposed to fluoridated water (OR for prevalence=1.61, 95% CI=1.26-2.07; RR for DMFT=1.32, 95% CI=1.16-1.51). Similar differences were observed using the modified WHO criteria. Fluoridated water appears to provide a better protective effect against dental caries than fluoridated household salt among schoolchildren from developing countries. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Salt excretion in Suaeda fruticosa.

    PubMed

    Labidi, Nehla; Ammari, Manel; Mssedi, Dorsaf; Benzerti, Maali; Snoussi, Sana; Abdelly, C

    2010-09-01

    Suaeda fruticosa is a perennial "includer" halophyte devoid of glands or trichomes with a strong ability of accumulating and sequestrating Na(+) and Cl(-). We were interested in determining whether leaf cuticle salt excretion could be involved as a further mechanism in salt response of this species after long-term treatment with high salinity levels. Seedlings had been treated for three months with seawater (SW) diluted with tap water (0, 25, 50 and 75% SW). Leaf scanning electron microscopy revealed a convex adaxial side sculpture and a higher accumulation of saline crystals at the lamina margin, with a large variability on repartition and size between treatments. No salt gland or salt bladder was found. Threedimensional wax decorations were the only structures found on leaf surface. Washing the leaf surface with water indicated that sodium and chloride predominated in excreted salts, and that potassium was poorly represented. Optimal growth of whole plant was recorded at 25% SW, correlating with maximum Na(+) and Cl(-) absolute secretion rate. The leaves of plants treated with SW retained more water than those of plants treated with tap water due to lower solute potential, especially at 25% SW. Analysis of compatible solute, such as proline, total soluble carbohydrates and glycinebetaine disclosed strong relationship between glycinebetaine and osmotic potential (r = 0.92) suggesting that tissue hydration was partly maintained by glycinebetaine accumulation. Thus in S. fruticosa , increased solute accumulation associated with water retention, and steady intracellular ion homeostasis confirms the "includer" strategy of salt tolerance previously demonstrated. However, salt excretion at leaf surface also participated in conferring to this species a capacity in high salinity tolerance.

  5. Thermodynamic analysis of the interaction of partially hydrophobic cationic polyelectrolytes with sodium halide salts in water

    NASA Astrophysics Data System (ADS)

    Bončina, Matjaž; Lukšič, Miha; Seručnik, Mojca; Vlachy, Vojko

    2014-05-01

    Isothermal titration calorimetry was used to determine the temperature and concentration dependence of the enthalpy of mixing of 3,3- and 6,6-ionene fluorides, bromides, and iodides with low molecular weight salts (NaF, NaCl, NaBr, and NaI) in water. The magnitudes of the enthalpies, measured in the temperature range from 273 to 318 K, depended on the number of methylene groups on the ionene polyion (hydrophobicity), and on the anion of the added salt (ion-specificity). All enthalpies of mixing of 3,3- and 6,6-ionene fluorides with low molecular weight salts (NaCl, NaBr, and NaI) were negative, which is in contrast to the predictions of standard theories of polyelectrolyte solutions. This fact was interpreted in the light of the ion-water short-range interactions that are not accounted for in those theories. In contrast, the enthalpies of mixing of 3,3- and 6,6-ionene bromides and iodides with NaF were positive, being in accord with theory. Using the calorimetric data, we performed a model thermodynamic analysis of the polyelectrolyte-salt mixing process to obtain changes in the apparent standard Gibbs free energy, enthalpy, entropy, and heat capacity relative to the pure ionene fluorides in water. The results prove that halide ions replace fluoride counterions with a strength increasing in the order chloride < bromide < iodide. The process is enthalpy governed, accompanied by a positive change in the heat capacity.

  6. [Effect of salts, stabilizing and destabilizing the structure of water, on the stacking association of adenosine].

    PubMed

    Maevskiĭ, A A; Sukhorukov, B I

    1976-11-01

    A spectrophotometric study, based on the concentration relationship of electron absorption spectra, of the effects of salts which stabilize and destabilize the water structure on the constant (K) of adenosine: stacking association has been carried out. A significant decrease of K was observed in NaClO4 which embodied strong destabilizing effect. Opposite effect was observed on other salts studied. According to K value the stacking-interaction of adenosine in the range of salt concentration 0 divided by 3M for different anions and cations are arranged in rows: SO4--greater than Cl- greater than ClO4-; Na+ greater than Li+greater than K+. The data obtained suggest that the effect of salts on thermostability of various oligo- and polynucleotides and on B leads to C DNA transition may be essentially concerned with the effect of both cations and anions of salts on the stacking-interaction of bases.

  7. The Receptacle Model of Salting-In by Tetramethylammonium Ions

    PubMed Central

    Hribar–Lee, Barbara; Dill, Ken A.; Vlachy, Vojko

    2010-01-01

    Water is a poor solvent for nonpolar solutes. Water containing ions is an even poorer solvent. According to standard terminology, the tendency of salts to precipitate oils from water is called salting-out. However, interestingly, some salt ions, such as tetramethylammonium (TMA), cause instead the salting-in of hydrophobic solutes. Even more puzzling, there is a systematic dependence on solute size. TMA causes the salting-out of small hydrophobes and the salting-in of larger nonpolar solutes. We study these effects using NPT Monte Carlo simulations of the MB + dipole model of water, which was previously shown to account for hydrophobic effects and ion solubilities in water. The present model gives a structural interpretation for the thermodynamics of salting-in. The TMA structure allows deep penetration by a first shell of waters, the dipoles of which interact electrostatically with the ion. This first water shell sets up a second water shell that is shaped to act as a receptacle that binds the nonpolar solute. In this way, a nonpolar solute can actually bind more tightly to the TMA ion than to another hydrophobe, leading to the increased solubility and salting-in. Such structuring may also explain why molecular ions do not follow the same charge density series’ as atomic ions do. PMID:21028768

  8. Progress report on studies of salt-water encroachment on Long Island, New York, 1953

    USGS Publications Warehouse

    Lusczynski, N.J.; Upson, J.E.

    1954-01-01

    Nearly all the water used on Long Island, N. Y., is derived by wells from the thick and extensive water-bearing formations that underlie and compose the entire island. The unconsolidated deposits, consisting of sand, gravel, and clay, range in thickness from a few feet in northern Queens County to more than 2,000 feet in southern Suffolk County. Four main and relatively distinct aquifers, all interconnected hydraulically to a greater or lesser degree, have been recognized and delineated at least in a general way. They are, from younger to older, the upper Pleistocene deposits, in which the ground water is mainly unconfined, and three formations in which the water is generally confined - the Jameco gravel, of Pleistocene age, and the Magothy (?) formation and the Lloyd sand member of the Rartian formation, both of Lake Cretaceous age. Except for some artificial recharge, these aquifers are replenished entirely by infiltration of precipitation. Under natural conditions, the fresh water moves into and through the formations, discharging into the sea. With the growth of population on Long Island and the continuously increasing use of water over the years, not only has the infiltration of precipitation been seriously impeded at places, but the withdrawals from the ground-water reservoir have increased markedly. These factors have upset the natural balance between the fresh surface and ground water of the island and the surrounding sea water, and with increased use of water will do so more and more, thus leading to salt-water encroachment. In a sense, the whole problem of utilization of ground water on Long Island is one of determining how much ground water can be withdrawn without serious salt-water encroachment.

  9. Arbuscular Mycorrhizal Symbiosis Alleviates Salt Stress in Black Locust through Improved Photosynthesis, Water Status, and K+/Na+ Homeostasis

    PubMed Central

    Chen, Jie; Zhang, Haoqiang; Zhang, Xinlu; Tang, Ming

    2017-01-01

    Soil salinization and the associated land degradation are major and growing ecological problems. Excess salt in soil impedes plant photosynthetic processes and root uptake of water and nutrients such as K+. Arbuscular mycorrhizal (AM) fungi can mitigate salt stress in host plants. Although, numerous studies demonstrate that photosynthesis and water status are improved by mycorrhizae, the molecular mechanisms involved have received little research attention. In the present study, we analyzed the effects of AM symbiosis and salt stress on photosynthesis, water status, concentrations of Na+ and K+, and the expression of several genes associated with photosynthesis (RppsbA, RppsbD, RprbcL, and RprbcS) and genes coding for aquaporins or membrane transport proteins involved in K+ and/or Na+ uptake, translocation, or compartmentalization homeostasis (RpSOS1, RpHKT1, RpNHX1, and RpSKOR) in black locust. The results showed that salinity reduced the net photosynthetic rate, stomatal conductance, and relative water content in both non-mycorrhizal (NM) and AM plants; the reductions of these three parameters were less in AM plants compared with NM plants. Under saline conditions, AM fungi significantly improved the net photosynthetic rate, quantum efficiency of photosystem II photochemistry, and K+ content in plants, but evidently reduced the Na+ content. AM plants also displayed a significant increase in the relative water content and an evident decrease in the shoot/root ratio of Na+ in the presence of 200 mM NaCl compared with NM plants. Additionally, mycorrhizal colonization upregulated the expression of three chloroplast genes (RppsbA, RppsbD, and RprbcL) in leaves, and three genes (RpSOS1, RpHKT1, and RpSKOR) encoding membrane transport proteins involved in K+/Na+ homeostasis in roots. Expression of several aquaporin genes was regulated by AM symbiosis in both leaves and roots depending on soil salinity. This study suggests that the beneficial effects of AM symbiosis on

  10. Arbuscular Mycorrhizal Symbiosis Alleviates Salt Stress in Black Locust through Improved Photosynthesis, Water Status, and K+/Na+ Homeostasis.

    PubMed

    Chen, Jie; Zhang, Haoqiang; Zhang, Xinlu; Tang, Ming

    2017-01-01

    Soil salinization and the associated land degradation are major and growing ecological problems. Excess salt in soil impedes plant photosynthetic processes and root uptake of water and nutrients such as K + . Arbuscular mycorrhizal (AM) fungi can mitigate salt stress in host plants. Although, numerous studies demonstrate that photosynthesis and water status are improved by mycorrhizae, the molecular mechanisms involved have received little research attention. In the present study, we analyzed the effects of AM symbiosis and salt stress on photosynthesis, water status, concentrations of Na + and K + , and the expression of several genes associated with photosynthesis ( RppsbA, RppsbD, RprbcL , and RprbcS ) and genes coding for aquaporins or membrane transport proteins involved in K + and/or Na + uptake, translocation, or compartmentalization homeostasis ( RpSOS1, RpHKT1, RpNHX1 , and RpSKOR ) in black locust. The results showed that salinity reduced the net photosynthetic rate, stomatal conductance, and relative water content in both non-mycorrhizal (NM) and AM plants; the reductions of these three parameters were less in AM plants compared with NM plants. Under saline conditions, AM fungi significantly improved the net photosynthetic rate, quantum efficiency of photosystem II photochemistry, and K + content in plants, but evidently reduced the Na + content. AM plants also displayed a significant increase in the relative water content and an evident decrease in the shoot/root ratio of Na + in the presence of 200 mM NaCl compared with NM plants. Additionally, mycorrhizal colonization upregulated the expression of three chloroplast genes ( RppsbA, RppsbD , and RprbcL ) in leaves, and three genes ( RpSOS1, RpHKT1 , and RpSKOR ) encoding membrane transport proteins involved in K + /Na + homeostasis in roots. Expression of several aquaporin genes was regulated by AM symbiosis in both leaves and roots depending on soil salinity. This study suggests that the beneficial

  11. Growth strategies and threshold responses to water deficit modulate effects of warming on tree seedlings from forest to alpine

    USGS Publications Warehouse

    Lazarus, Brynne E.; Castanha, Cristina; Germino, Matthew; Kueppers, Lara M.; Moyes, Andrew B.

    2018-01-01

    1.Predictions of upslope range shifts for tree species with warming are based on assumptions of moisture stress at lower elevation limits and low temperature stress at high elevation limits. However, recent studies have shown that warming can reduce tree seedling establishment across the entire gradient from subalpine forest to alpine via moisture limitation. Warming effects also vary with species, potentially resulting in community shifts in high elevation forests. 2.We examined the growth and physiology underlying effects of warming on seedling demographic patterns. We evaluated dry mass (DM), root length, allocation above- and belowground, and relative growth rate (RGR) of whole seedlings, and their ability to avoid or endure water stress via water-use efficiency and resisting turgor loss, for Pinus flexilis, Picea engelmannii and Pinus contorta seeded below, at, and above treeline in experimentally warmed, watered, and control plots in the Rocky Mountains, USA. We expected that growth and allocation responses to warming would relate to moisture status and that variation in drought tolerance traits would explain species differences in survival rates. 3.Across treatments and elevations, seedlings of all species had weak turgor-loss resistance, and growth was marginal with negative RGR in the first growth phase (-0.01 to -0.04 g/g/d). Growth was correlated with soil moisture, particularly in the relatively small-seeded P. contorta and P. engelmannii. P. flexilis, known to have the highest survivorship, attained the greatest DM and longest root but was also the slowest growing and most water-use-efficient. This was likely due to its greater reliance on seed reserves. Seedlings developed 15% less total DM, 25% less root DM, and 11% shorter roots in heated compared to unheated plots. Higher temperatures slightly increased DM, root length and RGR where soils were wettest, but more strongly decreased these variables under drier conditions. 4.Synthesis: The surprising

  12. Rapid Response of Hydrological Loss of DOC to Water Table Drawdown and Warming in Zoige Peatland: Results from a Mesocosm Experiment

    PubMed Central

    Lou, Xue-Dong; Zhai, Sheng-Qiang; Kang, Bing; Hu, Ya-Lin; Hu, Li-Le

    2014-01-01

    A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC) is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by −10 cm and −20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs254 nm, SUVA254 nm, Abs400 nm, and SUVA400 nm) were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation. PMID:25369065

  13. Rapid response of hydrological loss of DOC to water table drawdown and warming in Zoige peatland: results from a mesocosm experiment.

    PubMed

    Lou, Xue-Dong; Zhai, Sheng-Qiang; Kang, Bing; Hu, Ya-Lin; Hu, Li-Le

    2014-01-01

    A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC) is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by -10 cm and -20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs(254 nm), SUVA(254 nm), Abs(400 nm), and SUVA(400 nm)) were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation.

  14. Renal excretion of water in men under hypokinesia and physical exercise with fluid and salt supplementation

    NASA Astrophysics Data System (ADS)

    Zorbas, Yan G.; Federenko, Youri F.; Togawa, Mitsui N.

    It has been suggested that under hypokinesia (reduced number of steps/day) and intensive physical exercise, the intensification of fluid excretion in men is apparently caused as a result of the inability of the body to retain optimum amounts of water. Thus, to evaluate this hypothesis, studies were performed with the use of fluid and sodium chloride (NaCl) supplements on 12 highly trained physically healthy male volunteers aged 19-24 years under 364 days of hypokinesis (HK) and a set of intensive physical exercises (PE). They were divided into two groups with 6 volunteers per group. The first group of subjects were submitted to HK and took daily fluid and salt supplements in very small doses and the second group of volunteers were subjected to intensive PE and fluid-salt supplements. For the simulation of the hypokinetic effect, both groups of subjects were kept under an average of 4000 steps/day. During the prehypokinetic period of 60 days and under the hypokinetic period of 364 days water consumed and eliminated in urine by the men, water content in blood, plasma volume, rate of glomerular filtration, renal blood flow, osmotic concentration of urine and blood were measured. Under HK, the rate of renal excretion of water increased considerably in both groups. The additional fluid and salt intake failed to normalize water balance adequately under HK and PE. It was concluded that negative water balance evidently resulted not from shortage of water in the diet but from the inability of the body to retain optimum amounts of fluid under HK and a set of intensive PEs.

  15. Changing Arctic ecosystems - measuring and forecasting the response of Alaska's terrestrial ecosystem to a warming climate

    USGS Publications Warehouse

    Pearce, John M.; DeGange, Anthony R.; Flint, Paul L.; Fondell, Tom F.; Gustine, David D.; Holland-Bartels, Leslie E.; Hope, Andrew G.; Hupp, Jerry W.; Koch, Joshua C.; Schmutz, Joel A.; Talbot, Sandra L.; Ward, David; Whalen, Mary E.

    2012-01-01

    The Arctic Coastal Plain of northern Alaska is a complex landscape of lakes, streams, and wetlands scattered across low relief tundra that is underlain by permafrost. This region of the Arctic has experienced a warming trend over the past three decades, leading to thawing of on-shore permafrost and the disappearance of sea ice at an unprecedented rate. The loss of sea ice has increased ocean wave action, leading to higher rates of erosion and salt water inundation of coastal habitats. Warming temperatures also have advanced the overall phenology of the region, including earlier snowmelt, lake ice thaw, and plant growth. As a result, many migratory species now arrive in the Arctic several days earlier in spring than in the 1970s. Predicted warming trends for the future will continue to alter plant growth, ice thaw, and other basic landscape processes. These changes will undoubtedly result in different responses by wildlife (fish, birds, and mammals) and the food they rely upon (plants, invertebrates, and fish). However, the type of response by different wildlife populations and their habitats-either positively or negatively-remains largely unknown.

  16. Warm Water Entrainment Impacts and Environmental Life Cycle Assessment of a Proposed Ocean Thermal Energy Conversion Pilot Plant Offshore Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Hauer, Whitney Blanchard

    Ocean thermal energy conversion (OTEC) is a marine renewable energy technology that uses the temperature difference of large volumes of cold deep and warm surface seawater in tropical regions to generate electricity. One anticipated environmental impact of OTEC operations is the entrainment and subsequent mortality of ichthyoplankton (fish eggs and larvae) from the withdrawal of cold and warm seawater. The potential ichthyoplankton loss from the warm water intake was estimated for a proposed 10 MW OTEC pilot plant offshore Oahu, HI based on ambient vertical distribution data. The estimated losses due to entrainment from the warm water intake were 8.418E+02 larvae/1000 m3, 3.26E+06 larvae/day, and 1.19E+09 larvae/year. The potential entrained larvae/year is 1.86 X greater than at the Kahe Generating Station (Kapolei, HI), a 582 MW oil-fired power plant. Extrapolating to age-1 equivalence (9.2E+02 and 2.9E+02 yellowfin and skipjack tuna, respectively), the estimated yearly losses from warm water entrainment of yellowfin and skipjack tuna fish eggs and larvae represent 0.25-0.26 % and 0.09-0.11 % of Hawaii's commercial yellowfin and skipjack tuna industry in 2011 and 2012. An environmental life cycle assessment (LCA) was developed for the proposed OTEC plant operating for 20 and 40 years with availability factors of 0.85, 0.95, and 1.0 to determine the global warming potential (GWP) and cumulative energy demand (CED) impacts. For a 20 year operational OTEC plant, the GWP, CED, energy return on investment (EROI), and energy payback time (EPBT) ranged from 0.047 to 0.055 kg CO2eq/kWh, 0.678 to 0.798 MJ/kWh, 4.51 to 5.31 (unitless), and 3.77 to 4.43 years, respectively. For a 40 year operational OTEC plant, the GWP, CED, EROI, and EBPT ranged from 0.036 to 0.043 kg CO2eq/kWh, 0.527 to 0.620 MJ/kWh, 5.81 to 6.83 (unitless), and 5.85 to 6.89 years, respectively. The GWP impacts are within the range of renewable energy technologies and less than conventional electricity

  17. Potential Impacts of Climate Warming on Water Supply Reliability in the Tuolumne and Merced River Basins, California

    PubMed Central

    Kiparsky, Michael; Joyce, Brian; Purkey, David; Young, Charles

    2014-01-01

    We present an integrated hydrology/water operations simulation model of the Tuolumne and Merced River Basins, California, using the Water Evaluation and Planning (WEAP) platform. The model represents hydrology as well as water operations, which together influence water supplied for agricultural, urban, and environmental uses. The model is developed for impacts assessment using scenarios for climate change and other drivers of water system behavior. In this paper, we describe the model structure, its representation of historical streamflow, agricultural and urban water demands, and water operations. We describe projected impacts of climate change on hydrology and water supply to the major irrigation districts in the area, using uniform 2°C, 4°C, and 6°C increases applied to climate inputs from the calibration period. Consistent with other studies, we find that the timing of hydrology shifts earlier in the water year in response to temperature warming (5–21 days). The integrated agricultural model responds with increased water demands 2°C (1.4–2.0%), 4°C (2.8–3.9%), and 6°C (4.2–5.8%). In this sensitivity analysis, the combination of altered hydrology and increased demands results in decreased reliability of surface water supplied for agricultural purposes, with modeled quantity-based reliability metrics decreasing from a range of 0.84–0.90 under historical conditions to 0.75–0.79 under 6°C warming scenario. PMID:24465455

  18. A scaled-ionic-charge simulation model that reproduces enhanced and suppressed water diffusion in aqueous salt solutions.

    PubMed

    Kann, Z R; Skinner, J L

    2014-09-14

    Non-polarizable models for ions and water quantitatively and qualitatively misrepresent the salt concentration dependence of water diffusion in electrolyte solutions. In particular, experiment shows that the water diffusion coefficient increases in the presence of salts of low charge density (e.g., CsI), whereas the results of simulations with non-polarizable models show a decrease of the water diffusion coefficient in all alkali halide solutions. We present a simple charge-scaling method based on the ratio of the solvent dielectric constants from simulation and experiment. Using an ion model that was developed independently of a solvent, i.e., in the crystalline solid, this method improves the water diffusion trends across a range of water models. When used with a good-quality water model, e.g., TIP4P/2005 or E3B, this method recovers the qualitative behaviour of the water diffusion trends. The model and method used were also shown to give good results for other structural and dynamic properties including solution density, radial distribution functions, and ion diffusion coefficients.

  19. Rebar corrosion monitoring in concrete structure under salt water enviroment using fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Pan, Yuheng; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Wang, Shuang; He, Pan; Yan, Jinlin

    2015-08-01

    Monitoring corrosion of steel reinforcing bars is critical for the durability and safety of reinforced concrete structures. Corrosion sensors based on fiber optic have proved to exhibit meaningful benefits compared with the conventional electric ones. In recent years, Fiber Bragg Grating (FBG) has been used as a new kind of sensing element in an attempt to directly monitor the corrosion in concrete structure due to its remarkable advantages. In this paper, we present a novel kind of FBG based rebar corrosion monitoring sensor. The rebar corrosion is detected by volume expansion of the corroded rebar by transferring it to the axial strain of FBG when concrete structure is soaked in salt water. An accelerated salt water corrosion test was performed. The experiment results showed the corrosion can be monitored effectively and the corrosion rate is obtained by volume loss rate of rebar.

  20. Classification of a hypervirulent Aeromonas hydrophila pathotype responsible for epidemic outbreaks in warm-water fishes

    USDA-ARS?s Scientific Manuscript database

    Lineages of hypervirulent Aeromonas hydrophila (vAh) are the cause of persistent outbreaks of motile Aeromonas septicemia in warm-water fishes worldwide. Over the last decade, this virulent lineage of A. hydrophila has resulted in annual losses of millions of tons of farmed carp and catfish in the P...

  1. Bile salts as semiochemicals in fish

    USGS Publications Warehouse

    Buchinger, Tyler J.; Li, Weiming; Johnson, Nicholas S.

    2014-01-01

    Bile salts are potent olfactory stimuli in fishes; however the biological functions driving such sensitivity remain poorly understood. We provide an integrative review of bile salts as semiochemicals in fish. First, we present characteristics of bile salt structure, metabolism, and function that are particularly relevant to chemical communication. Bile salts display a systematic pattern of structural variation across taxa, are efficiently synthesized, and are stable in the environment. Bile salts are released into the water via the intestine, urinary tract, or gills, and are highly water soluble. Second, we consider the potential role of bile salts as semiochemicals in the contexts of detecting nearby fish, foraging, assessing risk, migrating, and spawning. Lastly, we suggest future studies on bile salts as semiochemicals further characterize release into the environment, behavioral responses by receivers, and directly test the biological contexts underlying olfactory sensitivity.

  2. Calculating salt loads to Great Salt Lake and the associated uncertainties for water year 2013; updating a 48 year old standard

    USGS Publications Warehouse

    Shope, Christopher L.; Angeroth, Cory E.

    2015-01-01

    Effective management of surface waters requires a robust understanding of spatiotemporal constituent loadings from upstream sources and the uncertainty associated with these estimates. We compared the total dissolved solids loading into the Great Salt Lake (GSL) for water year 2013 with estimates of previously sampled periods in the early 1960s.We also provide updated results on GSL loading, quantitatively bounded by sampling uncertainties, which are useful for current and future management efforts. Our statistical loading results were more accurate than those from simple regression models. Our results indicate that TDS loading to the GSL in water year 2013 was 14.6 million metric tons with uncertainty ranging from 2.8 to 46.3 million metric tons, which varies greatly from previous regression estimates for water year 1964 of 2.7 million metric tons. Results also indicate that locations with increased sampling frequency are correlated with decreasing confidence intervals. Because time is incorporated into the LOADEST models, discrepancies are largely expected to be a function of temporally lagged salt storage delivery to the GSL associated with terrestrial and in-stream processes. By incorporating temporally variable estimates and statistically derived uncertainty of these estimates,we have provided quantifiable variability in the annual estimates of dissolved solids loading into the GSL. Further, our results support the need for increased monitoring of dissolved solids loading into saline lakes like the GSL by demonstrating the uncertainty associated with different levels of sampling frequency.

  3. Global lake response to the recent warming hiatus

    NASA Astrophysics Data System (ADS)

    Winslow, Luke A.; Leach, Taylor H.; Rose, Kevin C.

    2018-05-01

    Understanding temporal variability in lake warming rates over decadal scales is important for understanding observed change in aquatic systems. We analyzed a global dataset of lake surface water temperature observations (1985‑2009) to examine how lake temperatures responded to a recent global air temperature warming hiatus (1998‑2012). Prior to the hiatus (1985‑1998), surface water temperatures significantly increased at an average rate of 0.532 °C decade‑1 (±0.214). In contrast, water temperatures did not change significantly during the hiatus (average rate ‑0.087 °C decade‑1 ±0.223). Overall, 83% of lakes in our dataset (129 of 155) had faster warming rates during the pre-hiatus period than during the hiatus period. These results demonstrate that lakes have exhibited decadal-scale variability in warming rates coherent with global air temperatures and represent an independent line of evidence for the recent warming hiatus. Our analyses provide evidence that lakes are sentinels of broader climatological processes and indicate that warming rates based on datasets where a large proportion of observations were collected during the hiatus period may underestimate longer-term trends.

  4. Water Quality in the Great Salt Lake Basins, Utah, Idaho, and Wyoming, 1998-2001

    USGS Publications Warehouse

    Waddell, Kidd M.; Gerner, Steven J.; Thiros, Susan A.; Giddings, Elise M.; Baskin, Robert L.; Cederberg, Jay R.; Albano, Christine M.

    2004-01-01

    This report contains the major findings of a 1998-2001 assessment of water quality in the Great Salt Lake Basins. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to water quality in other areas across the Nation. The water-quality conditions in the Great Salt Lake Basins summarized in this report are discussed in detail in other reports that can be accessed at http://ut.water.usgs.gov. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed at the national NAWQA Web site http://water.usgs.gov/nawqa.

  5. Precision Monitoring of Water Level in a Salt Marsh with Low Cost Tilt Loggers

    NASA Astrophysics Data System (ADS)

    Sheremet, Vitalii A.; Mora, Jordan W.

    2016-04-01

    Several salt pannes and pools in the Sage Lot tidal marsh of Waquoit Bay system, MA were instrumented with newly developed Arm-and-Float water level gauges (utilizing accelerometer tilt logger) permitting to record water level fluctuations with accuracy of 1 mm and submillimeter resolution. The methodology of the instrument calibration, deployment, and elevation control are described. The instrument performance was evaluated. Several month long deployments allowed us to analyze the marsh flooding and draining processes, study differences among the salt pannes. The open channel flow flooding-draining mechanism and slower seepage were distinguished. From the drain curve the seepage rate can be quantified. The seepage rate remains approximately constant for all flooding draining episodes, but varies from panne to panne depending on bottom type and location. Seasonal differences due to the growth of vegetation are also recorded. The analysis of rain events allows us to estimate the catch area of subbasins in the marsh. The implication for marsh ecology and marsh accretion are discussed. The gradual sea level rise coupled with monthly tidal datum variability and storm surges result in migration and development of a salt marsh. The newly developed low cost instrumentation allows us to record and analyze these changes and may provide guidance for the ecological management.

  6. Stable Isotope Evidence for North Pacific Deep Water Formation during the mid-Pliocene Warm Period

    NASA Astrophysics Data System (ADS)

    Ford, H. L.; Burls, N.; Hodell, D. A.

    2017-12-01

    Only intermediate water forms in the North Pacific today because of a strong halocline. A recent climate modeling study suggests that conditions during the mid-Pliocene warm period ( 3 Ma), a time interval used as pseudo-analogue for future climate change, could have supported a Pacific Meridional Overturning Circulation (PMOC) in the North Pacific. This modeled PMOC is of comparable strength to the modern Atlantic Meridional Overturning Circulation. To investigate the possibility of a mid-Pliocene PMOC, we studied a depth transect of sites between 2400 to 3400 m water depth on Shatsky Rise by measuring δ18O and δ13C of Cibicidoides wuellerstorfi and comparing these new results with previously published records. Today, the vertical δ13C gradient has lower values at mid-depths because of the presence of aged water at the "end of the ocean conveyor belt." We find that the vertical δ13C gradient was reduced, and slightly reversed during the Pliocene interval on Shatsky Rise relative to modern. This δ13C data supports the modeling results that there was deep water formation in the North Pacific. On the Shatsky Rise, the mid-depth δ18O values are high relative to the deep site and other high-resolution records in the Equatorial Pacific. This suggests the PMOC water mass was colder and/or had a more enriched seawater δ18O than the surrounding waters. Planned future work includes minor and trace element analyses to determine the temperature and ΔCO32- characteristics of the PMOC water mass. Our results suggest a ventilated North Pacific during the globally warm mid-Pliocene.

  7. Click strategy using disodium salts of amino acids improves the water solubility of plinabulin and KPU-300.

    PubMed

    Yakushiji, Fumika; Muguruma, Kyohei; Hayashi, Yoshiki; Shirasaka, Takuya; Kawamata, Ryosuke; Tanaka, Hironari; Yoshiwaka, Yushi; Taguchi, Akihiro; Takayama, Kentaro; Hayashi, Yoshio

    2017-07-15

    Plinabulin and KPU-300 are promising anti-microtubule agents; however, the low water solubility of these compounds (<0.1µg/mL) has limited their pharmaceutical advantages. Here, we developed five water-soluble derivatives of plinabulin and KPU-300 with a click strategy using disodium salts of amino acids. The mother skeleton, diketopiperazine (DKP), was transformed into a monolactim-type alkyne and a copper-catalyzed alkyne azide cycloaddition (CuAAC) combined azides that was derived from amino acids as a water-solubilizing moiety. The conversion of carboxyl groups into disodium salts greatly improved the water solubility by 0.8 million times compared to the solubility of the parent molecules. In addition, the α-amino acid side chains of the water-solubilizing moieties affected both the water solubility and the half-lives of the compounds during enzymatic hydrolysis. Our effort to develop a variety of water-soluble derivatives using the click strategy has revealed that the replaceable water-solubilizing moieties can alter molecular solubility and stability under enzymatic hydrolysis. With this flexibility, we are approaching to the in vivo study using water-soluble derivative. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effects of van der Waals forces and salt ions on the growth of water films on ice and the detachment of CO2 bubbles

    NASA Astrophysics Data System (ADS)

    Thiyam, P.; Lima, E. R. A.; Malyi, O. I.; Parsons, D. F.; Buhmann, S. Y.; Persson, C.; Boström, M.

    2016-02-01

    We study the effect of salts on the thickness of wetting films on melting ice and interactions acting on CO2 bubble near ice-water and vapor-water interfaces. Governing mechanisms are the Lifshitz and the double-layer interactions in the respective three-layer geometries. We demonstrate that the latter depend on the Casimir-Polder interaction of the salt ions dissolved in water with the respective ice, vapor and CO2 interfaces, as calculated using different models for their effective polarizability in water. Significant variation in the predicted thickness of the equilibrium water film is observed for different salt ions and when using different models for the ions' polarizabilities. We find that CO2 bubbles are attracted towards the ice-water interface and repelled from the vapor-water interface.

  9. Water in the Oceanic Lithosphere: Salt Lake Crater Xenoliths, Oahu, Hawaii

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.; Bizimis, Michael

    2010-01-01

    Water can be present in nominally anhydrous minerals of peridotites in the form of hydrogen bonded to structural oxygen. Such water in the oceanic upper mantle could have a significant effect on its physical and chemical properties. However, the water content of the MORB source has been inferred indirectly from the compositions of basalts. Direct determinations on abyssal peridotites are scarce because they have been heavily hydrothermally altered. Here we present the first water analyses of minerals from spinel peridotite xenoliths of Salt Lake Crater, Oahu, Hawaii, which are exceptionally fresh. These peridotites are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. A few have unradiogenic Os and radiogenic Hf isotopes and may be fragments of an ancient (2 Ga) depleted and recycled lithosphere. Water contents in olivine (Ol), orthopyroxene (Opx), and clinopyroxene (Cpx) were determined by FTIR spectrometry. Preliminary H_{2}O contents show ranges of 8-10 ppm for Ol, 151-277 ppm for Opx, and 337-603 ppm for Cpx. Reconstructed bulk rock H_{2}O contents range from 88-131 ppm overlapping estimates for the MORB source. Water contents between Ol minerals of the same xenolith are heterogeneous and individual OH infrared bands vary within a mineral with lower 3230 cm^{-1} and higher 3650-3400 cm^{-1} band heights from core to edge. This observation suggests disturbance of the hydrogen in Ol likely occurring during xenolith entrainment to the surface. Pyroxene water contents are higher than most water contents in pyroxenes from continental peridotite xenoliths and higher than those of abyssal peridotites. Cpx water contents decrease with increasing degree of depletion (e.g. increasing Fo in Ol and Cr# in spinel) consistent with an incompatible behavior of water. However Cpx water contents also show a positive correlation with LREE/HREE ratios and LREE concentrations consistent with refertilization. Opx water

  10. Water in the oceanic lithosphere: Salt Lake Crater xenoliths, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Peslier, A. H.; Bizimis, M.

    2010-12-01

    Water can be present in nominally anhydrous minerals of peridotites in the form of hydrogen bonded to structural oxygen. Such water in the oceanic upper mantle could have a significant effect on its physical and chemical properties. However, the water content of the MORB source has been inferred indirectly from the compositions of basalts. Direct determinations on abyssal peridotites are scarce because they have been heavily hydrothermally altered. Here we present the first water analyses of minerals from spinel peridotite xenoliths of Salt Lake Crater, Oahu, Hawaii, which are exceptionally fresh. These peridotites are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. A few have unradiogenic Os and radiogenic Hf isotopes and may be fragments of an ancient ( 2 Ga) depleted and recycled lithosphere. Water contents in olivine (Ol), orthopyroxene (Opx), and clinopyroxene (Cpx) were determined by FTIR spectrometry. Preliminary H_{2}O contents show ranges of 8-10 ppm for Ol, 151-277 ppm for Opx, and 337-603 ppm for Cpx. Reconstructed bulk rock H_{2}O contents range from 88-131 ppm overlapping estimates for the MORB source. Water contents between Ol minerals of the same xenolith are heterogeneous and individual OH infrared bands vary within a mineral with lower 3230 cm^{-1} and higher 3650-3400 cm^{-1} band heights from core to edge. This observation suggests disturbance of the hydrogen in Ol likely occurring during xenolith entrainment to the surface. Pyroxene water contents are higher than most water contents in pyroxenes from continental peridotite xenoliths and higher than those of abyssal peridotites. Cpx water contents decrease with increasing degree of depletion (e.g. increasing Fo in Ol and Cr# in spinel) consistent with an incompatible behavior of water. However Cpx water contents also show a positive correlation with LREE/HREE ratios and LREE concentrations consistent with refertilization. Opx

  11. [Effects of the grain size and thickness of dust deposits on soil water and salt movement in the hinterland of the Taklimakan Desert].

    PubMed

    Sun, Yan-Wei; Li, Sheng-Yu; Xu, Xin-Wen; Zhang, Jian-Guo; Li, Ying

    2009-08-01

    By using mcirolysimeter, a laboratory simulation experiment was conducted to study the effects of the grain size and thickness of dust deposits on the soil water evaporation and salt movement in the hinterland of the Taklimakan Desert. Under the same initial soil water content and deposition thickness condition, finer-textured (<0.063 mm) deposits promoted soil water evaporation, deeper soil desiccation, and surface soil salt accumulation, while coarse-textured (0.063-2 mm) deposits inhibited soil water evaporation and decreased deeper soil water loss and surface soil salt accumulation. The inhibition effect of the grain size of dust deposits on soil water evaporation had an inflection point at the grain size 0.20 mm, i. e., increased with increasing grain size when the grain size was 0.063-0.20 mm but decreased with increasing grain size when the grain size was > 0.20 mm. With the increasing thickness of dust deposits, its inhibition effect on soil water evaporation increased, and there existed a logarithmic relationship between the dust deposits thickness and water evaporation. Surface soil salt accumulation had a negative correlation with dust deposits thickness. In sum, the dust deposits in study area could affect the stability of arid desert ecosystem.

  12. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2014-06-04

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  13. Global Warming: A Reduced Threat?.

    NASA Astrophysics Data System (ADS)

    Michaels, Patrick J.; Stooksbury, David E.

    1992-10-01

    One popular and apocalyptic vision of the world influenced by increasing concentrations of infrared-absorbing trace gases is that of ecological disaster brought about by rapidly rising temperatures, sea level, and evaporation rates. This vision developed from a suite of climate models that have since considerably changed in both their dynamics and their estimates of prospective warming. Observed temperatures indicate that much more warming should already have taken place than predicted by earlier models in the Northern Hemisphere, and that night, rather than day, readings in that hemisphere show a relative warming. A high-latitude polar-night warming or a general night warming could be either benign or beneficial. A large number of plant species show both increased growth and greater water-use efficiency under enhanced carbon dioxide.An extensive body of evidence now indicates that anthropo-generated sulfate emissions are mitigating some of the warming, and that increased cloudiness as a result of these emissions will further enhance night, rather than day, warming. The sulfate emissions, though, are not sufficient to explain all of the night warming. However, the sensitivity of climate to anthropogenerated aerosols, and the general lack of previously predicted warming, could drastically alter the debate on global warming in favor of less expensive policies.

  14. The risk of water scarcity at different levels of global warming

    NASA Astrophysics Data System (ADS)

    Schewe, Jacob; Sharpe, Simon

    2015-04-01

    Water scarcity is a threat to human well-being and economic development in many countries today. Future climate change is expected to exacerbate the global water crisis by reducing renewable freshwater resources different world regions, many of which are already dry. Studies of future water scarcity often focus on most-likely, or highest-confidence, scenarios. However, multi-model projections of water resources reveal large uncertainty ranges, which are due to different types of processes (climate, hydrology, human) and are therefore not easy to reduce. Thus, central estimates or multi-model mean results may be insufficient to inform policy and management. Here we present an alternative, risk-based approach. We use an ensemble of multiple global climate and hydrological models to quantify the likelihood of crossing a given water scarcity threshold under different levels of global warming. This approach allows assessing the risk associated with any particular, pre-defined threshold (or magnitude of change that must be avoided), regardless of whether it lies in the center or in the tails of the uncertainty distribution. We show applications of this method on the country and river basin scale, illustrate the effects of societal processes on the resulting risk estimates, and discuss the further potential of this approach for research and stakeholder dialogue.

  15. Desert Amplification in a Warming Climate

    PubMed Central

    Zhou, Liming

    2016-01-01

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950–2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor. PMID:27538725

  16. Effects of lowering interior canal stages on salt-water intrusion into the shallow aquifer in Southeast Palm Beach County, Florida

    USGS Publications Warehouse

    Land, Larry F.

    1975-01-01

    Land in southeast Palm Beach County is undergoing a large-scale change in use, from agricultural to residential. To accommodate residential use, a proposal has been made by developers to the Board of the Lake Worth Drainage District to lower the canal stages in the interior part of the area undergoing change. This report documents one of the possible effects of such lowering. Of particular interest to the Board was whether the lower canal stages would cause an increase in salt-water intrusion into the shallow aquifer along the coast. The two main tools used in the investigation were a digital model for aquifer evaluation and an analytical technique for predicting the movement of the salt-water front in response to a change of ground-water flow into the ocean. The method of investigation consisted of developing a digital ground-water flow model for three east-west test strips. They pass through the northern half of municipal well fields in Lake Worth, Delray Beach, and Boca Raton. The strips were first modeled with no change in interior canal stages. Then they were modeled with a change in canal stages of 2 to 4 feet (0.6 to 1.6 metres). Also, two land development schemes were tested. One was for a continuation of the present level of land development, simulated by continuing the present pumpage rates. The second scheme was for land development to continue until the maximum allowable densities were reached, simulated by increasing the pumping rates. The results of the test runs for an east-west strip through Lake Worth show that lowering part of the interior canal water levels 3 feet (1.0 metre), as done in 1961, does not affect the aquifer head or salt-water intrusion along the coastal area of Lake Worth. As a result, no effect in the coastal area would be expected as a result of canal stage lowering in other, interior parts of the study area. Results from the other test runs show that lowering interior canal water levels by as much as 4 feet (1.2 metres) would

  17. The greenhouse gas flux and potential global warming feedbacks of a northern macrotidal and microtidal salt marsh

    USGS Publications Warehouse

    Chmura, Gail L.; Kellman, Lisa; Guntenspergen, Glenn R.

    2011-01-01

    Conversion of wetlands by drainage for agriculture or other anthropogenic activities could have a negative or positive feedback to global warming (GWF). We suggest that a major predictor of the GWF is salinity of the wetland soil (a proxy for available sulfate), a factor often ignored in other studies. We assess the radiative balance of two northern salt marshes with average soil salinities > 20 ppt, but with high (macro-) and low (micro-) tidal amplitudes. The flux of greenhouse gases from soils at the end of the growing season averaged 485 ± 253 mg m-2 h-1, 13 ± 30 μg m-2 h-1, and 19 ± 58 μg m-2 h-1 in the microtidal marsh and 398 ± 201 mg m-2 h-1, 2 ± 26 μg m-2 h-1, and 35 ± 77 μg m-2 h-1 in the macrotidal marsh for CO2, N2O, and CH4, respectively. High rates of C sequestration mean that loss of these marshes would have a radiative balance of - 981 CO2_eq. m-2 yr-1 in the microtidal and - 567 CO2_eq. m-2 yr-1 in the macrotidal marsh.

  18. Characteristics of the cold-water belt formed off Soya Warm Current

    NASA Astrophysics Data System (ADS)

    Ishizu, Miho; Kitade, Yujiro; Matsuyama, Masaji

    2008-12-01

    We examined the data obtained by acoustic Doppler current profiler, conductivity-temperature-depth profiler, and expendable bathythermograph observations, which were collected in the summers of 2000, 2001, and 2002, to clarify the characteristics of the cold-water belt (CWB), i.e., lower-temperature water than the surrounding water extending from the southwest coast of Sakhalin along the offshore side of Soya Warm Current (SWC) and to confirm one of the formation mechanisms of the CWB as suggested by our previous study, i.e., the upwelling due to the convergence of bottom Ekman transport off the SWC region. The CWB was observed at about 30 km off the coast, having a thickness of 14 m and a minimum temperature of 12°C at the sea surface. The CWB does not have the specific water mass, but is constituted of three representative water types off the northeast coast of Hokkaido in summer, i.e., SWC water, Fresh Surface Okhotsk Sea Water, and Okhotsk Sea Intermediate Water. In a comparison of the horizontal distributions of current and temperature, the CWB region is found to be advected to the southeast at an average of 40 ± 29% of the maximum current velocity of the SWC. The pumping speed due to the convergence of the bottom Ekman transport is estimated as (1.5-3.0) × 10-4 m s-1. We examined the mixing ratio of the CWB, and the results implied that the water mass of the CWB is advected southeastward and mixes with a water mass upwelling in a different region off SWC.

  19. Impact of removing iodized salt on the iodine nutrition of children living in areas with variable iodine content in drinking water.

    PubMed

    Lv, Shengmin; Zhao, Yinglu; Li, Yanxia; Wang, Yuchun; Liu, Hua; Li, Yang; Zhao, Jun; Rutherford, Shannon

    2015-09-01

    Excess iodine in drinking water has emerged as a public health issue in China. This study assesses the effectiveness of removing iodized salt on reducing the iodine excess in populations living in high-iodine areas and also to identify the threshold value for safe levels of iodine in water. Twelve villages from 5 cities of Hebei Province with iodine content in drinking water ranging from 39 to 313 µg/l were selected to compare the urinary iodine content of children aged 8-10 years before and after removing iodized salt from their diet. For 3 villages where median water iodine content (MWIC) was below 110 µg/l, following the removal of iodized salt (the intervention), the median urinary iodine content (MUIC) reduced to under 300 µg/l decreasing from 365, 380, 351 to 247, 240, 281 µg/l, respectively. However, the MUIC in the 9 villages with MWIC above 110 µg/l remained higher than 300 µg/l. The children's MUIC correlated positively with the MWIC in the 12 villages (p ≤ 0.001). The linear regression equation after removing iodized salt was MUIC = 0.6761MWIC + 225.67, indicating that to keep the MUIC below 300 µg/l (the iodine excess threshold recommended by the WHO) requires the MWIC to be under 110 µg/l. Removing iodized salt could only correct the iodine excess in the population living in the areas with MWIC below 110 µg/l. In the areas with water iodine above 110 µg/l, interventions should be focused on seeking water with lower iodine content. This study suggests a threshold value of 110 µg/l of iodine in drinking water to maintain a safe level of dietary iodine.

  20. Water relations of riparian plants from warm desert regions

    USGS Publications Warehouse

    Smith, S.D.; Devitt, Dale A.; Cleverly, James R.; Busch, David E.

    1998-01-01

    Riparian plants have been classified as 'drought avoiders' due to their access to an abundant subsurface water supply. Recent water-relations research that tracks water sources of riparian plants using the stable isotopes of water suggests that many plants of the riparian zone use ground water rather than stream water, and not all riparian plants are obligate phreatophytes (dependent on ground water as a moisture source) but may occasionally be dependent of unsaturated soil moisture sources. A more thorough understanding of riparian plant-water relations must include water-source dynamics and how those dynamics vary over both space and time. Many rivers in the desert Southwest have been invaded by the exotic shrub Tamarix ramosissima (saltcedar). Our studies of Tamarix invasion into habitats formerly dominated by native riparian forests of primarily Populus and Salix have shown that Tamarix successfully invades these habitats because of its (1) greater tolerance to water stress and salinity, (2) status as a facultative, rather than obligate, phreatophyte and, therefore, its ability to recover from droughts and periods of ground-water drawdown, and (3) superior regrowth after fire. Analysis of water- loss rates indicate that Tamarix-dominated stands can have extremely high evapotranspiration rates when water tables are high but not necessarily when water tables are lower. Tamarix has leaf-level transpiration rates that are comparable to native species, whereas sap-flow rates per unit sapwood area are higher than in natives, suggesting that Tamarix maintains higher leaf area than can natives, probably due to its greater water stress tolerance. Tamarix desiccates and salinizes floodplains, due to its salt exudation and high transpiration rates, and may also accelerate fire cycles, thus predisposing these ecosystems to further loss of native taxa. Riparian species on regulated rivers can be exposed to seasonal water stress due to depression of floodplain water tables

  1. Warm water deuterium fractionation in IRAS 16293-2422. The high-resolution ALMA and SMA view

    NASA Astrophysics Data System (ADS)

    Persson, M. V.; Jørgensen, J. K.; van Dishoeck, E. F.

    2013-01-01

    Context. Measuring the water deuterium fractionation in the inner warm regions of low-mass protostars has so far been hampered by poor angular resolution obtainable with single-dish ground- and space-based telescopes. Observations of water isotopologues using (sub)millimeter wavelength interferometers have the potential to shed light on this matter. Aims: To measure the water deuterium fractionation in the warm gas of the deeply-embedded protostellar binary IRAS 16293-2422. Methods: Observations toward IRAS 16293-2422 of the 53,2 - 44,1 transition of H218O at 692.07914 GHz from Atacama Large Millimeter/submillimeter Array (ALMA) as well as the 31,3 - 22,0 of H218O at 203.40752 GHz and the 31,2 - 22,1 transition of HDO at 225.89672 GHz from the Submillimeter Array (SMA) are presented. Results: The 692 GHz H218O line is seen toward both components of the binary protostar. Toward one of the components, "source B", the line is seen in absorption toward the continuum, slightly red-shifted from the systemic velocity, whereas emission is seen off-source at the systemic velocity. Toward the other component, "source A", the two HDO and H218O lines are detected as well with the SMA. From the H218O transitions the excitation temperature is estimated at 124 ± 12 K. The calculated HDO/H2O ratio is (9.2 ± 2.6) × 10-4 - significantly lower than previous estimates in the warm gas close to the source. It is also lower by a factor of ~5 than the ratio deduced in the outer envelope. Conclusions: Our observations reveal the physical and chemical structure of water vapor close to the protostars on solar-system scales. The red-shifted absorption detected toward source B is indicative of infall. The excitation temperature is consistent with the picture of water ice evaporation close to the protostar. The low HDO/H2O ratio deduced here suggests that the differences between the inner regions of the protostars and the Earth's oceans and comets are smaller than previously thought

  2. Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, USA.

    PubMed

    Lyons, J; Stewart, J S; Mitro, M

    2010-11-01

    Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56·0-93·5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1° C and water 0·8° C), moderate warming (air 3° C and water 2·4° C) and major warming (air 5° C and water 4° C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin. © 2010 The Authors. Journal of Fish Biology © 2010 The Fisheries Society of the British Isles.

  3. Community solar salt production in Goa, India

    PubMed Central

    2012-01-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa’s riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now reduced to 9. Low income, lack of skilled labour, competition from industrially produced salt, losses incurred on the yearly damage of embankments are the major reasons responsible for the reduction in the number of salt pans. Salt pans (Mithagar or Mithache agor) form a part of the reclaimed waterlogged khazan lands, which are also utilised for aquaculture, pisciculture and agriculture. Salt pans in Goa experience three phases namely, the ceased phase during monsoon period of June to October, preparatory phase from December to January, and salt harvesting phase, from February to June. After the monsoons, the salt pans are prepared manually for salt production. During high tide, an influx of sea water occurs, which enters the reservoir pans through sluice gates. The sea water after 1–2 days on attaining a salinity of approximately 5ºBé, is released into the evaporator pans and kept till it attains a salinity of 23 - 25ºBé. The brine is then released to crystallizer pans, where the salt crystallises out 25 - 27ºBé and is then harvested. Salt pans form a unique ecosystem where succession of different organisms with varying environmental conditions occurs. Organisms ranging from bacteria, archaea to fungi, algae, etc., are known to colonise salt pans and may influence the quality of salt produced. The aim of this review is to describe salt farming in Goa’s history, importance of salt production as a community activity, traditional method of salt production and the

  4. Community solar salt production in Goa, India.

    PubMed

    Mani, Kabilan; Salgaonkar, Bhakti B; Das, Deepthi; Bragança, Judith M

    2012-12-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa's riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now reduced to 9. Low income, lack of skilled labour, competition from industrially produced salt, losses incurred on the yearly damage of embankments are the major reasons responsible for the reduction in the number of salt pans.Salt pans (Mithagar or Mithache agor) form a part of the reclaimed waterlogged khazan lands, which are also utilised for aquaculture, pisciculture and agriculture. Salt pans in Goa experience three phases namely, the ceased phase during monsoon period of June to October, preparatory phase from December to January, and salt harvesting phase, from February to June. After the monsoons, the salt pans are prepared manually for salt production. During high tide, an influx of sea water occurs, which enters the reservoir pans through sluice gates. The sea water after 1-2 days on attaining a salinity of approximately 5ºBé, is released into the evaporator pans and kept till it attains a salinity of 23 - 25ºBé. The brine is then released to crystallizer pans, where the salt crystallises out 25 - 27ºBé and is then harvested.Salt pans form a unique ecosystem where succession of different organisms with varying environmental conditions occurs. Organisms ranging from bacteria, archaea to fungi, algae, etc., are known to colonise salt pans and may influence the quality of salt produced.The aim of this review is to describe salt farming in Goa's history, importance of salt production as a community activity, traditional method of salt production and the biota

  5. Hydrologic and climatologic data, 1965, Salt Lake County, Utah

    USGS Publications Warehouse

    Iorns, W.V.; Mower, Reed W.; Horr, C.A.

    1966-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed equally by the State of Utah and the Federal Government in accordance with an agreement between the State Engineer and the Geological Survey. The Utah Water and Power Board, Utah Fish and Game Commission, Salt Lake County Water Conservancy District, Metropolitan Water District of Salt Lake City, Salt Lake County, Kennecott Copper Corporation, Utah Power and Light Company, Salt Lake City Chamber of Commerce, and the Central Utah Water Conservancy District. contributed funds to the State Engineer's office toward support of the project.The investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Release No. 11 contains data collected through 1964. This release contains climatologic and surface-water data for the 1965 water year (October 1964 to September 1965) and ground-water data collected during the 1965 calendar year. Similar annual releases will contain data collected during the remainder of the investigation, and interpretive reports will be prepared as the investigation proceeds. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  6. Warming and elevated CO2 interact to alter seasonality and reduce variability of soil water in a semiarid grassland

    USDA-ARS?s Scientific Manuscript database

    Global changes that alter the amount and timing of plant-available water may have profound effects on arid and semi-arid ecosystems. In addition to predicted changes in precipitation, both elevated CO2 and warming can alter water availability, often in opposite ways. Few studies, however, have measu...

  7. Selected aquatic biological investigations in the Great Salt Lake basins, 1875-1998, National Water-Quality Assessment Program

    USGS Publications Warehouse

    Giddings, Elise M.P.; Stephens, Doyle W.

    1999-01-01

    This report summarizes previous investigations of aquatic biological communities, habitat, and contaminants in streams and selected large lakes within the Great Salt Lake Basins study unit as part of the U.S. Geological Survey?s National Water-Quality Assessment Program (NAWQA). The Great Salt Lake Basins study unit is one of 59 such units designed to characterize water quality through the examination of chemical, physical, and biological factors in surface and ground waters across the country. The data will be used to aid in the planning, collection, and analysis of biological information for the NAWQA study unit and to aid other researchers concerned with water quality of the study unit. A total of 234 investigations conducted during 1875-1998 are summarized in this report. The studies are grouped into three major subjects: (1) aquatic communities and habitat, (2) contamination of streambed sediments and biological tissues, and (3) lakes. The location and a general description of each study is listed. The majority of the studies focus on fish and macroinvertebrate communities. Studies of algal communities, aquatic habitat, riparian wetlands, and contamination of streambed sediment or biological tissues are less common. Areas close to the major population centers of Salt Lake City, Provo, and Logan, Utah, are generally well studied, but more rural areas and much of the Bear River Basin are lacking in detailed information, except for fish populations..

  8. Effectiveness of highway-drainage systems in preventing contamination of ground water by road salt, Route 25, southeastern Massachusetts; description of study area, data collection programs, and methodology

    USGS Publications Warehouse

    Church, P.E.; Armstrong, D.S.; Granato, G.E.; Stone, V.J.; Smith, K.P.; Provencher, P.L.

    1996-01-01

    Four test sites along a 7-mile section of Route 25 in southeastern Massachusetts, each representing a specific highway-drainage system, were instrumented to determine the effectiveness of the drainage systems in preventing contamination of ground water by road salt. One of the systems discharges highway runoff onsite through local drainpipes. The other systems use trunkline drainpipes through which runoff from highway surfaces, shoulders, and median strips is diverted and discharged into either a local stream or a coastal waterway. Route 25 was completed and opened to traffic in the summer of 1987. Road salt was first applied to the highway in the winter of 1987-88. The study area is on a thick outwash plain composed primarily of sand and gravel. Water-table depths range from 15 to 60 feet below land surface at the four test sites. Ground-water flow is in a general southerly direction, approximately perpendicular to the highway. Streamflow in the study area is controlled primarily by ground-water discharge. Background concentrations of dissolved chloride, sodium, and calcium-the primary constituents of road salt-are similar in ground water and surface water and range from 5 to 20, 5 to 10, and 1 to 5 milligrams per liter, respectively. Data-collection programs were developed for monitoring the application of road salt to the highway, the quantity of road-salt water entering the ground water, diverted through the highway-drainage systems, and entering a local stream. The Massachusetts Highway Department monitored road salt applied to the highway and reported these data to the U.S. Geological Survey. The U.S. Geological Survey designed and operated the ground-water, highway- drainage, and surface-water data-collection programs. A road-salt budget will be calculated for each test site so that the effectiveness of the different highway-drainage systems in preventing contamination of ground water by road salt can be determined.

  9. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis

    PubMed Central

    Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo

    2016-01-01

    Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9–1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5–1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5–1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions. PMID:26730602

  10. A prototype for communitising technology: Development of a smart salt water desalination device

    NASA Astrophysics Data System (ADS)

    Fakharuddin, F. M.; Fatchurrohman, N.; Puteh, S.; Puteri, H. M. A. R.

    2018-04-01

    Desalination is defined as the process that removes minerals from saline water or commonly known as salt water. Seawater desalination is becoming an attractive source of drinking water in coastal states as the costs for desalination declines. The purpose of this study is to develop a small scale desalination device and able to do an analysis of the process flow by using suitable sensors. Thermal technology was used to aid the desalination process. A graphical user interface (GUI) for the interface was made to enable the real time data analysis of the desalination device. ArduinoTM microcontroller was used in this device in order to develop an automatic device.

  11. Modeling Episodic Ephemeral Brine Lake Evaporation and Salt Crystallization on the Bonneville Salt Flats, Utah

    NASA Astrophysics Data System (ADS)

    Liu, T.; Harman, C. J.; Kipnis, E. L.; Bowen, B. B.

    2017-12-01

    Public concern about apparent reductions in the areal extent of the Bonneville Salt Flat (BSF) and perceived changes in inundation frequency has motivated renewed interest in the hydrologic and geochemical behavior of this salt playa. In this study, we develop a numerical modeling framework to simulate the relationship between hydrometeorologic variability, brine evaporation and salt crystallization processes on BSF. The BSF, locates in Utah, is the remnant of paleo-lake Bonneville, and is capped by up to 1 meter of salt deposition over a 100 km2 area. The BSF has two distinct hydrologic periods each year: a winter wet periods with standing surface brine and the summer dry periods when the brine is evaporated, exposing the surface salt crust. We develop a lumped non-linear dynamical models coupling conservation expressions from water, dissolved salt and thermal energy to investigate the seasonal and diurnal behavior of brine during the transition from standing brine to exposed salt at BSF. The lumped dynamic models capture important nonlinear and kinetic effects introduced by the high ionic concentration of the brine, including the pronounced effect of the depressed water activity coefficient on evaporation. The salt crystallization and dissolution rate is modeled as a kinetic process linearly proportional to the degree of supersaturation of brine. The model generates predictions of the brine temperature and the solute and solvent masses controlled by diurnal net radiation input and aerodynamic forcing. Two distinct mechanisms emerge as potential controls on salt production and dissolution: (1) evapo-concentration and (2) changes in solubility related to changes in brine temperature. Although the evaporation of water is responsible for ultimate disappearance of the brine each season ,variation in solubility is found to be the dominant control on diurnal cycles of salt precipitation and dissolution in the BSF case. Most salt is crystallized during nighttime, but the

  12. STIMULATION OF FUNDULUS BY HYDROCHLORIC AND FATTY ACIDS IN FRESH WATER, AND BY FATTY ACIDS, MINERAL ACIDS, AND THE SODIUM SALTS OF MINERAL ACIDS IN SEA WATER

    PubMed Central

    Allison, J. B.; Cole, William H.

    1934-01-01

    1. Fundulus heteroclitus was found to be a reliable experimental animal for studies on chemical stimulation in either fresh or sea water. 2. The response of Fundulus to hydrochloric, acetic, propionic, butyric, valeric, and caproic acids was determined in fresh water, while the same acids plus sulfuric and nitric, as well as the sodium salts of the mineral acids, were tested in sea water. 3. Stimulation of Fundulus by hydrochloric acid in fresh water is correlated with the effective hydrogen ion concentration. Stimulation by the n-aliphatic acids in the same environment is correlated with two factors, the effective hydrogen ion concentration and the potential of the non-polar group in the molecule. However, as the number of CH2 groups increases the stimulating effect increases by smaller and smaller amounts, approaching a maximum value. 4. Stimulation of Fundulus by hydrochloric, sulfuric, and nitric acids in sea water is correlated with the forces of primary valence which in turn are correlated with the change in hydrogen ion concentration of the sea water. The n-aliphatic acids increase in stimulating efficiency in sea water as the length of the carbon chain increases, but a limiting value is not reached as soon as in fresh water. 5. Only a slight difference in stimulation by hydrochloric acid is found in sea water and in fresh water. However, there is a significant difference in stimulation by the fatty acids in fresh and in sea water, which is partly explained by the different buffering capacities of the two media. It is to be noted that in the same environment two different fish, Fundulus and Eupomotis, give different results, while the same fish (Fundulus) in two different environments responds similarly to mineral acids but differently to fatty acids. These results illustrate that stimulation is a function of the interaction between environment and receptors, and that each is important in determining the response. 6. Stimulation by sodium chloride, nitrate

  13. Hydrologic and climatologic data, 1966, Salt Lake County, Utah

    USGS Publications Warehouse

    Hely, A.G.; Mower, Reed W.; Horr, C.A.

    1967-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed equally by the State of Utah and the Federal Government in accordance with an agreement between the State Engineer and the Geological Survey. The Utah Water and Power Board, Utah Fish and Game Commission, Salt Lake County Water Conservancy District, Metropolitan Water District of Salt Lake City, Salt Lake County, Kennecott Copper Corporation, Utah Power and Light Company, Salt Lake City Chamber of Commerce, and the Central Utah Water Conservancy District contributed funds to the State Engineer's office toward support of the project.The investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Releases 11 and 12 contain data collected through 1965. This release contains climatologic and surface-water data for the 1966 water year (October 1965 to September 1966) and groundwater data collected during the 1966 calendar year. Similar annual releases will contain data collected during the remainder of the investigation, and interpretive reports will be prepared as the investigation proceeds. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  14. Influences of spawning timing, water temperature, and climatic warming on early life history phenology in western Alaska sockeye salmon

    USGS Publications Warehouse

    Sparks, Morgan M.; Falke, Jeffrey A.; Quinn, Thomas P.; Adkison, Milo D.; Schindler, Daniel E.; Bartz, Krista K.; Young, Daniel B.; Westley, Peter A. H.

    2018-01-01

    We applied an empirical model to predict hatching and emergence timing for 25 western Alaska sockeye salmon (Oncorhynchus nerka) populations in four lake-nursery systems to explore current patterns and potential responses of early life history phenology to warming water temperatures. Given experienced temperature regimes during development, we predicted hatching to occur in as few as 58 d to as many as 260 d depending on spawning timing and temperature. For a focal lake spawning population, our climate-lake temperature model predicted a water temperature increase of 0.7 to 1.4 °C from 2015 to 2099 during the incubation period, which translated to a 16 d to 30 d earlier hatching timing. The most extreme scenarios of warming advanced development by approximately a week earlier than historical minima and thus climatic warming may lead to only modest shifts in phenology during the early life history stage of this population. The marked variation in the predicted timing of hatching and emergence among populations in close proximity on the landscape may serve to buffer this metapopulation from climate change.

  15. Wind-driven Sea-Ice Changes Intensify Subsurface Warm Water Intrusion into the West Antarctic Land Ice Front

    NASA Astrophysics Data System (ADS)

    Li, X.; Gille, S. T.; shang-Ping, X.; Xie, S. P.; Holland, D. M.; Holland, M. M.

    2016-12-01

    The climate change observed around Antarctica in recent decades is characterized by distinct zonally asymmetric patterns, with the strongest changes over West Antarctica. These changes are marked by strong land ice melting and sea ice redistribution around West Antarctica. This is associated with temperature and circulation anomalies in the ocean and atmosphere around the same area. In this study, we comprehensively examine the coherency between these changes using a combination of observations and numerical simulations. Results show that the atmospheric circulation changes distinctly drive the changes in ocean circulation and sea ice distribution. In addition, the atmospheric circulation induced sea ice changes play an important role in lifting the subsurface ocean temperature and salinity around the West Antarctica. During recent decades, the Amundsen Sea Low (ASL) has deepened, especially in austral autumn and winter. This deepened ASL has intensified the offshore wind near the coastal regions of the Ross Sea. Driven by these atmospheric changes, more sea ice has formed near West Antarctica in winter. In contrast, more sea ice melts during the summer. This strengthened sea ice seasonality has been observed and successfully reproduced in the model simulation. The wind-driven sea ice changes causes a surface freshening over the Ross and Amundsen Seas, with a subsurface salinity increase over the Ross Sea. The additional fresh/salt water fluxes thus further change the vertical distribution of salinity and strengthen the stratification in the Ross and Amundsen Seas. As a result of the above ice-ocean process, the mixed-layer depth around the Ross and Amundsen Seas shallows. By weakening the vertical heat transport near the surface layer, and inducing an upward movement of the circumpolar deep water (CDW), this process freshened and cooled the surface layer, while the salinity and temperature in the sub-surface ocean are increased, extending from 150 meters to >700

  16. Ecosystem Warming Affects Vertical Distribution of Leaf Gas Exchange Properties and Water Relations of Spring Wheat

    USDA-ARS?s Scientific Manuscript database

    The vertical distribution of gas exchange and water relations responses to full-season in situ infrared (IR) warming were evaluated for hard red spring wheat (Triticum aestivum L. cv. Yecora Rojo) grown in an open field in a semiarid desert region of the Southwest USA. A Temperature Free-Air Contro...

  17. High pressure study of water-salt systems, phase equilibria, partitioning, thermodynic properties and implication for large icy worlds hydrospheres.

    NASA Astrophysics Data System (ADS)

    Journaux, B.; Brown, J. M.; Abramson, E.; Petitgirard, S.; Pakhomova, A.; Boffa Ballaran, T.; Collings, I.

    2017-12-01

    Water salt systems are predicted to be present in deep hydrosphere inside water-rich planetary bodies, following water/rock chemical interaction during early differentiation stages or later hydrothermal activity. Unfortunately the current knowledge of the thermodynamic and physical properties of aqueous salt mixtures at high pressure and high temperature is still insufficient to allow realistic modeling of the chemical or dynamic of thick planetary hydrospheres. Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability fields, buoyancy and chemistry of all the phases present at these extreme conditions. Effects currently being investigated by our research group also covers ice melting curve depressions that depend on the salt species and incorporation of solutes inside the crystallographic lattice of high pressure ices. Both of these could have very important implication at the planetary scale, enabling thicker/deeper liquid oceans, and allowing chemical transportation through the high pressure ice layer in large icy worlds. We will present the latest results obtained in-situ using diamond anvil cell, coupled with Synchrotron X-Ray diffraction, Raman Spectroscopy and optical observations, allowing to probe the crystallographic structure, equations of state, partitioning and phase boundary of high pressure ice VI and VII in equilibrium with Na-Mg-SO4-Cl ionic species at high pressures (1-10 GPa). The difference in melting behavior depending on the dissolved salt species was characterized, suggesting differences in ionic speciation at liquidus conditions. The solidus P-T conditions were also measured as well as an increase of lattice volumes interpreted as an outcome of ionic incorporation in HP ice during incongruent crystallization. The measured phase diagrams, lattice volumes and important salt incorporations suggest a more complex picture of the

  18. Global warming without global mean precipitation increase?

    PubMed Central

    Salzmann, Marc

    2016-01-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K−1 decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge. PMID:27386558

  19. Global warming without global mean precipitation increase?

    PubMed

    Salzmann, Marc

    2016-06-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K(-1) decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge.

  20. Effect of en-glacial water on ice sheet temperatures in a warming climate - a model approach

    NASA Astrophysics Data System (ADS)

    Phillips, T. P.; Rajaram, H.; Steffen, K.

    2009-12-01

    Each summer, significant amount of melt is generated in the ablation zones of large glaciers and ice sheets. This melt does not run off on the surface of the glacier or ice sheet. In fact a significant fraction enters the glacier and flows through en-glacial and sub-glacial hydrologic systems. Correspondingly, the en-glacial and sub-glacial hydrologic systems are brought to a temperature close to the pressure melting point of ice. The thermal influence of these hydrologic processes is seldom incorporated in heat transfer models for glaciers and ice sheets. In a warming climate, as melt water generation is amplified, en-glacial and sub-glacial hydrologic processes can influence the thermal dynamics of an ice sheet significantly, a feedback which is missed in current models. Although the role of refreezing melt water in the firn of the accumulation zone is often accounted for to explain warmer near-surface temperatures, the role of melt water flow within a glacier is not considered in large ice sheet models. We propose a simple parameterization of the influence of en-glacial and sub-glacial hydrology on the thermal dynamics of ice sheets, in the form of a dual-column model. Our model basically modifies the classical Budd column model for temperature variations in ice sheets by introducing an interaction with an en-glacial column, where the temperature is brought to the melting point during the melt season, and winter-time refreezing is influenced by latent heat effects associated with water retained within the en-glacial and sub-glacial systems. A cryo-hydraulic heat exchange coefficient ς is defined, as a parameter that quantifies this interaction. The parameter ς is related to k/R^2, where R is the characteristic spacing between en-glacial passages. The general behavior of the dual-column model is influenced by the competition between cooling by horizontal advection and warming by cryo-hydraulic exchange. We present a dimensionless parameter to quantify this

  1. Soil moisture mediates alpine life form and community productivity responses to warming.

    PubMed

    Winkler, Daniel E; Chapin, Kenneth J; Kueppers, Lara M

    2016-06-01

    Climate change is expected to alter primary production and community composition in alpine ecosystems, but the direction and magnitude of change is debated. Warmer, wetter growing seasons may increase productivity; however, in the absence of additional precipitation, increased temperatures may decrease soil moisture, thereby diminishing any positive effect of warming. Since plant species show individual responses to environmental change, responses may depend on community composition and vary across life form or functional groups. We warmed an alpine plant community at Niwot Ridge, Colorado continuously for four years to test whether warming increases or decreases productivity of life form groups and the whole community. We provided supplemental water to a subset of plots to alleviate the drying effect of warming. We measured annual above-ground productivity and soil temperature and moisture, from which we calculated soil degree days and adequate soil moisture days. Using an information-theoretic approach, we observed that positive productivity responses to warming at the community level occur only when warming is combined with supplemental watering; otherwise we observed decreased productivity. Watering also increased community productivity in the absence of warming. Forbs accounted for the majority of the productivity at the site and drove the contingent community response to warming, while cushions drove the generally positive response to watering and graminoids muted the community response. Warming advanced snowmelt and increased soil degree days, while watering increased adequate soil moisture days. Heated and watered plots had more adequate soil moisture days than heated plots. Overall, measured changes in soil temperature and moisture in response to treatments were consistent with expected productivity responses. We found that available soil moisture largely determines the responses of this forb-dominated alpine community to simulated climate warming. © 2016

  2. Granular encapsulation of light hydrophobic liquids (LHL) in LHL-salt water systems: Particle induced densification with quartz sand.

    PubMed

    Boglaienko, Daria; Tansel, Berrin; Sukop, Michael C

    2016-02-01

    Addition of granular materials to floating crude oil slicks can be effective in capturing and densifying the floating hydrophobic phase, which settles by gravity. Interaction of light hydrophobic liquids (LHL) with quartz sand was investigated in LHL-salt water systems. The LHLs studied were decane, tetradecane, hexadecane, benzene, toluene, ethylbenzene, m-xylene, and 2-cholorotoluene. Experiments were conducted with fine quartz sand (passing sieve No. 40 with openings 0.425 mm). Each LHL was dyed with few crystals of Sudan IV dye for ease of visual observation. A volume of 0.5 mL of each LHL was added to 100 mL salt water (34 g/L). Addition of one gram of quartz sand to the floating hydrophobic liquid layer resulted in formation of sand-encapsulated globules, which settled due to increased density. All LHLs (except for a few globules of decane) formed globules covered with fine sand particles that were heavy enough to settle by gravity. The encapsulated globules were stable and retained their shape upon settling. Polarity of hydrophobic liquids as the main factor of aggregation with minerals was found to be insufficient to explain LHL aggregation with sand. Contact angle measurements were made by submerging a large quartz crystal with the LHL drop on its surface into salt water. A positive correlation was observed between the wetting angle of LHL and the LHL volume captured (r = 0.75). The dependence of the globule density on globule radius was analyzed in relation to the coverage (%) of globule surface (LHL-salt water interface) by fine quartz particles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A Role for Cytoplasmic Structural Proteins in the Transport of Water and Salts in the Intestine

    DTIC Science & Technology

    1981-12-08

    inic Structural Proteins in the Transport ot Water and Salts in the Intestine by Paula T. Beall., Ph.D. D)epartment of Physiol.ogy Baylor CotleP,(e of...Med(icine 1200 Moursund Houston, ’T’exas 77030 December 8, 1981 Reproduction in whole or in part is permitted for any purpose of the United States...Research N00014-81-K-0167 A Role for Cytoplasmic Structural Proteins in the .. :..... . .-. ..... TiTans~por’t of Wa• and Salts in ’tIeIntestine

  4. Ecosystem-groundwater interactions under changing land uses: Linking water, salts, and carbon across central Argentina

    NASA Astrophysics Data System (ADS)

    Jobbagy, E. G.; Nosetto, M. D.; Santoni, C. S.; Jackson, R. B.

    2007-05-01

    Although most ecosystems display a one-way connection with groundwater based on the regulation of deep water drainage (recharge), this link can become reciprocal when the saturated zone is shallow and plants take up groundwater (discharge). In what context is the reciprocal link most likely? How is it affected by land use changes? Has it consequences on salt and carbon cycling? We examine these questions across a precipitation gradient in the Pampas and Espinal of Argentina focusing on three vegetation change situations (mean annual rainfall): afforestation of humid (900-1300 mm) and subhumid grassland (700-900 mm/yr of rainfall), annual cultivation of subhumid grasslands (700-800 mm/yr), and annual cultivation of semiarid forests (500-700 mm). Humid and subhumid grasslands have shallow (< 5 m deep) groundwater tables that are poorly consumed by grasses but highly used by planted trees, as evidenced by satellite canopy temperatures, soil moisture and water table level records, and sapflow measurements. Groundwater contributions enhance carbon uptake in plantations compared to grasslands as suggested by aboveground biomass measurements and satellite vegetation indexes from sites with and without access to groundwater. Where rainfall is <1100 mm, grassland afforestation switches water fluxes to groundwater from positive (net recharge) to negative (net discharge) causing a salt accumulation process in soils and groundwater that is ultimately limited by the tolerance to salinity of tree species. Cultivation with corn and soybean can lead to groundwater consumption in the driest belt of subhumid grassland. Up to five-fold yield increases in lowlands vs. uplands during the driest years indicate a dramatic impact of groundwater use on carbon uptake and groundwater salinization suggests a recharge-to- discharge switch. In dry forests groundwater is not accessible (> 15 m deep) and recharge under natural conditions is null. The establishment of crops, however, triggers the

  5. Studies of Quaternary saline lakes-III. Mineral, chemical, and isotopic evidence of salt solution and crystallization processes in Owens Lake, California, 1969-1971

    USGS Publications Warehouse

    Smith, G.I.; Friedman, I.; McLaughlin, R.J.

    1987-01-01

    As a consequence of the 1969-1970 flooding of normally dry Owens Lake, a 2.4-m-deep lake formed and 20% of the 2-m-thick salt bed dissolved in it. Its desiccation began August 1969, and salts started crystallizing September 1970, ending August 1971. Mineralogic, brine-composition, and stable-isotope data plus field observations showed that while the evolving brine composition established the general crystallization timetable and range of primary and secondary mineral assemblages, it was the daily, monthly, and seasonal temperature changes that controlled the details of timing and mineralogy during this depositional process. Deuterium analyses of lake brine, interstitial brine, and hydrated saline phases helped confirm the sequence of mineral crystallizations and transformations, and they documented the sources and temperatures of waters involved in the reactions. Salts first crystallized as floating rafts on the lake surface. Natron and mirabilite, salts whose solubilities decrease greatly with lowering temperatures, crystallized late at night in winter, when surface-water temperatures reached their minima; trona, nahcolite, burkeite, and halite, salts with solubilities less sensitive to temperature, crystallized during the afternoon in summer, when surface salinities reached their maxima. However, different temperatures were generally associated with crystallization (at the surface) and accumulation (on the lake floor) because short-term temperature changes were transmitted to surface and bottom waters at different rates. Consequently, even when solubilities were exceeded at the surface, salts were preserved or not as a function of bottom-water temperatures. Halite, a nearly temperature-insensitive salt, was always preserved. Monitoring the lake-brine chemistry and mineralogy of the accumulating salts shows: (1) An estimated 0.9 ?? 106 tons of CO2 was released to the atmosphere or consumed by the lake's biomass prior to most salt crystallization. (2) After

  6. Chemical quality of ground water in Salt Lake Valley, Utah, 1969-85

    USGS Publications Warehouse

    Waddell, K.M.; Seiler, R.L.; Solomon, D.K.

    1986-01-01

    During 1979-84, 35 wells completed in the principal aquifer in the Salt Lake Valley, Utah, that had been sampled during 1962-67 were resampled to determine if water quality changes had occurred. The dissolved solids concentration of the water from 13 of the wells has increased by more than 10% since 1962-67. Much of the ground water between the mouth of Bingham Canyon and the Jordan River about 10 mi to the east has been contaminated by seepage from reservoirs and evaporation ponds associated with mining activities. Many domestic and irrigation wells yield water with concentrations of dissolved solids that exceed 2,000 mg/L. A reservoir in the mouth of Bingham Canyon contains acidic waters with a pH of 3 to 4 and concentrations of dissolved solids ranging from 43,000 to 68,000 mg/L. Seepage from evaporation ponds, which are about 4.5 mi east of the reservoir, also is acidic and contains similar concentrations of dissolved solids. East of the reservoir, where a steep hydraulic gradient exists along the mountain front, the velocities of contaminant movement were estimated to range from about 680-1,000 ft/yr. Groundwater underlying part of the community of South Salt Lake near the Jordan River has been contaminated by leachate from uranium-mill tailings. The major effect of the leachate from the tailings of the Vitro Chemical Co. on the shallow unconfined aquifer downgradient from the tailings was the contribution of measurable quantities of dissolved solids, chloride, sulfate, iron, and uranium. The concentration of dissolved solids in uncontaminated water was 1,650 mg/L, whereas downgradient from the tailings area, the concentrations ranged from 2,320-21,000 mg/L. The maximum volume of contaminated water was estimated to be 7,800 acre-ft. The major effect of the leachate from the Vitro tailings on the confined aquifer was the contribution of measurable quantities of dissolved solids, chloride, sulfate, and iron. The concentration of dissolved solids upgradient from

  7. The 2-D Ion Chromatography Development and Application: Determination of Sulfate in Formation Water at Pre-Salt Region

    NASA Astrophysics Data System (ADS)

    Tonietto, G. B.; Godoy, J. M.; Almeida, A. C.; Mendes, D.; Soluri, D.; Leite, R. S.; Chalom, M. Y.

    2015-12-01

    Formation water is the naturally-occurring water which is contained within the geological formation itself. The quantity and quality of the formation water can both be problematic. Over time, the water volume should decrease as the gas volumes increase. Formation water has been found to contain high levels of Cl, As, Fe, Ba, Mn, PAHs and may even contain naturally occurring radioactive materials. Chlorides in some cases have been found to be in excess of four-five times the level of concentrations found in the ocean. Within the management of well operation, there is sulfate between the analytes of greatest importance due to the potential for hydrogen sulphide formation and consequent corrosion of pipelines. As the concentration of sulfate in these waters can be less than n times that of chloride, a quantitative determination, using the technique of ion chromatography, constitutes an analytical challenge. This work aimed to develop and validate a method for the determination of sulphate ions in hyper-saline waters coming from the oil wells of the pre-salt, using 2D IC. In 2D IC the first column can be understood as a separating column, in which the species with retention times outside a preset range are discarded, while those belonging to this range are retained in a pre-concentrator column to further injecting a second column, the second dimension in which occurs the separation and quantification of the analytes of interest. As the chloride ions have a retention time lower than that of sulfate, a method was developed a for determining sulfate in very low range (mg L-1) by 2D IC, applicable to hypersaline waters, wherein the first dimension is used to the elimination of the matrix, ie, chloride ions, and the second dimension utilized in determining sulfate. For sulphate in a concentration range from 1.00 mg L-1 was obtained an accuracy of 1.0%. The accuracy of the method was tested by the standard addition method different samples of formation water in the pre-salt

  8. Quality and sources of ground water used for public supply in Salt Lake Valley, Salt Lake County, Utah, 2001

    USGS Publications Warehouse

    Thiros, Susan A.; Manning, Andrew H.

    2004-01-01

    Ground water supplies about one-third of the water used by the public in Salt Lake Valley, Utah. The occurrence and distribution of natural and anthropogenic compounds in ground water used for public supply in the valley were evaluated. Water samples were collected from 31 public-supply wells in 2001 and analyzed for major ions, trace elements, radon, nutrients, dissolved organic carbon, methylene blue active substances, pesticides, and volatile organic compounds. The samples also were analyzed for the stable isotopes of water (oxygen-18 and deuterium), tritium, chlorofluorocarbons, and dissolved gases to determine recharge sources and ground-water age.Dissolved-solids concentration ranged from 157 to 1,280 milligrams per liter (mg/L) in water from the 31 public-supply wells. Comparison of dissolved-solids concentration of water sampled from the principal aquifer during 1988-92 and 1998-2002 shows a reduction in the area where water with less than 500 mg/L occurs. Nitrate concentration in water sampled from 12 of the 31 public-supply wells was higher than an estimated background level of 2 mg/L, indicating a possible human influence. At least one pesticide or pesticide degradation product was detected at a concentration much lower than drinking-water standards in water from 13 of the 31 wells sampled. Chloroform was the most frequently detected volatile organic compound (17 of 31 samples). Its widespread occurrence in deeper ground water is likely a result of the recharge of chlorinated public-supply water used to irrigate lawns and gardens in residential areas of Salt Lake Valley.Environmental tracers were used to determine the sources of recharge to the principal aquifer used for public supply in the valley. Oxygen-18 values and recharge temperatures computed from dissolved noble gases in the ground water were used to differentiate between mountain and valley recharge. Maximum recharge temperatures in the eastern part of the valley generally are below the range

  9. Deep Arctic Ocean warming during the last glacial cycle

    USGS Publications Warehouse

    Cronin, T. M.; Dwyer, G.S.; Farmer, J.; Bauch, H.A.; Spielhagen, R.F.; Jakobsson, M.; Nilsson, J.; Briggs, W.M.; Stepanova, A.

    2012-01-01

    In the Arctic Ocean, the cold and relatively fresh water beneath the sea ice is separated from the underlying warmer and saltier Atlantic Layer by a halocline. Ongoing sea ice loss and warming in the Arctic Ocean have demonstrated the instability of the halocline, with implications for further sea ice loss. The stability of the halocline through past climate variations is unclear. Here we estimate intermediate water temperatures over the past 50,000 years from the Mg/Ca and Sr/Ca values of ostracods from 31 Arctic sediment cores. From about 50 to 11 kyr ago, the central Arctic Basin from 1,000 to 2,500 m was occupied by a water mass we call Glacial Arctic Intermediate Water. This water mass was 1–2 °C warmer than modern Arctic Intermediate Water, with temperatures peaking during or just before millennial-scale Heinrich cold events and the Younger Dryas cold interval. We use numerical modelling to show that the intermediate depth warming could result from the expected decrease in the flux of fresh water to the Arctic Ocean during glacial conditions, which would cause the halocline to deepen and push the warm Atlantic Layer into intermediate depths. Although not modelled, the reduced formation of cold, deep waters due to the exposure of the Arctic continental shelf could also contribute to the intermediate depth warming.

  10. Effect of salts on the solubility of ionic liquids in water: experimental and electrolyte Perturbed-Chain Statistical Associating Fluid Theory†

    PubMed Central

    Mohammad, Sultan; Schleinitz, Miko; Coutinhoa, João A. P.; Freire, Mara G.

    2016-01-01

    Due to scarce available experimental data, as well as due to the absence of predictive models, the influence of salts on the solubility of ionic liquids (ILs) in water is still poorly understood. To this end, this work addresses the solubility of the IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4C1im][NTf2]), at 298.15 K and 0.1 MPa, in aqueous salt solutions (from 0.1 to 1.5 mol kg−1). At salt molalities higher than 0.2 mol kg−1, all salts caused salting-out of [C4C1im][NTf2] from aqueous solution with their strength decreasing in the following order: Al2(SO4)3 > ZnSO4 > K3C6H5O7 > KNaC4H4O6 > K3PO4 > Mg(CH3CO2)2 > K2HPO4 > MgSO4 > KH2PO4 > KCH3CO2. Some of these salts lead however to the salting-in of [C4C1im][NTf2] in aqueous medium at salt molalities lower than 0.20 mol kg−1. To attempt the development of a model able to describe the salt effects, comprising both the salting-in and salting-out phenomena observed, the electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT) was applied using ion-specific parameters. The gathered experimental data was modelled using ePC-SAFT parameters complemented by fitting a single binary parameter between K+ and the IL-ions to the IL solubility in K3PO4 aqueous solutions. Based on this approach, the description of anion-specific salting-out effects of the remaining potassium salts was found to be in good agreement with experimental data. Remarkably, ePC-SAFT is even able to predict the salting-in effect induced by K2HPO4, based on the single K+/IL-ions binary parameter which was fitted to an exclusively salting-out effect promoted by K3PO4. Finally, ePC-SAFT was applied to predict the influence of other sodium salts on the [C4C1im][NTf2] solubility in water, with experimental data taken from literature, leading to an excellent description of the liquid–liquid phase behaviour. PMID:26575280

  11. Salt fluoridation and oral health.

    PubMed

    Marthaler, Thomas M

    2013-11-01

    The aim of this paper is to make known the potential of fluoridated salt in community oral health programs, particularly in South Eastern Europe. Since 1922, the addition of iodine to salt has been successful in Switzerland. Goiter is virtually extinct. By 1945, the caries-protective effect of fluorides was well established. Based on the success of water fluoridation, a gynecologist started adding of fluoride to salt. The sale of fluoridated salt began in 1956 in the Swiss Canton of Zurich, and several other cantons followed suit. Studies initiated in the early seventies showed that fluoride, when added to salt, inhibits dental caries. The addition of fluoride to salt for human consumption was officially authorized in 1980-82. In Switzerland 85% of domestic salt consumed is fluoridated and 67% in Germany. Salt fluoridation schemes are reaching more than one hundred million in Mexico, Colombia, Peru and Cuba. The cost of salt fluoridation is very low, within 0.02 and 0.05 € per year and capita. Children and adults of the low socio-economic strata tend to have substantially more untreated caries than higher strata. Salt fluoridation is by far the cheapest method for improving oral health. Salt fluoridation has cariostatic potential like water fluoridation (caries reductions up to 50%). In Europe, meaningful percentages of users have been attained only in Germany (67%) and Switzerland (85%). In Latin America, there are more than 100 million users, and several countries have arrived at coverage of 90 to 99%. Salt fluoridation is by far the cheapest method of caries prevention, and billions of people throughout the world could benefit from this method. Copyright © 2013 by Academy of Sciences and Arts of Bosnia and Herzegovina.

  12. Water and salt dynamics and the hydraulic conductivity feedback: irreversible soil degradation and reclamation opportunities

    NASA Astrophysics Data System (ADS)

    Mau, Yair; Porporato, Amilcare

    2017-04-01

    We present a model for the dynamics of soil water, salt concentration and exchangeable sodium fraction in the root zone, driven by irrigation water of various qualities and stochastic rainfall. The main nonlinear feedback is the decrease in hydraulic conductivity for low salinity and/or high sodicity levels. The three variables have quite disparate characteristic time scales: soil water can vary two or three orders of magnitude faster than the exchangeable sodium fraction. In certain limiting cases in which the input of water is constant, the system can be simplified by eliminating the equation for soil water, allowing a full description of the dynamics in the two-dimensional salinity-sodicity phase space. We estimate soil structure degradation time scales for high sodium-adsorption-ratio irrigation water, and delineate the regions in the salinity-sodicity phase space where sodium-induced degradation is effectively irreversible. This apparent irreversibility is the result of relatively long evolution time scales with respect to human activity. When we take into account stochastic rainfall—and the accompanying wetting and drying cycles—the system produces a myriad of statistical steady states. This means that equal environmental conditions can produce different outcomes, accessible to each other only by large interventions, such as temporary changes in the quality of irrigation water or one-time amendment use. Our characterization of the dynamics of water and salt in the root zone, and how it depends on environmental parameters, offers us opportunities to control and reclaim degraded states making optimal resource use. We show an example of sodic soil reclamation through calcium-based fertigation, with minimal time (and applied water) expenditure.

  13. [Influence of removing iodized salt on children's goiter status in areas with high iodine in drinking water].

    PubMed

    Lu, Shengmin; Xu, Dong; Wang, Yuchun; Du, Yonggui; Jia, Lihui; Liang, Suoli

    2015-05-01

    To explore the changes of goiter prevalence of children living in areas with high iodine in drinking water after removing iodized salt from their diet. Three towns with median water iodine of 150 - 300 μg/L were selected randomly in Hengshui city of Hebei province of China. A total of 452 and 459 children in the 3 towns were randomly selected to measure thyroid volume by ultrasound before and after removing iodized salt, respectively. Their goiter status was judged using the criteria of age-specific thyroid volume recommended by the WHO. After removing iodized salt, the overall goiter prevalence in the three towns significantly decreased from 24.56% (111/452) to 5.88% (27/459) (P < 0.01). The goiter prevalence in 8, 9 and 10 year-old children decreased respectively from 33.70% (31/92), 23.32% (45/193) and 20.96% (35/167) to 6.10% (10/164), 5.52% (9/163) and 6.06% (8/132). The goiter prevalence in boys and girls decreased from 27.05% (66/244) and 21.63% (45/208 ) to 6.66% (15/226 ) and 5.15% (12/233), respectively. The decreases in children's goiter prevalence across gender and age group were all significant. Children's goiter prevalence decreased significantly after removing iodized salt from their diet for about one and half years in the HIA in Hebei province.

  14. Mechanism of oxidation of 3-hydroxy-2,7-naphthalenedisulfonic acid disodium salt with oxygen in subcritical water.

    PubMed

    Imbierowicz, Mirosław

    2017-06-01

    The article presents the results of studies on the oxidation mechanism of 3-hydroxy-2,7-naphthalenedisulfonic acid disodium salt (R-salt) with oxygen in subcritical water. To this aim, a series of experiments were carried out which showed that at a temperature of 413 K and pH > 9 the oxidation reaction of a substrate with oxygen was relatively quick and after approximately 40 min the R-salt oxidation yield exceeded 95%. In an acidic medium (pH < 7), the rate of R-salt oxidation is small. In order to identify the mechanism of R-salt oxidation, experiments were carried out at 413-569 K in solutions with pH = 10.0 and at partial oxygen pressure p O2  = 1.73 MPa. As a result of these experiments, a stable oxidation product was isolated from the reaction mixture and subjected to spectroscopic analysis. The analysis of H NMR of this product proved that a stable intermediate product of R-salt oxidation was 4-sulfophthalic acid sodium salt. The results of the experiments have shown that destructive oxidation of R-salt can easily be obtained at a temperature of 413 K, but satisfactory reduction of TOC in wastewater containing this substrate requires the use of very high temperature: at 569 K only 60% reduction of TOC was achieved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effects of sea-level rise on salt water intrusion near a coastal well field in southeastern Florida

    USGS Publications Warehouse

    Langevin, Christian D.; Zygnerski, Michael

    2013-01-01

    A variable-density groundwater flow and dispersive solute transport model was developed for the shallow coastal aquifer system near a municipal supply well field in southeastern Florida. The model was calibrated for a 105-year period (1900 to 2005). An analysis with the model suggests that well-field withdrawals were the dominant cause of salt water intrusion near the well field, and that historical sea-level rise, which is similar to lower-bound projections of future sea-level rise, exacerbated the extent of salt water intrusion. Average 2005 hydrologic conditions were used for 100-year sensitivity simulations aimed at quantifying the effect of projected rises in sea level on fresh coastal groundwater resources near the well field. Use of average 2005 hydrologic conditions and a constant sea level result in total dissolved solids (TDS) concentration of the well field exceeding drinking water standards after 70 years. When sea-level rise is included in the simulations, drinking water standards are exceeded 10 to 21 years earlier, depending on the specified rate of sea-level rise.

  16. Mechanisms of water-salt metabolism disturbances in dogs subjected to six month hypokinesia

    NASA Technical Reports Server (NTRS)

    Korolkov, V. I.; Kovalenko, Y. A.; Krotov, V. P.; Ilyushko, N. A.; Kondratyeva, V. A.; Kondratyev, Y. I.

    1980-01-01

    Water-salt metabolism in dogs during prolonged restricted motor activity (hypokinesia) was investigated. It was found that hydration occurred and fluid was redistributed between the extra- and intra-cellular sectors. Also, electrolyte excretion rose, and magnetism and calcium metabolism changed significantly. It is concluded that the forces caused by muscle strain proper (which was decreased under conditions of hypokinesia) influence the state of bone metabolism.

  17. Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, U.S.A.

    USGS Publications Warehouse

    Lyons, J.; Stewart, J.S.; Mitro, M.

    2010-01-01

    Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56.0-93.5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1?? C and water 0.8?? C), moderate warming (air 3?? C and water 2.4?? C) and major warming (air 5?? C and water 4?? C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin. ?? 2010 The Authors. Journal of Fish Biology ?? 2010 The Fisheries Society of the British Isles.

  18. Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, U.S.A.

    USGS Publications Warehouse

    Stewart, Jana S.; Lyons, John D.; Matt Mitro,

    2010-01-01

    Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56·0–93·5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1° C and water 0·8° C), moderate warming (air 3° C and water 2·4° C) and major warming (air 5° C and water 4° C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin.

  19. Hydrologic and climatologic data, 1968, Salt Lake County, Utah

    USGS Publications Warehouse

    1969-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed chiefly by equal contributions of the State of Utah and the Federal Government in accordance with an agreement between the Division of Water Rights, Utah Department of Natural Resources, and the Geological Survey. The investigation was financed during the period covered by this report by the following organizations: Utah Division of Water Rights (formerly State Engineer), Utah Division of Water Resources (formerly Water and Power Board), Salt Lake County, Salt Lake County Water Conservancy District, Central Utah Water Conservancy District, Metropolitan Water District of Salt Lake City, City of Murray, Granger-Hunter Improvement District, Taylorsville-Bennion Improvement District, Holladay Water Company, Magna Water and Sewer District, U.S. Bureau of Reclamation, U.S. Geological SurveyThe investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Releases 11-13 and 15 contain data collected through 1967. This release contains climatologic and surface-water data for the 1968 water year (October 1967 to September 1968) and ground-water data collected during the 1968 calendar year. This is the final annual release of basic data for this investigation. Interpretive reports summarizing the results are in preparation. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  20. Ouabain-insensitive salt and water movements in duck red cells. I. Kinetics of cation transport under hypertonic conditions

    PubMed Central

    Schmidt III, WF; McManus, TJ

    1977-01-01

    Duck red cells in hypertonic media experience rapid osmotic shrinkage followed by gradual reswelling back toward their original volume. This uptake of salt and water is self limiting and demands a specific ionic composition of the external solution. Although ouabain (10(-4)M) alters the pattern of cation accumulation from predominantly potassium to sodium, it does not affect the rate of the reaction, or the total amount of salt or water taken up. To study the response without the complications of active Na-K transport, ouabain was added to most incubations. All water accumulated by the cells can be accounted for by net salt uptake. Specific external cation requirements for reswelling include: sufficient sodium (more than 23 mM), and elevated potassium (more than 7 mM). In the absence of external potassium cells lose potassium without gaining sodium and continue to shrink instead of reswelling. Adding rubidium to the potassium- free solution promotes an even greater loss of cell potassium, yet causes swelling due to a net uptake of sodium and rubidium followed by chloride. The diuretic furosemide (10(-3)M) inhibits net sodium uptake which depends on potassium (or rubidium), as well as inhibits net sodium uptake which depends on sodium. As a result, cell volume is stabilized in the presence of this drug by inhibition of shrinkage, at low, and of swelling at high external potassium. The response has a high apparent energy of activation (15-20 kcal/mol). We propose that net salt and water movements in hypertonic solutions containing ouabain are mediated by direct coupling or cis-interaction, between sodium and potassium so that the uphill movement of one is driven by the downhill movement of the other in the same direction. PMID:894251

  1. A thermodynamic description for water, hydrogen fluoride and hydrogen dissolutions in cryolite-base molten salts.

    PubMed

    Wang, Kun; Chartrand, Patrice

    2018-06-15

    This paper presents a quantitative thermodynamic description for water, hydrogen fluoride and hydrogen dissolutions in cryolite-base molten salts, which is of technological importance to the Hall-Héroult electrolytic aluminum extraction cell. The Modified Quasichemical Model in the Quadruplet Approximation (MQMQA), as used to treat a large variety of molten salt systems, was adopted to thermodynamically describe the present liquid phase; all solid solutions were modeled using the Compound Energy Formalism (CEF); the gas phase was thermodynamically treated as an ideal mixture of all possible species. The model parameters were mainly obtained by critical evaluations and optimizations of thermodynamic and phase equilibrium data available from relative experimental measurements and theoretical predictions (first-principles calculations and empirical estimations) for the lower-order subsystems. These optimized model parameters were thereafter merged within the Kohler/Toop interpolation scheme, facilitating the prediction of gas solubility (H2O, HF and H2) in multicomponent cryolite-base molten salts using the FactSage thermochemical software. Several interesting diagrams were finally obtained in order to provide useful information for the industrial partners dedicated to the Hall-Héroult electrolytic aluminum production or other molten-salt technologies (the purification process and electroslag refining).

  2. Pearson’s correlations between moisture content, drip loss, expressible fluid and salt-induced water gain of broiler pectoralis major muscle

    USDA-ARS?s Scientific Manuscript database

    Moisture content, drip loss, expressible fluid, and % salt-induced water gain are widely used to estimate water states and water-holding capacity of raw meat. However, the relationships between these four measurements of broiler pectoralis (p.) major muscle describe are not well described. The objec...

  3. Leaf conductance and carbon gain under salt-stressed conditions

    NASA Astrophysics Data System (ADS)

    Volpe, V.; Manzoni, S.; Marani, M.; Katul, G.

    2011-12-01

    Exposure of plants to salt stress is often accompanied by reductions in leaf photosynthesis and in stomatal and mesophyll conductances. To separate the effects of salt stress on these quantities, a model based on the hypothesis that carbon gain is maximized subject to a water loss cost is proposed. The optimization problem of adjusting stomatal aperture for maximizing carbon gain at a given water loss is solved for both a non-linear and a linear biochemical demand function. A key novel theoretical outcome of the optimality hypothesis is an explicit relationship between the stomatal and mesophyll conductances that can be evaluated against published measurements. The approaches here successfully describe gas-exchange measurements reported for olive trees (Olea europea L.) and spinach (Spinacia oleraceaL.) in fresh water and in salt-stressed conditions. Salt stress affected both stomatal and mesophyll conductances and photosynthetic efficiency of both species. The fresh water/salt water comparisons show that the photosynthetic capacity is directly reduced by 30%-40%, indicating that reductions in photosynthetic rates under increased salt stress are not due only to a limitation of CO2diffusion. An increase in salt stress causes an increase in the cost of water parameter (or marginal water use efficiency) exceeding 100%, analogous in magnitude to findings from extreme drought stress studies. The proposed leaf-level approach can be incorporated into physically based models of the soil-plant-atmosphere system to assess how saline conditions and elevated atmospheric CO2 jointly impact transpiration and photosynthesis.

  4. Activity and conformation of lysozyme in molecular solvents, protic ionic liquids (PILs) and salt-water systems.

    PubMed

    Wijaya, Emmy C; Separovic, Frances; Drummond, Calum J; Greaves, Tamar L

    2016-09-21

    Improving protein stabilisation is important for the further development of many applications in the pharmaceutical, specialty chemical, consumer product and agricultural sectors. However, protein stabilization is highly dependent on the solvent environment and, hence, it is very complex to tailor protein-solvent combinations for stable protein maintenance. Understanding solvent features that govern protein stabilization will enable selection or design of suitable media with favourable solution environments to retain protein native conformation. In this work the structural conformation and activity of lysozyme in 29 solvent systems were investigated to determine the role of various solvent features on the stability of the enzyme. The solvent systems consisted of 19 low molecular weight polar solvents and 4 protic ionic liquids (PILs), both at different water content levels, and 6 aqueous salt solutions. Small angle X-ray scattering, Fourier transform infrared spectroscopy and UV-vis spectroscopy were used to investigate the tertiary and secondary structure of lysozyme along with the corresponding activity in various solvation systems. At low non-aqueous solvent concentrations (high water content), the presence of solvents and salts generally maintained lysozyme in its native structure and enhanced its activity. Due to the presence of a net surface charge on lysozyme, electrostatic interactions in PIL-water systems and salt solutions enhanced lysozyme activity more than the specific hydrogen-bond interactions present in non-ionic molecular solvents. At higher solvent concentrations (lower water content), solvents with a propensity to exhibit the solvophobic effect, analogous to the hydrophobic effect in water, retained lysozyme native conformation and activity. This solvophobic effect was observed particularly for solvents which contained hydroxyl moieties. Preferential solvophobic effects along with bulky chemical structures were postulated to result in less

  5. Isotopic compositions and sources of nitrate in ground water from western Salt River Valley, Arizona

    USGS Publications Warehouse

    Gellenbeck, D.J.

    1994-01-01

    Isotopic and chemical compositions of ground water from western Salt River Valley near Phoenix, Arizona, were used to develop identification tech- niques for sources of nitrate in ground water. Four possible sources of nitrate were studied: dairies and feedlots, sewage-treatment plants, agricultural activities, and natural source. End members that represent these sources were analyzed for a variety of chemical and isotopic constituents; contents of the end-member and the ground water were compared to identify nitrate from these sources. Nitrate from dairies and feedlots was identified by delta 15N values higher than +9.0 per mil. Nitrate from sewage treatment plants was identified by some chemical constituents and values of delta 15N, delta 34S, delta 7Li, and delta 11B that were lighter than the values determined for ground water not affected by sewage-treatment plants. Nitrate from agricultural activities was identified by delta 15N, 3H, and delta 34S compositions. Natural nitrate derived from decomposing plants and accumulated by biological fixation was identified by delta 15N values that range between +2 and +8 per mil. In addition to identifying nitrate sources, some chemical and isotopic charabteristics of ground water were determined on the basis of data collected during this study. Concentrations of major ions, lithium, and boron and delta 7Li, delta 11B, 3H, delta D, and delta 18O data identify ground water in different geographic regions in the study area. These differences probably are related to different sources of ground water, geochemical processes, or geologic deposits. The Luke salt body and a geothermal anomaly alter the chemical and isotopic content of some ground water.

  6. Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors.

    PubMed

    Lei, Weiwei; Portehault, David; Dimova, Rumiana; Antonietti, Markus

    2011-05-11

    A simple, high yield, chemical process is developed to fabricate layered h-BN nanosheets and BCNO nanoparticles with a diameter of ca. 5 nm at 700 °C. The use of the eutectic LiCl/KCl salt melt medium enhances the kinetics of the reaction between sodium borohydride and urea or guanidine as well as the dispersion of the nanoparticles in water. The carbon content can be tuned from 0 to 50 mol % by adjusting the reactant ratio, thus providing precise control of the light emission of the particles in the range 440-528 nm while reaching a quantum yield of 26%. Because of their green synthesis, low toxicity, small size, and stability against aggregation in water, the as-obtained photoluminescent BCNO nanoparticles show promise for diagnostics and optoelectronics. © 2011 American Chemical Society

  7. Carbon dioxide flux and net primary production of a boreal treed bog: Responses to warming and water-table-lowering simulations of climate change

    NASA Astrophysics Data System (ADS)

    Munir, T. M.; Perkins, M.; Kaing, E.; Strack, M.

    2015-02-01

    Midlatitude treed bogs represent significant carbon (C) stocks and are highly sensitive to global climate change. In a dry continental treed bog, we compared three sites: control, recent (1-3 years; experimental) and older drained (10-13 years), with water levels at 38, 74 and 120 cm below the surface, respectively. At each site we measured carbon dioxide (CO2) fluxes and estimated tree root respiration (Rr; across hummock-hollow microtopography of the forest floor) and net primary production (NPP) of trees during the growing seasons (May to October) of 2011-2013. The CO2-C balance was calculated by adding the net CO2 exchange of the forest floor (NEff-Rr) to the NPP of the trees. From cooler and wetter 2011 to the driest and the warmest 2013, the control site was a CO2-C sink of 92, 70 and 76 g m-2, the experimental site was a CO2-C source of 14, 57 and 135 g m-2, and the drained site was a progressively smaller source of 26, 23 and 13 g CO2-C m-2. The short-term drainage at the experimental site resulted in small changes in vegetation coverage and large net CO2 emissions at the microforms. In contrast, the longer-term drainage and deeper water level at the drained site resulted in the replacement of mosses with vascular plants (shrubs) on the hummocks and lichen in the hollows leading to the highest CO2 uptake at the drained hummocks and significant losses in the hollows. The tree NPP (including above- and below-ground growth and litter fall) in 2011 and 2012 was significantly higher at the drained site (92 and 83 g C m-2) than at the experimental (58 and 55 g C m-2) and control (52 and 46 g C m-2) sites. We also quantified the impact of climatic warming at all water table treatments by equipping additional plots with open-top chambers (OTCs) that caused a passive warming on average of ~ 1 °C and differential air warming of ~ 6 °C at midday full sun over the study years. Warming significantly enhanced shrub growth and the CO2 sink function of the drained

  8. Hydrologic and climatologic data, 1967, Salt Lake County, Utah

    USGS Publications Warehouse

    Hely, A.G.; Mower, Reed W.; Horr, C.A.

    1968-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed chiefly by equal contributions of the State of Utah and the Federal Government in accordance with an agreement between the Division of Water Rights, Utah Department of Natural Resources, and the Geological Survey. The investigation was financed during the period covered by this report by the following organizations: Utah Division of Water Rights (formerly State Engineer), Utah Division of Water Resources (formerly Water and Power Board), Salt Lake County, Salt Lake County Water Conservancy District, Central Utah Water Conservancy District, Metropolitan Water District of Salt Lake City, City of Murray, Granger-Hunter Improvement District, Taylorsville-Bennion Improvement District, Holladay Water Company, Magna Water and Sewer District, U.S. Bureau of Reclamation, U.S. Geological Survey.The investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Releases 11-13 contain data collected through 1966. This release contains climatologic and surfacewater data for the 1967 water year (October 1966 to September 1967) and ground-water data collected during the 1967 calendar year. A similar annual release will contain data collected during the remainder of the investigation, and interpretive reports will be prepared as the investigation proceeds. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  9. Postmortem aging and freezing and thawing storage enhance ability of early deboned chicken pectoralis major muscle to hold added salt water.

    PubMed

    Zhuang, H; Savage, E M

    2012-05-01

    The effects of postdeboning aging and frozen storage on water-holding capacity (WHC) of chicken breast pectoralis major muscle were investigated. Broiler breast muscle was removed from carcasses either early postmortem (2 h) or later postmortem (24 h). Treatments included: no postdeboning aging; 1-d postdeboning aging at 2°C, 7-d postdeboning aging (2-h deboned meat only), and 6-d storage at -20°C plus 1-d thawing at 2°C (freezing and thawing treatment, 2-h deboned meat only). The WHC was determined by cooking loss, drip loss, a filter paper press method (results were presented as expressible fluid), and a salt-induced swelling and centrifugation method (results were presented as percentage of salt-induced water gain). There were no differences for WHC estimated by cooking loss and expressible fluid between the treatments. Only the freezing and thawing treatment resulted in a significant increase in drip loss. The average percentage of salt-induced water gains by the 24-h deboned samples, postdeboning aged 2 h samples, and frozen 2 h sample, which did not differ from each other, were significantly higher than that by the 2-h deboned sample. These results indicate that regardless of method (carcass aging vs. postdeboning aging) and time (aging for 1 d vs. for 7 d), postmortem aging more than 1 d does not affect WHC of the early deboned samples measured by dripping, cooking, and pressing. However, postmortem carcass aging, postdeboning aging, and freezing and thawing storage can significantly enhance the ability of chicken breast meat to hold added salt water or WHC measured by the salt-induced swelling and centrifuge method.

  10. Radiative Cooling of Warm Molecular Gas

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Kaufman, Michael J.

    1993-01-01

    We consider the radiative cooling of warm (T >= 100 K), fully molecular astrophysical gas by rotational and vibrational transitions of the molecules H2O, CO, and H2. Using an escape probability method to solve for the molecular level populations, we have obtained the cooling rate for each molecule as a function of temperature, density, and an optical depth parameter. A four-parameter expression proves useful in fitting the run of cooling rate with density for any fixed values of the temperature and optical depth parameter. We identify the various cooling mechanisms which are dominant in different regions of the astrophysically relevant parameter space. Given the assumption that water is very abundant in warm regions of the interstellar medium, H2O rotational transitions are found to dominate the cooling of warm interstellar gas over a wide portion of the parameter space considered. While chemical models for the interstellar medium make the strong prediction that water will be produced copiously at temperatures above a few hundred degrees, our assumption of a high water abundance has yet to be tested observationally. The Infrared Space Observatory and the Submillimeter Wave Astronomy Satellite will prove ideal instruments for testing whether water is indeed an important coolant of interstellar and circumstellar gas.

  11. The Transport of Salt and Water across Isolated Rat Ileum

    PubMed Central

    Clarkson, T. W.

    1967-01-01

    The flows of sodium, potassium, and chloride under electrical and chemical gradients and of salt and water in the presence of osmotic pressure gradients are described by phenomenological equations based on the thermodynamics of irreversible processes. The aim was to give the simplest possible description, that is to postulate the least number of active transport processes and the least number of separate pathways across the intestine. On this basis, the results were consistent with the following picture of the intestine: Two channels exist across this tissue, one allowing only passive transport of ions and the other only active. In the passive channel, the predominant resistance to ion flow is friction with the water in the channel. The electroosmotic flow indicates that the passive channel is lined with negative fixed charged groups having a surface charge density of 3000 esu cm-2. The values of the ion-water frictional coefficients, and the relationship between ionic concentrations and flows indicate that the passive channel is extracellular. The active channel behaves as two membranes in series, the first membrane being semipermeable but allowing active transport of sodium, and the second membrane being similar to the passive channel. Friction with the ions in the second "membrane" is the predominant resistance to water flow. PMID:11526854

  12. Actinide removal from spent salts

    DOEpatents

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  13. Where Does Road Salt Go - a Static Salt Model

    NASA Astrophysics Data System (ADS)

    Yu, C. W.; Liu, F.; Moriarty, V. W.

    2017-12-01

    Each winter, more than 15 million tons of road salt is applied in the United States for the de-icing purpose. Considerable amount of chloride in road salt flows into streams/drainage systems with the snow melt runoff and spring storms, and eventually goes into ecologically sensitive low-lying areas in the watershed, such as ponds and lakes. In many watersheds in the northern part of US, the chloride level in the water body has increased significantly in the past decades, and continues an upward trend. The environmental and ecological impact of the elevated chloride level can no longer be ignored. However although there are many studies on the biological impact of elevated chloride levels, there are few investigations on how the spatially distributed road salt application affects various parts of the watershed. In this presentation, we propose a static road salt model as a first-order metric to address spacial distribution of salt loading. Derived from the Topological Wetness Index (TWI) in many hydrological models, this static salt model provides a spatial impact as- sessment of road salt applications. To demonstrate the effectiveness of the static model, National Elevation Dataset (NED) of ten-meter resolution of Lake George watershed in New York State is used to generate the TWI, which is used to compute a spatially dis- tributed "salt-loading coefficient" of the whole watershed. Spatially varying salt applica- tion rate is then aggregated, using the salt-loading coefficients as weights, to provide salt loading assessments of streams in the watershed. Time-aggregated data from five CTD (conductivity-temperature-depth) sensors in selected streams are used for calibration. The model outputs and the sensor data demonstrate a strong linear correlation, with the R value of 0.97. The investigation shows that the static modeling approach may provide an effective method for the understanding the input and transport of road salt to within watersheds.

  14. Geophysical, geochemical and hydrological analyses of water-resource vulnerability to salinization: case of the Uburu-Okposi salt lakes and environs, southeast Nigeria

    NASA Astrophysics Data System (ADS)

    Ukpai, S. N.; Okogbue, C. O.

    2017-11-01

    Until this study, the location and depth of the saline units in Uburu-Okposi salt lake areas and environs have been unknown. This study aimed at delineating the saline lithofacies and dispersal configurations to water bodies, using electrical geophysical methods such as constant separation traversing (CST) and vertical electrical sounding (VES). Results showed weathered zones that represent aquifers mostly at the fourth geoelectric layer: between upper layered aquitards and underlying aquitards at depths 30-140 m. Lateral distribution of resistivity variance was defined by the CST, whereas the VES tool, targeted at low-resistivity zones, detected isolated saline units with less than 10 ohm-m at depths generally >78 m. The saline lithofacies were suspected to link freshwater zones via shear zones, which steer saline water towards the salt lakes and influence the vulnerability of groundwater to salinization. The level of salinization was verified by water sampling and analysis, and results showed general alkaline water type with a mean pH of 7.66. Water pollution was indicated: mean total dissolved solids (TDS) 550 mg/l, electrical conductivity (EC) 510 μS/cm, salinity 1.1‰, Cl- 200 mg/l, N03 -35.5 mg/l, Na+ 19.6 mg/l and Ca2+ 79.3 mg/l. The salinity is controlled by NaCl salt, as deduced from correlation analysis using the software package Statistical Product for Service Solutions (SPSS). Generally, concentrations of dissolved ions in the water of the area are enhanced via mechanisms such as evaporation, dissociation of salts, precipitation run off and leaching of dissolved rock minerals.

  15. Effect of acute salt ingestion upon core temperature in healthy men.

    PubMed

    Muller, Matthew D; Ryan, Edward J; Bellar, David M; Kim, Chul-Ho; Williamson, Megan E; Glickman, Ellen L; Blankfield, Robert P

    2011-06-01

    Salt intake may cause conflict for the cardiovascular system as it attempts to simultaneously maintain blood pressure (BP) and temperature homeostasis. Our objective was to determine the effect of a salt and water load vs. a water load upon rectal temperature (Tre) in healthy volunteers. Twenty-two healthy, non-hypertensive Caucasian men enrolled in two trials in which they ingested either salt and body temperature water (SALT), or body temperature water (WATER). BP, Tre, cardiac index, peripheral resistance and urine output were monitored one, 2 and 3 h post-baseline. Changes in the dependent variables were compared between those subjects who were salt sensitive (SS) and those who were salt resistant (SR) at the same time intervals. The percentage change reduction in Tre was greater following SALT compared with WATER at +120 min (-1.1±0.7 vs. -0.6±0.5%, P=0.009) and at +180 min (-1.3±0.8 vs. -0.7±0.6%, P=0.003). The percentage change reduction in Tre was greater in the SR group compared with the SS group at +180 min (-1.6±0.9 vs. -0.9±0.5%, P=0.043). SALT decreased Tre more than WATER. SS individuals maintained temperature homeostasis more effectively than SR individuals following SALT. These results may explain why some individuals are SS while others are SR. If these results are generalizable, it would be possible to account for the role of sodium chloride in the development of SS hypertension.

  16. How Do I Manage Side Effects?

    MedlinePlus

    ... Gargle with one teaspoon of table salt or baking soda dissolved in one cup of warm water ... sick Keep your mouth very clean (gargle with baking soda and warm water) Avoid flowers and plants ( ...

  17. High pressure processing alters water distribution enabling the production of reduced-fat and reduced-salt pork sausages.

    PubMed

    Yang, Huijuan; Han, Minyi; Bai, Yun; Han, Yanqing; Xu, Xinglian; Zhou, Guanghong

    2015-04-01

    High pressure processing (HPP) was used to explore novel methods for modifying the textural properties of pork sausages with reduced-salt, reduced-fat and no fat replacement additions. A 2×7 factorial design was set up, incorporating two pressure levels (0.1 or 200 MPa) and seven fat levels (0, 5, 10, 15, 20, 25 and 30%). Sausages treated at 200 MPa exhibited improved tenderness at all fat levels compared with 0.1 MPa treated samples, and the shear force of sausages treated at 200 MPa with 15 or 20% fat content was similar to the 0.1 MPa treated sausages with 30% fat. HPP significantly changed the P₂ peak ratio of the four water components in raw sausages, resulting in improved textural properties of emulsion-type sausages with reduced-fat and reduced-salt. Significant correlations were found between pH, color, shear force and water proportions. The scanning and transmission micrographs revealed the formation of smaller fat globules and an improved network structure in the pressure treated sausages. In conclusion, there is potential to manufacture sausages with reduced-fat and reduced-salt by using HPP to maintain textural qualities. Copyright © 2014. Published by Elsevier Ltd.

  18. Mathematical simulation of water and salt transfer in geosystems of solonetzic soils in the Northern Caspian region

    NASA Astrophysics Data System (ADS)

    Golovanov, A. I.; Sotneva, N. I.

    2009-03-01

    The Dzhanybek two-dimensional radial-axial mathematical model was developed for water and salt transfer in geosystems of solonetzic complexes of the Northern Caspian region; the model is capable of considering the geochemical links and revealing the features of migration processes between the conjugated elements of the microcatena. The simulation results suggested that the stabilization of salinization-desalinization processes occurs under stable weather conditions within approximately 100 years. When the weather conditions changed (the total moisture pool of the area increased from 1978), the simulation results indicated a tendency toward salinization of dark-colored soils in microdepressions and removal of salts in the upper 1-m thick soil layer on microhighs and microslopes. Predictions for 2040 showed that a deep accumulation of salts in microdepressions and desalinization of soils of microhighs and microslopes will occur under the current weather conditions. Thus, the changes in the halogeochemical capacity of geosystems of solonetzic complexes primarily depend on the climatic conditions, although the capacity value remains almost constant with increasing total water reserves; the changes occur only between the conjugated soils of solonetzic complexes, which is of great importance for predicting the soil-geochemical status of the entire landscape.

  19. Review: Water recovery from brines and salt-saturated solutions: operability and thermodynamic efficiency considerations for desalination technologies

    PubMed Central

    Vane, Leland M.

    2017-01-01

    BACKGROUND When water is recovered from a saline source, a brine concentrate stream is produced. Management of the brine stream can be problematic, particularly in inland regions. An alternative to brine disposal is recovery of water and possibly salts from the concentrate. RESULTS This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. CONCLUSION Due to the high osmotic pressures of the brine concentrates, reverse osmosis, the most common desalination technology, is impractical. Mechanical vapor compression which, like reverse osmosis, utilizes mechanical work to operate, is reported to have the highest thermodynamic efficiency of the desalination technologies for treatment of salt-saturated brines. Thermally-driven processes, such as flash evaporation and distillation, are technically able to process saturated salt solutions, but suffer from low thermodynamic efficiencies. This inefficiency could be offset if an inexpensive source of waste or renewable heat could be used. Overarching issues posed by high salinity solutions include corrosion and the formation of scales/precipitates. These issues limit the materials, conditions, and unit operation designs that can be used. PMID:29225395

  20. Review: Water recovery from brines and salt-saturated solutions: operability and thermodynamic efficiency considerations for desalination technologies.

    PubMed

    Vane, Leland M

    2017-03-08

    When water is recovered from a saline source, a brine concentrate stream is produced. Management of the brine stream can be problematic, particularly in inland regions. An alternative to brine disposal is recovery of water and possibly salts from the concentrate. This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. Due to the high osmotic pressures of the brine concentrates, reverse osmosis, the most common desalination technology, is impractical. Mechanical vapor compression which, like reverse osmosis, utilizes mechanical work to operate, is reported to have the highest thermodynamic efficiency of the desalination technologies for treatment of salt-saturated brines. Thermally-driven processes, such as flash evaporation and distillation, are technically able to process saturated salt solutions, but suffer from low thermodynamic efficiencies. This inefficiency could be offset if an inexpensive source of waste or renewable heat could be used. Overarching issues posed by high salinity solutions include corrosion and the formation of scales/precipitates. These issues limit the materials, conditions, and unit operation designs that can be used.

  1. Will Global Warming Cause a Rise in Sea Level? A Simple Activity about the States of Water

    ERIC Educational Resources Information Center

    Oguz, Ayse

    2009-01-01

    In this activity, a possible problem related to global warming is clarified by the principle of states of water. The activity consists of an experiment that includes three scientific principles: Archimedes' Principle, the Law of Conservation of Matter, and the fluidity of liquids. The experiment helps students raise questions and open new horizons…

  2. [Ethical aspects of the fluoridation of water, salt, and milk].

    PubMed

    Rippe, K P

    2009-05-01

    The article discusses two ethical aspects of the fluoridation of water, salt, and milk. First, it considers whether fluoridation contradicts the right of self-determination. Second, it discusses the chances and risks of fluoridation. The answer to the first question depends on whether people can choose other options. Freedom of choice is not simply the right to choose between different options. It is a right which defends the moral integrity of persons. Nobody should be coerced to eat or drink something which he or she rejects morally. In the political sphere, personal rights of persons can be restricted if and only if it is necessary, if there is a public interest, and if the restriction of the right is reasonable. Regarding fluoridation, even in the best risk-chance scenario, some persons have to expect a net harm. Therefore, the reasoning in favor of fluoridation has to have a specific purpose. The proclaimed reasoning is that fluoridation will benefit the worst off and is therefore a demand of justice. But this argument fails as there are other options to benefit the worst off. Even in the best risk-chance scenario, only one option is morally permissible: the fluoridation of salt, which respects the freedom of choice.

  3. TOPEX/El Nino Watch - El Nino Warm Water Pool Returns to Near Normal State, Mar, 14, 1998

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Mar. 14, 1998 and sea surface height is an indicator of the heat content of the ocean. The image shows that the sea surface height along the central equatorial Pacific has returned to a near normal state. Oceanographers indicate this is a classic pattern, typical of a mature El Nino condition. Remnants of the El Nino warm water pool, shown in red and white, are situated to the north and south of the equator. These sea surface height measurements have provided scientists with a detailed view of how the 1997-98 El Nino's warm pool behaves because the TOPEX/Poseidon satellite measures the changing sea surface height with unprecedented precision. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level. The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using satellite imagery, buoy and ship data, and a forecasting model of the ocean-atmosphere system, the National Oceanic and Atmospheric Administration, (NOAA), has continued to issue an advisory indicating the so-called El Nino weather

  4. FINAL REPORT WIND POWER WARM SPRINGS RESERVATION TRIBAL LANDS DOE GRANT NUMBER DE-FG36-07GO17077 SUBMITTED BY WARM SPRINGS POWER & WATER ENTERPRISES A CORPORATE ENTITY OF THE CONFEDERATED TRIBES OF WARM SPRINGS WARM SPRINGS, OREGON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jim Manion; Michael Lofting; Wil Sando

    2009-03-30

    Wind Generation Feasibility Warm Springs Power and Water Enterprises (WSPWE) is a corporate entity owned by the Confederated Tribes of the Warm Springs Reservation, located in central Oregon. The organization is responsible for managing electrical power generation facilities on tribal lands and, as part of its charter, has the responsibility to evaluate and develop renewable energy resources for the Confederated Tribes of Warm Springs. WSPWE recently completed a multi-year-year wind resource assessment of tribal lands, beginning with the installation of wind monitoring towers on the Mutton Mountains site in 2003, and collection of on-site wind data is ongoing. The studymore » identified the Mutton Mountain site on the northeastern edge of the reservation as a site with sufficient wind resources to support a commercial power project estimated to generate over 226,000 MWh per year. Initial estimates indicate that the first phase of the project would be approximately 79.5 MW of installed capacity. This Phase 2 study expands and builds on the previously conducted Phase 1 Wind Resource Assessment, dated June 30, 2007. In order to fully assess the economic benefits that may accrue to the Tribes through wind energy development at Mutton Mountain, a planning-level opinion of probable cost was performed to define the costs associated with key design and construction aspects of the proposed project. This report defines the Mutton Mountain project costs and economics in sufficient detail to allow the Tribes to either build the project themselves or contract with a developer under the most favorable terms possible for the Tribes.« less

  5. Metals removal from spent salts

    DOEpatents

    Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  6. Moisture variations in brine-salted pasta filata cheese.

    PubMed

    Kindstedt, P S

    2001-01-01

    A study was made of the moisture distribution in brine-salted pasta filata cheese. Brine-salted cheeses usually develop reasonably smooth and predictable gradients of decreasing moisture from center to surface, resulting from outward diffusion of moisture in response to inward diffusion of salt. However, patterns of moisture variation within brine-salted pasta filata cheeses, notably pizza cheese, are more variable and less predictable because of the peculiar conditions that occur when warm cheese is immersed in cold brine. In this study, cold brining resulted in less moisture loss from the cheese surface to the brine. Also it created substantial temperature gradients within the cheese, which persisted after brining and influenced the movement of moisture within the cheese independently of that caused by the inward diffusion of salt. Depending on brining conditions and age, pizza cheese may contain decreasing, increasing, or irregular gradients of moisture from center to surface, which may vary considerably at different locations within a single block. This complicates efforts to obtain representative samples for moisture and composition testing. Dicing the entire block into small (e.g., 1.5 cm) cubes and collecting a composite sample after thorough mixing may serve as a practical sampling approach for manufacturers and users of pizza cheese that have ready access to dicing equipment.

  7. Distinct Osmoadaptation Strategies in the Strict Halophilic and Halotolerant Bacteria Isolated from Lunsu Salt Water Body of North West Himalayas.

    PubMed

    Vaidya, Shivani; Dev, Kamal; Sourirajan, Anuradha

    2018-07-01

    Two strict halophilic bacterial strains, Halobacillus trueperi SS1, and Halobacillus trueperi SS3, and three halotolerant bacterial strains, Shewanella algae SS2, Halomonas venusta SS5, and Marinomonas sp. SS8 of Lunsu salt water body, Himachal Pradesh, India, were selected to study the mechanism of salt tolerance and the role of osmolytes therein. A combination of flame photometry, chromatographic and colorimetric assays was used to study the mechanism of salt tolerance in the selected strict halophilic and halotolerant bacterial strains. The strict halophiles and, one of the halotolerants, Marinomonas sp. SS8 were found to utilize both "salt-in strategy" and "accumulation of compatible solutes strategy" for osmoregulation in hypersaline conditions. On the contrary, the remaining two halotolerants used "accumulation of compatible solutes strategy" under saline stress and not the "salt-in strategy". The present study suggests towards distinct mechanisms of salt tolerance in the two classes, wherein strict halophiles accumulate compatible solutes as well as adopt salt-in strategy, while the halotolerant bacteria accumulate a range of compatible solutes, except Marinomonas sp. SS8, which utilizes both the strategies to combat salt stress.

  8. Biodegradation of resin acid sodium salts

    Treesearch

    Richard W. Hemingway; H. Greaves

    1973-01-01

    The sodium salts of resin acids were readily degraded by microflora from two types of river water and from an activated sewage sludge. A lag phase with little or no resin acid salt degradation but rapid bacterial development occurred which was greatly extended by a decrease in incubation temperature. After this initial lag phase, the resin acid salts were rapidly...

  9. Fluoride metabolism when added to salt.

    PubMed

    Whitford, Gary M

    2005-01-01

    The purpose of this review is to present the general characteristics of the metabolism of fluoride particularly as it occurs when ingested with fluoridated salt. Following the absorption of salt-borne fluoride from the stomach and intestines, its metabolism is identical to that of water-borne fluoride or other vehicles containing ionized fluoride. Because fluoridated salt is almost always ingested with food, however, absorption from the gastrointestinal tract may be delayed or reduced. Reports dealing with this subject have shown that fluoride absorption is delayed and, therefore, peak plasma concentrations are lower than when fluoride is ingested with water. The amount of ingested fluoride that is finally absorbed, however, is not appreciably affected unless the meal is composed mainly of components with high calcium concentrations. In this case, the extent of absorption can be reduced by as much as 50%. Fluoridated salt is also ingested less frequently than fluoridated water. Data are presented to show that the dose size and frequency of ingestion have only minor effects on fluoride retention in the body and on the concentrations in plasma, bone and enamel. Finally, calculations are presented to show that the risk of acute toxicity from fluoridated salt is virtually non-existent.

  10. Global warming /climate change: Involving students using local example.

    NASA Astrophysics Data System (ADS)

    Isiorho, S. A.

    2016-12-01

    The current political climate has made it apparent that the general public does not believe in global warming. Also, there appears to be some confusion between global warming and climate change; global warming is one aspect of climate change. Most scientists believe there is climate change and global warming, although, there is still doubt among students on global warming. Some upper level undergraduate students are required to conduct water level/temperature measurements as part of their course grade. In addition to students having their individual projects, the various classes also utilize a well field within a wetland on campus to conduct group projects. Twelve wells in the well field on campus are used regularly by students to measure the depth of groundwater, the temperature of the waters and other basic water chemistry parameters like pH, conductivity and total dissolved solid (TDS) as part of the class group project. The data collected by each class is added to data from previous classes. Students work together as a group to interpret the data. More than 100 students have participated in this venture for more than 10 years of the four upper level courses: hydrogeology, environmental and urban geology, environmental conservation and wetlands. The temperature trend shows the seasonal variation as one would expect, but it also shows an upward trend (warming). These data demonstrate a change in climate and warming. Thus, the students participated in data collection, learn to write report and present their result to their peers in the classrooms.

  11. Sea salts as a potential source of food spoilage fungi.

    PubMed

    Biango-Daniels, Megan N; Hodge, Kathie T

    2018-02-01

    Production of sea salt begins with evaporation of sea water in shallow pools called salterns, and ends with the harvest and packing of salts. This process provides many opportunities for fungal contamination. This study aimed to determine whether finished salts contain viable fungi that have the potential to cause spoilage when sea salt is used as a food ingredient by isolating fungi on a medium that simulated salted food with a lowered water activity (0.95 a w ). The viable filamentous fungi from seven commercial salts were quantified and identified by DNA sequencing, and the fungal communities in different salts were compared. Every sea salt tested contained viable fungi, in concentrations ranging from 0.07 to 1.71 colony-forming units per gram of salt. In total, 85 fungi were isolated representing seven genera. One or more species of the most abundant genera, Aspergillus, Cladosporium, and Penicillium was found in every salt. Many species found in this study have been previously isolated from low water activity environments, including salterns and foods. We conclude that sea salts contain many fungi that have potential to cause food spoilage as well as some that may be mycotoxigenic. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Impact of slope inclination on salt accumulation

    NASA Astrophysics Data System (ADS)

    Nachshon, Uri

    2017-04-01

    Field measurements indicated on high variability in salt accumulation along natural and cultivated slopes, even for relatively homogeneous soil conditions. It was hypothesised that slope inclination has an impact on the location of salt accumulation along the slope. A set of laboratory experiments and numerical models were used to explore the impact of slope inclination on salt accumulation. It was shown, experimentally, that for conditions of saline water source at the lower boundary of the slope - salt accumulates in low concentrations and homogeneously along the entire slope, for moderate slopes. However, as inclination increases high salt concentrations were observed at the upper parts of the slope, leaving the lower parts of the slope relatively free of salt. The traditional flow and transport models did not predict the experimental observations as they indicated also for the moderate slopes on salt accumulation in the elevated parts of the slope, away of the saline water source. Consequently - a conceptual model was raised to explain the laboratory observations. It was suggested that the interactions between slope angle, evaporation rates, hydraulic conductivity of the medium and distribution of wetness along the slope affect the saline water flow path through the medium. This lead to preferential flow path close to the soil-atmosphere interface for the steep slopes, which leads to constant wash of the salts from the evaporation front upward towards the slope upper parts, whereas for the moderate slopes, flow path is below the soil-atmosphere interface, therefore salt that accumulates at the evaporation front is not being transported upward. Understanding of salt dynamics along slopes is important for agricultural and natural environments, as well as for civil engineering purposes. Better understanding of the salt transport processes along slopes will improve our ability to minimize and to cope with soil salinization processes. The laboratory experiments and

  13. Pore Pressure and Field stress variation from Salt Water Injection; A case Study from Beaver Lodge Field in Williston Basin

    NASA Astrophysics Data System (ADS)

    Mohammed, R. A.; Khatibi, S.

    2017-12-01

    One of the major concerns in producing from oil and gas reservoirs in North American Basins is the disposal of high salinity salt water. It is a misconception that Hydro frack triggers Earthquakes, but due to the high salinity and density of water being pumped to the formation that has pore space of the rock already filled, which is not the case in Hydro-frack or Enhanced Oil Recovery in which fracturing fluid is pumped into empty pore space of rocks in depleted reservoirs. A review on the Bakken history showed that the concerns related to induce seismicity has increased over time due to variations in Pore pressure and In-situ stress that have shown steep changes in the region over the time. In this study, we focused on Pore pressure and field Stress variations in lower Cretaceous Inyan Kara and Mississippian Devonian Bakken, Inyan Kara is the major source for class-II salt-water disposal in the basin. Salt-water disposal is the major cause for induced seismicity. A full field study was done on Beaver Lodge Field, which has many salt-water disposal wells Adjacent to Oil and Gas Wells. We analyzed formation properties, stresses, pore-pressure, and fracture gradient profile in the field and. The constructed Mechanical Earth Model (MEM) revealed changes in pore pressure and stresses over time due to saltwater injection. Well drilled in the past were compared to recently drilled wells, which showed much stress variations. Safe mud weight Window of wells near proximity of injection wells was examined which showed many cases of wellbore instabilities. Results of this study will have tremendous impact in studying environmental issues and the future drilling and Fracking operations.

  14. Relationships between lake-level changes and water and salt budgets in the Dead Sea during extreme aridities in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kiro, Yael; Goldstein, Steven L.; Garcia-Veigas, Javier; Levy, Elan; Kushnir, Yochanan; Stein, Mordechai; Lazar, Boaz

    2017-04-01

    Thick halite intervals recovered by the Dead Sea Deep Drilling Project cores show evidence for severely arid climatic conditions in the eastern Mediterranean during the last three interglacials. In particular, the core interval corresponding to the peak of the last interglacial (Marine Isotope Stage 5e or MIS 5e) contains ∼30 m of salt over 85 m of core length, making this the driest known period in that region during the late Quaternary. This study reconstructs Dead Sea lake levels during the salt deposition intervals, based on water and salt budgets derived from the Dead Sea brine composition and the amount of salt in the core. Modern water and salt budgets indicate that halite precipitates only during declining lake levels, while the amount of dissolved Na+ and Cl- accumulates during wetter intervals. Based on the compositions of Dead Sea brines from pore waters and halite fluid inclusions, we estimate that ∼12-16 cm of halite precipitated per meter of lake-level drop. During periods of halite precipitation, the Mg2+ concentration increases and the Na+/Cl- ratio decreases in the lake. Our calculations indicate major lake-level drops of ∼170 m from lake levels of 320 and 310 m below sea level (mbsl) down to lake levels of ∼490 and ∼480 mbsl, during MIS 5e and the Holocene, respectively. These lake levels are much lower than typical interglacial lake levels of around 400 mbsl. These lake-level drops occurred as a result of major decreases in average fresh water runoff, to ∼40% of the modern value (pre-1964, before major fresh water diversions), reflecting severe droughts during which annual precipitation in Jerusalem was lower than 350 mm/y, compared to ∼600 mm/y today. Nevertheless, even during salt intervals, the changes in halite facies and the occurrence of alternating periods of halite and detritus in the Dead Sea core stratigraphy reflect fluctuations between drier and wetter conditions around our estimated average. The halite intervals include

  15. The effect of global warming on infectious diseases.

    PubMed

    Kurane, Ichiro

    2010-12-01

    Global warming has various effects on human health. The main indirect effects are on infectious diseases. Although the effects on infectious diseases will be detected worldwide, the degree and types of the effect are different, depending on the location of the respective countries and socioeconomical situations. Among infectious diseases, water- and foodborne infectious diseases and vector-borne infectious diseases are two main categories that are forecasted to be most affected. The effect on vector-borne infectious diseases such as malaria and dengue fever is mainly because of the expansion of the infested areas of vector mosquitoes and increase in the number and feeding activity of infected mosquitoes. There will be increase in the number of cases with water- and foodborne diarrhoeal diseases. Even with the strongest mitigation procedures, global warming cannot be avoided for decades. Therefore, implementation of adaptation measures to the effect of global warming is the most practical action we can take. It is generally accepted that the impacts of global warming on infectious diseases have not been apparent at this point yet in East Asia. However, these impacts will appear in one form or another if global warming continues to progress in future. Further research on the impacts of global warming on infectious diseases and on future prospects should be conducted.

  16. Effect of guar gum and salt concentrations on drag reduction and shear degradation properties of turbulent flow of water in a pipe.

    PubMed

    Sokhal, Kamaljit Singh; Gangacharyulu, Dasaroju; Bulasara, Vijaya Kumar

    2018-02-01

    Concentrated solutions of guar gum in water (1000-3000ppm) with and without KCl salt (1000-4000ppm) were injected near the wall for a short period (2.5min) to investigate their effect on drag reduction in turbulent flow of water through a pipe (Re≈17000-45000). Relative to bulk solution, the concentrations of polymer and salt were 50-150ppm and 50-200ppm, respectively. A drag reduction of 71.45% was observed for 3000ppm of biopolymer without salt. Guar gum experienced mechanical degradation under high shear conditions and addition of KCl improved shear stability up to 47% (for Re≈45000). A polymer concentration of 3000ppm and salt concentration of 2000ppm in the injection fluid were found to be optimum for achieving the highest drag reduction with better shear stability. Results indicated that boundary layer injection shows better drag reduction ability than pre-mixed solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Southern Hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming.

    PubMed

    Stott, Lowell; Timmermann, Axel; Thunell, Robert

    2007-10-19

    Establishing what caused Earth's largest climatic changes in the past requires a precise knowledge of both the forcing and the regional responses. We determined the chronology of high- and low-latitude climate change at the last glacial termination by radiocarbon dating benthic and planktonic foraminiferal stable isotope and magnesium/calcium records from a marine core collected in the western tropical Pacific. Deep-sea temperatures warmed by approximately 2 degrees C between 19 and 17 thousand years before the present (ky B.P.), leading the rise in atmospheric CO2 and tropical-surface-ocean warming by approximately 1000 years. The cause of this deglacial deep-water warming does not lie within the tropics, nor can its early onset between 19 and 17 ky B.P. be attributed to CO2 forcing. Increasing austral-spring insolation combined with sea-ice albedo feedbacks appear to be the key factors responsible for this warming.

  18. Effect of sea-level rise on salt water intrusion near a coastal well field in southeastern Florida.

    PubMed

    Langevin, Christian D; Zygnerski, Michael

    2013-01-01

    A variable-density groundwater flow and dispersive solute transport model was developed for the shallow coastal aquifer system near a municipal supply well field in southeastern Florida. The model was calibrated for a 105-year period (1900 to 2005). An analysis with the model suggests that well-field withdrawals were the dominant cause of salt water intrusion near the well field, and that historical sea-level rise, which is similar to lower-bound projections of future sea-level rise, exacerbated the extent of salt water intrusion. Average 2005 hydrologic conditions were used for 100-year sensitivity simulations aimed at quantifying the effect of projected rises in sea level on fresh coastal groundwater resources near the well field. Use of average 2005 hydrologic conditions and a constant sea level result in total dissolved solids (TDS) concentration of the well field exceeding drinking water standards after 70 years. When sea-level rise is included in the simulations, drinking water standards are exceeded 10 to 21 years earlier, depending on the specified rate of sea-level rise. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  19. Isolating the Effects of the Warming Trend from the General Climate Change in Water Resources: California Case

    NASA Astrophysics Data System (ADS)

    Wang, J.; Yin, H.; Chung, F.

    2008-12-01

    While the population growth, the future land use change, and the desire for better environmental preservation and protection are adding up pressure on water resources management in California, California is facing an extra challenge of addressing potential climate change impacts on water supple and demand in California. The concerns on water facilities planning and flood control caused by climate change include modified precipitation patterns, changes in snow levels and runoff patterns due to increased air temperatures. Although long-term climate projections are largely uncertain, there appears to be a strong consistency in predicting the warming trend of future surface temperature, and the resulting shift in the seasonal patterns of runoff. However, projected changes in precipitation (wetting or drying), which control annual runoff, are far less certain. This paper attempts to separate the effects of warming trend from the effects of precipitation trend on water planning especially in California where reservoir operations are more sensitive to seasonal patterns of runoff than to the total annual runoff. The water resources systems planning model, CALSIM2, is used to evaluate climate change impact on water resource management in California. Rather than directly ingesting estimated streamflows from climate model projections into CALSIM2, a three step perturbation ratio method is proposed to introduce climate change impact into the planning model. Firstly, monthly perturbation ratio of projected monthly inflow to simulated historical monthly inflow is applied to observed historical monthly inflow to generate climate change inflows to major dams and reservoirs. To isolate the effects of warming trend on water resources, a further annual inflow adjustment is applied to the inflows generated in step one to preserve the volume of the observed annual inflow. To re-introduce the effects of precipitation trend on water resources, an additional inflow trend adjustment is

  20. A simple, dynamic, hydrological model of a mesotidal salt marsh

    EPA Science Inventory

    Salt marsh hydrology presents many difficulties from a modeling standpoint: the bi-directional flows of tidal waters, variable water densities due to mixing of fresh and salt water, significant influences from vegetation, and complex stream morphologies. Because of these difficu...

  1. Effects of salt pond restoration on benthic flux: Sediment as a source of nutrients to the water column

    USGS Publications Warehouse

    Topping, Brent R.; Kuwabara, James S.; Carter, James L.; Garrettt, Krista K.; Mruz, Eric; Piotter, Sarah; Takekawa, John Y.

    2016-01-01

    Understanding nutrient flux between the benthos and the overlying water (benthic flux) is critical to restoration of water quality and biological resources because it can represent a major source of nutrients to the water column. Extensive water management commenced in the San Francisco Bay, Beginning around 1850, San Francisco Bay wetlands were converted to salt ponds and mined extensively for more than a century. Long-term (decadal) salt pond restoration efforts began in 2003. A patented device for sampling porewater at varying depths, to calculate the gradient, was employed between 2010 and 2012. Within the former ponds, the benthic flux of soluble reactive phosphorus and that of dissolved ammonia were consistently positive (i.e., moving out of the sediment into the water column). The lack of measurable nitrate or nitrite concentration gradients across the sediment-water interface suggested negligible fluxes for dissolved nitrate and nitrite. The dominance of ammonia in the porewater indicated anoxic sediment conditions, even at only 1 cm depth, which is consistent with the observed, elevated sediment oxygen demand. Nearby openestuary sediments showed much lower benthic flux values for nutrients than the salt ponds under resortation. Allochthonous solute transport provides a nutrient advective flux for comparison to benthic flux. For ammonia, averaged for all sites and dates, benthic flux was about 80,000 kg/year, well above the advective flux range of −50 to 1500 kg/year, with much of the variability depending on the tidal cycle. By contrast, the average benthic flux of soluble reactive phosphorus was about 12,000 kg/year, of significant magnitude, but less than the advective flux range of 21,500 to 30,000 kg/year. These benthic flux estimates, based on solute diffusion across the sediment-water interface, reveal a significant nutrient source to the water column of the pond which stimulates algal blooms (often autotrophic). This benthic source may be

  2. Diversity of deep-water cetaceans in relation to temperature: implications for ocean warming.

    PubMed

    Whitehead, Hal; McGill, Brian; Worm, Boris

    2008-11-01

    Understanding the effects of natural environmental variation on biodiversity can help predict response to future anthropogenic change. Here we analyse a large, long-term data set of sightings of deep-water cetaceans from the Atlantic, Pacific and Indian Oceans. Seasonal and geographic changes in the diversity of these genera are well predicted by a convex function of sea-surface temperature peaking at c. 21 degrees C. Thus, diversity is highest at intermediate latitudes - an emerging general pattern for the pelagic ocean. When applied to a range of Intergovernmental Panel on Climate Change global change scenarios, the predicted response is a decline of cetacean diversity across the tropics and increases at higher latitudes. This suggests that deep-water oceanic communities that dominate > 60% of the planet's surface may reorganize in response to ocean warming, with low-latitude losses of diversity and resilience.

  3. A Field Investigation of Water and Salt Movement in Permafrost and the Active Layer

    DTIC Science & Technology

    1993-02-01

    in the submerged continental shelves of the Arctic and Antarctic land masses where pore water salinities of shelf sediments may exceed that of the...thawed sediments would have wanned at all depths, and permafrost would have started to thaw from both the top and the bottom. Eventually, gas...exploration wells (Osterkamp at al., 1985). Destabilization of gas hydrates (by warming the sediments in the continental shelves) during periods of high

  4. Environmental consequences of the Retsof Salt Mine roof collapse

    USGS Publications Warehouse

    Yager, Richard M.

    2013-01-01

    In 1994, the largest salt mine in North America, which had been in operation for more than 100 years, catastrophically flooded when the mine ceiling collapsed. In addition to causing the loss of the mine and the mineral resources it provided, this event formed sinkholes, caused widespread subsidence to land, caused structures to crack and subside, and changed stream flow and erosion patterns. Subsequent flooding of the mine drained overlying aquifers, changed the groundwater salinity distribution (rendering domestic wells unusable), and allowed locally present natural gas to enter dwellings through water wells. Investigations including exploratory drilling, hydrologic and water-quality monitoring, geologic and geophysical studies, and numerical simulation of groundwater flow, salinity, and subsidence have been effective tools in understanding the environmental consequences of the mine collapse and informing decisions about management of those consequences for the future. Salt mines are generally dry, but are susceptible to leaks and can become flooded if groundwater from overlying aquifers or surface water finds a way downward into the mined cavity through hundreds of feet of rock. With its potential to flood the entire mine cavity, groundwater is a constant source of concern for mine operators. The problem is compounded by the viscous nature of salt and the fact that salt mines commonly lie beneath water-bearing aquifers. Salt (for example halite or potash) deforms and “creeps” into the mined openings over time spans that range from years to centuries. This movement of salt can destabilize the overlying rock layers and lead to their eventual sagging and collapse, creating permeable pathways for leakage of water and depressions or openings at land surface, such as sinkholes. Salt is also highly soluble in water; therefore, whenever water begins to flow into a salt mine, the channels through which it flows increase in diameter as the surrounding salt dissolves

  5. An Equation of State for Hypersaline Water in Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Naftz, D.L.; Millero, F.J.; Jones, B.F.; Green, W.R.

    2011-01-01

    Great Salt Lake (GSL) is one of the largest and most saline lakes in the world. In order to accurately model limnological processes in GSL, hydrodynamic calculations require the precise estimation of water density (??) under a variety of environmental conditions. An equation of state was developed with water samples collected from GSL to estimate density as a function of salinity and water temperature. The ?? of water samples from the south arm of GSL was measured as a function of temperature ranging from 278 to 323 degrees Kelvin (oK) and conductivity salinities ranging from 23 to 182 g L-1 using an Anton Paar density meter. These results have been used to develop the following equation of state for GSL (?? = ?? 0.32 kg m-3): ?? - ??0 = 184.01062 + 1.04708 * S - 1.21061*T + 3.14721E - 4*S2 + 0.00199T2 where ??0 is the density of pure water in kg m-3, S is conductivity salinity g L-1, and T is water temperature in degrees Kelvin. ?? 2011 U.S. Government.

  6. Conversion of an Aziridine to an Oxazolidinone Using a Salt and Carbon Dioxide in Water

    ERIC Educational Resources Information Center

    Wallace, Justin R.; Lieberman, Deborah L.; Hancock, Matthew T.; Pinhas, Allan R.

    2005-01-01

    A convenient, inexpensive, environment friendly, and regioselective conversion of an aziridine to an oxazolidinone is developed by using iodide salt and CO[2] in water. A description is provided, on the way in which this series of experiments will show students how to change experimental conditions to obtain mainly one desired regiosomer of a…

  7. Hydration patterns and salting effects in sodium chloride solution.

    PubMed

    Li, Weifeng; Mu, Yuguang

    2011-10-07

    The salting effects of 2M sodium chloride electrolyte are studied based on a series of model solutes with properties ranging from hydrophobic to hydrophilic. Generally, hydrophobic solutes will be salted out and hydrophilic solutes will be salted in by NaCl solution. The solvation free energy changes are highly correlated with Kirkwood-Buff integrals. The underlying mechanism resorts to the preferential binding of ions and water to solutes. Our results demonstrate that the salting effect not only depends on the salt's position in Hofmeister series, but also on the solutes' specifics. Taking the hydration free energies of solutes and ions as independent variables, a schematic diagram of salting effects is suggested. The resolved multifaceted salting effects rely on the sensitive balance of the tripartite interaction among solutes, ions, and water. © 2011 American Institute of Physics

  8. Linking The Atlantic Gyres: Warm, Saline Intrusions From Subtropical Atlantic to the Nordic Seas

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa M.; Rhines, P. B.

    2010-01-01

    Ocean state estimates from SODA assimilation are analyzed to understand how major shifts in the North Atlantic Current path relate to AMOC, and how these shifts are related to large scale ocean circulation and surface forcing. These complement surface-drifter and altimetry data showing the same events. SODA data indicate that the warm water limb of AMOC, reaching to at least 600m depth, expanded in density/salinity space greatly after 1995, and that Similar events occurred in the late 1960s and around 1980. While there were large changes in the upper limb, there was no immediate response in the dense return flow, at least not in SODA, however one would expect a delayed response of increasing AMOC due to the positive feedback from increased salt transport. These upper limb changes are winddriven, involving changes in the eastern subpolar gyre, visible in the subduction of low potential vorticity waters. The subtropical gyre has been weak during the times of the northward intrusions of the highly saline subtropical waters, while the NAO index has been neutral or in a negative phase. The image of subtropical/subpolar gyre exchange through teleconnections within the AMOC overturning cell will be described.

  9. Geologic appraisal of Paradox basin salt deposits for water emplacement

    USGS Publications Warehouse

    Hite, Robert J.; Lohman, Stanley William

    1973-01-01

    Thick salt deposits of Middle Pennsylvanian age are present in an area of 12,000 square miles in the Paradox basin of southeast Utah and southwest Colorado. The deposits are in the Paradox Member of the Hermosa Formation. The greatest thickness of this evaporite sequence is in a troughlike depression adjacent to the Uncompahgre uplift on the northeast side of the basin.The salt deposits consist of a cyclical sequence of thick halite units separated by thin units of black shale, dolomite, and anhydrite. Many halite units are several hundred feet thick and locally contain economically valuable potash deposits.Over much of the Paradox basin the salt deposits occur at depths of more than 5,000 feet. Only in a series of salt anticlines located along the northeastern side of the basin do the salt deposits rise to relatively shallow depths. The salt anticlines can be divided geographically and structurally into five major systems. Each system consists of a long undulating welt of thickened salt over which younger rocks are arched in anticlinal form. Locally there are areas along the axes of the anticlines where the Paradox Member was never covered by younger sediments. This allowed large-scale migration of Paradox strata toward and up through these holes in the sediment cover forming diapiric anticlines.The central or salt-bearing cores of the anticlines range in thickness from about 2,500 to 14,000 feet. Structure in the central core of the salt anticlines is the result of both regional-compression and flowage of the Paradox Member into the anticlines from adjacent synclines. Structure in the central cores of the salt anticlines ranges from relatively undeformed beds to complexly folded and faulted masses, in which stratigraphic continuity is undemonstrable.The presence of thick cap rock .over many of the salt anticlines is evidence of removal of large volumes of halite by groundwater. Available geologic and hydrologic information suggests that this is a relatively slow

  10. Bioavailability of iodine and hardness (magnesium and calcium salt) in drinking water in the etiology of endemic goitre in Sundarban delta of West Bengal (India).

    PubMed

    Chandra, Amar K; Tripathy, Smritiratan; Debnath, Arijit; Ghosh, Dishari

    2007-04-01

    Endemic goitre has been reported from the ecologically diverse Sundarban delta of West Bengal (India). To study the etiological factors for the persistence of endemic goitre, bioavailability of iodine and hardness of water used for drinking in the region were evaluated because these common environmental factors are inversely and directly related with goitre prevalence in several geographical regions. For the present study from 19 Community Development Blocks of Sundarban delta, 19 areas were selected at random. From each area at least 8 drinking water samples were collected and analyzed for iodine and the hardness (calcium and magnesium salt content). Iodine content in the drinking water samples was found in the range from 21 to 119 mg/L and total hardness of drinking water was found to range from 50 to 480 ppm. Presence of magnesium salt was found higher than the calcium salts in most of the samples. These findings suggest that the entire delta region is environmentally iodine sufficient but water is relatively hard and thus possibility of hardness of water for the persistence of endemic goitre may not be ruled out.

  11. Terrestrial water flux responses to global warming in tropical rainforest areas

    NASA Astrophysics Data System (ADS)

    Lan, Chia-Wei; Lo, Min-Hui; Chou, Chia; Kumar, Sanjiv

    2016-05-01

    Precipitation extremes are expected to become more frequent in the changing global climate, which may considerably affect the terrestrial hydrological cycle. In this study, Coupled Model Intercomparison Project Phase 5 archives have been examined to explore the changes in normalized terrestrial water fluxes (precipitation minus evapotranspiration minus total runoff, divided by the precipitation climatology) in three tropical rainforest areas: Maritime Continent, Congo, and Amazon. Results show that a higher frequency of intense precipitation events is predicted for the Maritime Continent in the future climate than in the present climate, but not for the Amazon or Congo rainforests. Nonlinear responses to extreme precipitation lead to a reduced groundwater recharge and a proportionately greater amount of direct runoff, particularly for the Maritime Continent, where both the amount and intensity of precipitation increase under global warming. We suggest that the nonlinear response is related to the existence of a higher near-surface soil moisture over the Maritime Continent than that over the Amazon and Congo rainforests. The wetter soil over the Maritime Continent also leads to an increased subsurface runoff. Thus, increased precipitation extremes and concomitantly reduced terrestrial water fluxes lead to an intensified hydrological cycle for the Maritime Continent. This has the potential to result in a strong temporal heterogeneity in soil water distribution affecting the ecosystem of the rainforest region and increasing the risk of flooding and/or landslides.

  12. Spatial-temporal changes in runoff and terrestrial ecosystem water retention under 1.5 and 2 °C warming scenarios across China

    NASA Astrophysics Data System (ADS)

    Zhai, Ran; Tao, Fulu; Xu, Zhihui

    2018-06-01

    The Paris Agreement set a long-term temperature goal of holding the global average temperature increase to below 2.0 °C above pre-industrial levels, pursuing efforts to limit this to 1.5 °C; it is therefore important to understand the impacts of climate change under 1.5 and 2.0 °C warming scenarios for climate adaptation and mitigation. Here, climate scenarios from four global circulation models (GCMs) for the baseline (2006-2015), 1.5, and 2.0 °C warming scenarios (2106-2115) were used to drive the validated Variable Infiltration Capacity (VIC) hydrological model to investigate the impacts of global warming on runoff and terrestrial ecosystem water retention (TEWR) across China at a spatial resolution of 0.5°. This study applied ensemble projections from multiple GCMs to provide more comprehensive and robust results. The trends in annual mean temperature, precipitation, runoff, and TEWR were analyzed at the grid and basin scale. Results showed that median change in runoff ranged from 3.61 to 13.86 %, 4.20 to 17.89 %, and median change in TEWR ranged from -0.45 to 6.71 and -3.48 to 4.40 % in the 10 main basins in China under 1.5 and 2.0 °C warming scenarios, respectively, across all four GCMs. The interannual variability of runoff increased notably in areas where it was projected to increase, and the interannual variability increased notably from the 1.5 to the 2.0 °C warming scenario. In contrast, TEWR would remain relatively stable, the median change in standard deviation (SD) of TEWR ranged from -10 to 10 % in about 90 % grids under 1.5 and 2.0 °C warming scenarios, across all four GCMs. Both low and high runoff would increase under the two warming scenarios in most areas across China, with high runoff increasing more. The risks of low and high runoff events would be higher under the 2.0 than under the 1.5 °C warming scenario in terms of both extent and intensity. Runoff was significantly positively correlated to precipitation, while increase in maximum

  13. Vertical Redistribution of Ocean Salt Content

    NASA Astrophysics Data System (ADS)

    Liang, X.; Liu, C.; Ponte, R. M.; Piecuch, C. G.

    2017-12-01

    Ocean salinity is an important proxy for change and variability in the global water cycle. Multi-decadal trends have been observed in both surface and subsurface salinity in the past decades, and are usually attributed to the change in air-sea freshwater flux. Although air-sea freshwater flux, a major component of the global water cycle, certainly contributes to the change in surface and upper ocean salinity, the salt redistribution inside the ocean can affect the surface and upper ocean salinity as well. Also, the mechanisms controlling the surface and upper ocean salinity changes likely depend on timescales. Here we examined the ocean salinity changes as well as the contribution of the vertical redistribution of salt with a 20-year dynamically consistent and data-constrained ocean state estimate (ECCO: Estimating Circulation and Climate of the Ocean). A decrease in the spatial mean upper ocean salinity and an upward salt flux inside the ocean were observed. These findings indicate that over 1992-2011, surface freshwater fluxes contribute to the decrease in spatial mean upper ocean salinity and are partly compensated by the vertical redistribution of salt inside the ocean. Between advection and diffusion, the two major processes determining the vertical exchange of salt, the advective term at different depths shows a downward transport, while the diffusive term is the dominant upward transport contributor. These results suggest that the salt transport in the ocean interior should be considered in interpreting the observed surface and upper ocean salinity changes, as well as inferring information about the changes in the global water cycle.

  14. Moderate (20%) fructose-enriched diet stimulates salt-sensitive hypertension with increased salt retention and decreased renal nitric oxide.

    PubMed

    Gordish, Kevin L; Kassem, Kamal M; Ortiz, Pablo A; Beierwaltes, William H

    2017-04-01

    Previously, we reported that 20% fructose diet causes salt-sensitive hypertension. In this study, we hypothesized that a high salt diet supplemented with 20% fructose (in drinking water) stimulates salt-sensitive hypertension by increasing salt retention through decreasing renal nitric oxide. Rats in metabolic cages consumed normal rat chow for 5 days (baseline), then either: (1) normal salt for 2 weeks, (2) 20% fructose in drinking water for 2 weeks, (3) 20% fructose for 1 week, then fructose + high salt (4% NaCl) for 1 week, (4) normal chow for 1 week, then high salt for 1 week, (5) 20% glucose for 1 week, then glucose + high salt for 1 week. Blood pressure, sodium excretion, and cumulative sodium balance were measured. Systolic blood pressure was unchanged by 20% fructose or high salt diet. 20% fructose + high salt increased systolic blood pressure from 125 ± 1 to 140 ± 2 mmHg ( P  < 0.001). Cumulative sodium balance was greater in rats consuming fructose + high salt than either high salt, or glucose + high salt (114.2 ± 4.4 vs. 103.6 ± 2.2 and 98.6 ± 5.6 mEq/Day19; P  < 0.05). Sodium excretion was lower in fructose + high salt group compared to high salt only: 5.33 ± 0.21 versus 7.67 ± 0.31 mmol/24 h; P  < 0.001). Nitric oxide excretion was 2935 ± 256  μ mol/24 h in high salt-fed rats, but reduced by 40% in the 20% fructose + high salt group (2139 ± 178  μ mol /24 hrs P  < 0.01). Our results suggest that fructose predisposes rats to salt-sensitivity and, combined with a high salt diet, leads to sodium retention, increased blood pressure, and impaired renal nitric oxide availability. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  15. Ultraviolet-B radiation induced crosslinking improves physical properties of cold- and warm-water fish gelatin gels and films

    USDA-ARS?s Scientific Manuscript database

    Cold- and warm-water fish gelatin granules were exposed to ultraviolet-B radiation for doses up to 29.7 J/cm2. Solutions and films were prepared from the granules. Gel electrophoresis and refractive index were used to examine changes in molecular weight of the samples. Also, the gel strength and rhe...

  16. Warm and Humid Air Blowing over Cold Water - Grand Banks Fog

    NASA Astrophysics Data System (ADS)

    Taylor, P.; Weng, W.

    2016-12-01

    The condensation of water vapour into droplets and the formation of fog in the Earth's atmospheric boundary layer involves a complex balance between horizontal advection and vertical turbulent mixing of heat and water vapour, cloud microphysical processes and radiative transfers of heat, plus the impact of water droplets, and sometimes ice crystals, on visibility. It is a phenomenon which has been studied for many years in a variety of contexts. On land, surface cooling of the ground via long wave radiation at night is often the trigger and a number of 1-D (height and time dependent) radiative fog models have been developed. Over the waters offshore from Newfoundland a key factor is the advection of moist air from over warm gulf stream waters to colder Labrador current water - an internal boundary-layer problem. Some basic properties can be learned from a steady state 2-D (x-z) model.The WTS (Weng, Taylor and Salmon, 2010, J. Wind Eng. Ind. Aerodyn. 98, 121-132 ) model of flow above changes in surface conditions has been used to investigate planetary boundary-layer flow over water with spatial changes in temperature, and to investigate situations leading to saturation and fog formation. Our turbulence closure includes the turbulent kinetic energy equation but we prefer to specify a height, surface roughness, Rossby number and local stability dependent, "master" length scale instead of a somewhat empirical dissipation or similar equation. Results show that fog can develop and extent to heights of order 100m in some conditions, depending on upstream profiles of wind, temperature and mixing ratio, and on solar radiation and the horizontal variations in water surface temperature.Next steps will involve validation against data being collected (by AMEC-Foster Wheeler in the Hibernia Management and Development Company Metocean project) over the Grand Banks and an interface with WRF and high resolution sea surface temperature data for forecasting fog conditions over the

  17. Water and complex organic molecules in the warm inner regions of solar-type protostars

    NASA Astrophysics Data System (ADS)

    Coutens, A.; Jørgensen, J. K.; Persson, M. V.; Lykke, J. M.; Taquet, V.; van Dishoeck, E. F.; Vastel, C.; Wampfler, S. F.

    2015-12-01

    Water and complex organic molecules play an important role in the emergence of Life. They have been detected in different types of astrophysical environments (protostars, prestellar cores, outflows, protoplanetary disks, comets, etc). In particular, they show high abundances towards the warm inner regions of protostars, where the icy grain mantles thermally desorb. Can a part of the molecular content observed in these regions be preserved during the star formation process and incorporated into asteroids and comets, that can deliver it to planetary embryos through impacts? By comparison with cometary studies, interferometric observations of solar-type protostars can help to address this important question. We present recent results obtained with the Plateau de Bure interferometer about water deuteration, glycolaldehyde and ethylene glycol towards the low-mass protostar NGC 1333 IRAS2A.

  18. Hydrologic and climatologic data collected through 1964, Salt Lake County, Utah

    USGS Publications Warehouse

    Iorns, W.V.; Mower, Reed W.; Horr, C.A.

    1966-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed equally by the State of Utah and the Federal Government in accordance with an agreement between the State Engineer and the Geological Survey. The Utah Water and Power Board, Utah Fish and Game Commission, Salt Lake County Water Conservancy District, Metropolitan Water District of Salt Lake City, Salt Lake County, Kennecott Copper Corporation, Utah Power and Light Company, and Salt Lake City Chamber of Commerce contributed funds to the State Engineer's office toward support of the project.The investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. This basic-data report sets forth climatologic and surface-water data collected by project personnel and others during the water year beginning October 1, 1963, and ending September 30, 1964, and ground-water data collected by project personnel and others for the period July 1, 1963, through December 31, 1964. Included also are some earlier ground-water data not previously published. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables. Data collected during the period of investigation will be published in annual basic-data releases and an interpretative report will be published at the completion of the investigation.

  19. Dietary salt loading and ion-poor water exposure provide insight into the molecular physiology of the rainbow trout gill epithelium tight junction complex.

    PubMed

    Kolosov, Dennis; Kelly, Scott P

    2016-08-01

    This study utilized dietary salt loading and ion-poor water (IPW) exposure of rainbow trout (Oncorhynchus mykiss) to further understand the role of fish gill epithelium tight junction (TJ) physiology in salt and water balance. Gill morphology, biochemistry and molecular physiology were examined, with an emphasis on genes encoding TJ proteins. Fish were either fed a control or salt-enriched diet (~10 % NaCl) for 4 weeks prior to IPW exposure for 24 h. Serum [Na(+)], [Cl(-)] and muscle moisture content were unaltered by salt feeding, but changed in response to IPW irrespective of diet. Dietary salt loading altered the morphology (reduced Na(+)-K(+)-ATPase-immunoreactive cell numbers and surface exposure of mitochondrion-rich cells), biochemistry (decreased vacuolar-type H(+)-ATPase activity) and molecular physiology (decreased nkaα1a and cftrII mRNA abundance) of the gill in a manner indicative of reduced active ion uptake activity. But in control fish and not salt-fed fish, gill mRNA abundance of nkaα1c increased and nbc decreased after IPW exposure. Genes encoding TJ proteins were typically either responsive to salt feeding or IPW, but select genes responded to combined experimental treatment (e.g. IPW responsive but only if fish were salt-fed). Therefore, using salt feeding and IPW exposure, new insights into what factors influence gill TJ proteins and the role that specific TJ proteins might play in regulating the barrier properties of the gill epithelium have been acquired. In particular, evidence suggests that TJ proteins in the gill epithelium, or the regulatory networks that control them, respond independently to external or internal stimuli.

  20. Elimination of Acid Cleaning of High Temperature Salt Water Heat Exchangers: Redesigned Pre-Production Full-Scale Heat Pipe Bleed Air Cooler for Shipboard Evaluation

    DTIC Science & Technology

    2011-11-01

    Cleaning of High Temperature Salt Water Heat Exchangers ESTCP WP-200302 Subtitle: Redesigned Pre-production Full-Scale Heat Pipe Bleed Air Cooler For...FINAL 3. DATES COVERED (From - To) 1-Jan-2003 – 1-Oct-2009 4. TITLE AND SUBTITLE Elimination of Acid Cleaning of High Temperature Salt Water Heat...6-5 Figure 6- 6 HP-BAC Tube Sheet Being Immersed in Ultrasonic Cleaning Tank ..................................... 6-6 Figure 6- 7 Heat Pipe

  1. Increased transpiration and plant water stress in a black spruce bog exposed to whole ecosystem warming

    NASA Astrophysics Data System (ADS)

    Warren, J.; Ward, E. J.; Wullschleger, S. D.; Hanson, P. J.

    2017-12-01

    The Spruce and Peatland Responses under Changing Environments (SPRUCE) experiment (http://mnspruce.ornl.gov/) in Northern Minnesota, USA, has exposed 12.8 m diameter plots of an ombrotrophic Picea mariana-Ericaceous shrub bog to whole ecosystem warming (0, +2.25, +4.5, +6.75, +9 °C) since August 2015, and elevated CO2 treatments (ambient or +500 ppm) since June 2016. The mixed-age stand has trees up to 40 year old, and a 5-8 m tall canopy. Thermal dissipation sap flow probes were installed into dominant Picea mariana and Larix laricina trees in each of the 10 open-top chambers in fall 2015. This talk will focus on the first two years of sap flux data from the 10 treatment plots and the relationships with seasonal growth and prevailing environmental conditions. Sap flow was scaled to whole tree and plot level transpiration based on prior in situ calibrations using cut trees, establishment of a sapwood depth: tree diameter relationship, and the tree size distribution within each plot. We also assessed water potential in the trees and two dominant shrubs at the site: Rhododendron groenlandicum and Chamaedaphne calyculata. The warming treatments increased the growing season by up to 6 weeks, with sapflow beginning earlier in spring and lasting later into the fall. The deciduous Larix was the only species exhibiting substantial predawn water stress under the treatments, where water potentials reached -2.5 MPa for the warmest plots. The elevated CO2 reduced midday water stress in the Rhododendron, but not the Chamaedaphne, which could lead to shifts in shrub species composition.

  2. Crystallization of DNA fragments from water-salt solutions, containing 2-methylpentane-2,3-diol.

    PubMed

    Osica, V D; Sukharevsky, B Y; Vasilchenko, V N; Verkin, B I; Polyvtsev, O F

    1976-09-01

    Fragments of calf thymus DNA have been crystallized by precipitation from water-salt solutions, containing 2-methylpentane-2,3-diol (MPD). DNA crystals usually take the form either of spherulites up to 100 mu in diameter or of needles with the length up to 50 mu. No irreversible denaturation of DNA occurs during the crystallization process. X-ray diffraction from dense slurries of DNA crystals yields crystalline powder patterns.

  3. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress

    PubMed Central

    Zhang, Juan; Yu, Haiyue; Zhang, Yushi; Wang, Yubing; Li, Maoying; Zhang, Jiachang; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2016-01-01

    Abscisic acid (ABA) is a vital cellular signal in plants, and effective ABA signalling is pivotal for stress tolerance. AtLOS5 encoding molybdenum cofactor sulphurase is a key regulator of ABA biosynthesis. Here, transgenic AtLOS5 plants were generated to explore the role of AtLOS5 in salt tolerance in maize. AtLOS5 overexpression significantly up-regulated the expression of ZmVp14-2, ZmAO, and ZmMOCO, and increased aldehyde oxidase activities, which enhanced ABA accumulation in transgenic plants under salt stress. Concurrently, AtLOS5 overexpression induced the expression of ZmNHX1, ZmCBL4, and ZmCIPK16, and enhanced the root net Na+ efflux and H+ influx, but decreased net K+ efflux, which maintained a high cytosolic K+/Na+ ratio in transgenic plants under salt stress. However, amiloride or sodium orthovanadate could significantly elevate K+ effluxes and decrease Na+ efflux and H+ influx in salt-treated transgenic roots, but the K+ effluxes were inhibited by TEA, suggesting that ion fluxes regulated by AtLOS5 overexpression were possibly due to activation of Na+/H+ antiport and K+ channels across the plasma membrane. Moreover, AtLOS5 overexpression could up-regulate the transcripts of ZmPIP1:1, ZmPIP1:5, and ZmPIP2:4, and enhance root hydraulic conductivity. Thus transgenic plants had higher leaf water potential and turgor, which was correlated with greater biomass accumulation under salt stress. Thus AtLOS5 overexpression induced the expression of ABA biosynthetic genes to promote ABA accumulation, which activated ion transporter and PIP aquaporin gene expression to regulate root ion fluxes and water uptake, thus maintaining high cytosolic K+ and Na+ homeostasis and better water status in maize exposed to salt stress. PMID:26743432

  4. Integrated processes for desalination and salt production: A mini-review

    NASA Astrophysics Data System (ADS)

    Wenten, I. Gede; Ariono, Danu; Purwasasmita, Mubiar; Khoirudin

    2017-03-01

    The scarcity of fresh water due to the rapid growth of population and industrial activities has increased attention on desalination process as an alternative freshwater supply. In desalination process, a large volume of saline water is treated to produce freshwater while a concentrated brine is discharged back into the environment. The concentrated brine contains a high concentration of salt and also chemicals used during desalination operations. Due to environmental impacts arising from improper treatment of the brine and more rigorous regulations of the pollution control, many efforts have been devoted to minimize, treat, or reuse the rejected brine. One of the most promising alternatives for brine handling is reusing the brine which can reduce pollution, minimize waste volume, and recover valuable salt. Integration of desalination and salt production can be implemented to reuse the brine by recovering water and the valuable salts. The integrated processes can achieve zero liquid discharge, increase water recovery, and produce the profitable salt which can reduce the overall desalination cost. This paper gives an overview of desalination processes and the brine impacts. The integrated processes, including their progress and advantages in dual-purpose desalination and salt production are discussed.

  5. Self-Healing Characteristics of Damaged Rock Salt under Different Healing Conditions

    PubMed Central

    Chen, Jie; Ren, Song; Yang, Chunhe; Jiang, Deyi; Li, Lin

    2013-01-01

    Salt deposits are commonly regarded as ideal hosts for geologic energy reservoirs. Underground cavern construction-induced damage in salt is reduced by self-healing. Thus, studying the influencing factors on such healing processes is important. This research uses ultrasonic technology to monitor the longitudinal wave velocity variations of stress-damaged rock salts during self-recovery experiments under different recovery conditions. The influences of stress-induced initial damage, temperature, humidity, and oil on the self-recovery of damaged rock salts are analyzed. The wave velocity values of the damaged rock salts increase rapidly during the first 200 h of recovery, and the values gradually increase toward stabilization after 600 h. The recovery of damaged rock salts is subjected to higher initial damage stress. Water is important in damage recovery. The increase in temperature improves damage recovery when water is abundant, but hinders recovery when water evaporates. The presence of residual hydraulic oil blocks the inter-granular role of water and restrains the recovery under triaxial compression. The results indicate that rock salt damage recovery is related to the damage degree, pore pressure, temperature, humidity, and presence of oil due to the sealing integrity of the jacket material. PMID:28811444

  6. Self-Healing Characteristics of Damaged Rock Salt under Different Healing Conditions.

    PubMed

    Chen, Jie; Ren, Song; Yang, Chunhe; Jiang, Deyi; Li, Lin

    2013-08-12

    Salt deposits are commonly regarded as ideal hosts for geologic energy reservoirs. Underground cavern construction-induced damage in salt is reduced by self-healing. Thus, studying the influencing factors on such healing processes is important. This research uses ultrasonic technology to monitor the longitudinal wave velocity variations of stress-damaged rock salts during self-recovery experiments under different recovery conditions. The influences of stress-induced initial damage, temperature, humidity, and oil on the self-recovery of damaged rock salts are analyzed. The wave velocity values of the damaged rock salts increase rapidly during the first 200 h of recovery, and the values gradually increase toward stabilization after 600 h. The recovery of damaged rock salts is subjected to higher initial damage stress. Water is important in damage recovery. The increase in temperature improves damage recovery when water is abundant, but hinders recovery when water evaporates. The presence of residual hydraulic oil blocks the inter-granular role of water and restrains the recovery under triaxial compression. The results indicate that rock salt damage recovery is related to the damage degree, pore pressure, temperature, humidity, and presence of oil due to the sealing integrity of the jacket material.

  7. Seasonal warming of the Middle Atlantic Bight Cold Pool

    NASA Astrophysics Data System (ADS)

    Lentz, S. J.

    2017-02-01

    The Cold Pool is a 20-60 m thick band of cold, near-bottom water that persists from spring to fall over the midshelf and outer shelf of the Middle Atlantic Bight (MAB) and Southern Flank of Georges Bank. The Cold Pool is remnant winter water bounded above by the seasonal thermocline and offshore by warmer slope water. Historical temperature profiles are used to characterize the average annual evolution and spatial structure of the Cold Pool. The Cold Pool gradually warms from spring to summer at a rate of order 1°C month-1. The warming rate is faster in shallower water where the Cold Pool is thinner, consistent with a vertical turbulent heat flux from the thermocline to the Cold Pool. The Cold Pool warming rate also varies along the shelf; it is larger over Georges Bank and smaller in the southern MAB. The mean turbulent diffusivities at the top of the Cold Pool, estimated from the spring to summer mean heat balance, are an order of magnitude larger over Georges Bank than in the southern MAB, consistent with much stronger tidal mixing over Georges Bank than in the southern MAB. The stronger tidal mixing causes the Cold Pool to warm more rapidly over Georges Bank and the eastern New England shelf than in the New York Bight or southern MAB. Consequently, the coldest Cold Pool water is located in the New York Bight from late spring to summer.

  8. Sol-gel processing with inorganic metal salt precursors

    DOEpatents

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  9. Salt Plug Formation Caused by Decreased River Discharge in a Multi-channel Estuary

    PubMed Central

    Shaha, Dinesh Chandra; Cho, Yang-Ki

    2016-01-01

    Freshwater input to estuaries may be greatly altered by the river barrages required to meet human needs for drinking water and irrigation and prevent salt water intrusion. Prior studies have examined the salt plugs associated with evaporation and salt outwelling from tidal salt flats in single-channel estuaries. In this work, we discovered a new type of salt plug formation in the multi-channel Pasur River Estuary (PRE) caused by decreasing river discharges resulting from an upstream barrage. The formation of a salt plug in response to changes in river discharge was investigated using a conductivity-temperature-depth (CTD) recorder during spring and neap tides in the dry and wet seasons in 2014. An exportation of saline water from the Shibsa River Estuary (SRE) to the PRE through the Chunkhuri Channel occurred during the dry season, and a salt plug was created and persisted from December to June near Chalna in the PRE. A discharge-induced, relatively high water level in the PRE during the wet season exerted hydrostatic pressure towards the SRE from the PRE and thereby prevented the intrusion of salt water from the SRE to the PRE. PMID:27255892

  10. Polder effects on sediment-to-soil conversion: water table, residual available water capacity, and salt stress interdependence.

    PubMed

    Radimy, Raymond Tojo; Dudoignon, Patrick; Hillaireau, Jean Michel; Deboute, Elise

    2013-01-01

    The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields.

  11. SEQUESTERING AGENTS FOR METAL IMMOBILIZATION APPLICATION TO THE DEVELOPMENT OF ACTIVE CAPS IN FRESH AND SALT WATER SEDIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knox, A; Michael Paller, M

    2006-11-17

    This research evaluated the removal of inorganic contaminants by a variety of amendments and mixtures of amendments in fresh and salt water. A series of removal and retention batch experiments was conducted to identify the best treatment for metal removal. Metal removal by the amendments was evaluated by calculating the partition coefficient and percent removal. Retention of metals by the amendments was evaluated in retention (desorption) studies in which residue from the removal studies was extracted with 1 M MgCl{sub 2} solution. The results indicated that phosphate amendments, some organoclays (e.g., OCB-750), and the biopolymer, chitosan, are very effective inmore » removal and retention of metals in both fresh and salt water. These amendments are being evaluated further as components in the development of active caps for sediment remediation.« less

  12. Distribution of a pelagic tunicate, Salpa fusiformis in warm surface current of the eastern Korean waters and its impingement on cooling water intakes of Uljin nuclear power plant.

    PubMed

    Chae, Jinho; Choi, Hyun Woo; Lee, Woo Jin; Kim, Dongsung; Lee, Jae Hac

    2008-07-01

    Impingement of a large amount of gelatinous plankton, Salpa fusiformis on the seawater intake system-screens in a nuclear power plant at Uljin was firstly recorded on 18th June 2003. Whole amount of the clogged animals was estimated were presumptively at 295 tons and the shortage of cooling seawater supply by the animal clogging caused 38% of decrease in generation capability of the power plant. Zooplankton collection with a multiple towing net during the day and at night from 5 to 6 June 2003 included various gelatinous zooplanktons known to be warm water species such as salps and siphonophores. Comparatively larger species, Salpa fusiformis occupied 25.4% in individual density among the gelatinous plankton and showed surface distribution in the depth shallower than thermocline, performing little diel vertical migration. Temperature, salinity and satellite data also showed warm surface current predominated over the southern coastal region near the power plant in June. The results suggested that warm surface current occasionally extended into the neritic region may transfer S. fusiformis, to the waters off the power plant. The environmental factors and their relation to ecobiology of the large quantity of salpa population that are being sucked into the intake channel of the power plant are discussed.

  13. Warm water and life beneath the grounding zone of an Antarctic outlet glacier

    NASA Astrophysics Data System (ADS)

    Sugiyama, Shin; Sawagaki, Takanobu; Fukuda, Takehiro

    2013-04-01

    Ice-ocean interaction plays a key role in rapidly changing Antarctic ice sheet margins. Recent studies demonstrated that warming ocean is eroding floating part of the ice sheet, resulting in thinning, retreat and acceleration of ice shelves and outlet glaciers. Field data are necessary to understand such processes, but direct observations at the interface of ice and the ocean are lacking, particularly beneath the grounding zone. To better understand the interaction of Antarctic ice sheet and the ocean, we performed subglacial measurements through boreholes drilled in the grounding zone of Langhovde Glacier, an outlet glacier in East Antarctica. Langhovde Glacier is located at 69°12'S, 39°48'E, approximately 20 km south of a Japanese research station Syowa. The glacier discharges ice into Lützow-holm Bay through a 3-km-wide floating terminus at a rate of 130 m a-1. Fast flowing feature is confined by bedrock to the west and slow moving ice to the east, and it extends about 10 km upglacier from the calving front. In 2011/12 austral summer season, we operated a hot water drilling system to drill through the glacier at 2.5 and 3 km from the terminus. Inspections of the boreholes revealed the ice was underlain by a shallow saline water layer. Ice and water column thicknesses were found to be 398 and 24 m at the first site, and 431 and 10 m at the second site. Judging from ice surface and bed elevations, the drilling sites were situated at within a several hundred meters from the grounding line. Sensors were lowered into the boreholes to measure temperature, salinity and current within the subglacial water layer. Salinity and temperature from the two sites were fairly uniform (34.25±0.05 PSU and -1.45±0.05°C), indicating vertical and horizontal mixing in the layer. The measured temperature was >0.7°C warmer than the in-situ freezing point, and very similar to the values measured in the open ocean near the glacier front. Subglacial current was up to 3 cm/s, which

  14. Groundwater and surface water dynamics of Na and Cl in an urban stream: effects of road salts

    EPA Science Inventory

    AbstractRoad salts are a growing environmental and health concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na and Cl in an urban stream, Minebank Run (MBR), MD. We observed an increasing salinity trend in this restored stream. Current b...

  15. The Distribution of Road Salt in Private Drinking Water Wells in a Southeastern New York Suburban Township.

    PubMed

    Kelly, Victoria R; Cunningham, Mary Ann; Curri, Neil; Findlay, Stuart E; Carroll, Sean M

    2018-05-01

    We used a GIS analysis of sodium and chloride concentrations in private water wells in a southeastern New York township to describe the pattern of distribution of road salt in aquifers tapped for drinking water. The primary source of road salt was sodium chloride, and sodium and chloride concentrations were significantly correlated ( = 0.80, < 0.01). Chloride concentrations in wells increased as the percentage of impervious surface cover (ISC) within a 250-m radius around wells increased ( = 0.87, < 0.01) and declined with increasing distance to the nearest road ( = 0.76, < 0.01). Wells that were located lower in elevation than the nearest road had higher concentrations of chloride than wells that were higher than the nearest road, but this occurred only when the nearest road was >30 m from the wells ( < 0.01). Chloride concentrations were not affected by well depth or adjacent road type (major or minor roads). Surface geology and hydrologic soil class had significant effects ( < 0.01) on chloride concentrations in wells, with porous surface geology types and well-drained soils having higher concentrations; these effects may be confounded by the fact that ISC was more likely to occur on these permeable surface geology and soil types. Hot and cold spot analysis revealed substantial unevenness in chloride concentrations. Results for sodium were similar to those for chloride. Overall, these results indicate that road salt contamination of groundwater is unevenly distributed and is affected by landscape factors that can be used to guide well testing and best management practices of deicing salt distribution. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Protein diffusiophoresis and salt osmotic diffusion in aqueous solutions.

    PubMed

    Annunziata, Onofrio; Buzatu, Daniela; Albright, John G

    2012-10-25

    Diffusion of a solute can be induced by the concentration gradient of another solute in solution. This transport mechanism is known as cross-diffusion. We have investigated cross-diffusion in a ternary protein-salt-water system. Specifically, we measured the two cross-diffusion coefficients for the lysozyme-NaCl-water system at 25 °C and pH 4.5 as a function of protein and salt concentrations by Rayleigh interferometry. One cross-diffusion coefficient characterizes salt osmotic diffusion induced by a protein concentration gradient, and is related to protein-salt thermodynamic interactions as described by the theories of Donnan membrane equilibrium and protein preferential hydration. The other cross-diffusion coefficient characterizes protein diffusiophoresis induced by a salt concentration gradient, and is described as the difference between a preferential-interaction coefficient and a transport parameter. We first relate our experimental results to the protein net charge and the thermodynamic excess of water near the protein surface. We then extract the Stefan-Maxwell diffusion coefficient describing protein-salt interactions in water. We find that the value of this coefficient is negative, contrary to the friction interpretation of Stefan-Maxwell equations. This result is explained by considering protein hydration. Finally, protein diffusiophoresis is quantitatively examined by considering electrophoretic and hydration effects on protein migration and utilized to accurately estimate lysozyme electrophoretic mobility. To our knowledge, this is the first time that protein diffusiophoresis has been experimentally characterized and a protein-salt Stefan-Maxwell diffusion coefficient reported. This work represents a significant contribution for understanding and modeling the effect of concentration gradients in protein-salt aqueous systems relevant to diffusion-based mass-transfer technologies and transport in living systems.

  17. GmWRKY53, a water- and salt-inducible soybean gene for rapid dissection of regulatory elements in BY-2 cell culture

    PubMed Central

    Tripathi, Prateek; Rabara, Roel C.; Lin, Jun; Rushton, Paul J.

    2013-01-01

    Drought is the major cause of crop losses worldwide. Water stress-inducible promoters are important for understanding the mechanisms of water stress responses in crop plants. Here we utilized tobacco (Nicotiana tabacum L.) Bright Yellow 2 (BY-2) cell system in presence of polyethylene glycol, salt and phytohormones. Extension of the system to 85 mM NaCl led to inducibility of up to 10-fold with the water stress and salt responsive soybean GmWRKY53 promoter. Upon ABA and JA treatment fold inducibility was up to 5-fold and 14-fold, respectively. Thus, we hypothesize that GmWRKY53 could be used as potential model candidate for dissecting drought regulatory elements as well as understanding crosstalk utilizing a rapid heterologous system of BY-2 culture. PMID:23511199

  18. Warming slowdown over the Tibetan plateau in recent decades

    NASA Astrophysics Data System (ADS)

    Liu, Yaojie; Zhang, Yangjian; Zhu, Juntao; Huang, Ke; Zu, Jiaxing; Chen, Ning; Cong, Nan; Stegehuis, Annemiek Irene

    2018-03-01

    As the recent global warming hiatus and the warming on high elevations are attracting worldwide attention, this study examined the robustness of the warming slowdown over the Tibetan plateau (TP) and its related driving forces. By integrating multiple-source data from 1982 to 2015 and using trend analysis, we found that the mean temperature (T mean), maximum temperature (T max) and minimum temperature (T min) showed a slowdown of the warming trend around 1998, during the period of the global warming hiatus. This was found over both the growing season (GS) and non-growing season (NGS) and suggested a robust warming hiatus over the TP. Due to the differences in trends of T max and T min, the trend of diurnal temperature range (DTR) also shifted after 1998, especially during the GS temperature. The warming rate was spatially heterogeneous. The northern TP (NTP) experienced more warming than the southern TP (STP) in all seasons from 1982 to 1998, while the pattern was reversed in the period from 1998 to 2015. Water vapour was found to be the main driving force for the trend in T mean and T min by influencing downward long wave radiation. Sunshine duration was the main driving force behind the trend in T max and DTR through a change in downward shortwave radiation that altered the energy source of daytime temperature. Water vapour was the major driving force for temperature change over the NTP, while over the STP, sunshine duration dominated the temperature trend.

  19. DENITRIFICATION ENZYME ACTIVITY OF FRINGE SALT MARSHES IN NEW ENGLAND (USA)

    EPA Science Inventory

    Coastal salt marshes are a buffer between the uplands and adjacent coastal waters in New England (USA). With increasing N loads from developed watersheds, salt marshes could play an important role in the water quality maintenance of coastal waters. In this study we examined seaso...

  20. Video-Growing Salt Crystals Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Growing salt crystals in a bottle of water is a favorite science activity for kids. In space, Dr. Pettit grew salt crystals in stretched films of water so that the salt water only fed the crystals around the edges rather than from all sides, as happens in a glass of water. This video of his demonstration shows that surface tension plays a surprisingly dominant role in the crystal formation and convection is more active that one might expect.

  1. Thermal imaging of levitated fresh and salt water drops during laser irradiation

    NASA Astrophysics Data System (ADS)

    Brownell, Cody; Biggs, Harrison

    2017-11-01

    Simulation of high energy laser propagation and scattering in the maritime environment is problematic, due to the high likelihood of turbulence, fog, and rain or sea spray within the beam path. Considering large water drops (diameters of approximately 1-mm), such as those found in a light rain, an incident high energy laser will lead to rapid evaporation of the water drop as it traverses the beam path. In this work we present surface temperature measurements of a water drop obtained using a FLIR IR camera. The drop is acoustically levitated, and subject to a continuous wave laser with a wavelength of 1070-nm and a mean irradiance of approximately 800 W/cm2. These measurements show that the steady-state surface temperature of the drop is well below the saturation temperature, and for pure substances the equilibrium temperature decreases with decreasing drop volume similar to observations with smaller aqueous aerosols. Temperature non-uniformity within the drop is also assessed from statistics of the surface temperature fluctuations. Preliminary results from irradiated salt water drops show notably different behavior from fresh water drops, including temperature spikes as the drop volume decreases and occasional nucleate boiling. Acknowledge support from ONR #N00014-17-WX-00031.

  2. Salinization of the Upper Colorado River - Fingerprinting Geologic Salt Sources

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Grauch, Richard I.

    2009-01-01

    Salt in the upper Colorado River is of concern for a number of political and socioeconomic reasons. Salinity limits in the 1974 U.S. agreement with Mexico require the United States to deliver Colorado River water of a particular quality to the border. Irrigation of crops, protection of wildlife habitat, and treatment for municipal water along the course of the river also place restrictions on the river's salt content. Most of the salt in the upper Colorado River at Cisco, Utah, comes from interactions of water with rock formations, their derived soil, and alluvium. Half of the salt comes from the Mancos Shale and the Eagle Valley Evaporite. Anthropogenic activities in the river basin (for example, mining, farming, petroleum exploration, and urban development) can greatly accelerate the release of constituents from these geologic materials, thus increasing the salt load of nearby streams and rivers. Evaporative concentration further concentrates these salts in several watersheds where agricultural land is extensively irrigated. Sulfur and oxygen isotopes of sulfate show the greatest promise for fingerprinting the geologic sources of salts to the upper Colorado River and its major tributaries and estimating the relative contribution from each geologic formation. Knowing the salt source, its contribution, and whether the salt is released during natural weathering or during anthropogenic activities, such as irrigation and urban development, will facilitate efforts to lower the salt content of the upper Colorado River.

  3. Managing Chemotherapy Side Effects: Mouth and Throat Changes

    MedlinePlus

    ... fluoride in it. ● ● Rinse your mouth with the baking soda, salt, and water mix in the box ... together: ● ● 1 cup warm water, ● ● 1 / 4 teaspoon baking soda, and ● ● 1 / 8 teaspoon salt. Take small ...

  4. The springs of Lake Pátzcuaro: chemistry, salt-balance, and implications for the water balance of the lake

    USGS Publications Warehouse

    Bischoff, James L.; Israde-Alcántara, Isabel; Garduno-Monroy, Victor H.; Shanks, Wayne C.

    2004-01-01

    Lake Pa??tzcuaro, the center of the ancient Tarascan civilization located in the Mexican altiplano west of the city of Morelia, has neither river input nor outflow. The relatively constant lake-salinity over the past centuries indicates the lake is in chemical steady state. Springs of the south shore constitute the primary visible input to the lake, so influx and discharge must be via sub-lacustrine ground water. The authors report on the chemistry and stable isotope composition of the springs, deeming them representative of ground-water input. The springs are dominated by Ca, Mg and Na, whereas the lake is dominated by Na. Combining these results with previously published precipitation/rainfall measurements on the lake, the authors calculate the chemical evolution from spring water to lake water, and also calculate a salt balance of the ground-water-lake system. Comparing Cl and ??18O compositions in the springs and lake water indicates that 75-80% of the spring water is lost evaporatively during evolution toward lake composition. During evaporation Ca and Mg are lost from the water by carbonate precipitation. Each liter of spring water discharging into the lake precipitates about 18.7 mg of CaCO3. Salt balance calculations indicate that ground water input to the lake is 85.9??106 m3/a and ground water discharge from the lake is 23.0??106 m3/a. Thus, the discharge is about 27% of the input, with the rest balanced by evaporation. A calculation of time to reach steady-state ab initio indicates that the Cl concentration of the present day lake would be reached in about 150 a. ?? 2004 Elsevier Ltd. All rights reserved.

  5. Changes in Phosphatidylcholine Headgroup Tilt and Water Order Induced by Monovalent Salts: Molecular Dynamics Simulations

    PubMed Central

    Sachs, Jonathan N.; Nanda, Hirsh; Petrache, Horia I.; Woolf, Thomas B.

    2004-01-01

    The association between monovalent salts and neutral lipid bilayers is known to influence global bilayer structural properties such as headgroup conformational fluctuations and the dipole potential. The local influence of the ions, however, has been unknown due to limited structural resolution of experimental methods. Molecular dynamics simulations are used here to elucidate local structural rearrangements upon association of a series of monovalent Na+ salts to a palmitoyl-oleoyl-phosphatidylcholine bilayer. We observe association of all ion types in the interfacial region. Larger anions, which are meant to rationalize data regarding a Hofmeister series of anions, bind more deeply within the bilayer than either Cl− or Na+. Although the simulations are able to reproduce experimentally measured quantities, the analysis is focused on local properties currently invisible to experiments, which may be critical to biological systems. As such, for all ion types, including Cl−, we show local ion-induced perturbations to headgroup tilt, the extent and direction of which is sensitive to ion charge and size. Additionally, we report salt-induced ordering of the water well beyond the interfacial region, which may be significant in terms of hydration repulsion between stacked bilayers. PMID:15189873

  6. Terrestrial Water Flux Responses to Global Warming in Tropical Rainforest Area

    NASA Astrophysics Data System (ADS)

    Lan, C. W.; Lo, M. H.; Kumar, S.

    2016-12-01

    Precipitation extremes are expected to become more frequent in the changing global climate, which may considerably affect the terrestrial hydrological cycle. In this study, Coupled Model Intercomparison Project Phase 5 (CMIP5) archives have been examined to explore the changes in normalized terrestrial water fluxes (TWFn) (precipitation minus evapotranspiration minus total runoff, divided by the precipitation climatology) in three tropical rainforest areas: Maritime Continent, Congo, and Amazon. Results reveal that a higher frequency of intense precipitation events is predicted for the Maritime Continent in the future climate than in the present climate, but not for the Amazon or Congo rainforests. Nonlinear responses to extreme precipitation lead to a reduced groundwater recharge and a proportionately greater amount of direct runoff, particularly for the Maritime Continent, where both the amount and intensity of precipitation increase under global warming. We suggest that the nonlinear response is related to the existence of a higher near-surface soil moisture over the Maritime Continent than that over the Amazon and Congo rainforests. The wetter soil over the Maritime Continent also leads to an increased subsurface runoff. Thus, increased precipitation extremes and concomitantly reduced terrestrial water fluxes (TWF) lead to an intensified hydrological cycle for the Maritime Continent. This has the potential to result in a strong temporal heterogeneity in soil water distribution affecting the ecosystem of the rainforest region and increasing the risk of flooding and/or landslides.

  7. Warm Rivers Play Role in Arctic Sea Ice Melt Animation

    NASA Image and Video Library

    2014-03-05

    This frame from a NASA MODIS animation depicts warming sea surface temperatures in the Arctic Beaufort Sea after warm waters from Canada Mackenzie River broke through a shoreline sea ice barrier in summer 2012, enhancing the melting of sea ice.

  8. Impacts of climate extremes on gross primary production under global warming

    DOE PAGES

    Williams, I. N.; Torn, M. S.; Riley, W. J.; ...

    2014-09-24

    The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at themore » warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate

  9. Impacts of climate extremes on gross primary production under global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, I. N.; Torn, M. S.; Riley, W. J.

    The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at themore » warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate

  10. View of the Salt Lake City, Utah area

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An oblique view of the Salt Lake City, Utah area as photographed from Earth orbit by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment aboard the Skylab space station. Approximately two-thirds of the Great Salt Lake is in view. The smaller body of water south of Salt Lake City is Utah Lake. The Wasatch Range is on the east side of the Great Salt Lake.

  11. Human Milk Warming Temperatures Using a Simulation of Currently Available Storage and Warming Methods

    PubMed Central

    Bransburg-Zabary, Sharron; Virozub, Alexander; Mimouni, Francis B.

    2015-01-01

    Human milk handling guidelines are very demanding, based upon solid scientific evidence that handling methods can make a real difference in infant health and nutrition. Indeed, properly stored milk maintains many of its unique qualities and continues to be the second and third best infant feeding alternatives, much superior to artificial feeding. Container type and shape, mode of steering, amount of air exposure and storage temperature may adversely affect milk stability and composition. Heating above physiological temperatures significantly impacts nutritional and immunological properties of milk. In spite of this knowledge, there are no strict guidelines regarding milk warming. Human milk is often heated in electrical-based bottle warmers that can exceed 80°C, a temperature at which many beneficial human milk properties disappear. High temperatures can also induce fat profile variations as compared with fresh human milk. In this manuscript we estimate the amount of damage due to overheating during warming using a heat flow simulation of a regular water based bottle warmer. To do so, we carried out a series of warming simulations which provided us with dynamic temperature fields within bottled milk. We simulated the use of a hot water-bath at 80°C to heat bottled refrigerated milk (60ml and 178 ml) to demonstrate that large milk portions are overheated (above 40°C). It seems that the contemporary storage method (upright feeding tool, i.e. bottle) and bottle warming device, are not optimize to preserve the unique properties of human milk. Health workers and parents should be aware of this problem especially when it relates to sick neonates and preemies that cannot be directly fed at the breast. PMID:26061694

  12. Physical Mechanisms of Rapid Lake Warming

    NASA Astrophysics Data System (ADS)

    Lenters, J. D.

    2016-12-01

    Recent studies have shown significant warming of inland water bodies around the world. Many lakes are warming more rapidly than the ambient surface air temperature, and this is counter to what is often expected based on the lake surface energy balance. A host of reasons have been proposed to explain these discrepancies, including changes in the onset of summer stratification, significant loss of ice cover, and concomitant changes in winter air temperature and/or summer cloud cover. A review of the literature suggests that no single physical mechanism is primarily responsible for the majority of these changes, but rather that the large heterogeneity in regional climate trends and lake geomorphometry results in a host of potential physical drivers. In this study, we discuss the variety of mechanisms that have been proposed to explain rapid lake warming and offer an assessment of the physical plausibility for each potential contributor. Lake Superior is presented as a case study to illustrate the "perfect storm" of factors that can cause a deep, dimictic lake to warm at rate that exceeds the rate of global air temperature warming by nearly an order of magnitude. In particular, we use a simple mixed-layer model to show that spatially variable trends in Lake Superior surface water temperature are determined, to first order, by variations in bathymetry and winter air temperature. Summer atmospheric conditions are often of less significance, and winter ice cover may simply be a correlate. The results highlight the importance of considering the full range of factors that can lead to trends in lake surface temperature, and that conventional wisdom may often not be the best guide.

  13. Two planets: Earth and Mars - One salt model: The Hydrothermal SCRIW-Model

    NASA Astrophysics Data System (ADS)

    Hovland, M. T.; Rueslaatten, H.; Johnsen, H. K.; Indreiten, T.

    2011-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth's surface-environment can be regarded as 'water-friendly' and 'salt hostile', the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, 'salt-friendly'. The riddle as to how the salt accumulated in various locations on those two planets is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed 'evaporites', meaning that they formed by the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, with a similar model, as surface water, representing a large ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (i.e., a pressure, P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will form a supercritical water 'vapor' (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (above 400 C and 300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the

  14. [Study on quality standards of decoction pieces of salt Alpinia].

    PubMed

    Li, Wenbing; Hu, Changjiang; Long, Lanyan; Huang, Qinwan; Xie, Xiuqiong

    2010-12-01

    To establish the quality criteria for decoction pieces of salt Alpinia. Decoction pieces of salt Alpinia were measured with moisture, total ash, acid-insoluble ash, water-extract and volatile oils according to the procedures recorded in the Chinese Pharmacopoeia 2010. The content of Nootkatone was determined by HPLC, and NaCl, by chloridion electrode method. We obtained results of total ash, acid-insoluble ash, water-extract and volatile oils of 10 batches of decoction pieces of salt Alpinia moisture; Meanwhile we set the HPLC and chloridion electrode method. This research established a fine quality standard for decoction pieces of salt Alpinia.

  15. The Tropical Western Hemisphere Warm Pool

    NASA Astrophysics Data System (ADS)

    Wang, C.; Enfield, D. B.

    2002-12-01

    The paper describes and examines variability of the tropical Western Hemisphere warm pool (WHWP) of water warmer than 28.5oC. The WHWP is the second-largest tropical warm pool on Earth. Unlike the Eastern Hemisphere warm pool in the western Pacific, which straddles the equator, the WHWP is entirely north of the equator. At various stages of development the WHWP extends over parts of the eastern North Pacific, the Gulf of Mexico, the Caribbean, and the western tropical North Atlantic. It has a large seasonal cycle and its interannual fluctuations of area and intensity are significant. Surface heat fluxes warm the WHWP through the boreal spring to an annual maximum of SST and WHWP area in the late summer/early fall, associated with eastern North Pacific and Atlantic hurricane activities and rainfall from northern South America to the southern tier of the United States. Observations suggest that a positive ocean-atmosphere feedback operating through longwave radiation and associated cloudiness seems to operate in the WHWP. During winter preceding large warm pool, there is an alteration of the Walker and Hadley circulation cells that serves as a "tropospheric bridge" for transferring Pacific ENSO effects to the Atlantic sector and inducing initial warming of warm pool. Associated with the warm SST anomalies is a decrease in sea level pressure anomalies and an anomalous increase in atmospheric convection and cloudiness. The increase in convective activity and cloudiness results in less net longwave radiation loss from the sea surface, which then reinforces SST anomalies.

  16. C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland.

    PubMed

    Morgan, Jack A; LeCain, Daniel R; Pendall, Elise; Blumenthal, Dana M; Kimball, Bruce A; Carrillo, Yolima; Williams, David G; Heisler-White, Jana; Dijkstra, Feike A; West, Mark

    2011-08-03

    Global warming is predicted to induce desiccation in many world regions through increases in evaporative demand. Rising CO(2) may counter that trend by improving plant water-use efficiency. However, it is not clear how important this CO(2)-enhanced water use efficiency might be in offsetting warming-induced desiccation because higher CO(2) also leads to higher plant biomass, and therefore greater transpirational surface. Furthermore, although warming is predicted to favour warm-season, C(4) grasses, rising CO(2) should favour C(3), or cool-season plants. Here we show in a semi-arid grassland that elevated CO(2) can completely reverse the desiccating effects of moderate warming. Although enrichment of air to 600 p.p.m.v. CO(2) increased soil water content (SWC), 1.5/3.0 °C day/night warming resulted in desiccation, such that combined CO(2) enrichment and warming had no effect on SWC relative to control plots. As predicted, elevated CO(2) favoured C(3) grasses and enhanced stand productivity, whereas warming favoured C(4) grasses. Combined warming and CO(2) enrichment stimulated above-ground growth of C(4) grasses in 2 of 3 years when soil moisture most limited plant productivity. The results indicate that in a warmer, CO(2)-enriched world, both SWC and productivity in semi-arid grasslands may be higher than previously expected.

  17. Shrubland carbon sink depends upon winter water availability in the warm deserts of North America

    USGS Publications Warehouse

    Biederman, Joel A.; Scott, Russell L.; John A. Arnone,; Jasoni, Richard L.; Litvak, Marcy E.; Moreo, Michael T.; Papuga, Shirley A.; Ponce-Campos, Guillermo E.; Schreiner-McGraw, Adam P.; Vivoni, Enrique R.

    2018-01-01

    Global-scale studies suggest that dryland ecosystems dominate an increasing trend in the magnitude and interannual variability of the land CO2 sink. However, such model-based analyses are poorly constrained by measured CO2 exchange in open shrublands, which is the most common global land cover type, covering ∼14% of Earth’s surface. Here we evaluate how the amount and seasonal timing of water availability regulate CO2 exchange between shrublands and the atmosphere. We use eddy covariance data from six US sites across the three warm deserts of North America with observed ranges in annual precipitation of ∼100–400mm, annual temperatures of 13–18°C, and records of 2–8 years (33 site-years in total). The Chihuahuan, Sonoran and Mojave Deserts present gradients in both mean annual precipitation and its seasonal distribution between the wet-winter Mojave Desert and the wet-summer Chihuahuan Desert. We found that due to hydrologic losses during the wettest summers in the Sonoran and Chihuahuan Deserts, evapotranspiration (ET) was a better metric than precipitation of water available to drive dryland CO2 exchange. In contrast with recent synthesis studies across diverse dryland biomes, we found that NEP could not be directly predicted from ET due to wintertime decoupling of the relationship between ecosystem respiration (Reco) and gross ecosystem productivity (GEP). Ecosystem water use efficiency (WUE=GEP/ET) did not differ between winter and summer. Carbon use efficiency (CUE=NEP/GEP), however, was greater in winter because Reco returned a smaller fraction of carbon to the atmosphere (23% of GEP) than in summer (77%). Combining the water-carbon relations found here with historical precipitation since 1980, we estimate that lower average winter precipitation during the 21st century reduced the net carbon sink of the three deserts by an average of 6.8TgC yr1. Our results highlight that winter precipitation is critical to the annual carbon balance of these

  18. The Great Warming Brian Fagan

    NASA Astrophysics Data System (ADS)

    Fagan, B. M.

    2010-12-01

    The Great Warming is a journey back to the world of a thousand years ago, to the Medieval Warm Period. Five centuries of irregular warming from 800 to 1250 had beneficial effects in Europe and the North Atlantic, but brought prolonged droughts to much of the Americas and lands affected by the South Asian monsoon. The book describes these impacts of warming on medieval European societies, as well as the Norse and the Inuit of the far north, then analyzes the impact of harsh, lengthy droughts on hunting societies in western North America and the Ancestral Pueblo farmers of Chaco Canyon, New Mexico. These peoples reacted to drought by relocating entire communities. The Maya civilization was much more vulnerable that small-scale hunter-gatherer societies and subsistence farmers in North America. Maya rulers created huge water storage facilities, but their civilization partially collapsed under the stress of repeated multiyear droughts, while the Chimu lords of coastal Peru adapted with sophisticated irrigation works. The climatic villain was prolonged, cool La Niñalike conditions in the Pacific, which caused droughts from Venezuela to East Asia, and as far west as East Africa. The Great Warming argues that the warm centuries brought savage drought to much of humanity, from China to Peru. It also argues that drought is one of the most dangerous elements in today’s humanly created global warming, often ignored by preoccupied commentators, but with the potential to cause over a billion people to starve. Finally, I use the book to discuss the issues and problems of communicating multidisciplinary science to the general public.

  19. New production in the warm waters of the tropical Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Pena, M. Angelica; Lewis, Marlon R.; Cullen, John J.

    1994-01-01

    The average depth-integrated rate of new production in the tropical Pacific Ocean was estimated from a calculation of horizontal and vertical nitrate balance over the region enclosed by the climatological 26 C isotherm. The net turbulent flux of nitrate into the region was computed in terms of the climatological net surface heat flux and the nitrate-temperature relationship at the base of the 26 C isotherm. The net advective transport of nitrate into the region was estimated using the mean nitrate distribution obtained from the analysis of historical data and previous results of a general circulation model of the tropical Pacific. The rate of new production resulting from vertical turbulent fluxes of nitrate was found to be similar in magnitude to that due to advective transport. Most (about 75%) of the advective input of nitrate was due to the horizontal transport of nutrient-rich water from the eastern equatorial region rather than from equatorial upwelling. An average rate of new production of 14.5 - 16 g C/sq m/yr was found for the warm waters of the tropical Pacific region. These values are in good agreement with previous estimates for this region and are almost five times less than is estimated for the eastern equatorial Pacific, where most of the nutrient upwelling occurs.

  20. Warming and Carbon Dioxide Enrichment Alter Plant Production and Ecosystem gas Exchange in a Semi-Arid Grassland Through Direct Responses to Global Change Factors and Indirect Effects on Water Relations

    NASA Astrophysics Data System (ADS)

    Morgan, J. A.; Pendall, E.; Williams, D. G.; Bachman, S.; Dijkstra, F. A.; Lecain, D. R.; Follett, R.

    2007-12-01

    The Prairie Heating and CO2 Enrichment (PHACE) experiment was initiated in Spring, 2007 to evaluate the combined effects of warming and elevated CO2 on a northern mixed-grass prairie. Thirty 3-m diameter circular experimental plots were installed in Spring, 2006 at the USDA-ARS High Plains Grasslands Research Station, just west of Cheyenne, WY, USA. Twenty plots were assigned to a two-level factorial combination of two CO2 concentrations (present ambient, 380 ppmV; and elevated, 600 ppmV), and two levels of temperature (present ambient; and elevated temperature, 1.5/3.0 C warmer day/night), with five replications for each treatment. Five of the ten remaining plots were subjected to either frequent, small water additions throughout the growing season, and the other five to a deep watering once or twice during the growing season. The watering treatments were imposed to simulate hypothesized water savings in the CO2-enriched plots, and to contrast the influence of variable water dynamics on ecosystem processes. Carbon dioxide enrichment of the ten CO2- enriched plots is accomplished with Free Air CO2 Enrichment (FACE) technology and occurs during daylight hours of the mid-April - October growing season. Warming is done year-round with circularly-arranged ceramic heater arrays positioned above the ring perimeters, and with temperature feed-backs to control day/night canopy surface temperatures. Carbon dioxide enrichment began in Spring, 2006, and warming was added in Spring, 2007. Results from the first year of CO2 enrichment (2006) confirmed earlier reports that CO2 increases productivity in semi-arid grasslands (21% increase in peak seasonal above ground biomass for plants grown under elevated CO2 compared to non-enriched controls), and that the response was related to CO2- induced water savings. Growth at elevated CO2 reduced leaf carbon isotope discrimination and N concentrations in plants compared to results obtained in control plots, but the magnitude of changes

  1. Total Mercury and Methylmercury Response in Water, Sediment, and Biota to Destratification of the Great Salt Lake, Utah, United States.

    PubMed

    Valdes, Carla; Black, Frank J; Stringham, Blair; Collins, Jeffrey N; Goodman, James R; Saxton, Heidi J; Mansfield, Christopher R; Schmidt, Joshua N; Yang, Shu; Johnson, William P

    2017-05-02

    Measurements of chemical and physical parameters made before and after sealing of culverts in the railroad causeway spanning the Great Salt Lake in late 2013 documented dramatic alterations in the system in response to the elimination of flow between the Great Salt Lake's north and south arms. The flow of denser, more-saline water through the culverts from the north arm (Gunnison Bay) to the south arm (Gilbert Bay) previously drove the perennial stratification of the south arm and the existence of oxic shallow brine and anoxic deep brine layers. Closure of the causeway culverts occurred concurrently with a multiyear drought that resulted in a decrease in the lake elevation and a concomitant increase in top-down erosion of the upper surface of the deep brine layer by wind-forced mixing. The combination of these events resulted in the replacement of the formerly stratified water column in the south arm with one that was vertically homogeneous and oxic. Total mercury concentrations in the deep waters of the south arm decreased by approximately 81% and methylmercury concentrations in deep waters decreased by roughly 86% due to destratification. Methylmercury concentrations decreased by 77% in underlying surficial sediment, whereas there was no change observed in total mercury. The dramatic mercury loss from deep waters and methylmercury loss from underlying sediment in response to causeway sealing provides new understanding of the potential role of the deep brine layer in the accumulation and persistence of methylmercury in the Great Salt Lake. Additional mercury measurements in biota appear to contradict the previously implied connection between elevated methylmercury concentrations in the deep brine layer and elevated mercury in avian species reported prior to causeway sealing.

  2. Effect of winds and waves on salt intrusion in the Pearl River estuary

    NASA Astrophysics Data System (ADS)

    Gong, Wenping; Lin, Zhongyuan; Chen, Yunzhen; Chen, Zhaoyun; Zhang, Heng

    2018-02-01

    Salt intrusion in the Pearl River estuary (PRE) is a dynamic process that is influenced by a range of factors and to date, few studies have examined the effects of winds and waves on salt intrusion in the PRE. We investigate these effects using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system applied to the PRE. After careful validation, the model is used for a series of diagnostic simulations. It is revealed that the local wind considerably strengthens the salt intrusion by lowering the water level in the eastern part of the estuary and increasing the bottom landward flow. The remote wind increases the water mixing on the continental shelf, elevates the water level on the shelf and in the PRE and pumps saltier shelf water into the estuary by Ekman transport. Enhancement of the salt intrusion is comparable between the remote and local winds. Waves decrease the salt intrusion by increasing the water mixing. Sensitivity analysis shows that the axial down-estuary wind, is most efficient in driving increases in salt intrusion via wind straining effect.

  3. Novel Conductive Carbon Black and Polydimethlysiloxane ECG Electrode: A Comparison with Commercial Electrodes in Fresh, Chlorinated, and Salt Water.

    PubMed

    Noh, Yeonsik; Bales, Justin R; Reyes, Bersain A; Molignano, Jennifer; Clement, Amanda L; Pins, George D; Florian, John P; Chon, Ki H

    2016-08-01

    In this study, we evaluated the performance of two novel conductive carbon black (CB) and polydimethlysiloxane (PDMS) bio-potential electrodes, with and without an integrated flexible copper mesh, against commercially available electrodes (Polar(®) textile, Silver-coated textile, and carbon rubber). The electrodes were tested in three types of water (fresh/unfiltered, chlorinated, and salt water). Our testing revealed that our CB/PDMS electrode with integrated copper mesh provided a high-fidelity ECG signal morphologies without any amplitude degradation in all of the types of water tested (N = 10). The non-meshed CB/PDMS electrodes were also subjected to a long-term durability test by the US Navy SCUBA divers during which the electrodes maintained ECG signal quality for a 6 h period of continuous use. The results of a material degradation analysis revealed the CB/PDMS composite material does not exhibit significant changes in physical integrity after prolonged exposure to the test conditions. The newly developed meshed CB/PDMS electrodes have the potential to be used in a wide variety of both dry and wet environments including the challenge of obtaining ECG signals in salt water environments.

  4. Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste

    DOEpatents

    Koyama, Tadafumi

    1994-01-01

    A method for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.

  5. Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste

    DOEpatents

    Koyama, Tadafumi.

    1994-08-23

    A method is described for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.

  6. Molecular Dynamics Simulation of Salt Diffusion in Polyelectrolyte Assemblies.

    PubMed

    Zhang, Ran; Duan, Xiaozheng; Ding, Mingming; Shi, Tongfei

    2018-06-05

    The diffusion of salt ions and charged probe molecules in polyelectrolyte assemblies is often assumed to follow a theoretical hopping model, in which the diffusing ion is hopping between charged sites of chains based on electroneutrality. However, experimental verification of diffusing pathway at such microscales is difficult, and the corresponding molecular mechanisms remain elusive. In this study, we perform all-atom molecular dynamics (MD) simulations of salt diffusion in polyelectrolyte (PE) assembly of poly (sodium 4-styrenesulfonate) (PSS) and poly (diallyldimethylammonium chloride) (PDAC). Besides the ion hopping mode, the diffusing trajectories are found presenting common features of a jump process, i.e., subjecting to PE relaxation, water pockets in the structure open and close, thus the ion can move from one pocket to another. Anomalous subdiffusion of ions and water is observed due to the trapping scenarios in these water pockets. The jump events are much rarer compared with ion hopping but significantly increases salt diffusion with increasing temperature. Our result strongly indicates that salt diffusion in hydrated PDAC/PSS is a combined process of ion hopping and jump motion. This provides new molecular explanation for the coupling of salt motion with chain motion and the nonlinear increase of salt diffusion at glass transition temperature.

  7. Polder Effects on Sediment-to-Soil Conversion: Water Table, Residual Available Water Capacity, and Salt Stress Interdependence

    PubMed Central

    Radimy, Raymond Tojo; Dudoignon, Patrick; Hillaireau, Jean Michel; Deboute, Elise

    2013-01-01

    The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields. PMID:23990758

  8. Drinking water contributes to high salt consumption in young adults in coastal Bangladesh.

    PubMed

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Malek, Abdul; Khan, Sheela; Chu, Cordia

    2016-04-01

    Increasing salinity of freshwater from environmental and anthropogenic influences is threatening the health of 35 million inhabitants in coastal Bangladesh. Yet little is known about the characteristics of their exposure to salt (sodium), a major risk factor for hypertension and related chronic diseases. This research examined sodium consumption levels and associated factors in young adults. We assessed spot urine samples for 282 participants (19-25 years) during May-June 2014 in a rural sub-district in southwestern coastal Bangladesh and measured sodium levels of their potable water sources. The significant factors associated with high sodium consumption were determined from logistic regression analyses. Mean sodium content in tube-well water (885 mg/L) was significantly higher than pond water (738 mg/L) (P = 0.01). Fifty three percent of subjects were consuming sodium at levels above the WHO recommended level (≥2 g/day). The users of tube-well water were more likely to consume sodium above this recommended level than pond water users. Salinity problems are projected to increase with climate change, and with large populations potentially at risk, appropriate public health and behavior-change interventions are an urgent priority for this vulnerable coastal region along with targeted research to better understand sodium exposure pathways and health benefits of alternative water supplies.

  9. Rita Roars Through a Warm Gulf September 22, 2005

    NASA Image and Video Library

    2005-09-22

    This sea surface height map of the Gulf of Mexico, with the Florida peninsula on the right and the Texas-Mexico Gulf Coast on the left, is based on altimeter data from four satellites including NASA’s Topex/Poseidon and Jason. Red indicates a strong circulation of much warmer waters, which can feed energy to a hurricane. This area stands 35 to 60 centimeters (about 13 to 23 inches) higher than the surrounding waters of the Gulf. The actual track of a hurricane is primarily dependent upon steering winds, which are forecasted through the use of atmospheric models. However, the interaction of the hurricane with the upper ocean is the primary source of energy for the storm. Hurricane intensity is therefore greatly affected by the upper ocean temperature structure and can exhibit explosive growth over warm ocean currents and eddies. Eddies are currents of water that run contrary to the direction of the main current. According to the forecasted track through the Gulf of Mexico, Hurricane Rita will continue crossing the warm waters of a Gulf of Mexico circulation feature called the Loop Current and then pass near a warm-water eddy called the Eddy Vortex, located in the north central Gulf, south of Louisiana. http://photojournal.jpl.nasa.gov/catalog/PIA06427

  10. Free energy landscape of a minimalist salt bridge model.

    PubMed

    Li, Xubin; Lv, Chao; Corbett, Karen M; Zheng, Lianqing; Wu, Dongsheng; Yang, Wei

    2016-01-01

    Salt bridges are essential to protein stability and dynamics. Despite the importance, there has been scarce of detailed discussion on how salt bridge partners interact with each other in distinct solvent exposed environments. In this study, employing a recent generalized orthogonal space tempering (gOST) method, we enabled efficient molecular dynamics simulation of repetitive breaking and reforming of salt bridge structures within a minimalist salt-bridge model, the Asp-Arg dipeptide and thereby were able to map its detailed free energy landscape in aqueous solution. Free energy surface analysis shows that although individually-solvated states are more favorable, salt-bridge states still occupy a noticeable portion of the overall population. Notably, the competing forces, e.g. intercharge attractions that drive the formation of salt bridges and solvation forces that pull the charged groups away from each other, are energetically comparable. As the result, the salt bridge stability is highly tunable by local environments; for instance when local water molecules are perturbed to interact more strongly with each other, the population of the salt-bridge states is likely to increase. Our results reveal the critical role of local solvent structures in modulating salt-bridge partner interactions and imply the importance of water fluctuations on conformational dynamics that involves solvent accessible salt bridge formations. © 2015 The Protein Society.

  11. Brine reuse in ion-exchange softening: salt discharge, hardness leakage, and capacity tradeoffs.

    PubMed

    Flodman, Hunter R; Dvorak, Bruce I

    2012-06-01

    Ion-exchange water softening results in the discharge of excess sodium chloride to the aquatic environment during the regeneration cycle. In order to reduce sodium chloride use and subsequent discharge from ion-exchange processes, either brine reclaim operations can be implemented or salt application during regeneration can be reduced. Both result in tradeoffs related to loss of bed volumes treated per cycle and increased hardness leakage. An experimentally validated model was used to compare concurrent water softening operations at various salt application quantities with and without the direct reuse of waste brine for treated tap water of typical midwestern water quality. Both approaches were able to reduce salt use and subsequent discharge. Reducing salt use and discharge by lowering the salt application rate during regeneration consequently increased hardness leakage and decreased treatment capacity. Single or two tank brine recycling systems are capable of reducing salt use and discharge without increasing hardness leakage, although treatment capacity is reduced.

  12. Temporal dynamics of flooding, evaporation, and desiccation cycles and observations of salt crust area change at the Bonneville Salt Flats, Utah

    NASA Astrophysics Data System (ADS)

    Bowen, Brenda B.; Kipnis, Evan L.; Raming, Logan W.

    2017-12-01

    The Bonneville Salt Flats (BSF) in Utah is a dynamic saline playa environment responding to natural and anthropogenic forces. Over the last century, the saline groundwater from below BSF has been harvested to produce potash via evaporative mining, mostly used as agricultural fertilizers, while the surface halite crust has provided a significant recreational site for land speed racing. Perceptions of changes in the salt crust through time have spurred debates about land use and management; however, little is known about the timescales of natural change as the salt crust responds to climatic parameters that drive flooding, evaporation, and desiccation (FED) cycles that control surface salt growth and dissolution. Climate data over the last 30 years are examined to identify annual patterns in surface water balance at BSF to identify annual and seasonal climate constraints on FED cycles. Landsat satellite data from 1986 to the present are used to map the areal extent of the surface halite salt crust at BSF at the end of the desiccation season (between August 15 and October 30) annually. Overall, the observed area of the desiccation-stage BSF halite crust has varied from a maximum of 156 km2 in 1993 to a minimum of 72 km2 in 2014 with an overall trend of declining area of halite observed over the 30 years of analysis. Climatic variables that influence FED cycles and seasonal salt dissolution and precipitation have also varied through this time period; however, the relationship between surface water fluxes and salt crust area do not clearly correlate, suggesting that other processes are influencing the extent of the salt. Intra-annual analyses of salt area and weather illustrate the importance of ponded surface water, wind events, and microtopography in shaping a laterally extensive but thin and ephemeral halite crust. Examination of annual to decadal changes in salt crust extent and environmental parameters at BSF provides insights into the processes driving change and

  13. Partition/Ion-Exclusion Chromatographic Ion Stacking for the Analysis of Trace Anions in Water and Salt Samples by Ion Chromatography.

    PubMed

    Akter, Fouzia; Saito, Shingo; Tasaki-Handa, Yuiko; Shibukawa, Masami

    2018-01-01

    A new analytical methodology for a simple and efficient on-line preconcentration of trace inorganic anions in water and salt samples prior to ion chromatographic determination is proposed. The preconcentration method is based on partition/ion-exclusion chromatographic ion stacking (PIEC ion stacking) with a hydrophilic polymer gel column containing a small amount of fixed anionic charges. The developed on-line PIEC ion stacking-ion chromatography method was validated by recovery experiments for the determination of nitrate in tap water in terms of both accuracy and precision, and the results showed the reliability of the method. The method proposed was also successfully applied to the determination of trace impurity nitrite and nitrate in reagent-grade salts of sodium sulfate. A low background level can be achieved since pure water is used as the eluant for the PIEC ion stacking. It is possible to reach sensitive detection at sub-μg L -1 levels by on-line PIEC ion stacking-ion chromatography.

  14. Investigation of the source of residual phthalate in sundried salt.

    PubMed

    Kim, Jin Hyo; Lee, Jin Hwan; Kim, So-Young

    2014-03-01

    Phthalate contamination in sundried salt has recently garnered interest in Korea. Phthalate concentrations were investigated in Korean sundried salts, source waters, and aqueous extracts from polyvinyl chloride materials used in salt ponds. Preliminary screening results for phthalates in Korean sundried salts revealed that only di(2-ethylhexyl)phthalate (DEHP) was over the limit of detection, with an 8.6% detection rate, and the concentration ranged from below the limit of detection to 0.189 mg/kg. The tolerable daily intake contribution ratio of the salt was calculated to be only 0.001%. Residual phthalates were below 0.026 mg/liter in source water, and the aqueous extracted di-n-butylphthalate, benzylbutylphthalate, and DEHP, which are considered endocrine disruptors, were below 0.029 mg/kg as derived from the polyvinyl chloride materials in salt ponds. The transfer ratios of the six phthalates from seawater to sundried salts were investigated; transfer ratio was correlated with vapor pressure (r(2) = 0.9875). Thus, di-n-butylphthalate, benzylbutylphthalate, DEHP, and di-n-octylphthalate can be considered highly likely residual pollutants in some consumer salts.

  15. Air pollutant intrusion into the Wieliczka Salt Mine

    USGS Publications Warehouse

    Salmon, L.G.; Cass, G.R.; Kozlowski, R.; Hejda, A.; Spiker, E. C.; Bates, A.L.

    1996-01-01

    The Wieliczka Salt Mine World Cultural Heritage Site contains many rock salt sculptures that are threatened by water vapor condensation from the mine ventilation air. Gaseous and particulate air pollutant concentrations have been measured both outdoors and within the Wieliczka Salt Mine, along with pollutant deposition fluxes to surfaces within the mine. One purpose of these measurements was to determine whether or not low deliquescence point ionic materials (e.g., NH4NO3) are accumulating on surfaces to an extent that would exacerbate the water vapor condensation problems in the mine. It was found that pollutant gases including SO2 and HNO3 present in outdoor air are removed rapidly and almost completely from the air within the mine by deposition to surfaces. Sulfur isotope analyses confirm the accumulation of air pollutant-derived sulfur in liquid dripping from surfaces within the mine. Particle deposition onto interior surfaces in the mine is apparent, with resulting soiling of some of those sculptures that have been carved from translucent rock salt. Water accumulation by salt sculpture surfaces was studied both experimentally and by approximate thermodynamic calculations. Both approaches suggest that the pollutant deposits on the sculpture surfaces lower the relative humidity (RH) at which a substantial amount of liquid water will accumulate by 1% to several percent. The extraordinarily low SO2 concentrations within the mine may explain the apparent success of a respiratory sanatorium located deep within the mine.

  16. Effects of salt or cosolvent addition on solubility of a hydrophobic solute in water: Relevance to those on thermal stability of a protein

    NASA Astrophysics Data System (ADS)

    Murakami, Shota; Hayashi, Tomohiko; Kinoshita, Masahiro

    2017-02-01

    The solubility of a nonpolar solute in water is changed upon addition of a salt or cosolvent. Hereafter, "solvent" is formed by water molecules for pure water, by water molecules, cations, and anions for water-salt solution, and by water and cosolvent molecules for water-cosolvent solution. Decrease and increase in the solubility, respectively, are ascribed to enhancement and reduction of the hydrophobic effect. Plenty of experimental data are available for the change in solubility of argon or methane arising from the addition. We show that the integral equation theory combined with a rigid-body model, in which the solute and solvent particles are modeled as hard spheres with different diameters, can reproduce the data for the following items: salting out by an alkali halide and salting in by tetramethylammonium bromide, increase in solubility by a monohydric alcohol, and decrease in solubility by sucrose or urea. The orders of cation or anion species in terms of the power of decreasing the solubility can also be reproduced for alkali halides. With the rigid-body model, the analyses are focused on the roles of entropy originating from the translational displacement of solvent particles. It is argued by decomposing the solvation entropy of a nonpolar solute into physically insightful constituents that the solvent crowding in the bulk is a pivotal factor of the hydrophobic effect: When the solvent crowding in the bulk becomes more serious, the effect is strengthened, and when it becomes less serious, the effect is weakened. It is experimentally known that the thermal stability of a protein is also influenced by the salt or cosolvent addition. The additions which decrease and increase the solubility of a nonpolar solute, respectively, usually enhance and lower the thermal stability. This suggests that the enhanced or reduced hydrophobic effect is also a principal factor governing the stability change. However, urea decreases the solubility but lowers the stability

  17. Salt and cocrystals of sildenafil with dicarboxylic acids: solubility and pharmacokinetic advantage of the glutarate salt.

    PubMed

    Sanphui, Palash; Tothadi, Srinu; Ganguly, Somnath; Desiraju, Gautam R

    2013-12-02

    Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H···O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.

  18. Dissolved-mineral inflow to Great Salt Lake and chemical characteristics of the salt lake brine: Summary for water years 1960, 1961, and 1964

    USGS Publications Warehouse

    Hahl, D.C.

    1968-01-01

    The investigation of dissolved-mineral inflow to Great Salt Lake during the water years 1960, 1961, and 1964 was conducted during conditions of streamflow that were representative of the lowest and the average recorded during the water years 1934-64. The study conducted during the 1960 and 1961 water years was limited to defining surface-water inflow at sites close to the lakeshore, as well as at sites used in the 1960-6 study. From these comparative data, estimates of inflow at the lakeshore were made for the 1960 and 1961 water years. During the 1964 water year, when inflow to the lake was probably representative of the 31-year period, about 800,000 acre-feet of water containing 2,200,000 tons of dissolved solids entered the lake.During the years of average streamflow, about 500,000 acre-feet of water which might be developed for culinary use, passes the lowest sampling sites on the Bear and Weber Rivers. Also, more than 90 percent of the flow near the mouths of the Bear, Weber, and Jordan Rivers would be suitable for irrigation.Sources of inflow could be selected to provide a water supply for a fresh-water lake east of Antelope Island. The supply would range from 300,000 acre-feet of water containing 800 ppm (parts per million) of dissolved solids during periods of low streamflow to 1 million acre-feet containing 500 ppm during periods of average streamflow.

  19. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 1. Small catchment water balance model

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu; Ruprecht, John K.; Viney, Neil R.

    1996-03-01

    A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers.The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.

  20. [Study on the present status of the areas with high iodine concentration in drinking water and edible salt at household levels in Ohio of Yellow River].

    PubMed

    Guo, Xiao-wei; Zhai, Li-ping; Liu, Yuan; Wang, Xin

    2005-11-01

    To understand the present condition of iodine excess areas and edible salt at household levels in Ohio of Yellow River,which will provide the evidence to control it. A cross section in one time was adopted for the epidemiological survey based on the east, west, south, north and central in all of townships from 8 counties. 2 samples of drinking water from each village were tested their water iodine content as well as the data regarding to their recourses and the depth of wells. 5 samples of edible salt were collected from each village for quantitative analysis. We investigated 451 villages in 92 townships of 8 counties. 800 samples of drinking water were tested which values of iodine content were (110.93 +/- 152.26) microg/L in main, 55.83 microg/L (0.84 - 997.82 microg/L) in medium. 102.39 thousand population are at risk for iodine excess and living in 24 townships of 7 counties where iodine concentration is over 150 microg/L in drinking water, with (327.72 +/- 192.19) microg/L in mean value or 253.87 microg/L (150.78 - 997.82 microg/L) in medium. The rate of iodized salt is 97.2%. All the iodine excess areas are located in alluvial plain of Yellow River. The etiology of high iodine in shallow well water may be supposed to be iodine aggregation formed by Yellow River in terms of thousands of flood in thousands of years. But iodine excess in deep well water may be related to rotten, deposit marine living beings rich in iodine millions upon millions years ago. There were distinctive features of iodine excess in drinking water from both shallow well and deep well, 24 iodine excess areas in Ohio of Yellow River. It has suggested that iodized salt intervention should be stopped in the areas and starting the health education project, survey of iodized salt in the region.