Sample records for warm springs creek

  1. Water Quality Outlet Works Prototype Tests, Warm Springs Dam Dry Creek, Russian River Basin Sonoma County, California

    DTIC Science & Technology

    1989-03-01

    34.4* TECHNICAL REPORT HL-89-4 WATER QUALITY OUTLET WORKS PROTOTYPE TESTS, WARM SPRINGS DAM DRY CREEK, RUSSIAN RIVER BASIN AD-A207 058 SONOMA COUNTY , CALIFORNIA...Clawflcation) [7 Water Quality Outlet Works Prototype Tests, Warm Springs Dam, Dry Creek, Russian River Basin, Sonoma County , California 12. PERSONAL...Cointogobvil Be,,pesso Figur 1. iciniyama Pealm WATER QUALITY OUTLET WORKS PROTOTYPE TESTS WARM SPRINGS DAM, DRY CREEK, RUSSIAN RIVER BASIN SONOMA COUNTY , CALIFORNIA

  2. WARM SPRINGS CREEK GEOTHERMAL STUDY, BLAIN COUNTY IDAHO, 1987

    EPA Science Inventory

    In the Warm Springs Creek drainage near Ketchum, Idaho (17040219), a leaking pipeline coveys geothermal water through the valley to heat nearby homes as well as to supply a resorts swimming pool. Several domestic wells in close proximity to this line have exhibited increasing fl...

  3. Approach view of the Spring Creek Bridge, view looking south. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the Spring Creek Bridge, view looking south. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  4. Elevation view of the Spring Creek Bridge, view looking east. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation view of the Spring Creek Bridge, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  5. Approach view of the Spring Creek Bridge, view looking north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the Spring Creek Bridge, view looking north. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  6. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking southeast. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  7. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking northwest. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  8. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  9. Topographic view of the Spring Creek Bridge and Collier State ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topographic view of the Spring Creek Bridge and Collier State Park, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  10. Water resources of the Warm Springs Indian Reservation, Oregon

    USGS Publications Warehouse

    Robison, J.H.; Laenen, Antonius

    1976-01-01

    Water-resources data for the 1,000-square-mile Warm Springs Indian Reservation in north-central Oregon were obtained and evaluated. The area is bounded on the west by the crest of the Cascade Range and on the south and east by the Metolius and Deschutes Rivers. The mountainous western part is underlain by young volcanic rocks, and the plateaus and valleys of the eastern part are underlain by basalt, tuff, sand, and gravel of Tertiary and Quaternary ages. There are numerous springs, some developed for stock use, and about 50 domestic and community wells; yields are small, ranging from less than 1 to as much as 25 gallons per minute. Chemical quality of most ground water is suitable for stock or human consumption and for irrigation. Average flows of the Warm Springs River, Metolius River, and Deschutes River are 440, 1,400, and 4,040 cubic feet per second (cfs), respectively. Shitike Creek, which has an average flow of 108 cfs had a peak of 4,000 cfs in January 1974. Most streams have fewer than 100 milligrams per liter (mg/liter) of dissolved solids. Chemical and biological quality of the mountain lakes is also good; of 10 lakes studied, all had fewer than 50 mg/liter of dissolved solids and none had measurable fecal coliform bacteria. (Woodard-USGS)

  11. Discharge, water temperature, and water quality of Warm Mineral Springs, Sarasota County, Florida: A retrospective analysis

    USGS Publications Warehouse

    Metz, Patricia A.

    2016-09-27

    Warm Mineral Springs, located in southern Sarasota County, Florida, is a warm, highly mineralized, inland spring. Since 1946, a bathing spa has been in operation at the spring, attracting vacationers and health enthusiasts. During the winter months, the warm water attracts manatees to the adjoining spring run and provides vital habitat for these mammals. Well-preserved late Pleistocene to early Holocene-age human and animal bones, artifacts, and plant remains have been found in and around the spring, and indicate the surrounding sinkhole formed more than 12,000 years ago. The spring is a multiuse resource of hydrologic importance, ecological and archeological significance, and economic value to the community.The pool of Warm Mineral Springs has a circular shape that reflects its origin as a sinkhole. The pool measures about 240 feet in diameter at the surface and has a maximum depth of about 205 feet. The sinkhole developed in the sand, clay, and dolostone of the Arcadia Formation of the Miocene-age to Oligocene-age Hawthorn Group. Underlying the Hawthorn Group are Oligocene-age to Eocene-age limestones and dolostones, including the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. Mineralized groundwater, under artesian pressure in the underlying aquifers, fills the remnant sink, and the overflow discharges into Warm Mineral Springs Creek, to Salt Creek, and subsequently into the Myakka River. Aquifers described in the vicinity of Warm Mineral Springs include the surficial aquifer system, the intermediate aquifer system within the Hawthorn Group, and the Upper Floridan aquifer in the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. The Hawthorn Group acts as an upper confining unit of the Upper Floridan aquifer.Groundwater flow paths are inferred from the configuration of the potentiometric surface of the Upper Floridan aquifer for September 2010. Groundwater flow models indicate the downward flow of water into the Upper Floridan aquifer

  12. Stable isotope tracing of trout hatchery carbon to sediments and foodwebs of limestone spring creeks.

    PubMed

    Hurd, Todd M; Jesic, Slaven; Jerin, Jessica L; Fuller, Nathan W; Miller, David

    2008-11-01

    Limestone springs support productive ecosystems and fisheries, yet aquaculture may modify or impair these ecosystems. We determined trout hatchery organic contribution to spring creek sediments and foodwebs with natural abundance stable isotope methods. Hatchery feed, waste, and trout were significantly enriched in delta(13)C relative to autotrophs and wild fish. Spring creek sediments were enriched in delta(13)C toward the hatchery endmember relative to reference streams without hatcheries and relative to a larger larger-order, spring-influenced stream. Contribution of hatchery C to spring creek sediments was greatest during March and associated with greatest sediment %C. Contribution of hatchery C to pollution-tolerant isopod diet was 39-51% in a stream receiving limestone spring water via hatchery effluent. Isopods of one spring creek also relied on hatchery-derived C within one month of hatchery closure. Four years later, less pollution pollution-tolerant amphipods dominated and consumed non-vascular over vascular autotrophs (86%). Isopods of a second spring creek with an active hatchery did not appear to be using hatchery matter directly, but were enriched in delta(34)S relative to a spring creek tributary with no hatchery influence. Isopods in both of these streams were relatively enriched in delta(15)N, indicating general nutrient enrichment from surrounding agricultural land use. The contribution of hatchery vs. wild fish in diet of herons and egrets was traced with delta(13)C of guano. These birds were strongly dependent on stocked trout in a spring creek with a recently closed state trout hatchery, and also near another large, state-run hatchery. Heron dependence on hatchery fish in the spring creek decreased with time since hatchery closure. Use of stable isotope natural abundance techniques in karst spring creeks can reveal stream impairment due to aquaculture, specific C sources to bio-indicating consumers, losses of farmed fish to predation, and

  13. Geomorphic Function and Restoration Potential of Spring Creeks in Southeastern Idaho: Analysis and Communication

    NASA Astrophysics Data System (ADS)

    Hanrahan, T. P.; Hill, Z.; Levell, A.; Maguire, T.; Risso, D.

    2014-12-01

    A large wetland and floodplain complex adjacent to the Snake River in southeastern Idaho, USA, encompasses numerous spring-fed creeks that originate on the floodplain and discharge at their confluence with the Snake River and American Falls Reservoir. Resource managers are implementing a program to restore these spring creeks for the recovery of Yellowstone cutthroat trout and ecosystem health. Our objectives were to evaluate the physical characteristics of these spring creeks, develop a conceptual model of their geomorphic function, compare the restoration potential of individual reaches, and communicate our findings to a broad audience of resource managers and regional stakeholders in order to foster restoration planning. A geomorphic assessment along 38 km of three spring creeks was completed by collecting data at several transects within distinct geomorphic reaches, and by collecting data continuously throughout all reaches. These data were summarized in a GIS database and used to quantify the overall geomorphic functioning of each reach. The geomorphic functional scores were scaled from 0% (non-functional) to 100% (fully functional). Among all three spring creeks, geomorphic function ranged from 29% to 63%, with bank conditions and riparian vegetation being the primary causes of overall channel degradation. Results from the geomorphic assessment fostered the development of a conceptual model for spring creek function, whereby degraded bank conditions represent the primary controlling factor of decreased geomorphic function and fish habitat quality. The reach-based geomorphic functional scoring provides an indicator of relative restoration potential for each reach, and is one of the factors used in determining site-specific priorities for protecting, enhancing, and restoring spring creeks on the Fort Hall Bottoms. The study results, conceptual model and restoration strategy were communicated to resource managers and regional stakeholders through a graphically

  14. Characterization of water quality and suspended sediment during cold-season flows, warm-season flows, and stormflows in the Fountain and Monument Creek watersheds, Colorado, 2007–2015

    USGS Publications Warehouse

    Miller, Lisa D.; Stogner, Sr., Robert W.

    2017-09-01

    From 2007 through 2015, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, conducted a study in the Fountain and Monument Creek watersheds, Colorado, to characterize surface-water quality and suspended-sediment conditions for three different streamflow regimes with an emphasis on characterizing water quality during storm runoff. Data collected during this study were used to evaluate the effects of stormflows and wastewater-treatment effluent discharge on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality samples were collected at 2 sites on Upper Fountain Creek, 2 sites on Monument Creek, 3 sites on Lower Fountain Creek, and 13 tributary sites during 3 flow regimes: cold-season flow (November–April), warm-season flow (May–October), and stormflow from 2007 through 2015. During 2015, additional samples were collected and analyzed for Escherichia coli (E. coli) during dry weather conditions at 41 sites, located in E. coli impaired stream reaches, to help identify source areas and scope of the impairment.Concentrations of E. coli, total arsenic, and dissolved copper, selenium, and zinc in surface-water samples were compared to Colorado in-stream standards. Stormflow concentrations of E. coli frequently exceeded the recreational use standard of 126 colonies per 100 milliliters at main-stem and tributary sites by more than an order of magnitude. Even though median E. coli concentrations in warm-season flow samples were lower than median concentrations in storm-flow samples, the water quality standard for E. coli was still exceeded at most main-stem sites and many tributary sites during warm-season flows. Six samples (three warm-season flow and three stormflow samples) collected from Upper Fountain Creek, upstream from the confluence of Monument Creek, and two stormflow samples collected from Lower Fountain Creek, downstream from the confluence with Monument Creek, exceeded the acute water

  15. Synergy of a warm spring and dry summer

    Treesearch

    Yude Pan; David Schimel

    2016-01-01

    An analysis suggests that high carbon uptake by US land ecosystems during the warm spring of 2012 offset the carbon loss that resulted from severe drought over the summer — and hints that the warm spring could have worsened the drought.

  16. Relative abundance and lengths of Kendall Warm Springs dace captured from different habitats in a specially designed trap

    USGS Publications Warehouse

    Gryska, A.D.; Hubert, W.A.; Gerow, K.G.

    1998-01-01

    A trap was designed to capture endangered Kendall Warm Springs dace Rhinichthys osculus thermalis (a subspecies of speckled dace Rhinichthys osculus) without being destructive to the habitat of the fish in Kendall Warm Springs Creek, Wyoming. Four experiments were conducted to determine differences in catch per unit effort (CPUE) and length frequencies of fish among differing habitat types. The CPUE was highest in channel habitats with current, and one experiment indicated that it was particularly high at vertical interfaces with vegetation. Longer fish were captured in channel habitats away from vegetation than in vegetated areas. The CPUE was significantly greater during the day than at night during one experiment, but no significant differences were observed among the other three experiments. The traps were easy and inexpensive to construct, could be used in a variety of stream habitats, and may have applications in other small streams for sampling small, benthic fishes.

  17. Analysis of ground-water flow in the Madison aquifer using fluorescent dyes injected in Spring Creek and Rapid Creek near Rapid City, South Dakota, 2003-04

    USGS Publications Warehouse

    Putnam, Larry D.; Long, Andrew J.

    2007-01-01

    The Madison aquifer, which contains fractures and solution openings in the Madison Limestone, is used extensively for water supplies for the city of Rapid City and other suburban communities in the Rapid City, S. Dak., area. The 48 square-mile study area includes the west-central and southwest parts of Rapid City and the outcrops of the Madison Limestone extending from south of Spring Creek to north of Rapid Creek. Recharge to the Madison Limestone occurs when streams lose flow as they cross the outcrop. The maximum net loss rate for Spring and Rapid Creek loss zones are 21 and 10 cubic feet per second (ft3/s), respectively. During 2003 and 2004, fluorescent dyes were injected in the Spring and Rapid Creek loss zones to estimate approximate locations of preferential flow paths in the Madison aquifer and to measure the response and transit times at wells and springs. Four injections of about 2 kilograms of fluorescein dye were made in the Spring Creek loss zone during 2003 (sites S1, S2, and S3) and 2004 (site S4). Injection at site S1 was made in streamflow just upstream from the loss zone over a 12-hour period when streamflow was about equal to the maximum loss rate. Injections at sites S2, S3, and S4 were made in specific swallow holes located in the Spring Creek loss zone. Injection at site R1 in 2004 of 3.5 kilograms of Rhodamine WT dye was made in streamflow just upstream from the Rapid Creek loss zone over about a 28-hour period. Selected combinations of 27 wells, 6 springs, and 3 stream sites were monitored with discrete samples following the injections. For injections at sites S1-S3, when Spring Creek streamflow was greater than or equal to 20 ft3/s, fluorescein was detected in samples from five wells that were located as much as about 2 miles from the loss zone. Time to first arrival (injection at site S1) ranged from less than 1 to less than 10 days. The maximum fluorescein concentration (injection at site S1) of 120 micrograms per liter (ug/L) at well CO

  18. OVERVIEW OF GOLD HILL MILL, ROAD, AND WARM SPRINGS CAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF GOLD HILL MILL, ROAD, AND WARM SPRINGS CAMP BUILDINGS, LOOKING SOUTH SOUTHEAST. THE FUNCTION OF THE FLAT AREA AT CENTER RIGHT IS UNKNOWN. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  19. Boiling Water at Hot Creek - The Dangerous and Dynamic Thermal Springs in California's Long Valley Caldera

    USGS Publications Warehouse

    Farrar, Christopher D.; Evans, William C.; Venezky, Dina Y.; Hurwitz, Shaul; Oliver, Lynn K.

    2007-01-01

    The beautiful blue pools and impressive boiling fountains along Hot Creek in east-central California have provided enjoyment to generations of visitors, but they have also been the cause of injury or death to some who disregarded warnings and fences. The springs and geysers in the stream bed and along its banks change location, temperature, and flow rates frequently and unpredictably. The hot springs and geysers of Hot Creek are visible signs of dynamic geologic processes in this volcanic region, where underground heat drives thermal spring activity.

  20. The influence of neap-spring tidal variation and wave energy on sediment flux in salt marsh tidal creeks

    USGS Publications Warehouse

    Lacy, Jessica; Ferner, Matthew C.; Callaway, John C.

    2018-01-01

    Sediment flux in marsh tidal creeks is commonly used to gage sediment supply to marshes. We conducted a field investigation of temporal variability in sediment flux in tidal creeks in the accreting tidal marsh at China Camp State Park adjacent to northern San Francisco Bay. Suspended-sediment concentration (SSC), velocity, and depth were measured near the mouths of two tidal creeks during three six-to-ten-week deployments: two in winter and one in summer. Currents, wave properties and SSC were measured in the adjacent shallows. All deployments spanned the largest spring tides of the season. Results show that tidally-averaged suspended-sediment flux (SSF) in the tidal creeks decreased with increasing tidal energy, and SSF was negative (bayward) for tidal cycles with maximum water surface elevation above the marsh plain. Export during the largest spring tides dominated the cumulative SSF measured during the deployments. During ebb tides following the highest tides, velocities exceeded 1 m/s in the narrow tidal creeks, resulting in negative tidally-averaged water flux, and mobilizing sediment from the creek banks or bed. Storm surge also produced negative SSF. Tidally-averaged SSF was positive in wavey conditions with moderate tides. Spring-tide sediment export was about 50% less at a station 130 m further up the tidal creek than at the creek mouth. The negative tidally-averaged water flux near the creek mouth during spring tides indicates that in the lower marsh, some of the water flooding directly across the bay--marsh interface drains through the tidal creeks, and suggests that this interface may be a pathway for sediment supply to the lower marsh as well.

  1. Soda Creek springs - metamorphic waters in the eastern Alaska Range

    USGS Publications Warehouse

    Richter, D.H.; Donaldson, D.E.; Lamarre, R.A.

    1973-01-01

    The Soda Creek springs are a group of small, cold mineral springs on the southern flank of the eastern Alaska Range. The spring waters contain anomalous concentrations of carbon dioxide, sodium, chlorine, sulfate, boron, and ammonia and are actively precipitating deposits of calcite and aragonite. Sparingly present in these deposits are mixed-layer illite-montmorillonite clays and zeolite minerals. Low-temperaturemetamorphic reactions in subjacent marine sedimentary rocks of Jurassic and Cretaceous age may have produced the fluids and silicate minerals. With only a few exceptions, cool bicarbonate-rich springs in Alaska are concentrated south of the Denali fault system in south-central Alaska, southeastern Alaska, and along the Kaltag-Tintina fault system. These areas are characterized by active or recently activetectonism, major faults and folds, and an abundance of marine sedimentary rocks.

  2. FINAL REPORT WIND POWER WARM SPRINGS RESERVATION TRIBAL LANDS DOE GRANT NUMBER DE-FG36-07GO17077 SUBMITTED BY WARM SPRINGS POWER & WATER ENTERPRISES A CORPORATE ENTITY OF THE CONFEDERATED TRIBES OF WARM SPRINGS WARM SPRINGS, OREGON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jim Manion; Michael Lofting; Wil Sando

    2009-03-30

    Wind Generation Feasibility Warm Springs Power and Water Enterprises (WSPWE) is a corporate entity owned by the Confederated Tribes of the Warm Springs Reservation, located in central Oregon. The organization is responsible for managing electrical power generation facilities on tribal lands and, as part of its charter, has the responsibility to evaluate and develop renewable energy resources for the Confederated Tribes of Warm Springs. WSPWE recently completed a multi-year-year wind resource assessment of tribal lands, beginning with the installation of wind monitoring towers on the Mutton Mountains site in 2003, and collection of on-site wind data is ongoing. The studymore » identified the Mutton Mountain site on the northeastern edge of the reservation as a site with sufficient wind resources to support a commercial power project estimated to generate over 226,000 MWh per year. Initial estimates indicate that the first phase of the project would be approximately 79.5 MW of installed capacity. This Phase 2 study expands and builds on the previously conducted Phase 1 Wind Resource Assessment, dated June 30, 2007. In order to fully assess the economic benefits that may accrue to the Tribes through wind energy development at Mutton Mountain, a planning-level opinion of probable cost was performed to define the costs associated with key design and construction aspects of the proposed project. This report defines the Mutton Mountain project costs and economics in sufficient detail to allow the Tribes to either build the project themselves or contract with a developer under the most favorable terms possible for the Tribes.« less

  3. Preliminary geochemical assessment of water in selected streams, springs, and caves in the Upper Baker and Snake Creek drainages in Great Basin National Park, Nevada, 2009

    USGS Publications Warehouse

    Paul, Angela P.; Thodal, Carl E.; Baker, Gretchen M.; Lico, Michael S.; Prudic, David E.

    2014-01-01

    Water in caves, discharging from springs, and flowing in streams in the upper Baker and Snake Creek drainages are important natural resources in Great Basin National Park, Nevada. Water and rock samples were collected from 15 sites during February 2009 as part of a series of investigations evaluating the potential for water resource depletion in the park resulting from the current and proposed groundwater withdrawals. This report summarizes general geochemical characteristics of water samples collected from the upper Baker and Snake Creek drainages for eventual use in evaluating possible hydrologic connections between the streams and selected caves and springs discharging in limestone terrain within each watershed.Generally, water discharging from selected springs in the upper Baker and Snake Creek watersheds is relatively young and, in some cases, has similar chemical characteristics to water collected from associated streams. In the upper Baker Creek drainage, geochemical data suggest possible hydrologic connections between Baker Creek and selected springs and caves along it. The analytical results for water samples collected from Wheelers Deep and Model Caves show characteristics similar to those from Baker Creek, suggesting a hydrologic connection between the creek and caves, a finding previously documented by other researchers. Generally, geochemical evidence does not support a connection between water flowing in Pole Canyon Creek to that in Model Cave, at least not to any appreciable extent. The water sample collected from Rosethorn Spring had relatively high concentrations of many of the constituents sampled as part of this study. This finding was expected as the water from the spring travelled through alluvium prior to being discharged at the surface and, as a result, was provided the opportunity to interact with soil minerals with which it came into contact. Isotopic evidence does not preclude a connection between Baker Creek and the water discharging from

  4. Groundwater flow cycling between a submarine spring and an inland fresh water spring.

    PubMed

    Davis, J Hal; Verdi, Richard

    2014-01-01

    Spring Creek Springs and Wakulla Springs are large first magnitude springs that derive water from the Upper Floridan Aquifer. The submarine Spring Creek Springs are located in a marine estuary and Wakulla Springs are located 18 km inland. Wakulla Springs has had a consistent increase in flow from the 1930s to the present. This increase is probably due to the rising sea level, which puts additional pressure head on the submarine Spring Creek Springs, reducing its fresh water flow and increasing flows in Wakulla Springs. To improve understanding of the complex relations between these springs, flow and salinity data were collected from June 25, 2007 to June 30, 2010. The flow in Spring Creek Springs was most sensitive to rainfall and salt water intrusion, and the flow in Wakulla Springs was most sensitive to rainfall and the flow in Spring Creek Springs. Flows from the springs were found to be connected, and composed of three repeating phases in a karst spring flow cycle: Phase 1 occurred during low rainfall periods and was characterized by salt water backflow into the Spring Creek Springs caves. The higher density salt water blocked fresh water flow and resulted in a higher equivalent fresh water head in Spring Creek Springs than in Wakulla Springs. The blocked fresh water was diverted to Wakulla Springs, approximately doubling its flow. Phase 2 occurred when heavy rainfall resulted in temporarily high creek flows to nearby sinkholes that purged the salt water from the Spring Creek Springs caves. Phase 3 occurred after streams returned to base flow. The Spring Creek Springs caves retained a lower equivalent fresh water head than Wakulla Springs, causing them to flow large amounts of fresh water while Wakulla Springs flow was reduced by about half. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  5. Groundwater flow cycling between a submarine spring and an inland fresh water spring

    USGS Publications Warehouse

    Davis, J. Hal; Verdi, Richard

    2014-01-01

    Spring Creek Springs and Wakulla Springs are large first magnitude springs that derive water from the Upper Floridan Aquifer. The submarine Spring Creek Springs are located in a marine estuary and Wakulla Springs are located 18 km inland. Wakulla Springs has had a consistent increase in flow from the 1930s to the present. This increase is probably due to the rising sea level, which puts additional pressure head on the submarine Spring Creek Springs, reducing its fresh water flow and increasing flows in Wakulla Springs. To improve understanding of the complex relations between these springs, flow and salinity data were collected from June 25, 2007 to June 30, 2010. The flow in Spring Creek Springs was most sensitive to rainfall and salt water intrusion, and the flow in Wakulla Springs was most sensitive to rainfall and the flow in Spring Creek Springs. Flows from the springs were found to be connected, and composed of three repeating phases in a karst spring flow cycle: Phase 1 occurred during low rainfall periods and was characterized by salt water backflow into the Spring Creek Springs caves. The higher density salt water blocked fresh water flow and resulted in a higher equivalent fresh water head in Spring Creek Springs than in Wakulla Springs. The blocked fresh water was diverted to Wakulla Springs, approximately doubling its flow. Phase 2 occurred when heavy rainfall resulted in temporarily high creek flows to nearby sinkholes that purged the salt water from the Spring Creek Springs caves. Phase 3 occurred after streams returned to base flow. The Spring Creek Springs caves retained a lower equivalent fresh water head than Wakulla Springs, causing them to flow large amounts of fresh water while Wakulla Springs flow was reduced by about half.

  6. Hydrogeologic setting and conceptual hydrologic model of the Spring Creek basin, Centre County, Pennsylvania

    USGS Publications Warehouse

    Fulton, John W.; Koerkle, Edward H.; McAuley, Steven D.; Hoffman, Scott A.; Zarr, Linda F.

    2005-01-01

    The Spring Creek Basin, Centre County, Pa., is experiencing some of the most rapid growth and development within the Commonwealth. This trend has resulted in land-use changes and increased water use, which will affect the quantity and quality of stormwater runoff, surface water, ground water, and aquatic resources within the basin. The U.S. Geological Survey (USGS), in cooperation with the ClearWater Conservancy (CWC), Spring Creek Watershed Community (SCWC), and Spring Creek Watershed Commission (SCWCm), has developed a Watershed Plan (Plan) to assist decision makers in water-resources planning. One element of the Plan is to provide a summary of the basin characteristics and a conceptual model that incorporates the hydrogeologic characteristics of the basin. The report presents hydrogeologic data for the basin and presents a conceptual model that can be used as the basis for simulating surface-water and ground-water flow within the basin. Basin characteristics; sources of data referenced in this text; physical characteristics such as climate, physiography, topography, and land use; hydrogeologic characteristics; and water-quality characteristics are discussed. A conceptual model is a simplified description of the physical components and interaction of the surface- and ground-water systems. The purpose for constructing a conceptual model is to simplify the problem and to organize the available data so that the system can be analyzed accurately. Simplification is necessary, because a complete accounting of a system, such as Spring Creek, is not possible. The data and the conceptual model could be used in development of a fully coupled numerical model that dynamically links surface water, ground water, and land-use changes. The model could be used by decision makers to manage water resources within the basin and as a prototype that is transferable to other watersheds.

  7. 77 FR 33237 - Saline Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National Park, Inyo... an Environmental Impact Statement for the Saline Valley Warm Springs Management Plan, Death Valley... analysis process for the Saline Valley Warm Springs Management Plan for Death Valley [[Page 33238...

  8. Temporal Geochemistry Data from Five Springs in the Cement Creek Watershed, San Juan County, Colorado

    USGS Publications Warehouse

    Johnson, Raymond H.; Wirt, Laurie; Leib, Kenneth J.

    2008-01-01

    Temporal data from five springs in the Cement Creek watershed, San Juan County, Colorado provide seasonal geochemical data for further research in the formation of ferricretes. In addition, these data can be used to help understand the ground-water flow system. The resulting data demonstrate the difficulty in gathering reliable seasonal data from springs, show the unique geochemistry of each spring due to local geology, and provide seasonal trends in geochemistry for Tiger Iron Spring.

  9. Spring runoff water-chemistry data from the Standard Mine and Elk Creek, Gunnison County, Colorado, 2010

    USGS Publications Warehouse

    Manning, Andrew H.; Verplanck, Philip L.; Mast, M. Alisa; Marsik, Joseph; McCleskey, R. Blaine

    2011-01-01

    Water samples were collected approximately every two weeks during the spring of 2010 from the Level 1 portal of the Standard Mine and from two locations on Elk Creek. The objective of the sampling was to: (1) better define the expected range and timing of variations in pH and metal concentrations in Level 1 discharge and Elk Creek during spring runoff; and (2) further evaluate possible mechanisms controlling water quality during spring runoff. Samples were analyzed for major ions, selected trace elements, and stable isotopes of oxygen and hydrogen (oxygen-18 and deuterium). The Level 1 portal sample and one of the Elk Creek samples (EC-CELK1) were collected from the same locations as samples taken in the spring of 2007, allowing comparison between the two different years. Available meteorological and hydrologic data suggest that 2010 was an average water year and 2007 was below average. Field pH and dissolved metal concentrations in Level 1 discharge had the following ranges: pH, 2.90 to 6.23; zinc, 11.2 to 26.5 mg/L; cadmium, 0.084 to 0.158 mg/L; manganese, 3.23 to 10.2 mg/L; lead, 0.0794 to 1.71 mg/L; and copper, 0.0674 to 1.14 mg/L. These ranges were generally similar to those observed in 2007. Metal concentrations near the mouth of Elk Creek (EC-CELK1) were substantially lower than in 2007. Possible explanations include remedial efforts at the Standard Mine site implemented after 2007 and greater dilution due to higher Elk Creek flows in 2010. Temporal patterns in pH and metal concentrations in Level 1 discharge were similar to those observed in 2007, with pH, zinc, cadmium, and manganese concentrations generally decreasing, and lead and copper generally increasing during the snowmelt runoff period. Zinc and cadmium concentrations were inversely correlated with flow and thus apparently dilution-controlled. Lead and copper concentrations were inversely correlated with pH and thus apparently pH-controlled. Zinc, cadmium, and manganese concentrations near the

  10. Finished genome assembly of warm spring isolate Francisella novicida DPG 3A-IS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Shannon L.; Minogue, Timothy D.; Daligault, Hajnalka E.

    2015-09-17

    We sequenced the complete genome of Francisella novicida DPG 3A-IS to closed and finished status. This is a warm spring isolate recovered from Hobo Warm Spring (Utah, USA). The last assembly is available in NCBI under accession number CP012037.

  11. Water-budgets and recharge-area simulations for the Spring Creek and Nittany Creek Basins and parts of the Spruce Creek Basin, Centre and Huntingdon Counties, Pennsylvania, Water Years 2000–06

    USGS Publications Warehouse

    Fulton, John W.; Risser, Dennis W.; Regan, R. Steve; Walker, John F.; Hunt, Randall J.; Niswonger, Richard G.; Hoffman, Scott A.; Markstrom, Steven

    2015-08-17

    This report describes the results of a study by the U.S. Geological Survey in cooperation with ClearWater Conservancy and the Pennsylvania Department of Environmental Protection to develop a hydrologic model to simulate a water budget and identify areas of greater than average recharge for the Spring Creek Basin in central Pennsylvania. The model was developed to help policy makers, natural resource managers, and the public better understand and manage the water resources in the region. The Groundwater and Surface-water FLOW model (GSFLOW), which is an integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Groundwater Flow Model (MODFLOW-NWT), was used to simulate surface water and groundwater in the Spring Creek Basin for water years 2000–06. Because the groundwater and surface-water divides for the Spring Creek Basin do not coincide, the study area includes the Nittany Creek Basin and headwaters of the Spruce Creek Basin. The hydrologic model was developed by the use of a stepwise process: (1) develop and calibrate a PRMS model and steady-state MODFLOW-NWT model; (2) re-calibrate the steady-state MODFLOW-NWT model using potential recharge estimates simulated from the PRMS model, and (3) integrate the PRMS and MODFLOW-NWT models into GSFLOW. The individually calibrated PRMS and MODFLOW-NWT models were used as a starting point for the calibration of the fully coupled GSFLOW model. The GSFLOW model calibration was done by comparing observations and corresponding simulated values of streamflow from 11 streamgages and groundwater levels from 16 wells. The cumulative water budget and individual water budgets for water years 2000–06 were simulated by using GSFLOW. The largest source and sink terms are represented by precipitation and evapotranspiration, respectively. For the period simulated, a net surplus in the water budget was computed where inflows exceeded outflows by about 1.7 billion cubic feet (0.47 inches per year over the basin area

  12. Climate-induced warming imposes a threat to north European spring ecosystems.

    PubMed

    Jyväsjärvi, Jussi; Marttila, Hannu; Rossi, Pekka M; Ala-Aho, Pertti; Olofsson, Bo; Nisell, Jakob; Backman, Birgitta; Ilmonen, Jari; Virtanen, Risto; Paasivirta, Lauri; Britschgi, Ritva; Kløve, Bjørn; Muotka, Timo

    2015-12-01

    Interest in climate change effects on groundwater has increased dramatically during the last decade. The mechanisms of climate-related groundwater depletion have been thoroughly reviewed, but the influence of global warming on groundwater-dependent ecosystems (GDEs) remains poorly known. Here we report long-term water temperature trends in 66 northern European cold-water springs. A vast majority of the springs (82%) exhibited a significant increase in water temperature during 1968-2012. Mean spring water temperatures were closely related to regional air temperature and global radiative forcing of the corresponding year. Based on three alternative climate scenarios representing low (RCP2.6), intermediate (RCP6) and high-emission scenarios (RCP8.5), we estimate that increase in mean spring water temperature in the region is likely to range from 0.67 °C (RCP2.6) to 5.94 °C (RCP8.5) by 2086. According to the worst-case scenario, water temperature of these originally cold-water ecosystems (regional mean in the late 1970s: 4.7 °C) may exceed 12 °C by the end of this century. We used bryophyte and macroinvertebrate species data from Finnish springs and spring-fed streams to assess ecological impacts of the predicted warming. An increase in spring water temperature by several degrees will likely have substantial biodiversity impacts, causing regional extinction of native, cold-stenothermal spring specialists, whereas species diversity of headwater generalists is likely to increase. Even a slight (by 1 °C) increase in water temperature may eliminate endemic spring species, thus altering bryophyte and macroinvertebrate assemblages of spring-fed streams. Climate change-induced warming of northern regions may thus alter species composition of the spring biota and cause regional homogenization of biodiversity in headwater ecosystems. © 2015 John Wiley & Sons Ltd.

  13. Divergent responses to spring and winter warming drive community level flowering trends

    PubMed Central

    Cook, Benjamin I.; Wolkovich, Elizabeth M.; Parmesan, Camille

    2012-01-01

    Analyses of datasets throughout the temperate midlatitude regions show a widespread tendency for species to advance their springtime phenology, consistent with warming trends over the past 20–50 y. Within these general trends toward earlier spring, however, are species that either have insignificant trends or have delayed their timing. Various explanations have been offered to explain this apparent nonresponsiveness to warming, including the influence of other abiotic cues (e.g., photoperiod) or reductions in fall/winter chilling (vernalization). Few studies, however, have explicitly attributed the historical trends of nonresponding species to any specific factor. Here, we analyzed long-term data on phenology and seasonal temperatures from 490 species on two continents and demonstrate that (i) apparent nonresponders are indeed responding to warming, but their responses to fall/winter and spring warming are opposite in sign and of similar magnitude; (ii) observed trends in first flowering date depend strongly on the magnitude of a given species’ response to fall/winter vs. spring warming; and (iii) inclusion of fall/winter temperature cues strongly improves hindcast model predictions of long-term flowering trends compared with models with spring warming only. With a few notable exceptions, climate change research has focused on the overall mean trend toward phenological advance, minimizing discussion of apparently nonresponding species. Our results illuminate an understudied source of complexity in wild species responses and support the need for models incorporating diverse environmental cues to improve predictability of community level responses to anthropogenic climate change. PMID:22615406

  14. Warm spring reduced carbon cycle impact of the 2012 US summer drought

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Sebastian; Keenan, Trevor F.; Fisher, Joshua B.

    The global terrestrial carbon sink offsets one-third of the world's fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here in this paper, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inversemore » modeling to quantify the impact of the warmer spring and summer drought on biosphereatmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere-atmosphere feedbacks.« less

  15. Warm spring reduced carbon cycle impact of the 2012 US summer drought.

    PubMed

    Wolf, Sebastian; Keenan, Trevor F; Fisher, Joshua B; Baldocchi, Dennis D; Desai, Ankur R; Richardson, Andrew D; Scott, Russell L; Law, Beverly E; Litvak, Marcy E; Brunsell, Nathaniel A; Peters, Wouter; van der Laan-Luijkx, Ingrid T

    2016-05-24

    The global terrestrial carbon sink offsets one-third of the world's fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inverse modeling to quantify the impact of the warmer spring and summer drought on biosphere-atmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere-atmosphere feedbacks.

  16. Warm spring reduced carbon cycle impact of the 2012 US summer drought

    PubMed Central

    Keenan, Trevor F.; Fisher, Joshua B.; Richardson, Andrew D.; Scott, Russell L.; Law, Beverly E.; Litvak, Marcy E.; Brunsell, Nathaniel A.; Peters, Wouter

    2016-01-01

    The global terrestrial carbon sink offsets one-third of the world’s fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inverse modeling to quantify the impact of the warmer spring and summer drought on biosphere-atmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere–atmosphere feedbacks. PMID:27114518

  17. Warm spring reduced carbon cycle impact of the 2012 US summer drought

    DOE PAGES

    Wolf, Sebastian; Keenan, Trevor F.; Fisher, Joshua B.; ...

    2016-04-25

    The global terrestrial carbon sink offsets one-third of the world's fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here in this paper, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inversemore » modeling to quantify the impact of the warmer spring and summer drought on biosphereatmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere-atmosphere feedbacks.« less

  18. Trout use of woody debris and habitat in Wine Spring Creek, North Carolina

    Treesearch

    Patricia A. Flebbe

    1999-01-01

    Wine Spring Creek basin, in the mountains of North Carolina's Nantahala National Forest, is an ecosystem management demonstration site, in which ecological concepts for management and restoration are tested. Large woody debris (LWD) is an important link between streams and the adjacent riparian forest, but evidence for the connection between LWD and trout in the...

  19. A natural tracer investigation of the hydrological regime of Spring Creek Springs, the largest submarine spring system in Florida

    NASA Astrophysics Data System (ADS)

    Dimova, Natasha T.; Burnett, William C.; Speer, Kevin

    2011-04-01

    This work presents results from a nearly two-year monitoring of the hydrologic dynamics of the largest submarine spring system in Florida, Spring Creek Springs. During the summer of 2007 this spring system was observed to have significantly reduced flow due to persistent drought conditions. Our examination of the springs revealed that the salinity of the springs' waters had increased significantly, from 4 in 2004 to 33 in July 2007 with anomalous high radon ( 222Rn, t1/2=3.8 days) in surface water concentrations indicating substantial saltwater intrusion into the local aquifer. During our investigation from August 2007 to May 2009 we deployed on an almost monthly basis a continuous radon-in-water measurement system and monitored the salinity fluctuations in the discharge area. To evaluate the springs' freshwater flux we developed three different models: two of them are based on water velocity measurements and either salinity or 222Rn in the associated surface waters as groundwater tracers. The third approach used only salinity changes within the spring area. The three models showed good agreement and the results confirmed that the hydrologic regime of the system is strongly correlated to local precipitation and water table fluctuations with higher discharges after major rain events and very low, even reverse flow during prolong droughts. High flow spring conditions were observed twice during our study, in the early spring and mid-late summer of 2008. However the freshwater spring flux during our observation period never reached that reported from a 1970s value of 4.9×10 6 m 3/day. The maximum spring flow was estimated at about 3.0×10 6 m 3/day after heavy precipitation in February-March 2008. As a result of this storm (total of 173 mm) the salinity in the spring area dropped from about 27 to 2 in only two days. The radon-in-water concentrations dramatically increased in parallel, from about 330 Bq/m 3 to about 6600 Bq/m 3. Such a rapid response suggests a direct

  20. Solar Eclipse Engagement and Outreach in Madras and Warm Springs, Oregon

    NASA Astrophysics Data System (ADS)

    Kirk, M. S.; Pesnell, W. D.; Ahern, S.; Boyle, M.; Gonzales, T.; Leone, C.

    2017-12-01

    The Central Oregon towns of Madras and Warm Springs were in an ideal location to observe the total solar eclipse of 2017. In anticipation of this event, we embarked on a yearlong partnership to engage and excite these communities. We developed educational events for all students in the school district, grades K-12, as well as two evening keynote addresses during an eclipse week in May. This eclipse week provided resources, learning opportunities, and safety information for all students and families prior to the end of the school year. With the collaboration of graphic design students at Oregon State University, we produced static educational displays as an introduction to the Museum at Warm Springs' exhibit featuring eclipse art. The weekend before the eclipse, we gave away 15,000 pairs of solar viewing glasses to the local community and manned a science booth at the Oregon Solarfest to engage the arriving eclipse tourists. These efforts culminated on Monday, August 21st with tens of thousands of people viewing eclipse totality in Madras and Warm Springs.

  1. Responses of spring phenology to climate warming reduced over the past decades

    NASA Astrophysics Data System (ADS)

    Fu, Yongshuo. H.; Zhao, hongfang; piao, Shilong; Peaucelle, Marc; Peng, Shushi; Zhou, Guiyun; Ciais, Philippe; Huang, Mengtian; Menzel, Annette; Penuelas, Josep; Song, Yang; Vitasse, Yann; Zeng, Zhenzhong; Janssens, Ivan. A.

    2016-04-01

    The phenology of spring leaf unfolding is one of the key indicators of the climate change on ecosystems, and influences regional and hemispheric-scale carbon balances and plant-animal interactions. Changes in the phenology of spring leaf unfolding can also exert biophysical feedbacks on climate by modifying the surface albedo and energy budget. Recent studies have reported significant advances in spring phenology as a result of warming in most northern hemisphere regions. Climate warming is projected to further increase, but the future evolution of the phenology of spring leaf unfolding remains uncertain - in view of the imperfect understanding of how the underlying mechanisms respond to environmental stimuli. In addition, the relative contributions of each environmental stimulus, which together define the apparent temperature sensitivity of the phenology of spring leaf unfolding (advances in days per degree Celsius warming, ST), may also change over time. An improved characterization of the variation in phenological responses to spring temperature is thus valuable, provided that it addresses temporal and spatial scales relevant for regional projections. Using long-term in situ observations of leaf unfolding for seven dominant European tree species at 1,245 sites, we show here that the apparent response of leaf unfolding to climate warming (ST, expressed in days advance per ° C) has significantly decreased from 1980 to 2013 in all monitored tree species. Averaged across all species and sites, ST decreased by 40% from 4.0 ± 1.8 days ° C-1 during 1980-1994 to 2.3 ± 1.6 days ° C-1 during 1999-2013. The declining ST was also simulated by chilling-based phenology models, albeit with a weaker decline (24%-30%) than observed in situ. The reduction in ST is likely to be partly attributable to reduced chilling. Nonetheless, other mechanisms may also play a role, such as 'photoperiod limitation' mechanisms that may become ultimately limiting when leaf unfolding dates

  2. A multi-disciplinary investigation of Irish warm springs and their potential for geothermal energy provision.

    NASA Astrophysics Data System (ADS)

    Blake, Sarah; Jones, Alan G.; Henry, Tiernan

    2015-04-01

    Irish warm springs are one of a set of several target types that are being evaluated for their geothermal energy potential during the course of the island-wide assessment of the geothermal energy potential of Ireland under the IRETHERM project (www.iretherm.ie). Forty-two warm springs and warm shallow groundwater occurrences have been recorded in Ireland; water temperatures in the springs (approx. 12-25 °C) are elevated with respect to average Irish groundwater temperatures (10-11 °C). This study focuses on warm springs in east-central Ireland found in the Carboniferous limestone of the Dublin Basin. A combination of geophysical methods (controlled source electromagnetics (CSEM) and audio-magnetotellurics (AMT)) and hydrochemical analyses (including time-lapse temperature and electrical conductivity measurements) have been utilised at several of the springs to determine the source of the heated waters at depth and the nature of the geological structures that deliver the warm waters to the surface. Using the example of St. Gorman's Well, Co. Meath, we show how the combination of these different methods of investigation and the interpretation of these various data sets enables us to better understand the physical and chemical variability of the spring through time. This will provide the basis for an assessment of the source of these thermal waters as a potential geothermal energy reservoir and will allow for more precise characterisation of the groundwater resource. We present subsurface models derived from new geophysical data collected at St. Gorman's Well in 2013. This high-resolution AMT survey consisted of a grid of 40 soundings recorded at approximately 200 m intervals centred on the spring. The aim of the survey was to image directly any (electrically conductive) fluid conduit systems that may be associated with the springs and to provide an understanding of the observed association of the Irish warm springs with major structural lineaments, such as the NE

  3. Geologic framework, regional aquifer properties (1940s-2009), and spring, creek, and seep properties (2009-10) of the upper San Mateo Creek Basin near Mount Taylor, New Mexico

    USGS Publications Warehouse

    Langman, Jeff B.; Sprague, Jesse E.; Durall, Roger A.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Forest Service, examined the geologic framework, regional aquifer properties, and spring, creek, and seep properties of the upper San Mateo Creek Basin near Mount Taylor, which contains areas proposed for exploratory drilling and possible uranium mining on U.S. Forest Service land. The geologic structure of the region was formed from uplift of the Zuni Mountains during the Laramide Orogeny and the Neogene volcanism associated with the Mount Taylor Volcanic Field. Within this structural context, numerous aquifers are present in various Paleozoic and Mesozoic sedimentary formations and the Quaternary alluvium. The distribution of the aquifers is spatially variable because of the dip of the formations and erosion that produced the current landscape configuration where older formations have been exhumed closer to the Zuni Mountains. Many of the alluvial deposits and formations that contain groundwater likely are hydraulically connected because of the solid-matrix properties, such as substantive porosity, but shale layers such as those found in the Mancos Formation and Chinle Group likely restrict vertical flow. Existing water-level data indicate topologically downgradient flow in the Quaternary alluvium and indiscernible general flow patterns in the lower aquifers. According to previously published material and the geologic structure of the aquifers, the flow direction in the lower aquifers likely is in the opposite direction compared to the alluvium aquifer. Groundwater within the Chinle Group is known to be confined, which may allow upward migration of water into the Morrison Formation; however, confining layers within the Chinle Group likely retard upward leakage. Groundwater was sodium-bicarbonate/sulfate dominant or mixed cation-mixed anion with some calcium/bicarbonate water in the study area. The presence of the reduction/oxidation-sensitive elements iron and manganese in groundwater indicates reducing

  4. Evaluation of flood inundation in Crystal Springs Creek, Portland, Oregon

    USGS Publications Warehouse

    Stonewall, Adam; Hess, Glen

    2016-05-25

    Efforts to improve fish passage have resulted in the replacement of six culverts in Crystal Springs Creek in Portland, Oregon. Two more culverts are scheduled to be replaced at Glenwood Street and Bybee Boulevard (Glenwood/Bybee project) in 2016. Recently acquired data have allowed for a more comprehensive understanding of the hydrology of the creek and the topography of the watershed. To evaluate the impact of the culvert replacements and recent hydrologic data, a Hydrologic Engineering Center-River Analysis System hydraulic model was developed to estimate water-surface elevations during high-flow events. Longitudinal surface-water profiles were modeled to evaluate current conditions and future conditions using the design plans for the culverts to be installed in 2016. Additional profiles were created to compare with the results from the most recent flood model approved by the Federal Emergency Management Agency for Crystal Springs Creek and to evaluate model sensitivity.Model simulation results show that water-surface elevations during high-flow events will be lower than estimates from previous models, primarily due to lower estimates of streamflow associated with the 0.01 and 0.002 annual exceedance probability (AEP) events. Additionally, recent culvert replacements have resulted in less ponding behind crossings. Similarly, model simulation results show that the proposed replacement culverts at Glenwood Street and Bybee Boulevard will result in lower water-surface elevations during high-flow events upstream of the proposed project. Wider culverts will allow more water to pass through crossings, resulting in slightly higher water-surface elevations downstream of the project during high-flows than water-surface elevations that would occur under current conditions. For the 0.01 AEP event, the water-surface elevations downstream of the Glenwood/Bybee project will be an average of 0.05 ft and a maximum of 0.07 ft higher than current conditions. Similarly, for the 0

  5. Geochemical Indicators of Urban Development in Tributaries and Springs along the Bull Creek Watershed, Austin, TX

    NASA Astrophysics Data System (ADS)

    Senison, J. J.; Banner, J. L.; Reyes, D.; Sharp, J. M.

    2012-12-01

    Urbanization can cause significant changes to both flow and water quality in streams and tributaries. In the Austin, Texas, area, previous studies have demonstrated that streamwater strontium isotope compositions (87Sr/86Sr) correlate with measures of urbanization when comparing non-urbanized streams to their urban counterparts. The inclusion of municipal water into natural surface water is inferred from the mean 87Sr/86Sr value found in urbanized streams, which falls between the high value in treated municipal water and the lower values found in local surface streams sourcing from non-urbanized catchments. Fluoride is added to municipal tap water in the treatment process, and a correlation between 87Sr/86Sr and fluoride is observed in streamwater sampled from the watersheds around Austin. These relationships represent some of the principal findings reported in Christian et al. (2011). Current research is testing the hypothesis that municipal water influx in urban areas is a primary modifier of stream- and spring-water chemistry in a single watershed that contains a strong gradient in land use. We compare 87Sr/86Sr and other chemical constituents with potential contributing endmembers, such as municipal tap water and wastewater, local soil and rock leachates, and land use within the Bull Creek watershed. As a consequence of the history of land development, some Bull Creek tributaries are sourced and flow almost entirely in fully-developed areas, whereas others are located in protected natural areas. Thirteen tributaries were monitored and classified as either urbanized or non-urbanized based upon land use within the tributary catchment. Springs in the Bull Creek watershed were also sampled and are similarly classified. The Bull Creek watershed is composed of Lower Cretaceous limestone with significantly lower 87Sr/86Sr than that of municipal water taken from the Lower Colorado River, which is underlain in part by Precambrian rocks upstream of Austin. There are

  6. Responses to riparian restoration in the Spring Creek watershed, Central Pennsylvania

    USGS Publications Warehouse

    Carline, R.F.; Walsh, M.C.

    2007-01-01

    Riparian treatments, consisting of 3- to 4-m buffer strips, stream bank stabilization, and rock-lined stream crossings, were installed in two streams with livestock grazing to reduce sediment loading and stream bank erosion. Cedar Run and Slab Cabin Run, the treatment streams, and Spring Creek, an adjacent reference stream without riparian grazing, were monitored prior to (1991-1992) and 3-5 years after (2001-2003) riparian buffer installation to assess channel morphology, stream substrate composition, suspended sediments, and macroinvertebrate communities. Few changes were found in channel widths and depths, but channel-structuring flow events were rare in the drought period after restoration. Stream bank vegetation increased from 50% or less to 100% in nearly all formerly grazed riparian buffers. The proportion of fine sediments in stream substrates decreased in Cedar Run but not in Slab Cabin Run. After riparian treatments, suspended sediments during base flow and storm flow decreased 47-87% in both streams. Macroinvertebrate diversity did not improve after restoration in either treated stream. Relative to Spring Creek, macroinvertebrate densities increased in both treated streams by the end of the posttreatment sampling period. Despite drought conditions that may have altered physical and biological effects of riparian treatments, goals of the riparian restoration to minimize erosion and sedimentation were met. A relatively narrow grass buffer along 2.4 km of each stream was effective in improving water quality, stream substrates, and some biological metrics. ?? 2007 Society for Ecological Restoration International.

  7. Water-quality appraisal, Mammoth Creek and Hot Creek, Mono County, California

    USGS Publications Warehouse

    Setmire, J.G.

    1984-01-01

    A late summer reconnaissance in 1981 and a spring high-flow sampling in 1982 of Mammoth Creek and Hot Creek, located in the Mammoth crest area of the Sierra Nevada, indicated that mineralization, eutrophication, sedimentation, and limited areas of fecal contamination were occurring. Mineralization, indicated by a downstream increase in dissolved-solids concentration, was due primarily to geothermal springs that gradually decreased in the percentage of calcium, increased in the percentage of magnesium and sodium, and caused fluctuating, but overall increasing percentage of fluoride, sulfate, and chloride. Resulting water quality in Mammoth Creek was similar to that of the springs forming Hot Creek. Eutrophication was observed in Twin Lakes and the reach of Hot Creek below the fish hatchery. Twin Lakes had floating mats of algae and a high dissolved-oxygen saturation of 147 percent at a pH of 9.2. Hot Creek had excessive aquatic vascular plant and algae growth, dissolved-oxygen saturations ranging from 65 to 200 percent, algal growth potential of 30 milligrams per liter, and nitrates and phosphates of 0.44 and 0.157 milligrams per liter. Sedimentation was noted in observations of bed-material composition showing the presence of fine material beginning at Sherwin Creek Road. Fecal contamination was indicated by fecal coliform counts of 250 colonies per 100 milliliters and fecal streptococcal counts greater than 1,000 colonies per 100 milliliters. (USGS)

  8. Plant phenological synchrony increases under rapid within-spring warming.

    PubMed

    Wang, Cong; Tang, Yanhong; Chen, Jin

    2016-05-05

    Phenological synchrony influences many ecological processes. Recent climate change has altered the synchrony of phenology, but little is known about the underlying mechanisms. Here using in situ phenological records from Europe, we found that the standard deviation (SD, as a measure of synchrony) of first leafing day (FLD) and the SD of first flowering day (FFD) among local plants were significantly smaller in the years and/or in the regions with a more rapid within-spring warming speed (WWS, the linear slope of the daily mean temperature against the days during spring, in (o)C/day) with correlation coefficients of -0.75 and -0.48 for FLD and -0.55 and -0.23 for FFD. We further found that the SDs of temperature sensitivity of local plants were smaller under the rapid WWS conditions with correlation coefficients of -0.46 and -0.33 for FLD and FFD respectively. This study provides the first evidence that the within-season rate of change of the temperature but not the magnitude determines plant phenological synchrony. It implies that temporally, the asymmetric seasonal climatic warming may decrease the synchrony via increasing WWS, especially in arctic regions; spatially, plants in coastal and low latitude areas with low WWS would have more diverse spring phenological traits.

  9. Water-quality appraisal. Mammoth Creek and Hot Creek, Mono County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setmire, J.G.

    1984-06-01

    A late summer reconnaissance in 1981 and a spring high-flow sampling in 1982 of Mammoth Creek and Hot Creek, located in the Mammoth crest area of the Sierra Nevada, indicated that three water-quality processes were occurring: (1) mineralization; (2) eutrophication; and (3) sedimentation. Limited areas of fecal contamination were also observed. Mineralization due primarily to geothermal springs increased dissolved-solids concentration downstream, which changed the chemical composition of the water. The percentage of calcium decreased gradually, the percentage of magnesium and sodium increased, and the percentage of fluoride, sulfate, and chloride fluctuated, but increased overall. These changes produced water quality inmore » Mammoth Creek similar to that of the springs forming Hot Creek. Twin Lakes and the reach of Hot Creek below the fish hatchery showed evidence of eutrophication. Twin Lakes had floating mats of algae and a high dissolved-oxygen saturation of 147% at a pH of 9.2. Hot Creek had abundant growth of aquatic vascular plants and algae, dissolved-oxygen saturations ranging from 65% to 200%, algal growth potential of 30 milligrams per liter, nitrate concentration of 0.44 milligram per liter, and phosphate concentration of 0.157 milligram per liter. Sediment deposition was determined from detailed observations of bed-material composition, which showed that fine material was deposited at Sherwin Creek Road and downstream. Fecal contamination was indicated by fecal-coliform bacteria counts of 250 colonies per 100 milliliters and fecal-streptococcal bacteria counts greater than 1000 colonies per 100 milliliters. Although bacterial sampling was sporadic and incomplete, it did indicate adverse effects on water quality for the following beneficial uses that have been identified for Mammoth Creek and Hot Creek: (1) municipal supply; (2) cold-water habitat; and (3) contact and noncontact water recreation. 6 refs., 15 figs., 15 tabs.« less

  10. Declining global warming effects on the phenology of spring leaf unfolding.

    PubMed

    Fu, Yongshuo H; Zhao, Hongfang; Piao, Shilong; Peaucelle, Marc; Peng, Shushi; Zhou, Guiyun; Ciais, Philippe; Huang, Mengtian; Menzel, Annette; Peñuelas, Josep; Song, Yang; Vitasse, Yann; Zeng, Zhenzhong; Janssens, Ivan A

    2015-10-01

    Earlier spring leaf unfolding is a frequently observed response of plants to climate warming. Many deciduous tree species require chilling for dormancy release, and warming-related reductions in chilling may counteract the advance of leaf unfolding in response to warming. Empirical evidence for this, however, is limited to saplings or twigs in climate-controlled chambers. Using long-term in situ observations of leaf unfolding for seven dominant European tree species at 1,245 sites, here we show that the apparent response of leaf unfolding to climate warming (ST, expressed in days advance of leaf unfolding per °C warming) has significantly decreased from 1980 to 2013 in all monitored tree species. Averaged across all species and sites, ST decreased by 40% from 4.0 ± 1.8 days °C(-1) during 1980-1994 to 2.3 ± 1.6 days °C(-1) during 1999-2013. The declining ST was also simulated by chilling-based phenology models, albeit with a weaker decline (24-30%) than observed in situ. The reduction in ST is likely to be partly attributable to reduced chilling. Nonetheless, other mechanisms may also have a role, such as 'photoperiod limitation' mechanisms that may become ultimately limiting when leaf unfolding dates occur too early in the season. Our results provide empirical evidence for a declining ST, but also suggest that the predicted strong winter warming in the future may further reduce ST and therefore result in a slowdown in the advance of tree spring phenology.

  11. Instream habitat restoration and stream temperature reduction in a whirling disease-positive Spring Creek in the Blackfoot River Basin, Montana

    USGS Publications Warehouse

    Pierce, Ron; Podner, Craig; Marczak, Laurie B; Jones, Leslie A.

    2014-01-01

    Anthropogenic warming of stream temperature and the presence of exotic diseases such as whirling disease are both contemporary threats to coldwater salmonids across western North America. We examined stream temperature reduction over a 15-year prerestoration and postrestoration period and the severity of Myxobolus cerebralisinfection (agent of whirling disease) over a 7-year prerestoration and postrestoration period in Kleinschmidt Creek, a fully reconstructed spring creek in the Blackfoot River basin of western Montana. Stream restoration increased channel length by 36% and reduced the wetted surface area by 69% by narrowing and renaturalizing the channel. Following channel restoration, average maximum daily summer stream temperatures decreased from 15.7°C to 12.5°C, average daily temperature decreased from 11.2°C to 10.0°C, and the range of daily temperatures narrowed by 3.3°C. Despite large changes in channel morphology and reductions in summer stream temperature, the prevalence and severity of M. cerebralis infection for hatchery Rainbow Trout Oncorhynchus mykiss remained high (98–100% test fish with grade > 3 infection) versus minimal for hatchery Brown Trout Salmo trutta (2% of test fish with grade-1 infection). This study shows channel renaturalization can reduce summer stream temperatures in small low-elevation, groundwater-dominated streams in the Blackfoot basin to levels more suitable to native trout. However, because of continuous high infections associated with groundwater-dominated systems, the restoration of Kleinschmidt Creek favors brown trout Salmo trutta given their innate resistance to the parasite and the higher relative susceptibility of other salmonids.

  12. Lagrangian sampling of wastewater treatment plant effluent in Boulder Creek, Colorado, and Fourmile Creek, Iowa, during the summer of 2003 and spring of 2005--Hydrological and chemical data

    USGS Publications Warehouse

    Barber, Larry B.; Keefe, Steffanie H.; Kolpin, Dana W.; Schnoebelen, Douglas J.; Flynn, Jennifer L.; Brown, Gregory K.; Furlong, Edward T.; Glassmeyer, Susan T.; Gray, James L.; Meyer, Michael T.; Sandstrom, Mark W.; Taylor, Howard E.; Zaugg, Steven D.

    2011-01-01

    This report presents methods and data for a Lagrangian sampling investigation into chemical loading and in-stream attenuation of inorganic and organic contaminants in two wastewater treatment-plant effluent-dominated streams: Boulder Creek, Colorado, and Fourmile Creek, Iowa. Water-quality sampling was timed to coincide with low-flow conditions when dilution of the wastewater treatment-plant effluent by stream water was at a minimum. Sample-collection times corresponded to estimated travel times (based on tracer tests) to allow the same "parcel" of water to reach downstream sampling locations. The water-quality data are linked directly to stream discharge using flow- and depth-integrated composite sampling protocols. A range of chemical analyses was made for nutrients, carbon, major elements, trace elements, biological components, acidic and neutral organic wastewater compounds, antibiotic compounds, pharmaceutical compounds, steroid and steroidal-hormone compounds, and pesticide compounds. Physical measurements were made for field conditions, stream discharge, and time-of-travel studies. Two Lagrangian water samplings were conducted in each stream, one in the summer of 2003 and the other in the spring of 2005. Water samples were collected from five sites in Boulder Creek: upstream from the wastewater treatment plant, the treatment-plant effluent, and three downstream sites. Fourmile Creek had seven sampling sites: upstream from the wastewater treatment plant, the treatment-plant effluent, four downstream sites, and a tributary. At each site, stream discharge was measured, and equal width-integrated composite water samples were collected and split for subsequent chemical, physical, and biological analyses. During the summer of 2003 sampling, Boulder Creek downstream from the wastewater treatment plant consisted of 36 percent effluent, and Fourmile Creek downstream from the respective wastewater treatment plant was 81 percent effluent. During the spring of 2005

  13. Global warming leads to more uniform spring phenology across elevations.

    PubMed

    Vitasse, Yann; Signarbieux, Constant; Fu, Yongshuo H

    2018-01-30

    One hundred years ago, Andrew D. Hopkins estimated the progressive delay in tree leaf-out with increasing latitude, longitude, and elevation, referred to as "Hopkins' bioclimatic law." What if global warming is altering this well-known law? Here, based on ∼20,000 observations of the leaf-out date of four common temperate tree species located in 128 sites at various elevations in the European Alps, we found that the elevation-induced phenological shift (EPS) has significantly declined from 34 d⋅1,000 m -1 conforming to Hopkins' bioclimatic law in 1960, to 22 d⋅1,000 m -1 in 2016, i.e., -35%. The stronger phenological advance at higher elevations, responsible for the reduction in EPS, is most likely to be connected to stronger warming during late spring as well as to warmer winter temperatures. Indeed, under similar spring temperatures, we found that the EPS was substantially reduced in years when the previous winter was warmer. Our results provide empirical evidence for a declining EPS over the last six decades. Future climate warming may further reduce the EPS with consequences for the structure and function of mountain forest ecosystems, in particular through changes in plant-animal interactions, but the actual impact of such ongoing change is today largely unknown.

  14. Floods on Duck River and Flat, Big Spring, Bomar, and Little Hurricane Creeks and Pettus and Holland Branches and unnamed tributaries to Bomar and Little Hurricane Creeks and Holland Branch in the vicinity of Shelbyville, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This flood hazard information report describes the extent and severity of the flood potential along selected reaches of the Duck River; Flat, Big Spring, Bomar, and Little Hurricane Creeks; Pettus and Holland Branches; and unnamed tributaries to Bomar and Little Hurricane Creeks and Holland Branch in the vicinity of Shelbyville, Tennessee.

  15. Warm Springs: People of the Community Create Their Own Museum.

    ERIC Educational Resources Information Center

    Patt, Olney, Jr.

    1995-01-01

    Since 1974, Paiute, Wasco, and Warm Springs leaders have invested over $850,000 to purchase more than 2,000 artifacts and 2,500 archival photographs and documents for a museum. Addresses the relevance of preserving cultural artifacts, the importance of finding young apprentices to carry on crafts, and the significance of preserving native…

  16. Temperature anomalies in the Lower Suwannee River and tidal creeks, Florida, 2005

    USGS Publications Warehouse

    Raabe, Ellen A.; Bialkowska-Jelinska, Elzbieta

    2007-01-01

    Temperature anomalies in coastal waters were detected with Thermal Infrared imagery of the Lower Suwannee River (LSR) and nearshore tidal marshes on Florida’s Gulf Coast. Imagery included 1.5-m-resolution day and night Thermal Infrared (TIR) and 0.75-m-resolution Color Infrared (CIR) imagery acquired on 2-3 March 2005. Coincident temperature readings were collected on the ground and used to calibrate the imagery. The Floridan aquifer is at or near the land surface in this area and bears a constant temperature signature of ~ 22 degrees Celsius. This consistent temperature contrasts sharply with ambient temperatures during winter and summer months. Temperature anomalies identified in the imagery during a late-winter cold spell may be correlated with aquifer seeps. Hot spots were identified as those areas exceeding ambient water temperature by 4 degrees Celsius or more. Warm-water plumes were also mapped for both day and night imagery. The plume from Manatee Spring, a first-order magnitude spring, influenced water temperature in the lower river. Numerous temperature anomalies were identified in small tributaries and tidal creeks from Shired Island to Cedar Key and were confirmed with field reconnaissance. Abundant warm-water features were identified along tidal creeks south of the Suwannee River and near Waccasassa Bay. Features were mapped in the tidal creeks north of the river but appear to be less common or have lower associated discharge. The imagery shows considerable promise in mapping coastal-aquifer seeps and understanding the underlying geology of the region. Detection of seep locations may aid research in groundwater/surface-water interactions and water quality, and in the management of coastal habitats.

  17. Physical mechanisms of spring and summertime drought related with the global warming over the northern America

    NASA Astrophysics Data System (ADS)

    Choi, W.; Kim, K. Y.

    2017-12-01

    Drought during the growing season (spring through summer) is severe natural hazard in the large cropland over the northern America. It is important to understand how the drought is related with the global warming and how it will change in the future. This study aims to investigate the physical mechanism of global warming impact on the spring and summertime drought over the northern America using Cyclostationary Empirical Orthogonal Function (CSEOF) analysis. The Northern Hemisphere surface warming, the most dominant mode of the surface air temperature, has resulted in decreased relative humidity and precipitation over the mid-latitude region of North America. For the viewpoint of atmospheric water demand, soil moisture and evaporation have also decreased significantly, exacerbating vulnerability of drought. These consistent features of changes in water demand and supply related with the global warming can provide a possibility of credible insight for future drought change.

  18. The thermal regime and species composition of fish and invertebrates in Kelly Warm Spring, Grand Teton National Park, Wyoming

    USGS Publications Warehouse

    Harper, David; Farag, Aida

    2017-01-01

    We evaluated the thermal regime and relative abundance of native and nonnative fish and invertebrates within Kelly Warm Spring and Savage Ditch, Grand Teton National Park, Wyoming. Water temperatures within the system remained relatively warm year-round with mean temperatures >20 °C near the spring source and >5 °C approximately 2 km downstream of the source. A total of 7 nonnative species were collected: Convict/Zebra Cichlid (Cichlasoma nigrofasciatum), Green Swordtail (Xiphophorus hellerii), Tadpole Madtom (Noturus gyrinus), Guppy (Poecilia reticulata), Goldfish (Carassius auratus), red-rimmed melania snail (Melanoides tuberculata), and American bullfrog tadpoles (Lithobates catesbeianus). Nonnative fish (Zebra Cichlids and Green Swordtails), red-rimmed melania snails, and bullfrog tadpoles dominated the upper 2 km of the system. Abundance estimates of the Zebra Cichlid exceeded 12,000 fish/km immediately downstream of the spring source. Relative abundance of native species increased movingdownstream as water temperatures attenuated with distance from the thermally warmed spring source; however, nonnative species were captured 4 km downstream from the spring. Fish diseases were prevalent in both native and nonnative fish from the Kelly Warm Spring pond. Clinostomum marginatum, a trematode parasite, was found in native species samples, and the tapeworm Diphyllobothrium dendriticum was present in samples from nonnative species. Diphyllobothrium dendriticum is rare in Wyoming. Salmonella spp. were also found in some samples of nonnative species. These bacteria are associated with aquarium fish and aquaculture and are generally not found in the wild.

  19. Geologic Map of the Warm Spring Canyon Area, Death Valley National Park, Inyo County, California, With a Discussion of the Regional Significance of the Stratigraphy and Structure

    USGS Publications Warehouse

    Wrucke, Chester T.; Stone, Paul; Stevens, Calvin H.

    2007-01-01

    Warm Spring Canyon is located in the southeastern part of the Panamint Range in east-central California, 54 km south of Death Valley National Park headquarters at Furnace Creek Ranch. For the relatively small size of the area mapped (57 km2), an unusual variety of Proterozoic and Phanerozoic rocks is present. The outcrop distribution of these rocks largely resulted from movement on the east-west-striking, south-directed Butte Valley Thrust Fault of Jurassic age. The upper plate of the thrust fault comprises a basement of Paleoproterozoic schist and gneiss overlain by a thick sequence of Mesoproterozoic and Neoproterozoic rocks, the latter of which includes diamictite generally considered to be of glacial origin. The lower plate is composed of Devonian to Permian marine formations overlain by Jurassic volcanic and sedimentary rocks. Late Jurassic or Early Cretaceous plutons intrude rocks of the area, and one pluton intrudes the Butte Valley Thrust Fault. Low-angle detachment faults of presumed Tertiary age underlie large masses of Neoproterozoic dolomite in parts of the area. Movement on these faults predated emplacement of middle Miocene volcanic rocks in deep, east-striking paleovalleys. Excellent exposures of all the rocks and structural features in the area result from sparse vegetation in the dry desert climate and from deep erosion along Warm Spring Canyon and its tributaries.

  20. A test for the relative strength of maternal and stock effects in spring Chinook salmon (Oncorhynchus tshawytscha) from two different hatcheries (Study site: Warm Springs Hatchery; Stocks: Warm Springs Hatchery and Carson Hatchery; Year class: 1993): Chapter 10

    USGS Publications Warehouse

    Wetzel, Lisa A.; Rubin, Stephen P.; Reisenbichler, Reginald R.; Stenberg, Karl D.; Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Hayes, Michael C.

    2012-01-01

    An experiment was undertaken to determine the relative strength of maternal and stock effects in Chinook salmon (Oncorhynchus tshawytscha) reared in a common environment, as a companion study to our investigation of hatchery and wild Chinook salmon. Pure-strain and reciprocal crosses were made between two hatchery stocks (Carson and Warm Springs National Fish Hatcheries). The offspring were reared together in one of the hatcheries to the smolt stage, and then were transferred to a seawater rearing facility (USGS-Marrowstone Field Station). Differences in survival, growth and disease prevalence were assessed. Fish with Carson parentage grew to greater size at the hatchery and in seawater than the pure-strain Warm Springs fish, but showed higher mortality at introduction to seawater. The analyses of maternal and stock effects were inconclusive, but the theoretical responses to different combinations of maternal and stock effects may be useful in interpreting stock comparison studies.

  1. Spring phenology at different altitudes is becoming more uniform under global warming in Europe.

    PubMed

    Chen, Lei; Huang, Jian-Guo; Ma, Qianqian; Hänninen, Heikki; Rossi, Sergio; Piao, Shilong; Bergeron, Yves

    2018-04-26

    Under current global warming, high-elevation regions are expected to experience faster warming than low-elevation regions. However, due to the lack of studies based on long-term large-scale data, the relationship between tree spring phenology and the elevation-dependent warming is unclear. Using 652k records of leaf unfolding of five temperate tree species monitored during 1951-2013 in situ in Europe, we discovered a nonlinear trend in the altitudinal sensitivity (S A , shifted days per 100 m in altitude) in spring phenology. A delayed leaf unfolding (2.7 ± 0.6 days per decade) was observed at high elevations possibly due to decreased spring forcing between 1951 and 1980. The delayed leaf unfolding at high-elevation regions was companied by a simultaneous advancing of leaf unfolding at low elevations. These divergent trends contributed to a significant increase in the S A (0.36 ± 0.07 days 100/m per decade) during 1951-1980. Since 1980, the S A started to decline with a rate of -0.32 ± 0.07 days 100/m per decade, possibly due to reduced chilling at low elevations and improved efficiency of spring forcing in advancing the leaf unfolding at high elevations, the latter being caused by increased chilling. Our results suggest that due to both different temperature changes at the different altitudes, and the different tree responses to these changes, the tree phenology has shifted at different rates leading to a more uniform phenology at different altitudes during recent decades. © 2018 John Wiley & Sons Ltd.

  2. Performance and application of a fluidized bed limestone reactor designed for control of alkalinity, hardness and pH at the Warm Springs Regional Fisheries Center

    USDA-ARS?s Scientific Manuscript database

    Springs serving the Warm Springs Regional Fisheries Center, Warm Springs, Georgia, have pH, alkalinity, and hardness levels that lie under the range required for successful fish propagation while free CO2 is well above allowable targets. We evaluate a pretreatment process that exploits limestone's (...

  3. Interbasin flow in the Great Basin with special reference to the southern Funeral Mountains and the source of Furnace Creek springs, Death Valley, California, U.S.

    USGS Publications Warehouse

    Belcher, W.R.; Bedinger, M.S.; Back, J.T.; Sweetkind, D.S.

    2009-01-01

    Interbasin flow in the Great Basin has been established by scientific studies during the past century. While not occurring uniformly between all basins, its occurrence is common and is a function of the hydraulic gradient between basins and hydraulic conductivity of the intervening rocks. The Furnace Creek springs in Death Valley, California are an example of large volume springs that are widely accepted as being the discharge points of regional interbasin flow. The flow path has been interpreted historically to be through consolidated Paleozoic carbonate rocks in the southern Funeral Mountains. This work reviews the preponderance of evidence supporting the concept of interbasin flow in the Death Valley region and the Great Basin and addresses the conceptual model of pluvial and recent recharge [Nelson, S.T., Anderson, K., Mayo, A.L., 2004. Testing the interbasin flow hypothesis at Death Valley, California. EOS 85, 349; Anderson, K., Nelson, S., Mayo, A., Tingey, D., 2006. Interbasin flow revisited: the contribution of local recharge to high-discharge springs, Death Valley, California. Journal of Hydrology 323, 276-302] as the source of the Furnace Creek springs. We find that there is insufficient modern recharge and insufficient storage potential and permeability within the basin-fill units in the Furnace Creek basin for these to serve as a local aquifer. Further, the lack of high sulfate content in the spring waters argues against significant flow through basin-fill sediments and instead suggests flow through underlying consolidated carbonate rocks. The maximum temperature of the spring discharge appears to require deep circulation through consolidated rocks; the Tertiary basin fill is of insufficient thickness to generate such temperatures as a result of local fluid circulation. Finally, the stable isotope data and chemical mass balance modeling actually support the interbasin flow conceptual model rather than the alternative presented in Nelson et al. [Nelson

  4. Mineral Resources of the Warm Springs Wilderness Study Area, Mohave County, Arizona

    USGS Publications Warehouse

    Gray, Floyd; Jachens, Robert C.; Miller, Robert J.; Turner, Robert L.; Knepper, Daniel H.; Pitkin, James A.; Keith, William J.; Mariano, John; Jones, Stephanie L.; Korzeb, Stanley L.

    1986-01-01

    At the request of the U.S. Bureau of Land Management, approximately 113,500 acres of the Warm Springs Wilderness Study Area (AZ-020-028/029) were evaluated for mineral resources and mineral resource potential. In this report, the area studied is referred to as the 'wilderness study area' or 'study area'; any reference to the Warm Springs Wilderness Study Area refers only to that part of the wilderness study area for which a mineral survey was requested. This study area is located in west-central Arizona. The U.S. Geological Survey and the U.S. Bureau of Mines conducted geological, geochemical, and geophysical surveys to appraise the identified mineral resources (known) and assess the mineral resource potential (undiscovered) of the study area. fieldwork for this report was carried out largely in 1986-1989. There is a 1-million short ton indicated subeconomic resource of clinoptilolite-mordenite zeolite and an additional inferred resource of 2 million short tons near McHeffy Butte, approximately 2 miles west of the study area. A perlite deposit in the southeast corner of the study area contains an inferred subeconomic resource totaling 13 million short tons. An inferred subeconomic resource of gold in 225 short tons of quartz having a grade of 0.01 8 troy ounces per short ton is present at the Cook mine, 0.5 miles west of the study area. The northwestern part of the Warm Springs Wilderness Study Area has high mineral resource potential for gold and silver. The south-central part of the study area has one area of moderate and one area north of this south-central part has low mineral resource potential for gold and silver in and near Warm Springs Canyon; the mineral resource potential for gold is also moderate in three small areas in the southern part and one area in the northeastern part of the study area. The mineral resource potential for zeolite is high for the area surrounding the McHeffy Butte prospect and for one area in the southern part of the study area. Two

  5. Water-quality, bed-sediment, and biological data, for streams in the upper Prickly Pear Creek watershed, Montana, 2001

    USGS Publications Warehouse

    Klein, Terry L.; Thamke, Joanna N.; Harper, David D.; Farag, Aïda M.; Nimick, David A.; Fey, David L.

    2003-01-01

    The upper Prickly Pear Creek watershed encompasses the upstream 15 miles of Prickly Pear Creek, south of Helena, Montana (fig. 1). The headwaters of Prickly Pear Creek and its tributaries (Beavertown Creek, Clancy Creek, Dutchman Creek, Golconda Creek, Lump Gulch, Spring Creek, and Warm Springs Creek) are primarily in the Helena National Forest, whereas the central part of the watershed primarily is within either Bureau of Land Management (BLM) or privately owned property. Three mining districts are present in the upper Prickly Pear Creek watershed: Alhambra, Clancy, and Colorado. Numerous prospects, adits, tailings piles, mills, dredge piles, and mines (mostly inactive) are located throughout the watershed. These districts contain polymetallic (Ag, Au, Cu, Pb, Zn) vein deposits and precious-metal (Au-Ag) vein and disseminated deposits that were exploited beginning in the 1860’s. Placer Au deposits in the major streams were extensively mined in the late 1800’s and early 1900’s.As part of a cooperative effort with Federal land management agencies, the U.S. Geological Survey (USGS) is currently using an integrated approach to investigate two mining impacted watersheds in the western United States (the Animas River in Colorado and the Boulder River in Montana). These studies provide the USDA Forest Service and BLM scientific data for implementing informed land-management decisions regarding cleanup of abandoned mine lands within each watershed. A similar integrated-science approach will be used to characterize the upper Prickly Pear Creek watershed with respect to water and streambed sediment chemistry, aquatic biota, and geologic framework. This integrated database presents data that will be used to identify important pathways of metals movement and biological impacts, thereby guiding resource management decisions of land-managers in several publications that are in preparation. Watershed-level characterization in terms of water quality, streambed sediment

  6. Water-Surface Elevations, Discharge, and Water-Quality Data for Selected Sites in the Warm Springs Area near Moapa, Nevada

    USGS Publications Warehouse

    Beck, David A.; Ryan, Roslyn; Veley, Ronald J.; Harper, Donald P.; Tanko, Daron J.

    2006-01-01

    The U.S. Geological Survey, in cooperation with Southern Nevada Water Authority and the Nevada Division of Water Resources, operates and maintains a surface-water monitoring network of 6 continuous-record stream-flow gaging stations and 11 partial-record stations in the Warm Springs area near Moapa, Nevada. Permanent land-surface bench marks were installed within the Warm Springs area by the Las Vegas Valley Water District, the Southern Nevada Water Authority, and the U.S. Geological Survey to determine water-surface elevations at all network monitoring sites. Vertical datum elevation and horizontal coordinates were established for all bench marks through a series of Differential Global Positioning System surveys. Optical theodolite surveys were made to transfer Differential Global Positioning System vertical datums to reference marks installed at each monitoring site. The surveys were completed in June 2004 and water-surface elevations were measured on August 17, 2004. Water-surface elevations ranged from 1,810.33 feet above North American Vertical Datum of 1988 at a stream-gaging station in the Pederson Springs area to 1,706.31 feet at a station on the Muddy River near Moapa. Discharge and water-quality data were compiled for the Warm Springs area and include data provided by the U.S. Geological Survey, Nevada Division of Water Resources, U.S. Fish and Wildlife Service, Moapa Valley Water District, Desert Research Institute, and Converse Consultants. Historical and current hydrologic data-collection networks primarily are related to changes in land- and water-use activities in the Warm Springs area. These changes include declines in ranching and agricultural use, the exportation of water to other areas of Moapa Valley, and the creation of a national wildlife refuge. Water-surface elevations, discharge, and water-quality data compiled for the Warm Springs area will help identify (1) effects of changing vegetation within the former agricultural lands, (2) effects

  7. Assessing the Biological Contribution to Mineralized Cap Formation in the Little Hot Creek Hot Spring System

    NASA Astrophysics Data System (ADS)

    Floyd, J. G.; Beeler, S. R.; Mors, R. A.; Kraus, E. A.; 2016, G.; Piazza, O.; Frantz, C. M.; Loyd, S. J.; Berelson, W.; Stevenson, B. S.; Marenco, P. J.; Spear, J. R.; Corsetti, F. A.

    2016-12-01

    Hot spring environments exhibit unique redox/physical gradients that may create favorable conditions for the presence of life and commonly contain mineral precipitates that could provide a geologic archive of such ecosystems on Earth and potentially other planets. However, it is critical to discern biologic from abiotic formation mechanisms if hot spring-associated minerals are to be used as biosignatures. The study of modern hot spring environments where mineral formation can be directly observed is necessary to better interpret the biogenicity of ancient/extraterrestrial examples. Little Hot Creek (LHC), a hot spring located in the Long Valley Caldera, California, contains mineral precipitates composed of a carbonate base covered with amorphous silica and minor carbonate in close association with microbial mats/biofilms. Geological, geochemical, and microbiological techniques were integrated to investigate the role of biology in mineral formation at LHC. Geochemical measurements indicate that the waters of the spring are near equilibrium with respect to carbonate and undersaturated with respect to silica, implying additional processes are necessary to initiate cap formation. Geochemical modeling, integrating elemental and isotopic data from hot spring water and mineral precipitates, indicate that the abiotic processes of degassing and evaporation drive mineral formation at LHC, without microbial involvement. However, petrographic analysis of LHC caps revealed microbial microfabrics within silica mineral phases, despite the fact that microbial metabolism was not required for mineral precipitation. Our results show that microorganisms in hot spring environments can shape mineral precipitates even in the absence of a control on authigenesis, highlighting the need for structural as well as geochemical investigation in similar systems.

  8. Hydrology of the Johnson Creek Basin, Oregon

    USGS Publications Warehouse

    Lee, Karl K.; Snyder, Daniel T.

    2009-01-01

    The Johnson Creek basin is an important resource in the Portland, Oregon, metropolitan area. Johnson Creek forms a wildlife and recreational corridor through densely populated areas of the cities of Milwaukie, Portland, and Gresham, and rural and agricultural areas of Multnomah and Clackamas Counties. The basin has changed as a result of agricultural and urban development, stream channelization, and construction of roads, drains, and other features characteristic of human occupation. Flooding of Johnson Creek is a concern for the public and for water management officials. The interaction of the groundwater and surface-water systems in the Johnson Creek basin also is important. The occurrence of flooding from high groundwater discharge and from a rising water table prompted this study. As the Portland metropolitan area continues to grow, human-induced effects on streams in the Johnson Creek basin will continue. This report provides information on the groundwater and surface-water systems over a range of hydrologic conditions, as well as the interaction these of systems, and will aid in management of water resources in the area. High and low flows of Crystal Springs Creek, a tributary to Johnson Creek, were explained by streamflow and groundwater levels collected for this study, and results from previous studies. High flows of Crystal Springs Creek began in summer 1996, and did not diminish until 2000. Low streamflow of Crystal Springs Creek occurred in 2005. Flow of Crystal Springs Creek related to water-level fluctuations in a nearby well, enabling prediction of streamflow based on groundwater level. Holgate Lake is an ephemeral lake in Southeast Portland that has inundated residential areas several times since the 1940s. The water-surface elevation of the lake closely tracked the elevation of the water table in a nearby well, indicating that the occurrence of the lake is an expression of the water table. Antecedent conditions of the groundwater level and autumn

  9. Testing for genetic differences in survival and growth between hatchery and wild Chinook salmon from Warm Springs River, Oregon (Study sites: Warm Springs Hatchery and Little White Salmon River; Stocks: Warm Springs hatchery and Warm Springs River wild; Year classes: 1992 and 1996): Chapter 8

    USGS Publications Warehouse

    Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Leonetti,; Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Hayes, Michael C.

    2012-01-01

    The program at Warm Springs National Fish Hatchery in north - central Oregon was initiated with spring Chinook salmon Oncorhynchus tshawytscha from the Warm Springs River. Managers included wild fish in the broodstock most years and avoided artificial selection to minimize genetic divergence from the wild founder population. We tested for genetic differences in survival and growth between the hatchery and wild populations to ascertain whether this goal has been achieved. Progeny of hatchery x hatchery (HH), hatchery female x wild male (HW), and wild x wild (WW) crosses were genetically marked at the sSOD - 1* allozyme locus and released together as unfed fry in hatchery ponds in 1992 and 1996 and in the Little White Salmon River, in south - central Washington, in 1996. Fish were evaluated to returning adult at the hatchery and over their freshwater residence of 16 months in the stream. The three crosses differed on several measures including survival to outmigration in the stream (WW>HH>HW) and juvenile growth in the hatchery (1992 year - class; WW>HW>HH); however, results may have been confounded. The genetic marks were found to differentially effect survival in a companion study (HH mark favored over WW mark; HW mark intermediate). Furthermore, HW survival in the current study was neither intermediate, as would be expect ed from additive genetic effects, nor similar to that of HH fish as would be expected from maternal effects since HW and HH fish were maternal half - siblings. Finally, the unexpected performance of HW fish precludes ruling out maternal differences between hatchery and wild mothers as the cause of differences between HH and WW fish. The key finding that survival of HH fish in a stream was 0.91 that for WW fish, indicating a small loss of fitness for natural rearing in the hatchery population, is valid only if three conditions hold: (1) any selection on the genetic marks was in the same direction as in the companion study, (2) lower survival in

  10. Spring Temperatures Alone Cannot Explain Timing of Budburst of Boreal-Temperate Tree Species under Experimental Warming

    NASA Astrophysics Data System (ADS)

    Montgomery, R. A.; Reich, P. B.; Rich, R. L.; Stefanski, A.

    2011-12-01

    Phenology, the timing of seasonal biological events such as budburst, blossom dates, bird migration and insect development, is critical to understanding species interactions (e.g. pollination, herbivory); determines growing season length in many (i.e. seasonal) terrestrial ecosystems; and can play a role in determining species range limits. There is ample evidence that plant and animal phenology has changed in recent decades. For trees in seasonally cold climates, change is most commonly manifested as earlier budburst, likely caused by earlier onset of warming temperatures in spring. Indeed, it is often assumed that one of the major phenological responses of temperate and boreal forest ecosystems to climate change will be earlier leafing and concomitantly, a longer growing season. However, spring warming interacts with other factors such as winter chilling and photoperiod to determine timing of spring leafing. For example, warmer winters could reduce the duration and amount of chilling experienced by dormant buds and lead to delayed budburst. Despite knowledge that such interactions exist, we know little about the interactive mechanisms by which various cues influence budburst in forest tree species or whether species differ in sensitivity to those cues. This gap hinders our ability to predict phenological responses and their ecological impacts under future climate scenarios. Over the past three years, we have conducted studies of leafing phenology, germination, photosynthesis, respiration, and growth of seedlings of ten boreal-temperate tree species subjected to experimental warming using infrared heat lamps and soil heating cables. Seedlings were planted into plots receiving ambient, +1.8°C or +3.6°C temperature treatments in open, aspen forest at the Cloquet Forestry Center, Cloquet, MN, USA (46°31' N, 92°30' W, 386 m a.s.l.; 4.5°C MAT, 807 mm MAP). While all species responded to warming by advancing the absolute date of budburst, several lines of evidence

  11. Scotch Creek Wildlife Area 2007-2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Jim

    The Scotch Creek Wildlife Area is a complex of 6 separate management units located in Okanogan County in North-central Washington State. The project is located within the Columbia Cascade Province (Okanogan sub-basin) and partially addresses adverse impacts caused by the construction of Chief Joseph and Grand Coulee hydroelectric dams. With the acquisition of the Eder unit in 2007, the total size of the wildlife area is now 19,860 acres. The Scotch Creek Wildlife Area was approved as a wildlife mitigation project in 1996 and habitat enhancement efforts to meet mitigation objectives have been underway since the spring of 1997 onmore » Scotch Creek. Continuing efforts to monitor the threatened Sharp-tailed grouse population on the Scotch Creek unit are encouraging. The past two spring seasons were unseasonably cold and wet, a dangerous time for the young of the year. This past spring, Scotch Creek had a cold snap with snow on June 10th, a critical period for young chicks just hatched. Still, adult numbers on the leks have remained stable the past two years. Maintenance of BPA funded enhancements is necessary to protect and enhance shrub-steppe and to recover and sustain populations of Sharp-tailed grouse and other obligate species.« less

  12. Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera.

    PubMed

    Vick, T J; Dodsworth, J A; Costa, K C; Shock, E L; Hedlund, B P

    2010-03-01

    A culture-independent community census was combined with chemical and thermodynamic analyses of three springs located within the Long Valley Caldera, Little Hot Creek (LHC) 1, 3, and 4. All three springs were approximately 80 degrees C, circumneutral, apparently anaerobic and had similar water chemistries. 16S rRNA gene libraries constructed from DNA isolated from spring sediment revealed moderately diverse but highly novel microbial communities. Over half of the phylotypes could not be grouped into known taxonomic classes. Bacterial libraries from LHC1 and LHC3 were predominantly species within the phyla Aquificae and Thermodesulfobacteria, while those from LHC4 were dominated by candidate phyla, including OP1 and OP9. Archaeal libraries from LHC3 contained large numbers of Archaeoglobales and Desulfurococcales, while LHC1 and LHC4 were dominated by Crenarchaeota unaffiliated with known orders. The heterogeneity in microbial populations could not easily be attributed to measurable differences in water chemistry, but may be determined by availability of trace amounts of oxygen to the spring sediments. Thermodynamic modeling predicted the most favorable reactions to be sulfur and nitrate respirations, yielding 40-70 kJ mol(-1) e(-) transferred; however, levels of oxygen at or below our detection limit could result in aerobic respirations yielding up to 100 kJ mol(-1) e(-) transferred. Important electron donors are predicted to be H(2), H(2)S, S(0), Fe(2+) and CH(4), all of which yield similar energies when coupled to a given electron acceptor. The results indicate that springs associated with the Long Valley Caldera contain microbial populations that show some similarities both to springs in Yellowstone and springs in the Great Basin.

  13. Biomonitoring of fish communities, using the Index of Biotic Integrity (IBI) in Rabbit Creek-Cat Creek Watershed, Summer 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    The Index of Biotic Integrity (IBI) is a method for evaluating the health of water bodies and watersheds by analyzing sample catches of fishes. Sites are scored on a numerical scale of 12--60 and on that basis assigned to a ``bioclass`` ranging from ``very poor`` to ``excellent.`` Overall, the major causes of depressed IBI scores in the Rabbit Creek watershed would appear to be: Organic pollution, mostly from livestock, but also from agricultural runoff and possible septic tank failures; sedimentation, principally from stream bank damage by cattle, also possibly from agriculture and construction; toxic pollution from agrochemicals applied to Hollymore » Springs Golf course and agricultural fields` and Warming of water and evaporation loss due to elimination of shade on stream banks and construction of ponds.« less

  14. Flood-inundation maps for Sweetwater Creek from above the confluence of Powder Springs Creek to the Interstate 20 bridge, Cobb and Douglas Counties, Georgia

    USGS Publications Warehouse

    Musser, Jonathan W.

    2012-01-01

    Digital flood-inundation maps for a 10.5-mile reach of Sweetwater Creek, from about 1,800 feet above the confluence of Powder Springs Creek to about 160 feet below the Interstate 20 bridge, were developed by the U.S. Geological Survey (USGS) in cooperation with Cobb County, Georgia. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Sweetwater Creek near Austell, Georgia (02337000). Current stage at this USGS streamgage may be obtained at http://waterdata.usgs.gov/ and can be used in conjunction with these maps to estimate near real-time areas of inundation. The National Weather Service (NWS) is incorporating results from this study into the Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that commonly are collocated at USGS streamgages. The forecasted peak-stage information for the USGS streamgage at Sweetwater Creek near Austell (02337000), which is available through the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. A one-dimensional step-backwater model was developed using the U.S. Army Corps of Engineers Hydrologic Engineering Centers River Analysis System (HEC–RAS) software for Sweetwater Creek and was used to compute flood profiles for a 10.5-mile reach of the creek. The model was calibrated using the most current stage-discharge relations at the Sweetwater Creek near Austell streamgage (02337000), as well as high-water marks collected during annual peak-flow events in 1982 and 2009. The hydraulic model was then used to determine 21 water-surface profiles for flood stages at the Sweetwater Creek streamgage at 1-foot intervals referenced to the

  15. 75 FR 57976 - Designation of Service Area for Confederated Tribes of the Warm Springs of Oregon

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... office hours at Hood River County. Dated: August 26, 2010. Larry Echo Hawk, Assistant Secretary--Indian... will expand the service area for the Warm Springs Tribe to include Hood River County (Oregon). The...

  16. Gas exchange and water relations responses of spring wheat to full-season infrared warming

    USDA-ARS?s Scientific Manuscript database

    Gas exchange and water relations responses to full-season in situ infrared (IR) warming were evaluated for hard red spring wheat (Triticum aestivum L. cv. Yecora Rojo) grown in an open field in a semi-arid desert region of the Southwest USA. A Temperature Free-Air Controlled Enhancement (T-FACE) ap...

  17. Gas Exchange and Water Relations Responses of Spring Wheat to Full-Season Infrared Warming

    USDA-ARS?s Scientific Manuscript database

    Gas exchange and water relations were evaluated under full-season in situ infrared (IR) warming for hard red spring wheat (Triticum aestivum L. cv. Yecora Rojo) grown in an open field in a semiarid desert region of the southwest USA. A temperature free-air controlled enhancement (T-FACE) apparatus u...

  18. Nonthermal springs of Utah

    USGS Publications Warehouse

    Mundorff, J.C.

    1971-01-01

    Data are presented for about 4,500 nonthermal springs that discharge in the State of Utah. Most major springs having discharge of several cubic feet per second or more are in or near mountain ranges or plateaus where precipitation is much greater than in other parts of the State. The largest instantaneous discharge observed at any spring was 314 cfs at Mammoth Spring in southwestern Utah.  Discharges exceeding 200 cfs have been observed at Swan Creek Spring in extreme northern Utah, and discharges of 200 cfs have been reported for Big Brush Creek Spring in northeastern Utah. Maximum discharges generally are during or within a few weeks after the main period of snowmelt, which is usually from late April to the middle of June.The largest springs generally discharge form or very near carbonate rocks in which solution channels and fractures are numerous or from areas of porous or fractured volcanic rocks. Most nonthermal springs in Utah probably are variable springs – that is, their variability of discharge exceeds 100 percent.Most of the major springs discharge water that contains less than 500 ppm (parts per million) of dissolved solids, and most of the water is of the calcium bicarbonate type. Water from springs is used for domestic, municipal, irrigation, livestock, mining, and industrial purposes.

  19. Preferential soft-tissue preservation in the Hot Creek carbonate spring deposit, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Rainey, Dustin K.; Jones, Brian

    2010-05-01

    The relict Holocene Hot Creek carbonate spring deposit in southeast British Columbia is characterized by excellent preservation of soft-tissue organisms (e.g. cyanobacteria), but poor preservation of organisms with hard-tissue (e.g. wood, diatoms). The deposit is formed mainly of calcified cyanobacteria, with fewer mineralized macrophytes (plants), bryophytes (mosses), wood, and diatoms. Cyanobacteria grew as solitary filaments ( Lyngbya) and as radiating hemispherical colonies ( Rivularia). Both were preserved by encrustation and encapsulation while alive, and as casts after filament death and decay. Sheath impregnation was rare to absent. Filament encrustation, whereby calcite crystals nucleated on, and grew away from the sheath exterior, produced moulds that replicated external filament morphology, but hastened filament decay. Filament encapsulation, whereby calcite nucleated in the vicinity of, and grew towards the encapsulated filament, promoted sheath preservation even after trichome decay. Subsequent calcite precipitation inside the hollow sheath generated sheath casts. The inability of mineralizing spring water to penetrate durable cell walls meant that bryophytes, macrophytes, and most wood was preserved by encrustation. Some wood resisted complete decay for several thousand years, and its lignified cell walls allowed rare permineralizations. Diatoms were not preserved in the relict deposit because the frustules were dissolved by the basic spring water. Amorphous calcium carbonate produced by photosynthetic CO 2 removal may have acted as nucleation sites for physicochemically precipitated calcite. Thus, metabolic activities of floral organisms probably initiated biotic mineralization, but continuous inorganic calcite precipitation on and in flora ensured that soft tissues were preserved.

  20. Mantle Helium and Carbon Isotopes in Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon: Evidence for Renewed Volcanic Activity or a Long Term Steady State System?

    USGS Publications Warehouse

    Van Soest, M. C.; Kennedy, B.M.; Evans, William C.; Mariner, R.H.

    2002-01-01

    Here we present the helium and carbon isotope results from the initial study of a fluid chemistry-monitoring program started in the summer of 2001 near the South Sister volcano in central Oregon. The Separation Creek area which is several miles due west of the volcano is the locus of strong crustal uplift currently occurring at a rate of 4-5 cm/yr (Wicks, et. al., 2001).Helium [RC/RA = 7.44 and 8.61 RA (RC/R A = (3He/4He)sample-. air corrected/(3He/4He)air))] and carbon (??13C = -11.59 to -9.03??? vs PDB) isotope data and CO2/3He (5 and 9 ?? 109) show that bubbling cold springs in the Separation Creek area near South Sister volcano carry a strong mantle signal, indicating the presence of fresh basaltic magma in the volcanic plumbing system. There is no evidence though, to directly relate this signal to the crustal uplift that is currently taking place in the area, which started in 1998. The geothermal system in the area is apparently much longer lived and shows no significant changes in chemistry compared to data from the early 1990s. Hot springs in the area, which are relatively far removed from the volcanic edifice, do not carry a strong mantle signal in helium isotope ratios (2.79 to 5.08 RA), unlike the cold springs, and also do not show any significant changes in helium isotope ratios compared to literature data for the same springs of over two decades ago. The cold springs of the Separation Creek area form a very diffuse but significant low temperature geothermal system, that should, due to its close vicinity to the center of up uplift, be more sensitive to changes in the deeper volcanic plumbing system than the far removed hot springs and therefore require much more study and consideration when dealing with volcano monitoring in the Cascade range or possibly with geothermal exploration in general.

  1. Quality of water and time of travel in Little Copiah Creek near Crystal Springs, Mississippi

    USGS Publications Warehouse

    Kalkhoff, S.J.

    1981-01-01

    An intensive quality of water study was conducted on Little Copiah Creek in the vicinity of Crystal Springs, Miss., from August 19 to August 21, 1980. The quality of water in Little Copiah Creek improved 7 miles downstream of a source of wastewater inflow. The mean total nitrogen concentration decreased from 17 to 1.1 milligrams per liter and the mean total phosphorus concentrations decreased from 5.8 to 0.39 milligrams per liter. The maximum five-day biochemical oxygen demand decreased from 14 to 1.4 milligrams per liter while the dissolved-oxygen concentration increased from 2.0 to 6.9 milligrams per liter. The maximum fecal coliform and fecal streptococcus densities at the upstream sampling site were 2,200 and 6,700 colonies per 100 milliliter, respectively, and were observed to decrease downstream to 160 and 1,500 colonies per 100 milliliters. The mean stream temperatures decreased downstream only slightly from 26.5 to 25.0 Celsius and the pH of the water ranged from 7.2 to 7.4 units upstream and 6.5 to 7.0 units at the downstream site. The average rate of dye travel through the upstream 2.3 mile reach was 0.08 miles per hour during the study. (USGS)

  2. Current spring warming as a driver of selection on reproductive timing in a wild passerine.

    PubMed

    Marrot, Pascal; Charmantier, Anne; Blondel, Jacques; Garant, Dany

    2018-05-01

    Evolutionary adaptation as a response to climate change is expected for fitness-related traits affected by climate and exhibiting genetic variance. Although the relationship between warmer spring temperature and earlier timing of reproduction is well documented, quantifications and predictions of the impact of global warming on natural selection acting on phenology in wild populations remain rare. If global warming affects fitness in a similar way across individuals within a population, or if fitness consequences are independent of phenotypic variation in key-adaptive traits, then no evolutionary response is expected for these traits. Here, we quantified the selection pressures acting on laying date during a 24-year monitoring of blue tits in southern Mediterranean France, a hot spot of climate warming. We explored the temporal fluctuation in annual selection gradients and we determined its temperature-related drivers. We first investigated the month-specific warming since 1970 in our study site and tested its influence on selection pressures, using a model averaging approach. Then, we quantified the selection strength associated with temperature anomalies experienced by the blue tit population. We found that natural selection acting on laying date significantly fluctuated both in magnitude and in sign across years. After identifying a significant warming in spring and summer, we showed that warmer daily maximum temperatures in April were significantly associated with stronger selection pressures for reproductive timing. Our results indicated an increase in the strength of selection by 46% for every +1°C anomaly. Our results confirm the general assumption that recent climate change translates into strong selection favouring earlier breeders in passerine birds. Our findings also suggest that differences in fitness among individuals varying in their breeding phenology increase with climate warming. Such climate-driven influence on the strength of directional

  3. Micrometeorological measurements at Ash Meadows and Corn Creek Springs, Nye and Clark counties, Nevada, 1986-87

    USGS Publications Warehouse

    Johnson, M.J.; Pupacko, Alex

    1992-01-01

    Micrometeorological data were collected at Ash Meadows and Corn Creek Springs, Nye and Clark Counties, Nevada, from October 1, 1986 through September 30, 1987. The data include accumulated measurements recorded hourly or every 30 minutes, at each site, for the following climatic variables: air temperature, wind speed, relative humidity, precipitation, solar radiation, net radiation, and soil-heat flux. Periodic sampling of sensible-heat flux and latent-heat flux were also recorded using 5-minute intervals of accumulated data. Evapotranspiration was calculated by both the eddy-correlation method and the Penman combination method. The data collected and the computer programs used to process the data are available separately on three magnetic diskettes in card-image format. (USGS)

  4. Chemical, isotopic, and gas compositions of selected thermal springs in Arizona, New Mexico, and Utah

    USGS Publications Warehouse

    Mariner, R.H.; Presser, T.S.; Evans, William C.

    1977-01-01

    Twenty-seven thermal springs in Arizona, New Mexico, and Utah were sampled for detailed chemical and isotopic analysis. The springs issue sodium chloride, sodium bicarbonate, or sodium mixed-anion waters of near neutral (6.2) to alkaline (9.2) pH. High concentrations of fluoride, more than 8 milligrams per liter, occur in Arizona in waters from Gillard Hot Springs, Castle Hot Springs, and the unnamed spring of Eagle Creek, and in New Mexico from springs along the Gila River. Deuterium compositions of the thermal waters cover the same range as those expected for meteoric waters in the respective areas. The chemical compositions of the thermal waters indicate that Thermo Hot Springs in Utah and Gillard Hot Springs in Arizona represent hydrothermal systems which are at temperatures higher than 125 deg C. Estimates of subsurface temperature based on the quartz and Na-K-Ca geothermometer differ by up to 60 deg C for Monroe, Joseph, Red Hill, and Crater hot springs in Utah. Similar conflicting estimates of aquifer temperature occur for Verde Hot Springs, the springs near Clifton and Coolidge Dam, in Arizona; and the warm springs near San Ysidro, Radium Hot Springs, and San Francisco Hot Springs, in New Mexico. Such disparities could result from mixing, precipitation of calcium carbonate, or perhaps appreciable concentrations of magnesium. (Woodard-USGS)

  5. Washington, D.C.'s vanishing springs and waterways

    USGS Publications Warehouse

    Williams, Garnett P.

    1977-01-01

    This paper traces the disappearance or reduction of the many prominent springs and waterways that existed in Washington, D.C. , 200 years ago. The best known springs were the Smith Springs (now under the McMillan Reservoir), the Franklin Park Springs (13th and I Streets, NW.), Gibson 's Spring (15th and E Streets, NE.), Caffrey 's Spring (Ninth and F Streets, NW.), and the City Spring (C Street between Four and One-Half and Sixth Streets, NW.). Tiber Creek, flowing south to the Capitol and thence westward along Consititution Avenue, joined the Potomac River at 17th Street and Constitution Avenue. In the 1800's, the Constitution Avenue reach was made into a canal which was used by scows and steamboats up to about 1850. The canal was changed into a covered sewer in the 1870's, and the only remaining visible surface remnant is the lock-keeper 's little stone house at 17th and Constitution Avenue, NW. Because of sedimentation problems and reclamation projects, Rock Creek, the Potomac River , and the Anacostia River are considerably narrower and shallower today than they were in colonial times. For example, the mouth of Rock Creek at one time was a wide, busy ship harbor , which Georgetown used for an extensive foreign trade, and the Potomac River shore originally extended to 17th and Constitution Avenue, NW. (Woodard-USGS)

  6. Ecosystem Warming Affects Vertical Distribution of Leaf Gas Exchange Properties and Water Relations of Spring Wheat

    USDA-ARS?s Scientific Manuscript database

    The vertical distribution of gas exchange and water relations responses to full-season in situ infrared (IR) warming were evaluated for hard red spring wheat (Triticum aestivum L. cv. Yecora Rojo) grown in an open field in a semiarid desert region of the Southwest USA. A Temperature Free-Air Contro...

  7. Characterization and analysis of temporal and spatial variations in habitat and macroinvertebrate community structure, Fountain Creek basin, Colorado Springs and vicinity, Colorado, 1998-2001

    USGS Publications Warehouse

    Bruce, James F.

    2002-01-01

    The Fountain Creek Basin in and around Colorado Springs, Colorado, is affected by various land- and water-use activities. Biological, hydrological, water-quality, and land-use data were collected at 10 sites in the Fountain Creek Basin from April 1998 through April 2001 to provide a baseline characterization of macroinvertebrate communities and habitat conditions for comparison in subsequent studies; and to assess variation in macroinvertebrate community structure relative to habitat quality. Analysis of variance results indicated that instream and riparian variables were not affected by season, but significant differences were found among sites. Nine metrics were used to describe and evaluate macroinvertebrate community structure. Statistical analysis indicated that for six of the nine metrics, significant variability occurred between spring and fall seasons for 60 percent of the sites. Cluster analysis (unweighted pair group method average) using macroinvertebrate presence-absence data showed a well-defined separation between spring and fall samples. Six of the nine metrics had significant spatial variation. Cluster analysis using Sorenson?s Coefficient of Community values computed from macroinvertebrate density (number of organisms per square meter) data showed that macroinvertebrate community structure was more similar among tributary sites than main-stem sites. Canonical correspondence analysis identified a substrate particle-size gradient from site-specific species-abundance data and environmental correlates that decreased the 10 sites to 5 site clusters and their associated taxa.

  8. Direct Contribution of the Stratosphere to Recent West Antarctic Warming in Austral Spring

    NASA Astrophysics Data System (ADS)

    Nicolas, J. P.; Bromwich, D. H.

    2015-12-01

    The causes of the rapid warming of West Antarctica in recent decades are not yet fully understood. Thus far, investigations of the phenomenon have emphasized the role of tropospheric teleconnections originating from the Tropics in austral winter, but have had less success in explaining the strong warming in austral spring (SON). Here, we further explore the mechanisms behind the SON warming by focusing on September, the month during which atmospheric temperature and circulation trends in and around West Antarctica largely account for the 3-month average SON trends. We show that the tropospheric trends toward lower pressures/heights (more cyclonic) over the South Pacific sector of the Southern Ocean previously reported extend vertically well into the stratosphere. In the lower troposphere, these circulation changes, by steering more warm air toward West Antarctica, have likely contributed to the warming of the region. In the stratosphere, we provide evidence that the cyclonic trends are associated with a very prominent stratospheric warming in the Australian sector, believed to be the result of increased tropically-forced planetary wave activity and wave breaking. Through thermal wind balance, this regional stratospheric warming has led to a poleward displacement of the polar-night jet south of Australia, leading to enhanced cyclonic motion and potential vorticity (PV) downwind over the Amundsen Sea region. Finally, we establish, through the PV inversion framework, a causal link between stratospheric and tropospheric changes, whereby large PV anomalies in the stratosphere induce consistent geopotential height anomalies down in the troposphere. Our results highlight not only the important and largely overlooked role played by the stratosphere in recent West Antarctic climate change, but also a new pathway for tropical climate variability to influence Antarctic climate.

  9. Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gass, Carrie; Olson, Jim M.

    2004-11-01

    In 2001 the Idaho Fisheries Resource Office continued as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, brood stock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate project data points and augment past data. Due to low adult spring Chinook returns to Kooskia National Fish Hatchery (KNFH) in brood year 1999 there was no smolt supplementation treatment release into Clear Creek in 2001. A 17,014 spring Chinook parr supplementation treatment (containing 1000 PIT tags)more » was released into Pete King Creek on July 24, 2001. On Clear Creek, there were 412 naturally produced spring Chinook parr PIT tagged and released. Using juvenile collection methods, Idaho Fisheries Resource Office staff PIT tagged and released 320 naturally produced spring Chinook pre-smolts on Clear Creek, and 16 natural pre-smolts on Pete King Creek, for minimum survival estimates to Lower Granite Dam. There were no PIT tag detections of brood year 1999 smolts from Clear or Pete King creeks. A total of 2261 adult spring Chinook were collected at KNFH. Forty-three females were used for supplementation brood stock, and 45 supplementation (ventral fin-clip), and 45 natural (unmarked) adults were released upstream of KNFH to spawn naturally. Spatial and temporal distribution of 37 adults released above the KNFH weir was determined through the use of radio telemetry. On Clear Creek, a total of 166 redds (8.2 redds/km) were observed and data was collected from 195 carcasses. Seventeen completed redds (2.1 redds/km) were found, and data was collected data from six carcasses on Pete King Creek.« less

  10. Has climatic warming altered spring flowering date of Sonoran Desert shrubs?

    USGS Publications Warehouse

    Bowers, Janice E.

    2007-01-01

    With global warming, flowering at many locations has shifted toward earlier dates of bloom. A steady increase in average annual temperature since the late 1890s makes it likely that flowering also has advanced in the northern Sonoran Desert of the southwestern United States and northwestern Mexico. In this study, phenological models were used to predict annual date of spring bloom in the northern Sonoran Desert from 1894 to 2004; then, herbarium specimens were assessed for objective evidence of the predicted shift in flowering time. The phenological models were derived from known flowering requirements (triggers and heat sums) of Sonoran Desert shrubs. According to the models, flowering might have advanced by 20-41 d from 1894 to 2004. Analysis of herbarium specimens collected during the 20th century supported the model predictions. Over time, there was a significant increase in the proportion of shrub specimens collected in flower in March and a significant decrease in the proportion collected in May. Thus, the flowering curve - the proportion of individuals in flower in each spring month - shifted toward the start of the calendar year between 1900 and 1999. This shift could not be explained by collection activity: collectors showed no tendency to be active earlier in the year as time went on, nor did activity toward the end of spring decline in recent decades. Earlier bloom eventually could have substantial impacts on plant and animal communities in the Sonoran Desert, especially on migratory hummingbirds and population dynamics of shrubs.

  11. Late Quaternary Surface Displacement Across a Normal-Fault Structural Boundary on the Northern Lost River Fault Zone (Idaho, USA)

    NASA Astrophysics Data System (ADS)

    DuRoss, C. B.; Bunds, M. P.; Reitman, N. G.; Gold, R. D.; Personius, S. F.; Briggs, R. W.; Toke, N. A.; Johnson, K. L.; Lajoie, L. J.

    2017-12-01

    In 1983, about 36 km of the 130-km-long multisegment Lost River fault zone (LRFZ) (Idaho, USA) ruptured in the M 6.9 Borah Peak earthquake. Normal-faulting surface rupture propagated along the entire 24-km-long Thousand Springs section, then branched to the northwest along a 4-km-long fault (western section) that continues into the Willow Creek Hills, a prominent bedrock ridge that forms a structural boundary between the Thousand Springs section and Warms Springs section to the north. North of the Willow Creek Hills, the 1983 rupture continued onto the southern 8 km of the 16-km-long Warm Springs section. To improve our understanding of the Borah Peak earthquake and the role of structural boundaries in normal-fault rupture propagation, we acquired low-altitude aerial imagery of the southern 8 km of the Warm Springs section and northern 6 km of the Thousand Springs section, including the western section branch fault. Using 5-10-cm-pixel digital surface models generated from this dataset, we measured vertical surface offsets across both 1983 and prehistoric scarps. On the Warm Springs section, 1983 displacement is minor (mean of 0.3 m) compared to at least two prehistoric events having mean displacements of 1.1 m and 1.7 m inferred from displacement difference curves. Prehistoric scarps on the western section indicate rupture of this branch fault prior to 1983. Correcting for 1983 displacement, mean prehistoric displacement on the western section is 0.9 m compared to a mean of 0.7 m in 1983. Using these data and previous paleoseismic displacements, we evaluate the spatial distribution of cumulative and per-earthquake displacement. Our results suggest that at least one prehistoric rupture of the Thousand Springs section occurred with a similar length and displacement to that in 1983. Further, the 1983 spillover rupture from the Thousand Springs section to the southernmost Warm Springs section appears unique from larger displacement, prehistoric ruptures that may have

  12. Hydrologic characterization for Spring Creek and hydrologic budget and model scenarios for Sheridan Lake, South Dakota, 1962-2007

    USGS Publications Warehouse

    Driscoll, Daniel G.; Norton, Parker A.

    2009-01-01

    The U.S. Geological Survey cooperated with South Dakota Game, Fish and Parks to characterize hydrologic information relevant to management of water resources associated with Sheridan Lake, which is formed by a dam on Spring Creek. This effort consisted primarily of characterization of hydrologic data for a base period of 1962 through 2006, development of a hydrologic budget for Sheridan Lake for this timeframe, and development of an associated model for simulation of storage deficits and drawdown in Sheridan Lake for hypothetical release scenarios from the lake. Historically, the dam has been operated primarily as a 'pass-through' system, in which unregulated outflows pass over the spillway; however, the dam recently was retrofitted with an improved control valve system that would allow controlled releases of about 7 cubic feet per second (ft3/s) or less from a fixed depth of about 60 feet (ft). Development of a hydrologic budget for Sheridan Lake involved compilation, estimation, and characterization of data sets for streamflow, precipitation, and evaporation. The most critical data need was for extrapolation of available short-term streamflow records for Spring Creek to be used as the long-term inflow to Sheridan Lake. Available short-term records for water years (WY) 1991-2004 for a gaging station upstream from Sheridan Lake were extrapolated to WY 1962-2006 on the basis of correlations with streamflow records for a downstream station and for stations located along two adjacent streams. Comparisons of data for the two streamflow-gaging stations along Spring Creek indicated that tributary inflow is approximately proportional to the intervening drainage area, which was used as a means of estimating tributary inflow for the hydrologic budget. Analysis of evaporation data shows that sustained daily rates may exceed maximum monthly rates by a factor of about two. A long-term (1962-2006) hydrologic budget was developed for computation of reservoir outflow from

  13. Ground-water data for the Warm Springs Indian Reservation and contiguous areas north-central Oregon

    USGS Publications Warehouse

    Anderson, Donald B.

    1996-01-01

    This report presents well data that were collected and compiled during 1985-86 by the U.S. Geological Survey and used to determine the amount of ground water discharging to the Deschutes River on and near the Warm Springs Indian Reservation. The report contains well-construction data from 171 wells, information from drillers' logs for 66 wells, water-level data for 29 wells, and a map showing well locations.

  14. Flood-frequency analyses from paleoflood investigations for Spring, Rapid, Boxelder, and Elk Creeks, Black Hills, western South Dakota

    USGS Publications Warehouse

    Harden, Tessa M.; O'Connor, Jim E.; Driscoll, Daniel G.; Stamm, John F.

    2011-01-01

    Flood-frequency analyses for the Black Hills area are important because of severe flooding of June 9-10, 1972, that was caused by a large mesoscale convective system and caused at least 238 deaths. Many 1972 peak flows are high outliers (by factors of 10 or more) in observed records that date to the early 1900s. An efficient means of reducing uncertainties for flood recurrence is to augment gaged records by using paleohydrologic techniques to determine ages and magnitudes of prior large floods (paleofloods). This report summarizes results of paleoflood investigations for Spring Creek, Rapid Creek (two reaches), Boxelder Creek (two subreaches), and Elk Creek. Stratigraphic records and resulting long-term flood chronologies, locally extending more than 2,000 years, were combined with observed and adjusted peak-flow values (gaged records) and historical flood information to derive flood-frequency estimates for the six study reaches. Results indicate that (1) floods as large as and even substantially larger than 1972 have affected most of the study reaches, and (2) incorporation of the paleohydrologic information substantially reduced uncertainties in estimating flood recurrence. Canyons within outcrops of Paleozoic rocks along the eastern flanks of the Black Hills provided excellent environments for (1) deposition and preservation of stratigraphic sequences of late-Holocene flood deposits, primarily in protected slack-water settings flanking the streams; and (2) hydraulic analyses for determination of associated flow magnitudes. The bedrock canyons ensure long-term stability of channel and valley geometry, thereby increasing confidence in hydraulic computations of ancient floods from modern channel geometry. Stratigraphic records of flood sequences, in combination with deposit dating by radiocarbon, optically stimulated luminescence, and cesium-137, provided paleoflood chronologies for 29 individual study sites. Flow magnitudes were estimated from elevations of flood

  15. Predicting the patterns of change in spring onset and false springs in China during the twenty-first century

    NASA Astrophysics Data System (ADS)

    Zhu, Likai; Meng, Jijun; Li, Feng; You, Nanshan

    2017-10-01

    Spring onset has generally shifted earlier in China over the past several decades in response to the warming climate. However, future changes in spring onset and false springs, which will have profound effects on ecosystems, are still not well understood. Here, we used the extended form of the Spring Indices model (SI-x) to project changes in the first leaf and first bloom dates, and predicted false springs for the historical (1950-2005) and future (2006-2100) periods based on the downscaled daily maximum/minimum temperatures under two emission scenarios from 21 General Circulation Models (GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5). On average, first leaf and first bloom in China were projected to occur 21 and 23 days earlier, respectively, by the end of the twenty-first century in the Representative Concentration Pathway (RCP) 8.5 scenario. Areas with greater earlier shifts in spring onset were in the warm temperate zone, as well as the north and middle subtropical zones of China. Early false spring risk increased rapidly in the warm temperate and north subtropical zones, while that declined in the cold temperate zone. Relative to early false spring risk, late false spring risk showed a common increase with smaller magnitude in the RCP 8.5 scenario but might cause greater damage to ecosystems because plants tend to become more vulnerable to the later occurrence of a freeze event. We conclude that future climate warming will continue to cause earlier occurrence of spring onset in general, but might counterintuitively increase plant damage risk in natural and agricultural systems of the warm temperate and subtropical China.

  16. Predicting the patterns of change in spring onset and false springs in China during the twenty-first century.

    PubMed

    Zhu, Likai; Meng, Jijun; Li, Feng; You, Nanshan

    2017-10-28

    Spring onset has generally shifted earlier in China over the past several decades in response to the warming climate. However, future changes in spring onset and false springs, which will have profound effects on ecosystems, are still not well understood. Here, we used the extended form of the Spring Indices model (SI-x) to project changes in the first leaf and first bloom dates, and predicted false springs for the historical (1950-2005) and future (2006-2100) periods based on the downscaled daily maximum/minimum temperatures under two emission scenarios from 21 General Circulation Models (GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5). On average, first leaf and first bloom in China were projected to occur 21 and 23 days earlier, respectively, by the end of the twenty-first century in the Representative Concentration Pathway (RCP) 8.5 scenario. Areas with greater earlier shifts in spring onset were in the warm temperate zone, as well as the north and middle subtropical zones of China. Early false spring risk increased rapidly in the warm temperate and north subtropical zones, while that declined in the cold temperate zone. Relative to early false spring risk, late false spring risk showed a common increase with smaller magnitude in the RCP 8.5 scenario but might cause greater damage to ecosystems because plants tend to become more vulnerable to the later occurrence of a freeze event. We conclude that future climate warming will continue to cause earlier occurrence of spring onset in general, but might counterintuitively increase plant damage risk in natural and agricultural systems of the warm temperate and subtropical China.

  17. The influence of local spring temperature variance on temperature sensitivity of spring phenology.

    PubMed

    Wang, Tao; Ottlé, Catherine; Peng, Shushi; Janssens, Ivan A; Lin, Xin; Poulter, Benjamin; Yue, Chao; Ciais, Philippe

    2014-05-01

    The impact of climate warming on the advancement of plant spring phenology has been heavily investigated over the last decade and there exists great variability among plants in their phenological sensitivity to temperature. However, few studies have explicitly linked phenological sensitivity to local climate variance. Here, we set out to test the hypothesis that the strength of phenological sensitivity declines with increased local spring temperature variance, by synthesizing results across ground observations. We assemble ground-based long-term (20-50 years) spring phenology database (PEP725 database) and the corresponding climate dataset. We find a prevalent decline in the strength of phenological sensitivity with increasing local spring temperature variance at the species level from ground observations. It suggests that plants might be less likely to track climatic warming at locations with larger local spring temperature variance. This might be related to the possibility that the frost risk could be higher in a larger local spring temperature variance and plants adapt to avoid this risk by relying more on other cues (e.g., high chill requirements, photoperiod) for spring phenology, thus suppressing phenological responses to spring warming. This study illuminates that local spring temperature variance is an understudied source in the study of phenological sensitivity and highlight the necessity of incorporating this factor to improve the predictability of plant responses to anthropogenic climate change in future studies. © 2013 John Wiley & Sons Ltd.

  18. Return Spawning/Rearing Habitat to Anadromous/Resident Fish within the Fishing Creek to Legendary Bear Creek Analysis Area Watersheds; 2002-2003 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Jr., Emmit E.

    2004-03-01

    This project is a critical component of currently on-going watershed restoration effort in the Lochsa River Drainage, including the Fishing (Squaw) Creek to Legendary Bear (Papoose) Creek Watersheds Analysis Area. In addition, funding for this project allowed expansion of the project into Pete King Creek and Cabin Creek. The goal of this project is working towards the re-establishment of healthy self-sustaining populations of key fisheries species (spring Chinook salmon, steelhead, bull trout, and westslope cutthroat trout) through returning historic habitat in all life stages (spawning, rearing, migration, and over-wintering). This was accomplished by replacing fish barrier road crossing culverts withmore » structures that pass fish and accommodate site conditions.« less

  19. The Streambank Erosion Control Evaluation and Demonstration Act of 1974, Section 32, Public Law 93-251. Appendix A. Literature Survey.

    DTIC Science & Technology

    1981-12-01

    Creek, Russian River Basin, Sonoma County , California; Hydraulic Model Investigation," Technical Report H-73-3, U. S. Army Engineer Waterways Experiment...Springs Dam, Dry Creek, Russian River Basin, Sonoma County , Cali- fornia; Hydraulic Model Investigation," Technical Report H-73-3, U. S. Army Engineer...Structures Ables, J. H., Jr., and Pickering, G. A. 1973 (Feb). "Outlet Works, 0 Warm Springs Dam, Dry Creek, Russian River Basin, Sonoma County , Cali

  20. Hydrologic and geologic characterization of Tenderfoot Creek Experimental Forest, Montana

    Treesearch

    Phillip E. Farnes; Ward W. McCaughey; Katherine J. Hansen

    1994-01-01

    Tenderfoot Creek Experimental Forest (TCEF) is located in Central Montana 24 miles north of White Sulphur Springs and 9 miles northwest of Highway 89 from Kings Hill via Forest Road #839. The experimental forest can also be accessed by Forest Road #586 via Sheep Creek. A general view of TCEF showing roads and drainages is shown in figure 2. The road down Tenderfoot...

  1. Flooding in the South Platte River and Fountain Creek Basins in eastern Colorado, September 9–18, 2013

    USGS Publications Warehouse

    Kimbrough, Robert A.; Holmes, Robert R.

    2015-11-25

    Flooding in the Fountain Creek Basin was primarily contained to Fountain Creek from southern Colorado Springs to its confluence with the Arkansas River in Pueblo, in lower Monument Creek, and in several mountain tributaries. New record peak streamflows occurred at four mountain tributary streamgages having at least 10 years of record; Bear Creek, Cheyenne Creek, Rock Creek, and Little Fountain Creek. Five streamgages with at least 10 years of record in a 32-mile reach of Fountain Creek extending from Colorado Springs to Piñon had peak streamflows in the top five for the period of record. A peak of 15,300 ft3/s at Fountain Creek near Fountain was the highest streamflow recorded in the Fountain Creek Basin during the September 2013 event and ranks the third highest peak in 46 years. Near the mouth of the basin, a peak of 11,800 ft3/s in Pueblo was only the thirteenth highest annual peak in 74 years. A new Colorado record for daily rainfall of 11.85 inches was recorded at a USGS rain gage in the Little Fountain Creek Basin on September 12, 2013.

  2. Water quality, sources of nitrate, and chemical loadings in the Geronimo Creek and Plum Creek watersheds, south-central Texas, April 2015–March 2016

    USGS Publications Warehouse

    Lambert, Rebecca B.; Opsahl, Stephen P.; Musgrove, MaryLynn

    2017-12-22

    Located in south-central Texas, the Geronimo Creek and Plum Creek watersheds have long been characterized by elevated nitrate concentrations. From April 2015 through March 2016, an assessment was done by the U.S. Geological Survey, in cooperation with the Guadalupe-Blanco River Authority and the Texas State Soil and Water Conservation Board, to characterize nitrate concentrations and to document possible sources of elevated nitrate in these two watersheds. Water-quality samples were collected from stream, spring, and groundwater sites distributed across the two watersheds, along with precipitation samples and wastewater treatment plant (WWTP) effluent samples from the Plum Creek watershed, to characterize endmember concentrations and isotopic compositions from April 2015 through March 2016. Stream, spring, and groundwater samples from both watersheds were collected during four synoptic sampling events to characterize spatial and temporal variations in water quality and chemical loadings. Water-quality and -quantity data from the WWTPs and stream discharge data also were considered. Samples were analyzed for major ions, selected trace elements, nutrients, and stable isotopes of water and nitrate.The dominant land use in both watersheds is agriculture (cultivated crops, rangeland, and grassland and pasture). The upper part of the Plum Creek watershed is more highly urbanized and has five major WWTPs; numerous smaller permitted wastewater outfalls are concentrated in the upper and central parts of the Plum Creek watershed. The Geronimo Creek watershed, in contrast, has no WWTPs upstream from or near the sampling sites.Results indicate that water quality in the Geronimo Creek watershed, which was evaluated only during base-flow conditions, is dominated by groundwater, which discharges to the stream by numerous springs at various locations. Nitrate isotope values for most Geronimo Creek samples were similar, which indicates that they likely have a common source (or

  3. Water resources of Hot Springs County, Wyoming

    USGS Publications Warehouse

    Plafcan, Maria; Ogle, Kathy Muller

    1994-01-01

    The wells and springs inventoried in Hot Springs County most commonly had been completed in or issued from the Quaternary alluvium, Quaternary terrace deposits, Fort Union and Mesaverde Formations, Cody Shale, and the Frontier and Chugwater Formations. The largest discharges measured were from the Quaternary terrace deposits (400 gallons per minute) and the Phosphoria Formation (1,000 gallons per minute). Discharges from all other geologic units varied, but most wells and springs yielded 50 gallons per minute or less.Water-quality samples collected from springs that issued from the Absaroka Volcanic Supergroup, the Bighorn Dolomite, and the Flathead Sandstone had the lowest dissolved-solids concentrations, which ranged from 58 to 265 milligrams per liter, and the least variable water types. Water from the volcanic rocks was a sodium bicarbonate type; whereas, water from the Flathead Sandstone was a calcium bicarbonate type. Water types for all the other aquifers varied from sampling site to sampling site; however, water samples from the Fort Union Formation and the Cody Shale were consistently of the sodium sulfate type. The effect of oil- and gas-development at Hamilton Dome on thermal spring discharges at Hot Springs State Park near Thermopolis was studied. The estimated drawdown from 1918, when the Hamilton Dome oil field was discovered, to 1988 was made using drill-stem data from previous studies. Drawdown at Big Spring in the Park was estimated to be less than 3 feet on the basis of recent oil- and water-production data, previous modeling studies, and the estimated water-level drawdown of 330 feet in wells at the Hamilton Dome oil field.Streams originating in the Plains region of the county, such as Middle Fork Owl Creek, are ephemeral or intermittent; whereas, streams originating in the mountains, such as Gooseberry Creek, are perennial. Average annual runoff across the county ranges from 0.26 inches at a representative streamflow-gaging station near Worland

  4. Water resources of Bannock Creek basin, southeastern Idaho

    USGS Publications Warehouse

    Spinazola, Joseph M.; Higgs, B.D.

    1997-01-01

    The potential for development of water resources in the Bannock Creek Basin is limited by water supply. Bannock Creek Basin covers 475 square miles in southeastern Idaho. Shoshone-Bannock tribal lands on the Fort Hall Indian Reservation occupy the northern part of the basin; the remainder of the basin is privately owned. Only a small amount of information on the hydrologic and water-quality characteristics of Bannock Creek Basin is available, and two previous estimates of water yield from the basin ranged widely from 45,000 to 132,500 acre-feet per year. The Shoshone-Bannock Tribes need an accurate determination of water yield and baseline water-quality characteristics to plan and implement a sustainable level of water use in the basin. Geologic setting, quantities of precipitation, evapotranspiration, surface-water runoff, recharge, and ground-water underflow were used to determine water yield in the basin. Water yield is the annual amount of surface and ground water available in excess of evapotranspiration by crops and native vegetation. Water yield from Bannock Creek Basin was affected by completion of irrigation projects in 1964. Average 1965-89 water yield from five subbasins in Bannock Creek Basin determined from water budgets was 60,600 acre-feet per year. Water yield from the Fort Hall Indian Reservation part of Bannock Creek Basin was estimated to be 37,700 acre-feet per year. Water from wells, springs, and streams is a calcium bicarbonate type. Concentrations of dissolved nitrite plus nitrate as nitrogen and fluoride were less than Maximum Contaminant Levels for public drinking-water supplies established by the U.S. Environmental Protection Agency. Large concentrations of chloride and nitrogen in water from several wells, springs, and streams likely are due to waste from septic tanks or stock animals. Estimated suspended-sediment load near the mouth of Bannock Creek was 13,300 tons from December 1988 through July 1989. Suspended-sediment discharge was

  5. Holocene surface-faulting earthquakes at the Spring Lake and North Creek Sites on the Wasatch Fault Zone: Evidence for complex rupture of the Nephi Segment

    USGS Publications Warehouse

    Duross, Christopher; Hylland, Michael D.; Hiscock, Adam; Personius, Stephen; Briggs, Richard; Gold, Ryan D.; Beukelman, Gregg; McDonald, Geg N; Erickson, Ben; McKean, Adam; Angster, Steve; King, Roselyn; Crone, Anthony J.; Mahan, Shannon

    2017-01-01

    The Nephi segment of the Wasatch fault zone (WFZ) comprises two fault strands, the northern and southern strands, which have evidence of recurrent late Holocene surface-faulting earthquakes. We excavated paleoseismic trenches across these strands to refine and expand their Holocene earthquake chronologies; improve estimates of earthquake recurrence, displacement, and fault slip rate; and assess whether the strands rupture separately or synchronously in large earthquakes. Paleoseismic data from the Spring Lake site expand the Holocene record of earthquakes on the northern strand: at least five to seven earthquakes ruptured the Spring Lake site at 0.9 ± 0.2 ka (2σ), 2.9 ± 0.7 ka, 4.0 ± 0.5 ka, 4.8 ± 0.8 ka, 5.7 ± 0.8 ka, 6.6 ± 0.7 ka, and 13.1 ± 4.0 ka, yielding a Holocene mean recurrence of ~1.2–1.5 kyr and vertical slip rate of ~0.5–0.8 mm/yr. Paleoseismic data from the North Creek site help refine the Holocene earthquake chronology for the southern strand: at least five earthquakes ruptured the North Creek site at 0.2 ± 0.1 ka (2σ), 1.2 ± 0.1 ka, 2.6 ± 0.9 ka, 4.0 ± 0.1 ka, and 4.7 ± 0.7 ka, yielding a mean recurrence of 1.1–1.3 kyr and vertical slip rate of ~1.9–2.0 mm/yr. We compare these Spring Lake and North Creek data with previous paleoseismic data for the Nephi segment and report late Holocene mean recurrence intervals of ~1.0–1.2 kyr for the northern strand and ~1.1–1.3 kyr for the southern strand. The northern and southern strands have similar late Holocene earthquake histories, which allow for models of both independent and synchronous rupture. However, considering the earthquake timing probabilities and per-event vertical displacements, we have the greatest confidence in the simultaneous rupture of the strands, including rupture of one strand with spillover rupture to the other. Ultimately, our results improve the surface-faulting earthquake history of the Nephi segment and enhance our understanding of how structural barriers

  6. Reconnaissance of the hydrology, water quality, and sources of bacterial and nutrient contamination in the Ozark Plateaus aquifer system and Cave Springs Branch of Honey Creek, Delaware County, Oklahoma, March 1999-March 2000

    USGS Publications Warehouse

    Schlottmann, Jamie L.; Tanner, Ralph S.; Samadpour, Mansour

    2000-01-01

    A reconnaissance investigation of hydrology and water quality was conducted to evaluate possible sources of bacteria and nutrient contamination in the Cave Springs Branch basin and the underlying karstic Ozark Plateau aquifer system. Objectives were to: (1) determine the directions of ground-water flow in the basin and determine whether Cave Springs Branch interacts with ground water, (2) compare water quality in Cave Springs Branch with water quality in nearby wells to determine whether the stream is contaminating nearby wells, and (3) determine sources of fecal coliform bacteria and nitrate contamination in Cave Springs Branch and ground water. Potential sources of bacteria and nitrate in the area include cultivated agriculture, cow and horse on pasture, poultry production, households, and wildlife. Presence of fecal coliform and fecal streptococcal bacteria directly indicate fecal contamination and the potential for the presence of other pathogenic organisms in a water supply. Nitrate in drinking water poses health risks and may indicate the presence of additional contaminants. Fecal coliform bacteria colony counts were least in wells, intermediate in the poultry-processing plant wastewater outfall and Honey Creek above the confluence with Cave Springs Branch, and greatest in Cave Springs Branch. Bacteria strains and resistance to antibiotics by some bacteria indicate that livestock may have been sources of some bacteria in the water samples. Multiple antibiotic resistances were not present in the isolates from the water samples, indicating that the bacteria may not be from human or poultry sources. Ribotyping indicates that Escherichia coli bacteria in water samples from the basin were from bird, cow, horse, dog, deer, and human sources. The presence of multiple ribotypes from each type of animal source except bird indicates that most of the bacteria are from multiple populations of source animals. Identifiable sources of bacteria in Cave Springs Branch at the

  7. Methanotrophic bacteria in warm geothermal spring sediments identified using stable-isotope probing.

    PubMed

    Sharp, Christine E; Martínez-Lorenzo, Azucena; Brady, Allyson L; Grasby, Stephen E; Dunfield, Peter F

    2014-10-01

    We investigated methanotrophic bacteria in sediments of several warm geothermal springs ranging in temperature from 22 to 45 °C. Methane oxidation was measured at potential rates up to 141 μmol CH4 d(-1) g(-1) sediment. Active methanotrophs were identified using (13) CH4 stable-isotope probing (SIP) incubations performed at close to in situ temperatures for each site. Quantitative (q) PCR of pmoA genes identified the position of the heavy ((13) C-labelled) DNA fractions in density gradients, and 16S rRNA gene pyrotag sequencing of the heavy fractions was performed to identify the active methanotrophs. Methanotroph communities identified in heavy fractions of all samples were predominated by species similar (≥ 95% 16S rRNA gene identities) to previously characterized Gammaproteobacteria and Alphaproteobacteria methanotrophs. Among the five hottest samples (45 °C), members of the Gammaproteobacteria genus Methylocaldum dominated in two cases, while three others were dominated by an OTU closely related (96.8% similarity) to the Alphaproteobacteria genus Methylocapsa. These results suggest that diverse methanotroph groups are adapted to warm environments, including the Methylocapsa-Methylocella-Methyloferula group, which has previously only been detected in cooler sites. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Fast-growing willow shrub named `Fish Creek`

    DOEpatents

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-05-08

    A distinct male cultivar of Salix purpurea named `Fish Creek`, characterized by rapid stem growth producing greater than 30% more woody biomass than either of its parents (`94001` and `94006`) and 20% more biomass than a current production cultivar (`SV1`). `Fish Creek` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Fish Creek` displays a low incidence of rust disease or damage by beetles or sawflies.

  9. NPDES Permit for Town of Hot Springs Wastewater Treatment Facility in Montana

    EPA Pesticide Factsheets

    Under NPDES permit MT0020591, the Town of Hot Springs, Montana, is authorized to discharge from its wastewater treatment facility located in Sanders County, Montana, to a ditch discharging to Hot Springs Creek.

  10. Recharge mixing in a complex distributary spring system in the Missouri Ozarks, USA

    USDA-ARS?s Scientific Manuscript database

    Toronto Springs is a complex distributary karst spring system with 11 perennial springs in the central Missouri Ozarks, USA. Carroll Cave (CC) and Wet Glaize Creek (WG) were previously identified as principal recharge sources. This study 1) characterized physical and chemical properties of the sprin...

  11. Fast-growing willow shrub named `Fish Creek`

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrahamson, Lawrence P; Kopp, Richard F; Smart, Lawrence B

    2007-05-08

    A distinct male cultivar of Salix purpurea named `Fish Creek`, characterized by rapid stem growth producing greater than 30% more woody biomass than either of its parents (`94001` and `94006`) and 20% more biomass than a current production cultivar (`SV1`). `Fish Creek` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. Themore » stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Fish Creek` displays a low incidence of rust disease or damage by beetles or sawflies.« less

  12. Peak discharge, flood frequency, and peak stage of floods on Big Cottonwood Creek at U.S. Highway 50 near Coaldale, Colorado, and Fountain Creek below U.S. Highway 24 in Colorado Springs, Colorado, 2016

    USGS Publications Warehouse

    Kohn, Michael S.; Stevens, Michael R.; Mommandi, Amanullah; Khan, Aziz R.

    2017-12-14

    The U.S. Geological Survey (USGS), in cooperation with the Colorado Department of Transportation, determined the peak discharge, annual exceedance probability (flood frequency), and peak stage of two floods that took place on Big Cottonwood Creek at U.S. Highway 50 near Coaldale, Colorado (hereafter referred to as “Big Cottonwood Creek site”), on August 23, 2016, and on Fountain Creek below U.S. Highway 24 in Colorado Springs, Colorado (hereafter referred to as “Fountain Creek site”), on August 29, 2016. A one-dimensional hydraulic model was used to estimate the peak discharge. To define the flood frequency of each flood, peak-streamflow regional-regression equations or statistical analyses of USGS streamgage records were used to estimate annual exceedance probability of the peak discharge. A survey of the high-water mark profile was used to determine the peak stage, and the limitations and accuracy of each component also are presented in this report. Collection and computation of flood data, such as peak discharge, annual exceedance probability, and peak stage at structures critical to Colorado’s infrastructure are an important addition to the flood data collected annually by the USGS.The peak discharge of the August 23, 2016, flood at the Big Cottonwood Creek site was 917 cubic feet per second (ft3/s) with a measurement quality of poor (uncertainty plus or minus 25 percent or greater). The peak discharge of the August 29, 2016, flood at the Fountain Creek site was 5,970 ft3/s with a measurement quality of poor (uncertainty plus or minus 25 percent or greater).The August 23, 2016, flood at the Big Cottonwood Creek site had an annual exceedance probability of less than 0.01 (return period greater than the 100-year flood) and had an annual exceedance probability of greater than 0.005 (return period less than the 200-year flood). The August 23, 2016, flood event was caused by a precipitation event having an annual exceedance probability of 1.0 (return

  13. Extreme warm temperatures alter forest phenology and productivity in Europe.

    PubMed

    Crabbe, Richard A; Dash, Jadu; Rodriguez-Galiano, Victor F; Janous, Dalibor; Pavelka, Marian; Marek, Michal V

    2016-09-01

    Recent climate warming has shifted the timing of spring and autumn vegetation phenological events in the temperate and boreal forest ecosystems of Europe. In many areas spring phenological events start earlier and autumn events switch between earlier and later onset. Consequently, the length of growing season in mid and high latitudes of European forest is extended. However, the lagged effects (i.e. the impact of a warm spring or autumn on the subsequent phenological events) on vegetation phenology and productivity are less explored. In this study, we have (1) characterised extreme warm spring and extreme warm autumn events in Europe during 2003-2011, and (2) investigated if direct impact on forest phenology and productivity due to a specific warm event translated to a lagged effect in subsequent phenological events. We found that warmer events in spring occurred extensively in high latitude Europe producing a significant earlier onset of greening (OG) in broadleaf deciduous forest (BLDF) and mixed forest (MF). However, this earlier OG did not show any significant lagged effects on autumnal senescence. Needleleaf evergreen forest (NLEF), BLDF and MF showed a significantly delayed end of senescence (EOS) as a result of extreme warm autumn events; and in the following year's spring phenological events, OG started significantly earlier. Extreme warm spring events directly led to significant (p=0.0189) increases in the productivity of BLDF. In order to have a complete understanding of ecosystems response to warm temperature during key phenological events, particularly autumn events, the lagged effect on the next growing season should be considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Hood River Fish Habitat Project; Confederated Tribes of the Warm Springs Reservation of Oregon, Annual Report 2001-2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaivoda, Alexis

    2003-11-01

    installation of a new fish screen and bypass system on the mainstem Hood River (Farmers Canal). Final engineering and design for the horizontal screen was completed during the winter of 2001. In December 2001 and January 2002, the concrete work was completed and the head gates were mounted. During the spring the secondary head level control gates were installed. In September 2002, the jersey barriers and vortex tubes were installed. These are located upstream of the old drum screen, and are the primary means of dealing with bedload and suspended load from the diversion. The screen surface was also installed in September 2002 and the system accommodated water soon after. Monitoring of these structures in regards to efficiency and possible effects to fish migration is scheduled to occur in spring 2003. The transition from the old canal to the new screen is smooth and currently does not present any problems. The old drum screen is going to remain in place until all the biological and hydrological monitoring is complete to ensure compliance and satisfaction of all agencies involved. OBJECTIVE 5--Assist the East Fork Irrigation District (EFID) in final engineering design and construction of the Central Lateral Canal upgrade and invert siphon. This objective was revised and included in the FY 03 Statement of Work for Project No. 1998-021-00. During FY 02, a significant portion of the engineering and design work was completed on the EFID Central Lateral Canal upgrade and invert siphon. There were some changes in canal alignment that required further design work and easement acquisition. Time was also spent looking for matching funds and securing a loan by the EFID. Construction initiation is now scheduled for summer 2003. OBJECTIVE 6--Modify and/or eliminate five culverts, three on Baldwin Creek, one on Graham Creek, and one on Evans Creek, which function as barriers to upstream and downstream fish migration. This objective was revised and included in the FY 03 Statement of Work for

  15. Geochemical Investigation of Source Water to Cave Springs, Great Basin National Park, White Pine County, Nevada

    USGS Publications Warehouse

    Prudic, David E.; Glancy, Patrick A.

    2009-01-01

    Cave Springs supply the water for the Lehman Caves Visitor Center at Great Basin National Park, which is about 60 miles east of Ely, Nevada, in White Pine County. The source of water to the springs was investigated to evaluate the potential depletion caused by ground-water pumping in areas east of the park and to consider means to protect the supply from contamination. Cave Springs are a collection of several small springs that discharge from alluvial and glacial deposits near the contact between quartzite and granite. Four of the largest springs are diverted into a water-collection system for the park. Water from Cave Springs had more dissolved strontium, calcium, and bicarbonate, and a heavier value of carbon-13 than water from Marmot Spring at the contact between quartzite and granite near Baker Creek campground indicating that limestone had dissolved into water at Cave Springs prior to discharging. The source of the limestone at Cave Springs was determined to be rounded gravels from a pit near Baker, Nevada, which was placed around the springs during the reconstruction of the water-collection system in 1996. Isotopic compositions of water at Cave Springs and Marmot Spring indicate that the source of water to these springs primarily is from winter precipitation. Mixing of water at Cave Springs between alluvial and glacial deposits along Lehman Creek and water from quartzite is unlikely because deuterium and oxygen-18 values from a spring discharging from the alluvial and glacial deposits near upper Lehman Creek campground were heavier than the deuterium and oxygen-18 values from Cave Springs. Additionally, the estimated mean age of water determined from chlorofluorocarbon concentrations indicates water discharging from the spring near upper Lehman Creek campground is younger than that discharging from either Cave Springs or Marmot Spring. The source of water at Cave Springs is from quartzite and water discharges from the springs on the upstream side of the

  16. Karst hydrogeology and hydrochemistry of the Cave Springs basin near Chattanooga, Tennessee

    USGS Publications Warehouse

    Pavlicek, D.J.

    1996-01-01

    The Cave Springs ground-water basin, located near Chattanooga, Tennessee, was chosen as one of the Valley and Ridge physiographic province type area studies for the Appalachian Valley-Piedmont Regional Aquifer-System Analysis study in 1990. Karstic Paleozoic carbonate rocks, residual clay-rich regolith, and coarse alluvium form the aquifer framework. Recharge from rainfall dispersed over the basin enters the karst aquifer through the thick regolith. The area supplying recharge to the Cave Springs Basin is approximately 7 square miles. Recharge from North Chickamauga Creek may contribute recharge to the Cave Springs Basin along losing reaches. The flow medium consists of mixed dolomite and limestone with cavernous and fracture porosity. Flow type as determined by the coefficient of variation of long-term continuous specific conductance (18 and 15 percent) from two wells completed in cavernous intervals about 150 feet northeast of Cave Springs, indicates an aquifer with conduit flow. Flow type, based on the ratio (6:1) of spring flood-flow discharge to spring base-flow discharge, indicates an aquifer with diffuse flow. Conduit flow probably dominates the aquifer system west of Cave Springs Ridge from the highly transmissive, unconfined, alluvium capped aquifer and along losing reaches of North Chickamauga Creek. Diffuse flow probably predominates in the areas along and east of Cave Springs Ridge covered with the thick, clay-rich regolith that forms a leaky confining layer. Based on average annual long-term precipitation and runoff records, the amount of water available for recharge to Cave Springs is 11.8 cubic feet per second. The mean annual long-term discharge of Cave Springs is 16.4 cubic feet per second which leaves 4.6 cubic feet per second of recharge unaccounted for. As determined by low-flow stream discharge measurements, recharge along losing reaches of North Chickamauga Creek may be an important source of unaccounted-for-recharge to the Cave Springs Basin

  17. An analysis of stream channel cross section technique as a means to determine anthropogenic change in second order streams at the Tenderfoot Creek Experimental Forest, Meagher County, Montana

    Treesearch

    Jeff Boice

    1999-01-01

    Five second order tributaries to Tenderfoot Creek were investigated: Upper Tenderfoot Creek, Sun Creek, Spring Park Creek, Bubbling Creek, and Stringer Creek. Second order reaches were initially located on 7.5 minute topographic maps using techniques first applied by Strahler (1952). Reach breaks were determined in the field through visual inspection. Vegetation type (...

  18. Ground-water levels and water-quality data for wells in the Spring Creek area near Arnold Air Force Base, Tennessee, April and May 2000

    USGS Publications Warehouse

    Williams, Shannon D.; Aycock, Robert A.

    2001-01-01

    Arnold Air Force Base (AAFB) occupies about 40,000 acres in Coffee and Franklin Counties, Tennessee. Numerous site-specific ground-water contamination investigations have been conducted at designated solid waste management units (SWMU?s) at AAFB. Several synthetic volatile organic compounds (VOC?s), primarily chlorinated solvents, have been identified in groundwater samples collected from monitoring wells near SWMU 8 in the Spring Creek area. During April and May 2000, a study of the groundwater resources in the Spring Creek area was conducted to determine if VOC?s from AAFB have affected local private water supplies and to advance understanding of the ground-water-flow system in this area. The study focused on sampling private wells located within the Spring Creek area that are used as a source of drinking water. Ground-water-flow directions were determined by measuring water levels in wells and constructing a potentiometric-surface map of the Manchester aquifer in the study area. Data were collected from a total of 35 private wells and 22 monitoring wells during the period of study. Depths to ground water were determined for 22 of the private wells and all 22 of the monitoring wells. The wells ranged in depth from 21 to 105 feet. Water-level altitudes ranged from 930 to 1,062 feet above sea level. Depths to water ranged from 8 to 83 feet below land surface. Water-quality samples were collected from 29 private wells which draw water from either gravel zones in the upper part of the Manchester aquifer, fractured bedrock in the lower part of the Manchester aquifer, or a combination of these two zones. Concentrations of 50 of the 55 VOC?s analyzed for were less than method detection limits. Chloroform, acetone, chloromethane, 2-butanone, and tetrachloroethylene were detected in concentrations exceeding the method detection limits. Only chloroform and acetone were detected in concentrations equal to or exceeding reporting limits. Chloroform was detected in a sample

  19. Environmental assessment of water, sediment, and biota collected from the Bear Creek watershed, Colusa County, California

    USGS Publications Warehouse

    Rytuba, James J.; Hothem, Roger L.; Brussee, Brianne E.; Goldstein, Daniel; May, Jason T.

    2015-01-01

    The Cache Creek watershed lies within California's North Coast Range, an area with abundant geologic sources of mercury (Hg) and a long history of Hg contamination (Rytuba, 2000). Bear Creek, Cache Creek, and the North Fork of Cache Creek are the major streams of the Cache Creek watershed, encompassing 2978 km2. The Cache Creek watershed contains soils naturally enriched in Hg as well as natural springs (both hot and cold) with varying levels of aqueous Hg (Domagalski and others, 2004, Suchanek and others, 2004, Holloway and others 2009). All three tributaries are known to be significant sources of anthropogenically derived Hg from historic mines, both Hg and gold (Au), and associated ore storage/processing sites and facilities (Slotton and others, 1995, 2004; CVRWQCB, 2003; Schwarzbach and others, 2001; Gassel and others, 2005; Suchanek and others., 2004, 2008a, 2009). Historically, two of the primary sources of mercury contamination in the upper part of Bear Creek have been the Rathburn and Petray Hg Mines. The Rathburn Hg mine was discovered and initially mined in the early 1890s. The Rathburn and the more recently developed Petray open pit mines are localized along fault zones in serpentinite that has been altered and cut by quartz and chalcedony veins. Cold saline-carbonate springs are located perepheral to the Hg deposits and effluent from the springs locally has high concentrations of Hg (Slowey and Rytuba, 2008). Several ephemeral tributaries to Bear Creek drain the mine area which is located on federal land managed by the U.S. Bureau of Land Management (USBLM). The USBLM requested that the U.S. Geological Survey (USGS) measure and characterize Hg and other geochemical constituents in sediment, water, and biota to establish baseline information prior to remediation of the Rathburn and Petray mines. Samples sites were established in Bear Creek upstream and downstream from the mine area. This report is made in response to the USBLM request, the lead agency

  20. A reversal of the shift towards earlier spring phenology in several Mediterranean reptiles and amphibians during the 1998-2013 warming slowdown.

    PubMed

    Prodon, Roger; Geniez, Philippe; Cheylan, Marc; Devers, Florence; Chuine, Isabelle; Besnard, Aurelien

    2017-12-01

    Herps, especially amphibians, are particularly susceptible to climate change, as temperature tightly controls many parameters of their biological cycle-above all, their phenology. The timing of herps' activity or migration period-in particular the dates of their first appearance in spring and first breeding-and the shift to earlier dates in response to warming since the last quarter of the 20 th century has often been described up to now as a nearly monotonic trend towards earlier phenological events. In this study, we used citizen science data opportunistically collected on reptiles and amphibians in the northern Mediterranean basin over a period of 32 years to explore temporal variations in herp phenology. For 17 common species, we measured shifts in the date of the species' first spring appearance-which may be the result of current changes in climate-and regressed the first appearance date against temperatures and precipitations. Our results confirmed the expected overall trend towards earlier first spring appearances from 1983 to 1997, and show that the first appearance date of both reptiles and amphibians fits well with the temperature in late winter. However, the trend towards earlier dates was stopped or even reversed in most species between 1998 and 2013. We interpret this reversal as a response to cooling related to the North Atlantic Oscillation (NAO) in the late winter and early spring. During the positive NAO episodes, for certain species only (mainly amphibians), the effect of a warm weather, which tends to advance the phenology, seems to be counterbalanced by the adverse effects of the relative dryness. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  1. Surficial geology of the Cane Creek basin, Lauderdale County, Tennessee

    USGS Publications Warehouse

    Miller, J.H.

    1991-01-01

    The surficial geology of the Cane Creek basin, in Lauderdale County, West Tennessee, was studied from 1985-88. Peoria Loess is the parent material from which soils in the Cane Creek drainage basin were derived. In general, a brown silt grades into a gray silt from 5 to I7 feet below ground surface. This color change probably represents depth to water table prior to the channelization of Cane Creek. Only at river mile 11.9 does rock outcrop near the main channel. Lower reaches of major tributaries have surficial geology similar to the main channel. In upper reaches of Hyde Creek and Fain Spring Creek, the sequence from the St&ace is sand and gravels, red-brown sandstone, sand and clay layers, and then, an orange sand layer. Coarse-grained deposits are found most often along the northern boundary of the basin and only occasionally in areas to the west and south of the main channel. Depth to sand or gravel ranges from about 0 to 158 feet in the uplands, and generally deeper than 40 feet near the main channel.

  2. Special Office Report for Warm Springs Dam and Lake Sonoma. Sonoma County, California. Section 7. Consultation on Endangered Species.

    DTIC Science & Technology

    1983-05-01

    REPORT, SECTION 7 CONSULTATION, FN WARM SPRINGS DAM AND LAKE SONOMA, SONOMA COUNTY , F P IN CALIFORNIA 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) 8...regarding the American Peregrine Falcon (Falco peregrInus anatum) and its critical habitat (about 13,300 acres in Sonoma County , California) in the 29 May...federally owned historic resources. Actions to be undertaken will not impair historic properties. e. Sonoma County General Plan. This County Plan is a

  3. Spring-fen habitat islands in a warming climate: Partitioning the effects of mesoclimate air and water temperature on aquatic and terrestrial biota.

    PubMed

    Horsák, Michal; Polášková, Vendula; Zhai, Marie; Bojková, Jindřiška; Syrovátka, Vít; Šorfová, Vanda; Schenková, Jana; Polášek, Marek; Peterka, Tomáš; Hájek, Michal

    2018-09-01

    Climate warming and associated environmental changes lead to compositional shifts and local extinctions in various ecosystems. Species closely associated with rare island-like habitats such as groundwater-dependent spring fens can be severely threatened by these changes due to a limited possibility to disperse. It is, however, largely unknown to what extent mesoclimate affects species composition in spring fens, where microclimate is buffered by groundwater supply. We assembled an original landscape-scale dataset on species composition of the most waterlogged parts of isolated temperate spring fens in the Western Carpathian Mountains along with continuously measured water temperature and hydrological, hydrochemical, and climatic conditions. We explored a set of hypotheses about the effects of mesoclimate air and local spring-water temperature on compositional variation of aquatic (macroinvertebrates), semi-terrestrial (plants) and terrestrial (land snails) components of spring-fen biota, categorized as habitat specialists and other species (i.e. matrix-derived). Water temperature did not show a high level of correlation with mesoclimate. For all components, fractions of compositional variation constrained to temperature were statistically significant and higher for habitat specialists than for other species. The importance of air temperature at the expense of water temperature and its fluctuation clearly increased with terrestriality, i.e. from aquatic macroinvertebrates via vegetation (bryophytes and vascular plants) to land snails, with January air temperature being the most important factor for land snails and plant specialists. Some calcareous-fen specialists with a clear distribution centre in temperate Europe showed a strong affinity to climatically cold sites in our study area and may hence be considered as threatened by climate warming. We conclude that prediction models solely based on air temperature may provide biased estimates of future changes in

  4. Drilling report: State Nursery test well No. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donovan, J.; Sonderegger, J.

    1982-08-27

    A geothermal test well was sited and drilled approximately 0.8 miles (1.3 km) east of Broadwater Hot Springs, near Helena, Montana. The site is on the property of the State Nursery, along the north side of Ten Mile Creek. The purpose of the drilling was to test a thermal infrared imagery anomaly and to evaluate whether a source of warm water for space heating of a series of new greenhouses could be developed to replace ones destroyed in the spring 1981 flooding of Ten Mile Creek. The well was drilled to 280 feet total depth, with no success in obtainingmore » hot or even warm water.« less

  5. Mercury Release from the Rathburn Mine, Petray Mine, and Bear Valley Saline Springs, Colusa County, California 2004-2006

    USGS Publications Warehouse

    Slowey, Aaron J.; Rytuba, James J.

    2008-01-01

    This report summarizes data obtained from field sampling of mine tailings and waste rock at the Rathburn and Petray Mines that was initiated in July 17, 2001 and water and sediment in regional springs and tributaries that drain from the mine area into Bear Creek on December 14, 2004 and February 16 and May 27, 2005. Although it was initially assumed that the mines were the cause of elevated levels of monomethyl Hg measured by the Central Regional Water Quality Control Board in tributaries near their confluence with Bear Creek (Foe and others, unpublished results), it became apparent during this study that ground water springs were also potential sources of Hg. In addition to sampling of springs in May 2005, saline ground water seepage along an unnamed fault on the west side of Bear Valley was sampled on December 13-14, 2006. We did not sample water or sediment in Bear Creek itself during this study. Our results permit a preliminary assessment of mining and natural sources of Hg and associated chemical constituents that could elevate levels of monomethyl Hg in Bear Creek.

  6. Assessing Whether Northeastern Earthquakes and Warm Springs Are Produced by the Northern Appalachian Anomaly

    NASA Astrophysics Data System (ADS)

    Marrero, A. M.; Abbott, D. H.; Menke, W. H.

    2017-12-01

    The passive margin of eastern North America has been tectonically quiescent for >100 Ma. However, earthquakes, mantle-derived 3He in ground water and warm springs hint at continued activity. The recent proposal of asthenospheric upwelling (the Northern Appalachian Anomaly, NAA) beneath southern New England (SNE) raises the possibility that this activity is due to mantle melt. Its delivery to the lithosphere may lower density and cause stress, open pathways for 3He, and heat the crust. We examine isostatic balance along the Levin et al. [2017] receiver function profile for which crustal thickness H and compressional-to-shear velocity ratio R are published. It crosses the continental margin north of the NAA and acts as a control against which regions closer to it may be compared. We use Christensen's [1996] measurements of rocks to predict crustal density Dc from R. Isostatic balance is estimated by combining H, Dc, elevation and mantle density Dm. We assume a constant Dm, which allows us to assess the imbalance due to factors other than mantle heterogeneities. The crust along the profile is not in isostatic balance, with very large disequilibrium pressure P (up to -33.6 MPa). We use the horizontal gradient of P as a proxy for crustal shear force and compare it to seismicity. The signals show significant correlation, indicating that both the isostatic imbalance and the crustal seismicity may be due to crustal features that are thought to be mostly "fossil'; that is, originating hundreds of millions of year ago when the crust was formed. While our results do not preclude the possibility that the present-day NAA is influencing isostatic disequilibria and seismicity in SNE, they indicate that distinguishing its effect from the very large ancient causes may be problematical. We also study warm springs underlain by the NAA and show that their temperatures have been stable over the last 100 years, suggesting their importance in long-term heat transport.

  7. Linking atmospheric blocking to European temperature extremes in spring

    NASA Astrophysics Data System (ADS)

    Brunner, Lukas; Hegerl, Gabriele; Steiner, Andrea

    2017-04-01

    The weather in Europe is influenced by a range of dynamical features such as the Atlantic storm tracks, the jet stream, and atmospheric blocking. Blocking describes an atmospheric situation in which a stationary and persistent high pressure system interrupts the climatological flow for several days to weeks. It can trigger cold and warm spells which is of special relevance during the spring season because vegetation is particularly vulnerable to extreme temperatures in the early greening phase. We investigate European cold and warm spells in the 36 springs from 1979 to 2014 in temperature data from the European daily high-resolution gridded dataset (E-OBS) and connect them to blocking derived from geopotential height fields from ERA-Interim. A highly significant link between blocking and both, cold and warm spells is found that changes during spring. Resolving monthly frequencies, we find a shift in the preferred locations of blocking throughout spring. The maximum blocking frequency during cold spells shifts from Scandinavia to the British Isles in March and April. During warm spells it continuously shifts further northward during the spring season. The location of the block is found to be essential for the sign of the relationship. Blocking over the north-eastern Atlantic and over northern Europe is strongly linked to cold conditions, while blocking over central Europe is associated with warm conditions. Consistently the spatial distribution of temperature extremes across Europe is highly sensitive to the occurrence of blocking. More than 80 % of cold spells in south-eastern Europe occur during blocking, compared to less than 30 % in northern Europe. Warm spells show the opposite pattern and more than 70 % co-occur with blocking in northern Europe, compared to less than 30 % in parts of southern Europe. We find considerable interannual variability over the analysis period from 1979 to 2014 but also a decrease in cold spells and an increase in warm spells

  8. The Wells Creek Meteorite Impact Site and Changing Views on Impact Cratering

    NASA Astrophysics Data System (ADS)

    Ford, J. R. H.; Orchiston, Wayne; Clendening, Ron

    2012-11-01

    Wells Creek is a confirmed meteorite impact site in Tennessee, USA. The Wells Creek structure was first noticed by railroad surveyors around 1855 and brought to the attention of J.M. Safford, Tennessee's State Geologist. He included an insert in the 1869 Geologic Map of Tennessee, which is the first known map to include the structure. The origin of the Wells Creek structure was controversial, and was interpreted as being either the result of volcanic steam explosion or meteorite impact. It was only in the 1960s that Wilson and Stearns were able to state that the impact hypothesis was preferred. Evidence for a Wells Creek meteorite impact includes drill core results, extreme brecciation and shatter cones, while a local lack of volcanic material is telling. Just to the north of the Wells Creek Basin are three small basins that Wilson concluded were associated with the Wells Creek impact event, but evidence regarding the origin of the Austin, Indian Mound and Cave Spring Hollow sites is not conclusive.

  9. Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bretz, Justin K.; Olson, Jill M.

    2003-03-01

    In 2002 the Idaho Fisheries Resource Office continued working as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, broodstock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate the project data points and augment past data. Supplementation treatments included the release of 51,329 left ventral-clipped smolts into Clear Creek (750 were PIT tagged), and 12,000 unmarked coded-wire tagged parr into Pete King Creek (998 were PIT tagged). Using juvenile collection methods, Idaho Fisheries Resource Officemore » staff PIT tagged and released 579 naturally produced spring chinook juveniles in Clear Creek, and 54 on Pete King Creek, for minimum survival estimates to Lower Granite Dam. For Clear Creek, minimum survival estimates to Lower Granite Dam of hatchery produced supplementation and naturally produced PIT tagged smolts, were 36.0%, and 53.1%, respectively. For Pete King Creek, minimum survival estimates to Lower Granite Dam, of hatchery produced supplementation smolts and naturally produced smolts PIT tagged as parr and presmolts, were 18.8%, and 8.3%, respectively. Adults collected for broodstock in 2002 represented the final adult broodstock group collected for the ISS project. Twenty-six ventral clipped, and 28 natural adult spring chinook were transported above the weir. Monitoring and evaluation of spawning success was continued on Clear and Pete King creeks. A total of 69 redds were counted and 79 carcasses were recovered on Clear Creek. Two redds were observed and no carcasses were collected on Pete King Creek.« less

  10. Sociocultural Factors Review for the Warm Springs Dam - Lake Sonoma Project Candidate/Critical Habitat Zone Evaluation,

    DTIC Science & Technology

    1983-06-01

    roads which fol- lowed them, were also used by the Cloverdale Porno to gain access to fish- ing sites on Dry Creek, Galloway Creek, and Rail Creek and... Porno , as well as other groups from as far away as Lake County, to reach Annapolis, Stewart’s Point, and Gualala. From Cloverdale, the trail followed...time, the Cloverdale and Dry Creek Porno traveled by buckboard and later by automobile to the coast along a trail which generally follows the route of

  11. Evaluation of fecal contamination by human and ruminant sources in upper Fountain Creek, Colorado, 2007-2008, by using multiple lines of evidence:

    USGS Publications Warehouse

    Stoeckel, Donald

    2011-01-01

    Fountain Creek is a high-gradient stream on the Front Range of the Rocky Mountains in Colorado. The headwaters of Fountain Creek drain Pikes Peak, a major destination for tourism. Fountain Creek is a drinking-water source for the City of Colorado Springs, Colorado, and is used for irrigation, recreation, and other purposes between Colorado Springs and the confluence with the Arkansas River at Pueblo, Colorado. In 2008, Fountain Creek was placed on the Colorado 303(d) list of impaired streams because of fecal contamination. Colorado uses a 30-day geometric mean standard of 126 Escherichia coli per 100 milliliters as its management goal for recreational waters. The objective of this study was to identify major sources of Escherichia coli in upper Fountain Creek during exceedances of the State recreational water standard. To meet this objective, a new approach was developed and tested that uses genetic marker analysis for microbial source tracking, along with other information, to evaluate potential contributions of fecal contamination from various sources.

  12. Hydrology and water quality of the Edwards Aquifer associated with Barton Springs in the Austin area, Texas

    USGS Publications Warehouse

    Slade, Raymond M.; Dorsey, Michael E.; Stewart, Sheree L.

    1986-01-01

    Water-quality data for 1979-83 are available for each creek that recharges the aquifer, from Barton Springs, and for 38 wells. Water quality from Barton Springs and the wells is better than the creeks providing surface recharge, which have fecal-bacteria values as high as 100,000 colonies per 100 milliliters. Significant densities of fecal bacteria have been found in water from Barton Springs. Significant concentrations of nitrate nitrogen, fecal-group bacteria, and fluoride have been identified in samples from wells. Fluoride originates in the aquifers that underlie the Edwards aquifer. Nitrate nitrogen and fecal-group bacteria originate in residential developments and cattle ranches located in the area.

  13. Seepage investigation on selected reaches of Fish Creek, Teton County, Wyoming, 2004

    USGS Publications Warehouse

    Wheeler, Jerrod D.; Eddy-Miller, Cheryl A.

    2005-01-01

    A seepage investigation was conducted on Fish Creek, a tributary to the Snake River in Teton County in western Wyoming, near Wilson. Mainstem, return flow, tributary, spring, and diversion sites were selected and measured on six reaches along Fish Creek. Flow was measured under two flow regimes, high flow in August 2004 and base flow in November 2004. During August 17-19, 2004, 20 sites had quantifiable discharge with median values ranging from 0.93 to 384 ft3/s for the 14 mainstem sites on Fish Creek, and from 0.35 to 12.2 ft3/s for the 5 return, spring, and tributary sites (inflows). The discharge was 2.23 ft3/s for the single diversion site (outflow). Estimated gains or losses from ground water were calculated for all reaches using the median discharge values and the estimated measurement errors. Reach 1 had a calculated gain in discharge from ground water (23.8 ?3.3 ft3/s). Reaches 2-6 had no calculated gains in flow, greater than the estimated error, that could be attributed to ground water. A second set of measurements were made under base-flow conditions during November 3-4, 2004. Twelve of the 20 sites visited in August 2004 were flowing and were measured. All of the Reach 1 sites near Teton Village were dry. Median discharge values ranged from 10.3 to 70.0 ft3/s on the nine Fish Creek mainstem sites, and from 2.32 to 3.71 ft3/s on the three return, spring, and tributary sites (inflows). Reaches 2, 3 and 6 had a gain from ground water. Reaches 4 and 5 had no calculated gains in flow, greater than the estimated error, that could be attributed to ground water.

  14. Assessment of Young Dong tributary and Imgok Creek impacted by Young Dong coal mine, South Korea.

    PubMed

    Lee, Byung-Tae; Ranville, James F; Wildeman, Thomas R; Jang, Min; Shim, Yon Sik; Ji, Won Hyun; Park, Hyun Sung; Lee, Hyun Ju

    2012-01-01

    An initial reclamation of the Young Dong coal mine site, located in northeastern South Korea, was completed in 1995. Despite the filling of the adit with limestone, acid rock drainage (ARD) enters Young Dong tributary and is then discharged to Imgok Creek. This ARD carries an average of 500 mg CaCO(3)/l of mineral acidity, primarily as Fe(II) and Al. Before spring runoff, the flow of Imgok Creek is 3.3-4 times greater than that of the tributary and has an alkalinity of 100 mg CaCO(3)/l, which is sufficient to eliminate the mineral acidity and raise the pH to about 6.5. From April through September 2008, there were at least two periods of high surface flow that affects the flow of ARD from the adit. Flow of ARD reaches 2.8 m(3)/min during spring runoff. This raised the concentrations of Fe and Al in the confluence with Imgok Creek. However, by 2 km downstream the pH of the Imgok Creek is 6.5 and only dissolved Fe is above the Korean drinking water criteria (0.30 mg/l). This suggests only a minor impact of Young Dong Creek water on Imgok Creek. Acid digestion of the sediments in Imgok Creek and Young Dong Tributary reveals considerable abundances of heavy metals, which could have a long-term impact on water quality. However, several water-based leaching tests, which better simulate the bioavailable metals pool, released only Al, Fe, Mn, and Zn at concentrations exceeding the criteria for drinking water or aquatic life.

  15. Hydrogeologic and geochemical characterization of groundwater resources in Deep Creek Valley and adjacent areas, Juab and Tooele Counties, Utah, and Elko and White Pine Counties, Nevada

    USGS Publications Warehouse

    Gardner, Philip M.; Masbruch, Melissa D.

    2015-09-18

    Water-level altitude contours and groundwater ages indicate the potential for a long flow path from southwest to northeast between northern Spring and Deep Creek Valleys through Tippett Valley. Although information gathered during this study is insufficient to conclude whether or not groundwater travels along this interbasin flow path, dissolved sulfate and chloride data indicate that a small fraction of the lower altitude, northern Deep Creek Valley discharge may be sourced from these areas. Despite the uncertainty due to limited data collection points, a hydraulic connection between northern Spring Valley, Tippett Valley, and Deep Creek Valley appears likely, and potential regional effects resulting from future groundwater withdrawals in northern Spring Valley warrant ongoing monitoring of groundwater levels across this area.

  16. Proceedings: CE (Corps of Engineers) Workshop on Design and Operation of Selective Withdrawal Intake Structures Held in San Francisco, California on 24-28 June 1985.

    DTIC Science & Technology

    1986-05-01

    design of the outlet works for Warm Springs Dam on Dry Creek in Sonoma County , California, are discussed. Water quality design considerations include both...on Dry Creek, "-’- a right-bank tributary of the Russian River, approximately 14 river miles upstream of their confluence in Sonoma County , California...Dry Creek, Sonoma County , California, are discussed. Water quality design considerations include both temperature and turbidity of discharged water

  17. Hydrologic data for the Weldon Spring radioactive waste-disposal sites, St. Charles County, Missouri; 1984-1986

    USGS Publications Warehouse

    Kleeschulte, M.J.; Emmett, L.F.; Barks, J.H.

    1986-01-01

    Hydrologic and water quality data were collected during an investigation of the Weldon Spring radioactive waste disposal sites and surroundings area in St. Charles County, Missouri, from 1984 to 1986. The data consists of water quality analyses of samples collected from 45 groundwater and 27 surface water sites. This includes analyses of water from four raffinate pits and from the Weldon Spring quarry. Also included in the report are the results of a seepage run on north flowing tributaries to Dardenne Creek from Kraut Run to Crooked Creek. Mean daily discharge from April 1985 to April 1986 is given for two springs located about 1.5 mi north of the chemical plant. (USGS)

  18. Tidal asymmetry in a tidal creek with mixed mainly semidiurnal tide, Bushehr Port, Persian Gulf

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Taleb; Chegini, Vahid; Sadrinasab, Masoud; Siadatmousavi, Seyed Mostafa; Yari, Sadegh

    2016-03-01

    This study investigated the tidal asymmetry imposed by both the interaction of principal tides and the higher harmonics generated by distortions within a tidal creek network with mixed mainly semidiurnal tide in the Bushehr Port, Persian Gulf. Since velocity and water-level imposed by principal triad tides K1-O1-M2 are in quadrature, duration asymmetries during a tidal period in this short, shallow inverse estuary should be manifest as skewed velocities. The principal tides produce periodic asymmetries including a strong ebb-dominance and a weak flood-dominance condition during spring and neap tides respectively. The higher harmonics induced by nonlinearities engender a flood-dominance condition where the convergence effects are higher than frictional effects, and an ebbdominance condition where intertidal storage are extended. Since the triad K1-O1-M2 driven asymmetry is not overcome by higher harmonics close to the mouth, the periodic asymmetry dominates within the creek in which higher harmonics reinforce the weak flood-dominance (strong ebb-dominance) condition in the convergent channel (divergent area). Also, the maximum flood and the maximum ebb from all harmonic constituents occurred close to high water slack time during both spring and neap tides in this short creek. Since occational wetting of intertidal areas happened close to the high water (HW) time during spring tide, the water level flooded slowly close to the HW time of the spring tide.

  19. Microbial Diversity and Lipid Abundance in Microbial Mats from a Sulfidic, Saline, Warm Spring in Utah, USA

    NASA Astrophysics Data System (ADS)

    Gong, J.; Edwardson, C.; Mackey, T. J.; Dzaugis, M.; Ibarra, Y.; Course 2012, G.; Frantz, C. M.; Osburn, M. R.; Hirst, M.; Williamson, C.; Hanselmann, K.; Caporaso, J.; Sessions, A. L.; Spear, J. R.

    2012-12-01

    The microbial diversity of Stinking Springs, a sulfidic, saline, warm spring northeast of the Great Salt Lake was investigated. The measured pH, temperature, salinity, and sulfide concentration along the flow path ranged from 6.64-7.77, 40-28° C, 2.9-2.2%, and 250 μM to negligible, respectively. Five sites were selected along the flow path and within each site microbial mats were dissected into depth profiles based on the color and texture of the mat layers. Genomic DNA was extracted from each layer, and the 16S rRNA gene was amplified and sequenced on the Roche 454 Titanium platform. Fatty acids were also extracted from the mat layers and analyzed by liquid chromatography and mass spectrometry. The mats at Stinking Springs were classified into roughly two morphologies with respect to their spatial distribution: loose, sometimes floating mats proximal to the spring source; and thicker, well-laminated mats distal to the spring source. Loosely-laminated mats were found in turbulent stream flow environments, whereas well-laminated mats were common in less turbulent sheet flows. Phototrophs, sulfur oxidizers, sulfate reducers, methanogens, other bacteria and archaea were identified by 16S rRNA gene sequences. Diatoms, identified by microscopy and lipid analysis were found to increase in abundance with distance from the source. Methanogens were generally more abundant in deeper mat laminae. Photoheterotrophs were found in all mat layers. Microbial diversity increased significantly with depth at most sites. In addition, two distinct microbial streamers were identified and characterized at the two fast flowing sites. These two streamer varieties were dominated by either cyanobacteria or flavobacteria. Overall, our genomic and lipid analysis suggest that the physical and chemical environment is more predictive of the community composition than mat morphology. Site Map

  20. Surface water of Beaver Creek Basin, in South-Central Oklahoma

    USGS Publications Warehouse

    Laine, L.L.; Murphy, J.J.

    1962-01-01

    Annual discharge from Beaver Creek basin is estimated to have averaged 217,000 acre-feet during a 19-year base period, water years 1938-56, equivalent to an average annual runoff depth of 4.7 inches over the 857 square-mile drainage area. About 55,000 acre-feet per year comes from Little Beaver Creek basin, a tributary drainage of 195 square miles. Yearly streamflow is highly variable. The discharge of Little Beaver Creek near Duncan during 13-year period of record (water years 1949-61) has ranged from 86,530 acre-feet in calendar year 1957 to 4,880 acre-feet in 1956, a ratio of almost 18 to 1. Highest runoff within a year tends to occur in the spring months of May and June, a 2-month period that, on the average, accounts for more than half of the annual discharge of Little Beaver Creek near Duncan. The average monthly runoff during record was lowest in January. Variation in daily streamflow is such that while the average discharge for the 13-year period of record was 50.1 cfs (cubic feet per second), the daily discharge was more than 6 cfs only about half of the time. There was no flow at the site 19 percent of the time during the period. Some base runoff usually exists in the headwaters of Beaver and Little Beaver Creeks, and in the lower reaches of Beaver Creek. Low flow in Cow Creek tends to be sustained by waste water from Duncan, where water use in 1961 averaged 4 million gallons per day. In the remainder of the basin, periods of no flow occur in most years. The surface water of Beaver Creek basin is very hard but in general is usable for municipal, agricultural and industrial purposes. The chemical character of the water is predominantly a calcium, magnesium bicarbonate type of water in the lower three quarters of the basin, except in Cow Creek where oil-field brines induce a distinct sodium, calcium chloride characteristic at low and medium flows. A calcium sulfate type of water occurs in most of the northern part of the basin except in headwater areas

  1. NPDES Permit for Wesco Operating, Inc. – Maverick Springs in Wyoming

    EPA Pesticide Factsheets

    Under NPDES permit WY-0000469, Wesco Operating, Inc. - Maverick Springs is authorized to discharge from its wastewater treatment facility located in Fremont County, Wyoming to a tributary to Five Mile Creek.

  2. Hydrologic data for the Big Spring basin, Clayton County, Iowa, water year 1991

    USGS Publications Warehouse

    Kalkhoff, S.J.; Kuzniar, R.L.

    1994-01-01

    Stream discharge, specific conductance, pH, and water temperature were monitored continuously, and monthly water-quality samples were collected at a site on Roberts Creek and at Big Spring. Nitrite plus nitrate as nitrogen concentrations in 27 samples from Roberts Creek at the point where it leaves the study area ranged from 1.8 to 22 mg/L. Herbicide concentrations in 26 samples from the Roberts Creek site ranged from less than 0.10 μg/L (micrograms per liter) to 43 μg/L. Alachlor was detected in 42 percent of the samples; atrazine in 92 percent; and cyanazine and metolachlor in 35 percent of the samples. The total suspended-sediment load discharged in Roberts Creek was about 160,000 tons. At Big Spring, the ground-water discharge point, the daily mean specific conductance ranged from 414 to 788 microsiemens per centimeter at 25 degrees Celsius, the daily median pH ranged from 6.7 to 7.1, and the daily mean water temperature ranged from 8.5 to 13.0 degrees Celsius. Concentrations of nitrite plus nitrate as nitrogen in 23 samples ranged from 4.2 to 17 mg/L. The total measured suspended-sediment discharged from Big Spring was about 17,000 tons. Alachlor was detected in 26 percent; atrazine in 100 percent; cyanazine in 26 percent, and metolachlor in 9 percent of the samples. The maximum atrazine concentration was 16 μg/L.

  3. Low-temperature geothermal potential of the Ojo Caliente warm springs area, northern New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuataz, F.D.; Stix, J.; Goff, F.

    1984-05-01

    A detailed geochemical investigation of 17 waters (thermal and cold, mineralized and dilute) was performed in the Ojo Caliente-La Madera area. Two types of thermomineral waters have separate and distinctive geologic, geochemical, and geothermal characteristics. The water from Ojo Caliente Resort emerges with temperatures less than or equal to 54/sup 0/C from a Precambrian metarhyolite. Its chemistry, typically Na-HCO/sub 3/, has a total mineralization of 3600 mg/l. Isotopic studies have shown that the thermal water emerges from the springs and a hot well without significant mixing with the cold shallow aquifer of the valley alluvium. However, the cold aquifer adjacentmore » to the resort does contain varying amounts of thermal water that originates from the warm spring system. Geothermometry calculations indicate that the thermal water may be as hot as 85/sup 0/C at depth before its ascent toward surface. Thermodynamic computations on the reaction states of numerous mineral phases suggest that the thermal water will not cause major scaling problems if the hot water is utilized for direct-use geothermal applications. By means of a network of very shallow holes, temperature and electrical conductivity anomalies have been found elsewhere in the valley around Ojo Caliente, and resistivity soundings have confirmed the presence of a plume of thermal water entering the shallow aquifer. The group of lukewarm springs around La Madera, with temperatures less than or equal to 29/sup 0/C, chemical type of NaCaMg-HCO/sub 3/Cl and with a total mineralization less than or equal to 1500 mg/l behaves as a different system without any apparent relation to the Ojo Caliente system. Its temperature at depth is not believed to exceed 35 to 40/sup 0/C.« less

  4. Hydrologic conditions and water-quality conditions following underground coal mining in the North Fork of the Right Fork of Miller Creek drainage basin, Carbon and Emery Counties, Utah, 2004-2005

    USGS Publications Warehouse

    Wilkowske, C.D.; Cillessen, J.L.; Brinton, P.N.

    2007-01-01

    In 2004 and 2005, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, reassessed the hydrologic system in and around the drainage basin of the North Fork of the Right Fork (NFRF) of Miller Creek, in Carbon and Emery Counties, Utah. The reassessment occurred 13 years after cessation of underground coal mining that was performed beneath private land at shallow depths (30 to 880 feet) beneath the NFRF of Miller Creek. This study is a follow-up to a previous USGS study of the effects of underground coal mining on the hydrologic system in the area from 1988 to 1992. The previous study concluded that mining related subsidence had impacted the hydrologic system through the loss of streamflow over reaches of the perennial portion of the stream, and through a significant increase in dissolved solids in the stream. The previous study also reported that no substantial differences in spring-water quality resulted from longwall mining, and that no clear relationship between mining subsidence and spring discharge existed.During the summers of 2004 and 2005, the USGS measured discharge and collected water-quality samples from springs and surface water at various locations in the NFRF of Miller Creek drainage basin, and maintained a streamflow-gaging station in the NFRF of Miller Creek. This study also utilized data collected by Cyprus–Plateau Mining Corporation from 1992 through 2001.Of thirteen monitored springs, five have discharge levels that have not returned to those observed prior to August 1988, which is when longwall coal mining began beneath the NFRF of Miller Creek. Discharge at two of these five springs appears to fluctuate with wet and dry cycles and is currently low due to a drought that occurred from 1999–2004. Discharge at two other of the five springs did not increase with increased precipitation during the mid-1990s, as was observed at other monitored springs. This suggests that flowpaths to these springs may have been altered by

  5. NPDES Permit for Marathon Oil Company – Maverick Springs in Wyoming

    EPA Pesticide Factsheets

    Under NPDES permit WY-0000779, the Marathon Oil Company – Maverick Springs is authorized to discharge from its wastewater treatment facility located in Fremont County, Wyoming to a tributary to Five Mile Creek.

  6. Geohydrology and Water Quality of the Valley-Fill Aquifer System in the Upper Sixmile Creek and West Branch Owego Creek Valleys in the Town of Caroline, Tompkins County, New York

    USGS Publications Warehouse

    Miller, Todd S.

    2009-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Town of Caroline and Tompkins County Planning Department, began a study of the valley-fill aquifer system in upper Sixmile Creek and headwaters of West Branch Owego Creek valleys in the Town of Caroline, NY. The purpose of the study is to provide geohydrologic data to county and town planners as they develop a strategy to manage and protect their water resources. The first aquifer reach investigated in this series is in the Town of Caroline and includes the upper Sixmile Creek valley and part of West Branch Owego Creek valley. The portions of the valley-fill aquifer system that are comprised of saturated coarse-grained sediments including medium to coarse sand and sandy gravel form the major aquifers. Confined sand and gravel units form the major aquifers in the western and central portions of the upper Sixmile Creek valley, and an unconfined sand and gravel unit forms the major aquifer in the eastern portion of the upper Sixmile Creek valley and in the headwaters of the West Branch Owego Creek valley. The valley-fill deposits are thinnest near the edges of the valley where they pinch out along the till-mantled bedrock valley walls. The thickness of the valley fill in the deepest part of the valley, at the western end of the study area, is about 100 feet (ft); the thickness is greater than 165 ft on top of the Valley Heads Moraine in the central part of the valley. An estimated 750 people live over and rely on groundwater from the valley-fill aquifers in upper Sixmile Creek and West Branch Owego Creek valleys. Most groundwater withdrawn from the valley-fill aquifers is pumped from wells with open-ended 6-inch diameter casings; the remaining withdrawals are from shallow dug wells or cisterns that collect groundwater that discharges to springs (especially in the Brooktondale area). The valley-fill aquifers are the sources of water for about 200 households, several apartment complexes, two mobile home parks

  7. Temporal change in biological community structure in the Fountain Creek basin, Colorado, 2001-2008

    USGS Publications Warehouse

    Zuellig, Robert E.; Bruce, James F.; Stogner, Sr., Robert W.

    2010-01-01

    In 2001, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study to better understand the relations between environmental characteristics and biological communities in the Fountain Creek basin in order to aide water-resource management and guide future monitoring activities. To accomplish this task, environmental (streamflow, habitat, and water chemistry) and biological (fish and macroinvertebrate) data were collected annually at 24 sites over a 6- or 8-year period (fish, 2003 to 2008; macroinvertebrates, 2001 to 2008). For this report, these data were first analyzed to determine the presence of temporal change in macroinvertebrate and fish community structure among years using nonparametric multivariate statistics. Where temporal change in the biological communities was found, these data were further analyzed using additional nonparametric multivariate techniques to determine which subset of selected streamflow, habitat, or water-chemistry variables best described site-specific changes in community structure relative to a gradient of urbanization. This study identified significant directional patterns of temporal change in macroinvertebrate and fish community structure at 15 of 24 sites in the Fountain Creek basin. At four of these sites, changes in environmental variables were significantly correlated with the concurrent temporal change identified in macroinvertebrate and fish community structure (Monument Creek above Woodmen Road at Colorado Springs, Colo.; Monument Creek at Bijou Street at Colorado Springs, Colo.; Bear Creek near Colorado Springs, Colo.; Fountain Creek at Security, Colo.). Combinations of environmental variables describing directional temporal change in the biota appeared to be site specific as no single variable dominated the results; however, substrate composition variables (percent substrate composition composed of sand, gravel, or cobble) collectively were present in 80 percent of the environmental

  8. Root and Shoot Phenology May Respond Differently to Warming

    NASA Astrophysics Data System (ADS)

    Radville, L.; Eissenstat, D. M.; Post, E.

    2015-12-01

    Climate change is increasing temperatures and extending the growing season for many organisms. Shifts in phenology have been widely reported in response to global warming and have strong effects on ecosystem processes and greenhouse gas emissions. It is well understood that warming generally advances aboveground plant phenology, but the influence of temperature on root phenology is unclear. Most terrestrial biosphere models assume that root and shoot growth occur at the same time and are influenced by warming in the same way, but recent studies suggest that this may not be the case. Testing this assumption is particularly important in the Arctic where over 70% of plant biomass can be belowground and warming is happening faster than in other ecosystems. In 2013 and 2014 we examined the timing of root growth in the Arctic in plots that had been warmed or unwarmed for 10 years. We found that peak root growth occurred about one month before leaf growth, suggesting that spring root phenology is not controlled by carbon produced during spring photosynthesis. If root phenology is not controlled by photosynthate early in the season, earlier spring leaf growth may not cause earlier spring root growth. In support of this, we found that warming advanced spring leaf cover but did not significantly affect root phenology. Root growth was not significantly correlated with soil temperature and did not appear to be limited by near-freezing temperatures above the permafrost. These results suggest that although shoots are influenced by temperature, roots in this system may be more influenced by photosynthesis and carbon storage. Aboveground phenology, one of the most widely measured aspects of climate change, may not represent whole-plant phenology and may be a poor indicator of the timing of whole-plant carbon fluxes. Additionally, climate model assumptions that roots and shoots grow at the same time may need to be revised.

  9. Escapement and Productivity of Spring Chinook and Summer Steelhead in the John Day River Basin, Technical Report 2004-2005.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Wayne

    The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. Spawning ground surveys for spring (stream-type) Chinook salmon were conducted in four main spawning areas (Mainstem, Middle Fork, North Fork, and Granite Creek System) and seven minor spawning areas (South Fork, Camas Creek, Desolation Creek, Trail Creek, Deardorff Creek, Clear Creek, and Big Creek) in the John Day River basin during Augustmore » and September of 2005. Census surveys included 298.2 river kilometers (88.2 rkm within index, 192.4 rkm additional within census, and 17.6 rkm within random survey areas) of spawning habitat. We observed 902 redds and 701 carcasses including 227 redds in the Mainstem, 178 redds in the Middle Fork, 420 redds in the North Fork, 62 redds in the Granite Creek System, and 15 redds in Desolation Creek. Age composition of carcasses sampled for the entire basin was 1.6% age 3, 91.2% age 4, and 7.1% age 5. The sex ratio was 57.4% female and 42.6% male. Significantly more females than males were observed in the Granite Creek System. During 2005, 82.3% of female carcasses sampled had released all of their eggs. Significantly more pre-spawn mortalities were observed in Granite Creek. Nine (1.3%) of 701 carcasses were of hatchery origin. Of 298 carcasses examined, 4.0% were positive for the presence of lesions. A significantly higher incidence of gill lesions was found in the Granite Creek System when compared to the rest of the basin. Of 114 kidney samples tested, two (1.8%) had clinical BKD levels. Both infected fish were age-4 females in the Middle Fork. All samples tested for IHNV were negative. To estimate spring Chinook and summer steelhead smolt-to-adult survival (SAR) we PIT tagged 5

  10. Lessons Learned from Predicting the Poorly Gauged Sweetwater Creek Basin, in Central Idaho

    NASA Astrophysics Data System (ADS)

    Morehead, M. D.; Peckham, S.; Muskatirovic, J.

    2005-12-01

    The flow regime of a poorly gauged basin in central Idaho was modeled in response to Agency, Tribal and Irrigation District needs to provide water for irrigation while still providing flows for a healthy ecosystem in Sweetwater Creek. This modeling effort shows some strengths and weakness of our present state of knowledge in simulating the hydrology of a basin. The spring freshet of a normal and a high flow year were simulated relatively successfully. However, the low flow year and summer thunderstorm events were not simulated as well, with the model over simulating the flow rates for these events. Improvements in a number of areas would increase the accuracy of the modeled flows. Improved meteorological data collection may help considerably. It is known that storm systems are funneled up the valley of Clearwater River where the present meteorological gauging sites are. Having meteorological gauging sites further into Sweetwater Creek Basin and away from the effects of the Clearwater River would improve the input conditions. Additionally, this semi-arid watershed commonly breaks the assumption of a moist soil profile. When these soils are dry, a wetting front must establish and propagate its way through the soil before a shallow groundwater flow system can be set up. Much of the precipitation input from the intermittent summer rainstorms can be absorbed into the soil profile and evaporated without having a significant discharge signal. An improved, semiarid groundwater model is needed for this type of environment. An irrigation project exists on Sweetwater Creek near Lewiston Idaho that decreases the flows on the creek, particularly during low flow periods, including late summer and early fall. There are concerns over the effects of the operation of the irrigation system on in-stream habitat. Limited data have been collected, which would allow an evaluation of the natural flow regime of Sweetwater Creek. Due to the lack of natural flow data, a numerical model was

  11. 77 FR 42714 - Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC; Notice of Application...: Eagle Creek Hydropower, LLC; Eagle Creek Land Resources, LLC; and Eagle Creek Water Resources, LLC. e... Contact: Robert Gates, Senior Vice President-- Operations, Eagle Creek Hydropower, LLC, Eagle Creek Water...

  12. Potential effects of surface coal mining on the hydrology of the Corral Creek area, Hanging Woman Creek coal field, southeastern Montana

    USGS Publications Warehouse

    McClymonds, N.E.

    1984-01-01

    The Corral Creek area of the Hanging Woman Creek coal field, 9 miles east of the Decker coal mines near the Tongue River, contains large reserves of Federal coal that have been identified for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic systems and to study assess potential impacts of surface coal mining on local water resources. Hydrogeologic data collected indicate that aquifers are coal and sandstone beds within the Tongue River Member of the Fort Union Formation (Paleocene age) and sand and gravel in valley alluvium (Pleistocene and Holocene age). Surface-water resources are limited to a few spring-fed stock ponds in the higher parts of the area and the intermittent flow of Corral Creek near the mouth. Most of the stock ponds in the area become dry by midsummer. Mining of the Anderson coal bed would remove three stock wells and would lower the potentiometric surface within the coal and sandstone aquifers. The alluvial aquifer beneath Corral Creek and South Fork would be removed. Although mining would alter the existing hydrologic systems and remove several shallow wells, alternative ground-water supplies are available that could be developed to replace those lost by mining. (USGS)

  13. Race and the politics of polio: Warm Springs, Tuskegee, and the March of Dimes.

    PubMed

    Rogers, Naomi

    2007-05-01

    The Tuskegee Institute opened a polio center in 1941, funded by the March of Dimes. The center's founding was the result of a new visibility of Black polio survivors and the growing political embarrassment around the policy of the Georgia Warm Springs polio rehabilitation center, which Franklin Roosevelt had founded in the 1920s before he became president and which had maintained a Whites-only policy of admission. This policy, reflecting the ubiquitous norm of race-segregated health facilities of the era, was also sustained by a persuasive scientific argument about polio itself: that Blacks were not susceptible to the disease. After a decade of civil rights activism, this notion of polio as a White disease was challenged, and Black health professionals, emboldened by a new integrationist epidemiology, demanded that in polio, as in American medicine at large, health care should be provided regardless of race, color, or creed.

  14. Climate and Tectonics Need Not Apply: Transient Erosion Driven by Drainage Integration, Aravaipa Creek, AZ

    NASA Astrophysics Data System (ADS)

    Jungers, M.; Heimsath, A. M.

    2013-12-01

    Periods of transient erosion during landscape evolution are most commonly attributed to fluvial systems' responses to changes in tectonic or climatic forcing. Dramatic changes in base level and sudden increases in drainage area associated with drainage reorganization can, however, drive punctuated events of incision and erosion equal in magnitude to those driven by tectonics or climate. In southeastern Arizona's Basin and Range, a mature portion of the North American physiographic province, the modern Gila River system integrates a network of previously internally drained structural basins. One basin in particular, Aravaipa Creek, is the most recent to join the broader Gila River fluvial network. Following drainage integration, Aravaipa Creek rapidly incised to equilibrate with its new, much lower, base level. In doing so, it carved Aravaipa Canyon, excavated a large volume of sedimentary basin fill, and captured drainage area from the still internally drained Sulphur Springs basin. Importantly, this dramatic episode of transient incision and erosion was the result of drainage integration alone. We hypothesize that the adjustment time for Aravaipa Creek was shorter than the timescale of any climate forcing, and regional extensional tectonics were quiescent at the time of integration. We can, therefore, explicitly quantify the magnitude of transient incision and erosion driven by drainage reorganization. We use remnants of the paleo-basin surface and modern landscape elevations to reconstruct the pre-drainage integration topography of Aravaipa Creek basin. Doing so enables us to quantify the magnitude of incision driven by drainage reorganization as well as the volume of material eroded from the basin subsequent to integration. Key control points for our landscape reconstruction are: (1) the inferred elevation of the spillover point between Aravaipa Creek and the San Pedro River; (2) Quaternary pediment-capping gravels above Aravaipa Canyon (3) perched remnants of

  15. Impacts of global warming on phenology of spring leaf unfolding remain stable in the long run.

    PubMed

    Wang, Huanjiong; Rutishauser, This; Tao, Zexing; Zhong, Shuying; Ge, Quansheng; Dai, Junhu

    2017-02-01

    The impact of spring temperature forcing on the timing of leaf unfolding of plants (temperature sensitivity, S T ) is one important indicator of how and to what degree plant species track climate change. Fu et al. (Nature 526:104-107, 2015) found that S T has significantly decreased from the 1980-1994 to the 1999-2013 period for seven mid-latitude tree species in Europe. However, long-term changes in S T over the past 60 years are still not clear. Here, using in situ observations of leaf unfolding for seven dominant European tree species, we analyze the temporal change in S T over decadal time scales extending the data series back to 1951. Our results demonstrate that S T shows no statistically significant change within shifting 30-year windows from 1951 to 2013 and remains stable between 1951-1980 and 1984-2013 (3.6 versus 3.7 days °C -1 ). This result suggests that the significant decrease in S T over the past 33 years could not be sustained when examining the trends of phenological responses in the long run. Therefore, we could not conclude that tree spring phenology advances will slow down in the future, and the S T changes in warming scenarios are still uncertain.

  16. Hydrogeology of the Mammoth Spring groundwater basin and vicinity, Markagunt Plateau, Garfield, Iron, and Kane Counties, Utah

    USGS Publications Warehouse

    Spangler, Lawrence E.

    2012-01-01

    The Markagunt Plateau, in southwestern Utah, lies at an altitude of about 9,500 feet, largely within Dixie National Forest. The plateau is capped primarily by Tertiary- and Quaternary-age volcanic rocks that overlie Paleocene- to Eocene-age limestone of the Claron Formation, which forms escarpments on the west and south sides of the plateau. In the southwestern part of the plateau, an extensive area of sinkholes has formed that resulted primarily from dissolution of the underlying limestone and subsequent subsidence and (or) collapse of the basalt, producing sinkholes as large as 1,000 feet across and 100 feet deep. Karst development in the Claron Formation likely has been enhanced by high infiltration rates through the basalt. Numerous large springs discharge from the volcanic rocks and underlying limestone on the Markagunt Plateau, including Mammoth Spring, one of the largest in Utah, with discharge that ranges from less than 5 to more than 300 cubic feet per second (ft3/s). In 2007, daily mean peak discharge of Mammoth Spring was bimodal, reaching 54 and 56 ft3/s, while daily mean peak discharge of the spring in 2008 and in 2009 was 199 ft3/s and 224 ft3/s, respectively. In both years, the rise from baseflow, about 6 ft3/s, to peak flow occurred over a 4- to 5-week period. Discharge from Mammoth Spring accounted for about 54 percent of the total peak streamflow in Mammoth Creek in 2007 and 2008, and about 46 percent in 2009, and accounted for most of the total streamflow during the remainder of the year. Results of major-ion analyses for water samples collected from Mammoth and other springs on the plateau during 2006 to 2009 indicated calcium-bicarbonate type water, which contained dissolved-solids concentrations that ranged from 91 to 229 milligrams per liter. Concentrations of major ions, trace elements, and nutrients did not exceed primary or secondary drinking-water standards; however, total and fecal coliform bacteria were present in water from Mammoth and

  17. IRETHERM: Magnetotelluric Assessment of Geothermal Energy Potential of Hydrothermal Aquifer, Radiothermal Granite and Warm Spring Targets in Ireland

    NASA Astrophysics Data System (ADS)

    Jones, Alan G.; Muller, Mark; Fullea, Javier; Vozar, Jan; Blake, Sarah; Delhaye, Robert; Farrell, Thomas

    2013-04-01

    IRETHERM (www.iretherm.ie) is an academic-government-industry, collaborative research project, funded by Science Foundation Ireland, with the overarching objective of developing a holistic understanding of Ireland's low-enthalpy geothermal energy potential through integrated modelling of new and existing geophysical and geological data. With the exception of Permo-Triassic basins in Northern Ireland, hosting geothermal aquifers of promising but currently poorly-defined potential, rocks with high primary porosity have not been identified elsewhere. Whether any major Irish shear zones/faults might host a geothermal aquifer at depth is also unknown, although clusters of warm-springs in the vicinity of two major shear zones are promising. IRETHERM's objectives over a four-year period are to: (i) Develop multi-parameter geophysical modelling and interpretation software tools that will enhance our ability to explore for and assess deep aquifers and granitic intrusions. (ii) Model and understand temperature variations in the upper-crust. Firstly, by building a 3-D model of crustal heat-production based on geochemical analysis of surface, borehole and mid- to lower-crustal xenolith samples. Secondly, by modelling, using a fully self-consistent 3-D approach, observed surface heat-flow variation as a function of variation in the structure and thermal properties of the crust and lithosphere, additionally constrained by surface elevation, geoid, gravity, seismic and magnetotelluric (MT) data. (iii) Test a strategic set of eight "type" geothermal targets with a systematic program of electromagnetic surveys (MT, CSEM) across ten target areas. During 2012, IRETHERM collected over 220 MT/AMT sites in the investigation of a range of different geothermal target types. Here we present preliminary electrical resistivity modelling results for each target investigated and discuss the implications of the models for geothermal energy potential: 1. Rathlin Basin The only sedimentary strata

  18. Using fluorescence spectroscopy to gain new insights into seasonal patterns of stream DOC concentrations in an alpine, headwater catchment underlain by discontinuous permafrost in Wolf Creek Research Basin, Yukon Territory, Canada

    NASA Astrophysics Data System (ADS)

    Shatilla, N. J.; Carey, S.; Tang, W.

    2017-12-01

    The Canadian subarctic is experiencing rapid climate warming resulting in decreased depth and duration of snowcover, decreased permafrost extent and time span of seasonal frozen ground resulting in increased active layer depth, and increased frequency and magnitude of rainfall events during the growing season. These changes challenge our conceptual models of permafrost hydrology as comparisons between recent and historical streamflow records show an emerging secondary post-freshet peak in flow in recent years along with enhanced winter flows. Long-term monitoring of Granger Creek (7.6km2), an alpine watershed underlain by discontinuous permafrost located within Wolf Creek Research Basin (176km2) in Yukon Territory, Canada provided a multi-decadal record of hydro-meteorological measurements. Granger Creek experienced warmer and wetter summers in 2015-6 compared to 2001-8, and an altered streamflow pattern with an earlier spring freshet and peak in dissolved organic carbon (DOC) concentrations. DOC concentrations post-freshet remained low at both the headwater and meso-catchment scale, which contradicts trends of increasing DOC concentrations observed in larger river systems. Hysteresis loops of sub-hourly measurements of streamflow, salinity and chromophoric dissolved organic matter (CDOM) were analyzed to provide new insights into how hydrological connectivity at the headwater scale affected the timing of solute release with supporting information from optical indices calculated from fluorescence spectroscopy. These indices provided a more nuanced view of catchment dynamics than the DOC concentrations. The composition and quality of DOM varied throughout the growing season with the delivery of older, terrestrially-derived material corresponding to high DOC concentrations at the onset of spring freshet when the catchment was initially being flushed. The origin and quality of stream DOM shifted throughout the rest of the season to newer, more easily mobilized DOM

  19. Larger temperature response of autumn leaf senescence than spring leaf-out phenology.

    PubMed

    Fu, Yongshuo H; Piao, Shilong; Delpierre, Nicolas; Hao, Fanghua; Hänninen, Heikki; Liu, Yongjie; Sun, Wenchao; Janssens, Ivan A; Campioli, Matteo

    2018-05-01

    Climate warming is substantially shifting the leaf phenological events of plants, and thereby impacting on their individual fitness and also on the structure and functioning of ecosystems. Previous studies have largely focused on the climate impact on spring phenology, and to date the processes underlying leaf senescence and their associated environmental drivers remain poorly understood. In this study, experiments with temperature gradients imposed during the summer and autumn were conducted on saplings of European beech to explore the temperature responses of leaf senescence. An additional warming experiment during winter enabled us to assess the differences in temperature responses of spring leaf-out and autumn leaf senescence. We found that warming significantly delayed the dates of leaf senescence both during summer and autumn warming, with similar temperature sensitivities (6-8 days delay per °C warming), suggesting that, in the absence of water and nutrient limitation, temperature may be a dominant factor controlling the leaf senescence in European beech. Interestingly, we found a significantly larger temperature response of autumn leaf senescence than of spring leaf-out. This suggests a possible larger contribution of delays in autumn senescence, than of the advancement in spring leaf-out, to extending the growing season under future warmer conditions. © 2017 John Wiley & Sons Ltd.

  20. Soil warming effect on net ecosystem exchange of carbon dioxide during the transition from winter carbon source to spring carbon sink in a temperate urban lawn.

    PubMed

    Zhou, Xiaoping; Wang, Xiaoke; Tong, Lei; Zhang, Hongxing; Lu, Fei; Zheng, Feixiang; Hou, Peiqiang; Song, Wenzhi; Ouyang, Zhiyun

    2012-01-01

    The significant warming in urban environment caused by the combined effects of global warming and heat island has stimulated widely development of urban vegetations. However, it is less known of the climate feedback of urban lawn in warmed environment. Soil warming effect on net ecosystem exchange (NEE) of carbon dioxide during the transition period from winter to spring was investigated in a temperate urban lawn in Beijing, China. The NEE (negative for uptake) under soil warming treatment (temperature was about 5 degrees C higher than the ambient treatment as a control) was -0.71 micromol/(m2 x sec), the ecosytem was a CO2 sink under soil warming treatment, the lawn ecosystem under the control was a CO2 source (0.13 micromol/(m2 x sec)), indicating that the lawn ecosystem would provide a negative feedback to global warming. There was no significant effect of soil warming on nocturnal NEE (i.e., ecosystem respiration), although the soil temperature sensitivity (Q10) of ecosystem respiration under soil warming treatment was 3.86, much lower than that in the control (7.03). The CO2 uptake was significantly increased by soil warming treatment that was attributed to about 100% increase of alpha (apparent quantum yield) and Amax (maximum rate of photosynthesis). Our results indicated that the response of photosynthesis in urban lawn is much more sensitive to global warming than respiration in the transition period.

  1. 77 FR 13592 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ...; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land Resources, LLC; Notice... 24, 2012, AER NY-Gen, LLC (transferor), Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources.... Cherry, Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources...

  2. 75 FR 27332 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources, LLC; Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... 9690-106] AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources, LLC; Eagle Creek... Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources, LLC (transferees) filed an.... Paul Ho, Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources...

  3. Investigations into the Early Life-history of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Basin, Annual Report 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reischauer, Alyssa; Monzyk, Frederick; Van Dyke, Erick

    2003-06-01

    We determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout Oncorhynchus mykiss using rotary screw traps on four streams in the Grande Ronde River basin during the 2001 migratory year (MY 2001) from 1 July 2000 through 30 June 2001. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O. mykiss could be distinguished. An 'early' migrant group left upper rearing areas from 1 July 2000 through 29 January 2001 with a peak in the fall. A 'late' migrant group descended from upper rearing areas from 30more » January 2001 through 30 June 2001 with a peak in the spring. The migrant population of juvenile spring chinook salmon in the upper Grande Ronde River in MY 2001 was very low in comparison to previous migratory years. We estimated 51 juvenile spring chinook migrated out of upper rearing areas with approximately 12% of the migrant population leaving as early migrants to overwinter downstream. In the same migratory year, we estimated 16,067 O. mykiss migrants left upper rearing areas with approximately 4% of these fish descending the upper Grande Ronde River as early migrants. At the Catherine Creek trap, we estimated 21,937 juvenile spring chinook migrants in MY 2001. Of these migrants, 87% left upper rearing areas early to overwinter downstream. We also estimated 20,586 O. mykiss migrants in Catherine Creek with 44% leaving upper rearing areas early to overwinter downstream. At the Lostine River trap, we estimated 13,610 juvenile spring chinook migrated out of upper rearing areas with approximately 77% migrating early. We estimated 16,690 O. mykiss migrated out of the Lostine River with approximately 46% descending the river as early migrants. At the Minam River trap, we estimated 28,209 juvenile spring chinook migrated out of the river with 36% migrating early. During the same period, we estimated 28,113 O. mykiss with

  4. Late quaternary slip-rate variations along the Warm Springs Valley fault system, northern Walker Lane, California-Nevada border

    USGS Publications Warehouse

    Gold, Ryan; dePolo, Craig; Briggs, Richard W.; Crone, Anthony

    2013-01-01

    The extent to which faults exhibit temporally varying slip rates has important consequences for models of fault mechanics and probabilistic seismic hazard. Here, we explore the temporal behavior of the dextral‐slip Warm Springs Valley fault system, which is part of a network of closely spaced (10–20 km) faults in the northern Walker Lane (California–Nevada border). We develop a late Quaternary slip record for the fault using Quaternary mapping and high‐resolution topographic data from airborne Light Distance and Ranging (LiDAR). The faulted Fort Sage alluvial fan (40.06° N, 119.99° W) is dextrally displaced 98+42/-43 m, and we estimate the age of the alluvial fan to be 41.4+10.0/-4.8 to 55.7±9.2  ka, based on a terrestrial cosmogenic 10Be depth profile and 36Cl analyses on basalt boulders, respectively. The displacement and age constraints for the fan yield a slip rate of 1.8 +0.8/-0.8 mm/yr to 2.4 +1.2/-1.1 mm/yr (2σ) along the northern Warm Springs Valley fault system for the past 41.4–55.7 ka. In contrast to this longer‐term slip rate, shorelines associated with the Sehoo highstand of Lake Lahontan (~15.8  ka) adjacent to the Fort Sage fan are dextrally faulted at most 3 m, which limits a maximum post‐15.8 ka slip rate to 0.2  mm/yr. These relations indicate that the post‐Lahontan slip rate on the fault is only about one‐tenth the longer‐term (41–56 ka) average slip rate. This apparent slip‐rate variation may be related to co‐dependent interaction with the nearby Honey Lake fault system, which shows evidence of an accelerated period of mid‐Holocene earthquakes.

  5. Potential effects of surface coal mining on the hydrology of the upper Otter Creek-Pasture Creek Area, Moorehead coal field, southeastern Montana

    USGS Publications Warehouse

    McClymonds, N.E.; Moreland, J.A.

    1988-01-01

    The combined upper Otter Creek-Pasture Creek area, south of Ashland, Montana, contains large reserves of Federal coal for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic systems and generalized groundwater quality, to assess potential effects of surface mining on local water resources, and to evaluate the potential for reclamation of those water resources. Principal aquifers are coal beds and sandstone in the upper Tongue River Member of the Fort Union Formation (Paleocene age), and sand and gravel in alluvium (Pleistocene and Holocene age). Hydraulic conductivity determined from aquifer tests was about 0.004 to 16 ft/d for coal or sandstone aquifers and 1 to 290 ft/d for alluvial aquifers. Dissolved-solids concentrations in water from bedrock ranged from 1,160 to 4,390 mg/L. In alluvium, the concentrations were 1,770 to 12,600 mg/L. Surface water is available from interrupted flow along downstream reaches of Otter and Pasture Creeks, from stock ponds, and from springs. Most stock ponds are dry by midsummer. Mining of coal in the Anderson, Dietz, and Canyon beds would lower the potentiometric surface within coal and sandstone aquifers. Alluvium along Otter Creek, its main tributaries, and Pasture Creek would be removed at the mines. Planned structuring of the spoils and reconstruction of alluvial aquifers could minimize downstream changes in water quality. Although mining would alter the existing hydrologic systems and destroy several shallow wells and stock ponds, alternative water supplies are available. (USGS)

  6. Use of hydrologic budgets and hydrochemistry to determine ground-water and surface-water interactions for Rapid Creek, Western South Dakota

    USGS Publications Warehouse

    Anderson, Mark T.

    1995-01-01

    The study of ground-water and surface-water interactions often employs streamflow-gaging records and hydrologic budgets to determine ground-water seepage. Because ground-water seepage usually is computed as a residual in the hydrologic budget approach, all uncertainty of measurement and estimation of budget components is associated with the ground-water seepage. This uncertainty can exceed the estimate, especially when streamflow and its associated error of measurement, is large relative to other budget components. In a study of Rapid Creek in western South Dakota, the hydrologic budget approach with hydrochemistry was combined to determine ground-water seepage. The City of Rapid City obtains most of its municipal water from three infiltration galleries (Jackson Springs, Meadowbrook, and Girl Scout) constructed in the near-stream alluvium along Rapid Creek. The reach of Rapid Creek between Pactola Reservoir and Rapid City and, in particular the two subreaches containing the galleries, were studied intensively to identify the sources of water to each gallery. Jackson Springs Gallery was found to pump predominantly ground water with a minor component of surface water. Meadowbrook and Girl Scout Galleries induce infiltration of surface water from Rapid Creek but also have a significant component of ground water.

  7. The impact of winter and spring temperatures on temperate tree budburst dates: results from an experimental climate manipulation.

    PubMed

    Fu, Yongshuo H; Campioli, Matteo; Deckmyn, Gaby; Janssens, Ivan A

    2012-01-01

    Budburst phenology is a key driver of ecosystem structure and functioning, and it is sensitive to global change. Both cold winter temperatures (chilling) and spring warming (forcing) are important for budburst. Future climate warming is expected to have a contrasting effect on chilling and forcing, and subsequently to have a non-linear effect on budburst timing. To clarify the different effects of warming during chilling and forcing phases of budburst phenology in deciduous trees, (i) we conducted a temperature manipulation experiment, with separate winter and spring warming treatments on well irrigated and fertilized saplings of beech, birch and oak, and (ii) we analyzed the observations with five temperature-based budburst models (Thermal Time model, Parallel model, Sequential model, Alternating model, and Unified model). The results show that both winter warming and spring warming significantly advanced budburst date, with the combination of winter plus spring warming accelerating budburst most. As expected, all three species were more sensitive to spring warming than to winter warming. Although the different chilling requirement, the warming sensitivity was not significantly different among the studied species. Model evaluation showed that both one- and two- phase models (without and with chilling, respectively) are able to accurately predict budburst. For beech, the Sequential model reproduced budburst dates best. For oak and birch, both Sequential model and the Thermal Time model yielded good fit with the data but the latter was slightly better in case of high parameter uncertainty. However, for late-flushing species, the Sequential model is likely be the most appropriate to predict budburst data in a future warmer climate.

  8. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operation and Maintenance and Monitoring and Evaluation, 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boe, Stephen J.; Lofy, Peter T.

    2003-03-01

    This is the third annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to restore fisheries in these streams. Statement of Work Objectives for 2000: (1) Participate in implementation of the comprehensive multiyear operations plan for the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCP). (2) Plan for recovery of endemic summer steelhead populations in Catherinemore » Creek and the upper Grande Ronde River. (3) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2000. (4) Collect summer steelhead. (5) Collect adult endemic spring chinook salmon broodstock. (6) Acclimate juvenile spring chinook salmon prior to release into the upper Grande Ronde River and Catherine Creek. (7) Document accomplishments and needs to permitters, comanagers, and funding agency. (8) Communicate project results to the scientific community. (9) Plan detailed GRESCP Monitoring and Evaluation for future years. (10) Monitor adult population abundance and characteristics of Grande Ronde River spring chinook salmon populations and incidentally-caught summer steelhead and bull trout. (11) Monitor condition, movement, and mortality of spring chinook salmon acclimated at remote facilities. (12) Monitor water quality at facilities. (13) Participate in Monitoring & Evaluation of the captive brood component of the Program to document contribution to the Program.« less

  9. Seasonal warming of the Middle Atlantic Bight Cold Pool

    NASA Astrophysics Data System (ADS)

    Lentz, S. J.

    2017-02-01

    The Cold Pool is a 20-60 m thick band of cold, near-bottom water that persists from spring to fall over the midshelf and outer shelf of the Middle Atlantic Bight (MAB) and Southern Flank of Georges Bank. The Cold Pool is remnant winter water bounded above by the seasonal thermocline and offshore by warmer slope water. Historical temperature profiles are used to characterize the average annual evolution and spatial structure of the Cold Pool. The Cold Pool gradually warms from spring to summer at a rate of order 1°C month-1. The warming rate is faster in shallower water where the Cold Pool is thinner, consistent with a vertical turbulent heat flux from the thermocline to the Cold Pool. The Cold Pool warming rate also varies along the shelf; it is larger over Georges Bank and smaller in the southern MAB. The mean turbulent diffusivities at the top of the Cold Pool, estimated from the spring to summer mean heat balance, are an order of magnitude larger over Georges Bank than in the southern MAB, consistent with much stronger tidal mixing over Georges Bank than in the southern MAB. The stronger tidal mixing causes the Cold Pool to warm more rapidly over Georges Bank and the eastern New England shelf than in the New York Bight or southern MAB. Consequently, the coldest Cold Pool water is located in the New York Bight from late spring to summer.

  10. Bioaccumulation of selenium by the Bryophyte Hygrohypnum ochraceum in the Fountain Creek Watershed, Colorado.

    PubMed

    Herrmann, S J; Turner, J A; Carsella, J S; Lehmpuhl, D W; Nimmo, D R

    2012-12-01

    Aquatic bryophytes, Hygrohypnum ochraceum, were deployed "in situ" at 14 sites in the Fountain Creek Watershed, spring and fall, 2007 to study selenium (Se) accumulation. Dissolved, total, and pore (sediment derived) water samples were collected and water quality parameters determined while plants were exposed to the water for 10 days. There was a trend showing plant tissue-Se uptake with distance downstream and we found a strong correlation between Se in the water with total hardness in both seasons. There was a modest association between Se-uptake in plants with hardness in the spring of 2007 but not the fall. Plants bioconcentrated Se from the water by a factor of 5.8 × 10(3) at Green Mountain Falls and 1.5 × 10(4) at Manitou Springs in the fall of 2007. Both are examples of the bioconcentration abilities of the plants, primarily in the upper reaches of the watershed where bioconcentration factors were highest. However, the mean minima and maxima of Se in the plants in each of the three watershed segments appeared similar during both seasons. We found direct relationships between the pore and dissolved Se in water in the spring (R (2) = 0.84) and fall (R (2) = 0.95) and dissolved Se and total hardness in the spring and fall (R (2) = 0.92). The data indicate that H. ochraceum was a suitable indicator of Se bioavailability and Se uptake in other trophic levels in the Fountain Creek Watershed based on a subsequent study of Se accumulation in fish tissues at all 14 sites.

  11. Spring Hydrology Determines Summer Net Carbon Uptake in Northern Ecosystems

    NASA Technical Reports Server (NTRS)

    Yi, Yonghong; Kimball, John; Reichle, Rolf H.

    2014-01-01

    Increased photosynthetic activity and enhanced seasonal CO2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the Normalized Difference Vegetation Index; NDVI) and atmospheric CO2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (greater than or equal to 50N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends.

  12. Spring plant phenology and false springs in the conterminous US during the 21st century

    USGS Publications Warehouse

    Allstadt, Andrew J.; Vavrus, Stephen J.; Heglund, Patricia J.; Pidgeon, Anna M.; Thogmartin, Wayne E.; Radeloff, Volker C.

    2015-01-01

    The onset of spring plant growth has shifted earlier in the year over the past several decades due to rising global temperatures. Earlier spring onset may cause phenological mismatches between the availability of plant resources and dependent animals, and potentially lead to more false springs, when subsequent freezing temperatures damage new plant growth. We used the extended spring indices to project changes in spring onset, defined by leaf out and by first bloom, and predicted false springs until 2100 in the conterminous United States (US) using statistically-downscaled climate projections from the Coupled Model Intercomparison Project 5 ensemble. Averaged over our study region, the median shift in spring onset was 23 days earlier in the Representative Concentration Pathway 8.5 scenario with particularly large shifts in the Western US and the Great Plains. Spatial variation in phenology was due to the influence of short-term temperature changes around the time of spring onset versus season long accumulation of warm temperatures. False spring risk increased in the Great Plains and portions of the Midwest, but remained constant or decreased elsewhere. We conclude that global climate change may have complex and spatially variable effects on spring onset and false springs, making local predictions of change difficult.

  13. Water resources and potential effects of ground-water development in Maggie, Marys, and Susie Creek basins, Elko and Eureka counties, Nevada

    USGS Publications Warehouse

    Plume, R.W.

    1995-01-01

    The basins of Maggie, Marys, and Susie Creeks in northeastern Nevada are along the Carline trend, an area of large, low-grade gold deposits. Pumping of ground water, mostly for pit dewatering at one of the mines, will reach maximum rates of about 70,000 acre-ft/yr (acre-feet per year) around the year 2000. This pumping is expected to affect ground-water levels, streamflow, and possibly the flow of Carlin spring, which is the water supply for the town of Carlin, Nev. Ground water in the upper Maggie Creek Basin moves from recharge areas in mountain ranges toward the basin axis and discharges as evapotranspiration and as inflow to the stream channel. Ground water in the lower Maggie, Marys, and Susie Creek Basins moves southward from recharge areas in mountain ranges and along the channel of lower Maggie Creek to the discharge area along the Humboldt River. Ground-water underflow between basins is through permeable bedrock of Schroeder Mountain from the upper Maggie Creek Basin to the lower Maggie Creek Basin and through permeable volcanic rocks from lower Maggie Creek to Carlin spring in the Marys Creek Basin. The only source of water to the combined area of the three basins is an estimated 420,000 acre-ft/yr of precipitation. Water leaves as runoff (38,000 acre-ft/yr) and evapotranspiration of soil moisture and ground water (380,000 acre-ft/yr). A small part of annual precipitation (about 25,000 acre-ft/yr) infiltrates the soil zone and becomes ground-water recharge. This ground water eventually is discharged as evapotranspiration (11,000 acre-ft/yr) and as inflow to the Humboldt River channel and nearby springflow (7,000 acre-ft/yr). Total discharge is estimated to be 18,000 acre-ft/yr.

  14. Surface waters of North Boggy Creek basin in the Muddy Boggy Creek basin in Oklahoma

    USGS Publications Warehouse

    Laine, L.L.

    1958-01-01

    Analysis of short-term streamflow data in North Boggy Creek basin indicates that the average runoff in this region is substantial. The streamflow is highly variable from year to year and from month to month. The estimated total yield from the North Boggy Creek watershed of 231 square miles averages 155,000 acre-feet annually, equivalent to an average runoff depth of 12 1/2 inches. Almost a fourth of the annual volume is contributed by Chickasaw Creek basin, where about 35,000 acre-feet runs off from 46 square miles. Two years of records show a variation in runoff for the calendar year 1957 in comparison to 1956 in a ratio of 13 to 1 for the station on North Boggy Creek and a ratio of 18 to 1 for the station on Chickasaw Creek. In a longer-term record downstream on Muddy Boggy Creek near Farris, the corresponding range was 17 to 1, while the calendar years 1945 and 1956 show a 20-fold variation in runoff. Within a year the higher runoff tends to occur in the spring months, April to June, a 3-month period that, on the average, accounts for at least half of the annual flow. High runoff may occur during any month in the year, but in general, the streamflow is relatively small in the summer. Records for the gaging stations noted indicate that there is little or no base flow in the summer, and thus there will be periods of no flow at times in most years. The variation in runoff during a year is suggested by a frequency analysis of low flows at the reference station on Muddy Boggy Creek near Farris. Although the mean flow at that site is 955 cfs (cubic feet per second), the median daily flow is only 59 cfs and the lowest 30-day flow in a year will average less than 1 cfs in 4 out of 10 years on the average. The estimated mean flow on North Boggy Creek near Stringtown is 124 cfs, but the estimated median daily flow is only 3 1/2 cfs. Because of the high variability in streamflow, development of storage by impoundment will be necessary to attain maximum utilization of the

  15. Water quality of the Swatara Creek Basin, PA

    USGS Publications Warehouse

    McCarren, Edward F.; Wark, J.W.; George, J.R.

    1964-01-01

    recreation. In general, the quality of Swatara Creek improves after it mixes with water from the Upper Little and Lower Little Swatara Creeks, which converge with the main stream near Pine Grove. Jonestown is the first downstream location where Swatara Creek contains bicarbonate ion most of the time, and for the remaining downstream length of the stream, the concentration of bicarbonate progressively increases. Before the stream enters the Susquehanna River, chemical and diluting processes contributed by tributaries change the acidic calcium sulfate water, which characterizes the upper Swatara, to a calcium bicarbonate water.A major tributary to Swatara Creek is Quittapahilla Creek, which drains a limestone region and has alkaline characteristics. Effluents from a sewage treatment plant are discharged into this stream west of Lebanon. Adjacent to the Creek are limestone quarries and during the recovery of limestone, ground water seeps into the mining areas. This water is pumped to upper levels and flows over the land surface into Quittapahilla Creek. As compared with the 1940's, the quality of Swatara Creek is better today, and the water is suitable for more uses. In large part, this improvement is due to curtailment of anthracite coal mining and because of the controls imposed on new mines, stripping mines, and the related coal mining operations, by the Pennsylvania Sanitary Water Board. Thus, today (1962) smaller amounts of coal mine wastes are more effectively flushed and scoured away with each successive runoff during storms that affect the drainage basin. Natural processes neutralizing acid water in the stream by infiltration of alkaline ground water through springs and through the streambed are also indicated.

  16. Three studies on ponderosa pine management on the Warm Springs Indian Reservation: stocking control in uneven-aged stands, forest products from fire-damage trees, and fuels reduction

    Treesearch

    John V. Arena

    2005-01-01

    Over 60,000 acres of ponderosa pine (Pinus ponderosa P. and C. Lawson) forest on the Warm Springs Indian Reservation (WSIR) in Oregon are managed using an uneven-age system. Three on-going studies on WSIR address current issues in the management of pine forests: determining levels of growing stock for uneven-age management, fire effects on wood...

  17. Concentrations of nutrients, pesticides, and suspended sediment in the karst terrane of the Sinking Creek basin, Kentucky, 2004

    USGS Publications Warehouse

    Crain, Angela S.

    2006-01-01

    Water samples were collected in streams and springs in the karst terrane of the Sinking Creek Basin in 2004 as part of study in cooperation with the Kentucky Department of Agriculture. A total of 48 water samples were collected at 7 sites (4 springs, 2 streams, and 1 karst window) from April through November 2004. The karst terrane of the Sinking Creek Basin (also known as Boiling Spring Basin) encompasses about 125 square miles in Breckinridge County and portions of Meade and Hardin Counties in Kentucky. Fourteen pesticides were detected of the 52 pesticides analyzed in the stream and spring samples. Of the 14 detected pesticides, 12 were herbicides and 2 were insecticides. The most commonly detected pesticides?atrazine, simazine, metolachlor, and acetochlor?were those most heavily used on crops during the study. Atrazine was detected in 100 percent of all samples; simazine, metolachlor, and acetochlor were detected in more than 35 percent of all samples. The pesticide-transformation compound, deethylatrazine, was detected in 98 percent of the samples. Only one nonagricultural herbicide, prometon, was detected in more than 30 percent of the samples. Malathion, the most commonly detected insecticide, was found in 4 percent of the samples, which was followed by carbofuran (2 percent). Most of the pesticides were present in low concentrations; however, atrazine was found in springs exceeding the U.S. Environmental Protection Agency?s (USEPA) standards for drinking water. Atrazine exceeded the USEPA?s maximum contaminant level 2 times in 48 detections. Concentrations of nitrate greater than 10 milligrams per liter (mg/L) were not found in water samples from any of the sites. Concentrations of nitrite plus nitrate ranged from 0.21 to 3.9 mg/L at the seven sites. The median concentration of nitrite plus nitrate for all sites sampled was 1.5 mg/L. Concentrations of nitrite plus nitrate generally were higher in the springs than in the main stem of Sinking Creek. Forty

  18. Springwater geochemistry at Honey Creek State Natural Area, central Texas: Implications for surface water and groundwater interaction in a karst aquifer

    NASA Astrophysics Data System (ADS)

    Musgrove, M.; Stern, L. A.; Banner, J. L.

    2010-06-01

    SummaryA two and a half year study of two adjacent watersheds at the Honey Creek State Natural Area (HCSNA) in central Texas was undertaken to evaluate spatial and temporal variations in springwater geochemistry, geochemical evolution processes, and potential effects of brush control on karst watershed hydrology. The watersheds are geologically and geomorphologically similar, and each has springs discharging into Honey Creek, a tributary to the Guadalupe River. Springwater geochemistry is considered in a regional context of aquifer components including soil water, cave dripwater, springwater, and phreatic groundwater. Isotopic and trace element variability allows us to identify both vadose and phreatic groundwater contributions to surface water in Honey Creek. Spatial and temporal geochemical data for six springs reveal systematic differences between the two watersheds. Springwater Sr isotope values lie between values for the limestone bedrock and soils at HCSNA, reflecting a balance between these two primary sources of Sr. Sr isotope values for springs within each watershed are consistent with differences between soil compositions. At some of the springs, consistent temporal variability in springwater geochemistry (Sr isotopes, Mg/Ca, and Sr/Ca values) appears to reflect changes in climatic and hydrologic parameters (rainfall/recharge) that affect watershed processes. Springwater geochemistry was unaffected by brush removal at the scale of the HCSNA study. Results of this study build on previous regional studies to provide insight into watershed hydrology and regional hydrologic processes, including connections between surface water, vadose groundwater, and phreatic groundwater.

  19. Flocculation and sediment deposition in a hypertidal creek

    NASA Astrophysics Data System (ADS)

    O'Laughlin, C.; van Proosdij, D.; Milligan, T. G.

    2014-07-01

    In the hypertidal Bay of Fundy, environmental impacts in response to commercial-scale tidal power development remain to be fully understood. The extraction of tidal energy may impact sediment dynamics in far-field environments, such as the intertidal zone, through potential alterations to tidal amplitude in the Minas Basin. Tidal conditions (e.g. current velocity, turbulence, suspended sediment concentration) were monitored in a sheltered salt marsh creek over 18 tidal cycles in various stages of the spring-neap cycle. Samples of deposited and suspended sediments were collected and analyzed for grain size using a Beckman Coulter Multisizer III. Results suggest that the flocculated component of both deposited and suspended sediment is consistently high over a wide range of tidal conditions. A routinely high incoming concentration of highly-flocculated material results in large amounts of sediment deposition in tidal creeks in response to individual tidal cycles. Resuspension and removal of newly deposited material is shown to vary with over-marsh, bankfull and channel-restricted tides. Disruption of the tidal regime due to a reduction in Minas Basin tidal amplitude may lessen the cumulative export capacity of tidal channels over time, potentially leading to gradual infilling of tidal creeks. The long-term effects of tidal power development on intertidal areas are generally unknown.

  20. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-71) - Duncan Creek Channel Rehabilitation Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Shannon C.

    2001-10-29

    BPA proposes to fund a project with the Washington State Department of Fish and Wildlife that will restore historic spawning areas for chum salmon in Duncan Creek. Duncan Creek, a Washington tributary of the Columbia River, was traditionally an important spawning area for chum salmon. The spring seeps areas that chum historically used for spawning are still present in Duncan Creek, however during the past 30 years they have been covered by sediment and debris and infested with reed canary grass. This project proposes to rehabilitate these spawning channels in order to provide chum salmon with a protected spawning andmore » incubation environment. The proposed habitat rehabilitation project will include removing existing gravel in the seeps of Duncan Creek that contain mud, sand, and organics and replacing them with gravels that will maximize egg-to-fry survival rates for chum salmon. A trackhoe or similar equipment will be used to excavate the spawning sites. Invasive vegetation will be removed. Spawning channels will then be reconstructed using sediment free spawning gravels and base rock. Upon completion of work, all disturbed spring channel banks will be protected from erosion with staked coir fabric and revegetated with native willows. Plantings will help to restore native plant communities, increase stream channel shading, and reduce re-infestation by reed canary grass.« less

  1. Are Sierran Lakes Warming as a Result of Climate Change? The Effects of Climate Warming and Variation in Precipitation on Water Temperature in a Snowmelt-Dominated Lake

    NASA Astrophysics Data System (ADS)

    Sadro, S.; Melack, J. M.; Sickman, J. O.; Skeen, K.

    2016-12-01

    Water temperature regulates a broad range of fundamental ecosystem processes in lakes. While climate can be an important factor regulating lake temperatures, heterogeneity in the warming response of lakes is large, and variation in precipitation is rarely considered. We analyzed three decades of climate and water temperature data from a high-elevation catchment in the southern Sierra Nevada of California to illustrate the magnitude of warming taking place during different seasons and the role of precipitation in regulating lake temperatures. Significant climate warming trends were evident during all seasons except spring. Nighttime rates of climate warming were approximately 25% higher than daytime rates. Spatial patterns in warming were elevation dependent, with rates of temperature increase higher at sites above 2800 m.a.s.l. than below. Although interannual variation in snow deposition was high, the frequency and severity of recent droughts has contributed to a significant 3.4 mm year -1 decline in snow water equivalent over the last century. Snow accumulation, more than any other climate factor, regulated lake temperature; 94% of variation in summer lake temperature was regulated by precipitation as snow. For every 100 mm decrease in snow water equivalent there was a 0.62 ° increase in lake temperature. Drought years amplify warming in lakes by reducing the role of cold spring meltwaters in lake energy budgets and prolonging the ice-free period during which lakes warm. The combination of declining winter snowpack and warming air temperatures has the capacity to amplify the effect of climate warming on lake temperatures during drought years. Interactions among climatic factors need to be considered when evaluating ecosystem level effects, especially in mountain regions. For mountain lakes already affected by drought, continued climate warming during spring and autumn has the greatest potential to impact mean lake temperatures.

  2. Hood River Production Program Monitoring and Evaluation (M&E) - Confederated Tribes of Warm Springs : Annual Report For Fiscal Year, October 2007 – September 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerstenberger, Ryan

    2009-07-27

    This progress report describes work performed by the Confederated Tribes of Warm Springs (CTWSRO) portion of the Hood River Production Program Monitoring and Evaluation Project (HRPP) during the 2008 fiscal year. A total of 64,736 hatchery winter steelhead, 12,108 hatchery summer steelhead, and 68,426 hatchery spring Chinook salmon smolts were acclimated and released in the Hood River basin during the spring. The HRPP exceeded program goals for a release of and 50,000 winter steelhead but fell short of the steelhead release goals of 30,000 summer steelhead and 75,000 spring Chinook in 2008. Passive Integrated Transponders (PIT) tags were implanted inmore » 6,652 hatchery winter steelhead, and 1,196 hatchery summer steelhead, to compare migratory attributes and survival rates of hatchery fish released into the Hood River. Water temperatures were recorded at six locations within the Hood River subbasin to monitor for compliance with Oregon Department of Environmental Quality water quality standards. A preseason spring Chinook salmon adult run forecast was generated, which predicted an abundant return adequate to meet escapement goal and brood stock needs. As a result the tribal and sport fisheries were opened. A tribal creel was conducted from May 22 to July 18 during which an estimated 172 spring Chinook were harvested. One hundred sixteen Spring Chinook salmon redds were observed and 72 carcasses were inspected on 19.4 miles of spawning grounds throughout the Hood River Basin during 2008. Annual salvage operations were completed in two irrigation canals resulting in the liberation of 1,641 fish back to the Hood River.« less

  3. The Hayward-Rodgers Creek Fault System: Learning from the Past to Forecast the Future

    NASA Astrophysics Data System (ADS)

    Schwartz, D. P.; Lienkaemper, J. J.; Hecker, S.

    2007-12-01

    The San Francisco Bay area is located within the Pacific-North American plate boundary. As a result, the region has the highest density of active faults per square kilometer of any urban center in the US. Between the Farallon Islands and Livermore, the faults of the San Andreas fault system are slipping at a rate of about 40 mm/yr. Approximately 25 percent of this rate is accommodated by the Hayward fault and its continuation to the north, the Rodgers Creek fault. The Hayward fault extends 88 km from Warm Springs on the south into San Pablo Bay on the north, traversing the most heavily urbanized part of the Bay Area. The Rodgers Creek fault extends another 63 km, passing through Santa Rosa and ending south of Healdsburg. Geologic, seismologic, and geodetic studies during the past ten years have significantly increased our knowledge of this system. In particular, paleoseismic studies of the timing of past earthquakes have provided critical new information for improving our understanding of how these faults may work in time and space, and for estimating the probability of future earthquakes. The most spectacular result is an 11-earthquake record on the southern Hayward fault that extends back to A.D. 170. It suggests an average time interval between large earthquakes of 170 years for this period, with a shorter interval of 140 years for the five most recent earthquakes. Paleoseismic investigations have also shown that prior to the most recent large earthquake on the southern Hayward fault in 1868, large earthquakes occurred on the southern Hayward fault between 1658 and1786, on the northern Hayward fault between 1640 and 1776, and on the Rodgers Creek fault between 1690 and 1776. These could have been three separate earthquakes. However, the overlapping radiocarbon dates for these paleoearthquakes allow the possibility that these faults may have ruptured together in several different combinations: a combined southern and northern Hayward fault earthquake, a Rodgers

  4. Mapping spatial and temporal variation of stream water temperature in the upper Esopus Creek watershed

    NASA Astrophysics Data System (ADS)

    Chien, H.; McGlinn, L.

    2017-12-01

    The upper Esopus Creek and its tributary streams located in the Catskill Mountain region of New York State provide habitats for cold-adapted aquatic species. However, ongoing global warming may change the stream water temperature within a watershed and disturb the persistence of coldwater habitats. Characterizing thermal regimes within the upper Esopus Creek watershed is important to provide information of thermally suitable habitats for aquatic species. The objectives of this study are to measure stream water temperature and map thermal variability among tributaries to the Esopus Creek and within Esopus Creek. These objectives will be achieved by measuring stream water temperature for at least two years. More than 100 water temperature data loggers have been placed in the upper Esopus Creek and their tributaries to collect 30-minute interval water temperatures. With the measured water temperature, we will use spatial interpolation in ArcGIS to create weekly and monthly water temperature surface maps to evaluate the thermal variation over time and space within the upper Esopus Creek watershed. We will characterize responsiveness of water temperature in tributary streams to air temperature as well. This information of spatial and temporal variation of stream water temperature will assist stream managers with prioritizing management practices that maintain or enhance connectivity of thermally suitable habitats in high priority areas.

  5. Geochemical Influence on Microbial Diversity in the Warm, Salty, Stinking Spring, Utah, USA

    NASA Astrophysics Data System (ADS)

    Spear, J. R.

    2012-12-01

    Little is known of the geochemistry and microbiology in the Stinking Springs, a sulfidic, saline, warm spring northeast of the Great Salt Lake, Utah. The International Geobiology Course of 2012 investigated the geochemistry, lipid abundances, dissolved inorganic carbon (DIC) uptake rates and microbial diversity on different kinds of samples from a number of locations in the spring. The measured pH, temperature, salinity, and sulfide concentration along the 100 m flow path ranged from 6.64-7.77, 40-28° C, 2.9-2.2%, and 250 μM - negligible, respectively. Five sites were selected along the flow path and within each site microbial mats were sub-sampled according to their morphological characteristics; a range from floating to streamer-style in zones of higher flow rates to highly-layered mats in low- or sheet-flow zones. Geochemical characterization of the above plus metals, anions and cations were conducted at each site. Genomic DNA was extracted from each microbial sample / layer, and 16S rRNA genes were amplified and subjected to pyrosequencing. Fatty acids and pigments were extracted from the mat samples / layers and analyzed by liquid chromatography and mass spectrometry for lipid / pigment composition. Bicarbonate uptake rates for mat samples / layers were determined with 24 hour light and dark incubations of 13HCO3-spiked spring water. Microbial diversity varied by site and was generally high in all three domains of life with phototrophs, sulfur oxidizers, sulfate reducers, methanogens, and other bacteria / archaea identified by 16S rRNA gene sequence. Diatoms, identified by both microscopy and lipid analyses were found to increase in abundance with distance from the source. Methanogens were generally more abundant in deeper mat laminae and underlying sediments. Photoheterotrophs were found in all mat layers. Microbial diversity increased significantly with depth at most sites. In addition, two distinct microbial streamers were also identified and

  6. NOVA Spring 2000 Teacher's Guide.

    ERIC Educational Resources Information Center

    Colombo, Luann; Gregoire, Tanya; Ransick, Kristina; Sammons, Fran Lyons; Sammons, James

    This teacher's guide complements six programs that aired on the Public Broadcasting System (PBS) in the spring of 2000. Programs include: (1) "Lost on Everest"; (2) "Lost Tribes of Israel"; (3) "Crocodiles"; (4) "Lost at Sea: The Search for Longitude"; (5) "Global Warming"; and (6) "Secrets of…

  7. Abrupt physical and chemical changes during 1992-1999, Anderson Springs, SE Geyser Geothermal Field, California

    USGS Publications Warehouse

    Janik, Cathy J.; Goff, Fraser; Walter, Stephen R.; Sorey, Michael L.; Counce, Dale; Colvard, Elizabeth M.

    2000-01-01

    The Anderson Springs area is located about 90 miles (145 kilometers) north of San Francisco, California, in the southwestern part of Lake County. The area was first developed in the late 1800s as a health resort, which was active until the 1930s. Patrons drank a variety of cool to hot mineral waters from improved springs, swam in various baths and pools, and hiked in the rugged hills flanking Anderson Creek and its tributaries. In the bluffs to the south of the resort were four small mercury mines of the eastern Mayacmas quicksilver district. About 1,260 flasks of mercury were produced from these mines between 1909 and 1943. By the early 1970s, the higher ridges south and west of Anderson Springs became part of the southeast sector of the greater Geysers geothermal field. Today, several electric power plants are built on these ridges, producing energy from a vapor-dominated 240 °C reservoir. Only the main hot spring at Anderson Springs has maintained a recognizable identity since the 1930s. The hot spring is actually a cluster of seeps and springs that issue from a small fault in a ravine southwest of Anderson Creek. Published and unpublished records show that the maximum temperature (Tm) of this cluster fell gradually from 63°C in 1889 to 48°C in 1992. However, Tm of the cluster climbed to 77°C in 1995 and neared boiling (98°C) in 1998. A new cluster of boiling vents and small fumaroles (Tm = 99.3°C) formed in 1998 about 30 m north of the old spring cluster. Several evergreen trees on steep slopes immediately above these vents apparently were killed by the new activity. Thermal waters at Anderson Hot Springs are mostly composed of near-surface ground waters with some added gases and condensed steam from The Geysers geothermal system. Compared to gas samples from Southeast Geysers wells, the hot spring gases are higher in CO2 and lower in H2S and NH3. As the springs increased in temperature, however, the gas composition became more like the mean composition

  8. Structural Controls of Neal Hot Springs Geothermal Field, Malhuer County, Oregon

    NASA Astrophysics Data System (ADS)

    Edwards, J. H.; Faulds, J. E.

    2012-12-01

    Detailed mapping (1:24,000) of the Neal Hot Springs area (90 km2) in eastern Oregon is part of a larger study of geothermal systems in the Basin and Range, which focuses on the structural controls of geothermal activity. The study area lies within the intersection of two regional grabens, the middle-late Miocene, N-striking, Oregon-Idaho graben and younger late Miocene to Holocene, NW-striking, western Snake River Plain graben. The geothermal field is marked by Neal Hot Springs, which effuse from opaline sinter mounds just north of Bully Creek. Wells producing geothermal fluids, with temperatures at 138°C, intersect a major, W-dipping, NNW-striking, high-angle normal fault at depths of 850-915 m. Displacement along this structure dies southward, with likely horse-tailing, which commonly produces high fracture density and a zone of high permeability conducive for channeling hydrothermal fluids. Mapping reveals that the geothermal resource lies within a local, left step-over. 'Hard-linkage' between strands of the left-stepping normal fault, revealed through a study of well chips and well logs, occurs through two concealed structures. Both are W-striking faults, with one that runs parallel to Cottonwood Creek and one 0.5 km N of the creek. Injection wells intersect these two transverse structures within the step-over. Stepping and displacement continue to the NW of the known geothermal field, along W-dipping, N-striking faults that cut lower to middle Miocene Hog Creek Formation, consisting of silicic and mafic volcanic rocks. These N-striking faults were likely initiated during initial Oregon-Idaho graben subsidence (15.3-15.1 Ma), with continued development through late Miocene. Bully Creek Formation deposits, middle to upper Miocene lacustrine and pyroclastic rocks, concomitantly filled the sub half-grabens, and they dip gently to moderately eastward. Younger, western Snake River Plain deposits, upper Miocene to Pliocene fluvial, lacustrine, and pyroclastic rocks

  9. 43. Indian Creek (Keeler-Wolf 1986c, 1990d)

    Treesearch

    Sheauchi Cheng

    2004-01-01

    This recommended RNA is on the Lassen National Forest, Tehama County. It is about 9 miles (14 km) SE. of Paynes Creek. It occupies portions of sects. 33 and 34 T28N, R1E, sects. 2, 3, 4, 9, 10, 11, 12, 13, 14, and 15 T27N, R1E MDBM (40°13'N., 121°50'W.), USGS Panther Spring and Dewitt Peak quads (fig. 89). Ecological subsection – Tuscan...

  10. Hydrologic data for the Cache Creek-Bear Thrust environmental impact statement near Jackson, Wyoming

    USGS Publications Warehouse

    Craig, G.S.; Ringen, B.H.; Cox, E.R.

    1981-01-01

    Information on the quantity and quality of surface and ground water in an area of concern for the Cache Creek-Bear Thrust Environmental Impact Statement in northwestern Wyoming is presented without interpretation. The environmental impact statement is being prepared jointly by the U.S. Geological Survey and the U.S. Forest Service and concerns proposed exploration and development of oil and gas on leased Federal land near Jackson, Wyoming. Information includes data from a gaging station on Cache Creek and from wells, springs, and miscellaneous sites on streams. Data include streamflow, chemical and suspended-sediment quality of streams, and the occurrence and chemical quality of ground water. (USGS)

  11. Geohydrology and potential hydrologic effects of underground coal mining in the Rapid Creek Basin, Mesa County, Colorado

    USGS Publications Warehouse

    Brooks, Tom

    1986-01-01

    The U.S. Bureau of Land Management may lease additional coal tracts in the Rapid Creek basin, Colorado. Springs in this basin are used as a water supply for the town of Palisade. The geohydrology of the basin is described and the potential hydrologic effects of underground coal mining in the basin summarized. Geologic formations in the basin consists of Cretaceous sandstone and shale, Tertiary sandstone, shale, and basalt, and unconsolidated deposits of Quaternary age. Some sandstone and coal beds are permeable, although bedrock in the basin typically is a confining bed. Unconsolidated deposits contain aquifers that are the source of spring discharge. Stream discharge was measured on Rapid and Cottonwood Creeks, and inventories were made of 7 reservoirs, 25 springs, and 12 wells. Specific conductance of streams ranged from 320 to 1,050 microsiemens/cm at 25C; pH ranged from 7.8 to 8.6. Specific conductance of springs ranged from 95 to 1,050 microsiemens/cm at 25C; pH ranged from 6.8 to 8.3. Discharge from the basin includes about 18,800 acre-ft/yr as evapotranspiration, 1,300 acre-ft/yr as springflow, 1,280 acre-ft/yr as streamflow, and negligible groundwater flow in bedrock. With appropriate mining methods, underground mining would not decrease flow in basin streams or from springs. The potential effects of mining-caused subsidence might include water-pipeline damage and temporary dewatering of bedrock adjacent to coal mining. (Author 's abstract)

  12. The Boulder Creek Batholith, Front Range, Colorado

    USGS Publications Warehouse

    Gable, Dolores J.

    1980-01-01

    The Boulder Creek batholith is the best known of several large Precambrian batholiths of similar rock composition that crop out across central Colorado. The rocks in the batholith belong to the calc-alkaline series and range in composition from granodiorite through quartz diorite (tonalite) to gneissic aplite. Two rock types dominate': the Boulder Creek Granodiorite, the major rock unit, and a more leucocratic and slightly younger unit herein named Twin Spruce Quartz Monzonite. Besides mafic inclusions, which occur mainly in hornblende-bearing phases of the Boulder Creek Granodiorite, there are cogenetic older and younger lenses, dikes, and small plutons of hornblende diorite, hornblendite, gabbro, and pyroxenite. Pyroxenite is not found in the batholith. The Boulder Creek Granodiorite in the batholith represents essentially two contemporaneous magmas, a northern body occurring in the Gold Hill and Boulder quadrangles and a larger southern body exposed in the Blackhawk and the greater parts of the Tungsten and Eldorado Springs quadrangles. The two bodies are chemically and mineralogically distinct. The northern body is richer in CaO and poorer in K2O, is more mafic, and has a larger percentage of plagioclase than the southern body. A crude sequence of rock types occurs from west to east in the batholith accompanied by a change in plagioclase composition from calcic plagioclase on the west to sodic on the east. Ore minerals tend to decrease, and the ratio potassium feldspar:plagioclase increases inward from the western contact of the batholith, indicating that the Boulder Creek batholith is similar to granodiorite batholiths the world over. Emplacement of the Boulder Creek batholith was contemporaneous with plastic deformation and high-grade regional metamorphism that folded the country rock and the batholith contact along west-northwest and north-northwest axes. Also, smaller satellitic granodiorite bodies tend to conform to the trends of foliation and fold axes in

  13. Comparability among four invertebrate sampling methods, Fountain Creek Basin, Colorado, 2010-2012

    USGS Publications Warehouse

    Zuellig, Robert E.; Bruce, James F.; Stogner, Sr., Robert W.; Brown, Krystal D.

    2014-01-01

    The U.S. Geological Survey, in cooperation with Colorado Springs City Engineering and Colorado Springs Utilities, designed a study to determine if sampling method and sample timing resulted in comparable samples and assessments of biological condition. To accomplish this task, annual invertebrate samples were collected concurrently using four sampling methods at 15 U.S. Geological Survey streamflow gages in the Fountain Creek basin from 2010 to 2012. Collectively, the four methods are used by local (U.S. Geological Survey cooperative monitoring program) and State monitoring programs (Colorado Department of Public Health and Environment) in the Fountain Creek basin to produce two distinct sample types for each program that target single-and multiple-habitats. This study found distinguishable differences between single-and multi-habitat sample types using both community similarities and multi-metric index values, while methods from each program within sample type were comparable. This indicates that the Colorado Department of Public Health and Environment methods were compatible with the cooperative monitoring program methods within multi-and single-habitat sample types. Comparisons between September and October samples found distinguishable differences based on community similarities for both sample types, whereas only differences were found for single-habitat samples when multi-metric index values were considered. At one site, differences between September and October index values from single-habitat samples resulted in opposing assessments of biological condition. Direct application of the results to inform the revision of the existing Fountain Creek basin U.S. Geological Survey cooperative monitoring program are discussed.

  14. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  15. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  16. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  17. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  18. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  19. Integrated Status and Effectiveness Monitoring Program; Expansion of Existing Smolt Trapping Program in Nason Creek, 2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prevatte, Scott A.

    2006-03-01

    In the fall of 2004, as one part of a Basin-Wide Monitoring Program developed by the Upper Columbia Regional Technical Team and Upper Columbia Salmon Recovery Board, the Yakama Nation Fisheries Resource Management program began monitoring downstream migration of ESA listed Upper Columbia River spring chinook salmon and Upper Columbia River steelhead in Nason Creek, a tributary to the Wenatchee River. This report summarizes juvenile spring chinook salmon and steelhead trout migration data collected in Nason Creek during 2005 and also incorporates data from 2004. We used species enumeration at the trap and efficiency trials to describe emigration timing andmore » to estimate population size. Data collection was divided into spring/early summer and fall periods with a break during the summer months occurring due to low stream flow. Trapping began on March 1st and was suspended on July 29th when stream flow dropped below the minimum (30 cfs) required to rotate the trap cone. The fall period began on September 28th with increased stream flow and ended on November 23rd when snow and ice began to accumulate on the trap. During the spring and early summer we collected 311 yearling (2003 brood) spring chinook salmon, 86 wild steelhead smolts and 453 steelhead parr. Spring chinook (2004 brood) outgrew the fry stage of fork length < 60 mm during June and July, 224 were collected at the trap. Mark-recapture trap efficiency trials were performed over a range of stream discharge stages whenever ample numbers of fish were being collected. A total of 247 spring chinook yearlings, 54 steelhead smolts, and 178 steelhead parr were used during efficiency trials. A statically significant relationship between stream discharge and trap efficiency has not been identified in Nason Creek, therefore a pooled trap efficiency was used to estimate the population size of both spring chinook (14.98%) and steelhead smolts (12.96%). We estimate that 2,076 ({+-} 119 95%CI) yearling spring chinook

  20. The false spring of 2012, earliest in North American record

    USGS Publications Warehouse

    Ault, T.R.; Henebry, G.M.; de Beurs, K. M.; Schwartz, M.D.; Betancourt, Julio L.; Moore, David

    2013-01-01

    Phenology - the study of recurring plant and animal life cycle stages, especially their timing and relationships with weather and climate - is becoming an essential tool for documenting, communicating, and anticipating the consequences of climate variability and change. For example, March 2012 broke numerous records for warm temperatures and early flowering in the United States [Karl et al., 2012; Elwood et al., 2013]. Many regions experienced a “false spring,” a period of weather in late winter or early spring sufficiently mild and long to bring vegetation out of dormancy prematurely, rendering it vulnerable to late frost and drought.As global climate warms, increasingly warmer springs may combine with the random climatological occurrence of advective freezes, which result from cold air moving from one region to another, to dramatically increase the future risk of false springs, with profound ecological and economic consequences [e.g., Gu et al., 2008; Marino et al., 2011; Augspurger, 2013]. For example, in the false spring of 2012, an event embedded in long-term trends toward earlier spring [e.g., Schwartz et al., 2006], the frost damage to fruit trees totaled half a billion dollars in Michigan alone, prompting the federal government to declare the state a disaster area [Knudson, 2012].

  1. Hydrogeology and ground-water flow in the carbonate rocks of the Little Lehigh Creek basin, Lehigh County, Pennsylvania

    USGS Publications Warehouse

    Sloto, R.A.; Cecil, L.D.; Senior, L.A.

    1991-01-01

    The Little Lehigh Creek basin is underlain mainly by a complex assemblage of highly-deformed Cambrian and Ordovician carbonate rocks. The Leithsville Formation, Allentown Dolomite, Beekmantown Group, and Jacksonburg Limestone act as a single hydrologic unit. Ground water moves through fractures and other secondary openings and generally is under water-table conditions. Median annual ground-water discharge (base flow) to Little Lehigh Creek near Allentown (station 01451500) during 1946-86 was 12.97 inches or 82 percent of streamflow. Average annual recharge for 1975-83 was 21.75 inches. Groundwater and surface-water divides do not coincide in the basin. Ground-water underflow from the Little Lehigh Creek basin to the Cedar Creek basin in 1987 was 4 inches per year. A double-mass curve analysis of the relation of cumulative precipitation at Allentown to the flow of Schantz Spring for 1956-84 showed that cessation of quarry pumping and development of ground water for public supply in the Schantz Spring basin did not affect the flow of Schantz Spring. Ground-water flow in the Little Lehigh Creek basin was simulated using a finite-difference, two-dimensional computer model. The geologic units in the modeled area were simulated as a single water-table aquifer. The 134-squaremile area of carbonate rocks between the Lehigh River and Sacony Creek was modeled to include the natural hydrologic boundaries of the ground-water-flow system. The ground-water-flow model was calibrated under steady-state conditions using 1975-83 average recharge, evapotranspiration, and pumping rates. Each geologic unit was assigned a different hydraulic conductivity. Initial aquifer hydraulic conductivity was estimated from specific-capacity data. The average (1975-83) water budget for the Little Lehigh Creek basin was simulated. The simulated base flow from the carbonate rocks of the Little Lehigh Creek basin above gaging station 01451500 is 11.85 inches per year. The simulated ground

  2. Ground based interferometric radar initial look at Longview, Blue Springs, Tuttle Creek, and Milford Dams

    NASA Astrophysics Data System (ADS)

    Deng, Huazeng

    Measuring millimeter and smaller deformation has been demonstrated in the literature using RADAR. To address in part the limitations in current commercial satellite-based SAR datasets, a University of Missouri (MU) team worked with GAMMA Remote Sensing to develop a specialized (dual-frequency, polarimetric, and interferometric) ground-based real-aperture RADAR (GBIR) instrument. The GBIR device is portable with its tripod system and control electronics. It can be deployed to obtain data with high spatial resolution (i.e. on the order of 1 meter) and high temporal resolution (i.e. on the order 1 minute). The high temporal resolution is well suited for measurements of rapid deformation. From the same geodetic position, the GBIR may collect dual frequency data set using C-band and Ku-band. The overall goal of this project is to measure the deformation from various scenarios by applying the GBIR system. Initial efforts have been focusing on testing the system performance on different types of targets. This thesis details a number of my efforts on experimental and processing activities at the start of the MU GBIR imaging project. For improved close range capability, a wideband dual polarized antenna option was produced and tested. For GBIR calibration, several trihedral corner reflectors were designed and fabricated. In addition to experimental activities and site selection, I participated in advanced data processing activities. I processed GBIR data in several ways including single-look-complex (SLC) image generation, imagery registration, and interferometric processing. A number of initial-processed GBIR image products are presented from four dams: Longview, Blue Springs, Tuttle Creek, and Milford. Excellent imaging performance of the MU GBIR has been observed for various target types such as riprap, concrete, soil, rock, metal, and vegetation. Strong coherence of the test scene has been observed in the initial interferograms.

  3. Water-quality trends for selected sampling sites in the upper Clark Fork Basin, Montana, water years 1996-2010

    USGS Publications Warehouse

    Sando, Steven K.; Vecchia, Aldo V.; Lorenz, David L.; Barnhart, Elliott P.

    2014-01-01

    A large-scale trend analysis was done on specific conductance, selected trace elements (arsenic, cadmium, copper, iron, lead, manganese, and zinc), and suspended-sediment data for 22 sites in the upper Clark Fork Basin for water years 1996–2010. Trend analysis was conducted by using two parametric methods: a time-series model (TSM) and multiple linear regression on time, streamflow, and season (MLR). Trend results for 1996–2010 indicate moderate to large decreases in flow-adjusted concentrations (FACs) and loads of copper (and other metallic elements) and suspended sediment in Silver Bow Creek upstream from Warm Springs. Deposition of metallic elements and suspended sediment within Warm Springs Ponds substantially reduces the downstream transport of those constituents. However, mobilization of copper and suspended sediment from floodplain tailings and stream banks in the Clark Fork reach from Galen to Deer Lodge is a large source of metallic elements and suspended sediment, which also affects downstream transport of those constituents. Copper and suspended-sediment loads mobilized from within this reach accounted for about 40 and 20 percent, respectively, of the loads for Clark Fork at Turah Bridge (site 20); whereas, streamflow contributed from within this reach only accounted for about 8 percent of the streamflow at Turah Bridge. Minor changes in FACs and loads of copper and suspended sediment are indicated for this reach during 1996–2010. Clark Fork reaches downstream from Deer Lodge are relatively smaller sources of metallic elements than the reach from Galen to Deer Lodge. In general, small decreases in loads and FACs of copper and suspended sediment are indicated for Clark Fork sites downstream from Deer Lodge during 1996–2010. Thus, although large decreases in FACs and loads of copper and suspended sediment are indicated for Silver Bow Creek upstream from Warm Springs, those large decreases are not translated to the more downstream reaches largely

  4. Streamflow characteristics and trends along Soldier Creek, Northeast Kansas

    USGS Publications Warehouse

    Juracek, Kyle E.

    2017-08-16

    Historical data for six selected U.S. Geological Survey streamgages along Soldier Creek in northeast Kansas were used in an assessment of streamflow characteristics and trends. This information is required by the Prairie Band Potawatomi Nation for the effective management of tribal water resources, including drought contingency planning. Streamflow data for the period of record at each streamgage were used to assess annual mean streamflow, annual mean base flow, mean monthly flow, annual peak flow, and annual minimum flow.Annual mean streamflows along Soldier Creek were characterized by substantial year-to-year variability with no pronounced long-term trends. On average, annual mean base flow accounted for about 20 percent of annual mean streamflow. Mean monthly flows followed a general seasonal pattern that included peak values in spring and low values in winter. Annual peak flows, which were characterized by considerable year-to-year variability, were most likely to occur in May and June and least likely to occur during November through February. With the exception of a weak yet statistically significant increasing trend at the Soldier Creek near Topeka, Kansas, streamgage, there were no pronounced long-term trends in annual peak flows. Annual 1-day, 30-day, and 90-day mean minimum flows were characterized by considerable year-to-year variability with no pronounced long-term trend. During an extreme drought, as was the case in the mid-1950s, there may be zero flow in Soldier Creek continuously for a period of one to several months.

  5. Fontibacillus aquaticus gen. nov., sp. nov., isolated from a warm spring.

    PubMed

    Saha, P; Krishnamurthi, S; Bhattacharya, A; Sharma, R; Chakrabarti, T

    2010-02-01

    A novel facultatively anaerobic strain, designated GPTSA 19(T), was isolated from a warm spring and characterized using a polyphasic approach. The strain behaved as Gram-negative in the Gram staining procedure but showed a Gram-positive reaction in the aminopeptidase test. The novel strain was a mesophilic rod with ellipsoidal endospores. On the basis of 16S rRNA gene sequence analysis, the strain showed closest similarity (96.0 %) with Paenibacillus motobuensis MC10(T). The gene sequence similarity of the novel strain with other species of the genus Paenibacillus was <95.8 %. The novel strain also had PAEN 515F and 682F signature sequence stretches in the 16S rRNA gene that are usually found in most species of the genus Paenibacillus. The strain possessed anteiso-C(15 : 0) as the major fatty acid and MK-7 as the predominant menaquinone. Polar lipids included diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), six unknown phospholipids (PLs), one aminophospholipid (PN), three glycolipids (GLs), two aminolipids (ALs), one aminophosphoglycolipid (APGL) and three unknown lipids (ULs). The polar lipid profile of the novel strain, especially as regards ALs, GLs and PLs, distinguished it from the recognized type species of the genus Paenibacillus, Paenibacillus polymyxa, as well as from its closest relative P. motobuensis. Based on phenotypic and chemotaxonomic characteristics and analysis of the 16S rRNA gene sequence, the new strain merits the rank of a novel genus for which the name Fontibacillus gen. nov. is proposed. The type species of the new genus is Fontibacillus aquaticus gen. nov., sp. nov. with the type strain GPTSA 19(T) (=MTCC 7155(T)=DSM 17643(T)).

  6. Geophysical Characterization of the Hilton Creek Fault System

    NASA Astrophysics Data System (ADS)

    Lacy, A. K.; Macy, K. P.; De Cristofaro, J. L.; Polet, J.

    2016-12-01

    The Long Valley Caldera straddles the eastern edge of the Sierra Nevada Batholith and the western edge of the Basin and Range Province, and represents one of the largest caldera complexes on Earth. The caldera is intersected by numerous fault systems, including the Hartley Springs Fault System, the Round Valley Fault System, the Long Valley Ring Fault System, and the Hilton Creek Fault System, which is our main region of interest. The Hilton Creek Fault System appears as a single NW-striking fault, dipping to the NE, from Davis Lake in the south to the southern rim of the Long Valley Caldera. Inside the caldera, it splays into numerous parallel faults that extend toward the resurgent dome. Seismicity in the area increased significantly in May 1980, following a series of large earthquakes in the vicinity of the caldera and a subsequent large earthquake swarm which has been suggested to be the result of magma migration. A large portion of the earthquake swarms in the Long Valley Caldera occurs on or around the Hilton Creek Fault splays. We are conducting an interdisciplinary geophysical study of the Hilton Creek Fault System from just south of the onset of splay faulting, to its extension into the dome of the caldera. Our investigation includes ground-based magnetic field measurements, high-resolution total station elevation profiles, Structure-From-Motion derived topography and an analysis of earthquake focal mechanisms and statistics. Preliminary analysis of topographic profiles, of approximately 1 km in length, reveals the presence of at least three distinct fault splays within the caldera with vertical offsets of 0.5 to 1.0 meters. More detailed topographic mapping is expected to highlight smaller structures. We are also generating maps of the variation in b-value along different portions of the Hilton Creek system to determine whether we can detect any transition to more swarm-like behavior towards the North. We will show maps of magnetic anomalies, topography

  7. Lunar influence on prey availability, diet shifts and niche overlap between Engraulidae larvae in tropical mangrove creeks.

    PubMed

    Lima, A R A; Barletta, M

    2016-10-01

    The influence of the lunar cycle on prey availability, diet shifts and overlap between larval Anchovia clupeoides and Cetengraulis edentulus was evaluated in mangrove creeks of the Goiana Estuary. Copepod eggs were highly abundant in the first and last quarter, at the full moon and zoea of Ucides cordatus (Ocypodidae) in the new moon. The Engraulidae larvae fed on microcrustaceans, algae and early planktonic stages of benthic organisms. The relative importance of prey varied according to prey availability in all moon phases. Larval diets were more even in the full and new moons, when the relative importance of calanoid copepods and zoeae of U. cordatus as food items increased (index of relative importance, >80% I RI ). Mangrove creeks were very important feeding grounds for engraulid larvae during spring tides. Larval diets were more diverse in the first and last-quarter moon and included protozoeae of Caridean shrimp, larvae of Anomalocardia brasiliana (Veneridae), Isopoda, Gastropoda, ephippium of Daphnia sp. and nauplii of Cirripedia, Harpacticoidia and cyclopoid Copepoda. The last five items were not found in the creeks, suggesting feeding in the main channel. During neap tides, mangrove creeks were probably also used as refugia. These larvae are opportunistic and feed on highly available prey and both species feed on the same items, leading to high dietary overlap in all moon phases. The lunar cycle, which is related to the spring-neap tidal cycle, was the major driver of quantitative and qualitative changes in feeding of engraulid larvae on a short time scale. © 2016 The Fisheries Society of the British Isles.

  8. The Early Oligocene Copperas Creek Volcano and geology along New Mexico Higway 15 between Sapillo Creek and the Gila Cliff Dwellings National Monument, Grant and Catron Counties, New Mexico

    USGS Publications Warehouse

    Ratté, James C.; Mack, Greg; Witcher, James; Lueth, Virgil W.

    2008-01-01

    The section of New Mexico Highway 15 between the intersection of NM-15 and NM 35 (aka Sapillo junction) at the south and the Gila Cliff Dwellings National Monument at the north end of NM –15 occupies an approximately 18 mile long, mile wide, corridor through the eastern part of the Gila Wilderness (Fig. 1). Whereas most of the Gila Wilderness is dominated by silicic, caldera-forming supervolcanoes of Eocene to Oligocene age, this part of NM-15 traverses a volcanic terrain of similar age, but composed mainly of intermediate composition lava flows and minor associated rhyolitic intrusions and pyroclastic rocks, which are related to the here-named Copperas Creek volcano. This volcanic complex is bounded by Basin and Range structures: on the south by the Sapillo Creek graben, and on the north by the Gila Hot Springs graben, both of which are filled with Gila Conglomerate of late Tertiary to Pleistocene(?) age. Hot springs in the Gila River valley are localized along faults in the deepest part of the Gila Hot Springs graben. The cliff dwellings of the National Monument were constructed in caves in Gila Conglomerate in the western part of the Gila Hot Springs graben. The eastern edge of the Gila Cliff Dwellings caldera is buried by younger rocks east of the cliff dwellings, but spectacular cliffs of Bloodgood Canyon Tuff, which fills the caldera, can be viewed along the West Fork of the Gila River from the trail starting at the cliff dwellings. Although this is not intended as a formal road log, highway mileage markers (MM) will be used to locate geologic features more or less progressively from south to north along NM-15.

  9. Nekton use of intertidal creek edges in low salinity salt marshes of the Yangtze River estuary along a stream-order gradient

    NASA Astrophysics Data System (ADS)

    Jin, Binsong; Qin, Haiming; Xu, Wang; Wu, Jihua; Zhong, Junsheng; Lei, Guangchun; Chen, Jiakuan; Fu, Cuizhang

    2010-07-01

    Non-vegetated creek edges were investigated to explore spatial nekton use patterns in a low salinity intertidal salt marsh creek network of the Yangtze River estuary along a stream-order gradient with four creek orders. Non-vegetated creek edges were arbitrarily defined as the approximately 3 m extending from the creek bank (the marsh-creek interface) into open water. Nekton was sampled using seine nets during daytime high slack water during spring tides for two or three days each in May through July 2008. Twenty-three nekton species (16 fishes and 7 crustaceans) were caught during the study. Fishes were dominated by gobies ( Mugilogobius abei, Periophthalmus magnuspinnatus, Periophthalmus modestus, Synechogobius ommaturus), mullets ( Chelon haematocheilus, Liza affinis) and Chinese sea bass ( Lateolabrax maculatus). Crustaceans were dominated by mud crab ( Helice tientsinensis) and white prawn ( Exopalaemon carinicauda). Rank abundance curves revealed higher evenness of nekton assemblages in lower-order creeks compared to higher-order creeks. Fish abundance tended to increase with increasing creek order. Crustacean abundance was higher in the first-third order creeks than in the fourth-order creek. Dominant nekton species displayed various trends in abundance and length-frequency distributions along the stream-order gradient. The spatial separation of nekton assemblages between the first-third order creeks and the fourth-order creek could be attributed to geomorphological factors (distance to mouth and cross-sectional area). These findings indicate that both lower- and higher-order creek edges play important yet different roles for nekton species and life history stages in salt marshes.

  10. Nutrients and organic compounds in Deer Creek and south branch Plum Creek in southwestern Pennsylvania, April 1996 through September 1998

    USGS Publications Warehouse

    Williams, D.R.; Clark, M.E.

    2001-01-01

    This report presents results of an analysis of nutrient and pesticide data from two surface-water sites and volatile organic compound (VOC) data from one of the sites that are within the Allegheny and Monongahela River Basins study unit of the National Water-Quality Assessment Program of the U.S. Geological Survey. The Deer Creek site was located in a 27.0 square-mile basin within the Allegheny River Basin in Allegheny County. The primary land uses consist of small urban areas, large areas of residential housing, and some agricultural land in the upper part of the basin. The South Branch Plum Creek site was located in a 33.3 square-mile basin within the Allegheny River Basin in Indiana County. The primary land uses throughout this basin are mostly agriculture and forestland.Water samples for analysis of nutrients were collected monthly and during high-flow events from April 1996 through September 1998. Concentrations of dissolved nitrite, dissolved ammonia plus organic nitrogen, and dissolved phosphorus were less than the method detection limits in more than one-half of the samples collected. The median concentration of dissolved nitrite plus nitrate in South Branch Plum Creek was 0.937 mg/L and 0.597 mg/L in Deer Creek. The median concentration of dissolved orthophosphate was 0.01 mg/L in both streams. High loads of nitrate were measured in both streams from March to June. Concentrations of dissolved ammonia nitrogen, dissolved nitrate, and total phosphorus were lower during the summer months. Measured concentrations of nitrate nitrogen in both streams were well below the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 10 mg/L.Water samples for analysis of pesticides were collected throughout 1997 in both streams and during a storm event on August 25-26, 1998, in Deer Creek. Samples were collected monthly at both sites and more frequently during the spring and early summer months to coincide with application of pesticides. Seventy

  11. Southern Hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming.

    PubMed

    Stott, Lowell; Timmermann, Axel; Thunell, Robert

    2007-10-19

    Establishing what caused Earth's largest climatic changes in the past requires a precise knowledge of both the forcing and the regional responses. We determined the chronology of high- and low-latitude climate change at the last glacial termination by radiocarbon dating benthic and planktonic foraminiferal stable isotope and magnesium/calcium records from a marine core collected in the western tropical Pacific. Deep-sea temperatures warmed by approximately 2 degrees C between 19 and 17 thousand years before the present (ky B.P.), leading the rise in atmospheric CO2 and tropical-surface-ocean warming by approximately 1000 years. The cause of this deglacial deep-water warming does not lie within the tropics, nor can its early onset between 19 and 17 ky B.P. be attributed to CO2 forcing. Increasing austral-spring insolation combined with sea-ice albedo feedbacks appear to be the key factors responsible for this warming.

  12. Draft Environmental Impact Report and Environmental Impact Statement. Syar Industries, Inc. Mining Use Permit Application, Reclamation Plan, and Section 404 Permit Application

    DTIC Science & Technology

    1993-07-01

    with Special Reference to Warm Springs Creek. Appendix B in: Stewart, S.B., and D.W. Pri, Notes on the Mihilakawna Porno of Dry CreeL Mimeo suppl...34The Ethnography of the Dry Creek Porno ." Report of the U.S. Army Corps of Engineers. 2. Ibid. 3. Ibid. 4. Bill Cox, Departnent of Fish and Game...trend, and the western Porno languages subsequently developed here.1 2 The development of these western languages coincident with the recent ethnographic

  13. The future of spring bud burst: looking at the possibilities

    Treesearch

    Noreen Parks; Connie Harrington; Brad St. Clair;  Peter.  Gould

    2010-01-01

    The timing of spring budburst in woody plants impacts not only the subsequent seasonal growth for individual trees, but also their associated biological community. As winter and spring temperatures have warmed under the changing climate, in many species budburst has been happening earlier in the year. Understanding the long-term effects of this shift and adapting...

  14. The generation of spring peak flows by short-term meteorological events

    Treesearch

    Harold F. Haupt

    1968-01-01

    Spring peak flows recorded over a 25-year period in Benton Creek, a small forested watershed in northern Idaho, were studied in their relation to meteorological events. More peak flows were generated by rain-on-snow than by clear-weather snowmelt; the two types of peaks differ in magnitude and in other characteristics. Two rather simple techniques were used to...

  15. Traveltime characteristics of Gore Creek and Black Gore Creek, upper Colorado River basin, Colorado

    USGS Publications Warehouse

    Gurdak, Jason J.; Spahr, Norman E.; Szmajter, Richard J.

    2002-01-01

    In the Rocky Mountains of Colorado, major highways are often constructed in stream valleys. In the event of a vehicular accident involving hazardous materials, the close proximity of highways to the streams increases the risk of contamination entering the streams. Recent population growth has contributed to increased traffic volume along Colorado highways and has resulted in increased movement of hazardous materials, particularly along Interstate 70. Gore Creek and its major tributary, Black Gore Creek, are vulnerable to such contamination from vehicular accidents along Interstate 70. Gore Creek, major tributary of the Eagle River, drains approximately 102 square miles, some of which has recently undergone significant urban development. The headwaters of Gore Creek originate in the Gore Range in the eastern part of the Gore Creek watershed. Gore Creek flows west to the Eagle River. Beginning at the watershed boundary on Vail Pass, southeast of Vail Ski Resort, Interstate 70 parallels Black Gore Creek and then closely follows Gore Creek the entire length of the watershed. Interstate 70 crosses Gore Creek and tributaries 20 times in the watershed. In the event of a vehicular accident involving a contaminant spill into Gore Creek or Black Gore Creek, a stepwise procedure has been developed for water-resource managers to estimate traveltimes of the leading edge and peak concentration of a conservative contaminant. An example calculating estimated traveltimes for a hypothetical contaminant release in Black Gore Creek is provided. Traveltime measurements were made during May and September along Black Gore Creek and Gore Creek from just downstream from the Black Lakes to the confluence with the Eagle River to account for seasonal variability in stream discharge. Fluorometric dye injection of rhodamine WT and downstream dye detection by fluorometry were used to measure traveltime characteristics of Gore Creek and Black Gore Creek. During the May traveltime measurements

  16. The saltiest springs in the Sierra Nevada, California

    USGS Publications Warehouse

    Moore, James G.; Diggles, Michael F.; Evans, William C.; Klemic, Karin

    2017-07-20

    The five saltiest springs in the Sierra Nevada in California are found between 38.5° and 38.8° N. latitude, on the South Fork American River; on Caples Creek, a tributary of the Silver Fork American River; and on the North Fork Mokelumne River. The springs issue from Cretaceous granitic rocks in the bottoms of these major canyons, between 1,200- and 2,200-m elevation. All of these springs were well known to Native Americans, who excavated meter-sized basins in the granitic rock, within which they produced salt by evaporation near at least four of the five spring sites. The spring waters are dominated by Cl, Na, and Ca; are enriched relative to seawater in Ca, Li, and As; and are depleted in SO4, Mg, and K. Tritium analyses indicate that the spring waters have had little interaction with rainfall since about 1954. The waters are apparently an old groundwater of meteoric origin that resided at depth before moving up along fractures to the surface of the exhumed granitic rocks. However, along the way these waters incorporated salts from depth, the origin of which could have been either from marine sedimentary rocks intruded by the granitic magmas or from fluid inclusions in the granitic rocks. Prolonged storage at depth fostered water-rock interactions that undoubtedly modified the fluid compositions.

  17. Flood discharges and hydraulics near the mouths of Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek in the New River Gorge National River, West Virginia

    USGS Publications Warehouse

    Wiley, J.B.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, studied the frequency and magnitude of flooding near the mouths of five tributaries to the New River in the New River Gorge National River. The 100-year peak discharge at each tributary was determined from regional frequency equations. The 100-year discharge at Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek was 3,400 cubic feet per second, 640 cubic feet per second, 8,200 cubic feet per second, 7,100 cubic feet per second, and 9,400 cubic feet per second, respectively. Flood elevations for each tributary were determined by application of a steady-state, one-dimensional flow model. Manning's roughness coefficients for the stream channels ranged from 0.040 to 0.100. Bridges that would be unable to contain the 100-year flood within the bridge opening included: the State Highway 82 bridge on Wolf Creek, the second Fayette County Highway 25 bridge upstream from the confluence with New River on Dunloup Creek, and an abandoned log bridge on Mill Creek.

  18. Hood River Fish Habitat Project; Confederated Tribes of the Warm Springs Reservation of Oregon, Annual Report 2002-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaivoda, Alexis

    2004-02-01

    water sources on Evans Creek. Through this project, BPA funded the Middle Fork Irrigation District (MFID) a total of $194,000 in FY 03 for the Glacier Ditch- Evans Creek project. BPA funds accounted for approximately 30% of the project while the remaining 70% was cost-shared by the MFID, the US Forest Service, and the Oregon Watershed Enhancement Board. The MFID operated irrigation diversions on Evans Creek (Hutson pond RM 4.0 and the Evans Creek diversion RM 5.5), a tributary to the East Fork Hood River. Both diversions had inadequate upstream fish passage, and utilized Evans Creek to transport Eliot Branch water to distribute irrigation water lower in the basin. This project consisted of: piping a portion of the Glacier ditch to create a pressurized irrigation pipeline system, piping the Hutson extension, removing the culvert on Evans Creek near the Glacier ditch, removing the culvert above the Hutson pond, revegetating the disturbed areas, and providing adequate and approved fish passage on Evans Creek. Prior to any work, Brian Connors with MFID completed a NEPA checklist. Some of the key regulatory points of this project included wetland delineations, a cultural resources survey, and consultations with NOAA Fisheries, U.S. Fish and Wildlife, Oregon Department of Fish and Wildlife (ODFW), and the U.S. Army Corps of Engineers. This project will eliminate the overflow of silty water into Evans Creek and West Fork Evans Creek. Upon completion of this project, access to 2.5 miles of winter steelhead, coho salmon, and resident trout habitat will be restored. Elimination of the interbasin transfer of water will discontinue the conveyance of silty Eliot Branch water into clear East Fork tributaries. Additionally, less water taken from Coe Branch, Eliot Branch, and Laurance Lake which will benefit listed steelhead and bull trout. The Glacier Ditch provided irrigation water from the Eliot Branch to upper valley orchards and agriculture for more than 100 years. The Glacier

  19. Complex responses of spring vegetation growth to climate in a moisture-limited alpine meadow

    PubMed Central

    Ganjurjav, Hasbagan; Gao, Qingzhu; Schwartz, Mark W.; Zhu, Wenquan; Liang, Yan; Li, Yue; Wan, Yunfan; Cao, Xujuan; Williamson, Matthew A.; Jiangcun, Wangzha; Guo, Hongbao; Lin, Erda

    2016-01-01

    Since 2000, the phenology has advanced in some years and at some locations on the Qinghai-Tibetan Plateau, whereas it has been delayed in others. To understand the variations in spring vegetation growth in response to climate, we conducted both regional and experimental studies on the central Qinghai-Tibetan Plateau. We used the normalized difference vegetation index to identify correlations between climate and phenological greening, and found that greening correlated negatively with winter-spring time precipitation, but not with temperature. We used open top chambers to induce warming in an alpine meadow ecosystem from 2012 to 2014. Our results showed that in the early growing season, plant growth (represented by the net ecosystem CO2 exchange, NEE) was lower in the warmed plots than in the control plots. Late-season plant growth increased with warming relative to that under control conditions. These data suggest that the response of plant growth to warming is complex and non-intuitive in this system. Our results are consistent with the hypothesis that moisture limitation increases in early spring as temperature increases. The effects of moisture limitation on plant growth with increasing temperatures will have important ramifications for grazers in this system. PMID:26983697

  20. Complex responses of spring vegetation growth to climate in a moisture-limited alpine meadow

    NASA Astrophysics Data System (ADS)

    Ganjurjav, Hasbagan; Gao, Qingzhu; Schwartz, Mark W.; Zhu, Wenquan; Liang, Yan; Li, Yue; Wan, Yunfan; Cao, Xujuan; Williamson, Matthew A.; Jiangcun, Wangzha; Guo, Hongbao; Lin, Erda

    2016-03-01

    Since 2000, the phenology has advanced in some years and at some locations on the Qinghai-Tibetan Plateau, whereas it has been delayed in others. To understand the variations in spring vegetation growth in response to climate, we conducted both regional and experimental studies on the central Qinghai-Tibetan Plateau. We used the normalized difference vegetation index to identify correlations between climate and phenological greening, and found that greening correlated negatively with winter-spring time precipitation, but not with temperature. We used open top chambers to induce warming in an alpine meadow ecosystem from 2012 to 2014. Our results showed that in the early growing season, plant growth (represented by the net ecosystem CO2 exchange, NEE) was lower in the warmed plots than in the control plots. Late-season plant growth increased with warming relative to that under control conditions. These data suggest that the response of plant growth to warming is complex and non-intuitive in this system. Our results are consistent with the hypothesis that moisture limitation increases in early spring as temperature increases. The effects of moisture limitation on plant growth with increasing temperatures will have important ramifications for grazers in this system.

  1. Complex responses of spring vegetation growth to climate in a moisture-limited alpine meadow.

    PubMed

    Ganjurjav, Hasbagan; Gao, Qingzhu; Schwartz, Mark W; Zhu, Wenquan; Liang, Yan; Li, Yue; Wan, Yunfan; Cao, Xujuan; Williamson, Matthew A; Jiangcun, Wangzha; Guo, Hongbao; Lin, Erda

    2016-03-17

    Since 2000, the phenology has advanced in some years and at some locations on the Qinghai-Tibetan Plateau, whereas it has been delayed in others. To understand the variations in spring vegetation growth in response to climate, we conducted both regional and experimental studies on the central Qinghai-Tibetan Plateau. We used the normalized difference vegetation index to identify correlations between climate and phenological greening, and found that greening correlated negatively with winter-spring time precipitation, but not with temperature. We used open top chambers to induce warming in an alpine meadow ecosystem from 2012 to 2014. Our results showed that in the early growing season, plant growth (represented by the net ecosystem CO2 exchange, NEE) was lower in the warmed plots than in the control plots. Late-season plant growth increased with warming relative to that under control conditions. These data suggest that the response of plant growth to warming is complex and non-intuitive in this system. Our results are consistent with the hypothesis that moisture limitation increases in early spring as temperature increases. The effects of moisture limitation on plant growth with increasing temperatures will have important ramifications for grazers in this system.

  2. Hot springs of the central Sierra Nevada, California

    USGS Publications Warehouse

    Mariner, R.H.; Presser, T.S.; Evans, William C.

    1977-01-01

    Thermal springs of the central Sierra Nevada issue dilute to slightly saline sodium chloride, sodium bicarbonate, or sodium mixed-anion waters ranging in pH from 6.4 to 9.3. The solubility of chalcedony appears to control the silica concentration in most of the spring waters. Fales Hot Springs may be associated with a higher temperature aquifer, 150 degrees Celsius or more, in which quartz is controlling the silica concentration. Carbon dioxide is the predominant gas escaping from Fales Hot Springs, the unnamed hot spring on the south side of Mono Lake, and the two thermal springs near Bridgeport. Most of the other thermal springs issue small amounts of gas consisting principally of nitrogen. Methane is the major component of the gas escaping from the unnamed spring on Paoha Island in Mono Lake. The deuterium and oxygen isotopic composition of most of the thermal waters are those expected for local meteoric water which has undergone minor water-rock reaction. The only exceptions are the hot spring on Paoha Island in Mono Lake and perhaps the unnamed warm spring (south side of Mono Lake) which issues mixtures of thermal water and saline lake water. (Woodard-USGS)

  3. Water-quality reconnaissance and streamflow gain and loss of Yocum Creek basin, Carroll County, Arkansas

    USGS Publications Warehouse

    Joseph, Robert L.; Green, W. Reed

    1994-01-01

    A study of the Yocum Creek Basin conducted between July 27 and August 3, 1993, described the surface- and ground-water quality of the basin and the streamflow gain and loss. Water samples were collected from 12 sites on the main stem of Yocum Creek and 2 tributaries during periods of low to moderate streamflow (less than 40 cubic feet per second). Water samples were collected from 5 wells and 12 springs located in the basin. In 14 surface- water samples, nitrite plus nitrate concentrations ranged from 1.3 to 3.8 milligrams per liter as nitrogen. Orthophosphorus concentrations ranged from 0.01 to 0.06 milligrams per liter as phosphorous. Fecal coliform bacteria counts ranged from 9 to 220 colonies per 100 milliliters, with a median of 49 colonies per 100 milliliters. Fecal streptococci bacteria counts ranged from 37 to 1,500 colonies per 100 milliliters with a median of 420 colonies per 100 milliliters. Analyses for selected metals collected near the mouth of Yocum Creek indicate that metals are not present in significant concen- trations in surface-water samples. Diel dissolved oxygen concentrations and temperatures were measured at two sites on the mainstem of the stream. At the upstream site, dissolved oxygen concentrations ranged from 6.2 to 9.9 milligrams per liter and temperatures ranged from 18.5 to 23.0 degrees Celsius. Dissolved oxygen concentrations were higher and tempentture values were lower at the upstream site than those at the downstream site. Five wells were sampled in the basin and dissolved ammonia was present in concentrations ranging from 0.01 to 0.07 milligrams per liter as nitrogen. Dissolved nitrite plus nitrate was present in wells, with concen- trations ranging from less than 0.02 to 6.0 milligrams per liter as nitrogen. Volatile organic compound samples were collected at two wells and two springs. Chloroform was the only volatile organic compound found to be above the detection limit. Analysis indicated that 0.2 micrograms per liter of

  4. Gain-loss study of lower San Pedro Creek and the San Antonio River, San Antonio, Texas, May-October 1999

    USGS Publications Warehouse

    Ockerman, Darwin J.

    2002-01-01

    Five streamflow gain-loss measurement surveys were made along lower San Pedro Creek and the San Antonio River from Mitchell Street to South Loop 410 east of Kelly Air Force Base in San Antonio, Texas, during May–October 1999. All of the measurements were made during dry periods, when stormwater runoff was not occurring and effects of possible bank storage were minimized. San Pedro Creek and the San Antonio River were divided into six subreaches, and streamflow measurements were made simultaneously at the boundaries of these subreaches so that streamflow gains or losses and estimates of inflow from or outflow to shallow ground water could be quantified for each subreach. There are two possible sources of ground-water inflow to lower San Pedro Creek and the San Antonio River east of Kelly Air Force Base. One source is direct inflow of shallow ground water into the streams. The other source is ground water that enters tributaries that flow into the San Antonio River. The estimated mean direct inflow of ground water to the combined San Pedro Creek and San Antonio River study reach was 3.0 cubic feet per second or 1.9 million gallons per day. The mean tributary inflow of ground water was estimated to be 1.9 cubic feet per second or 1.2 million gallons per day. The total estimated inflow of shallow ground water was 4.9 cubic feet per second or 3.2 million gallons per day. The amount of inflow from springs and seeps (estimated by observation) is much less than the amount of direct ground-water inflow estimated from the gain-loss measurements. Therefore, the presence of springs and seeps might not be a reliable indicator of the source of shallow ground water entering the river. Most of the shallow ground water that enters the San Antonio River from tributary inflow enters from the west side, through Concepcion Creek, inflows near Riverside Golf Course, and Six-Mile Creek

  5. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Monitoring and Evaluation, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boe, Stephen J.; Weldert, Rey F.; Crump, Carrie A.

    2003-03-01

    This is the fifth annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Conventional and captive broodstock supplementation techniques are being used to restore spring chinook salmon fisheries in these streams. Statement of Work Objectives for 2002: (1) Plan for, administer, coordinate and assist comanagers in GRESCP M&E activities. (2) Evaluate performance of supplemented juvenile spring chinook salmon. (3) Evaluate life history differences between wild andmore » hatchery-origin (F{sub 1}) adult spring chinook salmon. (4) Describe life history characteristics and genetics of adult summer steelhead collected at weirs.« less

  6. Chemical characteristics, including stable-isotope ratios, of surface water and ground water from selected sources in and near East Fork Armells Creek basin, southeastern Montana, 1985

    USGS Publications Warehouse

    Ferreira, R.F.; Lambing, J.H.; Davis, R.E.

    1989-01-01

    Water samples were collected from 29 sites to provide synoptic chemical data, including stable-isotope ratios, for an area of active surface coal mining and to explore the effectiveness of using the data to chemically distinguish water from different aquifers. Surface-water samples were collected from one spring, four sites on East Armells Creek, one site on Stocker Creek, and two fly-ash ponds. Streamflows in East Fork Armells Creek ranged from no flow in several upstream reaches to 2.11 cu ft/sec downstream from Colstrip, Montana. Only one tributary, Stocker Creek, was observed to contribute surface flow in the study area. Groundwater samples were collected from wells completed in Quaternary alluvium or mine spoils, Rosebud overburden, Rosebud coal bed, McKay coal bed, and sub-McKay deposits of the Tongue River Member, Paleocene Fort Union Formation. Dissolved-solids concentrations, in mg/L, were 840 at the spring, 3,100 to 5,000 in the streams, 13,000 to 22,000 in the ash ponds, and 690 to 4 ,100 in the aquifers. With few exceptions, water from the sampled spring, streams, and wells had similar concentrations of major constituents and trace elements and similar stable-isotope ratios. Water from the fly-ash ponds had larger concentrations of dissolved solids, boron, and manganese and were isotopically more enriched in deuterium and oxygen-18 than water from other sources. Water from individual aquifers could not be distinguished by either ion-composition diagrams or statistical cluster analyses. (USGS)

  7. Radiocarbon Ages and Environments of Deposition of the Wono and Trego Hot Springs Tephra Layers in the Pyramid Lake Subbasin, Nevada

    USGS Publications Warehouse

    Benson, L.V.; Smoot, J.P.; Kashgarian, Michaele; Sarna-Wojcicki, A.; Burdett, J.W.

    1997-01-01

    Uncalibrated radiocarbon data from core PLC92B taken from Wizards Cove in the Pyramid Lake subbasin indicate that the Trego Hot Springs and Wono tephra layers were deposited 23,200 ?? 300 and 27,300 ??300 14C yr B.P. (uncorrected for reservoir effect). Sedimentological data from sites in the Pyramid Lake and Smoke Creek-Black Rock Desert subbasins indicate that the Trego Hot Springs tephra layer was deposited during a relatively dry period when Pyramid Lake was at or below its spill point (1177 m) to the Winnemucca Lake subbasin. The Wono tephra layer was deposited when lake depth was controlled by spill across Emerson Pass sill (1207 m) to the Smoke Creek-Black Rock Desert subbasin. 18O data from core PLC92B also support the concept that the Trego Hot Springs tephra fell into a relatively shallow Pyramid Lake and that the Wono tephra fell into a deeper spilling lake. ?? 1997 University of Washington.

  8. Restoring Fossil Creek

    ERIC Educational Resources Information Center

    Flaccus, Kathleen; Vlieg, Julie; Marks, Jane C.; LeRoy, Carri J.

    2004-01-01

    Fossil Creek had been dammed for the past 90 years, and plans were underway to restore the stream. The creek runs through Central Arizona and flows from the high plateaus to the desert, cutting through the same formations that form the Grand Canyon. This article discusses the Fossil Creek monitoring project. In this project, students and teachers…

  9. Combined effects of tides, evaporation and rainfall on the soil conditions in an intertidal creek-marsh system

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Zhou, Tingzhang; Lu, Chunhui; Shen, Chengji; Zhang, Chenming; D'Alpaos, Andrea; Li, Ling

    2017-05-01

    Salt marshes, distributed globally at the land-ocean interface, are a highly productive eco-system with valuable ecological functions. While salt marshes are affected by various eco-geo-hydrological processes and factors, soil moisture and salinity affect plant growth and play a key role in determining the structure and functions of the marsh ecosystem. To examine the variations of both soil parameters, we simulated pore-water flow and salt transport in a creek-marsh system subjected to spring-neap tides, evaporation and rainfall. The results demonstrated that within a sandy-loam marsh, the tide-induced pore-water circulation averted salt build-up due to evaporation in the near-creek area. In the marsh interior where the horizontal drainage was weak, density-driven flow was responsible for dissipating salt accumulation in the shallow soil layer. In the sandy-loam marsh, the combined influences of spring-neap tides, rainfall and evaporation led to the formation of three characteristic zones, c.f., a near-creek zone with low soil water saturation (i.e., well-aerated) and low pore-water salinity as affected by the semi-diurnal spring tides, a less well-aerated zone with increased salinity where drainage occurred during the neap tides, and an interior zone where evaporation and rainfall infiltration regulated the soil conditions. These characteristics, however, varied with the soil type. In low-permeability silt-loam and clay-loam marshes, the tide-induced drainage weakened and the soil conditions over a large area became dominated by evaporation and rainfall. Sea level rise was found to worsen the soil aeration condition but inhibit salt accumulation due to evaporation. These findings shed lights on the soil conditions underpinned by various hydrogeological processes, and have important implications for further investigations on marsh plant growth and ecosystem functions.

  10. Brood Year 2004: Johnson Creek Chinook Salmon Supplementation Report, June 2004 through March 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebhards, John S.; Hill, Robert; Daniel, Mitch

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek to spawn through artificial propagation. This was the sixth season of adult chinook broodstock collection in Johnson Creek following collections in 1998, 2000, 2001, 2002, and 2003. Weir installation was completed on June 21, 2004 with the first chinookmore » captured on June 22, 2004 and the last fish captured on September 6, 2004. The weir was removed on September 18, 2004. A total of 338 adult chinook, including jacks, were captured during the season. Of these, 211 were of natural origin, 111 were hatchery origin Johnson Creek supplementation fish, and 16 were adipose fin clipped fish from other hatchery operations and therefore strays into Johnson Creek. Over the course of the run, 57 natural origin Johnson Creek adult chinook were retained for broodstock, transported to the South Fork Salmon River adult holding and spawning facility and held until spawned. The remaining natural origin Johnson Creek fish along with all the Johnson Creek supplementation fish were released upstream of the weir to spawn naturally. Twenty-seven Johnson Creek females were artificially spawned with 25 Johnson Creek males. Four females were diagnosed with high bacterial kidney disease levels resulting in their eggs being culled. The 27 females produced 116,598 green eggs, 16,531 green eggs were culled, with an average eye-up rate of 90.6% resulting in 90,647 eyed eggs. Juvenile fish were reared indoors at the McCall Fish Hatchery until November 2005 and then transferred to the outdoor rearing facilities during the Visual Implant Elastomer tagging

  11. Simulated effects of increased groundwater withdrawals in the Cave Springs area, Hixson, Tennessee

    USGS Publications Warehouse

    Haugh, Connor J.

    2014-01-01

    Under scenarios A and B, the largest change in the water budget occurs for flow to Cave Springs with decreases of 1.9 and 4.7 ft3/s, respectively. Similarly, groundwater discharge to North Chickamauga Creek decreases by 1.0 ft3/s and 2.6 ft33/s, respectively. Under scenarios C and D, the largest change in the water budget occurs for flow to Chickamauga Lake with decreases of 1.3 ft3/s and 2.3 ft3/s, respectively. Similarly, groundwater discharge to North Chickamauga Creek decreases by 1.1 ft3/s and 2.1 ft3/s, respectively. Changes in groundwater levels at the well fields were also analyzed. At the Cave Springs well field, maximum declines in groundwater levels due to additional pumpage are less than 1 foot for all scenarios. Groundwater level changes at the Cave Springs well field are small due to the highly transmissive nature of the aquifer in this location. Maximum groundwater-level declines at Walkers Corner are less than 1 foot for scenarios A and B and about 52 feet and 82 feet for scenarios C and D, respectively. Under scenarios C and D, the regional potentiometric surface shows a large cone of depression centered on the Walkers Corner well field and elongated along geologic strike.

  12. On the secular change of spring onset at Stockholm

    NASA Astrophysics Data System (ADS)

    Qian, Cheng; Fu, Congbin; Wu, Zhaohua; Yan, Zhongwei

    2009-06-01

    A newly developed method, the Ensemble Empirical Mode Decomposition, was applied to adaptively determine the timing of climatic spring onset from the daily temperature records at Stockholm during 1756-2000. Secular variations of spring onset and its relationships to the North Atlantic Oscillation (NAO) and to the temperature variability were analyzed. A clear turning point of secular trend in spring onset around 1884/1885, from delaying to advancing, was found. The delaying trend of spring onset (6.9 days/century) during 1757-1884 and the advancing one (-7 days/century) during 1885-1999 were both significant. The winter NAO indices were found to be correlated with the spring onset at Stockholm at an inter-annual timescale only for some decades, but unable to explain the change of the long-term trends. The secular change from cooling to warming around the 1880s, especially in terms of spring temperature, might have led to the secular change of spring onset.

  13. Prediction of suspended-sediment concentrations at selected sites in the Fountain Creek watershed, Colorado, 2008-09

    USGS Publications Warehouse

    Stogner, Sr., Robert W.; Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Mau, David P.

    2013-01-01

    In 2008, the U.S. Geological Survey (USGS), in cooperation with Pikes Peak Area Council of Governments, Colorado Water Conservation Board, Colorado Springs City Engineering, and the Lower Arkansas Valley Water Conservancy District, began a small-scale pilot study to evaluate the effectiveness of the use of a computational model of streamflow and suspended-sediment transport for predicting suspended-sediment concentrations and loads in the Fountain Creek watershed in Colorado. Increased erosion and sedimentation damage have been identified by the Fountain Creek Watershed Plan as key problems within the watershed. A recommendation in the Fountain Creek Watershed plan for management of the basin is to establish measurable criteria to determine if progress in reducing erosion and sedimentation damage is being made. The major objective of this study was to test a computational method to predict local suspended-sediment loads at two sites with different geomorphic characteristics in order to evaluate the feasibility of using such an approach to predict local suspended-sediment loads throughout the entire watershed. Detailed topographic surveys, particle-size data, and suspended-sediment samples were collected at two gaged sites: Monument Creek above Woodmen Road at Colorado Springs, Colorado (USGS gage 07103970), and Sand Creek above mouth at Colorado Springs, Colorado (USGS gage 07105600). These data were used to construct three-dimensional computational models of relatively short channel reaches at each site. The streamflow component of these models predicted a spatially distributed field of water-surface elevation, water velocity, and bed shear stress for a range of stream discharges. Using the model predictions, along with measured particle sizes, the sediment-transport component of the model predicted the suspended-sediment concentration throughout the reach of interest. These computed concentrations were used with predicted flow patterns and channel morphology to

  14. Sensitivity of spring phenology to warming across temporal and spatial climate gradients in two independent databases

    USGS Publications Warehouse

    Cook, Benjamin I.; Wolkovich, Elizabeth M.; Davies, T. Jonathan; Ault, Toby R.; Betancourt, Julio L.; Allen, Jenica M.; Bolmgren, Kjell; Cleland, Elsa E.; Crimmins, Theresa M.; Kraft, Nathan J.B.; Lancaster, Lesley T.; Mazer, Susan J.; McCabe, Gregory J.; McGill, Brian J.; Parmesan, Camille; Pau, Stephanie; Regetz, James; Salamin, Nicolas; Schwartz, Mark D.; Travers, Steven E.

    2012-01-01

    Disparate ecological datasets are often organized into databases post hoc and then analyzed and interpreted in ways that may diverge from the purposes of the original data collections. Few studies, however, have attempted to quantify how biases inherent in these data (for example, species richness, replication, climate) affect their suitability for addressing broad scientific questions, especially in under-represented systems (for example, deserts, tropical forests) and wild communities. Here, we quantitatively compare the sensitivity of species first flowering and leafing dates to spring warmth in two phenological databases from the Northern Hemisphere. One—PEP725—has high replication within and across sites, but has low species diversity and spans a limited climate gradient. The other—NECTAR—includes many more species and a wider range of climates, but has fewer sites and low replication of species across sites. PEP725, despite low species diversity and relatively low seasonality, accurately captures the magnitude and seasonality of warming responses at climatically similar NECTAR sites, with most species showing earlier phenological events in response to warming. In NECTAR, the prevalence of temperature responders significantly declines with increasing mean annual temperature, a pattern that cannot be detected across the limited climate gradient spanned by the PEP725 flowering and leafing data. Our results showcase broad areas of agreement between the two databases, despite significant differences in species richness and geographic coverage, while also noting areas where including data across broader climate gradients may provide added value. Such comparisons help to identify gaps in our observations and knowledge base that can be addressed by ongoing monitoring and research efforts. Resolving these issues will be critical for improving predictions in understudied and under-sampled systems outside of the temperature seasonal mid-latitudes.

  15. Sensitivity of spring phenology to warming across temporal and spatial climate gradients in two independent databases

    NASA Astrophysics Data System (ADS)

    Cook, B. I.; Wolkovich, E. M.; Davies, J.; Ault, T. R.; Betancourt, J. L.; Allen, J.; Bolmgren, K.; Cleland, E. E.; Crimmins, T. M.; Kraft, N.; Lancaster, L.; Mazer, S.; McCabe, G. J.; McGill, B.; Parmesan, C.; Pau, S.; Regetz, J.; Salamin, N.; Schwartz, M. D.; Travers, S.

    2012-12-01

    Disparate ecological datasets are often organized into databases post-hoc and then analyzed and interpreted in ways that may diverge from the purposes of the original data collections. Few studies, however, have attempted to quantify how biases inherent in these data (e.g., species richness, replication, climate) affect their suitability for addressing broad scientific questions, especially in under-represented systems (e.g., deserts, tropical forests) and wild communities. Here, we quantitatively compare the sensitivity of species first flowering and leafing dates to spring warmth in two phenological databases from the Northern Hemisphere. One—PEP725—has high replication within and across sites, but has low species diversity and spans a limited climate gradient. The other—NECTAR—includes many more species and a wider range of climates, but has fewer sites and low replication of species across sites. PEP725, despite low species diversity and relatively low seasonality, accurately captures the magnitude and seasonality of warming responses at climatically similar NECTAR sites, with most species showing earlier phenological events in response to warming. In NECTAR, the prevalence of temperature responders significantly declines with increasing mean annual temperature, a pattern that cannot be detected across the limited climate gradient spanned by the PEP725 flowering and leafing data. Our results showcase broad areas of agreement between the two databases, despite significant differences in species richness and geographic coverage, while also noting areas where including data across broader climate gradients may provide added value. Such comparisons help to identify gaps in our observations and knowledge base that can be addressed by ongoing monitoring and research efforts. Resolving these issues will be critical for improving predictions in understudied and undersampled systems outside of the temperature seasonal midlatitudes.

  16. Occurrence and variability of mining-related lead and zinc in the Spring River flood plain and tributary flood plains, Cherokee County, Kansas, 2009--11

    USGS Publications Warehouse

    Juracek, Kyle E.

    2013-01-01

    Historical mining activity in the Tri-State Mining District (TSMD), located in parts of southeast Kansas, southwest Missouri, and northeast Oklahoma, has resulted in a substantial ongoing input of cadmium, lead, and zinc to the environment. To provide some of the information needed to support remediation efforts in the Cherokee County, Kansas, superfund site, a 4-year study was begun in 2009 by the U.S. Geological Survey that was requested and funded by the U.S. Environmental Protection Agency. A combination of surficial-soil sampling and coring was used to investigate the occurrence and variability of mining-related lead and zinc in the flood plains of the Spring River and several tributaries within the superfund site. Lead- and zinc-contaminated flood plains are a concern, in part, because they represent a long-term source of contamination to the fluvial environment. Lead and zinc contamination was assessed with reference to probable-effect concentrations (PECs), which represent the concentrations above which adverse aquatic biological effects are likely to occur. The general PECs for lead and zinc were 128 and 459 milligrams per kilogram, respectively. The TSMD-specific PECs for lead and zinc were 150 and 2,083 milligrams per kilogram, respectively. Typically, surficial soils in the Spring River flood plain had lead and zinc concentrations that were less than the general PECs. Lead and zinc concentrations in the surficial-soil samples were variable with distance downstream and with distance from the Spring River channel, and the largest lead and zinc concentrations usually were located near the channel. Lead and zinc concentrations larger than the general or TSMD-specific PECs, or both, were infrequent at depth in the Spring River flood plain. When present, such contamination typically was confined to the upper 2 feet of the core and frequently was confined to the upper 6 inches. Tributaries with few or no lead- and zinc-mined areas in the basin—Brush Creek

  17. Mercury at the Oat Hill Extension Mine and James Creek, Napa County, California: Tailings, Sediment, Water, and Biota, 2003-2004

    USGS Publications Warehouse

    Slowey, Aaron J.; Rytuba, James J.; Hothem, Roger L.; May, Jason T.

    2007-01-01

    Executive Summary The Oat Hill Extension (OHE) Mine is one of several mercury mines located in the James Creek/Pope Creek watershed that produced mercury from the 1870's until 1944 (U.S. Bureau of Mines, 1965). The OHE Mine developed veins and mineralized fault zones hosted in sandstone that extended eastward from the Oat Hill Mine. Waste material from the Oat Hill Mine was reprocessed at the OHE Mine using gravity separation methods to obtain cinnabar concentrates that were processed in a retort. The U.S. Bureau of Land Management requested that the U.S. Geological Survey measure and characterize mercury and other chemical constituents that are potentially relevant to ecological impairment of biota in tailings, sediment, and water at the OHE Mine and in the tributaries of James Creek that drain the mine area (termed Drainage A and B) (Figs. 1 and 2). This report summarizes such data obtained from sampling of tailings and sediments at the OHE on October 17, 2003; water, sediment, and biota from James Creek on May 20, 2004; and biota on October 29, 2004. These data are interpreted to provide a preliminary assessment of the potential ecological impact of the mine on the James Creek watershed. The mine tailings are unusual in that they have not been roasted and contain relatively high concentrations of mercury (400 to 1200 ppm) compared to unroasted waste rock at other mines. These tailings have contaminated a tributary to James Creek with mercury primarily by erosion, on the basis of higher concentration of mercury (780 ng/L) measured in unfiltered (total mercury, HgT) spring water flowing from the OHE to James Creek compared to 5 to 14 ng/L HgT measured in James Creek itself. Tailing piles (presumably from past Oat Hill mine dumping) near the USBLM property boundary and upstream of the main OHE mine drainage channel (Drainage A; Fig. 2) also likely emit mercury, on the basis of their mercury composition (930 to 1200 ppm). The OHE spring water is likely an

  18. Lower Walnut Creek Restoration

    EPA Pesticide Factsheets

    Lower Walnut Creek Restoration Project will restore and enhance coastal wetlands along southern shoreline of Suisun Bay from Suisun Bay upstream along Walnut Creek, improving habitat quality, diversity, and connectivity along three miles of creek channel.

  19. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde Riiver Basin : Fish Research Project Oregon : Annual Progress Report 1 September 1995 to 1 August 1996.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonasson, Brian C.; Carmichael, Richard W.; Keefe, MaryLouise

    1997-09-01

    Historically, the Grande Ronde River produced an abundance of salmonids including stocks of spring, summer and fall chinook salmon, sockeye salmon, coho salmon, and summer steelhead. During the past century, numerous factors have caused the reduction of salmon stocks such that only sustainable stocks of spring chinook salmon and summer steelhead remain. The sizes of spring chinook salmon populations in the Grande Ronde River basin also have been declining steadily and are substantially depressed from estimates of historic levels. In addition to a decline in population abundance, a reduction of spring chinook salmon spawning distribution is evident in the Grandemore » Ronde River basin. Numerous factors are thought to contribute to the decline of spring chinook salmon in the Snake River and its tributaries. These factors include passage problems and increased mortality of juvenile and adult migrants at mainstem Columbia and Snake river dams, overharvest, and habitat degradation associated with timber, agricultural, and land development practices. This study was designed to describe aspects of the life history strategies exhibited by spring chinook salmon in the Grande Ronde River basin. During the past year the focus was on rearing and migration patterns of juveniles in the upper Grande Ronde River and Catherine Creek. The study design included three objectives: (1) document the annual in-basin migration patterns for spring chinook salmon juveniles in the upper Grande Ronde River and Catherine Creek, including the abundance of migrants, migration timing and duration; (2) estimate and compare smolt survival indices to mainstem Columbia and Snake river dams for fall and spring migrating spring chinook salmon; and (3) determine summer and winter habitat utilization and preference of juvenile spring chinook salmon in the upper Grande Ronde River and Catherine Creek.« less

  20. Hydrologic change in a coast redwood forest, Caspar Creek Experimental Watersheds: implications for salmonid survival

    Treesearch

    Elizabeth Keppeler

    2016-01-01

    The 52-year record of streamflow from the Caspar Creek Experimental Watersheds shows a trend toward decreasing rainfall and streamflow during the fall season when coho salmon (Oncorhynchus kisutch) migrate upstream to spawn. Rainfall records show a slight declining trend in fall totals and a slight increasing trend in spring totals since 1962, but only November shows a...

  1. Controlled warming effects on wheat growth and yield: field measurements and modeling

    USDA-ARS?s Scientific Manuscript database

    Climate warming may raise wheat yields in cooler climates and lower them in warmer. To understand these contrasting effects, infrared heating lamps were used to warm irrigated spring wheat by 1.5 'C (day) and 3.0 'C (night) above unheated controls during different times of the year at Maricopa, AZ. ...

  2. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office: FY 1999 Watershed Restoration Projects : Annual Report 1999.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Shawn W.

    2001-03-01

    The John Day River is the second longest free-flowing river in the contiguous United States and one of the few major subbasins in the Columbia River basin containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, the fourth largest drainage area in Oregon. With its beginning in the Strawberry Mountains near the town of Prairie City, the John Day flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring chinook salmon and summer steelhead, red band,more » westslope cutthroat, and redband trout, the John Day system is truly one of national significance. The entire John Day basin was granted to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) initiated contracting the majority of its construction implementation actions with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of the projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 1999, the JDBO and GSWCD proposed continuation of a successful partnership between the two agencies and basin landowners to implement an additional eleven

  3. Saltmarsh pool and tidal creek morphodynamics: Dynamic equilibrium of northern latitude saltmarshes?

    NASA Astrophysics Data System (ADS)

    Wilson, Carol A.; Hughes, Zoe J.; FitzGerald, Duncan M.; Hopkinson, Charles S.; Valentine, Vinton; Kolker, Alexander S.

    2014-05-01

    Many saltmarsh platforms in New England and other northern climates (e.g. Canada, northern Europe) exhibit poor drainage, creating waterlogged regions where short-form Spartina alterniflora dominates and stagnant pools that experience tidal exchange only during spring tides and storm-induced flooding events. The processes related to pool formation and tidal creek incision (via headward erosion) that may eventually drain these features are poorly understood, however it has been suggested that an increase in pool occurrence in recent decades is due to waterlogging stress from sea-level rise. We present evidence here that saltmarshes in Plum Island Estuary of Massachusetts are keeping pace with sea-level rise, and that the recent increase in saltmarsh pool area coincides with changes in drainage density from a legacy of anthropogenic ditching (reversion to natural drainage conditions). Gradients, in addition to elevation and hydroperiod, are critical for saltmarsh pool formation. Additionally, elevation and vegetative changes associated with pool formation, creek incision, subsequent drainage of pools, and recolonization by S. alterniflora are quantified. Pool and creek dynamics were found to be cyclic in nature, and represent platform elevation in dynamic equilibrium with sea level whereby saltmarsh elevation may be lowered (due to degradation of organic matter and formation of a pool), however may be regained on short timescales (101-2 yr) with creek incision into pools and restoration of tidal exchange. Rapid vertical accretion is associated with sedimentation and S. alterniflora plant recolonization.

  4. Photoperiod- and Warming-driven Phenological Changes and Carbon and Nutrient Cycling. Remote Sensing Assessment

    NASA Astrophysics Data System (ADS)

    Penuelas, J.; Fu, Y.; Estiarte, M.; Gamon, J. A.; Filella, I.; Verger, A.; Jannssens, I.

    2017-12-01

    Ongoing spring warming allows the growing season to begin earlier in northern ecosystems, thus enhancing their carbon uptake. We will present data on atmospheric CO2 concentration measurements to show that this spring advancement of annual carbon intake in response to warming is decreasing. Reduced chilling during dormancy and the interactions between temperature and photoperiod in driving leaf-out may play a role. We will show that short photoperiod (in warm springs when leaf-out is early) significantly increases the heat requirement for leaf-out whereas long photoperiod (in cold springs when leaf-out is late) reduces the heat requirement for leaf-out. These two contrasting photoperiod effects illustrate a complicated temperature response of leaf-out phenology. We will also discuss how photoperiod exerts a strict control on leaf senescence at latitudes where winters are severe and temperature gains importance in the regulation as winters become less severe. On average, climatic warming will delay and drought will advance leaf senescence, but at varying degrees depending on the species. Warming and drought thus have opposite effects on the phenology of leaf senescence, and the impact of climate change will therefore depend on the relative importance of each factor in specific regions. We will then discuss the ecological effects of these phenological changes focusing, as an example, on the impacts of changes on the phenology of leaf senescence on carbon uptake and nutrient cycling. Finally, we will present recent advances on remote sensing monitoring of both the phenological changes and their ecological impacts. We will focus on advances derived from a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity.

  5. Trophic level responses differ as climate warms in Ireland

    NASA Astrophysics Data System (ADS)

    Donnelly, Alison; Yu, Rong; Liu, Lingling

    2015-08-01

    Effective ecosystem functioning relies on successful species interaction. However, this delicate balance may be disrupted if species do not respond to environmental change at a similar rate. Here we examine trends in the timing of spring phenophases of groups of species occupying three trophic levels as a potential indicator of ecosystem response to climate warming in Ireland. The data sets were of varying length (1976-2009) and from varying locations: (1) timing of leaf unfolding and May Shoot of a range of broadleaf and conifer tree species, (2) first appearance dates of a range of moth species, and (3) first arrival dates of a range of spring migrant birds. All three groups revealed a statistically significant ( P<0.01 and P<0.001) advance in spring phenology that was driven by rising spring temperature ( P<0.05; 0.45 °C /decade). However, the rate of advance was greater for moths (1.8 days/year), followed by birds (0.37 days/year) and trees (0.29 days/year). In addition, the length of time between (1) moth emergence and leaf unfolding and (2) moth emergence and bird arrival decreased significantly ( P<0.05 and P<0.001, respectively), indicating a decrease in the timing between food supply and demand. These differing trophic level response rates demonstrate the potential for a mismatch in the timing of interdependent phenophases as temperatures rise. Even though these data were not specifically collected to examine climate warming impacts, we conclude that such data may be used as an early warning indicator and as a means to monitor the potential for future ecosystem disruption to occur as climate warms.

  6. Trophic level responses differ as climate warms in Ireland.

    PubMed

    Donnelly, Alison; Yu, Rong; Liu, Lingling

    2015-08-01

    Effective ecosystem functioning relies on successful species interaction. However, this delicate balance may be disrupted if species do not respond to environmental change at a similar rate. Here we examine trends in the timing of spring phenophases of groups of species occupying three trophic levels as a potential indicator of ecosystem response to climate warming in Ireland. The data sets were of varying length (1976-2009) and from varying locations: (1) timing of leaf unfolding and May Shoot of a range of broadleaf and conifer tree species, (2) first appearance dates of a range of moth species, and (3) first arrival dates of a range of spring migrant birds. All three groups revealed a statistically significant (P<0.01 and P<0.001) advance in spring phenology that was driven by rising spring temperature (P<0.05; 0.45 °C /decade). However, the rate of advance was greater for moths (1.8 days/year), followed by birds (0.37 days/year) and trees (0.29 days/year). In addition, the length of time between (1) moth emergence and leaf unfolding and (2) moth emergence and bird arrival decreased significantly (P<0.05 and P<0.001, respectively), indicating a decrease in the timing between food supply and demand. These differing trophic level response rates demonstrate the potential for a mismatch in the timing of interdependent phenophases as temperatures rise. Even though these data were not specifically collected to examine climate warming impacts, we conclude that such data may be used as an early warning indicator and as a means to monitor the potential for future ecosystem disruption to occur as climate warms.

  7. Return of warm conditions in the southeastern Bering Sea: Phytoplankton - Fish

    PubMed Central

    Stabeno, Phyllis J.; Siddon, Elizabeth C.; Andrews, Alex G.; Cooper, Daniel W.; Eisner, Lisa B.; Farley, Edward V.; Harpold, Colleen E.; Heintz, Ron A.; Kimmel, David G.; Sewall, Fletcher F.; Spear, Adam H.; Yasumishii, Ellen C.

    2017-01-01

    In 2014, the Bering Sea shifted back to warmer ocean temperatures (+2 oC above average), bringing concern for the potential for a new warm stanza and broad biological and ecological cascading effects. In 2015 and 2016 dedicated surveys were executed to study the progression of ocean heating and ecosystem response. We describe ecosystem response to multiple, consecutive years of ocean warming and offer perspective on the broader impacts. Ecosystem changes observed include reduced spring phytoplankton biomass over the southeast Bering Sea shelf relative to the north, lower abundances of large-bodied crustacean zooplankton taxa, and degraded feeding and body condition of age-0 walleye pollock. This suggests poor ecosystem conditions for young pollock production and the risk of significant decline in the number of pollock available to the pollock fishery in 2–3 years. However, we also noted that high quality prey, large copepods and euphausiids, and lower temperatures in the north may have provided a refuge from poor conditions over the southern shelf, potentially buffering the impact of a sequential-year warm stanza on the Bering Sea pollock population. We offer the hypothesis that juvenile (age-0, age-1) pollock may buffer deleterious warm stanza effects by either utilizing high productivity waters associated with the strong, northerly Cold Pool, as a refuge from the warm, low production areas of the southern shelf, or by exploiting alternative prey over the southern shelf. We show that in 2015, the ocean waters influenced by spring sea ice (the Cold Pool) supported robust phytoplankton biomass (spring) comprised of centric diatom chains, a crustacean copepod community comprised of large-bodied taxa (spring, summer), and a large aggregation of midwater fishes, potentially young pollock. In this manner, the Cold Pool may have acted as a trophic refuge in that year. The few age-0 pollock occurring over the southeast shelf consumed high numbers of euphausiids which

  8. Return of warm conditions in the southeastern Bering Sea: Phytoplankton - Fish.

    PubMed

    Duffy-Anderson, Janet T; Stabeno, Phyllis J; Siddon, Elizabeth C; Andrews, Alex G; Cooper, Daniel W; Eisner, Lisa B; Farley, Edward V; Harpold, Colleen E; Heintz, Ron A; Kimmel, David G; Sewall, Fletcher F; Spear, Adam H; Yasumishii, Ellen C

    2017-01-01

    In 2014, the Bering Sea shifted back to warmer ocean temperatures (+2 oC above average), bringing concern for the potential for a new warm stanza and broad biological and ecological cascading effects. In 2015 and 2016 dedicated surveys were executed to study the progression of ocean heating and ecosystem response. We describe ecosystem response to multiple, consecutive years of ocean warming and offer perspective on the broader impacts. Ecosystem changes observed include reduced spring phytoplankton biomass over the southeast Bering Sea shelf relative to the north, lower abundances of large-bodied crustacean zooplankton taxa, and degraded feeding and body condition of age-0 walleye pollock. This suggests poor ecosystem conditions for young pollock production and the risk of significant decline in the number of pollock available to the pollock fishery in 2-3 years. However, we also noted that high quality prey, large copepods and euphausiids, and lower temperatures in the north may have provided a refuge from poor conditions over the southern shelf, potentially buffering the impact of a sequential-year warm stanza on the Bering Sea pollock population. We offer the hypothesis that juvenile (age-0, age-1) pollock may buffer deleterious warm stanza effects by either utilizing high productivity waters associated with the strong, northerly Cold Pool, as a refuge from the warm, low production areas of the southern shelf, or by exploiting alternative prey over the southern shelf. We show that in 2015, the ocean waters influenced by spring sea ice (the Cold Pool) supported robust phytoplankton biomass (spring) comprised of centric diatom chains, a crustacean copepod community comprised of large-bodied taxa (spring, summer), and a large aggregation of midwater fishes, potentially young pollock. In this manner, the Cold Pool may have acted as a trophic refuge in that year. The few age-0 pollock occurring over the southeast shelf consumed high numbers of euphausiids which may

  9. Low Elevation Riparian Environments: Warm-Climate Refugia for Conifers in the Great Basin, USA?

    NASA Astrophysics Data System (ADS)

    Millar, C.; Charlet, D. A.; Westfall, R. D.; Delany, D.

    2015-12-01

    The Great Basin, USA, contains hundreds of small to large mountain ranges. Many reach alpine elevations, which are separated from each other by low-elevation basins currently inhospitable to conifer growth. Many of these ranges support montane and subalpine conifer species that have affinities to the Sierra Nevada or Rocky Mountains, and from which these conifers migrated during cool periods of the Pleistocene. Under Holocene climates, the Great Basin geography became a terrestrial island-archipelago, wherein conifer populations are isolated among ranges, and inter-range migration is highly limited. During warm intervals of the Holocene, conifers would be expected to have migrated upslope following favorable conditions, and extirpation would be assumed to result from continued warming. Independent patterns, repeating across multiple species' distributions, however, suggest that refugia were present in these ranges during warm periods, and that low elevation environments below the current main distributions acted as climatic refugia. We hypothesize that cool, narrow, and north-aspect ravines, which during cool climates support persistent or seasonal creeks and deciduous riparian communities, become available as conifer habitat when warming climates desiccate creeks and deplete riparian species. We further speculate that cold-air drainage, reduced solar insolation, lower wind exposure, and higher water tables in these topographic positions support populations of montane and subalpine conifers even during warm climate intervals when high elevations are unfavorable for conifer persistence. On return to cool climates, low elevation refugia become sources for recolonizing higher slopes, and/or continue to persist as relictual populations. We present several lines of evidence supporting this hypothesis, and speculate that low-elevation, extramarginal riparian environments might act as climate refugia for Great Basin conifers in the future as well.

  10. Exceptional warming in the Western Pacific-Indian Ocean warm pool has contributed to more frequent droughts in eastern Africa

    USGS Publications Warehouse

    Funk, Christopher C.; Peterson, Thomas C.; Stott, Peter A.; Herring, Stephanie

    2012-01-01

    In 2011, East Africa faced a tragic food crisis that led to famine conditions in parts of Somalia and severe food shortages in parts of Ethiopia and Somalia. While many nonclimatic factors contributed to this crisis (high global food prices, political instability, and chronic poverty, among others) failed rains in both the boreal winter of 2010/11 and the boreal spring of 2011 played a critical role. The back-to-back failures of these rains, which were linked to the dominant La Niña climate and warm SSTs in the central and southeastern Indian Ocean, were particularly problematic since they followed poor rainfall during the spring and summer of 2008 and 2009. In fact, in parts of East Africa, in recent years, there has been a substantial increase in the number of below-normal rainy seasons, which may be related to the warming of the western Pacific and Indian Oceans (for more details, see Funk et al. 2008; Williams and Funk 2011; Williams et al. 2011; Lyon and DeWitt 2012). The basic argument of this work is that recent warming in the Indian–Pacific warm pool (IPWP) enhances the export of geopotential height energy from the warm pool, which tends to produce subsidence across eastern Africa and reduce onshore moisture transports. The general pattern of this disruption has been supported by canonical correlation analyzes and numerical experiments with the Community Atmosphere Model (Funk et al. 2008), diagnostic evaluations of reanalysis data (Williams and Funk 2011; Williams et al. 2011), and SST-driven experiments with ECHAM4.5, ECHAM5, and the Community Climate Model version 3 (CCM3.6) (Lyon and DeWitt 2012).

  11. Spring Chinook Salmon Oncorhynchus tshawytscha Supplementation in the Clearwater Subbasin ; Nez Perce Tribal Hatchery Monitoring and Evaluation Project, 2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backman, Thomas; Sprague, Sherman; Bretz, Justin

    The Nez Perce Tribal Hatchery (NPTH) program has the following goals (BPA, et al., 1997): (1) Protect, mitigate, and enhance Clearwater Subbasin anadromous fish resources; (2) Develop, reintroduce, and increase natural spawning populations of salmon within the Clearwater Subbasin; (3) Provide long-term harvest opportunities for Tribal and non-Tribal anglers within Nez Perce Treaty lands within four generations (20 years) following project initiation; (4) Sustain long-term fitness and genetic integrity of targeted fish populations; (5) Keep ecological and genetic impacts to non-target populations within acceptable limits; and (6) Promote Nez Perce Tribal management of Nez Perce Tribal Hatchery Facilities and productionmore » areas within Nez Perce Treaty lands. The NPTH program was designed to rear and release 1.4 million fall and 625,000 spring Chinook salmon. Construction of the central incubation and rearing facility NPTH and spring Chinook salmon acclimation facilities were completed in 2003 and the first full term NPTH releases occurred in 2004 (Brood Year 03). Monitoring and evaluation plans (Steward, 1996; Hesse and Cramer, 2000) were established to determine whether the Nez Perce Tribal Hatchery program is achieving its stated goals. The monitoring and evaluation action plan identifies the need for annual data collection and annual reporting. In addition, recurring 5-year program reviews will evaluate emerging trends and aid in the determination of the effectiveness of the NPTH program with recommendations to improve the program's implementation. This report covers the Migratory Year (MY) 2007 period of the NPTH Monitoring & Evaluation (M&E) program. There are three NPTH spring Chinook salmon treatment streams: Lolo Creek, Newsome Creek, and Meadow Creek. In 2007, Lolo Creek received 140,284 Brood Year (BY) 2006 acclimated pre-smolts at an average weight of 34.9 grams per fish, Newsome Creek received 77,317 BY 2006 acclimated pre-smolts at an average of 24

  12. Preliminary Evidence for the Amplification of Global Warming in Shallow, Intertidal Estuarine Waters

    EPA Science Inventory

    Over the past 50 years, mean annual water temperature in northeastern U.S. estuaries has increased by approximately 1.2°C, with most of the warming recorded in the winter and early spring. We hypothesize that this warming may be amplified in the shallow (<2m), nearshore portions ...

  13. Seasonal Variability May Affect Microbial Decomposers and Leaf Decomposition More Than Warming in Streams.

    PubMed

    Duarte, Sofia; Cássio, Fernanda; Ferreira, Verónica; Canhoto, Cristina; Pascoal, Cláudia

    2016-08-01

    Ongoing climate change is expected to affect the diversity and activity of aquatic microbes, which play a key role in plant litter decomposition in forest streams. We used a before-after control-impact (BACI) design to study the effects of warming on a forest stream reach. The stream reach was divided by a longitudinal barrier, and during 1 year (ambient year) both stream halves were at ambient temperature, while in the second year (warmed year) the temperature in one stream half was increased by ca. 3 °C above ambient temperature (experimental half). Fine-mesh bags containing oak (Quercus robur L.) leaves were immersed in both stream halves for up to 60 days in spring and autumn of the ambient and warmed years. We assessed leaf-associated microbial diversity by denaturing gradient gel electrophoresis and identification of fungal conidial morphotypes and microbial activity by quantifying leaf mass loss and productivity of fungi and bacteria. In the ambient year, no differences were found in leaf decomposition rates and microbial productivities either between seasons or stream halves. In the warmed year, phosphorus concentration in the stream water, leaf decomposition rates, and productivity of bacteria were higher in spring than in autumn. They did not differ between stream halves, except for leaf decomposition, which was higher in the experimental half in spring. Fungal and bacterial communities differed between seasons in both years. Seasonal changes in stream water variables had a greater impact on the activity and diversity of microbial decomposers than a warming regime simulating a predicted global warming scenario.

  14. Changes in the Onset of Spring in the Western United States

    USGS Publications Warehouse

    Cayan, D.R.; Kammerdiener, Susan A.; Dettinger, M.D.; Caprio, Joseph M.; Peterson, D.H.

    2001-01-01

    Fluctuations in spring climate in the western United States over the last 4-5 decades are described by examining changes in the blooming of plants and the timing of snowmelt-runoff pulses. The two measures of spring's onset that are employed are the timing of first bloom of lilac and honeysuckle bushes from a long-term cooperative phonological network, and the timing of the first major pulse of snowmelt recorded from high-elevation streams. Both measures contain year-to-year fluctuations, with typical year-to-year fluctuations at a given site of one to three weeks. These fluctuations are spatially coherent, forming regional patterns that cover most of the west. Fluctuations in lilac first bloom dates are highly correlated to those of honeysuckle, and both are significantly correlated with those of the spring snowmelt pulse. Each of these measures, then, probably respond to a common mechanism. Various analyses indicate that anomalous temperature exerts the greatest influence upon both interannual and secular changes in the onset of spring in these networks. Earlier spring onsets since the late 1970s are a remarkable feature of the records, and reflect the unusual spell of warmer-than-normal springs in western North America during this period. The warm episodes are clearly related to larger-scale atmospheric conditions across North America and the North Pacific, but whether this is predominantly an expression of natural variability or also a symptom of global warming is not certain.

  15. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operation and Maintenance and Monitoring and Evaluation, 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boe, Stephen J.; Ogburn, Parker N.

    2003-03-01

    This is the second annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to restore fisheries in these streams. Statement of Work Objectives for 2001: (1) Participate in implementation of the comprehensive multiyear operations plan for the Grande Ronde Endemic Spring chinook Supplementation Program (GRESCP). (2) Plan detailed GRESCP Monitoring and Evaluation for future years. (3)more » Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2001. (4) Plan for data collection needs for bull trout. (5) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2001. (6) Collect summer steelhead. (7) Monitor adult endemic spring chinook salmon populations and collect broodstock. (8) Acclimate juvenile spring chinook salmon prior to release into the upper Grande Ronde River and Catherine Creek. (9) Monitor adult population abundance and characteristics of Grande Ronde River spring chinook salmon populations. (10) Monitor condition, movement, and mortality of spring chinook salmon acclimated at remote facilities. (11) Participate in Monitoring & Evaluation of the captive brood component of the Program to document contribution to the Program. (12) Monitor water quality at facilities. (13) Document accomplishments and needs to permitters, comanagers, and funding agencies. (14) Communicate Project results to the scientific community.« less

  16. Simulation of streamflow and estimation of recharge to the Edwards aquifer in the Hondo Creek, Verde Creek, and San Geronimo Creek watersheds, south-central Texas, 1951-2003

    USGS Publications Warehouse

    Ockerman, Darwin J.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the San Antonio Water System, constructed three watershed models using the Hydrological Simulation Program—FORTRAN (HSPF) to simulate streamflow and estimate recharge to the Edwards aquifer in the Hondo Creek, Verde Creek, and San Geronimo Creek watersheds in south-central Texas. The three models were calibrated and tested with available data collected during 1992–2003. Simulations of streamflow and recharge were done for 1951–2003. The approach to construct the models was to first calibrate the Hondo Creek model (with an hourly time step) using 1992–99 data and test the model using 2000–2003 data. The Hondo Creek model parameters then were applied to the Verde Creek and San Geronimo Creek watersheds to construct the Verde Creek and San Geronimo Creek models. The simulated streamflows for Hondo Creek are considered acceptable. Annual, monthly, and daily simulated streamflows adequately match measured values, but simulated hourly streamflows do not. The accuracy of streamflow simulations for Verde Creek is uncertain. For San Geronimo Creek, the match of measured and simulated annual and monthly streamflows is acceptable (or nearly so); but for daily and hourly streamflows, the calibration is relatively poor. Simulated average annual total streamflow for 1951–2003 to Hondo Creek, Verde Creek, and San Geronimo Creek is 45,400; 32,400; and 11,100 acre-feet, respectively. Simulated average annual streamflow at the respective watershed outlets is 13,000; 16,200; and 6,920 acre-feet. The difference between total streamflow and streamflow at the watershed outlet is streamflow lost to channel infiltration. Estimated average annual Edwards aquifer recharge for Hondo Creek, Verde Creek, and San Geronimo Creek watersheds for 1951–2003 is 37,900 acrefeet (5.04 inches), 26,000 acre-feet (3.36 inches), and 5,940 acre-feet (1.97 inches), respectively. Most of the recharge (about 77 percent for the three watersheds

  17. Environmental Setting of the Morgan Creek Basin, Maryland, 2002-04

    USGS Publications Warehouse

    Hancock, Tracy Connell; Brayton, Michael J.

    2006-01-01

    The Morgan Creek Basin is a 31-square-kilometer watershed in Kent County, Maryland on the Delmarva Peninsula. The Delmarva Peninsula covers about 15,500 square kilometers and includes most of the State of Delaware and parts of Maryland and Virginia east of the Chesapeake Bay. The Morgan Creek Basin is one of five sites selected for the study of sources, transport, and fate by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program's: Agricultural Chemicals: Sources, Transport and Fate study team (Agricultural Chemicals Team, ACT). A key component of the study is identifying the natural factors and human influences affecting water quality in the Morgan Creek Basin. The Morgan Creek Basin is in the Coastal Plain Physiographic Province, which is a nearly level seaward-sloping lowland with areas of moderate topographic relief. The study area lies within a well-drained upland region with permeable and porous soils and aquifer sediments. The soils are well suited to most field crops. Agriculture is the principal land use in the Morgan Creek Basin, as well as throughout the entire Delmarva Peninsula. Most agricultural land is used for row crops such as corn, soybeans, and small grains, and slightly less land is used for pasture and hay production involving alfalfa, clover, and various perennial grasses. There are several animal operations in the study area. Farm management practices include fertilizer and herbicide applications, different tillage practices, addition of lime, forested riparian buffers, grassed waterways, and sediment retention ponds. Irrigation in the study area is minimal. The climate of the Morgan Creek Basin is humid and subtropical, with an average annual precipitation of 1.12 meters. Overall annual precipitation is evenly distributed throughout the year, from 76 to 101 millimeters per month; however, the spring and summer (March - September) tend to be slightly wetter than the autumn and winter (October - February

  18. Urbanization may reduce the risk of frost damage to spring flowers: A case study of two shrub species in South Korea.

    PubMed

    Gim, Hyeon-Ju; Ho, Chang-Hoi; Kim, Jinwon; Lee, Eun Ju

    2018-01-01

    Regional warming, owing to urbanization, leads to earlier spring phenological events and may expose plants to hard freeze damage. This study examined the influence of urbanization on the risk of frost damage to spring flowers in South Korea from 1973 to 2015. For the analysis period, we categorized 25 cities into two groups: those showing rapid population growth (rPG) ≥ 200,000, including 13 cities, and those showing no or decreased population growth (nPG), including 12 cities. We then investigated the time from the last frost dates (LFDs) in spring to the first flowering dates (FFDs) for each group. The rPG group experienced significant spring warming of 0.47°C per decade, resulting in earlier LFDs and FFDs. For this group, the advancement of LFD was more rapid than that of FFD, and the days between these two dates increased from 0.42 to 0.47 days per decade, implying a reduced risk of frost damage. Spring warming and the advancement of FFDs and LFDs were relatively small for the nPG group, and the LFDs were rather delayed. Consequently, the days between LFDs and FFDs were reduced from -1.05 to -1.67 days per decade, indicating an increased risk of frost damage. The contrasting changes in the frost-damage risk between the two city groups can be attributed to distinct urban warming at night, which makes the LFDs substantially earlier in the rPG group. Therefore, this study suggests that the warming associated with urbanization may lessen the risk of spring frost damage to plants in rapidly growing urban areas.

  19. Urbanization may reduce the risk of frost damage to spring flowers: A case study of two shrub species in South Korea

    PubMed Central

    Gim, Hyeon-Ju; Kim, Jinwon; Lee, Eun Ju

    2018-01-01

    Regional warming, owing to urbanization, leads to earlier spring phenological events and may expose plants to hard freeze damage. This study examined the influence of urbanization on the risk of frost damage to spring flowers in South Korea from 1973 to 2015. For the analysis period, we categorized 25 cities into two groups: those showing rapid population growth (rPG) ≥ 200,000, including 13 cities, and those showing no or decreased population growth (nPG), including 12 cities. We then investigated the time from the last frost dates (LFDs) in spring to the first flowering dates (FFDs) for each group. The rPG group experienced significant spring warming of 0.47°C per decade, resulting in earlier LFDs and FFDs. For this group, the advancement of LFD was more rapid than that of FFD, and the days between these two dates increased from 0.42 to 0.47 days per decade, implying a reduced risk of frost damage. Spring warming and the advancement of FFDs and LFDs were relatively small for the nPG group, and the LFDs were rather delayed. Consequently, the days between LFDs and FFDs were reduced from −1.05 to −1.67 days per decade, indicating an increased risk of frost damage. The contrasting changes in the frost-damage risk between the two city groups can be attributed to distinct urban warming at night, which makes the LFDs substantially earlier in the rPG group. Therefore, this study suggests that the warming associated with urbanization may lessen the risk of spring frost damage to plants in rapidly growing urban areas. PMID:29415073

  20. Asymmetric effects of cooler and warmer winters on beech phenology last beyond spring

    NASA Astrophysics Data System (ADS)

    Signarbieux, Constant; Toledano, Ester; Sangines, Paula; Fu, Yongshuo; Schlaepfer, Rodolphe; Buttler, Alexandre; Vitasse, Yann

    2017-04-01

    In temperate trees, the timing of plant growth onset and cessation affect biogeochemical cycles, water and energy balance. Currently, phenological studies largely focus on specific phenophases and on their responses to warming. How differently spring phenology responds to the warming and cooling, and affects the subsequent phases, has not been well investigated. Here, we exposed saplings of Fagus sylvatica L. to warmer and cooler climate during the winter 2013-2014 by conducting a reciprocal transplant experiment between two elevations (1340 vs. 371 m.a.s.l., ca. 6°C difference) in the Swiss Jura mountains. To test the legacy effects of earlier or later budburst on the budset timing, saplings were moved back to their original elevation shortly after the occurrence of budburst in spring 2014. One degree decrease of air temperature resulted in a delay of 10.9 days in budburst dates, whereas one degree of warming advanced the date by 8.8 days. Interestingly, we found an asymmetric effect of the warmer winter vs. cooler winter on the budset timing in autumn: saplings experiencing a cooler winter showed a delay of 31 days in their budset timing compared to the control, whereas saplings experiencing a warmer winter showed 10 days earlier budset. The dependency of spring over autumn phenophases might be partly explained by the building up of the non-structural carbohydrate storage and suggests that the potential delay in growth cessation due to global warming might be smaller than expected. We did not find a significant correlation in budburst dates between 2014 and 2015, indicating that the legacy effects of the different phenophases might be reset during each winter. Adapting phenological models to the whole annual phenological cycle, and considering the different response to cooling and warming, would improve predictions of tree phenology under future climate warming conditions.

  1. Growth, smoltification, and smolt-to-adult return of spring chinook salmon from hatcheries on the Deschutes river, Oregon

    USGS Publications Warehouse

    Beckman, B.R.; Dickhoff, Walton W.; Zaugg, W.S.; Sharpe, C.; Hirtzel, S.; Schrock, R.; Larsen, D.A.; Ewing, R.D.; Palmisano, A.; Schreck, C.B.; Mahnken, C.V.W.

    1999-01-01

    The relationship between smoltification and smolt-to-adult return (SAR) of spring chinook salmon Oncorhynchus tshawytscha from the Deschutes River, Oregon, was examined for four release groups in each of three successive years. Fish were reared, marked with coded wire tags, and released from Round Butte Hatchery, Pelton Ladder rearing facility, and Warm Springs National Fish Hatchery. Smolt releases occurred in nearly the same place at similar times, allowing a direct comparison of SAR to several characters representing smolt quality. Return rates varied significantly among facilities, varying over an order of magnitude each year. The highest average SAR was from Pelton Ladder, the lowest was from Warm Springs. Each of the characters used as metrics of smoltification - fish size, spring growth rate (February-April), condition factor, plasma hormone concentration (thyroxine, cortisol, and insulin-like growth factor-I [IGF-I]), stress challenge, gill Na+,K+-ATPase activity, and liver glycogen concentration - varied significantly among facilities and seasonally within hatchery groups. However, only spring growth rate, gill ATPase activity, and plasma IGF-I concentration showed significant relationships to SAR. These characters and SAR itself were consistently lower for fish released from Warm Springs Hatchery than for fish from Round Butte Hatchery and Pelton Ladder. This demonstrates that differences in the quality of fish released by facilities may have profound effects on subsequent survival and suggests that manipulations of spring growth rate may be used to influence the quality of smolts released from facilities.

  2. Copepod community succession during warm season in Lagoon Notoro-ko, northeastern Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yoshizumi; Ichikawa, Hideaki; Kitamura, Mitsuaki; Nishino, Yasuto; Taniguchi, Akira

    2015-06-01

    Lagoon Notoro-ko, located on the northeastern coast of Hokkaido, Japan, and connected to the Okhotsk Sea by a human-made channel, is strongly influenced by local hydrography, as water masses in the lagoon are seasonally influenced by the Soya Warm Current and the East Sakhalin Current. We here report on the succession of copepod communities during the warm season in relation to water mass exchange. Copepods were categorized into four seasonal communities (spring/early-summer, mid-summer, late-summer/fall, and early-winter) via a cluster analysis based on Bray-Curtis similarities. Spring/early-summer and early-winter communities were characterized by the temperate-boreal calanoid Pseudocalanus newmani, comprising 34.9%-77.6% of the total abundance of copepods during times of low temperature/salinity, as influenced by the prevailing East Sakhalin Current. Late-summer/fall communities were characterized by the neritic warm-water calanoid Paracalanus parvus s.l., comprising 63.9%-96.3% of the total abundance, as influenced by the Soya Warm Current. Mid-summer communities comprised approximately equal abundances of P. parvus, Eurytemora herdmani, Scolecithricella minor, and Centropages abdominalis (12.8%-28.2%); this community is transitional between those of the spring/early-summer and late-summer/fall. Copepod community succession in Lagoon Notoro-ko can be largely explained by seasonal changes in water masses.

  3. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Juveniles, 2007-2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achord, Stephen; Sandford, Benjamin P.; Hockersmith, Eric E.

    2009-07-09

    This report provides results from an ongoing project to monitor the migration behavior and survival of wild juvenile spring/summer Chinook salmon in the Snake River Basin. Data reported is from detections of PIT tagged fish during late summer 2007 through mid-2008. Fish were tagged in summer 2007 by the National Marine Fisheries Service (NMFS) in Idaho and by the Oregon Department of Fish and Wildlife (ODFW) in Oregon. Our analyses include migration behavior and estimated survival of fish at instream PIT-tag monitors and arrival timing and estimated survival to Lower Granite Dam. Principal results from tagging and interrogation during 2007-2008more » are: (1) In July and August 2007, we PIT tagged and released 7,390 wild Chinook salmon parr in 12 Idaho streams or sample areas. (2) Overall observed mortality from collection, handling, tagging, and after a 24-hour holding period was 1.4%. (3) Of the 2,524 Chinook salmon parr PIT tagged and released in Valley Creek in summer 2007, 218 (8.6%) were detected at two instream PIT-tag monitoring systems in lower Valley Creek from late summer 2007 to the following spring 2008. Of these, 71.6% were detected in late summer/fall, 11.9% in winter, and 16.5% in spring. Estimated parr-to-smolt survival to Lower Granite Dam was 15.5% for the late summer/fall group, 48.0% for the winter group, and 58.5% for the spring group. Based on detections at downstream dams, the overall efficiency of VC1 (upper) or VC2 (lower) Valley Creek monitors for detecting these fish was 21.1%. Using this VC1 or VC2 efficiency, an estimated 40.8% of all summer-tagged parr survived to move out of Valley Creek, and their estimated survival from that point to Lower Granite Dam was 26.5%. Overall estimated parr-to-smolt survival for all summer-tagged parr from this stream at the dam was 12.1%. Development and improvement of instream PIT-tag monitoring systems continued throughout 2007 and 2008. (4) Testing of PIT-tag antennas in lower Big Creek during 2007

  4. Combined impact of climate change, cultivar shift, and sowing date on spring wheat phenology in Northern China

    NASA Astrophysics Data System (ADS)

    Xiao, Dengpan; Tao, Fulu; Shen, Yanjun; Qi, Yongqing

    2016-08-01

    Distinct climate changes since the end of the 1980s have led to clear responses in crop phenology in many parts of the world. This study investigated the trends in the dates of spring wheat phenology in relation to mean temperature for different growth stages. It also analyzed the impacts of climate change, cultivar shift, and sowing date adjustments on phenological events/phases of spring wheat in northern China (NC). The results showed that significant changes have occurred in spring wheat phenology in NC due to climate warming in the past 30 years. Specifically, the dates of anthesis and maturity of spring wheat advanced on average by 1.8 and 1.7 day (10 yr)-1. Moreover, while the vegetative growth period (VGP) shortened at most stations, the reproductive growth period (RGP) prolonged slightly at half of the investigated stations. As a result, the whole growth period (WGP) of spring wheat shortened at most stations. The findings from the Agricultural Production Systems Simulator (APSIM)-Wheat model simulated results for six representative stations further suggested that temperature rise generally shortened the spring wheat growth period in NC. Although the warming trend shortened the lengths of VGP, RGP, and WGP, the shift of new cultivars with high accumulated temperature requirements, to some extent, mitigated and adapted to the ongoing climate change. Furthermore, shifts in sowing date exerted significant impacts on the phenology of spring wheat. Generally, an advanced sowing date was able to lower the rise in mean temperature during the different growth stages (i.e., VGP, RGP, and WGP) of spring wheat. As a result, the lengths of the growth stages should be prolonged. Both measures (cultivar shift and sowing date adjustments) could be vital adaptation strategies of spring wheat to a warming climate, with potentially beneficial effects in terms of productivity.

  5. Bonanza Creek Experimental Forest & Caribou-Poker Creeks Research Watershed.

    Treesearch

    Valerie Rapp

    2003-01-01

    Bonanza Creek Experimental Forest and Caribou-Poker Creeks Research Watershed are located in the boreal forest of interior Alaska. Research focuses on basic ecological processes, hydrology, disturbance regimes, and climate change in the boreal forest region. Interior Alaska lies between the Alaska Range to the south and the Brooks Range to the north and covers an area...

  6. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands

    NASA Astrophysics Data System (ADS)

    Piao, S.; Peng, S.; Liu, Z.; Ciais, P.; Wang, T.; Huang, M.; Ahlstrom, A.; Burkhart, J. F.; Chevallier, F.; Jeong, S. J.; Janssens, I. A.; Lin, X.; Mao, J.; Myneni, R.; Shi, X.; van der Velde, I. R.; Stohl, A.; Mohammat, A.; Yao, Y.; Peñuelas, J.; Zhu, Z.; Tans, P. P.

    2017-12-01

    Ongoing spring warming allows the growing season to begin earlier, enhancing carbon uptake in northern ecosystems. Here we use 34 years of atmospheric CO2 concentration measurements at Barrow, Alaska (BRW, 71o N) to show that the interannual relationship between spring temperature and carbon uptake has recently shifted. We use two indicators: the spring zero-crossing date of atmospheric CO2 (SZC) and the magnitude of CO2 draw down between May and June (SCC). The previously reported strong correlation between SZC, SCC and spring land temperature (ST) was found in the first 17 years of measurements, but disappeared in the last 17 years. As a result, the sensitivity of both SZC and SCC to warming decreased. Simulations with an atmospheric transport model coupled to a terrestrial ecosystem model suggest that the weakened interannual correlation of SZC and SCC with ST in the last 17 years is attributable to the declining temperature response of spring net primary productivity (NPP) rather than to changes in heterotrophic respiration or in atmospheric transport patterns. Reduced chilling during dormancy and emerging light limitation are possible mechanisms that may have contributed to the loss of NPP response to ST. Our results thus challenge the `warmer spring-bigger sink' mechanism.

  7. Phenology of lilac (Syringa vulgaris) and elderberry (Sambucus nigra) as the indicator of spring warming

    NASA Astrophysics Data System (ADS)

    Vincze, E.; Hunkár, M.; Dunkel, Z.

    2012-04-01

    Phenological observations in Hungary started in 1871. The observation system collapsed and revived time by time. The aim of the observations as well as the locations, the methods and observed plants have been changed many times, therefore data series for a given plant species derived from the same place are rare. If we want to study the responses of biosphere to climate variability we need long time data series from the same places, especially phenological data of native plants. Phenological observations organized by the Hungarian Meteorological Service between 1983- 1999 contain valuable data for lilac (Syringa vulgaris) and elderberry (Sambucus nigra). Those perennial native plants are good indicators of spring warming therefore it is worth to study their phenological development concerning to climate variability. Eight locations in Hungary were selected where the site of the observations remaind the same year by year. Observed phenological phases were: Sprouting of leaves (SL, BBCH:11); Begin of Flowers (BF, BBCH:61); Fall of leaves (FO, BBCH:95). Spatial and temporal trends and variability of phenophases will be presented. The effect of meteorological conditions is studied to build up phenological model controlled by the temperature. Growing degree days above the base temperature was involved together with the duration and severeness of the chilling period. The study is supported by the National Scientific Foundation (OTKA-81979).

  8. Fifteenmile Basin Habitat Enhancement Project: Annual Report FY 1988.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Roger C.; Marx, Steven D.

    1989-04-01

    The goal of the Fifteenmile Creek Habitat Enhancement Project is to improve wild winter steelhead in the Fifteenmile Creek Basin under the Columbia River Basin Fish and Wildlife Program. The project is funded by through the Bonneville Power Administration. Cooperators in the habitat enhancement project include the USDA Forest Service, Wasco County Soil and Water Conservation District and the Confederated Tribes of the Warms Springs. Installation of instream fish habitat structures was completed on four miles of Ramsey Creek and on one mile of Fifteenmile Creek. One hundred thirty-five structures were installed in treatment areas. Construction materials included logs andmore » rock. Riparian protection fencing was completed on Dry Creek and Ramsey Creek worksites. Five and one-half miles of new fence was added to existing fence on Ramsey Creek to afford riparian protection to four miles of stream. Six miles of stream on Dry Creek will be afforded riparian protection by constructing 4.5 miles of fence to complement existing fence. 2 refs., 5 figs.« less

  9. Changes in ground-water quality in the Canal Creek Aquifer between 1995 and 2000-2001, West Branch Canal Creek area, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Phelan, Daniel J.; Fleck, William B.; Lorah, Michelle M.; Olsen, Lisa D.

    2002-01-01

    Since 1917, Aberdeen Proving Ground, Maryland has been the primary chemical-warfare research and development center for the U.S. Army. Ground-water contamination has been documented in the Canal Creek aquifer because of past disposal of chemical and ordnance manufacturing waste. Comprehensive sampling for volatile organic compounds in ground water by the U.S. Geological Survey in the West Branch Canal Creek area was done in June?October 1995 and June?August 2000. The purpose of this report is (1) to compare volatile organic compound concentrations and determine changes in the ground-water contaminant plumes along two cross sections between 1995 and 2000, and (2) to incorporate data from new piezometers sampled in spring 2001 into the plume descriptions. Along the southern cross section, total concentrations of volatile organic compounds in 1995 were determined to be highest in the landfill area east of the wetland (5,200 micrograms per liter), and concentrations were next highest deep in the aquifer near the center of the wetland (3,300 micrograms per liter at 35 feet below land surface). When new piezometers were sampled in 2001, higher carbon tetrachloride and chloroform concentrations (2,000 and 2,900 micrograms per liter) were detected deep in the aquifer 38 feet below land surface, west of the 1995 sampling. A deep area in the aquifer close to the eastern edge of the wetland and a shallow area just east of the creek channel showed declines in total volatile organic compound concentrations of more than 25 percent, whereas between those two areas, con-centrations generally showed an increase of greater than 25 percent between 1995 and 2000. Along the northern cross section, total concentrations of volatile organic compounds in ground water in both 1995 and 2000 were determined to be highest (greater than 2,000 micrograms per liter) in piezometers located on the east side of the section, farthest from the creek channel, and concentrations were progressively lower

  10. San Andreas fault geometry at Desert Hot Springs, California, and its effects on earthquake hazards and groundwater

    USGS Publications Warehouse

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Gandhok, G.

    2009-01-01

    The Mission Creek and Banning faults are two of the principal strands of the San Andreas fault zone in the northern Coachella Valley of southern California. Structural characteristics of the faults affect both regional earthquake hazards and local groundwater resources. We use seismic, gravity, and geological data to characterize the San Andreas fault zone in the vicinity of Desert Hot Springs. Seismic images of the upper 500 m of the Mission Creek fault at Desert Hot Springs show multiple fault strands distributed over a 500 m wide zone, with concentrated faulting within a central 200 m wide area of the fault zone. High-velocity (up to 5000 m=sec) rocks on the northeast side of the fault are juxtaposed against a low-velocity (6.0) earthquakes in the area (in 1948 and 1986) occurred at or near the depths (~10 to 12 km) of the merged (San Andreas) fault. Large-magnitude earthquakes that nucleate at or below the merged fault will likely generate strong shaking from guided waves along both fault zones and from amplified seismic waves in the low-velocity basin between the two fault zones. The Mission Creek fault zone is a groundwater barrier with the top of the water table varying by 60 m in depth and the aquifer varying by about 50 m in thickness across a 200 m wide zone of concentrated faulting.

  11. Flood-inundation maps for Indian Creek and Tomahawk Creek, Johnson County, Kansas, 2014

    USGS Publications Warehouse

    Peters, Arin J.; Studley, Seth E.

    2016-01-25

    Digital flood-inundation maps for a 6.4-mile upper reach of Indian Creek from College Boulevard to the confluence with Tomahawk Creek, a 3.9-mile reach of Tomahawk Creek from 127th Street to the confluence with Indian Creek, and a 1.9-mile lower reach of Indian Creek from the confluence with Tomahawk Creek to just beyond the Kansas/Missouri border at State Line Road in Johnson County, Kansas, were created by the U.S. Geological Survey in cooperation with the city of Overland Park, Kansas. The flood-inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgages on Indian Creek at Overland Park, Kansas; Indian Creek at State Line Road, Leawood, Kansas; and Tomahawk Creek near Overland Park, Kansas. Near real time stages at these streamgages may be obtained on the Web from the U.S. Geological Survey National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites.Flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated for each reach by using the most current stage-discharge relations at the streamgages. The hydraulic models were then used to determine 15 water-surface profiles for Indian Creek at Overland Park, Kansas; 17 water-surface profiles for Indian Creek at State Line Road, Leawood, Kansas; and 14 water-surface profiles for Tomahawk Creek near Overland Park, Kansas, for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the next interval above the 0.2-percent annual exceedance probability flood level (500-year recurrence interval). The

  12. Investigations into the Early Life History of Naturally Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1997 to 31 August 1998.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keefe, MaryLouise; Tranquilli, J. Vincent

    1998-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 6,716 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1997 to June 1998; approximately 6% of the migrants left in summer, 29% in fall, 2% in winter, and 63% in spring. We estimated 8,763 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1997 to June 1998; approximately 12% of the migrants left in summer, 37% in fall, 21% in winter, and 29% in spring. We estimated 8,859 juvenilemore » chinook salmon left the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1997 to June 1998; approximately 99% of the migrants left in spring. We estimated 15,738 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1997 to April 1998; approximately 3% of the migrants left in summer, 61% in fall, 2% in winter, and 34% in spring. We estimated 22,754 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from September 1997 to April 1998; approximately 55% of the migrants left in fall, 5% in winter, and 40% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 4 April to 26 June 1998, with a median passage date of 1 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 3 April to 26 June 1998, with a median passage date of 8 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 26 May 1998, with a median passage date of 28 April. Juveniles tagged as they left the upper rearing areas of the Grande Ronde and Lostine rivers in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher

  13. Water Quality Assessment of the Comal Springs Riverine System, New Braunfels, Texas, 1993-94

    USGS Publications Warehouse

    Fahlquist, Lynne; Slattery, R.N.

    1997-01-01

    Comal Springs of Central Texas are the largest springs in the southwestern United States. The long-term average flow of the Comal River, which essentially is the flow from Comal Springs, is 284 cubic feet per second (ft3/s). The artesian springs emerge at the base of an escarpment formed by the Comal Springs fault. The Comal River (fig. 1) is approximately 2 miles (mi) long and is a tributary of the Guadalupe River. Most of the Comal River follows the path of an old mill race, here referred to as New Channel, then flows through a channel carved by a tributary stream (Dry Comal Creek), eventually rejoining its original watercourse. The original watercourse, here referred to as Old Channel, has been reduced to a small stream, the source of which is water diverted from Landa Lake and several springs in the channel. In addition to being an important economic resource of the region, the springs and associated river system are home to unique aquatic species such as the endangered fountain darter (Etheostoma fonticola). The Comal Springs riffle beetle (Heterelmis comalensis), which exists in the springflow channel upstream of Landa Lake, has been proposed for listing as endangered. The Comal Springs dryopid beetle (Stygoparmus comalensis) and the Peck’s cave amphipod (Stygobromus pecki) are two subterranean species associated with Comal Springs also proposed for endangered listing.

  14. Sample Return from Ancient Hydrothermal Springs

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dorothy Z.

    2008-01-01

    Hydrothermal spring deposits on Mars would make excellent candidates for sample return. Molecular phylogeny suggests that that life on Earth may have arisen in hydrothermal settings [1-3], and on Mars, such settings not only would have supplied energy-rich waters in which martian life may have evolved [4-7] but also would have provided warm, liquid water to martian life forms as the climate became colder and drier [8]. Since silica, sulfates, and clays associated with hydrothermal settings are known to preserve geochemical and morphological remains of ancient terrestrial life [9-11], such settings on Mars might similarly preserve evidence of martian life. Finally, because formation of hydrothermal springs includes surface and subsurface processes, martian spring deposits would offer the potential to assess astrobiological potential and hydrological history in a variety of settings, including surface mineralized terraces, associated stream deposits, and subsurface environments where organic remains may have been well protected from oxidation. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data [12-14]. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel, and based on these new data, we have interpreted several features in Vernal Crater, Arabia Terra as ancient hydrothermal springs [15, 16].

  15. Apogean-perigean signals encoded in tidal flats at the fluvio-estuarine transition of Glacier Creek, Turnagain Arm, Alaska; implications for ancient tidal rhythmites

    USGS Publications Warehouse

    Greb, S.F.; Archer, A.W.; Deboer, D.G.

    2011-01-01

    Turnagain Arm is a macrotidal fjord-style estuary. Glacier Creek is a small, glacially fed stream which enters the estuary tangentially near Girdwood, Alaska. Trenches and daily sedimentation measurements were made in a mudflat along the fluvio-estuarine transition of Glacier Creek during several summers since 2003. Each year, the flats appear to erode during the winter and then accrete vertically in the spring and summer. In each of the years studied, tidal laminae in vertically thickening and thinning laminae bundles were deposited by twice daily tides in neap-spring tidal cycles. In 2004, bundles of thickening and thinning laminae couplets were noted in trenches cut into the flats. Five laminae bundles alternated between thicker and thinner bundles, corresponding to the perigean (high spring) and apogean (low spring) tides. Well-preserved apogean-perigean cycles have rarely been documented in modern tidal flat sediments. At this location, vertical accretion of tidal rhythmites with well-developed neap-spring cyclicity is possible because of the near-complete removal of the flat from the previous year, which creates accommodation space for vertical accretion without significant reworking. Macrotidal conditions, no reworking by infaunal invertebrates, protection from the main tidal channel by a gravel bar and protection from storm waves and fluvial erosion by a recess in the sedge marsh that surrounds the flats all aid in preservation of rhythmites during aggradation. The position of the flats relative to tidal range allows for accumulation of complete spring cycles and incomplete neap cycles. In the summer of 2004, apogee and perigee were closely aligned with the new and full moons, resulting in successive strong perigee and apogee tides which probably aided in the accumulation of successive thick-thin spring cycles encoding the apogean and perigean tidal cycle. The apogean-perigean signal was not observed in subsequent years. ?? 2011 The Authors.

  16. Macroinvertebrate communities evaluated prior to and following a channel restoration project in Silver Creek, Blaine County, Idaho, 2001-16

    USGS Publications Warehouse

    MacCoy, Dorene E.; Short, Terry M.

    2017-11-22

    The U.S. Geological Survey, in cooperation with Blaine County and The Nature Conservancy, evaluated the status of macroinvertebrate communities prior to and following a channel restoration project in Silver Creek, Blaine County, Idaho. The objective of the evaluation was to determine whether 2014 remediation efforts to restore natural channel conditions in an impounded area of Silver Creek caused declines in local macroinvertebrate communities. Starting in 2001 and ending in 2016, macroinvertebrates were sampled every 3 years at two long-term trend sites and sampled seasonally (spring, summer, and autumn) in 2013, 2015, and 2016 at seven synoptic sites. Trend-site communities were collected from natural stream-bottom substrates to represent locally established macroinvertebrate assemblages. Synoptic site communities were sampled using artificial (multi-plate) substrates to represent recently colonized (4–6 weeks) assemblages. Statistical summaries of spatial and temporal patterns in macroinvertebrate taxonomic composition at both trend and synoptic sites were completed.The potential effect of the restoration project on resident macroinvertebrate populations was determined by comparing the following community assemblage metrics:Total taxonomic richness (taxa richness);Total macroinvertebrate abundance (total abundance);Ephemeroptera, Plecoptera, Trichoptera (EPT) richness;EPT abundance;Simpson’s diversity; andSimpson’s evenness for periods prior to and following restoration.A significant decrease in one or more metric values in the period following stream channel restoration was the basis for determining impairment to the macroinvertebrate communities in Silver Creek.Comparison of pre-restoration (2001–13) and post‑restoration (2016) macroinvertebrate community composition at trend sites determined that no significant decreases occurred in any metric parameter for communities sampled in 2016. Taxa and EPT richness of colonized assemblages at synoptic sites

  17. Microscale Biosignatures and Abiotic Mineral Authigenesis in Little Hot Creek, California

    PubMed Central

    Kraus, Emily A.; Beeler, Scott R.; Mors, R. Agustin; Floyd, James G.; Stamps, Blake W.; Nunn, Heather S.; Stevenson, Bradley S.; Johnson, Hope A.; Shapiro, Russell S.; Loyd, Sean J.; Spear, John R.; Corsetti, Frank A.

    2018-01-01

    Hot spring environments can create physical and chemical gradients favorable for unique microbial life. They can also include authigenic mineral precipitates that may preserve signs of biological activity on Earth and possibly other planets. The abiogenic or biogenic origins of such precipitates can be difficult to discern, therefore a better understanding of mineral formation processes is critical for the accurate interpretation of biosignatures from hot springs. Little Hot Creek (LHC) is a hot spring complex located in the Long Valley Caldera, California, that contains mineral precipitates composed of a carbonate base (largely submerged) topped by amorphous silica (largely emergent). The precipitates occur in close association with microbial mats and biofilms. Geological, geochemical, and microbiological data are consistent with mineral formation via degassing and evaporation rather than direct microbial involvement. However, the microfabric of the silica portion is stromatolitic in nature (i.e., wavy and finely laminated), suggesting that abiogenic mineralization has the potential to preserve textural biosignatures. Although geochemical and petrographic evidence suggests the calcite base was precipitated via abiogenic processes, endolithic microbial communities modified the structure of the calcite crystals, producing a textural biosignature. Our results reveal that even when mineral precipitation is largely abiogenic, the potential to preserve biosignatures in hot spring settings is high. The features found in the LHC structures may provide insight into the biogenicity of ancient Earth and extraterrestrial rocks.

  18. Sources of Increased Spring and Streamflow Caused by the 2014 South Napa Earthquake

    NASA Astrophysics Data System (ADS)

    Rytuba, J. J.; Holzer, T. L.

    2014-12-01

    Seasonally dry springs and creeks began flowing over a broad region in the hills around Napa following the M6.0 South Napa earthquake on August 24, 2014. Flows in hillside creek beds, which were dry before the earthquake, were reported from 19 km west, to 6 km east, and 18 km north of Napa and the epicenter, an area that shook at MMI≥VI. The exact timing of the increased flow is unknown because the earthquake occurred at 3:20 AM PDT. A gaging station on the Napa River, which is downstream from several tributaries that began flowing after the earthquake, showed a sudden increase of flow rate within 45 minutes following the earthquake. The sudden increase at the gaging station suggests flows initiated either contemporaneously with or very soon after the strong shaking. This timing is consistent with eyewitness accounts of other streams and springs at daylight, a few hours after the earthquake. One of the largest increases of streamflow was in Green Valley, where a streamflow rate of about 100 cubic hectometers per day was measured in Wild Horse Creek. Two types of waters are being discharged in the Wild Horse Creek drainage: 1) water with low iron concentration that has exchanged with rhyolitic flows and tuffs in the upper part of the drainage; and 2) high iron concentration water that has exchanged with basaltic andesite in the middle part of drainage (vertical interval of about 75 meters). The high iron waters are depositing FeOOH other iron phases. Mixing of the two water types results in water with pH 6.9 and conductivity of 0.197 mS. This water is used by the Vallejo Water District for domestic purposes after it is mixed with recent surface water runoff stored in Lake Frey reservoir in order to improve its quality. Other drainages that have increased flow since the earthquake have water chemistry consistent with exchange with rhyolitic flows and tuffs that are the dominant rock type in these drainages.

  19. Assessment of water quality, benthic invertebrates, and periphyton in the Threemile Creek basin, Mobile, Alabama, 1999-2003

    USGS Publications Warehouse

    McPherson, Ann K.; Gill, Amy C.; Moreland, Richard S.

    2005-01-01

    ; the water chemistry at the second tributary site, Toulmins Spring Branch, was characterized by a strong calcium component without a dominant anionic species. The ratios of sodium to chloride at the tributary at Center Street were higher than typical values for seawater, indicating that sources other than seawater (such as leaking or overflowing sewer systems or industrial discharge) likely are contributors to the increased levels of sodium and chloride. Concentrations of fluoride and boron also were elevated at this site, indicating possible anthropogenic sources. Dissolved-oxygen concentrations were not always within levels established by the Alabama Department of Environmental Management; continuous monitors recorded dissolved-oxygen concentrations that were repeatedly less than the minimum criterion (3.0 milligrams per liter) at the most downstream site on Threemile Creek. Water temperature exceeded the recommended criterion (32.2 degrees Celsius) at five of six sites in the Threemile Creek basin. The pH values were within established criteria (6.0 ? 8.5) at sites on Threemile Creek; however, pH values ranged from 7.2 to 10.0 at the tributary at Center Street and from 6.6 to 9.9 at Toulmins Spring Branch. Nutrient concentrations in the Threemile Creek basin reflect the influences of both land use and the complex hydrologic systems in the lower part of the basin. Nitrite-plus-nitrate concentrations exceeded U.S. Environmental Protection Agency ecoregion nutrient criteria in 88 percent of the samples. In 45 percent of the samples, total phosphorus concentrations exceeded the U.S. Environmental Protection Agency goal of 0.1 milligram per liter for preventing nuisance aquatic growth. Ratios of nitrogen to phosphorus indicate that both nutrients have limiting effects. Median concentrations of enterococci and fecal coliform bacteria were highest at the two tributary sites and lowest at the most upstream site on Threemile Creek. In general, concentrations o

  20. Concentrations, loads, and yields of particle-associated contaminants in urban creeks, Austin, Texas, 1999-2004

    USGS Publications Warehouse

    Mahler, B.J.; Van Metre, P.C.; Wilson, J.T.; Guilfoyle, A.L.; Sunvison, M.W.

    2006-01-01

    Concentrations, loads, and yields of particle-associated (hydrophobic) contaminants (PACs) in urban runoff in creeks in Austin, Texas, were characterized using an innovative approach: large-volume suspended-sediment sampling. This approach isolates suspended sediment from the water column in quantities sufficient for direct chemical analysis of PACs. During 1999-2004, samples were collected after selected rain events from each of five stream sites and Barton Springs for a study by the U.S. Geological Survey, in cooperation with the City of Austin. Sediment isolated from composited samples was analyzed for major elements, metals, organochlorine compounds, and polycyclic aromatic hydrocarbons (PAHs). In addition, at the Shoal Creek and Boggy Creek sites, individual samples for some events were analyzed to investigate within-event variation in sediment chemistry. Organochlorine compounds detected in suspended sediment included chlordane, dieldrin, DDD, DDE, DDT, and polychlorinated biphenyls (PCBs). Concentrations of PACs varied widely both within and between sites, with higher concentrations at the more urban sites and multiple nondetections at the least-urban sites. Within-site variation for metals and PAHs was smaller than between-site variation, and concentrations and yields of these and the organochlorine compounds correlated positively to the percentage of urban land use in the watershed. Loads of most PACs tested correlated significantly with suspended-sediment loads. Concentrations of most PACs correlated strongly with three measures of urban land use. Variation in suspended-sediment chemistry during runoff events was investigated at the Shoal and Boggy Creek sites. Five of the eight metals analyzed, dieldrin, chlordane, PCBs, and PAHs were detected at the highest concentrations in the first sample collected at the Shoal Creek site, a first-flush effect, but not at the Boggy Creek site. Temporal patterns in concentrations of DDT and its breakdown products

  1. Performance and application of a fluidized bed limestone reactor designed for control of alkalinity, hardness and pH at the Warm Springs Regional Fisheries Center

    USGS Publications Warehouse

    Watten, Barnaby J.; Mudrak, Vincent A.; Echevarria, Carlos; Sibrell, Philip; Summerfelt, Steven T.; Boyd, Claude E.

    2017-01-01

    Springs serving the Warm Springs Regional Fisheries Center, Warm Springs, Georgia, have pH, alkalinity, and hardness levels thatlie under the range required for successful fish propagation while free CO2 is well above allowable targets. We evaluate a pretreatment process that exploits limestone’s (CaCO3) ability to react away hydrogen ions (H+) and carbon dioxide (CO2) while increasing alkalinity (HCO3−) and calcium (Ca2+) concentrations, i.e. CaCO3 + H+ ↔ HCO3− + Ca2+ CaCO3 + CO2 + H2O ↔ Ca2+ + 2HCO3− Limestone sand was tested in both pilot and full scale fluidized bed reactors (CycloBio®). We first established the bed expansion characteristics of three commercial limestone products then evaluated the effect of hydraulic flux and bed height on dissolution rate of a single selected product (Type A16 × 120). Pilot scale testing at 18C showed limestone dissolution rates were relatively insensitive to flux over the range 1.51–3.03 m3/min/m2 but were sensitive (P < 0.001; R2 = 0.881) to changes in bed height (BH, cm) over the range 83–165 cm following the relation: (Alkalinity, mg/L) = 123.51 − (3788.76 (BH)). Differences between filtered and non-filtered alkalinity were small(P > 0.05) demonstrating that limestone was present in the reactor effluent primarily in the form of dissolved Ca(HCO3)2. Effluent alkalinity exceeded our target level of 50 mg/L under most operating conditions evaluated with typical pilot scale values falling within the range of 90–100 mg/L despite influent concentrations of about 4 mg/L. Concurrently, CO2 fell from an average of 50.6 mg/L to 8.3 mg/L (90%), providing for an increase in pH from 5.27 to a mean of 7.71. The ability of the test reactor to provide changes in water chemistry variables that exceeded required changes allowed for a dilution ratio of 0.6. Here, alkalinity still exceeded 50 mg/L, the CO2 concentration remained well below our limit of 20 mg/L (15.4 mg/L) and the pH was near neutral (7.17). Applying the

  2. The long term response of stream flow to climatic warming in headwater streams of interior Alaska

    Treesearch

    Jeremy B. Jones; Amanda J. Rinehart

    2010-01-01

    Warming in the boreal forest of interior Alaska will have fundamental impacts on stream ecosystems through changes in stream hydrology resulting from upslope loss of permafrost, alteration of availability of soil moisture, and the distribution of vegetation. We examined stream flow in three headwater streams of the Caribou-Poker Creeks Research Watershed (CPCRW) in...

  3. 78 FR 62616 - Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 3730-005] Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer of Exemption 1. By letter filed September 23, 2013, Salmon Creek Hydroelectric Company informed the Commission that they have...

  4. The Tropical Western Hemisphere Warm Pool

    NASA Astrophysics Data System (ADS)

    Wang, C.; Enfield, D. B.

    2002-12-01

    The paper describes and examines variability of the tropical Western Hemisphere warm pool (WHWP) of water warmer than 28.5oC. The WHWP is the second-largest tropical warm pool on Earth. Unlike the Eastern Hemisphere warm pool in the western Pacific, which straddles the equator, the WHWP is entirely north of the equator. At various stages of development the WHWP extends over parts of the eastern North Pacific, the Gulf of Mexico, the Caribbean, and the western tropical North Atlantic. It has a large seasonal cycle and its interannual fluctuations of area and intensity are significant. Surface heat fluxes warm the WHWP through the boreal spring to an annual maximum of SST and WHWP area in the late summer/early fall, associated with eastern North Pacific and Atlantic hurricane activities and rainfall from northern South America to the southern tier of the United States. Observations suggest that a positive ocean-atmosphere feedback operating through longwave radiation and associated cloudiness seems to operate in the WHWP. During winter preceding large warm pool, there is an alteration of the Walker and Hadley circulation cells that serves as a "tropospheric bridge" for transferring Pacific ENSO effects to the Atlantic sector and inducing initial warming of warm pool. Associated with the warm SST anomalies is a decrease in sea level pressure anomalies and an anomalous increase in atmospheric convection and cloudiness. The increase in convective activity and cloudiness results in less net longwave radiation loss from the sea surface, which then reinforces SST anomalies.

  5. Occurrence and Distribution of Organic Wastewater Compounds in Rock Creek Park, Washington, D.C., 2007-08

    USGS Publications Warehouse

    Phelan, Daniel J.; Miller, Cherie V.

    2010-01-01

    The U.S. Geological Survey, and the National Park Service Police Aviation Group, conducted a high-resolution, low-altitude aerial thermal infrared survey of the Washington, D.C. section of Rock Creek Basin within the Park boundaries to identify specific locations where warm water was discharging from seeps or pipes to the creek. Twenty-three stream sites in Rock Creek Park were selected based on the thermal infrared images. Sites were sampled during the summers of 2007 and 2008 for the analysis of organic wastewater compounds to verify potential sources of sewage and other anthropogenic wastewater. Two sets of stormwater samples were collected, on June 27-28 and September 6, 2008, at the Rock Creek at Joyce Road water-quality station using an automated sampler that began sampling when a specified stage threshold value was exceeded. Passive-sampler devices that accumulate organic chemicals over the duration of deployment were placed in July 2008 at the five locations that had the greatest number of detections of organic wastewater compounds from the June 2007 base-flow sampling. During the 2007 base-flow synoptic sampling, there were ubiquitous low-level detections of dissolved organic wastewater indicator compounds such as DEET, caffeine, HHCB, and organophosphate flame retardants at more than half of the 23 sites sampled in Rock Creek Park. Concentrations of DEET and caffeine in the tributaries to Rock Creek were variable, but in the main stem of Rock Creek, the concentrations were constant throughout the length of the creek, which likely reflects a distributed source. Organophosphate flame retardants in the main stem of Rock Creek were detected at estimated concentrations of 0.2 micrograms per liter or less, and generally did not increase with distance downstream. Overall, concentrations of most wastewater indicators in whole-water samples in the Park were similar to the concentrations found at the upstream sampling station at the Maryland/District of Columbia

  6. Recent (2008-10) concentrations and isotopic compositions of nitrate and concentrations of wastewater compounds in the Barton Springs zone, south-central Texas, and their potential relation to urban development in the contributing zone

    USGS Publications Warehouse

    Mahler, Barbara J.; Musgrove, MaryLynn; Herrington, Chris; Sample, Thomas L.

    2011-01-01

    During 2008–10, the U.S. Geological Survey, in cooperation with the City of Austin, the City of Dripping Springs, the Barton Springs/Edwards Aquifer Conservation District, the Lower Colorado River Authority, Hays County, and Travis County, collected and analyzed water samples from five streams (Barton, Williamson, Slaughter, Bear, and Onion Creeks), two groundwater wells (Marbridge well [YD–58–50–704] and Buda well [LR–58–58–403]), and the main orifice of Barton Springs in Austin, Texas, with the objective of characterizing concentrations and isotopic compositions of nitrate and concentrations of wastewater compounds in the Barton Springs zone. The Barton Springs zone is in south-central Texas, an area undergoing rapid growth in population and in land area affected by development, with associated increases in wastewater generation. Over a period of 17 months, during which the hydrologic conditions transitioned from dry to wet, samples were collected routinely from the streams, wells, and spring and, in response to storms, from the streams and spring; some or all samples were analyzed for nitrate, nitrogen and oxygen isotopes of nitrate, and waste­water compounds. The median nitrate concentrations in routine samples from all sites were higher in samples collected during the wet period than in samples collected during the dry period, with the greatest difference for stream samples (0.05 milligram per liter during the dry period to 0.96 milligram per liter for the wet period). Nitrate concentrations in recent (2008–10) samples were elevated relative to concentrations in historical (1990–2008) samples from streams and from Barton Springs under medium- and high-flow conditions. Recent nitrate concentrations were higher than historical concentrations at the Marbridge well but the reverse was true at the Buda well. The elevated concentrations likely are related to the cessation of dry conditions coupled with increased nitrogen loading in the

  7. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming.

    PubMed

    Marchin, Renée M; Salk, Carl F; Hoffmann, William A; Dunn, Robert R

    2015-08-01

    Anthropogenic climate change has altered temperate forest phenology, but how these trends will play out in the future is controversial. We measured the effect of experimental warming of 0.6-5.0 °C on the phenology of a diverse suite of 11 plant species in the deciduous forest understory (Duke Forest, North Carolina, USA) in a relatively warm year (2011) and a colder year (2013). Our primary goal was to dissect how temperature affects timing of spring budburst, flowering, and autumn leaf coloring for functional groups with different growth habits, phenological niches, and xylem anatomy. Warming advanced budburst of six deciduous woody species by 5-15 days and delayed leaf coloring by 18-21 days, resulting in an extension of the growing season by as much as 20-29 days. Spring temperature accumulation was strongly correlated with budburst date, but temperature alone cannot explain the diverse budburst responses observed among plant functional types. Ring-porous trees showed a consistent temperature response pattern across years, suggesting these species are sensitive to photoperiod. Conversely, diffuse-porous species responded differently between years, suggesting winter chilling may be more important in regulating budburst. Budburst of the ring-porous Quercus alba responded nonlinearly to warming, suggesting evolutionary constraints may limit changes in phenology, and therefore productivity, in the future. Warming caused a divergence in flowering times among species in the forest community, resulting in a longer flowering season by 10-16 days. Temperature was a good predictor of flowering for only four of the seven species studied here. Observations of interannual temperature variability overpredicted flowering responses in spring-blooming species, relative to our warming experiment, and did not consistently predict even the direction of flowering shifts. Experiments that push temperatures beyond historic variation are indispensable for improving predictions of

  8. Marsh Pool and Tidal Creek Morphodynamics: Dynamic Equilibrium of New England Saltmarshes?

    NASA Astrophysics Data System (ADS)

    Wilson, C.; FitzGerald, D. M.; Hughes, Z. J.

    2012-12-01

    Under natural conditions, high saltmarsh platforms in New England exhibit poor drainage, creating waterlogged pannes (where short-form Spartina alterniflora dominates) and stagnant pools that experience tidal exchange only during spring tides and storm-induced flooding events. It is well accepted that a legacy of ditching practices (either for agriculture or mosquito control purposes) provide "overdrainage" of saltmarshes (after Redfield, 1972) and a shift in biogeochemical conditions: lowering of groundwater tables, aeration of soil, and decrease in preserved belowground biomass. Analysis of historical imagery in the Plum Island Estuary of Massachusetts reveals closure and decrease in length of anthropogenic ditches in recent decades is closely linked to marsh pool evolution. Field analyses including stratigraphic transects and elevation surveys suggest these marshes are reverting to natural drainage conditions. Further, an important dynamic interaction exists between saltmarsh pools and natural tidal creeks: creeks incise into pool areas, causing drainage of the pools, and formation of an unvegetated mudflat which can be rapidly recolonized by halophytic Spartina alterniflora vegetation. It was determined that pool and creek dynamics are cyclic in nature. The marsh platform is in dynamic equilibrium with respect to elevation and sea-level whereby marsh elevation may be lost (due to degradation of organic matter and formation of a pool) however may be regained (by creek incision into pools, restoration of tidal exchange, and rapid vertical accretion with Spartina alterniflora recolonization. Since vertical accretion in saltmarshes is a function of both organic and inorganic contributions to the marsh subsurface, it is hypothesized that cannibalization of existing muds is supplying inorganic material in this sediment starved system.

  9. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piao, Shilong; Liu, Zhuo; Wang, Tao

    2017-04-24

    Ongoing spring warming allows the growing season to begin earlier, enhancing carbon uptake in northern ecosystems. We use 34 years of atmospheric CO 2 concentration measurements at Barrow, Alaska (BRW, 71° N) to show that the interannual relationship between spring temperature and carbon uptake has recently shifted. Here, we use two indicators: the spring zero-crossing date of atmospheric CO 2 (SZC) and the magnitude of CO 2 drawdown between May and June (SCC). The previously reported strong correlation between SZC, SCC and spring land temperature (ST) was found in the first 17 years of measurements, but disappeared in the lastmore » 17 years. As a result, the sensitivity of both SZC and SCC to warming decreased. Simulations with an atmospheric transport model coupled to a terrestrial ecosystem model suggest that the weakened interannual correlation of SZC and SCC with ST in the last 17 years is attributable to the declining temperature response of spring net primary productivity (NPP) rather than to changes in heterotrophic respiration or in atmospheric transport patterns. Reduced chilling during dormancy and emerging light limitation are possible mechanisms that may have contributed to the loss of NPP response to ST. These results thus challenge the ‘warmer spring–bigger sink’ mechanism.« less

  10. Potential for an Arctic-breeding migratory bird to adjust spring migration phenology to Arctic amplification.

    PubMed

    Lameris, Thomas K; Scholten, Ilse; Bauer, Silke; Cobben, Marleen M P; Ens, Bruno J; Nolet, Bart A

    2017-10-01

    Arctic amplification, the accelerated climate warming in the polar regions, is causing a more rapid advancement of the onset of spring in the Arctic than in temperate regions. Consequently, the arrival of many migratory birds in the Arctic is thought to become increasingly mismatched with the onset of local spring, consequently reducing individual fitness and potentially even population levels. We used a dynamic state variable model to study whether Arctic long-distance migrants can advance their migratory schedules under climate warming scenarios which include Arctic amplification, and whether such an advancement is constrained by fuel accumulation or the ability to anticipate climatic changes. Our model predicts that barnacle geese Branta leucopsis suffer from considerably reduced reproductive success with increasing Arctic amplification through mistimed arrival, when they cannot anticipate a more rapid progress of Arctic spring from their wintering grounds. When geese are able to anticipate a more rapid progress of Arctic spring, they are predicted to advance their spring arrival under Arctic amplification up to 44 days without any reproductive costs in terms of optimal condition or timing of breeding. Negative effects of mistimed arrival on reproduction are predicted to be somewhat mitigated by increasing summer length under warming in the Arctic, as late arriving geese can still breed successfully. We conclude that adaptation to Arctic amplification may rather be constrained by the (un)predictability of changes in the Arctic spring than by the time available for fuel accumulation. Social migrants like geese tend to have a high behavioural plasticity regarding stopover site choice and migration schedule, giving them the potential to adapt to future climate changes on their flyway. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  11. The origin of life in geothermal hot springs: Darwin's warm little pond revisited

    NASA Astrophysics Data System (ADS)

    Deamer, D.

    2016-12-01

    The origin of life in geothermal hot springs: Darwin's warm little pond revisited David Deamer and Bruce Damer, Department of Biomolecular Engineering, University of California, Santa Cruz CA 95064 We are exploring ways in which mononucleotides can undergo polymerization and encapsulation in the presence of an organizing matrix (1, 2, 3). When mixtures of amphiphilic lipids and mononucleotides are exposed to cycles of dehydration and rehydration, the lipids concentrate and organize the monomers within multilamellar liquid-crystalline matrices that self-assemble in the dry state. The chemical potential driving the polymerization reaction is supplied by the anhydrous conditions in which water becomes a leaving group, with heat providing activation energy. Upon rehydration, the polymeric products are encapsulated in trillions of microscopic compartments. Each compartment is unique in its composition and contents, and can be considered to be an experiment in a natural version of combinatorial chemistry that would be ubiquitous in the prebiotic environment. There are specific thermodynamic and kinetic considerations required for this process to work which are related to cycles of evaporation and rehydration, ionic composition, salt concentration, pH and temperature. These conditions are present in hydrothermal fields associated with volcanic activity on today's Earth and can be compared with the range of possible conditions on Enceladus to estimate the probability that life can emerge on an icy world with a subsurface salty liquid ocean. 1. De Guzman V, Shenasa H, Vercoutere W, Deamer D (2014) Generation of oligonucleotides under hydrothermal conditions by non-enzymatic polymerization. J Mol Evol 78:251-262 2. Deamer D. 2012. Liquid crystalline nanostructures: organizing matrices for non-enzymatic nucleic acid polymerization. Chem Soc Rev. 41:5375-9. 3. Damer B, Deamer D. 2015. Coupled phases and combinatorial selection in fluctuating hydrothermal pools: a scenario to

  12. Geology of the Holocene surficial uranium deposit of the north fork of Flodelle Creek, northeastern Washington ( USA).

    USGS Publications Warehouse

    Johnson, S.Y.; Otton, J.K.; Macke, D.L.

    1987-01-01

    The N fork of Flodelle Creek drainage basin in NE Washington contains the first surficial U deposit to be mined in the US. The U was leached from granitic bedrock and fixed in organic-rich pond sediments. The distribution of these pond sediments and, therefore, the U has been strongly influenced by relict glacial topography, slope proceses, and beaver activity. Ponds in the drainage basin have been sinks for fine-grained, organic-rich sediments. These organic-rich sediments provide a suitable geochemical environment for precipitation and adsorption of uranium leached from granitic bedrock into ground, spring, and surface waters. Processes of pond formation have thus been important in the development of surficial U deposits in the N fork of Flodelle Creek drainage basin and may have similar significance in other areas.-from Authors

  13. Shell Creek Summers

    ERIC Educational Resources Information Center

    Seier, Mark; Goedeken, Suzy

    2005-01-01

    In 2002 Shell Creek Watershed Improvement Group turned to the Newman Grove Public Schools' science department to help educate the public on water quality in the watershed and to establish a monitoring system that would be used to improve surface and groundwater quality in the creek's watershed. Nebraska Department of Environmental Quality provided…

  14. 76 FR 35379 - Archers Creek, Ribbon Creek, and Broad River; U.S. Marine Corps Recruit Depot, Parris Island, SC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ..., Ribbon Creek, and Broad River; U.S. Marine Corps Recruit Depot, Parris Island, SC; Danger Zone AGENCY... use these portions of Archers Creek, Ribbon Creek, and the Broad River when the rifle and pistol.... 334.480 to read as follows: Sec. 334.480 Archers Creek, Ribbon Creek, and Broad River; U.S. Marine...

  15. The plumbing system of the Pagosa thermal Springs, Colorado: Application of geologically constrained geophysical inversion and data fusion

    NASA Astrophysics Data System (ADS)

    Revil, A.; Cuttler, S.; Karaoulis, M.; Zhou, J.; Raynolds, B.; Batzle, M.

    2015-06-01

    Fault and fracture networks usually provide the plumbing for movement of hydrothermal fluids in geothermal fields. The Big Springs of Pagosa Springs in Colorado is known as the deepest geothermal hot springs in the world. However, little is known about the plumbing system of this hot spring, especially regarding the position of the reservoir (if any) or the position of the major tectonic faults controlling the flow of the thermal water in this area. The Mancos shale, a Cretaceous shale, dominates many of the surface expressions around the springs and impede an easy recognition of the fault network. We use three geophysical methods (DC resistivity, self-potential, and seismic) to image the faults in this area, most of which are not recognized in the geologic fault map of the region. Results from these surveys indicate that the hot Springs (the Big Spring and a warm spring located 1.8 km further south) are located at the intersection of the Victoire Fault, a major normal crustal fault, and two north-northeast trending faults (Fault A and B). Self-potential and DC resistivity tomographies can be combined and a set of joint attributes defined to determine the localization of the flow of hot water associated with the Eight Miles Mesa Fault, a second major tectonic feature responsible for the occurrence of warm springs further West and South from the Big Springs of Pagosa Springs.

  16. Water quality and aquatic toxicity data of 2002 spring thaw conditions in the upper Animas River watershed, Silverton, Colorado

    USGS Publications Warehouse

    Fey, D.L.; Wirt, L.; Besser, J.M.; Wright, W.G.

    2002-01-01

    This report presents hydrologic, water-quality, and biologic toxicity data collected during the annual spring thaw of 2002 in the upper Animas River watershed near Silverton, Colorado. The spring-thaw runoff is a concern because elevated concentrations of iron oxyhydroxides can contain sorbed trace metals that are potentially toxic to aquatic life. Water chemistry of streams draining the San Juan Mountains is affected by natural acid drainage and weathering of hydrothermal altered volcanic rocks and by more than a century of mining activities. The timing of the spring-thaw sampling effort was determined by reviewing historical climate and stream-flow hydrographs and current weather conditions. Twenty-one water-quality samples were collected between 11:00 AM March 27, 2002 and 6:00 PM March 30, 2002 to characterize water chemistry at the A-72 gage on the upper Animas River below Silverton. Analyses of unfiltered water at the A-72 gage showed a relation between turbidity and total-recoverable iron concentrations, and showed diurnal patterns. Copper and lead concentrations were related to iron concentrations, indicating that these elements are probably sorbed to colloidal iron material. Calcium, strontium, and sulfate concentrations showed overall decreasing trends due to dilution, but the loads of those constituents increased over the sampling period. Nine water-quality samples were collected near the confluence of Mineral Creek with the Animas River, the confluence of Cement Creek with the Animas River, and on the upper Animas River above the confluence with Cement Creek (three samples at each site). A total of six bulk water-toxicity samples were collected before, during, and after the spring thaw from the Animas River at the A-72 gage site. Toxicity tests conducted with the bulk water samples on amphipods did not show strong differences in toxicity among the three sampling periods; however, toxicity of river water to fathead minnows showed a decreasing trend

  17. Effect of warming temperatures on US wheat yields.

    PubMed

    Tack, Jesse; Barkley, Andrew; Nalley, Lawton Lanier

    2015-06-02

    Climate change is expected to increase future temperatures, potentially resulting in reduced crop production in many key production regions. Research quantifying the complex relationship between weather variables and wheat yields is rapidly growing, and recent advances have used a variety of model specifications that differ in how temperature data are included in the statistical yield equation. A unique data set that combines Kansas wheat variety field trial outcomes for 1985-2013 with location-specific weather data is used to analyze the effect of weather on wheat yield using regression analysis. Our results indicate that the effect of temperature exposure varies across the September-May growing season. The largest drivers of yield loss are freezing temperatures in the Fall and extreme heat events in the Spring. We also find that the overall effect of warming on yields is negative, even after accounting for the benefits of reduced exposure to freezing temperatures. Our analysis indicates that there exists a tradeoff between average (mean) yield and ability to resist extreme heat across varieties. More-recently released varieties are less able to resist heat than older lines. Our results also indicate that warming effects would be partially offset by increased rainfall in the Spring. Finally, we find that the method used to construct measures of temperature exposure matters for both the predictive performance of the regression model and the forecasted warming impacts on yields.

  18. Water flow statistics: SRP creeks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lower, M.W.

    1982-08-26

    For a number of environmental studies it is necessary to know the water flow rates and variations in the SRP streams. The objective of this memorandum is to pull together and present a number of statistical analyses for Upper Three Runs Creek, Four Mile Creek and Lower Three Runs Creek. The data basis covers 8 USGS stream gage stations for the years 1972 - 1981. The average flow rates over a ten-year period along Upper Three Runs Creek were determined to be 114 cfs at US Route 278, 193 cfs at Road C, and 265 cfs at Road A. Alongmore » Four Mile Creek the average flow rates over a ten-year period doubled from 9 cfs prior to F-Area discharges to 18 cfs prior to cooling water discharges from C-Area Reactor. Finally, average flow rates along Lower Three Runs Creek over a ten-year period tripled from 32 cfs at Par Pond to 96 cfs near Snelling, South Carolina. 1 figure, 9 tables.« less

  19. Water quality in Gaines Creek and Gaines Creek arm of Eufaula Lake, Oklahoma

    USGS Publications Warehouse

    Kurklin, J.K.

    1990-01-01

    Based on samples collected from May 1978 to May 1980 and analyzed for major anions, nitrogen, trace elements, phytoplankton, and bacteria, the water in Gaines Creek and the Gaines Creek arm of Eufaula Lake was similar with respect to suitability for municipal use. Water from Gaines Creek had a pH range of 5.7 to 7.6 and a maximum specific conductance of 97 microsiemens per centimeter at 25o Celsius, whereas water from the Gaines Creek arm of Eufaula Lake had a pH range of 6.0 to 9.2 and a maximum specific conductance of 260 microsiemens per centimeter at 25o Celsius. Dissolved oxygen, pH, temperature, and specific conductance values for the lake varied with depth. With the exceptions of cadmium, iron, lead, and manganese, trace-element determinations of samples were within recommended national primary and secondary drinking-water standards. When compared to the National Academy of Sciences water-quality criteria, phytoplankton and bacteria counts exceeded recommendations; however, water from either Gaines Creek or Eufaula Lake could be treated similarly and used as a municipal water supply.

  20. Hydrogeochemical and stream sediment special reconnaissance report for the Deep Creek Mountains, Nevada and Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qualheim, B.

    1979-04-01

    This report represents the results of the reconnaissance sampling of the Deep Creek Mountains of western Utah. The Deep Creek range is located in the northwest corner of the Delta NTMS 1:250,000 and the southwestern corner of the Tooele NTMS 1:250,000 sheets and covers an area of 1750 km/sup 2/. Samples collected in this study include dry and wet stream sediments and water from available streams, wells, and springs. The samples were analyzed for uranium, as well as 15 to 20 trace elements, using neutron activation techniques. In addition, field and laboratory measurements were made on the water samples. Analyticalmore » data and field measurements are presented in tabular hard copy and fiche format. Water-sample site locations, water-sample uranium concentrations, sediment-sample site locations, and sediment-sample uranium concentrations are shown on separate overlays.« less

  1. Quality of water and time-of-travel in Bakers Creek near Clinton, Mississippi. [Bakers Creek

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalkhoff, S.J.

    1982-01-01

    A short-term intensive quality-of-water study was conducted during a period of generally low streamflow in Bakers Creek and its tributary, Lindsey Creek, near Clinton, Mississippi. During the September 15-18, 1980 study, dissolved oxygen concentrations in Bakers Creek were less than 5 milligrams per liter. The specific conductance, 5-day biochemical oxygen demand, nutrient concentrations, and bacteria densities in Bakers Creek decreased downstream through the study reach. The mean specific conductance decreased from 670 to 306 microhms per centimeter. The 5-day biochemical oxygen demand decreased from 19 to 2.8 milligrams per liter. The mean total nitrogen and phosphorous concentrations decreased from 10more » and 7.1 to 1.0 and 0.87 milligram per litter, respectively. The maximum fecal bacteria decreased from 7200 to 400 colonies per 100 milliliter. The concentrations of mercury, iron, and manganese in a sample collected at the downstream site exceeded recommended limits. Diazinon and 2,4-D were also present in the water. A bottom material sample contained DDD (2.5 micrograms per kilogram), DDE (2.7 micrograms per kilogram), and DDT (.3 micrograms per kilogram). The tributary inflow from Lindsey Creek did not improve the water quality of Bakers Creek. The dissolved oxygen concentrations were generally less than 5.0 milligrams per liter at the sampling site on Lindsey Creek. The 5-day biochemical oxygen demand, the mean specific conductance, and fecal coliform densities were greater in the tributary than at the downstream site on Bakers Creek. The average rate of travel through a 1.8-mile reach of Bakers Creek was 0.06 foot per second or 0.04 miles per hour. 6 references, 9 figures, 2 tables.« less

  2. CMIP5 projected changes in spring and summer drought and wet conditions over North America

    NASA Astrophysics Data System (ADS)

    Swain, Sharmistha; Hayhoe, Katharine

    2015-05-01

    Climate change is expected to alter the mean and variability of future spring and summer drought and wet conditions during the twenty-first century across North America, as characterized by the Standardized Precipitation Index (SPI). Based on Coupled Model Intercomparison Project phase 5 simulations, statistically significant increases are projected in mean spring SPI over the northern part of the continent, and drier conditions across the southwest. Dry conditions in summer also increase, particularly throughout the central Great Plains. By end of century, greater changes are projected under a higher radiative forcing scenario (RCP 8.5) as compared to moderate (RCP 6.0) and lower (RCP 4.5). Analysis of projected changes standardized to a range of global warming thresholds from +1 to +4 °C reveals a consistent spatial pattern of wetter conditions in the northern and drier conditions in the southwestern part of the continent in spring that intensifies under increased warming, suggesting that the magnitude of projected changes in wetness and drought may scale with global temperature. For many regions, SPI interannual variability is also projected to increase (even for regions that are projected to become drier), indicating that climate may become more extreme under greater warming, with increased frequency of both extreme dry and wet seasons. Quantifying the direction and magnitude of projected future trends from global warming is key to informing strategies to mitigate human influence on climate and help natural and managed resources adapt.

  3. CTUIR Grande Ronde River Basin Watershed Restoration Program McCoy Creek/McIntyre Creek Road Crossing, 1996-1998 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, Allen B.

    1999-07-01

    This Annual Report provides a detailed overview of watershed restoration accomplishments achieved by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and project partners in the Upper Grande Ronde River Basin under contract with the Bonneville Power Administration (BPA) during the period July 1, 1997 through June 30, 1998. The Contract Agreement entitled McCoy Meadows Watershed Restoration Project (Project No.96-83-01) includes habitat restoration planning, design, and implementation in two project areas--the McCoy Meadows Ranch located in the Meadow, McCoy, and McIntyre Creek subbasins on private land and the Mainstem Grande Ronde River Habitat Enhancement Project located on private andmore » National Forest System lands near Bird Tract Springs along the Grande Ronde River. During the contract period, the CTUIR and partners (Mark and Lorna Tipperman, landowners), Oregon Department of Environmental Quality (ODEQ), U.S. Environmental Protection Agency (EPA), Oregon Department of Fish and Wildlife (ODFW), and Natural Resource Conservation Service (NRCS) initiated phase 1 construction of the McCoy Meadows Restoration Project. Phase 1 involved reintroduction of a segment of McCoy Creek from its existing channelized configuration into a historic meander channel. Project efforts included bioengineering and tree/shrub planting and protection, transporting salvaged cottonwood tree boles and limbs from offsite source to the project area for utilization by resident beaver populations for forage and dam construction materials, relocation of existing BPA/ODFW riparian corridor fencing to outer edges of meadow floodplain, establishment of pre-project photo points, and coordination of other monitoring and evaluation efforts being led by other project partners including groundwater monitoring wells, channel cross sections, water quality monitoring stations, juvenile population sampling index sites, redd surveys, and habitat surveys. Project activities also

  4. A case for ancient springs in Arabia Terra, Mars.

    PubMed

    Allen, Carlton C; Oehler, Dorothy Z

    2008-12-01

    Based on new image data from the High Resolution Imaging Science Experiment (HiRISE) on Mars Reconnaissance Orbiter (MRO), a case can be made that several structures in Vernal Crater, Arabia Terra are ancient springs. This interpretation is based on comprehensive geomorphologic analysis coupled with assessment of multiple hypotheses. The structures identified extend across several kilometers and are exceptional in that nothing with their detail and scale has been reported from Mars. The deposits are associated with an extensive fracture system that may have facilitated upward flow of warm fluids. Several additional spring-like features occur in Vernal Crater, and it is possible that these are part of a major province of spring activity. Since springs are environments where life could have evolved on Mars, where that life could have found refuge as the climate became colder and drier, and where signatures of that life may be preserved, Vernal Crater may be a site of major astrobiological importance.

  5. [Effects of sowing times on the spike differentiation of different wheat varieties under the climate of warm winter].

    PubMed

    Gao, Qinglu; Xue, Xiang; Wu, Yu; Ru, Zhengang

    2003-10-01

    Spike differentiation processes and freezing damage of three wheat varieties were studied by sowing in different stages. The results showed that under the condition of weather changing warm, the time of entering each stage of spike differentiation of wheat of strong spring variety was earlier than that of wheat of spring variety and semi-winter variety. Sowing times had more effects on durative time of the elongation stage, single-prism stage and two-prism stage of the spike differentiation. Under sowing early, the stronger the springness of wheat was, the quicker it developed, the higher spike differentiation phases it reached before winter, and the more serious freezing damage it suffered in wintering. According to this, the semi-winter varieties of wheat should be adopted first and arranged in pairs with spring varieties in wheat production, and the sowing times should not be too early as the weather becoming warm.

  6. Annual ground-water discharge by evapotranspiration from areas of spring-fed riparian vegetation along the eastern margin of Death Valley, 2000-02

    USGS Publications Warehouse

    Laczniak, Randell J.; Smith, J. LaRue; DeMeo, Guy A.

    2006-01-01

    -density vegetation. ET-unit acreage for two other discharge areas delineated in the Grapevine Springs area (Surprise Springs and Staininger Spring) totaled about 6 and 43 acres, respectively; and for the discharge areas delineated in the Furnace Creek area (Nevares Springs, Cow Creek-Salt Springs, Texas Spring, and Travertine Springs) totaled about 29, 13, 11, and 21 acres, respectively. In discharge areas other than Grapevine Springs, watering and spring diversions have altered the natural distribution of the vegetation. More...

  7. Age of ground water in basalt aquifers near Spring Creek National Fish Hatchery, Skamania County, Washington

    USGS Publications Warehouse

    Hinkle, Stephen R.

    1996-01-01

    A comparison of CFC data with both adjusted and unadjusted 14C data suggests that water discharging at the hatchery springs contains a mixture of modem and old water, where old water is defined as water recharged prior to 1944. The CFC data support a component of modem water, whereas the 14C data suggest a component of old water. Similar results were obtained from a comparison of CFC data with adjusted and unadjusted 14C data for water collected from Well 3. Well 3 is north of the hatchery springs, on a flow path that appears to be parallel to and similar in length to the flow path leading to the hatchery springs. Water from the Hatchery Well, however, may be devoid of modem water and appears to have an overall age on the order of thousands of years.

  8. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Juveniles, 2007-2008 Report of Research.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achord, Stephen; Sandford, Benjamin P.; Hockersmith, Eric E.

    2009-05-26

    This report provides results from an ongoing project to monitor the migration behavior and survival of wild juvenile spring/summer Chinook salmon in the Snake River Basin. Data reported is from detections of PIT tagged fish during late summer 2007 through mid-2008. Fish were tagged in summer 2007 by the National Marine Fisheries Service (NMFS) in Idaho and by the Oregon Department of Fish and Wildlife (ODFW) in Oregon. Our analyses include migration behavior and estimated survival of fish at instream PIT-tag monitors and arrival timing and estimated survival to Lower Granite Dam. Principal results from tagging and interrogation during 2007-2008more » are listed below: (1) In July and August 2007, we PIT tagged and released 7,390 wild Chinook salmon parr in 12 Idaho streams or sample areas. (2) Overall observed mortality from collection, handling, tagging, and after a 24-hour holding period was 1.4%. (3) Of the 2,524 Chinook salmon parr PIT tagged and released in Valley Creek in summer 2007, 218 (8.6%) were detected at two instream PIT-tag monitoring systems in lower Valley Creek from late summer 2007 to the following spring 2008. Of these, 71.6% were detected in late summer/fall, 11.9% in winter, and 16.5% in spring. Estimated parr-to-smolt survival to Lower Granite Dam was 15.5% for the late summer/fall group, 48.0% for the winter group, and 58.5% for the spring group. Based on detections at downstream dams, the overall efficiency of VC1 (upper) or VC2 (lower) Valley Creek monitors for detecting these fish was 21.1%. Using this VC1 or VC2 efficiency, an estimated 40.8% of all summer-tagged parr survived to move out of Valley Creek, and their estimated survival from that point to Lower Granite Dam was 26.5%. Overall estimated parr-to-smolt survival for all summer-tagged parr from this stream at the dam was 12.1%. Development and improvement of instream PIT-tag monitoring systems continued throughout 2007 and 2008. (4) Testing of PIT-tag antennas in lower Big

  9. Effects of extreme spring temperatures on phenology: a case study from Munich and Ingolstadt

    NASA Astrophysics Data System (ADS)

    Jochner, Susanne; Menzel, Annette

    2010-05-01

    Extreme events - e.g. warm spells or heavy precipitation events - are likely to increase in the future both in frequency and intensity. Therefore, research on extreme events gains new importance; also in terms of plant development which is mostly triggered by temperatures. An arising question is how plants respond to an extreme warm spell when following an extreme cold winter season. This situation could be studied in spring 2009 in the greater area of Munich and Ingolstadt by phenological observations of flowering and leaf unfolding of birch (Betula pendula L.) and flowering of horse chestnut (Aesculus hippocastanum L.). The long chilling period of winter 2008 and spring 2009 was followed by an immediate strong forcing of flowering and leaf unfolding, especially for birch. This extreme weather situation diminished the difference between urban and rural dates of onset. Another important fact that could be observed in the proceeding period of December 2008 to April 2009 was the reduced temperature difference among urban and rural sites (urban heat island effect). Long-term observations (1951-2008) of the phenological network of the German Meteorological Service (DWD) were used to identify years with reduced urban-rural differences between onset times in the greater area of Munich in the past. Statistical analyses were conducted in order to answer the question whether the sequence of extreme warm and cold events leads to a decreased difference in phenological onset times or if this behaviour can be attributed to extreme warm springs themselves or to the decreased urban heat island effect which is mostly affected by general atmospheric circulation patterns.

  10. Discharge, sediment, and water chemistry in Clear Creek, western Nevada, water years 2013–16

    USGS Publications Warehouse

    Huntington, Jena M.; Riddle, Daniel J.; Paul, Angela P.

    2018-05-01

    therefore lower total sediment load in Clear Creek was primarily due to significantly lower discharge and cannot be directly attributed to sediment mitigation work in the basin.Water chemistry in Clear Creek shows that the general water type of the creek under base-flow conditions in autumn is a dilute calcium bicarbonate. During winter and spring, the chemistry shifts toward a slightly more sodium and chloride character. Though the chemical characteristics show seasonal change, the water chemistries examined as part of this investigation remain within ecological criteria as adopted by the Nevada Division of Environmental Protection. There was no evidence of aqueous polynuclear aromatic hydrocarbons (PAHs) present in Clear Creek water during this study. Concentrations of PAHs, as determined in one bed-sediment sample and multiple semi-permeable membrane device extracts, were either less than quantifiable limits of analysis or were found at similar concentrations as blank samples.In July 2014, a 250–300-acre fire burned in the Clear Creek drainage basin. One day after the fire was extinguished, a thunderstorm washed sediment into the creek. A water chemistry sample collected as part of the post-fire storm event showed that the stormwater entering the creek had increased the concentrations of ammonium and organic nitrogen, phosphorus, manganese, and potassium; a similar finding of many other studies evaluating the effects of fires in small drainage basins. Subsequent chemical analyses of Clear Creek water in August 2014 (one month later) showed that these constituents had returned to pre-fire concentrations.

  11. Hydrology and Flood Profiles of Duck Creek and Jordan Creek Downstream from Egan Drive, Juneau, Alaska

    USGS Publications Warehouse

    Curran, Janet H.

    2007-01-01

    Hydrologic and hydraulic updates for Duck Creek and the lower part of Jordan Creek in Juneau, Alaska, included computation of new estimates of peak streamflow magnitudes and new water-surface profiles for the 10-, 50-, 100-, and 500-year floods. Computations for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence interval flood magnitudes for both streams used data from U.S. Geological Survey stream-gaging stations weighted with regional regression equations for southeast Alaska. The study area for the hydraulic model consisted of three channels: Duck Creek from Taku Boulevard near the stream's headwaters to Radcliffe Road near the end of the Juneau International Airport runway, an unnamed tributary to Duck Creek from Valley Boulevard to its confluence with Duck Creek, and Jordan Creek from a pedestrian bridge upstream from Egan Drive to Crest Street at Juneau International Airport. Field surveys throughout the study area provided channel geometry for 206 cross sections, and geometric and hydraulic characteristics for 29 culverts and 15 roadway, driveway, or pedestrian bridges. Hydraulic modeling consisted of application of the U.S. Army Corps of Engineers' Hydrologic Engineering Center River Analysis System (HEC-RAS) for steady-state flow at the selected recurrence intervals using an assumed high tide of 20 feet and roughness coefficients refined by calibration to measured water-surface elevations from a 2- to 5-year flood that occurred on November 21, 2005. Model simulation results identify inter-basin flow from Jordan Creek to the southeast at Egan Drive and from Duck Creek to Jordan Creek downstream from Egan Drive at selected recurrence intervals.

  12. Influences of spring-to-summer sea surface temperatures over different Indian Ocean domains on the Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Li, Zhenning; Yang, Song

    2017-11-01

    The influences of spring-to-summer sea surface temperature (SST) anomalies in different domains of the Indian Ocean (IO) on the Asian summer monsoon are investigated by conducting a series of numerical experiments using the NCAR CAM4 model. It is found that, to a certain extent, the springtime IO SST anomalies can persist to the summer season. The spring-to-summer IO SST anomalies associated with the IO basin warming mode are strongly linked to the summer climate over Asia, especially the South Asian monsoon (SAM) and the East Asian monsoon. Among this connection, the warming of tropical IO plays the most critical role, and the warming of southern IO is important for monsoon variation and prediction prior to the full development of the monsoon. The atmospheric response to IO basin wide warming is similar with that to tropical IO warming. The influence of northern IO warming on the SAM, however, is opposite to the effect of southern IO warming. Meanwhile, the discrepancies between the results from idealized SST forcing simulations and observations, especially for the southern IO, reveal that the dominant role of air-sea interaction in the monsoon-IO coupled system cannot be ignored. Moreover, the springtime northern IO warming seems to favor an early onset or a stronger persistence of the SAM.

  13. Ancient Hydrothermal Springs in Arabia Terra, Mars

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2008-01-01

    Hydrothermal springs are important astrobiological sites for several reasons: 1) On Earth, molecular phylogeny suggests that many of the most primitive organisms are hyperthermophiles, implying that life on this planet may have arisen in hydrothermal settings; 2) on Mars, similar settings would have supplied energy- and nutrient-rich waters in which early martian life may have evolved; 3) such regions on Mars would have constituted oases of continued habitability providing warm, liquid water to primitive life forms as the planet became colder and drier; and 4) mineralization associated with hydrothermal settings could have preserved biosignatures from those martian life forms. Accordingly, if life ever developed on Mars, then hydrothermal spring deposits would be excellent localities in which to search for morphological or chemical remnants of that life. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel which allows detailed analysis of geologic structure and geomorphology. Based on these new data, we report several features in Vernal Crater, Arabia Terra that we interpret as ancient hydrothermal springs.

  14. Mines and Prospects, Idaho Springs District, Clear Creek and Gilpin Counties, Colorado - Descriptions and Maps

    USGS Publications Warehouse

    Moench, Robert Hadley; Drake, Avery Ala

    1966-01-01

    The Idaho Springs mining district forms an important segment of the Front Range mineral belt, a northeast-trending zone of coextensive intrusive rocks and hydrothermal ore deposits of early Tertiary age. This belt, which is about 50 miles long, extends from the region just west of Boulder southwestward across the Front Range. From 1859, when placer gold was discovered in Idaho Springs and lode gold in Central City, through 1959, ores valued at about $200 million were shipped from a 50-square-mile area that includes the Idaho Springs and adjacent districts to the north, west, and southwest. The adjacent Central City district, which produced ores valued at more than $100 million, is clearly the most important district in the mineral belt. The Idaho Springs district from 1860 to 1959 produced ores valued at about $65 million, and the districts to the west and southwest produced smaller amounts. Gold has accounted for about 60 percent of the value of the ore, but in some areas silver provides the chief values, and copper, lead, and zinc add value to the ores in most areas. Mining activity in the Idaho Springs and adjacent districts was at its 'heyday' in the late 1800's, it declined sharply after 1914, it was somewhat renewed during the 1930's, and it greatly declined during World War II. In the 1950's uranium prospecting stimulated some mining activity. No uranium was produced, however, and at the close of the decade only one mine--the Bald Eagle--was being worked for its precious- and base-metal ores. In this report, 135 mines and prospects are described. The mines and prospects described are those that were accessible at the time of this study, as well as a few inaccessible properties for which some information was available. Most of the data for the inaccessible or unimportant properties were obtained from Bastin and Hill (1917) and Spurr, Garrey, and Ball (1908). The following list shows, in alphabetical order, the names of about 325 openings of mines and

  15. Aquatic Communities and Selected Water Chemistry in St. Vrain Creek near the City of Longmont, Colorado, Wastewater-Treatment Plant, 2005 and 2006

    USGS Publications Warehouse

    Zuellig, Robert E.; Sprague, Lori A.; Collins, Jim A.; Cox, Oliver N.

    2007-01-01

    In 2005, the U.S. Geological Survey and the City of Longmont, Colo., began a study to document chemical characteristics of St. Vrain Creek that had previously been unavailable either due to high cost of analysis or lack of analytical capability. Stream samples were collected at seven sites on St. Vrain Creek during the spring of 2005 and 2006 for analysis of wastewater compounds. A Lagrangian-sampling design was followed during each sampling event, and time-of-travel studies were conducted just prior to each sampling event to determine appropriate sampling times for the synoptic. In addition, semipermeable membrane devices, passive samplers that concentrate hydrophobic organic chemicals, were installed at six sites during the spring of 2005 and 2006 for approximately 4 weeks. After retrieval, contaminant residues concentrated in the semipermeable membrane devices were recovered and used in a toxicity assay that provided a screen for aryl hydrocarbon receptor type compounds, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls, dioxins, and furans. In addition, the U.S. Geological Survey summarized information on macroinvertebrate and fish communities known from St. Vrain Creek dating back to the early 1900s in order to assess their utility in evaluating wastewater-treatment plant upgrades and habitat improvement projects. Unfortunately, because of inconsistencies in data collection these data cannot be used as intended; however, they are useful for understanding to some degree gross patterns in fish species distribution, but less so for macroinvertebrates.

  16. Terrestrial carbon cycle affected by non-uniform climate warming

    NASA Astrophysics Data System (ADS)

    Xia, Jianyang; Chen, Jiquan; Piao, Shilong; Ciais, Philippe; Luo, Yiqi; Wan, Shiqiang

    2014-03-01

    Feedbacks between the terrestrial carbon cycle and climate change could affect many ecosystem functions and services, such as food production, carbon sequestration and climate regulation. The rate of climate warming varies on diurnal and seasonal timescales. A synthesis of global air temperature data reveals a greater rate of warming in winter than in summer in northern mid and high latitudes, and the inverse pattern in some tropical regions. The data also reveal a decline in the diurnal temperature range over 51% of the global land area and an increase over only 13%, because night-time temperatures in most locations have risen faster than daytime temperatures. Analyses of satellite data, model simulations and in situ observations suggest that the impact of seasonal warming varies between regions. For example, spring warming has largely stimulated ecosystem productivity at latitudes between 30° and 90° N, but suppressed productivity in other regions. Contrasting impacts of day- and night-time warming on plant carbon gain and loss are apparent in many regions. We argue that ascertaining the effects of non-uniform climate warming on terrestrial ecosystems is a key challenge in carbon cycle research.

  17. Climate Warming Threatens Semi-arid Forests in Inner Asia

    NASA Astrophysics Data System (ADS)

    WU, X.; Liu, H.; Qi, Z.; Li, X.

    2014-12-01

    A line of evidences reveal an increasing tree growth decline and tree mortality mainly attributable to climate warming and the warming-mediated changes in drought and other processes (such as fire and insect dynamics) in many parts of world tropical, temperate and boreal forests. However, the growth responses to climate change of the widely distributed semi-arid forests are unclear. Here, we synthetically investigate the tree growth patterns during past decades and its interannual response to climate variations in Inner Asia combining the ground truth field survey and samplings, remote sensing observations and climate data. We identified a pervasive tree growth decline since mid-1990s in semi-arid forests in Inner Asia. The widely observed tree growth decline is dominantly attributable to warming-induced water stress during pre- and early growing season. Tree growth of semi-arid forests in Inner Asia is particularly susceptible to spring warming and has been suffering a prolonged growth limitation in recent decades due to spring warming-mediated water conditions. Additionally, we identified a much slower growth rate in younger trees and a lack of tree regeneration in these semi-arid forests. The widely observed forest growth reduction and lack of tree regeneration over semi-arid forests in Inner Asia could predictably exert great effects on forest structure, regionally/globally biophysical and biochemical processes and the feedbacks between biosphere and atmosphere. Notably, further increases in forest stress and tree mortality could be reasonably expected, especially in context of the increase frequency and severity of high temperature and heat waves and changes in forest disturbances, potentially driving the eventual regional loss of current semi-arid forests. Given the potential risks of climate induced forest dieback, increased management attention to adaptation options for enhancing forest resistance and resilience to projected climate stress can be expected

  18. Indian Creek uranium prospects, Beaver County, Utah

    USGS Publications Warehouse

    Wyant, Donald G.; Stugard, Frederick

    1951-01-01

    The secondary uranium minerals metatorbernite (?) and autunite (?) were discovered at Indian Creek in the spring of 1950. The deposits, in sec. 26, T. 27 S., R. 6 T., Beaver County, Utah, are 20 miles west of Marysvale, and about three-eighths of a mile east of a quartz monzonite stock. The uranium minerals are sparsely disseminated in argillized and silicified earlier Tertiary Bullion Canyon latite and related volcanic rock beneart, but close to, the contact of the overlying later Tertiary Mount Belknap gray rhyolite. The prospects are in a landslide area where exposures are scarce. Therefore, trend and possible continuity of the altered and the uraniferous zones cannot be established definitely. The occurrence of secondary uranium minerals in beidellite-montmorillonite rock, formed by alteration of earlier Tertiary rocks near a quartz monzonite stock, is similar to that in some of the deposits in the Marysvale uranium district.

  19. Gas exchange, growth, and defense responses of invasive Alliaria petiolata (Brassicaceae) and native Geum vernum (Rosaceae) to elevated atmospheric CO2 and warm spring temperatures.

    PubMed

    Anderson, Laurel J; Cipollini, Don

    2013-08-01

    Global increases in atmospheric CO2 and temperature may interact in complex ways to influence plant physiology and growth, particularly for species that grow in cool, early spring conditions in temperate forests. Plant species may also vary in their responses to environmental changes; fast-growing invasives may be more responsive to rising CO2 than natives and may increase production of allelopathic compounds under these conditions, altering species' competitive interactions. We examined growth and physiological responses of Alliaria petiolata, an allelopathic, invasive herb, and Geum vernum, a co-occurring native herb, to ambient and elevated spring temperatures and atmospheric CO2 conditions in a factorial growth chamber experiment. At 5 wk, leaves were larger at high temperature, and shoot biomass increased under elevated CO2 only at high temperature in both species. As temperatures gradually warmed to simulate seasonal progression, G. vernum became responsive to CO2 at both temperatures, whereas A. petiolata continued to respond to elevated CO2 only at high temperature. Elevated CO2 increased thickness and decreased nitrogen concentrations in leaves of both species. Alliaria petiolata showed photosynthetic downregulation at elevated CO2, whereas G. vernum photosynthesis increased at elevated temperature. Flavonoid and cyanide concentrations decreased significantly in A. petiolata leaves in the elevated CO2 and temperature treatment. Total glucosinolate concentrations and trypsin inhibitor activities did not vary among treatments. Future elevated spring temperatures and CO2 will interact to stimulate growth for A. petiolata and G. vernum, but there may be reduced allelochemical effects in A. petiolata.

  20. Simulated climate warming alters phenological synchrony between an outbreak insect herbivore and host trees.

    PubMed

    Schwartzberg, Ezra G; Jamieson, Mary A; Raffa, Kenneth F; Reich, Peter B; Montgomery, Rebecca A; Lindroth, Richard L

    2014-07-01

    As the world's climate warms, the phenologies of interacting organisms in seasonally cold environments may advance at differing rates, leading to alterations in phenological synchrony that can have important ecological consequences. For temperate and boreal species, the timing of early spring development plays a key role in plant-herbivore interactions and can influence insect performance, outbreak dynamics, and plant damage. We used a field-based, meso-scale free-air forest warming experiment (B4WarmED) to examine the effects of elevated temperature on the phenology and performance of forest tent caterpillar (Malacosoma disstria) in relation to the phenology of two host trees, aspen (Populus tremuloides) and birch (Betula papyrifera). Results of our 2-year study demonstrated that spring phenology advanced for both insects and trees, with experimentally manipulated increases in temperature of 1.7 and 3.4 °C. However, tree phenology advanced more than insect phenology, resulting in altered phenological synchrony. Specifically, we observed a decrease in the time interval between herbivore egg hatch and budbreak of aspen in both years and birch in one year. Moreover, warming decreased larval development time from egg hatch to pupation, but did not affect pupal mass. Larvae developed more quickly on aspen than birch, but pupal mass was not affected by host species. Our study reveals that warming-induced phenological shifts can alter the timing of ecological interactions across trophic levels. These findings illustrate one mechanism by which climate warming could mediate insect herbivore outbreaks, and also highlights the importance of climate change effects on trophic interactions.

  1. 33 CFR 334.480 - Archers Creek, Ribbon Creek, and Broad River; U.S. Marine Corps Recruit Depot, Parris Island...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Broad River; U.S. Marine Corps Recruit Depot, Parris Island, South Carolina; danger zones. 334.480... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.480 Archers Creek, Ribbon Creek, and Broad River... danger zone on Archers Creek (between the Broad River and Beaufort River), Ribbon Creek, and the Broad...

  2. 33 CFR 334.480 - Archers Creek, Ribbon Creek, and Broad River; U.S. Marine Corps Recruit Depot, Parris Island...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Broad River; U.S. Marine Corps Recruit Depot, Parris Island, South Carolina; danger zones. 334.480... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.480 Archers Creek, Ribbon Creek, and Broad River... danger zone on Archers Creek (between the Broad River and Beaufort River), Ribbon Creek, and the Broad...

  3. 33 CFR 334.480 - Archers Creek, Ribbon Creek, and Broad River; U.S. Marine Corps Recruit Depot, Parris Island...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Broad River; U.S. Marine Corps Recruit Depot, Parris Island, South Carolina; danger zones. 334.480... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.480 Archers Creek, Ribbon Creek, and Broad River... danger zone on Archers Creek (between the Broad River and Beaufort River), Ribbon Creek, and the Broad...

  4. Water-Chemistry Data for Selected Springs, Geysers, and Streams in Yellowstone National Park, Wyoming, 2003-2005

    USGS Publications Warehouse

    Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.

    2008-01-01

    Water analyses are reported for 157 samples collected from numerous hot springs, their overflow drainages, and Lemonade Creek in Yellowstone National Park (YNP) during 2003-2005. Water samples were collected and analyzed for major and trace constituents from ten areas of YNP including Terrace and Beryl Springs in the Gibbon Canyon area, Norris Geyser Basin, the West Nymph Creek thermal area, the area near Nymph Lake, Hazle Lake, and Frying Pan Spring, Lower Geyser Basin, Washburn Hot Springs, Mammoth Hot Springs, Potts Hot Spring Basin, the Sulphur Caldron area, and Lemonade Creek near the Solfatara Trail. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, and sulfur redox distribution in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved onsite. Water temperature, specific conductance, pH, Eh (redox potential relative to the Standard Hydrogen Electrode), and dissolved hydrogen sulfide were measured onsite at the time of sampling. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally minutes to hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved-iron and ferrous-iron concentrations often were measured onsite in the mobile laboratory vehicle. Concentrations of dissolved

  5. Status and Monitoring of Natural and Supplemented Chinook Salmon in Johnson Creek, Idaho, 2006-2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabe, Craig D.; Nelson, Douglas D.

    The Nez Perce Tribe Johnson Creek Artificial Propagation Enhancement Project (JCAPE) has conducted juvenile and adult monitoring and evaluation studies for its 10th consecutive year. Completion of adult and juvenile Chinook salmon studies were conducted for the purpose of evaluating a small-scale production initiative designed to increase the survival of a weak but recoverable spawning aggregate of summer Chinook salmon Oncorhynchus tshawytscha. The JCAPE program evaluates the life cycle of natural origin (NOR) and hatchery origin (HOR) supplementation fish to quantify the key performance measures: abundance, survival-productivity, distribution, genetics, life history, habitat, and in-hatchery metrics. Operation of a picket stylemore » weir and intensive multiple spawning ground surveys were completed to monitor adult Chinook salmon and a rotary screw trap was used to monitor migrating juvenile Chinook salmon in Johnson Creek. In 2007, spawning ground surveys were conducted on all available spawning habitat in Johnson Creek and one of its tributaries. A total of 63 redds were observed in the index reach and 11 redds for all other reaches for a combined count of 74 redds. Utilization of carcass recovery surveys and adult captures at an adult picket weir yielded a total estimated adult escapement to Johnson Creek of 438 Chinook salmon. Upon deducting fish removed for broodstock (n=52), weir mortality/ known strays (n=12), and prespawning mortality (n=15), an estimated 359 summer Chinook salmon were available to spawn. Estimated total migration of brood year 2005 NOR juvenile Chinook salmon at the rotary screw trap was calculated for three seasons (summer, fall, and spring). The total estimated migration was 34,194 fish; 26,671 of the NOR migrants left in the summer (July 1 to August 31, 2005) as fry/parr, 5,852 left in the fall (September 1 to November 21, 2005) as presmolt, and only 1,671 NOR fish left in the spring (March 1 to June 30, 2006) as smolt. In addition

  6. Interactions between geomorphology and ecosystem processes in travertine streams: Implications for decommissioning a dam on Fossil Creek, Arizona

    NASA Astrophysics Data System (ADS)

    Marks, Jane C.; Parnell, Roderic; Carter, Cody; Dinger, Eric C.; Haden, G. Allen

    2006-07-01

    Travertine deposits of calcium carbonate can dominate channel geomorphology in streams where travertine deposition creates a distinct morphology characterized by travertine terraces, steep waterfalls, and large pools. Algae and microorganisms can facilitate travertine deposition, but how travertine affects material and energy flow in stream ecosystems is less well understood. Nearly a century of flow diversion for hydropower production has decimated the natural travertine formations in Fossil Creek, Arizona. The dam will be decommissioned in 2005. Returning carbonate-rich spring water to the natural stream channel should promote travertine deposition. How will the recovery of travertine affect the ecology of the creek? To address this question, we compared primary production, decomposition, and the abundance and diversity of invertebrates and fish in travertine and riffle/run reaches of Fossil Creek, Arizona. We found that travertine supports higher primary productivity, faster rates of leaf litter decomposition, and higher species richness of the native invertebrate assemblage. Observations from snorkeling in the stream indicate that fish density is also higher in the travertine reach. We postulate that restoring travertine to Fossil Creek will increase stream productivity, rates of litter processing, and energy flow up the food web. Higher aquatic productivity could fundamentally shift the nature of the stream from a sink to a source of energy for the surrounding terrestrial landscape.

  7. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake Creek...

  8. Selected hydrologic data for Fountain Creek and Monument Creek basins, east-central Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard; Ortiz, Roderick F.

    1989-01-01

    Selected hydrologic data were collected during 1986, 1987, and 1988 by the U.S. Geological Survey for the Fountain Creek and Monument Creek basins, east-central Colorado. The data were obtained as part of a study to determine the present and projected effects of wastewater discharges on the two creeks. The data, which are available for 129 surface-water sites, include: (1) About 1,100 water quality analyses; (2) about 420 measurements of discharge, (3) characteristics of about 50 dye clouds associated with measurements of traveltime and reaeration , and (4) about 360 measurements of channel geometry. (USGS)

  9. 78 FR 5798 - Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of Petition for Enforcement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. El13-39-000, QF11-32-001, QF11-33-001] Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of Petition for... Policies Act of 1978 (PURPA), Grouse Creek Wind Park, LLC and Grouse Creek Wind Park II, LLC filed a...

  10. Effectiveness of backpack electrofishing for removal of non-native fishes from a small warm-water stream

    USGS Publications Warehouse

    Ward, David L.; O'neill, Matthew W.; Ka'apu-Lyons, Cassie

    2015-01-01

    Electrofishing is commonly used when renovating small streams to remove nuisance fishes but the likelihood of complete eradication of unwanted species, particularly warm-water fishes, is unknown. In October of 2008, we electrofished Bonita Creek, a small stream with base flows (<0.56 m3/s) in southern Arizona, and then treated the stream with rotenone to kill all of the remaining fish and quantify the effectiveness of single and multiple-pass electro fishing. Six, 100-m transects were electro fished on three consecutive days followed by a single treatment with rotenone. Fish caught using electrofishing were identified, counted and removed from each transect daily and then compared to numbers of dead fish collected during the subsequent rotenone application. Electrofishing effectiveness was highly variable among transects. Single-pass electrofishing caught an average of 23% (95% CI=5 to 40%) of the fish present, and three-pass electrofishing on consecutive days caught on average 55% (95% CI=28 to 83%) of the fish in each transect. Native Arizona fishes were more susceptible to electrofishing (77 % captured) than non-native species (54% captured), though native fish were rare. Transects in Bonita Creek averaged 3.6±1.5 m wide and 0.25±0.20 m deep (max depth 1.2 m). Bonita Creek is a small first-order stream which exhibits ideal conditions for backpack electrofishing, yet we captured a relatively small percentage of the fish present. This suggests that complete removal of non-native warm-water fishes using backpack electrofishing is not likely to be successful, especially in larger more complex streams.

  11. NGEE Arctic Zero Power Warming PhenoCamera Images, Barrow, Alaska, 2016

    DOE Data Explorer

    Shawn Serbin; Andrew McMahon; Keith Lewin; Kim Ely; Alistair Rogers

    2016-11-14

    StarDot NetCam SC pheno camera images collected from the top of the Barrow, BEO Sled Shed. The camera was installed to monitor the BNL TEST group's prototype ZPW (Zero Power Warming) chambers during the growing season of 2016 (including early spring and late fall). Images were uploaded to the BNL FTP server every 10 minutes and renamed with the date and time of the image. See associated data "Zero Power Warming (ZPW) Chamber Prototype Measurements, Barrow, Alaska, 2016" http://dx.doi.org/10.5440/1343066.

  12. Earlier vegetation green-up has reduced spring dust storms

    PubMed Central

    Fan, Bihang; Guo, Li; Li, Ning; Chen, Jin; Lin, Henry; Zhang, Xiaoyang; Shen, Miaogen; Rao, Yuhan; Wang, Cong; Ma, Lei

    2014-01-01

    The observed decline of spring dust storms in Northeast Asia since the 1950s has been attributed to surface wind stilling. However, spring vegetation growth could also restrain dust storms through accumulating aboveground biomass and increasing surface roughness. To investigate the impacts of vegetation spring growth on dust storms, we examine the relationships between recorded spring dust storm outbreaks and satellite-derived vegetation green-up date in Inner Mongolia, Northern China from 1982 to 2008. We find a significant dampening effect of advanced vegetation growth on spring dust storms (r = 0.49, p = 0.01), with a one-day earlier green-up date corresponding to a decrease in annual spring dust storm outbreaks by 3%. Moreover, the higher correlation (r = 0.55, p < 0.01) between green-up date and dust storm outbreak ratio (the ratio of dust storm outbreaks to times of strong wind events) indicates that such effect is independent of changes in surface wind. Spatially, a negative correlation is detected between areas with advanced green-up dates and regional annual spring dust storms (r = −0.49, p = 0.01). This new insight is valuable for understanding dust storms dynamics under the changing climate. Our findings suggest that dust storms in Inner Mongolia will be further mitigated by the projected earlier vegetation green-up in the warming world. PMID:25343265

  13. Earlier vegetation green-up has reduced spring dust storms.

    PubMed

    Fan, Bihang; Guo, Li; Li, Ning; Chen, Jin; Lin, Henry; Zhang, Xiaoyang; Shen, Miaogen; Rao, Yuhan; Wang, Cong; Ma, Lei

    2014-10-24

    The observed decline of spring dust storms in Northeast Asia since the 1950s has been attributed to surface wind stilling. However, spring vegetation growth could also restrain dust storms through accumulating aboveground biomass and increasing surface roughness. To investigate the impacts of vegetation spring growth on dust storms, we examine the relationships between recorded spring dust storm outbreaks and satellite-derived vegetation green-up date in Inner Mongolia, Northern China from 1982 to 2008. We find a significant dampening effect of advanced vegetation growth on spring dust storms (r = 0.49, p = 0.01), with a one-day earlier green-up date corresponding to a decrease in annual spring dust storm outbreaks by 3%. Moreover, the higher correlation (r = 0.55, p < 0.01) between green-up date and dust storm outbreak ratio (the ratio of dust storm outbreaks to times of strong wind events) indicates that such effect is independent of changes in surface wind. Spatially, a negative correlation is detected between areas with advanced green-up dates and regional annual spring dust storms (r = -0.49, p = 0.01). This new insight is valuable for understanding dust storms dynamics under the changing climate. Our findings suggest that dust storms in Inner Mongolia will be further mitigated by the projected earlier vegetation green-up in the warming world.

  14. Foreword: The dynamics of change in Alaska’s boreal forests: Resilience and vulnerability in response to climate warming

    USGS Publications Warehouse

    McGuire, A. David; Chapin, F. Stuart; Ruess, Roger W.

    2016-01-01

    Long-term research by the Bonanza Creek (BNZ) Long Term Ecological Research (LTER) program has documented natural patterns of interannual and successional variability of the boreal forest in interior Alaska against which we can detect changes in system behavior. Between 2004 and 2010 the BNZ LTER program focused on understanding the dynamics of change through studying the resilience and vulnerability of Alaska's boreal forest in response to climate warming. The overarching question in this endeavor has been “How are boreal ecosystems responding, both gradually and abruptly, to climate warming, and what new landscape patterns are emerging?”

  15. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring.

    PubMed

    Westerling, Anthony LeRoy

    2016-06-05

    Prior work shows western US forest wildfire activity increased abruptly in the mid-1980s. Large forest wildfires and areas burned in them have continued to increase over recent decades, with most of the increase in lightning-ignited fires. Northern US Rockies forests dominated early increases in wildfire activity, and still contributed 50% of the increase in large fires over the last decade. However, the percentage growth in wildfire activity in Pacific northwestern and southwestern US forests has rapidly increased over the last two decades. Wildfire numbers and burned area are also increasing in non-forest vegetation types. Wildfire activity appears strongly associated with warming and earlier spring snowmelt. Analysis of the drivers of forest wildfire sensitivity to changes in the timing of spring demonstrates that forests at elevations where the historical mean snow-free season ranged between two and four months, with relatively high cumulative warm-season actual evapotranspiration, have been most affected. Increases in large wildfires associated with earlier spring snowmelt scale exponentially with changes in moisture deficit, and moisture deficit changes can explain most of the spatial variability in forest wildfire regime response to the timing of spring.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  16. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring

    PubMed Central

    2016-01-01

    Prior work shows western US forest wildfire activity increased abruptly in the mid-1980s. Large forest wildfires and areas burned in them have continued to increase over recent decades, with most of the increase in lightning-ignited fires. Northern US Rockies forests dominated early increases in wildfire activity, and still contributed 50% of the increase in large fires over the last decade. However, the percentage growth in wildfire activity in Pacific northwestern and southwestern US forests has rapidly increased over the last two decades. Wildfire numbers and burned area are also increasing in non-forest vegetation types. Wildfire activity appears strongly associated with warming and earlier spring snowmelt. Analysis of the drivers of forest wildfire sensitivity to changes in the timing of spring demonstrates that forests at elevations where the historical mean snow-free season ranged between two and four months, with relatively high cumulative warm-season actual evapotranspiration, have been most affected. Increases in large wildfires associated with earlier spring snowmelt scale exponentially with changes in moisture deficit, and moisture deficit changes can explain most of the spatial variability in forest wildfire regime response to the timing of spring. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216510

  17. Comparability among four invertebrate sampling methods and two multimetric indexes, Fountain Creek Basin, Colorado, 2010–2012

    USGS Publications Warehouse

    Bruce, James F.; Roberts, James J.; Zuellig, Robert E.

    2018-05-24

    The U.S. Geological Survey (USGS), in cooperation with Colorado Springs City Engineering and Colorado Springs Utilities, analyzed previously collected invertebrate data to determine the comparability among four sampling methods and two versions (2010 and 2017) of the Colorado Benthic Macroinvertebrate Multimetric Index (MMI). For this study, annual macroinvertebrate samples were collected concurrently (in space and time) at 15 USGS surface-water gaging stations in the Fountain Creek Basin from 2010 to 2012 using four sampling methods. The USGS monitoring project in the basin uses two of the methods and the Colorado Department of Public Health and Environment recommends the other two. These methods belong to two distinct sample types, one that targets single habitats and one that targets multiple habitats. The study results indicate that there are significant differences in MMI values obtained from the single-habitat and multihabitat sample types but methods from each program within each sample type produced comparable values. This study also determined that MMI values calculated by different versions of the Colorado Benthic Macroinvertebrate MMI are indistinguishable. This indicates that the Colorado Department of Public Health and Environment methods are comparable with the USGS monitoring project methods for single-habitat and multihabitat sample types. This report discusses the direct application of the study results to inform the revision of the existing USGS monitoring project in the Fountain Creek Basin.

  18. Forage plants of an Arctic-nesting herbivore show larger warming response in breeding than wintering grounds, potentially disrupting migration phenology.

    PubMed

    Lameris, Thomas K; Jochems, Femke; van der Graaf, Alexandra J; Andersson, Mattias; Limpens, Juul; Nolet, Bart A

    2017-04-01

    During spring migration, herbivorous waterfowl breeding in the Arctic depend on peaks in the supply of nitrogen-rich forage plants, following a "green wave" of grass growth along their flyway to fuel migration and reproduction. The effects of climate warming on forage plant growth are expected to be larger at the Arctic breeding grounds than in temperate wintering grounds, potentially disrupting this green wave and causing waterfowl to mistime their arrival on the breeding grounds. We studied the potential effect of climate warming on timing of food peaks along the migratory flyway of the Russian population of barnacle geese using a warming experiment with open-top chambers. We measured the effect of 1.0-1.7°C experimental warming on forage plant biomass and nitrogen concentration at three sites along the migratory flyway (temperate wintering site, temperate spring stopover site, and Arctic breeding site) during 2 months for two consecutive years. We found that experimental warming increased biomass accumulation and sped up the decline in nitrogen concentration of forage plants at the Arctic breeding site but not at temperate wintering and stop-over sites. Increasing spring temperatures in the Arctic will thus shorten the food peak of nitrogen-rich forage at the breeding grounds. Our results further suggest an advance of the local food peak in the Arctic under 1-2°C climate warming, which will likely cause migrating geese to mistime their arrival at the breeding grounds, particularly considering the Arctic warms faster than the temperate regions. The combination of a shorter food peak and mistimed arrival is likely to decrease goose reproductive success under climate warming by reducing growth and survival of goslings after hatching.

  19. Advances and Environmental Conditions of Spring Migration Phenology of American White Pelicans

    NASA Astrophysics Data System (ADS)

    King, D. Tommy; Wang, Guiming; Yang, Zhiqiang; Fischer, Justin W.

    2017-01-01

    Spring migration phenology of birds has advanced under warming climate. Migration timing of short-distance migrants is believed to be responsive to environmental changes primarily under exogenous control. However, understanding the ecological causes of the advancement in avian spring migration phenology is still a challenge due to the lack of long-term precise location data. We used 11 years of Global Positioning System relocation data to determine four different migration dates of the annual migration cycle of the American white pelican (Pelecanus erythrorhynchos), a short-distance migrant. We also tested the hypothesis that increases in winter temperature and precipitation on the wintering grounds would advance pelican spring migration. Pelican spring departures and arrivals advanced steadily from 2002 to 2011. Spring departure timing exhibited high repeatability at the upper end of migration timing repeatability reported in literature. However, individual spring departure and arrival dates were not related to winter daily temperature, total winter precipitation, and detrended vegetation green-up dates indexed by the normalized difference vegetation index. Despite high repeatability, the observed between-year variation of spring departure dates was still sufficient for the advancement of spring departure timing.

  20. Advances and Environmental Conditions of Spring Migration Phenology of American White Pelicans.

    PubMed

    King, D Tommy; Wang, Guiming; Yang, Zhiqiang; Fischer, Justin W

    2017-01-16

    Spring migration phenology of birds has advanced under warming climate. Migration timing of short-distance migrants is believed to be responsive to environmental changes primarily under exogenous control. However, understanding the ecological causes of the advancement in avian spring migration phenology is still a challenge due to the lack of long-term precise location data. We used 11 years of Global Positioning System relocation data to determine four different migration dates of the annual migration cycle of the American white pelican (Pelecanus erythrorhynchos), a short-distance migrant. We also tested the hypothesis that increases in winter temperature and precipitation on the wintering grounds would advance pelican spring migration. Pelican spring departures and arrivals advanced steadily from 2002 to 2011. Spring departure timing exhibited high repeatability at the upper end of migration timing repeatability reported in literature. However, individual spring departure and arrival dates were not related to winter daily temperature, total winter precipitation, and detrended vegetation green-up dates indexed by the normalized difference vegetation index. Despite high repeatability, the observed between-year variation of spring departure dates was still sufficient for the advancement of spring departure timing.

  1. Mercury Geochemistry of Gold Placer Tailings, Sediments, Bedrock, and Waters in the Lower Clear Creek Area, Shasta County, California - Report of Investigations, 2001-2003

    USGS Publications Warehouse

    Ashley, Roger P.; Rytuba, James J.

    2008-01-01

    flood-plain ponds, tailings in a dredge pond, and active stream sediment in a Clear Creek backwater have elevated levels of methylmercury. Stream waters in the area show low mercury levels during both summer and winter base-flow conditions. During winter high flows total mercury increases by about one order of magnitude; this additional mercury is associated with suspended particulate material. Methylmercury is low in stream waters. Ponds in various environments generally have higher total mercury levels in waters than Clear Creek under base-flow conditions and higher methylmercury levels in both sediments and waters. Ponds are probably the main source of bioavailable mercury in the lower Clear Creek area. Several saline springs occur in the area. The saline waters are enriched in lithium, boron, and mercury, similar to connate waters that are expelled along thrust faults to the south on the west side of the Sacramento Valley. Saline springs may locally contribute some mercury to pond and drainage waters.

  2. Development of a Precipitation-Runoff Model to Simulate Unregulated Streamflow in the Salmon Creek Basin, Okanogan County, Washington

    USGS Publications Warehouse

    van Heeswijk, Marijke

    2006-01-01

    Surface water has been diverted from the Salmon Creek Basin for irrigation purposes since the early 1900s, when the Bureau of Reclamation built the Okanogan Project. Spring snowmelt runoff is stored in two reservoirs, Conconully Reservoir and Salmon Lake Reservoir, and gradually released during the growing season. As a result of the out-of-basin streamflow diversions, the lower 4.3 miles of Salmon Creek typically has been a dry creek bed for almost 100 years, except during the spring snowmelt season during years of high runoff. To continue meeting the water needs of irrigators but also leave water in lower Salmon Creek for fish passage and to help restore the natural ecosystem, changes are being considered in how the Okanogan Project is operated. This report documents development of a precipitation-runoff model for the Salmon Creek Basin that can be used to simulate daily unregulated streamflows. The precipitation-runoff model is a component of a Decision Support System (DSS) that includes a water-operations model the Bureau of Reclamation plans to develop to study the water resources of the Salmon Creek Basin. The DSS will be similar to the DSS that the Bureau of Reclamation and the U.S. Geological Survey developed previously for the Yakima River Basin in central southern Washington. The precipitation-runoff model was calibrated for water years 1950-89 and tested for water years 1990-96. The model was used to simulate daily streamflows that were aggregated on a monthly basis and calibrated against historical monthly streamflows for Salmon Creek at Conconully Dam. Additional calibration data were provided by the snowpack water-equivalent record for a SNOTEL station in the basin. Model input time series of daily precipitation and minimum and maximum air temperatures were based on data from climate stations in the study area. Historical records of unregulated streamflow for Salmon Creek at Conconully Dam do not exist for water years 1950-96. Instead, estimates of

  3. Radioactive mineral springs in Delta County, Colorado

    USGS Publications Warehouse

    Cadigan, Robert A.; Rosholt, John N.; Felmlee, J. Karen

    1976-01-01

    The system of springs in Delta County, Colo., contains geochemical clues to the nature and location of buried uranium-mineralized rock. The springs, which occur along the Gunnison River and a principal tributary between Delta and Paonia, are regarded as evidence of a still-functioning hydrothermal system. Associated with the springs are hydrogen sulfide and sulfur dioxide gas seeps, carbon dioxide gas-powered geysers, thick travertine deposits including radioactive travertine, and a flowing warm-water (41?C) radioactive well. Geochemical study of the springs is based on surface observations, on-site water-property measurements, and sampling of water, travertine, soft precipitates, and mud. The spring deposits are mostly carbonates, sulfates, sulfides, and chlorides that locally contain notable amounts of some elements, such as arsenic, barium, lithium, and radium. Samples from five localities have somewhat different trace element assemblages even though they are related to the same hydrothermal system. All the spring waters but one are dominated by sodium chloride or sodium bicarbonate. The exception is an acid sulfate water with a pH of 2.9, which contains high concentrations of aluminum and iron. Most of the detectable radioactivity is due to the presence of radium-226, a uranium daughter product, but at least one spring precipitate contains abundant radium-228, a thorium daughter product. The 5:1 ratio of radium-228 to radium-226 suggests the proximity of a vein-type deposit as a source for the radium. The proposed locus of a thorium-uranium mineral deposit is believed to lie in the vicinity of Paonia, Colo. Exact direction and depth are not determinable from data now available.

  4. Do summer temperatures trigger spring maturation in pacific lamprey, Entosphenus tridentatus?

    USGS Publications Warehouse

    Clemens, B.J.; Van De Wetering, S.; Kaufman, J.; Holt, R.A.; Schreck, C.B.

    2009-01-01

    Pacific lamprey, Entosphenus tridentatus, return to streams and use somatic energy to fuel maturation. Body size decreases, the lamprey mature, spawn, and then die. We predicted that warm, summer temperatures (>20 ??C) would accentuate shrinkage in body size, and expedite sexual maturation and subsequent death. We compared fish reared in the laboratory at diel fluctuating temperatures of 20-24 ??C (mean = 21.8 ??C) with fish reared at cooler temperatures (13.6 ??C). The results confirmed our predictions. Lamprey from the warm water group showed significantly greater proportional decreases in body weight following the summer temperature treatments than fish from the cool water group. A greater proportion of warm water fish sexually matured (100%) and died (97%) the following spring than cool water fish (53% sexually mature, 61% died). Females tended to mature and die earlier than males, most obviously in the warm water group. ?? 2009 John Wiley & Sons A/S.

  5. 75 FR 5631 - Wolf Creek Nuclear Operating Corporation, Wolf Creek Generating Station; Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-482; NRC-2010-0032] Wolf Creek Nuclear Operating Corporation, Wolf Creek Generating Station; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering issuance of an exemption, pursuant to Title...

  6. Monitoring and Evaluation of Supplemented Spring Chinook Salmon and Life Histories of Wild Summer Steelhead in the Grande Ronde Basin, 2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boe, Stephen J.; Crump, Carrie A.; Weldert, Rey L.

    2009-04-10

    This is the ninth annual report for a multi-year project designed to monitor and evaluate supplementation of endemic spring Chinook salmon in Catherine Creek and the upper Grande Ronde River. These two streams historically supported anadromous fish populations that provided significant tribal and non-tribal fisheries, but in recent years, have experienced severe declines in abundance. Conventional and captive broodstock supplementation methods are being used to restore these spring Chinook salmon populations. Spring Chinook salmon populations in Catherine Creek and the upper Grande Ronde River, and other streams in the Snake River Basin have experienced severe declines in abundance over themore » past two decades (Nehlsen et al. 1991). A supplementation program was initiated in Catherine Creek and the upper Grande Ronde River, incorporating the use of both captive and conventional broodstock methods, in order to prevent extinction in the short term and eventually rebuild populations. The captive broodstock component of the program (BPA Project 199801001) uses natural-origin parr collected by seining and reared to maturity at facilities near Seattle, Washington (Manchester Marine Laboratory) and Hood River, Oregon (Bonneville Hatchery). Spawning occurs at Bonneville Hatchery, and resulting progeny are reared in hatcheries. Shortly before outmigration in the spring, juveniles are transferred to acclimation facilities. After an acclimation period of about 2-4 weeks, volitional release begins. Any juveniles remaining after the volitional release period are forced out. The conventional broodstock component uses returning adults collected at traps near the spawning areas, transported to Lookingglass Hatchery near Elgin, Oregon, held, and later spawned. The resulting progeny are reared, acclimated, and released similar to the captive broodstock component. All progeny released receive one or more marks including a fin (adipose) clip, codedwire tag, PIT tag, or visual

  7. Relationships between vegetation dynamics and hydroclimatic drivers in the northern high-latitude uplands

    NASA Astrophysics Data System (ADS)

    Wang, H.; Tetzlaff, D.; Buttle, J. M.; Carey, S. K.; Laudon, H.; McNamara, J. P.; Soulsby, C.; Spence, C.

    2015-12-01

    IPCC projections show that climate warming will be particularly high in northern high-latitude regions, which has profound ecohydrological implications: a small rise of temperature may result in lower water availability in summer due to less rainfall and more evapotranspiration, increase flooding risks by accelerating melting rates in spring, and more rain rather than snow in winter, etc. These impacts will affect vegetation communities by altering timing of the spring "green-up" and fall "senescence". Change in vegetation water use will feedback to atmospheric and hydrological cycles. Here, we report results from the PLATO "Plant-water interlinkages in northern uplands - mediation of climate change?" project where we investigate water uptake by plants and consequent water availability in northern regions along a cross-regional climate gradient to understand future responses to change in high-latitude uplands. Six sites in Sweden (Krycklan), Canada (Wolf Creek; Baker Creek; Dorset), Scotland (Girnock) and the USA (Dry Creek) span moisture and energy gradients found at high-latitudes. We are presenting preliminary results of vegetation phenology changes from 2000 to 2014 by analysing remote sensing vegetation indices. The relationship between vegetation phenology and climatic drivers (temperature and precipitation) is also investigated.

  8. Sedimentation in Hot Creek in vicinity of Hot Creek Fish Hatchery, Mono County, California

    USGS Publications Warehouse

    Burkham, D.E.

    1978-01-01

    An accumulation of fine-grained sediment in Hot Creek downstream from Hot Creek Fish Hatchery, Mono County, Calif., created concern that the site may be deteriorating as a habitat for trout. The accumulation is a phenomenon that probably occurs naturally in the problem reach. Fluctuation in the weather probably is the basic cause of the deposition of fine-grained sediment that has occurred since about 1970. Man 's activities and the Hot Creek Fish Hatchery may have contributed to the problem; the significance of these factors, however, probably was magnified because of drought conditions in 1975-77. (Woodard-USGS)

  9. Methods to determine transit losses for return flows of transmountain water in Fountain Creek between Colorado Springs and the Arkansas River, Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard

    1988-01-01

    Methods were developed by which transit losses could be determined for transmountain return flows in Fountain Creek between Colorado Springs, Colorado, and its confluence with the Arkansas River. The study reach is a complex hydrologic system wherein a substantially variable streamflow interacts with an alluvial aquifer. The study approach included: (1) calibration and verification of a streamflow-routing model that contained a bank-storage-discharge component; (2) use of the model to develop the methods by which transit losses could be calculated; and (3) design of an application method for calculating daily transit loss using the model results. Sources of transit losses that were studied are bank storage, channel storage, and evaporation. Magnitude of bank-storage loss primarily depends on duration of a recovery period during which water lost to bank storage is returned to the stream. Net loss to bank storage can vary from about 50% for a 0-day recovery period to about 2% for a 180-day recovery period. Virtually all water lost to bank storage could be returned to the stream with longer recovery periods. Channel-storage loss was determined to be about 10% of a release quantity. Because the loss on any given day is totally recovered in the form of gains from channel storage on the subsequent day, channel storage is a temporary transit loss. Evaporation loss generally is less than 5% of a given daily transmountain return-flow release, depending on month of year. Evaporation losses are permanently lost from the system. (USGS)

  10. Effects of growth temperature and winter duration on leaf phenology of a spring ephemeral (Gagea lutea) and a summergreen forb (Maianthemum dilatatum).

    PubMed

    Yoshie, Fumio

    2008-09-01

    Effects of growth temperature and winter duration on leaf longevity were compared between a spring ephemeral, Gagea lutea, and a forest summergreen forb, Maianthemum dilatatum. The plants were grown at day/night temperatures of 25/20 degrees C and 15/10 degrees C after a chilling treatment for variable periods at 2 degrees C. The temperature regime of 25/20 degrees C was much higher than the mean air temperatures for both species in their native habitats. Warm temperature of 25/20 degrees C and/or long chilling treatment shortened leaf longevity in G. lutea, but not in M. dilatatum. The response of G. lutea was consistent with that reported for other spring ephemerals. Air temperature increases as the vegetative season progresses. The decrease in leaf longevity in G. lutea under warm temperature condition ensures leaf senescence in summer, an unfavorable season for its growth. This also implies that early leaf senescence could occur in years with early summers. Warm spring temperatures have been shown to accelerate the leafing-out of forest trees. The decrease in leaf longevity due to warm temperature helps synchronize the period of leaf senescence roughly with the time of the forest canopy leaf-out. Prolonged winter due to late snowmelt has been shown to shorten the vegetative period for spring ephemerals. The decrease in leaf longevity due to long chilling treatment would correspond with this shortened vegetative period.

  11. Continuous but diverse advancement of spring-summer phenology in response to climate warming across the Qinghai-Tibetan Plateau

    DOE PAGES

    Zheng, Zhoutao; Zhu, Wenquan; Chen, Guangsheng; ...

    2016-04-25

    The Qinghai-Tibetan Plateau (QTP) is more vulnerable and sensitive to climate change than many other regions worldwide because of its high altitude, permafrost geography, and harsh physical environment. As a sensitive bio-indicator of climate change, plant phenology shift in this region has been intensively studied during the recent decades, primarily based on satellite-retrieved data. However, great controversy still exists regarding the change in direction and magnitudes of spring-summer phenology. Based on a large number (11,000+ records) of long-term and continuous ground observational data for various plant species, our study intended to more comprehensively assess the changing trends of spring-summer phenologymore » and their relationships with climatic change across the QTP. The results indicated a continuous advancement (–2.69 days decade –1) in spring-summer phenology from 1981 to 2011, with an even more rapid advancement during 2000–2011 (–3.13 days decade –1), which provided new field evidence for continuous advancement in spring-summer phenology across the QTP. However, diverse advancing rates in spring-summer phenology were observed for different vegetation types, thermal conditions, and seasons. The advancing trends matched well with the difference in sensitivity of spring-summer phenology to increasing temperature, implying that the sensitivity of phenology to temperature was one of the major factors influencing spring-summer phenology shifts. Besides, increased precipitation could advance the spring-summer phenology. As a result, the response of spring-summer phenology to temperature tended to be stronger from east to west across all species, while the response to precipitation showed no consistent spatial pattern.« less

  12. Continuous but diverse advancement of spring-summer phenology in response to climate warming across the Qinghai-Tibetan Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Zhoutao; Zhu, Wenquan; Chen, Guangsheng

    The Qinghai-Tibetan Plateau (QTP) is more vulnerable and sensitive to climate change than many other regions worldwide because of its high altitude, permafrost geography, and harsh physical environment. As a sensitive bio-indicator of climate change, plant phenology shift in this region has been intensively studied during the recent decades, primarily based on satellite-retrieved data. However, great controversy still exists regarding the change in direction and magnitudes of spring-summer phenology. Based on a large number (11,000+ records) of long-term and continuous ground observational data for various plant species, our study intended to more comprehensively assess the changing trends of spring-summer phenologymore » and their relationships with climatic change across the QTP. The results indicated a continuous advancement (–2.69 days decade –1) in spring-summer phenology from 1981 to 2011, with an even more rapid advancement during 2000–2011 (–3.13 days decade –1), which provided new field evidence for continuous advancement in spring-summer phenology across the QTP. However, diverse advancing rates in spring-summer phenology were observed for different vegetation types, thermal conditions, and seasons. The advancing trends matched well with the difference in sensitivity of spring-summer phenology to increasing temperature, implying that the sensitivity of phenology to temperature was one of the major factors influencing spring-summer phenology shifts. Besides, increased precipitation could advance the spring-summer phenology. As a result, the response of spring-summer phenology to temperature tended to be stronger from east to west across all species, while the response to precipitation showed no consistent spatial pattern.« less

  13. Northeastern Florida Bay estuarine creek data, water years 1996-2000

    USGS Publications Warehouse

    Hittle, Clinton D.; Zucker, Mark A.

    2004-01-01

    From October 1995 to September 2000 (water years 1996-2000), continuous 15-minute stage, water velocity, salinity, and water temperature data were collected at seven estuarine creeks that flow into northeastern Florida Bay. These creeks include West Highway Creek, Stillwater Creek, Trout Creek, Mud Creek, Taylor River, Upstream Taylor River, and McCormick Creek. Discharge was computed at 15-minute intervals using mean water velocity and the cross-sectional area of the channel. Fifteen-minute unit values are presented for comparison of the quantity, quality, timing, and distribution of flows through the creeks. Revised discharge estimation formulas are presented for three noninstrumented sites (East Highway Creek, Oregon Creek and Stillwater Creek) that utilize an improved West Highway discharge rating. Stillwater Creek and Upstream Taylor River were originally noninstrumented sites; both were fully instrumented in 1999. Discharge rating equations are presented for these sites and were developed using a simple linear regression.

  14. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program : Facility Operation and Maintenance Facilities, Annual Report 2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie

    2004-01-01

    Anadromous salmonid stocks have declined in both the Grande Ronde River Basin (Lower Snake River Compensation Plan (LSRCP) Status Review Symposium 1998) and in the entire Snake River Basin (Nehlsen et al. 1991), many to the point of extinction. The Grande Ronde River Basin historically supported large populations of fall and spring chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho (O. kisutch) salmon and steelhead trout (O. mykiss) (Nehlsen et al. 1991). The decline of chinook salmon and steelhead populations and extirpation of coho and sockeye salmon in the Grande Ronde River Basin was, in part, a result of constructionmore » and operation of hydroelectric facilities, over fishing, and loss and degradation of critical spawning and rearing habitat in the Columbia and Snake River basins (Nehlsen et al. 1991). Hatcheries were built in Oregon, Washington and Idaho under the Lower Snake River Compensation Plan (LSRCP) to compensate for losses of anadromous salmonids due to the construction and operation of the lower four Snake River dams. Lookingglass Hatchery (LGH) on Lookingglass Creek, a tributary of the Grande Ronde River, was completed under LSRCP in 1982 and has served as the main incubation and rearing site for chinook salmon programs for Grande Ronde and Imnaha rivers in Oregon. Despite these hatchery programs, natural spring chinook populations continued to decline resulting in the National Marine Fisheries Service (NMFS) listing Snake River spring/summer chinook salmon as ''threatened'' under the federal Endangered Species Act (1973) on 22 April 1992. Continuing poor escapement levels and declining population trends indicated that Grande Ronde River basin spring chinook salmon were in imminent danger of extinction. These continuing trends led fisheries co-managers in the basin to initiate the Grande Ronde Endemic Spring Chinook Salmon Supplementation Program (GRESCSSP) in order to prevent extinction and preserve options for use of endemic

  15. Mechanisms of Robust Future Spring Drying in the Southwest U.S. in CMIP5 Models

    NASA Astrophysics Data System (ADS)

    Ting, M.; Seager, R.; Li, C.; Liu, H.

    2017-12-01

    The net surface water budget, precipitation minus evaporation (P-E), shows a clear seasonal cycle in the American Southwest with net gain of surface water (positive P-E) in the cold half of the year (October to March) and net loss of water (negative P-E) in the warmer half (April - September), with June and July being the driest time of the year. There is a significant shift of the summer drying toward earlier in the year under CO2 warming scenario, resulting in substantial spring drying (MAM) of the American Southwest, from the near-term future (2021 - 2040) to the end of the current Century with gradually increasing magnitude. While the spring drying has been identified in previous studies, its mechanism has not been fully addressed. Using moisture budget analysis, we found that the drying is mainly due to decreased mean moisture convergence, partially compensated by the increase in transient eddy moisture flux convergence. The decreased mean moisture convergence is further separated into those due to changes in circulation (dynamic changes) and changes in atmospheric moisture content (thermodynamic changes). The drying is found to be dominated by the thermodynamic driven changes in column averaged moisture convergence, due mainly to increased dry zonal advection caused by the climatological land-ocean thermal contrast, rather than by the well-known "dry gets drier" mechanism. Furthermore, the enhanced dry advection in the warming climate is dominated by the robust zonal mean atmospheric warming, thus the spring drying in Southwest US is very robust. We also discuss reasons this future drying is particularly strong in the spring as compared to the other seasons.

  16. Warm summers during the Younger Dryas cold reversal.

    PubMed

    Schenk, Frederik; Väliranta, Minna; Muschitiello, Francesco; Tarasov, Lev; Heikkilä, Maija; Björck, Svante; Brandefelt, Jenny; Johansson, Arne V; Näslund, Jens-Ove; Wohlfarth, Barbara

    2018-04-24

    The Younger Dryas (YD) cold reversal interrupts the warming climate of the deglaciation with global climatic impacts. The sudden cooling is typically linked to an abrupt slowdown of the Atlantic Meridional Overturning Circulation (AMOC) in response to meltwater discharges from ice sheets. However, inconsistencies regarding the YD-response of European summer temperatures have cast doubt whether the concept provides a sufficient explanation. Here we present results from a high-resolution global climate simulation together with a new July temperature compilation based on plant indicator species and show that European summers remain warm during the YD. Our climate simulation provides robust physical evidence that atmospheric blocking of cold westerly winds over Fennoscandia is a key mechanism counteracting the cooling impact of an AMOC-slowdown during summer. Despite the persistence of short warm summers, the YD is dominated by a shift to a continental climate with extreme winter to spring cooling and short growing seasons.

  17. Analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek (ID-111-006), Big Jacks Creek (ID-111-007C), Duncan Creek (ID-111-0007B), and Upper Deep Creek (ID-111-044) Wilderness Study Areas, Owyhee County, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, M.S.; Gent, C.A.; Bradley, L.A.

    1989-01-01

    A U.S. Geological Survey report detailing the analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek, Big Jacks Creek, Duncan Creek, and Upper Deep Creek Wilderness Study Areas, Owyhee County, Idaho

  18. Karst Groundwater Hydrologic Analyses Based on Aerial Thermography

    NASA Technical Reports Server (NTRS)

    Campbell, C. Warren; Keith, A. G.

    2000-01-01

    On February 23, 1999, thermal imagery of Marshall Space Flight Center, Alabama was collected using an airborne thermal camera. Ground resolution was I in. Approximately 40 km 2 of thermal imagery in and around Marshall Space Flight Center (MSFC) was analyzed to determine the location of springs for groundwater monitoring. Subsequently, forty-five springs were located ranging in flow from a few ml/sec to approximately 280 liter/sec. Groundwater temperatures are usually near the mean annual surface air temperature. On thermography collected during the winter, springs show up as very warm spots. Many of the new springs were submerged in lakes, streams, or swamps; consequently, flow measurements were difficult. Without estimates of discharge, the impacts of contaminated discharge on surface streams would be difficult to evaluate. An approach to obtaining an estimate was developed using the Environmental Protection Agency (EPA) Cornell Mixing Zone Expert System (CORMIX). The thermography was queried to obtain a temperature profile down the center of the surface plume. The spring discharge was modeled with CORMIX, and the flow adjusted until the surface temperature profile was matched. The presence of volatile compounds in some of the new springs also allowed MSFC to unravel the natural system of solution cavities of the karst aquifer. Sampling results also showed that two springs on either side of a large creek had the same water source so that groundwater was able to pass beneath the creek.

  19. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests.

    PubMed

    Richardson, Andrew D; Hollinger, David Y; Dail, D Bryan; Lee, John T; Munger, J William; O'keefe, John

    2009-03-01

    Spring phenology is thought to exert a major influence on the carbon (C) balance of temperate and boreal ecosystems. We investigated this hypothesis using four spring onset phenological indicators in conjunction with surface-atmosphere CO(2) exchange data from the conifer-dominated Howland Forest and deciduous-dominated Harvard Forest AmeriFlux sites. All phenological measures, including CO(2) source-sink transition dates, could be well predicted on the basis of a simple two-parameter spring warming model, indicating good potential for improving the representation of phenological transitions and their dynamic responsiveness to climate variability in land surface models. The date at which canopy-scale photosynthetic capacity reached a threshold value of 12 micromol m(-2) s(-1) was better correlated with spring and annual flux integrals than were either deciduous or coniferous bud burst dates. For all phenological indicators, earlier spring onset consistently, but not always significantly, resulted in higher gross primary productivity (GPP) and ecosystem respiration (RE) for both seasonal (spring months, April-June) and annual flux integrals. The increase in RE was less than that in GPP; depending on the phenological indicator used, a one-day advance in spring onset increased springtime net ecosystem productivity (NEP) by 2-4 g C m(-2) day(-1). In general, we could not detect significant differences between the two forest types in response to earlier spring, although the response to earlier spring was generally more pronounced for Harvard Forest than for Howland Forest, suggesting that future climate warming may favor deciduous species over coniferous species, at least in this region. The effect of earlier spring tended to be about twice as large when annual rather than springtime flux integrals were considered. This result is suggestive of both immediate and lagged effects of earlier spring onset on ecosystem C cycling, perhaps as a result of accelerated N cycling

  20. High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming.

    PubMed

    Heide, O M

    2003-09-01

    The effect of temperature during short-day (SD) dormancy induction was examined in three boreal tree species in a controlled environment. Saplings of Betula pendula Roth, B. pubescens Ehrh. and Alnus glutinosa (L.) Moench. were exposed to 5 weeks of 10-h SD induction at 9, 15 and 21 degrees C followed by chilling at 5 degrees C for 40, 70, 100 and 130 days and subsequent forcing at 15 degrees C in a 24-h photoperiod for 60 days. In all species and with all chilling periods, high temperature during SD dormancy induction significantly delayed bud burst during subsequent flushing at 15 degrees C. In A. glutinosa, high temperature during SD dormancy induction also significantly increased the chilling requirement for dormancy release. Field experiments at 60 degrees N with a range of latitudinal birch populations revealed a highly significant correlation between autumn temperature and days to bud burst in the subsequent spring. September temperature alone explained 20% of the variation between years in time of bud burst. In birch populations from 69 and 71 degrees N, which ceased growing and shed their leaves in August when the mean temperature was 15 degrees C, bud burst occurred later than expected compared with lower latitude populations (56 degrees N) in which dormancy induction took place more than 2 months later at a mean temperature of about 6 degrees C. It is concluded that this autumn temperature response may be important for counterbalancing the potentially adverse effects of higher winter temperatures on dormancy stability of boreal trees during climate warming.

  1. 75 FR 40034 - Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek, Clear Creek, Boone, Fort...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... shoreline along these reservoirs. Existing land uses around the reservoirs include TVA project operations... TENNESSEE VALLEY AUTHORITY Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek, Clear Creek, Boone, Fort Patrick Henry, South Holston, Watauga, and Wilbur Reservoirs, Tennessee and...

  2. Preliminary Evidence for the Amplification of Global Warming in Shallow, Intertidal Estuarine Waters.

    PubMed

    Oczkowski, Autumn; McKinney, Richard; Ayvazian, Suzanne; Hanson, Alana; Wigand, Cathleen; Markham, Erin

    2015-01-01

    Over the past 50 years, mean annual water temperature in northeastern U.S. estuaries has increased by approximately 1.2°C, with most of the warming recorded in the winter and early spring. A recent survey and synthesis of data from four locations in Southern Rhode Island has led us to hypothesize that this warming may be amplified in the shallow (<1 m), nearshore portions of these estuaries. While intertidal areas are not typically selected as locations for long-term monitoring, we compiled data from published literature, theses, and reports that suggest that enhanced warming may be occurring, perhaps at rates three times higher than deeper estuarine waters. Warmer spring waters may be one of the factors influencing biota residing in intertidal regions both in general as well as at our specific sites. We observed greater abundance of fish, and size of Menidia sp., in recent (2010-2012) seine surveys compared to similar collections in 1962. While any linkages are speculative and data are preliminary, taken together they suggest that shallow intertidal portions of estuaries may be important places to look for the effects of climate change.

  3. 33 CFR 334.480 - Archers Creek, Ribbon Creek and Broad River, S.C.; U.S. Marine Corps Recruit Depot rifle and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Broad River, S.C.; U.S. Marine Corps Recruit Depot rifle and pistol ranges, Parris Island. 334.480... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.480 Archers Creek, Ribbon Creek and Broad River... navigation: (1) At the rifle range. Archers Creek between Broad River and Beaufort River and Ribbon Creek...

  4. 33 CFR 334.480 - Archers Creek, Ribbon Creek and Broad River, S.C.; U.S. Marine Corps Recruit Depot rifle and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Broad River, S.C.; U.S. Marine Corps Recruit Depot rifle and pistol ranges, Parris Island. 334.480... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.480 Archers Creek, Ribbon Creek and Broad River... navigation: (1) At the rifle range. Archers Creek between Broad River and Beaufort River and Ribbon Creek...

  5. The Collins Creek and Pleasant Creek Formations: Two new upper cretaceous subsurface units in the Carolina/Georgia Coastal Plain

    USGS Publications Warehouse

    ,; Prowell, D.C.; Christopher, R.A.

    2004-01-01

    This paper formally defines two new Upper Cretaceous subsurface units in the southern Atlantic Coastal Plain of North Carolina, South Carolina and Georgia: the Collins Creek Formation and the Pleasant Creek Formation. These units are confined to the subsurface of the outer Coastal Plain, and their type sections are established in corehole CHN-820 from Charleston County, S.C. The Collins Creek Formation consists of greenish-gray lignitic sand and dark-greenish-gray sandy clay and is documented in cores from Allendale, Beaufort, Berkeley, Dorchester, Jasper and Marion Counties, South Carolina, and from Screven County, Georgia. Previously, Collins Creek strata had been incorrectly assigned to the Middendorf Formation. These sediments occupy a stratigraphic position between the Turonian/Coniacian Cape Fear Formation (?) below and the proposed upper Coniacian to middle Santonian Pleasant Creek Formation above. The Collins Creek Formation is middle and late Coniacian in age on the basis of calcareous nannofossil and palynomorph analyses. The Pleasant Creek Formation consists of olive-gray sand and dark-greenish-gray silty to sandy clay and is documented in cores from New Hanover County, North Carolina, and Berkeley, Charleston, Dorchester, Horry and Marion Counties, South Carolina. The strata of this unit previously were assigned incorrectly to the Middendorf Formation and (or) the Cape Fear Formation. These sediments occupy a stratigraphic position between the proposed Collins Creek Formation below and the Shepherd Grove Formation above. The Pleasant Creek Formation is late Coniacian and middle Santonian in age, on the basis of its calcareous nannofossil and palynomorph assemblages.

  6. 6. West elevation of Drift Creek Bridge, view looking east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. West elevation of Drift Creek Bridge, view looking east from new alignment of Drift Creek Road - Drift Creek Bridge, Spanning Drift Creek on Drift Creek County Road, Lincoln City, Lincoln County, OR

  7. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community.

    PubMed

    Bokhorst, Stef; Bjerke, Jarle W; Davey, Matthew P; Taulavuori, Kari; Taulavuori, Erja; Laine, Kari; Callaghan, Terry V; Phoenix, Gareth K

    2010-10-01

    Insulation provided by snow cover and tolerance of freezing by physiological acclimation allows Arctic plants to survive cold winter temperatures. However, both the protection mechanisms may be lost with winter climate change, especially during extreme winter warming events where loss of snow cover from snow melt results in exposure of plants to warm temperatures and then returning extreme cold in the absence of insulating snow. These events cause considerable damage to Arctic plants, but physiological responses behind such damage remain unknown. Here, we report simulations of extreme winter warming events using infrared heating lamps and soil warming cables in a sub-Arctic heathland. During these events, we measured maximum quantum yield of photosystem II (PSII), photosynthesis, respiration, bud swelling and associated bud carbohydrate changes and lipid peroxidation to identify physiological responses during and after the winter warming events in three dwarf shrub species: Empetrum hermaphroditum, Vaccinium vitis-idaea and Vaccinium myrtillus. Winter warming increased maximum quantum yield of PSII, and photosynthesis was initiated for E. hermaphroditum and V. vitis-idaea. Bud swelling, bud carbohydrate decreases and lipid peroxidation were largest for E. hermaphroditum, whereas V. myrtillus and V. vitis-idaea showed no or less strong responses. Increased physiological activity and bud swelling suggest that sub-Arctic plants can initiate spring-like development in response to a short winter warming event. Lipid peroxidation suggests that plants experience increased winter stress. The observed differences between species in physiological responses are broadly consistent with interspecific differences in damage seen in previous studies, with E. hermaphroditum and V. myrtillus tending to be most sensitive. This suggests that initiation of spring-like development may be a major driver in the damage caused by winter warming events that are predicted to become more

  8. Streamflow and water-quality data for Little Clearfield Creek basin, Clearfield County, Pennsylvania, December 1987 - November 1988

    USGS Publications Warehouse

    Kostelnik, K.M.; Durlin, R.R.

    1989-01-01

    Streamflow and water quality data were collected throughout the Little Clearfield Creek basin, Clearfield County, Pennsylvania, from December 1987 through November 1988, to determine the existing quality of surface water over a range of hydrologic conditions. This data will assist the Pennsylvania Department of Environmental Resources during its review of coal mine permit applications. A water quality station near the mouth of Little Clearfield Creek provided continuous record of stream stage, pH, specific conductance, and water temperature. Monthly water quality samples collected at this station were analyzed for total and dissolved metals, nutrients, major cations, and suspended sediment concentrations. Seventeen partial record sites, located throughout the basin, were similarly sampled four times during the study. Streamflow and water quality data obtained at these sites during a winter base flow, a spring storm event, a low summer base flow, and a more moderate summer base flow also are presented. (Author 's abstract)

  9. Future vegetation ecosystem response to warming climate over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Bao, Y.; Gao, Y.; Wang, Y.

    2017-12-01

    The amplified vegetation response to climate variability has been found over the Tibetan Plateau (TP) in recent decades. In this study, the potential impacts of 21st century climate change on the vegetation ecosystem over the TP are assessed based on the dynamic vegetation outputs of models from Coupled Model Intercomparison Project Phase 5 (CMIP5), and the sensitivity of the TP vegetation in response to warming climate was investigated. Models project a continuous and accelerating greening in future, especially in the eastern TP, which closely associates with the plant type upgrade due to the pronouncing warming in growing season.Vegetation leaf area index (LAI) increase well follows the global warming, suggesting the warming climate instead of co2 fertilization controlls the future TP plant growth. The warming spring may advance the start of green-up day and extend the growing season length. More carbon accumulation in vegetation and soil will intensify the TP carbon cycle and will keep it as a carbon sink in future. Keywords: Leaf Area Index (LAI), Climate Change, Global Dynamic Vegetation Models (DGVMs), CMIP5, Tibetan Plateau (TP)

  10. ncreasing altitudinal spring phenology gradient of vegetation over the last decade in Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Shen, M.; Piao, S.

    2013-12-01

    Vegetation spring phenology in temperate and cold regions is widely expected to advance with temperature elevation and is often used as an indicator of regional climatic change. The Qinghai-Tibetan Plateau (QTP) has experienced intensive warming recently, but substantial contradictions exist about the changes of vegetation spring phenology. We investigated spatiotemporal variations in green-up dates in the QTP from 2000 to 2011 determined through five methods using four satellite-derived datasets including the normalized difference vegetation index (NDVI) from the Advanced Very High Resolution Radiometer (AVHRR), Système Pour l'Observation de la Terre, and MODerate resolution Imaging Spectroradiometer (MODIS), and the enhanced vegetation index from MODIS. On regional scale, no significant temporal trends (all P > 0.05) were found in the green-up dates, consistently among all the vegetation indices and methods. This insignificance was resulted from the substantial spatial heterogeneity of trends in green-up date, with delay by greater than 0.5 day yr-1 in the southwest region, and extensive advance in the other areas, although the temperature elevation was region-wide. These changes doubled the altitudinal gradient of green-up date, from 0.63 day 100m-1 in the early 2000s to 1.30 days 100m-1 in the early 2010s. The delay in the southwest region and high altitudes was likely caused by the decline in spring precipitation, despite the increasing spring temperature. This study suggests that spring precipitation is an important regulator of phenological response to climatic warming in QTP, and that, even in cold region, delay of vegetation spring phenology does not necessarily indicate spring cooling. Besides, the phenological changes retrieved from the widely used AVHRR NDVI differed from those from the other 3 vegetation indices, necessitating the use of multi-datasets while monitoring vegetation dynamics from space.

  11. Spring predictability explains different leaf-out strategies in the woody floras of North America, Europe and East Asia.

    PubMed

    Zohner, Constantin M; Benito, Blas M; Fridley, Jason D; Svenning, Jens-Christian; Renner, Susanne S

    2017-04-01

    Intuitively, interannual spring temperature variability (STV) should influence the leaf-out strategies of temperate zone woody species, with high winter chilling requirements in species from regions where spring warming varies greatly among years. We tested this hypothesis using experiments in 215 species and leaf-out monitoring in 1585 species from East Asia (EA), Europe (EU) and North America (NA). The results reveal that species from regions with high STV indeed have higher winter chilling requirements, and, when grown under the same conditions, leaf out later than related species from regions with lower STV. Since 1900, STV has been consistently higher in NA than in EU and EA, and under experimentally short winter conditions NA species required 84% more spring warming for bud break, EU ones 49% and EA ones only 1%. These previously unknown continental-scale differences in phenological strategies underscore the need for considering regional climate histories in global change models. © 2017 John Wiley & Sons Ltd/CNRS.

  12. Study of aerosol effect on accelerated snow melting over the Tibetan Plateau during boreal spring

    NASA Astrophysics Data System (ADS)

    Lee, Woo-Seop; Bhawar, Rohini L.; Kim, Maeng-Ki; Sang, Jeong

    2013-08-01

    In the present study, a coupled atmosphere-ocean global climate model (CSIRO-Mk3.6) is used to investigate the role of aerosol forcing agents as drivers of snow melting trends in the Tibetan Plateau (TP) region. Anthropogenic aerosol-induced snow cover changes in a warming climate are calculated from the difference between historical run (HIST) and all forcing except anthropogenic aerosol (NoAA). Absorbing aerosols can influence snow cover by warming the atmosphere, reducing snow reflectance after deposition. The warming the rate of snow melt, exposing darker surfaces below to short-wave radiation sooner, and allowing them to heat up even faster in the Himalayas and TP. The results show a strong spring snow cover decrease over TP when absorbing anthropogenic aerosol forcing is considered, whereas snow cover fraction (SCF) trends in NoAA are weakly negative (but insignificant) during 1951-2005. The enhanced spring snow cover trends in HIST are due to overall effects of different forcing agents: When aerosol forcing (AERO) is considered, a significant reduction of SCF than average can be found over the western TP and Himalayas. The large decreasing trends in SCF over the TP, with the maximum reduction of SCF around 12-15% over the western TP and Himalayas slope. Also accelerated snow melting during spring is due to effects of aerosol on snow albedo, where aerosol deposition cause decreases snow albedo. However, the SCF change in the “NoAA” simulations was observed to be less.

  13. Ecosystem engineers drive creek formation in salt marshes.

    PubMed

    Vu, Huy D; Wie Ski, Kazimierz; Pennings, Steven C

    2017-01-01

    Ecosystem engineers affect different organisms and processes in multiple ways at different spatial scales. Moreover, similar species may differ in their engineering effects for reasons that are not always clear. We examined the role of four species of burrowing crabs (Sesarma reticulatum, Eurytium limosum, Panopeus herbstii, Uca pugnax) in engineering tidal creek networks in salt marshes experiencing sea level rise. In the field, crab burrows were associated with heads of eroding creeks and the loss of plant (Spartina alterniflora) stems. S. reticulatum was closely associated with creek heads, but densities of the other crab species did not vary across marsh zones. In mesocosm experiments, S. reticulatum excavated the most soil and strongly reduced S. alterniflora biomass. The other three species excavated less and did not affect S. alterniflora. Creek heads with vegetation removed to simulate crab herbivory grew significantly faster than controls. Percolation rates of water into marsh sediments were 10 times faster at creek heads than on the marsh platform. Biomass decomposed two times faster at creek heads than on the marsh platform. Our results indicate that S. reticulatum increases creek growth by excavating sediments and by consuming plants, thereby increasing water flow and erosion at creek heads. Moreover, it is possible that S. reticulatum burrows also increase creek growth by increasing surface and subsurface erosion, and by increasing decomposition of organic matter at creek heads. Our results show that the interaction between crab and plant ecosystem engineers can have both positive and negative effects. At a small scale, in contrast to other marsh crabs, S. reticulatum harms rather than benefits plants, and increases erosion rather than marsh growth. At a large scale, however, S. reticulatum facilitates the drainage efficiency of the marsh through the expansion of tidal creek networks, and promotes marsh health. © 2016 by the Ecological Society

  14. Vertical structure of recent Arctic warming.

    PubMed

    Graversen, Rune G; Mauritsen, Thorsten; Tjernström, Michael; Källén, Erland; Svensson, Gunilla

    2008-01-03

    Near-surface warming in the Arctic has been almost twice as large as the global average over recent decades-a phenomenon that is known as the 'Arctic amplification'. The underlying causes of this temperature amplification remain uncertain. The reduction in snow and ice cover that has occurred over recent decades may have played a role. Climate model experiments indicate that when global temperature rises, Arctic snow and ice cover retreats, causing excessive polar warming. Reduction of the snow and ice cover causes albedo changes, and increased refreezing of sea ice during the cold season and decreases in sea-ice thickness both increase heat flux from the ocean to the atmosphere. Changes in oceanic and atmospheric circulation, as well as cloud cover, have also been proposed to cause Arctic temperature amplification. Here we examine the vertical structure of temperature change in the Arctic during the late twentieth century using reanalysis data. We find evidence for temperature amplification well above the surface. Snow and ice feedbacks cannot be the main cause of the warming aloft during the greater part of the year, because these feedbacks are expected to primarily affect temperatures in the lowermost part of the atmosphere, resulting in a pattern of warming that we only observe in spring. A significant proportion of the observed temperature amplification must therefore be explained by mechanisms that induce warming above the lowermost part of the atmosphere. We regress the Arctic temperature field on the atmospheric energy transport into the Arctic and find that, in the summer half-year, a significant proportion of the vertical structure of warming can be explained by changes in this variable. We conclude that changes in atmospheric heat transport may be an important cause of the recent Arctic temperature amplification.

  15. Simulation of Water Quality in the Tull Creek and West Neck Creek Watersheds, Currituck Sound Basin, North Carolina and Virginia

    USGS Publications Warehouse

    Garcia, Ana Maria

    2009-01-01

    A study of the Currituck Sound was initiated in 2005 to evaluate the water chemistry of the Sound and assess the effectiveness of management strategies. As part of this study, the Soil and Water Assessment Tool (SWAT) model was used to simulate current sediment and nutrient loadings for two distinct watersheds in the Currituck Sound basin and to determine the consequences of different water-quality management scenarios. The watersheds studied were (1) Tull Creek watershed, which has extensive row-crop cultivation and artificial drainage, and (2) West Neck Creek watershed, which drains urban areas in and around Virginia Beach, Virginia. The model simulated monthly streamflows with Nash-Sutcliffe model efficiency coefficients of 0.83 and 0.76 for Tull Creek and West Neck Creek, respectively. The daily sediment concentration coefficient of determination was 0.19 for Tull Creek and 0.36 for West Neck Creek. The coefficient of determination for total nitrogen was 0.26 for both watersheds and for dissolved phosphorus was 0.4 for Tull Creek and 0.03 for West Neck Creek. The model was used to estimate current (2006-2007) sediment and nutrient yields for the two watersheds. Total suspended-solids yield was 56 percent lower in the urban watershed than in the agricultural watershed. Total nitrogen export was 45 percent lower, and total phosphorus was 43 percent lower in the urban watershed than in the agricultural watershed. A management scenario with filter strips bordering the main channels was simulated for Tull Creek. The Soil and Water Assessment Tool model estimated a total suspended-solids yield reduction of 54 percent and total nitrogen and total phosphorus reductions of 21 percent and 29 percent, respectively, for the Tull Creek watershed.

  16. Field observations of extended seawater intrusion through subsurface karst conduit networks at Wakulla Spring in the Woodville Karst Plain, Florida

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Bassett, S.; Hu, B. X.; Dyer, S.

    2016-12-01

    Five periods of increased electrical conductivity have been found in the karst conduits supplying one of the largest first magnitude springs in Florida with water. Numerous well-developed conduit networks are distributed in the Woodville Karst Plain (WKP), Florida and connected to the Gulf of Mexico. A composite analysis of precipitation and electric conductivity data provides strong evidence that the increases in conductivity are directly tied to seawater intrusion moving inland and traveling 14 miles against the prevailing regional hydraulic gradient from from Spring Creek Spring Complex (SCSC), a group of submarine springs at the Gulf Coast. A geochemical analysis of samples from the spring vent rules out anthropogenic contamination and upwelling regional recharge from the deep aquifer as sources of the rising conductivity. The interpretation is supported by the conceptual model established by prior researchers working to characterize the study area. This abstract documented the first and longest case of seawater intrusion in the WKP, and also indicates significant possibility of seawater contamination through subsurface conduit networks in a coastal karst aquifer.

  17. Hydrogeology and ground-water-flow simulation of the Cave Springs area, Hixson, Tennessee

    USGS Publications Warehouse

    Haugh, Connor J.

    2002-01-01

    The ground-water resource in the Cave Springs area is used by the Hixson Utility District as a water supply and is one of the more heavily stressed in the Valley and Ridge Physiographic Province. In 1999, ground-water withdrawals by the Hixson Utility District averaged about 6.4 million gallons per day (Mgal/d) from two pumping centers. The Hixson Utility District has historically withdrawn about 5.8 Mgal/d from wells at Cave Springs. In 1995 to meet increasing demand, an additional well field was developed at Walkers Corner, located about 3 miles northeast of Cave Springs. From 1995 through 2000, pumping from the first production well at Walkers Corner averaged about 1.8 Mgal/d. A second production well at Walkers Corner was approved for use in 2000. Hixson Utility District alternates the use of the two production wells at Walkers Corner except when drought conditions occur when they are used simultaneously. The second production well increased the capacity of the well field by an additional 2 Mgal/d. The aquifer framework in the study area consists of dense Paleozoic carbonate rocks with secondary permeability that are mantled by thick residual clay-rich regolith in most of the area and by coarse-grained alluvium in the valley of North Chickamauga Creek. Cave Springs, one of the largest springs in Tennessee, derives its flow from conduits in a carbonate rock (karst) aquifer. Production wells at Cave Springs draw water from these conduits. Production wells at Walkers Corner primarily draw water from gravel zones in the regolith near the top of rock. Transmissivities estimated from hydraulic tests conducted across the Cave Springs area span a range from 240 to 900,000 feet squared per day (ft2/d) with a median value of 5,200 ft2/d. Recharge to the aquifer occurs from direct infiltration of precipitation and from losing streams. Most recharge occurs during the winter and spring months. Computer modeling was used to provide a better understanding of the ground

  18. Isotopes and Sustainability of the Shallow Groundwater System in Spring and Snake Valleys, Eastern White Pine County, Nevada

    NASA Astrophysics Data System (ADS)

    Acheampong, S. Y.

    2007-12-01

    A critical component to managing water resources is understanding the source of ground water that is extracted from a well. Detail information on the source of recharge and the age of groundwater is thus vital for the proper assessment, development, management, and monitoring of the groundwater resources in an area. Great differences in the isotopic composition of groundwater in a basin and the basin precipitation imply that the groundwater in the basin originates from a source outside the basin or is recharged under different climatic conditions. The stable isotopes of oxygen and hydrogen in precipitation were compared with the isotopic composition of water from wells, springs, and creeks to evaluate the source of the shallow groundwater recharge in Spring and Snake Valleys, Nevada, as part of an evaluation of the water resources in the area. Delta deuterium and delta oxygen-18 composition of springs, wells, creeks, and precipitation in Spring and Snake Valleys show that groundwater recharge occurs primarily from winter precipitation in the surrounding mountains. The carbon-14 content of the groundwater ranged from 30 to 95 percent modern carbon (pmc). Twenty two of the thirty samples had carbon-14 values of greater than 50 pmc. The relatively high carbon-14 values suggest that groundwater in the area is recharged by modern precipitation and the waters have rapid travel times. Total dissolved solids content of the samples outside the playa areas are generally low, and suggests that the water has a relatively short travel time between the recharge areas and sample sites. The presence of tritium in some of the springs and wells also indicate that groundwater mixes with post 1952 precipitation. Hydrogen bomb tests which began in 1952 in the northern hemisphere added large amounts of tritium to the atmosphere and reached a peak in 1963. The stable isotopic composition, the high carbon-14 activities, and the presence of tritium, show that the shallow groundwater in

  19. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tip of an unnamed island located 0.16 mile upstream from the mouth of the creek approximately 660 feet to the west shore of the creek; northwest of a line ranging from the southwesterly tip of the island... line 100 feet from and parallel to the shore of the creek to its intersection with the south property...

  20. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... tip of an unnamed island located 0.16 mile upstream from the mouth of the creek approximately 660 feet to the west shore of the creek; northwest of a line ranging from the southwesterly tip of the island... line 100 feet from and parallel to the shore of the creek to its intersection with the south property...

  1. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tip of an unnamed island located 0.16 mile upstream from the mouth of the creek approximately 660 feet to the west shore of the creek; northwest of a line ranging from the southwesterly tip of the island... line 100 feet from and parallel to the shore of the creek to its intersection with the south property...

  2. Peatland Structural Controls on Spring Distribution

    NASA Astrophysics Data System (ADS)

    Hare, D. K.; Boutt, D. F.; Hackman, A. M.; Davenport, G.

    2013-12-01

    The species richness of wetland ecosystems' are sustained by the presence of discrete groundwater discharge, or springs. Springs provide thermal refugia and a source of fresh water inflow crucial for survival of many wetland species. The subsurface drivers that control the spatial distribution of surficial springs throughout peatland complexes are poorly understood due to the many challenges peatlands pose for hydrologic characterization, such as the internal heterogeneities, soft, dynamic substrate, and low gradient of peat drainage. This has previously made it difficult to collect spatial data required for restoration projects that seek to support spring obligate and thermally stressed species such as trout. Tidmarsh Farms is a 577-acre site in Southeastern Massachusetts where 100+ years of cranberry farming has significantly altered the original peatland hydrodynamics and ecology. Farming practices such as the regular application of sand, straightening of the main channel, and addition of drainage ditches has strongly degraded this peatland ecosystem. Our research has overlain non-invasive geophysical, thermal, and water isotopic data from the Tidmarsh Farms peatland to provide a detailed visualization of how subsurface peat structure and spring patterns correlate. Ground penetrating radar (GPR) has proven particularly useful in characterizing internal peat structure and the mineral soil interface beneath peatlands, we interpolate the peatland basin at a large scale (1 km2) and compare this 3-D surface to the locations of springs on the peat platform. Springs, expressed as cold anomalies in summer and warm anomalies in winter, were specifically located by combining fiber-optic and infrared thermal surveys, utilizing the numerous relic agricultural drainage ditches as a sampling advantage. Isotopic signatures of the spring locations are used to distinguish local and regional discharge, differences that can be explained in part by the peat basin structure

  3. Peak Discharge, Flood Frequency, and Peak Stage of Floods on Big Cottonwood Creek at U.S. Highway 50 Near Coaldale, Colorado, and Fountain Creek below U.S. Highway 24 in Colorado Springs, Colorado, 2016

    DOT National Transportation Integrated Search

    2017-12-14

    The U.S. Geological Survey (USGS), in cooperation with the Colorado Department of Transportation, determined the peak discharge, annual exceedance probability (flood frequency), and peak stage of two floods that took place on Big Cottonwood Creek at ...

  4. Microsatellite analyses of San Franciscuito Creek rainbow trout

    USGS Publications Warehouse

    Nielsen, Jennifer L.

    2000-01-01

    Microsatellite genetic diversity found in San Francisquito Creek rainbow trout support a close genetic relationship with rainbow trout (Oncorhynchus mykiss) from another tributary of San Francisco Bay, Alameda Creek, and coastal trout found in Lagunitas Creek, Marin County, California. Fish collected for this study from San Francisquito Creek showed a closer genetic relationship to fish from the north-central California steelhead ESU than for any other listed group of O. mykiss. No significant genotypic or allelic frequency associations could be drawn between San Francisquito Creek trout and fish collected from the four primary rainbow trout hatchery strains in use in California, i.e. Whitney, Mount Shasta, Coleman, and Hot Creek hatchery fish. Indeed, genetic distance analyses (δµ2) supported separation between San Francisquito Creek trout and all hatchery trout with 68% bootstrap values in 1000 replicate neighbor-joining trees. Not surprisingly, California hatchery rainbow trout showed their closest evolutionary relationships with contemporary stocks derived from the Sacramento River. Wild collections of rainbow trout from the Sacramento-San Joaquin basin in the Central Valley were also clearly separable from San Francisquito Creek fish supporting separate, independent ESUs for two groups of O. mykiss (one coastal and one Central Valley) with potentially overlapping life histories in San Francisco Bay. These data support the implementation of management and conservation programs for rainbow trout in the San Francisquito Creek drainage as part of the central California coastal steelhead ESU.

  5. Winter warming delays dormancy release, advances budburst, alters carbohydrate metabolism and reduces yield in a temperate shrub

    PubMed Central

    Pagter, Majken; Andersen, Uffe Brandt; Andersen, Lillie

    2015-01-01

    Global climate models predict an increase in the mean surface air temperature, with a disproportionate increase during winter. Since temperature is a major driver of phenological events in temperate woody perennials, warming is likely to induce changes in a range of these events. We investigated the impact of slightly elevated temperatures (+0.76 °C in the air, +1.35 °C in the soil) during the non-growing season (October–April) on freezing tolerance, carbohydrate metabolism, dormancy release, spring phenology and reproductive output in two blackcurrant (Ribes nigrum) cultivars to understand how winter warming modifies phenological traits in a woody perennial known to have a large chilling requirement and to be sensitive to spring frost. Warming delayed dormancy release more in the cultivar ‘Narve Viking’ than in the cultivar ‘Titania’, but advanced budburst and flowering predominantly in ‘Titania’. Since ‘Narve Viking’ has a higher chilling requirement than ‘Titania’, this indicates that, in high-chilling-requiring genotypes, dormancy responses may temper the effect of warming on spring phenology. Winter warming significantly reduced fruit yield the following summer in both cultivars, corroborating the hypothesis that a decline in winter chill may decrease reproductive effort in blackcurrant. Elevated winter temperatures tended to decrease stem freezing tolerance during cold acclimation and deacclimation, but it did not increase the risk of freeze-induced damage mid-winter. Plants at elevated temperature showed decreased levels of sucrose in stems of both cultivars and flower buds of ‘Narve Viking’, which, in buds, was associated with increased concentrations of glucose and fructose. Hence, winter warming influences carbohydrate metabolism, but it remains to be elucidated whether decreased sucrose levels account for any changes in freezing tolerance. Our results demonstrate that even a slight increase in winter temperature may alter

  6. Winter warming delays dormancy release, advances budburst, alters carbohydrate metabolism and reduces yield in a temperate shrub.

    PubMed

    Pagter, Majken; Andersen, Uffe Brandt; Andersen, Lillie

    2015-03-23

    Global climate models predict an increase in the mean surface air temperature, with a disproportionate increase during winter. Since temperature is a major driver of phenological events in temperate woody perennials, warming is likely to induce changes in a range of these events. We investigated the impact of slightly elevated temperatures (+0.76 °C in the air, +1.35 °C in the soil) during the non-growing season (October-April) on freezing tolerance, carbohydrate metabolism, dormancy release, spring phenology and reproductive output in two blackcurrant (Ribes nigrum) cultivars to understand how winter warming modifies phenological traits in a woody perennial known to have a large chilling requirement and to be sensitive to spring frost. Warming delayed dormancy release more in the cultivar 'Narve Viking' than in the cultivar 'Titania', but advanced budburst and flowering predominantly in 'Titania'. Since 'Narve Viking' has a higher chilling requirement than 'Titania', this indicates that, in high-chilling-requiring genotypes, dormancy responses may temper the effect of warming on spring phenology. Winter warming significantly reduced fruit yield the following summer in both cultivars, corroborating the hypothesis that a decline in winter chill may decrease reproductive effort in blackcurrant. Elevated winter temperatures tended to decrease stem freezing tolerance during cold acclimation and deacclimation, but it did not increase the risk of freeze-induced damage mid-winter. Plants at elevated temperature showed decreased levels of sucrose in stems of both cultivars and flower buds of 'Narve Viking', which, in buds, was associated with increased concentrations of glucose and fructose. Hence, winter warming influences carbohydrate metabolism, but it remains to be elucidated whether decreased sucrose levels account for any changes in freezing tolerance. Our results demonstrate that even a slight increase in winter temperature may alter phenological traits in

  7. Grande Ronde Endemic Spring Chinook Project - ODFW, 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Scott

    2009-04-10

    Core activities of the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCSP) are funded through the authority of the Lower Snake River Fish and Wildlife Compensation Plan (LSRCP). The LSRCP program was approved by the Water Resources Development Act of 1976, PL 94-587, Section 102, 94th Congress substantially in accordance with the Special Report, LSRCP, June 1975 on file with the Chief of Engineers. The LSRCP was prepared and submitted in compliance with the Fish and Wildlife Coordination Act of 1958, PL 85-624, 85th Congress, August 12, 1958 to mitigate for the losses of fish and wildlife caused by themore » construction of dams on lower Snake River. The GRESCSP is an artificial propagation program that was initiated by Bonneville Power Administrations Fish and Wildlife program in the mid 1990's. The intent of this program was to change the mitigation aspect of the LSRCP program (harvest mitigation) to an integrated supplementation program; inasmuch as, hatchery produced fish could be experimentally used as a recovery tool and fish surplus to mitigation would be available for in-place and in-kind harvest. Fish production is still authorized by the LSRCP with the original mitigation return goal of 5,860 adult spring Chinook to the project area. The GRESCSP was developed with two primary components: (1) conventional broodstock (projects 199800702; 199800703; 199800704) and (2) captive brood (projects 199801001; 199801006). The GRESCSP relies on cooperative M&E efforts from the LSRCP including setting aside the Wenaha and Minam tributaries as natural production reserves components used for reference streams. The GRESCSP, coordinated with federal and tribal partners, identifies production levels for both propagation components and weir management strategies for each of the three supplemented tributary areas within the Grande Ronde Sub-basin. The three supplemented areas are Catherine Creek, Lostine River, and upper Grande Ronde River. Lookingglass

  8. The interacting effects of food, spring temperature, and global climate cycles on population dynamics of a migratory songbird.

    PubMed

    Townsend, Andrea K; Cooch, Evan G; Sillett, T Scott; Rodenhouse, Nicholas L; Holmes, Richard T; Webster, Michael S

    2016-02-01

    Although long-distance migratory songbirds are widely believed to be at risk from warming temperature trends, species capable of attempting more than one brood in a breeding season could benefit from extended breeding seasons in warmer springs. To evaluate local and global factors affecting population dynamics of the black-throated blue warbler (Setophaga caerulescens), a double-brooded long-distance migrant, we used Pradel models to analyze 25 years of mark-recapture data collected in New Hampshire, USA. We assessed the effects of spring temperature (local weather) and the El Niño Southern Oscillation index (a global climate cycle), as well as predator abundance, insect biomass, and local conspecific density on population growth in the subsequent year. Local and global climatic conditions affected warbler populations in different ways. We found that warbler population growth was lower following El Niño years (which have been linked to poor survival in the wintering grounds and low fledging weights in the breeding grounds) than La Niña years. At a local scale, populations increased following years with warm springs and abundant late-season food, but were unaffected by spring temperature following years when food was scarce. These results indicate that the warming temperature trends might have a positive effect on recruitment and population growth of black-throated blue warblers if food abundance is sustained in breeding areas. In contrast, potential intensification of future El Niño events could negatively impact vital rates and populations of this species. © 2015 John Wiley & Sons Ltd.

  9. Mountain-climbing bears protect cherry species from global warming through vertical seed dispersal.

    PubMed

    Naoe, Shoji; Tayasu, Ichiro; Sakai, Yoichiro; Masaki, Takashi; Kobayashi, Kazuki; Nakajima, Akiko; Sato, Yoshikazu; Yamazaki, Koji; Kiyokawa, Hiroki; Koike, Shinsuke

    2016-04-25

    In a warming climate, temperature-sensitive plants must move toward colder areas, that is, higher latitude or altitude, by seed dispersal [1]. Considering that the temperature drop with increasing altitude (-0.65°C per 100 m altitude) is one hundred to a thousand times larger than that of the equivalent latitudinal distance [2], vertical seed dispersal is probably a key process for plant escape from warming temperatures. In fact, plant geographical distributions are tracking global warming altitudinally rather than latitudinally, and the extent of tracking is considered to be large in plants with better-dispersed traits (e.g., lighter seeds in wind-dispersed plants) [1]. However, no study has evaluated vertical seed dispersal itself due to technical difficulty or high cost. Here, we show using a stable oxygen isotope that black bears disperse seeds of wild cherry over several hundred meters vertically, and that the dispersal direction is heavily biased towards the mountain tops. Mountain climbing by bears following spring-to-summer plant phenology is likely the cause of this biased seed dispersal. These results suggest that spring- and summer-fruiting plants dispersed by animals may have high potential to escape global warming. Our results also indicate that the direction of vertical seed dispersal can be unexpectedly biased, and highlight the importance of considering seed dispersal direction to understand plant responses to past and future climate change. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Coyote Creek Trash Reduction Project: Clean Creeks, Healthy Communities

    EPA Pesticide Factsheets

    Information about the SFBWQP Coyote Creek Trash Reduction Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  11. 33 CFR 207.170d - Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee, Okeechobee, Fla.; use, administration..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170d Taylor Creek, navigation lock...

  12. 33 CFR 207.170d - Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee, Okeechobee, Fla.; use, administration..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170d Taylor Creek, navigation lock...

  13. A long-term monitoring study of chlorophyll, microbial contaminants, and pesticides in a coastal residential stormwater pond and its adjacent tidal creek.

    PubMed

    DeLorenzo, Marie E; Thompson, Brian; Cooper, Emily; Moore, Janet; Fulton, Michael H

    2012-01-01

    Stormwater ponds are commonly used in residential and commercial areas to control flooding. The accumulation of urban contaminants in stormwater ponds can lead to water-quality problems including nutrient enrichment, chemical contamination, and bacterial contamination. This study presents 5 years of monitoring data assessing water quality of a residential subdivision pond and adjacent tidal creek in coastal South Carolina, USA. The stormwater pond is eutrophic, as described by elevated concentrations of chlorophyll and phosphorus, and experiences periodic cyanobacterial blooms. A maximum monthly average chlorophyll concentration of 318.75 μg/L was measured in the stormwater pond and 227.63 μg/L in the tidal creek. Fecal coliform bacteria (FCB) levels were measured in both the pond and the tidal creek that exceeded health and safety standards for safe recreational use. A maximum monthly average FCB level of 1,247 CFU/100 mL was measured in the stormwater pond and 12,850 CFU/100 mL in the tidal creek. In addition, the presence of antibiotic resistant bacteria and pathogenic bacteria were detected. Low concentrations of herbicides (atrazine and 2,4-D: ), a fungicide (chlorothalonil), and insecticides (pyrethroids and imidacloprid) were measured. Seasonal trends were identified, with the winter months having the lowest concentrations of chlorophyll and FCB. Statistical differences between the stormwater pond and the tidal creek were also noted within seasons. The tidal creek had higher FCB levels than the stormwater pond in the spring and summer, whereas the stormwater pond had higher chlorophyll levels than the tidal creek in the summer and fall seasons. Chlorophyll and FCB levels in the stormwater pond were significantly correlated with monthly average temperature and total rainfall. Pesticide concentrations were also significantly correlated with temperature and rainfall. Pesticide concentrations in the stormwater pond were significantly correlated with

  14. Potential effects of surface coal mining on the hydrology of the Little Bear Creek area, Moorhead coal field, southeastern Montana

    USGS Publications Warehouse

    McClymonds, N.E.

    1986-01-01

    The Little Bear Creek area of the Moorhead Coal Field, 27 miles south of Ashland, Montana, contains large reserves of Federally owned coal that have been identified for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic system and to assess potential effects of surface mining on local water resources. Hydrologic data collected from private wells, observation wells, test holes and springs indicate that the aquifers are coal and sandstone beds in the upper part of the Tongue River Member, Fort Union Formation (Paleocene age), and sand and gravel layers of valley alluvium (Pleistocene and Holocene age). Surface water is available from ephemeral flow along stretches of the main streams, and from stock ponds throughout the area. Mining the Anderson and Dietz coal beds would destroy one stock well and several stock ponds, would possibly interfere with the flow of one spring, and would lower the potentiometric surface within the coal and sandstone aquifers. The alluvial aquifer beneath Little Bear Creek and Davidson Draw would be removed at the mine site, as would sandstone and coal aquifers above the mine floor. Although mining would alter existing hydrologic systems, alternative water supplies are available. Planned structuring of the spoils and reconstruction of the alluvial aquifers could minimize downstream water-quality degradation. (USGS)

  15. A remarkable climate warming hiatus over Northeast China since 1998

    NASA Astrophysics Data System (ADS)

    Sun, Xiubao; Ren, Guoyu; Ren, Yuyu; Fang, Yihe; Liu, Yulian; Xue, Xiaoying; Zhang, Panfeng

    2017-07-01

    Characteristics and causes of global warming hiatus (GWH) phenomenon have received much attention in recent years. Monthly mean data of land surface air maximum temperature (Tmax), minimum temperature (Tmin), and mean temperature (Tmean) of 118 national stations since 1951 in Northeast China are used in this paper to analyze the changes of land surface air temperature in recent 64 years with an emphasis on the GWH period. The results show that (1) from 1951 to 2014, the warming trends of Tmax, Tmin, and Tmean are 0.20, 0.42, and 0.34 °C/decade respectively for the whole area, with the warming rate of Tmin about two times of Tmax, and the upward trend of Tmean obviously higher than mainland China and global averages; (2) in the period 1998-2014, the annual mean temperature consistently exhibits a cooling phenomenon in Northeast China, and the trends of Tmax, Tmin, and Tmean are -0.36, -0.14, and -0.28 °C/decade respectively; (3) in the GWH period, seasonal mean cooling mainly occurs in northern winter (DJF) and spring (MAM), but northern summer (JJA) and autumn (SON) still experience a warming, implying that the annual mean temperature decrease is controlled by the remarkable cooling of winter and spring; (4) compared to the global and mainland China averages, the hiatus phenomenon is more evident in Northeast China, and the cooling trends are more obvious in the cold season; (5) the Northeast China cooling trend occurs under the circulation background of the negative phase Arctic Oscillation (AO), and it is also closely related to strengthening of the Siberia High (SH) and the East Asian Trough (EAT), and the stronger East Asian winter monsoon (EAWM) over the GWH period.

  16. A positive relationship between spring temperature and productivity in 20 songbird species in the boreal zone.

    PubMed

    Meller, Kalle; Piha, Markus; Vähätalo, Anssi V; Lehikoinen, Aleksi

    2018-03-01

    Anthropogenic climate warming has already affected the population dynamics of numerous species and is predicted to do so also in the future. To predict the effects of climate change, it is important to know whether productivity is linked to temperature, and whether species' traits affect responses to climate change. To address these objectives, we analysed monitoring data from the Finnish constant effort site ringing scheme collected in 1987-2013 for 20 common songbird species together with climatic data. Warm spring temperature had a positive linear relationship with productivity across the community of 20 species independent of species' traits (realized thermal niche or migration behaviour), suggesting that even the warmest spring temperatures remained below the thermal optimum for reproduction, possibly due to our boreal study area being closer to the cold edge of all study species' distributions. The result also suggests a lack of mismatch between the timing of breeding and peak availability of invertebrate food of the study species. Productivity was positively related to annual growth rates in long-distance migrants, but not in short-distance migrants. Across the 27-year study period, temporal trends in productivity were mostly absent. The population sizes of species with colder thermal niches had decreasing trends, which were not related to temperature responses or temporal trends in productivity. The positive connection between spring temperature and productivity suggests that climate warming has potential to increase the productivity in bird species in the boreal zone, at least in the short term.

  17. Fermilab | Tritium at Fermilab | Ferry Creek Results

    Science.gov Websites

    newsletter Ferry Creek Results chart This chart (click chart for larger version) shows the levels of tritium following the detection of low levels of tritium in Indian Creek in November 2005. The levels of tritium in . Fermilab continues to monitor the ponds and creeks on its site and take steps to keep the levels of tritium

  18. Summer food habits and trophic overlap of roundtail chub and creek chub in Muddy Creek, Wyoming

    USGS Publications Warehouse

    Quist, M.C.; Bower, M.R.; Hubert, W.A.

    2006-01-01

    Native fishes of the Upper Colorado River Basin have experienced substantial declines in abundance and distribution, and are extirpated from most of Wyoming. Muddy Creek, in south-central Wyoming (Little Snake River watershed), contains sympatric populations of native roundtail chub (Gila robusta), bluehead sucker, (Catostomus discobolus), and flannelmouth sucker (C. tatipinnis), and represents an area of high conservation concern because it is the only area known to have sympatric populations of all 3 species in Wyoming. However, introduced creek chub (Semotilus atromaculatus) are abundant and might have a negative influence on native fishes. We assessed summer food habits of roundtail chub and creek chub to provide information on the ecology of each species and obtain insight on potential trophic overlap. Roundtail chub and creek chub seemed to be opportunistic generalists that consumed a diverse array of food items. Stomach contents of both species were dominated by plant material, aquatic and terrestrial insects, and Fishes, but also included gastropods and mussels. Stomach contents were similar between species, indicating high trophic, overlap. No length-related patterns in diet were observed for either species. These results suggest that creek chubs have the potential to adversely influence the roundtail chub population through competition for food and the native fish assemblage through predation.

  19. Deception Creek Experimental Forest (Idaho)

    Treesearch

    Russell T. Graham; Theresa B. Jain

    2004-01-01

    Deception Creek Experimental Forest is located in one of the most productive forests of the Rocky Mountains. When the forest was established in 1933, large, old western white pines were important for producing lumber products, matches, and toothpicks. Deception Creek is located in the heart of the western white pine forest type, allowing researchers to focus on the...

  20. Aquimonas voraii gen. nov., sp. nov., a novel gammaproteobacterium isolated from a warm spring of Assam, India.

    PubMed

    Saha, P; Krishnamurthi, S; Mayilraj, S; Prasad, G S; Bora, T C; Chakrabarti, T

    2005-07-01

    A bacterial strain designated GPTSA 20(T), which was isolated from a warm spring in Assam, India, was characterized by using a polyphasic approach. The cells were Gram-negative, aerobic rods, which could not utilize or produce acid from most of the carbohydrates tested. The predominant fatty acids were C(15:0) iso (25.04%), C(17:1) iso omega9c (19.28%), C(16:0) iso (17.73%) and C(11:0) iso 3-OH (9.34%). The G+C content was 75 mol%. From 16S rRNA gene sequence analysis (1433 nucleotides, continuous stretch), it was confirmed that strain GPTSA 20(T) belonged to the class 'Gammaproteobacteria'. The closest 16S rRNA gene sequence similarity found (98.2%) was with an uncultured bacterium clone, NB-03 (accession no. AB117707), from an autotrophic nitrifying biofilm. Among culturable bacteria, the closest sequence similarities were with Fulvimonas soli (93.0%), Silanimonas lenta (92.8%), Thermomonas hydrothermalis (92.4%), Frateuria aurantia (91.9%), Rhodanobacter lindaniclasticus (91.9%), Thermomonas haemolytica (91.9%) and Pseudoxanthomonas taiwanensis (91.8%); similarities of less than 91.8% were obtained with other members of the class 'Gammaproteobacteria'. From the biochemical, physiological, chemotaxonomic and phylogenetic analysis, it was clear that strain GPTSA 20(T) was quite different from members of known genera of the class 'Gammaproteobacteria'. Therefore, it is proposed that strain GPTSA 20(T) represents a novel species within a new genus, with the name Aquimonas voraii gen. nov., sp. nov. The type strain is GPTSA 20(T) (=MTCC 6713(T)=JCM 12896(T)).

  1. AgRISTARS: Supporting research. Spring small grains planting date distribution model

    NASA Technical Reports Server (NTRS)

    Hodges, T.; Artley, J. A. (Principal Investigator)

    1981-01-01

    A model was developed using 996 planting dates at 51 LANDSAT segments for spring wheat and spring barley in Minnesota, Montana, North Dakota, and South Dakota in 1979. Daily maximum and minimum temperatures and precipitation were obtained from the cooperative weather stations nearest to each segment. The model uses a growing degree day summation modified for daily temperature range to estimate the beginning of planting and uses a soil surface wetness variable to estimate how a fixed number of planting days are distributed after planting begins. For 1979, the model predicts first, median, and last planting dates with root mean square errors of 7.91, 6.61, and 7.09 days, respectively. The model also provides three or four dates to represent periods of planting activity within the planting season. Although the full model was not tested on an independent data set, it may be suitable in areas other than the U.S. Great Plains where spring small grains are planted as soon as soil and air temperatures become warm enough in the spring for plant growth.

  2. Climate change is advancing spring onset across the U.S. national park system

    USGS Publications Warehouse

    Monahan, William B.; Rosemartin, Alyssa; Gerst, Katharine L.; Fisichelli, Nicholas A.; Ault, Toby R.; Schwartz, Mark D.; Gross, John E.; Weltzin, Jake F.

    2016-01-01

    Many U.S. national parks are already at the extreme warm end of their historical temperature distributions. With rapidly warming conditions, park resource management will be enhanced by information on seasonality of climate that supports adjustments in the timing of activities such as treating invasive species, operating visitor facilities, and scheduling climate-related events (e.g., flower festivals and fall leaf-viewing). Seasonal changes in vegetation, such as pollen, seed, and fruit production, are important drivers of ecological processes in parks, and phenology has thus been identified as a key indicator for park monitoring. Phenology is also one of the most proximate biological responses to climate change. Here, we use estimates of start of spring based on climatically modeled dates of first leaf and first bloom derived from indicator plant species to evaluate the recent timing of spring onset (past 10–30 yr) in each U.S. natural resource park relative to its historical range of variability across the past 112 yr (1901–2012). Of the 276 high latitude to subtropical parks examined, spring is advancing in approximately three-quarters of parks (76%), and 53% of parks are experiencing “extreme” early springs that exceed 95% of historical conditions. Our results demonstrate how changes in climate seasonality are important for understanding ecological responses to climate change, and further how spatial variability in effects of climate change necessitates different approaches to management. We discuss how our results inform climate change adaptation challenges and opportunities facing parks, with implications for other protected areas, by exploring consequences for resource management and planning.

  3. 1. Deep Creek Road, picnic pavilion Great Smoky Mountains ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Deep Creek Road, picnic pavilion - Great Smoky Mountains National Park Roads & Bridges, Deep Creek Road, Between Park Boundary near Bryson City & Deep Creek Campground, Gatlinburg, Sevier County, TN

  4. Floods in Starkweather Creek basin, Madison, Wisconsin

    USGS Publications Warehouse

    Lawrence, Carl L.; Holmstrom, Barry K.

    1972-01-01

    The reaches evaluated are (1) Starkweather Creek and West Branch Starkweather Creek, for a distance of 6.0 river miles from the mouth at Lake Monona upstream to the U.S. Highway 51 crossing north of Truax Field; and (2) East Branch Starkweather Creek (2.8 river miles), from its confluence with the West Branch near Milwaukee Street upstream to a point near the Interstate Highway 90-94 crossing.

  5. Return of warm conditions in the southeastern Bering Sea: Physics to fluorescence

    PubMed Central

    Duffy-Anderson, J. T.; Eisner, L. B.; Farley, E. V.; Heintz, R. A.; Mordy, C. W.

    2017-01-01

    From 2007 to 2013, the southeastern Bering Sea was dominated by extensive sea ice and below-average ocean temperatures. In 2014 there was a shift to reduced sea ice on the southern shelf and above-average ocean temperatures. These conditions continued in 2015 and 2016. During these three years, the spring bloom at mooring site M4 (57.9°N, 168.9°W) occurred primarily in May, which is typical of years without sea ice. At mooring site M2 (56.9°N, 164.1°W) the spring bloom occurred earlier especially in 2016. Higher chlorophyll fluorescence was observed at M4 than at M2. In addition, these three warm years continued the pattern near St. Matthew Island of high concentrations (>1 μM) of nitrite occurring during summer in warm years. Historically, the dominant parameters controlling sea-ice extent are winds and air temperature, with the persistence of frigid, northerly winds in winter and spring resulting in extensive ice. After mid-March 2014 and 2016 there were no cold northerly or northeasterly winds. Cold northerly winds persisted into mid-April in 2015, but did not result in extensive sea ice south of 58°N. The apparent mechanism that helped limit ice on the southeastern shelf was the strong advection of warm water from the Gulf of Alaska through Unimak Pass. This pattern has been uncommon, occurring in only one other year (2003) in a 37-year record of estimated transport through Unimak Pass. During years with no sea ice on the southern shelf (e.g. 2001–2005, 2014–2016), the depth-averaged temperature there was correlated to the previous summers ocean temperature. PMID:28957386

  6. Reduced North American terrestrial primary productivity linked to anomalous Arctic warming

    DOE PAGES

    Kim, Jin-Soo; Kug, Jong-Seong; Jeong, Su-Jong; ...

    2017-07-10

    Warming temperatures in the Northern Hemisphere have enhanced terrestrial productivity. Despite the warming trend, North America has experienced more frequent and more intense cold weather events during winters and springs. These events have been linked to anomalous Arctic warming since 1990, and may affect terrestrial processes. Here we analyse many observation data sets and numerical model simulations to evaluate links between Arctic temperatures and primary productivity in North America. We find that positive springtime temperature anomalies in the Arctic have led to negative anomalies in gross primary productivity over most of North America during the last three decades, which amountmore » to a net productivity decline of 0.31 PgC yr -1 across the continent. This decline is mainly explained by two factors: severe cold conditions in northern North America and lower precipitation in the South Central United States. In addition, United States crop-yield data reveal that during years experiencing anomalous warming in the Arctic, yields declined by approximately 1 to 4% on average, with individual states experiencing declines of up to 20%. We conclude that the strengthening of Arctic warming anomalies in the past decades has remotely reduced productivity over North America.« less

  7. Reduced North American terrestrial primary productivity linked to anomalous Arctic warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jin-Soo; Kug, Jong-Seong; Jeong, Su-Jong

    Warming temperatures in the Northern Hemisphere have enhanced terrestrial productivity. Despite the warming trend, North America has experienced more frequent and more intense cold weather events during winters and springs. These events have been linked to anomalous Arctic warming since 1990, and may affect terrestrial processes. Here we analyse many observation data sets and numerical model simulations to evaluate links between Arctic temperatures and primary productivity in North America. We find that positive springtime temperature anomalies in the Arctic have led to negative anomalies in gross primary productivity over most of North America during the last three decades, which amountmore » to a net productivity decline of 0.31 PgC yr -1 across the continent. This decline is mainly explained by two factors: severe cold conditions in northern North America and lower precipitation in the South Central United States. In addition, United States crop-yield data reveal that during years experiencing anomalous warming in the Arctic, yields declined by approximately 1 to 4% on average, with individual states experiencing declines of up to 20%. We conclude that the strengthening of Arctic warming anomalies in the past decades has remotely reduced productivity over North America.« less

  8. 2. Deep Creek Road, old bridge at campground entrance. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Deep Creek Road, old bridge at campground entrance. - Great Smoky Mountains National Park Roads & Bridges, Deep Creek Road, Between Park Boundary near Bryson City & Deep Creek Campground, Gatlinburg, Sevier County, TN

  9. Experimental Whole-Ecosystem Warming Alters Vegetation Phenology in a Boreal Spruce Bog: Initial Results from the SPRUCE Experiment

    NASA Astrophysics Data System (ADS)

    Richardson, A. D.

    2016-12-01

    Phenology is one of the most robust indicators of the biological impacts of global change. However, the response of phenology to future environmental conditions still remains highly uncertain because of the challenges associated with conducting realistic manipulative experiments. At the SPRUCE (Spruce and Peatland Responses Under Climatic and Environmental Change) experiment in the north-central United States, experimental temperature (0 to +9°C above ambient) and CO2 (ambient and elevated) treatments are being applied to mature, and intact, Picea mariana-Sphagnum spp. bog communities in their native habitat through the use of ten large (approximately 12 m wide, 10 m high) open-topped enclosures. We are tracking vegetation green-up and senescence in these chambers using repeat digital photography. Within each chamber, images are recorded every 30 minutes and uploaded to PhenoCam (http://phenocam.sr.unh.edu), where processed to yield quantitative measures of canopy color. These data are complemented by on-the-ground phenological data collected by human observers. Air warming treatments at SPRUCE began in August 2015. We observed a delay in senescence during autumn 2015 (2-5 days per degree of warming) and an advance in onset during spring 2016 (1-4 days per degree of warming). These patterns are robust across species and methods of phenological observation (i.e. camera-based vs. human observer). And, our results show very little evidence for photoperiod acting as a constraint on the response to warming. Early spring onset and consequent loss of frost hardiness in the warmest chambers proved disadvantageous when a brief period of extreme cold (to -12°C in the control chambers, to -3°C in the +9°C chambers) followed a month of generally mild weather. Foliage mortality for both Larix and Picea was immediate and severe, although both species subsequently re-flushed. These results give support for the hypothesis that warming may enhance the likelihood of spring frost

  10. Assessment of hydrology, water quality, and trace elements in selected placer-mined creeks in the birch creek watershed near central, Alaska, 2001-05

    USGS Publications Warehouse

    Kennedy, Ben W.; Langley, Dustin E.

    2007-01-01

    Executive Summary The U.S. Geological Survey, in cooperation with the Bureau of Land Management, completed an assessment of hydrology, water quality, and trace-element concentrations in streambed sediment of the upper Birch Creek watershed near Central, Alaska. The assessment covered one site on upper Birch Creek and paired sites, upstream and downstream from mined areas, on Frying Pan Creek and Harrison Creek. Stream-discharge and suspended-sediment concentration data collected at other selected mined and unmined sites helped characterize conditions in the upper Birch Creek watershed. The purpose of the project was to provide the Bureau of Land Management with baseline information to evaluate watershed water quality and plan reclamation efforts. Data collection began in September 2001 and ended in September 2005. There were substantial geomorphic disturbances in the stream channel and flood plain along several miles of Harrison Creek. Placer mining has physically altered the natural stream channel morphology and removed streamside vegetation. There has been little or no effort to re-contour waste rock piles. During high-flow events, the abandoned placer-mine areas on Harrison Creek will likely contribute large quantities of sediment downstream unless the mined areas are reclaimed. During 2004 and 2005, no substantial changes in nutrient or major-ion concentrations were detected in water samples collected upstream from mined areas compared with water samples collected downstream from mined areas on Frying Pan Creek and Harrison Creek that could not be attributed to natural variation. This also was true for dissolved oxygen, pH, and specific conductance-a measure of total dissolved solids. Sample sites downstream from mined areas on Harrison Creek and Frying Pan Creek had higher median suspended-sediment concentrations, by a few milligrams per liter, than respective upstream sites. However, it is difficult to attach much importance to the small downstream increase

  11. Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park, Wyoming, 2006-2008

    USGS Publications Warehouse

    Ball, James W.; McMleskey, R. Blaine; Nordstrom, D. Kirk

    2010-01-01

    Water analyses are reported for 104 samples collected from numerous thermal and non-thermal features in Yellowstone National Park (YNP) during 2006-2008. Water samples were collected and analyzed for major and trace constituents from 10 areas of YNP including Apollinaris Spring and Nymphy Creek along the Norris-Mammoth corridor, Beryl Spring in Gibbon Canyon, Norris Geyser Basin, Lower Geyser Basin, Crater Hills, the Geyser Springs Group, Nez Perce Creek, Rabbit Creek, the Mud Volcano area, and Washburn Hot Springs. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, iron, nitrogen, and sulfur redox species in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved on-site. Water temperature, specific conductance, pH, emf (electromotive force or electrical potential), and dissolved hydrogen sulfide were measured on-site at the time of sampling. Dissolved hydrogen sulfide was measured a few to several hours after sample collection by ion-specific electrode on samples preserved on-site. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally a few to several hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved iron and ferrous iron concentrations often were measured on-site in the

  12. Net carbon uptake has increased through warming-induced changes in temperate forest phenology

    Treesearch

    Trevor F. Keenan; Josh Gray; Mark A. Friedl; Michael Toomey; Gil Bohrer; David Y. Hollinger; J. William Munger; John O’Keefe; Hans Peter Schmid; Ian Sue Wing; Bai Yang; Andrew D. Richardson

    2014-01-01

    The timing of phenological events exerts a strong control over ecosystem function and leads to multiple feedbacks to the climate system1. Phenology is inherently sensitive to temperature (although the exact sensitivity is disputed2) and recent warming is reported to have led to earlier spring, later autumn3,4...

  13. Climate warming enhances snow avalanche risk in the Western Himalayas

    PubMed Central

    Ballesteros-Cánovas, J. A.; Trappmann, D.; Madrigal-González, J.; Eckert, N.; Stoffel, M.

    2018-01-01

    Ongoing climate warming has been demonstrated to impact the cryosphere in the Indian Himalayas, with substantial consequences for the risk of disasters, human well-being, and terrestrial ecosystems. Here, we present evidence that the warming observed in recent decades has been accompanied by increased snow avalanche frequency in the Western Indian Himalayas. Using dendrogeomorphic techniques, we reconstruct the longest time series (150 y) of the occurrence and runout distances of snow avalanches that is currently available for the Himalayas. We apply a generalized linear autoregressive moving average model to demonstrate linkages between climate warming and the observed increase in the incidence of snow avalanches. Warming air temperatures in winter and early spring have indeed favored the wetting of snow and the formation of wet snow avalanches, which are now able to reach down to subalpine slopes, where they have high potential to cause damage. These findings contradict the intuitive notion that warming results in less snow, and thus lower avalanche activity, and have major implications for the Western Himalayan region, an area where human pressure is constantly increasing. Specifically, increasing traffic on a steadily expanding road network is calling for an immediate design of risk mitigation strategies and disaster risk policies to enhance climate change adaption in the wider study region. PMID:29535224

  14. Altitude of the water table in the alluvial and Wilcox aquifers in the vicinity of Richland and Tehuacana creeks and the Trinity River, Texas, December 1979

    USGS Publications Warehouse

    Garza, Sergio

    1980-01-01

    This map shows the altitude of the water table in the alluvial and Wilcox aquifers in the vicinity of Richland and Tehuacana Creeks and the Trinity River, Tex., in December 1979. The water-table contours were constructed on the basis of water-level control derived from an inventory of shallow wells in the area, topographic maps, and field locations of numerous small springs and seeps. (USGS)

  15. Report A: Fish distribution and population dynamics in Rock Creek, Klickitat County, Washington

    USGS Publications Warehouse

    Allen, Brady; Munz, Carrie S.; Harvey, Elaine

    2013-01-01

    The U.S. Geological Survey collaborated with the Yakama Nation starting in fall of 2009 to study the fish populations in Rock Creek, a Washington State tributary of the Columbia River 21 kilometers upstream of John Day Dam. Prior to this study, very little was known about the ESA-listed (threatened) Mid-Columbia River steelhead (Oncorhynchus mykiss) population in this arid watershed with intermittent stream flow. The objectives of the study were to quantify fish habitat, document fish distribution, abundance, and movement, and identify areas of high salmonid productivity. To accomplish these objectives, we electrofished in the spring and fall, documenting the distribution and relative abundance of all fish species to evaluate the influence of biotic factors on salmonid productivity and survival. We surveyed the distribution of perennial pools and established a network of automated temperature recording devices from river kilometer (rkm) 2 to 23 in Rock Creek and rkm 0 to 8 in Squaw Creek, a major tributary entering Rock Creek at rkm 13, to better understand the abiotic factors influencing the salmonid populations. Salmonid abundance estimates were conducted using a mark-recapture method in a systematic subsample of the perennial pools. The proportion and timing of salmonids migrating from these pools were assessed by building, installing, and operating two passive integrated transponder (PIT) tag interrogation systems at rkm 5 and at the confluence with Squaw Creek (rkm 13). From fall 2009 to fall 2012, we PIT-tagged 3,088 O. mykiss and 151 coho salmon (O. kisutch) during electrofishing efforts. In the lowest flow periods of 2010 to 2012, we found that an average of 36% of the surveyed streambed length was dry, and 17% remained as perennial pools. The maximum temperature recorded in those pools was 24.4°C, but most pools had a maximum temperature that was less than 21°C. O. mykiss were present in most pools, and non-native fish species, such as smallmouth bass

  16. Habitat change and geomorphic response related to sediment releases during reservoir drawdowns at Fall Creek Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Keith, M. K.; Wallick, R.; Bangs, B. L.; Taylor, G.; Gordon, G. W.; White, J. S.; Mangano, J.

    2017-12-01

    Reservoir drawdowns at Fall Creek Lake, Oregon lower lake levels to facilitate downstream passage of juvenile spring Chinook salmon through the 55-m high dam. Since 2011, annual fall and winter drawdowns have improved fish passage, but temporarily lowering the lake nearly to streambed has increased downstream transport of predominantly fine (<2 mm) sediment to the lower gravel-bed reaches of Fall Creek and the Middle Fork Willamette River. Repeated releases of reservoir sediments have uncertain long-term consequences for downstream reaches where dam construction has reduced peak flows, coarse sediment transport, and habitat creation. Here, we evaluate site and reach-scale geomorphic responses to sediment released from the reservoir over 2011-17. At the reach-scale, sediment aggradation is most apparent in low velocity zones along channel margins and in side channels and alcoves of Fall Creek nearest to the dam. These areas accumulate sediment following the drawdown and are colonized with vegetation, such as reed canary grass, thereby increasing the trapping efficiency for fine sediment during the following year's drawdown. Fine sediment accumulation in off-channel areas has reduced the available rearing area for some salmonid species but may provide alternative habitat suitable for other native aquatic species such as Pacific lamprey ammocoetes that live in fine substrates for several years. Changes in off-channel aquatic habitat and bare gravel bars related to the drawdowns are small relative to the historically dynamic conditions on the Middle Fork (presently stable). Fall Creek, historically and presently stable, has fewer off-channel areas than the Middle Fork, so filling those areas has greater reach-scale impacts on habitat. Locally, deposition measured following the 2015 drawdown showed most aggradation on high-elevation gravel bars and low-elevation floodplains occurred when flows were higher on Fall Creek ( 2,000 ft3/s) and the Middle Fork (near bankfull

  17. Climate change impacts on the Lehman-Baker Creek drainage in the Great Basin National Park

    NASA Astrophysics Data System (ADS)

    Volk, J. M.

    2013-12-01

    Global climate models (GCMs) forced by increased CO2 emissions forecast anomalously dry and warm trends over the southwestern U.S. for the 21st century. The effect of warmer conditions may result in decreased surface water resources within the Great Basin physiographic region critical for ecology, irrigation and municipal water supply. Here we use downscaled GCM output from the A2 and B1 greenhouse gas emission scenarios to force a Precipitation-Runoff Modeling System (PRMS) watershed model developed for the Lehman and Baker Creeks Drainage (LBCD) in the Great Basin National Park, NV for a century long time period. The goal is to quantify the effects of rising temperature to the water budget in the LBCD at monthly and annual timescales. Dynamically downscaled GCM projections are attained from the NSF EPSCoR Nevada Infrastructure for Climate Change Science, Education, and Outreach project and statistically downscaled output is retrieved from the "U.S. Bias Corrected and Downscaled WCRP CMIP3 Climate Projections". Historical daily climate and streamflow data have been collected simultaneously for periods extending 20 years or longer. Mann-Kendal trend test results showed a statistically significant (α= 0.05) long-term rising trend from 1895 to 2012 in annual and monthly average temperatures for the study area. A grid-based, PRMS watershed model of the LBCD has been created within ArcGIS 10, and physical parameters have been estimated at a spatial resolution of 100m. Simulation results will be available soon. Snow cover is expected to decrease and peak runoff to occur earlier in the spring, resulting in increased runoff, decreased infiltration/recharge, decreased baseflows, and decreased evapo-transpiration.

  18. CEAP in the Cedar Creek watershed

    USDA-ARS?s Scientific Manuscript database

    This publication provides research updates from the Conservation Effects Assessment Project (CEAP) in the Cedar Creek watershed in Indiana. In this inaugural issue, we explain the CEAP and why the National Soil Erosion Research Lab is doing research in Cedar Creek. It also includes a 'Research Featu...

  19. 33 CFR 117.809 - Tonawanda Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Tonawanda Creek. 117.809 Section 117.809 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.809 Tonawanda Creek. The draw of the...

  20. 33 CFR 117.555 - College Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false College Creek. 117.555 Section 117.555 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.555 College Creek. The draws of the...

  1. 33 CFR 117.231 - Brandywine Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Brandywine Creek. 117.231 Section 117.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.231 Brandywine Creek. The draw of the...

  2. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge, mile...

  3. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge, mile...

  4. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of...

  5. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of...

  6. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of...

  7. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of...

  8. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of...

  9. Effect of temperature on rates of ammonium uptake and nitrification in the western coastal Arctic during winter, spring, and summer

    NASA Astrophysics Data System (ADS)

    Baer, Steven E.; Connelly, Tara L.; Sipler, Rachel E.; Yager, Patricia L.; Bronk, Deborah A.

    2014-12-01

    Biogeochemical rate processes in the Arctic are not currently well constrained, and there is very limited information on how rates may change as the region warms. Here we present data on the sensitivity of ammonium (NH4+) uptake and nitrification rates to short-term warming. Samples were collected from the Chukchi Sea off the coast of Barrow, Alaska, during winter, spring, and summer and incubated for 24 h in the dark with additions of 15NH4+ at -1.5, 6, 13, and 20°C. Rates of NH4+ uptake and nitrification were measured in conjunction with bacterial production. In all seasons, NH4+ uptake rates were highest at temperatures similar to current summertime conditions but dropped off with increased warming, indicative of psychrophilic (i.e., cold-loving) microbial communities. In contrast, nitrification rates were less sensitive to temperature and were higher in winter and spring compared to summer. These findings suggest that as the Arctic coastal ecosystem continues to warm, NH4+ assimilation may become increasingly important, relative to nitrification, although the magnitude of NH4+ assimilation would be still be lower than nitrification.

  10. Walnut Creek and Squaw Creek Watersheds, Iowa: National Institute of Food and Agriculture-Conservation Effects Assessment Project

    USDA-ARS?s Scientific Manuscript database

    The Walnut Creek Watershed NIFA-CEAP Watershed project was designed to assess water quality benefits and economic costs from the adoption of a prairie ecosystem (conservation practice implementation) at a watershed scale. This chapter describes and summarizes the paired watershed (Walnut Creek and S...

  11. Hydrology and Water Quality near Bromide Pavilion in Chickasaw National Recreation Area, Murray County, Oklahoma, 2000

    USGS Publications Warehouse

    Andrews, William J.; Burrough, Steven P.

    2002-01-01

    The Bromide Pavilion in Chickasaw National Recreation Area drew many thousands of people annually to drink the mineral-rich waters piped from nearby Bromide and Medicine Springs. Periodic detection of fecal coliform bacteria in water piped to the pavilion from the springs, low yields of the springs, or flooding by adjacent Rock Creek prompted National Park Service officials to discontinue piping of the springs to the pavilion in the 1970s. Park officials would like to resume piping mineralized spring water to the pavilion to restore it as a visitor attraction, but they are concerned about the ability of the springs to provide sufficient quantities of potable water. Pumping and sampling of Bromide and Medicine Springs and Rock Creek six times during 2000 indicate that these springs may not provide sufficient water for Bromide Pavilion to supply large numbers of visitors. A potential problem with piping water from Medicine Spring is the presence of an undercut, overhanging cliff composed of conglomerate, which may collapse. Evidence of intermittent inundation of the springs by Rock Creek and seepage of surface water into the spring vaults from the adjoining creek pose a threat of contamination of the springs. Escherichia coli, fecal coliform, and fecal streptococcal bacteria were detected in some samples from the springs, indicating possible fecal contamination. Cysts of Giardia lamblia and oocysts of Cryptosporidium parvum protozoa were not detected in the creek or the springs. Total culturable enteric viruses were detected in only one water sample taken from Rock Creek.

  12. Numerical study of groundwater flow cycling controlled by seawater/freshwater interaction in a coastal karst aquifer through conduit network using CFPv2

    NASA Astrophysics Data System (ADS)

    Xu, Zexuan; Hu, Bill X.; Davis, Hal; Kish, Stephen

    2015-11-01

    In this study, a groundwater flow cycling in a karst springshed and an interaction between two springs, Spring Creek Springs and Wakulla Springs, through a subground conduit network are numerically simulated using CFPv2, the latest research version of MODFLOW-CFP (Conduit Flow Process). The Spring Creek Springs and Wakulla Springs, located in a marine estuary and 11 miles inland, respectively, are two major groundwater discharge spots in the Woodville Karst Plain (WKP), North Florida, USA. A three-phase conceptual model of groundwater flow cycling between the two springs and surface water recharge from a major surface creek (Lost Creek) was proposed in various rainfall conditions. A high permeable subground karst conduit network connecting the two springs was found by tracer tests and cave diving. Flow rate of discharge, salinity, sea level and tide height at Spring Creek Springs could significantly affect groundwater discharge and water stage at Wakulla Springs simultaneously. Based on the conceptual model, a numerical hybrid discrete-continuum groundwater flow model is developed using CFPv2 and calibrated by field measurements. Non-laminar flows in conduits and flow exchange between conduits and porous medium are implemented in the hybrid coupling numerical model. Time-variable salinity and equivalent freshwater head boundary conditions at the submarine spring as well as changing recharges have significant impacts on seawater/freshwater interaction and springs' discharges. The developed numerical model is used to simulate the dynamic hydrological process and quantitatively represent the three-phase conceptual model from June 2007 to June 2010. Simulated results of two springs' discharges match reasonably well to measurements with correlation coefficients 0.891 and 0.866 at Spring Creeks Springs and Wakulla Springs, respectively. The impacts of sea level rise on regional groundwater flow field and relationship between the inland springs and submarine springs are

  13. Spring performance tester for miniature extension springs

    DOEpatents

    Salzbrenner, Bradley; Boyce, Brad

    2017-05-16

    A spring performance tester and method of testing a spring are disclosed that has improved accuracy and precision over prior art spring testers. The tester can perform static and cyclic testing. The spring tester can provide validation for product acceptance as well as test for cyclic degradation of springs, such as the change in the spring rate and fatigue failure.

  14. Trend and Variability of China Precipitation in Spring and Summer: Linkage to Sea Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Yang, Fanglin; Lau, K.-M.

    2004-01-01

    Observational records in the past 50 years show an upward trend of boreal-summer precipitation over central eastern China and a downward trend over northern China. During boreal spring, the trend is upward over southeastern China and downward over central eastern China. This study explores the forcing mechanism of these trends in association with the global sea-surface temperature (SST) variations on the interannual and inter-decadal timescales. Results based on Singular Value Decomposition analyses (SVD) show that the interannual variability of China precipitation in boreal spring and summer can be well defined by two centers of actions for each season, which are co-varying with two interannual modes of SSTs. The first SVD modes of precipitation in spring and summer, which are centered in southeastern China and northern China, respectively, are linked to an ENSO-like mode of SSTs. The second SVD modes of precipitation in both seasons are confined to central eastern China, and are primarily linked to SST variations over the warm pool and Indian Ocean. Features of the anomalous 850-hPa winds and 700-Wa geopotential height corresponding to these modes support a physical mechanism that explains the causal links between the modal variations of precipitation and SSTs. On the decadal and longer timescale, similar causal links are found between the same modes of precipitation and SSTs, except for the case of springtime precipitation over central eastern China. For this case, while the interannual mode of precipitation is positively correlated with the interannual variations of SSTs over the warm pool and Indian Ocean; the inter-decadal mode is negatively correlated with a different SST mode, the North Pacific mode. The later is responsible for the observed downward trend of springtime precipitation over central eastern China. For all other cases, both the interannual and inter-decadal variations of precipitation can be explained by the same mode of SSTs. The upward trend

  15. Geologic map of the Skull Creek Quadrangle, Moffat County Colorado

    USGS Publications Warehouse

    Van Loenen, R. E.; Selner, Gary; Bryant, W.A.

    1999-01-01

    The Skull Creek quadrangle is in northwestern Colorado a few miles north of Rangely. The prominent structural feature of the Skull Creek quadrangle is the Skull Creek monocline. Pennsylvanian rocks are exposed along the axis of the monocline while hogbacks along its southern flank expose rocks that are from Permian to Upper Cretaceous in age. The Wolf Creek monocline and the Wolf Creek thrust fault, which dissects the monocline, are salient structural features in the northern part of the quadrangle. Little or no mineral potential exists within the quadrangle. A geologic map of the Lazy Y Point quadrangle, which is adjacent to the Skull Creek quadrangle on the west, is also available (Geologic Investigations Series I-2646). This companian map shows similar geologic features, including the western half of the Skull Creek monocline. The geology of this quadrangle was mapped because of its proximity to Dinosaur National Monument. It is adjacent to quadrangles previously mapped to display the geology of this very scenic and popular National Monument. The Skull Creek quadrangle includes parts of the Skull Creek Wilderness Study Area, which was assessed for its mineral resource potential.

  16. 76 FR 21695 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ... County. At the Betts Spring None +571 Branch and Bradford Creek confluence. Big Cove Creek Approximately.... Approximately 0.7 mile None +677 upstream of the Big Cove Creek confluence. Blue Spring Creek Approximately 400... Road. Approximately 450 feet None +748 upstream of Spragins Hollow Road Northwest. East Fork Pinhook...

  17. Geothermal systems within the Mammoth Corridor in Yellowstone National Park and the adjacent Corwin Springs KGRA

    USGS Publications Warehouse

    Sorey, Michael; Colvard, Elizabeth; Sturchio, N.C.

    1990-01-01

    A study of potential impacts of geothermal development in the Corwin Springs KGRA north of Yellowstone Park on thermal springs within the Park is being conducted by the U.S. Geological Survey. Thermal waters in the KGRA and at Mammoth Hot Springs, located 13 km inside the Park boundary, are high in bicarbonate and sulfate and are actively depositing travertine. These similarities and the existence of numerous regional-scale structural and stratigraphic features that could provide conduits for fluid flow at depth indicate a possible cause for concern. The objectives of this study include delineations of any hydrologic connections between these thermal waters, the level of impact of geothermal development in the event of such connections, and mitigation measures to minimize or eliminate adverse impacts. The study involves a number of geochemical, geophysical, geologic, and hydrologic techniques, but does not include any test drilling. Preliminary results suggest that thermal waters at Bear Creek Springs may contain a component of water derived from Mammoth but that thermal waters at La Duke Hot Spring do not. The total rate of thermal water that discharges in the area proposed for geothermal development (near La Duke) has been determined; restricting the net production of thermal water to rates less than this total could provide a satisfactory margin of safety for development.

  18. 33 CFR 117.401 - Trail Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Trail Creek. 117.401 Section 117.401 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Indiana § 117.401 Trail Creek. (a) The draw of the Franklin...

  19. 33 CFR 117.233 - Broad Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Broad Creek. 117.233 Section 117.233 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.233 Broad Creek. (a) The draw of the Conrail...

  20. 33 CFR 117.233 - Broad Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Broad Creek. 117.233 Section 117.233 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.233 Broad Creek. (a) The draw of the Conrail...

  1. 33 CFR 117.233 - Broad Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Broad Creek. 117.233 Section 117.233 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.233 Broad Creek. (a) The draw of the Conrail...

  2. 33 CFR 117.233 - Broad Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Broad Creek. 117.233 Section 117.233 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.233 Broad Creek. (a) The draw of the Conrail...

  3. 33 CFR 117.233 - Broad Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Broad Creek. 117.233 Section 117.233 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.233 Broad Creek. (a) The draw of the Conrail...

  4. Characterization of water quality and biological communities, Fish Creek, Teton County, Wyoming, 2007-2011

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Peterson, David A.; Wheeler, Jerrod D.; Edmiston, C. Scott; Taylor, Michelle L.; Leemon, Daniel J.

    2013-01-01

    Wyoming. Especially in the winter, the proportionately large, continuous gain of groundwater into Fish Creek in the perennial section keeps most of the creek free of ice. Because sunlight can still reach the streambed in Fish Creek and the water is still flowing, aquatic plants continue to photosynthesize in the winter, albeit at a lower level of productivity. Additionally, the cobble and large gravel substrate in Fish Creek provides excellent attachment points for aquatic plants, and when combined with Fish Creek’s channel stability allows rapid growth of aquatic plants once conditions allow during the spring. The aquatic plant community of Fish Creek was different than most streams in Wyoming in that it contains many different macrophytes—including macroalgae such as long streamers of Cladophora, aquatic vascular plants, and moss; most other streams in the state contain predominantly algae. From the banks of Fish Creek, the bottom of the stream sometimes appeared to be a solid green carpet. A shift was observed from higher amounts of microalgae in April/May to higher amounts macrophytes in August and October, and differences in the relative abundance of microalgae and macrophytes were statistically significant between seasons. Differences in dissolved-nitrate concentrations and in the nitrogen-to-phosphorus ratio were significantly different between seasons, as concentrations of dissolved nitrate decreased from April/May to August and October. It is likely that dissolved-nitrate concentrations in Fish Creek were lower in August and October because macrophytes were quickly utilizing the nutrient, and a negative correlation between macro-phytes and nitrate was found. Macroinvertebrates also were sampled because of their role as indicators of water quality and their documented responses to perturbation such as degradation of water quality and habitat. Statistically significant seasonal differences were noted in the macroinvertebrate community. Taxa richness and

  5. 81. PHOTOCOPY OF PHOTOGRAPH SHOWING NEW CREEK CHANNEL UNDER CONSTRUCTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    81. PHOTOCOPY OF PHOTOGRAPH SHOWING NEW CREEK CHANNEL UNDER CONSTRUCTION AT P STREET BEND, FROM 1940 REPORT ON PROPOSED DEVELOPMENT OF ROCK CREEK AND POTOMAC PARKWAY, SECTION II (ROCK CREEK AND POTOMAC PARKWAY FILE, HISTORY DEPARTMENT ARCHIVES, NATIONAL PARK SERVICE, WASHINGTON, DC). - Rock Creek & Potomac Parkway, Washington, District of Columbia, DC

  6. Effects of artificial-recharge experiments at Ship Creek alluvial fan on water levels at Spring Acres Subdivision, Anchorage, Alaska

    USGS Publications Warehouse

    Meyer, William; Patrick, Leslie

    1980-01-01

    The effect of the artificial recharge experiments on water levels at Spring Acres subdivision, Anchorage, Alaska, was evaluated using two digital models constructed to simulate groundwater movement and water-level rises induced by the artificial recharge. The models predicted that the artificial recharge would have caused water levels in the aquifer immediately underlying Spring Acres subdivision to rise 0.2 foot from May 20 to August 7, 1975. The models also predicted a total rise in groundwater levels of 1.1 feet at this location from July 16, 1973 to August 7, 1975, as a result of the artificial-recharge experiments. Water-level data collected from auger holes in March 1975 by a consulting firm for the contractor indicated a depth to water of 6-7 feet below land surface at Spring Acres subdivision at this time. Water levels measured in and near Spring Acres subdivision several years before and after the 1973-75 artificial-recharge experiments showed seasonal rises of 2 to 12.4 feet. A depth to water below land surface of 2.6 feet was measured 600 feet from the subdivision in 1971 and in the subdivision in 1977. Average measured depth to water in the area was 7.0 feet from early 1976 to September 1979. (USGS)

  7. Synchrony in the phenology of a culturally iconic spring flower

    NASA Astrophysics Data System (ADS)

    Sparks, Tim H.; Mizera, Tadeusz; Wójtowicz, Wanda; Tryjanowski, Piotr

    2012-03-01

    We examine the flowering phenology of the cultural iconic Spring Snowflake Leucojum vernum, a considerable tourist attraction, recorded from two sites in western Poland. Flowering dates at the two sites were closely correlated but about 6 days later at the more natural area. The end of flowering was associated with the start of canopy leafing. Early flowering was related to a longer flowering season which may benefit ecotourism under future climate warming.

  8. 1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING BUILDING 108 AT PHOTO RIGHT AND BUILDING 105 AT PHOTO CENTER BEHIND TREE. RUSH CREEK POWERHOUSE IS PARTIALLY VISIBLE AT EXTREME PHOTO LEFT). VIEW TO WEST. - Rush Creek Hydroelectric System, Clubhouse Cottage, Rush Creek, June Lake, Mono County, CA

  9. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile 0...

  10. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile 0...

  11. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the S117-S133...

  12. 33 CFR 117.571 - Spa Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Spa Creek. 117.571 Section 117.571 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.571 Spa Creek. The S181 bridge, mile 4.0, at...

  13. 33 CFR 117.571 - Spa Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Spa Creek. 117.571 Section 117.571 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.571 Spa Creek. The S181 bridge, mile 4.0, at...

  14. Water Quality of Camp Creek, Costello Creek, and Other Selected Streams on the South Side of Denali National Park and Preserve, Alaska

    USGS Publications Warehouse

    Brabets, Timothy P.; Whitman, Matthew S.

    2002-01-01

    The Camp and Costello Creek watersheds are located on the south side of Denali National Park and Preserve. The Dunkle Mine, an abandoned coal mine, is located near the mouth of Camp Creek. Due to concern about runoff from the mine and its possible effects on the water quality and aquatic habitat of Camp Creek and its receiving stream, Costello Creek, these two streams were studied during the summer runoff months (June to September) in 1999 and 2000 as part of a cooperative study with the National Park Service. Since the south side of Denali National Park and Preserve is part of the U.S. Geological Survey?s National Water-Quality Assessment Cook Inlet Basin study unit, an additional part of this study included analysis of existing water-quality data at 23 sites located throughout the south side of Denali National Park and Preserve to compare with the water quality of Camp and Costello Creeks and to obtain a broader understanding of the water quality in this area of the Cook Inlet Basin. Analysis of water column, bed sediment, fish, invertebrate, and algae data indicate no effects on the water quality of Camp Creek from the Dunkle Mine. Although several organic compounds were found in the streambed of Camp Creek, all concentrations were below recommended levels for aquatic life and most of the concentrations were below the minimum reporting level of 50 ?g/kg. Trace element concentrations of arsenic, chromium, and nickel in the bed sediments of Camp Creek exceeded threshold effect concentrations (TEC), but concentrations of these trace elements were also exceeded in streambed sediments of Costello Creek above Camp Creek. Since the percent organic carbon in Camp Creek is relatively high, the toxicity quotient of 0.55 is only slightly above the threshold value of 0.5. Costello Creek has a relatively low organic carbon content and has a higher toxicity quotient of 1.19. Analysis of the water-quality data for other streams located in the south side of Denali National Park

  15. 77 FR 75946 - Radio Broadcasting Services; Dove Creek, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ...]. Radio Broadcasting Services; Dove Creek, CO AGENCY: Federal Communications Commission. ACTION: Proposed... service at Dove Creek, Colorado. Channel 229C3 can be allotted at Dove Creek, Colorado, in compliance with the Commission's minimum distance separation requirements, at the proposed reference coordinates: 37...

  16. A Creek to Bay Biological Assessment in Oakland, California

    NASA Astrophysics Data System (ADS)

    Ahumada, E.; Ramirez, N.; Lopez, A.; Avila, M.; Ramirez, J.; Arroyo, D.; Bracho, H.; Casanova, A.; Pierson, E.

    2011-12-01

    In 2007, the Surface Water Ambient Monitoring Program (SWAMP) assessed the impact of trash on water quality in the Peralta Creek which is located in the Fruitvale district of Oakland, CA. This 2011 follow-up study will take further steps in evaluating the physical and biological impacts of pollution and human development on Peralta Creek and in the San Leandro Bay, where the Creek empties into the larger San Francisco Bay estuary. This study will utilize two forms of biological assessment in order to determine the level of water quality and ecosystem health of Peralta Creek and San Leandro Bay in Oakland, California. A Rapid Bioassesment Protocal (RBP) will be used as the method of biological assessment for Peralta Creek. RBP uses a biotic index of benthic macroinvertebrates to provide a measure of a water body's health. Larval trematodes found in two mud snails (Ilynassa obsoleta and Cerithidea californica) will be used to evaluate the health of the San Leandro Bay. Due to the complex life cycle of trematodes, the measure of trematode diversity and richness in host species serves as an indicator of estuarine health (Huspeni 2005). We have completed the assessment of one section of Peralta Creek, located at 2465 34th Avenue, Oakland, CA 94601. Abundance results indicate a moderately healthy creek because there were high levels of pollution tolerant benthic macroinvertebrates. The tolerant group of benthic macroinvertebrates includes such organisms as flatworms, leeches, and scuds. This is possibly due to this section of the creek being pumped up to the surface from culverts impacting the macroinvertebrate's life cycle. Another contributing factor to creek health is the amount of organic debris found in the creek, which inhibits the flow and oxygenation of the water, allowing for more pollution tolerant aquatic insects to persist. Further investigation is being conducted to fully assess the Peralta Creek watershed; from the preliminary results one can surmise that

  17. Superfund Record of Decision (EPA Region 8): Anaconda Smelter site, (Operable Unit 11 - Flue Dust), Deer Lodge County, Anaconda, MT. (Second remedial action), September 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-23

    The 6,000-acre Anaconda Smelter site is a former copper and ore processing facility in Deer Lodge County, Montana. Land use in the area is predominantly residential. The site is bounded on the north and east, respectively, by the Warm Springs Creek and Mill Creek, both of which are potential sources of drinking water. From 1884 until 1980 when activities ceased, the site was used for ore processing and smelting operations. In 1988, EPA conducted an investigation to determine the nature and extent of the flue dust contamination. A 1988 ROD addressed the Mill Creek Operable Unit (OU15) and documented themore » relocation of residents from the community surrounding the smelter site as the selected remedial action. The Record of Decision (ROD) addresses the Flue Dust Operable Unit (OU11). The primary contaminants of concern affecting this site from the flue dust materials are metals including arsenic, cadmium, and lead. The selected remedial action for the site is included.« less

  18. Magnitude and pattern of Arctic warming governed by the seasonality of radiative forcing.

    PubMed

    Bintanja, R; Krikken, F

    2016-12-02

    Observed and projected climate warming is strongest in the Arctic regions, peaking in autumn/winter. Attempts to explain this feature have focused primarily on identifying the associated climate feedbacks, particularly the ice-albedo and lapse-rate feedbacks. Here we use a state-of-the-art global climate model in idealized seasonal forcing simulations to show that Arctic warming (especially in winter) and sea ice decline are particularly sensitive to radiative forcing in spring, during which the energy is effectively 'absorbed' by the ocean (through sea ice melt and ocean warming, amplified by the ice-albedo feedback) and consequently released to the lower atmosphere in autumn and winter, mainly along the sea ice periphery. In contrast, winter radiative forcing causes a more uniform response centered over the Arctic Ocean. This finding suggests that intermodel differences in simulated Arctic (winter) warming can to a considerable degree be attributed to model uncertainties in Arctic radiative fluxes, which peak in summer.

  19. Climatic warming and the future of bison as grazers

    NASA Astrophysics Data System (ADS)

    Craine, Joseph M.; Towne, E. Gene; Miller, Mary; Fierer, Noah

    2015-11-01

    Climatic warming is likely to exacerbate nutritional stress and reduce weight gain in large mammalian herbivores by reducing plant nutritional quality. Yet accurate predictions of the effects of climatic warming on herbivores are limited by a poor understanding of how herbivore diet varies along climate gradients. We utilized DNA metabarcoding to reconstruct seasonal variation in the diet of North American bison (Bison bison) in two grasslands that differ in mean annual temperature by 6 °C. Here, we show that associated with greater nutritional stress in warmer climates, bison consistently consumed fewer graminoids and more shrubs and forbs, i.e. eudicots. Bison in the warmer grassland consumed a lower proportion of C3 grass, but not a greater proportion of C4 grass. Instead, bison diet in the warmer grassland had a greater proportion of N2-fixing eudicots, regularly comprising >60% of their protein intake in spring and fall. Although bison have been considered strict grazers, as climatic warming reduces grass protein concentrations, bison may have to attempt to compensate by grazing less and browsing more. Promotion of high-protein, palatable eudicots or increasing the protein concentrations of grasses will be critical to minimizing warming-imposed nutritional stress for bison and perhaps other large mammalian herbivores.

  20. Warming experiments underpredict plant phenological responses to climate change

    USGS Publications Warehouse

    Wolkovich, Elizabeth M.; Cook, Benjamin I.; Allen, Jenica M.; Crimmins, Theresa M.; Betancourt, Julio L.; Travers, Steven E.; Pau, Stephanie; Regetz, James; Davies, T. Jonathan; Kraft, Nathan J.B.; Ault, Toby R.; Bolmgren, Kjell; Mazer, Susan J.; McCabe, Gregory J.; McGill, Brian J.; Parmesan, Camille; Salamin, Nicolas; Schwartz, Mark D.; Cleland, Elsa E.

    2012-01-01

    Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

  1. Warming Experiments Underpredict Plant Phenological Responses to Climate Change

    NASA Technical Reports Server (NTRS)

    Wolkovich, E. M.; Cook, B. I.; Allen, J. M.; Crimmins, T. M.; Betancourt, J. L.; Travers, S. E.; Pau, S.; Regetz, J.; Davies, T. J.; Kraft, N. J. B.; hide

    2012-01-01

    Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

  2. 77 FR 76065 - Endangered and Threatened Wildlife and Plants; Draft Revised Recovery Plan for Kendall Warm...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ..., exotic species, grazing, hydrologic changes, invasive plants, pollution, and energy resource exploration... revised recovery plan for the Kendall Warm Springs dace (Rhinichthys osculus thermalis). This species is federally listed as endangered under the Endangered Species Act of 1973, as amended (ESA). The Service...

  3. 1. DEADWOOD CREEK BRIDGE FACING SOUTHWEST. MOUNT RAINIER AND EMMONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. DEADWOOD CREEK BRIDGE FACING SOUTHWEST. MOUNT RAINIER AND EMMONS GLACIER VISIBLE IN BACKGROUND. - Deadwood Creek Bridge, Spanning Deadwood Creek on Mather Memorial Parkway, Longmire, Pierce County, WA

  4. Perspective view of span over French Creek and east abutment, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of span over French Creek and east abutment, looking NW. - Pennsylvania Railroad, French Creek Trestle, Spanning French Creek, north of Paradise Street, Phoenixville, Chester County, PA

  5. Establishing native warm season grasses on Eastern Kentucky strip mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B.

    1998-12-31

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomassmore » samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife

  6. Surface-subsurface interactions of the seasonally snow-covered Boulder Creek Watershed at Orodell, Colorado

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Williams, M. W.; Rock, N.; Cowie, R. M.

    2015-12-01

    The hydrology of the western United States and many other semi-arid regions of the world is dominated by snowmelt runoff. An important question is the role of subsurface interactions with snowmelt runoff. Hydrologic mixing models have been used to answer this question at the hillslope and small basin scale. Here we present information on snowmelt/subsurface interactions for the 270-km2 Boulder Creek Watershed in the Colorado Front Range using isotopic, geochemical, and hydrometric data along with end-member mixing analysis (EMMA). We measured these parameters at several different elevations in weekly precipitation, the seasonal snowpack, snowmelt before contact with the ground, discharge, springs, soil solution, and groundwater. At the watershed outlet Orodell, five tracers are selected: Ca2+, Mg2+, Na+, ANC, and d18O. The first two principal components can explain about 98% of the chemical variance in stream water, and require three end members: groundwater, rain, and snowmelt. The r-squared values of measured and predicted values are higher than 0.95, suggesting that we have identified the correct end-members. It is concluded that in summer months, contributions from groundwater to stream flow decreased from high to low elevations along the Boulder Creek main stem, while contributions from rain and snow increased. Whether this trend represents the general contributions for streamflow on a yearly basis is uncertain, and needs further investigation. On the contrary, contributions of snow to streamflow decreased from GL4 to GG in summer months (Cowie, 2014). Thus, in Boulder Creek Watershed at Orodell, the hydrochemical evolution at headwater catchments is different from that in the main stem.

  7. Testing ecological tradeoffs of a new tool for removing fine sediment in a spring-fed stream

    USGS Publications Warehouse

    Sepulveda, Adam; Sechrist, Juddson D.; Marczak, Laurie B

    2014-01-01

    Excessive fine sediment is a focus of stream restoration work because it can impair the structure and function of streams, but few methods exist for removing sediment in spring-fed streams. We tested a novel method of sediment removal with the potential to have minimal adverse effects on the biological community during the restoration process. The Sand Wand system, a dredgeless vacuum developed by Streamside Technologies, was used to experimentally remove fine sediment from Kackley Springs, a spring creek in southeastern Idaho. We assessed the effects of the Sand Wand on stream physical habitat and macroinvertebrate composition for up to 60 days after the treatment. We documented changes in multiple habitat variables, including stream depth, median particle size, and the frequency of embedded substrate in stream reaches that were treated with the Sand Wand. We also found that macroinvertebrate composition was altered even though common macroinvertebrate metrics changed little after the treatment. Our results suggest that the Sand Wand was effective at removing fine sediments in Kackley Springs and did minimal harm to macroinvertebrate function, but the Sand Wand was not ultimately effective in improving substrate composition to desired conditions. Additional restoration techniques are still needed to decrease the amount of fine sediment.

  8. Simulated climate-warming increases Coleoptera activity-densities and reduces community diversity in a cereal crop

    USDA-ARS?s Scientific Manuscript database

    To assess one likely effect of global warming, we experimentally increased the temperature and precipitation of a coleopteran community (mainly Carabidae) of an agro-ecosystem. We simulated climate change on a field of spring wheat by experimentally increasing the temperature by 2°C using infrared h...

  9. 3. DEADWOOD CREEK BRIDGE, VIEW BELOW DECK SHOWING OPEN SPANDREL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DEADWOOD CREEK BRIDGE, VIEW BELOW DECK SHOWING OPEN SPANDREL ARCH CONSTRUCTION AND ARCH RIBS - Deadwood Creek Bridge, Spanning Deadwood Creek on Mather Memorial Parkway, Longmire, Pierce County, WA

  10. Effects of potential surface coal mining on dissolved solids in Otter Creek and in the Otter Creek alluvial aquifer, southeastern Montana

    USGS Publications Warehouse

    Cannon, M.R.

    1985-01-01

    Otter Creek drains an area of 709 square miles in the coal-rich Powder River structural basin of southeastern Montana. The Knobloch coal beds in the Tongue River Member of the Paleocene Fort Union Formation is a shallow aquifer and a target for future surface mining in the downstream part of the Otter Creek basin. A mass-balance model was used to estimate the effects of potential mining on the dissolved solids concentration in Otter Creek and in the alluvial aquifer in the Otter Creek valley. With extensive mining of the Knobloch coal beds, the annual load of dissolved solids to Otter Creek at Ashland at median streamflow could increase by 2,873 tons, or a 32-percent increase compared to the annual pre-mining load. Increased monthly loads of Otter Creek, at the median streamflow, could range from 15 percent in February to 208 percent in August. The post-mining dissolved solids load to the subirrigated part of the alluvial valley could increase by 71 percent. The median dissolved solids concentration in the subirrigated part of the valley could be 4,430 milligrams per liter, compared to the pre-mining median concentration of 2,590 milligrams per liter. Post-mining loads from the potentially mined landscape were calculated using saturated-paste-extract data from 506 overburdened samples collected from 26 wells and test holes. Post-mining loads to the Otter Creek valley likely would continue at increased rates for hundreds of years after mining. If the actual area of Knobloch coal disturbed by mining were less than that used in the model, post-mining loads to the Otter Creek valley would be proportionally smaller. (USGS)

  11. Nutrients, Select Pesticides, and Suspended Sediment in the Karst Terrane of the Sinking Creek Basin, Kentucky, 2004-06

    USGS Publications Warehouse

    Crain, Angela S.

    2010-01-01

    This report presents the results of a study by the U.S. Geological Survey, in cooperation with the Kentucky Department of Agriculture, on nutrients, select pesticides, and suspended sediment in the karst terrane of the Sinking Creek Basin. Streamflow, nutrient, select pesticide, and suspended-sediment data were collected at seven sampling stations from 2004 through 2006. Concentrations of nitrite plus nitrate ranged from 0.21 to 4.9 milligrams per liter (mg/L) at the seven stations. The median concentration of nitrite plus nitrate for all stations sampled was 1.6 mg/L. Total phosphorus concentrations were greater than 0.1 mg/L, the U.S. Environmental Protection Agency's recommended maximum concentration, in 45 percent of the samples. Concentrations of orthophosphates ranged from less than 0.006 to 0.46 mg/L. Concentrations of nutrients generally were larger during spring and summer months, corresponding to periods of increased fertilizer application on agricultural lands. Concentrations of suspended sediment ranged from 1.0 to 1,490 mg/L at the seven stations. Of the 47 pesticides analyzed, 14 were detected above the adjusted method reporting level of 0.01 micrograms per liter (mug/L). Although these pesticides were detected in water-quality samples, they generally were found at less than part-per-billion concentrations. Atrazine was the only pesticide detected at concentrations greater than U.S. Environmental Protection Agency drinking water standard of 3 mug/L, and the maximum detected concentration was 24.6 mug/L. Loads and yields of nutrients, selected pesticides, and suspended sediment were estimated at two mainstream stations on Sinking Creek, a headwater station (Sinking Creek at Rosetta) and a station at the basin outlet (Sinking Creek near Lodiburg). Mean daily streamflow data were available for the estimation of loads and yields from a stream gage at the basin outlet station; however, only periodic instantaneous flow measurements were available for the

  12. Baseline Characteristics of Jordan Creek, Juneau, Alaska

    USGS Publications Warehouse

    Host, Randy H.; Neal, Edward G.

    2004-01-01

    Anadromous fish populations historically have found healthy habitat in Jordan Creek, Juneau, Alaska. Concern regarding potential degradation to the habitat by urban development within the Mendenhall Valley led to a cooperative study among the City and Borough of Juneau, Alaska Department of Environmental Conservation, and the U.S. Geological Survey, that assessed current hydrologic, water-quality, and physical-habitat conditions of the stream corridor. Periods of no streamflow were not uncommon at the Jordan Creek below Egan Drive near Auke Bay stream gaging station. Additional flow measurements indicate that periods of no flow are more frequent downstream of the gaging station. Although periods of no flow typically were in March and April, streamflow measurements collected prior to 1999 indicate similar periods in January, suggesting that no flow conditions may occur at any time during the winter months. This dewatering in the lower reaches likely limits fish rearing and spawning habitat as well as limiting the migration of juvenile salmon out to the ocean during some years. Dissolved-oxygen concentrations may not be suitable for fish survival during some winter periods in the Jordan Creek watershed. Dissolved-oxygen concentrations were measured as low as 2.8 mg/L at the gaging station and were measured as low as 0.85 mg/L in a tributary to Jordan Creek. Intermittent measurements of pH and dissolved-oxygen concentrations in the mid-reaches of Jordan Creek were all within acceptable limits for fish survival, however, few measurements of these parameters were made during winter-low-flow conditions. One set of water quality samples was collected at six different sites in the Jordan Creek watershed and analyzed for major ions and dissolved nutrients. Major-ion chemistry showed Jordan Creek is calcium bicarbonate type water with little variation between sampling sites.

  13. Sources of baseflow for the Minnehaha Creek Watershed, Minnesota, US

    NASA Astrophysics Data System (ADS)

    Nieber, J. L.; Moore, T. L.; Gulliver, J. S.; Magner, J. A.; Lahti, L. B.

    2013-12-01

    Minnehaha Creek is among the most valued surface water features in the Minneapolis, MN metro area, with a waterfall as it enters the Minnehaha Creek park. Flow in Minnehaha Creek is heavily dependent on discharge from the stream's origin, Lake Minnetonka, the outlet of which is closed during drought periods to maintain water elevations in the lake resulting in low- (or no-) flow conditions in the creek. Stormwater runoff entering directly to the creek from the creek's largely urbanized watershed exacerbates extremes in flow conditions. Given the cultural and ecological value of this stream system, there is great interest in enhancing the cultural and ecosystem services provided by Minnehaha Creek through improvements in streamflow regime by reducing flashiness and sustaining increased low-flows. Determining the potential for achieving improvements in flow requires first that the current sources of water contributing to low-flows in the creek be identified and quantified. Work on this source identification has involved a number of different approaches, including analyses of the streamflow record using a hydrologic system model framework, examination of the Quaternary and bedrock geology of the region, estimation of groundwater-surface water exchange rates within the channel using hyporheic zone temperature surveys and flux meter measurements, and analyses of the stable isotopes of oxygen and hydrogen in samples of stream water, groundwater, and rainfall. Analysis of baseflow recessions using the method of Brutsaert and Nieber (1977) indicates that only a small portion of the catchment, probably the riparian zone, contributes to baseflows. This result appears to be supported by the observation that the limestone/shale bedrock layer underlying the surficial aquifer has a non-zero permeability, and in a significant portion of the watershed the layer has been eroded away leaving the surficial aquifer ';bottomless' and highly susceptible to vertical (down) water loss

  14. Correlation between the silica concentration and the orifice temperature in the warm springs along the jordan-dead sea rift valley

    USGS Publications Warehouse

    Levitte, D.; Eckstein, Y.

    1978-01-01

    Analysis of twenty-one thermal springs emerging along the Jordan-Dead Sea Rift Valley in Israel indicates a very good correlation between the concentration of dissolved silica and the temperature of the spring orifice. Dissolution of quartz was identified as the apparent source of the silica in the water. Application of the silica geothermometer for mixed systems suggests that the springs in the Tiberias Lake Basin are supplied with hot water from deep reservoir (or reservoirs) at a temperature of 115??C (239??F). The same temperature was postulated earlier by the application of the Na-K-Ca hydro-geothermometer to a group of thermal springs in the same basin. The temperature of the reservoir supplying hot brines to the springs emerging along the western shore of the Dead Sea is estimated at 90??C (194??F).

  15. Isotope hydrology of voluminous cold springs in fractured rock from an active volcanic region, northeastern California

    NASA Astrophysics Data System (ADS)

    Roses, Timothy P.; Lee Davisson, M.; Criss, Robert E.

    1996-05-01

    The more than 1550 km2 (600 mi2) Hat Creek Basin in northeastern California is host to several first magnitude cold springs that emanate from Quaternary basaltic rocks with individual discharge rates ranging from 1.7 to 8.5 m3 s-1 (60-300 ft3 s-1). Stable isotope (δ18O, δD, δ13C) and 14C measurements of surface and groundwater samples were used to identify recharge areas, and to evaluate aquifer residence times and flow paths. Recharge locations were constrained from the regional decrement in meteoric water δ18O values as a function of elevation, determined to be -0.23‰ per 100 m for small springs and creek waters collected along the western Cascade slope of this region. In general, the large-volume springs are lower in (δ18O than surrounding meteoric waters, and are inferred to originate in high-elevation, high-precipitation regions up to 50 km away from their discharge points. Large spring 14C abundances range from 99 to 41 % modern carbon (pmc), and most show evidence of interaction with three distinct carbon isotope reservoirs. These reservoirs are tentatively identified as (1) soil CO2 gas equilibrated under open system conditions with groundwater in the recharge zone [δ13CDIC ≈ -18‰, 14C > 100 pmc], (2) dissolved carbon equilibrated with atmospheric CO2 gas [δ13CDIC ≈ +1‰, 14C > 100 pmc], and (3) dissolved carbon derived from volcanic CO2 gas emissions [δ13CDIC≈0‰, 14C=0 pmc]. Many regional waters show a decrease in 14C abundance with increasing δ13C values, a pattern indicative of interaction with dead carbon originating from volcanic CO2 gas. Several lines of evidence suggest that actual groundwater residence times are too short (⩽ 200 years) to apply radiocarbon dating corrections. In particular, water temperatures measured at springs show that deep groundwater circulation does not occur, which implies an insufficient aquifer volume to account for both the high discharge rates and long residence times suggested by 14C apparent ages

  16. 1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING THE RUSH CREEK POWERHOUSE AT PHOTO RIGHT (TAILRACE IN FOREGROUND), BUILDING 106 NEXT TO THE POWERHOUSE AT PHOTO LEFT CENTER, AND BUILDING 103 AT UPPER PHOTO LEFT ABOVE AND BEHIND BUILDING 106. VIEW TO SOUTH. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  17. Methane Cycling in a Warming Wetland

    NASA Astrophysics Data System (ADS)

    Noyce, G. L.; Megonigal, P.; Rich, R.; Kirwan, M. L.; Herbert, E. R.

    2017-12-01

    Coastal wetlands are global hotspots of carbon (C) storage, but the future of these systems is uncertain. In June 2016, we initiated an in-situ, active, whole-ecosystem warming experiment in the Smithsonian's Global Change Research Wetland to quantify how warming and elevated CO2 affect the stability of coastal wetland soil C pools and contemporary rates of C sequestration. Transects are located in two plant communities, dominated by C3 sedges or C4 grasses. The experiment has a gradient design with air and soil warming treatments ranging from ambient to +5.1 °C and heated plots consistently maintain their target temperature year-round. In April 2017, an elevated CO2 treatment was crossed with temperature in the C3community. Ongoing measurements include soil elevation, C fluxes, porewater chemistry and redox potential, and above- and below-ground growth and biomass. In both years, warming increased methane (CH4) emissions (measured at 3-4 week intervals) from spring through fall at the C3 site, but had little effect on emissions from the C4 site. Winter (Dec-Mar) emissions showed no treatment effect. Stable isotope analysis of dissolved CH4 and DIC also indicated that warming had differing effects on CH4 pathways in the two vegetation communities. To better understand temperature effects on rates of CH4 production and oxidation, 1 m soil cores were collected from control areas of the marsh in summer 2017 and incubated at temperatures ranging from 4 °C to 35 °C. Warming increased CH4 production and oxidation rates in surface samples and oxidation rates in the rooting zone samples from both sites, but temperature responses in deep (1 m) soil samples were minimal. In the surface and rooting zone samples, production rates were also consistently higher in C3 soils compared to C4 soils, but, contrary to our expectations, the temperature response was stronger in the C4 soils. However, oxidation in C3 rooting zone samples did have a strong temperature response. The

  18. Manatees at the KSC Wildlife Refuge

    NASA Image and Video Library

    2002-01-08

    Manatees gather in the shallows of Banana Creek inside NASA's Kennedy Space Center. Manatees live in Florida's warm-water rivers and inland springs. The Florida manatee feeds on more than 60 varieties of grasses and plants. Manatee cows give birth about once every three years. Gestation lasts about 12 months. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles.

  19. Manatees at the KSC Wildlife Refuge

    NASA Image and Video Library

    2002-01-08

    Manatees gather in the Banana Creek inside NASA's Kennedy Space Center. Manatees live in Florida's warm-water rivers and inland springs. The Florida manatee feeds on more than 60 varieties of grasses and plants. Manatee cows give birth about once every three years. Gestation lasts about 12 months. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles.

  20. 78 FR 33991 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... of Candle Harris County. Creek Road. Approximately 500 feet +125 upstream of Spring Cypress Road. K131-00-00 (Spring Gully) At the Cypress Creek +106 Unincorporated Areas of confluence. Harris County. Approximately 200 feet +137 downstream of Spring Cypress Road. K131-03-03 (Tributary 2.1 to Spring At the Spring...

  1. "Visit to Caspar Creek, northern California"

    Treesearch

    Nick Schofield

    1989-01-01

    As part of a brief study tour in California, I had the good fortune of spending a very pleasant day on the Caspar Creek watershed, ably guided by Peter Cafferata and Liz Keppeler. Amongst the many notable achievements of the Caspar Creek Study is its longevity. The study started in 1962 and has evolved over time

  2. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Swan Creek. 9.211 Section 9.211 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the viticultural are...

  3. General perspective view of the Marion Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Marion Creek Bridge, view looking southwest. - Marion Creek Bridge, Spanning Marion Creek at Milepoint 66.42 on North Santiam Highway (OR-22), Marion Forks, Linn County, OR

  4. General perspective view of the Marion Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Marion Creek Bridge, view looking southeast. - Marion Creek Bridge, Spanning Marion Creek at Milepoint 66.42 on North Santiam Highway (OR-22), Marion Forks, Linn County, OR

  5. 8. DETAIL VIEW OF DATEPLATE WHICH READS 'HARP CREEK, LUTEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL VIEW OF DATEPLATE WHICH READS 'HARP CREEK, LUTEN BRIDGE CO., CONTRACTOR, ARKANSAS STATE HIGHWAY DEPARTMENT, 1928' - Harp Creek Bridge, Spans Harp Creek at State Highway 7, Harrison, Boone County, AR

  6. Fisheries and aquatic resources of Prairie Creek, Redwood National Park

    USGS Publications Warehouse

    Wilzbach, Peggy; Ozaki, Vicki

    2017-01-01

    This report synthesizes information on the status of fisheries and aquatic resources in the Prairie Creek sub-basin of Redwood Creek in Humboldt County in northern California, founded on a bibliographic search we conducted of historic and current datasets, unpublished reports, theses, and publications. The compiled Prairie Creek Fisheries Bibliography is available at https://irma.nps.gov/DataStore/. This report describes life histories and population status of the salmonid fishes, and species occurrence of non-salmonid fishes, amphibians, macroinvertebrates, and common benthic algae in Prairie Creek. We assessed habitat conditions that may limit salmonid production in relation to recovery targets established by the National Marine Fisheries Service and the State of California. Although salmon abundance has decreased from historic levels, production of juvenile salmonids in Prairie Creek is relatively stable and robust in comparison with the rest of the Redwood Creek Basin. Carrying capacity likely differs between the undisturbed upper reaches of Prairie Creek and reaches in the lower creek, the latter of which are affected by legacy impacts from timber and agricultural activities. Increased sediment supply and lack of channel structure and floodplain connection in lower Prairie Creek appear to be the greatest stressors to salmonid production. Existing datasets on aquatic resources and environmental variables are listed, and subject areas where few data are available are identified.

  7. 2. GENERAL VIEW SHOWING SIMPSON CREEK BRIDGE WITH BRIDGEPORT LAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW SHOWING SIMPSON CREEK BRIDGE WITH BRIDGEPORT LAMP AND CHIMNEY COMPANY IN BACKGROUND. - Bridgeport Lamp Chimney Company, Simpson Creek Bridge, Spanning Simpson Creek, State Route 58 vicinity, Bridgeport, Harrison County, WV

  8. How does the dengue vector mosquito Aedes albopictus respond to global warming?

    PubMed

    Jia, Pengfei; Chen, Xiang; Chen, Jin; Lu, Liang; Liu, Qiyong; Tan, Xiaoyue

    2017-03-11

    Global warming has a marked influence on the life cycle of epidemic vectors as well as their interactions with human beings. The Aedes albopictus mosquito as the vector of dengue fever surged exponentially in the last decade, raising ecological and epistemological concerns of how climate change altered its growth rate and population dynamics. As the global warming pattern is considerably uneven across four seasons, with a confirmed stronger effect in winter, an emerging need arises as to exploring how the seasonal warming effects influence the annual development of Ae. albopictus. The model consolidates a 35-year climate dataset and designs fifteen warming patterns that increase the temperature of selected seasons. Based on a recently developed mechanistic population model of Ae. albopictus, the model simulates the thermal reaction of blood-fed adults by systematically increasing the temperature from 0.5 to 5 °C at an interval of 0.5 °C in each warming pattern. The results show the warming effects are different across seasons. The warming effects in spring and winter facilitate the development of the species by shortening the diapause period. The warming effect in summer is primarily negative by inhibiting mosquito development. The warming effect in autumn is considerably mixed. However, these warming effects cannot carry over to the following year, possibly due to the fact that under the extreme weather in winter the mosquito fully ceases from development and survives in terms of diapause eggs. As the historical pattern of global warming manifests seasonal fluctuations, this study provides corroborating and previously ignored evidence of how such seasonality affects the mosquito development. Understanding this short-term temperature-driven mechanism as one chain of the transmission events is critical to refining the thermal reaction norms of the epidemic vector under global warming as well as developing effective mosquito prevention and control strategies.

  9. 1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING THE RUSH CREEK POWERHOUSE AT PHOTO RIGHT, BUILDING 106 NEXT TO THE POWERHOUSE AT PHOTO CENTER, BUILDING 103 AT UPPER PHOTO LEFT, AND BUILDING 104 ABOVE BUILDING 106 PARTIALLY OBSCURED BEHIND TREE AT UPPER PHOTO CENTER. VIEW TO SOUTH. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  10. High-resolution tephrochronology of the Wilson Creek Formation (Mono Lake, California) and Laschamp event using 238U-230Th SIMS dating of accessory mineral rims

    NASA Astrophysics Data System (ADS)

    Vazquez, Jorge A.; Lidzbarski, Marsha I.

    2012-12-01

    Sediments of the Wilson Creek Formation surrounding Mono Lake preserve a high-resolution archive of glacial and pluvial responses along the eastern Sierra Nevada due to late Pleistocene climate change. An absolute chronology for the Wilson Creek stratigraphy is critical for correlating the paleoclimate record to other archives in the western U.S. and the North Atlantic region. However, multiple attempts to date the Wilson Creek stratigraphy using carbonates and tephras yield discordant results due to open-system effects and radiocarbon reservoir uncertainties as well as abundant xenocrysts. New ion microprobe 238U-230Th dating of the final increments of crystallization recorded by allanite and zircon autocrysts from juvenile pyroclasts yield ages that effectively date eruption of key tephra beds and delimit the timing of basal Wilson Creek sedimentation to the interval between 26.8±2.1 and 61.7±1.9 ka. Tephra (Ash 15) erupted during the geomagnetic excursion originally designated the Mono Lake excursion yields an age of 40.8±1.9 ka, indicating that the event is instead the Laschamp excursion. The new ages support a depositional chronology from magnetostratigraphy that indicates quasi-synchronous glacial and hydrologic responses in the Sierra Nevada and Mono Basin to regional climate change, with intervals of lake filling and glacial-snowpack melting that are in phase with peaks in spring insolation.

  11. High-resolution tephrochronology of the Wilson Creek Formation (Mono Lake, California) and Laschamp event using 238U-230Th SIMS dating of accessory mineral rims

    USGS Publications Warehouse

    Vazquez, Jorge A.; Lidzbarski, Marsha I.

    2012-01-01

    Sediments of the Wilson Creek Formation surrounding Mono Lake preserve a high-resolution archive of glacial and pluvial responses along the eastern Sierra Nevada due to late Pleistocene climate change. An absolute chronology for the Wilson Creek stratigraphy is critical for correlating the paleoclimate record to other archives in the western U.S. and the North Atlantic region. However, multiple attempts to date the Wilson Creek stratigraphy using carbonates and tephras yield discordant results due to open-system effects and radiocarbon reservoir uncertainties as well as abundant xenocrysts. New ion microprobe 238U-230Th dating of the final increments of crystallization recorded by allanite and zircon autocrysts from juvenile pyroclasts yield ages that effectively date eruption of key tephra beds and delimit the timing of basal Wilson Creek sedimentation to the interval between 26.8±2.1 and 61.7±1.9 ka. Tephra (Ash 15) erupted during the geomagnetic excursion originally designated the Mono Lake excursion yields an age of 40.8±1.9 ka, indicating that the event is instead the Laschamp excursion. The new ages support a depositional chronology from magnetostratigraphy that indicates quasi-synchronous glacial and hydrologic responses in the Sierra Nevada and Mono Basin to regional climate change, with intervals of lake filling and glacial-snowpack melting that are in phase with peaks in spring insolation.

  12. Impact of climate warming on upper layer of the Bering Sea

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Chul; Delworth, Thomas L.; Rosati, Anthony; Zhang, Rong; Anderson, Whit G.; Zeng, Fanrong; Stock, Charles A.; Gnanadesikan, Anand; Dixon, Keith W.; Griffies, Stephen M.

    2013-01-01

    The impact of climate warming on the upper layer of the Bering Sea is investigated by using a high-resolution coupled global climate model. The model is forced by increasing atmospheric CO2 at a rate of 1% per year until CO2 reaches double its initial value (after 70 years), after which it is held constant. In response to this forcing, the upper layer of the Bering Sea warms by about 2°C in the southeastern shelf and by a little more than 1°C in the western basin. The wintertime ventilation to the permanent thermocline weakens in the western Bering Sea. After CO2 doubling, the southeastern shelf of the Bering Sea becomes almost ice-free in March, and the stratification of the upper layer strengthens in May and June. Changes of physical condition due to the climate warming would impact the pre-condition of spring bio-productivity in the southeastern shelf.

  13. 1. Topographic view of the Rocky Creek Bridge and the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Topographic view of the Rocky Creek Bridge and the Oregon coast, view looking east - Rocky Creek Bridge, Spanning Rocky Creek on Oregon Coast Highway (U.S. Route 101), Depoe Bay, Lincoln County, OR

  14. Characterization of Stormflows and Wastewater Treatment-Plant Effluent Discharges on Water Quality, Suspended Sediment, and Stream Morphology for Fountain and Monument Creek Watersheds, Colorado, 1981-2006

    USGS Publications Warehouse

    Mau, David P.; Stogner, Sr., Robert W.; Edelmann, Patrick

    2007-01-01

    In 1998, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study of the Fountain and Monument Creek watersheds to characterize water quality and suspended-sediment conditions in the watershed for different flow regimes, with an emphasis on characterizing water quality during storm runoff. Water-quality and suspended-sediment samples were collected in the Fountain and Monument Creek watersheds from 1981 through 2006 to evaluate the effects of stormflows and wastewater-treatment effluent on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality data were collected at 11 sites between 1981 and 2001, and 14 tributary sites were added in 2003 to increase spatial coverage and characterize water quality throughout the watersheds. Suspended-sediment samples collected daily at 7 sites from 1998 through 2001, 6 sites daily from 2003 through 2006, and 13 tributary sites intermittently from 2003 through 2006 were used to evaluate the effects of stormflow on suspended-sediment concentrations, discharges, and yields. Data were separated into three flow regimes: base flow, normal flow, and stormflow. Stormflow concentrations from 1998 through 2006 were compared to Colorado acute instream standards and, with the exception of a few isolated cases, did not exceed water-quality standards for inorganic constituents that were analyzed. However, stormflow concentrations of both fecal coliform and Escherichia coli (E. coli) frequently exceeded water-quality standards during 1998 through 2006 on main-stem and tributary sites by more than an order of magnitude. There were two sites on Cottonwood Creek, a tributary to Monument Creek, with elevated concentrations of dissolved nitrite plus nitrate: site 07103985 (TbCr), a tributary to Cottonwood Creek and site 07103990 (lower_CoCr), downstream from site 07103985 (TbCr), and near the confluence with Monument Creek. During base-flow and normal-flow conditions, the median

  15. Climate model assessment of changes in winter-spring streamflow timing over North America

    USGS Publications Warehouse

    Kam, Jonghun; Knutson, Thomas R.; Milly, Paul C. D.

    2018-01-01

    Over regions where snow-melt runoff substantially contributes to winter-spring streamflows, warming can accelerate snow melt and reduce dry-season streamflows. However, conclusive detection of changes and attribution to anthropogenic forcing is hindered by brevity of observational records, model uncertainty, and uncertainty concerning internal variability. In this study, a detection/attribution of changes in mid-latitude North American winter-spring streamflow timing is examined using nine global climate models under multiple forcing scenarios. In this study, robustness across models, start/end dates for trends, and assumptions about internal variability is evaluated. Marginal evidence for an emerging detectable anthropogenic influence (according to four or five of nine models) is found in the north-central U.S., where winter-spring streamflows have been coming earlier. Weaker indications of detectable anthropogenic influence (three of nine models) are found in the mountainous western U.S./southwestern Canada and in extreme northeastern U.S./Canadian Maritimes. In the former region, a recent shift toward later streamflows has rendered the full-record trend toward earlier streamflows only marginally significant, with possible implications for previously published climate change detection findings for streamflow timing in this region. In the latter region, no forced model shows as large a shift toward earlier streamflow timing as the detectable observed shift. In other (including warm, snow-free) regions, observed trends are typically not detectable, although in the U.S. central plains we find detectable delays in streamflow, which are inconsistent with forced model experiments.

  16. +2 Valence Metal Concentrations in Lion Creek, Oakland, California

    NASA Astrophysics Data System (ADS)

    Vazquez, P.; Zedd, T.; Chagolla, R.; Dutton-Starbuck, M.; Negrete, A.; Jinham, M.; Lapota, M.

    2012-12-01

    Seven major creeks exist within the City of Oakland, California. These creeks all flow in the southwest direction from forested hills down through densely populated streets where they become susceptible to urban runoff. Lion Creek has been diverted to engineered channels and underground culverts and runs directly under our school (Roots International) before flowing into the San Leandro Bay. One branch of the creek begins near an abandoned sulfur mine. Previous studies have shown that extremely high levels of lead, arsenic and iron exist in this portion of the creek due to acid mine drainage. In this study +2 valence heavy metals concentration data was obtained from samples collected from a segment of the creek located approximately 2.8 miles downstream from the mine. Concentrations in samples collected at three different sites along this segment ranged between 50 ppb and 100 ppb. We hypothesize that these levels are related to the high concentration of +2 valence heavy metals at the mining site. To test this hypothesis, we have obtained samples from various locations along the roughly 3.75 miles of Lion Creek that are used to assess changes in heavy metals concentration levels from the mining site to the San Leandro Bay.

  17. 7. Cable Creek Bridge after completion. Zion National Park negative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Cable Creek Bridge after completion. Zion National Park negative number 1485, classification series 002, 12. - Floor of the Valley Road, Cable Creek Bridge, Spanning Cable Creek on Floor of Valley, Springdale, Washington County, UT

  18. Topographic view of the Marion Creek Bridge, view looking westbound ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topographic view of the Marion Creek Bridge, view looking westbound on the Santiam Highway. - Marion Creek Bridge, Spanning Marion Creek at Milepoint 66.42 on North Santiam Highway (OR-22), Marion Forks, Linn County, OR

  19. Preliminary evaluation of effects of best management practices in the Black Earth Creek, Wisconsin, priority watershed

    USGS Publications Warehouse

    Walker, J.F.; Graczyk, D.J.; Olem, H.

    1993-01-01

    quality in the two watersheds. Future research will address techniques for including snowmelt runoff and early spring storms.Nonpoint-source contamination accounts for a substantial part of the water quality problems in many watersheds. The Wisconsin Nonpoint Source Water Pollution Abatement Program provides matching money for voluntary implementation of various best management practices (BMPs). The effectiveness of BMP s on a drainage-basin scale has not been adequately assessed in Wisconsin by use of data collected before and after BMP implementation. The U.S. Geological Survey, in cooperation with the Wisconsin Department of Natural Resources, monitored water quality in the Black Earth Creek watershed in southern Wisconsin from October 1984 through September 1986 (pre-BMP conditions). BMP implementation began during the summer of 1989 and is planned to continue through 1993. Data collection resumed in fall 1989 and is intended to provide information during the transitional period of BMP implementation (1990-93) and 2 years of post-BMP conditions (1994-95). Preliminary results presented for two subbasins in the Black Earth Creek watershed (Brewery and Garfoot Creeks) are based on data collected during pre-BMP conditions and the first 3 years of the transitional period. The analysis includes the use of regressions to control for natural variability in the data and, hence, enhance the ability to detect changes. Data collected to date (1992) indicate statistically significant differences in storm mass transport of suspended sediment and ammonia nitrogen at Brewery Creek. The central tendency of the regression residuals has decreased with the implementation of BMPs; hence, the improvement in water quality in the Brewery Creek watershed is likely a result of BMP implementation. Differences in storm mass transport at Garfoot Creek were not detected, primarily because of an insufficient number of storms in the transitional period. As practice implementation continues, the

  20. Freshwater flow from estuarine creeks into northeastern Florida Bay

    USGS Publications Warehouse

    Hittle, Clinton; Patino, Eduardo; Zucker, Mark A.

    2001-01-01

    Water-level, water-velocity, salinity, and temperature data were collected from selected estuarine creeks to compute freshwater flow into northeastern Florida Bay. Calibrated equations for determining mean velocity from acoustic velocity were obtained by developing velocity relations based on direct acoustic measurements, acoustic line velocity, and water level. Three formulas were necessary to describe flow patterns for all monitoring sites, with R2 (coefficient of determination) values ranging from 0.957 to 0.995. Cross-sectional area calculations were limited to the main channel of the creeks and did not include potential areas of overbank flow. Techniques also were used to estimate discharge at noninstrumented sites by establishing discharge relations to nearby instrumented sites. Results of the relation between flows at instrumented and noninstrumented sites varied with R2 values ranging from 0.865 to 0.99. West Highway Creek was used to estimate noninstrumented sites in Long Sound, and Mud Creek was used to estimate East Creek in Little Madeira Bay. Mean monthly flows were used to describe flow patterns and to calculate net flow along the northeastern coastline. Data used in the study were collected from October 1995 through September 1999, which includes the El Nino event of 1998. During this period, about 80 percent of the freshwater flowing into the bay occurred during the wet season (May-October). The mean freshwater discharge for all five instrumented sites during the wet season from 1996 to 1999 is 106 cubic feet per second. The El Nino event caused a substantial increase (654 percent) in mean flows during the dry season (November-April) at the instrumented sites, ranging from 8.5 cubic feet per second in 1996-97 to 55.6 cubic feet per second in 1997-98. Three main flow signatures were identified when comparing flows at all monitoring stations. The most significant was the magnitude of discharges at Trout Creek, which carries about 50 percent of the